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Abstract 

Thermoelectric materials have demanded a significant amount of attention for their ability 

to convert waste heat directly to electricity with no moving parts. A resurgence in thermoelectrics 

research has led to significant enhancements in the thermoelectric figure of merit, zT, even for 

materials that were already well studied. This thesis approaches thermoelectric zT optimization 

by developing a detailed understanding of the electronic structure using a combination of 

electronic/thermoelectric properties, optical properties, and ab-initio computed electronic band 

structures. This is accomplished by applying these techniques to three important classes of 

thermoelectric materials: IV-VI materials (the lead chalcogenides), Half-Heusler’s (XNiSn where 

X=Zr, Ti, Hf), and CoSb3 skutterudites. 

In the IV-VI materials (PbTe, PbSe, PbS) I present a shifting temperature-dependent 

optical absorption edge which correlates well to the computed ab-initio molecular dynamics result. 

Contrary to prior literature that suggests convergence of the primary and secondary bands at 400 

K, I suggest a higher convergence temperature of 700, 900, and 1000 K for PbTe, PbSe, and 

PbS, respectively. This finding can help guide electronic properties modelling by providing a 

concrete value for the band gap and valence band offset as a function of temperature.  

Another important thermoelectric material, ZrNiSn (half-Heusler), is analyzed for both its 

optical and electronic properties; transport properties indicate a largely different band gap 

depending on whether the material is doped n-type or p-type. By measuring and reporting the 

optical band gap value of 0.13 eV, I resolve the discrepancy in the gap calculated from electronic 

properties (maximum Seebeck and resistivity) by correlating these estimates to the electron-to-

hole weighted mobility ratio, A, in narrow gap materials (A is found to be approximately 5.0 in 

ZrNiSn). 

I also show that CoSb3 contains multiple conduction bands that contribute to the 

thermoelectric properties. These bands are also observed to shift towards each other with 

temperature, eventually reaching effective convergence for T>500 K. This implies that the 

electronic structure in CoSb3 is critically important (and possibly engineerable) with regards to its 

high thermoelectric figure of merit.   
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Chapter 1:  Introduction 

1.1 - Thermoelectric Motivation and Applications 

In a world where renewable energy is becoming an increasingly hot topic, new and 

different strategies have been investigated for producing it. In addition to approaches such as 

wind and solar power, several other approaches that focus primarily on increasing energy 

utilization efficiency or recovering waste heat are also being pursued. Thermoelectric materials 

have received a considerable amount of attention in terms of waste-heat recovery for a wide range 

of applications including automobiles (General Motors [1] and BMW [2]), ships and boats [3, 4], 

industrial processes [5], remote sensing (oil and gas [6], nuclear [7]), thermonuclear power for 

space missions [8, 9], or as cathodic protection devices to reduce corrosion in oil and gas 

pipelines [10]. Another useful application of thermoelectric materials is for solid-state refrigeration, 

which is useful for applications where vibrations involved with conventional refrigeration 

techniques are detrimental (medicinal storage, wine refrigerators, etc.) or where precisely 

controlled spot-cooling (or heating) is desired. Because of the broad range of potential 

applications and wide academic and scientific impact (in a range of fields including: 

thermal/electronic transport processes, metallurgical techniques, solid-state chemistry, and 

others), thermoelectric materials have received a significant amount of interest over the last 50-

60 years.  

The fundamental process responsible for thermoelectric power generation (or efficiency) 

is known as the Seebeck effect. Metals or doped semiconductors contain free charge carriers and 

produce the Seebeck effect in the presence of a temperature gradient. If we consider these 

carriers as a gas of charged particles, the gas will be most dense at the cold side of the material 

(Figure 1-1). At equilibrium, an electric field (voltage) will be generated to balance the chemical, 

diffusive driving force provided by the temperature difference. The Seebeck coefficient can be 
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written as the ratio of the measured voltage across the sample to the temperature difference, 𝑆𝑆 ≈

−Δ𝑉𝑉
Δ𝑇𝑇

. The Seebeck effect is also often used in thermocouples for precise temperature 

measurements. While Figure 1-1 shows the effect for a single material, two unlike-materials (for 

example, chromel and alumel in a K-type thermocouple) coupled together will produce a voltage 

that depends very precisely on the temperature at their union. However, unlike precise 

thermocouple measurement instrumentation where the value of the Seebeck does not need to be 

particularly large, thermoelectric devices for waste heat recovery applications prefer a specific 

combination of material parameters (including large Seebeck coefficient). 

 
Figure 1-1: Schematic diagram of the Seebeck effect in which charge carriers diffuse towards the cold end of a 
heated material—the resulting voltage that develops determines the Seebeck coefficient: 𝑆𝑆 = −𝛥𝛥𝑉𝑉

𝛥𝛥𝑇𝑇
. 

Thermoelectric efficiency is determined by the thermoelectric figure of merit: 𝑧𝑧𝛥𝛥 = 𝑆𝑆2𝜎𝜎
𝜅𝜅
𝛥𝛥, 

where S is the Seebeck coefficient, 𝜎𝜎 is the electrical conductivity, 𝜅𝜅 is the thermal conductivity, 

and T is the temperature of operation. This relation is derived by considering all of the modes of 

heat and current transfer through a theoretical device. Of course, a high Seebeck coefficient is 

preferred since this directly leads to a higher voltage across the device; good electrical 

conductivity is desired in order to minimize resistive losses due to Joule heating (which generates 

heat, reducing the overall Δ𝛥𝛥 across the device), and a low thermal conductivity is necessary to 
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allow the largest possible temperature gradient. Current state-of-the-art thermoelectric materials 

that are used for waste heat recovery have zT values near 1.0, which corresponds to less than 

12% energy conversion efficiency (for high temperature power generation) once devices losses 

are taken into account [6]. An average zT of 1.25 would enable substantial waste-heat harvesting 

and up to a 10% fuel reduction in the case of automotive applications [6]. Since the early 1990s, 

a wave of new nanotechnology related research has ushered in a new era for thermoelectric 

materials as well [11]; nanoscale features had been theorized to provide revolutionary advances 

beyond conventional bulk solids by either lowering thermal conductivity through modes of 

additional phonon-scattering or by altering the electronic structure which is known to benefit from 

low-dimensional features [11]. While nanoscale features have led to advances in some areas [12-

14], the renewed interest in thermoelectric materials has also revitalized research efforts towards 

developing advanced bulk materials through conventional solid-state chemistry and physics 

techniques. This thesis will highlight several examples where traditional semiconductor physics 

including optical, electronic, and ab-initio computed properties are utilized in common 

thermoelectric materials to guide new strategies for enhancing zT using “Band Engineering.” 

1.2 - Thermoelectric Materials, Band Engineering, and Summary of Work 

Even though the scientific community’s renewed interest in thermoelectrics may have 

been sparked by the promise of benefits due to nanoscale features, a large number of recent 

advanced material discoveries involve bulk materials and alloys which owe their extraordinary 

performance to superior electronic properties. These discoveries can be explained in the context 

of semiconductor transport physics and doping without nanoscale features. The “Band 

Engineering” concept uses a variety of strategies for optimizing zT including either carrier 

concentration tuning or altering the electronic structure using alloying in order to utilize additional 

electronic states through band convergence. Here, I will apply band engineering techniques to 

resolve discrepancies observed in the literature regarding the electronic band structure 
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parameters (band gap, secondary band offset, effective masses, etc.) in a variety of 

thermoelectric materials, including IV-VI materials and their alloys (Chapter 3 and 4),  ZrNiSn half 

Heusler’s (Chapter 5), and CoSb3 skutterudite and A5M2Sb6 Zintl materials (Chapter 6). This is 

accomplished with a combination of optical absorption measurements (absorption edge), 

electronic/thermal/thermoelectric transport properties measurement (and corresponding semi-

empirical modelling), and ab-initio electronic band structure calculations (traditional density 

functional theory, DFT, ab-initio molecular dynamics, AIMD, and numerical solutions to the 

Boltzmann transport equation, Boltztrap). Furthermore, in the context of band engineering, I 

develop theoretical techniques to provide a framework for analyzing DFT-computed 

thermoelectric transport properties (Chapter 7). Work in this thesis provides insight into the 

electronic band structure contributions to the thermoelectric properties for a few systems of 

materials of great interest to the thermoelectrics community, namely IV-VI materials, half-

Heuslers, and skutterudites.  

Until recently, PbTe and the IV-VI materials were thought to have a mediocre peak zT with 

values lower than 1.0; however, in the last five years many works have shown some of the highest 

recorded zT values in its alloys, approaching and exceeding 2.0 [14-21]. These recent 

advancements are attributed both to improvement in high temperature thermal conductivity 

measurements (through development of the new standard for these measurements: the laser 

flash technique discussed in Chapter 2) and electronic band structure engineering by doping and 

alloying these materials with other elements. This wave of new work on the IV-VI materials has 

spurred additional discussion of their band structures (particularly as a function of temperature); 

Chapter 4 provides a series of optical measurements, electronic properties measurements, and 

AIMD calculations which provide new insight into the temperature at which the primary and 

secondary valence bands converge (which is commonly cited as the reason for the superior 

performance of PbTe and its alloys).  
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Another family of materials, the half Heusler’s with the general formula XYZ, where X=Zr, 

Ti, Hf, ...,  Y=Ni, Co, …, and Z=Sn, Sb, …, have also been shown to be good thermoelectric 

materials. Half Heuslers are often favored over other materials because of their ability to attain 

high zT (~1.0) without toxic or rare elements [22, 23]. In Chapter 5 of this thesis, I use 

experimentally measured optical and electronic properties in ZrNiSn to determine both the value 

of the band gap (𝐸𝐸𝑔𝑔 ≈ 0.13 𝑒𝑒𝛥𝛥) and the electron-to-hole weighted mobility ratio (𝐴𝐴 ≈ 5). The low 

hole mobility agrees with some recent observations that the valence band may be composed of 

in-gap states resulting from interstitial Ni atoms, which is not captured in conventional DFT 

calculations. Further, A=5 helps to explain the good performance of n-type ZrNiSn at high 

temperatures despite its narrow band gap. I also develop theory which relates the maximum in 

the temperature-dependent thermopower to the band gap for low gap materials with electron-to-

hole weighted mobility ratios not equal to 1.0.  

Another popular bulk material is CoSb3, which has proven itself a leader in commercial 

applications for waste heat recovery. By filling voids in the crystal structure with dopant atoms 

(Yb, La, In, etc.), simultaneous doping and phonon scattering (sometimes attributed to rattling of 

the filler atoms) leads to high zTs greater than 1.0 around 400°C. Chapter 6 of this thesis 

thoroughly investigates this material as a multiple-band electronic conductor. Using electronic 

transport measurements in a doping study, I show that the thermoelectric properties are not 

explainable using single band properties (even if that band is a non-parabolic Kane-type band). 

This is supported by the observation of multiple absorption edges observed in optical 

measurements. The thermoelectrics community generally attributes high zT in these materials to 

the reduction in thermal conductivity; however, results from this thesis indicate that it also has a 

superb (and possibly engineerable) electronic structure that is at least partially responsible for its 

high zT.  
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These thermoelectric material systems are quite important to the thermoelectric 

community. By characterizing their electronic structure, we can pave the way for band engineering 

and further improvement of their properties. The remainder of this introductory chapter will detail 

some of the fundamental concepts that link electronic and thermoelectric transport properties to 

a material’s underlying electronic structure. 

1.3 - Doping and zT Optimization 

Extrinsic doping involves the substitution of impurity atoms, which contain a different 

charge state than the native lattice. In order to maintain charge neutrality, additional holes or 

electrons are added, creating a p-type or n-type material, respectively. In thermoelectric materials, 

doping can lead to drastic changes in the properties and is therefore critical for optimizing zT. 

Figure 1-2 shows the dependence of zT and the other thermoelectric parameters on carrier 

concentration by assuming a single parabolic band and acoustic phonon scattering [24]. As the 

carrier concentration is lowered, say in the case of an insulator, the Seebeck coefficient becomes 

quite high, but the electrical conductivity is lowered significantly, resulting in poor zT. For high 

carrier concentration (as in a metal), the electrical conductivity is high, but the Seebeck is lower. 

For this reason, zT and power factor (𝑆𝑆2𝜎𝜎) are usually optimized in the 1019-1020 cm-3 range 

(usually described as a heavily doped semiconductor). In the absence of extrinsic doping, the 

doping level for a given material is set by its intrinsic defect level, which can depend upon sample 

preparation procedures (annealing temperature, quench vs. slow cool) and can be quite sensitive 

to sample stoichiometry and defect formation energetics. Doping (intrinsic or extrinsic) often 

serves as a good first check to determine whether a given material’s properties can be further 

optimized.  

Using the single parabolic band (SPB) model [24] (Figure 1-2), it is straightforward to 

obtain information like the effective mass (𝑚𝑚∗), deformation potential (𝐸𝐸𝑑𝑑𝑒𝑒𝑑𝑑, which determines the 

strength of electron scattering by acoustic phonons), and lattice thermal conductivity (𝜅𝜅𝐿𝐿); the 
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combination of these parameters can be used to determine the maximum attainable zT (and the 

carrier concentration at which it occurs). The SPB model is a useful tool because it is easily 

generated from a small amount of experimental data, and it can be extremely useful when 

determining a zT optimization strategy for a new material. 

 
Figure 1-2: Carrier concentration dependence of zT and other thermoelectric properties. 

1.4 - Multiple Band Phenomena in Thermoelectric Materials 

While the single parabolic band works well for a variety of systems, many of the best 

thermoelectric materials contain multiple electronic bands. Multi-valence band phenomena are 

believed to be responsible for the superior zTs in several systems, including PbTe [15-18], PbSe 

[25], Mg2Si [26], and others. Each band can be treated as a parallel circuit; their electrical 

conductivities add, but each band maintains its own high Seebeck coefficient. This leads to a 

greatly enhanced performance, particularly when multiple bands are occupied and at similar 

energy levels (converged bands lead to the largest enhancements). One of the most successful 

examples where converging electronic bands are beneficial to thermoelectric performance is in 
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PbTe. PbTe has two valence bands offset by ~0.15 eV (Δ𝐸𝐸) at 300 K as shown in Figure 1-3. The 

band positions are thought to change as a function of temperature, resulting in band convergence 

at around 400 K according to Tauber et al. [27] However, work shown in this thesis disagrees with 

this finding, showing an optical band gap that continues to increase with temperature until the 

highest measured temperature of 673K, which is supported by AIMD calculations. Alloying has 

also been shown to improve the thermoelectric properties for lead chalcogenide materials; the 

improvement is usually attributed to both reduction in the lattice thermal conductivity due to point 

defect scattering of phonons and an 𝜅𝜅 − Σ band offset (Δ𝐸𝐸) reduction (in the case of alkaline earth 

alloying on the lead site). I show one case in particular where significantly improved properties 

are attained using alloys of the lead-chalcogenide materials (PbSe/SrSe- Chapter 4.3, 𝑧𝑧𝛥𝛥𝑚𝑚𝑏𝑏𝑚𝑚 ≈

1.5). This thesis includes several other examples of multiple band behavior. 
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Figure 1-3: Near-edge band structure in the lead chalcogenides indicating multi-band behavior for p-type. 

Besides the lead chalcogenides, Chapter 6 includes optical, electronic, and ab-initio 

calculation evidence of multi band behavior in the conduction band of CoSb3. High temperature 

electronic and optical properties show band convergence, which is likely extraordinary 

thermoelectric performance in Yb filled CoSb3. Otherwise, multi-band behavior is also evident in 

the optical and transport properties of two other systems: the 5-2-6 family of Zintl compounds, 

Ca5In2Sb6 (Chapter 6.3), and in SnTe (Chapter 4.4). By understanding the nature of the band 

structure, we open the door for future band engineering studies through isoelectronic alloying of 

these systems, which can lead to large zT enhancements. 
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1.5 - Band Gap in Thermoelectric Materials 

Because many thermoelectric materials are narrow gap semiconductors (Eg<0.5 eV), their 

high temperature properties are often subject to strong bipolar effects. Bipolar effects occur in 

doped semiconductors when minority carrier states become populated and their conductivities 

become comparable in magnitude to the majority carrier. Because these carriers have opposite 

signs, the temperature dependent thermopower (defined as the magnitude of the Seebeck 

coefficient, |S|) increases to a maximum and then decreases (Figure 1-4a). This is accompanied 

by an increase in electrical conductivity (and the electronic contribution to the total thermal 

conductivity, 𝜅𝜅𝑡𝑡𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏, Figure 1-4b) due to the presence of both electrons and holes. The Goldsmid-

Sharp band gap allows us to relate the maximum in the temperature dependent thermopower to 

the band gap of a semiconductor: 𝐸𝐸𝑔𝑔 = 2𝑒𝑒|𝑆𝑆|𝑚𝑚𝑏𝑏𝑚𝑚𝛥𝛥𝑚𝑚𝑏𝑏𝑚𝑚. In terms of thermoelectric performance, 

this maximum in the thermopower often leads to a corresponding maximum in the zT.  Because 

the peak zT is the metric by which most thermoelectric materials are compared, understanding 

the value of the band gap and the onset of bipolar conduction is critical for optimizing the 

temperature dependent zT. 

 

Figure 1-4: Bipolar conduction example in I-doped PbTe including a) Temperature dependent Seebeck coefficient and 
b) temperature dependent thermal conductivity [28]. 

Besides the Goldsmid-Sharp band gap, the temperature dependent resistivity can also be 

used to estimate the band gap for semiconductors in the intrinsic region of conductivity (low 

a) b) 
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doping levels). The electrical resistivity is related to the temperature following 𝜎𝜎(𝛥𝛥) =

𝜎𝜎0exp (− 𝐸𝐸𝑔𝑔
2𝑘𝑘𝐵𝐵𝑇𝑇

) where 𝜎𝜎0 is related to both the density of states and mobility for the material.  

Other than transport measurements, optical measurements such as absorption edge, 

photoconductivity, and photoluminescence are the most direct methods of obtaining an estimate 

of the band gap. In optical absorption edge measurements, a sample is illuminated by light of 

different frequencies (which correspond to a photon energy: 𝐸𝐸 = ℏ𝜔𝜔) that can be absorbed by 

electrons in the valence band (Figure 1-5a). If ℏ𝜔𝜔 is less than the band gap energy, no absorption 

is observed because there are no states within the band gap to excite the valence band electrons 

into. However, for photon energies equal to or larger than the band gap, we observe a rapid rise 

in the absorption coefficient (Figure 1-5b). 

 

Figure 1-5: Optical absorption edge illustrating the illumination of the valence band by a photon with energy (ℏ𝜔𝜔), which 
excited an electron to the conduction band if ℏ𝜔𝜔 ≥ 𝐸𝐸𝑔𝑔. 

Experimentally, the energy at which the absorption coefficient, 𝛼𝛼, begins to rise indicates 

the band gap energy. Usually, band gap obtained from optical measurements is understood to be 

more accurate (and more direct) than those obtained through electronic measurements, 

especially if Eg is temperature dependent. Chapter 3 of this thesis shows how sensitive optical 

measurements can be by investigating slight shifts in the optical absorption edge with small 

changes in doping level, known as the Burstein-Moss shift.  

a) b) 
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Because band gap is such an important parameter in thermoelectric materials, both in 

terms of bipolar conduction and band engineering strategies, estimates of the band gap are useful 

regardless of whether they come from electronic or optical results. Sources of discrepancies for 

the Goldsmid-Sharp (maximum thermopower) band gap are described in detail in Chapter 5. I 

show that the largest discrepancies in the computed value occurs for large electron-to-hole 

weighted mobility ratio (A) and narrow band gaps. In this thesis, a large difference in the 

Goldsmid-Sharp band gap for p-type and n-type ZrNiSn Half-Heusler thermoelectric materials is 

explained by invoking a weighted mobility ratio (A) of 5.0 (rather than 1.0, which is assumed in 

the derivation of Goldsmid-Sharp’s 𝐸𝐸𝑔𝑔 = 2𝑒𝑒𝑆𝑆𝑚𝑚𝑏𝑏𝑚𝑚𝛥𝛥𝑚𝑚𝑏𝑏𝑚𝑚 formula). The theory is developed to extend 

this analysis to any general A-value or measured band gap using full Fermi statistics (which are 

useful for thermoelectric materials which contain narrow gaps).  

1.6 - Band Engineering from Ab-Initio Calculations 

Ab-initio calculations are a useful tool for mapping the electronic structure for a material. 

Because this thesis focuses on connecting measured electronic, thermoelectric, and optical 

properties to the electronic band structure, ab-initio electronic band structure calculations are a 

crucial tool for helping to explain the results. For example, Chapter 4 shows results regarding the 

temperature-dependent band gap in PbTe computed using AIMD calculations that mimic the 

effect of atomic vibrations (phonons) on the computed electronic band structure; coupled with 

thermal expansion of the lattice, we correlate these calculations to the measured optical results. 

In another example of ab-initio calculations, Chapter 6 shows an electronic band structure 

calculation and Fermi surface mapping for CoSb3, which provide the insight needed to explain the 

two observed absorption edges that were measured optically. Another natural extension of ab-

initio electronic structure calculations is to directly predict thermoelectric properties by solving the 

Boltzmann transport equation. 
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Boltztrap is a useful, open-source code that uses calculated band structures to generate 

Fermi-level dependent thermoelectric transport data which can be used to discover new 

compounds in a high-throughput sense [29, 30]. In Chapter 7 of this thesis I discuss the 

application of many of the band engineering strategies to Boltztrap calculations from the Material 

Project (materialsproject.org). I define a new, easily computed parameter known as the “Fermi 

surface complexity factor”, (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) which is composed of both the effective valley degeneracy 

(𝑁𝑁𝑣𝑣∗) and the effective anisotropy factor (𝐾𝐾∗). 𝑁𝑁𝑣𝑣∗ reflects the influences of multiple bands when 

they are near the Fermi level, while 𝐾𝐾∗ is enhanced for complex Fermi surfaces (as observed in 

the valence bands of the III-V and IV-VI semiconductors). Further (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) improves upon existing 

Boltztrap results by bypassing the constant relaxation time approximation (CRTA) to provide a 

parameter (unlike Seebeck coefficient or power factor) that reflects the electronic structure 

directly, is proportional to the maximum attainable power factor, and does not depend on the 

observed scattering mechanism.  

1.7 - Conclusions 

In this thesis, I will focus on explaining the electronic band structure origin of the 

thermoelectric properties in the context of band engineering for three heavily studied groups of 

thermoelectric materials: IV-VI semiconductors (PbTe, PbSe, PbS, SnTe), ZrNiSn half Heuslers, 

and CoSb3 skutterudites. I have utilized a variety of experimental (optical, electronic, and 

thermoelectric measurements) and theoretical (band engineering/models, ab-initio calculations) 

techniques to provide these insights, and I have characterized their results in the framework of 

existing physical models. I have developed theoretical models, as needed, to explain the large 

discrepancy in the computed Goldsmid-Sharp band gap for n-type and p-type ZrNiSn compounds, 

and I have generalized the findings to be useful for any arbitrary electron-to-hole weighted mobility 

ratio (A). Through a combination of experimental measurements and a thorough application of 

electron band/transport physics I provide a novel interpretation to the properties in these systems.
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Chapter 2:  Theoretical and Experimental Methods: 

2.1 - Electronic/Thermal Transport Properties Measurement 

Thermoelectric efficiency depends on the relevant transport properties: S, 𝜌𝜌, 𝜅𝜅 being the 

Seebeck coefficient, resistivity, and thermal conductivity, respectively. These properties are each 

measureable to give the thermoelectric figure of merit, zT. Measurements were performed on 

disc-shaped samples synthesized according to the techniques described in a later section. 

2.1a - Electrical Resistivity/Conductivity and Hall Effect 

The electrical resistance is a quantity that is simply measured with a multi-meter, but 

resistivity is an intrinsic material property that does not depend on the amount of material present. 

The traditional method of measuring resistivity is accomplished with a rectangular prism sample 

with known cross sectional area, A, as detailed in Figure 2-1a. Here, a known current, I, is passed 

through the sample through contacts at either end of the prism. The voltage, V, is measured by 

probes with a known distance between them, L*, from which the resistance, R, can be estimated 

from Ohm’s law: 𝛥𝛥 = 𝑉𝑉
𝐼𝐼
. The resistivity, 𝜌𝜌, then is simply calculated using 𝜌𝜌 = 𝑅𝑅𝐴𝐴∗

𝐿𝐿∗
. This technique 

is preferred for samples which are either single crystals or ones with anisotropic properties. For 

polycrystalline or cubic samples, the Van Der Pauw method is a simpler way to obtain the 

resistivity(Figure 2-1b). Here, a known current is passed through two leads attached to a disc 

shaped sample with known thickness, t. The voltage is measured perpendicular to the current 

flow. In a second step, the current is flowed perpendicular to the first step’s current, and the 

voltage is measured on the remaining two leads. The resistivity can be calculated using the Van 

der Pauw formula 𝑒𝑒−
𝜋𝜋𝑅𝑅1𝑡𝑡
𝜌𝜌 + 𝑒𝑒−

𝜋𝜋𝑅𝑅2𝑡𝑡
𝜌𝜌 = 1, where R1 and R2 are the measured resistances. In addition 

to measuring the resistivity for the sample, additional information can be obtained upon 

performing these measurements under a magnetic field. The Hall voltage can be measured by 

applying a magnetic field, B, perpendicular to the flowing current, I, in both the bar sample or in 
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the Van der Pauw arrangement. The Hall voltage, VH, can be measured perpendicular to both I 

and B, from which the carrier concentration can be estimated: 𝐴𝐴𝐻𝐻 = − 𝐼𝐼𝐵𝐵
𝑡𝑡𝑒𝑒𝑉𝑉𝐻𝐻

. Once the number of 

carriers is known, the mobility (𝜇𝜇𝐻𝐻) of those carriers can also be expressed from the measured 

conductivity (inverse of resistivity): 𝜎𝜎 = 𝐴𝐴𝐻𝐻𝑒𝑒𝜇𝜇𝐻𝐻. While the simple measurement of the resistivity is 

all that is required for estimation of the thermoelectric performance (zT), the Hall carrier 

concentration and mobility provide much needed additional information about the underlying 

transport and charge carrier scattering mechanisms (also the sign of the Hall coefficient—𝛥𝛥𝐻𝐻 =

1
𝑛𝑛𝐻𝐻𝑒𝑒

—indicates the sign of the majority charge carrier). 

 

 

Figure 2-1: Electrical resistivity measurement schematic a) Conventional bar sample, b) disc-shaped sample via the 
Van Der Pauw method. 

In this thesis, all of the measurements are performed on polycrystalline hot-pressed disc-

shaped samples (synthesis procedure described in a later section) in the Van der Pauw 
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arrangement in a ±2 T magnetic field using niobium pressure contacts [31]. The temperature is 

varied from room temperature up to ~500-600°C with the entire setup under high vacuum to avoid 

sample oxidation. 

2.1b - Seebeck Coefficient 

The Seebeck coefficient is measured in an instrument built and designed in the Snyder 

group lab as described in detail by Iwanga et al. [32] Essentially, two thermocouples  are 

constructed by passing two unlike metal wires (chromel–niobium) through thin rods with 4 narrow 

holes. The wires are threaded through at the end of the ceramic rod (Figure 2-2) to form a single 

point of contact (which is pushed onto the sample using a spring); this contact allows for both 

voltage and temperature to be measured at the sample surface. Temperature is measured by 

measuring the voltage difference between the two thermocouple wires (which are on the same 

side of the sample) and comparing this voltage to a reference junction at a known temperature. 

The Seebeck voltage is found by measuring the voltage difference across the sample with two 

alike wire types, i.e., niobium only. The thermocouples and narrow ceramic rod (both top and 

bottom) are passed through a larger, heated ceramic block which also makes direct contact to 

the sample. The heating serves two purposes: first, the cold-finger effect through the 

thermocouple probe is reduced so that the temperature at the sample surface can be accurately 

deduced, and second, to maintain good thermal contact with the sample to establish the 

temperature gradient.  



2-4 
  

 

Figure 2-2: Schematic of the uniaxial Seebeck coefficient measurement setup.  

During high temperature Seebeck coefficient measurements, rather than simply heating 

one side to a slightly higher temperature, taking a voltage measurement, and calculating the 

Seebeck coefficient as the voltage divided by the temperature difference, we perform temperature 

oscillation sequences. Here, the top and bottom temperatures are made to oscillate giving a range 

of different temperature differences within ±10 𝐾𝐾. The resulting voltages and temperature 

differences are plotted and a linear fit is performed to extract the Seebeck coefficient. We find that 

this method compensates for any systematic errors and gives accurate and reproducible results. 

Because the Seebeck coefficient is squared in the final estimate of zT, it is critical to reduce error 

in this measurement (a 10% error in Seebeck propagates to a 20% error in zT). Several “round 

robin” measurement cycles have been performed to determine what spread of properties 

measured on different instruments can be observed [33].  

2.1c - Thermal Conductivity 

Thermal conductivity has, of the three properties in zT, been one of the more difficult to 

accurately measure over the years. In the simplest case, the measurement is performed by 

passing a known power through a well-insulated sample and measuring the temperature at 

different points. Unfortunately, careful calibration is required to account for radiative losses, 

especially at high temperatures. Recently, the standard for thermal measurements in the 

Thermocouple
Contact Tip Ttop

Tbottom
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thermoelectrics community has changed towards measuring the thermal diffusivity using the 

commercial Netzsch Laser Flash Apparatus (LFA 457). In this technique, a laser pulse slightly 

heats the sample surface inside of a furnace (which is heated to the desired measurement 

temperature). An optical detector carefully measures the time-dependent temperature increase 

and decrease at the sample surface. A model (Cowan Model with Pulse Correction) is used to 

correlate this time-dependence directly to the thermal diffusivity, 𝐷𝐷 = 𝜅𝜅
𝑑𝑑𝐶𝐶𝑝𝑝

, where 𝜅𝜅 is the thermal 

conductivity, d is the sample density, and 𝐶𝐶𝑏𝑏 is the heat capacity. The sample density is usually 

either measured directly (by estimating the volume from the sample thickness and diameter, and 

the mass by weighing with a scale), or it is estimated from the lattice parameter (which can be 

obtained from x-ray diffraction). All of the samples were coated with a thin layer of graphite to 

minimize emissivity errors. The heat capacity is sometimes estimated using the Dulong–Petit 

method (Cp = 3 kB per atom) (as in the ZrNiSn case), or it is extracted from previous literature in 

the case of the IV-VI materials [34]. 

2.2 - Optical Properties Measurement and Analysis 

Optical properties measurements have been used extensively in this work to provide 

information about the electronic states near the band gap. I do this by analyzing the optical 

absorption edge (as discussed in the introduction). In order to experimentally measure the 

frequency dependent absorption coefficient, several techniques can be used. In this thesis, I have 

chosen to focus on Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), 

which is straightforward to perform and yields consistent results. In DRIFTS, a light source (black 

body radiator) illuminates a sample by way of an ellipsoidally shaped mirror (See Figure 2-3). The 

sample, which is usually a finely ground powder, diffusely reflects the light in all directions. The 

reflected light is collected with the ellipsoidal mirror and refocused onto a detector. Kubelka Munk 

theory derives a simple relation between the fraction of reflected light (R) and the absorption 

coefficient (𝛼𝛼): 
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 Equation 2-1 

 

  

where 𝐾𝐾� is the scattering coefficient (an unknown parameter). Figure 2-3b shows some 

measurement results from a few relevant thermoelectric materials. I observe the correct ordering 

of the absorption edges in these materials: Bi2Te3 (~0.1 eV), PbSe (~0.27 eV), PbTe (~0.29 eV), 

and PbS (~0.42 eV), consistent with literature results. 

 

Figure 2-3: a) Schematic of the Diffuse Reflectance technique for measuring spectral absorption. b) Representative 
DRIFTS results for several relevant thermoelectric materials (at 300 K). 

For particle sizes greater than the light wavelengths measured (20  - 2 μm), the scattering 

coefficient is understood to be approximately independent of frequency [35]. For all 

measurements in this thesis, I use a Nicolet 6700 FTIR Spectrometer with a deuterated triglycine 

sulfate (DTGS) detector equipped with a KBr beamsplitter. All samples were referenced to the 

provided alignment mirror, this was found to give nearly same results as when referenced to KBr 

powder without the added impurity features from KBr itself. This optical setup gave good spectral 

intensity for photon energies between ~0.05 eV up to 0.8 eV (with severely deteriorating spectral 

quality above ~0.6 eV). This range was ideal for studying most thermoelectric materials, which 
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are usually narrow gap (Eg<0.5 eV) semiconductors. Several other methods for measuring the 

optical properties are available for materials with gaps in this range. 

Many of the previous reports of optical band gap measurements on PbTe have used single 

crystal samples measured in transmission [27, 36-42]. Transmission experiments have a few 

disadvantages: first, optically transparent single crystals are often used to avoid internal 

reflections and light scattering at the grain boundaries, which are generally more difficult to 

prepare than polycrystalline powder samples. Second, the samples must be polished quite thin 

since the absorbance scales exponentially with the absorption coefficient and sample thickness 

through Beer's law, 𝐴𝐴 = exp(𝛼𝛼𝑜𝑜), where 𝛼𝛼 is the absorption coefficient and t is the sample 

thickness. This limits the highest absorption coefficient that can be measured for a given sample 

thickness. Lastly, in cases where the samples were sufficiently thin (i.e., thin film samples with 

thicknesses on the order of the light wavelength), oscillations can result in the measured 

absorbance. These Fabry-Perot fringes are related to interference during internal reflection. While 

the effect can be mitigated through mathematical models, additional analysis is required.  

Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used 

exclusively in this work for optical measurements due to its ease of sample preparation and data 

analysis. Diffuse reflectance can be obtained in a thin sample layer of a ground powder. The 

measurement requires only a small amount of polycrystalline sample (200 mg or less). Because 

of the Fourier transform analysis, light at all frequencies can be measured simultaneously, greatly 

reducing sampling time relative to techniques which vary frequency using a diffraction grating. 

Relating the diffuse reflectance to sample absorption can be performed using the Kubelka-Munk 

function (Equation 2-1). Chapter 3 of this thesis shows that DRIFTS is very sensitive to small 

changes in the energy of direct transitions across the band gap due to progressively higher doping 

levels. With proper extrapolation the small shifts associated with doping can be shown and 

understood according to existing optical analysis techniques. Additionally, small, temperature-
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dependent shifts in the band structure can be detected using a high temperature stage (as shown 

in Chapter 4 and Chapter 6). A Praying Mantis attachment (Harrick) was used to collect the 

DRIFTS spectra. A high/low temperature stage, also from Harrick (CHC), was also used to vary 

the sample temperature from 120 to 673 K. Measurements were performed under an argon 

atmosphere after rough pumping and purging the sample chamber several times. Temperature 

dependent scans were referenced to either KBr standard samples taken at the same 

temperatures or a room temperature scan of the alignment mirror (although both references gave 

similar results). 

2.2a - Optical Band Gap Extraction 

The theory of optical transitions in semiconducting materials is discussed in detail in many 

references [43-45]. Typically, the method of extraction of the optical band gap depends on the 

type of transition observed. In the case of direct transitions, electron crystal momentum, k, is 

conserved. As is the case in PbTe, which has its valence band maximum and conduction band 

minimum at the same points in k-space (the L-point), direct transitions simply require the incoming 

photon to impart its energy on the valence-band electron. In this case, the absorption coefficient 

is proportional to the joint density of states, which in the case of two parabolic bands has the form:  

 𝜶𝜶ℏ𝝎𝝎 ∝ �ℏ𝝎𝝎 − 𝑬𝑬𝒈𝒈�
𝟏𝟏/𝟐𝟐 Equation 2-2 

  

for ℏ𝜔𝜔 > 𝐸𝐸𝑔𝑔 according to the Tauc method [45, 46]. Other authors have plotted 𝛼𝛼2 vs. ℏ𝜔𝜔 for fitting 

the direct gap[37], but both methods give similar results (within the measurement error ~0.005 

eV). 

Many semiconducting systems contain indirect band gaps. For example,  silicon has an 

indirect gap from the valence band at the Γ point to the conduction band which lies along the Γ −

𝑋𝑋 line [47]. For indirect gaps, i.e., where the initial and final electron momentum is not the same, 

either emission or absorption of a phonon (a lattice vibration) is required in order to shift k to its 
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final value. Generally, even the highest energy phonons have energies on the order of 10-50 

meV, and therefore do not impart much energy in comparison to the photons required for 

excitation. In the case of indirect absorption the absorption coefficient is known to scale as: 

 𝜶𝜶ℏ𝝎𝝎 ∝ �ℏ𝝎𝝎 − 𝑬𝑬𝒈𝒈�
𝟐𝟐 Equation 2-3 

 

following the same Tauc-formula as direct gap, but with a different exponent. Some works suggest 

𝛼𝛼 ∝ �ℏ𝜔𝜔 − 𝐸𝐸𝑔𝑔�
2, but as was the case in direct gaps, the results do not change significantly. 

Nonetheless, because indirect gaps require both a phonon and a photon simultaneously, their 

transitions often occur with much lower probability (a factor of 10-100x less [48]). However, 

because the transition frequency inherently depends on the number of valence and conduction 

band states, indirect transitions from states with significantly larger density of states than direct 

ones can still have a large absorption magnitude, as we will show in CoSb3 and other systems in 

Chapter 6. 

Optical band gaps in this work were generally obtained using the Tauc method (unless 

otherwise specified), where (𝛼𝛼ℏ𝜔𝜔)𝑛𝑛  and where n=2 for direct transitions and n=1/2 for indirect. 

The Tauc function is extrapolated on a plot versus photon energy, ℏ𝜔𝜔, to zero (normalized) 

absorption; the zero is determined by either normalizing the sample to the minimum absorption 

coefficient value or by fitting and subtracting the free carrier absorption contribution: 𝛼𝛼𝐹𝐹𝐶𝐶 =

𝑎𝑎(ℏ𝜔𝜔)𝑏𝑏 + 𝑐𝑐 (which will be discussed more thoroughly in Chapter 3). 

2.3 - Estimating Band Gap from Temperature Dependent Electronic Properties 

As mentioned in Chapter 1, there are several experimental methods of measuring the 

band gap, both using electronic and optical properties. 
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2.3a - Resistivity 

First, the band gap can be estimated from electronic resistivity for an intrinsic 

semiconductor (where the number of holes and electrons are approximately equal). In the case 

where the electron and hole mobilities the same, one can derive that the temperature dependent 

resistivity should decrease in the intrinsic region as: 

 𝝆𝝆 ∝ 𝐞𝐞𝐞𝐞𝐞𝐞 ( 𝑬𝑬𝒈𝒈
𝟐𝟐𝟐𝟐𝑩𝑩𝑻𝑻

)  
 

Equation 2-4 

where Eg is the band gap, and T is the temperature. The band gap can be extracted from the 

slope of a plot of log of resistivity as a function of 1/T. This is a common technique for determining 

the band gap in semiconductor materials in the absence of other estimates, but the linear region 

will not be reached if the materials is too heavily doped. In that case, the resistivity will behave as 

a metal, i.e., increasing resistivity with temperature. 

2.3b - Band Gap Estimate from the Maximum Seebeck Coefficient 

Alternatively, the peak in the Seebeck coefficient can be used to estimate the band gap of 

a material. At low temperatures, a sufficiently doped sample will have an increasing Seebeck 

coefficient with temperature (approximately linear with temperature in the degenerate limit). At 

sufficiently high temperatures (i.e., when Eg~O(kBT)), a sufficient population of minority carriers 

develops which slows the increase in Seebeck coefficient, eventually resulting in a maximum in 

the thermopower. Goldsmid and Sharp have developed a relationship between the maximum 

Seebeck coefficient and the band gap [49-51]:  

 𝑬𝑬𝒈𝒈 = 𝟐𝟐𝑺𝑺𝒎𝒎𝒎𝒎𝒎𝒎𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎 Equation 2-5 
 

Similar to the temperature-dependent resistivity, this requires similar assumptions about 

the relative mobility of holes and electrons. This assumption turns out to be quite important for 

materials such as ZrNiSn [52], which I will explore in detail during this thesis in Chapter 5. I also 

developed a method for determining how far the band gap will deviate from the Goldsmid-Sharp 
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estimate as a function of the electron-to-hole weighted mobility ratio, A, even for materials with 

narrow gaps (or moderate gaps at high temperature) [50]. The Goldsmid-Sharp band gap is 

usually assumed to be, at best, a qualitative estimate (within ~20%). For a more direct 

measurement of band gap, optical methods are preferred, although they are not always feasible 

in doped samples. 

2.4 - Band Engineering 

Band engineering is a common topic in this thesis which involves optimization of 

thermoelectric efficiency through modifications in the electronic band structure. This can involve 

either tuning the Fermi level (EF) through doping to optimize the thermoelectric properties or 

alloying the material with another to alter the electronic structure to improve thermoelectric 

properties (possibly through band convergence).  

2.4a - Single Parabolic Band Model – Carrier Concentration Optimization 

The most straightforward way to optimize a thermoelectric material is by varying the 

doping content and charge carrier concentration. Improvements in this context are often explained 

using the “single parabolic band model” where the material properties are assumed to be 

described by a free electron-like band with a certain effective mass (some multiple of the mass of 

a free electron). In terms of the thermoelectric figure of merit, 𝑧𝑧𝛥𝛥, the optimum value can be found 

to scale with the quality factor:   

 𝑩𝑩 =
𝟐𝟐𝟐𝟐𝑩𝑩𝟐𝟐ℏ
𝟑𝟑𝟑𝟑

𝑵𝑵𝒗𝒗𝑪𝑪𝒍𝒍
𝒎𝒎𝒄𝒄

∗𝑬𝑬𝒅𝒅𝒅𝒅𝒅𝒅𝟐𝟐  𝜿𝜿𝑳𝑳
 Equation 2-6 

 

  

where 𝑘𝑘𝐵𝐵 is the Boltzmann constant, ℏ is Planck’s constant ratioed to 2𝜋𝜋, 𝑁𝑁𝑣𝑣 is the valley 

degeneracy, 𝐶𝐶𝑏𝑏 = 𝑚𝑚𝑁𝑁𝑏𝑏2 (where 𝑚𝑚 is the density and 𝑁𝑁𝑏𝑏 is the longitudinal speed of sound), 𝑚𝑚𝑐𝑐
∗ is the 

inertial effective mass, 𝐸𝐸𝑑𝑑𝑒𝑒𝑑𝑑 is the deformation potential (which is a measure of the strength of 
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coupling between lattice vibrations and electronic structure), and 𝜅𝜅𝐿𝐿 is the lattice thermal 

conductivity. 

