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Abstract

Understanding friction and adhesion in static and sliding contact of surfaces is impor-

tant in numerous physical phenomena and technological applications. Most surfaces

are rough at the microscale, and thus the real area of contact is only a fraction of

the nominal area. The macroscopic frictional and adhesive response is determined by

the collective behavior of the population of evolving and interacting microscopic con-

tacts. This collective behavior can be very different from the behavior of individual

contacts. It is thus important to understand how the macroscopic response emerges

from the microscopic one.

In this thesis, we develop a theoretical and computational framework to study

the collective behavior. Our philosophy is to assume a simple behavior of a single

asperity and study the collective response of an ensemble. Our work bridges the

existing well-developed studies of single asperities with phenomenological laws that

describe macroscopic rate-and-state behavior of frictional interfaces. We find that

many aspects of the macroscopic behavior are robust with respect to the microscopic

response. This explains why qualitatively similar frictional features are seen for a

diverse range of materials.

We first show that the collective response of an ensemble of one-dimensional in-

dependent viscoelastic elements interacting through a mean field reproduces many

qualitative features of static and sliding friction evolution. The resulting macroscopic

behavior is different from the microscopic one: for example, even if each contact

is velocity-strengthening, the macroscopic behavior can be velocity-weakening. The

framework is then extended to incorporate three-dimensional rough surfaces, long-

range elastic interactions between contacts, and time-dependent material behaviors
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such as viscoelasticity and viscoplasticity. Interestingly, the mean field behavior dom-

inates and the elastic interactions, though important from a quantitative perspective,

do not change the qualitative macroscopic response. Finally, we examine the effect

of adhesion on the frictional response as well as develop a force threshold model for

adhesion and mode I interfacial cracks.
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Chapter 1

Introduction

1.1 Motivation and background

1.1.1 Motivation

Friction is ubiquitous: it allows us to walk and drive, and it plays a key role in the

working of many machines and technologies. The history of humankind is closely

intervowen with the progress of tribology. Fire, a significant discovery in the evolu-

tion of humans, was one of our ancestors’ first experiments in tribochemistry. The

making of tools, another milestone that sets us apart from other species, started as

experiments with wear. In more recent times, the early civilizations also understood

the significance of tribology. For example, during the Egyptian civilization, lubricants

were used to reduce friction in transporting large stone blocks [1].

In the 18th and 19th centuries, the main impetus driving the advances in tribology

was the industrial revolution, with knowledge from tribology being used in the devel-

opment of better bearings and other machine tools. In the 20th and 21st centuries,

tribology has found numerous applications in diverse fields including engineering,

biology, and geology [2, 3].

At small length scales, the ratio of surface area to volume being large, surface

forces play a dominant role. With advances in micro and nano fabrication techniques,

development of small scale technologies like MEMS, NEMS and magnetic disk drives

depends on our understanding of the surface forces at these scales [4, 5, 6]. For a
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discussion of some of the tribological issues in the design of micromotors, Digital

Micro-mirror Devices, slider-disk interfaces in disk drives, nanoimprinting, and high

density storage, see [7].

At the other end of the length scale spectrum, at very large length scales, various

aspects of earthquakes are known to be sensitive to the frictional properties on faults

[3, 8, 9, 10, 11, 12, 13].

While friction is desirable in many scenarios, it can also have undesired effects. In

1966, a report by Jost in Britian estimated that significant economic savings, of the

order of 1% of the GNP, could be made through better triblogical practices [14] (this

report also coined the word “Tribology”). Similar estimates have been made by other

agencies since [15]. Thus, the study of friction potentially entails great economic

benefits.

Another example of an application of the study of friction is tactile sensing. The

goal here is to endow machines with a sense of touch [16, 17, 18, 19]. Think of the

simple act of picking up an object. The forces applied should be large enough to

overcome gravity but small enough to not cause any damage to the object. Apart

from sophisticated feedback mechanisms, this also requires an understanding of the

frictional forces involved based on the materials and the surface texture of the inter-

acting objects (humans are apparently fairly efficient in doing this, applying between

10%− 40% more than the minimum force necessary [20]).

1.1.2 Overview of historical studies of friction

The scientific study of friction begins with the Italian polymath, Leonardo da Vinci.

With his experiments, sliding objects on horizontal and inclined surfaces, and mea-

suring forces using pulleys and weights, he made the following observations:

1. The frictional force is proportional to the normal force.

2. The frictional force is independent of the area of contact.

He also introduced the concept of friction coefficient as the ratio of the frictional and

normal forces. It is interesting to consider Leonardo’s insight in the historical context.
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In the 15th century, the concept of force had not developed sufficiently and the

frictional and normal forces were not seen as two different manifestations of the same

“force”. Leonardo’s work remained unnoticed and his findings were independently

rediscovered by the 17th century French physicist Guillaume Amontons. The friction

laws (1) and (2) stated above now bear his name.

Euler was the first to distinguish between static and sliding friction. He calculated

that if the friction coefficient is µ (incidentally, he also introduced the symbol µ for

the friction coefficient) and if a body placed on an inclined slope such that it is in

equilibrium and if the slope is increased gradually, at some point, the equilibrium is

disturbed, and after this the sliding speed should increase gradually with the slope.

He observed, however, that the body moved faster than his predictions and concluded

that the sliding friction must be smaller than the static friction.

The industrial revolution led to the advancement of studies in friction, lubrication,

and wear. The French physicist Charles-Augustin de Coulomb, more well known for

his work in electrostatics, made two important contributions to the study of friction.

He observed that, the static friction coefficient is not a constant but increases with

the time of contact. He also concluded, albeit wrongly, that the sliding friction

coefficient is independent of the sliding speed. In the last few decades, there has been

a resurgence in interest in friction which, accompanied by the development of new

experimental techniques and increased computational power, has resulted in a number

of studies of frictional properties of interfaces in different materials at different length

and time scales. For a detailed history of tribology, see [1].

To study friction, it is important to first understand the contact of rough surfaces.

The study of single asperity contact underlies many models of rough surface contact.

The problem of contact of linear elastic parabolic surfaces was first solved by Hertz

[21], apparently during his Chrismas vacation in 1880 [22], in his study of optical

interference fringes between glass lenses. This has subsequently been extended to

include other effects such as tangential loads, sliding, plasticity, viscoelasticity, ad-

hesion, etc. (see [22] and references therein). The book Contact Mechanics by Prof.

Johnson [22] is a good reference for problems in contact mechanics. For a review of
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single asperity contact, and some of the numerical methods that have been used in

studying them, see [23]. For a review of single-asperity contact at the nanoscale, see

[24].

The idea that the contact of rough surfaces can be approximated by the contact of

a collection of spheres is an old and persistent one. The first appearance of this seems

to be in the work of Bernard Forrest de Bélidor [1]. Assuming the spherical particles

to be rigid, he calculated the force required to slide one collection of particles over

another, and obtained a constant friction coefficient of 0.35. More than 200 years later,

two different variations of this idea were proposed by Archard [25] and Greenwood

and Williamson [26].

Archard proposed a hierarchical contact model in which a single elastic spherical

contact is made of multiple contacts at a smaller scale, each of which is in turn made

of even smaller contacts and so on [25]. He showed that as the number of levels in the

hierarchy increases, the scaling between the macroscopic area and load approaches

linearity (Amontons law). With advances in surface characterization techniques and

the development of the idea of fractals, we know that rough surfaces do have features

at many length scales and can be modeled as fractals. Several models of fractal rough

surface contact have since been proposed [27, 28, 29] and the Archard model can be

seen as a precursor to these.

In the Greenwood and Williamson model, each asperity is assumed to be spherical

and a single contact is modeled according to Hertzian theory [26]. This is fitted

within a statistical description of the rough surface. The macroscopic force and area

are calculated as moments with respect to the probability distribution of heights.

Greenwood and Williamson show that for an exponential height distribution, the

force and area are exactly proportional, while for a Gaussian height distribution the

linearity holds approximately over a large range of loads. In this model, interaction

between contacts and the spatial structure of surface roughness are not considered.

Bowden and Tabor proposed that because of surface roughness, the real and nom-

inal areas of contact are different and the real area is only a small fraction of the

nominal area [30]. Since the applied load is sustained by this small area, the stresses
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at the contacts can be very high and cause yielding of the material. The frictional

resistance is the force required to shear these contacts. Using this, they estimated

the coefficient of friction as the ratio of shear strength of contacts to the indentation

hardness of the material:

FN = σcAr, FS = τcAr, µ = FS/FN = τc/σc, (1.1)

where FN and FS are the macroscopic normal and shear loads, Ar is the real area of

contact, σc is the indentation hardness, τc is the asperity shear strength, and µ is the

friction coefficient. This model explains the Amontons laws since both the normal and

the shear forces depend linearly on the real area of contact Ar and are independent

of the nominal area. The above framework is helpful in explanining another feature

of friction. The variation of the friction coefficient µ across many materials is fairly

narrow and is usually of the order of 1 (one doesn’t often see friction coefficients of the

order of 0.01 or 100). Since µ = τc/σc, and materials with high shear strength usually

have high indentation hardness, the ratio of these two does not vary too much.

1.1.3 Rate and state effects

The motivation for this thesis comes from the fascinating experimental discoveries of

the last few decades. In the classical picture of friction, the static friction coefficient is

a constant. Coulomb, however, had already observed that the static friction coefficient

(µs) is not a constant but depends on how long surfaces are in contact before sliding

begins [31]. He proposed an empirical power law to fit his experimental results.

Classically, the sliding friction coefficient is also a constant that is independent of the

sliding speed. In the last few decades, careful experiments have shown that the sliding

friction coefficient (µk) depends on the sliding speed [32, 33, 9, 34, 35]. Furthermore,

the frictional resistance depends not only on the current sliding velocity, but also on

the velocity history of the system [33, 36, 9, 35]. The independence of the friction

coefficients with respect to the normal force and the nominal area of contact has been

observed to be a good approximation, except when the normal force varies rapidly
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[37, 38].

Several studies have the observed the increase of µs with the time of contact.

Rabinowicz [32], Richardson et al. [39] (Figure 1.1), and Dieterich [40] (Figure 1.2)

observed a strengthening in their experiments on metals and rocks. In Dieterich’s

experiments [40], rocks were held at constant normal and shear forces for varying

lengths of time before the shear force was suddenly increased to induce sliding. The

coefficient of static friction was calculated as the ratio of the shear force required to

initiate sliding to the applied normal force. µs was observed to increase logarithmically

with the time of contact (Figure 1.2).

Figure 1.1: Evolution of friction coefficient of mild steel with time (reproduced with
permission from [39]).

Dieterich proposed an empirical law to fit these results [33]:

µs(t) = µ0 + A log(Bt+ 1), (1.2)

where t is the time of stationary contact, and µ0, A, and B are constants dependent

on the two materials and surfaces across the interface. Typically, for rocks, µ0 is

0.7-0.8, A is 0.01-0.02, and B is of the order of 1 second−1 [33].

Two physical processes are conjectured to be the origin of the strengthening. First,

because of high stresses, creep at contacts might result in increased area of contact,

leading to increased strength [41]. Second, even if the area of contact does not change,

the strength of each contact might increase with time [30].

Experiments have shown that the sliding friction coefficient µk depends on the
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Fig. 2. Time dependence of the coefficient of static friction •, for sandstone. 

mately 0.5 sec. Above 400 bars these rocks slide Dotcos' [1946] data for steel a.t high normal 
only by stick slip. The reason for the difference stress have been shown by Rabinowicz [1965] 
in behavior is not clear, but it can be noted to demonstrate an increase of pt, with the 
that the sandstone and the graywacke contain logarithm of the stick interval. For metals 
several per cent mica, whereas the granite con- Bowden and Tabor [1964] suggest a number of 
tains only a trace amount and the quartzite possible explanations for the increase of pt, 
contains none. Also the sandstone and the with time. These explanations are compatible 
graywacke have slightly lower coefficients of with the widely accepted theory of friction 
friction and lower values of A than the granite that states that frictional strength is determined 
and the quartzite. by the size and the strength of adhesive junc- 

tions across the slip surface. Because the for- 
POSSIBLE MECHANISMS FOR TIME mation of these junctions is controlled by local- 

DEPENDENCE OF pt, ized plastic flow in the area of the contact 
The increase of pt, with duration of contact points, one explanation is tha• time-dependent 

shown here for rocks is very similar to the time plastic flow increases the area of the junctions. 
dependency observed in metals. For example, The other possible explanations are based on 

Figure 1.2: Evolution of the static friction coefficient with time at a constant normal
force for quartz sandstone. Different panels correspond to different values of the
normal force. Reproduced with permission from [40].

sliding velocity. In a common type of experiments called velocity jump tests, two

surfaces are slid at a constant velocity till the system reaches steady state. Then,

a step change in sliding velocity is induced and the shear force required to sustain

this new velocity is monitored. Since the velocity is constant, by equilibrium, this

force must equal the frictional force at the interface. This shear force divided by

the applied normal force is the sliding friction coefficient. Experiments on different

materials show that, with a jump in velocity, µk also jumps (called direct effect), and

the jump is followed by an evolution to a new steady state corresponding to the new

sliding velocity [41] (Figure 1.3). The evolution happens over a characteristic length
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scale, with the time scale of evolution to steady state being the ratio of the length

scale to the sliding speed. This length scale, thought to be the slip necessary for

the memory of the contacts to fade, is fairly independent of the sliding speed and

the normal force but depends on the surface features [42]. Similar properties of the

sliding friction coefficient have been found for sliding of thin granular layers [9]. It is

interesting that for materials with very different properties, the frictional response is

similar. For example, in Figure 1.3, a qualitatively similar behavior is seen in a rock

(granite), polymers (lucite and teflon), glass, and wood.

                                                                                  Figure 1
Effect of steps in slip speed on coefficient of friction µ in various materials. The top curve gives response
predicted by constitutive equations (1) and (2). Dc is commonly represented as the e-folding distance for
change of friction following a step in slip speed. Dc varies with the surface roughness and characteristics of
xxxxxx       xxxxx xxx layers of comminuted material separating the surfaces (gouge).

   In an ideal velocity stepping test, parameters A , B, and Dc contain the graphical
interpretation indicated in Figure 1 and µ0 represents the nominal coefficient of
friction which for most materials ranges from 0.5 to 0.8. In practice, it is not
possible to instantaneously step to a new constant sliding speed because of finite
apparatus stiffness. Apparatus stiffness effects are readily modeled (for example,
TULLIS and WEEKS, 1986) and cause the rounding of friction peaks and oscillations
that are visible in figure 1. With rocks, the values of the coefficients A  and B
generally vary between 0.005 and 0.015.
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      Equations (1) and (2)
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      15 MPa normal stress

Granite
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      10 MPa normal stress
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Figure 1.3: Evolution of sliding friction coefficient in velocity jump experiments on
different materials. Reproduced with permission from [41].
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A class of empirical laws called “rate and state” (RS) laws has been proposed

to capture the above experimental observations [42, 36]. “Rate” here refers to the

relative speed across the interface and “state” refers to one or more internal variables

used to represent the memory in the system. One commonly used RS law with a

single state variable takes the form:

µk = µ0 + a ln(
v

v∗
) + b ln(

v∗θ

Dc

), (1.3)

where µk is the coefficient of friction, v is the sliding velocity, a, b, v∗, µ0, and Dc are

constants, and θ is an internal variable with dimensions of time. An evolution law is

prescribed for the internal variable θ. Two well-known laws are the aging law,

θ̇ = 1− vθ

Dc

, (1.4)

and the slip law,

θ̇ = − vθ
Dc

ln(
vθ

Dc

). (1.5)

In these equations, Dc is the characteristic length scale over which the coefficient of

friction evolves to its steady state in the jump test. Dc is related to the roughness

of the sliding surfaces and is of the order of microns for most engineering surfaces

[42, 43]. At steady state, θ̇ = 0, and from Equation (1.4) or (1.5), θss(v) = Dc/v.

Using this in Equation (1.3), the steady state friction coefficient is given by,

µss(v) = const+ (a− b) ln(
v

v∗
). (1.6)

If a−b > 0, the steady state friction coefficient increases with increasing sliding speed

and if a− b < 0, the steady state friction coefficient decreases with increasing sliding

speed. The two cases are known as velocity-strengthening and velocity-weakening,

respectively.

The rate and state laws are used widely in simulations of earthquake phenomena

and have been successful in reproducing many of the observed features of earthquakes
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[8, 9, 10, 3, 11, 12, 13]. For example, it is known that the condition a − b < 0 is

necessary for stick-slip [36, 44]. Along the San Andreas fault in California, there is a

segment known as the Parkfield segment that is not locked but creeps with the Pacific

and North American plates. Measurements of frictional properties of rocks there have

shown that, because of the presence of certain minerals along the segment, a − b is

positive [45]. Thus, the stable sliding feature of this fault segment concurs with the

prediction of the rate and state laws. Another example is the role of temperature

dependence of a− b in the depth cutoff of crustal earthquake activity [10].

Given the significance of the described experiments and the empirical laws, it

is imperative that we understand how these features arise from a micromechanical

perspective and be able to predict velocity-strengthening and velocity-weakening be-

havior based on the material and surface properties. Attempts have been made in

this direction.

Two broad classes of models have been proposed to connect the asperity scale to

the experimentally observed features of the macroscopic frictional behavior. The first

is an extension of the Bowden and Tabor model. Several subsequent studies have

incorporated the time and velocity dependence into that framework by representing

the shear force at a contact as the product of the contact shear strength that depends

on the sliding velocity and area that depends on the age of the contact [46, 47, 48,

49, 50]. The velocity dependence of the shear strength is attributed to an Arrhenius

type activation mechanism while the time dependence of the area results from the

creep behavior of the material. The proposed formulations have been able to match

various frictional observations. In these models, it is assumed that each contact

has the same shear and normal force per unit area and the evolution of the contact

population is accounted for only by the evolution of the total contact area. As the

total contact area changes, the normal force per unit area adjusts, providing the only

interaction between the macroscale and the single asperity. Thus, this class of models

is dominated by the behavior of single asperities and does not include the effects of

the statistical properties of the contacting rough surfaces.

The other class of models is based on the Archard [25] and Greenwood-Williamson
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formulations [26]. Since the shear and normal forces are no longer proportional at

the microscale for this case, the collective behavior of asperities becomes paramount

in explaining the proportionality at the macroscale. These models are capable of ex-

plaining the basic observations of proportionality between the shear and normal forces

at the macroscale and hence the constant static coefficient. They ignore, however,

the spatial features of surface roughness and time-dependent behavior of single asper-

ities. Thus they are unable to explain any evolution of the friction coefficient. This

framework has been extended to study the time-dependent behavior of the contact

area for the case of static contact [51, 52].

1.2 Overview of the thesis

1.2.1 Point of view

Most surfaces, even those that appear smooth, are rough at the microscale. When

two such rough surfaces are pressed against each other, actual contact occurs only

at a relatively small fraction – but yet a large number of peaks (asperities) of the

surfaces.

When two surfaces are held in static contact or slid against each other, the popu-

lation of contacts evolves: contacts grow, become smaller, and come into and go out

of existence. Concomitantly, the forces on the asperities also evolve, not only because

of the time-dependent behavior of each contact, but also because of the statistical

properties of the rough contacting surfaces. This evolution at the microscale results

in the evolution of friction, normal force, area of contact, etc., at the macroscale.

This thesis examines the hypothesis that it is the collective behavior of this evolv-

ing population of contacts that determines critical aspects of rate and state effects of

friction.

We develop a framework where the interaction between two solid surfaces is rep-

resented as that between a surface with a collection of discrete deformable elements

(representing asperities) and one that is rigid (Figure 1.4). In order to focus on the
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collective behavior, we assume simple elastic and inelastic constitutive relations for

the individual elements. Various observed rate and state aspects of friction that are

absent in the microscale emerge as a result of the collective behavior. For example,

even if individual asperities have velocity-strengthening local friction (higher resis-

tance when sliding faster), the macroscale behavior can be velocity weakening (lower

resistance when sliding faster). Further, many of these features are generic, and we

believe that this is the reason they are observed in a wide variety of materials under

a range of conditions.

Sliding 
FN 

FN 

Sliding 

Fi Rigid surface 

Figure 1.4: Contact of two rough surfaces, one of the rough surfaces is approximated
by a set of discrete elements, the other surface is assumed to be rigid.

Our framework also enables us to examine many questions about the collective

behavior. One question we answer is the role of elastic interactions between contacts.

Contacts interact in two ways, the first is through a mean-field (the dilatation or

separation between the surfaces) and the second is through the long-range elastic

interactions. We find that within our model, the first is far more important than

the second. This has important implications. It follows that relatively simple models

with mean-field interactions are sufficient to understand various qualitative aspects

of frictional behavior. In other words, the detailed shape and stress distribution of

asperities may be less important than the overall statistics.

Existing studies of rate and state behavior do not consider the spatial structure

of roughness. Since the sliding behavior is inextricably linked to spatial roughness

correlations, these studies are confined to static contact. We present, as far as we

know, the first sliding simulations of three-dimensional rough surfaces with long-range

elastic interactions. We are thus able to explore the entire rate-and-state frictional
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response from the perspective of collective asperity behavior.

The approach we propose provides a bridge between existing well-developed stud-

ies of single asperities with phenomenological laws that describe macroscopic rate-

and-state behavior of frictional interfaces.

