
VLSI Concurrent Computation
for Music Synthesis

Thesis by

John Wawrzynek

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1987

(Submitted April 1, 1987)

11

© 1987

John Wawrzynek

All Rights Reserved

lll

Acknowledgments

I would like to express my sincere thanks to Carver Mead. He has been my advisor,

friend, and teacher throughout my stay at Caltech. Carver has been the origin,

either directly or indirectly, of most of the ideas in this thesis. He has shown me

and many others the way to perform research in computer science and is a great

inspiration.

Several other people have been responsible for and have worked on the music

project at Caltech. Lounette Dyer developed the software interface to our prototype

system and did much of the work on developing parameters for the musical instru­

ment models. John Pierce and Max Mathews jointly stirred up interest in computer

music at Caltech, and for that I am very grateful. They have been very supportive

through the years. Tzu-Mu Lin worked as my partner on the nMOS design of the

chip. Hsui-Lin Liu did work on physical modeling of musical instruments. Many

thanks to Charles Smith and the System Development Foundation for funding this

research and computer music research at other institutions.

Special thanks are due Telle Whitney for her constant support, her critiques

and numerous discussions.

Dick Lyon taught me much about integrated circuit design and signal processing

and provided many detailed critiques of my work and drafts of this thesis. Ron

Ayres wrote the ICL language that we used to compile the nMOS version of the

chip. Later versions were assembled using tools developed by Massimo Sivilotti and

Glen Gribble. Thanks to George Lewicki and the entire MOSIS crew for managing

lV

fabrication of the chips. Sandy Frey helped to organize my work into a thesis outline.

Thanks to Calvin Jackson for teaching me about typography and helping to format

this thesis. Many thanks also to all the members of our research group, they have

all helped to make my stay at Caltech a pleasant and enlightening experience.

Finally, I thank my Thesis Committee: Al Barr, Richard Feynman, Dick Lyon,

Carver Mead, and Chuck Seitz.

v

Abstract

This thesis presents a very large-scale integrated circuit (VLSI) approach to the

generation of musical sounds. The approach allows the generation of rich musical

sounds using models that are easy to control and have parameters corresponding

to many of the physical attributes of musical instruments. The generality of the

approach for music synthesis is demonstrated by presenting several primitive sound

generation mechanisms. Utilizing these primitives, several musical instruments are

assembled to produce struck, plucked, and blown sounds. Refinements of the in­

struments are easily accomplished by adjusting or rearranging different functional

components. A concurrent computing engine supporting the sound generation mech­

anisms is presented along with details of its VLSI implementation. Involved in the

implementation is a new CMOS design methodology. Several alternative architec­

tures for the computing engine are also presented and studied.

Vl

Table of Contents

Acknowledgments .. m

Abstract .. v

List of Figures and Tables ix

Introduction ... 1

Chapter 1 Modeling Musical Instruments 4

Methods of Sound Synthesis ... 4

Physical Modeling ... 9

Computational Model for Organ Pipes and Flutes 13

Introduction ... 13

Model Equations ... 16

Computational Model for Bar-Percussion Instruments 25

Introduction ... 25

The Bar ... 27

The Mallet and Strike .. 29

The Model ... 31

Chapter 2 Computing Sound ... 32

Implementation Strategy ... 32

Basic Elements ... 34

The Digital Resonator .. 43

Basic Equations .. 43

Vll

Application to Sound Synthesis .. .45

Musical-Instrument Models ... 47

Struck Instrument .. 4 7

Dynamic Model .. 53

Composite Model .. 58

Chapter 3 A VLSI Architecture 60

Architectural Overview ... 60

Quantization Errors and Number Representation 62

The Processors ... 66

The Connection Matrix .. 67

The Update Buff er ... 69

Processing Element ... 71

Serial-Parallel Multiplier ... 72

Serial Input for B .. 73

Extension to Two's Complement ... 73

Standard Fixed Point Number Representation 7 4

Computing the Mod Operation ... 76

Linear Interpolation .. 77

System Level Organization ... 79

Orchestra Model ... 79

Keyboard Instruments ... 82

Chapter 4 VLSI Implementation 84

Complementary Set-Reset Logic .. 85

Multiplexer Functions .. 86

Generalized Form .. 88

Modification to General Form .. 91

Semantics .. 93

CMOS Implementation of the IPE .. 93

CMOS Implementation of the Connection Matrix 97

Layout Considerations .. 99

CMOS Implementation of the Update Buffer 100

Vlll

CMOS Layout Summary .. 103

NMOS Implementation .. 104

Conclusion .. 106

Chapter 5 Other Architectures 107

A Serial-Serial Architecture ... 110

VLSI Implementation ... 114

A Parallel-Parallel Architecture ... 121

VLSI Implementation ... 127

Other Improvements .. 128

Serial-Parallel Architecture Summary 130

Comparing the Architectures .. 133

Conclusion .. 135

Appendix Digital Resonators .. 138

Basic Equations ... 138

Q Calculation ... 139

Resonance Gain ... 141

Resonance Phase .. 143

Time-Domain Response of Critically Damped Resonator 143

References .. 146

lX

List of Figures and Tables

Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.4

Figure 1.5

Figure 1.6

Figure 1.7

Figure 1.8

Figure 1.9

Figure 1.10

Figure 1.11

Figure 1.12

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Partial taxonomy of modern orchestral instruments 12

Organ pipe ... 13

Model of flute pipe body 18

Functional form of flow into the pipe 19

Computational model for flute 20

Simplified model for flute 22

Graphical solution technique 23

Graphical solution .. 24

Marimba .. 26

Frequency response of bar resonance 28

Waveform of a marimba strike 29

Struck instrument model 30

Sound-synthesis architecture 33

UPE implementation of general filter 36

UPE implementation of second-order section 37

Variations of the nonlinear function 38

Nonlinear element implementation 38

Integrator ... 39

Figure 2.7

Figure 2.8

Figure 2.9

Figure 2.10

Figure 2.11

Figure 2.12

Figure 2.13

Figure 2.14

Figure 2.15

Figure 2.16

Figure 2.17

Table 2.1

Table 2.2

Figure 2.18

Table 2.3

Figure 2.19

Figure 2.20

Figure 2.21

Figure 2.22

Figure 2.23

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

x

Frequency modulation ... 40

Random-number generator 41

Mixing signals .. 41

UPE implementation of scattering interface 42

Second-order resonator poles 44

Time-domain impulse response of Case 1 45

Magnitude and phase of frequency response of case 1 45

Resonator bank ... 46

Struck instrument implemented with UP Es 48

Attack section .. 48

Resonator bank implementation 49

Aluminum bar synthesis parameters 51

Marimba synthesis parameters 52

Synthesized marimba strike 52

Plucked string synthesis parameters 53

Dynamic model used for blown instruments 54

Comparison of tanh and cubic polynomial 55

Nonlinear oscillator ... 57

Composite instrument model 59

Computation graph for composite model 59

Typical system configuration 61

Chip organization ... 62

Effect of coefficient size on center frequency accuracy 65

Quantization effects ... 66

Basic structure of connection matrix 68

Mapping of computation graph to processor array 69

Discretionary interconnect matrix 69

Mapping of computation graph to modified matrix 69

Dual ram structure of update buffer 71

Serial-parallel multiplier structure 73

Figure 3.11

Figure 3.12

Figure 3.13

Figure 3.14

Figure 3.15

Figure 3.16

Figure 3.17

Figure 3.18

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Table 4.1

Figure 4.9

Figure 4.10

Figure 4.11

Figure 4.12

Figure 4.13

Figure 4.14

Figure 4.15

Figure 4.16

Figure 4.17

Figure 4.18

Figure 5.1

Figure 5.2

Xl

Shift register and holding register for B 7 4

Modified stage 1 for two's complement 75

IPE with appropriate delays on inputs 75

Input and output timing for the IPE 76

Modification to multiplier stage to enable linear interpolation .. 78

Multiplexer circuit for linear interpolation 78

System configuration for orchestra simulation 82

System configuration for keyboard instrument 83

CSRL shift-register stage 85

Data transfer in CSRL shift-register 87

Exclusive-OR (XOR) circuit 88

General sequential form 89

Spice simulation of operation of general form 90

Modified general form of flip-flop 92

Operation of modified general form 92

Detailed view of logic and timing of IPE stage 94

Truth table for full-adder 95

IPE carry circuit implemented using the general sequential form 96

IPE sum circuit implemented as a multiplexer circuit 97

Connection matrix crosspoint cell 98

Details of connection matrix 98

Ring transistor layout .. 100

Double ring transistor layout 100

Details of update buffer 102

Sequence of events for reading the update buffer 103

Layout dimensions of chip 104

Photograph of fabricated chip 105

Serial-serial multiplier-adder 111

Serial-serial architecture 112

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Table 5.1

Table 5.2

Figure A.I

Figure A.2

Figure A.3

Figure A.4

Figure A.5

Xll

Memory structure for one bit of one PE site 113

Details of the connections at each PE site 115

Architecture based on parallel-parallel arithmetic 121

Optimized architecture 125

Timing diagrams for unit-delay memory arrangement 126

Comparison per chip ... 133

Normalized comparison 133

Pole placements for continuous and digital resonators 140

Resonator gain ... 141

Normalized resonator bank 143

Phase at resonance ... 144

Impulse response of critically damped resonator 144

1

Introduction

Very large-scale integrated circuit (VLSI) technology is here and is changing the

way scientists work. It is a powerful medium that is flexible enough to support a

wide variety of ways of computing. With the help of VLSI we have an opportunity

to rethink old problems and tackle new ones. Ideas that were once only reasoned

about and simulated can now be built and experimented with.

Often in computer science, researchers have designed and built machines based

on the capabilities of the technology rather than on the needs and inherent properties

of particular applications, resulting in machines with impressive raw computing

power, but not efficient at any one problem. An alternative approach is to design

computers specifically for a particular class of problems. VLSI and quick turnaround

prototyping give us the opportunity to pursue such a tactic.

Some researchers in computer science study problems only at a theoretical level

and at best simulate their solutions. This approach has the drawback that invalid

assumptions may remain unchecked and plague the work forever. In this thesis

I present a solution to a problem by bringing together theory and implementation

in VLSI.

The generation of realistic musical sounds is an interesting problem for several

reasons. It has not been studied with respect to VLSI, although VLSI holds the

possibility for large benefits. Sound synthesis is representative of many other com­

putational tasks-therefore, any insight and understanding gained is likely to be

2

applicable in other areas. Besides being computationally expensive, musical sound

synthesis faces directly into the issues of machine-man interface.

Sound synthesis is not an easy problem; partly because human hearing and

perception are not well understood. But listening tests can be performed, making

the problem more tractable. It is clear when one is progressing in the right direction.

This is an attribute sound synthesis shares with computer graphics-results are

clearly visible. Also, in the same way that computer graphics can help us understand

human vision, computer sound synthesis can help us understand human hearing.

Sounds that come from physical sources can be naturally represented by differ­

ential equations in time. Since there is a straightforward correspondence between

differential equations in time and finite difference equations, we can model musi­

cal instruments as simultaneous finite difference equations. Musical sounds can be

produced by solving the difference equations that model instruments in real time.

The computational bandwidth that is needed to compute musical sounds is

enormous. For the sampled waveform representation of sound, we need to produce

samples at a rate of about 50 K samples/sec. If we assume that there are about

100 computational operations per sample for each voice, that is 5 million operations

per second per voice. An operation involves a multiplication and an addition. By a

voice we mean one horn or one string of a stringed instrument. A mid-size computer

of today (VAX-750) is capable of about only 250,000 arithmetic operations per

second, meaning by our model that it is capable of computing only about 1/20

of a single voice. When the data-shuflling and housekeeping operations necessary

to run a real instrument model are included, the factor increases another order of

magnitude, so it is hopeless to compute the sounds in real time. Today's most

powerful computers are capable of computing only a small number of voices.

In the past the enormous computation bandwidth of sound generation has been

avoided by using musical shortcuts such as waveform table lookup and interpolation.

While this approach and those built upon it can produce pleasing musical sounds,

the attacks, dynamics, continuity, and other properties of real instrurnents simply

cannot be captured. In addition, traditional methods suffer from this shortcoming,

that the player of the instrument is given parameters that don't necessarily have

3

any direct physical interpretation and are simply artifacts of the model. It would be

nice, for example, to supply a musician or composer with a instrument having strings

with mass, stiffness and tension that can be varied dynamically. This capability is

possible if a representation of the instrument is based on its physics.

An even larger problem with the shortcut methods of the past is that they have

produced models that require updates of internal parameters at a rate that is many

times that which occurs in real musical instruments. The control, or update, of

parameters has become an unmanageable problem.

In this thesis I present a solution to the problem of the generation of realistic

musical sounds. The solution is based on using physical modeling and a VLSI

implementation.

Chapter 1, Modeling Musical Instruments, summarizes past attempts at sound

synthesis and presents an alternative approach based on physical models. Chap­

ter 2, Computing Sound, presents our computational idiom, that is, a method of

computing musical sounds, and describes the building blocks used to implement

musical instrument models. Implementations of the models presented in Chapter 1

arc described. Chapter 3, A VLSI Architecture, presents a computer architecture

based on VLSI and our computational idiom. The details of the implementation of

the architecture is presented in Chapter 4, VLSI Implementation, along with the

introduction of new CMOS circuit techniques. In Chapter 5, Other Architectures,

I investigate other VLSI architectures for sound synthesis.

4

Chapter 1

Modeling Musical Instruments

This chapter presents an approach to the synthesis of musical sounds. I begin with a

brief summary of current methods of sound synthesis and of the background informa­

tion for our approach. Next, I develop computational models for two representative

musical instrumenLs. The form that the models take is strongly dependent on the

implementation strategy, or computational metaphor, that we have adopted.

Methods of Sound Synthesis

As background to our approach to sound synthesis I present a brief summary of pop­

ular forms of real-time generation of musical sounds with electronic equipment in use

today. Other nonreal-time techniques exist and in some cases produce higher-quality

results. They will not be considered in this summary because we are interested only

in real-time synthesis. For a complete summary of existing sound-synthesis tech­

niques and equipment see [GORDON 85] and [ROADS 85].

Additive synthesis is a method that has been popular in experimental labora­

tories for many years but has only recently enjoyed commercial success because its

implementation is expensive. The technique is based on the Fourier theory, which

states Lhat any signal may be analyzed and reconstructed by summing sine waves.

The information that must be extracted from the original sound is the frequency,

5

amplitude, and phase as a function of time of each sine wave. A large number of

sine wave oscillators must be used to reconstruct the sound accurately, making the

approach expensive. Digital technology has reduced the cost of oscillators, however.

This method performs well for the steady-state and nearly periodic parts of sounds

but is less successful for initial transients. Discrete Fourier analysis inherently av­

erages the waveform in the time domain to extract exact frequency information,

destroying fine-time information.

Because of the relatively high cost of additive synthesis, subtractive synthesis

has enjoyed more success in commercial applications. The idea is to start with a

wide-bandwidth signal (one containing many harmonics) and to use filters to shape

the spectrum of the sound to match that of a desired tone. The characteristics

of the filter need to change in time to emulate the time-varying spectrum of the

desired tone. Subtractive synthesis has worked fairly successfully in generating

humanlike speech by viewing the vocal tract as a filtering of glottal pulses. However,

the filters used in electronic synthesizers have been much simpler than those of

the vocal tract. Also, the input waveforms used often are simple square waves,

sawtooth waves, or triangular waves-signals the components of which are perfectly

harmonic. The result is often a small range of effects that are characteristically

electronic-sounding.

Sounds produced by these two techniques rarely are mistaken as originating

from physical instruments. It is not clear whether, with these techniques, inventors

intended to emulate pre-existing instruments, but it is certainly the case that the

sounds of pre-existing instruments did provide the original inspiration. These early

attempts, although failing to reproduce faithfully the sounds of pre-existing instru­

ments, provided musicians and composers with the source of new and, in some cases,

interesting sounds.

A method that has recently become popular directly attacks the problem of gen­

erating the sounds of physical instruments. Digital technology and the low cost of

semiconductor memory have made it possible to store waveform information in dig­

ital form and to retrieve it for real-time playback under user control. This method,

B

called sampling, has the problem that there never is and never will be enough mem­

ory to store all desired sounds. An instrument not only can play many notes but

also can play each note in a variety of ways. For example, when a string is plucked

hard, it is not sufficient to reproduce the sound as a loud version of a soft pluck; the

perceived timbre of the tone changes with the plucking strength. A faithful repro­

duction of the instrument must take plucking strength and other player parameters

into consideration.

To relieve the heavy memory burdens imposed by sampling, many proprietary

techniques have emerged for data compression. One obvious approach is to store

only the unique portions for each note-the attacks, decays, and a representative

slice of the sustained portion of the note. Other techniques compress the data

needed by recording only a few notes over the range of the instrument and using

interpolation and extrapolation techniques to generate the other notes on demand.

Similar techniques have been used to store single notes played in a variety of styles,

for example, with different intensity.

FA1 synthesis has been revolutionary m electronic sound-synthesis. The tech­

nique, invented by Chowning [CHOWNING 73], uses frequency modulation by con­

trolling the frequency of one sine wave with another to produce dense harmonic

structure. Unlike the FM used in communications applications, where the percent­

age of modulation of a carrier frequency is small and consequently a small num­

ber of significant sideband frequencies are produced, in musical FM synthesis the

amount of modulation is very severe, producing many sidebands. It is possible to

arrange the sidebands to be harmonic or to lie in other musically interesting se­

ries, but control over each sideband individually is not possible. The growth of the

sidebands or harmonics in time is controlled with an envelope on the modulating

oscillator. The power of the technique is that a potentially large number of com­

ponents are generated using only two oscillators. Other researchers have extended

the FM technique to modulate the frequency not of a second sine wave but of a

general polynomial function [ROADS 85]. The generalized method is called nonlinear

waveshaping. These methods, along with sampling, form the core of the techniques

used in today's synthesizers.

7

One of the problems with FM synthesis results from the fact that nothing re­

sembling this type of frequency modulation occurs in physical musical instruments.

The technique is clever and elegant but is in some sense a trick to imitate the

sound of the instrument rather than the instrument itself. Therefore, the user is

not provided with a meaningful parameterization of the physical instrument. It is

a complicated and sometimes impossible task to go from a physically caused phe­

nomenon to a set of synthesis parameters. This problem is generally true of all the

methods presented in the preceding discussion.

The parameterization, or control, problem is just one of a variety of problems

that exist due to the fact that nowhere in the sound-synthesis model is there a model

of the physical instrument. The methods described attempt to imitate the sound

without imitating the instrument and in general have not been successful.

Most nonphysical sound models do not contain a representation of the state

of the instrument, and as a result each note cannot depend on the history (last

sequence of notes) in any way. Not only is interaction between successive notes

disallowed, but also the previous one is usually terminated when a new note is

begun. A dramatic example of the need to represent the state of the instrument is

apparent in a repetitively struck church bell. The sound resulting from each strike

is a function of the nature of the strike and of the state of the bell at the instant that

it is struck. Some strikes sound harder and others softer, depending on the surface

of the bell at the exact instant the hammer contacts the surface. In addition,

because the bell has many long-lived modes, the effects of many strikes all exist

simultaneously within the system. Similar effects occur in all physical instruments.

Another aspect of sound generation that has not been captured by the methods

of the past are effects due to coupling between resonant members of the same in­

strument. Consider the piano as an example. The timbre of a struck string (or set

of strings) depends not only on the state of the string and how it it is struck, but

also on the state of the bridge, the soundboard, and certain other strings (the ones

without a damper). All the strings couple through the bridge and soundboard, af­

fecting the sound of a struck string and producing sympathetic vibrations. The way

8

strings couple with one another depends on which keys are pressed (and thus which

dampers are released) at the time a new key is pressed.

The human hearing system has evolved to be extremely sensitive, particularly

with respect to transient behavior. The nonphysical sound-modeling techniques,

except for sampling, start notes off in a very simple and pure way, contrary to the

way sounds from physical instruments are started. The sounds from most musical

instruments in reality begin with an almost chaotic behavior before the instrument

develops coherence and produces a pure tone.

In spite of these drawbacks these techniques have enjoyed popularity for three

reasons:

1. Under controlled conditions, for certain sounds, people can be fooled into hear­

ing natural sounds.

2. The electronic instruments have developed on their own merit as new instru­

ments with new sounds.

3. Nothing better has been available.

An obvious step is to develop a method of generating sounds by mathematically

modeling the motions of the physical musical instrument. Generating sound by solv­

ing the equations of motion of an instrument captures a natural parameterization

of the instrument and includes many of the musically important physical character­

istics of the sound. A large literature exists concerned with mathematical modeling

of musical instruments, or at least pieces of musical instruments. Most of these

projects have not had the benefit of humans being able to listen to the results, and

progress has been slow. Human hearing is complex and is itself poorly understood,

so it is difficult to refine models without the benefit of listening tests. Weinreich is a

notable exception [WEINREICH 79]. He has been primarily interested in understand­

ing the physics of musical instruments and has used listening to synthetic sound as

a way to check his theories and models. Hiller and Ruiz did work solving the wave

equation for a string using finite differences on a conventional computer as a way

to generate sound [HILLER 71]. Their research resulted in interesting experiments

with a natural parameterization of a string, including density, elasticity, stiffness,

and rigidity of string end supports.

9

Physical Modeling

In this section, we step back and explore the possible techniques for emulating the

physical behavior of musical instruments. The conventional way of representing

acoustical systems, and perhaps the most general way, is as a set of coupled partial

differential equations (PDE) in time and the three spatial dimensions. If such an

approach is practical, in many ways it is the ideal way to produce sound. All the

problems mentioned with traditional sound-synthesis techniques are avoided nat­

urally. In fact, few people would argue that, implementation issues aside, a PDE

representation for musical instruments is the best representation; the problems arise

because of the impracticality of numerical solutions to such systems. The power of

the PDE technique lies in the fact that the interesting and complex behavior of

most musical instruments arises from the interaction of their pieces.* The behavior

of each constituent piece is close to that of an ideal theoretical case. The rich in­

teraction among elements is also what has eluded researchers in arriving at simple

closed-form solutions for such systems over a wide range of parameters.

The two popular techniques for numerically solving a system of PDEs are the

methods of finite elements and finite differences. Both methods discretize the sys­

tems in the spatial and temporal dimensions. Variables are used to represent the

state of each element or each discrete piece of the system. Local laws based on

conservation of energy govern the interactions among the elements of the system.

The system can be solved by sequentially updating the state of each piece of the

system represented in the memory of a conventional computer, or by simultaneously

updating them on a parallel computer. These methods work well for most physical

systems because the behavior of the system is described very accurately by local

effects. The question is: How powerful a computer do we need to model interesting

instrument behavior in this fashion?

* A notable exception to this theory is the Chinese gong, the timbre of which evolves as the
result of a nonlinearity in the metal due to hammering during construction.

10

Assume that we can determine local laws governing the motion of each element

based on the position and motions of its neighbors. The laws may change for vari­

ous parts of the system, depending on the nature of the physical materials involved.

A key questions is: How many elements do we need to represent the motion of the

system accurately, and how much computation is required? For a limiting case,

we will consider a grand piano, modeling it as a three-dimensional collection of el­

ements, each representing a small piece of the system. Because we want to do a

good job of modeling all the interactions within the piano, including the air in the

spaces between the strings and the other pieces of the piano, we will simply slice

the entire volume of space occupied by the piano into small cu bes. A side effect

of approximating a continuous system with discrete elements is that the resulting

structure is inherently dispersive, even when the continuous system is not [BRIL­

LOUIN 46]. In other words, the velocity of wave propagation is a function of the

frequency. Of course, the smaller our elements and the finer the discrete approx­

imation, the less severe the dispersive effect. A rule of thumb used in siesmology

analysis that is probably sufficient here is that the smallest interesting wavelength

should be represented by at least 10 elements. The smallest interesting wavelength

in the system will be a high harmonic on the longest string. The longest string

on a piano has a fundamental frequency of 27.5 Hz and is approximately 2 meters

long, corresponding to a phase velocity of about 55 m/sec. Therefore, a frequency

of 20 KHz corresponds to a wavelength of 2.75 mm. Using our factor-of-ten rule,

each element needs to be 0.275 mm in each dimension. The volume of space used

to represent the piano is about 2 meters long by 1 meter wide by 0.5 meters deep,

or 1 cubic meter. So we need 3600 elements in each dimension for a total of about

50 x 109 or 50 billion! The time step normally chosen corresponds to a sampling rate

of about 50,000 samples per second. The state of each element must be updated at

every point in time according to the state of its neighbors. Therefore, the total num­

ber of updates per second is 50 billion, where each update involves several common

arithmetic calculations, such as additions and multiplications. This requirement

cannot be met by any computer in existence today nor probably for some time to

cOJne.

11

The enormous computation required for the above simple-minded approach to

simulating physical behavior makes the technique impractical as a way to generate

sound. A way to reduce the computational complexity of the task without giving

up the physical essence of the representation is to attempt to reduce the dimen­

sionality of the problem. Stretched strings, for example, can be approximated as

one-dimensional structures, as can the air columns of woodwind an<l brass instru­

ments. Accurate simulations of plates and membranes require a two-dimensional

representation. Interfaces between the various elements of the system still exist, but

each element takes on a lower-dimension form. Not enough work has been done in

these areas, however, for us to know what is lost sonically in such approximations.