The single parabolic band model is derived from the Boltzmann transport equation using 

the relaxation time approximation to obtain the thermoelectric parameters as a function of the 

reduced chemical potential [24, 53, 54], 𝜂𝜂 = 𝜉𝜉
𝑘𝑘𝐵𝐵𝑇𝑇

, where 𝜉𝜉 is the electronic chemical potential 

(which reduces to the Fermi level, EF, at T=0 K). The resulting relations for the thermoelectric 

transport properties are written below for an arbitrary power law dependence of the scattering 

time: 𝜏𝜏(𝜖𝜖) = 𝜏𝜏0𝜖𝜖𝜆𝜆−1/2 [24].  

 
𝑺𝑺(𝜼𝜼) =

𝟐𝟐𝑩𝑩
𝒅𝒅
�
(𝟐𝟐 + 𝝀𝝀)
(𝟏𝟏 + 𝝀𝝀)

𝑭𝑭𝟏𝟏+𝝀𝝀(𝜼𝜼)
𝑭𝑭𝝀𝝀(𝜼𝜼)  − 𝜼𝜼� Equation 2-7 

 

 
𝒏𝒏(𝜼𝜼) =

𝟏𝟏
𝟐𝟐𝟑𝟑𝟐𝟐

�
𝟐𝟐𝒎𝒎𝒅𝒅

∗𝟐𝟐𝑩𝑩𝑻𝑻
ℏ𝟐𝟐

�

𝟑𝟑
𝟐𝟐
𝑭𝑭𝟏𝟏/𝟐𝟐(𝜼𝜼) Equation 2-8 

 

 
𝒓𝒓𝑯𝑯(𝜼𝜼) =

𝟑𝟑
𝟐𝟐
𝑭𝑭𝟏𝟏/𝟐𝟐(𝜼𝜼)

�𝟏𝟏𝟐𝟐 + 𝟐𝟐𝝀𝝀�𝑭𝑭𝟐𝟐𝝀𝝀−𝟏𝟏/𝟐𝟐(𝜼𝜼)

(𝟏𝟏 + 𝝀𝝀)𝟐𝟐𝑭𝑭𝝀𝝀𝟐𝟐(𝜼𝜼)
 Equation 2-9 

  

where 𝜆𝜆 determines the scattering exponent, 𝐴𝐴 is the charge carrier concentration, 𝑚𝑚𝑑𝑑
∗  is the 

density of states effective mass, 𝑟𝑟𝐻𝐻 is the Hall coefficient, which determines the relationship 

between the measured 𝐴𝐴𝐻𝐻 = 1
𝑅𝑅𝐻𝐻𝑒𝑒

 and the chemical carrier concentration ( 𝑛𝑛
𝑛𝑛𝐻𝐻

= 𝑟𝑟𝐻𝐻), and 𝜖𝜖 = 𝐸𝐸
𝑘𝑘𝐵𝐵𝑇𝑇

. 

𝐹𝐹𝑗𝑗(𝜂𝜂) = ∫ 𝜖𝜖𝑗𝑗𝑑𝑑𝜖𝜖
1+exp (𝜖𝜖−𝜂𝜂)

∞
0 , which is defined as the jth order Fermi integral. While there are analytical 

expressions for the transport integrals in either the non-degenerate (semiconducting/insulating 

𝜂𝜂 ≪ 0) or the degenerate (heavily doped semiconducting/metallic 𝜂𝜂 ≫ 0) limits, the best 

thermoelectric materials tend to have Fermi levels somewhere in the intermediate region (𝜂𝜂 near 

the band edge), requiring  a full, numerical solution to the Fermi integrals (Python, Matlab, 

Mathematica, Excel/VBA). For most thermoelectric materials at or above room temperature, 
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acoustic phonon scattering is the dominant scattering mechanism, and it usually works well to 

describe transport in thermoelectric materials, requiring: 𝜆𝜆 = 0 and 𝜏𝜏0 = 𝜋𝜋ℏ4𝐶𝐶𝑙𝑙
√2𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑

2 (𝑚𝑚𝑏𝑏∗𝑘𝑘𝐵𝐵𝑇𝑇)3/2. Here, 

𝑚𝑚𝑏𝑏
∗  is the single valley effective mass (neglecting the effects of valley degeneracy). For systems 

where acoustic phonon scattering dominates, mobility decreases with temperature roughly as T-

3/2 (although some variation can exist if the effective mass is also temperature dependent). The 

real usefulness of Equation 2-7 through Equation 2-9 is that they relate experimentally measured 

parameters (Seebeck coefficient and Hall carrier concentration) back to the electronic band 

structure. The effectivez mass (which when estimated from the SPB Seebeck and carrier 

concentration, we will call 𝑚𝑚𝑆𝑆
∗) is directly related to the band curvature and valley degeneracy 

(𝑚𝑚𝑑𝑑
∗ = 𝑁𝑁𝑣𝑣

2/3𝑚𝑚𝑏𝑏
∗ ). In order to obtain 𝑚𝑚𝑆𝑆

∗, first, the measured Seebeck coefficient will be used to 

estimate the reduced chemical potential (𝜂𝜂) using Equation 2-7. 𝜂𝜂 can be substituted into the 

measured 𝐴𝐴𝐻𝐻 = 𝑛𝑛
𝑏𝑏𝐻𝐻

, the ratio of n (Equation 2-8) to rH (Equation 2-9), to solve for the experimental 

effective mass (𝑚𝑚𝑆𝑆
∗). 𝑚𝑚𝑆𝑆

∗ is believed to represent the density of states 𝑚𝑚𝑑𝑑
∗ , rather than the 

conductivity mass defined previously or the single band mass 𝑚𝑚𝑏𝑏
∗ . 

However, the effective mass is not the only useful parameter obtained in the single 

parabolic band model. Because Hall-effect measurements also yield the charge carrier mobility, 

𝜇𝜇𝐻𝐻 = 𝜇𝜇0
�12+2𝜆𝜆�𝐹𝐹2𝜆𝜆−12

(𝜂𝜂)

(1+𝜆𝜆)𝐹𝐹𝜆𝜆(𝜂𝜂)
, it is straightforward to determine the parameter which scales the mobility, 

𝜇𝜇0 = 𝑒𝑒𝜏𝜏0
𝑚𝑚𝑐𝑐
∗ , if the value has been measured experimentally. In fact, the band parameters in 𝜏𝜏0 (and 

the parameters that make it up as indicated in the previous paragraph) can also be determined if 

we assume that 𝑚𝑚𝑐𝑐
∗ = 𝑚𝑚𝑏𝑏

∗ = 𝑚𝑚𝑑𝑑
∗ , essentially requiring a single spherical Fermi surface. The 

thermoelectric quality factor, B (Equation 2-6), can be expressed in terms of 𝜇𝜇0:  
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𝑩𝑩 =

𝝁𝝁𝟎𝟎𝒎𝒎𝑺𝑺
∗𝟑𝟑/𝟐𝟐

𝜿𝜿𝑳𝑳
 

Equation 2-10 
 

  

In addition, the lattice thermal conductivity can be estimated using the Wiedemann-Franz law, 

𝜅𝜅𝐿𝐿 = 𝜅𝜅 − 𝜅𝜅𝑒𝑒 = 𝜅𝜅 − 𝜅𝜅𝜎𝜎𝛥𝛥, where 𝜅𝜅𝑒𝑒 = 𝜅𝜅𝜎𝜎𝛥𝛥 is the electronic thermal conductivity. The expression for 

the Lorenz number, L is given by: 

 
𝑳𝑳 =

𝟐𝟐𝟐𝟐

𝒅𝒅𝟐𝟐
(𝟏𝟏 + 𝝀𝝀)(𝟑𝟑 + 𝝀𝝀)𝑭𝑭𝝀𝝀(𝜼𝜼)𝑭𝑭𝝀𝝀+𝟐𝟐(𝜼𝜼) − (𝟐𝟐 + 𝝀𝝀)𝟐𝟐𝑭𝑭𝝀𝝀+𝟏𝟏𝟐𝟐 (𝜼𝜼)

(𝟏𝟏 + 𝝀𝝀)𝟐𝟐𝑭𝑭𝝀𝝀𝟐𝟐(𝜼𝜼)
 Equation 2-11 

 

By computing 𝑚𝑚𝑆𝑆
∗, 𝜇𝜇0, and 𝜅𝜅𝐿𝐿 from experimental data, we can make a plot of the carrier 

concentration dependent thermoelectric properties, as shown in Figure 1-2. The power of this 

simple method is that this plot can be generated after making and measuring the zT for a single 

sample. We can immediately determine the value of the maximum zT, and whether the charge 

carrier concentration needs to increase or decrease to yield the optimum zT. Usually, a series of 

samples is made with different doping concentrations to reduce the uncertainty of the 𝑚𝑚𝑆𝑆
∗, 𝜇𝜇0, and 

𝜅𝜅𝐿𝐿 values. 

2.4b - Valley Degeneracy and Band Anisotropy  

Higher levels of complexity can be added to the single parabolic band transport model. To 

begin with, perhaps the most profound in terms of thermoelectric enhancement are the valley 

degeneracy (Nv) and band anisotropy (K). Each of these show up during several chapters of this 

thesis. The valley degeneracy, Nv, is defined as the number of distinct charge carrier pockets (of 

the same sign) which exist at the Fermi level. The origin of these degeneracies can be broken 

down into two parts: 𝑁𝑁𝑣𝑣 = 𝑁𝑁𝑣𝑣,𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑒𝑒𝑡𝑡𝑏𝑏𝑠𝑠𝑁𝑁𝑣𝑣,𝑏𝑏𝑏𝑏𝑛𝑛𝑑𝑑, where Nv,symmetry is related to the degeneracy of a 

given point in the Brillouin zone due to that point’s symmetry and Nv,band which is the number of 

individual bands that are converged at that energy. Valley degeneracy manifests itself by 

increasing the density of states effective mass, 𝑚𝑚𝑑𝑑
∗ = 𝑁𝑁𝑣𝑣

2/3𝑚𝑚𝑏𝑏
∗ , relative to the single valley effective 
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mass (𝑚𝑚𝑏𝑏
∗ ). This is beneficial for the thermoelectric properties because each individual pocket 

conducts in parallel while the overall Fermi level does not rise too quickly (allowing the material 

to maintain a high Seebeck coefficient). In order to maximize Nv, a highly symmetric Brillouin zone 

(usually found in high symmetry materials) with band extrema that exist at low symmetry points 

lead to the highest degeneracy. For PbTe and other IV-VI materials, the primary valence band 

exists at the L-point  with Nv,symmetry=4, and a Nv,band=1, and a secondary band exists along the 𝛴𝛴 

line with a high degeneracy of Nv,symmetry=12, and a Nv,band=1. 

The common definition for the effective mass is 𝑚𝑚∗ = ℏ2 �𝑑𝑑
2𝐸𝐸

𝑑𝑑𝑘𝑘2
�
−1

, which is the inverse of 

the curvature of the band in energy vs. k-space (light bands have high curvature, heavy bands 

have shallow). In the simplest case, this Fermi surface will have the same curvature along all 

directions in k-space, producing a single, spherically shaped pocket. However, for many common 

materials this is not the case (Si/Ge [55, 56], III-V [57], and the lead chalcogenides [58-60]). In 

general, the effective mass can be different along all three directions. For example, when 

describing the density of states in that band, the geometric average along these directions is most 

appropriate: 𝑚𝑚𝑑𝑑
∗ = 𝑁𝑁𝑣𝑣

2/3𝑚𝑚𝑏𝑏
∗ = 𝑁𝑁𝑣𝑣

2/3(𝑚𝑚1
∗𝑚𝑚2

∗𝑚𝑚3
∗)1/3, where Nv is the valley degeneracy, 𝑚𝑚𝑏𝑏

∗  is the 

single valley effective mass, and 𝑚𝑚1,2,3
∗   are the effective masses along the different directions. 

While the density of states effective mass is the appropriate scaling parameter for the carrier 

concentration, the electrical conductivity and mobility are governed by the harmonic average over 

the different directions, yielding the conductivity (or inertial) effective mas: 𝑚𝑚𝑐𝑐
∗ = 3

1
𝑚𝑚1
∗+

1
𝑚𝑚2
∗+

1
𝑚𝑚3
∗
, which 

weights the lighter  (higher conductivity) directions more. Most often experimentally, Fermi 

surfaces are believed to be ellipsoidal, implying 𝑚𝑚1
∗ = 𝑚𝑚2

∗ = 𝑚𝑚⊥
∗  and 𝑚𝑚3

∗ = 𝑚𝑚∥. Often, the 

anisotropy is described by the parameter 𝐾𝐾 = 𝑚𝑚⊥
∗

𝑚𝑚∥
∗ . While it is possible to obtain information about 

the band anisotropy directly from experiments (Faraday rotation [55, 56], Shubnikov De Haas 
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[61]), for new materials these experiments have usually not been performed; therefore K is 

assumed to be 1.  

2.4c - Multiple Band Effects 

As is the case in p-type PbTe, many good thermoelectric materials exhibit multiple band 

effects. While semiconductors are inherently multi-band systems (one valence, one conduction 

band), good thermoelectric materials are sufficiently doped, meaning that their Fermi levels are 

far enough from the minority carrier band to not have detrimental effects to the majority carrier 

properties. In systems such as PbTe, where a secondary valence band exists about 0.12 eV 

below the primary, the effects are almost always beneficial to the thermoelectric properties. This 

can be understood by considering the quality factor, B (Equation 2-6), which is proportional to the 

valley degeneracy. Any electron (or hole for p-type material) population in an additional band 

which contributes to the electronic transport properties (i.e., the band’s energy is within ~4 kBT of 

the chemical potential) can be regarded as an increase in the effective valley degeneracy (a topic 

that will be discussed in detail in Chapter 7). This increase ultimately results in a better zT than 

could have been obtained by either band separately; however, the details depend significantly 

upon the energy offset (Δ𝐸𝐸) between the bands. This thesis will focus, in a large part, on the 

details of these multiple band effects and their characterization and potential enhancement to zT 

in both an experimentally measureable and theoretical sense. 

In order to compute multi-band effects, conductivity weighted averages over the properties 

of the individual bands (the ith band) are used, as suggested by Putley [62]: 
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𝝈𝝈 = �𝝈𝝈𝒊𝒊

𝒊𝒊

 Equation 2-12 

 
𝑺𝑺 =

∑ 𝑺𝑺𝒊𝒊𝝈𝝈𝒊𝒊𝒊𝒊

∑ 𝝈𝝈𝒊𝒊𝒊𝒊
 Equation 2-13 

 𝑹𝑹𝑯𝑯 =
∑ 𝝈𝝈𝒊𝒊

𝟐𝟐𝑹𝑹𝑯𝑯𝒊𝒊𝒊𝒊

�∑ 𝝈𝝈𝒊𝒊𝒊𝒊 �
𝟐𝟐   Equation 2-14 

 
𝜿𝜿 = 𝜿𝜿𝑳𝑳 + �𝑳𝑳𝒊𝒊𝝈𝝈𝒊𝒊𝑻𝑻

𝒊𝒊

+ 𝑻𝑻(�𝝈𝝈𝒊𝒊𝑺𝑺𝒊𝒊𝟐𝟐

𝒊𝒊

− 𝑺𝑺𝟐𝟐𝝈𝝈) Equation 2-15 

where RH,i is the Hall coefficient for the ith band, defined as 𝛥𝛥𝐻𝐻,𝑏𝑏 = 1
𝑛𝑛𝐻𝐻,𝑖𝑖𝑒𝑒

= 𝑏𝑏𝐻𝐻,𝑖𝑖
𝑛𝑛𝑖𝑖𝑒𝑒

 (where 𝑟𝑟𝐻𝐻 and 𝐴𝐴 were 

defined in Equation 2-8 and Equation 2-9). Interestingly, the thermal conductivity shows a non-

trivial effect: 𝜅𝜅 = 𝜅𝜅𝐿𝐿 + 𝜅𝜅𝑒𝑒,𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒𝑛𝑛𝐿𝐿 + 𝜅𝜅 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. Essentially, the Wiedemann-Franz law accounts for 

only part of the electronic thermal conductivity in the region where multiple bands exist. The 

bipolar term is a result of a difference in the total power factor and the power factors of each 

individual band. In the region where two charge carriers exist with opposite signs (valence and 

conduction band), the bipolar thermal conductivity is observed rather strongly and is quite 

important in many thermoelectric materials. In fact, the bipolar effect at high temperature is readily 

observed in the thermal conductivity (Figure 1-4b) and is one physical origin of the maximum in 

zT. The Seebeck coefficient also is decreased in this bipolar region (Figure 1-4a). 

Additionally, the charge neutrality equation: 

 𝑵𝑵𝑫𝑫 + �𝒑𝒑𝒊𝒊
𝒊𝒊

= 𝑵𝑵𝑨𝑨 + �𝒏𝒏𝒊𝒊
𝒊𝒊

 Equation 2-16 

can be solved with a known number of donors (ND) and/or acceptors (NA) (or difference between 

their concentrations) for the chemical potential dependent electron and hole concentrations  

(which is only be a function of 𝜂𝜂 given 𝑚𝑚𝑑𝑑,𝑏𝑏
∗  and Δ𝐸𝐸 are specified for each of the i bands at a given 

T). The charge neutrality equation is useful for determining temperature-dependent thermoelectric 

properties (assuming ND-NA is constant), and it is used in several chapters of this thesis. 
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It should be noted that the reduced chemical potential for the ith band should be defined 

relative to the first band in order to reduce the overall number of variables (given that the offset 

between the bands, Δ𝐸𝐸, is known). This can be defined as 𝜂𝜂𝑏𝑏 = 𝑉𝑉𝑏𝑏𝜂𝜂1 − Δ𝐸𝐸𝑏𝑏−1, where si is the sign 

of the band (which should be specified relative to that of band 1), Δ𝐸𝐸𝑏𝑏−1 is the band offset between 

the ith and first bands, and 𝜂𝜂𝑏𝑏 represents the reduced chemical potential for that band (which 

should be substituted into the Fermi integral equations specified previously with the sign of the 

Seebeck coefficient reflecting the sign of the band, si). 

2.4d - Band Non-Parabolicity 

In this thesis, non-parabolic bands will also be used to describe the thermoelectric 

transport properties. The two-band Kane model (which Kane originally developed for InSb [63]) 

involves interacting valence and conduction bands through the 𝑘𝑘 ∙ 𝑜𝑜 method. This model’s 

application to describing electronic transport properties is described in great detail by Zawadski 

[64] and Ravich [58]. While Zawadski takes a more general approach which includes examples 

across many material systems and considers a wide range of properties, Ravich’s more simple 

approach is geared towards thermoelectric lead chalcogenides. The equations for the transport 

properties are outlined in detail in previous work by Wang et al. and will not be repeated here [65], 

but the relevant Fermi integral is generalized to: 

 
𝑭𝑭𝒍𝒍𝒎𝒎 = � �−

𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅
� 𝒅𝒅𝒏𝒏�𝒅𝒅 + 𝜷𝜷𝒅𝒅𝟐𝟐�𝒎𝒎�(𝟏𝟏 + 𝟐𝟐𝜷𝜷𝒅𝒅)𝟐𝟐 + 𝟐𝟐�𝒍𝒍/𝟐𝟐𝒅𝒅𝒅𝒅

∞

𝟎𝟎

𝒏𝒏  Equation 2-17 
 

The degree of non-parabolicity is related to the band gap using the parameter 𝛽𝛽 = 𝑘𝑘𝐵𝐵𝑇𝑇
𝐸𝐸𝑔𝑔

; 

therefore materials with small gaps will exhibit large non-parabolicity. In fact, the band edge 

effective mass can be shown to scale as, 𝑚𝑚0
∗ = ℏ2𝐸𝐸𝑔𝑔

2𝑃𝑃2
, where P is the interaction matrix element 

between electrons and holes. In this thesis, I will apply non-parabolic models for the lead and tin 

chalcogenides and CoSb3. In Chapter 6, I discuss the effect of non-parabolicity on the effective 

mass, which is obtained through the Seebeck coefficient (𝑚𝑚𝑆𝑆
∗) by deriving the Mott relation for 
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Kane-type bands. The generalized Fermi integrals for non-parabolic bands can be used in place 

of parabolic ones (in fact, if we take 𝛽𝛽 = 0 the result reduces to the parabolic expression) when 

computing the properties for either a single or a multi-band transport model.  

2.5 - Ab-Initio Calculations 

Density functional theory (DFT) calculations are commonplace in materials and chemistry 

research. In the context of thermoelectric materials, they give a detailed description of the 

materials’ electronic structure, which is critically important to characterizing experimentally 

measured results. This thesis uses these calculations throughout to guide the research and 

provide a framework for which to understand the results. Because of the range of methods used 

by our collaborators, specific details of each calculation will be given within each chapter on the 

ab-initio results obtained. 

2.6 - Sample Preparation 

Thermoelectric samples were prepared using conventional solid-state chemistry 

techniques. The IV-VI materials (PbTe, PbSe, SnTe, and their alloys) were prepared by first 

weighing stoichiometric quantities of the elements, loading them into a quartz ampule, sealing 

under vacuum, and melting in a tube furnace for approximately 1 day at 1000 – 1100°C. The 

melted samples were quenched in water followed by annealing for ~ 3 days at 600°C to 

homogenize the sample. 

CoSb3 samples were synthesized in a similar manner to the IV-VI materials where the 

elements were melted (1080°C) and annealed (for 7 days at 600°C) within boron nitride crucibles 

that were sealed within quartz ampules.  

Half-Heusler (ZrNiSn) samples were prepared via arc-melting due to the high melting point 

of Zr. The arc-melting of the elements occurred in an Ar atmosphere within a water-cooled copper 

crucible. To ensure compositional homogeneity, samples were flipped and remelted five times. 
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The as-cast samples were annealed in evacuated quartz tubes at 1220 K for 7 d, followed by 

quenching in ice water to ensure the crystalline order.  

For each of the materials, the samples were quenched after annealing and the ingots were 

recovered and ground into a fine powder (in the glove box). Samples were prepared by loading 

this powder into a graphite dye (1/2” outer diameter) which was used for induction hot-pressing 

[66]. The resulting samples were high quality (>95% theoretical density) ½” discs which were 

polished and prepared for the electrical, thermoelectric, and thermal measurements required to 

estimate zT. X-ray diffraction was performed to ensure that the expected crystal structure was 

obtained and to discover any possible secondary phases (detection limit of ~1%). Additional 

details regarding the synthesis, as needed, will be included at the end of each section. 
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Chapter 3:  Optical Properties of Doped Semiconductors 

3.1 - Introduction 

Because thermoelectric materials require doping for optimization of the thermoelectric 

properties, understanding how free carriers in a material affect its optical absorption spectrum is 

quite important. Figure 3-1 illustrates several ways that free carriers affect the optical absorption 

edge spectrum. Region 1 involves absorption of light via plasma oscillation of the bulk free 

electrons, the magnitude of which depends on the free carrier concentration. Region 2, 3, and 4 

are associated with interband transitions from the valence to conduction band, as indicated by 

the increase in absorption beginning around 0.28 eV. Region 2 precedes the onset of the 

absorption edge and is known as the Urbach tail, which is associated with randomly distributed 

impurities within the semiconductor. Regions 3 and 4 are associated with an increase or decrease 

in the band edge position, which occurs at high doping levels. The increase shown in Region 3 is 

known as the Burstein Moss shift, which occurs due to occupation of the conduction band edge 

upon heavy n-type doping. Region 4 indicates a decrease in the absorption edge energy 

(renormalization), which is thought to occur due to electron-electron repulsion. Each of these 

effects will be described in detail in the following sections. 

The difference between the optical (Burstein-Moss shifted) and true band gaps have been 

studied in many material systems [47, 67, 68] . It is important to have an understanding of the 

Burstein Moss shifts and band gap renormalization for a variety of semiconductor device 

applications where both the majority and minority carrier concentrations and band energies are 

necessary to optimize performance. In thermoelectric materials, though, there is often no 

distinction made between the true and optical gaps in doped materials [69, 70]. While the 

differences can be circumvented in the case of an undoped material (PbTe undoped binary), 

some thermoelectric materials may include simultaneous shifts in the doping level and the band 
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structure during doping that we would like to characterize in the context of band engineering. In 

this thesis chapter, I quantify the Burstein-Moss shift to the optical gap, and gap renormalization 

in Iodine doped PbTe measured using DRIFTS. We use measured Seebeck coefficients to 

estimate the chemical potential (𝜉𝜉), which is an improvement to simply measuring the Hall carrier 

concentration. Further, we attempt to improve upon renormalization estimates by self-consistently 

considering the band gap parameter for non-parabolic systems. 

 

Figure 3-1: Optical absorption edge spectrum of an Iodine doped PbTe sample indicating the four regions that are 
present when considering optical processes relevant to free carriers: 1. Free carrier absorption, 2. Urbach edge, 3. 
increase in the interband transition energy (Burstein Moss Shift), and 4. band gap reduction as a result of doping 
(renormalization). 

3.2 - Theory of Free Carrier Contributions to Optical Spectra 

3.2a - Free Carrier Absorption 

In n-type doped PbTe, a population of free carriers exists near the bottom of the 

conduction band, which can be excited to higher levels within the conduction via intraband 

transitions. The free electron cloud is perturbed by an incoming electric field, E. Solutions to the 

Maxwell equations take the form of: 𝑬𝑬 = 𝑬𝑬𝟎𝟎𝑒𝑒𝑏𝑏(𝟐𝟐∙𝒓𝒓−𝜔𝜔�̃�𝑡), (where �̃�𝑜 is the time), which yields the 

following form of the complex dielectric function (𝜖𝜖𝑐𝑐 = 𝜖𝜖1 + 𝑖𝑖𝜖𝜖2) [43]:  
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𝒅𝒅𝒄𝒄 = 𝒅𝒅∞ +

𝟒𝟒𝟑𝟑𝒊𝒊
𝝎𝝎

�
𝒏𝒏𝒅𝒅𝟐𝟐𝝉𝝉

𝒎𝒎(𝟏𝟏 − 𝒊𝒊𝝎𝝎𝝉𝝉)�

= 𝒅𝒅∞ �𝟏𝟏 −
𝝎𝝎𝒑𝒑
𝟐𝟐𝝉𝝉𝟐𝟐

𝟏𝟏 + 𝝎𝝎𝟐𝟐𝝉𝝉𝟐𝟐
� + 𝒊𝒊(

𝒅𝒅∞𝝎𝝎𝒑𝒑
𝟐𝟐

𝝎𝝎(𝟏𝟏 + 𝝎𝝎𝟐𝟐𝝉𝝉𝟐𝟐)) Equation 3-1 
 

  

Here, 𝜏𝜏 is the Drude scattering time and the plasma frequency is defined as 𝜔𝜔𝑏𝑏 = � 𝑛𝑛𝑒𝑒2

𝑚𝑚∗𝜖𝜖∞
 . 

Using this model for the complex dielectric function, it is straightforward to obtain both the real 

and imaginary components of the refractive index, which can then be used to obtain the frequency 

dependent reflectivity and absorption coefficient. In the case of specular reflection (perfect mirror 

reflection), the measured reflectivity can be compared to the result expected from the real and 

imaginary components of the refractive index, which can be derived from the dielectric function 

using [43]: 

 𝒅𝒅𝟏𝟏 = 𝒏𝒏𝒓𝒓𝟐𝟐 − 𝜿𝜿𝒓𝒓𝟐𝟐  Equation 3-2 
   

 𝒅𝒅𝟐𝟐 = 𝟐𝟐𝒏𝒏𝒓𝒓𝜿𝜿𝒓𝒓 Equation 3-3 
 

and 

 
𝑹𝑹 =

(𝟏𝟏 − 𝒏𝒏𝒓𝒓)𝟐𝟐 + 𝜿𝜿𝒓𝒓𝟐𝟐

(𝟏𝟏 + 𝒏𝒏𝒓𝒓)𝟐𝟐 + 𝜿𝜿𝒓𝒓𝟐𝟐
 Equation 3-4 

 
which can be shown to yield a minimum in R near 𝜔𝜔𝑏𝑏 as a result of resonance between the photon 

and the bulk free electrons. The frequency at which the minimum occurs is roughly equal to 𝜔𝜔𝑏𝑏 

(minor corrections have been shown by Lyden et al. [71]). In a diffuse reflectance spectrum, which 

is transformed by the Kubelka Munk function (Equation 2-1), this instead yields a maximum in 

F(R). These maxima are observed in the more heavily doped PbTe samples (nH> 2×1019 cm-3) 

where the plasma frequency becomes larger than 0.05 eV as shown in Figure 3-2a. The 

measured peak in the Kubelka Munk function occurs even though the Praying Mantis diffuse 

reflectance instrument attempts to minimize the specular component of the reflection.  
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In terms of the absorption coefficient, 𝛼𝛼, (which Diffuse Reflectance attempts to capture), 

when  𝜔𝜔 ≫ 𝜏𝜏−1: 𝛼𝛼𝐹𝐹𝐶𝐶 ∝
𝑛𝑛𝑒𝑒2

𝑛𝑛𝑟𝑟 𝑐𝑐 𝑚𝑚∗ 𝜏𝜏 𝜔𝜔2 where n is the number of free carriers, e is the elementary charge 

of an electron, nr is the real refractive index, and c is the speed of light [43]. In order to isolate 

interband transitions, these features were fit and subtracted with a power law (𝑦𝑦 = 𝑎𝑎𝑥𝑥𝑏𝑏 + 𝑐𝑐). In 

almost all cases, the exponent, b, followed the expectation for Drude carriers of b = -2.  

 

Figure 3-2: DRIFTS Spectra showing free carrier absorption contributions in Iodine doped PbTe. a) an increasing free 
carrier absorption with doping level, b) an example of a power law fit to the free carrier absorption. 

3.2b - Urbach Edge 

The second region of Figure 3-1 shows the exponential onset of absorption just below the 

fundamental absorption edge, known as the Urbach Edge (or Urbach tail). This effect is known to 

occur across a wide range of semiconductors, although ones with high impurity contents (or 

disordered alloys) have the largest Urbach tails (shown later in Chapter 4.3 for PbSe/SrSe alloys). 

The Urbach tail is thought to be related to the random distribution of impurity atoms in the material. 

For measurements done in this thesis, we also observe an approximately exponential increase in 

absorption just below the band edge [44, 45]. In this chapter, we will not treat the Urbach edge 

explicitly as we will attempt to fit the direct transitions instead, although its implications will be 

discussed.  

~

~

a) b) 
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3.2c - Burstein Moss Shift/Renormalization 

Region 3, shown in Figure 3-1, indicates an upward shift in the absorption edge energy 

with doping. Heavily doped semiconductors (most good thermoelectric materials) have free carrier 

contributions to the optical absorption that can complicate the estimate of the band gap. In the 

case of degenerately doped semiconductors, this can cause large errors in the estimate of the 

true band gap on the order of the value of the chemical potential, 𝜉𝜉 (which can be more than 0.1 

eV in heavily doped samples).  Since the early 1950’s, it has been known that the measured 

optical band gap (𝐸𝐸𝑔𝑔,𝑏𝑏𝑏𝑏𝑡𝑡) tends to change with increasing doping [72, 73]. These effects have even 

been considered in lead chalcogenides by some authors [74-77].  

In the case of a degenerately doped n-type semiconductor, states near the conduction 

band edge become partially occupied. As a result, the photon energy required for excitation 

across a direct band gap becomes higher, increasing by �1 + 𝑚𝑚𝑐𝑐𝑏𝑏
∗

𝑚𝑚𝑣𝑣𝑏𝑏
∗ � 𝜉𝜉 in the case of direct 

transitions (where 𝑚𝑚𝑐𝑐𝑏𝑏,𝑣𝑣𝑏𝑏
∗  are the conduction and valence band effective mass respectively, see 

Figure 3-3). This results in an increase in the optical band gap (𝐸𝐸𝑔𝑔,𝑏𝑏𝑏𝑏𝑡𝑡), known as the Burstein-

Moss shift [45, 72, 75, 78]. The thermal gap, 𝐸𝐸𝑔𝑔,𝑡𝑡ℎ𝑒𝑒𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏 = 𝐸𝐸𝑔𝑔 + 𝜉𝜉, is relevant to transport properties 

and minority carrier excitation across the gap. The true band gap, Eg, has been shown both 

experimentally through optical measurements [47, 79, 80] and theoretically [47, 79, 80] to be 

reduced as the carrier concentration increases in heavily doped semiconductors, known as band 

gap renormalization (Δ𝑅𝑅𝑅𝑅)12,35-37. Renormalization has been attributed to Coulombic repulsion of 

the electrons and/or exchange interactions.  Thus, the optical band gap can be expressed as: 

 
𝑬𝑬𝒈𝒈,𝒐𝒐𝒑𝒑𝒐𝒐 = 𝑬𝑬𝒈𝒈 + �𝟏𝟏 +

𝒎𝒎𝒄𝒄𝒄𝒄
∗

𝒎𝒎𝒗𝒗𝒄𝒄
∗ � 𝝃𝝃 − 𝚫𝚫𝑹𝑹𝑵𝑵 Equation 3-5 

  
which is illustrated in Figure 3-3. 
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Figure 3-3: Optical excitations across the gap in a direct gap n-type degenerately doped semiconductor illustrating the 
Burstein-Moss shift and the different estimates of the band gap. Dashed line indicates the chemical potential, 𝜉𝜉. 

While the accepted view of PbTe is as a direct gap semiconductor, with evidence shown 

both experimentally [77, 81-83] and theoretically [84-86], some confusion existed in the early 

optical measurements. Some authors had also obtained good, linear fits to 𝛼𝛼1/2 vs. ℏ𝜔𝜔 expected 

for indirect transitions [27, 37]. Similar to these reports, the absorption spectra in this thesis also 

provide a linear  𝛼𝛼1/2 vs. ℏ𝜔𝜔  region where the extrapolated band-gap energy is slightly lower 

(~30-60 meV) than those fit for direct transitions. Scanlon suggests that this difference can be 

attributed to indirect transitions where a phonon is absorbed [37, 58], although single phonon 

energies are at most 12 meV or less based on a Debye temperature of 140 K [87] and neutron 

scattering experiments [88]. Prakash suggests Scanlon’s observation could also be interpreted 

as merely a coincidental fit due to the Urbach tail (exponential decrease in density of states below 

the band edge) [39]. Although we believe that Prakash’s interpretation is correct in PbTe, many 

materials do exhibit both indirect and direct transitions with some energy separation. For example, 

in germanium, both direct and indirect transitions exist with the indirect gap occurring first at about  

0.63 eV and direct transitions beginning at  0.81 eV [89]. The indirect portion involves a slow rise 

in absorption coefficient over a long energy range (~100 cm-1 over ~0.2 eV) while the direct 

absorption on the other hand gives a much steeper rise over a shorter period (~104 cm-1 over 

~0.05 eV). As a result, the direct gap is much more easily observed, particularly if both direct and 

 

𝜉𝜉 
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indirect transitions occur at close to the same energies. The absorption coefficient of PbTe 

changes ~104 cm-1 over ~0.05 eV [76, 90], suggesting that it is a direct gap semiconductor.  

Recently, it has been suggested that the true gap value is convoluted by mid-gap defect 

states [91]. While these states may affect the measured optical band gap, we see no significant 

contribution from localized states in the transport properties; transport measurements are 

characteristic of itinerant (delocalized) carriers giving metal-like transport behavior (implying that 

the suggestion of mid-gap states is incorrect). Therefore, the measured absorption edge was 

assumed to be associated with the band edge in PbTe and not mid gap defect states, although 

defect states near the band edge could certainly play a role in band gap renormalization. 

3.3 - Results and Discussion 

Figure 3-4a shows the raw absorption spectra for a series of Iodine doped PbTe samples. 

A steady shift in the absorption edge to higher energies is observed with an increase in dopant 

concentration. Upon fitting and subtracting the free carrier absorption portions at low energies 

and applying the Tauc transformation for direct gaps, the gaps can be extrapolated as shown in 

Figure 3-4b. The results of the extrapolations are plotted (Figure 3-4c) as the optical band gap 

(𝐸𝐸𝑔𝑔,𝑏𝑏𝑏𝑏𝑡𝑡) as a function of charge carrier concentration for Iodine and Lanthanum doped PbTe and 

Bromine doped PbSe. 

 

a) 
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Figure 3-4: Normalized Kubelka Munk function for PbTe1-xIx for a) raw data, and b) absorption coefficient direct gap 
extrapolation using the Tauc method. c) the resulting optical band gaps for n-type PbTe doped w/ either Iodine or 
Lanthanum and PbSe doped with Bromine. 

Figure 3-4 clearly shows the increasing optical band gap with doping level; in order to 

quantify this effect, 𝜉𝜉 must be determined. In many cases, the chemical potential is estimated by 

the 0 K limit of the parabolic band (Fermi energy, EF): 𝐸𝐸𝐹𝐹 = ℏ2

2𝑚𝑚∗ (3𝜋𝜋2𝐴𝐴)2/3 [68, 92, 93]. While this 

may be a good estimate for degenerate systems (at low temperature, high doping) with parabolic 

band shapes, a better estimate involves solving the more general temperature-dependent 

expression, 𝐴𝐴 =  ∫ 𝐷𝐷(𝐸𝐸)𝑓𝑓(𝐸𝐸, 𝜉𝜉,𝛥𝛥)𝑚𝑚𝐸𝐸∞
0 , where D is the density of states and f is the Fermi 

b) 

c) 
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distribution function. It is well known that many semiconductors, including lead chalcogenides, 

deviate significantly from parabolic behavior. Ravich has developed an adaptation of the Kane 

band model for application to the lead chalcogenides, which has shown excellent agreement to 

experimental transport data [16, 28, 58]. Using Ravich’s solution of the Kane band model applied 

to lead chalcogenides, n can be calculated by numerically integrating Equation 3-6: 

 
𝒏𝒏 =

(𝟐𝟐𝐦𝐦∗𝟐𝟐𝑩𝑩𝑻𝑻)
𝟑𝟑
𝟐𝟐

𝟑𝟑𝟑𝟑𝟐𝟐ℏ𝟑𝟑
𝑭𝑭𝟎𝟎 𝟎𝟎
𝟑𝟑/𝟐𝟐  Equation 3-6 

 
where 𝑚𝑚𝑑𝑑,0

∗  is the band edge density of states effective mass, 𝜖𝜖 is the dimensionless energy (𝜖𝜖 =

𝐸𝐸
𝑘𝑘𝐵𝐵𝑇𝑇

), β is the non-parabolicity parameter (𝛽𝛽 = 𝑘𝑘𝐵𝐵𝑇𝑇
𝐸𝐸𝑔𝑔

 from Ravich), η is the reduced chemical 

potential 𝜂𝜂 = 𝜉𝜉
𝑘𝑘𝐵𝐵𝑇𝑇

, and 𝐹𝐹𝑛𝑛 𝑏𝑏
𝑚𝑚 = ∫ �−𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
� 𝜖𝜖𝑛𝑛(𝜖𝜖 + 𝛽𝛽𝜖𝜖2)𝑚𝑚[(1 + 2𝛽𝛽𝜖𝜖) + 2]𝑏𝑏/2𝑚𝑚𝜖𝜖∞

0  (a modified version of 

the Fermi integrals, Equation 2-17, from Wang et al [65]). The band gap parameter in the Kane 

model was assumed to have a constant value equal to that of the undoped PbTe, 0.295 eV, for 

this analysis. Calculation of the chemical potential as a function of the true carrier concentration 

is rather straightforward, but in order to compare to the Hall carrier concentration the Hall factor, 

rH, is needed [58, 65]: 

 
𝒓𝒓𝑯𝑯 =

𝟑𝟑𝑲𝑲(𝑲𝑲 + 𝟐𝟐)
(𝟐𝟐𝑲𝑲 + 𝟏𝟏)𝟐𝟐

𝑭𝑭𝟎𝟎 𝟎𝟎
𝟏𝟏/𝟐𝟐 𝑭𝑭𝟎𝟎 𝟎𝟎

𝟑𝟑/𝟐𝟐

� 𝑭𝑭𝟎𝟎 −𝟐𝟐
𝟏𝟏 �

𝟐𝟐  Equation 3-7 

where K (as defined in Chapter 2) is the anisotropy factor (𝐾𝐾 = 𝑚𝑚∥
∗

𝑚𝑚⊥
∗ = 3.58 [16]). By combining 

Equation 3-6 and Equation 3-7 to obtain 𝐴𝐴𝐻𝐻 = 𝐴𝐴/𝑟𝑟𝐻𝐻, we can plot the chemical potential dependent 

carrier concentration in Figure 3-5b (blue line) for 𝑚𝑚𝑑𝑑,0
∗ = 0.276 𝑚𝑚𝑒𝑒.  

Alternatively, using the Boltzmann transport equation, it is possible to obtain an estimate 

for the chemical potential, 𝜉𝜉, directly from the measured Seebeck coefficient with no assumption 

about the band edge effective mass (Equation 3-8) [58, 65]. The raw Seebeck data as a function 

of Hall carrier concentration is plotted in Figure 3-5a along with an S vs nH (Pisarenko plot) 
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estimate using the SKB model (Red line derived using Equation 3-6, Equation 3-7, and Equation 

3-8). 

 
𝑺𝑺 =

𝟐𝟐𝑩𝑩
𝒅𝒅

(
𝑭𝑭𝟏𝟏 −𝟐𝟐
𝟏𝟏

𝑭𝑭𝟎𝟎 −𝟐𝟐
𝟏𝟏 − 𝜼𝜼) Equation 3-8 

  

 

Figure 3-5: a) Seebeck Pisarenko plot for PbTe:I with the SKB model curve (𝑚𝑚𝑑𝑑0
∗ =0.276) shown. b) The change in 

electrochemical potential (calculated from the Seebeck coefficient) with Hall carrier concentration as a result of doping. 

Figure 3-5b shows the calculated chemical potential for each iodine doped sample 

calculated using a single Kane band model both from the room temperature Seebeck 

measurements (solid points) along with the result assuming 𝑚𝑚𝑑𝑑0
∗ = 0.276 𝑚𝑚0 (best fit of the 

Seebeck vs. nH Pisarenko plot). Here, we can see the chemical potential for the most heavily 

doped samples increases to ~0.15 eV from the band edge. It is important to note that the chemical 

potential estimate can vary significantly depending on the particular band model. In the case of a 

single parabolic band, the chemical potential can change to be as much as 50% higher for the 

same doping level and effective mass (this is a consequence of the Kane band effective mass 

increasing with increasing 𝜉𝜉). Once 𝜉𝜉 is known, it is possible to estimate the true gap from the 

optical gap measurement (Figure 3-4). As an alternative to the Tauc method, the gap can also be 

fit using the spectral Fermi distribution. 

The Fermi distribution can be projected onto the unperturbed interband absorption as a 

multiplicative factor, shown in Equation 3-9. This technique and similar methods have been 

a) b) 
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performed on a variety of materials, including lead chalcogenides [75, 76] and other materials [47, 

67, 72, 94].  