1.2.2 Outline of the thesis

Chapter 2 examines the collective behavior of an ensemble of one-dimensional vis-

coelastic elements in contact with a rough rigid surface interacting through a mean

field. The state of the system at any instant is described by a probability distribution

of normal forces experienced by the elements in the ensemble. The time, velocity, and

history dependence of frictional properties at the macroscale are a manifestation of

the evolution of the probability density. Consequently, the behavior at the macroscale

can be very different from the behavior of single asperities at the microscale. For ex-

ample, even if individual asperities have velocity-strengthening local friction (higher

resistance when sliding faster), the macroscale behavior can be velocity weakening

(lower resistance when sliding faster). Many qualitative features of rate-and-state

frictional behavior emerge from the collective behavior of the elements.

Chapter 3 makes an important step towards a more realistic representation of

the physical system. The independent viscoelastic elements of Chapter 2 are supple-

mented with spatial structure by generating three-dimensional rough surfaces. Con-

stitutive equations based on elasticity solutions that include long-range elastic inter-

actions are derived. The goal of the chapter is to study the role of surface roughness,

viscoelastic material properties, and the long-range elastic interactions in determining

macroscopic friction. Many qualitative aspects of macroscopic friction are determined

by the viscoelastic properties and the surface roughness. The long-range interactions,

though important from a quantitative perspective, are dominated by the mean-field

interactions and do not change the qualitative behavior.

Chapter 4 extends the model of Chapter 3 to include viscoplastic material behav-

ior. Simulations show that the qualitative features of friction evolution are robust
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to the assumptions of the underlying time-dependent behavior. This hints that the

reason many materials show similar macroscopic frictional behavior is the minimal

restriction it places on the microscopic behavior.

Effects of adhesion can be important, especially at small length scales. In Chapter

5, a framework to incorporate the adhesive interactions is presented. Many aspects

of rough surface adhesion and effects of adhesion on friction are discussed.

Chapter 6 develops a threshold force based model for adhesive contact of sur-

faces. A scaling relation that is very suggestive of linear elastic fracture mechanics is

discovered. The model can also be used to study mode I interfacial cracks.

Chapter 7 provides a summary of the thesis and suggests some avenues for future

work.
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Chapter 2

Collective behavior of independent
viscoelastic asperities interacting
through a mean field

In this chapter, we propose a statistical model for static and sliding friction between

rough surfaces. Approximating the contact between rough surfaces by the contact

of an ensemble of one-dimensional viscoelastic elements with a rough rigid surface

interacting through a mean field, we study the collective behavior of the elements.

We find that collective response of the contacts can lead to macroscopic behavior that

is very different from the microscopic behavior. Specifically, various observed features

of friction emerge as collective phenomena, without postulating them directly at the

microscale. We discuss how parameters in our model can be related to material and

surface properties of the contacting surfaces. We compare our results to commonly

used rate and state phenomenological models, and propose a new interpretation of

the state variable.

This chapter is based on our paper [53].

2.1 Basic ingredients

The ingredients of our model are a constitutive description of single asperities at

the microscale, and a stochastic characterization of rough surfaces. We now describe

these in detail.
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k1
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Figure 2.1: (Top left) Microscale image of actual contacts (white spots) between two
rough surfaces (adapted with permission from [54]). The contacts form at the peaks
(asperities) of the surfaces. (Top right) We model the system as an ensemble of one-
dimensional elements in contact with a rigid rough surface. (Bottom) Each asperity
is represented by a viscoelastic spring-dashpot element.

2.1.1 Single asperity

The behavior of an asperity depends on various factors, such as material properties,

local stresses, sliding speed, etc. As a first step, we model asperities as being vis-

coelastic, using a spring-dashpot system known as a Standard Linear Solid (SLS, see

Figure 2.1). An SLS consists of a spring in parallel with a spring and dashpot in

series. The equation for the evolution of the force F on an SLS as a function of its

length and the rate of change of its length is:

Ḟ = (k1 + k2)ẋ− k2

η
F +

k1k2

η
(x− x0), (2.1)

where k1, k2 are the stiffnesses of springs 1 and 2, respectively, η is the viscosity of the

dashpot, x, x0 are the current and undeformed lengths of spring 1, and dot denotes

the time derivative. An asperity can be in two states, in contact or out of contact

with the surface it slides on. When in contact, its length evolution is known and

the force evolution can be calculated using Equation (2.1). When out of contact, the
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force on the asperity is zero and, setting F = 0 and Ḟ = 0 in the Equation (2.1), the

evolution of its length is given by:

ẋ = − k1k2

η(k1 + k2)
(x− x0). (2.2)

A natural question to ask is whether we can relate the material and geometric

properties of the asperities to the parameters k1, k2, and η of the SLS. One way to do

this would be to solve a viscoelastic Hertzian problem. Assuming that the asperity

is spherical and the material is linear viscoelastic, from the solution of the elastic

Hertzian problem, the viscoelastic Hertzian problem can be solved using the method

of Laplace transforms [55]. The contact, initially at zero force and deformation, is in-

stantaneously brought to a deformation δ0 and the evolution of the force is computed.

The instantaneous force is related to the instantaneous stiffness of the SLS, k1 + k2,

the steady state force is related to k1, and the rate of relaxation to steady state is

related to η. The Hertzian contact problem is nonlinear, whereas the SLS element

is linear. The nonlinearity of the Hertzian problem manifests as the dependence of

k1, k2, and η on the deformation δ0. We can, however, get an order-of-magnitude

estimate of the values of the parameters in our model. Results from such calculations

for two materials, Polyvinyl Alcohol (PVOH) and Polystyrene [55], are given below.

PVOH:

k1√
ρδ0

= 0.18 GPa,
k2√
ρδ0

= 0.15 GPa,
η√
ρδ0

= 0.48 GPa-s.

Polystyrene:

k1√
ρδ0

= 2.75 GPa,
k2√
ρδ0

= 0.39 GPa,
η√
ρδ0

= 4.51 GPa-s.

Above, ρ is the radius of curvature of the asperity.
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2.1.2 Rough surfaces

Rough surfaces have been characterized by representing the heights from a reference

level as a stochastic process [56, 57]. This characterization has been used extensively

in exploring various aspects of contact between surfaces [26, 58, 59]. Profile measure-

ments have shown that many types of surfaces can be modeled as a Gaussian noise

with an exponential correlation [60]. Such a noise, known as an Ornstein-Uhlenbeck

process, satisfies the following stochastic differential equation:

dy

dz
= −1

λ
y(z) +

√
2

λ
σζ(z). (2.3)

Here, y is the height of the surface from a reference level (chosen such that the mean

height is zero), z is the horizontal spatial variable, λ is the correlation length, σ is the

rms roughness of the surface, and ζ(z) is a Gaussian white noise with unit standard

deviation. For typical surfaces, σ and λ are of the order of a few microns [60]. We

adopt this description of a rough surface. We also assume that the surface is rigid,

since this considerably simplifies our calculations.

2.1.3 Local friction law

To determine the coefficient of friction, we need the macroscopic normal and shear

forces. To compute the macroscopic shear force as a moment with respect to the

probability distribution of microscopic normal forces, we need to know how the normal

and shear forces are related for a single asperity. We assume local friction laws of the

form,

s(F, v) = f(v)F + c2F
n, f(v) =

 0 v ≤ vc

µ0 + c1 log(v̄) v > vc.
(2.4)

s here is the shear force at the contact, F is the local normal force, v is the sliding

speed, v̄ is the nondimensional sliding speed, µ0, n, c1, and c2 are constants, vc is the

cutoff velocity for the velocity dependence of friction, and 2/3 ≤ n ≤ 1.

The local friction law depends on the material and geometry of the contacts. If a
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contact is elastic and its geometry is spherical, then, by the Hertz theory of contact,

the area of contact varies as the two-thirds power of the normal force. Further, if the

contact has a shear strength τmax, then the local friction law is:

A ∝ F 2/3, s = τmaxA ∝ F 2/3.

As in the Bowden and Tabor model, if contacts are plastic because of the high local

stresses, the area of contact is proportional to the normal force and the local friction

law is:

A ∝ F 1, s = τmaxA ∝ F 1.

An actual contact may be in between these two limiting cases and thus, the power in

the local friction law between 2/3 and 1. Also, different contacts in the population

may be in different states.

If the surfaces are sliding at a relative speed v, then the asperities in contact are

sheared at a strain rate proportional to the sliding speed, and if the shear resistance

depends on the strain rate, then the local friction law will be velocity-dependent.

Taking cue from experimental results, we assume this velocity dependence to be loga-

rithmic. A theoretical justification for the logarithmic dependence has been proposed

by Rice et al [61].

Alternatively, local friction laws can be derived from theoretical and experimental

studies of single asperity contacts. For example, Kogut and Etsion [62] consider

the inception of sliding of a single spherical elastoplastic contact and conclude that

µ ∝ F−0.345 when the normal force by itself does not cause any plastic deformation

(µ here is the single asperity friction coefficient). Note that this is very close to

the Hertzian s ∝ F 2/3 approximation above. Archard [63], using a crossed cylinder

apparatus, reports µ ∝ F−0.26 for perspex and µ ∝ F−1/3 for brass. Wandersman et

al [17], looking at texture-induced modulations of friction, report that s ∝ F 0.87 for

an elastomer on glass.

To summarize, our model for two rough surfaces in contact consists of an ensemble
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of independent viscoelastic SLS elements sitting on a rigid rough surface modeled as

an Ornstein-Uhlenbeck process. With this model, we simulate the static contact and

velocity jump experiments to study the time and velocity dependence of friction.

2.2 Static friction

2.2.1 Formulation

In this section, we study the evolution of an ensemble of independent SLS elements in

static contact with a rigid rough Gaussian surface (Figure 2.1) under a global normal

force FN . The evolution of each SLS is governed by Equations (2.1) and (2.2). For

simplicity, we assume that the values of k1, k2, η, and x0 are the same for every element

in the ensemble. Without loss of generality, we can set x0 = 0, since this corresponds

to choosing a particular reference level to measure the length x. Dilatation, which is

the distance between the reference planes from which the lengths of the SLS elements

x and the heights of the rigid surface y are measured, is denoted by d. At any instant

t during the evolution of the system, only a fraction of the elements are in contact

with the surface and for these, the contact condition implies:

x(t) + y = d(t). (2.5)

Since we have assumed the parameters k1, k2, η, x
0 to be the same for all the elements

in the ensemble, each element can be labeled by the height y of the rigid surface that

it sees. At time t, the global normal force is given by:

FN(t) = Ey(F (t, y)) =

∫ ∞
d(t)

F (t, y)Py(y)dy, (2.6)

where F (t, y) is the force on an SLS corresponding to time t and height y of the rough

surface, and Py(y) is the probability distribution of heights of the rough surface. The

limits of integration are from d(t) to∞ since elements are in contact with the surface

only if the height y is greater than d(t) (since x0 = 0). For a Gaussian distribution
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of surface heights, we have,

Py(y) =
1√
2πσ

e−
y2

2σ2 , (2.7)

where σ is the rms roughness of the surface. The elements being viscoelastic, the

force in the ones in contact would decrease with time if the dilatation were constant.

To reproduce experimental conditions, we constrain the total normal force to be con-

stant. To satisfy this constraint, dilatation has to decrease with time. Differentiating

Equation (2.6) with respect to time gives:

ḞN(t) =

∫ ∞
d(t)

∂F

∂t
(t, y)Py(y)dy − F (t, d)Py(d)ḋ(t). (2.8)

F (t, d) = 0 since y = d(t) implies that the contact is formed at time t. The evolution

equation for the force on an SLS (Equation (2.1) with ẋ = ḋ; ẏ = 0 as the surface is

rigid) gives:

∂F

∂t
(t, y) = (k1 + k2)ḋ(t)− k2

η
F (t, y) +

k1k2

η
(d(t)− y). (2.9)

Using F (t, d) = 0 and Equation (2.9) in Equation (2.8), the evolution equation for

the dilatation at constant normal force (ḞN = 0) is:

ḋ(t) =

k2

η
FN − k1k2

η

∫∞
d(t)

(d(t)− y)Py(y)dy

(k1 + k2)
∫∞
d(t)

Py(y)dy
. (2.10)

We now turn to the static friction force. Knowing the local friction law, s = s(F ),

we can determine the global shear force as,

FS(t) = Ey(s(F (t, y))) =

∫ ∞
d(t)

s(F (t, y))Py(y)dy, (2.11)

and the coefficient of friction can be calculated as the ratio of the two forces,

µs(t) =
FS(t)

FN
. (2.12)
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Before proceeding further, we nondimensionalize the equations.

2.2.2 Nondimensionalization

To nondimensionalize time, we use η/k2, which is one of the two characteristic

timescales of the SLS. A natural length scale in the problem is the rms roughness

of the surface, σ. For forces, we use k1σ. Using these characteristic quantities, we

define the following nondimensional variables:

t̄ =
t

η/k2

, d̄ =
d

σ
, ȳ =

y

σ
, F̄ =

F

k1σ
. (2.13)

Equation (2.9) after nondimensionalization, is:

∂F̄

∂t̄
(t̄, ȳ) = Rd̄′ − F̄ (t̄, ȳ) + d̄(t̄)− ȳ. (2.14)

The nondimensional equation for the dilatation evolution is:

d̄′ =
F̄N(t̄)−

∫∞
d̄

(d̄− ȳ)Pȳ(ȳ)dȳ

R
∫∞
d̄
Pȳ(ȳ)dȳ

, (2.15)

and the coefficient of friction is given by:

µs(t̄) =
F̄S(t̄)

F̄N
.

In the above equations, prime denotes differentiation with respect to nondimension-

alized time,

R = 1 +
k2

k1

, (2.16)

and the probability distribution of the normalized surface heights Pȳ(ȳ) = 1√
2π
e−

ȳ2

2 .

After nondimensionalization, we have two parameters: R, which is the ratio be-

tween the instantaneous and steady state stiffnesses, and n, the power in the local

friction law. The local friction exponent n is indicative of the state of the contact,

being 2/3 for elastic and 1 for plastic contact.
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2.2.3 Static friction evolution

Suppose that, at t = 0, an ensemble of SLS elements is instantaneously brought to

a dilatation d = d0 against the rigid surface. Some of the SLS elements come into

contact with the surface and result in a total normal force FN . The system is then

allowed to evolve at this constant global normal force FN . The dilatation evolves to

satisfy the constraint of constant FN . This evolution can be calculated using Equation

(2.15). From the dilatation history, the evolution of the probability density of the

normal forces can be determined using Equation (2.14). Using this and the local

friction law, we can determine the evolution of the static friction coefficient.

Figure 2.2 shows the evolution of µs for different local friction exponents. At

small times, t
η/k2
� 1, µs remains constant, since the SLS elements need a finite time

to start relaxing. µs then starts increasing and, around the relaxation time of the

SLS, t
η/k2

= O(1), the increase is approximately logarithmic in time. At large times,

t
η/k2
� 1, all the SLS elements have relaxed to their steady state and µs evolves to a

constant value.
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Figure 2.2: Evolution of the static friction coefficient (µs) with time at a constant
global normal force for different local friction exponents n. For the physically relevant
values of n ∈ [2/3, 1), µs increases logarithmically with time for a range of times
around the relaxation time of each asperity. For the unphysical case n > 1, µs
decreases with time, a behavior that has not been observed in experiments.
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The variation in µs is largest for the case of elastic contacts (n = 2/3). As the

power in the local friction law reaches 1, the case of plastic contacts, we recover the

result of the Bowden and Tabor model in which the friction coefficient is a constant

given by the ratio of the shear strength to the hardness of the contacts. For n > 1,

µs decreases with the time of contact. As explained in section 2.1.3, we expect

n ∈ [2/3, 1] for real materials. We believe this to be the reason why we only see an

increase of µs in experiments.
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Figure 2.3: (a) Evolution of friction coefficient with time at a constant global normal
force for different stiffness ratios, R = 1 + k2/k1. The system reaches steady state
faster for smaller R. (b) The saturation at small and large times has also been
observed in some experiments (reproduced with permission from [39]).

Figure 2.3a shows the evolution of µs for different values of R, using a local

friction law s(F ) ∝ F 0.75. When R ≈ 1, or k2 � k1, the instantaneous and steady
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state stiffnesses are not very different, and hence the growth in the friction coefficient

is small. For k2 � k1, the instantaneous and steady state stiffnesses are very different

and consequently, we see a larger growth in µs. Also, Figure 2.3a shows that the

steady state is reached faster when R is smaller. The SLS has two characteristic

timescales, η/k2 and η
k2

(1 + k2/k1). Since we have nondimensionalized time with

η/k2, R is the second characteristic timescale in nondimensionalized time and thus,

for smaller R, the steady state is achieved faster.

The predicted increase of the coefficient of static friction with time has been widely

observed in experiments [32, 40, 39]. If η/k2 is of O(1) seconds, as it is for the two

materials mentioned earlier, we see that the friction coefficient reaches its steady

state at around 102 seconds and the total variation in µs lasts about 3-4 decades in

time. In some materials like mild steel, the predicted behavior – linear increase with

logarithmic time over a few decades with a lower and upper saturation for small and

large times – is also in agreement with experimental observations [64, 39], as shown in

the Figure 2.3b. In the experiments on rocks [40, 33], however, the logarithmic growth

persists through the duration of the experiment (some experiments have lasted six

decades in time). Since µs cannot increase indefinitely, it eventually has to reach a

steady state. This delayed saturation is not captured by our model. We conjecture

that the difference between our model response and the rock experiments could be

for the following reasons. The SLS element has only one relaxation time, while a

real viscoelastic material has many relaxation timescales. In Figures 2.2 and 2.3a,

the x-axis is the nondimensionalized logarithmic time. When plotted with respect

to logarithmic time, changing η/k2 corresponds to translating the curve horizontally

by log(η/k2). Thus, in the case of multiple relaxation timescales (multiple η/k2), the

region of µs increase will be wider. Furthermore, if the asperities interact with each

other through the bulk, the interactions can result in a continuum of timescales for

the response at the macroscopic scale. Exploring this hypothesis remains a topic of

current work.
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2.3 Kinetic friction

2.3.1 Formulation

Consider a single SLS sliding on a rough rigid surface (Figure 2.1). The slider can be

in two states, either in contact or out of contact with the surface. When in contact,

its length evolves to conform to the rigid surface, x(t) = d(t) − y(t) and the force

evolves according to Equation (2.1). Since we have modeled the rough surface as

a stochastic process, the differential equation for force evolution during contact will

also be a stochastic one. If the SLS ensemble slides at a constant velocity v, then

the horizontal coordinate is z = vt. Using chain rule, we can change the independent

variable from the horizontal coordinate z to time t in Equation (2.3) for the rough

surface:
dy

dt
=
dy

dz

dz

dt
= v

dy

dz
= −v

λ
y(t) +

√
2v

λ
σζ(t). (2.17)

When the slider is in contact with the surface, ẋ = ḋ − ẏ. Using this and Equation

(2.17) in Equation (2.1), the stochastic differential equation for the evolution of the

normal force during contact is:

Ḟ (t) = −k2

η
F (t) + (k1 + k2)ḋ(t) +

k1k2

η
(d(t)− x0)

+

(
(k1 + k2)v

λ
− k1k2

η

)
y(t)− (k1 + k2)

√
2v

λ
σζ(t). (2.18)

Here, the terms y(t) and ζ(t) are the Ornstein-Uhlenbeck and white noise, respec-

tively. Their statistical properties are:

< y(t) >= 0, < y(t1)y(t2) >= σ2e−
v|t1−t2|

λ , (2.19)

< ζ(t) >= 0, < ζ(t1)ζ(t2) >= δ(t1 − t2),

< ζ(t1)y(t2) >=

0, if t1 > t2,√
2v
λ
σe−v|t2−t1|/λ, if t1 <= t2,
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where <> denotes ensemble average. Since y(t) is driven by ζ(t) (Equation (2.17)),

the cross correlation between the two noises is not zero.

When the slider is not in contact, the normal force is zero and its length evolves

according to Equation (2.2). Before proceeding further, we nondimensionalize the

above system of equations.

2.3.2 Nondimensionalization

As before, we use σ to nondimensionalize length, η/k2 to nondimensionalize time and

k1σ to nondimensionalize force, and use a bar to denote non-dimensional quantities.

Equation (2.18) for an SLS in contact, after nondimensionalization is:

F̄ ′ = −F̄ +Rd̄′ + d̄− x̄0 +

(
Rv̄

λ̄
− 1

)
ȳ −R

√
2v̄

λ̄
ζ̄, (2.20)

< ȳ >= 0, < ȳ(t̄1)ȳ(t̄2) >= e−v̄|t̄1−t̄2|/λ̄, (2.21)

< ζ̄ >= 0, < ζ̄(t̄1)ζ̄(t̄2) >= δ(t̄1 − t̄2).

After nondimensionalization, Equation (2.2) for an SLS out of contact becomes:

x̄′ = − 1

R
(x̄− x̄0). (2.22)

As before prime denotes differentiation with respect to t̄.

x̄0, the undeformed length of the viscoelastic sliders, may be set to 0 since this

is equivalent to choosing a reference level. λ̄ is the correlation length of the surface,

which we set to 1. In the governing equations, λ̄ appears only as v̄/λ̄, thus λ̄ sets a

scale for the sliding speed.

This leaves the following non-trivial parameters in the model. R, as in the static

contact case, is the ratio of the instantaneous and steady state stiffnesses of the SLS.

v̄ = k2v/ησ, a nondimensional sliding speed, is the number of rms roughness lengths

that the SLS slides in one relaxation time η/k2. If v̄ � 1, the SLS has little time to

relax when in contact and hence its response will be close to its instantaneous elastic
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response. If v̄ � 1, the SLS has time to relax to its steady state and its response will

be similar to its steady state elastic response.