One-dimensional approximation takes one of two forms: The most obvious form

is simply a one-dimensional finite-element or finite-difference approach. The finite­

difference method was used by Hiller and Ruiz [HILLER 71] to simulate the motion

and sound of a string. A much more efficient simulation for some computers uses

the concept of wave impedance. Mediums are approximated by coupled sections

of constant impedance. A forward and backward wave moves through each section

unchanged but delayed in time. There is a strong correspondence between these

systems and scattering theory, and the well-known ladder and lattice filter struc­

tures used in signal processing. The interface between each constant impedance sec­

tion forms a scattering interface where there is a wave transmission and reflection.

The form of the computation at each interface can be formulated from conservation

of energy. Nondispersive media or mildly dispersive media may be implemented

quite efficiently, using delay lines with computation joining them. The delay lines

simulate the propagation of the wave through a section of constant impedance, and

the computation joining each section computes the scattering. These systems have

been explored by J. Smith in an approach to modeling he calls waveguide digital

filters [SMITH 82]. Corrections having to do with representing a nonideal medium

with an ideal one--namely, memory-sometimes can be lumped into the ends of the

lines where the computations take place.

The next logical step in lowering the dimensionality of the elements is to approx­

imate coarsely the spatial dimension by forming a lumped system for each element,

12

similar to conventional linear filters or lumped electrical circuits. The instrument

model that results is a system of coupled ordinary differential equations (ODE) in

time. This is the approach we have taken in this work. The ODEs are approximated

by finite-difference equations and are solved concurrently.

Driven Nondriven

~ ~
Bowed Strings Blown Percussion Plucked-Struck Strings

~ ~ ~ ~
violin cello Woodwinds Brasses Membranes Pitched-bars piano guitar

~ ~ ~
clarinet flute trumpet tuba drums marimba xylophone

Figure 1.1 Partial taxonomy of modern orchestral instruments.

Figure 1.1 shows taxonomy of modern orchestral instruments, it is not com­

plete and for clarity does not necessarily use the proper technical names for each

category. The primary division separates driven instruments, those with a forcing

function, from nondriven ones, those which are excited then allowed to sound freely.

The two instrument classes differ significantly in their sound production mechanism.

We have investigated one case from each of the two classes of instruments and have

developed models used to compute sound. From the driven class we have chosen

the flute, recorder, and organ pipe instruments, all of which share a common sound

production mechanism. From the nondriven class we have chosen the bar-percussion

instruments, which with minor modifications can be extended to emulate plucked

strings and struck bells and chimes.

13

Con1putational Model for Organ Pipes and Flutes

Introduction

Organ pipes, recorders, and flutes all share a common sound-production mechanism.

This mechanism is fairly well understood and has been presented in the literature

[FLETCHER 80], [FLETCHER 83]. As is true of our response to most other musical

instruments, nonlinear effects play an important role in our perception of the gen­

erated sound. These nonlinearities make musical instruments particularly difficult

systems to study analytically, for a formulation of a closed-form model of such a sys­

tem requires the solution of coupled nonlinear equations. This difficulty has led to

the development of time-domain models [McINTYRE 83]. The time-domain models

provide the basis for efficient numerical solutions and thus a method for simulation.

One fortunate feature of flutes and other woodwind instruments is that there

are two separable systems. The nonlinear effects are essentially concentrated at the

blowing mechanism and thus can be split off from the remainder of the system,

leaving a linear system. This lumping of pieces of the system into distinct parts is

essential to efficient simulation.

air
supply

Figure 1.2 Organ pipe.

A typical organ pipe is shown in Figure 1.2. Air is forced through the flue,

across the mouth of the pipe where it hits the lip. In the flute, the player's mouth

and lips play the role of the flue slit. The air forced through the flue interacts with

14

the air within the pipe body such as to generate a sustained oscillation. From basic

linear-system theory, the system must contain a negative resistance (or positive

feedback) if it is to sustain an oscillation. How does a negative resistance show up

in a flute? This question is easiest to answer in the case of clarinets and other reed

woodwind instruments, and from there it is straightforward to understand the flute.

The player of the clarinet supplies a steady source of pressure to the outside of

the mouthpiece. When the player blows lightly, a small amount of air flows past

the reed into the mouthpiece. As the blowing pressure is increased, the amount of

air flowing into the mouthpiece increases proportionally. As the blowing pressure is

increased even more, however, the reed begins to impede the flow of air and begins

to close. The reed is springy, so the harder the player blows, the more the reed

closes, and the smaller the amount of air that flows into the clarinet. In fact, if the

player blows hard enough, the reed will close completely. If we view the reed as a

resistance that converts pressure across it into air flow into the mouthpiece, then,

when it is working in its springy regime, it is a negative resistance because, as the

pressure is increased, the flow is decreased.

Now assume that the clarinet is making a sound. There is a pressure wave

within the clarinet body with a wavelength proportional to the length of the body.

The pressure just inside the mouthpiece on the inside of the reed is increasing

and decreasing with the fundamental frequency of the tone. When the pressure

in the mouthpiece is low, the pressure across the reed is high and the reed closes,

allowing less air to flow into the mouthpiece, lowering the internal pressure even

more. Conversely, when the pressure in the mouthpiece is high, the reed opens,

allowing more air to flow in, increasing the pressure.* If we view the pressure wave

within the body as the surn of a left-going and a right-going wave, the amount of

extra pressure supplied at the mouthpiece during one cycle must be just enough to

refurbish what is lost in one round trip down the pipe body and back.

* The story is slightly complicated by the fact that the size of the opening and the amount of
the wave reflected are changing as the reed opens and closes; for the purposes of this discussion,
we can ignore these effects.

15

In organ pipes, the essence of the oscillation mechanism is the same as it is

m clarinets. The air supply is forced out the flue slit across the mouth of the

pipe, and it forms a sheet of air. The sheet is a turbulent jet that reacts to the

acoustical vibrations of the air within the pipe and is analogous to the reed in the

clarinet. If the jet were simply allowed to move in and out with the air in the pipe,

the oscillation would be canceled out. As the pressure within the pipe increased,

it would force the jet out of the pipe, decreasing the pressure in the pipe. The

situation is similar for a low pressure in the pipe. The air jet does not move as a

flat sheet, however; the jet interacts with the acoustical vibration in the pipe, which

in turn induces transverse waves on the jet traveling from the flue slit across the

mouth. The distance from the flue slit to the lip on the pipe is carefully designed

to correspond to one-half the wavelength of the transverse wave on the jet. The

delay along the jet results in the jet's alternately blowing in and out of the mouth of

the pipe one-half cycle out of phase with the acoustic displacement out of the pipe

mouth due to the vibration of the air column. Alternatively, we can describe the

jet as behaving as a mass termination, responding one-quarter cycle out of phase

with the force acting on it (pressure) and thus one-half cycle out of phase with the

displacement. This one-half-cycle delay is the source of the negative resistance.

It is interesting to look in detail at the jet flow in and out of the pipe. Even if the

jet deflection at the lip is nearly sinusoidal, the jet fiow saturates once it is completely

blowing into the pipe and similarly when it is blowing completely out of the pipe.

This saturation results in an approximate hyperbolic-tangent function relating jet

fiow into the pipe to jet defiection. The distortion of the jet deflection by the tanh

function injects odd-numbered harmonics into the pipe along with the fundamental

frequency of the deflection. Of course, odd harmonics are generated for all the

components of the waveform on the jet; however, it has been found by Fletcher and

Douglas [FLETCHER 80] that, in practice, the fundamental is the primary component

surviving the trip along the jet. The pipe body has resonant modes corresponding

approximately to the harmonics of the fundamental frequency of the oscillation,

and it adds gain at the frequencies of the harmonics, producing a more pleasing

musical tone. Even numbered harmonics are generated by offsetting the lip of the

16

pipe slightly from the center of the flue such that the lip cuts the jet away from its

center place. This offsetting causes the waveform of the flow into the pipe to be

nonsymmetric, and thus to contain even harmonics. Offsetting of the lip is used by

pipe-organ builders to adjust the tonal quality of pipes, and also by flute players

who direct the air jet relative to the pipe lip to achieve a desired timbre. Timbre

is also adjusted by instrument builders by varying the pipe geometry. Narrow­

diameter pipes have more efficient higher resonances and thus produce a brighter

tone relative to wide pipes, which emphasize the lower frequencies, resulting in a

duller tone. Closed-ended pipes are also sometimes used when only odd harmonics

are desired.

11odel Equations

Basic Model. In this section, I develop model equations for the sound-generation

mechanism in the flute, suitable for simulation. From the line of modeling devel­

oped in [McINTYRE 83] for the clarinet, I develop model equations for the organ

pipe and transform them into a description suitable for direct execution within our

computational metaphor.

I begin by looking at the linear part of the flute-the pipe. The signal variables

of interest within the pipe are pressure, volume displacement and its time derivative

flow, or volume velocity. Pressure and flow in pipes correspond to voltage and

current in electrical transmission lines, and as electrical impedance relates voltage

to current, acoustical impedance relates pressure to flow:

P Z·U,

where P is pressure in units of Pascals or kg/(sec2 • m), U is flow in m 3 /sec, and

Z is acoustical impedance in units of kg/ (sec· m4). Displacement is in units of m 3
.

The acoustical impedance for a uniform tube is real and positive and is simply equal

to C (speed of sound) times air density divided by cross-sectional area. Assuming

the pipe is a linear system, we represent the pressure wave within the pipe as the

sum of an incoming wave and an outgoing wave, p+ (x, t) and p-(x, t), respectively,

functions of time and place along the tube. The place variable x runs from left to

17

right in Figure 1.2. The associated flows are related to their respective pressure

components by the impedance:

u+(x,t) = -P+(x,t)/Z(x,t),

u-(x, t) p-(x, t)/Z(x, t).

For a uniform section of pipe, Z is constant along the pipe and, barring atmospheric

changes, Z is constant in time; therefore, we drop the functional form for Z.

If we fix our point of reference for P and U, say at the extreme left of the

uniform pipe, then P and U are functions of time only and we replace u+(t) with U

for simplicity:
u+ = _p+ /Z,

u-=P-/Z.

The total pressure at a fixed reference within the pipe is

p = p+ + p-_

Alternatively, we can represent the displacement at a fixed point along the pipe as

(1)

With this decomposition of the displacement wave at the left (and blown) end of the

the pipe, we describe the effect of the pipe body in terms of its impulse response.

An incoming wave is the convolution of the outgoing wave with the impulse response

of the pipe body:

(2)

where r(t) is the impulse response of the flute body and is positive for an open pipe.

Of course, r(t) may be very complex, depending on the reflectivity properties of the

flute body. The geometry of the pipe, placement and size of the tone holes, and

shape of the bell (if present) all contribute to r(t). In general, r(t) contains some

delay to account for the round-trip travel time of the pressure wave, and some high

frequency attenuation. In addition to the reflection characteristics of the body as

seen by the outgoing wave, the radiation properties of the body also are important

when simulating the system. Tone holes complicate the issue, but for the simple

18

case of an open-ended pipe, the transmission from the pipe end to the open air can

be modeled as a linear filter, generally high pass. Figure 1.3 shows a simple but

general model for the pipe body, where the transfer function of each component is

labeled. In a model of the pipe body as a linear combination of normal modes, or

resonances, r(t) contributes by determining the relative amplitudes and damping of

the modes. r(t) by itself does not contain resonances, but the combination of r(t)

and the mouthpiece does.

- G(s) -~ ~ Output

~ radiation fut iction

R(s)
~ reflection function

Q+ ~

Figure 1.3 Model of flute pipe body. The radiation and reflection func-
tions are represented by theirs-transforms.

Turning our attention to the air jet end of the pipe body, the equation governing

the action of the air jet is continuity of flow within the mouthpiece:

U1 - Up, (3)

where U J is the flow into the mouth of the pipe due to the jet and its interaction with

the vibrations within the pipe, and Up is the flow corresponding to the mcommg

and outgoing pressure waves. From the definition of flow, we obtain

dQ
Up - &·

The pipe is open at the jet and there is an end correction time, Te, associated with

the reflection of the incoming wave. Because Te is very small compared to the period

of oscillation, we will approximate dQ/dt as a difference over Te. At the jet end of

19

the pipe, Q+ is reflected as Q- with some change due to the presence of the jet;

therefore,

and

(4)

From our discussion in the introduction, we know that U J is a function of the

displacement at the end of the pipe and takes the form shown in Figure 1.4.

Figure 1.4 Functional form of flow into the pipe.

This curve has the form of a standard saturation curve, with the extremes

representing the flow of the jet being totally in or totally out of the pipe. Implicit

in U J is a delay T introduced by the time for the disturbance of the jet to propagate

from the flue slit to the pipe lip. At resonance, r is approximately one-half the

fundamental period of oscillation. Fletcher and Douglas [F'LETCIIER 80] derive the

functional form for the flow into the pipe for a laminar jet as a hyperbolic tangent.

The jet of real flutes is believed to be turbulent; it is clear, however, that the actual

shape must be approximately a hyperbolic tangent. Offsetting the center of the flue

slit relative to the pipe mouth is represented by offsetting the curve in Figure 1.4

in the horizontal direction.

20

At this point, we have everything needed to simulate the system. From Equation

4 we solve for Q- in terms of the incoming displacement Q+:

(5)

Equations 2 and 5 are in a form suitable for computation, as shown in Figure 1.5.

The radiation function of the body model is not involved in the interaction between

the body and the mouthpiece and, for simplicity, is not shown.

Mouthpiece Q- Body

T ~ ~T

Q
Te· U; 6.T R(s)

G

Figure 1.5 Computational model for flute.

We assume that the function U J is scaled by a factor G such that it takes the

form G · tanh(k · P), where G roughly corresponds to the maximum flow of the jet

or the blowing strength, and k corresponds to the width of the jet. A low-flow jet

saturates at a lower level and thus has a smaller G.

The following describes an interpretation of the model. When G = 0, the

output of the functional block Te · U J is equal to zero for any input Q, and the

output from the mouthpiece Q- equals the input Q+; in other words, the jet has

no effect, and the incoming displacement wave is simply reflected off the mouth of

the pipe returned. Because Risa passive function, the gain around the loop is less

than unity and any disturbance simply dies out exponentially. When G > 0, the

displacement wave emerges from the mouthpiece with amplification of frequencies

near the fundamental. The saturation of the U J curve limits the amplitude of the

21

oscillation and also distorts the waveform, resulting in sustained oscillation and the

generation of harmonics.

Noise. The model just presented captures the essence of the sound-production

mechanism, including nonlinear effects and the production of harmonics, but fails

to generate the noise that is present in real flute tones. It is commonly understood

that the presence of noise is important to our perception of flute tones. The noise

is the consequence of turbulence in the air jet. In our abstraction of the air jet,

all such turbulent behavior is lost. The exact behavior of the jet is complicated,

sometimes behaving more as a laminar flow than as a turbulent flow. A detailed

simulation of the air jet may be one way to achieve the desired result. However,

in practice, a detailed simulation is impractical because of computational expense.

A much simpler method captures much of the subjective effect of the turbulence.

We observe that (1) the amount of noise injected into the pipe is proportional to the

flow into the pipe, and (2) the amplitude of the signal generally grows in proportion

to the amount of the flow into the pipe. Therefore, an amount of noise proportional

to the amplitude of the signal is added to the signal as it leaves the mouthpiece

section of the model.

Modifications. The computational model presented thus far and represented in

Figure 1.5 is further simplified in this section to arrive at a system shown in Fig­

ure 1.6.

The composite function of the mouthpiece, F(q), is found and replaces the

mouthpiece computation in Figure 1.5. Such a system is more efficient to compute

in some computational metaphors, for instance, where function evaluation is done

using table lookup. In addition, because the computation is in a more familiar form,

it may lend itself more readily to analysis. The first simplification is to observe that

the delay through the jet, T, is approximately equal to one-half the period of the

fundamental frequency, T. Thus, for a symetric U J function, the same steady-state

effect can be achieved by removing the delay and replacing TeU J by its negative:

22

Mouthpiece Body

F(q) R(s)

Figure 1.6 Simplified model for flute. The mouthpiece
section is modeled with a single function.

This replacement is inexact in that the delay along the jet actually is not constant,

but is proportional to the speed of the jet, so a harder blow results in a slightly

shorter delay and an increase in the frequency of oscillation. One possible solution

is to add an adjustable delay in the loop.

Re-examining our Equation 5 with this modification,

we find that the model equation is no longer in a form suitable for direct simulation

because Q- depends on U J, which in turn depends on the total displacement Q+ +
Q-, which includes Q-. A similar problem arises in the modeling of reed-woodwind

and bowed-string instruments. A graphical solution technique has been proposed

for bowed strings in [FRIEDLANDER 53] and [KELLER 53] and applied to the clarinet

in [SMITH 86]. The graphical solution effectively presolves the system over a range

of inputs, p+, and stores the associated outputs, p-.

From Equations 3 and 4:

Subtracting Equation 1 yields

-TeUJ - (Q) = Q- - Q+ - (Q- + Q+)

-TeUJ -- Q = -2Q+

TeUJ Q - 2Q+. (6)

23

Equation 6 is in a form suitable for a graphical solution technique. The procedure

is illustrated in Figure 1.7.

Figure 1. 7 Graphical solution technique.

One curve for each half of the equation is plotted. The curve representing the

left side of the equation is the scaled and negated version of the curve shown in

Figure 1.4. The right side of the equation represents a line with slope of 1 and

y-intercept of 2Q+. The value of Q at the intersection of the two curves is denoted

as Q* and represents the value of the total displacement for a particular 2Q+. By

sweeping q+ and finding the intersection points, we arrive at a curve for Q* as a

function of q+. From the total displacement Q*, q- is found from

The resulting curve for q- versus q+ is shown in Figure 1.8.

The result appears much like a tanh curve rotated to 45°. The asymptote lines

are at 45° and are displaced by G from a line through the origin. When the factor

G goes to zero, q- Q+, for all q+.

24

.Jiigh G
low G

Figure 1.8 Graphical solution.

25

Computational Model for Bar-Percussion Instru1nents

Intro cl uction

As we saw in the previous section, blown pipes and flutes have a sound characterized

by the way energy is supplied to the system. Now, we examine a class of instruments

the sound of which is characterized by the way energy is dissipated. This class of

instruments includes all nondriven instruments such as plucked and struck strings,

drums, and bar-percussive instruments. Here I restrict the class to those instru­

ments including a stiff resonant bar or plate, or those with an elastic member with

low-amplitude oscillations. The most common instruments in this restricted class

include marimbas, vibraphone, glockenspiels, bells, and chimes. Examples of a

stringed instruments with low-amplitude oscillations are the Japanese koto and the

Chinese guseng. Systems with elastic vibrating members such as plucked strings,

where the vibration amplitude is large, include a nonlinear effect that cannot be

ignored. The fundamental frequency of such systems is proportional to the tens,ion

on the vibrating member. The tension, however, is a function of the amplitude

of the displacement of the member; as the member vibrates, it stretches, increas­

ing its tension. The result is that the frequency is a function of the amplitude.

Struck bars and tightly strung strings, on the other hand, vibrate with relatively

low displacement, resulting in frequencies of oscillation independent of amplitude.

For simplicity, I will refer only to bar-percussion instruments; however, all re­

sults apply equally well to any instrument meeting the constraints outlined. All bar­

percussion instruments are composed of one or more vibrating bars, a striking im­

plement, such as a mallet, and in some cases a resonating cavity or tube to modify

the sound of the bars. I will assume that, in a system of multiple bars, the bars

are acoustically independent of one another. This assumption is certainly true in

the case of marimbas and other such bar instruments but is not true in the case

of string instruments. The strings all share a common bridge that couples energy

among the strings.

The timbre of the sound from a struck instrument is dependent on two sets of

phenomena: (1) the physical dimensions and compositions of the constituent pieces,

26

/"''"''
::::::::::::;:;:/:::::::J(]iZ · ·.··.zat~: :::=:::::::=:::::::=:=::d bar

resonating
cavity

Figure 1.9 Marimba.

and (2) the manner of striking. Included in the first set is the means of support of

the bar and the relative placement of the resonant cavity, if present. The manner

of striking includes the force and place of the strike and can be characterized as a

time-varying two-dimensional force profile on the surface of the bar. It is probably

not accurate to represent the manner of striking simply as initial conditions for the

bar. It is well known to students of marimba playing that the act of pulling the

mallet away from the bar after a strike is important in the generation of correct

timbre.

Factors influencing the sound generated from struck instruments include the

following:

1. The Dar

a. Material (e.g., wood, aluminum, steel, brass)

b. Shape (e.g., bar, tube)

c. Relative placement and means of support.

2. The Mallet

27

a. Composition (e.g., hard rubber, felt or yarn wrapped)

b. Size and shape

3. The Strike

a. Position

b. Time domain force profile.

The Bar
Ideal vibrating bars and strings have been studied for centuries. Theoretical expla­

nations for the motion of a stiff bar and an elastic string after the initial transients

have long been given in the literature [MORSE 36] and [RAYLEIGH 45]. Most authors

treat bars with uniform thickness. The equation of motion of a uniform stiff bar is

a4y P a2y

OX4 QK2 ot2 '

where p is the density, Q is Young's modulus, and K: is the radius of gyration.

The equation of motion of an ideal string is

a2y 1 a2y
ox2 c2 at 2 '

where c is the velocity of sound on the string [MORSE 36].

The major distinction between bars and ideal strings is that the general function

Ji (x+ ct)+ h (x ct) is not a solution for bars, and the motion cannot be represented

by a sum of identical right-going and left-going waves. The velocity of propagation

of a wave along a bar is a function of frequency, whereas that in an ideal string

is not. This property makes bars a dispersive medium-a pulse sent down a bar

loses its shape, because the various frequency components travel at different speeds.

The consequence to instrument builders is that, even though the spatial periods of

the normal modes of vibration of a bar are related closely to a series of integers, the

modes do not oscillate with frequencies that lie close to a harmonic series, as they

do in the case of stringed instruments.

lnstrumellt builders have developed ways to modify the geometry of bars to

force at least one normal mode to oscillate at a musical interval relative to the

fundamental [MOOHE 78]. Similar techniques are used by builders of violins to adjust

28

the resonant qualities of the plates in a violin body. Builders of marimbas and other

bar-percussion instruments remove material from the underside of the bar at the

antinode of a normal mode, resulting in a slightly less stiff bar for that mode and a

lowering in frequency. These modifications also render most of the solutions for the

motions of bars of little practical significance.

Although strange geometries complicate the solution of the wave equation for

bars by imposing complicated boundary conditions and violating assumptions about

constants in the equation of motion, the form of the solution is not different from

that for the ideal bar. The modes are independent and have constant frequency

with amplitude and time. Because of these invariants, we can model the bar as a set

of independent resonances, each with a damping factor Q and center frequency Be.

The resonances correspond to the spatial modes of the bar. Note that the resonances

cannot be modeled accurately as sine waves, in spite of what the solution of the wave

equation may suggest. Like those of most mechanical oscillators in nature, each

resonance of the bar has a response to a forcing function, as shown in Figure 1.10.

amplitude

frequency

Figure 1.10 Frequency response of bar resonance.

Highly resonant modes have a narrow resonance peak. The use of simple sine

oscillators loses this band-pass characteristic, which becomes important when con­

sidering the presence of forcing functions and the excitation of an already moving

mode.

29

The Mallet and Strike

The bar is not modified in any way by the player of the instrument; therefore,

the striking of the bar is the player's sole control over the timbre of the note.

The composition and size of the mallet and force of the strike constitute the major

controls used by the player. Also important to the production of a musical tone

is the placement of the strike and the period of impact. How all these parameters

affect the tone of the note played is fairly well understood.

Figure 1.11 Waveform of a marimba strike. The waveform shows amplitude versus time.
The bar struck was in the middle range of the instrument. It was struck with moderate
force. in its center. with a hard rubber mallet.

One interesting and musically important aspect of the strike, however, is not

well understood and is not treated in the literature. Even in the case of a "clean"

blow to the bar, the observed waveform appears "noisy" for the first few cycles, as is

evident in Figure 1.11. The noise dies out within the first few cycles. The amount of

observed noise is more pronounced for forceful strikes, as well as for harder mallets.

Part of the "noise" is probably due to the excitation of many low-Q, high-frequency

modes. The nearly discontinuous stress profile generated on the bar propagates

from the point of impact and interacts with the many degrees of freedom of the bar,

generating random movements of the substance composing the bar. These random

movements generate heat and are quickly damped, leaving the standing wave motion

of the normal modes. Although the details of the noise-generation mechanism is not

modeled by the equation of motion for the bar, the noise is critically important to

our perception of the struck sound and is included in our model. The noisy beginning

30

of the bar's motion may be viewed as an excitation function (forcing function) for

the resonances of the bar. To model the qualitative effect of the noise, we need to

generate an excitation function containing noise that has an amplitude proportional

to the force of the strike and to the hardness of the mallet. It also is important that

the noise die out after several cycles.