 𝜶𝜶(ℏ𝝎𝝎) ∝ 𝜶𝜶𝟎𝟎(ℏ𝝎𝝎) [𝟏𝟏 − 𝒅𝒅(ℏ𝝎𝝎, 𝜻𝜻,𝑻𝑻) ] Equation 3-9 
  

Here, 𝛼𝛼0 is the absorption for an unpopulated conduction band at T = 0 K, which for parabolic 

bands is proportional to 𝛼𝛼0 = �ℏ𝜔𝜔−𝐸𝐸𝑔𝑔
ℏ𝜔𝜔

=
�ℏ𝜔𝜔−�𝐸𝐸𝑔𝑔,𝑜𝑜𝑝𝑝𝑡𝑡−�1+

𝑚𝑚𝑐𝑐𝑏𝑏
∗

𝑚𝑚𝑣𝑣𝑏𝑏
∗  �𝜉𝜉�

ℏ𝜔𝜔
. f is the Fermi distribution, which is 

related to the photon energy as  𝑓𝑓(ℏ𝜔𝜔, 𝜉𝜉,𝛥𝛥) =  �1 + exp� ℏ𝜔𝜔−𝐸𝐸𝑔𝑔,𝑜𝑜𝑝𝑝𝑡𝑡

�1+
𝑚𝑚𝑐𝑐𝑏𝑏
∗

𝑚𝑚𝑣𝑣𝑏𝑏
∗ �𝑘𝑘𝐵𝐵𝑇𝑇

��

−1

. The second term in 

Equation 3-9 represents the electronic excitation probability based on the electron population from 

Fermi distribution. 

Using the proportionality factor and the band gap value as a fitting parameter, it is possible 

to obtain an estimate for the optical band gap using Equation 3-9 from the measured absorption 

spectra for a given estimate of the chemical potential, 𝜉𝜉 (as estimated from either room 

temperature Seebeck and nH measurements). A resulting fit of the absorption spectrum is shown 

in Figure 3-6. The Fermi projection method gives the optical band gap near the inflection point in 

the absorption (where the slope is the largest) which agrees approximately in trend obtained 

directly from extrapolation (Figure 3-7a) using the Tauc method (although is ~0.01-0.02 eV higher 

in energy than the Tauc extrapolation method). Results regarding the Fermi broadening method 

are included in a separate work on the subject [95], but in the remainder of this thesis I will only 

present results using the Tauc extrapolations (Figure 3-4). 
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Figure 3-6: Fermi spectra method projecting the Fermi distribution onto the absorption edge in PbTe1-yIy, y =0.0012 fit 
with a Fermi function. 
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Figure 3-7: a) Optical band gaps fit from optical data via extrapolation by the Tauc plot method along with the curve fit 
from Equation 3-5. b) The true band gap, calculated from the optical gaps by Eg = Eg,opt - 2𝜉𝜉 and the curve, which is 
given by 𝐸𝐸𝑔𝑔 = 𝐸𝐸𝑔𝑔,0 − 𝛥𝛥𝑅𝑅𝑅𝑅, c) Band gap renormalization fit: experimental data is 𝛥𝛥𝑅𝑅𝑅𝑅 = 𝐸𝐸𝑔𝑔,0 − (𝐸𝐸𝑔𝑔,𝑏𝑏𝑏𝑏𝑡𝑡 − 2𝜉𝜉), and the 
curve is given by the best fit: 𝛥𝛥𝑅𝑅𝑅𝑅 = 𝐴𝐴𝐴𝐴1/3 + 𝛥𝛥𝑅𝑅𝑅𝑅,0. 

Figure 3-7a shows an increasing optical gap with doping level, known as a Burstein-Moss 

shift. As the doping level increases, the chemical potential in the conduction band moves upward, 

which creates occupied states nearest the band edge, requiring a higher energy photon for 

excitation of a carrier across the gap. Following Figure 3-3 (and Equation 3-5) we can relate the 

optical gap to the true gap, Eg. 

Figure 3-7b shows the calculated true band gap with respect to doping level. In the case 

of direct transitions and similar valence and conduction band effective masses, the true band gap 

is related to the optical gap and the chemical potential as 𝐸𝐸𝑔𝑔 = 𝐸𝐸𝑔𝑔,𝑏𝑏𝑏𝑏𝑡𝑡 − 2𝜉𝜉. The result shows a 

true gap that decreases significantly with doping level relative to the undoped sample. This is a 

a) b) 

c) 
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result of the measured optical gap not increasing as quickly as expected based on the calculated 

𝜉𝜉. Over the same doping range, the optical band gap is expected to increase by 2𝜉𝜉, which is as 

much as 0.25 eV at the highest doping levels (see Figure 3-5b). The measured optical band gap, 

however, only increases by about 0.1 eV (about 40% of 𝜉𝜉) at the highest doping levels, as shown 

in Figure 3-4c/Figure 3-7c/Table 3-1. The relatively small change of the optical band gap can be 

explained by the renormalization effect, which is an estimate of band gap shrinkage with doping.  

The true band gap in Equation 3-5 can also be represented by 𝐸𝐸𝑔𝑔 = 𝐸𝐸𝑔𝑔0 − Δ𝑅𝑅𝑅𝑅, which 

accounts for a shrinking band gap with increasing doping level as shown in Figure 3-7b.  Both 

experimental and theoretical work has been done to determine how the band gap should shrink 

due to renormalization with increasing electron concentration in many semiconductors, including 

Si [47, 67, 80, 96, 97], Ge [96, 98], GaAs [68, 99], InP [79], ZnO [100], and other materials. The 

effect has proven important in semiconductor device applications where the material’s band gap 

determines many device characteristics and careful engineering is required to optimize 

performance. Gap narrowing is thought to be due to a combination of effects, including electron-

electron exchange interactions, electron-donor interactions, and band tailing [92, 96, 99, 101].  

Electron-electron exchange has been shown to scale as 𝐴𝐴1/3 in a weakly interacting free electron 

gas [96, 100]; this model is often used empirically, although the specific form may vary with crystal 

and energy band structure. The effect can be thought of as Coulombic repulsion between free 

electrons in the material, which scales as 1/r where r is the mean distance between electrons.  

Experimentally, attempts have been made to empirically fit the theoretical models. Most use a 

combination of power laws whose prefactors can in theory be calculated, but are most often used 

as fitting parameters [92, 96, 101]. Drabkin et al., for example, suggest that for PbTe a shift on 

the order of 10 meV is reasonable for doping levels on the order of 1×1019 cm-3 [76]. When using 

the method of Mahan [101], however, the predicted reduction is actually 1 meV or less due to the 

large static dielectric constant (𝜖𝜖(0) ≈ 400) for PbTe. Following other references [47, 67], I fit the 
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experimental renormalization to an n1/3 power law, including an additional constant term: Δ𝑅𝑅𝑅𝑅 =

𝐴𝐴𝐴𝐴1/3 + Δ𝑅𝑅𝑅𝑅,0. The resulting renormalized fits to the optical and true band gap are plotted in Figure 

3-7a and b and are also shown in Table I. Figure 3-7c shows the fitting result for the band gap 

renormalization. Note that the renormalization does not become non-zero until 𝜉𝜉 becomes greater 

than the conduction band edge (𝐴𝐴 > 3 × 1018𝑐𝑐𝑚𝑚−3), which is likely the origin of the Δ𝑅𝑅𝑅𝑅,0 term. 

As mentioned previously, Figure 3-7b shows that the true band gap is rather significantly 

reduced at high doping levels due to renormalization. For the three most heavily doped samples, 

𝜉𝜉, as estimated from Seebeck coefficient measurements, does not continue to increase at the 

same rate. As a result, the true gap approaches an approximately constant value of close to 0.12 

eV. The n1/3 model (blue curve Figure 3-7c) deviates significantly for carrier concentrations > ~ 

6×1019 cm-3, resulting in an estimated gap (blue curve in Figure 3-7b) that rapidly approaches 

zero above this value. While the magnitude of the gap reduction is consistent with previously 

published results for heavily doped n-type PbTe [76], Si [47, 67, 80], Ge [98], and III-V 

semiconductors [68, 79, 92, 99, 102], the apparent discrepancy at high doping is not easily 

explained using the simple n1/3 empirical model.  

Table 3-1: Band gap and transport measurement results and chemical potential estimates for this series of samples. 
All Kane band calculations assume a constant β parameter of ~ 0.087 corresponding to the undoped sample band gap 
of 0.295 eV. Chemical potentials are presented for the experimental results (𝜉𝜉𝑆𝑆𝑒𝑒𝑒𝑒𝑏𝑏) and model curve fit (𝜉𝜉𝑆𝑆𝐾𝐾𝐵𝐵) as shown 
in Figure 3-5b. 

x nH 
(1018 cm-3) 

S 
(μV/K) 𝜉𝜉𝑆𝑆𝑒𝑒𝑒𝑒𝑏𝑏(eV) 𝜉𝜉𝑆𝑆𝐾𝐾𝐵𝐵(m*=0.276) 

(eV) 
Eg, opt 

(eV) 
ΔRN,Seeb 

(eV) 
0.0000 - -275.0 -0.030 -0.033 0.295 - 
0.0000 - -230.0 -0.014 -0.022 0.300 - 
0.0004 5.87 -141.4 0.021 0.020 0.304 0.033 
0.0007 1.03 -109.6 0.039 0.040 0.308 0.066 
0.0012 1.76 -81.9 0.067 0.063 0.315 0.114 
0.0020 2.94 -66.9 0.086 0.089 0.324 0.142 
0.0028 41.1 -52.0 0.108 0.108 0.331 0.181 
0.0035 51.4 -43.0 0.126 0.123 0.349 0.199 
0.0040 58.7 -42.9 0.115 0.132 0.355 0.170 
0.0055 80.8 -41.5 0.122 0.156 0.364 0.175 
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0.0100 147 -33.7 0.147 0.208 0.388 0.201 
 

In Ravich’s adapation of the Kane band model for lead chalcogenides, the band gap is a 

necessary parameter as it determines the non-parabolicity parameter: 𝛽𝛽 = 𝑘𝑘𝐵𝐵𝑇𝑇
𝐸𝐸𝑔𝑔

. Because optical 

measurements have shown evidence that the band gap in PbTe decreases with doping as a result 

of band gap renormalization, it might be expected to affect the band structure. The band edge 

effective mass in narrow gap semiconductors has been suggested to scale with the band gap 

itself [43, 58]. Ravich suggests that the energy dependent effective mass for a Kane type band 

should scale with energy as: 

 
𝒎𝒎∗ (𝐄𝐄) =

ℏ𝟐𝟐𝑬𝑬𝒈𝒈
𝟐𝟐𝑷𝑷𝟐𝟐

�𝟏𝟏 +
𝟐𝟐𝑬𝑬
𝑬𝑬𝒈𝒈
� Equation 3-10 

  
where P is the k∙p matrix element coupling states between the valence and conduction band 

states. The first term in Equation 3-10 will scale proportional to the band gap, while the second 

will scale with E, the electron energy. More often, the prefactor in Equation 3-10 is treated as a 

constant, m0*, the band edge effective mass, which can be fit from the Seebeck coefficient vs. 

carrier concentration Pisarenko plot. Because 𝑚𝑚0
∗  appears to be independent of carrier 

concentration, we will only consider the effect of the changing band gap with carrier concentration 

through the 𝛽𝛽 parameter. In order to probe the effect that this might have on the estimate of 𝜉𝜉 and 

on the transport properties, a self-consistent approach should be taken.  

For all of the previous calculations, 𝜉𝜉 has been estimated from Seebeck coefficient 

(Equation 3-8) assuming a constant Kane-band non parabolicity parameter (β used in Equation 

3-6 and Equation 3-8) given by assuming a constant band gap of 0.295 eV equal to that of the 

undoped PbTe sample. Using the fitted n-dependent gap, 𝐸𝐸𝑔𝑔(𝐴𝐴) = 𝐸𝐸𝑔𝑔0 − Δ𝑅𝑅𝑅𝑅(𝐴𝐴), we can self-

consistently calculate n as a function of chemical potential with an n-dependent nonparabolicity 
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parameter, 𝛽𝛽 = 𝑘𝑘𝐵𝐵𝑇𝑇
𝐸𝐸𝑔𝑔(𝑛𝑛)

. The new value of chemical potential was used to recalculate the gap 

renormalization using the measured optical gaps, which was again fit to an n1/3 model. After 

several iterations, the true gap appeared to converge to a self-consistent value that was slightly 

higher than the previous result which assumed constant gap. The self-consistent solution yielded 

renormalization fitting parameters of 5.6×10-8 eV-cm and -0.068 eV for A and Δ𝑅𝑅𝑅𝑅,0 respectively. 

The band gap, both fit (solid lines) and values from measurements (circles), for the model 

assuming either constant 𝛽𝛽 or an n-dependent band gap (self-consistent) are shown Figure 3-8a. 

Renormalized gap estimates were obtained using measured optical gaps and estimates of the 

chemical potential, 𝜉𝜉 (shown in Figure 3-8b). Here, we can see the effect of the band-

nonparabolicity as an increasing band mass (which increases even faster as a result of the 

increasing 𝛽𝛽(𝐴𝐴)) as the chemical potential rises. At higher carrier concentrations (> 6×1019 cm-3), 

the renormalized band gap value becomes quite small, and errors become larger. Therefore, the 

fact that Eg(n) levels out at about 0.15 eV may not be entirely accurate since the renormalization 

effect is probably overestimated at these doping levels. Further, PbTe is known to deviate from 

the Kane model for carrier concentrations greater than this value [103]. As in the constant β case, 

the empirical n1/3 model may be an oversimplification in the case of increasingly narrow gap and/or 

the simplified Kane model of Ravich may also be an oversimplification that cannot account for 

these narrowing phenomena. 
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Figure 3-8: Iterative self-consistent calculation of the true gap Eg(n) in accordance with the Kane band model. a) The 
result of different n-dependences of the Kane β parameter solid points represent Eg(n) in accordance with eq. 5 (using 
the measured optical gaps and chemical potential estimates from Seebeck coefficient measurements). b) The 
estimated chemical potential as a function of doping level  for different dependence of β on n; lines represent constant 
effective band edge mass (Eq 3, m*0 = 0.276 m0) and points are calculated from Seebeck coefficient (Equation 3-8).  

In the discussion of electronic band structure it is typically a good first approximation to 

assume the energy bands remain unaltered with doping, which is known as the rigid band 

approximation. Lee, Mahanti et al. give some examples where this may not be a good assumption 

a) 

b) 
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in Na doped PbTe [104], although the picture here is complicated by the variability in supercell 

calculations [105]. Experimental measurements of effective mass can show small changes in 

band structure when using different dopants (I or La) in PbTe, which may be related to a shift in 

band gap [106]. With the goal of band engineering in mind it is important to be able to determine 

how the band structure is altered as the materials are doped or alloyed. While the rigid band 

approximation works reasonably well for many purposes, this work demonstrates that the 

differences between true, optical, and thermal band gaps can be different of the order 0.1 eV 

(which is quite large considering that the true gap is ~0.3 eV). Most thermoelectric materials are 

heavily doped semiconductors, where Eg,thermal >> kBT. In this case, the electronic transport 

properties (electrical conductivity, Seebeck coefficient) are determined by a single band. The most 

obvious effect of a narrower band gap is the increased concentration of minority carriers. In the 

case of most thermoelectric materials, though, the chemical potential (and thermal band gap) is 

deep enough into the band to where the minority carrier population is still very small compared to 

majority carriers. The effects become more apparent at high temperatures when kBT ~ Eg,th. 

While band gap renormalization is a well-known effect that has been studied in many 

materials, it is generally ignored in thermoelectric materials in favor of the rigid band 

approximation. This work suggests that in PbTe, both approximations may play a role. While it 

seems unlikely that the band gap in these materials might become very small (or even approach 

zero), it is possible that if the material is sufficiently doped that bipolar effects can be suppressed 

and a reduced band gap would not be observed by measuring transport properties alone. 

 Ultimately, the apparent discrepancy between the rigid band approximation and band gap 

renormalization may need to be resolved with either better estimates of the n-dependent chemical 

potential, or by developing models that more accurately represent renormalization in narrow gap 

semiconductors. Perhaps more experimental and theoretical work should be done to investigate 

what is different in narrow gap, heavily doped semiconductors from other wider gap materials. 
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3.4 - Conclusions 

While the DRIFTS method of measuring the optical absorption has been thoroughly 

explored in catalysis research and has shown some promise for quantifying chemical reactions 

[107, 108], as a technique for precisely determining band gaps in semiconductors diffuse 

reflectance has only proven semi quantitative (±0.1 eV) [109].  In this work, we detect shifts in 

band gap with doping of smaller than 0.01 eV in PbTe, which can be analyzed and understood 

by methods consistent with current optical literature. 

While electronic transport measurements are essential to determine the thermoelectric 

properties for a materials, optical properties can provide more direct knowledge about the band 

structure. Although diffuse reflectance measurements have been used in the thermoelectric 

literature, it is important to account for the effects of electron population on the absorption edge 

that alters the observed optical band gap. I have shown a series of iodine doped PbTe samples 

which show a Burstein-Moss shift in the absorption edge to higher frequencies. Using estimates 

of the chemical potential from transport measurements, it is possible to estimate that a gap 

shrinkage of up to 0.15 eV occurs at the highest doping levels appropriate to thermoelectrics. An 

attempt is made to fit the true gap self-consistently using a single band Kane model, which results 

in a slight reduction in the renormalization. While renormalization has been shown to fit well-

behaved empirical models for many semiconductors, PbTe (and possibly other narrow gap 

materials) exhibits a Burstein-Moss shift and renormalization that are not readily explained with 

existing theory. 

Ultimately, even though the effects of doping on the value of the band gap can be 

accounted for using the Burstein Moss shift and renormalization effects, measuring undoped 

samples is preferred when trying to distinguish small shifts due to temperature or alloying. But, 

because it is not always possible to make undoped samples due to intrinsic defects, it is important 
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to be able to recognize the effects of doping on optical absorption edge measurements and to be 

able to account for differences that they may cause.  
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Chapter 4:  Multi Band Behavior, Optical, and Electronic Properties in 

IV-VI materials 

4.1 - Introduction 

In this chapter, I will give a detailed account of my work in the IV-VI materials (PbTe, PbSe, 

PbS, and SnTe). Because this family of materials has been extensively studied since the 1950’s, 

an account of some of the historical findings along with the current state of the field will be outlined. 

My contribution comes in largely in the context of band engineering in these materials, both 

through optimization of the electronic properties (SnTe, PbSe/SrSe alloys) and through 

determining the nature and effects of the temperature-dependent shifts in the band structure 

which are known result in improved performance at high temperatures.  

Even though there is a wealth of historical work on the lead and tin chalcogenides over 

the last 60 years, the topic has received resurging interest over the last few years. This is largely 

due to the newly established method for measuring the thermal conductivity: the Laser Flash 

Apparatus (LFA, discussed in Chapter 2). LaLonde et al. reports that some of the more commonly 

cited zT estimates for the lead chalcogenides did not explicitly measure the high temperature 

thermal properties; rather, they were extrapolated from a room temperature lattice thermal 

conductivity and a high temperature resistivity (using the Wiedemann-Franz law)—this resulted 

in an overestimation in 𝜅𝜅 of ~30% [110]. In fact, the LFA method (even though it was available 

beginning in the 1960’s) was not widely applied to the lead chalcogenides until recently. With the 

combination of optimal doping levels and the more modern and accurate method for measuring 

the thermal conductivity at high temperatures it has been found that optimally doped binary PbTe 

can reach zT of up to ~1.4 for n-type and up to 1.5 for p-type at high temperatures; the modern 

result is nearly double that of many of the 1960’s measurements. Since then, many groups around 

the world have been reporting high zT values, many even higher than the doped binary samples 
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through alloying with other elements. Recent reports on PbTe and its alloys have suggested an 

extraordinarily high peak zT of between 1.0 and 2.2 in the temperature range useful for waste 

heat recovery depending on the specific dopant and alloy [18, 28, 34, 111-113].   

 

Figure 4-1: Illustration of the rapidly changing state of the thermoelectrics field which until ~2010 believed that the 
optimum in zT was much less than 1.0. a) was taken from [114], and b) from [110]. 

4.2 - Lead Chalcogenides, Band Engineering, and Band Convergence 

While optical properties measurements are commonly used for characterizing 

semiconducting materials, electronic measurements are much more commonly performed for 

thermoelectric materials (neglecting optical properties). This is likely because the goal is to 

produce a large zT, but not necessarily to understand the electronic structure which produced it. 

In this section, I will apply a combination of optical and ab-initio computational analyses to 

understand the electronic band positions in the lead chalcogenides, particularly how they change 

as a function of temperature. Multiple band effects have been identified as being responsible for 

enhancing thermoelectric properties; I will thoroughly review the literature on this topic in the lead 

chalcogenides as well as provide insight using a combination of optical properties, electronic 

properties, and ab-initio calculations. 
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4.2a - Lead Chalcogenide Literature Review 

In p-type PbTe a complex valence band structure exists that has been described with two 

valence bands: a lighter band at the L point (direct) and a heavier along the Σ line in the Brillouin 

zone [15, 16, 58, 85, 86, 115-120] as shown in a later chapter (Figure 7-1). The enhanced 

thermoelectric efficiency in PbTe is attributed to valley degeneracy arising from band 

convergence, which yields higher thermopower without greatly reducing carrier mobility [16]. The 

region of electronic states along the Σ line has been described and modeled as a separate, heavy 

band, even though recent work suggests that it may be associated with the band at L [91, 117, 

121]. However, two-band transport analysis, e.g., when both bands are considered separately, is 

consistent with most experimental observations and is useful for rational thermoelectric material 

design; therefore, in this chapter we will refer to these states as a separate band at Σ [15, 16, 18, 

122]. Based on historical evidence [123-125] and calculations [84, 86, 91, 117], the band 

extremum at Σ is believed to lie about 0.1 – 0.15 eV below that of the band at L at room 

temperature (See Figure 1-3 and Figure 4-2). Still, the exact band energies and their temperature 

dependence continue to be disputed [16, 91, 117, 121]. The other IV-VI materials are known to 

have larger L-Σ offsets of approximately 0.25 [126, 127], 0.5 [126], and 0.4 [128-130] eV for PbSe, 

PbS, and SnTe at room temperature, respectively. The band offset in all of the IV-VI materials is 

known to be temperature dependent, and the primary and secondary valence bands are thought 

to move towards each other at a rate of ~2 − 4 × 10−4 eV/K [16, 27, 39, 60, 87]. Both the 

temperature dependence and the offset can be modified through alloying with a variety of 

elements (cation: Sr, Ca, Mg, Mn or anion: S, Se, Te) [15-18, 21, 25, 42, 131], often resulting in 

very good performance. While several groups have discussed nano/micro-structuring to improve 

thermoelectric performance [12, 21, 131, 132], which is generally thought to be a result of 

reduction of thermal conductivity through additional phonon scattering, a fully optimized 

thermoelectric material will likely require some combination of alloying/nano-microstructure to 
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benefit from the effects of reduced thermal conductivity as well as band engineering. Furthermore, 

it is important to be able to separate the nano-structuring effects in order to better quantify them; 

in this thesis I will be focusing on understanding the electronic band structure and band 

engineering in these materials and I will therefore avoid samples which have detectable amounts 

of precipitates (nano or otherwise). Knowledge of the specific band offset and its temperature 

dependence in these materials is crucial since band convergence is thought to be responsible for 

the improved thermoelectric properties. Hence, this work is motivated by the hope that a more 

accurate understanding of the electronic band structure can provide a clearer route forward to 

band structure engineering in the lead chalcogenides for further improvement of zT. 

 

Figure 4-2: Schematic representation of the L and Σ band extrema in PbX (X=Te, Se, S) and SnTe (as presented in 
previous work[126]). 

Electrical and magnetic measurements have been performed previously to characterize 

the energy band structure, including estimates of the valence band offsets and their temperature 

dependence [115, 121, 123-125, 133-137]. Nevertheless, interpretation of the results depends 

upon transport models. Optical absorption edge spectroscopy in semiconductors is a more direct 

route to obtain information about electronic states near the band edge (Eg), which can be used in 

conjunction with transport models to experimentally map out the electronic structure.  
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Historically, optical data on the PbX materials have been plentiful. Early data from the 

1950’s and 60’s [27, 36-39, 74, 75, 138-149] provided a good foundation for both the low 

temperature [27, 38], room temperature [37, 38, 74],  and temperature dependent band gaps [27, 

36, 39, 141, 143, 145] are widely cited in the field. Many works since then have aimed to perform 

more careful characterization of the IV-VI materials  and their alloys [41, 42, 81, 148, 150-153], 

including estimates of the valence band offset (though interband-valence band absorption [38, 

90]), additional comments on the origin of their temperature-dependence [87, 154], band non-

parabolicities [151], possible resonant/impurity states with In [155-157] and Tl [157, 158], and 

some helpful reviews [60].  As mentioned in Chapter 2, many of the previous reports of optical 

band gap measurements on PbTe have used single crystal samples measured in transmission 

[27, 36-42], which, in many cases, limited their maximum measureable absorption coefficients. 

Spectroscopic ellipsometry can bypass the necessity for the Kramers-Kronig analysis by 

measuring both the real and imaginary components of the dielectric function simultaneously, and 

some studies of lead chalcogenides as photodetectors or infrared lasers use these techniques 

[159, 160].  

Regarding thermoelectric efficiency, the main point that comes into question for these 

materials is their L-Σ band offset, temperature dependent shifts in Δ𝐸𝐸, and the temperature at 

which the bands are effectively converged, Tcvg. The most widely cited article that reports Tcvg for 

the lead chalcogenides is one of the earlier reports by Tauber et al. in 1966 [27] indicating a 

plateau in the indirect band gap at approximately 400 K for PbTe (Gibson et al. observe the 

plateau for all of the lead chalcogenides around this temperature [36]). The band offset and 

convergence temperature supposed by Tauber et al. has been widely used in the field and has 

been supported by other evidence, including a peak in the Hall coefficient at around this 

temperature [16, 135]. However, recent work points out some discrepancies in the literature data 

[91, 121]:  poor resolution of the early optical data (Miller et al. have a resolution of 7 meV [161]), 
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improper extrapolation of the absorption edge (often incorrectly assumed to be indirect [27, 161]), 

and that a wide range of values for 𝑑𝑑Δ𝐸𝐸
𝑑𝑑𝑇𝑇

 (where Δ𝐸𝐸 is the offset between the L and Σ bands) that 

are reported from 2 − 4 × 10−4 𝑒𝑒𝑉𝑉
𝐾𝐾

. In order to help resolve some of these questions, I have 

performed measurements using diffuse reflectance infrared Fourier transform spectroscopy 

(DRIFTS) on polycrystalline samples for the lead chalcogenides over a broad range of 

temperatures; I compare the results to ab initio molecular dynamics (AIMD) calculations to study 

the temperature dependent gap and examine the band structure at high temperatures.   

The positive temperature coefficient of the band gap in lead chalcogenides, unlike many 

common semiconductors, is favorable for thermoelectric materials. An increasing gap with 

temperature can act to suppress bipolar effects caused by intrinsic carrier activation, increasing 

the optimum zT. The temperature dependent gap in PbX is known to be due to both lattice 

expansion and electron-phonon interactions [39, 87, 162]. The effect can be described by:  

 𝒅𝒅𝑬𝑬𝒈𝒈
𝒅𝒅𝑻𝑻

= �
𝒅𝒅𝑬𝑬𝒈𝒈
𝒅𝒅𝑻𝑻

�
𝑽𝑽
− 𝟑𝟑𝜶𝜶𝑳𝑳𝑲𝑲𝑩𝑩 �

𝒅𝒅𝑬𝑬𝒈𝒈
𝒅𝒅𝑷𝑷

�
𝑻𝑻
 Equation 4-1 

where 𝛼𝛼𝐿𝐿 is the linear thermal expansion coefficient ( 1
𝐿𝐿∗
�𝑑𝑑𝐿𝐿

∗

𝑑𝑑𝑇𝑇
�
𝑃𝑃
), KB is the bulk modulus (− 1

𝑉𝑉
�𝑑𝑑𝑉𝑉
𝑑𝑑𝑃𝑃
�
𝑇𝑇
), 

�𝑑𝑑𝐸𝐸𝑔𝑔
𝑑𝑑𝑇𝑇
�
𝑉𝑉
 describes the electron-phonon interactions, and �𝑑𝑑𝐸𝐸𝑔𝑔

𝑑𝑑𝑃𝑃
�
𝑇𝑇
 is the band gap dependence on 

pressure [39, 60, 87]. Prakash et al. performed detailed pressure dependent optical 

measurements to determine that �𝑑𝑑𝐸𝐸𝑔𝑔
𝑑𝑑𝑃𝑃
�
𝑇𝑇=300𝐾𝐾

 was equal to -9.15, -9.1, and -7.4 x10-6 eV/bar for 

PbS, PbSe, and PbTe respectively. This measurement is comparable with ab-initio calculated 

figures obtained in a more recent reference, which obtained -6.85 x10-6 eV/bar for PbTe [163]. 

Prakash estimated that the electron-phonon interaction term �𝑑𝑑𝐸𝐸𝑔𝑔
𝑑𝑑𝑇𝑇
�
𝑉𝑉

 was approximately 40%, 

40%, and 60% of the overall change in dEg/dT for PbS, PbSe, and PbTe, respectively. 
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4.2b - Results 

AIMD Calculations 

In order to probe the effects of temperature on the electronic bands, I took a two-pronged 

approach involving both temperature-dependent optical measurements and ab-initio calculations 

performed by our collaborators Hyunchul Kim and Massoud Kaviany (University of Michigan). Ab-

initio molecular dynamics (AIMD) calculations combine electronic structure calculations (DFT) 

with molecular dynamics (MD) calculations. While ab-initio calculations are inherently performed 

at T=0 K (no lattice vibrations, simply minimizing the energy of the system), MD allows us to 

simulate how a material might actually look at high temperature by allowing the atomic positions 

to move from their equilibrium values. Snapshots are taken once the computed temperature is 

equal to the desired one, and a DFT calculation is performed on the perturbed supercell. By 

performing AIMD simulations coupled with DFT band structure calculations on supercells, we 

were able to calculate the effect of the thermal motion of the atoms in PbX on both the direct (L) 

and indirect (Σ) band gaps, the results of which are shown in Figure 4-3 (points and solid lines). 

For all of the lead chalcogenides, the direct (L-L) band gap increases from low temperature with 

a slope (dEg/dT) that decreases as temperature is increased. The indirect (L-Σ) gap increases at 

a slower rate with temperature for PbTe, but decreases with temperature in PbSe and PbS, 

resulting in a convergence temperature (Tcvg) of about 700, 900, and 1000 K for PbTe, PbSe, and 

PbS, respectively. The dashed line in Figure 4-3 represents the effect of lattice expansion alone; 

it is clear that both electron-phonon interaction and lattice expansion make significant 

contributions to dEg/dT. The electron-phonon contribution does appear to grow weaker as the 

temperature increases for all materials in comparison to contributions to dEg/dT due to expansion 

only. Still, in the absence of electron-phonon interactions, the bands would not converge until a 

temperature greater than the melting point of PbX. Hence, the presence of electron-phonon 

interactions, exclusive to AIMD calculations, is required in order predict band convergence at the 
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temperatures that we observe experimentally. In comparison to Prakash’s estimate, we obtain 

that the portion of the electron-phonon contribution to dEg/dT, �𝑑𝑑𝐸𝐸𝑔𝑔
𝑑𝑑𝑇𝑇
�
𝑉𝑉
, is  37%, 41%, and 67% for 

PbS, PbSe, and PbTe, respectively, all of which agree well with Prakash’s estimates [39]. 

Furthermore, our calculations show that the gap at Σ changes relatively little (particularly in PbTe) 

and that band convergence is primarily the result of electron-phonon interaction on the L bands.  
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Figure 4-3: AIMD calculated temperature dependent band gap for a) PbTe, b) PbSe, and c) PbS. Circular points 
represent the computed (electron-phonon + expansion) average value over several snap shots (along with the error 
bar plotted as a standard deviation), and solid lines represent a guide to the eye. Dashed lines show the change in 
band gap when electron-phonon interactions are not considered (thermal expansion only). The grey line indicates a 
best fit to the experimental result. 



4-10 
  

Experimental results are also obtained in the form of temperature dependent optical 

absorption spectra (Figure 4-4a). It should be noted that undoped samples were measured in 

order to avoid the Burstein Moss shift and other complexities that are encountered when trying to 

interpret optical results in doped samples (as detailed in Chapter 3). Figure 4-4b and c show the 

extrapolated direct gaps, as well as reported values from the literature. A linear fit of the changing 

gap up to 500 K returns a value for dEg/dT = 3.2 ± 0.1 (10-4 eV / K), which is almost the same for 

all PbX (X=S, Se, Te). Several works report a value for dEg/dT in the range 3.0 to 4.9×10-4 eV/K 

[27, 36, 39, 87, 140, 164, 165], although generally the values are on the higher end of this range. 

In agreement with the references, the rate of change is mostly linear from low temperature (100 

K) to room temperature and does not vary depending on the particular chalcogen atom. However, 

the actual band gap value depends on how it is obtained from the absorption edge. In addition to 

the value of the band gap, its temperature dependence is important because of what it implies 

about the relative positions of L and Σ extrema and their contributions to the thermoelectric 

properties, which optical band gap measurements have played a role in determining [27].  
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Figure 4-4: a) Temperature-dependent optical absorption spectra for PbS, PbTe, and PbSe. b) Extrapolated direct 
band gap as a function of temperature for PbTe measured at Caltech, OU (University of Oklahoma), Tauber et al. 
[27], Gibson et al. [36], and Saakyan et al. [166].  c) Extrapolated results for PbSe and PbS measured at Caltech 
along with references from Jones et al. [143] and Devyatkova et al [136]. 

4.2c - Discussion, Impact, and interpretation of the results 

As mentioned previously, both Gibson (1952) and Tauber (1966) both showed an 

increasing band gap that stopped changing above 400 K [27, 36]. Tauber interpreted this as a 

shifting primary valence band (which is now known as a direct gap at the L point) that is replaced 

by the secondary valence band (Σ) above 400 or 500 K in PbTe. Tauber’s work is widely cited as 
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evidence of the convergence temperature, Tcvg, in PbTe. Band convergence, however, does not 

require a plateauing optical band gap. Direct transitions (L-L) have been shown to be 10-100x as 

strong as indirect ones, which require both photon and phonon participation [48]. In fact, without 

sufficient separation between the indirect and direct gaps, it may be difficult to distinguish the 

smaller indirect absorption edge from the exponential Urbach tail (an exponential tail in density of 

states into the band gap resulting from impurities and disorder in the material, discussed in 

Chapter 3.2b). Consequently, we expect that the temperature dependent optical band gap should 

continue to increase even if the L and Σ bands had converged—suggesting that Tauber’s 

aforementioned results cannot be used as direct evidence of L and Σ valence band convergence. 

Upon re-extrapolating the Tauber et al. absorption spectra (which was necessary since only 

indirect transitions were fit) using Tauc extrapolation, the resulting band gaps do continue to 

increase, contrary to the conclusions of Gibson and Tauber. Our results, shown in Figure 4-4b 

and c, show that the optical gap continues to increase for temperatures greater than 673 K, albeit 

at a lower rate above 500 K. In fact, several other authors have observed no plateau in the band 

gap via optical measurements in PbTe [154, 167], PbSe [127], and PbS [143]; however, these 

articles are not generally cited in more modern investigations. In this thesis, both experimental 

and AIMD results suggest that the band convergence temperature is much higher than 400 K, 

suggested by Gibson and Tauber et al., and that Tcvg is actually closer to 700 K in PbTe.  

The temperature dependence of electronic transport properties (resistivity, Hall effect, and 

Seebeck) can also be used to estimate the band gap. Devyatkova and Saakyan et al. [136, 166] 

(also shown in Figure 4-4b and c)  measured the electronic/thermoelectric properties of both n 

and p-type samples in the bipolar regime to estimate the temperature dependent gap using an 

extrapolation technique for the single parabolic band model. They obtained a constant gap for 

temperatures greater than 550 K in PbTe and one that increased continuously until 800 K in PbSe. 

These estimates seem to be consistent with results from this work, although both calculation and 
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optical measurement from this work suggest a somewhat higher convergence temperature. This 

may be a result of the fact that effective convergence (as in the bands are within a few kBT of 

each other and both contribute significantly to transport) can occur at temperatures lower than 

the true convergence temperature, which will be discussed in detail in Figure 4-6a-c.  

The question of whether the absorption edge can provide evidence of band convergence 

is an interesting one that is of great importance for both the scientific community and this thesis. 

Usually, one will make a Tauc plot scaled to the appropriate power in order to determine whether 

a material shows direct or indirect transitions (as outlined in Chapter 2). This is usually determined 

by fitting the linear portion of the appropriate Tauc plot and extrapolating back to zero absorption. 

In the case of the lead chalcogenides, however, this simple exercise seems to yield confusing 

results. Part of the reason that many of the early works on the subject concluded that PbX had an 

indirect band gap is because the absorption edges (even though we know that the primary band 

gap is direct) give good linear extrapolation fits for both direct and indirect gaps. This has been 

observed and discussed by a few authors [37, 39] who provide different explanations. Because 

the extrapolated indirect gap usually falls ~ 0.02-0.05 eV below the extrapolated direct one, 

Scanlon et al. proposed that the indirect edge could be a result of k=0 phonons imparting their 

energy (but not their wave vector) to the excited electron, resulting in some indirect contribution 

to the L-L direct gap transitions [37]. Prakash tends to believe that this linear indirect region is 

actually a coincidental fit in the region between the Urbach edge, and the direct absorption edge 

[39]. Regardless, of who is correct, it is necessary to understand why Tauber and Gibson’s data 

yields a maximum in band gap. We suspect that it may be related to the fact that both Gibson and 

Tauber et al. used optical transmission through relatively thick samples, limiting the maximum 

measurable absorption coefficient to hundreds of cm-1. Combined with an increasing baseline 

absorption coefficient as temperature increases, Gibson and Tauber were only observing the very 

bottom of the absorption spectrum at high temperatures. DRIFTS, however, seems to measure a 
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broader range of absorption coefficient. To test this hypothesis, we will consider both the direct 

and indirect extrapolations (Figure 4-5). Due to the nature of the transformations, direct transition 

extrapolations tend to favor higher absorption coefficients (absorption coefficient is squared), 

while indirect ones tend to enhance the lower magnitude absorption coefficient. 

In order to investigate whether the assumption of direct gap may have resulted in 

overlooking the indirect L-Σ gap, I have plotted the extrapolation for both the direct and indirect 

gaps as a function of temperature for each of the lead chalcogenides in Figure 4-5. Here we can 

see that the temperature-dependent slope of the indirect and direct gaps are very close to the 

same values in all of the lead chalcogenides, indicating that the two extrapolations are intimately 

linked. In order to determine whether the indirect L-𝛴𝛴 band gap actually becomes the primary one, 

we would be looking for some break in this pattern, perhaps a maximum in the indirect gap as 

observed by Tauber (while the direct one continues to grow). However, in all of the lead 

chalcogenides, both the direct and indirect extrapolations seem to change together, with the only 

exception being the very highest PbTe data points; between 350 and 400°C the direct gap seems 

to grow more slowly than the indirect gap—resulting a nearly constant indirect gap. While this 

could indicate that the indirect, L-𝛴𝛴 gap is becoming the primary one for PbTe above these 

temperatures, a single data point does not constitute a trend. Further, the sample could not be 

taken to temperatures much higher than ~400°C because of significant evaporation that quickly 

coated the windows. Therefore, we have concluded that all of the lead chalcogenides show direct-

gap behavior over the entire temperature range (up to 400°C) with no evidence of indirect 

transitions becoming the primary ones. This finding is consistent with the AIMD calculations, but 

differs from Gibson and Tauber’s conclusions, which we attribute to their low maximum 

measurable absorption coefficients due to a relatively large sample thickness measured in 

transmission.  
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Figure 4-5: Temperature dependent band gap for the direct (dir) and indirect (ind) extrapolations of the absorption 
edge along with linear fits as functions of temperature for PbTe, PbSe, and PbS. 
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The implications that a higher Tcvg has on other conclusions about the temperature 

dependent band structure of PbTe are that the temperature-depdnent L-Σ offset should be 

reconsidered. Historically, valence band offsets in PbX samples have been determined by intra 

and inter-valence band free carrier absorption measurements with photon energies less than the 

fundamental gap [74, 90, 116]; this is an experimental method for determining the L-Σ energy 

offset directly. Values of 2-4×10-4 eV/K were reported for the temperature dependence of the 

offset between the two valence bands using these techniques [90, 127], which approximately 

agree with estimates from transport properties [121]. However, the range of values mean that the 

answer is still an open one. Several methods of estimating the L-Σ offset (Δ𝐸𝐸) and Tcvg are 

available, including free carrier absorption, band gap measurements as shown in this work (which 

can be used to indirectly infer the inter-valence band behavior), and temperature-dependent 

electronic transport properties. 

As an example of how electronic transport measurements have been used to estimate the 

band offset, it has been suggested that a peak in the Hall resistance with temperature implies 

band convergence and can be used as an estimate of Tcvg [15, 16, 123, 124]. Interestingly, these 

results show a peak around 450 K for p-type PbTe, consistent with the Tcvg estimate of Tauber et 

al. However, as pointed out by Jaworski et al., this represents the temperature at which the 

conductivity of carriers in either band are equal and not necessarily when the bands are at the 

same energy [121]. We tested this hypothesis using a two valence band transport model 

consistent with Pei et al [16] with a different band convergence temperature (consistent with the 

3.2×10-4 eV/K, convergence at 700 K and a slightly lower L-band effective mass of 0.26 m0). We 

modeled a Hall coefficient peak at around 450 K (approximately where the L and Σ band 

conductivities are equal), even though the band convergence does not occur until 700 K. This 

result suggests that a higher convergence temperature is not in conflict with the Hall coefficient 

peak observed around 450 K. 
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While this study shows that the band convergence temperature is higher than previously 

believed, it also confirms that such a convergence should indeed occur at high temperatures. 

However, just because the actual convergence may not occur until 700 K in PbTe, this does not 

mean that the electronic transport properties will not reflect contributions from the Σ band at lower 

temperatures. It is understood that electronic transport properties are determined by the bands 

within 3-4 kBT of the chemical potential. This means that effective convergence can occur when 

the L and 𝛴𝛴 bands are within this energy-range of each other. In order to illustrate effective 

convergence, I plot the projected Fermi distribution along with the calculated temperature-

dependent Fermi distribution in Figure 4-6 a-c. In this figure, we see a lower effective convergence 

temperature of ~600, 800, and 850 K for PbTe, PbSe, and PbS, respectively, consistent with the 

observations of high zT in these materials at high temperatures. 
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Figure 4-6: Calculated temperature dependent gap between either the L or Σ valence bands and L conduction bands 
for a) PbTe, b) PbSe, and c)PbS with temperature-dependent Fermi distrubtion overlayed indicating that the region of 
effective convergence occurs at temperatures below the actual Tcvg. 