We have four parameters in the local friction law, µ0, c1, c2, n (Equation 2.4). µ0

sets a reference value for the coefficient of friction, and we choose this to be 0.6. The

constant c1 controls velocity dependence of the local friction and is set to 0.01 unless

otherwise mentioned. The constant c2 describes the evolution of the friction on steady

sliding, and is set to 0.2. Unless mentioned otherwise, the local friction exponent n

is set to 0.67 since the transient is most pronounced in this case.

2.3.3 From one to many

As the surfaces slide, each asperity sees a different profile. If two asperities are close

to each other, the profiles they see will be correlated. We neglect this correlation and

associate an independent realization of the noise ȳ(t̄) as the profile on which an SLS

element slides. The question we seek to answer is: given the statistical properties

of ȳ(t̄), what are the statistical properties of the force F̄? In particular, what is the

probability density of force P (F̄ )? A stochastic equation such as Equation (2.20)

is known as a Langevin equation. Averaging this equation over the ensemble of

realizations of the noise ȳ(t̄), one can derive a partial differential equation for the

evolution of the probability density P (t̄, F̄ ) [65]. An example of this is the heat

equation, which results from the averaging of the stochastic equation corresponding

to the Brownian motion of a single particle. We would like to do a similar ensemble

averaging of Equation (2.20). The problem, however, is that we have two sources of

noise, ȳ(t̄) and ζ̄(t̄), and the two are correlated (Equation (2.19)). In such a case,

there is no known method of deriving the partial differential equation for the evolution

of probability density. Hence, we resort to a numerical Monte Carlo method where

we generate an ensemble of sliders and surface profile realizations, evolve the system

at the microscale, and compute statistics of the ensemble to determine macroscopic

properties. There is, however, a particular case of pure white noise, where we can

derive a partial differential equation for the evolution of P (t̄, F̄ ).
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2.3.4 The case of pure white noise

In Equation (2.20), if the velocity v̄ = λ̄/R, the coefficient of ȳ becomes zero. We

are then left with only the white noise term and we can derive a partial differential

equation (Fokker-Planck equation) for the evolution of P (t̄, F ) . The Fokker-Planck

equation corresponding to the Langevin equation (2.20) when v̄ = λ̄/R is [65]:

∂P

∂t̄
+
∂S

∂F̄
= 0, (2.23)

S(t̄, F̄ ) =

[
−F̄ +Rd̄′ + d̄− x̄0 −R ∂

∂F̄

]
P (t̄, F̄ ). (2.24)

Here, S(t̄, F̄ ) is the flux of P (t̄, F̄ ). To complete the problem, we need boundary

conditions at F̄ = 0 and F̄ = −∞
(
F̄ ∈ (−∞, 0], no tension at contacts

)
. At F̄ =

−∞, both the probability density and flux have to vanish. The boundary condition

at F̄ = 0 is nontrivial. The flux there depends on the sliders coming into and going

out of contact, since this corresponds to the force changing between zero and nonzero

values. We know of no way of explicitly deriving this boundary condition.

Let us look at the steady state. At steady state, ∂P
∂t̄

= 0 and d̄′ = 0. From

Equation (2.23), the flux is uniform in the domain and S(−∞) = 0 implies it is zero

everywhere. Setting Equation (2.24) to zero, the probability density at steady state

is:

P (F̄ ) = ce−
F̄2

2R
+

(d̄− ¯
x0)F̄
R . (2.25)

There are two unknowns here: the constant c and the steady state dilatation d̄. We

have one constraint: that the first moment of the probability density be equal to

the applied normal force. Using the constraint, we can relate the constant c and the

dilatation d̄ as,

c =
F̄N∫∞

d̄
F̄ e−

F̄2

2R
+

(d̄− ¯
x0)F̄
R dF̄

. (2.26)

The other constraint comes from the boundary condition at F̄ = 0, which cannot be

determined explicitly.
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2.3.5 Monte Carlo method

Since the Fokker-Planck equation can be derived only for a particular velocity, we

resort to Monte Carlo simulation in the general case. We generate an ensemble of

sliders, each sliding on an independent realization of the noise ȳ(t̄) with the given sta-

tistical properties of Gaussian height distribution and exponential correlation. Again,

we assume the parameters k1, k2, η, x
0 to be the same for all the sliders. The noise is

generated at a finite discretization size and this introduces a low-wavelength cutoff in

the surface features. The power spectrum of the Ornstein-Uhlenbeck noise is given

by:

S(ω) =
λσ2

π

1

1 + ω2λ2
,

where ω is the spatial frequency. The power in frequencies beyond 10 times the

inverse correlation length is small. Therefore, we discretize the surface to resolve this

frequency [66]. For heights of the surface between the discretization points, and the

derivative of the surface height, we use spline interpolation.

At t̄ = 0, the ensemble of sliders is brought into contact with the rigid surface

and this results in a global normal force F̄N . In experiments, the surfaces slide at a

constant global normal force. As in the static contact case, the dilatation d̄ evolves to

satisfy the constant normal force constraint. At each time step, the rate of dilatation

is determined to ensure that the global normal force remains constant. Once the rate

of dilatation is known, the forces and lengths of all the sliders can be updated. For

time stepping, we use a first order Euler method. Since, at any instant, the state

of all the sliders and thus the force F̄ on each of them is known, we can determine

the local shear forces using the local friction law, and, adding them, the global shear

force F̄S. The friction coefficient is then determined to be, µk(t) = FS(t)/FN .

2.3.6 Test of Monte Carlo method

We use the Fokker-Planck equation of Section 2.3.4 as a test of our Monte Carlo

method. Starting at an initial state, we let the system slide at the velocity v̄ = λ̄/R

(the case for which we can derive the Fokker-Planck equation) till it reaches steady
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state. Knowing the normal forces on all the sliders, we can compute the probability

density. This density is also known from the solution of the Fokker-Planck equation

at steady state (Equations (2.25) and (2.26)) and the two can be compared.

Figure 2.4 shows the probability density of forces in the initial and steady states

using the Monte Carlo and Fokker-Planck methods. In this simulation, R = 2, λ̄ = 1

and thus v̄ = 0.5. An ensemble of 105 sliders is used. From the figure, there is a good

match in the probability densities using the two methods. As a further verification,

we have also computed the transient evolution with the two methods, using the Monte

Carlo simulation to prescribe the boundary condition at F̄ = 0 for the Fokker-Planck

equation. The two transients also show a good match with each other.

−8 −7 −6 −5 −4 −3 −2 −1 0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

F̄

P
(F̄

)

 

 

Initial probability density
Steady state density, Monte Carlo
Steady state density, Fokker−Planck

Figure 2.4: Probability density of normal forces at an initial state, and at steady state
using two different methods, a Monte Carlo method and the Fokker-Planck solution.
Note that some sliders are not in contact and thus the area under the curve, which
is equal to the fraction of sliders in contact, is less than 1. In other words, there is a
Dirac mass at F̄ = 0.

2.3.7 Velocity jump test

Drawing confidence from the above result, we perform velocity jump simulations using

the Monte Carlo approach. For typical surfaces, σ is of the order of a micron and

sliding velocities in the jump tests are usually between 0.01µm/s and 100µm/s. η/k2
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is of the order of a few seconds for the two materials mentioned in section 2.1.1.

Thus, v̄ ranges from 10−2 to 102. Starting from an initial state, we let an ensemble

of 105 elements slide at v̄ = 0.1 till it reaches steady state. The velocity is then

instantaneously changed to v̄ = 1 and the system is allowed to evolve to steady state.

Velocity jumps to v̄ = 0.1 and v̄ = 1 are then repeated.

Figure 2.5a shows the evolution of the friction coefficient for two sets of parameter

values (all parameters are the same except R). In both cases, we find that the

friction coefficient changes instantaneously when the velocity jumps, and the change

has the same sense as that of the velocity jump; i.e., the friction coefficient jumps

up (down) when the velocity jumps up (down). Following the standard rate and

state terminology, we call this jump the direct effect. This jump is followed by an

evolution towards a steady state. We call this the transient. In both cases, this

transient changes the friction coefficient in the direction opposite to the direct effect,

i.e., the friction coefficient decreases from the high value following a jump up and

increases from a low value following a jump down. In one case (R = 1.1, or the higher

curve), the transient is smaller than the direct effect so that the steady state value

is still higher (lower) for an increase (decrease) in velocity. This represents velocity

strengthening behavior. In the other case (R = 11, or the higher curve), the transient

is larger than the direct effect so that the steady state value is lower (higher) for an

increase (decrease) in velocity. This represents velocity weakening behavior. If the

power n in the local friction law is greater than 1, as shown in Figure 2.5b, then the

friction coefficient change during the transient is in the same direction as the direct

effect.
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Figure 2.5: Evolution of friction coefficient in velocity jump tests. (a) For n <
1, the direct effect and the transient compete against each other. Depending on
the parameters, either the instantaneous or the transient effect dominates, leading
respectively to velocity strengthening or velocity weakening. (b) For n > 1, the
friction coefficient changes in the same direction during the direct effect and the
transient.

Figure 2.6 shows the evolution of the dilatation for the same two sets of parameter

values. We observe that the dilatation changes continuously with no jumps, and

evolves towards a steady state following an imposed velocity jump. Further, the

evolution occurs in the same sense, toward higher dilatation for higher velocity and

vice versa, for both sets of parameters. The excursions are larger for larger R (the

change in dilatation is hardly visible for the case R = 1.1).

In our model, the force on an asperity changes continuously with time, and there-

fore the force distribution also changes continuously with time. This is reflected in

Figure 2.6. Therefore, the direct effect in Figure 2.5a is a direct consequence of our lo-

cal friction law. In fact, the instantaneous increase in µk is given by c1 log(vnew/vold).

The subsequent evolution is a result of the collective behavior due to the evolution

of the force distribution in addition to the local friction law. Since the dilatation

increases with increasing velocity, the applied global normal force is carried by fewer

asperities with larger average forces on each (we elaborate on this later). Conse-

quently, if the exponent n in the local friction law satisfies n < 1 as we expect from

the physics, velocity jump will lead to a decrease in friction coefficient during the evo-
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lution phase, and velocity jump down will lead to an increase in friction coefficient

during evolution phase. In short, the direct effect and evolution will always compete

with each other.

The above results capture many features of experimental observations. Both the

direct effect and the transient are observed in experiments [33, 41, 9]. Further, the

direct effect always follows the velocity jump. Furthermore, the direct effect and evo-

lution always change the friction coefficient in opposite directions. This is consistent

with the requirement that n ∈ [2/3, 1]. Finally, both velocity- strengthening and

velocity-weakening behaviors have been observed.
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Figure 2.6: Evolution of dilatation in the velocity jump test. The average normal
force on an asperity in contact is higher at higher sliding speeds. Thus, for the same
global normal force, fewer sliders are in contact at higher speeds and the dilatation
is larger. For R close to 1, the changes in dilatation are hardly apparent.
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Figure 2.7: (a) Velocity dependence of the steady-state friction coefficient. Depend-
ing on the parameters and the sliding speed, we can have velocity strengthening or
velocity weakening. Transitions between strengthening and weakening behaviors have
been observed in experiments [67]. (b) Probability density of the normal forces at
steady state at different sliding speeds (solid lines). At higher speeds, the average
normal force on an asperity in contact is higher. Thus, the area under the curve,
which represents the fraction of sliders in contact, is smaller at higher speeds. The
first moment of the force distribution, which is the global normal force, is the same
for all the curves. Also shown is the probability density of forces in a linearized
Greenwood-Williamson model with stiffnesses k1 and k1 + k2. These are the force
distributions in the limit of 0 and infinite sliding speeds.

2.3.8 Velocity strengthening vs. velocity weakening

Figure 2.7a shows the dependence of the steady-state friction coefficient on the sliding

speed. One case (the blue curve) shows velocity strengthening at all sliding speeds,

whereas the other case (the red curve) shows velocity weakening at low sliding speeds

and strengthening at higher speeds. Since the SLS has only one relaxation timescale,

the distribution of forces on asperities is sensitive to the sliding velocity only in

a limited range of velocities (the lower velocities for the red curve). Outside this

velocity range (the higher velocities for the red curve), the local friction properties

dominate and we get velocity-strengthening behavior. The transition between velocity

strengthening and velocity weakening has been observed in experiments [67].
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2.3.9 Distribution of forces on asperities

Figure 2.7b shows the probability density of the normal forces at steady state at

different sliding speeds. At higher sliding speeds, for the same global normal force,

fewer sliders need to be in contact since the normal force on each of the ones in

contact is higher on average. This can be seen in the figure where the area under

the probability density curve, which represents the fraction of sliders in contact, is

smaller at higher speeds. Also shown is the probability density of the normal forces

in a linearized version of the Greenwood-Williamson model (where the nonlinear

Hertzian contact is replaced by a linear one). The two curves correspond to two

different stiffnesses, k1 and k1 + k2. At low sliding speeds, the SLS elements have

more time to evolve towards their steady state and thus effectively only the spring

with stiffness k1 is active during contact. At high speeds, the dashpot has little time

to react, and the effective stiffness is nearly k1 + k2. This can be seen in Figure

2.7b, where the probability densities at low and high sliding speeds are similar to

the densities of the GW model with stiffnesses k1 and k1 + k2, respectively. The

probability densities at different speeds can be mapped to the probability density of

the Greenwood-Williamson model with the effective stiffness dependent on the sliding

speed.

2.3.10 Characteristic slip distance

Dc is the characteristic length scale over which the system evolves to its steady state

in velocity jump tests. We calculate this by fitting an exponential to the evolution of

µk. Figure 2.8a shows the dependence of Dc on the sliding speed v̄ for two different

values of R and for n = 0.67 and λ̄ = 1. Dc also depends on the correlation length of

the surface, λ̄. Recall that the parameter λ̄ appears in the equations only as v̄/λ̄. If

we have two surfaces with correlation lengths λ̄1, λ̄2, and the SLS ensemble slides on

these surfaces at velocities v̄1 and v̄2 such that v̄1/λ̄1 = v̄2/λ̄2, then the decay lengths

are related as:

Dc(v̄1, λ̄1) =
λ̄1

λ̄2

Dc(v̄2, λ̄2).
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Dc is fairly independent of v̄ in some laboratory experiments [33], and our simplified

model does not capture this independence.
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Figure 2.8: (a)The characteristic length over which the system decays to steady state
depends on the stiffness ratio R and the sliding speed v̄. In many experiments, this
distance is found to be a constant that depends only on the roughness of the surfaces.
(b)The change in the friction coefficient during the transient phase following the direct
effect for three different combinations of R and n. If the change during the transient
is greater than the direct effect, then we have velocity-weakening (above the dashed
line); otherwise, we have velocity- strengthening.

2.3.11 Parametric study

After nondimensionalization, we have five parameters: R, λ̄, n, c1, and c2. Let us

study the effect of each of them.

R = 1 + k2/k1 is the ratio between the instantaneous and steady-state stiffnesses

of the SLS. When R is close to 1, the instantaneous and steady-state responses of

the SLS are close, the differences between the distribution of forces on asperities at

different sliding speeds are small, and thus, the transient change in µk following a

jump in sliding speed is small. By a similar consideration, for large R (k2 � k1),

the transient change in µk is large. Hence, for the same instantaneous effect, as the

value of R increases, the behavior will change from velocity-strengthening to velocity-

weakening, as illustrated in Figure 2.5a.

In the governing equations, (2.20), (2.21), and (2.22), the parameter λ̄ appears

only as v̄/λ̄. Thus, we can think of λ̄ as setting a scale for the sliding speed. Consider
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two surfaces with correlation lengths λ̄1 and λ̄2 on which an SLS ensemble slides at

two speeds v̄1 and v̄2. If v̄1/λ̄1 = v̄2/λ̄2, and if we start from the same initial state,

the evolution of the two systems will be exactly the same. Since we have a velocity

dependence in the local friction law, the coefficients of friction of the two systems will

differ by c1 log(v̄1/v̄2).

The power n in the local friction law represents the elasticity/plasticity of contacts.

When n = 1, all contacts in the ensemble are plastic and the distribution of normal

forces among the asperities has no effect on the friction coefficient. This is equivalent

to the Bowden and Tabor model, modulo the velocity-dependent term in the local

friction law. When n = 2/3, the effect of distribution of forces among asperities plays

an important role in determining µk. Parameters c1 and c2 describe the microscopic

frictional response of a single contact.

We would like to study how each of the above parameters affects the friction

coefficient. To this end, we do velocity jump experiments at different speeds for

different values of the parameters R and n, and calculate the change in µk during the

transient phase (∆µt) following the instantaneous jump. Figure 2.8b shows the value

of ∆µt at different velocities for three different combinations of parameters R and n.

A value of c2 = 0.2 has been used (∆µt changes linearly with c2). Also shown as a

dashed line is c1, which has been assumed to be 0.01. We have velocity strengthening

when ∆µt < c1 (below the dashed line) and velocity weakening when ∆µt > c1

(above the dashed line). In many experiments, ∆µt is observed to be independent of

the sliding speed. In our model, ∆µt is not a constant for given material properties

but varies with the sliding velocity.

2.3.12 Comparison with rate and state formulations

Our results on the evolution of friction coefficient in jump tests can be well fitted by

the rate and state equations (1.3-1.5), as illustrated in Figure 2.9a. In the example

shown, the best fit parameters for the rate and state equations are µ0 = 0.7207, a =

0.0043(= c1/ ln 10), b = 0.0096. v∗ was chosen to be 1 and Dc/σ is 0.13 for the aging
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law and 0.042 for the slip law.
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Figure 2.9: (a)Evolution of µk in a velocity jump test (with R = 11, n = 0.67), along
with fits for two versions of the rate and state laws. (b)The average time of contact
calculated using the Monte Carlo simulation (red), and the evolution of the state
variable θ calculated from the fits in (a). The average time of contact is indeed close
to the state variable evolution, supporting the interpretation of the state variable in
the rate and state laws as the average contact time.

2.3.13 State variable

In the rate and state laws, the state variable is sometimes interpreted as the average

contact time of the asperities [42, 49]. This time of contact can be calculated explicitly

in our simulations. Figure 2.9b shows the evolution of the average time of contact

(Tc) in a velocity jump test. Also shown in the figure is the evolution of the state

variable θ for the two rate and state laws, calculated using the friction evolution fit

of Figure 2.9a (θ does not match Tc in absolute value, the figure shows θ scaled to

match Tc for the last data point). The steady-state Tc is approximately inversely

proportional to the sliding speed, as proposed for the state variable in the rate and

state formulations. Thus, our model is consistent with the idea that state variable in

the rate and state laws is related to the average contact time.
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Figure 2.10: Evolution of the moment of F̄ n during the velocity jump test. This
moment serves as the state variable in our model.

2.3.14 Moment as a state variable

In our model, the transient behavior in the velocity jump tests is proportional to the

moment of F̄ n, i.e., to

ψ(t̄) =

∫
F̄

F̄ nP (t̄, F̄ )dF̄ . (2.27)

The evolution of this moment is shown in Figure 2.10 for n = 2/3. This moment acts

as the state variable in our model, and we can formulate the following rate and state

description of our model:

µk(t̄) = µ0 + c1 log(v̄) + c2ψ(t̄), (2.28)

ψ′(t̄) = g(v̄)(ψ(t̄)− ψss(v̄)), (2.29)

where g(v̄) and ψss(v̄) can be determined by Monte Carlo simulations for given model

parameters R, n, λ̄. In fact, g = v̄/D̄c, where D̄c is shown in Figure 2.8a for n = 0.67

for two different values of R.
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2.4 Nonlinear contact model

Until now, we have modeled asperities as linear viscoelastic elements. To test how

sensitive the results of our model are to this assumption, we repeat the velocity jump

simulations with a modified model for an asperity. We make spring 1 in the SLS

nonlinear. The constitutive equations are:

F = k1sgn(x− x0)|x− x0|3/2 + ηẋη,

ηẋη = k2(x2 − x0
2).

The power 3/2 has been chosen to mimic Hertzian contact behavior. Using the

Monte Carlo method, we repeat the velocity jump experiment. Figure 2.11 shows

that the evolution of the friction coefficient is similar to the linear SLS case. While

not conclusive, this example suggests that the qualitative features of the results are

not crucially dependent on the particular description of a single asperity.
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Figure 2.11: Velocity jump experiment with a nonlinear asperity model. The evo-
lution of friction coefficient is qualitatively similar to the evolution in Figure 2.5a.
Though not conclusive, this suggests that the qualitative features of the results are
robust with respect to the single asperity model.
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2.5 Multiple timescales

We conjectured that the saturation of the static friction coefficient in 3-4 decades

(Figure 2.2) and the limited velocity range of velocity weakening (Figure 2.7a) is

primarily due to the single timescale in the SLS. To verify this, we perform the

static contact and velocity jump simulations with an ensemble of SLS having multiple

timescales. Figure 2.12a shows the evolution of the static friction coefficient in two

cases. In the first case (blue), all sliders in the ensemble have the same relaxation

time, η = 1. In the other case (red), half the sliders have η = 1 and the other half

have η = 10. The logarithmic growth regime is wider for the case with two timescales.

Figure 2.12b shows the steady state friction coefficient as a function of the sliding

speed. We see that the case with two timescales has a broader velocity-weakening

regime. This confirms our conjecture that the existence of multiple timescales leads to

longer evolution of the static friction coefficient and wider velocity-weakening regimes.
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Figure 2.12: (a) Evolution of static friction coefficient with hold time for an ensemble
of SLS with two timescales. (b) The steady-state friction coefficient as a function of
the sliding speed for an ensemble of SLS with two timescales.

2.6 Concluding remarks

In this chapter, we proposed a model for friction between macroscopic surfaces con-

sidering asperities at the microscale to be viscoelastic and modeling rough surfaces
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as a stochastic process. Our main contribution is a framework to link properties of

single asperities and surface features to the macroscopic static and sliding frictional

behavior. We showed that, because of the collective response of contacts, the behavior

at the macroscale can be very different from that at the microscale.