The key to the qualitative affects of mallet size and hardness lies in the stress

generated on the bar for each case. Our hypothesis about the important affects of

mallet size and hardness can be viewed as a footprint. As we move from a smaller

to a larger mallet, the stress footprint on the bar is enlarged, providing relatively

less energy to higher spatial modes. The larger the mallet, the more total energy

is transferred to the bar, because a larger mallet has more mass and thus generates

more force. The hardness of the mallet also effects the size of the stress footprint

on the bar, because of the compressibility of the mallet. Perhaps more important,

the hardness of the mallet effects the steepness of the stress profile into the bar.

Harder mallets generate a steep stress profile and provide more energy to higher

modes--and generate more noise.

Translation from stress in the spatial domain to the temporal-frequency domain

is not straightforward. I use a model that captures the essential qualitative behavior

with sufficient parameters to generate musically important control.

l Attack
Section

attack parameters

Re son a tor
Bank

resonator
parameters

~---? output

Figure 1.12 Struck instrument model.

31

The Model
The struck-instrument model is composed of two sections, as shown in Figure 1.12.

The right circuit models the normal modes of the bar with discrete resonances.

The circuit used for each mode is called a resonator. A weighted sum of resonator

outputs is formed by summing a weighted value from the output of each resonator

circuit. All the resonators are excited by a common signal from the attack section.

The attack section generates a noisy signal to excite the resonators. Parameters of

the attack section are changed to model different types of mallets and different force

strengths. Details of the struck-instrument model with several parameters useful

for specific musical instruments are presented in the next chapter.

32

Chapter 2

Computing Sound

This chapter presents the implementation of musical-sound synthesis. I present

the implementation strategy, or computational metaphor, that we have adopted, and

demonstrate it with several small examples that become the basis for our instrument

models. A detailed section is presented on one particularly important computational

form, the digital resonator. Finally, I present in full detail the implementation of

the two musical instruments developed in Chapter 1.

In1plen1entation Strategy

Our approach to generating musical sounds involves solving difference equations

in real time. Musical instruments are modeled as systems of coupled difference

equations. A natural architecture for solving systems of finite-difference equations

is one with an interconnection matrix between processors that can be reconfigured

(or programmed), as illustrated in Figure 2 .1. A realization of a new instrument

involves reconfiguring of the connection matrix between the processing elements, as

well as configuring connections to the outside world both for control and for updates

of parameters.

Processing elements are placed together to form an array and then are joined

by a reconfigurable interconnection matrix. A general-purpose computer supplies

33

~---------~ signal output

Switching
Matrix

Work
Station

UPEz

UPE3

•

•

•

Figure 2.1 Sound-synthesis architecture. Processing elements are con­
nected to each other and to the outside world through a reconfigurable in­
terconnection matrix.

updates of parameters to the processing elements and provides an interface to the

player of the instrument. The external computer also supplies the bit patterns for

the interconnection matrix. Synthesized signal outputs go to a digital-to-analog

converter.

To implement a reconfigurable connection matrix, a bit-serial representation of

samples facilitates the use of single-wire connections between computational units,

drastically reducing the complexity of implementation. In fact, a bit-serial imple­

mentation makes the entire approach possible.

Bit-serial implementations also have the advantage in that computational ele­

ments are small and inexpensive. One potential drawback with bit-serial systems is

that they must run at a clock rate that is higher than that of their parallel counter-

parts. In our implementations, even with 64-bit samples, the bit clock rate is only

3 MHz, which is far below the limits of current integrated circuit technology.

For our computation we have chosen a basic unit we call a Universal Processing

Element (UPE) [WAWRZYNEK 85a] that computes the function

A + (B x M) + D x (I M). (I)

It is similar to the bit-serial multipliers proposed by Lyon [LYON 81]. In its simplest

mode of computation, where D=O, the function of a UPE is a multiplication and an

addition. This simple element forms a digital integrator that is the basic building

block for solving linear difference equations. If D is not set to zero, the output of the

UPE is A plus the linear interpolation between B and D, where Mis the constant

of interpolation.

All the inputs and outputs to the UPE are bit serial. UPEs can be connected

to each other with a single wire.

Basic Elements

General Linear Filter. An Mth order linear difference equation [OPPENHEIM 75]

can be written as
N M

Yn - L aiXn-i + L biYn-i' (2)
i=O i=l

where Xn is the input at time sample n; Yn is the output at time sample n; and

the coefficients a0 ···a N, b1 · · · b M are chosen to fulfill a given filtering requirement.

The function is evaluated by performing the iteration of Equation 2 for each sample

time. This is the general form of a linear filter; any linear filter can be described as

a special case of Equation 2.

Figure 2.2 illustrates a UPE network that directly implements the general linear­

filter equation.

35

Each UPE (with D = 0) performs the function (A+ M X B)z- 1 ; i.e., multipli­

cation, addition, and one unit of delay. In Figure 2.2, the input values are processed

by distributing the input signal x to each of N + 1 UPEs, each one of which multi­

plies the input by a filter coefficient ai, sums the result of the last UPE, and passes

on the total for further processing. Each UPE provides one sample of delay, so the

signal at the output of the input processing section is

(3)

This result is summed with the result of the output processing section.

The output Yn is distributed back to each of l\1 UPEs. Each UPE multiplies

the output by a filter coefficient bi, provides one unit of delay, sums its result with

that of the last UPE, and passes on the total. The result at the end of the output

processing section is

Yn = b1Yn-1 + b2Yn-2 + · · · + bNYn-N + X. (4)

We add the result of the input processing section to the result of the output proc­

essing section by feeding it into the UPE holding the bn coefficient; its A (addend)

i11put is not used. Adding the result from the input processing section to the UPE

holding the bn coefficient has the effect of adding a net delay through the system

equal to the number of UPEs in the output processing section.

From Figure 2.2, it is clear that the number of UP Es needed to implement Equa­

tion 2 is equal to the number of coefficients in the input (nonrecursive) processing

section plus the number of coefficients in the output (recursive) processing section.

Second-order Section. As an example of a linear filter, consider the second-order

linear difference equation:

Yn <XYn-1 + fJYn-2 + Xn · (5)

Applying the z-transform, we form the system function:

(6)

36

x

• •
• •
• •

L

y

Figure 2.2 UPE implementation of general filter.

We have used this system widely to model the resonances of musical instruments.

The theory of the digital resonator is presented in a later section. Here we will

simply note that, for all commonly used values of a and /3, Equation 5 can be

rewritten as

(7)

This equation models a resonant system with damping controlled by Rand frequency

controlled by Be.

37

in put a UPE y a UPE y ' output
b 111 b 111

i i

/3 = -R2 a= 2Rcos Be

Figure 2.3 UPE implementation of second-order section.

The digital resonator is implemented directly, using two UPEs. As shown m

Figure 2.3. The left UPE computes:

The right UPE computes

Hence,

Yn = 2RcosBcYn-1 - R 2Yn-2 + Xn-2·

In the final form of the difference equation, the input variable x appears as Xn- 2

rather than Xn, as in Equation 5. This results in a frequency-independent, or pure,

delay through the system of 2 word times. This pure delay is equal to delaying x

by 2 word times before feeding it to a system as in Equation 5.

Nonlinear Element. The functions computable by UPEs are not restricted to linear

ones. Certain phenomena in nature are best modeled as nonlinear functions. For

example, consider the class of functions that relate flow to pressure at the mouth­

piece of a blown musical instrument. A function that is characteristic of flutelike

instruments is shown in Figure 2.4(c). This function and its variations, shown in

Figure 2.4(a) through 2.4(d), are computed using three UPEs, as is shown in Fig­

ure 2.5. The input signal x is sent to u1, which multiplies x by itself, creating a

squared term. This same technique is used again to arrive at the function

38

which is a third-order polynomial. For ko = 0 and k3 = -1, the coefficient G controls

the nonlinear gain, as illustrated in Figure 2.4(c) and 2.4(d). The coefficient kz

controls the symmetry about the vertical axis, as shown in Figure 2 .4 (a) through (c).

This technique of generating polynomials can be extended to produce polyno­

mials of arbitrarily high degree.

ks

x

kz

(a)

(c)

k2 = o
G=l

(b)

(d)

Figure 2.4 Variations of the nonlinear function.

a UPE y
b 111

G

a UPE y
b 111

ko a UPE y
b rn

Figure 2.5 Nonlinear element implementation.

k2 = -0.5

G =I

k2 = 0
G = 0.6

y

39

Integrator. A simple configuration using one UPE forms a digital integrator. The

output is fed back to the A input, and the Band JV[inputs are controlled externally,

as shown in Figure 2.6(a). The computation performed is

Yn = B x M + Yn-1 ·

At each step in the computation, the product B X M is summed with the result

of the previous step. This arrangement produces a ramp function, the slope of

which is the product B X M. As the computation proceeds, the output Yn eventu­

ally overflows the number representation and wraps around to a negative number,

and the computation continues. The waveform for constant B and M is drawn in

Figure 2.6(b).

output

a IPE y
b m

B M

(a) (b)

Figure 2.6 Integrator.

Frequency Modulation. Because of the discontinuity, the ramp signal is not band­

limited, and therefore cannot be used directly for sound synthesis without aliasing

components. However, in a scheme suggested by Lyon, we can remap the signal

by passing it through a function, such as the one nonlinear function in Figure 2.4.

When the remapping function is equal at the extremes of the number representation,

as in the third-order polynomial presented previously, the resulting waveform is

continuous. The resulting signal does not have the aliasing problems of the ramp

function and can be used directly for musical sound application.

40

In this composite system, where the ramp output feeds the nonlinear section,

as shown in Figure 2.7, the B x M input to the ramp can be thought of as con­

trolling the phase of some periodic function y, and is either positive or negative.

Because the B x M input can be a signal generated by another arrangement of

UPEs, frequency modulation (FM) may be attained. The function generated by

the nonlinear element is the carrier signal and the signal fed to the B x M input

is the FM signal. This scheme is therefore equivalent to the waveform-table lookup

techniques commonly used in conventional computer-music programs.

a
a UPE y1----~~b

b Ill

B M
0.5

UPE

nonlinear
element

Figure 2.7 Frequency modulation.

output

Noise. Random signals find frequent application in sound synthesis. A pseudo-­

random-number generator can be constructed with one UPE, as shown in Figure 2.8.

This approach uses a linear-congruence method [KNUTH 68], implementing

Xn p · Xn-1mod r + q,

where

r = 232.

41

q --a UPE y output
b m

I
tz"me

p

Figure 2.8 Random-number generator.

The mod r operation is achieved by feeding the 64-bit output, Y, into the 32-bit

input, B. Only the low 32 bits ofY get loaded, which effectively generates mod 232 .

Mixer. The linear-interpolation feature of the UP Es can be used for mixing sig­

nals. Referring to Figure 2.9, one signal is fed into the B input and another into

the D input. The M input controls the relative balance of the two signals in the

output signal. This approach has the advantage over other schemes in that the

output level is held constant as the relative mix of the two input signals is changed.

a UPE y S1 · M + Sz · (1 M)
b Ill d

S1 Sz
M

Figure 2.9 Mixing signals.

Scattering Interface. We know that the computation performed by one scattering

interface is:
P1- = kP"! + (1- k)P;J,

P2- kP:/ + (1 + k)P"!,

where p+ and p- represent incoming and outgoing pressure (or force) waves, re­

spectively, and k is a variable relating the characteristic impedances on either side

of the interface [SMITH 82]. The sum P1 + P2 represent the total pressure on either

side of the interface.

Each equation involves the linear interpolation of P[and P:J, and is computed

with one UPE, as illustrated in Figure 2.10.

p+
1

p+
1

p-
1

k

-

Z1

J
Z2

:;:i.. p-

I<

2

...:::; p+
2

(Z2 - Z1)/(Z2 + Z1)

a UPE y
b m d

i
k

-k

!
a UPE y -

b Ill d

p-
2

p+
2

Figure 2.10 UPE implementation of scattering interface. Each
UPE computes one of the scattering equations.

The function computed by the UPE network in Figure 2.10 includes one word

of delay in addition to the preceding equations. In a scattering model of wave-guide

filter applications, the extra delay is absorbed by shortening the delay lines between

the interfaces by one word. In ladder filters, the word of delay is part of the funcLion

of one filter section.

The Digital Resonator

This section presents the basic theory of second-order digital resonators. Special em­

phasis is placed on those issues involving digital resonators used for musical sound

synthesis. First, I present the basic equations governing the behavior of two-pole

sections, including their uses in musical sound synthesis.

In the appendix, I discuss Q calculation, as a user parameter, the problerns with

resonator gain and a proposed solution, and the special case of critically damped

sections.

Basic Equations

A digital resonator can be formulated with the finite-difference equation:

Yn - lYYn-1 + f3Yn-2 + Xn, (1)

where Xn is the input at time sample n; Yn is the output at time sample n; and a

and /3 are parameters chosen to produce the desired behavior. The UPE implemen­

tation of a digital resonator shown in Figure 2.3 contains a pure delay of two word

times, that can be represented in Equation 1 as Xn_ 2 . This delay has no effect on

the amplitude of the frequency response of the system and simply delays the time

domain response by two word times. Applying the z-transform, we form the system

function:

H (z) = ~i_zl = ---1--~
X(z) 1 - az-

(2)

Solving for the roots of the demoninator leads to two cases.

Case 1 (o:2 + 4/3 :S: 0). ln this case, the poles of II(z) are complex conjugates.

They appear in the z-plane at z = Rei8
c and z Re-i8c as shown in Figure 2.11.

Here fJ 27r XI rcq/ Is = wT, where Is - 1/T is the sampling frequency. R is the

radial distance of the poles from the origin in the z-plane and Be is the angle off the

real axis.

44

z-plane

: 1

Figure 2.11 Second-order resonator poles.
The R value controls the damping and Be
controls the resonant frequency.

Now we can rewriLe Equation 2 as:

Multiplying out the denominator, we get:

I
H(z) - 1 - 2R cos Oez- 1 + R 2 z- 2 .

Rewriting Equation 1 yields:

(3)

(4)

(5)

Equation (4) leads to a sinusoidal time domain impulse response of the form:

(G)

where/ I/ sin Be and </> Be from the partial fraction expansion of Equation 4.

For values of R < 1, the response is a damped sine wave with R controlling the rate

of damping and Be controlling the frequency of oscillation.

It is interesting to note that, with R = 1, the impulse response is a sine wave

of constant amplitude.

The system frequency response can be found by substituting ei8 for z in H(z).

At z ei0 , H(z) is identical to the discrete Fourier transform. The digital resonator

amplitude

' '

45

time

Figure 2.12 Time-domain impulse response of Case 1.

magnitude

Figure 2.13 Magnitude and phase of frequency response
of case 1.

acts as a band-pass filter in this case, with center frequency of Be and a bandwidth

proportional to R.

Figure 2.13 shows the magnitude and phase of the frequency response of Equa­

tion 4 for a typical set of coefficients. Note the high slope of the phase response

around resonance.

Case 2 (o: 2 + 4(3 > 0). In this case the poles are both real, they appear on the

real axis in the z-plane. The system is called overdamped and does not oscillate.

Application to Sound Synthesis

In our musical applications, digital resonators have found uses as a mechanism for

modeling the modes of vibration (or resonances) of musical instruments. Resonators

are commonly connected in the parallel arrangement shown in Figure 2.14, called

46

a resonator bank. Each resonator shares a common input source, with the outputs

being summed.

x(n)

Figure 2.14 Resonator bank. Parallel connection of resonators.

The coefficients of each resonator are chosen to model some mode of the musical

instrument.

In this arrangement, the system function is

N

II(z) - L Hi(z)
i=l

1
--~--~~~~~~~~-~~~-~ ~~~~~--~~~~---~~~+ ...
(1 -- z)(1 - z-1) (1 - z-1)

Here the poles of the system are the sum of the poles of all the individual sections.

However, the numerator is no longer equal to one, and 2N - 2 zeros have been

introduced into the system. For sufficiently large values of R (low damping), the

zeros have little effect on the system response. In this case the parallel connection

can be viewed as a set of independent resonators.

Another common use of digital resonators in a musical context is to excite a

single resonator with an impulse to exploit it as a sine-wave generator with vari­

able damping and frequency. The sine wave is fed to another part of the musical­

instrument model for further processing.

41

M usical-Instru1nent Models

This section describes two simple musical instrument models based on UPEs. Both

models have been implemented and we have used them to generate musical sounds.

Although these models have been used to produce extremely high-quality timbres

of certain instruments, they are certainly not capable of covering the entire range

of timbres of the instruments. The development of a new timbre can be thought

of as building an instrument, learning to play it, and then practicing a particular

performance on it. This activity requires a great deal of careful study and may

involve extensions or modifications to the model.

Struck Instrument

Struck or plucked instruments are those that are played by displacing the resonant

element of the instrument from its resting state and then allowing it to oscillate

freely. Tone quality in such instruments is a function of how the system is excited,

and of how it dissipates energy. Examples of plucked and struck instruments include

plucked and struck strings, struck bells, and marimbas.

Figure 2.15 illustrates a struck-instrument model implemented with UPEs. The

model can be decomposed into two pieces: the attack section and the resonator

bank. The attack section models the impact of the striking or plucking device on

the actual instrument. An impulse is fed to a second-order section that is tuned

with a Q value close to critical damping. A detailed version of the attack section is

shown in Figure 2.16. In this figure, the output of the attack resonator is fed to the

input of the noise-modulation section. The noise-modulation section generates the

function

y - NM· x · RNG + SG · x,

where RNG is the output of a random-number generator. This computation adds to

the signal input x an amount of noise proportional to the level of x. The balance of

signal to noise is controlled by the ratio SG: NM, and the overall gain is controlled

by sc+ NM.

l

Attack
Section

attack parameters

Resonator
Bank

resonator
parameters

output

Figure 2.15 Struck instrument implemented with UPEs.

I 1M1~,~
~ ... ~

SC

Figure 2.16 Attack section.

RNG

The output of the noise-modulation section is used to drive a parallel connection

of second-order sections used as resonators. The resonators are tuned to the major

resonances of the instrument being modeled. The parameters of the attack section­

attack resonator frequency and Q value, signal-to-noise ratio, and attack level--are

all adjusted to produce a variety of musical timbres.

Second-order sections are combined to form a resonator bank, as shown in Fig­

ure 2.17. All resonators are implemented as described in Chapter 2, Computing

49

Sound, the section Basic Elements. The output of each resonator is connected to a

single UPE that scales the output of the resonator and adds the signal to the signal

from the other resonators.

x

G
(3

Figure 2.17 Resonator bank implementation.

The gain at resonance of a two-pole second-order section varies drastically over

the frequency range. This variation causes scaling problems when fixed-point arith­

metic is used. Either the input to or the output from each resonator must be

adjusted to compensate for the implicit gain of the resonator.

Several techniques exist for normalizing resonator gain. One proposed by Smith

and Angell uses the addition of two zeros to the second-order system function

[SMITH 82]. By placing a zero at ±VR, we can eliminate the dependence on () in

the system function. Resonator-gain normalization could pose a particularly severe

problem in the case of resonator banks, as shown in Figure 2.17. Scaling the input to

each resonator increases the number of UPEs by a factor of one-third and increases

50

the control bandwidth by the same amount. Alternatively, the input to the entire

system can be scaled down, to avoid overflow in the section with the most gain,

and then the output scaled up to the appropriate level. This approach is a problem

in systems that use fixed-point arithmetic because the amount of gain available at

each multiplication is limited, and hence many multiplier stages at the output must

be used.

In many sound-generation applications, the R values of each stage in the res­

onator bank are close to one another. Therefore, it is possible to synthesize two zeros

using an average value for R and then distributing the result to each resonator.

In a typical application, a pianolike keyboard is used to control the instrument.

The pressing of a key triggers the following actions: (1) the key position determines

the coefficients loaded into the resonator bank; (2) the key velocity controls the level

of the coefficient NM in the attack section (higher key velocities correspond to more

noise being introduced into the the system and hence a higher attack level), and

(3) the key press generates an impulse that is sent to the attack resonator.

Table 2.1 shows the parameters developed to synthesize the sound of a struck

aluminum bar suspended on two loops of string at a distance of one-quarter of its

length in from each end. The bar is similar to the ones used in vibraphones, without

the arch cut in its underside. The bar was struck with moderate force, in its center,

with a hard rubber mallet. The gain of the attack resonator is the coefficient SC.

EQR and EQc refer to the two coefficients of the resonator normalization circuit.

The frequency, Q, and gain of each resonator were found empirically, using spectrum

analysis of the physical bar. The bar has length of 211 mm, width of 37.5 mm,

and thickness of 9.5 mm. It was found to have many normal modes. Only the 10

most prominent modes were included in the simulation. Under normal listening

conditions, the synthesized sound was indistinguishable from that of the physical

bar.

Table 2.2 shows parameters developed by Dyer for a struck marimba. The effect

of the resonating cavity under the bar is incorporated into the parameters for the

resonators that model the normal modes. As with those for the aluminum bar, the

parameters for the resonators were found empirically, using spectrum analysis of

51

Table 2.1 Aluminum bar synthesis parameters.

Resonator Frequency Q

1 1077 2000 1.0

2 2160 500 0.7

3 2940 500 0.7

4 3220 500 0.6

5 3520 500 0.4

6 3940 2000 0.4

7 5400 500 0.3

8 5680 2000 1.0

9 6900 2000 1.0

10 7840 500 1.0

attack 2000 0.5 0.004

EQR - 0.0

EQc 1.0

noise gain = 0.0004

impulse value = 1.0

recorded marimba sounds. Again, the strikes were of moderate force, in the center

of the bar, with a hard rubber mallet. Although the parameters are shown for one

particular bar (middle C), with one particular mallet type, and one particular strike,

we have generalized them to simulate all the bars of the marimba, as well as other

mallets, and other strike forces. We performed generalization by devising functions

that scale the parameters according to user input (for example, key position and

velocity) and additional input (such as mallet hardness). The scaling covers the

full range of a normal marimba and also allows for experimentation with fanciful

marimbas, for example, those that extend well beyond the the normal range of a

physical marimba, and those with mallets that change size automatically to match

better the size of the bars.

52

Table 2.2 Marimba synthesis parameters.

Resonator

1

2

3

attack

261.63

1020.36

26163.0

240

200

150

261.63

EQR = 1.0

EQc = 1.0

noise gain = 0.025

impulse value = 1.0

0.5

am

1.0

1.0

1.0

0.05

Figure 2.18 shows the first few cycles of the waveform generated by the param­

eters in Table 2.2. It compares favorably with the waveform of a recorded marimba

strike (Figure 1.11), and with non-expert listeners in an informal listening environ­

ment it sounds virtually indistinguishable from a recorded marimba strike.

Figure 2.18 Synthesized marimba strike. The waveform shows amplitude versus time. The
synthesis parameters are from Table 2.2.

Solving the wave equation for an ideal string clamped at its ends yields normal

modes, the frequencies of which are integer multiples of the fundamental. The pa­

rameters for the resonators for a plucked-string sound in Table 2.3 are based on

this idea. The parameters for the attack section were found by trial and error.

The resulting sound is that of a plucked, tightly strung string.

53

Table 2.3 Plucked string synthesis parameters.

Resonator Gain

1 440 300 0.70

2 880 300 0.80

3 1320 300 0.60

4 1760 300 0.70

5 2200 300 0.70

6 2640 300 0.80

7 3080 320 0.95

8 3520 300 0.76

9 3960 190 0.87

10 4400 300 0.76

attack 2000 0.5 0.004

EQR = 0.0

EQc = 1.0

noise gain = 0.02

impulse value 1.0

Dynamic Model

Figure 2.19 shows a simple model for blown instruments, implemented using UPEs.

In Chapter 1, Modeling Musical Instruments, Section Computational Model for Or­

gan Pipes and Flutes I developed a computational model for organ pipes, flutes, and

recorders based on their physical behavior. The basic observation used to develop

the model was that a blown musical instrument can be viewed as a nonlinear forc­

ing function at the mouthpiece, exciting the modes of a linear tube. In this section,

I present an implementation of the model using UPEs.

We found that the computational model is composed of three pieces: (1) a linear

element representing the flute body or pipe, (2) a nonlinear element representing

the interaction of the air jet with the pipe, and (3) a noise-modulation section.

54

-
Noise -,

Modulation -
r--

Resonator
I I I Bank

-

Nonlinear I -
Element

,

output

I I I
G

Figure 2.19 Dynamic model used for blown instruments.

The linear and nonlinear elements are shown explicitly in Figure 1.6; the no1se­

modulation section is implicit in the mouthpiece. We can translate the model into a

form directly solvable on a system of UPEs by interpreting the model in Figure 1.6.

The mouthpiece section serves two functions: (1) it terminates the body at the

blowing end by reflecting incoming waves back into the body, and (2) it supplies

energy to complement the acoustical vibrations within the body. Considering only

the first function of the mouthpiece, the system is a pipe open at both ends. Such a

system has normal modes of vibration, the frequencies of which are proportional

to the length of the pipe and the relative amplitude and damping of which are

dependent on the material composing the pipe and the width of the pipe. As we

did in developing the struck-instrument model, we model the normal modes of the

tube explicitly, using digital resonators.

The function at the mouthpiece, not including reflection of the incoming wave,

is a hyperbolic-tangent function relating the outgoing wave to the incoming wave.

For a limited range of input values, a cubic polynomial of the form presented earlier

is a good approximation to a tanh, as seen in Figure 2.20.