4.2d - Conclusions 

While electronic transport models have used band convergence temperatures of 400-500 

K to adequately describe the transport properties in PbTe [16], a higher convergence temperature 

is not necessarily inconsistent with these results. The observance of effective convergence at 

~600 K indicates that the effect of the Σ band is still significant for transport in binary PbTe. Optical 

absorption edge data show an increasing optical gap with temperature at a rate of ~3.2×10-4 eV/K 
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for all three lead chalcogenides up to 500 K (whereas the slope above that is smaller and steadily 

decreasing). AIMD calculations deduce that about half of the contribution is due to lattice 

expansion, while the rest is due to electron-phonon interaction. Contrary to prior temperature 

dependent optical absorption literature, this work suggests that the optical gap continues to 

increase for temperatures up to 673 K. While previous work used the Eg plateau in PbTe as 

evidence of the convergence temperature, our results suggest that the plateau does not occur at 

such low temperatures. Optical absorption and AIMD DFT calculations in this work both suggest 

that the band convergence in PbTe occurs at about 700K a temperature higher than concluded 

previously. Future sections of this thesis will focus on strategies for enhancing thermoelectric 

properties through band convergence by alloying. 

4.2e - Methods 

Optical characterization for this section was done using DRIFTS. Direct and indirect 

extrapolations of the optical band gaps were performed using the Tauc method as described in 

detail in Chapter 2. 

AIMD simulations were performed by my collaborator Hyounchul Kim and Massoud 

Kaviany of the University of Michigan to describe the effects of temperature on the band structures 

of the lead chalcogenides according to the methods described in a previous work[162]. The 

temperature-dependent lattice dynamics were calculated using AIMD considering the Fermi-Dirac 

smearing factor and the thermally expanded lattice parameter from experimental results: a(T) = 

6.422 + (0.9545×10-4)T + (2.615×10-8)T2 [168]. Calculations were performed on large supercells 

(54 atoms) and the near edge band positions were averaged over three snapshots per 

temperature. In the calculations of band gap energy as a function of temperature, we only consider 

the maxima of the valence and conduction bands at the L and Σ points in the band structure. This 

is done to exclude some band splitting and shifting. We note that above-mentioned choices (data 

averaging of several snapshots and the different calculation schemes) result in a spread of values 



4-20 
  

for which error bars are plotted. Sample synthesis details are given both in Chapter 2 and in the 

original paper on this topic [126]. 

4.3 - Band Engineering and Band Convergence through Alloying in the Lead 

Chalcogenides 

4.3a - Introduction 

Thermoelectric performance in the lead chalcogenides has proved to be among the best 

of any potential thermoelectric material in the 600K – 800K range. As mentioned previously, many 

attempts at engineering the electronic band structure in PbTe and other IV-VI materials have been 

successful at improving the thermoelectric properties [15-17, 21, 25, 131, 169, 170] . In this 

section, I will highlight a successful band engineering attempt in PbSe by alloying with SrSe, which 

I did in collaboration with my colleagues Heng Wang and Yoshiki Takagiwa [25]. Alloying in this 

case improves the properties by pushing the valence bands closer together (as a result of the 

widening L-L band gap), which we observe through electronic/optical properties and computed 

ab-initio density of states. 

In PbSe and PbTe, the secondary valence band maximum (along the Σ line of the Brillouin 

zone) contributes significantly to the thermoelectric performance at high temperatures [58, 127, 

136, 166]. The best thermoelectric performance is found around temperatures where the two 

valence bands are converged (within a few kBT of one another) [16, 26]. For PbTe the 

convergence temperature (Tcvg) has been shown in the previous section to be around 700 K (with 

effective convergence occurring above ~600 K—Figure 4-6a). In PbSe, the Σ band is further away 

[127, 171] (~ 0.25 eV at 300 K) from the primary band maximum at L, resulting in a higher Tcvg 

(~900 K, ~800K for effective convergence; Figure 4-6). Early works [58, 137, 172, 173] based on 

Hall coefficient data confirm this result, suggesting a Tcvg around 750 K for binary PbSe. In order 
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to enhance thermoelectric performance in PbSe, it is beneficial to reduce Tcvg by tuning the 

secondary valence band position; in this section we accomplish this by alloying with SrSe. 

One strategy that has been successful at reducing Δ𝐸𝐸 in PbTe [14, 15] has been alloying 

with alkaline-earth chalcogenides (MgTe) that also have the rock salt crystal structure and wide 

band gaps. Previous results have shown that it is possible to grow Pb1-xSrxSe thin films via 

molecular beam epitaxy (MBE) where the lattice constant changes gradually following the 

Vegard’s law; this is accompanied by a tunable band gap in a wide range with different SrSe 

content [174-176]. Given the rock-salt structure and the lattice parameter of 6.25 Å for SrSe, it is 

highly probable that an appreciable solubility of SrSe in PbSe in the bulk material could exist as 

well. In addition, recent studies regarding thermoelectric PbTe with SrTe addition resulted in a 

noticeable thermal conductivity reduction without significantly impairing the carrier mobility[14, 

120], indicating that SrSe in PbSe may yield beneficial alloying results as well.  

4.3b - Results and Discussion 

A series of PbSe/SrSe samples were synthesized with varying sodium (p-type) dopant 

concentration. SrSe is very effective in changing the band energies in PbSe. As shown in Figure 

4-7a and Figure 4-8, the optical band gap (as determined from the absorption edge) of undoped 

Pb1-xSrxSe alloys is noticeably larger than that of PbSe. Band gaps of the alloys increase 

approximately linearly with Sr content up to 12%, resulting in a band gap that is nearly double that 

of pure PbSe. The change of band structure consequently affects the transport properties. Figure 

4-7d shows measured room temperature Seebeck coefficient as function of Hall carrier density 

(the Pisarenko relation). For PbSe, due to the large offset between two valence-band maxima at 

room temperature, the contribution from the secondary Σ band on transport is negligible and the 

Pisarenko relation (data in black squares) can be explained with a single band model [177] (black 

curve) using L valence band parameters determined previously [65]. With the addition of Sr, S 

starts to deviate from the curve at high doping levels, resulting in higher values compared to pure 
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PbSe given the same carrier density. Among the Pb1-xSrxSe alloys, the Seebeck coefficient also 

increases as the Sr content increases. When considering the origin of the increasing Seebeck 

coefficient, one possibility is that it is due to increasing L-band effective mass. However, if the 

increased S were simply due to a larger effective mass, the value would be proportionally larger 

at all nH; in this case, however, the low nH Pb1-xSrxSe samples seem to converge with pure PbSe 

curve. Instead, we attribute the deviation from the single band model (the black curve) at high nH 

by considering the contribution from the heavier (𝛴𝛴) band as the Fermi level moves deeper into 

the valence band,  as is commonly observed in heavily doped p-type PbTe [34]. The continuous 

change in the direct L-L band gap due to SrSe alloying can explain the gradual change of 

Pisarenko relation. If the energy of the L valence band is reduced as the band gap increases and 

this reduces the band offset in PbSe between L and Σ valence bands (meaning 𝑑𝑑𝐸𝐸𝑔𝑔,𝐿𝐿−𝐿𝐿

𝑑𝑑𝑚𝑚
> 𝑑𝑑𝐸𝐸𝑔𝑔,𝐿𝐿−Σ

𝑑𝑑𝑚𝑚
), 

the secondary Σ band will play a more noticeable role in heavily doped, Sr containing PbSe, 

consistent with our observed Seebeck Pisarenko plot. 

In accordance with a literature observation [176] on thin films samples at 77 K, we assume 

that the L and Σ valence band offset (Δ𝐸𝐸) changes as approximately half of the L-L band gap 

change with strontium content (𝑑𝑑Δ𝐸𝐸
𝑑𝑑𝑚𝑚

= 1
2
𝑑𝑑𝐸𝐸𝑔𝑔𝐿𝐿,𝐿𝐿

𝑑𝑑𝑚𝑚
 ), as shown in (Figure 4-7e, inset). Using this 

assumption, the calculated Pisarenko relation for each Pb1-xSrxSe alloy can be calculated as 

shown in Figure 4-7d (solid curves); the resulting two-band transport model curves are in 

reasonable agreement with the observed experimental Seebeck results over a wide range of 

chemical potentials (Na doping concentrations). 

In addition to shifting the electronic band structure, alloying reduces the electronic and 

thermal conductivity due to point defect scattering. Figure 4-7b shows the reduction in lattice 

thermal conductivity as Sr is added (point defect scattering of phonons) at 300 and 850 K. This 

reduction is often thought to be beneficial for thermoelectric materials, but only if the thermal 
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conductivity is reduced more than the electronic mobility [178]. In this case, the electronic mobility 

is reduced by more than 50% relative to the undoped sample, meaning that disorder is likely not 

beneficial to thermoelectric properties in this series of samples.  

 

Figure 4-7: a) The measured band gap Eg and the proposed energy separation between two valence bands ΔEL-Σ of 
Pb1-xSrxSe alloys, each is consistent with calculated values. b) Lattice thermal conductivity as function of Sr content at 
300 K and 850 K. 300 K values are from undoped samples. c) Normalized Hall mobility as function of Sr content for 
undoped samples at 300 K and doped samples with same carrier density at 850 K. d) Pisarenko relation of p-type PbSe 
and Pb1-xSrxSe alloys. Lines are calculated using the proposed band model. e) The calculated DOS spectrum of Pb1-

xSrxSe alloys; kinks in DOS around -0.1 eV are used to estimate ΔEL-Σ, and the inset illustrates the proposed band 
model, which is also given in (a).   

The optical absorption edge in the binary lead chalcogenides begins with direct transitions 

across the fundamental gap at the L point. Because these direct transitions do not require phonon 

participation, they are believed to dominate the absorption spectra compared with the L-Σ indirect 

transitions which should occur at higher energies. This limits traditional optical absorption to 

accurately determining the direct (fundamental) gap (while missing any Σ-L-c indirect transitions). 
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While inter-valence band optical transitions (Σ-L-v) have been observed and used to estimate the 

valence band offset in older Russian literature [127], this method requires some analysis to 

subtract free carrier absorption contributions; however, we did not observe any inter-valence band 

transitions in this system that might indicate the valence band offset. Instead, we employed ab-

initio calculations of the electronic band structure to determine how it might change with Sr 

content. My collaborator, Yoshiki Takagiwa, performed first principle calculation using the 

Korringa-Kohn-Rostoker Green function formalism under the coherent potential 

approximation[179-181] (KKR-CPA). The KKR-CPA method is a powerful tool for visualizing the 

electronic density of states (DOS) for disordered materials without establishing a supercell; this 

technique is widely used in studies of thermoelectrics to imitate random substitutions [105, 182-

184]. Calculated DOS spectra of Pb1-xSrxSe confirmed both the increase of band gap and the 

decrease of energy separation between L and Σ bands. These are shown in Figure 4-7 a and e; 

the results are consistent with regards to the proposed model.   

Because of the widening band gap in the PbSe/SrSe alloys, it is possible that the indirect 

(L-𝛴𝛴) optical transition might be observable in the optical absorption edge. In the previous section, 

I showed that even at the highest temperatures I was not able to directly detect the 𝛴𝛴 band in any 

of the pure lead-chalcogenide absorption edges. I present the room temperature optical 

absorption results along with various transformations of the data in Figure 4-8. The normalized 

absorption spectra show a steady shift upwards in the absorption edge (as represented in Figure 

4-7a) as the strontium content is increased. Along with a shift of the absorption edge to higher 

energies, the onset of the absorption edge does appear to broaden as the strontium content is 

increased. Because it is possible that the longer absorption edge tail to low energies is a result of 

some indirect L-𝛴𝛴 transitions, we need to consider this possibility.  The indirect extrapolation is 

shown in Figure 4-8c, which does show regions of linearity. In fact, the samples with the three 

largest Sr content (4, 8, and 12%) show two linear regions (potentially consistent with indirect 
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optical absorption associated with absorption/emission of a phonon [43]). However, I believe that 

it is actually related to disorder due to increased randomness in the alloy, as evidenced by the 

Urbach edge plotted in Figure 4-8b. By taking the logarithm of the absorption data, exponential 

features, such as the Urbach absorption edge (discussed in Chapter 3), should appear linear. In 

this case, we can clearly see the evolution of the Urbach edge, which goes from being quite small 

in pure PbSe (x=0) to stretching over nearly 0.15 eV in the sample with 12% Sr. This fits well with 

the supposition of Prakash (mentioned in the previous section) that the observation of a linear 

region for the indirect extrapolation is simply a coincidental fit resulting from the transition from 

the exponential Urbach edge to the direct extrapolation [39]. For all alloys the absorption spectra 

are consistent with direct transitions, which I attribute to the L-L gap as in pure PbSe [171]. It is 

possible that upon investigating the temperature-dependent gap that these features might arise. 

   

 

Figure 4-8: Optical data over a series of (PbSe)1-x/(SrSe)x samples at room temperature—showing a) the normalized 
Kubelka Munk function, b) the log of the normalized Kubelka Munk function, c) the indirect extrapolation of the 
normalized Kubelka Munk function, and d) the direct extrapolation. Black dots on the axes indicate the extrapolated 
values. 

a) b) 

c) d) 
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The temperature dependent extrapolated direct band gap for each of the Sr-alloyed 

samples (and pure PbSe) is plotted in Figure 4-9 along with literature data from Shen et al. [174]. 

Our results are in good agreement with the literature values (which tended to be measured at low 

temperatures). Perhaps the most significant finding here is that the temperature coefficient 

(dEg/dT) seems to decrease as Sr is added. This may be one of the reasons that, even at high 

temperatures, it is difficult to observe the indirect transition (because the Σ band never overtakes 

L as the primary valence band). It is important to note, however, that just because the secondary 

band is not observable using optical properties, the transport properties of doped samples do 

reflect the increased valley degeneracy and effective mass of the secondary 𝛴𝛴 band. 

 

Figure 4-9: Temperature dependent optical band gap (direct extrapolation) in (PbSe)1-x(SrSe)x.from room temperature 
to~200°C [174].   

Ultimately, the optical properties are not critical to optimization of these materials, rather, 

they serve as a tool to help provide insight into the underlying band structure features which give 

rise to the measured electronic properties. Of all of the samples which we have measured, the 

ones with the highest peak zT (of all of the sodium doping levels for each Sr content, x) are shown 

in Figure 4-10. A large maximum zT is obtained of up to 1.5 at T=900 K for the 8% SrSe sample, 
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nearly 50% larger than the optimum zT for binary PbSe at this temperature. Largely, the 

enhancement is from the Seebeck coefficient (as is observed in the Seebeck Pisarenko plot, 

Figure 4-7d) as a result of a larger influence from the secondary bands at high doping levels rather 

than through thermal conductivity reduction through disorder scattering (as mentioned 

previously). At high temperatures, these effects are enhanced further because an even larger 

population of charge carriers develops in this high-degeneracy 𝛴𝛴 band. In this case, the electronic 

properties confirm the existence of the secondary band even though optical measurements could 

not isolate its contribution. The large zT enhancement in the alloyed samples illustrates the Σ 

band’s importance for thermoelectric optimization in this system. 

 

Figure 4-10: The observed zT of samples that have highest zT at 900 K and the corresponding Hall carrier densities 
at room temperature for Pb1-xSrxSe with different Sr content (zT for samples with different carrier density at each Sr 
content shown in supplementary), compared to the maximum zT evaluated for p-type PbSe.  

4.3c - Conclusion 

In this section, I presented a study of bulk Pb1-xSrxSe alloys with different x up to 12%. For 

each alloy composition, a p-type dopant, Na (K for two samples), is used to tune the carrier density 

for each Sr-content. The effect of Sr on band structure is revealed by transport and optical 



4-28 
  

absorption edge measurements as well as first principle calculations. The band structure is 

sensitive to and gradually tunable with Sr content. Appreciable enhancement in thermoelectric 

performance was achieved and the maximum zT of 1.5 is found at 900 K (1.4 ± 0.1 in multiple 

samples with different compositions). Analysis further suggests that such enhancement is purely 

due to the change of band structure. This result provides a significant (~50%) enhancement over 

pure p-type PbSe, making an alloy which has performance comparable to that of binary p-type 

PbTe. It also shows how—even in a material that already has good thermoelectric properties, the 

performance can be significantly enhanced through proper band structure engineering through 

doping and alloying. 

4.3d - Methods 

The samples are made via conventional melting and pressing route. Undoped samples in 

25g batches were first made. To do so, high purity elements (Pb, 99.999%; Se, 99.999%; Sr, 

99.9%) were loaded and sealed in carbon coated quartz ampoules, and then quickly melted for 

15 minutes by induction heating. Each ingot was ground and hot pressed, and then sealed in 

another ampoule and annealed at 1073 K for 14 days. The doped samples of each alloy 

composition were made by reacting powder (3g) of undoped alloy with Na and Se at 1200 K for 

5 days in sealed ampoules, and then hot pressed at 923 K. The disc samples for tests were 12.7 

mm in diameter and about 1mm thick with density no less than 97% of theoretical value. 

Modelling results shown in the Seebeck Pisarenko plot were obtained using many of the 

band engineering methods presented in Chapter 2. The density-of-states effective mass (𝑚𝑚𝑑𝑑,𝐿𝐿
∗ ) of 

the light band and the conduction band is taken as 0.27 me at 300 K and changes with temperature 

following 𝑑𝑑𝑏𝑏𝑛𝑛�𝑚𝑚𝑑𝑑,𝐿𝐿
∗ �

𝑑𝑑𝑏𝑏𝑛𝑛 𝑇𝑇
= 0.5, the anisotropy factor K is taken as a constant 1.75 and the valley 

degeneracy was set to 4. The deformation potential for the conduction band and the light band 

were determined as 25 and 35 eV. Little is known for the parameters of the heavy band. Based 
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on suggested values from Veis [127] and transport properties of p-type PbSe at high temperatures 

these parameters are determined to be 𝑚𝑚𝑑𝑑,Σ
∗ = 4.2 𝑚𝑚𝑒𝑒, K = 1, 𝑁𝑁𝑣𝑣,Σ = 12, and Edef=28 eV. The band 

gap and the gap between two valence bands change with temperature and Sr content (Pb1-xSrxSe) 

following Eg = 0.17 + 3 × 10-4 T + 3x and ΔE = 0.32 – 2.2 × 10-4 T – 1.5x. The temperature 

dependence of Eg is based on results from the previous section on binary, undoped PbSe. The 

Sr-dependence of the band gap was determined from optical measurements at room temperature 

for the undoped Sr alloys. The temperature dependence of ΔE is based on Veis’ optical 

measurement result [127] and modeling of transport data of p-type PbSe at high temperatures, 

and its dependence on Sr content is taken assuming the band gap increase in Pb1-xSrxSe alloys 

is from the movement of two bands at L point simultaneously towards opposite directions (half of 

𝑚𝑚𝐸𝐸𝑔𝑔/𝑚𝑚𝑥𝑥, as mentioned previously). Alloy scattering of electrons was necessary to account for at 

higher Sr content. The alloy scattering potential, U, is taken as 3 eV for the light valence band, 

which is estimated from measured Hall mobility of undoped Pb1-xSrxSe alloys. The same U is 

taken for the conduction band because no data is available so far to estimate it more accurately. 

U for the heavy band is assumed to be 1.5 eV. A smaller U for the heavy band is consistent with 

the assumption that the heavy band position does not explicitly depend on Sr content. The value 

of 1.5 eV is used to provide the best overall fitting for all alloy compositions. 

4.4 - Two Band Thermoelectric Performance in SnTe—Optimization Towards Single 

Band Behavior 

4.4a - Introduction 

As discussed in detail previously, the mechanism for p-type PbTe’s outstanding 

thermoelectric performance is its complex valence band structure, especially at high 

temperatures where the energy of primary (L) and secondary (Σ) maximums are thought 

to be aligned, leading to extraordinarily high valley degeneracy[16]. In SnTe [128], one 

might also expect good thermoelectric performance because it shares many of the same 
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characteristics with PbTe, specifically, both exist in the rock salt crystal structure and both 

have multiple valence bands [185] which contribute to the thermoelectric properties. 

However, unlike PbTe, SnTe is riddled with intrinsic defects which results in a heavily 

doped (p ~ 1020–1021 cm-3) material and a mediocre zT (around 0.5 at 900 K)[129, 186]. 

Nonetheless, several works have confirmed the existence of two valence bands (as in 

PbTe) and have estimated their transport parameters[129, 130, 187-189].  

SnTe has a large valence band offset, ΔE, of around 0.3-0.4 eV at room 

temperature, larger than PbTe, which is closer to 0.1 eV (Figure 4-11c) [90, 130]. The two 

valence bands in SnTe are known to give rise to a unique Seebeck coefficient behavior as 

the carrier concentration is varied (Seebeck Pisarenko relation). A minimum Seebeck 

coefficient is observed in the Pisarenko plot (Figure 4-11a) near nH=1-2×1020 cm-3, followed 

by a maximum at about nH=8×1020 cm-3. Theoretical calculations confirm the position of 

the two valence bands in k-space (at the L and Σ points as in the lead chalcogenides) and 

have provided some insight into their character [29, 190-193]. Other than thermoelectric 

properties, other works have discussed SnTe and its alloys with regards to their uses as 

long wavelength detectors [194-196], or most recently as topological insulators[191, 197, 

198].  Similar to PbTe, SnTe has been studied rather thoroughly over the years for its 

thermoelectric properties, but in light of a recent resurgence in band-engineering in the 

lead chalcogenides it is worthwhile to take a closer look at the properties of SnTe as well, 

especially in regards to optimzation of the carrier concentration. 
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Figure 4-11: a) Seebeck coefficient and b) Hall mobility as a function of Hall carrier concentration at 300 K for 
SnTe1-xIx and SnTe1+y, GdzSn1-zTe. Solid squares are our experimental results, open squares are Rogers’ 
reported results [130], solid curves are calculated from a two band model. c) A schematic diagram of the near 
edge band structure in PbTe and SnTe. (Rogers et al reported a band offset of 0.3 eV for SnTe. Our results 
yielded different fitting parameters, and we found that 0.4 eV was required for best fit.) 

The unique Seebeck coefficient behavior of SnTe as the carrier concentration 

varies stimulates our interests to explore the nature of electrical transport in SnTe and to 

optimize the thermoelectric properties. Finding the optimum doping level in 

semiconductors with complicated band structures is crucial to obtaining a thermoelectric 

material with the optimum performance. In this work, I will show that both the Seebeck 

coefficient and zT value increase either by substituting donor (I) or acceptor (extra Te and 

Gd) dopants. We observe that the peak zT value (zTmax,1=0.6 at 673 K) of I-doped SnTe 

with decreased carrier concentration (3×1019 cm-3) is higher than the other peak zT value 

of extra Te or Gd-doped SnTe (zTmax,2=0.4 at 773 K) with increased carrier concentration 

(6×1020 cm-3), suggesting that the light, primary valence band is most important in these 

systems. This unique behavior is contrary to the behavior in the lead chalcogenides where 

the second, heavy band usually leads to improved figure of merit. I would like to 
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acknowledge contributions to this work from Min Zhou, who was an equally contributing 

author on the original paper [128]. 

4.4b - Results and Discussion 

The measured Hall carrier concentration (pH=1/eRH) of SnTe1-xIx, SnTe1+y, and 

GdzSn1-zTe samples at 300 K are shown in Figure 4-12. The Hall carrier concentration of 

stoichiometric SnTe was found to be around 1.1±0.2×1020 cm-3 at 300 K when prepared 

by using the described method. This value is slightly lower than Zhang’s report (about 

2×1020 cm-3) [199]. Extra Te is thought to induce cation vacancies which act as double 

acceptors[58, 200]. Brebrick, whose data is also shown in Figure 4-12a, studied closely Te 

solubility in SnTe and concluded that the phase width always leaned towards the Te rich 

side due to Sn vacancies; this phase width leads the heavily p-type character of intrinsic 

SnTe. Our work agrees with the cation vacancy mechanism and yields ~1.7 holes per Te 

atom, although Brebrick saw more (3 holes per Te atom) [129]. Because Brebrick used 

carefully controlled and measured data for Te content while we use nominal composition 

only, Te loss through vaporization during synthesis is a plausible explanation of the 

difference. Dopant solubility in SnTe has been thoroughly studied by Rogacheva et al.; 

they investigate the complexities involved with doping phases that are intrinsically 

nonstoichiometric [201]. 

Gd with normal valence Gd3+ might be expected to substitute for Sn2+ and be an 

electron donor, but instead Gd is observed to cause an increase in p-type, hole carrier 

concentration. Similar results were reported by Story et al., who suggest that Gd is a 

resonant dopant; however, no Seebeck increase was observed relative to Te-doped 

samples which would indicate resonant states, probably due to a lower Gd content (<1%) 

and higher temperatures than used b Story et al. [202] While the exact mechanism of Gd 
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doping is not clear, the Gd-doped samples showed a linear increase in nH with Gd doping 

for z>0.0025.  

We also attempted to counter dope SnTe by substituting Te with Iodine. While much 

work has been done on cationic substitutions, far fewer works study how SnTe is affected 

by anion substitution. As pointed out by Rogacheva et al, the cationic dopants that have 

the highest solubility are those which have similar ionic radii to Sn. Hence, Iodine (which 

has a similar ionic radius to Te) should be a good candidate for anionic substitutional 

doping in SnTe. As observed in Figure 4-12b, the carrier concentration linearly decreased 

to as low as 3×1019 cm-3 with ~40% doping efficiency, assuming that one electron is 

donated per iodine atom. The doping efficiency appears linear until NI ~ 25×1019cm-3 (x = 

0.015), where the carrier concentration continues to decrease, but at a slower rate. The 

observed carrier concentration has been achieved by previous authors[203-205] , but their 

interpretation of it and its significance to the thermoelectric properties was not thoroughly 

studied. 

 

Figure 4-12: Hall carrier concentration as a function of dopant concentration a) Gd, Te excess as acceptors, 
b) I as donor. Solid lines represent guides to the eye for our data and correspond to 1.7 holes per atom for 
the Gd/excess Te case shown in a, and 0.4 electrons per Iodine atom as in b. 

The measured temperature dependent transport data for samples with nominal 

composition SnTe1-xIx, GdzSn1-zTe, and SnTe1+y are shown in Figure 4-13. Stoichiometric 
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SnTe data reported by Zhang et al (green dashed lines for samples with a slightly different 

nH than SnTe in this work) are also shown. Degenerate semiconducting behavior, indicated 

by an increasing Seebeck coefficient and resistivity with temperature, is observed for all 

samples. As the iodine content is increased, the measured Seebeck coefficient and 

electrical resistivity increase, consistent with the decrease of Hall carrier concentrations 

shown in Figure 4-12. This suggests that I atoms substitute for Te and supply extra 

electrons which compensate the effect of intrinsic Sn vacancies. Conversely, the p-type 

dopants (Gd and excess Te) reduce the resistivity, consistent with an increase in carrier 

concentration. The Seebeck coefficient for these samples, unlike in the I doping case, 

show an increase with increasing doping level at room temperature, which is a direct 

consequence of the two band behavior described in Figure 4-11. Further, the most heavily 

doped sample (6×1020 cm-3) also has nearly the highest Seebeck coefficient at room 

temperature, but it does not increase as much with temperature as samples with lower 

doping levels. 

The total thermal conductivity and the calculated lattice thermal conductivity of 

SnTe1-xIx samples are shown in Figure 4-13(e, f). The total thermal conductivity of the 

undoped SnTe decreases with temperature, reaching 2.3-3.0W/m K at 773K.The thermal 

conductivities of all the I-doped SnTe1-xIx are lower than that of undoped SnTe, which 

comes from the reduction of electronic thermal conductivity as a result of a decreasing 

hole concentration. The lattice thermal conductivity, κL, is calculated by subtracting the 

electronic contribution (κe= LT/ρ) from the total thermal conductivity, where L is the Lorenz 

number that was estimated from a two-band model (𝜅𝜅=(LLσLT+LΣσΣT+κbipolar)/(σLT+σΣT), 

where κbipolar=T(σ1S12+σ2S22-(σ1S1+σ2S2)2/(σ1+σ2))). The lattice thermal conductivity of all 

the I-doped SnTe1-xIx samples decreased with temperature, and then increased when the 

temperature is over 600 K. This suggests that bipolar effects occur in I-doped SnTe1-xIx 
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samples with lower carrier concentrations at high temperature.  κL is not shown for Te and 

Gd doped samples, which were shown to be additionally complex due to large 

contributions from the Σ band. 

 

Figure 4-13: Thermoelectric transport properties for various SnTe samples: a) resistivity of SnTe and SnTe1-

xIx, b) resistivity of SnTe, SnTe1+y, and GdzSn1-zTe, c) Seebeck of SnTe and SnTe1-xIx, d) Seebeck of SnTe, 
SnTe1+y, and GdzSn1-zTe, e) thermal conductivity and lattice thermal conductivity of SnTe and SnTe1-xIx, and 
f) thermal conductivity and lattice thermal conductivity of SnTe, SnTe1+y, and GdzSn1-zTe. Legends indicate 
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room temperature Hall carrier concentrations and a brief description of the samples as follows: SnTe1-xIx, 
Sn1-xGdxTe, and SnTe1+x for Iodine doped (a,c,e), Gd doped (b, d, f), and excess Te (b, d, f) samples, 
respectively. All plots show both raw experimental data (points) and polynomial fits (lines). 

Full optimization of SnTe yields a higher zT (average and peak) for samples doped 

with Iodine. The thermoelectric figure of merit, zT, is shown as a function of temperature 

in Figure 4-14 for Iodine, Gd, and Te rich samples along with results from Zhang et al for 

an undoped and an In doped sample[199]. We show that the undoped SnTe (nH = 1.1×1020 

cm-3) shows low zT values over the measured temperature range yielding a maximum of 

0.23 at 773 K. This is lower than the reported zT value (0.39) of intrinsic SnTe with a higher 

carrier concentration (nH = 2×1020 cm-3) at the same temperature from Zhang et al. (as 

shown in Figure 4-14a). From Figure 4-14a, zT values increased with donor I-dopant and a 

peak zT value of 0.6 was obtained for SnTe0.985I0.015 at 700 K, corresponding to an optimum 

doping level of around 4×1019 cm-3, which was the lowest attainable with iodine doping that 

did not lead to hysteretic behavior in the transport properties. zT values of 0.45-0.6 were 

obtained for several samples with room temperature nH of 4.0-6.1×1019 cm-3. This means 

that decreasing carrier concentration is a valid approach to optimize zT of SnTe by doping 

with iodine.  

Alternatively, zT values increased with acceptor Te or Gd-dopant also. The other 

peak zT value of 0.4 was obtained for the most heavily doped samples (Gd0.01Sn0.99Te and 

SnTe1.015, nH = 4-6×1020 cm-3) at 773K, which is about 30% lower than the iodine doped 

samples. Unlike conventional single band behavior, we show that both I-doped SnTe and 

Gd-doped SnTe have higher zT values than that of stoichiometric SnTe. Figure 4-14c 

shows the average zT value (𝑧𝑧𝛥𝛥���� =  ∫
𝐿𝐿𝑇𝑇𝑑𝑑𝑇𝑇773

300
773−300

) of I-doped and Te-rich SnTe samples along 

with Zhang et al. In0.0025Sn0.9975Te samples over the temperature range of 300-773 K. 

SnTe1.015 shows an average zT of 0.15, but the average zT value of best I-doped SnTe 

(0.35) is about the same as the best In-doped sample (0.32) that contains resonant states. 
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This indicates that the low-temperature zT value in I-doped samples is quite a bit higher 

than either the intrinsic or In-doped samples from Zhang et al.  

 

 

Figure 4-14: a) zT of SnTe1-xIx as function of temperature, data (dashed lines) are from the literature [199]. b) 
zT of SnTe1+y and GdzSn1-zTe as function of temperature. c) The average zT between 300 and 773 K for 
optimally doped samples; data of SnTe:In are from the literature[199]. zT estimates are obtained from 
polynomial fits of transport data in Figure 3. 

The Seebeck coefficient as a function of Hall carrier concentration (Pisarenko plot) 

is shown in Figure 4-11a for SnTe1-xIx and SnTe1+y, GdzSn1-zTe at 300 K along with reported 

results from Brebrick and Rogers et al. [129, 130]. The plot shows a unique, non-monotonic 

nH dependence brought about by the two interacting valence bands. For carrier 

concentration of 1-2×1020 cm-3, the Seebeck coefficient shows a minimum value of about 

5-10 µV/K. The Seebeck coefficient then increases to a maximum of about 30 µV/K at 

carrier concentration of 6-8×1020 cm-3. Figure 4-11b shows the relationship between the 
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carrier mobility and Hall carrier concentration of all the samples as well as data reported 

by Rogers et al. at 300 K [130]. The carrier mobility of stoichiometric SnTe is about 400-

500 cm2/V-s at room temperature and always decreases with increasing carrier 

concentration for all SnTe1-xIx and SnTe1+y, GdzSn1-zTe samples. The experimental data of 

both Seebeck coefficient and mobility are fitted by a two band model (the solid curve) using 

a Kane band (SKB) for the L and a parabolic band (SPB) for the secondary Σ valence band 

(as described in detail in the Methods section later in this chapter).  

As shown in Figure 4-15, the high temperature Seebeck coefficient and carrier 

mobility could also be explained by the same model, with the valence band offset (ΔE) and 

band effective masses allowed to change as fitting parameters as a function of 

temperature. The non-monotonic behavior for the Seebeck coefficient becomes less 

significant at high temperature (Figure 4-15a), probably a result of a broadening Fermi 

distribution and temperature dependent shifts in the band structure. By fitting experimental 

results we determine that the density of states effective mass mL* of the L valence band is 

0.14 me for SnTe1-xIx at 300 K, and it changes with temperature roughly according to 

dlnmL*/dlnT=0.55. Similar temperature dependence has been reported in other IV-VI 

compounds with similar band structure [16, 65, 206]. Little is known about the parameters 

for the heavier, 𝛴𝛴 band, and they are difficult to determine directly using experimental 

techniques. As a result, they were adjusted to fit the experimental Seebeck and mobility 

data. The density of states effective mass mH* was fit to be 1.7 me at 300 K, and it changes 

with temperature according to dlnmH*/dlnT=0.5. The 300K values are comparable to those 

reported by Brebrick et al. [129]. The valence band offset energy, ∆E, between the two 

bands was found to be 0.4 eV at 300 K according to the fitting result; the best fit of the 

data required Δ𝐸𝐸 to decrease roughly linearly with temperature at a rate of 3.4×10-4 eV/K 

(similar to the lead chalcogenides in the previous sections). I should note that these values 
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are likely not unique, and that similar fits could also be performed with different sets of 

parameters. 

 

Figure 4-15: a) Seebeck coefficient and b) Hall mobility as a function of Hall carrier concentration at different 
temperatures. Solid symbols represent our experimental results, open symbols correspond to literature data 
(Vedeneev {Vedeneev, 1998 #9388} and Rogers {Rogers, 1968 #9294}). Each is presented at three 
temperatures: 300, 573, and 723 K, which are given by squares, circles, and diamonds, respectively. Solid 
curves represent the results of the two band model.  

Figure 4-16 shows zT as a function of Hall carrier concentration for SnTe1-xIx, 

SnTe1+yand GdzSn1-zTe samples at different temperatures. Note that a local minimum 

exists in zT vs. nH for temperatures of 300 and 600 K, which corresponds to a carrier 

density of ~1×1020 cm-3, approximately the composition of stoichiometric SnTe. At a higher 

temperature of 773 K, the model predicts a single maximum in zT as seen in most 

thermoelectric materials, but the peak is broadened due to the increasing influence of the 

second band. From Figure 4-16, both the experimental and model results indicate a 

significant zT increase with decreasing carrier concentration, yielding a maximum in the 

1018 – 1019 cm-3 range. In this work, the solubility of I in SnTe1-xIx (x = 0.015, nH~4×1019 cm-

3) has limited us from achieving the optimized nH for the predicted maximum zT to be 

obtained (which requires nH~8×1018 cm-3). While we do expect bipolar effects to begin to 

play a role at low doping levels and high temperatures, which is not accounted for in this 

S 
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model, the conclusions remains that optimizing SnTe carrier concentration towards the 

light band results in significant improvement. 

 

Figure 4-16: zT as a function of Hall carrier concentration for SnTe1-xIx and SnTe1+y, GdzSn1-zTe. Solid curves 
are modeling results, and dashed lines are uncertainty values for the model zT which account for a ±10% 
error in κL. The calculated lattice thermal conductivity of 2.5±10% W/m K (300 K), 1.23±10% W/m K (600K), 
and 1.0±10% W/m K (773 K) were used in the zT calculation as obtained from I-doped samples (Figure 3e). 

  While both SnTe and PbTe are IV-VI materials have the same crystal structure 

and similar electronic band structures, their thermoelectric performance and optimization 

strategies are quite different. At first, one might write off SnTe due to its large intrinsic 

defect concentration and higher lattice thermal conductivity when compared to PbTe. 

However, this work suggests that it does in fact give a reasonable zT when optimizing 

towards the low carrier concentration light band rather than the heavier 𝛴𝛴 band; this is 

achieved by doping with iodine. While valley degeneracy and band convergence play a 

crucial role in the high zT for PbTe (more than 1.5 at T ~ 800 K), the larger band offset in 

SnTe (0.4 eV for SnTe versus 0.1 eV for PbTe at 300 K) makes convergence unattainable 

in SnTe for temperatures below its melting point. In addition, the thermoelectric quality 

factor [18, 65], B (Equation 2-6), can be used to determine the quality for the L and 𝛴𝛴 bands 

to be 0.42 and 0.27, respectively, in SnTe at 600 K. The light band is estimated to have 
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nearly 50% higher quality factor than the heavy band in this system due primarily to the 

low band mass (and corresponding high mobility). Coupled with a large band offset (~6 

kBT at 600 K), the peak zT for SnTe occurs for a chemical potential near to the light valence 

band edge. This is in contrast to PbTe where the heavy band is believed to have as good 

or better quality factor than the light band with a much smaller band offset (ΔE~1.5 kBT at 

600 K) [18]. So, while valley degeneracy and the heavy band at Σ play an important role 

in PbTe [16], they are not viable options for improving zT in SnTe. 

While intrinsic SnTe seems to have too large of band offset to utilize the heavy band, 

several successful attempts at band engineering have been achieved. Tan reported a high zT of 

1.3 for Cd-doped [170] and Hg-doped [169] SnTe, which they attribute to changing Δ𝐸𝐸 from the 

addition of Cd/Hg and nanostructuring. Han and Chen et al reported zT of 0.9-1 for SnTe-AgSbTe2 

alloys [207, 208]. These latest works are encouraging in terms of making a useful thermoelectric 

device that is lead free.  

4.4c - Conclusion 

While undoped SnTe has very poor thermoelectric performance, SnTe can be greatly 

improved through carrier density tuning. We have shown that by either increasing or decreasing 

the carrier concentration, the zT can be improved relative to naturally synthesized, nominally 

undoped SnTe. A peak zT value of 0.6 is obtained for SnTe0.985I0.015 sample with a lower carrier 

concentration of 4×1019 cm-3, which is about 50% higher than the other peak zT value of 0.4 for 

SnTe1.015 with a higher carrier concentration of pH = 6×1020 cm-3. Transport property models 

predict higher zT if the carrier concentration could be reduced further to 1 × 1019 cm-3. Different 

from In-doped SnTe that alters the host band structure, this work revealed the inherent merit of 

SnTe thermoelectric materials. With further band engineering SnTe may become an efficient lead 

free alternative to lead chalcogenide thermoelectric materials.   
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4.4d - Methods 

 Polycrystalline samples of SnTe1-xIx (0≤x≤0.02,), SnTe1+y (0<y≤0.015), GdzSn1-zTe 

(0<z≤0.02) were prepared by using a melt alloying and hot pressing technique. Pure 

elements and TeI4 (Sn, 99.999%; Te, 99.999%; Gd, 99.99%; TeI4, 99.999%, ultra dry) 

were weighed out according to each composition and loaded into quartz ampoules, which 

were then evacuated and sealed. The sealed ampoules were slowly heated to 1273 K and 

kept for 24 h followed by water quenching. The ingots obtained were further annealed at 

973 K for 120 h before being crushed and ground into fine powders. The powders were 

then hot pressed at 823 K under 1 atm argon with 40 MPa pressure for 30 min. A typical 

disc shaped sample obtained is 12 mm in diameter with density no less than 95% of 

theoretical density (6.46 g/cm3). Electrical properties were measured as detailed in 

Chapter 2. The heat capacity, Cp, was determined from: Cp=Cp,300+Cp1×((T/300)α-

1)/((T/300)α+Cp1/Cp,300) [209], where T is the absolute temperature, Cp,300 is the specific 

heat capacity at 300 K. For SnTe, Cp,300 is 0.1973 J/g K, Cp1 is 0.115 J/g K, α is 0.63 [209]. 

A two-band model was used for modeling the light and heavy bands to explain 

thermoelectric transport properties. Transport properties were modeled following the procedures 

outlined in previous work [65, 210] and in Chapter 2 of this thesis. The light and heavy valence 

band properties were calculated by evaluating the full generalized Fermi integrals as a function 

of chemical potential. The L band was assumed to be a nonparabolic, Kane band, with a 

nonparabolicity parameter, 𝛽𝛽, given by kBT/Eg, where Eg was assumed constant at 0.18 eV [211], 

while the 𝛴𝛴 band was modeled as a parabolic band. More specific details of the modelling results 

can be viewed in the supplementary material of a paper published on this subject [128].  
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4.5 - Conclusions 

IV-VI materials have proven to have a breadth of interesting and measureable band 

structure properties which can be used for building world-class thermoelectric materials. In this 

chapter, I have shown that by using a combination of optical and electronic properties 

measurements coupled with ab-initio calculations we can gather a wealth of information about the 

electronic band structures in the IV-VI materials. In Section 4.2, I have provided new 

optical/computational evidence of the convergence temperature in the lead chalcogenides which 

suggests that convergence occurs at ~700 K in PbTe, much higher than the commonly cited result 

that claims (~400 K). These experimental results have helped to aid band engineering strategies 

by providing the data needed to accurately model the band structure at high temperatures. 