Even in our relatively simple model, rate and state effects appear naturally as a

consequence of the collective asperity response. The model reproduces the strength-

ening of the static friction with hold time. This strengthening is approximately log-

arithmic for 3-4 decades in time. For sliding friction, the model reproduces many

experimental observations. To capture the direct effect of these experiments, we need

to endow the microscopic asperity-level friction law with a velocity-strengthening de-

pendence. This does not, however, imply that the macroscopic response is velocity-

strengthening. The velocity strengthening of individual contacts and the collective be-

havior together determine whether the macroscopic response is velocity-strengthening

or weakening.

The power n in the local friction law plays a crucial role in the evolution of the

friction coefficient. If n > 1, the static friction coefficient decreases with hold time

and the transient evolution of sliding friction in velocity jump experiments happens

in the same sense as the instantaneous change. Since we expect the power n to be

less than or equal to 1, this explains why the above two features are not observed in

experiments.

At the same time, the model appears to be too simple to reproduce all experimen-

tal observations. First, the strengthening of static friction with hold time saturates

in 3-4 decades in our model. This is consistent with experiments on some materials

but the strengthening persists for longer times in others. A complete understanding

of this issue appears to be beyond the scope of this model. Second, our model results

in velocity dependence of the characteristic evolution length scale Dc and parame-

ter b that quantifies the transient change in friction in the rate and state equations,

whereas these quantities are largely velocity-independent in experimental studies.

There are a number of ways to improve the model. In the present model, individual

asperities are independent, the only interaction between them being through a mean
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field (dilatation). Long-range elastic interactions through the bulk may, however, play

an important role. We have also assumed one of the surfaces to be rigid. While this

is reasonable when one of the surfaces is much more deformable than the other, when

the two surfaces are similar (with respect to deformability), it will be important

to incorporate the non-rigidity, especially during sliding. We have neglected the

spatial distribution of asperities and contacts; this will, however, be important for

reproducing realistic frictional behavior, especially when the long-range interactions

are incorporated. Depending on the material of the sliding surfaces, the model for a

single asperity can be modified to incorporate effects such as plasticity, adhesion, etc.

We explore some of these issues in the next chapters.
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Chapter 3

Static and sliding contact of rough
surfaces: effect of surface
roughness, material properties, and
long-range elastic interactions

Here, we study the static and sliding contact of three-dimensional rough surfaces

with viscoelastic and viscoplastic material models and long-range elastic interactions

between contacts. We present, as far as we know, the first sliding simulations of

three-dimensional rough surfaces with long-range interactions. Simulations show that

the qualitative features of static and sliding friction are determined by the material

and surface properties and the long-range elastic interactions only change the results

quantitatively.

3.1 Introduction

Most surfaces have roughness features at many length scales. To bridge the micro

and macro scales, the smallest relevant length scales must be resolved while at the

same time, the system must be large enough to be representative of a macroscopic

body. A numerical method like the Finite Element Method, though useful to study

the stress distribution at contacts, plasticity, and such, results in a large number of

degrees of freedom [68, 69], and this can be especially intractable during sliding of

surfaces. To overcome this, a boundary-element like method has been proposed in
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the literature, and many aspects of rough surface contact have been studied using

this method [70, 71, 72, 73, 74, 75, 76]. However, as far as we know, time dependent

behavior and sliding of rough surfaces has not been studied, and this is the main

focus here.

As mentioned earlier, high stresses at the contacts result in time-dependent be-

havior of the materials. As a starting point, the model developed here considers

viscoelastic material behavior.

Elastic fields are long-range, the displacement field due to a point load on the

surface of an elastic half-space decays only inversely with the distance from the point

of application. This means that when two rough surfaces are pushed against each

other, the interactions between contacts can be important.

Here, we develop a model that considers all of the above mentioned effects. An

important question to answer is: what role does each of the factors: material prop-

erties, surface roughness and elastic interactions, play in determining macroscopic

friction?

3.2 Model

Sliding 
FN 

FN 

Sliding 

Fi Rigid surface 

Figure 3.1: Contact of two rough surfaces; one of the rough surfaces is approximated
by a set of discrete elements, the other surface is assumed to be rigid. The only degree
of freedom of the elements is normal to the interface.

We consider the contact of two rough surfaces. We assume that one of the surfaces is

rigid and represent the other surface by a set of discrete elements (Figure 3.1). The

lengths of the elements are used to simulate the geometry of surfaces. The internal

degrees of freedom of the discrete elements are the lengths normal to the interface.
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For the elements, we assume constitutive equations of the form:

ui(t) =

∫ t

0

(∑
j

C(t− τ, rij)Fj(τ)

)
dτ, (3.1)

where ui(t) is the deformation of the element ‘i’ at time t, Fj(τ) is the force on element

‘j’ at time τ , C(t− τ, rij) is the viscoelastic compliance kernel that captures the effect

of the force at location ‘j’ at time τ on an element located at ‘i’ at time t, and rij is

the distance between the two elements. Unless mentioned otherwise, the viscoelastic

material behavior has a single relaxation timescale.

We consider two kinds of interactions between contacts. In the first, called the

case with no elastic interactions, the deformation of an element ui is unaffected by

forces elsewhere:

ui(t) =

∫ t

0

C0
[
δ(t− τ) + Ae−λ(t−τ)

]
Fi(τ)dτ

= C0

[
Fi(t) +

∫ t

0

Ae−λ(t−τ)Fi(τ)

]
dτ, (3.2)

where δ(t − τ) is the Dirac delta function that captures the instantaneous elastic

response, A is the amplitude of the viscoelastic effect, λ is the viscoelastic decay rate,

and C0 is the compliance of the elements. The second is the case with Boussinesq

interactions. The Boussinesq solution gives the displacement (normal to the inter-

face) at a point on the surface resulting from a distant point load on a homogenous,

isotropic, linear-elastic half-space:

u(r) =
1− ν
2πG

F

r
,

where G is the shear modulus of the half-space, ν is its Poisson ratio, and r is the

distance to the point of force application. Following this and using superposition, we

postulate:

ui(t) =
1− ν
2πG

1

rij
Fj(t), rij > 0.
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For a linear viscoelastic half-space, using the correspondence principle, this becomes:

ui(t) =

∫ t

0

1− ν
2πG

1

rij

(
δ(t− τ) + Ae−λ(t−τ)

)
Fj(τ)dτ

=
1− ν
2πG

1

rij

[
Fj(t) +

∫ t

0

Ae−λ(t−τ)Fj(τ)dτ

]
, rij > 0. (3.3)

The Boussinesq solution is singular at the point of application of the load, so the

force Fi is interpreted not as a point load but as a distributed constant pressure over

a rectangular area. The displacements caused by such a pressure distribution was

derived by Love [77]. This solution, which has a number of logarithmic terms in it,

is close to the Boussinesq solution even for neighboring elements, but is not singular

at the point of loading. Thus, in computing the displacements at element ‘j’ due to

a force at ‘i’, the Boussinesq solution is used for all i 6= j and the Love solution for

i = j. Together, equation (3.1) is obtained.

Each element, at a given instant, can either be in contact or out of contact with

the rigid surface. If in contact, the following kinematic constraint is satisfied:

xi(t) + yi(t) = d(t),

where xi(t) is the length of the element at time t and equal to x0
i + ui(t), x

0
i is the

undeformed length, ui(t) is its deformation, yi(t) is the height of the rigid surface

corresponding to the position of element ‘i’, and d is the dilatation, which is the

separation between the reference levels from which the heights of the elements and

the heights of the rigid surface are measured. When an element is out of contact with

the surface, its force is Fi(t) = 0. Also, Fi ≤ 0 since no tensile forces are allowed.

Two simplifying assumptions have been made in the formulation of this model.

First, the Green’s function (the Boussinesq solution) corresponds to the solution for

a point force on a flat linear-elastic half-space. The presence of surface roughness

and the finite size of the system will change the elastic solution. We also neglect the

effect of the shear forces at the contacts. The shear forces would have an additional

contribution to the normal deformations ui of the elements. These issues remain a
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topic of current work.

3.2.1 Nondimensionalization

Using L∗, T ∗, F ∗ to nondimensionalize length, time, and force, we get:

ū =
u

L∗
, r̄ij =

rij
L∗
, t̄ =

t

T ∗
, τ̄ =

τ

T ∗
, F̄ =

F

F ∗
.

Equation (3.2) after nondimensionalization becomes:

ūi(t̄) = C̄0

[
F̄i(t̄) +

∫ t̄

0

Āe−λ̄(t̄−τ̄)F̄i(τ̄)

]
dτ̄ , (3.4)

where Ā = AT ∗, λ̄ = λT ∗, and C̄0 = C0F ∗/L∗. For all simulations, C̄0 = 16 is used

to make the total contact area about the same as the Boussinesq interaction case.

Similarly, equation (3.3) becomes:

ūi(t̄) =
(1− ν)F ∗

2πGL∗2
1

r̄ij

[
F̄j(t̄) +

∫ t̄

0

Āeλ̄(t̄−τ̄)F̄j(τ̄)dτ̄

]
.

With F ∗ = 2πGL∗2/(1− ν), the above equation simplifies to:

ūi(t̄) =
1

r̄ij

[
F̄j(t̄) +

∫ t̄

0

Āe−λ̄(t̄−τ̄)F̄j(τ̄)dτ̄

]
. (3.5)

The rms roughness for many surfaces is of the order of a micron [60], so we

set L∗ = 1 µm. We set the timescale T ∗ = 1 second. For rocks, G is around

30 GPa and ν is around 0.2. Using these values, F ∗ = 0.235 N ≈ 0.25 N. After

nondimensionalization, there are two nondimensional constants: the decay rate λ̄

and the amplitude Ā.

To understand the effect of these parameters, let us consider a force F̄j(t̄) =

F̄ 0
j H(t̄), where H(t̄) is the Heaviside function. For t̄ > 0,

ūi(t̄) =
1

r̄ij

[
1 +

Ā

λ̄

(
1− e−λ̄t̄

)]
F̄ 0
j .
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If t̄� 1/λ̄,

ūi(t̄) ≈
1

r̄ij
F̄ 0
j ,

and for t̄� 1/λ̄,

ūi(t̄) ≈
1

r̄ij
(1 + Ā/λ̄)F̄ 0

j .

Thus, the instantaneous compliance of the system is 1/r̄ij, the steady state compliance

is (1 + Ā/λ̄)/r̄ij, and the deformation reaches steady state at the decay rate λ̄.

For a finite number of viscoelastic relaxation timescales, equations (3.4) and (3.5)

become:

ūi(t̄) = C̄0δij

[
F̄j(t̄) +

∫ t̄

0

NT∑
k=1

Āke
−λ̄k(t̄−τ̄)F̄j(τ̄)dτ̄

]
(no elastic interaction) (3.6)

and

ūi(t̄) =
1

r̄ij

[
F̄j(t̄) +

∫ t̄

0

NT∑
k=1

Āke
−λ̄k(t̄−τ̄)F̄j(τ̄)dτ̄

]
(Boussinesq interaction), (3.7)

where NT is the number of relaxation timescales, Ā and λ̄ are the viscoelastic decay

amplitudes and decay rates, respectively. In the Boussinesq interaction case, the

material properties appear naturally in the constitutive equation, since it is derived

from an elastic solution. For the case with no elastic interactions, C̄0 is an effective

compliance parameter.

3.2.2 Algorithm

Differentiating equations 3.6 or 3.7 results in a set of coupled ordinary differential

equations that are the governing equations. Let us consider equation 3.7. Differenti-

ating with respect to nondimensionalized time, we get:

˙̄ui =
1

r̄ij

[
˙̄Fj +

∫ t̄

0

NT∑
k=1

(−λ̄kĀk)e−λ̄k(t̄−τ̄)F̄j(τ̄)dτ̄ +

(
NT∑
k=1

Āk

)
F̄j(t̄)

]
. (3.8)
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As mentioned earlier, since 1/r̄ij is singular for i = j, it is replace by Cij which is

obtained by combining Boussinesq and Love solutions.

˙̄ui = Cij

[
˙̄Fj +

∫ t̄

0

NT∑
k=1

(−λ̄kĀk)e−λ̄k(t̄−τ̄)F̄j(τ̄)dτ̄ +

(
NT∑
k=1

Āk

)
F̄j(t̄)

]
. (3.9)

We use a first-order Euler method in evolving the equations. The contact conditions

of the elements (in or out of contact) can change during the evolution. This is updated

in an explicit way.

Given the current state (dilatation, the deformations and forces of all the elements

and other variables that keep track of the history in the viscoelastic case), the elements

in and out of contact are assumed to remain that way during a time step ∆t. The

steps in the evolution of a single time step are:

1. Given the dilatation rate ˙̄d, for the elements in contact, determine the deforma-

tion rate from the kinematic constraint:

˙̄ui = ˙̄d− ˙̄yi.

The rate of change of the rigid surface height, ˙̄yi, is zero for static contact but

nonzero during sliding.

2. For the elements not in contact, the force remains zero:

˙̄Fi = 0.

3. Determine the deformation rate of elements not in contact and the rate of force

for the elements in contact using the governing equations.

4. Update the forces, deformations and other internal variables that keep track of

the history.

5. Use the kinematic constraint and the non-negativity of force as checks for tran-

sitions into and out of contact, respectively.
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When the total normal force is to be held constant, the dilatation rate ˙̄d is determined

to satisfy the constraint.

3.2.3 Computational Memory and Complexity considerations

In the Boussinesq interaction case, because the deformation due to a point force

decays only as 1/r, the compliance matrix Cij is dense and for a large system, storing

the matrix entries can lead to large memory requirements. We circumvent this by

computing the matrix vector product CijFj in a matrix free way and using an iterative

solver (GMRES) [78] when a linear system is to be solved. The other issue is the

computation of the matrix vector product. Again, because of the long-range 1/r

decay, a brute force computation of the interactions involves O(N2) operations where

N is the number of elements, and this can be prohibitively expensive for large systems.

Two things come to our rescue here. First, for rough surfaces, the actual area of

contact is only a small fraction of the nominal area, so at any instant of time, the

forces are nonzero for only a small fraction of the elements and only these need to

be considered in computing the displacements. Second, the 1/r interactions can be

computed to within prescribed error tolerance in O(N log(N)) operations using the

Fast Multipole Method (FMM) [79, 80]. In all results presented here, we use an

FMM method of order 5, since this seems sufficient on comparison with a brute force

calculation.

3.2.4 Rough surface generation

Rough surfaces can be characterized as a stochastic process [81, 56, 57]. This charac-

terization is used extensively in exploring various aspects of contact between surfaces

[26, 58, 59]. The process is specified by two functions: a probability distribution

of heights, which describes features normal to the interface, and an autocorrelation

function, which is related to how the vertical features vary along the interface. For
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many surfaces, the probability distribution of heights is Gaussian:

P (z) =
1

σ
√

2π
e−z

2/2σ2

,

where z is the height of a surface from the mean, P (z) is the probability density,

and σ is the root mean square roughness [60]. The autocorrelation is found to decay

exponentially or as a Gaussian [60, 82]. Here, we consider surfaces with a Gaussian

autocorrelation:

R(δx, δy) =< z(x, y)z(x+ δx, y + δy) >= σ2e−(δ2
x/β

2
x+δ2

y/β
2
y),

where R is the autocorrelation function, βx, βy are the correlation lengths along x and

y directions, and <> denotes expectation with respect to the probability distribution.

For such surfaces, the power spectral density S (which is the Fourier transform of the

autocorrelation) as a function of the spatial frequencies ωx, ωy is given by:

S(ωx, ωy) =
1

2
σ2βxβye

−(β2
xω

2
x+β2

yω
2
y)/4.

Rough surfaces with these statistical properties can be generated by generating

a set of independent Gaussian random numbers and using a linear filter [83]. The

weights of the linear filter are determined from the autocorrelation. Figure 3.2 shows

one realization of such a surface, the probability distribution of heights, and the auto-

correlation of generated surfaces. Also shown are the prescribed statistical properties.

The generated surfaces show a good match with respect to the prescribed properties.



54

(a)

Height/Standard-deviation
-5 0 5

P
ro

b
a
b
il
it
y

d
en

si
ty

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Generated
surface

Prescribed

(b)

−10 −5 0 5 10
−0.2

0

0.2

0.4

0.6

0.8

1

Distance/Correlation-length

C
o
rr
el
a
ti
o
n

 

 

Generated
surface

Prescr ibed

(c)

−10 −5 0 5 10
−0.2

0

0.2

0.4

0.6

0.8

1

Distance/Correlation-length

C
o
rr
el
a
ti
o
n

 

 

Generated
surface

Prescr ibed

(d)

Figure 3.2: (a) Rough surface with a Gaussian distribution of heights and a Gaus-
sian autocorrelation. Statistical properties of the generated surfaces: (b) probability
density (Gaussian) of heights, (c) exponential spatial correlation, and (d) Gaussian
spatial correlation.

Unless mentioned otherwise, the surfaces generated here have a Gaussian distri-

bution of heights with zero mean, a root mean square roughness σ = 1 µm, and a

Gaussian autocorrelation with correlation lengths βx = 10 µm and βy = 10 µm.

3.3 Validation using Hertzian contact

To validate our formulation, we simulate the Hertzian contact of a homogenous linear-

elastic sphere of radius 10 with a rigid flat surface. The geometry of the sphere is

simulated using the undeformed lengths of the elements. The two surfaces are initially

apart, and the force and deformations of all the elements are initialized to zero. The

surfaces are then brought into contact by decreasing the dilatation. The evolution of
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the deformations and forces of the elements is computed.
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Figure 3.3: Comparison of analytical and numerical solutions for contact of a linear-
elastic sphere against a rigid flat: (top row) with Boussinesq interaction; (bottom
row) with no elastic interaction. Lines of different colors correspond to different
discretization sizes ∆, the distance between the discrete elements.

In the Boussinesq interaction case, there is an excellent match between the numer-

ical and analytical solutions (Figure 3.3). The elastic constants used in the analytical

and numerical solutions are the same and no other parameters are used in obtaining

the numerical results. For the case with no elastic interaction, C̄0 is chosen to make

the force at the final indentation match the analytical solution. The scaling of the

force and area deviates from the Hertzian solution.

3.4 Static contact

Here, we study the static contact of rough surfaces. We consider the contact between

a flat linear viscoelastic surface (λ̄ = 1, Ā = 0.2) and a rough rigid surface, both

512× 512 in size. The rough surface is generated as described in Section 3.2.4. The

surfaces, initially apart, are loaded instantaneously to a total force that corresponds
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to a nominal pressure of 100 MPa. The system is then evolved, keeping the global

normal force constant. The evolution of the forces, deformations, and the contact

area is computed.

3.4.1 Evolution of contact and force distribution

After the initial compression, the forces at the contacts start relaxing because of the

viscoelastic behavior. To keep the global force constant, more contacts are formed

and the contact area increases. Just as in experiments [41], existing contacts grow

with time, some contacts coalesce and some new ones are formed (Figure 3.4).
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(b)

Figure 3.4: Evolution of contacts in (a) our simulations, and (b) experiments [41],
during a static contact test. In (a), contacts at t̄ = 0 are in red, t̄ = 10 are in
yellow, and t̄ = 100 are in cyan. Existing contacts grow, some coalesce, and some
new contacts are formed. (b) is reproduced with permission from [41].

As the contact forces relax and contact area increases, the force distribution

spreads, and the force per unit contact area decreases. (Figure 3.5a). The first

moment of the force distribution, which is the total normal force, is the same for

initial and final states. The zeroth moment (area under the curve), which is the total

contact area, is larger at the final state.

Even though the total contact area increases, the average contact radius, calcu-

lated as
√

Contact area/(π × Number of contacts), remains nearly constant (Figure
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3.5b). The average contact radius is close to 5 and the maximum variation is about

0.5. This is because, with time, as the contact area increases, the number of contacts

also increases, keeping the average contact radius approximately constant. A similar

observation was made by Greenwood and Williamson in their statistical model of

elastic contacts [26].
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Figure 3.5: (a) Distribution of contact forces at the initial and steady states. Initially,
the area of contact is lower but the average force on a contact is higher. With time,
as the forces relax, the number of contacts increases but the average force per contact
decreases. (b) Evolution of the average contact size with time. Even though the total
contact area increases, the average contact size does not change significantly.

3.4.2 Dilatation, area, and friction evolution

As the contact forces relax, dilatation decreases (the surfaces move closer to each

other) and the contact area increases (Figure 3.6). With either of the interactions

(Boussinesq or no elastic), the duration and magnitude of area growth are approxi-

mately the same .
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Figure 3.6: Evolution of (a) dilatation and (b) contact area with the time of contact.
Because of viscoelastic relaxation, the surfaces move closer and the area of contact
increases with time.

If the shear strength of each contact is τs, then the static friction coefficient µs is,

µs(t) =
FS(t)

FN
=
τsAr(t)

σNAN
,

where FS is the global shear force, FN is the global normal force, Ar is the actual area

of contact, AN is the nominal area of contact, and σN is the nominal compressive

stress. The shear stress at the contact can be a significant fraction of the shear

modulus [54, 84], and we use τs = 2.5GPa. In the simulations, the friction coefficient

increases with time, logarithmically for a period of time, and saturates to a steady

value at long times (Figure 3.7a).
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Figure 3.7: Evolution of static friction coefficient with time in our simulations (a)
with Boussinesq and no elastic interactions and (b) experiments of Richardson et al.
(reproduced with permission from [39]). For some duration, the growth is logarithmic
in time and saturates to a steady state at long times. The timescale and the magnitude
of evolution are unchanged by the presence of long-range Boussinesq interactions.