The noise-modulation scheme is the same as in the struck-instrument moclel:

Noise is added to the signal in an amount proportional to the amplitude of the

signal.

55

Figure 2.20 Comparison of tanh and cubic polynomial.

In summary, the UPE dynamic model is composed of three pieces: (1) the non­

linear element that computes a third-order polynomial; (2) the noise-modulation

section, which adds an amount of noise proportional to the size of the signal at

its input; and (3) the resonator bank, which has second-order resonators tuned to

frequencies corresponding to the resonances of the pipe.

These elements are connected in a cascade arrangement, forming a closed loop.

When the closed loop gain is sufficiently high, and the system is disturbed, the sys­

tem oscillates with modes governed by the tuning of the resonator bank. Typically,

the gain of the loop is controlled by the gain of the nonlinear element G. For small

values of G, the feedback is too small and the system does not oscillate. If G is

just large enough, the system oscillates with a pure tone as it operates in the nearly

linear range of the nonlinear element. If the nonlinear gain G is set to an even higher

value, the signal is increased in amplitude and is forced into the nonlinear region.

The nonlinearity shifts some energy into higher frequencies, generating a harsher,

louder tone.

In a typical application, the loop gain is set by controlling the nonlinear gain G

according to the velocity of a keypress on a pianolike keyboard. A slowly pressed key

corresponds to a small value for G and thus generates a soft pure tone. A quickly

pressed key corresponds to a larger value for G, and hence to a louder, harsher tone.

When the key is released, G is returned to some small value-one that is just under

the point where the loop gain is large enough to sustain oscillation. Because G is not

56

returned to zero, the signal dies out exponentially with time, with a tirne constant

that is controlled by the value of G used.

A small amount of noise is injected constantly into the loop, using the noise­

modulation section, so that the system will oscillate without an impulse being sent

to excite it.

This model has been used successfully for generating flutelike tones. It works

surprisingly well, considering that the tanh function is only approximated with a

cubic polynomial. The essence of the physical sound seems to be captured by the

combination of a nonlinearity in a feedback loop with a linear element.

In physical organ pipes, the nonlinear function is nonsymmetric-it is offset and

does not pass through the origin. The same effect can be achieved in our polynomial

function, and we have had great success generating sounds of various timbres.

In physical organ pipes, it has been observed that only the fundamental fre­

quency and a small number of harmonics survive the interaction of the jet with the

air column [FLETCHER 80]. This observation implies that, for high-frequency har­

monics, the pipe acts as a passive radiator, suggesting a modification to our model:

Not all the resonator outputs are summed and fed back to the nonlinear element,

but instead a subset is summed independently and behaves passively. Experiments

with this idea have yielded encouraging results. The system was much more stable

and controllable, producing a wider range of timbres than could be achieved before

the modification.

How do we control the frequency of oscillation? Let us consider the question

for a simplified version of our dynamic model. Intuitively, we may think that the

system should oscillate at the center frequency of the resonator. The intuition is

not quite correct. We will consider the case where the linear element is composed of

only one resonator and there is no noise modulation. Further, we will consider only

small-scale (low-amplitude) oscillations. From the Barkhausen criterion we know

that the system will oscillate at a frequency such that the phase around the loop is

a multiple of 27r radians and the loop gain is greater than unity. The phase around

the loop is attributable to the sum of the delay through each section:

<I> loop -- <I> fixed + <I> res + <I> nle'

57

where <I> fixed is the phase due to the fixed delay in samples, including the pure delay

through all of the elements in the loop. This delay is fixed in samples but varies in

radians with frequency such that

<})fixed = - N · ()'

where N is the number of samples, and () = 27f f / fs in radians per sample. <Pres is

the phase through the second-order resonator and is a function of Q, f c, and f, as

shown in the Section The Digital Resonator. <Pnze is the phase through the nonlinear

element and is 7f radians for G > 0, because the output of the nonlinear element is

negative for positive input and is zero for G < 0. Figure 2.21 shows a schematic

representation of the system with the proper phase delays and a block with a linear

gain of K, allowing positive K only, combining the various points of linear gain in

the loop. The nonlinear gain is denoted as G .

......
Yn Xn-N ,

\/

y G(x3 - x) Yn = 2RcosBcyn 1 - R 2
Yn-2 + Xn

/\

y = Kx /

"

Figure 2.21 Nonlinear oscillator.

The nonlinear function in this case has only a cubic (symmetric) component.

Because the only degree of freedom in the system with respect to phase is in the

resonator, it is clear that the system will find a frequency along the resonance curve

for the resonator such that the phase around the loop is 27T radians, assuming that

there exists sufficient loop gain. Given Q, fc, and the sign of G, it is possible

58

to find the frequency of oscillation by finding the point on the phase response for

the resonator where <Pzoop 0. Similarly, the minimum value for the product GK

can be calculated by finding the associated gain through the resonator, given the

oscillation frequency, then adjusting GK so that the loop gain is unity. Here we will

simply check the expected results against measurements of the working system by

calculating the loop gain and phase at a measured frequency.

Resonator parameters:
Q = 5

fc = 440

fs = 44057.

Gain parameters at minimun amplitude oscillation:

G = 0.5

K = 0.00056

GK= 0.00028.

Calculated resonator gain and phase at measured frequency:

<Pres 1.929 rad= -100.52°

Gain = 3592 .00 .

Fixed delay:

446.56
<f> fixed = 21 · 27f ·

44057
= 1.337 4 rad= 76.63° .

Calculated loop gain and phase:

<Pzoop 180° - 110.52° - 76.63° -7.15°

Gain = 3592.0 · 0.00028 - 1.0058 .

The phase delay is within 2% of that expected, and the gain is within 1 %.

Composite Model

Because both models contain several parts in common, they can be combined into

one structure, with the addition of an extra coefficient to control the feedback, as

shown in Figure 2.22. A detailed view of the composite model is shown in the form

of a computation graph for our computing engine in Figure 2.23. Each rectangle in

the graph represents the operation of add-multiply-delay and, optionally, mod 232
.

Jl

1

28

Jl

Attack
Section

Nonlinear
Element

59

Res.
Bank

feed back
control

~-------7 output

G

Figure 2.22 Composite instrument model.

12

18

21

24

Figure 2.23 Computation graph for composite model.

60

Chapter 3

A VLSI Architecture

In this chapter I present a computer architecture designed specifically for the finite­

difference computations used in generating musical sounds. Our computational task

is the real-time evaluation of the fixed computation graphs of the variety presented

in the previous chapter. In these graphs, each computation node is one or more

members of the set of operations: plus, times, mod 232 , and delay. Input to each

node is either the output of another node or an externally supplied coefficient.

Samples and coefficients fiow to computation nodes across the arcs of the graph.

Each processor in our computer is mapped to one and only one node and each

communication channel in our machine is mapped to one and only one arc. This

concept of a one-to-one mapping is a deviation from the traditional approach, in

which a single processor is time-multiplexed to perform the function of each node

sequentially, and memory is used to form "interconnect."

Architectural Overview

Our machine is structured as a number of inner-communicating chips, each respon­

sible for computing a piece of a computation graph. We assume that our task may

be organized such that somewhat independent subgraphs may be split off and solved

fairly independently in a small number of clustered chips (possibly just one), allevi­

ating the need for very high bandwidth between chips and between clusters of chips.

Musical sound synthesis has this locality property.

61

Figure 3 .1 shows a typical system configuration (many others are possible).

The chips are organized in a ring structure with each chip communicating to its

nearest neighbors. They are controlled by a global master, or host, that provides

initialization information and coefficient updates during the computation. The host

also provides an interface either to an external controlling device, such as a pianolike

keyboard, or to a disk file containing musical-score information.

Chip

......... &

········~·······

control and updates

, 1----::+ to DAC

~inter-chip data

_.o:. ·.,c;:.==11

Figure 3.1 Typical system configuration.

Each chip compnses three major pieces, as illustrated in Figure 3.2. An ar­

ray of identical processing elements responsible for arithmetic and delay operations

forms the first piece. The second piece is a buffer for holding coefficients supplied

by the host; these coefficients, with the outputs of other processing elements, serve

as operands for the processing elements. The third piece is an reconfigurable in­

terconnection matrix that serves all the chips communication needs; it connects

processing elements to one another, to the output of the coefficient update buffer,

62

and to input and output connectors of the chip. The exact patterns of communi­

cation are determined by setting switches in the matrix prior to the computation.

Throughout a computation, these switches remain constant, and thus the topol­

ogy of the computation graph is fixed; topology can be changed, however, between

computations.

Conn.
Matrix

serial
ports

IP Es

Update
Buffer

parallel
data

Figure 3.2 Chip organization.

address

Quantization Errors and Number Representation

Errors exist in our system due to the quantization of numbers used to represent sig­

nals and coefficients. Of course, it is the goal of every system designer to minimize

these errors. We needed to select a number representation (fixed versus floating,

number of bits) and a method of arithmetic that would reduce the effects of quan­

tization to a tolerable level.

63

Quantization of Coefficients. In signal processing systems, using a finite number

of bits for the representation of coefficients results in imprecise pole and zero place­

ment. In essence, coefficient quantization causes a system to exhibit a finite set

of behaviors. A problem arises because the behaviors are not evenly distributed.

Consider the second-order difference equation we used as a resonator:

Yn = 2R cos BcYn-1 - R 2
Yn-2 + Xn·

This system has a pair of poles that appear in the z-plane at z = RejBc and

z = Re-jBc. The system impulse response is a damped sine wave with frequency

and damping related to () and R. With R = 1, the impulse response is a sme

wave of constant amplitude; the system is an oscillator. The coefficients R 2 and

2R cos ()c may take on only a finite set of values; therefore, the poles may take

on only a finite set of positions in the z-plane. In a musical context this means

that only a particular set of frequencies and damping values are attainable. At

the extremes of frequency and damping, the attainable frequencies are very sparse.

To make matters worse, pitch is perceived as the log of frequency, further spreading

out the attainable frequencies in the low range. A small number of bits are not

enough to generate a frequency range with enough resolution to be musically useful.

In fact, human frequency discrimination has been measured at about 0.2 or 0.3%

[PICKLES 82]. To satisfy this tolerance for the fundamental frequencies of a piano,

generated using the second-order resonator as a test case, at least 24-bit fractional

coefficients are necessary.

Of possibly greater concern is relative frequency. Two tones that are meant to

have an exact ratio in their frequencies may generate beat frequencies because of

errors in the ratio due to quantization of coefficients.

From the second-order difference equation we have calculated the number of

bits of coefficient needed to satisfy accuracy constraints on the center frequency.

The heavy curve shows the number of bits of coefficient needed to satisfy a tol­

erance of 0.2% frequency discrimination. This tolerance is important for absolute

frequency discrimination. The lighter curve shows the number of bits needed to get

within 1 Hz of a given desired frequency. This curve is important for relative frequen­

cies, to maintain a minimum beat frequency of 1 Hz. The curves were generated by

effectively sampling the frequency (horizontal) axis and then incrementally increas­

ing the number of bits in the coefficient until the resulting center frequency for the

resonator came within the tolerance. The number of bits to satisfy a given tolerance

at any one particular frequency may be very small but in general the number could

be relatively large and is shown by the "staircase" shaped curves. Of course, the

number of bits, in both cases, goes up as the tolerances are made smaller. Also, the

curves move up slightly for smaller values of R.

Quantization Noise. Each time a digital multiplication is performed on two N bit

numbers, a 2N bit result is formed, and the result must be rounded (or truncated)

to fit within the N bit number representation. Rounding introduces a small er­

ror signal (less than one LSB). Some researchers have approximated this effect by

modeling it as a noise signal added to the signal at each multiplier in a system

[OPPENHEIM 75]. Although this model assumes that the error signal is a white-noise

sequence, is uniformly distributed, and is uncorrelated with the signal, it is probably

fairly accurate for signals as complex as those in music. Using this model, the effect

of quantization may be derived for various systems or filter forms. Oppenheim and

Schafer computed the variance of the output noise due to arithmetic rounding in a

second-order two-pole system. Using their result we have computed the output noise

for several values of center frequency and R, as shown in Figure 3.4. The values of

R were chosen to cover a wide range of values for the damping constant r. The sam­

pling frequency is the digital audio standard of 44057 samples/second. The output

noise level was computed in terms of the number of bits necessary to represent such

a level. From Figure 3.4 it is apparent that, for systems with long time constants,

at least 16 bits of each sample may be in error due to quantization; therefore, a

number representation with much more than 16 bits is necessary.

Limit Cycles. One type of limit cycle in digital systems results in deadbands,

or intervals of signal values around zero in which a system can experience self-

65

25

20

15

bits

10

5

O-+-~-l--+-...._.-+-+_.....~__..--1_,__._._,_._..._~_.__,__,_._41~1~1u1l~--'---11--Ll~l~l~l-'-'-'lll

10 100 1K 10K 100K

log frequency (Hz)

Figure 3.3 Effect of coefficient size on center frequency accuracy. The curves shown are for
a 2-pole second-order system with R 1.0. The heavy curve shows the number of bits
of coefficient needed to satisfy a frequency tolerance of 0.2%. The lighter curve shows the
same information for a frequency tolerance of 1 Hz.

sustaining oscillations because of rounding of state values [JACKSON 69]. As before,

we computed the effect in the number of bits for a second-order two-pole system.

The amplitude of the limit cycle in the second-order system is only a function of the

damping coefficient R. This amplitude (in bits) is plotted, with the curves showing

the quantization noise in Figure 3.4. Limit cycles are potentially a more harmful

problem than is quantization noise because limit cycles concentrate their energy at

a particular frequency unlike quantization noise that is more uniformly distributed.

These curves may be interpreted as bounds on the quantization noise and limit-cycle