Section 4.3 shows a successful band engineering study in PbSe/SrSe alloys which leads to ~50% 

enhancement (max zT of 1.5) relative to the binary PbSe. In Section 4.4, two band transport 

behavior in SnTe is characterized in a doping study; here we determine that the zT in SnTe can 

be greatly improved upon decreasing the carrier concentration through iodine doping.  My results 

have expanded upon the current literature by providing band structure properties in the IV-VI 

materials, allowing a clearer path towards proper optimization. The techniques learned here are 

generally applicable to other multi-band systems as well, and several will be discussed later in 

this thesis.  
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Chapter 5:  Resolving the True Band Gap in ZrNiSn: The Effect of the 

Weighted Mobility Ratio in Bipolar Semiconductors 

5.1 - Introduction 

Temperature-dependent electronic transport measurements serve as the primary 

characterization tool for most thermoelectric materials. With regards to the electronic band 

structure, these measurements can be used to determine things like the effective mass, 

deformation potential, band offset (Δ𝐸𝐸) in the case of two-band systems with the same type of 

carrier (as discussed in Chapter 4 for the IV-VI materials), or band gap (Eg) for systems where 

the bipolar effects are large. Particularly in the case of band gap, these estimates are useful for 

comparing experimental and theoretical (DFT) calculations. Further, understanding the band gap 

is important for modelling electronic transport properties, primarily to distinguish and quantify band 

engineering effects. Half Heusler’s (HH) have received a lot of attention lately because of their 

flexibility with regards to composition (XYZ where X=Ti, Zr, Hf, etc., Y=Ni, Co, etc., Z=Sn, Sb, 

etc.), good electronic properties, earth-abundant elements, and reasonable thermoelectric 

performance. In this chapter, I explore the relationship between the maximum measured 

temperature-dependent thermopower (|S|), which can be used to estimate the band gap using 

Eg=2e|S|maxTmax (the Goldsmid-Sharp band gap), and the electron-to-hole weighted mobility ratio, 

A [51]. While the Goldsmid Sharp gap estimate is useful, mainly due to its simplicity and ease of 

application, it gives conflicting results in ZrNiSn and other systems that have large differences in 

electron and hole weighted mobility (defined as 𝜇𝜇0𝑚𝑚∗3/2). By combining optical measurements 

with the estimated Goldsmid-Sharp band gap in n-type and p-type samples, I am able to resolve 

the true band gap as well obtain an estimate for the electron-to-hole weighted mobility ratio in 

ZrNiSn. I also discuss the origins of the large difference in electron and hole weighted mobility in 

the context of existing literature results and the inherent disorder associated with HH materials.  
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As an extension of my findings in the ZrNiSn HH system, the second section of this chapter 

is dedicated to a more thorough theoretical investigation of the Goldsmid-Sharp band gap 

relationship in the limit of narrow gap materials, where the full Fermi statistics should be 

considered. I present a chart that can be used to quickly estimate deviations in the 2eSmaxTmax 

relation from the true band gap as a function of the maximum Seebeck coefficient and the 

majority-to-minority carrier weighted mobility ratio, A. I also discuss what deviations in this relation 

can occur as the band gap is narrowed significantly and the Seebeck rollovers occur while the 

Fermi level is degenerate.  

5.2 - ZrNiSn Half Heusler Thermoelectric Materials– Resolving the True Band Gap 

5.2a - Introduction 

Half-Heusler (HH) compounds with the general formula XNiSn (X= Ti, Zr, Hf) have 

generated significant interest as a promising class of materials for thermoelectric applications 

because of their high thermopower, reasonable mobility, earth-abundant elements, and good 

performance [212, 213]. The numerous possibilities to manipulate each of the three lattice sites 

provide an excellent opportunity to influence the electronic and thermal transport properties. In 

the case of XNiSn, isoelectronic alloying on the X site [214] or partial substitution on the Ni site 

[215] can lead to thermal conductivity reduction owing to lattice strain and mass fluctuations by 

point-defect scattering of phonons. Beyond simply alloying, a wide range of HH composites have 

utilized phase separation, which can result in remarkably low thermal conductivities and even 

enhanced electrical properties [216-219]. In fact, much of the work on the HH’s has involved 

phase-separating alloys which benefit greatly from the increased phonon scattering from 

nano/microstructure features. The XNiSn system is the most extensively studied n-type HH 

material [23, 212, 213, 219-225] showing good zTs of 0.6-1.4 (usually optimizing at high 

temperatures, T>900 K) [223]. 
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Much of the existing literature focuses on the thermoelectric characterization of n-type 

XNiSn, which show the best thermoelectric performance in comparison to their p-type analogs. 

The most promising p-type HHs are found in the XCoSb system (X= Ti, Zr, Hf) [213, 226-228]. 

However, for the construction of thermoelectric modules, it is desirable for the n-type and p-type 

materials to have similar chemical, thermal, and mechanical properties. In order to be most 

compatible with high-performance HH n-type materials that are currently being explored for 

modules [229], a suitable p-type analog in the XNiSn system is desirable. Some work has already 

been done to this end; for example: Xie et al. [230] studied the substitution of Ni by Co and 

demonstrated that a conversion from n- to p-type behavior for the XNiSn system could be 

achieved. Likewise, Horyn’ et al. [231] studied the effects of substituting Sc for Ti or Zr; the 

resulting compounds showed promising positive thermopower at room temperature.  

The electronic transport properties of semiconducting materials, such as thermopower and 

electrical conductivity, are reflections of the electronic energy band structure in k-space and the 

electronic states which make up the valence and conduction bands. A crucial parameter that 

determines the thermoelectric performance is the band gap. For narrow band-gap 

semiconductors, the onset of bipolar conduction (both electrons and holes contributing) occurs at 

lower temperatures than their higher gap analogs. The compensating Seebeck coefficient of the 

minority carriers leads to a peak in the thermopower, limiting the temperature-dependent zT 

values.  

In this work, I aim to extend the existing studies of p-type XNiSn HH compounds by 

thoroughly investigating Sc substitutions in Zr1-xScxNiSn. Through Sc substitution, we successfully 

doped ZrNiSn to be p-type and then measured its thermoelectric properties up to 850 K. I 

estimated the band gap size using the commonly used Goldsmid-Sharp formula: 
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 𝑬𝑬𝒈𝒈 = 𝟐𝟐𝒅𝒅|𝑺𝑺|𝒎𝒎𝒎𝒎𝒎𝒎𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎 Equation 5-1 
 

where Tmax is the temperature at which the maximum of the thermopower (|S|max) occurs [51]. Eg 

here is referred to as the Goldsmid-Sharp band gap and is obtained from high temperature 

thermopower measurements. In this work, synthesized ZrNiSn HH samples give a discrepancy 

between the values obtained from our p-type samples (~0.05 eV) and the n-type results from the 

literature (>0.23 eV), both of which are different from the ab-initio calculated result of 0.5 eV [232]. 

With the aid of the optical measurements, we used the Goldsmid-Sharp formula to resolve this 

apparent discrepancy by considering a large difference in weighted mobility between electrons 

and holes. I would like to acknowledge work from Jennifer Schmitt, who was an equally 

contributing coauthor on the work that this section is based upon [52]. 

5.2b - Results 

X-ray Diffraction 

Figure 5-1 shows a representative XRD pattern for Zr0.95Sc0.05NiSn, which conforms to the 

well-defined cubic structure typical for the HH phase containing negligible amounts of Sn metal. 

The calculation of the lattice parameter and the crystal structure refinements were done using the 

Rietveld method, which yielded a lattice parameter of a = 6.1148 Å for the undoped sample, which 

is in agreement with the values reported in the literature [233]. The inset in Figure 5-1 shows a 

roughly monotonic increase with increasing Sc amount, which agrees well with Vegard’s law. The 

increase serves as evidence of the substitution of slightly larger Sc atoms (radius = 1.60 Å) for Zr 

(radius = 1.55 Å). Each of these observations is consistent with previous synchrotron results on 

Ti1-xScxNiSn compounds synthesized in a similar way [232]. 
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Figure 5-1 Powder XRD pattern for the Zr0.95Sc0.05NiSn sample (Iexp) with the Rietveld refinement (IRR) and the difference 
profile (Iexp-RR). The inset shows the dependence of the lattice parameter a (Å) for Zr1-xScxNiSn versus Sc content (x). 
The straight line represents the linear fit to Vegard’s law. 

Electrical Transport Properties 

The electrical properties of the Zr1-xScxNiSn (x = 0 ,…, 0.10) solid solution are shown in 

Figure 5-2a. At room temperature, the samples exhibit high electrical resistivity, which decreases 

with increasing temperature for all the samples, indicating semiconducting behavior. For high 

substitution levels, both the room temperature value and the temperature dependence of the 

resistivity decreases, pointing to a shift of the Fermi level towards the valence band as a result of 

an increasing p-type carrier concentration. 

It can be seen from Figure 5-2b that for increasing Sc content in the Zr1-xScxNiSn solid 

solution, the Hall mobility (𝜇𝜇𝐻𝐻 = σ · 𝛥𝛥𝐻𝐻 in units of mobility) is suppressed (and eventually becomes 

positive) by the addition of holes. The parent compound, n-type ZrNiSn, exhibits the highest 

mobility, with a value at room temperature of 25 cm2/ V·s, which is a typical value for n-type 
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XNiSn-based systems [234, 235]. This value is still significantly lower than 150 cm2/ V·s for Bi2Te3 

or 900-1400 cm2/ V-s for the lead chalcogenides [58, 236]. If we assume that each replacement 

of Zr by Sc leads to one hole, the room temperature electron concentration should be completely 

compensated when the Sc concentration exceeds ~5%. At low Sc content, the samples with 0 ≤ 

x ≤ 0.04 possess a negative value for σ · 𝛥𝛥𝐻𝐻, which is consistent with a substitutional doping 

explanation. 

 

Figure 5-2: Temperature dependence of a) the electrical resistivity ρ and b) the σ · 𝛥𝛥𝐻𝐻 product (in units of mobility) for 
the Zr1-xScxNiSn solid solution. The true Hall mobility at 300 K is largest for the intrinsic, n-type ZrNiSn sample (Figure 
2b). With increasing Sc content, the magnitude of σ · 𝛥𝛥𝐻𝐻  decreases as a result of the influence of the low mobility holes. 
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With regards to the origin of the low mobility in the samples which show p-type character, 

we should consider how the Hall coefficient varies as a function of carrier mobility and 

concentration when both electrons and holes are present (in the bipolar region) [121]: 

 
𝑹𝑹𝑯𝑯 =

𝒏𝒏𝒑𝒑 𝝁𝝁𝒑𝒑𝟐𝟐  −  𝒏𝒏𝒏𝒏µ𝒏𝒏
𝟐𝟐

𝒅𝒅(𝒏𝒏𝒑𝒑 𝝁𝝁𝒑𝒑 −  𝒏𝒏𝒏𝒏µ𝒏𝒏)𝟐𝟐
 Equation 5-2 

 

Here, 𝐴𝐴𝑛𝑛 and 𝐴𝐴𝑏𝑏 are the electron and hole concentrations, respectively, and  𝜇𝜇𝑛𝑛 and  𝜇𝜇𝑏𝑏are 

the electron and hole mobilities, respectively. If 𝜇𝜇𝑛𝑛> 𝜇𝜇𝑏𝑏, the sign for the Hall coefficient RH can be 

negative even if 𝐴𝐴𝑏𝑏 > 𝐴𝐴𝑛𝑛. In order to obtain a positive value for the Hall coefficient, 𝐴𝐴𝑏𝑏 𝜇𝜇𝑏𝑏2 needs to 

exceed 𝐴𝐴𝑛𝑛𝜇𝜇𝑛𝑛2. Because the individual carrier contributions, 𝐴𝐴𝑛𝑛 and 𝜇𝜇𝑛𝑛, are unknown and difficult to 

determine, 𝐴𝐴𝐻𝐻 = 1
𝑅𝑅𝐻𝐻𝑒𝑒

 can be used assuming a single carrier type, but it will result in a value that is 

greater than either the true value for 𝐴𝐴𝑏𝑏 or 𝐴𝐴𝑛𝑛. 

The Seebeck coefficient (𝑆𝑆) for the Zr1-xScxNiSn solid solution are presented in Figure 5-

3. The pure ZrNiSn compound, without any Sc doping, displays a large negative Seebeck 

coefficient at room temperature, indicating a significant n-type defect concentration in the intrinsic 

ZrNiSn. With increasing Sc content, the value of the thermopower decreases as compensating p-

type defects (Sc3+ on Zr4+ sites) are added to the naturally n-type material. It can be seen from 

the change in sign of the Seebeck coefficient from negative to positive that holes become the 

predominant charge carriers. This sign change occurs at lower Sc contents than observed for the 

sign change of σ · 𝛥𝛥𝐻𝐻  (Figure 5-2b), indicating that in this region of mixed conduction, the holes 

probably outnumber electrons. However, because the electrons are more mobile, the Hall 

coefficient does not change sign until x > 0.05 (note that the mobilities are squared, in Equation 

5-2), whereas the Seebeck coefficient is weighted by mobility to the first power [121]. As observed 

in the Hall coefficient measurements, ambipolar conduction of both electrons and holes is most 

likely responsible for the decrease in the thermopower at high temperatures. 



5-8 
  

In addition to indicating the onset of bipolar conduction, the maximum of the thermopower 

can be used for the estimation of the Goldsmid-Sharp band gap, Eg, according to Equation 5-1 

[51], where we obtained values on the order of 0.05 eV. This is much smaller than the band gap 

suggested by Aliev et al. from electrical resistivity measurements (0.18 eV) [237]. The discrepancy 

between the estimation from our thermopower data and the literature estimates for the size of Eg 

in these compounds will be discussed in detail later and is the main topic of this chapter. 

 

Figure 5-3: Temperature dependence of the Seebeck coefficient for the Zr1-xScxNiSn solid solution. The Seebeck 
coefficient shows a rollover due to ambipolar conduction.  

The temperature-dependent total thermal conductivity (κtot) is shown in Figure 5-4. The 

room temperature thermal conductivity is reduced by 40% for Zr0.9Sc0.1NiSn as compared with the 

undoped ZrNiSn. Because this is accompanied by a decrease in resistivity (Figure 5-2a), it is clear 

that this must be due to scattering of phonons as a result of increased disorder in the material, 

which reduces the lattice thermal conductivity (which is much greater than the electronic thermal 

conductivity at room temperature for all Sc compositions). Above room temperature, we can see 

an increasing thermal conductivity for the doped samples, which is consistent with the existence 
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of both electrons and holes (which is also shown by the other transport properties in Figure 5-2b 

and Figure 5-3). This effect occurs at lower and lower temperatures as the Sc content is 

increased. Although the bipolar effects are less pronounced for the Seebeck coefficient 

measurements, thermal conductivity is quite sensitive to bipolar conduction because it is affected 

both by the decrease of the resistivity (increasing 𝜅𝜅𝑒𝑒) and by the increasing magnitude of the 

bipolar term of the thermal conductivity (𝜅𝜅𝑏𝑏). 

 

Figure 5-4 The total thermal conductivity of the Zr1-xScxNiSn solid solution as a function of temperature and Scandium 
content. 

Optical Absorption Edge 

Optical properties were also measured to get information about the band structure, as 

displayed in Figure 5-5. Undoped ZrNiSn was measured in diffuse reflectance at room 

temperature; the indirect optical band gap was extracted using the Tauc extrapolation method (as 

discussed in Chapter 2) [46, 95]. The estimated value of the indirect optical band gap was 0.13 

eV. Aliev et al. measured ZrNiSn samples previously using optical techniques, and they reported 

a minimum in the absorption coefficient of approximately 2000 cm-1 (~0.25 eV)—a value quite a 
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bit larger than the 0.13 eV measured in this work. The most likely reason for this discrepancy is 

due to the large difference in room temperature resistivity.  

It should be understood that the properties of ZrNiSn seem to depend significantly upon 

the method of synthesis for the sample. I performed similar DRIFTS measurements on intrinsic 

ZrNiSn samples synthesized by another collaborator using levitation melting/spark plasma 

sintering (Xie et al. [230, 238]), which yielded a minimum in the absorption coefficient around 0.2 

eV (which agrees with Aliev’s results). However, I attribute the higher absorption edge to a higher 

carrier concentration (which increases free-carrier absorption and possibly induces a Burstein 

Moss shift, see Chapter 3) than those samples presented here (synthesized using arc-melting). 

ZrNiSn from both Xie et al. and Aliev et al. show a much lower room temperature resistivity 

(~10 𝑚𝑚Ω− 𝑐𝑐𝑚𝑚) in comparison to samples from this thesis chapter (intrinsic ZrNiSn showed 

resistivity near 100 𝑚𝑚Ω − 𝑐𝑐𝑚𝑚). The lower resistivities from Xie, Aliev et al. resulted in free carrier 

absorption, which pushed the minimum absorption coefficient to higher energies.  

Band gaps extracted from the temperature dependent resistivity both in this work and from 

Aliev et al. show values near 0.18 eV [237]. The large range of different values for the band gap 

obtained from different methods (Goldsmid-Sharp, temperature-dependent resistivity, optical, and 

DFT) suggest that a self-consistent model for this material should be developed. The remainder 

of this section will investigate the origins of the spread in values as well as the nature of the 

valence band. Recent literature suggests that the valence band is composed of Ni-states which 

arise from disorder within the material (specifically Ni disorder onto the vacancy site) [239], which 

will be discussed in detail later.  
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Figure 5-5: Optical diffuse reflectance data plotted as the indirect band gap transformation of the Kubelka Munk function 
for pure ZrNiSn. A linear fit (red dotted line) was used to estimate the band gap by extrapolating to zero absorption, 
indicating that the band gap is ~0.13 eV. 

5.2c - Discussion 

When considering the transition from heavily doped to intrinsically semiconducting 

behavior (Eg,thermal< ~5 kBT), the Seebeck coefficient is an important indicator of the excitation of 

minority charge carriers across the band gap. In between these two regions, the thermopower will 

reach a maximum (as shown in Figure 5-3), which can be used to estimate the band-gap via the 

Goldsmid-Sharp formula (Equation 5-1). The thermopower band gaps for the Zr1-xScxNiSn solid 

solution are compared to those of a series of n-type XNiSn samples from the literature, as shown 

in Figure 5-6. 
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Figure 5-6: Estimation of the band gap for different n-type (red bars) and p-type (purple bars) half-Heusler compounds 
using the Goldsmid-Sharp formula (Eg=2eSmaxTmax) in units of eV versus the numerated HH compounds. The dotted 
line indicates the optical measured band gap of 0.13 eV for pure ZrNiSn from DRIFTS. The diamonds represent the 
estimated true band gap value that yields the experimental Smax and Tmax when using the full relation derived by 
Goldsmid and Sharp for an electron-to-hole weighted mobility ratio of A=5 : 1) Sc0.03Zr0.97NiSn, 2) Sc0.04Zr0.96NiSn, 3) 
Sc0.0.5Zr0.95NiSn, 4) Sc0.1Zr0.9NiSn, 5) ZrCo0.08Ni0.92Sn [230], 7) Zr0.75Hf0.25NiSn [240], 8) Zr0.5Hf0.5NiSn [240], 9) 
Zr0.25Hf0.75NiSn [240], 10) HfNiSn [240], 11) Ti0.95Hf0.05NiSn [241], 12) Ti0.95Hf0.05NiSn0.995Sb0.005 [241], 13) 
Ti0.95Hf0.05NiSn0.99Sb0.01 [241], 14) Ti0.95Hf0.05NiSn0.98Sb0.02 [241] , 15) Hf0.75Zr0.25NiSn0.99Sb0.01 [242], 16) 
Hf0.5Ti0.25Zr0.25NiSn0.99Sb0.01 [242], and 17) Hf0.25Ti0.5Zr0.25NiSn0.99Sb0.01 [242]. 

A large difference in the Goldsmid-Sharp thermopower band gap is apparent when 

comparing Sc-doped p-type samples from this work and n-type literature results; both are much 

smaller than those estimated by ab initio calculations (~0.5 eV) [232, 233]. Here, we note that 

even though X (in XNiSn samples) varies through Zr, Hf, and Ti for n-type samples in Figure 5-6, 

the band structures and band gaps are expected to be the same (for DFT calculations) [243]. 

Although the large difference in Goldsmid-Sharp band gap between p-type and n-type samples 

might lead one to the conclusion that the choice of dopant will affect the size of the gap, it is 

important to consider the limitations of the simple Goldsmid-Sharp band gap estimation and the 

parameters that might affect the results. Following the derivation from Goldsmid and Sharp, the 

Seebeck coefficient for a mixed semiconductor is given as: 
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 𝑺𝑺 = 𝟏𝟏
𝟏𝟏+𝝈𝝈𝒏𝒏𝝈𝝈𝒑𝒑

�𝑺𝑺𝒑𝒑 + 𝝈𝝈𝒏𝒏
𝝈𝝈𝒑𝒑
𝑺𝑺𝒏𝒏�  Equation 5-3 

 

where 𝑆𝑆𝑛𝑛,𝑏𝑏 and σ𝑛𝑛,𝑏𝑏 represent the thermopower and the electrical conductivities of the two different 

carrier types, respectively. Goldsmid and Sharp derived a simple model assuming classical 

statistics [51], which estimates the electron-to-hole conductivity ratio as 

 𝝈𝝈𝒏𝒏
𝝈𝝈𝒑𝒑

= 𝑨𝑨 𝒅𝒅𝒎𝒎𝒑𝒑(𝜼𝜼𝒏𝒏 − 𝜼𝜼𝒑𝒑) Equation 5-4 

where 𝜂𝜂𝑛𝑛 and 𝜂𝜂𝑏𝑏 are the electron and hole dimensionless chemical potentials (𝜂𝜂 = 𝜉𝜉/𝑘𝑘𝐵𝐵𝛥𝛥). A is 

defined as the weighted mobility ratio: 

 
𝑨𝑨 =

𝝁𝝁𝟎𝟎,𝒏𝒏𝑵𝑵𝒗𝒗,𝒏𝒏

𝝁𝝁𝟎𝟎,𝒑𝒑𝑵𝑵𝒗𝒗,𝒑𝒑
�
𝒎𝒎𝒄𝒄,𝒏𝒏

∗

𝒎𝒎𝒄𝒄,𝒑𝒑
∗ �

𝟑𝟑/𝟐𝟐

 Equation 5-5 

 

where μ0,n,p is the electron or hole mobility parameter, Nv,n,p is the valley degeneracy of the electron 

or hole pocket (both are Nv=3 in this case), and 𝑚𝑚𝑏𝑏,𝑛𝑛𝑏𝑏
∗ is the single valley effective mass (not 

including the degeneracy of the valence or conduction bands). By substituting Equation 5-5 into 

Equation 5-4 and taking the classical limit for the thermopower and determining its maximum, 

Goldsmid and Sharp obtained: 

 

𝑺𝑺 =
𝟐𝟐𝑩𝑩
𝒅𝒅

𝟐𝟐�η𝒏𝒏 − 𝝀𝝀 − 𝟐𝟐� �
𝑬𝑬𝒈𝒈
𝟐𝟐𝑩𝑩𝑻𝑻

+ 𝟐𝟐𝝀𝝀 + 𝟑𝟑� − �−η𝒏𝒏 −
𝑬𝑬𝒈𝒈
𝟐𝟐𝑩𝑩𝑻𝑻

− 𝝀𝝀 − 𝟐𝟐�

𝟏𝟏 + 𝟐𝟐 �
𝑬𝑬𝒈𝒈
𝟐𝟐𝑩𝑩𝑻𝑻

+ 𝟐𝟐𝝀𝝀 + 𝟑𝟑�
 Equation 5-6 

And 
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Equation 5-7 

  

where 𝐸𝐸𝑔𝑔
𝑘𝑘𝐵𝐵𝑇𝑇

 is the dimensionless band gap, and 𝜆𝜆 is the scattering exponent (𝜏𝜏 = 𝜏𝜏0 �
𝐸𝐸
𝑘𝑘𝐵𝐵𝑇𝑇

�
𝜆𝜆−1/2

, 

where 𝜆𝜆 = 0 is assumed here, which represents acoustic phonon scattering). In light of the large 

mobility difference between the n-type undoped sample (~25 cm2/V∙s) and the heavily Sc-doped 

samples (p-type mobility approximately ~1-2 cm2/V∙s), a weighted mobility ratio (A) that is larger 

than unity should be considered. In order to investigate this, we first gathered estimates of the 

Goldsmid-Sharp band gap for a series of p- and n-type ZrNiSn samples, as shown by the bars in 

Figure 5-6. A clear separation is observed between p-type samples (~0.05 eV) in purple and n-

type ones in red (>~0.2 eV). For reference, the results from the optical measurements (Figure 5-

5) are also plotted as a dashed line at ~ 0.13 eV in Figure 5-6. By numerically solving Equation 

5-6 and Equation 5-7 with A = 5 (a reasonable value considering the large mobility difference 

between electrons and holes), I determined the required true band gap that would yield the 

experimentally measured Smax and Tmax, the results of which are shown as blue diamonds in 

Figure 5-6 for each of n- and p-type ZrNiSn-based HH materials. All of these values are close to 

the measured optical results of 0.13 eV, indicating that the large weighted mobility ratio between 

electrons and holes is likely responsible for the difference in the Goldsmid-Sharp thermopower 

band gap when comparing n- and p-type samples. 

Although Goldsmid and Sharp state that even with a large mobility ratio value (A = 10), 

the simple band gap estimatie should hold to within ~ 20%, I note that they assume a band gap 

of 10 kBTmax to derive this value. This is a poor assumption for most materials, as the band gap in 

our system (and many others) is less than 5 kBTmax. In order to illustrate this point, I have plotted 
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2eSmaxTmax/Eg versus Smax for a mobility ratio parameter A = 5 using Equation 5-6 and Equation 

5-7 (Figure 5-7). The red line is the result for the n-type doping and the blue line displays the 

result for p-type doping. Data points in their corresponding colors were taken from their Goldsmid-

Sharp band gap ratio to the optical band gap measured in this work (0.13 eV). The displayed error 

bars assume an error of ±10% in the thermopower and the optical band gap. Figure 5-7 shows a 

positive deviation to 2eSmaxTmax/Eg (relative to 1.0) for the n-type samples, whereas we observe a 

negative deviation for p-type ones. Qualitatively, this is because the more mobile electrons 

dominate the Seebeck coefficient equation because it is weighted by their conductivity; this forces 

the thermopower of the p-type samples to roll over at lower values, whereas n-type samples 

maintain higher thermopower at higher temperatures.  

 

Figure 5-7: A plot of the ratio of the Goldsmid-Sharp band gap (2eSmaxTmax) to the true band gap for different p- and 
n-type half-Heusler compounds in red and blue, respectively, for an electron-to-hole weighted mobility ratio of A=5. The 
solid lines use Goldsmid and Sharp’s full derived equation (Equation 5-6) to estimate this ratio. Experimental points 
use the observed maximum Seebeck coefficient (Smax) and temperature (Tmax) and the optical band gap (Eg,optical). 
An error of ±10% was assumed for the thermopower measurements and the band gap estimations. 

To probe the supposition that 𝐴𝐴 ≈ 5 in ZrNiSn, an estimate for the weighted mobility ratio 

was obtained using a single parabolic band model as fit from the measured Seebeck coefficient 

and resistivity. Rather than fitting the effective mass and 𝜇𝜇0 (or equivalently Edef), in the absence 
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of Hall data the weighted mobility (or in our case reliable estimates of the carrier concentrations 

in either the valence or conduction band), 𝜎𝜎0 can be fit. 𝜎𝜎0 is the conductivity pre-factor (a constant 

that does not depend on Fermi level that scales the conductivity) which can be expressed as: 

 
𝝈𝝈𝟎𝟎 = 𝒏𝒏𝟎𝟎𝒅𝒅𝝁𝝁𝟎𝟎 =

√𝟐𝟐(𝟐𝟐𝑩𝑩𝑻𝑻)𝟑𝟑/𝟐𝟐𝒅𝒅
𝟑𝟑𝟐𝟐ℏ𝟑𝟑

 𝝁𝝁𝟎𝟎𝒎𝒎𝒅𝒅
∗ 𝟑𝟑/𝟐𝟐 Equation 5-8 

  

which defines the relationship between the weighted mobility (𝜇𝜇0𝑚𝑚𝑑𝑑
∗ 3/2) and 𝜎𝜎0. This can be fit in 

a similar way to the effective mass for a single parabolic band (as detailed in Chapter 2) by first 

using the measured Seebeck coefficient to estimate the reduced chemical potential (𝜂𝜂), then 

solving for 𝜎𝜎0 using the measured conductivity and the relation: 

 𝝈𝝈 = 𝝈𝝈𝟎𝟎𝑭𝑭𝟎𝟎(𝜼𝜼) Equation 5-9 
 

The weighted mobility ratio (A) can then simply be defined as the ratio of the 𝜎𝜎0 terms of 

n-type and p-type samples. I gathered data from both this thesis and XNiSn literature results (with 

both donor and acceptor doping) to estimate 𝜎𝜎0 values as a function of the measured electrical 

conductivityl the results are shown in Figure 5-8. In order to minimize the effect of bipolar 

conduction, it is desirable to estimate 𝜎𝜎0 for the samples with their Fermi levels as far from the 

opposing band as possible; this is accomplished in Figure 5-8 by taking our estimates for 𝜎𝜎0,𝐶𝐶𝐵𝐵 and 

𝜎𝜎0,𝑉𝑉𝐵𝐵 for samples with the highest electrical conductivities (far left or far right of the plot 

respectively). This yields 1.1 and 0.15 (𝑚𝑚Ω − 𝑐𝑐𝑚𝑚)−1 for 𝜎𝜎0,𝐶𝐶𝐵𝐵 and 𝜎𝜎0,𝑉𝑉𝐵𝐵 respectively. I estimate a 

weighted mobility ratio given these values of 𝜎𝜎0 of 1.1
0.15

≈ 7, which agrees well with our estimate of 

5 when considering the maximum Seebeck coefficients in Figure 5-6 and Figure 5-7. I should note 

that the exact values of 𝜎𝜎0 may depend on the method of synthesis (ideally we would obtain 𝜎𝜎0 𝑛𝑛,𝑏𝑏 

for data that all used the same synthesis procedure). 
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Figure 5-8: Estimated conductivity prefactor using the single parabolic band model for a series of ZrNiSn samples 
across the p-type to n-type transition for several literature results [52, 230, 231, 238] and results from this thesis. On 
the x-axis I have multiplied the measured conductivity by the sign of the measured Seebeck coefficient in order to 
represent the sign change. I have plotted these results along with a two-band (valence/conduction) model that uses a 
𝜎𝜎0,𝐶𝐶𝐵𝐵 = 1.1 and a 𝜎𝜎0,𝑉𝑉𝐵𝐵 = 0.15 and a band gap of 0.128 eV (as measured optically). 

5.2d - Electronic Structure Origin of the Weighted Mobility 

Recent HH literature provides a self-consistent explanation as to the origin of the valence 

band states, which we have found to yield low weighted mobility. XNiSn materials upon addition 

of one more Ni atom per unit cell form the full-Heusler analog (XNi2Sn). This crystal structure is 

known to be stable and produces a metallic material. Experimental evidence using synchrotron 

XRD and hard x-ray photoemission spectroscopy (HAXPES) confirms the existence of both in-

gap states [239, 244] and up to ~10% of the Ni atoms disordering onto vacancy sites [239, 245]. 

Defect calculation results [246-249] confirm this theory, and the observed narrow gaps obtained 

from transport are sometimes attributed to these states [248, 250] in the literature.  

With regards to the optical properties, the proposed picture of in-gap Ni states induced by 

disorder is consistent with the results obtained here. Even hydrogenic impurities, which contain a 
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single energy level rather than a band of states, can result in an absorption edge below the 

fundamental one which shows similar energy dependence to indirect transitions [45]. In the case 

of ZrNiSn, though, the Ni-vacancy interstitial defects result in an addition of a continuous band of 

states within the gap [249], which can also lead to appreciable absorption below the fundamental 

edge (as shown in Zn1-xMnxO [251]). The narrow gap observed both optically and electronically 

imply that these “in-gap” Ni-interstital states simply compose the valence band from which we 

observe optical transitions and bipolar effects. Further, the electronic properties and weighted 

mobility ratio could also be explained in this context. Specifically, the inherently disordered 

impurity band would likely have lower mobility than the conduction band states which are likely a 

result of the underlying HH framework and are probably less effected by the disorder. 

While the very small mobility in p-type ZrNiSn may be disheartening, it beneficially results 

in suppressed bipolar effects in the n-type ZrNiSn system. Thus, the low mobility minority carrier 

enables the n-type material to maintain a high thermopower at high temperatures, despite its 

narrow band gap. This is contrary to the high band gaps found in other p-type HHs, like TiCoSb 

or the recently identified FeV0.6Nb0.4Sb, where the band gap estimated from the Goldsmid-Sharp 

formula is around 0.57 eV and 0.4 eV, respectively [22, 252].  

5.2e - Conclusions 

In this section, the thermoelectric transport properties of Sc-substituted ZrNiSn HH solid 

solutions were systematically studied. The substitution of Zr by Sc led to the successful 

introduction of holes into the system, resulting in a p-type material with a maximum thermopower 

of +115 µV/K at 650 K. Owing to the introduction of holes into the system, the Seebeck coefficient 

became positive and increased with increasing temperature, reaching a maximum as the higher 

mobility n-type carriers were thermally activated. Generally, the transport properties are 

dominated by the high mobility of the electrons over that of the lower mobility holes, which can be 

seen from the 𝛥𝛥𝐻𝐻𝜎𝜎 product (in units of mobility). Both p-type data from this work and n-type 
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literature data for the thermopower gap deviated significantly from the optical measurements (0.13 

eV), but I have shown that this can be simply explained by a large difference in the weighted 

mobility between electrons and holes. A high electron-to-hole weighted mobility ratio leads to a 

suppression of the bipolar effect in the thermoelectric transport properties, which is essential for 

high zT values in n-type XNiSn (X = Ti, Zr, Hf) HH compounds. 

5.2f - Methods 

The solid solution Zr1-xScxNiSn (x = 0, … , 0.10) was prepared by arc melting of 

stoichiometric amounts of Zr (99.99%), Ni (99.999%), Sn (99.999%), and Sc (99.999%) in an Ar 

atmosphere on a water-cooled crucible. To ensure compositional homogeneity, samples were 

flipped and remelted five times. The as-cast samples were annealed in evacuated quartz tubes 

at 1220 K for 7 d, followed by quenching in ice water to ensure the crystalline order. The crystal 

structure of the samples was studied by X-ray diffraction (XRD) on a Siemens D5000 

diffractometer using Cu Kα radiation (wavelength of 1.5418 Å). The powder XRD patterns of all 

samples showed that they were a single phase with cubic C1b structure [233]. 

 The total thermal conductivity was calculated from the thermal diffusivity (D) with κ =

𝐶𝐶𝑃𝑃𝐷𝐷𝑚𝑚, where Cp is assumed to be the Dulong–Petit heat capacity and d the density calculated 

from the molar mass and the lattice parameter for each sample obtained from XRD. 
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5.3 - Extending the Weighted Mobility Ratio/Goldsmid-Sharp Gap Analysis to Low Gap 

Materials 

5.3a - Introduction 

In the previous section, I have shown how to obtain an accurate estimate of the band gap 

using optical and electronic properties in ZrNiSn, which has a large difference in electron and hole 

weighted mobility. In this section, I extend the analysis beyond the non-degenerate limit to probe 

its applicability for narrow-gap semiconductors using full Fermi statistics. I also explore some of 

the assumptions made by Goldsmid and Sharp to show when the relation breaks down and what 

the expected error might be. 

As mentioned in the previous section, band gap is an important parameter in 

thermoelectric materials because at high temperatures, bipolar excitation of carriers across the 

gap leads to a drastic drop in thermoelectric efficiency. This can be seen by plotting zT versus 

temperature for a good (representative) thermoelectric material (Figure 5-9 inset), the zT will rise 

until reaching a peak value after which it decreases. Since the peak zT values are often the metric 

by which materials are compared, it is worthwhile to understand the origins of the peak and what 

factors can influence it. Typical degenerate thermoelectric semiconductors display thermopowers 

which rise linearly with temperature to a maximum (Figure 5-9) followed by a decrease. Because 

the Seebeck coefficient is squared in the formula for zT, a maximum in the thermopower also 

results in a maximum in the temperature dependent zT.  

It is well known that the origin of the thermopower peak is most often related to the onset 

of bipolar conduction which involves thermal excitation of both electrons and holes across the 

band gap. The contribution to the overall Seebeck coefficient by both the positive and negative 

charge carriers can be described by the conductivity weighted average (analogous to Equation 

5-3): 
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𝑺𝑺 =

𝝈𝝈𝒑𝒑𝑺𝑺𝒑𝒑 − 𝝈𝝈𝒏𝒏|𝑺𝑺𝒏𝒏|
𝝈𝝈𝒑𝒑 + 𝝈𝝈𝒏𝒏

 Equation 5-10 

 

Because the minority carriers are (by definition) fewer in number, they will also have higher 

thermopower contributions (Seebeck coefficient is inversely proportional to carrier concentration). 

However, at low temperatures the population of minority carriers is small (low 𝜎𝜎), meaning that 

they will not contribute much to the overall S. At higher temperatures, though, a broadening Fermi 

distribution leads to an exponential increase in minority carrier conductivity, resulting in a 

reduction (and therefore peak) in the thermopower [51].   

The strength of bipolar conduction is determined by the value of the semiconductor band 

gap. Goldsmid and Sharp developed an analytical expression relating the band gap and the 

maximum thermopower, |S|max , and the temperature at which it occurs (Tmax) in the bipolar regime: 

Eg=2e|S|maxTmax (Equation 5-1) [51]. This simple method of estimating the band gap is ubiquitous 

in the thermoelectrics community because temperature dependent Seebeck coefficient is so 

commonly measured. Figure 5-9 shows a calculated temperature dependent Seebeck coefficient 

and corresponding zT (inset) for a valence (VB) and conduction band (CB) model with a band 

gap of 0.13 eV at various carrier concentrations. We can see that the Goldsmid-Sharp band gap 

formula accurately predicts the maximum thermopower over a wide range of carrier 

concentrations and temperatures (as demonstrated by the dashed line in Figure 5-9, which serves 

as a good upper bound for the thermopower at a particular temperature regardless of extrinsic 

doping concentration). For example, Bi2Te3 has a band gap of Eg~0.13 eV [253, 254] at room 

temperature (Tmax = 300K), yielding a maximum Seebeck coefficient near 230 μV/K—a 

reasonable estimate  [255-258]. 

While the Goldsmid-Sharp gap serves as a quick estimate of the band gap in a given 

material, it is important to understand where deviations might occur when using this analysis. In 

Goldsmid-Sharp’s full equation (Equation 5-5), the weighted mobility ratio, A, is an important 
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parameter that governs how closely the Goldsmid-Sharp gap reflects the true gap. We can also 

consider A as the ratio of the quality factors, B (Equation 2-6), between the majority and minority 

bands. In the previous section, I showed that the Goldsmid-Sharp band gap can deviate by 50-

100% of the optical band gap value mainly due to the large A values (A=5 for ZrNiSn)  and an 𝜖𝜖𝑔𝑔 

which is much less than 10 (<5 kBT in ZrNiSn) [52]. Further, the non-degenerate limit (as assumed 

by Goldsmid and Sharp) is not applicable for many common thermoelectric materials: in Bi2Te3 

[259, 260], PbSe [65, 261], and PbTe [28, 34], where the  value of the band gap is actually 5-6 

kBT at Tmax. In this section, I investigate the effects of a narrow 𝜖𝜖𝑔𝑔 by replacing Maxwell-Boltzmann 

statistics, applied in Goldsmid-Sharp’s derivation, with Fermi-Dirac statistics which can more 

accurately represent semiconductor processes in narrow-gap (𝜖𝜖𝑔𝑔 < 10), doped materials. 

Ultimately, I present a chart that can be used to quickly estimate the relationship between the true 

gap and the Goldsmid-Sharp band gaps depending on A and Smax.  

 

Figure 5-9: Calculated temperature dependent Seebeck coefficient and zT (inset) for various defect concentrations 
(NA=p-n=1×1015 cm-3 in blue to 1×1020 cm-3 in red) for two parabolic bands with a band gap of 0.13 eV, m*=1.0 m0 , and 
𝜇𝜇0(300 𝐾𝐾) = 820 𝑐𝑐𝑚𝑚2/𝛥𝛥𝑉𝑉 (VB and CB). Dashed line indicates the Goldsmid-Sharp band gap: 𝑆𝑆 = 𝐸𝐸𝑔𝑔/2𝑒𝑒𝛥𝛥. The lattice 
thermal conductivity was estimated as 𝜅𝜅𝐿𝐿(𝛥𝛥) = 1.7 (300/𝛥𝛥) W/m-K, and the following Umklapp scattering is used for 
the zT estimate. 
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5.3b - Theory 

The Seebeck coefficient in a multi band (valence/conduction) system can be expressed 

by Equation 5-3 [62]. In the interest of maintaining general relationships applicable for either p or 

n-type materials, we chose to use the majority and minority carrier labels by changing the n- and 

p-type terms in Equation 5-3 into the majority (maj) and minority (min) charge carrier contributions; 

Smaj, and Smin, and σmaj and σmin are the majority and minority carrier Seebeck coefficients and 

conductivities, respectively. In the case of a primarily p-type material, the majority carrier will be 

holes. While Goldsmid and Sharp proceed assuming Maxwell-Boltzmann, non-degenerate 

statistics, 𝜎𝜎𝑚𝑚𝑚𝑚𝑗𝑗

𝜎𝜎𝑚𝑚𝑖𝑖𝑚𝑚
= 𝐴𝐴 exp�𝜂𝜂𝑚𝑚𝑏𝑏𝑗𝑗 − 𝜂𝜂𝑚𝑚𝑏𝑏𝑛𝑛� (Equation 5-4), where 𝐴𝐴 = 𝜇𝜇0,𝑚𝑚𝑚𝑚𝑗𝑗𝑅𝑅𝑣𝑣,𝑚𝑚𝑚𝑚𝑗𝑗

𝜇𝜇0,𝑚𝑚𝑖𝑖𝑚𝑚𝑅𝑅𝑣𝑣,𝑚𝑚𝑖𝑖𝑚𝑚
�
𝑚𝑚𝑏𝑏,𝑚𝑚𝑚𝑚𝑗𝑗
∗

𝑚𝑚𝑏𝑏,𝑚𝑚𝑖𝑖𝑚𝑚
∗ �

3/2
, we will 

consider the Fermi integral solution to the Boltzmann transport equation (assuming scattering by 

acoustic phonons and parabolic bands) as presented in Chapter 2 for parabolic bands. In this 

context, the electrical conductivity ratio between the majority and minority carriers can be written 

as a function of the dimensionless chemical potential 𝜂𝜂 in terms of the Fermi integral, Fj (as 

expressed in Chapter 2): 

 𝝈𝝈𝒎𝒎𝒎𝒎𝒎𝒎
𝝈𝝈𝒎𝒎𝒊𝒊𝒏𝒏

= 𝑨𝑨
𝑭𝑭𝟎𝟎�𝜼𝜼𝒎𝒎𝒎𝒎𝒎𝒎�
𝑭𝑭𝟎𝟎(𝜼𝜼𝒎𝒎𝒊𝒊𝒏𝒏) Equation 5-11 

  

Table 5-2 Description of the three different methods of estimating the maximum thermopower in this work. 