The predicted increase of the static friction coefficient with time has been widely

observed in experiments [32, 40, 39]. In our simulations, the variation in µs lasts

about 2 decades in time. In some materials like mild steel, a similar duration of static

friction growth, with saturation at small and long times, is observed [39], as shown in

Figure 3.7b. Thus, our results are consistent with these experimental observations.
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Figure 3.8: Evolution of friction coefficient during static contact for a material with
four viscoelastic timescales. The region of logarithmic growth lasts over 4 decades,
as seen in experiments on rocks.
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In experiments on rocks, the logarithmic growth persists throughout the dura-

tion of the experiments, which have lasted up to six decades in time [40, 33]. Since

µs cannot increase indefinitely, it eventually has to reach a steady state. This de-

layed saturation is not captured by our model. We conjecture that the difference

between our model response and the rock experiments is for the following reason.

The constitutive relation we assume has only one relaxation time, while a real vis-

coelastic material has many relaxation timescales. Longer timescales of relaxation

lead to longer times of growth in contact area and hence friction. To test this, we re-

peat the static contact test for a material with four viscoelastic relaxation timescales

(NT = 4, λ̄k = 1, 0.1, 0.01, 0.001, Āk = 0.05, 0.005, 0.0005, 0.00005). The linear growth

regime of friction now extends over 4 decades in time, as seen in the experiments on

rocks (Figure 3.8).

In Chapter 2, we conjectured that the presence of elastic interactions between con-

tacts will increase the timescale of friction evolution. Our simulations show that the

elastic interactions do not change the qualitative features of the macroscopic friction

evolution. In Figure 3.7a, the friction growth, with and without elastic interactions,

saturates at about t̄ = 10. The magnitude of the change in friction is also about the

same for the two cases.

3.4.3 Dependence on normal pressure and system size

Friction coefficient is known to be independent of the normal force for macroscopic

rough surfaces (Amontons law). In the Bowden and Tabor model, this is explained

by the plasticity of contacts [30] whereas in the Greenwood Williamson (GW) model,

this is a result of the statistics of the rough surface [26]. The GW model ignores

interactions between contacts which might be important. Our model exhibits the

same behavior. Both with and without elastic interactions, the friction coefficient is

nearly independent of the applied normal pressure (Figure 3.9).

Since the elastic interactions are long-range, the friction coefficient can be depen-

dent on the system size. Surprisingly, even for small system sizes (our nondimension-
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alizing length is 1 µm, and thus the systems sizes considered are 128 µm, 256 µm,

and 512 µm), the friction coefficient is nearly independent of the system size.
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Figure 3.9: Dependence of friction coefficient on normal pressure for three system
sizes with (a) Boussinesq and (b) No elastic interactions. The mean and the standard
deviation for 15 realizations for each case is shown. Considering the mean and the
standard deviation, the friction coefficient is independent of both the system size and
the applied nominal pressure.

3.4.4 Dependence on surface roughness

In our model, the static friction coefficient decreases monotonically with increasing

roughness (Figure 3.10a). A similar dependence on roughness is seen in experiments

for a certain range of roughness (see page 62-63 of [32]). At higher values of roughness,

the friction coefficient in experiments first becomes nearly independent, and then

increases with increasing roughness [32]). This is usually attributed to plasticity and

ploughing (having to lift one asperity over an other), neither of which is considered in

our model. The predictions here are entirely due to the change in contact area with

roughness.
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Figure 3.10: (a) Dependence of friction coefficient on the rms roughness of the contact
surfaces. µs decreases with increasing roughness, consistent with some experiments
for a range of roughness. (b) The average contact size decreases with increasing rms
roughness.

Simulations also show that the average contact size decreases with increasing

roughness (Figure 3.10b). This means that the average contact stress increases with

increasing roughness. In Figure 3.10, the total contact area (friction coefficient is

proportional to total contact area) depends more strongly on σ than the average

contact radius. In going from σ = 0.5 to σ = 2, the friction coefficient at steady

state decreases approximately by a factor of 3.3, whereas the average contact radius

decreases by about 1.3. This means that the number of contacts decreases by a factor

of about 2.

Since there are no plasticity effects in the model, the contact stresses can increase

unboundedly. We conjecture that including plasticity will lead to a weaker dependence

on rms roughness since the stresses are then bounded by the yield stress.
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3.4.5 Dependence on viscoelastic properties
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Figure 3.11: Evolution of friction coefficient for four different combinations of vis-
coelastic parameters. The timescale of evolution is determined by λ̄, and the differ-
ence between initial and final states is determined by the ratio Ā/λ̄.

To study the dependence of friction evolution of the viscoelastic properties, we per-

form static contact simulations for four different combinations of the parameters λ̄

and Ā. Figure 3.11 shows the evolution of friction coefficient for the four cases. The

pink and red curves (both have λ̄ = 0.1) reach steady state at about the same time,

but the magnitude of the change in area is different. Similarly for the blue and green

curves (both have λ̄ = 1). This tells us that the timescale of evolution of area and

friction is determined by λ̄. Comparing the blue and pink curves, the steady state

stiffness is determined by the ratio Ā/λ̄. Thus, λ̄ determines how long it takes to

reach steady state, and Ā/λ̄ determines the magnitude of the difference between the

initial and final states, as expected from Section 3.2.1. The initial value of friction

is determined by the instantaneous stiffness of the system (stiffness corresponding to

fast loading rates) and is hence independent of the viscoelastic properties.

3.5 Sliding contact

Let us move on to the sliding contact of rough surfaces. For sliding, the rigid sur-

face must be larger than the deformable one. The results presented here are for a
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512× 512 deformable rough surface sliding on a larger 512× 1024 rigid rough surface

with the distance between the elements, ∆, is 1. During sliding, the heights of the

rigid surface in between its discretized heights are computed using a cubic spline in-

terpolation along the sliding direction. As the surfaces slide, the governing equations

and the surface topography determine the evolution of forces and deformations of the

elements.

3.5.1 Evolution of contacts

As an element slides, its deformation and force evolve depending on the surface profile

it encounters (Figure 3.12). The element is initially out of contact and force is zero.

As it slides, it repeatedly comes into and goes out of contact with the surface. The

corresponding force evolution is also shown. The oscillations in the element height in

the region marked as 1 are from the oscillations in the dilatation (to keep the normal

force constant). In the region marked 2, the element is out of contact but its height is

still changing. This is because of the long-range elastic interactions, the deformation

caused by perhaps a neighboring element in contact.
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Figure 3.12: Evolution of a single element as it slides along a rough surface. The
element is initially out of contact and the force is zero. As it slides, it repeatedly
comes into and goes out of contact with the rigid surface, and correspondingly the
force on it also evolves.

Figure 3.13b shows the evolution of forces on a subset of the elements of the

surface during sliding. The subset of elements considered is marked by a red box
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in Figure 3.13a. Different aspects of the evolution of the contacts during sliding are

apparent in the figure: some new contacts are formed, some existing ones grow, and

some dwindle and go out of contact.

(a)

(b)
Figure 3.13: Evolution of forces on a subset of the elements of the surface during
sliding. The subset of elements considered is marked by a red box in (a) and its
evolution is shown in (b).

From the evolution of the elements, to calculate the friction coefficient, the fol-

lowing friction law is used:

µ(t̄) =
[a ln(v̄) + τs]Ar(t̄)

FN
. (3.10)

As before, the shear strength of each contact is τs. The force necessary to overcome

this is τsAr(t̄). Thus, the contribution of this to the friction coefficient is τsAr(t̄)/FN .

If the surfaces are sliding at speed v̄, the contacts are sheared at a strain rate that
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is proportional to the sliding speed and the shearing force can depend on the strain

rate. This is accounted for by the logarithmic term a ln(v̄)Ar(t̄)/FN [84].

3.5.2 Velocity jump test

As in experiments, we perform velocity jump simulations. Two rough surfaces are

brought into contact to a total force equivalent to a nominal pressure of 100 MPa.

The surfaces then slide at this constant normal force at speed v̄ = 10. The sliding

velocity is then instantaneously changed to v̄ = 1. Jumps to v̄ = 10 and v̄ = 1

are repeated. Since the nondimensionalizing length and time scales are 1µm and 1

second, respectively, v̄ = 10 corresponds to a sliding speed of 10µm/s, and sliding

speed in most velocity jump experiments is around this value [41].

Figures 3.14a shows the evolution of contact area during the jump test for two

different sets of parameters, λ̄ = 1, Ā = 1 (blue), and λ̄ = 1, Ā = 10 (red). In both

cases, the area of contact is smaller at higher speeds. Because of viscoelasticity, the

forces at the contacts depend on the sliding speed (which can be thought of as a

strain rate for the viscoelastic elements). At higher sliding speeds, the average force

on a contact is higher and thus, to sustain the same global normal force, the actual

area of contact necessary is smaller than that at a lower sliding speed. Therefore, on

jumping from a low speed to a higher speed, the contact area gradually decreases and

reaches a steady state corresponding to the new sliding speed.

The friction coefficient changes instantaneously (Figure 3.14b) when the velocity

jumps because of the logarithmic term in equation (3.10), and the change has the same

sense as that of the velocity jump, i.e., the friction coefficient jumps up (down) when

the velocity jumps up (down). Following the standard rate and state terminology,

we call this jump the direct effect. This jump is followed by an evolution towards a

steady state (because of the evolution of contact area). We call this the transient. In

both cases, this transient changes the friction coefficient in the direction opposite to

the direct effect, i.e., the friction coefficient decreases from the high value following a

jump up and increases from a low value following a jump down.
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In one case (blue), the transient is smaller than the direct effect so that the

steady state friction is higher (lower) for higher (lower) velocity. This represents

velocity strengthening behavior. In the other case (the red curve), the transient is

larger than the direct effect so that the steady state value is lower (higher) for higher

(lower) velocity. This represents velocity weakening behavior. The evolution of area

and friction coefficient in our simulations and experiments are qualitatively similar

(Compare figures 3.14a, 3.14b and 3.14c).

The qualitative aspects of the response remain unchanged when the elastic in-

teractions are turned off (Compare figures 3.14a and 3.14b, and 3.14d and 3.14e)

During sliding, the evolution of area and friction, velocity-strengthening, and velocity-

weakening are determined largely by the viscoelastic properties and are only quanti-

tatively changed by the long-range elastic interactions.
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Figure 3.14: Evolution of contact area and friction coefficient (µk) during velocity
jump tests with λ̄ = 1, Ā = 1 (blue) and λ̄ = 1, Ā = 10 (red). (a) Because of vis-
coelasticity, the average force on a contact is higher at higher speeds, and thus for
the same global normal force, contact area is smaller at higher speeds. (b) With a
jump in sliding speed, µk changes instantaneously, and this is followed by an evo-
lution to a steady state. Depending on the material parameters, the steady state
value can increase or decrease with increasing sliding speed. The two cases corre-
spond to velocity-strengthening (blue) and velocity-weakening (red), respectively. (c)
Evolution of contact area and friction during a velocity jump test (reproduced with
permission from Dieterich [41]). (d) and (e) Evolution of contact area and friction
coefficient for the case with no elastic interaction. The qualitative behavior is the
same as (a) and (b).
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3.5.3 Dependence on velocity and viscoelasticity

The two timescales involved during sliding contact are the viscoelastic relaxation

timescale, determined by λ̄, and the timescale corresponding to the ratio of the cor-

relation length to the sliding speed, β/v̄. In static contact, the duration of friction

evolution was determined by λ̄ and the magnitude of the growth by Ā/λ̄ (Section

3.4.5). During sliding, instantaneous and steady state behavior of static contact are

like sliding at very high and very low speeds. Thus, λ̄ determines where the system

is sensitive with respect to sliding speed and Ā/λ̄ determines the magnitude of the

sensitivity.

To study the velocity dependence, two rough surfaces are compressed to a nominal

pressure of 100 MPa and starting at the same initial state, slid at different speeds till

they reach steady state. With increasing sliding speed, dilatation always increases

and the contact area always decreases (Figure 3.15). The friction coefficient can either

increase or decrease, depending on whether the direct effect or the transient change

dominates.
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Figure 3.15: Evolution of (a) dilatation, (b) contact area, and (c) friction coefficient
starting from the same initial state and sliding at different speeds. At higher sliding
speeds, the average force on a contact is higher and thus, to sustain the same global
normal force, the dilatation is higher and the total area of contact is smaller. The
friction coefficient can either increase or decrease with the sliding speed (Section
3.5.2).

The distribution of forces at the contacts depends on the sliding speed (Figure

3.16). The percentage area in contact, which is the area under the curve, is smaller at

higher speeds. The same global normal force is sustained at lower speeds by a larger
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area of contact but the average force is smaller. At higher speeds, the contact area is

smaller but the average force is larger.
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Figure 3.16: Force distribution at contacts at steady state at different sliding speeds.
The area under the curve is less than 1, since only a small percentage of the nominal
area is in contact.

In static contact, the average contact radius remained nearly constant during the

evolution. In sliding contact, the average contact size decreases with increasing sliding

speed (Figure 3.17).
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Figure 3.17: Variation of the average contact size at steady state and different sliding
speeds.

The velocity-strengthening and velocity-weakening behavior is determined by the

magnitude of the sensitivity of the system to velocity changes as compared to the
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direct effect. This sensitivity depends on the viscoelastic properties. To study the

dependence on the viscoelasticity, sliding simulations with four combinations of the

viscoelastic parameters λ̄, Ā are performed. The steady state contact area always

decreases with increasing speed but the magnitude of this variation depends on Ā/λ̄

(Figure 3.18a). For the case λ̄ = 0.1, Ā = 1, Ā/λ̄ = 10, and the area changes are

larger than the other cases.

The steady state friction coefficient can either increase or decrease with increasing

speed depending on λ̄, Ā and the magnitude of the direct effect (a in Equation 3.10).

For example, in Figure 3.18b , for λ̄ = 0.1, Ā = 1, the system is velocity-weakening

at most sliding speeds while for λ̄ = 1, Ā = 0.1, the system is velocity-strengthening

at all the sliding speeds.
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Figure 3.18: Steady state (a) contact area and (b) friction coefficient at different
sliding speeds for four combinations of the viscoelastic parameters. The contact area
always decreases with increasing speed but the friction coefficient might increase or
decrease depending on whether the direct effect or the transient effect dominates.
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3.5.4 Magnitude of the direct effect

According to the local friction law (equation 3.10), the magnitude of the direct effect

at any sliding speed is proportional to the area of contact at steady state at that

speed, Ar(v̄). Since Ar(v̄) decreases monotonically with increasing v̄, the magnitude

of the direct effect also decreases monotonically. In experiments though, it is observed

that the direct effect is proportional to the logarithm of the ratio of the final and

initial sliding speeds. This is possible, at least in our formulation, only if the velocity

dependent term in equation (3.10) increases faster than log(v̄).

3.5.5 Normal stress jump and pulse tests

Experiments show that when sliding surfaces are subjected to jumps in the normal

pressure, they show a history-dependent behavior, similar to what is seen in velocity

jump tests [38, 85]. To test this in our simulations, a pressure of 50 MPa is applied and

the system is slid till it reaches steady state. Then, the pressure is “instantaneously”

increased to 75MPa. The sliding is then continued. During the fast loading, the

contact area also changes instantaneously and this is followed by an evolution to a

steady state corresponding to the new load (Figures 3.19a). This behavior has been

observed in experiments, as shown in Figure 3.19b [38] (in our model, the shear force

is proportional to the contact area).
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Figure 3.19: Evolution of (a) contact area in our simulation and (b) shear stress in
experiments during a normal stress jump test (reproduced with permission from [38]).
The contact area changes instantaneously during the normal stress increase and this
is followed by an evolution to a new steady state.

Similarly, we perform normal stress pulse simulations. The normal stress is in-

creased and brought back to the initial value instantaneously. In experiments, it is

seen that the shear stress does not go back to the initial value instantaneously but

evolves over a longer time scale (Figure 3.20c) [38, 85]. In our simulations, if the

loading and unloading during the normal stress variation is done at a very high rate

compared to the viscoelastic relaxation time, the area goes back to its initial value

along with the applied normal stress. This is to be expected since the loading unload-

ing process is effectively elastic (see Figure 3.20a). If the loading unloading is done

at a slower rate, the area does not go back to its initial value along with the normal

force but evolves over a longer timescale, as in experiments (Figure 3.20b).



74

0 50 100 150 200
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Distance

A
r
e
a
%

(a)

0 50 100 150 200
2

2.2

2.4

2.6

2.8

3

Position

A
re
a
(%

)

(b) (c)

Figure 3.20: Evolution of contact area in our simulations when the normal stress
pulse is applied at a (a) very high rate, and (b) a rate comparable to the viscoelastic
timescale. (c) Evolution of shear stress in experiments during a normal stress pulse
test (reproduced with permission from [38]).

3.5.6 Dependence of characteristic slip on roughness and vis-

coelasticity

In experiments, the characteristic slip Dc over which friction reaches steady state

following a velocity jump has been observed to be nearly independent of the sliding

speed, the normal force etc., but to depend on the surface roughness. In all experi-

ments in the literature, in preparing the surfaces, there is no independent control of

the surface parameters σ (rms roughness) and β (the correlation length). Thus, they

cannot distinguish between the effects of the two separately. Intuitively, we expect

Dc to depend more on the correlation length than the rms roughness of the surface.

To test this, velocity jump simulations are performed for three combinations of σ, β

(all results are averaged over 15 realizations of the rough surface).

Dc is calculated by fitting an exponential to the transient µk evolution following a

velocity jump. In our simulations, Dc depends on the correlation length much more

strongly than the rms roughness (Figure 3.21). The correlations in the surface features

of the rough surface decay over the length scale β. Thus, the distance the system has

to slide to reach steady state depends on β and Dc increases with increasing β. The

rms roughness σ affects the area of contact, and the value of the friction coefficient

but does not affect Dc.
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Figure 3.21: (a) Evolution of friction coefficient in velocity jump simulations for
surfaces of three different roughness. (b) Decay length at different speeds for the
three cases. The decay length depends more strongly on the correlation length than
the rms roughness.

To see if Dc if affected by the elastic interactions, the above calculations are

repeated with no elastic interactions. Surprisingly, Dc is largely unchanged by the

presence of elastic interactions (Figure 3.22).
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Figure 3.22: Decay length at different speeds with no elastic interactions. Comparison
with Figure 3.21 shows that elastic interactions do not affect Dc significantly.

In Figures 3.21 and 3.22, at very low speeds, Dc is independent of the surface

properties. This is because, at very low speeds, the sliding process is almost elastic,

since the viscoelastic elements have a lot of time to relax before sliding any consider-
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able distance. With longer viscoelastic relaxation timescales (smaller λ̄), Dc should

be higher at the lower sliding speeds. To test this, velocity jump simulations on sur-

faces with three different viscoelastic properties are performed. We find that adding

the longer timescales does increase Dc at the lower sliding speeds (Figure 3.23b). The

experimentally observed constancy of Dc over a range of sliding speeds could thus be

a result of the fact that a real material usually has a broad range of relaxation times.
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Figure 3.23: (a) Evolution of friction coefficient in velocity jump simulations for
surfaces of three different viscoelastic properties. The green curve corresponds to a
system with four timescales, λ̄k = 1, 0.1, 0.01, 0.001, Ā = 0.25, 0.025, 0.0025, 0.00025.
Including longer relaxation timescales increases Dc at the lower sliding speeds.

3.5.7 Convergence with increasing spatial frequency

Because the rough surface is discretized, roughness features only up to a finite max-

imum spatial frequency can be incorporated. Since rough surfaces have features at

many length scales, it is interesting to see if there is a convergence in the macroscopic

properties as more and more frequencies are included. For this, we perform static

contact and velocity jump simulations for surfaces with different cut-off frequencies

in spatial features.

Simulations show that the area of contact decreases as more and more frequencies

are included (Figure 3.24). This is because lower cut-off frequencies make the surfaces

smoother (see Section 3.4.4 on roughness dependence). Furthermore, the marginal
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change in area with respect to the cut-off frequency decreases with increasing fre-

quency. Thus, it can be expected that surface features beyond a certain frequency

will have little effect on the macroscopic contact area.
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Figure 3.24: (a) Power spectrum of Gaussian noise with Gaussian correlation. Area of
contact area during (b) static contact and (c) velocity jump simulations for surfaces
with different cut-off frequencies. The area of contact decreases as we include more
and more frequencies, since lower cut-off frequencies make the surfaces smoother.
The marginal change in area with respect to the cut-off frequency decreases with
increasing frequency.

3.6 Conclusion

Here, we developed a framework to study the time and velocity dependent behavior of

rough surfaces in static and sliding contact to understand how static and sliding fric-

tion are affected by material properties (particularly, viscoelastic properties), surfaces

roughness, and long-range elastic interactions.
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We found that although elastic interactions are important from a quantitative

perspective, they do not change the qualitative aspects of frictional behavior, either

in static or sliding contact.

In static contact, the duration of growth of friction coefficient is determined by

the viscoelastic relaxation times. The absolute value of the friction coefficient and the

magnitude of growth during static contact are determined by both the viscoelastic

properties and the surface roughness.