#of
bits

66

30 ' ' II

dead band
------- 0 < f < f s

20 - ---------- - /27.5 Hz.

~~~~~~'§:~~~~~~~~~-~-~-~-~-~-~~~~~~~~~----55 --------- -::-110 
--- '"'-220 

10 ;;:-- -

0 
0.1 1.0 10 

T (sec) 

I 

100 1000 

Figure 3.4 Quantization effects. The solid lines show the amplitude of noise introduced into 
a two-pole system because of quantization. for several values of center frequency. The dash­
ed line shows the amplitude of limit cycles introduced because of quantization of state val­
ues. 

amplitude and used as a guide for choosing the number of bits to use to represent 

signals. From the curves, 16 or even 24 bits clearly are not enough. We have chosen 

a two's-complement representation that employs a sign bit, two integer bits, and 29 

bits of fraction. 

This analysis says nothing about composition of second-order sections or even 

other filter forms, but does treat an important case and gives a flavor for how bad 

quantization effects can be in general. 

The Processors 

Bit serial processing offers two attractive features for our application. First, the 

processing elements are physically small, so large numbers of them can be integrated 

on a single chip. Bit serial processing also facilitates bit serial communication, sim­

plifying communication channels; single wires can be used to interconnect processing 

elements. One potential drawback is the latency incurred with each operation-the 

time from the operand's arrival until the total answer's arrival at the output. In our 



67 

application, however, we want a delay at each processing step, so the latency is an 

advantage. 

Various bit serial multiplication schemes have been implemented and presented 

in the literature [LYON 76]. We wished to provide maximum processing power per 

unit chip area as was possible with current technology. Therefore, we chose the 

simplest multiplication scheme that met the constraints placed by standard digital 

audio rates. Our processor is a serial-parallel multiplier structure capable of one 

multiply-add-delay step per word time; we call it an inner product element (IPE). 

The multiplier structure is simple and therefore requires little space to implement 

in silicon [MEAD 85]. Inputs arrive one bit at a time, LSB first, and the output 

is generated one bit at a time. All inputs and outputs have the same number 

representation; therefore, there are no restrictions for interconnection of processors 

or the connection of coefficients. The processing element is described in detail in 

the section Processing Element. 

The Connection Matrix 

The connection matrix provides point-to-point communication between processors, 

from the update buffer and bidirectionally with the outside world. The matrix 

is programmable; the interconnection patterns within the matrix are not fixed but 

are changeable from external control, made possible by a storage cell located at 

each cross point in the matrix and circuitry to set the state of the storage cells. 

In addition to programmability, the connection matrix also takes advantage of the 

inherent locality in sound synthesis computations and is discretionary in the allow­

able interconnection patterns, saving in the chip area and providing for growth of 

the processing power of VLSI implementations. 

Figure 3.5 shows the basic structure of the connection matrix and its interface to 

the other components. Note that the horizontal wires, or tracks, are used to bring in 

signals from off-chip and to send signals off-chip, as well as to provide communication 

between processing elements. One possible configuration is to dedicate one track­

per-processing element output, which guarantees that any IPE can communicate 

with any other IPE. Such a configuration, however, grows as the square of the 



68 

number of processing elements; in musical sound synthesis applications, it is a waste 

of chip area. In Figure 3.6, we have mapped the computation graph in Figure 5 

onto the processor array by assigning nodes of the graph to IPEs and routing the 

interconnections, assuming that tracks could be broken arbitrarily. The assignment 

of processors to nodes in the graph was ordered from left to right across the array 

for consecutive number nodes. Clearly, all tracks have many breaks and there are a 

large number of small links and a relatively smaller number of larger links, and so 

on. In the modification shown in Figure 3.7, tracks no longer span the entire array 

of IPEs, but rather are split at one or more points along their lengths. There is one 

track of links for length 2, one for length 4, and so on, doubling the length of the links 

for each track until the entire length of the array is spanned in one link. The breaks in 

the tracks are arranged to avoid any two breaks lining up vertically, and consequently 

to maximize the potential communication between pairs of processors. This matrix 

grows as NlogN-rather than N 2 , as does the earlier version-thus saving area. 

The computation graph of Figure 2.23 has been mapped into the new structure, in 

Figure 3.8. The ordering of the nodes in the graph has been perturbed to make a 

better match. All but one network is routed in the modified matrix; one additional 

track is used to handle that network. 

serial 
ports 

t 
tracks 

-

' I ' 

D - IL IL ID c IL 1L 
- IPEs -

Figure 3.5 Basic structure of connection matrix. 



69 

Figure 3.6 Mapping of computation graph to processor array. 

----------------------------
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 

Figure 3.7 Discretionary interconnect matrix. 

Figure 3.8 Mapping of computation graph to modified matrix. 

It is not known what the optimum configuration for the connection matrix 

is, and what are the best algorithms for assignment of computational nodes to 

processors in the array. Although the assignment problem is NP-complete, heuristic 

algorithms that find the inherent localities in our applications perform very well and 

are aided through the addition of a few extra tracks in the matrix and few extra 

processing elements in the array. 

The Update Buffer 

The update buffer is simply a register bank to hold coefficients (that is, inputs to the 

processing elements supplied from the host computer). Input to the update buffer 

is a parallel connection to a standard computer memory bus. The outputs of the 



70 

update buffer are bit serial lines that run through the connection matrix to the proc­

essing elements. For maximum flexibility in the assignment of processing elements, 

no a priori correspondence is made between update buffer registers and processing 

elements; this assignment is made by programming the connection matrix. 

One important feature of the update buffer is that it is double buffered. Coef­

ficients can be sent from the host computer to the update buffer without affecting 

the ongoing computation. Only after all the coefficients of a new set of updates 

have arrived in the buffer, is a signal sent to update them simultaneously. If some 

coefficients were allowed to change before others did, instability could result. 

Empirically, we have found that our applications average about one coefficient 

per processing element. This fact defines the nominal number of registers in the 

update buffer to be the same as the number of processing elements, with a few 

spares to cover exceptional cases. 

The structure of the update buffer comprises two RAM structures laid one on 

top of the other (Figure 3.9). The first RAM is writable from the parallel input bus 

with a decoder that selects one coefficient (row). The second RAM is readable one 

bit (column) at a time, all coefficients being read simultaneously. A select signal 

cycles through the columns of the second RAM one bit. at a time, sending the bits 

of the registers to the output, LSB first. Under control from the host computer, 

a transfer signal copies the contents of the first RAM to the second one. 



bit 
select 

word ___________ J __ 
select : 

71 

. . . . 
---------r-----------~---

input data 

~ N bits --

Figure 3.9 Dual ram structure of update buffer. 

Processing Element 

The structure and function of the IPE is apparent from examining long-hand mul-

ti plication. 

b3 b2 b1 bo B 
x m3 m2 m1 mo M 

mob3 mob2 mob1 mobo 

m1b3 m1b2 m1b1 m1bo 

m2b3 m2b2 m2b1 m2bo 

m3b3 m3b2 m3b1 m3bo 

YG Y5 Y4 Y3 Y2 YI Yo y 

Two operations are being performed-every bit of the multiplier Mis multiplied 

by every bit of the multiplicand B, and the resulting partial products are summed 

together. 

Many architectures exist for performing multiplication, covering the full range 

of tradeoffs between the number of components (area in VLSI implementations) and 

speed. A simple view of the tradeoff is seen by contrasting a single serial full-adder 

scheme to a parallel multiplier. The single full-adder scheme has a minimum of 

components (one full-adder and one carry flip-flop) but requires n 2 operation steps. 



72 

At the other end of the tradeoff space are parallel multipliers; they generate all 

n 2 one-bit products simultaneously and thus minimize the time needed to perform 

the multiplication at the cost of n 2 components. 

The other major issue in a parallel computer architecture such as ours, is the 

form of the data communicated between processors. In a VLSI implementation, 

when a large number of processors are interconnected, anything other than single 

wire interconnections is prohibitive. The form of communication does not necessarily 

need to correspond to the number representation for processing, but conversion 

between representations increases system complexity. 

In sound synthesis, a bit-serial scheme fits naturally in the appropriate place in 

the area-speed tradeoff space and allows easy communication between processors. 

It uses O(N) full-adders and operates in O(N) time. Many schemes fit into this 

category. Lyon developed some "bit-serial pipelined" multipliers that function in 

N-bit times and work with two's-complement numbers [LYON 76]. He also developed 

a scheme to use a modified Booth encoding to reduce the number of stages required. 

Our objective was to develop a processor with minimal area but that met the rather 

modest speed requirement of digital audio synthesis (50 K samples/second). 

Serial-Parallel Multiplier 

A scheme that uses N full-adders is shown in Figure 3.10. It is commonly referred to 

as a serial-parallel multiplier. The multiplicand B is supplied in parallel form and 

the multiplier M is broadcast bit-serially to all stages. Each stage contains a full­

adder, a carry flip-flop, and a delay element for passing values from stage to stage. 

For N 4, the multiplication procedure begins by broadcasting mo and generating 

the partial product (mob3 mob2 mob1 mobo). Next, mi is broadcast to generate 

(m1b3 mib2 mib1 mibo). Simultaneously, the last partial product generated is 

shifted one stage to the right and summed with both the new partial product and the 

carry bits from the last operation. After mo through m3 have been broadcast, the 

result bits Yo through y3 have been generated. A sequence of four zeros is broadcast 

and the high four bits of the result are generated. The entire multiplication operation 



Serial 
Input M 

Serial 
Input M 

73 

Parallel Input B 
MSB 

bN-I 

Figure 3.10 Serial-parallel multiplier structure. 

LSB 

bo 

Product 

requires 8 cycles to multiply two 4-bit numbers and in general requires 2N cycles 

to multiply two N-bit numbers. 

During the multiplication, at every step, each stage receives a bit from the stage 

immediately to its left and adds the bit to the one-bit product and the previous carry. 

Stage N - 1, however, has no stage to its left. The input to stage N - 1 is supplied 

externally from input A. The input need not be 0, in which case the input A are 

added to the high order N-bits of the result Y. 

Serial Input for B 

The first modification to the multiplication structure allows B to be shifted into the 

array serially. A holding register and a shift register as in Figure 3.11 is added to 

the multiplication structure. The multiplicand B enters the shift register LSB first 

and is shifted until the MSB is about to enter; then the LDB signal transfers B to 

the register used in the multiplication. Note that B must enter the array one word 

cycle before M and A to ensure its existence for the LSB of M. 

Extension to Two's Complement 

The scheme described above works correctly for positive numbers only. We have 

adopted a two's complement number representation and extended the basic serial­

parallel multiplier structure to handle two's complement numbers correctly. 



Serial 
Input B 

74 

Figure 3.11 Shift register and holding register for B. 

The first extension allows the multiplier M to be negative. As already noted, 

the N-bits of Mare used to generate the result bits Yo through y3, after which four 

more bits, presented as 0, are broadcast to the array. Correct operation for two's 

complement numbers results from sign extending M to 2N bits and broadcasting 

all 2N bits. Note that for positive numbers, zero is the sign extension. 

The second extension allows the multiplicand B to be negative and is more 

complicated. All two's complement numbers are represented as: 

N-2 

B = L bi. 2i - bN-1. 2N-1. 

i-0 

Note that the MSB of B, bN_ 1 , carries negative weight, meaning that the N- lst 

stage in the array must subtract its product mibN_1 , whereas all other stages add 

their product. Therefore the full-adder and carry bit of stage N - 1 become a 

full-subtractor and borrow bit. A full-subtractor is formed from a full-adder by 

inverting the subtrahend input to form the augend for the full-adder and inverting 

the sum to form the difference. This technique for modifying a full-adder to form a 

full-subtractor is particularly simple when dual-rail logic is used, since inversion is 

achieved simply by exchanging rails. The resulting modification in stage N 1 is 

shown in Figure 3.12. 

Standard Fixed Point Number Representation 

One goal in the design of our system is that one singlle number type is sent both 

from processor to processor and to and from the outside world. It is simplest to 



Serial 
Input A 

75 

to stage N-2 

Figure 3.12 Modified stage 1 for two's complement. 

use an integer-based number representation from the point of view of a hardware 

designer. However, the burden is shifted to the user, who must assure that scal­

ing (shifting) operations are performed periodically to keep numbers within range. 

We have adopted a fixed-point number representation composed of a sign-bit, 2 

integer bits, and 61 bits of fraction: sxx.xxx · · · x. The word cycle for the IPE is 

64 bits, and a 64-bit result is formed, although for simplicity only 32 bits of input 

are used. Usually the low-order 32 bits are ignored. Several shift registers acting as 

delays are needed to align inputs to the multiplier structure properly. 

A---- 32 x .6.. A* 

M 32 x .6.. M* +/- y 

B* 
B 

Figure 3.13 IPE with appropriate delays on inputs. 

Figure 3.14 shows the timing diagram for one complete IPE operation. During 

the first half of the word cycle, the high-order output bits from the previous opera­

tion leave the array, B enters the array and is transferred to the holding register, 0 is 

entered at the A input, and M is sign-extended for the previous operation. During 

the second half of the word cycle, B is ignored, M is broadcast to the array, the bits 



76 

of A enter the left-most stage and are summed ultimately with the high bits of Y, 

and the low bits of the result Y leave the array. In normal operation, the timing 

diagram of one IPE is abutted with that of another so that the high bits of Y leave 

one IPE as the other requires input. 

The delay from the time that the inputs enter the IPE until the high 32 bits 

of the result leave the IPE is 64 bit periods-one word-time delay. Therefore, the 

function of the basic IPE is expressed as: Y = (A+ BM)z-1 . 

M 
A in puts 

B 
sign-extend M* I 

B* A* I 
delayed inputs 

'-------=-----'-----~---' output 

word cycle 

--7 time 

Figure 3.14 Input and output timing for the IPE. 

Computing the Mod Operation 

The IPE generates 64-bit results, but usually only the top 32 bits are used as inputs 

to other IPEs; however, the low bits of the result are not always discarded. Taking 

the low n bits of a number with greater than n bits results in mod 2n. The mod 

operation is useful in sound synthesis applications. For example, the expression 

Yn p · mod 2n + q generates random samples for the proper choice of p and q 

[KNUTH 68]. 

In our system, if the signal that loads B into its holding register comes one-half 

word-time earlier, then the low bits will be loaded into the holding register rather 

than the high bits and the result will be mod 232
. A bit of state is supplied from 



77 

the connection matrix to each IPE and is used to determine the time when the load 

B (LDB) signal will occur, and consequently if B or B mod 232 is loaded. 

Linear Interpolation 

Linear interpolation is a function that is useful in musical sound production for a 

variety of purposes, including the mixing of sound streams, implementing ladder 

filters, and approximating delays and waveforms from tables. Any multiplication 

scheme can be modified to perform linear interpolation with very little increase in 

complexity. We will demonstrate a modification to our basic serial-parallel multi­

plier structure to enable the computation of the linear interpolation between the 

input B and a new input D, using M as the constant of interpolation. The new 

function computed is Y A+ MB+ (1 - M)D. 

First, let us assume that M is a number in the range from 0 to + 1.0--in our 

standard number representation: OOO.mN_ 4mN_3 ···mo. For this case, it is true 

(or we can force it to be true) that M + 1.0 = M. We enforce this equality by 

forcing any bits to the left of the binary point to zero. Using the above fact and 

the definition of two's complement numbers (- M = M + 2-b, where b = number of 

fractional bits), we derive an identity involving M, the one's complement of M: 

M+l=M 

M=M 1 

-M 1-M 

M +2-b = 1- M 

M 1- M 2-b 

M~ 1-M. 

Therefore, the value 1 - lvf needed in the interpolation may be approximated 

by M; and they differ by only one LSB. For large word size and most applications 

the approximation is probably close enough. It enables the computation of linear 

interpolations with a simple modification to our multiplication structure. At each 

stage in the multiplier a two input AND-gate is used to compute the product mjbi, 

leading to the product BM. The product DM can be generated by computing the 



78 

one-bit product mjdi at each stage. In fact, both one-bit products can be generated 

simultaneously at each stage by replacing the AND-gate with a multiplexer that 

chooses between b and d based on m, as shown in Figure 3.15. Of course, a holding 

register for D is also required. 

Figure 3.15 Modification to multiplier 
stage to enable linear interpolation. 

In systems where the number representation includes nonfractional bits, to sup­

port linear interpolation the property M + 1.0 = M must be maintained explicitly 

by a modification to the multiplexer function. The structure shown in Figure 3.16 

provides the proper function by forcing the M input to both gates to zero dur­

ing the time that the nonfractional bits of M are broadcast to the array of stages. 

The control input C is high during the time the nonfractional bits of M are being 

broadcast, and low otherwise. 

bJ 

Figure 3.16 Multiplexer circuit for linear in-
terpolation. This circuit ensures correct op-
eration for number representations with non-
fractional bits. 



79 

System Level Organization 

Orchestra Model 

How do we organize chips of processing elements, update buffers, and connection 

matrices into usable systems? Musical instrument models are structured as a num­

ber of intercommunicating chips, each chip responsible for a piece of a computation 

graph. We assume that the graph may be organized such that the communication 

between subgraphs is small, and thus the graphs may be split off and solved inde­

pendently, alleviating the need for high bandwidth between chips. Sound synthesis 

algorithms have this locality property. Figure 3.1 shows one of many possible system 

configurations. The chips are organized in a ring structure with each chip commu­

nicating to its nearest neighbors. They are controlled by a global master, or host 

(conventional microprocessor system) that provides initialization information and 

coefficient updates during the computation. The host also provides an interface 

either to an external controlling device, such as pianolike keyboard, or to a disk file 

containing musical score information. Many other choices for system configurations 

are possible, for example, grid connections and binary n-cubes. Since single wires 

provide interchip communication, a relatively large number of inputs and outputs 

may be provided with each chip. 

What happens as we add more instruments models to our system? The sim­

plest way to add more instruments to our system is to add more chips to the ring 

structure shown in Figure 3.1. The interchip communication lines are used to com­

municate results from one instrument to the other and provide some flexibility in 

assigning instrument topologies to processors-chips. The host now has the addi­

tional responsibility of providing coefficient updates to the additional instruments. 

Although instruments compute their sounds independently, their output streams 

sum to form composite musical sounds, therefore, communication between instru­

ments is needed. The most practical way to achieve this is to cascade instruments 

in such a way that each instrument adds its output to the stream and passes it on 

to the next. 



80 

As the number of instruments and the number of chips grow, the ratio of the 

number of coefficients supplied by the host to the cycle time of the host-memory 

system increases to a point where the host cannot keep up in real time. This effect 

is quantified by examining system performance metrics. The first metric is latency: 

the time from a user action to the time that an effect is heard at the output. An ob-

vious example is the time from the point when a note event is triggered to the time 

the associated sound is heard. The second measure of system performance is the sus­

tained note rate: the total number of notes (for all instruments) per second. In our 

simple system configuration, latency is the most demanding of the two requirements 

and is determined by the time it takes the host to generate coefficients and transfer 

them to the processor chips. Let's say, for example, that our orchestra includes 100 

instruments, each capable of generating one voice at a time.* A conservative max­

imum allowable interactive latency is 10 ms. Our orchestra is composed of "high 

quality" instruments, so we assume that on the average each instrument uses 100 

coefficients. From these assumptions we can compute the maximum communication 

bandwidth needed between the host and the processor chips: 

100 instruments x 100 coefficients instrument 
1 Million coefficients per sec, 

lOms 

where coefficients are 32 bit numbers. This conservative communication bandwidth 

estimate is comparable to the processor-memory bus speed on current computers. 

However, this calculation accounts only for the transfer of precomputed coefficients. 

In practice, interactive user input will alter the values of some coefficients. If we 

assume that our host is capable of 4 million instructions per second (MIPS), and 

that each computed coefficient requires an average of 100 instructions, our host can 

compute about 40 thousand coefficients per second and only about 40 coefficients 

within one latency time! This rate is clearly insufficient for 100 instruments. There­

fore, coefficient computation is likely to be the limiting factor in the growth of our 

system. 

* We make the distinction between instrument and voice. (Some instruments are multi-voiced, 
for instance, stringed instruments, and others are single-voiced, woodwinds, for example.) 



81 

Both the coefficient communication bandwidth and the coefficient's computa­

tion bandwidth demands may be relieved by reorganizing the system in a way that 

reflects the natural structure within a real orchestra. Figure 3.17 shows such a 

structure. Voices are grouped together around a local host. Within a voice-group, 

voices work together to simulate multi-voiced and single-voiced instruments. Voices 

communicate bit-serially among themselves either within a chip or between chips 

as before for interactions between voices of a multi-voiced instrument and simple 

summing of instrument outputs. The master controller is a host computer roughly 

equivalent to the conductor of the orchestra. The idea is that the conductor-host 

interprets the score information coupled with real-time user input and passes on 

high-level information to the appropriate voice groups. The voice-groups each in­

terpret the high-level information in the local context of an instrument model and 

instrument groupings. Communication between voice-groups is necessary only for 

summing the outputs of the instruments. It is advantagous to group together in­

struments that react to common control information, sharing computation. 

Within the interpreter of score information is some model of the musician as 

well as of the instrument. The idea of interpreting a standard score representation 

in the context of player functions and instrument models is developed by Dyer in 

[DYER 87]. Some user functions, such as vibrato, may even be computed in the UPE 

chips. 

The amount of real-time control output a user can generate is limited and 

bounds the amount of control bandwidth needed between the conductor-host and 

the voice groups. One way to use the system is as a performance instrument, 

where note events for all instruments are generated on the fly. This situation is 

not very likely to happen in practice, however, because it is difficult to see how 

any one person could play all the instruments of an orchestra single-handedly. A 

much more likely situation is a mixture of live performance with pre-existing score 

information. We envision the system being used to develop a score interactively, 

layering one section of instrument scoring at a time on top of previously generated 

scores. This case is handled by either downloading pre-existing score information to 

each voice-group before the performance (if enough local memory is available), or by 



interactive 
input 

UPE Chips 

82 

"conductor" -host 

voice-groups 

score 
information 

Figure 3.17 System configuration for orchestra simulation. 

~to DAC 

using the relatively low-communication bandwidth time between note events to pre­

send time-tagged note events. At performance time (runtime) the host broadcasts 

real-time control information derived from user interaction. The real-time control 

information includes tempo information (timing) and modifiers (accents, etc.) in 

additional to note events for instruments without a pre-existing score. 

Keyboard Instruments 

Keyboard instruments and pianos in particular lend themselves to a special system 

level organization. These instruments are typically composed of an array of strings 

(or set of strings) all stretched across a common bridge that is allowed to move up 

and down, transferring energy to the sound board. Striking a key on the keyboard 

excites one string and thus the bridge and soundboard, which, in turn, influences 

the other strings. In our system organization, each string, along with the hammer 

mechanism, is treated as loosely connected parallel voices. A small number of chips 

are used to generate each voice. A few extra chips are used to compute global 

coupling through the bridge and the sound board. As a consequence of all strings' 

sharing a common bridge and sound board, every voice in our implementation con­

tributes to the bridge and sound board computation and receives feedback. In the 

case of the piano, most coefficients remain constant and need not be rewritten to the 



83 

chips at each note. A global host is used to provide key-force dependent and pedal 

dependent coefficients to each voice, as these are the only coefficients that need to 

change on a per-note basis. The system may be used as a general synthesizer with 

one or more voices per key when not simulating a piano. 

UPE 
Chips 

Figure 3.18 System configuration for keyboard 
instrument. 



84 

Chapter 4 

VLSI Implementation 

This chapter presents a new form of CMOS logic design and applies it to the im­

plementation of our computing engine used in sound synthesis. Also presented are 

some details of an nMOS implementation of the processing element. 

A number of logic forms and clocking schemes for CMOS integrated circuits are 

in common use. The most common logic form consists of two networks of transistors, 

the gates of which are connected to the input variables. An n-channel network 

defines the Boolean condition under which the output is connected to ground (logic 

zero). A p-channel network defines the complementary condition under which the 

output is connected to a logical one. Because, in many CMOS processes, the output 

of a single pass-transistor cannot be guaranteed to exceed the logic threshold of a 

typical inverter, either pass-transistor networks are forbidden or a complementary 

transmission gate employing both p- and n-channel devices is used. 

Clocking schemes for CMOS currently offer tradeoffs over a wide range in risk 

versus efficiency space. In one scheme, a single-phase clock and its complement are 

distributed and are used to control either transmission gates or transistors control­

ling power to the p- and n-channel switching networks. Proper operation in either 

case requires that the logic delay of the stage exceeds the skew between the two 

clock lines. In a much safer approach, a two-phase clock is used, both the clock and 

its complement being distributed for each phase. In this case, risk is eliminated at 

the expense of doubling the clock wiring. Yet another form is popular in gate-level 



85 

designs. A single clock is distributed and is locally inverted at master-slave stor­

age elements. Risk in this case is eliminated at the expense of a minimum storage 

element employing ten or more transistors. 

In this chapter, I describe a logic form that retains much of the simplicity, 

elegance, and compactness of the familiar two-phase nMOS form, with the added 

advantage of fully static operation. Formal semantics for circuits implemented in 

this form is easily derived without detailed circuit- or switch-level simulation. 

Complementary Set-Reset Logic 

A shift-register stage in complementary set-reset logic (CSRL) is shown in Fig­

ure 4.1. In this and all other examples, I use n-well technology to illustrate the 

principles. The circuits for p-well technology are identical, provided the p- and n­

channel devices are interchanged, and the power and signal voltages are changed 

from positive to negative. With this convention, the same physical masks can be 

used to fabricate a design in either technology. 

¢1 >-------u 

d 

d 

¢2 >------·{] 

'--~-+-~+-~~-+-~+--+q 

r--~-t-~+-~~-t--~+--7q 

Figure 4.1 CSRL shift-register stage. 



86 

Signals are two-rail; both the data and its complement are represented. As <P2 

rises, the power supply to the second stage is limited by the upper p-channel power­

down transistor. By the time </>2 reaches the threshold of the two pass-transistors, 

the current to the second flip-flop is limited to about one-half the maximum that 

can be supplied when the clock is low. For this reason, the first stage, which is fully 

powered up, can force its state into the second one as </J2 rises. Similarly, the second 

stage can transfer its contents into the following stage on the rising edge of ¢1. 

Unidirectionality of the transfer is guaranteed by the association of the power-down 

transistor with the receiving stage, and the mutual nonoverlap of the clocks. 

The dynamics of a transfer is shown in Figure 4.2. The interesting case, il­