Method 
Name 

Criterion for 
Maximum Statistics 

Goldsmid-
Sharp 𝑚𝑚𝑆𝑆/𝑚𝑚𝜂𝜂 = 0 Maxwell-

Boltzmann 

Fermi 𝑚𝑚𝑆𝑆/𝑚𝑚𝜂𝜂 = 0 Fermi 

Exact 𝑚𝑚𝑆𝑆/𝑚𝑚𝛥𝛥 = 0 Fermi 

 

In order to find the maximum thermopower, several methods can be used as differentiated 

in Table 5-2. The derivation of the Goldsmid-Sharp band gap does not explicitly find the maximum 
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in thermopower with temperature; rather, Goldsmid-Sharp find a maxima with respect to reduced 

chemical potential,  𝑚𝑚𝑆𝑆/𝑚𝑚𝜂𝜂 = 0 which is equivalent to dS/dT=0 when 𝑚𝑚𝜂𝜂/𝑚𝑚𝛥𝛥 is much larger than 

𝑑𝑑(𝜖𝜖𝑔𝑔)
𝑑𝑑𝑇𝑇

 as pointed out by Goldsmid and Sharp [51]. In this work, the “Fermi” method also assumes 

𝑚𝑚𝑆𝑆/𝑚𝑚𝜂𝜂 = 0, as in the “Goldsmid-Sharp” method, but it uses Fermi-Dirac rather than Maxwell-

Boltzmann statistics. We can test the  𝑚𝑚𝑆𝑆/𝑚𝑚𝜂𝜂 = 0 approximation by performing a full temperature 

dependent calculation of the Seebeck coefficient: the “Exact” method. This is accomplished by 

applying a charge counting balance, 𝑁𝑁𝐴𝐴 − 𝑁𝑁𝐷𝐷 = 𝑜𝑜 − 𝐴𝐴 (as described initially in Chapter 2, and in 

a later section of this chapter), at various temperatures, where NA and ND are the number of 

electron acceptors and donors, respectively (the difference of which was used as an input 

parameter), and p and n are the number of holes and electrons, respectively (for simplicity we 

have assumed that 𝐴𝐴𝑚𝑚∗ =
𝑚𝑚𝑏𝑏,𝑚𝑚𝑚𝑚𝑗𝑗
∗

𝑚𝑚𝑏𝑏,𝑚𝑚𝑖𝑖𝑚𝑚
∗ = 1, but we discuss the alternative later in this section; Figure 5-

15). The full temperature-dependent, numerically calculated results (“Exact” method) will be 

presented along with the simpler dS/dη=0 solutions using both Maxwell-Boltzmann (“Goldsmid-

Sharp”) and Fermi-Dirac (“Fermi”) statistics.  

5.3c - Results 

First, in order to probe the applicability Golsmid-Sharp’s assumption of Maxwell-

Boltzmann (non-degenerate) statistics, Figure 5-10 considers a weighted mobility ratio of A=1. 

Figure 5-10a shows the chemical potential dependent Seebeck coefficient (with η=0 being the 

valence band edge, 𝜂𝜂 = 𝜖𝜖𝑔𝑔 = 5 being the conduction band edge). As expected, the “Goldsmid-

Sharp” result overlaps well with the “Fermi” result for chemical potentials in the gap (0 < η < 5), 

but deviations begin for chemical potentials of about 1.5 kBT from either band edge, which become 

larger as the chemical potential becomes degenerate (chemical potential within the band, 𝜂𝜂 < 0 

or 𝜂𝜂 > 𝜖𝜖𝑔𝑔). Upon varying the band gap, the value of chemical potential (ηmax) that yields 𝑚𝑚𝑆𝑆/𝑚𝑚𝜂𝜂 =

0 can be obtained; the results are plotted in Figure 5-10b. For Eg>6 kBT, ηmax yield the same value 



5-25 
  

for the “Goldsmid Sharp” and “Fermi” methods, but deviations occur at smaller 𝜖𝜖𝑔𝑔. Figure 5-10c 

shows the magnitude of the maximum Seebeck coefficient predicted using the three different 

methods (as shown in Table 5-2). The result is useful for estimating the maximum attainable 

thermopower at a given temperature (which would be set to Tmax) for a material which has an 

electron-to-hole weighted mobility ratio (A) near 1.0 and a known band gap.  

Figure 5-10d quantifies the effectiveness of the 2e|S|maxTmax estimate for band gap at 

different 𝜖𝜖𝑔𝑔 for the three cases of interest: the dS/dη = 0 models using both the “Fermi” and 

“Goldsmid-Sharp” methods, as well as the dS/dT = 0 (or “Exact”) case. For large 𝜖𝜖𝑔𝑔, the “Fermi” 

and “Goldsmid-Sharp” solutions (dS/dη = 0) converge to 2e|S|maxTmax/Eg very near 1.0 (although 

the exact value is ~5% less at 𝜖𝜖𝑔𝑔 = 10). However, as the band gap becomes small, (𝜖𝜖𝑔𝑔<~5), 

2e|S|maxTmax/Eg increases for all three methods. The divergence for small gaps is a consequence 

of increasingly degenerate chemical potentials which yield the maximum thermopower. 

Experimentally, this would be observed for heavily doped samples that do not reach a maximum 

thermopower until very high temperatures (these details will be discussed thoroughly in a later 

section). 
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Figure 5-10: Result of the “Exact”, “Fermi”, and “Goldsmid-Sharp” methods calculated assuming 𝜖𝜖𝑔𝑔= 5 and A=1 for a) 
Seebeck coefficient as a function of η. b) The reduced chemical potential which yields the maximum thermopower as 
a function of reduced band gap (at the rollover temperature) for A=1. c) Maximum attainable thermopower as a function 
of the reduced band gap (at A=1) for each method. d)  the ratio of the 2e|S|maxTmax estimate to Eg as a function of the 
dimensionless band gap 𝜖𝜖𝑔𝑔. The dashed line in c) represents the Goldsmid-Sharp band gap equation result. The dashed 
line in Figure (b) represents the halfway point between the VB and CB, and the solid grey lines represent the position 
of the valence and conduction bands. All calculations are done for a majority-to-minority carrier weighted mobility ratio 
of A=1.0. 

The weighted mobility ratio (A) can also lead to deviations in the Goldsmid-Sharp band 

gap as illustrated in the previous section for ZrNiSn. While Bi2Te3 has similar majority and minority 

carrier weighted mobility [262, 263], other systems such as Si, Ge, and others [264] are believed 

to have values that exceed two (5 in the case of ZrNiSn). Figure 5-11 shows the A=5 and A=1/5 

results for temperature dependent Seebeck coefficient (“Exact” method), analogous to Figure 5-

9. It is clear that for A>1, the maximum Seebeck coefficient is larger than the Goldsmid-Sharp 

band gap result (dashed line) and that the converse is true for A<1.  
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Figure 5-11: Temperature dependent Seebeck coefficient for various carrier concentrations (corresponding to Figure 
1) for A=5 and A=1/5. Dashed line represents the Goldsmid-Sharp band gap: Smax = Eg/2eTmax for various values of the 
carrier concentration; calculation details are the same as for Figure 5-9. 

In order to illustrate the effect of an increasing weighted mobility ratio, the 𝜂𝜂-dependent 

Seebeck is plotted for ZrNiSn (𝜖𝜖𝑔𝑔~5 at room temperature) in Figure 5-12a. We see that the 

magnitude of the maximum Seebeck coefficient obtained for p-type ZrNiSn (A=1/5) is significantly 

lower than that for n-type ZrNiSn (A=5). The effect of having an A different from one is that the 

magnitude of the maximum Seebeck coefficient (|S|max), as well as the temperature where it 

occurs (Tmax), is increased for the carrier type with higher weighted mobility, while those of the 

lower weighted mobility carrier are decreased. So in a system like ZrNiSn, the n-type material 

maintains a high thermopower to much higher temperatures than might be expected from its 

narrow band gap (~0.13 eV) and therefore can reach an impressive zT from 0.5 – 1.0 [215, 265]. 

On the other hand, the p-type ZrNiSn prematurely experiences reduced thermopower due to 

compensating high-mobility electrons. Figure 5-12b shows the value of the maximum Seebeck 

coefficient for the three methods, a clear split in the A=5 and A=1/5 is observed. An alternative 

representation is shown in Figure 5-12c; here it is obvious that 2e|S|maxTmax/Eg is larger than 1.0 

for all values of 𝜖𝜖𝑔𝑔when A=5, while it is less than 1.0 for all 𝜖𝜖𝑔𝑔 for A=1/5 (except at quite low 𝜖𝜖𝑔𝑔, 

the reasons for which will be discussed later). Figure 5-12d shows how 2e|S|maxTmax/Eg increases 

with increasing A value; larger deviations are observed as Eg/kBT becomes smaller. In comparison 
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with Goldsmid-Sharp’s conclusion that only ~20% deviation is observed for A=10, we find that 50-

100% errors in the estimated gap can be obtained for 𝜖𝜖𝑔𝑔 values reasonable for many relevant 

thermoelectric materials (𝜖𝜖𝑔𝑔~3-5). 

 
Figure 5-12: Result of the “Exact”, “Fermi”, and “Goldsmid-Sharp” methods assuming 𝜖𝜖𝑔𝑔 = 5 and A=5 (weighted mobility 
ratio) for a) Seebeck coefficient as a function of η,. b) The ratio of the 2e|S|maxTmax estimate to the actual model Eg 
as a function of 𝜖𝜖𝑔𝑔, and c) the same ratio with respect to the weighted mobility ratio A at different Eg values (3, 5, and 
10 kBT as indicated on the figure). 

While the Goldsmid-Sharp band gap has proven to be a simple and useful estimate for 

the real band gap, it is not without its limitations. In this section, I have shown several cases for 

which this simple approximation breaks down. Figure 5-13 shows the deviation between the 

Goldsmid-Sharp band gap and the true band gap for a wide variety of these parameters. 

Ultimately, we observe that the magnitude of the deviation is largest for materials with large 

differences between the weighted mobility of electrons and holes (A ≠ 1). From an experimental 

perspective, A ≠ 1 will result in a larger value of 2e|S|maxTmax for the higher weighted mobility 

species, and a lower value for the one with lower weighted mobility. In the case of ZrNiSn, the 
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more mobile electrons (A=5) result in an observation of about a five-fold difference in the p-type 

(~0.05 eV) and the n-type (~0.25 eV) Goldsmid-Sharp band gaps as shown in the previous 

section[52].  

Figure 5-13 can be useful in determining either an unknown A value for a material if the true 

band gap is known, or it can show the expected deviations of the Goldsmid-Sharp band gap 

relative to the true band gap for a given A value. For instance, in the case of n-type ZrNiSn with 

2e|S|maxTmax/Eg = 2.1 (using Eg,optical=0.13 eV [52]) and observed maximum Seebeck coefficient 

(~200 μV/K), we determine A~5. Alternatively, if the A is known, one can (based on the magnitude 

of the maximum Seebeck coefficient) obtain an estimate a value for 2e|S|maxTmax/Eg from Figure 

5-13, which can be used to estimate the true band gap (as described in the numbered list below).  

1. Measure temperature dependent thermopower and obtain a maximum 
2. Calculate the Goldsmid-Sharp band gap: 𝐸𝐸𝑔𝑔 = 2𝑒𝑒|𝑆𝑆|𝑚𝑚𝑏𝑏𝑚𝑚𝛥𝛥𝑚𝑚𝑏𝑏𝑚𝑚 
3. If |S|max<150 μV/K, be aware that the true 𝐸𝐸𝑔𝑔 may significantly differ from 

2𝑒𝑒|𝑆𝑆|𝑚𝑚𝑏𝑏𝑚𝑚𝛥𝛥𝑚𝑚𝑏𝑏𝑚𝑚 (see below) 
4. For |S|max>150 μV/K, estimate the majority-to-minority carrier weighted mobility 

ratio, A. 
5. Find the 2𝑒𝑒|𝑆𝑆|𝑚𝑚𝑏𝑏𝑚𝑚𝛥𝛥𝑚𝑚𝑏𝑏𝑚𝑚/𝐸𝐸𝑔𝑔 ratio (r) from Figure 5-13  that is consistent with that A 

and Smax value to then calculate the corrected Eg=2𝑒𝑒|𝑆𝑆|𝑚𝑚𝑏𝑏𝑚𝑚𝛥𝛥𝑚𝑚𝑏𝑏𝑚𝑚/r 
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Figure 5-13: The ratio of the 2e|S|maxTmax estimate to the actual model Eg as a function of thermopower for a wide 
variety of A and Smax. A values are noted in a rectangular box laid on top of each black solid lines. 

Smax<150 μV/K describes the degenerate crossover that leads to the upward trend in 

Figure 5-10, Figure 5-12, and Figure 5-13 mentioned previously for low values of Smax. For 

degenerate, heavily doped samples (𝜂𝜂𝑚𝑚𝑏𝑏𝑚𝑚  in the majority band) Eg/kBTmax becomes a poor metric 

for describing the bipolar effects; rather, we believe the thermal band gap (𝐸𝐸𝑔𝑔,𝑡𝑡ℎ𝑑𝑑𝑟𝑟𝑚𝑚𝑚𝑚𝑙𝑙

𝑘𝑘𝐵𝐵𝑇𝑇
= 𝜖𝜖𝑔𝑔 + 𝜂𝜂) is 

the relevant parameter that describes the gap. This effect is even more pronounced as A is 

decreased because the lower mobility majority carrier requires a chemical potential deep within 

the band (large 𝜂𝜂) to mitigate the effects of a highly mobile minority carrier (see Figure 5-12b). In 

order to show the effects of degeneracy, I determined when the band gap that yielded a maximum 

thermopower and corresponded to a degenerate chemical potential (𝜂𝜂𝑚𝑚𝑏𝑏𝑚𝑚 within the band—see 

Figure 5-10b). I generate the analogous “Engineer’s Guide” figure for determining the 

effectiveness of the Goldsmid-Sharp band gap (as a predictor of the thermal gap) as a function 
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of the maximum Seebeck coefficient, as shown in Figure 5-14. For many thermoelectrically 

relevant maximum Seebeck coefficients, the crossover to degenerate behavior (as indicated by 

a kink in 2eSmaxTmax/Eg,thermal) occurs.  For nearly all A values, the kink (which means that 

degenerate 𝜂𝜂 is required to reach |S|max) occurs for Seebeck coefficients that are approximately 

150 μV/K (which corresponds to a band gap of ~3 kBT for the A=1 case as shown in Figure 5-

10b). While the result seems to diverge for heavily-doped samples, nearly degenerate samples 

(Smax<150 μV/K) still give reasonable results in terms of relating the Goldsmid Sharp gap to the 

thermal band gap (rather than the true value) for the A=1 case.  

 

Figure 5-14: This engineer’s guide is analogous to Figure 5-13; however, the predicted band gap in this case is ratioed 
to the thermal band gap (𝜖𝜖𝑔𝑔 + 𝜂𝜂, for degenerate or simply 𝜖𝜖𝑔𝑔 otherwise) instead of the true gap. 

In terms of the weighted mobility ratio, up until this point we have not considered whether 

the difference in the weighted mobility ratio is due to the mobility (i.e., deformation potential) or 

effective mass: 𝐴𝐴 = 𝐴𝐴 𝜇𝜇𝐴𝐴𝑚𝑚∗
3/2 = �𝜇𝜇𝑚𝑚𝑚𝑚𝑗𝑗

𝜇𝜇𝑚𝑚𝑖𝑖𝑚𝑚 
� �

𝑚𝑚𝑑𝑑,𝑚𝑚𝑚𝑚𝑗𝑗
∗

𝑚𝑚𝑑𝑑,𝑚𝑚𝑖𝑖𝑚𝑚
∗ �

3/2
. For the 𝜂𝜂-dependent Seebeck coefficient (and 
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therefore the Goldsmid-Sharp and Fermi methods which use 𝑑𝑑𝑆𝑆
𝑑𝑑𝜂𝜂

= 0 as a criteria for a maximum), 

these separate pieces are always coupled: 𝑆𝑆 = 1

1+
𝜎𝜎𝑚𝑚𝑚𝑚𝑗𝑗
𝜎𝜎𝑚𝑚𝑖𝑖𝑚𝑚

�𝑆𝑆𝑚𝑚𝑏𝑏𝑛𝑛 + 𝜎𝜎𝑚𝑚𝑚𝑚𝑗𝑗

𝜎𝜎𝑚𝑚𝑖𝑖𝑚𝑚
𝑆𝑆𝑚𝑚𝑏𝑏𝑗𝑗� =

1

1+𝐴𝐴 𝜇𝜇𝐴𝐴𝑚𝑚∗
3/2𝐹𝐹0�𝜂𝜂𝑚𝑚𝑚𝑚𝑗𝑗�

𝐹𝐹0�𝜂𝜂𝑚𝑚𝑖𝑖𝑚𝑚�

�𝑆𝑆𝑚𝑚𝑏𝑏𝑛𝑛 + 𝐴𝐴 𝜇𝜇𝐴𝐴𝑚𝑚∗
3/2  𝐹𝐹0�𝜂𝜂𝑚𝑚𝑚𝑚𝑗𝑗�

𝐹𝐹0(𝜂𝜂𝑚𝑚𝑖𝑖𝑚𝑚) 𝑆𝑆𝑚𝑚𝑏𝑏𝑗𝑗�; but this is not the case for the charge neutrality 

equation. The charge neutrality equation can be expressed as 𝑁𝑁𝐴𝐴 − 𝑁𝑁𝐷𝐷 = 𝑜𝑜 − 𝐴𝐴, which upon 

substituting the single parabolic band expression for n (Equation 2-8): 

 
𝑵𝑵𝑨𝑨 − 𝑵𝑵𝑫𝑫 =

(𝟐𝟐𝟐𝟐𝑩𝑩𝑻𝑻)
𝟑𝟑
𝟐𝟐

𝒎𝒎𝒅𝒅,𝒑𝒑
∗ 𝟑𝟑/𝟐𝟐𝟐𝟐𝟑𝟑𝟐𝟐ℏ𝟑𝟑

(𝑭𝑭𝟏𝟏/𝟐𝟐(𝜼𝜼𝒑𝒑) − 𝑨𝑨𝒎𝒎∗
𝟑𝟑/𝟐𝟐𝑭𝑭𝟏𝟏/𝟐𝟐(𝜼𝜼𝒏𝒏 )) Equation 5-12 

  

While the “Fermi” and “Goldsmid-Sharp” methods do not explicitly use the charge 

neutrality equation, since they determine the maximum thermopower from 𝑑𝑑𝑆𝑆
𝑑𝑑𝜂𝜂

= 0, the “Exact” 

method uses charge neutrality to determine the maximum via 𝑑𝑑𝑆𝑆
𝑑𝑑𝑇𝑇

= 0. In order to probe the effects 

of a varying effective mass ratio (while keeping the overall A value equal to either 1 or 5), I have 

solved the dS/dT=0 “Exact” method for a variety of cases as shown below. First, I solved for the 

A=1 case, meaning that the majority and minority carriers have the same weighted mobility, but I 

vary 𝐴𝐴𝑚𝑚∗ =
𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗
∗

𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚
∗  

 to smaller and larger values (while also varying 𝐴𝐴𝜇𝜇 to keep A=1) as shown in 

Figure 5-15a. On increasing the effective mass of the majority carrier band (𝐴𝐴𝑚𝑚∗ > 1), 

2𝑒𝑒𝑆𝑆𝑚𝑚𝑏𝑏𝑚𝑚𝛥𝛥𝑚𝑚𝑏𝑏𝑚𝑚/𝐸𝐸𝑔𝑔 increases slightly but is still close to the same chemical potential and Smax as in 

the 𝐴𝐴𝑚𝑚∗ = 1 case. On the other hand, when the majority carrier band has a significantly lower 

effective mass (𝐴𝐴𝑚𝑚∗ < 1), the shift away from the 𝐴𝐴𝑚𝑚∗ = 1 case is larger. The reduced chemical 

potential position (Figure 5-15b) seems to indicate that the reason for the shift in Smax is likely due 

to a shift in 𝜂𝜂𝑚𝑚𝑏𝑏𝑚𝑚 towards the majority carrier band edge. This makes sense in the context of an 

increasing minority carrier effective mass which would push 𝜂𝜂 away from the minority carrier band 

to maintain the same carrier concentration. 
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For the A=5 case (Figure 5-15c,d), a similar trend is observed. However, when the majority 

carrier has a much lower weighted mobility than the minority (A=1/5), the result is not affected as 

significantly by a varying 𝐴𝐴𝑚𝑚∗. In the case where the majority carrier has higher mobility (A=5), 

though, if the majority carrier effective mass is much smaller (𝐴𝐴𝑚𝑚∗ < 1) then reductions in the 

maximum Seebeck coefficient can occur (similar to the A=1 case). For these studies we have 

considered 𝐴𝐴𝑚𝑚∗ of 2 or 5 (or the inverse), which is a feasible range of values for real 

semiconductors. In summary, we should expect larger, negative deviations in the Goldsmid-Sharp 

band gap if the majority carrier has higher weighted mobility (as in the A=5 case) but significantly 

lower effective mass (𝐴𝐴𝑚𝑚∗ < 1). Nearly negligible deviations occur in the other cases (either A<1 

or 𝐴𝐴𝑚𝑚∗ > 1). 

 

Figure 5-15: Comparison of results when the origin of A derives from a changing effective mass ratio (rather than purely 
mobility related). a) Goldsmid sharp effectiveness (2eSmaxTmax/Eg) for A=1 with varying Am*. b) The varying chemical 
potential position for the parameters in a). c) 2eSmaxTmax/Eg for A=5 and A=1/5 as a function of a  changing contribution 
due to Am*. d) The resulting shift in the chemical potential that yields the maximum Seebeck coefficient as a function of 
reduced band gap for the A=5 and A=1/5 (colors correspond to c). 



5-34 
  

5.3d - Conclusions 

In this section, I have developed the relevant theory for extending the Goldsmid-Sharp 

band gap to narrow gap semiconductors using the full Fermi statistics and an exact solution of 

the temperature-dependent transport integrals. I have investigated the effect of the weighted 

mobility ratio and narrow band gaps on the results, and I have shown several examples where 

the deviations can be quite large. These results should be generally applicable to any 

semiconductors (although the Engineer’s guide should be rederived for alternative scattering 

mechanisms), but they should be particularly useful for the thermoelectrics community, which 

routinely measures the temperature-dependent Seebeck coefficient and utilizes the Goldsmid-

Sharp band gap as a descriptor of the material’s band structure. This analysis takes this one step 

further and allows us to more thoroughly describe discrepancies in this estimate. 

5.4 - Conclusions 

In summary, the Goldsmid-Sharp band gap (Eg = 2e|S|maxTmax) is an extremely useful tool 

for obtaining an estimate for a material’s band gap through temperature dependent Seebeck 

measurements. However, in the case of ZrNiSn, these estimates yielded drastically different 

results when considering n-type and p-type material (a factor of 5 difference in the band gap). 

While most researchers understand that this is not an exact estimate, it is important to understand 

when and why the simple relation can break down and to what extent. In this work, we show that 

large deviations can occur for several reasons: a breakdown of Maxwell-Boltzmann statistics 

(used to derive the Goldsmid-Sharp band gap) for materials with narrow gaps, or materials with 

very large (or small) majority-to-minority carrier weighted mobility ratio (A). We use these analyses 

to explain the seemingly strange result in ZrNiSn in the context of a significantly larger weighted 

mobility for electrons than holes, which is likely a result of the nature of the valence band states 

which seem to be a result of Ni disorder. Because bipolar conduction is detrimental to 

thermoelectric performance, results from this work using the Goldsmid-Sharp gap could be used 
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to validate strategies for suppressing bipolar effects beyond altering band gap and doping [21, 

110, 260, 266], but also by other methods (including nanostructures [11, 267-269]) given that both 

n-type and p-type samples are obtainable.  

I would like to acknowledge the contributions of my collaborators, Jennifer Schmitt [52] 

and Hyun-Sik Kim [50], who were equally contributing coauthors on the paper’s published based 

on work from this thesis chapter.
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Chapter 6:  CoSb3 and other Thermoelectric Materials with Optical 

Evidence of Multiple Bands 

6.1 - Introduction 

As has been a theme in previous chapters of this thesis, many of the best thermoelectric 

materials contain multiple valence and/or conduction bands. In this chapter, we will investigate a 

few examples where these features are directly observable in the optical properties. The first 

example of this will be for CoSb3, which exists in a well-studied class of thermoelectric materials 

known as the skutterudites. Skutterudites have received a lot of attention in recent literature due 

to their ability to accommodate filler atoms, which can drastically lower their thermal conductivities 

(many authors attribute this to rattling of the atom within its cage). Combined with reasonable 

electronic properties, these materials have achieved good zTs of up to ~1.0 for p-type and 1.5 for 

n-type—resulting in a significant amount of academic and commercial interest. In this chapter, I 

explore Yb filled n-type CoSb3 optically, electronically, and using ab-initio calculations to provide 

an alternative explanation for their good performance which utilizes multiple conduction bands 

that participate in transport (increasingly so at high temperatures), similar to the features observed 

in the IV-VI materials (Chapter 4). This is contrary to many literature reports which attribute the 

high zTs mainly to thermal conductivity reduction, while the electronic properties are not generally 

understated.  

Beyond CoSb3, one other group of materials have yielded optical evidence of multi-band 

behavior. Zintl compounds, which have inherently low thermal conductivity due to their structural 

complexity, show optical evidence of multiple band features. Unfortunately, in this case the 

electronic properties do not reflect this fact, but this is likely because the secondary bands are too 

far away to access at reasonable temperatures. However, this section indicates the presence of 

multiple bands and opens the door for future band engineering studies in this class of materials. 
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6.2 - CoSb3 – The Electronic Origin of High zT 

6.2a - Introduction 

Among the best thermoelectric materials, n-type filled skutterudites have been widely 

studied after it was found that the addition of filler atoms (La, Ce, and others), which can be filled 

into the one void site per primitive cell, can lead to high zT by reducing the thermal conductivity 

while simultaneously doping the material [270-272]. The CoSb3 skutterudite structure is the Im3 

(space group 204) which has the general formula AX3 where A=Co, Rh, Ir and X=P, As, Sb. In 

this structure, the metal atom is octahedrally coordinated by 6 X atoms, the arrangement of which 

in 3D space leads to interstitial sites that can be filled with an additional atom [273]. This interstitial 

site can be filled as in the case of LaFe4Sb12, which maintains charge balance by compensating 

the change from Co to Fe (which has one fewer electron) by inserting the interstitial lanthanum 

atom. In this chapter, I will discuss the binary CoSb3, which is semiconducting as synthesized, 

but can be doped n-type by partially filling the interstitials with filler atoms. This filling is then 

accompanied by a reduction in thermal conductivity, leading to good thermoelectric performance. 

Since the 1990’s, there has been much progress in the field of n-type filled skutterudites 

as thermoelectric materials resulting in high zT values of around 1.3 (and up to 1.7) at 850 K for 

single filling (with filler atoms being La [274], Na [275], In [276-278], Yb [279, 280], Nd [281], and 

others) and multiple filling (In+Ba [282], In+Pr [283], In+Nd [284], Ba+Yb [285], Ba+La+Yb [286]) 

respectively. The excellent thermoelectric performance of skutterudites at intermediate 

temperature ranges (400-600 °C) and their superior mechanical properties [287-289] make them 

ideal candidates for heat-recovery applications in the automobile industry [290]. High zT in 

skutterudites is mostly attributed to the addition of the filler atoms and subsequent reduction in 

thermal conductivity [291-293]. These reductions are thought to be a result of the filler atom 

rattling within the interstitial space that it occupies [274]; however, at least part of the reduction is 

believed to be due to point-defect scattering of phonons [274].  
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With regards to the good performance in these materials, the increased zT is often 

attributed to the beneficial thermal properties as a result of filling, whereas the influence of the 

intrinsic electronic structure is often understated or ignored completely. Band engineering 

approaches to enhancing zT have been a theme of this thesis; it has become increasingly 

apparent that complex band structures including multi-valley Fermi surfaces [16, 21, 34], 

convergence of bands (PbSe as shown in Chapter 4 for Pb1-xSrxSe [25], Mg2Si [26], or PbTe [16]), 

or even threads of Fermi surface connecting band extrema (which will be discussed further in 

Chapter 7) [294, 295],  are key features of many good thermoelectric materials.  

Regarding the electronic structure in CoSb3, Singh et al. has shown that valence band of 

CoSb3 is very light with approximately linear (rather than the usual parabolic) character. The light 

bands explain the high mobility in lightly doped p-type CoSb3 [296], but this does not explain why 

n-type CoSb3 has substantially higher zT than p-type. For n-type CoSb3 skutterudites, the non-

parabolic (Kane) band concept has been borrowed to explain the apparent increase in effective 

mass measured by Seebeck coefficient (𝑚𝑚𝑆𝑆
∗ as defined in previous chapters) as a function of 

doping level  [271, 275, 281, 297-300]. However, I will show evidence of why the increasing 

effective mass cannot be due to non-parabolic bands, and that the effect is instead the result of 

multiple conduction bands. 

While good thermal properties certainly contribute to the thermoelectric performance in 

CoSb3, I show in this work that the electronic structure in CoSb3 is also conducive to high zT for 

many of the reasons mentioned previously regarding band convergence and band engineering. 

In this chapter, I thoroughly investigate the electronic properties of Yb filled CoSb3 in the context 

of complex conduction band behavior. I show both electronic and optical evidence of the existence 

of a second, multi-valley conduction band which increases the effective valley degeneracy. This 

band is also observed to shift as a function of temperature, resulting in its convergence towards 
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the conduction band minimum as temperature increases, resulting in important contributions to 

the performance of n-type filled skutterudites.  

I would like to acknowledge contributions to this work from Yinglu Tang (Caltech Snyder 

Group), who will be an equally contributing first author on this paper once it is submitted, and from 

Luis Agapito (University of North Texas). 

6.2b - Multi-conduction Band Behavior in n-type CoSb3 Skutterudite 

Multiple band effects in CoSb3 materials are observable through several methods, both 

experimental and theoretical, as presented in Figure 6-1. A clear demonstration of complex band 

behavior is seen in the doping dependent Seebeck coefficient (Pisarenko plot at 300K) shown in 

Figure 6-1a. At low carrier concentrations (nH less than ~1 × 1019 cm-3) CoSb3 shows light mass 

behavior (𝑚𝑚𝑆𝑆
∗~0.7 𝑚𝑚𝑒𝑒); as the carrier concentration increases, the system transitions to a much 

heavier mass, requiring a second band with 𝑚𝑚𝑆𝑆
∗ = 4.8 𝑚𝑚𝑒𝑒 in the heavily doped regime (larger than 

3 × 1020 cm-3). In the degenerate limit the relationship between S,  𝑚𝑚𝑆𝑆
∗, and n can be described 

by the degenerate limit of the Mott relation [301]: 

 
𝑺𝑺 =

𝟐𝟐𝟐𝟐𝑩𝑩𝟐𝟐𝑻𝑻
𝟑𝟑𝒅𝒅ℏ𝟐𝟐

�
𝟑𝟑
𝟑𝟑𝒏𝒏
�
𝟐𝟐/𝟑𝟑

𝒎𝒎𝑺𝑺
∗(𝟏𝟏 + 𝛌𝛌) Equation 6-1 

  

where λ is the scattering parameter (λ = 0 for acoustic phonon scattering, which is quite common 

above 300K and is most appropriate for CoSb3) and 𝑚𝑚𝑆𝑆
∗ is the density of states (DOS) effective 

mass obtained from Seebeck measurements using the single parabolic band (SPB) model 

(method detailed in Chapter 2). By considering two conduction bands and one valence band in a 

three-band transport model with a conduction band offset (Δ𝐸𝐸) of ~0.08 eV, consistent with optical 

measurements in this work, we capture the behavior of both the lightly and the heavily doped 

regions (Black line in Figure 6-1a). In addition to the 300 K Seebeck coefficient, several other 

experimental and theoretical results indicate multi-band behavior [302-307]. 
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Figure 6-1: a) Pisarenko plot of Seebeck coefficient vs Hall carrier concentration at 300K. Black line is a two-band 
model with density of state effective mass for the light and heavy bands being 1.1 m0 and 3.9 me, respectively. 
Orange and red lines are for single parabolic band models with the individual band masses. b) The DFT calculated 
electronic band structure for CoSb3. c) Fermi surface calculation for Fermi levels 0.12 eV above the conduction band 
edge. d) Room temperature optical absorption measurement (Kubelka Munk function) with estimated joint density of 
states from DFT.  

The calculated electronic band structure is consistent with an 𝑚𝑚𝑆𝑆
∗ that becomes gradually 

heavier as long we consider not only the primary conduction bands (𝛤𝛤 point), but also the bands 

higher in energy (labelled CB2 in Figure 6-1b) for heavily doped CoSb3. In CoSb3, the ab-initio 

density functional theory (DFT) calculated band structure (Figure 6-1b) shows a direct band gap 

at the 𝛤𝛤 point (𝐸𝐸𝑔𝑔,𝛤𝛤−𝛤𝛤 = 0.23 𝑒𝑒𝛥𝛥), which yields a triply degenerate (Nv=3) conduction band edge. 

As a result of the heavily doping (and relatively low mass for 𝐶𝐶𝐶𝐶Γ), the Fermi level quickly moves 

deep into the conduction band, allowing a large population of electrons to develop in secondary 

conduction bands, i.e., CB2. Our calculations show that this secondary conduction band (CB2) 

begins about 0.12 eV above the conduction band edge along the Γ − 𝑁𝑁 line. The calculated iso-

energy Fermi surface for a Fermi level just inside of CB2 (Figure 6-1c) is also consistent with 

previous Fermi surface calculations by Chaput et al which show a highly degenerate Fermi 

 
d) 
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surface with ~12 pockets (although they do not discuss its significance to the electronic properties 

beyond the Hall coefficient, rH) [308]. Regarding the CB2 (Γ − 𝑁𝑁,𝑁𝑁𝑣𝑣 = 12) minima, only PbTe, 

which reaches a maximum zT of ~2 [16], has such a high value of Nv; this high degeneracy is also 

found to play a crucial role in the high temperature Seebeck and zT values. Modeled zT in Figure 

6-4c shows that much of the zT is due to this high valley degeneracy band, which will be discussed 

later in this work.  

Additional conduction band minima observed along Γ − 𝐹𝐹 (Nv=24, 0.012 eV above CB2) 

and Γ − 𝑅𝑅 (Nv=6, 0.034 eV above CB2) have high degeneracy and likely also contribute to 

thermoelectric transport. Even though Chaput et al. presented Fermi surfaces that show the 

formation of threads (along the Γ − 𝐹𝐹 direction) connecting the Γ − 𝑁𝑁 pockets (as shown in Figure 

6-1c), this second region of complexity is generally not plotted in DFT calculations because the F 

point is not a common symmetry point in the 𝐼𝐼𝑚𝑚3� space group’s Brillouin zone. A third set of 

bands at the H-point (triply degenerate each with Nv=1) lays ~0.08 eV above the Γ − 𝑅𝑅 minimum. 

Other DFT calculations from Puyet et al. suggest a secondary conduction band, but they show a 

qualitatively different conduction band structure (with the primary minimum at H) [305, 306]. 

Despite the complex secondary conduction band structure, simply considering two conduction 

bands (CBΓ and CB2) with their appropriate degeneracies seems to qualitatively capture the 

Seebeck Pisarenko behavior (Figure 6-1) and the optical results.  

In support of thermoelectric transport and DFT calculations, multi-band features in CoSb3 

can be directly observed by IR optical absorption. Optical absorption edge spectra for a nearly 

intrinsic sample of CoSb3 (𝐴𝐴𝐻𝐻 = 1.7 × 1017𝑐𝑐𝑚𝑚−3) shows two distinct features (Figure 6-1d). The 

lower energy transition (which begins at ~0.16 eV optically and is computed to be 0.23 eV from 

DFT) is likely associated with the direct, 𝛤𝛤 − 𝛤𝛤 transition; the second transition (which begins at 

~0.3 eV optically, 0.34 eV from DFT) indicates the onset of a 𝛤𝛤 − 𝐶𝐶𝐶𝐶2 transition. While direct 

transitions often result in more than 10x as strong of absorption when compared to indirect ones 
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[48], it is important to remember that the transition rate is also proportional to the density of states. 

Because both 𝛥𝛥𝐶𝐶Γ and 𝐶𝐶𝐶𝐶Γ are extremely light (see density of states in Figure 6-1b, right panel), 

the 𝛤𝛤 − 𝛤𝛤 transition, despite the fact that it is a direct transition, may occur with a lower intensity 

than the 𝛤𝛤 − CB2. I roughly estimate the strength of all transitions by calculating the joint density 

of states (JDOS, inset Figure 6-1d), which shows reasonable agreement with the two slopes 

observed in the optical measurements.  

Other possibilities exist for the two distinct absorption edges which should be considered. 

First, a shallow absorption feature before the primary gap can be observed either in the case of 

intrinsic disorder/alloying in the sample (Chapter 4, PbSe/SrSe alloys showed long Urbach edges) 

or by intrinsic defect states which lay in the gap. However, because optical measurements were 

performed on the undoped sample that showed nearly intrinsic behavior, we do not expect the 

effects due to alloying or disorder. The possibility of a deep, intrisnic defect state laying within the 

band gap is possible; to exclude this as a possibility a series of lightly doped samples was also 

measured. I measured both extrinsically doped (filled with Yb or Na) and intrinsically doped (Co 

rich, Sb rich, Co poor, Sb poor) to encourage any intrinsic or extrinsic defect states to grow in 

number. Absorption edge measurements indicated no appreciable change in the strength of 

transition 1 relative to transition 2 that was not consistent with the addition of free carriers into the 

sample alone; therefore, I conclude that transition 1 is not a result of defect states. 

Historically, optical measurements in the skutterudite system have been limited to 

Ackermann and Wold, who report an optical band gap for CoP3 of 0.45 eV; they note that CoSb3 

and CoAs3 do not show an absorption edge [309]. This was likely because the lowest light 

frequency that they had measured was 0.4 eV (our results suggest a lower band gap). Other 

optical measurements have focused on very low frequencies (<0.1 eV) in order to probe optical 

phonons [310, 311]—just missing the frequency range important for interband transitions. One 

recent thesis report by Ni shows that photoacoustic measurements on undoped CoSb3 
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compounds can yield an absorption edge around 0.3 eV [312] (although he is not able to detect 

the absorption due to transition 1 that we observe here). In skutterudite systems other than CoSb3, 

the literature has been sparse regarding optical absorption edge data, although Slack did publish 

a result for IrSb3 which suggested a large optical gap (more than 1 eV) [313]. Optical 

measurements have also been performed over a wide range of frequencies by Matsunami et al. 

on Ce-filled skutterudites (with Fe, Ru, and Os rather than Co); these show band gaps within 0.2-

0.3 eV, although additional analysis regarding other the nature of these interband transitions near 

the fundamental absorption edge is not discussed [314].       

6.2c - Effective Mass in Systems with Non-parabolic Bands 

The unexpectedly high thermopower at high carrier density in YbxCo4Sb12 observed in the 

Pisarenko plot of Figure 6-1a can also be represented as an increase in 𝑚𝑚𝑆𝑆
∗ (the Seebeck effective 

mass) as a function of carrier concentration as shown in Figure 6-2a. This apparent increase in 

effective mass with doping has previously been attributed to highly non-parabolic (Kane) bands 

[281, 315, 316] rather than multi-band effects. A non-parabolic dispersion (shown in Figure 6-2b, 

Equation 6-2) can arise as a result of interaction between the valence and conduction bands, 

which is common in narrow gap semiconductors, which can be described using 𝑘𝑘 ∙ 𝑜𝑜 perturbation 

theory [58, 63, 64] (As mentioned in Chapter 2 and 3). Such bands are often described by the 

dispersion relation where the band is approximately parabolic (with band edge effective mass 𝑚𝑚0
∗) 

near the band edge, but becomes more linear as the electron energy, E, become larges large 

relative to the band gap Eg. 

 
𝑬𝑬�𝟏𝟏 +

𝑬𝑬
𝑬𝑬𝒈𝒈
� =

ℏ𝟐𝟐𝟐𝟐𝟐𝟐

𝟐𝟐𝒎𝒎𝟎𝟎
∗  Equation 6-2 
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here k is the electron wave vector. This relation is expressed in terms of dimensional quantities, 

unlike the non-parabolic models in previous chapters which the dimensionless: 𝛽𝛽 = 𝑘𝑘𝐵𝐵𝑇𝑇
𝐸𝐸𝑔𝑔

 and 𝜖𝜖 =

𝐸𝐸/𝑘𝑘𝐵𝐵𝛥𝛥. For non-parabolic bands, effective mass is not well defined because it can be derived 

from a number of classical relationships. In non-parabolic transport theory the commonly used 

energy dependent effective mass, derived from the electron momentum, is  

 
𝒎𝒎𝑷𝑷

∗ (𝑬𝑬) = ℏ𝟐𝟐𝟐𝟐 �
𝒅𝒅𝑬𝑬
𝒅𝒅𝟐𝟐

�
−𝟏𝟏

= 𝒎𝒎𝟎𝟎
∗ (𝟏𝟏 +

𝟐𝟐𝑬𝑬
𝑬𝑬𝒈𝒈

) Equation 6-3 

  

This is a different definition than that found in most solid state physics textbooks 𝑚𝑚∗ =

ℏ2 �𝑑𝑑
2𝐸𝐸

𝑑𝑑𝑘𝑘2
�
−1

, which relates the effective mass to the band curvature directly. Many common 

semiconducting materials are reported to show 𝑚𝑚∗(𝐸𝐸) increasing with energy (Fermi level, EF), 

including InSb [317], InAs [318], GaAs [319], PbTe [320], and others in a variety of different 

measurements, including electrical susceptibility (measured using optical reflectance) [320, 321], 

Shubnikov-De Haas/De Haas-Van Alphen oscillations [322], Faraday rotation [317, 318], and 

combined galvano thermomagnetic measurements (Seebeck and Nernst coefficients) [323]. In 

general these measurements are able to provide an estimate of the effective electronic mass, 

which is then compared to 𝑚𝑚𝑃𝑃
∗ (𝐸𝐸) of Equation 6-3 to determine the degree of non-parabolicity.  
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Figure 6-2: Effective mass calculation (equivalent single parabolic band effective mass) in a) n-type CoSb3 computed 
for experimental data along with the three-band model. The two individual band masses are also plotted to show the 
transition between them. b) Parabolic and Kane dispersions plotted with the same band edge effective mass showing 
the increasing effective mass (as the Kane band becomes linear). c) Seebeck Pisarenko plot for both Kane and 
Parabolic bands (full, Fermi integral calculation) illustrating that the Pisarenko mass actually decreases for Kane bands 
at high carrier concentration. 