The sliding behavior is determined by the interaction of two timescales, the vis-

coelastic relaxation times, and the ratio of the correlation length of the surface to the

sliding speed. The distributions of forces at the contacts at different speeds are dif-

ferent, and this determines how the contact area and friction coefficient change with

the sliding speed. Depending on the direct effect and the contact area dependence on

sliding speed, the behavior can be velocity-strengthening or velocity-weakening. The

characteristic slip distance Dc depends on the viscoelastic relaxation times, the sliding

speed, and the correlation length of the surface, but not on the rms roughness.
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Chapter 4

Static and sliding contact of
viscoplastic rough surfaces

The model in the previous chapter assumes that the material behavior of the de-

formable surface is linear viscoelastic. While this is reasonable for some materials

like polymers, in others, like rocks, ceramics, and metals, the time-dependent be-

havior is due to the high local stresses at the contacts. This creep behavior, and its

causal mechanisms such as dislocation motion, has been extensively studied and char-

acterized by viscoplastic models [86]. Thus, incorporating these viscoplastic models

provides a further link between macroscopic behavior and the underlying mechanisms.

4.1 Elastic-viscoplastic model

We propose the following elastic-viscoplastic constitutive model. First, the total

deformation is split into elastic and plastic parts:

ū = ūe + ūp, ˙̄u = ˙̄ue + ˙̄up,

where ū, ūe, and ūp are the total, elastic, and plastic deformations, respectively. The

forces and the elastic deformations are related linearly:

ūe = C̄ijF̄j,



80

where C̄ij is the compliance and F̄i is the force. A power law creep prescribes the

evolution of plastic strain:

˙̄up = Acr(|F̄ |/F̄y)n sign(F̄ ), (4.1)

where F̄y, Acr, n, are the yield streess, the creep rate, and the creep exponent, respec-

tively. A hardening rule is defined the evolution of the yield stress:

˙̄uacc = | ˙̄up|, F̄y = F̄ 0
y (1 +Būacc)

m,

where ūacc, F̄
0
y , B,m are the accumulated plastic strain, the initial yield stress, the

hardening rate and the hardening exponent respectively.

Figure 4.1: Deformation mechanism map for stainless steel (reproduced with permis-
sion from [86]). Such maps can be used to determine the relevant viscoplastic creep
law.

Although specific forms of creep and hardening laws are used here, depending on

the material, the stresses, and temperature, appropriate laws can be used by referring

to deformation mechanism maps such as those of Frost and Ashby [86]. Figure 4.1
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shows one such map for stainless steel [86].

4.2 Static Contact

We simulate the static contact test of rough surfaces. These are similar to the simula-

tions described in Section 3.4 in Chapter 3 with the viscoelastic constitutive equation

replaced by the above described viscoplastic model.
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Figure 4.2: Evolution of contact area and static friction coefficient with time for a
viscoplastic material. µs grows logarithmically with time with no signs of saturation,
as seen in many experiments.

As in the viscoelastic case, the area of contact, and thus µs, increases with the

time of contact, and after an initial phase, grows logarithmically with time (Figure

4.2). In the viscoelastic case, the growth saturates after about 2 decades (Section 3.4

in Chapter 3). However, here the growth seems to continue indefinitely and shows no

signs of saturation. This is expected from the viscoplastic model since the contacts

continue to creep under any nonzero force (see equation 4.1).

Figure 4.2 also shows the dependence of the friction evolution on the creep rate

Acr. Larger creep rates lead to a faster and larger growth in µs. Similar parametric

studies of the other viscoplastic parameters can be used to determine the range of

physically relevant viscoplastic parameters. For example, it is known that the real

area of contact in most cases is of the order of 1%. This implies that the relevant
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creep rates are around 0.001 (assuming the other parameters used are in the right

regime).

4.3 Sliding contact

We also perform velocity jump simulations similar to those described in Section 3.5

of Chapter 3. The qualitative features of friction evolution are the same as the

viscoelastic case. With a jump in the sliding speed, there is an instantaneous change

in µk followed by a transient evolution to a steady state (Figure 4.3). The figure also

shows how µk depends on the creep rate Acr. Large creep rates lead to large transients

and velocity-weakening, whereas smaller creep rates result in velocity-strengthening

behavior.

0 10 20 30 40
0.4

0.5

0.6

0.7

0.8

0.9

1

Distance/Correlation-length

µ
k

 

 

v̄ = 1v̄ = 1

v̄ = 10
v̄ = 10v̄ = 10

v̄ = 100 v̄ = 100

Acr = 0.001
Acr = 0.01
Acr = 0.1

Figure 4.3: Evolution of µk during velocity jump tests. Large creep rates lead to
velocity-weakening while smaller creep rates result in velocity-strengthening behavior.

One key difference between the viscoelastic and viscoplastic formulations is that in

the viscoplastic case there is permanent deformation. So, the surfaces evolve as they

are in static or sliding contact. Figure 4.4 shows two surfaces, an initially undeformed

one and the same surface after sliding for a while. Two peaks in the surface are marked

with circles, and, as is evident from the figure, the peaks get flattened as the surface

slides. A profile of a section through the surface and the plastic deformation after

the sliding are also shown. It would be interesting to study if the plastic deformation
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leaves a signature of the sliding direction.
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Figure 4.4: Evolution of the surface during sliding: (a) initially undeformed and (b)
final deformed surfaces. The blunting of the peaks due to permanent deformation
is evident (black circles). (c) A profile showing a section across the surface and (d)
plastic deformation at the contacts.

4.4 Dependence on temperature

During sliding, the energy dissipated at the contacts can lead to a large increase in the

temperature locally at the interface [30] and this can change the material properties.

If the sliding speed is slow enough compared to the heat diffusion timescale, the

temperature at the surface might reach a steady state that depends on the sliding

speed. The dependence of the viscoplastic parameters on temperature has been well

studied [86]. For example, the creep rate is observed to depend exponentially on

the inverse temperature, Acr ∝ e−Q/kT , where Q is an activation energy, k is the

Boltzmann constant, and T is the temperature. Let us consider two temperatures,
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Thigh and Tlow. For simplicity, we assume that Acr = 0.001 at Tlow and Acr = 0.1 at

Thigh, n is the same at the two temperatures and there is no hardening. Such large

changes in creep rates are not unreasonable. For example, in Figure 4.1, in the power-

law creep regime, the strain rate changes from 0.01 to 1 over a temperature change of

about 300K. Such changes in temperature have been measured in experiments [30].
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Figure 4.5: Evolution of friction coefficient at two different temperatures: (a) static
contact test and (b) velocity jump test.

The slope of the friction growth, β = dµs/d log(t̄) (calculated in the part where the

growth is logarithmic), is higher at the higher temperature (Figure 4.5a). β = 0.59

at Tlow and 2.50 at Thigh. A similar dependence on temperature is observed in some

experiments [48].

In velocity jump tests, the system transitions from velocity-strengthening at the

lower temperature and velocity-weakening at the higher temperature (Figure 4.5b).

Such a dependence on temperature is seen in experiments [87, 8]. In some materials,

the transition is ascribed to the onset of ductility [8], which matches with our model

in that higher creep rates Acr can be interpreted as the material being more ductile.

4.5 Concluding remarks

The results of the viscoelastic and viscoplastic formulations suggest that the qualita-

tive features of evolution of friction are robust to the assumptions of the underlying
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time-dependent behavior. It seems that as long as the time-dependent behavior of

individual contacts is rate-strengthening (higher forces when deformed at faster rates;

this is true for both the viscoelastic and viscoplastic cases), we see the growth of static

friction with time and the inverse relationship between the contact area and the slid-

ing speed (which leads to the characteristic evolution in velocity jump tests). This

hints that the reason many materials show similar macroscopic frictional behavior is

the minimal restriction it places on the microscopic behavior.
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Chapter 5

Inclusion of adhesive interactions

Adhesion plays an important role in many cases. In MEMS, hard disk drives and

other such devices, stiction is a great problem [88, 89, 90]. Adhesion in biological

systems like the gecko is a source of both fascination and inspiration [91, 92, 93].

Effects of adhesion are apparent in fluids; for example, the shape of a liquid drop,

the contact (wetting) angle, hydrophobicity, and hydrophilicity are all dictated by the

minimization of surface energy. In solids, apart from the surface energy, the elastic

energy also plays a role and the two together determine the response [94].

Consider a solid of volume V and surface area A. If the typical strain is ε, then

the elastic and surface energies are given by:

Ee =
1

2
Kε2V, Es = γA,

where Ee, Es are the elastic and surface energies, K is the stiffness of the material,

and γ is the surface energy per unit area. Consider the ratio of the two energies,

Es
Ee

=
γ

0.5Kε2
A

V
.

If γ/K is small, for surface energy to be important, the ratio of A/V should be large,

and this happens at small length scales. For example, for many metals, this length

scale is about 1-10 nm [95] and this is the reason that the the effects of surface energy

are not important at macroscopic length scales in these materials. For soft materials,

γ/K is large and effects of surface energy are important in such cases.
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5.1 Previous studies

The problem of elastic contact of non-adhesive parabolic surfaces was solved by Hertz

[96]. Around the 1970s, Roberts, Kendall, and others, in their experiments with

rubber and glass spheres, observed that the contact area at low loads was larger

than the predictions of Hertzian theory. Further, the contact area remained finite

as the load was reduced to zero. Johnson et al. developed a model in which the

contact area is determined by minimizing the total energy of the system, which has

contributions from the elastic energy, the surface energy, and the potential energy

[97]. The model, which has since been known as the JKR model, has been used

widely. Around the same time, Derjaguin and others developed another model for

adhesive contact (known as the DMT model) [98]. In the JKR model, the adhesive

forces act only within the region of contact, whereas in the DMT model the attractive

adhesive forces are active outisde the contact zone. Although the applicability of the

two models was hotly debated, the connection between the two was pointed out by

Tabor [99] and Maugis [100], and it was realized that the JKR model is appropriate

for soft solids with large surface energy while the DMT model is appropriate for hard

solids with small surface energy.

Roughness affects the adhesion between surfaces to a large extent and since most

surfaces are rough, rough surface adhesion has been explored extensively. Fuller and

Tabor experimentally studied the adhesion of smooth rubber spheres and flat rough

rough perspex substrates [101]. They showed that even a roughness of the order of 1

µm reduces the adhesion strength (pull-off force) substantially. They also developed

a model by substituting the Hertzian contacts in the Greenwood-Williamson model

[102] by a JKR contact and found reasonable agreement with their experiments.

Briggs and Briscoe, in reproducing the experiments of Fuller and Tabor, found that

adhesion does not vary monotonically with roughness [103]. At small roughness,

they found an increase in adhesion with increasing roughness. This non-monotonic

variation of adhesion with roughness has been observed in many experiments since

[104, 82, 105, 106, 107].
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On the theoretical side, apart from the models of Fuller and Tabor, Persson and

Tosatti proposed another model for the adhesive contact of fractal rough surfaces

[108, 109]. For a given nominal area, increasing roughness increases the real area

thus increasing adhesion. But increasing roughness also increases the elastic energy

required to deform the asperities. In a certain range of parameters, the result of the

combined effects of the above two effects is that adhesion increases with increasing

roughness. Their model, however, is reversible in that all the elastic energy stored

is employed in the peeling of contacts. The elastic adhesive contact problem with

a single wavelength roughness was studied by Guduru [110] and Kesari et al. [111].

They showed that the presence of roughness can increase the adhesive pull-off force.

The relation between adhesion and friction has also been studied greatly. Mc-

Farlane and Tabor, in their experiments with indium and steel surfaces, showed that

at low loads, the friction coefficient can be high [112]. Since friction is a dissipative

process, it must be related not to adhesion itself but to the hysteresis in adhesion.

A correlation between adhesion hysteresis and friction has been observed in some

experiments [113, 114].

Here, the models of the previous chapters are extended to include adhesion. In

the next section, we start with a single degree of freedom system. Depending on the

surface energy, the system reproduces JKR and DMT like behaviors.

5.2 A single degree-of-freedom (DOF) system

d 

δ 

K 

P 

Figure 5.1: A single degree of freedom system. The total energy of the system is a
sum of the elastic energy, which depends on the extension in the spring d − δ, and
the surface energy, which depends on δ.
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Consider the single degree of freedom system shown in Figure 5.1. A linear spring

of stiffness K hangs from a rigid surface, which is at a distance d from another

rigid surface. The separation between the spring and the second rigid surface is δ.

Without loss of generality, the undeformed length of the spring can be set to zero;

the deformation in the spring is then d− δ. We assume that there is a surface energy

between the two surfaces that decays exponentially with δ. The total energy for the

system is:

E =
1

2
K(d− δ)2 − γe−δ/λ,

where γ is the surface energy and λ is the length scale of the surface energy decay.

Nondimensionalizing the above, we get:

Ē =
1

2
(d̄− δ̄)2 − γ̄e−δ̄, (5.1)

where the lengths are nondimensionalized by λ, energy by Kλ2, and

γ̄ = γ/Kλ2

is the nondimensionalized surface energy. The rigidity of the second surface implies

δ̄ ≥ 0.

For given dilatation d̄, the equilibrium separation minimizes the total energy:

δ̄eq = min
δ̄
Ē(δ̄), δ̄ ≥ 0, (5.2)

where δ̄eq is the equilibrium separation. If δ̄ > 0, no constraint force acts and the

energy minimizer is the solution to

∂Ē

∂δ̄
= 0 or d̄− δ̄ = γ̄e−δ̄. (5.3)
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The stability criterion for the minimizer is that the second derivative is positive:

∂2Ē

∂δ̄2
= 1− γ̄e−δ̄ > 0. (5.4)

If γ̄ < 1, 1− γ̄e−δ̄ > 0, since δ̄ ≥ 0 and all energy minimizers all stable. If γ̄ > 1, the

second derivative can become zero for positive δ̄. This corresponds to loss of stability.

In the next two sections, we study the behavior of the system for γ̄ < 1 and γ̄ > 1,

respectively.

5.2.1 Nondimensional surface energy γ̄ < 1
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Ē

 

 

γ̄ = 0.5

d̄ = 0

d̄ = 1

d̄ = 2

d̄ = 3

(a) Energy

0 1 2 3 4 5−4

−2

0

2

4

6

δ̄

∂
Ē
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Figure 5.2: (a) energy, (b) energy gradient, and (c) the second derivative as a function
of the separation δ̄ for different dilatation d̄ for γ̄ < 1. There is a unique minimizer
for each d̄ and it is stable.
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When γ̄ < 1, for each dilatation d̄, there is a unique energy minimum which corre-

sponds either to the solution of ∂Ē/∂δ̄ = 0 or the constraint δ̄ = 0 (see Figure 5.2a).

This can also be seen from Figure 5.2b where the energy gradient has a unique zero,

or is positive everywhere in which case the minimizer is δ̄ = 0. This minimum is

stable since the second derivative is always postive (Figure 5.2c).

Consider a loading-unloading test performed by first decreasing the dilatation d̄

and then increasing it. The equilibrium separation for each dilatation can be calcu-

lated using equation 5.2. The energy minimizer during loading and unloading curves

are the same, and there is no hysteresis in the system (Figure 5.3). The response of

the system when γ̄ < 1 is thus similar to the DMT model.
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Figure 5.3: Equilibrium separation as a function of the dilatation. The loading and
unloading curves are on top of each other, there is no hysteresis in the system.

5.2.2 Nondimensional surface energy γ̄ > 1

Now consider the more interesting case, γ̄ > 1. Figure 5.4 shows the energy, with its

first and second derivatives as a function of the separation δ̄ for different values of d̄.

Let us consider a loading-unloading process. For a large dilatation (such as d̄ = 3 in

the figure), there is a unique energy minimizer corresponding to ∂Ē/∂δ̄ = 0 and it is

stable (second derivative is positive). On decreasing d̄, at some critical dilatation, this

minimizer becomes unstable (second derivative becomes zero) and the first derivative
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of the energy is positive everywhere. Here, the minimum of the energy is at δ̄ = 0.

This critical state can be determined by setting the second derivative of energy to

zero.
∂2Ē

∂δ̄2
= 0 =⇒ δ̄snap-in = log(γ̄), d̄snap-in = 1 + log(γ̄). (5.5)

This δ̄snap-in is finite and positive and increases with γ̄. This means that the spring

snaps into contact with the rigid surface when it is at a finite separation and the

contact formation is not a gradual process as it is when γ̄ < 1. On further decrease

of d̄, the minimizer stays at δ̄ = 0 and is stable.
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Figure 5.4: (a) energy, (b) energy gradient, and (c) the second derivative as a function
of separation δ̄ for different dilatations d̄ for γ̄ > 1. The energy is non-convex and
the system exhibits hysteresis, snapping into and out of contact at critical states.

Now, on unloading (increasing d̄), the spring initially stays at δ̄ = 0. With further



93

increase of d̄, a new minimum appears at a nonzero δ̄, but the system is stuck at

the local minimum δ̄ = 0 because there is an energy barrier to switch to the other

minimum (∂Ē/∂δ̄|δ̄=0 > 0). When ∂Ē/∂δ̄|δ̄=0 becomes zero for the first time, the

spring snaps out of contact and switches to the other energy minimizer. This snap-off

point can be determined as:

∂Ē

∂δ̄

(
δ̄ = 0

)
= 0 =⇒ d̄snap-off = γ̄. (5.6)

Interestingly, this snap-off point is different from the snap-in point. For γ̄ > 1,

γ̄ > 1 + log(γ̄),

and thus, the snap-off dilatation is always larger than the snap-in dilatation.

Because of the snap-in and snap-off behavior, the equilibrium separation during

loading and unloading are different and there is hysteresis in the system. This is

clearly seen in Figure 5.5 which shows the equilibrium separation as a function of the

dilatation. Outside of the snap-in/snap-off region, there is a unique minimizer and

the loading-unloading process is reversible.
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Figure 5.5: Equilibrium separation as a function of the dilatation during a loading-
unloading cycle. The snap-in during loading and snap-off during unloading happen
at different points and there is hysteresis in the system. Outside of this region, the
system is reversible.
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The evolution of force (which is equal to d̄− δ̄, the deformation of the spring) also

shows a similar hysteretic behavior (Figure 5.6). The force is tensile at large dilatation

and increases on decreasing the dilatation, since the adhesive force becomes stronger.

After snap-in, on further loading, the force starts becoming compressive (in Figure 5.6,

we have not loaded the system enough for this to happen) because of the constraint

force from the rigid surface. During unloading, the force becomes tensile again and

reaches a maximum at the snap-off point.

1 1.5 2 2.5 3
0

0.5

1

1.5

2

d̄

F̄

γ̄ = 2

 

 

Loading

Unloading

Figure 5.6: Evolution of force during the loading-unloading cycle. The adhesive
tensile force is maximum at the snap-off point.

Energy dissipation The snapping into and out of contact are irreversible diss-

pative processes. Since the dilatation and separation before and after snap-in and

snap-off are known, the elastic and surface energies, and thus the energy dissipated,

can be calculated. These are given by:

∆Ēsnap-in = γ̄ − 1

2
− 1

2
(1 + log(γ̄))2 (5.7)

∆Ēsnap-off = δ̄snap-off

(
γ̄ − 1− δ̄snap-off

)
, (5.8)

where δ̄snap-off is the solution to,

γ̄ − δ̄snap-off = γ̄e−δ̄snap-off .
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It is interesting to see if this dissipated energy is significant. If γ̄ is big enough, the

energy dissipated can be a significant fraction of or even larger than γ̄, the reversible

work of separation (Figure 5.7). For example, when γ̄ = 5, the total energy dissipated

during a loading-unloading cycle is around 1.8γ̄.
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Figure 5.7: Energy dissipated during snap-in, snap-off, and their sum as a function
of γ̄. If γ̄ � 1, this dissipated energy can be significant compared to the reversible
work of adhesion γ̄.

Thus, when γ̄ > 1, the behavior of the system is JKR like. In the next section,

we extend the above one degree of freedom system to an ensemble of non-interacting

elements.
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5.3 Ensemble of independent adhesive elements

d 

Figure 5.8: An ensemble of springs against a rough rigid surface. The response of
each element is as in the previous section and there is no interaction between the
elements.

Consider an ensemble of springs hanging from a flat rigid surface and sitting above a

rough rigid surface. The rough surface has a probability distribution of heights P (h̄).

The distance between the flat surface and the mean height of the rough surface is d̄.

For each spring, if the height of the rough surface against it is h̄, the energy is given

by:

Ē =
1

2
(d̄− h̄− δ̄)2 − γ̄e−δ̄, (5.9)

where δ̄ is still the separation between the spring and the surface. From the energy,

it follows that all of the analysis of the previous section carries through if d̄ of the

previous section is replaced by d̄− h̄. The force in the spring is now given by:

F̄ (h̄) = d̄− h̄− δ̄.

We restrict our attention to the case γ̄ > 1. Thus, if the height of the rigid surface

is h̄, the snap-in and snap-off dilatation are given by:

d̄snap-in = 1 + h̄+ log(γ̄), d̄snap-off = h̄+ γ̄.
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5.3.1 Loading

During loading, if the dilatation is d̄, all springs with δ̄ ≤ 1+log(γ̄) snap into contact.

Defining

h̄snap-in = d̄− (1 + log(γ̄)),

all springs where h̄ ≥ h̄snap-in are in contact at dilatation d̄. The total force of the

ensemble, F̄N , is given by:

F̄N(d̄) =

∫ ∞
−∞

F̄ (h̄)P (h̄)dh̄

=

∫ ∞
−∞

(d̄− h̄− δ̄)P (h̄)dh̄

= d̄− < h̄ > −
∫ ∞
−∞

δ̄P (h̄)dh̄.

(5.10)

Without loss of generality < h̄ > can be set to zero, since this is the same as using

the level of mean heights as the reference level. If h̄ ≥ h̄snap-in, the springs snap into

contact and δ̄ = 0. Otherwise, δ̄ is given by the solution to:

d̄− h̄− δ̄ = γ̄e−δ̄.

Thus,

F̄N(d̄) = d̄−
∫ h̄snap-in

−∞
δ̄(h̄)P (h̄)dh̄.