lustrated in both the panels, occurs when the new data bit is different from the 

previously stored data bit. During the <P2 period, the signal rail labeled q discharges 

toward ground and the q rail charges toward Vdd· The rates are limited by the ca­

pacitances of the nodes and the resistances of the pass-transistors. After a time t1, 

the two voltages are equal. The clock </>2 returns to zero at time t2. If t2 > t1, as 

shown in Figure 4.2(a), a successful transfer results. There is no need to wait for 

the two signal rails to pass any absolute threshold. Each flip-flop can be viewed as a 

sense amplifier with very high differential gain. The sense-amplifier action will fully 

restore both data and complement as long as their relative values are of the correct 

sign when the clock falls. Figure 4.2(b) illustrates an attempted transfer in which 

the falling edge of the clock preceded the time t1 at which the two signals became 

equal. Under these conditions, the signals return to their previous values, and the 

transfer fails. The time t1 thus represents the minimum time the clock must be 

high and thereby limits the maximum frequency of operation. At all times, at least 

one clock is low, and hence at least one flip-flop has power; therefore, the CSRL 

shift-register is fully static. 

Multiplexer Functions 
There is a class of functions that can be implemented by merely routing one of several 

sources of data to a given stage. The most familiar example, shown in Figure 4.3, 

is the exclusive-OR (XOR). In this figure and in all other circuit diagrams, I use a 



87 

6 

4 

(volts) 

2 

0 

-2 
0 10 20 30 

( ns) 

(a) 

4 

(volts) 

2 

0 q 

-2 
0 10 20 30 

t2 (ns) 

(b) 

Figure 4.2 Data transfer in CSRL shift-register. Spice simulation of data transfer in 
shift-register shown in Figure 4.1: (a) successful transfer; (b) unsuccessful transfer. 

rectangle to represent a CSRL flip-flop (one-half of the shift-register stage shown 

in Figure 4.1). Here, the data are passed unchanged if the control signal is a zero, 

or data are interchanged with their complements if the control signal is a one. 

The dynamics of a transfer is identical to those shown in Figure 4.2, except for the 

lengthening of t 1 because of the higher resistance of the string of pass-transistors, 



88 

their gate-channel capacitance, and the capacitance associated with their sources 

and drains. Once these capacitances exceed those associated with the flip-flop, the 

time t 1 increases as the square of the number of series elements. 

d 

FF FF 

d 

b b 

Figure 4.3 Exclusive-OR (XOR) circuit. Data are routed from one 
CSRL flip-flop to another. 

Generalized Form 

The most interesting property of CSRL is that it can restore signals reliably from 

very small differences. We can take advantage of this property to simplify greatly 

the design of sequential logic. A general sequential form is shown in Figure 4.4. 

The two switching functions, labeled SF1 and SF2 in the figure, are general series­

parallel networks of n-channel transistors. Gate signals cannot come from within 

the networks themselves; they are inputs from other CSRL stages clocked on the 

opposite phase. Each switching function is formally defined as the Boolean condition 

on input variables under which there is an electrical path (through "on" transistors) 

connecting its two terminals. In this form, there is no possible path from either input 

to a logic one. If SF 1 is true, there will be a path from the upper rail to ground. 

If SF2 is true, there will be a path from the lower rail to ground. If neither switching 

function is true, there will not be a path from either rail to ground. If the stage 

is storing a logic one (upper rail high) and SF 1 becomes true, the upper rail will 



89 

discharge to ground during the clock high period. By the falling edge of the clock, 

both rails will be low. The proper operation of the stage depends on a gradual falling 

edge on the clock. As the clock begins to fall, current flows through the power-down 

transistor into both p-channel devices in the flip-flop. Both rails begin to charge 

toward Vdd· The upper rail, however, has a path to ground through SF1. It loses 

some of its charge through this path, because the pass-transistors are still on. If the 

charge lost through this path is greater than any residual difference in voltage left 

over from the previous state, the lower rail will dominate in the race for charge and 

will cut off the upper rail's supply. Once again, the sense-amplifier action changes 

a difference in charging rate into a reliable and unambiguous decision. 

'-----+--+------+--+--~ q 

'----+--.._----+--.._~q 

Figure 4.4 General sequential form. 

The proper operation of the circuit of Figure 4.4 is shown in Figure 4.5. For this 

example, both switching functions consisted of four transistors in series. To test the 

circuit under worst-case conditions, all transistors but those closest to ground were 

turned on, and the nodes between them were charged to the previous state values. 

The bottom transistor in SF1 was then turned on and the clock period was initiated. 

In Figure 4.5, the residual charge keeps the bottom rail below the top rail throughout 

the clock rising edge and steady high period. As the clock begins to fall, the path 



90 

to ground reduces the rate at which the top rail can rise. The bottom rail starts 

from behind but wins the race. For longer clock-fall times, the crossover occurs at 

lower voltages, and margins improve markedly. 

6 

------, </> 
' ' 4 ' 

(volts) 

2 

0 
q 

-2 
0 10 

( n s) 

' ' ' ' ' ' 

20 

' ' ' 

' ' ' ' 

30 

Figure 4.5 Spice simulation of operation of general form. The state of 
the flip-flop is reversed by connecting the top rail to ground through S F1 
and pulsing cf>. 

There are four possible combinations of the two switching functions. The out­

come when both are true is not defined. The outcome when both are false, however, 

is reliably the previous value. The time during which the circuit must store its 

previous state dynamically on the capacitances of the flip-flop internal nodes is only 

the clock high time. This value is freshly restored each clock cycle. The circuit is 

fully static when the clock is low. Charge sharing between the flip-flop nodes and 

the nodes in the switching function networks is possible, as mentioned. If the clock 

rise is gradual, the effects of charge stored in the switching function networks can be 

eliminated. As the clock rises, both pass-transistors turn on before the power-down 

transistor turns off. Any stored charge reachable from the flip-flop nodes will be 

charged to the current state. Because the inputs come from stages clocked on the 

opposite phase, they are stable during the entire clock event. Hence, any nodes not 



91 

charged to the current state will not affect the flip-flop nodes, because they can­

not be reached. This line of argument constitutes a proof that, given enough time, 

the flip-flop state cannot be changed unless one of the switching functions is true. 

Modification to General Form 

Reliable operation of the general, or set-reset, form of the flip-flop relies on the 

edge of the clock's falling gradually. If the clock falls too quickly, as current flows 

through the power-down transistor into both p-channel devices, the rail connected 

to ground through the switching function (SF) will not lose sufficient charge through 

the SF to allow the other rail to rise to a higher voltage. For reliable operation, 

there must be sufficient time when both the p-channel power-down transistor and 

the n-channel pass-transistors are on. Another potential problem exists-the node 

that is not connected to ground through the "on" SF is pushed to a value below 

ground on the falling edge of the clock because of the capacitance coupling between 

the gate and drain regions of the pass-transistor. This effect is evident in Figure 4.5 

as a downward bump in the trace, representing the bottom rail during the falling 

edge of the clock. Because of this capacitive coupling, the bottom rail must change 

by a larger voltage before the two rails cross and allow the flip-flop to change state. 

The capacitive effect ensures that, when the clock falls too quickly, the flip-flop will 

not change state. 

The dependence of correct operation in the general form on a gradually falling 

clock edge is eliminated by a simple modification to the circuit of Figure 4.4. Two p­

channel load devices are added, each one connected from one input node of the flip­

flop to Vdd> as shown in Figure 4.6. (In an alternate modification the internal nodes 

of the flip-flop are connected to Vdd through two p-channel transistors.) The gates 

of the two new transistors are connected to a voltage (Vb) that puts the transistors 

near threshold; the transistors supply a small amount of current (~ 10-G A) to the 

input nodes because of subthreshold conduction. Figure 4.7 shows the operation 

of the modified circuit. The node that is connected to ground is not significantly 

affected by the new source of current-the current is simply shunted to ground, 

wasting a small amount of power. When the clock is high, the node that was left to 



92 

float in the unmodified circuit now begins to rise in voltage because of the current 

supplied by the load. The two rails cross in voltage without a gradually falling clock. 

The clock may fall instantaneously, restoring power to the circuit and allowing the 

two rails to snap to the saturated values. 

SF2 

'------'1-----4...--+-~ q 

'----+---<•----;1---..-~q 

Figure 4.6 Modified general form of flip-flop. Two load transistors are 
added. 

----~----------------, 
I 

4 

(volts) 

2 

q 

-2 '----~~~~~~~~~~~~~~~~~~~~--' 
0 10 20 30 

( ns) 

Figure 4.7 Operation of modified general form. The two rails cross with­
out a gradually falling clock. 



93 

In addition to eliminating the circuit's dependence on a gradually falling clock 

edge, the two load devices aid in the static operation of the flip-flop. Previously, 

the circuit stored state dynamically on the capacitance of the flip-flop's internal 

nodes when the clock was high and neither SF was on. The load devices perform as 

pull-ups for the cross-coupled n-channel pull-down networks, forming a stable static 

configuration. 

Semantics 

The semantics of a CSRL stage after the clock event can be written in terms of the 

two switching functions, as follows: 

The semantics assume that the outputs of the stage are used only after the 

trailing edge of the clock pulse. They do not, however, describe an interesting 

property of the stage that is exploited in some applications. When the flip-flop is 

changing state, both nodes are discharged while the clock signal is high. There are 

thus output transitions on both the rising and falling edges of the clock signal. 

The semantics of the CSRL stage has been used as the basis of a simple func­

tional simulator for circuits designed in the CSRL discipline. The simulator was 

based on the work of Chen on fixed-point semantics and system behavior [CHEN 83]. 

In most cases, detailed waveforms of circuit operation are not necessary and the 

functional simulator suffices. 

CMOS Implementation of the IPE 

Each inner-product element (IPE) consists of 32 stages: 0, 1, ... , 31. There is one 

simple stage for each bit in the multiplier word B, applied as an input to the IPE. 



94 

The three clocks, ¢1, ¢2, and ¢3, along with the control signal loadb, are distributed 

to all stages. 

A detailed view of one stage is shown in Figure 4.8. Each stage contains an AND 

function for one bit of multiplication, a flip-flop for one bit of storage for the carry, 

a flip-flop for one bit of the multiplier word B, and a three-input adder to sum the 

output of the preceding stage (or the input A in the case of the first stage), with 

the I-bit product and the carry from the last I-bit multiply. At each bit time, the 

output of each adder, ai+I, contributes to one bit in the final result A+ (M x B). 

The detailed operation of the IPE was described in the previous chapter. 

b 

1>1 

</>c--~ 

1>2----~ 

b 

Figure 4.8 Detailed view of logic and timing of IPE stage. 



95 

The IPE has been implemented usmg the CSRL design discipline described 

previously. In the CSRL realization of the stage, every flip-flop is implemented as 

one-half of the shift-register stage shown in Figure 4.1, and the logic functions are 

implemented as parallel and series connections of n-channel transistors. This ap­

proach results in a fully static circuit with far fewer transistors than are in a more 

conventional static CMOS design, using D-type flip-flops and logic gates. The use 

of CSRL flip-flops simplifies the logic design by allowing the use of pass-transistor 

structures with transistors of all one type. 

In each clock cycle of the multiplication and addition operation, each stage of 

the IPE computes a 1-bit partial product, to be passed on to the next stage, and a 

carry bit to be used during the next clock period. The well-known truth table for 

this operation for stage £ at time j is shown in Table 4.1. 

Table 4.1 Truth table for full-adder. 

a· t bmi c· J ai+I Cf+l 

0 0 0 0 0 
* 0 0 1 1 0 

0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 

t 1 1 0 0 1 
1 1 1 1 1 

By inspection of the table we write the algebraic equations: 

(1) 

(2) 

where EB is XOR, V is OR, and /\ is AND. We can write the equation for carry by 

noting the conditions of the input variables under which Cf+l +-- 1. Alternatively, 

it is possible to write the conditions where Cj+l =f. Cj· In particular, we write one 

expression where the carry bit is cleared (reset), ai /\ b /\mi; and another where 



96 

it is set, a /\ b /\ m. These conditions are marked by * and t in the truth table. 

In all other cases, the carry bit remains unchanged. The expressions for carry set 

and carry reset map directly into series-parallel networks of n-channel transistors 

used in CSRL. For layout reasons, I chose to implement the carry set expression as 

~ /\ (b V m), and the carry reset expression as a/\ b /\ m, rather than to use gates to 

generate b /\ m and its complement. The circuit diagram is shown in Figure 4.9. 

a b m 
_L _L _L 

c· J 

m 
FF _L 

cj 

-:- T 
b 

Figure 4.9 IPE carry circuit implemented using the general 
sequential form. 

The sum express10n given m Equation 1 is an XOR of three variables and is 

implemented using two of the four-transistor XOR circuits presented earlier. Fig­

ure 4.10 shows the XOR circuit with a minor modification used to generate one-half 

of Equation 1. As in the carry circuit, the product b/\m is generated locally by using 

a series connection of two n-channel transistors. One transistor is controlled by the 

signal b and the other is controlled by the signal m. The complement of the product 

b /\mis generated using a conventional CMOS style NAND gate. The NAND output 

could have been used in the carry circuit to save a transistor, but simplified wiring 

was a more important concern and led to this combination of choices. One more 

XOR circuit shown in Figure 4.3 is used to complete the computation of ai+l · In 

this application, the simple four-transistor XOR circuit is used. 



97 

a 

FF FF 

b m 

Figure 4.10 !PE sum circuit implemented as a multiplexer circuit. 

CMOS Implementation of the Connection Matrix 

The connection matrix is primarily a two-dimensional array of flip-flops control­

ling pass-gates that connect the horizontal and vertical paths through the matrix. 

The perimeter of the array includes buffers to drive signals through the matrix 

and logic for loading the state of the flip-flops. Each flip-flop (FF) and pass-gate 

combination, called a crosspoint, is implemented with a CSRL storage element, as 

shown in Figure 4.11. The matrix is organized as rows of crosspoints that span the 

entire array of IPEs and the update matrix. Within each row, one crosspoint is 

provided for each IPE input and output, and one for each update buffer output, as 

in Figure 4.12. An entire row of storage elements is loaded at once by driving the 

appropriate values on the d and d lines, then strobing the load line for the entire row. 

Storing a one in a FF results in a conducting path between the horizontal wire H 

and vertical wire V. 



98 

d d v 

--1------ -----------LD 
I 

Figure 4.11 Connection matrix crosspoint 
cell. Storing a one in the FF connects the 
V wire to the H wire. 

connections to IPEs and update buffer 
off-chip connections 

Figure 4.12 Details of connection matrix. 

decoder 

The row data are shifted in from off-chip serially with a shift-register, driven to 

all rows of the matrix for loading, then sent off-chip to allow chaining with other 

chips. The load line (LD) for each row is controlled with a decoder that activates 



gg 

the load signal for one row according to the value on the address lines, on receipt of 

a load signal from off-chip. 

The bottom edge of the connection matrix shown in Figure 4.12 connects to the 

inputs and output of each IPE and to the outputs of the update buffer. The left 

edge is used to make bidirectional serial connections off-chip. 

Layout Considerations 

The physical layout of the pass-gate at each crosspoint in the connection matrix can 

have dramatic performance consequences. The transistors making up the pass-gate 

need to be wide to keep the effective "resistance" of the conduction path low between 

the vertical and horizontal wires. However, wide transistors channels usually imply 

high-capacitance source and drain regions. The capacitance of each horizontal wire 

in the matrix is determined by the sum of the capacitance of the source regions for 

all the pass-gates on the wire, even though in normal operation only two pass-gates 

are active. The same is true for vertical wires. In a large matrix, this capacitance 

may significantly slow down the transmission of signals. Thus, we must design 

the pass-transistor layout to ensure high conductively with low source and drain 

capacitance. The value of drain (or source) capacitance is a function of the area 

of the drain region (diffusion-to-substrate capacitance) and the perimeter of the 

nongate region (sidewall capacitance). Sidewall capacitance is a factor only between 

the active region and the substrate (or well), not between the active region and the 

channel region-making the ring-shaped transistor layout a common choice for low 

drain capacitance, as in Figure 4.13. 

In this layout, the width of the channel reg10n is large; however, the drain 

region has no edge in common with the substrate and therefore has little sidewall 

capacitance. In addition, the source area is small, minimizing the total capacitance. 

This transistor, however, has high capacitance associated with its source region. 

If the source is connected to the power source, the large capacitance provides a 

stabilizing effect. In our application, both the source and the drain must have low 

capacitance. The double-ring transistor layout shown in Figure 4.14 provides a very 

low-capacitance crosspoint. 



100 

gate 

drain 

II 

source 

Figure 4.13 Ring transistor layout. This transistor has 
low drain capacitance but high source capacitance. 

source 

drain 

Figure 4.14 Double ring transistor layout. This transistor has low ca­
pacitance for both source and drain. 

When the transistor is off, it makes a small contribution to the total capacitance 

of the V or H lines, at the cost of high channel capacitance when the transistor is 

conducting. 

CMOS Implementation of the Update Buffer 

The update buffer receives parallel data one word at a time from off-chip, stores 

them, then presents them one bit at a time to its interface with the connection 



101 

matrix. The update buffer, as well as the other blocks of our computing engine, is 

based on the CSRL FF. Two FFs per bit are employed to achieve double buffering, 

as shown in Figure 4.15. One FF receives input data from off-chip, while the other 

supplies data to the IPEs. A global control line transfers data from one FF to the 

other. 

A change in the buffer is made by broadcasting parallel data to all rows. A par­

ticular row is selected by a load pulse from the decoder. The load line takes the 

place of the clock input to the first FF of each stage.. A global transfer control 

(T) takes the place of the clock input to the second FF. It is pulsed from off-chip 

when all updates have been written. Data are read from all rows simultaneously, 

one bit at a time, least significant bit (LSB) first. A single "one" shifted through 

a shift-register and "ANDed" with a read pulse provides the control signal enabling 

each column to output its values to the bit lines in sequence. 

Because the read bit-lines run the entire length of the buffer (32 stages for a 

32-bit word) there is an inherently long time constant associated with the wires, 

and we must take care to ensure a fast read time. This situation is similar to that of 

RAM design, where a small cell drives a wire the length of the entire cell array. It is 

impractical to place a large current driver at each cell. Instead, the outputs of the 

cell are connected to differential lines and an amplifier with high differential gain 

(sense amplifier) senses the differential value on the bit lines and makes a decision 

about the state of the storage cell long before the signals are driven to the rails 

[PRINCE 83]. 

The differential bit lines and sense amplifier comprise a natural scheme for 

CSRL style of design. Each CSRL FF produces both data and data, and a CSRL 

FF has high differential gain and thus may be used as a sense amplifier. Figure 4.16 

shows the sequence of events for reading one bit of storage. One bit is read by first 

simultaneously shorting together the two bit lines and connecting them to a fixed 

reference voltage (Vref), and then pulsing the precharge line (PC). Next, the bit 

lines are allowed to float until one bit of storage is selected by R. The storage cell 

pulls one line toward one rail and the other toward the other rail. Then the sense 

amplifier is pulsed to load it with the value represented by the sign of the difference 



Row (Coefficient) 
Decoder 

input data 

102 

Column Scan 

T 

OD2 

ODo 

Outputs 

Figure 4.15 Details of update buffer. The version shown has four coefficients of two bits 
each. The shaded box shows one bit of storage. 

on the bit lines. Because the bit lines need not reach the rails before the sense 

amplifier is pulsed, this entire sequence occurs rapidly. 

In practice, the Vref line may float-shorting the bit lines together ensures that 

they start at the same voltage, which on the average tends toward V /2. Because 

the sensing action of the CSRL FF occurs at the falling edge of the clock pulse, no 

special signal is needed for the clock of the sense amplifier; the same read pulse used 

to enable the outputs of the FF is adequate. In practice, the precharge signal is 

driven by ¢1 and the read-sense signal is driven by ¢2. 



103 

LO T R PC 

d 

d 

T T .... 

I I I I 

5 - R/S 
········-------------······-······················. 

·. b -(volts) -

~.... ~~::::::::::::====~b ~ 
0 . 

I I I I 

5 ,___ ____ _ ............................. ~/~ ............... . d 

(volts) 
·. 

0 I.'.-----

5 10 15 20 

( ns) 

Figure 4.16 Sequence of events for reading the update buffer. Precharged bit lines and a 
sense amplifier are used to shorten reading time. 

CMOS Layout Summary 

The cells of the three major blocks of the chip implementing our computing engine 

were laid out to interconnect by abutment rather than by wires. In some cases, cells 

were stretched to match up with neighboring cells. Consequently, the size of each 

block is slightly larger than is absolutely necessary to perform the function of that 

block, but the block composition contains no wiring channels and thus is extremely 

area-efficient. In general, the layout makes efficient use of silicon area. 

Figure 4.17 shows the floor plan for a typical version of the chip. Most of the 

area is taken up by the processing elements and the connection matrix. The sizes, 

in lambda [MEAD 80], shown in the figure are for a 32 IPE array of 32 bits each, with 

32 words of update buffer capacity, and a 44-channel connection matrix. The largest 



104 

version of the chip fabricated to date was an experimental version with this config­

uration, but with a connection matrix of 64 channels. 

Figure 4.18 shows a photograph of the fabricated chip. 

1 
6664 >. 

-<E- 18 2 4 >. -?i--

i Update 
Buffer 

3260 >. IP Es 
3000 >. 

1 6200 >. l 
t 8580 >. 

1830 >. Connection 

i 
Matrix 

8800 >. 

Figure 4.17 Layout dimensions of chip. Dimensions are not shown for pads. 

NMOS Implementation 

The processing elements called UPEs in the previous chapter were implemented in 

nMOS technology. The CMOS design for the IPE was a simplification and refine­

ment of the nMOS UPE design. The UPE implementation was useful for developing 

the basic musical-instrument models, and the chips are still in use in a music demon-

stration system. 



105 

Figure 4.18. Photograph of fabricated chip. 



106 

The nMOS UPE differs from the CMOS IPE in several important aspects: 

(1) the nMOS UPE uses dynamic storage of state (dynamic FFs), whereas the 

CMOS IPE is fully static; (2) the nMOS UPE includes pipeline delays between 

stages, whereas the CMOS IPE does not-it uses global lines running the length of 

the array; (3) the nMOS UPE performs the function of the CMOS IPE and also 

includes a mechanism for performing linear interpolation; and ( 4) the nMOS UPE 

performs 64-bit adds. 

The UPE nMOS circuits followed common nMOS design practice as presented 

in Mead and Conway [MEAD 80], and therefore are not described here. 

Each UPE stage measures 70 ..\ by 186 ..\. The 32-bit array measures 2310 ..\ by 

186 ..\, with sign-extension circuitry accounting for the extra space. 

Conclusion 

I have introduced a new logic form and clocking scheme for CMOS integrated cir­

cuits, called CSRL. Systems implemented with CSRL feature fully static operation 

and simpler circuits than do those using conventional CMOS forms. I have used 

the new logic form to implement our architecture for sound-synthesis. The result 

is a fully functional chip, integrated into a system for experimentation with sound 

synthesis algorithms. An nMOS version of the array of processing elements has also 

been implemented and is being used to generate musical sounds. 



107 

Chapter 5 

Other Architectures 

In this chapter we examine alternative architectures for musical sound synthesis. 

Two important aspects of the design are investigated: serial versus parallel arith­

metic and the interconnection scheme. Three architectures are presented and com­

pared, the results are summarized in the concluding section. 

Our computational task is clearly dominated by the multiply computation and 

it is therefore tempting to focus a study on the multiply algorithm. Many struc­

tures have been invented for performing computer multiplication, spanning the en­

tire range of tradeoffs between area and speed. The complexity of the multiply 

computation has been a popular subject in the literature. One measure commonly 

applied to multiplication is the space-time squared product. The theoretical lower 

bound for multiplication of n-bit integers, has a space-time squared product of 

AT2 = O(n2) [ABELSON 80], [BRENT 80]. A simple realization of a n-bit multiplier 

with this complexity is not yet known [LUK 81]. The bit-serial multiplier proposed 

by Lyon and others [LYON 76], [JACKSON 68] has a space--time squared complexity of 

AT2 = O(n3 ). Most researchers have concentrated on minimizing the time (latency) 

required for multiplication. In our application, and in many others, throughput 

rather than latency is the important issue. Pipelined multiplication structures are 

efficient in these applications because many independent operations need be com­

puted and they may be computed simultaneously. In these systems one attempts 



108 

to minimize the cost/performance, AT /p, where p measures the number of problem 

instances within the structure [SEITZ 84]. 

Because of our freedom to trade time and space in an attempt to maximize total 

system throughput many alternatives exist in the choice of multiplication structures. 

This chapter presents architectures based on three varieties of multipliers. 

Arithmetic is not the entire story, however, and here is where a complexity 

analysis breaks down. The multiplication algorithm has to be studied in the context 

of the problem at hand and in the context of the entire machine architecture. In our 

application, equally important to the multiplication algorithm, are the means of 

storing intermediate results and coefficients, and the communication of results within 

the system. While space-time products are important theoretical measures to the 

limitation of computing machines, practical machines must be analyzed in toto 

and with respect to specific problems. This analysis is difficult to do in general 

however, because only poor models exist for area and energy of computations and 

communications, but there has been some success [THOMPSON 80]. Often the issues of 

practical importance are technology-specific. Therefore, in this chapter, rather than 

attempting a theoretical analysis of various architectures, we will simply present 

one architecture representative of each different class of solutions and discuss the 

issues associated with the design of each, and the relative strengths and weaknesses 

of each approach. 

In this section we redefine our target task, which will be used as a guideline 

in machine architecture development. The task may be represented as a graph of 

computation nodes (UPEs), where each node accepts three inputs, A, B, and M 

and produces the result Y = A+ B · M, along with an optional delay of one sample 

time, notated Y (A+ B · M) · z-1 . In the case that a node generates a delay, 

it contains state. In practice, it is necessary to produce other functions at each 

node, for instance, mod or limit, but here we will ignore them. One important 

simplification of the problem is that the topology of the graph does not change 

within the course of the computation. This is evident from the fact that there 

are no "if than elses" or data-dependent operations in the task. The graph is 

"solved" once each sample time by computing the output of each node, given the 



109 

inputs, and making each output value available for input to other nodes. In the 

case where a delay is specified, the output value is stored and made available on 

the next sample time. Inputs that do not come from other UPEs are supplied 

externally and are called coefficients. Coefficients change approximately 1000 times 

more slowly than the sampling rate, for they usually reflect user-driven changes 

such as the striking of a key on a keyboard or modifying the blowing strength in a 

wind model. In our applications we have found that on the average in a graph there 

exists about one coefficient per UPE. That fact determines some design decisions. 

Furthermore, music applications require that all changing coefficients in a graph 

change simultaneously. Of course, some coefficients are static during the course of 

the computation. 

Perhaps the most important aspect of our task is that it must be solved in real 

time-the graph must be solved in its entirety each sample time. This constrains 

the possible set of solution strategies. We would like to design a machine that can 

solve a graph in real time. Whereas it is perfectly acceptable to limit the size of 

the graph for any of the machine, the machine architecture must be expandable 

to handle arbitrarily large problems by adding more hardware. This constraint 

forces us to look at strategies using concurrency, where more that one processor 

are working simultaneously on various subgraphs. The limit of computing separate 

pieces of the graph simultaneously is to assign one processor per graph node. In this 

implementation each processor needs only to complete one computation per sample 

time, whereas in a coarser division of the graph, one processor is responsible for a 