For thermoelectric materials we frequently define 𝑚𝑚𝑆𝑆
∗(𝐸𝐸) from measurements of Seebeck 

coefficient and Hall carrier concentration (𝐴𝐴𝐻𝐻 = 1/𝑒𝑒𝛥𝛥𝐻𝐻) as the equivalent parabolic band mass 

that would give the measured Seebeck coefficient with the measured 𝐴𝐴𝐻𝐻 (assuming λ = 0 from 

 

  

a) 

b) c) 
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acoustic phonon scattering commonly observed in TE materials at 300K and above). In CoSb3, 

this carrier concentration dependent effective mass 𝑚𝑚𝑆𝑆
∗(𝐸𝐸) is observed to increase in both n-type 

(Figure 6-2a) and p-type materials, which is commonly attributed to band non-parabolicity using 

Equation 6-2  and Equation 6-3 [271, 315, 316, 324]. However, we must realize that these are 

two distinct definitions of effective mass that, in this case, are both qualitatively and quantitatively 

different. The degenerate limit of the Seebeck coefficient for a material whose bands display a 

Kane dispersion (the equivalent of Equation 6-1 obtained by applying Equation 6-2) can be 

expressed as [301, 325]: 

 
𝑺𝑺 =

𝟐𝟐𝟐𝟐𝑩𝑩𝟐𝟐𝑻𝑻
𝟑𝟑𝒅𝒅ℏ𝟐𝟐

�
𝟑𝟑
𝟑𝟑𝒏𝒏
�
𝟐𝟐
𝟑𝟑 𝒎𝒎𝑷𝑷

∗ (𝑬𝑬)(𝟏𝟏 + 𝝀𝝀 − 𝛟𝛟) Equation 6-4 

  

where and additional correction factor, 𝜙𝜙 =
4𝐸𝐸
𝐸𝐸𝑔𝑔
�1+ 𝐸𝐸

𝐸𝐸𝑔𝑔
�

�1+2𝐸𝐸𝐸𝐸𝑔𝑔
�
2  , has been added to the equation for that of a 

parabolic band (Equation 6-1). For a general scattering mechanism, Equation 6-4 can be 

simplified upon substation of 𝑚𝑚𝑃𝑃
∗ (𝐸𝐸): 

 
𝑺𝑺 =

𝟐𝟐𝟐𝟐𝑩𝑩𝟐𝟐𝑻𝑻
𝟑𝟑𝒅𝒅ℏ𝟐𝟐

�
𝟑𝟑
𝟑𝟑𝒏𝒏

�
𝟐𝟐
𝟑𝟑𝒎𝒎𝟎𝟎

∗ �𝝀𝝀 �𝟏𝟏 +
𝟐𝟐𝑬𝑬
𝑬𝑬𝒈𝒈
� +

𝟏𝟏

𝟏𝟏 + 𝟐𝟐𝑬𝑬
𝑬𝑬𝒈𝒈

� Equation 6-5 

 

In the case where λ = 0, as is commonly found in TE materials, the 𝑚𝑚𝑆𝑆
∗ mass in a Kane band 

should actually decrease according to: 

 
𝒎𝒎𝑺𝑺

∗(𝑬𝑬) =
𝒎𝒎𝟎𝟎

∗

𝟏𝟏 + 𝟐𝟐𝑬𝑬
𝑬𝑬𝒈𝒈

 
 Equation 6-6 

  

Thus the Seebeck mass, as computed from most thermoelectric studies, does not necessarily 

increase with doping or Fermi level as the momentum mass. The Seebeck effective mass is 
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derived by inspection when comparing Equation 6-5 for the non-parabolic band and the 

expression for the parabolic band (Equation 6-1).  

The 𝜂𝜂-dependent Seebeck effective mass can also be derived for alternative scattering 

mechanisms as presented in Figure 6-3a. Here, we can see that only for the case of acoustic 

phonon scattering does the mass decrease in the degenerate limit. All other scattering 

mechanisms show an increase. In this sense, it is not difficult to understand why Equation 6-3 is 

so widely used to show increasing effective mass with chemical potential over a wide range of 

measurement techniques (which includes thermomagnetic and thermoelectric measurements, 

such as the Seebeck coefficient). While I do not dispute the fact that measurements that probe 

the conductivity effective mass (𝑚𝑚𝑐𝑐
∗) should increase with reduced Fermi level because the density 

of states for a Kane band is in fact larger (as evidenced by the lower curvature in Figure 6-2b at 

higher energies), I am saying that this effect is cancelled out when considering the Seebeck 

coefficient and the 𝑚𝑚𝑆𝑆
∗ (Figure 6-2c and Figure 6-3a) in the acoustic phonon scattering (𝜆𝜆 = 0) 

case. If we consider some literature data for systems that are known to show Kane-like behavior, 

we can observe this trend. The 𝑚𝑚𝑠𝑠
∗ is extracted using (zero field) Seebeck Pisarenko data (S vs 

nH) from several sources in InSb [64, 326] and InAs [64], and the results are plotted in Figure 6-

3b. It has been observed that the primary mechanism for scattering in these materials is by polar 

optical phonons that have an E1/2 energy dependence (𝜆𝜆 = 1), indicating that the effective mass 

should increase as shown in Figure 6-3a. In fact, experimental results show that the mass does 

increase with doping level and that Equation 6-5 works reasonably with the substituted room 

temperature band gaps of 0.35 and 0.18 eV and band edge effective masses of 0.03 and 0.018 

me for InAs and InSb, respectively. In order to investigate the hypothesis of whether 𝑚𝑚𝑆𝑆
∗ increases 

with increasing chemical potential, we should consider a system where acoustic phonon 

scattering dominates. 
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Doping dependent 𝑚𝑚𝑆𝑆
∗ is also considered for PbTe, PbSe, and SnTe, which are known to 

show acoustic phonon scattering at room temperature, as shown in Figure 6-3c. n-type PbTe and 

PbSe both show a doping-dependent effective mass that does not change too much with doping 

level (PbTe shows ~10% increase, while PbSe stays relatively constant). SnTe and p-type PbTe, 

however, show a decreasing mass with doping. These materials show a mass that decreases 

from ~0.2 and ~0.5 me in the lighter doped samples to to 0.1 me and 0.32 in the more heavily 

doped samples in SnTe and PbTe respectively (before the effects of the second bands are 

reached). As shown in Chapter 4 of this thesis, both p-type SnTe and PbTe are known to exhibit 

multi-band behavior with a secondary valence band about 0.4  and 0.12 eV below the primary at 

room temperature, respectively; however, in this plot, I have compiled data where the Seebeck 

coefficient still decreases with doping. These results seems to support our claim in Equation 6-6 

that the Seebeck effective mass does decrease with doping level, although it is not clear why n-

type PbTe and PbSe do not obey the same trends. In order to confirm the result, this analysis 

should be extended to other systems, but it is difficult to find quality Seebeck data across a range 

of doping for materials that show both Kane band behavior and acoustic phonon scattering. 

However, as more information is gathered, this effect could be investigated further.  
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Figure 6-3: a) Calculated theoretical effective mass (ratioed to the value for reduced Fermi level at the band edge) 
derived using the Mott relation for different scattering mechanisms (Equation 6-5); the dashed line indicates an energy 
independent effective mass. A 𝛽𝛽 = 𝑘𝑘𝐵𝐵𝑇𝑇

𝐸𝐸𝑔𝑔
 value of 0.083 (consistent with PbTe at 300K) was used. b) Calculated SPB 

Seebeck effective mass (𝑚𝑚𝑆𝑆
∗) versus the reduced chemical potential calculated using the SPB model (𝜂𝜂𝑆𝑆𝑃𝑃𝐵𝐵) for 

experimental examples at 300 K (InAs [64] and InSb [64, 326]) which are believed to be dominated by polar scattering. 
c) 𝑚𝑚𝑆𝑆

∗ versus 𝜂𝜂𝑆𝑆𝑃𝑃𝐵𝐵 for n-type PbTe [28], p-type PbTe [34], n-type PbSe [65], and p-type SnTe [128].The solid lines in B 
and C indicate the best fit of the band edge mass along with the appropriate scattering mechanism plugged into 
Equation 6-5.   

Even though 𝑚𝑚𝑃𝑃
∗ (𝐸𝐸) increases with energy in a Kane band, I have shown that in CoSb3, 

we expect that the Seebeck coefficient and 𝑚𝑚𝑆𝑆
∗(𝐸𝐸) should actually decrease relative to that of a 

parabolic band in the degenerate limit, as shown in Figure 6-2c. This may be surprising because, 

according to the Mott relation (Figure 6-1), a higher density of states leads is often expected to 

result in a higher Seebeck coefficient. Instead Equation 6-6 shows that the Kane band dispersion, 

and linear bands in general, does not benefit thermoelectric performance relative to a parabolic 

band with the same band-edge effective mass. For CoSb3, Equation 6-6 demonstrates that the 

increasing 𝑚𝑚𝑆𝑆
∗ in Figure 6-2a is not evidence of Kane-type behavior, but rather that multiple 

conduction bands are necessary to explain the properties of CoSb3 (as evidenced by the fitting 

performed in Figure 6-1a where 2 parabolic conduction bands are considered). 

 

c) 
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6.2d - Band Convergence in CoSb3—High Temperature Transport Properties 

We have shown evidence that a second band is required to explain the room temperature 

transport and optical properties. However, it is at high temperatures that the performance of 

CoSb3 excels. At high temperatures, the electronic structure of CoSb3 is expected to be even 

more exceptional as optical absorption edge measurements indicate that the two conduction 

bands approach each other with an extrapolated 𝛥𝛥𝑐𝑐𝑣𝑣𝑔𝑔 ≈ 900 𝐾𝐾. The effective valley degeneracy 

is further increased as a result of the multi band behavior (even below 900 K) to 𝑁𝑁𝑣𝑣 ≈ 12 − 15. 

The optical absorption measured from 20 – 450 °C clearly shows the stronger 𝛤𝛤 − 𝐶𝐶𝐶𝐶2 absorption 

edge decreasing in onset energy (Figure 6-4a). The extrapolated absorption edges (Figure 6-4b) 

indicate that the primary (𝛤𝛤 − 𝛤𝛤, direct) transition does not shift as much with temperature (~-

0.6×10-4 eV/K, and actually is overtaken by free carrier absorption at high temperatures), while 

the secondary band (𝛤𝛤 − 𝐶𝐶𝐶𝐶2) shows a clear temperature dependent decrease in energy at a rate 

of ~-2.0×10-4 eV/K. Depending on the method of extrapolation, the resulting estimations of the 

band gap were slightly different, which resulted in a range of possible values for the primary (𝛤𝛤 −

𝛤𝛤) and secondary (𝛤𝛤 − 𝐶𝐶𝐶𝐶2) transitions indicated by the error bars in Figure 6-4b (the details of 

which are described in the methods section). Figure 6-4b shows that as the temperature 

increases, 𝐶𝐶𝐶𝐶𝛤𝛤 and 𝐶𝐶𝐶𝐶2 are becoming closer in energy. As the two bands, 𝐶𝐶𝐶𝐶𝛤𝛤 and 𝐶𝐶𝐶𝐶2, become 

closer in energy (i.e., differ by less than 2 kBT for T>400 K), both bands will contribute significantly 

to thermoelectric transport and improve the thermoelectric quality factor and zT in the same way 

that band convergence enables high zT in p-type PbTe [15, 16].  

The high temperature zT reflects this conclusion; Figure 6-4c shows the carrier 

concentration dependent zT for a series of Yb-doped samples at 800 K along with the calculated 

results of a three-band model (two converged conduction bands, assuming Δ𝐸𝐸 ≈ 0). From this 

plot, we can see the benefits that having a second conduction band allows, resulting in a 

significantly higher zT than the primary conduction band at 𝛤𝛤 can provide alone. If we consider 
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both the primary (𝐶𝐶𝐶𝐶Γ, Nv=3) and the secondary band (CB2, 𝑁𝑁𝑣𝑣 = 12) in the context of band 

engineering and the quality factor 𝐶𝐶 = 2𝑘𝑘𝐵𝐵
2ℏ

3𝜋𝜋
𝑅𝑅𝑣𝑣𝐶𝐶𝐿𝐿

𝑚𝑚𝑐𝑐
∗𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑

2 𝜅𝜅𝐿𝐿 
𝛥𝛥 (𝑚𝑚Γ,d

∗ ≈ 0.7, 𝑚𝑚𝐶𝐶𝐵𝐵2,𝑑𝑑
∗ ≈ 4.8 at 300 K), we can 

see that 𝐶𝐶𝐶𝐶𝐵𝐵2 is about four times that of 𝐶𝐶Γ (as indicated by the much larger maximum zT in Figure 

6-4c at 800 K). Because 𝐶𝐶𝐶𝐶Γ and CB2 are converged at high temperatures (Δ𝐸𝐸 = 0.2 𝑘𝑘𝐵𝐵𝛥𝛥 ≈ 0 for 

800 K), the overall quality factor is enhanced by the presence of a second band since both pockets 

can be thought to conduct in parallel, thereby increasing the electrical conductivity without being 

detrimental to the Seebeck coefficient (in the limit of converged bands, 𝐶𝐶𝑒𝑒𝑑𝑑𝑑𝑑 = 𝐶𝐶1 + 𝐶𝐶2 [327]). At 

800 K, bipolar effects are significant as a result of the highly mobile valence band and relatively 

narrow gap—reducing the overall zT, especially at the lower carrier concentrations. Future studies 

regarding CoSb3 might build on this understanding by attempting to shift these bands together at 

lower temperatures to provide a further zT enhancement, as was the case for PbSe/SrSe alloys 

shown in Chapter 4. 

 

 

a) 
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Figure 6-4: a) Temperature dependent optical absorption edge spectrum for CoSb3 from 25 to 400°C. b) Temperature 
dependent extrapolated band gap for the direct (𝐸𝐸𝑔𝑔,𝛤𝛤−𝛤𝛤) and indirect (𝐸𝐸𝑔𝑔,𝛤𝛤−𝐶𝐶𝐵𝐵2) transitions, error bars represent a 
range of possible values depending on the extrapolation technique, dashed line is a continuation of the low 
temperature behavior of the direct gap which is overcome by free carriers for T>200°C. c) Experimental data 
represents zT (at 800 K) vs. room temperature nH, along with the corresponding results for the three band model 
(𝛥𝛥𝐸𝐸 = 0) shown as the black line. The individual band contributions from 𝐶𝐶𝐶𝐶𝛤𝛤 and CB2 are computed as shown in the 
methods section.  

Temperature-dependent optical absorption spectra in lightly doped samples can also yield 

other interesting information in the form of absorption due to inter-conduction band transitions 

[116, 127, 328-330]. Temperature-dependent absorption spectra were measured for a lightly Yb-

 

 

b) 

c) 
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doped (Co4YbxSb12, x=0.0025, 𝐴𝐴𝐻𝐻,300𝐾𝐾 = 6.8 × 1017 𝑐𝑐𝑚𝑚−3) sample as presented in Figure 6-5. 

Here, the small amount of doping allows a small population of electrons in the primary conduction 

band which can participate in interband transitions to the secondary conduction band, CB2. This 

feature is not observable upon further Yb doping because the free carrier absorption from 

intraband transitions increases too much. The free carrier contribution (which is expected to decay 

with (ℏ𝜔𝜔)−2 as discussed in Chapter 3), is fit using a power law (dashed lines in Figure 6-5a). 

This feature is subtracted to show the growing interband contribution as temperature increases in 

Figure 6-5b. Following Spitzer and Fan [329], I also consider the possibility that these features 

may arise from transitions to or from in-gap defect states. If we consider the free carrier absorption 

from the intrinsic sample (Figure 6-4a) at high temperatures, we might expect to see some of 

these features. At high temperatures, the intrinsic sample does indicate a small bump between 

0.1 and 0.15 eV (where valence-conduction band transitions occur) relative to the decaying free 

carrier absorption. Another feature is observed in the intrinsic sample at 0.05 – 0.1 eV which exists 

even at room temperature (above the relatively flat free carrier background) and grows larger as 

temperature increases; however, it is difficult to resolve the difference between this feature and 

the growing free carrier absorption. To confirm the character of the intrinsic sample’s features, 

better resolution at lower photon energies would be preferred (0.01 – 0.2 eV). These 

measurements have been performed to investigate optically active phonon modes in the Far IR 

(100-400 cm-1, 0.001 – 0.05 eV) by Kliche et al [310], and it is possible that the 0.05-0.1 eV feature 

is related to these phonon modes. 
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Figure 6-5: Temperature-dependent absorption edge measurements in a lightly Yb-doped (x=0.0025) CoSb3 sample 
from 100-400°C. a) Raw Kubelka Munk transformed absorption data an arrow indicates the possible inter-conduction 
band absorption feature. Dashed lines indicate a power law fit for the free-carrier absorption. b) Resulting spectra after 
subtracting the free carrier contribution (FC) and normalizing, and an that arrow indicates the growing inter-band 
contribution. 

6.2e - Conclusion 

A unified picture explaining the extraordinary thermoelectric properties of skutterudites 

has emerged from a combined analysis of transport measurements, optical absorption, and 

theoretical calculations on a series of YbxCo4Sb12 samples. The primary light conduction bands 

at Γ, and have a good thermoelectric quality factor, but they are significantly aided by a secondary 

conduction band with extremely high valley degeneracy Nv = 12. At high temperatures these two 

bands converge, enabling the extraordinarily high zT > 1 that is observed in many CoSb3 based 

skutterudites with a variety of filling and doping elements. The contribution of band convergence 

to the performance at high temperatures suggests that band engineering methods to converge 

the two conduction bands at lower temperatures would improve the low temperature zT. The 

analysis of linear and Kane bands presented here suggests that such non-parabolic band 

dispersions do not lead to an increase in thermopower (Seebeck coefficient) and are not beneficial 

to thermoelectric performance. 
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6.2f - Methods 

Sample Synthesis 

Samples were prepared by a process of melting and quenching followed by annealing at 

various temperatures for one week in order to achieve the equilibrium state, with details described 

previously [331] (and in Chapter 2 of this thesis). Phase purity was checked with SEM and SEM 

analysis in the same way as described in previous work [252, 276, 331]. Annealed samples were 

hot pressed according to the procedure outlined in Chapter 2. 

Electrical transport properties, including electrical conductivity (σ) and Seebeck coefficient 

(S) were measured using the ZEM-3 (ULVAC Co. Ltd.) apparatus under a helium atmosphere 

from 300 to 850 K. Thermal conductivity (κ) was calculated using 𝜅𝜅 = 𝑚𝑚𝐷𝐷𝑇𝑇𝐶𝐶𝑃𝑃, with the thermal 

diffusivity 𝐷𝐷𝑇𝑇 measured along the cross-plane direction by the laser flash method (Netzsch LFA 

457) under argon flow with the Cowan model plus pulse correction. The specific heat capacity 𝐶𝐶𝑃𝑃 

was determined using the Dulong - Petit law 𝐶𝐶𝑃𝑃 = 3𝑘𝑘𝐵𝐵 per atom throughout the temperature range 

300K to 850K.  

Optical Absorption Edge 

DRIFTS measurements were performed both at room temperature and high temperature 

for a series of CoSb3 samples according to the details outlined in Chapter 2 of this thesis. Different 

extrapolation techniques led to different values of the band gap, hence the error bars in Figure 6-

4b. First, regarding transition 1 (believed to be the direct gap, 𝛤𝛤 − 𝛤𝛤 transition), several 

extrapolation techniques were considered. Linear regions were obtained for the three 

extrapolation techniques direct (𝛼𝛼2), indirect (𝛼𝛼1/2), and forbidden [43] (𝛼𝛼2/3) transitions, each 

giving a slightly different value of the band gap, the direct being the largest at around 0.23 eV. 

Because PbX (Chapter 4) also showed linear absorption regions for both direct and indirect 

transitions, I concluded that the direct gap extrapolation should be used (Figure 6-4b orange 

circles). The error bars in the figure correspond to the actual onset of absorption (as determined 
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through linear extrapolation to the minimum), which should give a good lower bound for the value 

of 𝐸𝐸𝑔𝑔,Γ−Γ. With increasing temperature, the estimate for the direct gap did not change much 

(approximately constant at 0.22 eV).  At high temperatures (T>200°C), the optical absorption 

spectra contained a considerable amount of free carrier absorption which overshadowed the first 

transition (as indicated by the dashed line above these temperatures). The free carrier absorption 

was fit to a power law and subtracted from the Kubelka Munk function in order to perform the 

absorption edge extrapolation fitting.  

Regarding Transition 2, it was fit after subtracting both the free carrier absorption and 

either the direct extrapolation or linear extrapolation from transition 1 from the spectrum. This 

transition was fit as an indirect gap using either Tauc method, (𝛼𝛼ℏ𝜔𝜔)1/2, or simply 𝛼𝛼1/2 ∝

�ℏ𝜔𝜔 − (𝐸𝐸𝑔𝑔 ± 𝐸𝐸𝑏𝑏ℎ� (both gave similar results for the gap). This method yielded two slopes which, 

according to theoretical analyses, indicate the onset of phonon absorption (-Eph) and phonon 

emission (+Eph) [43]. The band gap was extracted as either half-way between the absorption and 

emission intersections or simply as the emission intersection (as indicated by the symbols and 

error bars respectively in Figure 6-4b). 

The joint density of states (JDOS) was computed numerically using the density of states 

(Figure 6-1b, right side). The JDOS was estimated using 𝐽𝐽𝐷𝐷𝐽𝐽𝑆𝑆(ℏ𝜔𝜔) =

∫ ∫ �𝐷𝐷𝑉𝑉𝐵𝐵(𝐸𝐸𝑉𝑉𝐵𝐵)𝐷𝐷𝐶𝐶𝐵𝐵(𝐸𝐸𝐶𝐶𝐵𝐵)𝛿𝛿(𝐸𝐸𝐶𝐶𝐵𝐵 − 𝐸𝐸𝑉𝑉𝐵𝐵 − ℏ𝜔𝜔)𝑚𝑚𝐸𝐸𝑉𝑉𝐵𝐵𝑚𝑚𝐸𝐸𝐶𝐶𝐵𝐵  where 𝐷𝐷𝑉𝑉𝐵𝐵,𝐶𝐶𝐵𝐵 is the density of states of 

the conduction or valence band respectively and 𝛿𝛿 is the Dirac delta function (selecting only 

energies where the valence and conduction band energies are separated by the desired photon 

energy). 

Band Model 

Here I consider transport properties of YbxCo4Sb12 using a rigid band approximation [332], 

meaning that the conduction band structure does not significantly change with doping (Yb content) 
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from that of unfilled CoSb3. Experimentally, similar electronic properties are obtained whether 

CoSb3 is doped through filling or by substitution on the Co or Sb sites [281, 333] (both showing  

optimum thermoelectric performance at about 3× 1020 cm-3 or 0.5 electrons per unit cell) [286, 

334, 335] which justifies the use of the rigid band model. In other thermoelectric materials such 

as PbTe, rigid band models have been used quite successfully and have been confirmed 

theroetically [105]. Filled YbxCo4Sb12 is shown theoretically to be an essentially rigid band up to 

x=0.25 (0.5 electrons per unit cell [335]) although deviations appear at higher concentrations and 

for different fillers [305, 306].  

In this work, a three band transport model was used to calculate the thermoelectric 

properties for CoSb3 at T=300 and 800 K. The properties were calculated assuming acoustic 

phonon scattering [58] for all bands by solving the chemical potential dependent Boltzmann 

transport equations detailed in Ravich’s appendix [58] for non-parabolic bands (parabolic bands 

were modelled assuming 𝛽𝛽 = 0). The appropriate transport integrals were computed numerically 

(Python) to determine the 𝜂𝜂-dependent Seebeck, mobility, carrier concentration, etc. for each 

band [24]. The overall properties computed using conductivity weighted averages given by Putley 

et al. (as detailed in Chapter 2 for multi-band semiconductors) [62] for a system of two conduction 

bands (𝐶𝐶𝐶𝐶Γ  and CB2) and one valence band.  

We determine the room temperature density of states effective masses of 𝐶𝐶𝐶𝐶Γ and 𝐶𝐶𝐶𝐶2 to 

be 0.7 and 4.8 me with deformation potentials of 37.2 and 20.4 eV, respectively, and a band offset 

of 0.08 eV. The valley degeneracies for these bands were assumed to be 3 and 12, respectively. 

The anisotropy factor was assumed to be 5.0 for 𝐶𝐶𝐶𝐶Γ to reflect the three widely varying effective 

masses of the converged bands at the conduction band minimum. Including the valence band in 

the calculations was necessary (particularly at high temperatures); the best fit of its parameters 

were found to be: 𝑁𝑁𝑣𝑣 = 1 (valence band maximum exists at 𝛤𝛤), 𝑚𝑚𝑑𝑑
∗ = 0.6 𝑚𝑚𝑒𝑒, 𝛽𝛽 = 0 (parabolic), 

and 𝐸𝐸𝑑𝑑𝑒𝑒𝑑𝑑 = 7.8 eV with a band gap of 0.22 eV. 
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 At high temperatures (800K), the conduction band offset was taken to be Δ𝐸𝐸 = 0.0 eV, in 

accordance with the optical observation of band convergence. The density of states effective 

masses were fit to 0.42 and 2.88 me with deformation potentials of 44.5 and 24.4 eV for the 𝐶𝐶𝐶𝐶Γ 

and 𝐶𝐶𝐶𝐶2, respectively. The valley degeneracy and anisotropy parameters were taken to be the 

same as at 300 K. The valence band parameters were adjusted at these high temperatures to 

accommodate for the much larger bipolar effect; the effective mass was taken to be 0.6 me with 

a deformation potential of 20 eV and a band gap of 0.22 eV (which is shown to be approximately 

constant from optical measurements). Because of the large bipolar effects, high temperature Hall-

effect measurements (and carrier concentrations) are not reliable; room temperature nH was 

plotted instead (even for high temperature properties). In order compute the room temperature 

Hall carrier concentration for the three band model, the charge neutrality equation 𝑁𝑁𝐴𝐴 − 𝑁𝑁𝐷𝐷 =

∑ 𝑜𝑜𝑏𝑏(𝜂𝜂,𝛥𝛥)𝑏𝑏 − ∑ 𝐴𝐴𝑏𝑏(𝜂𝜂,𝛥𝛥)𝑏𝑏  was solved at high temperature to determine the intrinsic defect 

concentration (NA-ND as a function of 𝜂𝜂 at 800 K), which was then projected back to room 

temperature (solved for an equivalent 𝜂𝜂300𝐾𝐾) from which the room temperature Hall coefficient 

(RH) and nH could be calculated.  

zTs are plotted for each band (Figure 6-4c) assuming that the lattice thermal conductivity 

is equal to the value obtained where the maximum zT is obtained. The contribution for each 

individual band is computed as: 𝑧𝑧𝛥𝛥𝑏𝑏 = 𝑆𝑆𝑖𝑖𝜎𝜎𝑖𝑖𝑆𝑆
𝜅𝜅𝐿𝐿+𝜅𝜅𝑑𝑑

, where 𝑆𝑆𝑏𝑏 and 𝜎𝜎𝑏𝑏 represent the contributions from each 

band and S is the conductivity weighted average over all bands (defined in Chapter 2) and 𝜅𝜅𝑒𝑒 =

∑𝜅𝜅𝑏𝑏𝜎𝜎𝑏𝑏.  

We should note that while these values yielded acceptable fits of the properties at these 

particular temperatures, the fits are not unique. In other words, other sets of parameters may 

provide adequate fits for the masses. In fact, the electronic structure calculations suggest that the 

states are more complicated than simply considering two conduction bands; however, we obtain 
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both a quantitative and qualitative fit that seems to adequately reflect the nature of both transport 

and optical measurements. 

Ab-initio DFT calculation and ultrafine evaluation of Fermi surfaces 

Ab-initio calculations were performed by a collaborator, Luis Agapito (University of North 

Texas, Denton). The position of the 16 atoms in the CoSb3 unit cell (with conventional lattice 

constant of 9.07 Å) is relaxed using norm-conserving pseudopotentials and the Perdew-Burke-

Ernzerhof [336] density functional, as implemented in the ab-initio package Quantum Espresso 

[337]. The plane-wave basis set is defined by an energy cutoff of 270 Ry. 

A 9x9x9 Monkhorst-Pack sampling of the reciprocal space is sufficient to converge the 

DFT calculations. However, an ultrafine k-mesh, containing 200x200x200 k-points in the 

reciprocal unit cell, is needed in order to obtain smooth isosurfaces. Highly accurate real-space 

tight-binding Hamiltonian matrices are built by projecting the DFT Bloch states onto a “small” set 

of atomic orbitals (4p, 3d, 4s for Co; and 5p, 5s for Sb) while filtering out states of low projectability 

[338, 339]. The reciprocal-space Hamiltonian matrices are obtained by Fourier transformation and 

then diagonalized at each point in the ultrafine mesh to obtain the Eigen energies. The tight-

binding and the actual DFT eigenvalues are numerically the same for all practical purposes. We 

use the parallel implementation of the method that is available in the WanT code [340]. XCrySDen 

[341] is used for visualizing the isosurfaces. 

6.3 - Zintl A5M2Sb6 Materials 

6.3a - Introduction 

Due to their complex crystal structures, tunable transport properties, and high temperature 

stability, Zintl compounds such as Yb14MnSb11 (zT ~1.4 at 1200 K), Sr3GaSb3 (zT ~0.9 at 1000 

K), and Ca5In2Sb6 (zT ~0.7 at 1000 K) are promising candidates for use in thermoelectric 

applications [342-347]. While the complex unit cells of Zintl compounds reduce the velocity of the 
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optical phonon modes, which lowers the lattice thermal conductivity [348], their covalently-bonded 

polyanionic structures also allow them to maintain good high electronic conductivity [349]. 

Through doping, these phases become extrinsic semiconductors with carrier concentrations in 

the range of 1019-1021 carriers/cm3, resulting in good thermoelectric zTs [350].  

The A5M2Sb6 Zintl phases (A = Ca or Sr, M = Al, Ga, In), which will be investigated in this 

section, also benefit from a complicated crystal structure and a resulting low lattice thermal 

conductivity. This family of compounds can be doped p-type by partial substitution of the metal 

site with Zn to optimize their charge carrier concentration. In this section, I will continue with the 

theme of this chapter, which has been identifying multi-band behavior using optical absorption 

edge measurements.  

6.3b - Results and Discussion 

Optical absorption edge measurements in Ca5In2Sb6 and Sr5In2Sb6 (Figure 6-6a)   indicate 

two slopes in the absorption coefficient (similar to CoSb3 shown in the previous section) which 

could be evidence of multiple band behavior. In both systems, the optical absorption edge spectra 

show a slow rise for energies above ~0.3 eV followed by a faster rise above ~0.55 eV and ~0.65 

eV for the Sr5In2Sb6 and Ca5In2Sb6 variants, respectively. By examining the calculated Sr5In2Sb6 

electronic band structure shown in Figure 6-6b [351], we can determine which possible interband 

(valence-conduction band) transitions can occur that might correspond to the features in the 

optical absorption edge spectrum. The computed interband transition with the lowest energy 

corresponds to the direct band gap near the X point with a calculated value of ~ 0.44 eV and 0.48 

eV for Sr5In2Sb6 and Ca5In2Sb6, respectively [351]. While the shallow rise at low energy in the 

optical data seems to indicate a weaker absorption feature (possibly an indirect gap or even mid-

gap impurity states), we believe that this feature (ℏ𝜔𝜔1 as indicated in Figure 6-6a and b) is due to 

the direct 𝑋𝑋 − 𝑋𝑋 transition. The second increase in absorption (ℏ𝜔𝜔2) is possibly due to an indirect 

interband transition from one of several lower laying valence bands (the first of which is centered 
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at the 𝛤𝛤 point) to the conduction band edge (at X). As is commonly understood, direct gaps usually 

yield substantially higher optical absorption coefficients than indirect ones [352]; however, in this 

case the density of states for the lower-laying secondary valence bands at 𝛤𝛤 is significantly higher 

(by about a factor of 10) than the band edge states at X [351], similar to what was observed in 

CoSb3. The (linear) extrapolation of the second absorption edge resulted in ℏ𝜔𝜔2 values of ~0.55 

and 0.64 eV (see Figure 6-6a) for Sr5In2Sb6 and Ca5In2Sb6, respectively. In comparison, DFT 

results for the 𝛤𝛤 − 𝑋𝑋 transition energy are ~0.73 and 0.75 eV, respectively, which shows 

reasonable agreement with the optical and theoretical results. We can compare the optical results 

with other experimental estimations of the electronic band gap. The temperature dependent 

resistivity approximation of the band gap calculated from 𝜌𝜌 ∝ 𝑒𝑒𝐸𝐸𝑔𝑔/2𝑘𝑘𝐵𝐵𝑇𝑇   is ~0.26 eV at low 

temperatures and ~0.58 eV  at high, which corroborates the optical absorbance data [248]. The 

Goldsmid-Sharp band gap estimated from the maximum Seebeck coefficient (~380 µV/K at 500 

K for the undoped sample) using the Goldsmid-Sharp band gap: 𝐸𝐸𝑔𝑔 = 2𝑒𝑒𝑆𝑆𝑚𝑚𝑏𝑏𝑚𝑚𝛥𝛥𝑚𝑚𝑏𝑏𝑚𝑚 is 0.38 eV [50]. 

Both estimates agree approximately with the  optical and DFT results [353]. It is well known that 

multiple-band effects can lead to excellent thermoelectric performance, as is the case in PbTe 

[126, 354] and PbSe (Chapter 4 of this thesis).  However, for Sr5In2Sb6 the offset between the two 

bands is too large to improve the properties, requiring a chemical potential of ~0.25 eV to reach 

the second valence band which corresponds to a carrier concentration of about 1021 holes/cm3 

(assuming single parabolic band at T = 300 K and 𝑚𝑚∗ =  1.3 𝑚𝑚𝑒𝑒). Further investigation into 

whether the suggested offset is either a function of temperature or alloying, as in PbX (X = S, Se, 

Te) [126], can be performed to develop strategies towards band engineering in this system.  

In this case, we have not thoroughly investigated the possibility that ℏ𝜔𝜔1 may be a result 

of intrinsic defect levels (as we had in CoSb3), which might indicate that the primary gap is actually 

associated with ℏ𝜔𝜔2. However, when considering the combination of the gaps estimated from 
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transport properties and the theoretical calculations which indicate relatively narrow gaps, we 

believe that the current explanation is reasonable. 

 

Figure 6-6: a) Optical absorption edge results showing 𝐹𝐹(𝛥𝛥) or (𝛼𝛼
𝐾𝐾�
), the normalized Kubelka Munk function, for Sr5In2Sb6 

and Ca5In2Sb6 where ℏ𝜔𝜔 is the light energy in eV [355]. The two transitions at 0.3 eV and 0.55 eV are observed and 
are indicated by ℏ𝜔𝜔𝑛𝑛. F(R) is the Kubelka Munk function (previously represented as 𝛼𝛼

𝐾𝐾�
. b) Calculated DFT band structure 

of Sr5In2Sb6 with the suggested direct (ℏ𝜔𝜔1 ~0.48 eV) and indirect (ℏ𝜔𝜔2 ~0.73 eV) transitions indicated [351]. Both 
calculations indicate a difference of ~0.25 eV between the direct and indirect band gaps despite discrepancies in the 
band gap values. The peak at ~0.44 eV is indicative of O-H stretching vibrations consistent with some water adsorbed 
to the powder surface. 
 

Additional measurements were performed over several different 5-2-6 compositions, each 

of which indicated semiconducting behavior [356]. Of these, Eu5In2Sb6 exhibits the lowest 

measured band gap with an absorption edge around 0.25 eV, which agrees with previous 
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calculations and experimental literature [357]. While the two-slope features are less pronounced 

in the Eu-containing compound, it is possible that they still exist but with a smaller offset (<0.1 

eV), indicating that this might be a promising compound for band engineering. Of the other 

compounds, each begins absorbing light at ~0.3 eV and exhibits a secondary absorption edge at 

a different, higher energy. This is true for each system except the Ca5Ga2Sb6, which shows the 

largest free-carrier absorption and a resulting minimum in F(R) at ~0.28 eV (indicating that the 

first absorption edge begins at a bit lower energy). Previous literature results agrees with this 

finding because they show a smaller gap (estimated from electronic properties) in Ca5Ga2Sb6 than 

the other 5-2-6 compounds [358]; the valence band offset in the Ga compound is the smallest 

(other than the Eu-containing compound) with a value of ~0.15 eV. Literature Seebeck data on 

Ca5Ga2Sb6 does not show deviation from the SPB model, but careful studies have not been 

performed. The In and Al containing compounds have a similar offset of ~0.35-0.4 eV which, as 

mentioned previously, is likely too far to be accessible through doping.  

 

Figure 6-7: Optical absorption edge measurements in various Zintl 5-2-6 compounds. F(R) is the Kubelka Munk 
function (previously represented as 𝛼𝛼

𝐾𝐾�
. 
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6.3c - Conclusions 

Further band structure calculations of intrinsic defects might provide some insight as to 

whether in-gap states might arise upon substitutions/vacancies/interstitials, as was the case for 

ZrNiSn in Chapter 5, which might suggest whether transition 1 is in fact related to a defect state. 

Based on a combination of optical, electronic, and computed properties, however, this conclusion 

of multiple band features seems to reasonably match the results. In order to confirm these 

suppositions of multiple band behavior, additional doping and transport measurement experiment 

should be performed, particularly in the Eu5In2Sb6 and Ca5Ga2Sb6 compounds, which seem to 

have the most promising band structures to utilize these multi-band effects through band 

engineering. 

6.3d - Methods 

The Sr5In2-xZnxSb6 (x = 0, 0.025, 0.05, 0.1) series was synthesized using ball milling 

followed by hot pressing  [359]. An InSb precursor was prepared using stoichiometric amounts of 

In shot (99.999%, Alfa Aesar) and Sb shot (99.9999%, Alfa Aesar). The elements were vacuum 

sealed in a quartz ampoule and heated to 900 K at a rate of 150 K/h and annealed there for 12 h, 

then slowly cooled to room temperature. In an argon-filled glove box, stoichiometric quantities of 

InSb, Sb, dendritic Sr (99.9%, Sigma Aldrich), and Zn foil (99.99%, Alfa Aesar) were weighed and 

placed in a stainless-steel vial with two 0.5 inch diameter stainless-steel balls. The Sr was cut into 

1-3 mm pieces before it was weighed.  The samples were then ball milled using a high energy 

SPEX Sample Prep 8000 Series Mixer/Mill for one hour. Each resulting powder was loaded into 

a high-density graphite die (POCO) with a 12 mm inner diameter and hot pressed in an argon 

environment at 823 K for 2 hours under 110 MPa of pressure. The samples were then cut into 1 

mm thick disks.  

Optical measurements were obtained and analyzed as outlined in Chapter 2. Absorption 

edges were extrapolated to the zero (or previous transition) in order to estimate the transition 
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onset energies. Both direct (n=2) and indirect (n=1/2) extrapolations: (𝐹𝐹(𝛥𝛥)ℏ𝜔𝜔)𝑛𝑛 ∝ (ℏ𝜔𝜔 − 𝐸𝐸𝑔𝑔) 

were considered, each of which produced a linear region over which to fit (for each absorption 

edge). Because both direct and indirect extrapolations each yielded reasonable fits, we use the 

calculated band structure to help us determine which interband transitions are likely responsible 

for the absorption edge features.  

6.4 - Conclusions 

Multiple transitions can be observed optically in a variety of systems as shown in this 

chapter. CoSb3 is particularly interesting because of its widespread use in commercial 

applications. While the electronic structure of CoSb3 is not generally touted as one that is 

conducive to great thermoelectric properties, in this chapter I show that a multiple band transport 

is required to indicate the increasing Seebeck effective mass. We have fit the band parameters 

for the second band based on both optical measurements, and the behavior is consistent with a 

two conduction band transport model at both room and high temperature. Temperature dependent 

optical measurements indicate a decreasing energy of the second transition (𝐸𝐸𝑔𝑔,Γ−𝐶𝐶𝐵𝐵2), suggesting 

that, at high temperatures, the offset between the primary and secondary bands becomes even 

smaller until the bands are converged. We attribute a portion of the good thermoelectric 

performance to the shifting band structure and multi-band behavior, in addition to the reduction in 

lattice thermal conductivity upon Yb filling the voids in the CoSb3 structure.  

In addition to the CoSb3 system, which shows multi-band behavior which is measurable 

through both the optical and electronic properties, the Zintl 5-2-6 system indicates the possibility 

of multi-band behavior as well. Optical measurements show two distinct absorption edges for a 

variety of compounds within this class of materials. In contrast to CoSb3, the electronic properties 

in the Zintl compounds do not reflect a second band, likely because of the large band offset 

energies and large effective masses; although more studies should be performed to attempt to 

increase the doping concentration until the Fermi level reaches the secondary bands.  
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As has been a theme of this thesis, the combination of optical properties, electronic 

properties, and electronic band structure calculations has allowed us to develop relationships 

between the electronic structure and the good thermoelectric properties in CoSb3. We provide 

necessary insight into the electronic structure of CoSb3, which should provide the thermoelectrics 

community with a direction for further optimizing these materials. Only by understanding the 

electronic structure can we perform the appropriate carrier concentration optimization and band 

engineering to further enhance the thermoelectric properties.  
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Chapter 7:  The “Fermi Surface Complexity Factor” and Band 

Engineering using Ab-Initio Boltzmann Transport Theory 

7.1 - Introduction: 

The calculation of electronic and thermoelectric properties from electronic band 

structure has received much attention lately with the increasing availability of 

computational algorithms and resources. Ab-initio calculations are very important from a 

materials’ design perspective in that they provide insight into the underlying electronic 

states which give rise to the experimentally measurable thermoelectric properties. 

However, the correlation between calculated properties and experimental results is usually 

qualitative at best. Therefore, it is important to understand the methods that 

experimentalists use to characterize the thermoelectric performance, specifically in the 

context of what the results indicate about the electronic band structure. In this chapter, I 

develop a new metric for determining the viability of thermoelectric materials whose 

electronic band structures have been computed using ab-initio techniques. The approach 

is rooted in the Boltzmann transport equation, but is based on semi-empirical band 

engineering models and techniques which have been discussed in detail in this thesis 

(Single Parabolic Band model, Chapter 2). I will also give examples where band 

engineering (and degeneracy) simply cannot capture the behavior, which is most often 

observed in systems where additional topological features (in addition to individual 

isolated carrier pockets) arise. I apply the technique over a large database of compounds 

to show its validity in high-throughput screening of thermoelectric materials, allowing 

computations to overcome the limitations of the constant relaxation time approximation 

(CRTA). 
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One of the primary modes of improving thermoelectric materials as described in 

this thesis is through band engineering and carrier concentration tuning, which are often 

explained using the SPB model where the material properties are assumed to be 

described by a “free electron”-like band which has a certain effective mass (𝑚𝑚𝑆𝑆
∗). In terms 

of the thermoelectric figure of merit, 𝑧𝑧𝛥𝛥, the optimum value can be found to scale with the 

quality factor (assuming acoustic phonon scattering, “APS”),  𝐶𝐶𝐴𝐴𝑃𝑃𝑆𝑆 = 2𝑘𝑘𝐵𝐵
2ℏ

3𝜋𝜋
𝑅𝑅𝑣𝑣𝐶𝐶𝑙𝑙

𝑚𝑚𝑐𝑐
∗𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑

2  𝜅𝜅𝐿𝐿
𝛥𝛥 

(Equation 2-6) [18]. Of the parameters in B, the valley degeneracy (Nv) has been shown 

to be critical for improving zT and has been a theme of this thesis (Chapter 4, 6) [16, 26, 

132, 169, 170]. 