5.3.2 Unloading

Suppose we load up to a minimimum dilatation d̄min and then start increasing the

dilatation. All springs where the height of the rigid surface is greater than or equal

to h̄min = d̄min − (1 + log(γ̄)) have snapped into contact. On unloading, some of

these snap out of contact. So, for given d̄ during unloading, we define h̄snap-off as the

height of the rough surface above which the springs are in contact and below which

the springs have either snapped out of contact or never came into contact. It can be
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seen that:

h̄snap-off = max(h̄min, d̄− γ̄).

So, during unloading, the force is given by,

F̄N(d̄) =

∫ ∞
−∞

F̄ (h̄)P (h̄)dh̄

=

∫ ∞
−∞

(d̄− h̄− δ̄)P (h̄)dh̄

= d̄−
∫ max(h̄min,d̄−γ̄)

−∞
δ̄P (h̄)dh̄.

(5.11)

5.3.3 Energy dissipation

In one loading-unloading cycle, if the minimum dilatation is d̄min, all the springs where

h̄ ≥ h̄min snap into and out of contact. Thus, the total energy dissipated in one cycle

is given by:

∆Ē(d̄min) = (∆Ēsnap-in + ∆Ēsnap-off)

∫ ∞
h̄min

P (h̄)dh̄, (5.12)

where ∆Ēsnap-in and ∆Ēsnap-off are given by equation 5.7.

5.3.4 Force evolution

From here, the heights of the rigid surface has are assumed to have a Gaussian

probability distribution with an rms roughness σ. Thus,

P (h̄) =
1√
2πσ

e−h̄
2/2σ2

.

Consider a loading-unloading cycle of an ensemble of springs. The hysteresis in

the individual springs manifests as a hysteresis is the global response (Figure 5.9). At

a large dilatation, the force is initially tensile and on further loading, the springs snap

into contact and are subsequently compressed. The total force reaches a tensile peak

and then becomes compressive. After reaching a minimum dilatation, the system is

unloaded and the springs remain in contact until their snap-off point is reached and

thus, during unloading, the force is greater (more positive) than during loading. With
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further increase in dilatation, the force reaches a peak tensile value and then decays

to zero. The tensile peak during unloading is greater than the peak achieved during

loading. We define the peak tensile force during unloading as the adhesive strength

(F̄max) of the surface. We now study the dependence of the adhesive strength on

d̄min, γ̄, and σ.
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Figure 5.9: A typical loading-unloading process for the ensemble. The hysteresis of
each element leads to the hysteresis in the ensemble response.
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5.3.5 Depth-dependence of adhesive strength

−1 0 1 2
0

0.5

1

1.5

2

2.5

d̄min/σ

A
d
h
es
io
n
st
re
n
g
th

(F̄
m
a
x)

 

 

γ̄ = 2, σ = 1

γ̄ = 2, σ = 2

γ̄ = 4, σ = 1

Figure 5.10: Dependence of the adhesion strength on (a) d̄min, the minimum dilatation
achieved during the loading phase. For d̄min/σ < 1, the adhesive strength remains
nearly constant.

The adhesive strength depends on d̄min, the minimum dilatation achieved during the

loading phase. With decreasing d̄min, a larger fraction of the elements snap-into

contact and contribute to adhesion, and thus the adhesive strength increases (Figure

5.10). For d̄min/σ < 1, the adhesive strength remains nearly constant since the new

springs that snap into contact when compressed beyond d̄min/σ = 1 snap out of

contact before the force peaks and thus do not contribute to the adhesive strength.

5.3.6 Dependence of adhesive strength on roughness

Experiments show that over a large range of roughness, the adhesion strength de-

creases with increasing surface roughness, but for a relatively short range it increases

with increasing roughness [104, 82, 105, 106, 107]. In our model, F̄max decreases

monotonically with increasing σ (Figure 5.11) which agrees with variation seen in

experiments for a large range of roughness.

Our model does not include two potentially important factors, the spatial structure

of roughness and elastic interactions between contacts. Our conjecture is that one or

both of these is necessary for the non-monotonicity of adhesion strength.
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Figure 5.11: Dependence of F̄max on σ. The adhesion strength decreases monotoni-
cally with increasing roughness.

5.3.7 Depth-dependent energy dissipation
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Figure 5.12: Depth dependence of hysteresis during a loading-unloading cycle: (a) In
our simulations, hysteresis increases with decreasing indentation depth and saturates
to a constant value at about d̄min/σ = 0. (b) In experiments of Kesari et al., hysteresis
increases with the indentation depth (reproduced with permission from [107]). Note:
Decreasing d̄min in (a) corresponds to increasing |hmin| in (b).

Kesari et al. [107] studied how the energy dissipated in a loading-unloading cycle

depends on the minimum dilatation achieved during loading (Figure 5.12b). Figure

5.12a shows the energy dissipated during a loading-unloading cycle as a function of
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d̄min in our model. When d̄min/σ is betwen 0 and 3, the energy dissipated variation is

similar to what is observed in the experiments (Note: In Figure 5.12, decreasing d̄min

in (a) corresponds to increasing |hmin| in (b)). For d̄min/σ < 0, the energy dissipated

is nearly constant since the probability density of heights is small in this region (note

that when d̄min = 0, all springs where h̄ ≥ −(1 + log(γ̄)) have already snapped into

contact).

5.3.8 Dependence of energy dissipation on surface roughness

and surface energy

For a single element, the energy dissipated can be significant compared to the re-

versible surface energy (Section 5.2.2). The presence of roughness can reduce the

dissipation considerably. Surprisingly, even for a rough surface, if γ̄ � 1, the dissi-

pation can be a considerable fraction of, and even larger than, the reversible work of

adhesion γ̄ (Figure 5.13). For a given d̄min/σ, the energy dissipated decreases with

increasing roughness, and this decrease is stronger for larger d̄min/σ.
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Figure 5.13: Energy dissipated during a loading-unloading cycle as a function of σ
for different γ̄: (a) d̄min = 0 and (b) d̄min/σ = 1.

In this section, the linear elastic spring were non-interacting. In the next section,

we extend the formulation to the contact of three dimensional rough surfaces, and

incorporate long-range elastic interactions and inelastic (viscoelastic and viscoplastic)
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effects.

5.4 Extension to three dimensions

5.4.1 Formulation

The model here is an extension of the formulation presented in Section 3.2 in Chapter

3. First, the deformation is split into elastic and inelastic parts:

ui(t) = uei (t) + uini (t). (5.13)

For the elastic part, we have the following constitutive relation:

uei (t) = CE
ijFj(t), (5.14)

where CE
ij is the elastic compliance matrix. Based on the material, an evolution

law is prescribed for the inelastic deformation. For example, in the case of linear

viscoelasticity,

uini (t) =

∫ t

0

(∑
j

C(t− τ, rij)Fj(τ)

)
dτ, (5.15)

where C(t− τ, rij) is a viscoelastic kernel. For viscoplasticity, an incremental relation

can be prescribed for the inelastic deformation. To include adhesion, we prescribe a

constitutive relation corresponding to the surface forces. If the dilatation is d, the

separation between an element and the rigid surface is given by d−x0
j − yj(t)−uj(t),

where x0, y, and u are the undeformed length, the height of the rigid surface, and

the total deformation, respectively. Following from the earlier sections, the adhesive

surface energy Es and force F s are then given by:

Es
j (t) = γe−(d−x0

j−yj(t)−uj(t))/λ, F s
j (t) =

γ

λ
e−(d−x0

j−yj(t)−uj(t))/λ.



104

For elements in contact, the rigid surface applies a constraint force F const. Including

this, for each element:

Fj(t) = F s
j (t) + F const

j (t)

=
γ

λ
e−(d−x0

j−yj(t)−uj(t))/λ + F const
j (t). (5.16)

Using this in equation (5.14),

uei (t) = CE
ij

[γ
λ
e−(d−x0

j−yj(t)−uj(t))/λ + F const
j

]
= CE

ij

[γ
λ
e−(d−x0

j−yj(t)−uej(t)−uinj (t))/λ + F const
j

]
. (5.17)

Differentiating the equation with respect to time,

u̇ei (t) = CE
ij

[
− γ

λ2
e−(d−x0

j−yj(t)−uj(t))/λ(ḋ− ẋ0
j − ẏj(t)− u̇j(t)) + Ḟ const

j (t)
]
.

The above equation can be written as,

[K]{u̇e} = {b}+ [CE]{Ḟ const}, (5.18)

where,

{b} = − γ

λ2
CE
ij e
−(d−x0

j−yj(t)−uj(t))/λ(ḋ− ẏj − u̇inj ), (5.19)

and,

[K] = δij −
γ

λ2
CE
ij e
−(d−x0

j−yj(t)−uj(t))/λ (no ‘j’ summation).

Equation 5.18 is the governing set of ODEs for the system. Given the dilatation

history d(t), equation 5.18 determines the evolution of forces and deformations of the

elements.



105

5.4.2 Numerical implementation

We use a first order explit Euler method to integrate the governing equations. The

contact constraint has to be treated carefully. The governing equations are split into

two parts corresponding to elements in and out-of contact. For the elements out of

contact, the constraint force is zero. For elements in contact, the total deformation

is determined from the kinematic constraint,

x0
i + ui(t) + yi(t) = d(t).

Using (1) to represent elements in contact and (2) for ones not in contact, equation

5.18 can be written as,K11 K12

K21 K22

 u̇e1

u̇e2

 =

CE
11 CE

12

CE
21 CE

22

 Ḟ const
1

Ḟ const
2

+

 b1

b2

 . (5.20)

Assuming that elements in/out-of contact remain that way during a small time step,

u̇e1 = ḋ− ẏ1 − u̇in1 , Ḟ const
2 = 0.

Now, u̇e2 and Ḟ const
1 must be determined. Rearranging the linear system,

K11 K12

K21 K22

 0

u̇e2

−
CE

11 CE
12

CE
21 CE

22

 Ḟ const
1

0

 =

 b1

b2

−
K11 K12

K21 K22

 u̇e1

0


+

CE
11 CE

12

CE
21 CE

22

 0

Ḟ const
2

 .
Using Ḟ const

2 = 0,

K11 K12

K21 K22

 0

u̇e2

−
CE

11 CE
12

CE
21 CE

22

 Ḟ const
1

0

 =

 b1

b2

−
K11 K12

K21 K22

 u̇e1

0

 .
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The left hand side can be written as a single matrix acting on a single vector,K11 K12

K21 K22

 0

u̇e2

−
CE

11 CE
12

CE
21 CE

22

 Ḟ const
1

0

 =

0 0

0 I

− [CE]

I 0

0 Ksurf

 Ḟ const
1

u̇e2


where,

Ksurf
ii =

γ

λ2
e−(d−x0

i−yi−ui)/λ

and

Ksurf
ij = 0, if i 6= j.

Defining the matrix Keff as,

Keff =

0 0

0 I

− [CE]

I 0

0 Ksurf

 ,
the linear system that is solved to determine the unknown force and deformation

rates is,

[Keff ]

 Ḟ const
1

u̇e2

 = {b} −

K11 K12

K21 K22

 u̇e1

0

 . (5.21)

If γ/λ2 is large enough, the matrix Keff can become singular and this corresponds

to the elements snapping into contact. We do not know how to estimate how large

γ/λ2 has to be for this. Here, only cases where this does not happen are considered.

Given the current state of the system, the dilatation d, the forces Fi, elastic and

inelastic deformations uei , u
in
i , and the constraint forces F const

i , the steps involved a

one time increment are:

1. Assume the elements in and out of contact remain that way during a small time

step ∆t. Given ḋ, the deformation rate for the elements in contact is,

u̇1 = ḋ− ẏ1.

2. Compute the inelastic deformation rate u̇in of all the elements (for example,
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using a prescribed viscoelastic or viscoplastic equation).

3. Compute the elastic deformation rate for the elements in contact,

u̇e1 = u̇1 − u̇in1 .

4. Compute the right hand side of equation 5.21.

5. Solve the linear system for Ḟ const
1 , u̇e2.

6. Update all the forces and deformations and contact conditions. For the tran-

sitions from out-of-contact to in-contact, the kinematic condition can be used.

For transitions from in-contact to out-of-contact, the fact that the constraint

force cannot be positive (the rigid surface only pushes on the elements) is used.

5.4.3 Nondimensionalization

The equations are nondimensionalized in exactly the same way as Section 3.2.1 in

Chapter 3. The nondimensionalized adhesion parameters are defined as:

λ̄ =
λ

L∗
, γ̄ =

γ

2πGL∗3/(1− ν)
.

5.4.4 Indentation of an elastic spherical surface

To study the effect of adhesion, we start with the indentation of a linear elastic sphere

of radius 20. The adhesion parameters used are γ̄ = 10−5 and λ̄ = 0.1. The surfaces

are initially sufficiently separated for the adhesive interactions to be negligible and

the forces and deformations of all the elements are initialized to zero. The surfaces

are then brought into contact by decreasing the dilatation. As the dilatation is

decreased, the adhesive interactions become stronger and the tensile force increases

(Figure 5.14a). On further loading, some of the elements come into contact with the

rigid surface and are compressed. The total force reaches a tensile peak and then

becomes compressive. Since the adhesion forces are small enough not to cause any
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snap-in/snap-off instabilities, on unloading the force evolution retraces the loading

path.

Figure 5.14b shows the force distribution across the contact at the minimum

dilatation state. The forces are compressive at the center of the contact, but towards

the edge and outside the contact the forces are tensile. This can be seen as a cohesive

zone of an external crack. The strength and the decay rate of this cohesize zone are

determined by γ̄ and λ̄. The JKR and DMT models can be seen as different limits of

the cohesize zone (at least qualitatively). The JKR model is the limit of large γ̄ and

small λ̄, whereas the DMT model is the limit of small γ̄ and large λ̄.
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Figure 5.14: Indentation of an elastic sphere with adhesion: (a) force evolution with
dilatation and (b) force distribution across the contact.
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5.4.5 Effect of adhesion on rough surface friction
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Figure 5.15: Indentation test of a rough surface with adhesion: (a) Dependence of
friction coefficient on the normal force. (b) Inset marked in (a).

In MEMS, NEMS and such systems, the interacting surfaces are not subjected to

large loads. In such situations, the effect of adhesion can be significant. We perform

an indentation test of two rough surfaces 256 × 256 in size (σ = 1), with adhesion

parameters γ̄ = 5 × 10−4, λ̄ = 0.1 and Boussinesq elastic interactions. At small

normal forces, effects of adhesion are important: the friction coefficient is high and

shows marked normal force dependence (Figure 5.15). At large loads, the friction

coefficient becomes nearly independent of the normal load.

A similar dependence of friction on the normal force was observed by McFarlane

and Tabor in their experiments with steel and indium surfaces [112], although they

explained the dependence based on work hardening of the material (indium is a soft

solid, so effects of surface energy can be important).

5.4.6 Viscoelastic adhesive contact

Many materials where adhesion is important are also viscoelastic (polymers for ex-

ample). To study the interaction between viscoelasticity and adhesion, we perform

static contact simulations (see Section 3.4 of Chapter 3) of a viscoelastic material
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with a single relaxation timescale. In equation (5.15),

C(t− τ, rij) =
1− ν
2πG

1

rij
e−(t−τ)rij > 0.
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Figure 5.16: Effect of adhesion on friction evolution. The area of contact increases
with increasing surface energy. The presence of adhesion also increases the timescale
of friction evolution.

Adhesion affects the area and friction evolution in two ways (Figure 5.16). First,

the area of contact increases with increasing surface energy. More interestingly, the

timescale over which the evolution of area reaches steady state also increases with

increasing surface energy. As can be seen in Figure 5.16, when γ̄ = 0 the friction

evolution reaches steady state at about log t̄ = 1, whereas when γ̄ = 0.001 the friction

has not reached steady state at log t̄ = 1. This effect of adhesion can be one of the

reasons we see a long time of evolution of friction in some experiments [40].

5.5 Concluding remarks

In this chapter, models of the previous chapters were extended to include adhesive

interactions. The importance of adhesion at small loads and its effects on static

friction evolution were highlighted.
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Chapter 6

A force threshold model for
adhesion and mode I interfacial
cracks

6.1 Introduction

Two popular models for adhesive contact are the JKR model [97] and the DMT model

[98]. The connection between the two models was pointed out by Tabor [99]. Maugis

showed that the two models can be seen as limiting cases of a Dugdale-type cohesive

zone model [100].

In the JKR model, adhesive forces outside the contact zone are assumed to be

zero. The stresses at the edge of the contact are tensile and infinite, similar to the

stresses at the crack tip in linear elastic fracture mechanics. This chapter proposes

a threshold force based model that is similar to the JKR model in that the adhesive

forces are confined to the area of contact. A scaling of the threshold force with the

discretization size that is very suggestive of linear elastic fracture mechanics emerges

from the model. The formulation can also be used to study interfacial mode I cracks.

6.2 Formulation

We consider the contact of two surfaces. We assume one of the surfaces is rigid and

represent the other by a set of discrete elements, as shown in Figure 6.1. The only
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internal degree of freedom of the elements is their length normal to the interface.

FN 
FN 

Fi Rigid surface 

Figure 6.1: Contact of two rough surfaces; one of the rough surfaces is approximated
by a set of discrete elements, the other surface is assumed to be rigid.

We assume constitutive equations of the form:

ui = CijFj, (6.1)

where ui is the deformation of the element ‘i’ , Fj is the force on element ‘j’, Cij is the

compliance that captures the effect of the force at location ‘j’ on an element located

at ‘i’. We consider two different forms of Cij. The first one is local (called the no

elastic interaction case),

Cij = C0δij,

and the second one is derived from the superposition of the Boussinesq solution for a

point force in a semi-infinite half space (see 3.2 of Chapter 3 for more details) [115],

Cij =
1− ν
2πG

1

rij
, rij > 0.

The Boussinesq solution is singular at the point of application of the load, so the

force Fi is interpreted not as a point load, but as a distributed constant pressure over

a rectangular area. The displacements caused by such a pressure distribution was

derived by Love [77]. This solution, which has a number of logarithmic terms in it,

is close to the Boussinesq solution even for neighboring elements, but is not singular

at the point of loading. Thus, in computing the displacements at element ‘j’ due

to a force at ‘i’, we use the Boussinesq solution for all i 6= j and the Love solution

for i = j. Together, equation (6.1) is obtained (this is referred to as the Boussinesq
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interaction case).

Adhesion is included in the following manner. Each element is in contact can

sustain a maximum tensile force Fcr. If the force on the element exceeds Fcr, it snaps

out of contact and the force becomes zero. As a summary, the governing equations

are:

ui = CijFj,

Fi ≤ Fcr,

xi + yi ≤ d, (6.2)

where xi = x0
i + ui is the total length of the element ‘i’, yi is the height of the rigid

surface, and d is the dilatation, which is a measure of the separation between the two

surfaces. The third equation is a kinematic constraint condition corresponding to the

rigidity of one of the surfaces (the equality is satisfied when an element is in contact).

Nondimensionalizing the above equations using L∗ for length and F ∗ for force,

ūi = C̄ijF̄j,

F̄i ≤ F̄cr,

x̄i + ȳi = d̄.

For the case with Boussinesq interaction, with F ∗ = 2πG/(1− ν)L∗2, C̄ij = 1/r̄ij.

6.3 Algorithm

The forces and the deformations of the elements are coupled if the elastic interactions

are nonlocal (if C̄ij is not diagonal). Thus, when an element snaps out of contact,

it changes the forces and deformations of the other elements. Here we describe the

algorithm used to handle this issue.

Differentiating the constitutive equation with respect to time (a dummy variable
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here),

˙̄ui = C̄ij
˙̄Fj. (6.3)

Since we have to deal with the contact condition, equation (6.3) is split into two parts.

Using (1) to represent elements in contact and (2) for ones not in contact,

 ˙̄u1

˙̄u2

 =

C̄E
11 C̄E

12

C̄E
21 C̄E

22

 ˙̄F1

˙̄F2

 . (6.4)

Suppose a displacement controlled test is performed by prescribing d̄(t). Given

the current state (ūni , F̄
n
i ), the deformation and the forces on all the elements, each

time increment involves the following steps:

1. Assume the elements in and out of contact remain that way during a small time

step ∆t. Given ˙̄d, the deformation rate for elements in contact is given by:

˙̄u1 = ˙̄d.

For elements not in contact, the force is zero:

˙̄F2 = 0.

2. Determine ˙̄u2,
˙̄F1 by solving the linear system 6.4.

3. Make a temporary update of the forces:

F̄ temp
i = F̄ n

i + ˙̄Fi∆t.

4. Check if any of the forces have exceeded the critical force. If all elements satisfy

the maximum force constraint, accept solution. Else, make corrections in two

stages.

5. In the first step, apply a negative force of the same magnitude at those locations

where the critical force is exceeded. This is to make sure the force after snap-off
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is zero.

If F̄ temp
i > F̄cr, F̄ c1

i = −F̄ temp
i ,

where F̄ c1 is the first correction force. Calculate the resulting deformations:

ūc1i = C̄ijF̄
c1
j .

6. The first two of the three governing equations (6.2) are now satisfied. The last

one is not, because of the deformation caused by the correction forces.

7. The kinematic condition for the elements that are in contact but did not snap

must be satisfied . So, apply a second correction:

if in contact & F̄ temp
i < F̄cr, ūc2i = −ūc1i

and compute the corresponding forces by solving,

ūc2i = C̄ijF̄
c2
j ,

where ūc2i , F̄
c2
i are the second correction deformations and forces.