number of graph nodes and therefore must be able to complete the computation of 

each node in a sufficiently short time to be able to complete all of its nodes. In the 

coarser division of the graph, memory is required to store the outputs of UPEs with 

state, in order to delay using the new results until the next sample time. Both these 

strategies are possible with today's VLSI technology, and each offers distinct ways 

to exploit various structures for computation and communication of results within 

the graphs. 

Designing a machine for our task in general is an important one, for it represents 

the classic tradeoff in VLSI design. We can build many slow, small processors 



110 

working in parallel or one large fast processor "emulating" the work of the parallel 

collection. The architecture we implemented has previously received little research 

attention and takes the slow small processor approach. Both approaches have their 

merits, however, and in this chapter we will investigate these two approaches, along 

with the next logical step in trading off speed for area. 

A Serial-Serial Architecture 

A serial-serial approach to multiplication uses minimal hardware at the expense 

of slow computations. Using a minimal hardware configuration, the serial-serial 

approach requires approximately n 2 steps to complete. In sound synthesis applica­

tions, where the sample rate is 50 KHz, the bit clock rate required to complete one 

multiplication in one sample period is 32 x 32 x 50 KHz, or approximately 50 MHz. 

Such a clock period is higher than current commercial designs but is within the 

limits of present day technology. Because the clock rate needed to perform 32-bit 

multiplications at audio sample rate is near the maximum of the technology and the 

approach requires minimal hardware, serial-serial multiplication is well matched to 

the sound-synthesis task. 

Figure 5.1 shows a structure for serial-serial multiplication and addition of 

positive integers. At the core of the structure is a full-adder and a carry flip-flop. 

The two numbers to be multiplied are placed in the m and b registers, and the 

number to be added is placed in register a. 

The control multiplication and addition follows: 

for i from LSB to MSB 
clear _carry; 
for j from LSB to MSB 

(acc[j-1]. carry) ,__ FA(b[i] AND rn[j]. acc[j]. carry); 
end j 

end i 
clear _carry; 
for j from LSB to MSB 

(y[j]. carry) ,__ FA(a[j]. acc[j]. carry); 
end j 



111 

ace 

:·-·-·---------·-··--------·-·------' 

Figure 5.1 Serial-serial multiplier-adder. 

The inner loop generates one n-bit partial product for each bit of b as it adds 

m the sum of the previously generated products, held in the accumulator (ace). 

In multiplication algorithms, each successive partial product carries two times the 

weight of the previous one. Therefore, the newly generated bits are placed into the 

ace register with an offset. After all n bits of b have been used, the ace register 

holds the high n bits of the result. The low bits of the result are lost, but could 

be retained, with the use of an additional register. After n 2 cycles, the switches in 

Figure 5.1 are moved to the lower position, and the structure is clocked an additional 

n cycles to add the a to ace and place the result in y. 

The structure can be modified to work with two's complement numbers by 

noting that the high bit of b has negative weight. The ace must be subtracted from 

the new partial product on the last bit of b. In practice, the input to the full-adder 

from ace and the output to ace are inverted when i = n. 

The serial-serial multiplier structure may be used as the processmg element 

(PE) in a VLSI system for sound synthesis. As with our architecture based on 

serial-parallel multipliers described in Chapter 3, A VLSI Architecture, PEs are 

placed in a linear array and connected via a connection matrix or switch, as shown 

in Figure 5.2. Each PE must store locally the ace and y registers, shown as solid 

boxes in Figure 5.1. The input registers, shown as dashed boxes, do not exist as 

part of each PE site. These inputs are provided from one of three sources: (1) from 



112 

the y register of other PE sites, (2) as coefficients provided from the external host, 

or (3) from the output of other chips. The specific origin of each of the three inputs 

is programmed through the switch. 

On average, in our applications, we have found that one coefficient per PE is 

needed. The application also requires that the coefficients be double-buffered to 

prevent instability by changing coefficient values in the middle of a computation. 

In this design, a double-buffered coefficient is provided at each PE site, where it 

may be wired to provide input to any of the PE inputs, or it may be exported to 

another site. Interleaving the coefficient registers with the PE registers places addi­

tional constraints on the assignment of computational nodes to PEs, but we assume 

that, in general, coefficient usage is evenly distributed throughout the computation 

graph, and a few extra local channels in the connection matrix will be sufficient to 

satisfactorily distribute the coefficients. A pessimistic approach would provide one 

additional wiring channel for each coefficient, running the length of the matrix. 

c-addr~ Column Decode 
~ -

c-data 0 Registers row 
decode 

- .._ 

Serial-Serial PEs I 

Switch ~-: off-chip 

Figure 5.2 Serial-serial architecture. Serial-serial processing elements are placed in a linear 
array and connected through a connection matrix. or switch. 



113 

The most straightforward way to implement the y, ace, and coefficient register 

(c register) at each PE site is as shift registers. Random access memory (RAM), 

however, is more efficient because only one bit of storage is needed in a RAM 

approach versus two bits of storage per bit for shift registers. A shift register can 

be simulated using a RAM by successively reading and writing bits of the memory. 

A read-only version of this idea was presented in conjunction with the update buffer 

presented in Chapter 3, A VLSI Architecture. Figure 5.3 shows one bit of memory 

structure for one PE site. This illustration represents one particular bit, say the LSB, 

for the three registers at each PE site. The structure is replicated in the vertical 

direction for other bits of the word and in the horizontal direction for other PEs. 

T 
c-d ata 

R 

w 

column select 

G y 

I 

Figure 5.3 Memory structure for one bit of one PE site. RAM is used to imple­
ment shift registers. In addition to an accumulator register and an output register. 
each PE site has one coefficient register. 

On every cycle, one bit is read from each of the c, ace, and y registers and one 

bit is written to ace and y by first reading one entire row from the memory array, 



114 

then writing another. Because all the PEs are working in synchrony, the memory 

control logic is shared by the entire array. The memory control is as follows: 

for i from LSB to MSB 
"read next b" 
read_row[iJ: 
for j from LSB to MSB 

read_row[jj. compute next bit. write_row[j-lj: 
end j 
"sign extend ace" 
write_row[MSB]: 

end i 
"done with multiply" 
"add" 
for j from LSB to MSB 

read_row[jJ. write_row[jj; 
end j 

The c register is loaded in parallel asynchronously with the operation of the PE. 

Address lines are used to load data from the c-data lines to each cbuf flip-flop for 

all bits of the word. The data are transmitted to the associated c flip-flop with the 

T signal. Figure 5.4 shows the details of the connections between the registers, the 

PE, and the switch. The data in the c register are read bit serially and are used as 

input to the switch. The ace register in each slice is connected directly to the PE. 

The y register's output goes to the switch for broadcast to other PEs but its input 

comes from the PE or is recirculated. 

The switch provides bit-serial communication among PEs and bidirectionally 

with the outside world. It is functionally identical to the one presented in Chapter 

4, A VLSI Architecture, with differences in the number and nature of channels. 

One channel with local wires, spanning the width of one PE site, is provided to 

accommodate the connection of the c register at a PE site to a PE input at that 

same site. Also, fewer long distance channels are needed because the coefficient 

buffers are interleaved with the PEs. 

VLSI Implementation 
In this section I discuss issues involved with the VLSI implementation of the serial­

serial architecture. This architecture has not been implemented, as has the serial-



115 

Memory - - - - -

c cbuf ace y 

cout b 111 a yout 

------ ----- Switch ----- ------

Figure 5.4 Details of the connections at each PE site. 

parallel one; therefore, I will estimate its speed, area, and power requirements. 

Because CMOS is a widely available technology for VLSI systems, I will use it to 

illustrate the implementation. Within CMOS technology, many options exist for 

circuit design; one such circuit design methodology is presented in Chapter 4, VLSI 

Implementation. Any particular circuit design style has its own implications as to 

circuit size, speed, and power dissipation. In this study, as in the implementation 

of the serial-parallel architecture, I have chosen standard CMOS technology and 

static circuits. It is always possible to use special processes to help produce more 

efficient chips; for instance, a process with high-resistance polysilicon reduces the 

area consumed by static RAM, and a floating-gate technology is useful in reducing 

the size of the connection matrix. However, special processing techniques do not 

give any architecture a clear advantage over the others, so we will use a standard 

technology for this comparison. 



116 

Pipelining. Based on a sample rate of 50 KHz, the target clock rate is SOK x (322 + 
64) = 54.4 MHz, corresponding to a period of 18.38 ns. Referring to the memory 

control algorithm the system must read memory, propagate the data through the 

switch, through the PE and finally write data back to the memory. According to 

simulation results, with current technology, 18 ns is not sufficient time to complete 

this sequence of steps. The sequence of steps can be pipelined to achieve concur­

rent operation of various pieces of the system and relieve some of the speed burden. 

The memory read of a bit and its propagation through the switch can proceed si­

multaneously with the computation involving the previous bit and its subsequent 

writing to memory. Pipelining in this manner has three consequences to the imple­

mentation: (1) the memory control algorithm must be modified to synchronize the 

reading and writing of data-including adding a step to fill the pipeline initially, 

and consequently a slightly shorter period, (2) the memory must have one part for 

reading and a separate one for writing, and (3) an additional storage element must 

be added at the receiving end of the switch to isolate the two halves of the pipeline. 

Only the change to the memory structure has any significant impact on the im­

plementation; the other two are minor. Dual-ported memory in general increases 

system speed at the cost of a larger memory structure. In this case the tradeoff is 

necessary because the system does not perform to speed without it. The memory 

shown in Figure 5.3 is dual-ported. 

Dual-rail. One concern with designs employing a connection matrix, or switch, is 

the propagation delay through the switch. One way to shorten the delay through 

the switch is to precharge the data lines and use a sense-amplifier at the receiving 

end to restore the data quickly to logic levels. Although single-rail sense-amplifier 

schemes are known, a dual-rail scheme fits well with our choice of static memory 

cells. Dual-rail data lines emanate from the memory and it is possible to extend 

the lines through the matrix and place a sense-amplifier at the receiving end of the 

switch. This scheme increases the number of wires running through the cross-point 



117 

cell in the matrix by one in each direction but does not increase the number of pass­

transistors, because only one transistor per line is required for differential signals 

versus two in a single-rail scheme. 

Layout Area. In this section I estimate the area of one slice through the floor plan 

shown in Figure 5.2. One slice represents the area consumed by one processing node 

and is therefore a basic measure for the total system area. The layout area of the 

processing node can be used to plan the layout for an entire chip. The area of the 

cells in the node slice is based on prototype designs and is not exact but is within 

approximately 15% of what is expected in a final layout. All dimensions are given 

in lambda units [MEAD 80]. 

The width of the slice is dominated by the width of the cross-point cells for 

the switch. The cross-point cell contains a flip-flop, two pass-transistors, data paths 

for loading the flip-flop, and conductors for transmitting data through the switch. 

The cross-point cell is 40 by 50. Therefore the width of one slice is set at 4 · 40 = 

160. We will include 10 channels in the connection matrix; therefore, the switch 

contributes 500 to the height of one slice. The height of the register is 40 per bit 

for a total memory height of 1280. Column decode and PE are about 100 and 40 

high, respectively. Combining all these dimensions, the area estimate for an entire 

PE slice is 160 X 1920. 

A linear array is formed by lining up the slices in a row. Consider a process 

where >. = 0.8 µ. In such a process, a 10 x 10 mm die contains approximately a 

usable area for PE slices of 11000 >. square, reserving the remaining area around 

the perimeter for pads and wiring. The usable width allows for an array of at least 

64 PE slices. But one row uses less than 20% of the available vertical dimension. 

Multiple rows must be laid out to utilize the available area; in this case, six rows are 

possible for a total of 384 PEs. Separating the processing elements into rows creates 

the need to route wires between switch sections of adjacent rows. This problem 

is similar to the one faced when separating PEs at chip boundaries. Because the 

number of channels in the switch grows as the log of number of PEs, a relatively 

small number of wires suffice and are ignored in further calculations. 



118 

Power Consumption. In this section I estimate the power requirements for this 

implementation. Ultimately, I will compare the requirements with those of other 

architectures. For the purposes of the comparison only the power used for computing 

and transferring data within the chip is considered. Communication between chips, 

loading of coefficients, and initialization of the connection matrix are constant among 

the different architectures and are ignored. 

Power dissipation in CMOS circuits arises from two mechanisms [GLASSER 85]. 

The first is due to the charging and discharging of nodes. When a node is charged, 

energy is dissipated in the transistors connecting it to Vdd· The total energy dissi­

pated is independent of any details of the pull-up transistor (or transistors) and the 

path the voltage takes. An equal amount of energy is dissipated when the node is 

discharged. This energy having to do with charging and discharging nodes is called 

the switching energy, Esw· The energy stored on a capacitor is qv; therefore, the 

total energy required to charge and discharge a node is 

If we assume the the node is switching at a frequency of f, the average power 

consumption is 

The other source of power dissipation in CMOS circuits is due to transistor 

conduction overlap. Whenever a pull-up transistor (or transistors) on a node is (are) 

simultaneously conducting with a pull-down network, a current flows directly from 

Vdd to ground. The excess power due to conduction overlap can be large in some 

cases, for instance, when reading a value with a small inverter from a large bus. 

Experiments have shown, however, that under normal circumstances the overlap 

current is relatively small compared with the current that goes into charging and 

discharging nodes; therefore, for the purposes of the comparison, we will ignore it. 

The two primary sources of the capacitance of the nodes of a circuit are (1) the 

capacitance between interconnection wires and substrate, or other conductors, and 

(2) the capacitance associated with transistor gates and source-drain area and 



119 

perimeter. Based on recent MOSIS measurements [MO SIS USER'S MANUAL 86], 

and .A= 0.8 µ,we assume the following values: 

interconnect C = 6.0 X 10-4 pF / µ 2 = 4.0 X 10-4 pF / .A2 

transistor C 0.3 x 10-4 pF / µ 2 0.2 x 10-4 pF / .A2 . 

Because all the power goes into switching nodes, computing the power consump­

tion is simply a matter of summing the products of every node size with its switching 

frequency. In the serial-serial design we consider only the power associated with the 

PE slices, ignoring decoders. 

The static RAM structure is written by selecting a row and driving the col­

umn write bit-lines to overpower the selected cell. The predominant energy goes 

into charging the bit lines, because the switching energy associated with the cell is 

relatively small. In this design every bit line is driven on every cycle. However, on 

average only one-half of the lines change state each cycle, assuming an even distribu­

tion of ones and zeros. These nodes are either charged, discharged, or neither, but 

not both on each cycle; therefore, their power consumption is ! f CV}d. There are 

two lines per column in the RAM, so we count one line for each column. Reading 

is done by precharging the read bit lines, allowing the cell to drive the lines, then 

sensing the difference. The precharged lines end up at restored logic levels at the 

end of each cycle. Prior to the precharge, one-half of the lines are already at the 

precharge level, so we count each pair of lines as one during the precharge phase of 

the cycle. During the discharge phase, only one of every pair of lines is discharged, 

so again count each pair as one. 

The RAM read bit lines are precharged through the connection matrix to the 

receiving PE slice. We assume that every line in the connection matrix is used every 

cycle, but again only one-half change state at each cycle. The energy associated with 

the PE itself is small in this case relative to the memory and switch data lines and 

is ignored. 



120 

From the layout information we estimate the total capacitance of the nodes 

under consideration. Following is a summary of the capacitance calculations: 

write bit lines : 0.359 pF 

read bit lines : 1.08 

vertical switch data lines : 0.600 

horizontal switch data lines : 0.448 

total capacitance: 2.49 pF. 

Therefore, the energy per slice per cycle is 

Eslice - 62.3 X 10-lZ Joules. 

at Vdd = 5.0 volts, and the total chip energy per cycle is 

Echip = 23.8 X 10-9 Joules. 

The energy associated with one slice is expended n2 + 2n times per operation; 

therefore, at n = 32, the energy per operation is 

Eop = (n2 + 2n) · Eslice = 67.78nJ. 

At the designed clock rate of 54.4 MHz, the total chip power consumption is 

P = 1.30 Watts. 



121 

A Parallel-Parallel Architecture 

argument bus 

Control 
Memory 

address bus 

~ 

~ 

~ 

~, 

;. 

--

Results and 
Coefficient 

Memory 

'~ 
I 

~ 

r 

a 

b 

I m 

Arithmetic 
Unit */+ 

I 
y 

... 

Figure 5.5 Architecture based on parallel-parallel arithmetic. Outputs 
and coefficients are stored in RAM; control memory supplies a stream 
of addresses. 

The architecture presented in the previous section employs a serial-serial arith­

metic algorithm as a way to match the speed of the calculation with that of the 

application. Another way to match the speed of the calculation to the application is 

to employ a single fast processor and "emulate" the work of a parallel collection of 

processors. The basic structure of an architecture based on parallel-parallel arith­

metic is shown in Figure 5.5. PE outputs are stored in the right-hand memory, 

along with coefficients. On each cycle, three words are read from the memory, the 

a, b, and m inputs to the multiply-add unit. After the multiply-add operation, the 

result is stored back in the memory. The address of the operands and results for 

each cycle are stored in a second memory, the control memory. This memory cycles 

through its contents once per sample-time. The control memory also contains extra 

bits to control routing of data to and from other chips. 



122 

The control memory is analogous to the program memory in a conventional 

computer. It also plays a role similar to the connection matrices of the previously 

presented architectures. A connection matrix arranges the interconnection of PEs in 

space, whereas this control memory arranges the interconnection of PEs in time. PEs 

communicate implicitly by one PE reading from a location in memory where another 

left its result. The correct sequence of reads, writes, and interleaved input-output 

operations are precompiled offiine. As with the connection matrix, the control 

memory is loaded prior to execution. It is important to note that every chip in 

the system must have its own control configuration; therefore, the control address 

cannot be broadcast and shared throughout the system. 

The architecture shown in Figure 5.5 suffers from a problem that it has m 

common with conventional computers with respect to our application. Access to 

arguments and coefficients is sequential in time. Substantial savings in the cycle­

time can be achieved by simultaneously accessing the operands a, b, and rn, and if 

possible by simultaneously storing the previous result y. Several options are available 

for providing simultaneous access to the memory. The most straightforward scheme 

for providing simultaneous access to memory is to build the memory with multiple 

ports. Our application requires three read ports and one write port. Of course, any 

lesser degree of speedup can be achieved by using less ports to reduce the cycle­

time by at most three memory operations. Multiporting is implemented by adding 

multiple bit lines and select lines to the memory cells composing the memory bank. 

Also, independent decoders need to be supplied for each port. Because memory cells 

are dominated by the bit lines and the select lines, adding more ports drastically 

increases the size of the memory. In our application, a more efficient approach may 

be to provide concurrent memory access by using independent multiple memory 

banks. 

One way to apply the notion of independent memory banks is to build a separate 

memory for coefficients, so that coefficients can be accessed concurrently with the 

other operands to the multiplier. Since most PEs take at least one input as a 

coefficient, most cycles can be reduced by one memory read. This idea can be 

extended to the other operands. 



123 

Unit Delay Model. For both the serial-parallel architecture and the serial-serial 

architecture we have assumed that each node in the computation graph contains 

one word of delay. This assumption has two important consequences on our imple­

mentation: (1) the representation of each PE in memory requires two words, one for 

its previous (last sample-time) output and one for its current output, and (2) the 

computation for each PE, within one sample-time, is completely independent of the 

other computations. The second consequence is the reason that architectures em­

ploying one processor per node in the computation graph are feasible. Otherwise, 

the processors could not work in parallel independent of one another. It can also 

be used to our advantage in this architecture. Unit delay models have long been 

used by programs and other serial systems that simulate the execution of parallel 

systems. In such systems, one memory is used to "freeze" the state of the system at 

the end of the previous iteration, while the new state is computed and stored in a 

second memory. The frozen memory, say A, is used as inputs while the B memory is 

used as output. After the entire new state is computed, B is used as input and A as 

output. The process continues, swapping the roles of A and B after each iteration. 

This technique provides the perfect opportunity to increase the memory bandwidth 

in our architecture. We replace the memory that holds the outputs of PEs by two 

memory banks, A and B. This replacement enables independent access to multiplier 

inputs and outputs, because when A is providing inputs, B in accepting outputs, 

and vice versa. 

Pipelining. Adoption of the unit delay model makes the execution of each PE 

independent of the others within one sample-time. The input to any multiply-add 

step will never come from the output of the previous one, nor will it come from 

any one within its sample-time. This independence allows pipelining to be used 

to decrease the cycle-time for one operation. The price paid is a decrease in the 

number of PEs that can be emulated each sample-time. The decrease is equal to 

the number of sections in the pipeline and is relatively small compared to the total 

number of PEs being emulated each sample-time. The obvious places to include 

pipelining stages in the system are between the control memory output and the 



124 

address decode for the other memory, in the transmission of data to and from the 

multiplier-adder, and within the multiplier-adder structure. 

Array Multiplier. Parallel-parallel multipliers, or array multipliers, have been 

widely studied as to the theoretical bounds for multiplication and efficient implemen­

tations. The basic structure of a simple array multiplier is shown in [GLASSER 85]. 

The structure uses n 2 full-adder cells arranged in a two-dimensional array, each 

row forming a carry-save adder, and a final row composed of a carry-propagate or 

some other fast adder circuit. The partial products of the results are summed it­

eratively in space; therefore, the delay through the structure grows linearly with 

the number of bits in the words. However, pipelining can be used to reduce the 

cycle-time to an acceptable level, particularly in our application where latency is 

not as important as cycle-time. Besides pipelining, two obvious improvements on 

the basic array structure exist. At the expense of a larger full-adder cell, a modified 

Booth encoding of the operands can halve the number of rows in the array and thus 

reduce the delay through the structure by a factor of two. In another modification, 

the iterative structure composed of the carry-save adders can be changed to a tree 

structure, commonly called a Wallace-tree, which reduces the delay to O(log(n)). 

In a VLSI implementation, such a structure requires extra area for routing wires. 

Without careful study, it is difficult to predict what the final configuration of the 

multiplier should be. For the purposes of this study we simply assume that some 

combination of the above techniques yields a structure with the correct combination 

of layout area and cycle-time. 

An Optimized Architecture. Several of the notions presented above for increasing 

system performance have been combined in an architecture depicted in Figure 5.6. 

The basic operation of the system is the same as for the simple system shown in 

Figure 5.5, with some important improvements. The sound synthesis application 

requires that the coefficients supplied from the host computer be double buffered. 

In this implementation we use two separate coefficient memory banks, CA and CB. 



125 

The host can write into one memory bank while the other is used in the computa­

tions. When all the desired coefficients are updated, a global bit is set to change 

to the other coefficient memory. Two memory banks are included, A and B, to 

implement the unit delay model. On each cycle the control memory provides the 

address of the inputs and outputs to the multiply-add unit by simultaneously sup­

plying the address for a, b, m, and y. In addition to addresses, the control memory 

holds the information needed to route the address to the proper memory bank, the 

data from the memory banks to the proper multiply-add register, and the output 

to the proper memory bank. Also, the control memory contains information for 

input-output operation. The non-address information from the control memory is 

used to set switches that are the control for routing the addresses and data. 

argument bus 

Control 
Memory 

B A 

:_······--:-····------:·········----:··········· -----· . . ·----···-----:------------:--------------:--···------- ..... 
: ... -- ...... ·- ·f .......... -~ ............ ·f -- ......... -- .. --

• ...... -.......... ~ ........... : ...... -...... ~ ....... -. . . . .... ' 

*/+ 

address bus 

Figure 5.6 Optimized architecture. Parallel memory is provided for reading. 
writing and coefficients. 

The system has been designed so that the operation of the multiply-add unit 

is in parallel with fetching operands from memory and storing results. Figure 5.7 

shows the three possible situations for any PE update cycle and illustrates what 

activities occur in parallel. Case (a) is the most typical case, in which one PE input 



126 

is a coefficient and the other inputs are outputs from other PEs. Each row in the 

chart illustrates the activity of one of the memory banks or the arithmetic unit. 

In case (a), on the first half of the cycle, the coefficient and first argument for PEi is 

fetched, while the arithmetic operation for PEi-l begins and the result for PEi_2 is 

stored. On the second half of the cycle, the arithmetic operations completes while 

the second argument is fetched. Case (b) shows the situation when two inputs are 

coefficients. Most cases are covered by (a) and (b) but occasionally a PE receives 

no coefficients as inputs. This case is shown in (c) and requires a cycle-time of 1.5 r, 

where r is the minimum cycle time. 

c 
A(B) 
B(A) 

coeff 
argument 1 

• 

write y 

*I+ 

~~·--

c 
A(B) 
B(A) 

I 
I 

(write coeff) 
argument 2 

I 

I 

' 
r ___ .,.. 

(a) 

I 
I 

(write coeff) 
argument 1 

write y 

*/+ I 

I 

' 

c 
A(B) 
B(A) 

I 
I 

coeff 1 
argument 1 

write y 

*/+ 

·---

I 
I 

I 

I 

' 
r 

(b) 

(write coeff) I (write coeff) 
argument 2 I argument 3 

I 

I 

I 

' ·-------- 1.5r ~-------- ..... 

(c) 

coeff 2 

--------+ 

Figure 5.7 Timing diagrams for unit-delay memory arrangement. Separate 
memories for reading, writing, and coefficients allow simultaneous reads of 
multiplier inputs and storing of results. 



127 

VLSI Implementation 
In this section we fill in the details of the architecture presented in Figure 5.6. 

The system was carefully designed to match the bandwidth of the memory and 

arithmetic unit in an attempt to maximize the number of PEs that can be emulated 

per sample-time within the allotted area. We make the same assumptions about 

technology as for the implementation of the serial-serial architecture in Section 

A Serial-Serial Architecture. All memory is static, .>.. = 0.8, yielding a usable chip 

area of 11, 000 .>.. square. 

The first step is to estimate the total number of PEs per chip. Based on simu­

lation using the six transistor RAM cell, we assume a memory access time of 20 ns. 

Therefore, the best-case cycle-time and the value of T in Figure 5.7 is 40 ns. If we 

assume that every cycle takes 40 ns, then in one sample-time of 20 µsec, 500 PE 

computations are possible. Because some cycles are 1.5 T seconds instead of T, 500 

is overly optimistic. Let's assume that one-half of the PEs have inputs from one 

coefficient, leaving one-quarter with two coefficients and one-quarter with none, be­

cause the average is one coefficient per PE. Therefore, one-quarter of the cycles are 

1.5 T seconds long and the remainder are T seconds long. It turns out that the total 

number of PEs computable in one sample-time is 0.89 times as many as if all cycles 

were T seconds long, or in this case about 440. Now the question is: Is there enough 

chip area to provide memory for 440 PEs? Each PE requires four 32 bit words 

of memory, plus 40 bits of control for a total of 73 ,920 bits of memory. Based on 

preliminary layouts, the full-adder cell is approximately 100 x 100 .>.., creating about 

5000 x 5000 .>..for the array multiplier. Based on the layout for RAM cell the mem­

ory requires 81.3 x 106 square .>... Assuming we make efficient use of the available 

memory, 14.7 x 106 square .>.. remain for memory decoders, address and data buses 

and various buffers and drivers. 

The diagram for the system shown in Figure 5.6 serves well as a guide to the 

floor plan for the layout. The available vertical dimension in our target area is not 

sufficient to enable the memory banks to be 440 words deep. Therefore, the mem­

ory banks would have to be laid out as 64-bit wide, 220 word deep memory with a 



128 

multiplexor on the output to select the correct set of bits. The buses and their asso­

ciated switches are a potential source of large area consumption and require careful 

examination. Assuming a metal pitch of 7 ,\, the vertical dimension consumed by 

each 32-bit bus, including switch logic, is 280 ,\ for a total of 840 ,\ for the argument 

bus. The lower bus requires about 760 ,\, so the buses take up about 1600 ,\ of the 

11000 ,\ allotted vertical dimension, leaving sufficient space for the memory arrays. 

Power Consumption. We use the same set of assumptions as the memory in the 

serial-serial design. In this design, the memories are double width with multiplexors 

on their outputs, but only one-half of the bit lines need to be driven or precharged in 

every cycle. The control memory is read once each cycle and is 40 bits wide. Also, 

within one cycle three 32-bit operands are read and one 32-bit result is written. 

Following is a summary of the capacitance calculations: 

control memory read : 97 .9 pF 

three 32-bit operand reads : 235 

one 32-bit write : 39.2 

buses : 23.0 

multiply-adder : 45.f> 

total capacitance: 441 pF. 

Therefore, the total chip energy per clock cycle is 

Echip = 11.0 X 10-9 Joules, 

and the power consumption at the design speed of 25 MHz is 

P 0.276 Watts. 

In this case, 

Eop = Estice· 



129 

Other Improvements 

In the design presented above we have not used all the techniques available to 

increase the memory bandwidth, nor have we pushed the limits of the attainable 

cycle-time for the array multiplier. 

One obvious extension to our architecture is to supply one A-B memory bank 

pair for each of a, b, and m inputs. This extension reduces the typical cycle-time 

to one memory access. However, outputs from PE's that fanout to more than 

one type of input would have to be represented in more than one memory bank. 

This redundancy requires that some results be written to more than one memory 

and also a larger overall memory size. 

Perhaps all the techniques can be used simultaneously. This particular arrange­

ment was chosen because it provides a good balance between the size and speed 

of the components. Any attempts to speed up the system, however, invariably in­

crease its size. The reason for this tradeoff is two-fold: (1) the components gain 

speed by trading off size; for instance, dual-porting the memory increases its speed 

but also its area; and (2) a shorter cycle means that more PEs can be emulated 

during each sample-time, and therefore more memory is needed to hold their state 

and coefficients. 

It appears that within the technological limits we have assumed that the only 

way to exploit a shorter cycle-time is to use multiple chips for each parallel-parallel 

machine. Severe speed penalties are paid for crossing chip boundaries. This problem 

is commonly solved by using a local cache memory on the same chip as the arithmetic 

unit and a larger memory bank off-chip. With today's technology about a factor 

of four speedup in cycle-time is possible, but the statistics of the cache behavior 

heavily influences overall system performance. 

Throughout this section on the parallel-parallel architecture we have assumed 

that each PE includes one word of delay. This assumption enabled us to treat 

PEs independently within a sample-time but also increased the amount of memory 

required. In reality, many PEs do not require delay and algorithms could be re­

vised to exploit a zero-delay node. For those PEs requiring zero delay, the memory 

requirement reduce because registers are required only to hold temporary results 



130 

and can be reused within the same cycle-time. Also no state registers are required. 

This approach may increase the cycle-time, however, because one PE computation 

may have to wait for the results from a previous one, destroying the benefits of the 

pipeline. This increase in cycle-time can be minimized if a sufficient mix of unre­

lated computations is present to keep the pipeline full and to exploit dual memory 

banks. Any practical architecture would have capabilities of supporting both types 

of nodes. I have focused on the delay-per-node model because it corresponds directly 

to the model supported by the other architectures. 

Serial-Parallel Architecture Summary 

Based on the circuits from Chapter 4, VLSI Implementation, and their associated 

layout sizes, we estimate the area, speed, and power consumption for the architecture 

based on the serial-parallel processor. 

Layout Area. The details of this design are presented in Chapter 4, A VLSI 

Architecture, and the floor plan is shown in Figure 5.2 of that chapter. As with 

the serial-serial approach, the estimates can be made for a single slice comprising 

a processing element with its internal registers and a section of the connection 

matrix. In this design, unlike the serial-serial design, all the coefficient registers are 

grouped together in one block, and channels are provided in the switch to distribute 

the coefficient data to the PEs. The block contains one double-buffered coefficient 

register per PE. In the calculation we group a single coefficient register with each 

PE for accounting purposes. 

Assuming a horizontal orientation for the PEs, each PE is 3340 wide by 208 

high. We add 52 in the vertical dimension for a coefficient register for a total of 

260 >.. Assuming 11000 >. square as the usable chip area, we estimate the total 

number of PEs in a column at 40. As with the serial-serial design, we include 10 

channels of switch for inter-PE communication. In this case we must also allow 

40 extra channels for coefficient-to-PE communications. The horizontal dimension 



131 

contributed by the switch to the slice is 1950, for a total slice width of 5300. One 

column of PE slices fills the chip area in the vertical dimension and approximately 

one-half of the horizontal dimension. Two columns of PEs fit, with little waste, for 

a total of 80 PEs. 

Speed. For sound-synthesis applications with a sample rate of 50 KHz the bit rate 

for this system is 50 KHz x 64 cycles/sample = 3.2 MHz. Other applications may 

require a higher sample rate. If we allow the system to run with the bit rate of the 

serial-serial architecture, 54.4 MHz, a sample rate of 850 KHz is achieved. The total 

computation rate for the chip is 68 million operations per second (MOPS). 

Power. As with the other designs, we estimate the power for this architecture based 

on the cell layouts and floor plan for one slice. The calculations are summarized 

below: 
switch data lines : 1.91 pF 

coefficient buffer bit lines : 0.523 

PE shift registers : 2.56 

PE nodes : 3.57 

total capacitance: 8.56 pF. 

Therefore, the energy per slice is 

Eslice = 214 X 10-12 Joules; 

at Vad = 5.0 volts, and the total chip energy per clock cycle is 

Echip 17.1 X 10-9 Joules. 

The energy associated with one slice is used 2n times per operation; therefore, 

Eop = 2n · Estice 13.7nJ. 

At the clock rate for sound synthesis and audio processing of 3.2 MHz, the power 

consumption is 

Paudio = 54.7mW. 



132 

At the full-speed clock rate of 54.4 MHz, the total power consumption of the chip is 

Pf ull-speed = 0.930 Watts. 



133 

Comparing the Architectures 

The results of the estimates made in the preceding three sections are shown in 

Tables 5.1 and 5.2. Four sets of figures are presented in each table-one for the 

serial-serial and parallel-parallel architectures and two for the serial-parallel archi­

tecture, one for audio sampling rate and the other for maximum sampling rate, or 

full-speed operation. Table 5.1 compares the architectures on a per-chip basis, show­

ing figures that apply to the entire chip. In Table 5.2 similar figures are normalized 

to a per-PE or per-operation basis. 

Table 5.1 Comparison per chip. 

Total 
Number Computational Rate Power 

Architecture of PEs (MOPS) (watts) 

serial-serial 384 19.2 1.30 
serial-parallel audio rate 80 4.0 0.055 
serial-parallel full speed 80 68.0 0.930 
parallel-parallel 440 22.0 0.276 

Table 5.2 Normalized comparison. 

Area Energy Computations 
Per Per Per 
PE PE Rate Operation Area 

Architecture (1000 x A. 2) (KOPS) (nj/OP)* (OPS/ A. 2) 

serial-serial 315 50 67.8 0.159 
serial-parallel audio rate 1513 50 13.7 0.033 
serial-parallel full speed 1513 850 13.7 0.562 
parallel-parallel 275 50 11.0 0.182 

* power-delay product 



134 

It is important not to interpet these figures as being accurate in general for each 

of the three classes of arithmetic; they are specific to the particular architectures 

chosen and include not only the arithmetic units but also coefficient buffers and the 

interconnection mechanism. The figures do represent, however, a good estimate of 

results that are attainable with current technology for this and for other similar 

tasks. 

The serial-parallel architecture is represented by two rows of numbers in each 

table. The first row is at audio rate, 50 K samples/second. This architecture is 

capable of a much higher sample rate, but a higher sample rate is wasted with 

sound synthesis. The second row for the serial-parallel architecture applies with its 

maximum sample rate, as it may for other applications. The fact that the serial­

parallel design must run at a slow speed for sound synthesis motivated the other two 

designs. At audio-rate applications both the serial-serial and the parallel-parallel 

architectures implement approximately five times the number of PEs per chip as 

the serial-parallel approach. 

The serial-serial approach trades speed away for area. The number of full­

adder cells scales down by a factor equal to n, the number of bits in the word, 

but the connection matrix circuits and the register associated with inputs, outputs, 

and temporary results do not. The result is that the area of a PE is only five 

times smaller for the serial-serial design than for the serial-parallel one. The serial­

serial approach, because of its n 2 memory accesses per operation has a high power 

consumption. 

The parallel-parallel approach trades area for speed and time multiplexes its 

arithmetic unit. Its power budget is comparable with the serial-parallel approach 

as is evident from its energy-per-operation figure. 

Comparing the architectures for pure computation power, the serial-parallel 

approach running at full speed performs the most operations/second/area, and the 

entire chip achieves a total computational rate of 68 million operations per second. 



135 

Conclusion 

This thesis presents (1) a new approach to the production of musical sounds; (2) the 

application of this approach to several musical instrument models; (3) the design 

of a custom computing engine to support the approach; (4) the details of a VLSI 

implementation of the computing engine; and (5) the presentation of several related 

architectures. 

Our solution to the problem of sound synthesis is one that employs the flexibil­

ity provided by VLSI to build an architecture that is tailored to the computation 

involved in modeling the dynamics of musical instruments. The key to the efficiency 

of our machine differentiates it from other concurrent architectures; no processing 

cycles are used for communication; the processors are dedicated to arithmetic oper­

ations and the connection strategy is preprogrammed to provide the communication 

for a specific task. 

The architectures presented exploit the natural parallelism of the problem at 

every possible level. At the lowest, or logic, level pipelining is used to efficiently im­

plement the arithmetic operations. At the processor, or arithmetic level, processing 

elements work independently to implement the instrument models. Within the in­

strument models at the difference equation level, various pieces of the models are 

computed concurrently. At the highest level, or voice level, instruments of an en­

semble or voices of a multivoiced instrument are computed simultaneously. 



136 

This thesis described two simple musical instrument models. With current 

integrated circuit technology it is possible to realize, per chip, approximately IO 

instruments of this type. Therefore, a moderate-sized system is capable of producing 

the sound of hundreds of voices. 

Although the instrument models have been used to produce extremely high­

quality timbres of certain instruments, they are certainly not capable of covering 

the entire range of timbres of the instruments. They are simplistic models of the 

physics of the musical instruments that they emulate, and are meant as examples 

and a basis for future study. The activity of modeling requires a great deal of careful 

study and will involve extensions and modifications to the models. 

Results in modeling may lead to architectural changes. A possible change m 

the architecture may be to incorporate into its design the use of large amounts 

of temporary memory configured as delay lines of the type required for scattering 

models. Commercially available memory could be used in this application. Scatter­

ing models are efficient for emulating wave propagation in uniform mediums such as 

uniform air columns and for simulating physically large systems such as reverberant 

performance halls. The approach we have presented is more general but may be 

relatively expensive in some simple cases. A hybrid system could include the best 

of each approach. 

Musical sound synthesis has many attributes in common with other problems 

in science and engineering. The computations required for modeling musical instru­

ments are representative of a larger class of problems that can be formulated using 

systems of finite difference equations. Our architecture should be equally efficient 

for these related problems. These are problems where a fixed (or slowly varying) in­

terconnection of elements is sufficient. Once the interconnection topology is defined, 

the computation proceeds for a relatively long period before another interconnec­

tion change is made. Conventional signal processing can be viewed in this manner. 

In general, this class of problems comprises those that may be represented as systems 

of difference equations, where time in the problem being modeled may be represented 

by time in the computation. Our belief is that the architecture presented here will 



137 

find general application among this class of problems, as an efficient and sometimes 

necessary alternative to general purpose computers. 



138 

Appendix 

Digital Resonators 

This appendix further develops the basic theory of second-order digital resonators. 

Section Basic Equations reiterates the basic equations governing the behavior of 

two-pole sections. Section Q Calculation contains a discussion of Q calculation, as a 

user parameter. Section Resonance Gain presents the problems with resonator gain 

and a proposed solution. Finally, the special case of critically damped sections is 

presented. 

Basic Equations 

Above critical damping, the system function for a digital resonator can be formulated 

with the finite-difference equation: 

1 
H(z) = (1 - Rejflcz-l )(1 - Re-i8cz-l). (1) 

The UPE implementation of a digital resonator contains the additional term in the 

numerator, z- 2 , representing a pure delay of two word times. This term may be 

factored out and will not be treated here. Multipling out the denominator, we get 

1 
H(z) = 1- 2RcosBcz-l + R 2z-Z' 

(2) 

and the difference equation 

Yn = 2R cos BcYn-1 - R 2
Yn-2 + Xn. (3) 



139 

Equation 2 leads to a sinusoidal time-domain impulse response of the form 

(4) 

where 1 = 1/ sin 8c and </> = 8c from the partial fraction expansion of Equation 2. 

For values of R < 1, the response is a damped sine wave with R controlling the rate 

of damping and 8c controlling the frequency of oscillation. 

Q Calculation 
Some confusion exists as to what Q actually means or should mean for digital 

resonators. Traditionally, Q has been a measure of the rate at which a system loses 

energy. In other words, Q is the time, measured in cycles, that the system takes to 

reach some percentage of its original value. In the frequency domain, Q measures 

the bandwidth of the pass-band. However one defines Q, the user should be able to 

use Q to control the rate of damping of the resonator or the width of the pass-band 

in the frequency domain. 

When we view the digital resonator as a time-domain device, it may be that 

the simplest way for the user to control the damping rate is to control R directly in 

Equation 3. However, R is not in convenient units, and for musical applications is 

nearly always very close to one. This problem leads to an approximation for Q that 

is simple to compute and provides the user with a convenient control of damping 

rate. Let Q be the number of cycles until the impulse response of the system reaches 

1/e of its original value. 

To find R in terms of Q, first we find how many samples until the system reaches 

l/e of its orginal value. Using the factor Rn from Equation 4: 

1 
n = -- samples. 

ln R 

To convert from samples to cycles, we multiply by f / / 8 , where f is the resonator 

center frequency and fs is the sampling frequency: 

Q f 
fs ln R' 



so 

For values of R close to unity, -1/lnR ~ 1/(1 R); therefore, we can approximate 

R by 

R=l f 
fsQ' 

I present another interpretation of Q having the property that, at Q = 0.5, 

the system is critically damped. Q is defined as it is for a continuous system. We 

can view the time-domain response of the digital resonator as a sampled version 

of the impulse response of a continuous resonator. The continuous resonator can 

be analyzed, using the placement of its poles in the s-plane. For a resonator with 

complex conjugate poles and a damped response, the poles lie at s = -a± Jwcp, 

that is, to the left of the imaginary axis at a distance a, and above and below the 

real axis a distance we F (center frequency), as illustrated in Figure A. l. The radial 

distance from the origin to a pole is called w N (natural frequency). The distance a 

controls the damping rate. 

s-plane z-plane 

-/': 1 1 
Q = 0.5 

\-. 

Figure A.1 Pole placements for continuous and digital resonators. 

We define Q to be wn/2a. Note that the center frequency wcp is a function of 

Q. From a geometric argument, 

WCF for Q 2:: 0.5. (5) 



G 

0 B 

141 

R = 0.9 

R= 0.8 

R= 0.7 

Figure A.2 Resonator gain. Shown at resonance as a function of center 
frequency. plotted for several values of R. 

Converting one pole to the z-plane: 

Now, given a Q, and a frequency, Be and R are computed by: 

R = e-crT 

WN 
0'=-

2Q 

Be wcFT. 

Note in Equation 5 that when Q = 0.5, wcF goes to zero. Here there is a double 

root on the real axis-the system is critically damped. 

Resonance Gain 

One important property of digital resonators is their gain at resonance. This gain 

can be found by taking the magnitude of the discrete Fourier transform evaluated 

at the resonant frequency. Substituting ei8c for z in Equation 1, we obtain 

H(eiBc) = ---,-----1 _____ _ 
(1 ReJ.Bce-iBc )(1 - Re-JBce-J.Bc) 

1 

(1- R)(l - Re-2i 8c). 
(6) 

Gain IH(ejBc)I = _1_. 1 
1 - R )1 - 2Rcos(2Bc) + R 2 

Figure A.2 shows the gam at resonance plotted for various values of R from 

frequency zero to fs/2. 



142 

The gain at resonance varies drastically over the frequency range. This varia­

tion causes scaling problems when fixed-point arithmetic is used. Either the input 

to or the output from each resonator must be adjusted to compensate for the im­

plicit gain of the resonator. Several techniques exist for normalizing resonator gain. 

One proposed by Smith and Angell, uses the addition of two zeros to the second­

order system function [SMITH 82]. By placing a zero at :±:.../R, we can eliminate the 

dependence on 0 in the system function. The new system function uses Equation 1 

and multiplies it by 1 - Rz- 2 . Evaluating at z ef Be yields 

·e 1 - R(e-fBc)2 
I H ( eJ c) I = --~-.,---~-...,...,.-,--­

(1 Ref Bee-Be )(1 - Re-fBce-Bc) 

1 _ Re-2fBc 

(1 - R)(l - Re-2fBc) 

. 1 
Gazn = ---. 

1- R 
(7) 

Resonator-gain normalization could pose a particularly severe problem in the 

case of resonator banks of the type shown in Figure 2.14, an important structure 

in sound synthesis. Scaling the input to each resonator increases the amount of 

hardware by a factor of approximately one-third and increases the control bandwidth 

by the same amount. Alternatively, the input to the entire system can be scaled 

down, to avoid overflow in the section with the most gain, and then the output 

scaled up to the appropriate level. This approach is a problem in systems that use 

fixed-point arithmetic; usually, the largest coefficient possible is relatively close to 

one. Therefore, not much gain is possible, and many gain stages at the output must 

be used. 

In many sound-generation applications, the R values of each stage in the res­

onator bank are close to one another. Therefore, it is possible to synthesize two 

zeros using an average or some other value for R and then distributing the result 

to each resonator, as shown in Figure A.3. The input x(n) passes through a section 

that generates two zeros before being distributed to the resonators. 



Lf.S 

Hz 

x( n )--- 1 Rz-2 1----1 • y(n) 
• 
• 

Figure A.3 Normalized resonator bank. Two zeros are synthesised and distributed to all the 
resonators. 

Resonance Phase 

Phase is important when resonators are included in feedback loops. As is true of the 

gain, the phase at resonance of Equation 1 is not constant. The phase at resonance 

is found by computing the angle of Equation 6: 

<I>[H(ei"Bc)] =<I>[ l ] 
(1 R)(l - Re-2J°Bc) 

<I>[l - Rcos(2Be{ jRsin(2Be)] 

=tan-l[ Rsin(2Be) ]. 
1 - R cos(2Be) 

The phase at resonance is shown for several values of R in Figure A.4. 

It is interesting to examine the effect of the addition of two zeros to the second­

order system function by placing a zero at ±./IL From Equation 7, it is clear that 

the normalized resonator has zero phase response at resonance for all Be and R. 

Time-Domain Response of Critically Damped Resonator 

An important special case of Equation 1 is when Be 0 and a double pole exists 

on the real axis. Such a system is said to be critically damped and has an impulse 

response as shown in Figure A.5. 



0 
() 

144 

R = 0.9 
R = 0.8 
R = 0.7 

Figure A.4 Phase at resonance. Plotted as a function of center frequency 
for several values of R. 

time 

Figure A.5 Impulse response of critically damped resonator. 

Following the Q calculation based on continuous resonators in Section Q Cal­

culation, critical damping occurs at Q = 0.5. Systems with Q values close to or 

equal to 0.5 can be used as driving functions to resonator banks for certain simple 

struck-instrument models. 

The placement of the double pole, and thus of T in Figure A.5, is directly 

controlled by WN, because at Q = 0.5, O" WN and R = e-wNT. 

The maximum value of the time-domain response, A in Figure A.5, varies as a 

function of R. Consider the system function, Equation 1, with Be 0: 

H(z) 
1 

(1 - Rz-I ) 2 . 



L/5 

The inverse z-transform can be found by using the power-series expansion for (1 -

1 ~ (n + k - l)! k 

(1 - x)n = f-::o (n - l)! · k! x · 

Letting x = Rz- 1 and n = 2 yields 

00 

H(z) = L (k + l)Rk z-1 . 

k=O 

By the definition of the z-transform, 

h(k) = (k + l)Rk. 

To find the maximum value, we find the first derivative of h(k) with respect to 

k, h1(k), and solve fork when h1(k) = 0. 

h'(k) = [1 + (1 + k) In R]Rk 

kmax = -(1+ lnlR)· 

Evaluating h( k) at kmax yields: 

1 
hmax(k) = - l . 

eR nR 



146 

References 

[ABELSON 80] Abelson, H. and Andreae, P. (1980). Information Transfer and Area­

time Tradeoffs in VLSI Multiplication. Communications of the ACM. 32(1): 20-

23. 

[BRENT 80] Brent, R. P., Kung, H. T. (1980). The Chip Complexity of Binary 

Arithmetic. Proc. 12th ACM Symp. Theory Comput. pp. 190-200. 

[BRILLOUIN 46] Brillouin, L. (1946). Wave Propagation 1:n Periodic Structures. 

McGraw-Hill: New York, NY. 

[CHEN 83] Chen, M. (1983). Space-Time Algorithms: Semantics and Methodology. 

California Institute of Technology, Computer Science Department Technical Re­

port 5090:TR:83. 

[CHENG 76] Cheng, E. K., & Mead C. A. (1976). A Two's Complement Pipeline 

Multiplier. Proceedings of 1976 IEEE International Conference on Acoustics, 

Speech and Signal Processing, Philadelphia, PA. 

[CHOWNING 73] Chowning, J. M. (1973). The Synthesis of Complex Audio Spectra 

by Means of Frequency Modulation. Journal Audio Engineering Society 21(7): 

526-534. 

[DAS 23] Das, P. (1923). On the Impact of an Elastic Hammer on a Pianoforte 

String. Indian Journal Physics 10: 75-96. 



[DENYER 83] Denyer, P. B. (1983). An Introduction to Bit-Serial Architectures for 

VLSI Signal Processing. In VLSI Architecture, editors: B. Randall and P. C. 

Treleven, Prentice-Hall: Englewood Cliffs, NJ. 

[DYER 87] Dyer, L. (1987). Masters Thesis in preparation. Computer Science De­

partment, Caltech. 

[FLETCHER 80] Fletcher, N. H. and Douglas, L. M. (1980). Harmonic Generation in 

Organ Pipes, Recorder and Flutes. Journal Acoustic Society 68(3). 

[FLETCHER 83] Fletcher, N. H. and Thwaites S. (1983). The Physics of Organ Pipes. 

Scientific American 248(1):84-93. 

[FRIEDLANDER 53] Friedlander, F. G. (1953). On the Oscillations of the Bowed 

String. Proc. Cambridge Philos. Soc., 49: 516-530. 

[GLASSER 85] Glasser, L. A. and Dobberpuhl, D. W. (1985). The Design and Anal­

ysis of VLSI Circuits Addison Wesley: Reading, MA. 

[GORDON 85] Gordon, J. W. (1985). System Architectures for Computer Music. 

Computing Surveys. Vol. 17, No. 2, pp. 191-233. 

[HELMHOTZ 54] Helmhotz, H. L. F. (1954). On the Sensations of Tone. 2nd English 

Ed., based on 4th German Ed., 1877, A. Ellis, Ed., Dover Publications: New 

York. 

[HILLER 71] Hiller, L. and Ruiz, P. (1971). Synthesizing Musical Sounds by Solving 

the Wave Equation for Vibrating Objects: Parts I and II. Journal Audio Engi­

neering Society 19(6): 462-470 and 19(7): 542-550. 

[JACKSON 68] Jackson, L. B., Kaiser, S. F. and McDonald, H. S. (1968). An Ap­

proach to the Implementation of Digital Filters, IEEE Transactions on Audio and 

Electroacoust., AU-16: 413-421. 

[JACKSON 69] Jackson, L. B. (1969). An Analysis of Limit Cycles due to Multiplica­

tion Rounding in Recursive Digital (Sub) Filters, Proc. 7th An nu. Allerton Conj. 

Circuit System Theory, pp. 69-78. 



148 

[JAFFE] Jaffe, D. A. and Smith, J. 0. (1983). Extensions of the Karplus-Strong 

Plucked String Algorithm. Computer Music Journal. 7(2): 56-69. 

[KARPLUS 83] Karplus, K. and Strong A. (1983). Digital Synthesis of Plucked-String 

and Drum Timbres. Computer Music Journal. 7(2): 43-55. 

[KELLER53] Keller, J.B. (1953). Bowing of Violin Strings. Applied Mathematics, 

6: 483-495. 

[KNUTH 68] Knuth, D. E. (1968). The Art of Computer Programming, Vol. 2. Ad­

dison Wesley: Reading, MA. 

[LUK 81] Luk, W. K. (1981). A Regular Layout for Parallel Multiplier of O(Log2 N) 

Time. In VLSI Systems and Computations, editors: H. T. Kung, Bob Sproull, 

and Guy Steele, Computer Science Press: Rockville, Maryland, pp. 317-326. 

[LYON 76] Lyon, R. F. (1976). Two's Complement Pipeline Multipliers, IEEE Trans­

actions on Communications, April 1976, pp. 418-425. 

[LYON 81] Lyon, R. F. (1981). A Bit-Serial VLSI Architecture Methodology for Sig­

nal Processing. VLSI 81 Very Large Scale Integration, (Conf. Proc., Edinburgh, 

Scotland, John P. Gray, editor} Academic Press: New York, NY. 

[LYON 85] Lyon, R. F. (1985). MSSP: A Bit-Serial Multiprocessor for Signal Process­

ing. In VLSI Signal Processing, Denyer & Renshaw, Addison Wesley: Reading, 

MA, pp. 263-275. 

[MAGANZA 86] Maganza, C., Causse, R. and Laloe F. (1986). Bifurcations, Period 

Doublings and Chaos in Clarinetlike Systems. Europhys. Lett. 1(6): 295-302. 

[McINTYRE 83] Mcintyre, M. E., Schumacher, R. T. and Woodhouse J. (1983). On 

the Oscillations of Musical Instruments. Journal Acoustic Society America 74(5). 

[MEAD 80] Mead, C. A., & Conway L. A. (1980). Introduction to VLSI Systems, 

Chapter 9. Addison Wesley: Reading, MA. 

[MEAD 85] Mead, C. A. and Wawrzynek J. C. (1985). A New Discipline for CMOS 

Design: an Architecture for Sound Synthesis, 1985 Chapel Hill Conference on 

Very Large Scale Integration, edited by Henry Fuchs, Computer Science Press. 



[MOORE 78] Moore, J. L. (1970). Acoustics of Bar Percussion Instruments. Ph.D. 

Dissertation, Music Department, Ohio State University. 

[MOORER 70] Moorer, J. A. (1977). Signal Processing Aspects of Computer Music: 

A Survey. Proceedings of the IEEE. 65(8): 1108-1137. 

[MORSE 36] Morse, P. M. (1936). Vibration and Sound. McGraw-Hill: New York, 

NY. 

[MO SIS USER'S MANUAL 86] MOS IS - MOS Implementation System (1986). 

User's Manual. USC information Sciences Institute, Marina Del Rey, CA. 

[OPPENHEIM 75] Oppenheim, A. V. and Schafer, R. (1975). Digital Signal Process­

ing. Prentice-Hall: Englewood Cliffs, New Jersey. 

[PICKLES82] Pickles J. 0. (1982). An Introduction to the Physiology of Hearing, 

Academic Press: Orlanda, Florida. 

[PIERCE 86] Pierce, J. R. (1986). Comments on Analysis and Synthesis of Musi­

cal Sounds. Unpublished Report, Center for Computer Research in Music and 

Acoustics (CCRMA), Dept. of Music, Stanford University, Stanford, CA. 

[PRINCE 83] Prince, B., and Due-Gundersen, G. (1983). Semiconductor Memories, 

John Wiley & Sons: New York. 

[RADAR67] Radar, C. M. and Gold B. (1967). Digital Filter Design Techniques in 

the Frequency Domain. Proceedings of the IEEE. 55: 149-171. 

[RAYLEIGH 45] Rayleigh, J. W. S. (1945). The Theory of Sound. Dover Publications: 

New York, NY. 

[ROADS 85] Roads, C. and Strawn J. (1985). Foundations of Computer Music. MIT 

Press, Cambridge, MA. 

[ROSSING 82] Rossing, T. D. (1982). Acoustics of Bar Percussion Instruments. Per­

cussive Notes 19(3): 6-17. 

[SEITZ 84] Seitz, C. L. (1984). Concurrent VLSI Architectures. IEEE Transactions 

on Computers C-33(12): 1247-1265. 



150 

[SMITH 82] Smith, J. 0. and Angell J. (1982). A Constant-Gain Digital Resonator 

Tuned by a Single Coefficient. Computer Music Journal 6(4). 

[SMITH 85a] Smith, J. 0. (1985a). Waveguide Digital Filters. Internal Report, Cen­

ter for Computer Research in Music and Acoustics (CCRMA), Dept. of Music, 

Stanford University, Stanford, CA. 

[SMITH 85b] Smith, J. 0. (1985b). A New Approach to Digital Reverberation using 

Closed Waveguide Networks. Proceedings 1985 International Conference Com­

puter Music, Vancouver, Canada. Computer Music Association, also published 

as, Music Dept Tech. Rep. STAN-M-31, Stanford University, Stanford, CA. 

(SMITH 86] Smith, J. 0. (1986). Efficient Simulation of the Reed-Bore and Bow­

String Mechanisms. Proceedings 1986 International Conference Computer Music, 

The Hague, The Netherlands. Computer Music Association. 

[THOMPSON 80] Thompson, C. D. (1980). A complexity theory for VLSI. Department 

of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, Technical Re­

port CMU-CS-80-140. 

[WAWRZYNEK 84] Wawrzynek, J. C. and Tzu-Mu Lin (1984). A Bit Serial Archi­

tecture for Multiplication and Interpolation. California Institute of Technology, 

Computer Science Department, Pasadena, CA. Display File 5067. 

[WAWRZYNEK 85a] Wawrzynek, J.C., & Mead C. A. (1985a). A VLSI Architecture 

for Sound Synthesis. In VLSI Signal Processing, Denyer & Renshaw, Addison 

Wesley: Reading, MA, pp. 277-297. 

[WAWRZYNEK 85b] Wawrzynek, J. C., Tzu-Mu Lin, Mead C. A., Liu H., & Dyer L. 

(1985b). A VLSI Approach to Sound Synthesis. (Conf. Proc., 1984 International 

Computer Music Conference, William Buxton, editor), Paris, France. 

(WEINREICH 79] Weinreich, G. (1979). The Coupled Motions of Piano Strings. Sci­

entific American 240(1): 118-127. 