8. The final forces and deformations are:

F̄ temp
i = F̄ temp

i + F̄ c1
i + F̄ c2

i ,

ūtempi = ūtempi + ūc1i + ūc2i .

9. The forces F̄ temp
i may now exceed F̄cr. So, go back to step 4.

The above algorithm takes care of the transitions of an element from an in-contact

to out-of-contact state. The transitions from out-of-contact to in-contact are made

in an explicit way. After updating all the elements using the above algorithm, the

kinematic constraint is used as a check for out-of-contact to in-contact transitions.
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6.4 Indentation of a spherical surface

Here, we simulate a displacement controlled loading-unloading test of a sphere of

radius 20 against a flat rigid surface (with Boussinesq interaction). The critical force

F̄cr = 5× 10−3. The two surfaces are initially apart and the forces and deformations

of the elements are initialized to 0. The dilatation is then first decreased and then

increased. The evolution of the forces and deformations are computed as outlined in

Section 6.3.
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Figure 6.2: Loading unloading test of a sphere against a rigid flat. Evolution of (a)
force with dilatation during and (b) contact radius with force.

As the dilatation is decreased during the loading phase, the compressive force

increases (Figure 6.2a). After reaching a minimum (−1 here), dilatation is increased.

During unloading, the total force does not retrace the loading path. The elements

in contact can sustain a tensile force up to Fcr. The hysteresis in the elements leads

to the hysteresis of the force evolution. The unloading curve is always higher (force

more positive) than the loading curve. As the surfaces are pulled apart, the force

reaches a maximum positive value and then goes to zero as all the elements snap off.

The snap-off of the elements can be seen as the small wiggles in the force evolution.

The wiggles are present only in the unloading part of the curve.

Figure 6.2b shows the evolution of the contact radius with the force. During the

loading phase, the compressive force and the contact radius increase. After reaching a



117

minimum dilatation, the unloading phase begins. Initially, the contact radius remains

constant as the force increases. This is the phase where none of the elements have

broken contact. With further unloading, as the elements reach their critical force and

start snapping off, the contact radius decreases and eventually goes back to zero.

6.5 Dependence on discretization size

To study the convergence behavior, the loading-unloading test of the previous section

is repeated with different discretization sizes. The sphere is discretized using a grid

of 64×64, 128×128, 256×256, and 512×512 elements with F̄cr = 0.1. The distance

between the elements (∆) corresponding to these are, ∆ = 1, ∆ = 0.5, ∆ = 0.25, and

∆ = 0.125, respectively.
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Figure 6.3: Force evolution with dilatation during a loading unloading test of a sphere
at different discretizations. The unloading phase is discretization dependent and the
maximum tensile force increases without bound with increasing N .

We find that the response is discretization dependent (Figure 6.3). During the

loading and the initial part of the unloading phases, the four curves coincide with

each other. But as the elements start snapping off, there is divergence between the

curves. The maximum tensile force increases without bound with increasing N . For

the curves corresponding to N = 256 and N = 512, no element has broken contact
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during the simulation (the N = 256 curve is not visible since it lies underneath the

N = 512 curve).

The existence of the divergence only during the unloading phase suggests that for

convergence, F̄cr cannot be independent of the discretization size. Figure 6.3 suggests

that F̄cr must decrease with the discretization size. The question is, if there is one,

what is the right scaling of F̄cr with the discretization size?

6.6 Scaling of critical force with discretization size
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Figure 6.4: Evolution of force with dilatation for a loading-unloading test of a sphere
with different scalings of the critical force: (a) α = 0.25, (b) α = 0.5, and (c) α = 1.
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We consider scalings of the form:

F̄cr = F̄ 0
crA

α,

where A = ∆x∆y is the area of an element, and F̄ 0
cr is a constant. The loading-

unloading tests of the previous section are repeated but with different scalings: α =

0.25, 0.5, and 1 (the previous section corresponds to α = 0). F̄ 0
cr is set to 0.1.

In all three cases, there is no convergence with increasing N during the unloading

phase (Figure 6.4). There is however, something interesting to observe. For α = 0.25

and α = 0.5, the maximum tensile force increases with increasing N but the difference

between the curves decreases as we go from α = 0.25 to α = 0.5. For α = 1, the

maximum tensile force decreases with increasing N . This suggests that maybe there

is an α between 0.5 and 1 for which there is convergence with refinement.

6.7 Is 0.75 the magic number?
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Figure 6.5: Evolution of force with dilatation for a loading unloading test of a sphere
with α = 0.75. The results seem to converge with increasing N and the maximum
tensile force does not vary systematically with N (as it does in Figure 6.4).
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Figure 6.5 shows the force evolution during the loading-unloading test for α = 0.75

for different discretizations. Although the curves do not lie on top of each other, the

maximum tensile force does not vary systematically with N (as it does in Figure 6.4).

At this point, it looks like this is purely coincidental. For now, let us assume the

scaling with α = 0.75 is right:

F̄cr = F̄ 0
crA

0.75.

This is the scaling for the critical force. Dividing by the area of the element A, the

critical stress scales as:

σcr = F̄cr/A = F̄ 0
crA

−0.25,

where σcr is the critical stress. But A = ∆2, where ∆ is the distance between the

elements. Using this:

σcr =
F 0
cr√
∆

(6.5)

This scaling is very suggestive of linear elastic fracture mechanics (LEFM)! In LEFM,

the stress at the crack tip is given by (for mode I):

σ ∝ KI√
r
, (6.6)

where KI is the mode I stress intensity factor and r is the distance from the crack

tip. The criterion for crack propagation is that the stress intensity factor at the crack

tip should equal the critical stress intensity factor:

KI = KIC ,

where KIC is the critical stress intensity factor.

Comparing equations (6.5) and (6.6), it appears that with α = 0.75, we have an

approximation of linear elastic fracture mechanics with F̄ 0
cr serving the role of KIC .

This also explains the divergence with varying N in Figures 6.3 and 6.4. Without the

α = 0.75 scaling, changing N is equivalent to changing KIC .

To test if the above convergence is just an accident, we consider three other
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geometries: a flat surface, a surface with four hills, and a radial sinusoidal surface.

Figures 6.6- 6.8 show the evolution of area and force for α = 0.75 for the three cases.

In each case, there is convergence with decreasing discretization size. This ensures

that the convergence with the spherical surface is not restricted to that particular

geometry.
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Figure 6.6: Evolution of force with dilatation for a flat surface.
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Figure 6.7: (a) A surface with four hills and (b) its force evolution with dilatation.
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Figure 6.8: (a) A radial sinusoidal surface and (b) its force evolution with dilatation.

6.8 The case with no elastic interactions

Another way to test if the scaling is related to elasticity is to use a constitutive

equation not derived from an elasticity solution. Here, constitutive equations with

no elastic interactions are considered:

C̄ij = C̄0δij,

where C̄ij is the compliance matrix in equation (6.1). If the scaling appears even

here, then it probably is unrelated to LEFM.
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Figure 6.9: Force evolution with dilatation for the case with no elastic interactions:
(a) α = 0.75 and (b) α = 1. The absence of convergence for α = 0.75 and convergence
when α = 1 suggests that the scaling is interwoven with the elasticity.

The loading-unloading tests are repeated for a sphere. In this case, there is conver-

gence when α = 1 and no convergence when α = 0.75 (Figure 6.9). The convergence

when α = 1 is easily understood. Since C̄ij is diagonal, each elements snaps off inde-

pendently. On doubling N , each element at the larger discretization size is replaced

by four smaller elements of one fourth the size. For the total force to the same, the

critical force of the smaller elements must be one fourth the critical force of the larger

one (apart from small variations corresponding to better geometric representation at

the finer discretization).

This lends further support to our conjecture that the α = 0.75 scaling with Boussi-

nesq elastic interactions corresponds to an approximation of linear elastic fracture

mechanics.

6.9 Concluding remarks

This chapter developed a force threshold based model that can be used to study

adhesive contact and mode I interfacial cracks. The great advantage of the model is

that it is conceptually simple and very easy to implement. There is strong evidence

to think that the model approximates linear elastic fracture mechanics. It remains to
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be seen if there are deeper connections; such connections would also put the model

on a more rigorous footing. It is also interesting to explore extensions of this model

to mode II and mode III interfacial cracks.



125

Chapter 7

Conclusion

7.1 Summary

Our goal in this thesis was to develop a framework to study the interaction between

surfaces during static and sliding contact. Our particular interest was in understand-

ing the evolution of static and sliding friction.

The guiding principle was to determine the minimal features that still reproduce

qualitatively the observed macroscopic frictional behavior. In that spirit, we showed

in Chapter 2 that the collective behavior of one-dimensional independent viscoelastic

elements reproduces the various experimentally observed features of static and slid-

ing friction. The two important ingredients in this model, viscoelasticity and rough

surfaces, are both necessary and, as we showed, sufficient to reproduce the qualitative

behavior.

The next step was to develop the model further to be more representative of the

physical system but also amenable to solutions by numerical methods. In Chap-

ter 3, we did this by developing a boundary-element like method that incorporated

three-dimensional rough surfaces and long-range elastic interactions. Since friction

is affected by a large number of factors, we studied how the different aspects of fric-

tional response, such as the duration of static friction growth, velocity-strengthening

and weakening, characteristic slip distance, etc., are influenced by surface roughness,

material properties, and the long-range interactions.

In Chapter 4, we included the effects of plasticity by using a viscoplastic material
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model. The similarity of frictional behavior with the two different material models,

viscoelasticity and viscoplasticity, suggests that the qualitative aspects of macroscopic

behavior are fairly robust with respect to the microscopic behavior of the contacts.

This is probably why in experiments a similar behavior is seen across diverse materials

such as rocks, metals, and polymers. In Chapter 5, we showed how adhesion can be

included in the framework and studied how it affects friction.

In Chapter 6, we developed a threshold force based model for adhesion. Our

goal was to study adhesion but we found a scaling for the critical force that is very

suggestive of linear elastic fracture mechanics. It is very interesting that a rather ad

hoc discrete model shows a scaling similar to that of a continuum theory. This hints

that there are probably deeper connections between the two and that the discrete

model can be derived as an approximation of the continuum theory. It also means

that for problems of contact mechanics, such discrete models can be valuable tools in

understanding various physical phenomena.

7.2 Future work

Here, we suggest a few extensions of the current framework.

7.2.1 Effects of shear forces at the contacts

In all our models, the only degrees of freedom for the discrete elements we have

considered (forces and deformations) are normal to the interface. We calculate the

shear forces and the friction coefficient as a postprocessing step. However, shear forces

at the contacts cause deformations normal to the interface. One way to include the

effect of shear forces is to provide the elements with horizontal degrees of freedom.

We have used the Boussinesq solution of a point force (normal to interface) on an

elastic half-space as the Green’s function in our model. This can be replaced by an

appropriate Green’s function when shear forces are included [116, 115].
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7.2.2 Effects of temperature

In our models, we have not considered the effect of temperature. In Chapter 4, we

assumed isothermal conditions and, based on some assumptions on the dependence of

viscoplastic properties on temperature, studied how friction might depend on temper-

ature. A more realistic way to include effects of temperature would be the following:

the heat dissipated at the contacts due to the shear forces and the corresponding in-

creases in temperature are calculated. Then, to see how this heat diffuses, a Green’s

function corresponding to the diffusion of heat in a half-space due to a localized heat

source can be used. This can be used to determine the evolution of temperature

during sliding. Further, the material properties can be made temperature dependent.

The resulting coupled system of equations can be solved numerically.

This adds another timescale to the ones in our model: the timescale of heat

diffusion. The isothermal assumption we made is the limit of very small diffusion

timescales (heat diffusion happens much faster than heat generation).

7.2.3 Sliding stability

It is well known that the stability of sliding is intricately related to the frictional

properties and the phenomenological rate and state laws have been used in under-

standing the stability [36, 44, 117]. In this thesis, we have assumed that the surfaces

slide at a constant velocity. This can be extended to study the sliding stability. As

shown in Figure 7.1, a mass M subject to a normal force FN , is driven by a spring of

stiffness K at a driving speed vk. The mass is sliding against a rough rigid surface.

The governing equations are:

vM = ẋM ,

Mv̇M = F,

Ff = µFN ,

where xM , vM are the position and velocity of the mass, F, Ff are the total and

frictional forces, and µ is the friction coefficient. The total force can be calculated
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knowing the force in the spring K(xK − xM), where xK is the position of the spring,

and the frictional force Ff .

FN 

Fi Fj 

M 
K vk 

Figure 7.1: Extension of the framework proposed in this thesis to study sliding sta-
bility. The states of the mass M and the underlying discrete ensemble are evolved
together.

The friction coefficient is determined by evolving the ensemble of discrete elements

as in Chapters 3 and 4. The evolution of the ensemble and the evolution of the mass

are thus coupled. The stability can properties can then be studied as a function

of M,FN , K, vk, and the surface and material properties that determine the friction

coefficient.

Some experiments show that the stability behavior is sensitive to noise in certain

parameteric regime [117]. It would be interesting to see if this noise sensitivity comes

from the noise in the rough surfaces.
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Appendix A

Rough surface generation

In the last few decades, there have been great advances in experimental techniques

to probe surfaces. The development of Scanning Tunneling Microscopy (STM) and

Atomic Force Microscopy (AFM) has allowed us to characterize the nature of rough

surfaces with atomic scale resolution. At larger length scales, other stylus based and

optical methods can be used. For a survey of the various surface characterization

methods, see [81, 15].

Surface topography measurements using a variety of techniques have shown that

rough surfaces have features at many length scales and are statistically self-affine

(statistically similar appearance at different magnifications) [118, 15]. Thus, rough

surfaces can be characterized as fractals [119]. An advantage of the fractal char-

acterization is that the fractal parameters are intrinsic to the surface and scale in-

dependent. The power spectrum of a fractal surface decays as a polynomial in the

spatial frequency and the power of the polynomial is related to the fractal dimension.

The fractal characterization of surfaces has been used in many studies of contact

[27, 120, 28].

Rough surfaces are also characterized as a stochastic process [56, 60, 57]. The

stochastic process is defined by prescribing two functions. The first is the probability

distribution of heights, and for many surfaces, this is seen to be Gaussian [26, 60].

The second function is the autocorrelation which describes the spatial features of

roughness. For many surfaces, the autocorrelation decays as an Exponential or as a

Gaussian [60, 66].



131

From a computational perspective, to study the contact of rough surfaces, it is

important to generate surfaces with realistic topographies. In this thesis, we have

used the stochastic characterization of rough surfaces. Here, we describe how we

generate rough surfaces. We have used the method proposed by Hu and Tonder in

the paper [121].

We would like to generate three-dimensional random surfaces with a Gaussian

probability distribution of heights and an Exponential or Gaussian autocorrelation.

The approach is to first generate a set of uncorrelated Gaussian random heights

and then use a linear filter. Since the filter is linear, the final heights are linear

combinations of Gaussian random variables and will thus also be Gaussian random

numbers. The weights of the filter are chosen such that final heights have the desired

autocorrelation.

Without loss of generality, the mean of the Gaussian probability distribution can

be set to 0; this is equivalent to choosing the mean height level as the reference

level to measure heights. That leaves one parameter, the standard deviation of the

distribution, also known as the rms roughness of the surface. Given the standard

deviation σ, we first generate a set of uncorrelated random numbers χ(k, l) with the

probability distribution,

P (χ) =
1√
2πσ

e−
χ2

2σ2 . (A.1)

The indices (k, l) are the spatial indices along two orthogonal directions on the surface.

We then use a linear filter to determine the final heights,

z(I, J) =
n−1∑
k=0

m−1∑
l=0

h(k, l)χ(I − k, J − l), (A.2)

where h(k, l) is the linear filter and z(I, J) are the final heights. h(k, l) must be

determined such that z(I, J) has the prescribed autocorrelation. Taking the Fourier

transform on both sides of equation A.2,

Z(ωx, ωy) = H(ωx, ωy)X(ωx, ωy), (A.3)
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where Z(ωx, ωy) and X(ωx, ωy) are the Fourier transforms of the input and output

sequences, respectively, and H(ωx, ωy), called the transfer function, is given by,

H(ωx, ωy) =
n−1∑
k=0

m−1∑
l=0

h(k, l)e−ikωxe−ilωy . (A.4)

For the linear filter A.2, if Szz and Sχχ are the power spectral densites (PSD) of the

output and input, respectively,

Szz(ωx, ωy) = |H(ωx, ωy)|2Sχχ(ωx, ωy). (A.5)

For a stationary random process z(I, J), the autocorrelation is defined as,

Rzz(k, l) = E{z(I, J)z(I + k, J + l)},

where E{} denotes mathematical expectation. If we assume the process is ergodic,

Rzz(k, l) =
1

NM

N−1∑
I=0

M−1∑
J=0

z(I, J)z(I + k, J + l) (A.6)

as N,M →∞. The Fourier transform of the autocorrelation is also the PSD,

Szz(ωx, ωy) =
1

nm

n/2−1∑
k=−n/2+1

m/2−1∑
l=−m/2+1

Rzz(k, l)e
−ikωxe−ilωy . (A.7)

Equations A.5 and A.7 can be used to establish a link between the prescribed

autocorrelation and the weights of the linear filter. The power spectrum Sχχ(ωx, ωy)

is a constant since the noise η(k, l) is uncorrelated. This constant can be set to 1

since all operations are linear. This will change the rms roughness of the generated

surface but that can be fixed by an appropriate scaling of the heights. The steps in

determining the weights of the linear filter are:

1. Given the autocorrelationRzz(k, l), compute its fourier transform to get Szz(ωx, ωy)

(Equation A.7).



133

2. Determine the PSD of the filter H(ωx, ωy) using the Equation A.5 as,

H(ωx, ωy) = (Szz(ωx, ωy))
0.5

3. Determing the filter h(k, l) by an inverse Fourier transform of H(ωx, ωy) (Equa-

tion A.4).

Using the uncorrelated heights χ(I, J) and the weights h(k, l), the heights of the

correlated surface z(I, J) can be determined using the Equation A.2.

To minimize the effect of boundaries, we generate sufaces that are much larger than

the surfaces required for our computation. For example, most of our calculations are

done on systems of size 256×256 or 512×512. We generate surfaces of size 8000×8000

and extract surfaces of the desired size from the larger system. We also extract the

smaller surfaces sufficiently far from the boundaries of the larger system (distance

from the boundaries should be large enough for weights h(k, l) to be negligible).

In Equation A.2, we have to pick values for n and m, the number of terms used

in the filter. The filter weights h(k, l) decay with increasing k and l. We choose n

and m such that h(k, l) < 10−5h(0, 0).

A.1 Gaussian autocorrelation

For surfaces with Gaussian autocorrelation,

Rzz(δx, δy) = E{z(x, y)z(x+ δx, y + δy)} = σ2e−(δ2
x+δ2

y)/β2

,

where β is called the correlation length. The power spectral density is given by its

Fourier transform,

S(ωx, ωy) =
1

2
σ2β2e−β

2(ω2
x+ω2

y)/4. (A.8)

If we use N points to discretize a correlation length,

N∆x = β, N∆y = β.
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Using δx = k∆x, δy = l∆y,

Rzz(k, l) = σ2e−(k2+l2)/N2

.
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Figure A.1: (a) Decay of filter coefficients with distance for the Gaussian autocorre-
lation. Points that are 3 or more correlation lengths apart can be considered to be
independent of each other. (b) One realization of a rough surface with a Gaussian
height distribution and a Gaussian autocorrelation.

Figure A.1a shows the decay of the filter coefficients with distance with different

discretization sizes (N = 2, 10, 20, 40, 100). The highest resolved frequency using N

points to discretize one correlation length is ωmax = N/2β. The filter coefficients

decay rapidly with distance, and are very small at about three correlation lengths.

This means that the surface heights of points that are three correlation lengths or

more apart are effectively independent of each other. Further, beyond N = 10,

there is little variation in the filter coefficients. This is because the power spectrum

decays very rapidly (Equation A.8) with increasing spatial frequency and there is

little contribution from the frequencies beyond that corresponding to N = 10. Figure

A.1b shows one realization of a rough surface with a Gaussian distribution of heights

and a Gaussian autocorrelation. The rms roughness of the surface σ = 1 and the

correlation length β = 10.



135

A.2 Exponential autocorrelation

For surfaces with Exponential autocorrelation,

Rzz(δx, δy) = E{z(x, y)z(x+ δx, y + δy)} = σ2e−(δ2
x+δ2

y)1/2/β,

where β is called the correlation length. The power spectral density is given by,

S(ωx, ωy) =
2πσ2β2[

1 +
(
ω2
x + ω2

y

)
β2
]3/2 . (A.9)
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Figure A.2: (a) Decay of filter coefficients with distance for the Exponential autocor-
relation. Points that are 3 or more correlation lengths apart can be considered to be
independent of each other. (b) One realization of a rough surface with a Exponential
height distribution and a Exponential autocorrelation.

Figure A.2a shows the decay of the filter coefficients with distance with different

discretization sizes (N = 2, 10, 20, 40, 100). In this case too, the filter coefficients

decay rapidly with distance, and are very small at about three correlation lengths.

However, we do not see the saturation beyond N = 10 (or any other frequency)

we saw in the Guassian autocorrelation case. This is because the power spectrum

decays only polynomially (Equation A.9). In fact, for
(
ω2
x + ω2

y

)1/2
β � 1, the power

spectrum decays as 1/ω3 (where ω = (ω2
x + ω2

y)
1/2). This corresponds to a fractal

dimension of 2.5 (or a Hurst exponent of 0.5).
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Figure A.2b shows one realization of a rough surface with an exponential distribu-

tion of heights and an exponential autocorrelation. The rms roughness of the surface

is σ = 1 and the correlation length is β = 10.
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