7.2 - Theory 

7.2a - Effective Valley Degeneracy (Nv*) 

The valley degeneracy, Nv, is defined as the number of distinct Fermi surfaces that 

exist at the Fermi level. The origin of these degeneracies can be broken down into two 

parts: 𝑁𝑁𝑣𝑣 = 𝑁𝑁𝑣𝑣,𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑒𝑒𝑡𝑡𝑏𝑏𝑠𝑠𝑁𝑁𝑣𝑣,𝑏𝑏𝑏𝑏𝑛𝑛𝑑𝑑, where Nv,symmetry is related to the degeneracy of a given 

point in the Brillouin zone and Nv,band is the number of individual bands that are converged 

at that energy. Valley degeneracy manifests itself by increasing the density of states 

effective mass, 𝑚𝑚𝑑𝑑
∗ = 𝑁𝑁𝑣𝑣

2/3𝑚𝑚𝑏𝑏
∗ , relative to the single valley effective mass (𝑚𝑚𝑏𝑏

∗ ). This is 

beneficial for the thermoelectric properties because each individual pocket conducts in 

parallel while the overall Fermi level does not rise too quickly (allowing the material to 

simultaneously maintain a high Seebeck coefficient and high mobility). In order to 

maximize Nv, a highly symmetric Brillouin zone (usually found in high symmetry materials) 

with band extrema that exist at low symmetry points lead to the highest degeneracy. As 

described in Figure 7-1, for PbTe and other IV-VI materials,  the primary valence band 
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exists at the L-point  with Nv,symmetry=4, and a Nv,band=1, and a secondary along the 𝛴𝛴 line 

with a high degeneracy of Nv,symmetry=12, and a Nv,band=1.  

While many semiconductors have their band extrema at the 𝛤𝛤 point (the point of 

highest symmetry in the Brillouin zone), this point only has a Nv,symmetry of 1 (although some 

have multiple degenerate bands, Nv,band>1). The lead chalcogenides, on the other hand, 

have their primary valence band (and conduction band) at the L-point with 𝑁𝑁𝑣𝑣,𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑒𝑒𝑡𝑡𝑏𝑏𝑠𝑠 =

4  and a secondary valence band along the 𝛴𝛴 line, which shows high degeneracy of 12 

(see Figure 7-1a).  While utilizing the first Brillouin zone’s symmetry to simply count the 

number of degenerate valleys for a given material’s primary band is useful for determining 

whether multiple Fermi surfaces might benefit the thermoelectric performance, it is not 

always clear how to quantify how much nearby bands contribute. Because electron 

transport is dominated by charge carriers with energies within a few kBT of the Fermi level, 

additional bands must be in this range to lead to zT enhancement: for example, if EF is 

well within the first L-band, but is more than a few kBT from the 𝛴𝛴 band, then the transport 

properties will only reflect that of the L-band (as we observed for low carrier concentrations 

in SnTe—Chapter 4).  

In this thesis chapter, I develop a metric that can serve as an estimate of valley 

degeneracy in the regions where multiple bands participate in conduction. The “effective 

valley degeneracy”, 𝑁𝑁𝑣𝑣∗, describes the Fermi level-dependent valley degeneracy in order 

to estimate the benefit to thermoelectric properties (and quality factor, B) as a result of 

these multi-band effects. This concept has been used before to indicate band 

convergence: for example, in PbTe, where the L and 𝛴𝛴 bands are converged the effective 

degeneracy is thought to be ≈ 16 [16, 18]. Beyond cases where well-defined, individual 

charge carrier pockets exist, additional enhancements to thermoelectric performance can 

occur as a result of non-trivial topological features.  



7-4 
  

 

Figure 7-1: Fermi surfaces in p-type PbTe a) showing the separate ellipsoids of the L and Σ bands (leading to 
an increase in Nv*) and b) showing the more complex Fermi surface once both the L and Σ bands have been 
reached, which leads to an increase in K*. 

7.2b - Effective Anisotropy Factor (K*) 

The single parabolic band model (SPB model) has an electron energy dispersion 

given by 𝐸𝐸 = ℏ2𝑘𝑘2

2𝑚𝑚∗ , where k is the electron wave vector. The common definition for the 

effective mass is defined by the curvature of the band in k-space 𝑚𝑚∗ = ℏ2 �𝑑𝑑
2𝐸𝐸

𝑑𝑑𝑘𝑘2
�
−1

 (light 

bands have high curvature, heavy bands have shallow). However, real systems often 

show deviations from the single parabolic band case and require a more complicated 

description (possibly anisotropic Fermi surfaces, non-parabolic bands, as shown in 

Chapters 3,4, and 6, multiple valley contributions, and/or more complicated topological 

features), and the band curvature definition of effective mass is not necessarily applicable 

nor does it even display the expected trend for the property of interest for systems that 

display these complex features. 

In terms of Fermi surface anisotropy, only in the simplest cases can Fermi surfaces 

can be described as spherical pockets; many materials contain more complicated Fermi 
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surfaces. The next level of complexity involves ellipsoidally shaped pockets where the 

anisotropy parameter, 𝐾𝐾 = 𝑚𝑚∥
∗

𝑚𝑚⊥
∗ , quantifies the degree of anisotropy. Many systems show 

Fermi surface anisotropy both experimentally and theoretically, such as Si/Ge [55, 56], IV-

VI materials [58, 59, 360], III-V materials [57], and others [61]. The conductivity effective 

mass (which is a single valley harmonic average along each direction): 𝑚𝑚𝑐𝑐
∗ =

3�𝑚𝑚∥
∗−1 + 2𝑚𝑚⊥

∗ −1�
−1

 determines the carrier mobility (𝜇𝜇 = 𝑒𝑒𝜏𝜏
𝑚𝑚𝑐𝑐
∗). 𝑚𝑚𝑐𝑐

∗ is equal to the 𝑚𝑚𝑏𝑏
∗  

(geometric average: 𝑚𝑚𝑏𝑏
∗ = �𝑚𝑚∥

∗𝑚𝑚⊥
∗ 2�

1/3
) for spherical pockets (𝐾𝐾 = 𝑚𝑚∥

∗

𝑚𝑚⊥
∗ = 1), although in 

general they are different. For ellipsoidally shaped Fermi surfaces (𝐾𝐾 ≠ 1), the effective 

anisotropy 𝐾𝐾∗ parameter can be expressed as: 

 
𝑲𝑲∗ = �

𝒎𝒎𝒄𝒄
∗

𝒎𝒎𝒄𝒄
∗�

𝟑𝟑/𝟐𝟐

=
(𝟐𝟐𝑲𝑲 + 𝟏𝟏)𝟑𝟑/𝟐𝟐

𝟑𝟑𝟑𝟑/𝟐𝟐𝑲𝑲
 Equation 7-1 

  

If the density of states mass is held constant, increasing K (and K*) is good for 

thermoelectrics because it implies that the conductivity mass would decrease 

(corresponding to an increased mobility and conductivity). While anisotropy is generally 

beneficial, some Fermi surface anisotropy cannot be captured by simply considering 

ellipsoidally shaped carrier pockets. 

The ellipsoidal description of the Fermi surface works well in many cases, and it is 

easily extendible to systems with Nv>1 (or to systems with a Fermi-level dependent 

effective valley degeneracy, Nv*). However, some materials exhibit additional non-trivial 

topological features in their Fermi surface which cannot be accounted for in the ellipsoidal 

framework. For example, in PbTe, once the Fermi level becomes sufficiently degenerate, 

narrow threads are calculated to connect the individual L and 𝛴𝛴 bands, which results in an 

increasingly complex Fermi surface (as illustrated by the orange features in Figure 7-1b) 

[294, 295]. In cases where the Fermi surface has additional complexity, simply estimating 
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the Nv* is not sufficient to capture the potential enhancement to the thermoelectric quality 

factor, requiring the introduction of “the effective anisotropy factor”, K*, which can be 

expressed explicitly for ellipsoidally shaped pockets (Equation 7-1) but must be computed 

from the electronic structure in general. Recent work from several groups has shown that 

additional thermoelectric enhancement can occur as a result of Fermi surface complexity 

beyond simple spherically shaped, isolated pockets in the valence bands of both IV-VI 

[59, 294, 295] compounds and Si [361] (and perhaps other group IV or III-V materials with 

similar valence band structures). This can occur as a result of oddly shaped topological 

features  such as threads (Figure 7-1) [294] or warping resulting from multiple extrema 

with drastically different masses [59]. 

7.2c - Fermi Surface Area to Volume Ratio 

While Parker et al. have attributed topological enhancements to thermoelectric 

performance in the IV-VI systems to low dimensional Fermi-surface features, I propose an 

alternative explanation involving the Fermi surface area to volume ratio. If we consider the 

Boltzmann transport equation:  

 
𝝈𝝈𝒊𝒊𝒎𝒎 = � �−

𝒅𝒅𝒅𝒅
𝒅𝒅𝑬𝑬

�𝒗𝒗𝒊𝒊𝒗𝒗𝒎𝒎𝝉𝝉(𝟐𝟐)𝒅𝒅𝟑𝟑𝟐𝟐 =
𝑩𝑩𝑩𝑩

� �−
𝒅𝒅𝒅𝒅
𝒅𝒅𝑬𝑬

�𝒗𝒗𝒊𝒊𝒗𝒗𝒎𝒎𝝉𝝉𝑨𝑨𝟐𝟐
𝒅𝒅𝑬𝑬

𝒅𝒅𝑬𝑬/𝒅𝒅𝟐𝟐𝑩𝑩𝑩𝑩
 Equation 7-2 

 

where f is the Fermi distribution function, vi is the electron group velocity (in the ith 

direction), 𝜏𝜏 is the scattering time, k is proportional to the electron momentum, E is the 

electron energy, and Ak is the Fermi surface area (derived by simply substituting 𝑚𝑚3𝑘𝑘 =

𝑚𝑚𝛥𝛥𝑘𝑘 = 𝐴𝐴𝑘𝑘𝑚𝑚𝑘𝑘 where V is the volume of the Fermi surface). In the usual, energy-dependent, 

form of the Boltzmann transport equation, the density of states is substituted 𝐷𝐷(𝐸𝐸) = 𝑑𝑑𝑛𝑛
𝑑𝑑𝐸𝐸

=

1
(2𝜋𝜋)3

𝑑𝑑𝑉𝑉
𝑑𝑑𝐸𝐸

= 1
(2𝜋𝜋)3 𝐴𝐴𝑘𝑘

𝑑𝑑𝐸𝐸
𝑑𝑑𝐸𝐸/𝑑𝑑𝑘𝑘

. However, this form allows us to see that the in the degenerate limit 
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(i.e., where (−𝑑𝑑𝑑𝑑
𝑑𝑑𝐸𝐸

) ≈ 𝛿𝛿(𝐸𝐸 − 𝐸𝐸𝐹𝐹)) the electrical conductivity is simply proportional to the 

Fermi surface area. 

If we can also consider the carrier concentration: 

 𝒏𝒏 =
𝑽𝑽𝟐𝟐

(𝟐𝟐𝟑𝟑)𝟑𝟑 Equation 7-3 

 

which is simply equal to the volume enclosed by the Fermi surface divided by the volume 

of a single k-point (which the particle in a box model states is �2𝜋𝜋
𝐿𝐿∗
�
2
, where L* is the sample 

dimension). The ratio of the electronic conductivity to the carrier concentration gives a 

value proportional to the mobility; therefore, mobility is increased if the surface area to 

volume ratio of the Fermi surface is large, as is the case for many complex Fermi surface 

features (such as the threads in Figure 7-1). This effect will benefit zT by allowing a larger 

electronic conductivity without drastically altering the Fermi level. Recent work by Pei et 

al. shows that low effective mass (i.e., high mobility) is desirable for thermoelectric band 

engineering, contrary to popular opinion which suggests high mass is good [106]. I believe 

that these complex topological features likely produce high quality factors owing to their 

large surface area to volume ratios, and that in the case where appreciable amounts of 

carriers exist in these states, they can contribute significantly to zT. 

7.2d - Fermi Surface Complexity Factor (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) 

In this thesis chapter, I will attempt to describe the effects of valley degeneracy 

(and more broadly Fermi surface complexity) with a single parameter which we will call 

the “Fermi surface complexity factor”, (𝑁𝑁𝑣𝑣∗𝐾𝐾∗). I define the “Fermi surface complexity 

factor” as (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) = �𝑚𝑚𝑆𝑆
∗

𝑚𝑚𝑐𝑐
∗�
3/2

 where the conductivity mass, 𝑚𝑚𝑐𝑐
∗, and 𝑚𝑚𝑆𝑆

∗ is the effective mass 

obtained from Seebeck coefficient and carrier concentration using the SPB model. These 

two parameters are simply estimated from outputted Boltztrap calculation results and 
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reflect parameters that are observed directly in the thermoelectric quality factor. Using 

transport properties estimated from the Boltztrap code in conjunction with the calculated 

band structure properties, we show how to obtain a chemical potential dependent estimate 

of (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) for any compound that does not depend on the assumed scattering mechanism. 

We apply this technique across a large number of materials from the Materials Project 

high-throughput thermoelectric properties database to validate the theory. 

Single Parabolic Band Model from Boltztrap (𝑚𝑚𝑆𝑆
∗) 

Calculated Boltztrap data will be analyzed in the context of the Seebeck Pisarenko 

plot (S vs n), which is commonly used when analyzing experimental data. Using the 

Pisarenko plot, the data can easily be understood in the context of a single parabolic band 

model (also assuming constant scattering time) with the relevant fitting parameter being 

the effective mass (𝑚𝑚𝑑𝑑
∗ ). The equations are shown for the thermoelectric parameters as a 

function of the reduced chemical potential: 𝜂𝜂 = 𝜉𝜉
𝑘𝑘𝐵𝐵𝑇𝑇

 are shown below for an arbitrary power 

law dependence of the scattering time 𝜏𝜏(𝜖𝜖) = 𝜏𝜏0𝜖𝜖𝜆𝜆−1/2 (𝜆𝜆 = 1/2 for constant scattering 

time as is assumed in Boltztrap) [24]:  

 
𝑺𝑺(𝜼𝜼) =

𝟐𝟐𝑩𝑩
𝒅𝒅
�
(𝟐𝟐 + 𝝀𝝀)
(𝟏𝟏 + 𝝀𝝀)

𝑭𝑭𝟏𝟏+𝝀𝝀(𝜼𝜼)
𝑭𝑭𝝀𝝀(𝜼𝜼)  − 𝜼𝜼� Equation 7-4 

 

 
𝒏𝒏(𝜼𝜼) =

𝟏𝟏
𝟐𝟐𝟑𝟑𝟐𝟐

�
𝟐𝟐𝒎𝒎𝒅𝒅

∗𝟐𝟐𝑩𝑩𝑻𝑻
ℏ𝟐𝟐

�

𝟑𝟑
𝟐𝟐
𝑭𝑭𝟏𝟏/𝟐𝟐(𝜼𝜼) Equation 7-5 

 

where 𝜆𝜆 determines the scattering exponent, 𝐴𝐴 is the charge carrier concentration, and 𝑚𝑚𝑑𝑑
∗  

is the density of states effective mass. The effective mass can be determined using 

experimental parameters by supplying a measured Seebeck coefficient and n and solving 

for both 𝜂𝜂 and 𝑚𝑚𝑑𝑑
∗ . This method can also be applied to calculated Boltztrap data (S vs n) 

to get an estimate for 𝑚𝑚𝑑𝑑
∗ , which we will call 𝑚𝑚𝑆𝑆

∗ (effective mass from Seebeck coefficient). 
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Boltztrap Conductivity Mass (𝑚𝑚𝑐𝑐
∗) 

The conductivity effective mass is calculated directly from Boltztrap data by 

considering the electrical conductivity, σ. Boltztrap estimates the conductivity tensor 

(divided by 𝜏𝜏) by solving the Boltzmann transport equation (Equation 7-2) for a given 

calculated electronic structure and temperature. The conductivity effective mass tensor 

can be calculated as 𝒎𝒎𝒄𝒄
∗ = 𝐴𝐴𝑒𝑒2(𝝈𝝈/𝜏𝜏)−1 , where n is the carrier concentration, e is the 

fundamental electron charge, and 𝝈𝝈/𝜏𝜏 is the conductivity tensor divided by the scattering 

time. Interestingly, because Boltztrap computes the ratio of the conductivity tensor to the 

scattering time (𝝈𝝈/𝜏𝜏), the conductivity mass tensor (𝒎𝒎𝒄𝒄
∗) should represent the band 

structure and should not depend on the scattering time. One complaint about Boltztrap 

thermoelectric transport results is that they use the CRTA, which we know to not be valid 

for most experimental systems that show APS. By computing 𝑚𝑚𝑆𝑆
∗ and 𝒎𝒎𝒄𝒄

∗, which 

presumably do not depend on scattering, we hope to improve the applicability of the 

Boltztrap method to experimental results, especially in the context of band engineering, 

effective valley degeneracy (𝑁𝑁𝑣𝑣∗), and effective anisotropy factor (𝐾𝐾∗). 

7.3 - Results and Discussion 

7.3a - III-V Materials 

𝑁𝑁𝑣𝑣∗, the effective valley degeneracy, can be described as the number of valleys 

which conduct in parallel. In the case where only a single carrier pocket participates in 

conduction (not considering symmetry), 𝑁𝑁𝑣𝑣∗ = 𝑁𝑁𝑣𝑣. Many real semiconducting systems have 

multiple band extrema within 1.0 eV of the band edge, implying that a Fermi-level 

dependent effective valley degeneracy should be defined which more accurately 

represents the changing number of degenerate pockets. 𝑁𝑁𝑣𝑣∗ would reflect a smooth 

transition from one value of Nv to another as the carrier density the secondary pocket 

increases; this can be compared to the step-change in Nv that might be expected as the 
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energy of the secondary band is reached just by considering the symmetry of the extrema 

alone (green line in Figure 7-2a, 𝑁𝑁𝑣𝑣(𝐸𝐸𝐹𝐹) = ∑𝑁𝑁𝑣𝑣,𝑏𝑏H(𝐸𝐸𝐹𝐹 − 𝐸𝐸𝑏𝑏) where H is the Heaviside step 

function and Ei is the energy of the ith band extrema). As the first example of where the 

Fermi surface complexity factor is applied, we have considered AlAs, shown in Figure 7-

2. 

The calculated DFT electronic band structure and Boltztrap data analyzed using 

the (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) method (Materials Project, mp-2172) for AlAs are shown in Figure 7-2 along 

with the true valley degeneracy (Nv) computed directly from the band extrema positions 

and the Brillouin zone symmetry. The primary conduction band minimum occurs at the X-

point (X-c Nv=3), which agrees with the computed (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) = 3.5 within the band gap near 

the conduction band edge. As the Fermi level moves into the conduction band, we reach 

the Γ−𝑐𝑐 (Nv=1, 0.28 eV above X-c) and L-c (Nv=4, 0.51 eV above X-c) bands, the actual Nv 

increases to 4 and 8, respectively. The Fermi surface complexity factor (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) increases 

steadily from the band edge resulting in a value of 3.5 and 6.1 at the Γ−𝑐𝑐 and L-c band edge 

energies, respectively. (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) continues to increase reaching a maximum value of ~12.5. 

This is not quite as high as one might expect based on the high degeneracy of the K-c 

extrema (Nv=12, 0.75 eV below X-c) or the additional X2-c band (Nv=3, 0.78 eV below X-c). 

It is not readily apparent why the full 23 valleys are not observed through (𝑁𝑁𝑣𝑣∗𝐾𝐾∗), but it 

could be related to the fact that the thermopower is quite low (less than 20 μV/K) for these 

Fermi levels, meaning that we may be reaching the limit of the calculation resolution. Up 

until high energies, though, the thermoelectric Fermi surface complexity factor (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) 

seems to mirror the true Nv both qualitatively and quantitatively—indicating an anisotropy 

component, K*, that is likely near unity. 

If we consider the valence band of AlAs, it, like all of the III-V materials calculated 

in this chapter, consists of three degenerate bands, 𝛤𝛤1,2,3−v, each of which vary significantly 
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in effective mass (light hole, heavy hole, and split-off band). As a result, the Fermi surface, 

even though it is centered at the 𝛤𝛤 point, will have a non-trivial topology (as suggested by 

Mecholsky et al. for silicon [361]), which will result in a larger K* component to the Fermi 

surface complexity factor. For the valence band, (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) = 9, which is an overestimate 

relative to the expected degeneracy of Nv=3 for Γ1,2,3−𝑣𝑣. Mecholsky et al. shows that the 

warped Fermi surfaces, which result from the combination of light and heavy holes in 

silicon, lead to interesting consequences for the effective mass and conductivities in these 

systems [361], consistent with inflated (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) observed for Γ1,2,3−𝑣𝑣 here. 
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Figure 7-2: Boltztrap (300 K) and band structure calculation results for AlAs.  a) “Fermi surface complexity 
factor” and true valley degeneracy plotted as functions of the Fermi level across the valence and conduction 
band. b) The conductivity (𝑚𝑚𝑐𝑐

∗) and density of states (as estimated from Seebeck coefficient,  𝑚𝑚𝑆𝑆
∗) effective 

masses plotted as a function of Fermi energy. c) Band structure calculation results for AlAs with the near-edge 
extrema indicated and labelled.  

Upon calculating the Fermi surface complexity factor for other III-V compounds, 

we can see many analogs to the AlAs results. AlP (Figure 7-3a) shows a primary extrema 

at X-c (Nv=3), which (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) matches well; this is followed by the K-c (Nv=12, at 0.83 eV 

above X-c) and X2-c (Nv=3, at 0.85 eV above X-c) bands, which result in a small increase in 

(𝑁𝑁𝑣𝑣∗𝐾𝐾∗) up to >10.0 (although not until ~1.2 eV above X-c edge, which is not plotted). The 
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conduction band of AlSb in Figure 7-3b shows three near-converged bands with the 

primary L-c band (Nv=4) accompanied by a (Γ − 𝑋𝑋)−𝑐𝑐 (Nv=6 at 0.03 eV above L-c) and Γ−𝑐𝑐 

(Nv=1 at 0.05 eV above L-c). Because these two bands are so close in energy (within 2 

kBT at 300 K) to the conduction band edge, it is not surprising that (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) more closely 

reflects the sum of the degeneracy for these bands; even within the band gap, (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) ≈

14. This value is slightly larger than the expected Nv of 11, but it is possible that the nearby 

X-c band with Nv=3 could also be contributing as well. The conduction bands of GaN and 

GaSb are a bit simpler in that their primary conduction band lays at Γ−𝑐𝑐, resulting in both 

yielding (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) ≈ 1, as expected. In the case of GaAs, a secondary band at L-c (Nv=4, at 

0.69 eV above Γ−𝑐𝑐) results in an abrupt jump in the Fermi surface complexity factor up to 

about 7.0 around this energy. The details of each of the n-type III-V compounds’ effective 

masses, expected valley degeneracy, and Fermi surface complexity factors are included 

in Table 7-3. The valence bands of all of the III-V compounds in this work showed the 

same triply degenerate at the Γ1,2,3−𝑣𝑣 behavior as in AlAs (Figure 7-2c), some were 

followed by a doubly degenerate at L12-v; however, the L12-v extrema were usually much 

lower in energy and did not effect (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) much. In all cases, (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) was between 6 and 

10 at the valence band edge (Γ1,2,3−𝑣𝑣), which is greater than the expected Nv of 3.0, which 

should be attributed to the effective anisotropy factor (K*) as mentioned previously for 

AlAs. 
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Figure 7-3: Fermi surface complexity factor computed for several III-V compounds along with their expected 
valley degeneracies for a) AlP (mp-1550), b) AlSb (mp-2624), c) GaN (mp-830, Zinc Blende structure), and d) 
GaAs (mp-2534).  

Table 7-3: III-V semiconductor results regarding their true valley degeneracy extracted from band structure 
(CBM Loc, CB Deg), and their conductivity/Seebeck effective masses and Fermi surface complexity factors 
computed at the energy of the contributing band. Eg (band gap) is in eV, and MPID corresponds to the mp-id 
parameter used to store data within the Materials Project (materialsproject.org).  

 MPID Eg CBM Loc CB Deg m S 
* mc

* Nv
*K* 

AlN 1700 3.3
1 X,  Γ(0.69) 3, 1 0.81, 0.96 0.39, 0.47 3.0, 3.0 

AlP 1550 1.6
3 

X, K (0.83), X 
(0.85) 3, 12, 3 0.77, 1.39, 

1.46 
0.35, 0.51, 

0.51 3.3, 4.5, 4.9 

AlAs 2172 1.5 
X, Γ (0.28), L 

(0.51), K (0.75), 
X (0.78) 

3, 1, 4, 
12, 3 

0.81, 0.97, 
1.49, 1.94, 

2.00 

0.35, 0.42, 
0.45, 0.42, 

0.42 

3.6, 3.5, 6.1, 
9.8, 10.2 

AlSb 2624 1.2
3 

L, Γ-X (0.03), Γ 
(0.05), X (0.23), 

K (0.49) 

4, 6, 1, 
3, 12 

1.37, 1.49, 
1.53, 2.01, 

2.05 

0.24, 0.26, 
0.27, 0.32, 

0.36 

13.7, 13.8, 
13.9, 15.5, 

13.7 

GaN 830 1.5
7 Γ 1 0.15 0.16 0.9 
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GaP 2490 1.5
9 

L, Γ (0.00), Γ-X 
(0.05), X (0.26), 

K (0.63) 

4, 1, 6, 
3, 12 

1.23, 1.23, 
1.40, 1.93, 

2.08 

0.22, 0.22, 
0.24, 0.33, 

0.39 

13.0, 13.0, 
14.1, 14.2, 

12.3 
GaA

s 2534 0.1
9 Γ, L (0.69) 1, 4 0.03, 0.25 0.04, 0.12 0.8, 3.1 

GaS
b 1156 0 Γ, L (0.32), Γ-X 

(0.93) 1, 4, 6 0.02, 0.24, 
0.89 

0.03, 0.09, 
0.22 0.5, 4.7, 8.4 

InN 2041
1 0 Γ 1 0.09 0.12 0.66 

InP 2035
1 

0.4
7 Γ, L (0.93) 1, 4 0.055, 0.47 0.06, 0.27 0.84, 2.6 

InAs 2030
5 0 Γ, L (0.84) 1, 4 0.03, 0.43 0.05, 0.24 0.6, 2.4 

InSb 2001
2 0 Γ, L (0.44) 1, 4 0.03, 0.31 0.05, 0.13 0.5, 3.5 

7.3b - IV-VI Materials – The Lead Chalcogenides 

As mentioned previously (Chapter 4), the lead chalcogenides (including PbSe [65, 

261], PbS [13], and their alloys [12, 19, 25, 121, 362-366]) are known to be good 

thermoelectric materials. Much of this is attributed to their high valley degeneracy resulting 

from an accessible 𝛴𝛴−𝑣𝑣 band. I have applied the Fermi surface complexity factor analysis 

to both PbSe and PbS, the results of which are shown in Figure 7-4. The 𝛴𝛴−𝑣𝑣 band lays 

0.34 and 0.48 eV below L-v in PbSe and PbS, respectively (which agree with previous 

experiment [25, 261, 367] and theory [25, 126, 294]); the computed band offsets, expected 

valley degeneracies, and observed (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) are tabulated in Table 7-4. Both PbSe and PbS 

show good agreement with the expected Nv of 4 for both the conduction and valence 

bands within the band gap. As the Fermi level moves deeper into the valence band, the 

𝛴𝛴−𝑣𝑣 results in a peak in (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) of ~19 and 14 for PbSe and PbS, respectively (close to 

the expected value of 16). Additional extrema at the 𝑊𝑊−𝑣𝑣 (and (𝛤𝛤 − 𝑋𝑋)−𝑣𝑣 in the case of 

PbSe) result in another large peak in (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) up to values of ~41 (at 0.75 eV below L-v) 

and ~16 (at 0.94 eV below L-v) for PbSe and PbS, respectively. Each of the peak values 

agrees qualitatively with the expected Nv from band structure, although (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) is higher 

than expected for the W-v/(Γ − 𝑋𝑋)−𝑣𝑣 in PbSe, implying that K*>1. K* is likely larger due to 
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non-trivial topological features that are well-known to occur in the valence band of the lead 

chalcogenides beginning below the Σ−𝑣𝑣 band (as mentioned in a previous section and 

shown schematically in Figure 7-1) [121, 294, 295]. For PbSe and PbS, the conduction 

band only shows some deviations from (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) = 4 within the gap as expected from the 

primary conduction band, 𝜅𝜅−𝑐𝑐, but they do show some increase as the secondary 

conduction band (𝛴𝛴−𝑐𝑐) arises at 0.79 and 0.88 eV above the band edge, respectively 

(although the value does not reach the expected value of Nv=16). 

 

Figure 7-4: The Fermi surface anisotropy factor and valley degeneracy plotted for a) PbSe (mp-2201) and b) 
PbS (mp-21276). 

Table 7-4: Valence band parameters for several IV-VI materials of thermoelectric interest. Band gaps (Eg) is 
listed in eV. VBM locations are given by their position in k-space (which also corresponds to Figure 7-5 and 
Figure 7-4) as well as their energy offset relative to the valence band edge. We have included their degeneracy 
(individual band degeneracy, not cumulative, which is plotted in Figure 7-4a), the Seebeck/conductivity 
effective mass (𝑚𝑚𝑐𝑐

∗, 𝑚𝑚𝑆𝑆𝑒𝑒𝑒𝑒𝑏𝑏
∗ ), and the calculated effective valley degeneracy,  𝑁𝑁𝑣𝑣∗, at each corresponding band 
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edge energy. For SnTe, which had a very low band gap, values for the L band were taken 0.1 eV below the 
band edge so as to avoid strong bipolar effects.  

 MPID Eg VBM Loc VBM Nv m*
Seeb m*

c Nv
* 

PbTe 19717 0.81 

L, Σ (0.12), 𝛤𝛤-X 
(0.30), W (0.30), 

Σ2 (0.64), L2,3 
(0.76) 

4, 12, 6, 6, 12, 
4x2 

0.71, 2.29, 
4.82, 1.37, 

1.78 

0.17, 
0.23, 
0.33, 

0.41, 0.45 

8.7, 30.8, 
56.9, 6.0, 

7.9 

PbSe 20667 0.43 
L, Σ (0.34), W 

(0.68), 𝛤𝛤-X 
(0.72) 

4, 12, 6, 6 0.37, 1.49, 
2.87, 5.22 

0.16, 
0.30, 

0.47, 0.49 

3.5, 11.1, 
14.9, 
34.6 

PbS 21276 0.46 
L, Σ (0.48), W 

(0.94), 𝛤𝛤-X 
(1.00) 

4, 12, 6, 6 0.48, 2.19, 
4.13, 2.69 

0.20, 
0.38, 

0.63, 0.62 

3.8, 14.0, 
16.9, 9.0 

SnTe 1883 0.04 L, Σ (0.36), 𝛤𝛤-X 
(0.80), W (0.82) 

4, 12, 6, 6 0.16, 1.13, 
2.58, 3.16 

0.07, 
0.15, 

0.32, 0.32 

3.6, 21.7, 
22.4, 
30.7 

 

Of the lead chalcogenides, PbTe has been shown to yield the best thermoelectric 

performance. Experimentally, p-type PbTe stands out from PbSe and PbS mainly due to 

its relatively small band offset between the L-v and 𝛴𝛴−𝑣𝑣  bands and lower thermal 

conductivity [16, 123-126, 162]. Figure 7-5 shows the computed band structure, the Fermi 

surface complexity factor (𝑁𝑁𝑣𝑣∗𝐾𝐾∗), and computed effective masses for PbTe. Figure 7-5c 

shows the large number of near-edge bands that exist in PbTe in both the valence and 

conduction band.  I show the calculated (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) along with the expected valley degeneracy 

contributions for the different extrema (Figure 7-5a). Upon the Fermi level entering the 

valence band, we observe an (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) of ~9, which continues to increase as the Fermi level 

moves further into the band. While in the case of PbSe and PbS (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) ≈ 𝑁𝑁𝑣𝑣(𝜅𝜅−𝑣𝑣) = 4 

within the gap near the L-v edge, PbTe shows a larger band edge Fermi surface complexity 

factor. It is not clear whether this is due to some influence of the 𝛴𝛴−𝑣𝑣 band (which is 

computed to be only ~0.12 eV or 4.8 kBT at 300 K away from L-v), which would imply 𝑁𝑁𝑣𝑣∗>4, 

or whether it may be due to the fact that the L-v bands for PbTe are more ellipsoidal (K*>1) 

than in PbSe and PbS (observed in the literature [58, 59, 360].) As EF moves further into 
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the valence band, we can see a rapid increase in 𝑚𝑚𝑆𝑆
∗ (Figure 7-5b) because of the 

additional influence of the high degeneracy 𝛴𝛴−𝑣𝑣 band. Despite the large increase in 𝑚𝑚𝑆𝑆
∗, 

the conductivity mass increases only modestly, resulting in a rapid increase in (𝑁𝑁𝑣𝑣∗𝐾𝐾∗). 

Once the Fermi level reaches the 𝛴𝛴−𝑣𝑣 band, (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) reaches values near 30, much greater 

than the expected Nv of 16. The Fermi surface complexity factor continues to increase 

rapidly as we reach the W-v, (Γ − 𝑋𝑋)−𝑣𝑣, Σ2−𝑣𝑣, and 𝜅𝜅2,3−𝑣𝑣 at 0.3, 0.3, 0.64, 0.76 eV below L-

v, respectively, ultimately achieving an extremely large value around 60. While a large Nv 

is expected from the many valence bands (reaching a value of ~50, green line Figure 7-

5a), (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) rises very quickly and reaches a peak value that is much higher than expected 

(from the actual Nv). It is clear that (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) cannot be explained by simply considering 𝑁𝑁𝑣𝑣∗ 

alone, implying that K*>1. As mentioned previously, it is well-known that the lead 

chalcogenides exhibit a complicated Fermi surface that involves a merging of the separate 

pockets (L-v and 𝛴𝛴−𝑣𝑣) [59, 121, 294, 295], which is likely causing the large K* value (threads 

shown in Figure 7-1). As mentioned in the theory section, recent work from Parker et al. 

suggests that cylindrical “threads” that connect the L-v and 𝛴𝛴−𝑣𝑣 pockets result in a 

significantly larger Fermi surface area, which is suggested to benefit thermoelectric 

properties [295]. While Parker et al. attribute this to a reduced-dimensional Fermi surface, 

my explanation involves the large surface area to volume ratio of the states which these 

charge carriers occupy; this results in these thread-like states having an inherently large 

mobility and quality factor (and corresponding large K*).  

The conduction band also benefits from a large number of additional carrier 

pockets with high degeneracy. A corresponding analog of the 𝛴𝛴−𝑣𝑣 valence band is 

calculated to exist in the conduction band (𝛴𝛴−𝑐𝑐) at ~0.54 eV above the band edge. This 

band is accompanied by a doubly degenerate L-band (𝜅𝜅2,3−𝑐𝑐). Each of these bands 

increase (𝑁𝑁𝑣𝑣∗𝐾𝐾∗), resulting in a peak around this energy. It is important to note that 
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experimentally in n-type PbTe, it is difficult to dope to high enough carrier concentration 

to reach any secondary conduction bands [28]; Boltztrap calculations suggest that carrier 

concentrations of >2 × 1021 𝑐𝑐𝑚𝑚−3 to reach the 𝛴𝛴−𝑐𝑐 band (whereas experimentally, the 

maximum attainable nH has been shown to be an order of magnitude less [28]). 
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Figure 7-5: PbTe (mp-19717) calculated results for a) effective valley degeneracy (Nv*), b) density of states 
(m*S), and conductivity effective mass (m*c), as well as the near-edge band structure including the marked and 
labeled band extrema. The valence and conduction band edge is shown in a,b, as a dashed line (anything 
between the dashed lines exists within the band gap). c) The computed electronic structure of PbTe with the 
extrema indicated. 
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7.3c - High Throughput Computation 

The thermoelectric quality factor (B) which scales both the maximum carrier 

concentration dependent power factor and zT is well-known for the acoustic phonon 

scattering regime (Equation 2-6, the most commonly observed experimental scattering 

mechanism for thermoelectric materials at T>300 K) as outlined in the introduction of this 

chapter. While acoustic phonon scattering is the most common scattering mechanism for 

high temperature materials, constant scattering time (CRTA) is simpler to implement from 

a computational perspective (in Boltztrap) and is very commonly used to gauge a 

material’s thermoelectric performance directly from ab-initio calculations. Here, the 

thermoelectric quality factor can be derived as: 
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𝐓𝐓𝟓𝟓/𝟐𝟐 

Equation 7-6 

   

For constant scattering time, 𝐶𝐶𝜏𝜏=𝑐𝑐𝑏𝑏𝑛𝑛𝑠𝑠𝑡𝑡𝑏𝑏𝑛𝑛𝑡𝑡 ∝ (𝑁𝑁𝑣𝑣∗𝐾𝐾∗)2/3𝑚𝑚𝑑𝑑
∗ 1/2, indicating that 

systems with higher effective mass will lead to a higher predicted power factor and zT 

from Boltztrap calculations. The result is qualitatively different than 𝐶𝐶𝐴𝐴𝑃𝑃𝑆𝑆, which yields an 

inverse effective mass dependence proportional to 𝑅𝑅𝑣𝑣
𝑚𝑚𝑐𝑐
∗ (or (𝑅𝑅𝑣𝑣

∗𝐾𝐾∗)
𝑚𝑚𝑏𝑏
∗ = 𝑅𝑅𝑣𝑣∗

𝑚𝑚𝑐𝑐
∗); this implies that light 

mass, high mobility materials with high valley degeneracy are the best for thermoelectrics 

[106]. We propose the “Fermi surface complexity factor” (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) as a better predictor of 

thermoelectric performance than Boltztrap computed Seebeck coefficient or power factor 

because it scales directly with thermoelectric quality factor in both the APS and CRTA 

cases. Further, (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) links the desired thermoelectric quantities (B, conductivity, 

Seebeck coefficient) directly to the computed electronic band structure, specifically 
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through the valley degeneracy and effective anisotropy. Also, it captures the effects that 

complex Fermi surfaces can have on the thermoelectric performance through K*.  

The vast electronic structure database constructed through the Materials Project 

allows for large-scale screening of thermoelectric materials using Boltztrap (using the 

CRTA). Figure 7-6 shows the correlation between (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) and the calculated maximum 

(Fermi level-dependent) power factor for the large group of compounds (~2300 isotropic 

compounds) assuming a specific scattering time (𝜏𝜏 = 1 × 10−14 𝑉𝑉) at 600 K. We can see 

a good correlation between the calculated Fermi surface complexity factor and the 

maximum attainable power factor; this is expected since the quality factor for constant 

relaxation time is expected to scale as 𝐶𝐶𝜏𝜏=𝑐𝑐𝑏𝑏𝑛𝑛𝑠𝑠𝑡𝑡𝑏𝑏𝑛𝑛𝑡𝑡 ∝ (𝑁𝑁𝑣𝑣∗𝐾𝐾∗)2/3. The line on Figure 7-6 

indicates a 2/3 power slope, which is expressed well for the dataset.  

 

Figure 7-6: Maximum power factor for ~2300 cubic compounds plotted as a function of the Fermi surface 
complexity factor (evalulated at the Fermi level that yields the maximum power factor) at T=600 K). 
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7.4 - Conclusions 

I have introduced and examined the Fermi surface complexity factor (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) and 

its relation to the valley degeneracy. I have conceptually separated the components of the 

Fermi surface complexity factor into the effective valley degeneracy (𝑁𝑁𝑣𝑣∗) and the effective 

anisotropy factor (𝐾𝐾∗) by examining several known material systems (III-V and IV-VI 

semiconductors). We infer that the valence bands in both the III-V and IV-VI have a larger 

than expected Fermi surface complexity factor which exceeds the expected degeneracy, 

likely as a result of non-trivial topological features which enhance K*. We have also shown 

that (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) should not depend on the particular scattering time assumptions, making 

results from it more consistent with experimental observations that tend to exhibit acoustic 

phonon scattering. We have analyzed the maximum power factors and zT’s for a large set 

(>2300) cubic compounds from the Materials Project to show that (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) seems to 

correlate well with both the maximum power factor (and also the quality factor). Correlation 

of experiments and theory is of critical importance both for validating theoretical 

calculations and for interpretation of experimental results. High throughput Boltztrap 

calculations have the potential for high-impact in the community for their predictive power, 

by understanding these calculated properties in the context of band engineering they can 

have an even broader use. 

7.5 - Methods 

Ab-initio computations in this section are from the Materials Project database [368] 

and use DFT within the generalized gradient approximation (GGA) in the Perdew-Burke-

Ernzheroff (PBE) formulation [336]. Calculations were performed using the VASP software 

and projector augmented-wave pseudopotentials [369]. Bolztrap calculations were 

computed using the open-source code [30] along with analysis and plotting software from 

pymatgen [370]. 
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When considering the IV-VI materials, all materials are calculated in their most 

stable configuration (unit cells relaxed in the rock salt—space group 225—structure). In 

PbTe in particular, the calculated band gap from GGA is much larger than the experimental 

band gap (~0.3 eV at 300K for PbTe [126]). Literature suggests that if spin-orbit coupling 

(SOC) was considered, the gap shrinks to near the experimental values [85]; however, we 

have neglected SOC contributions in this work. Regardless, because Boltztrap 

calculations are done at T=300 K, the band gap itself should not greatly affect the results; 

the results would be affected most for Fermi levels within the band gap, which is not where 

the interesting valley degeneracy effects occur. The effect is also present in PbSe and 

PbS, although to a lesser extent. 

Specifically considering the III-V materials, we have assumed that each is 

crystallized in the zinc-blende crystal structure (Space group 216), even though the 

nitrides are more stable in the hexagonal Wurtzite structure [57, 371]. We also should 

point out that standard DFT calculations do not always provide the correct ordering of the 

conduction band minima (at the L, X, Γ, and K points) [57, 372, 373], but for simplicity and 

to illustrate the effectiveness of the Fermi surface complexity factor, we have assumed 

that these are the correct band structures and have interpreted all of the results with that 

assumption in mind (Wang et al. suggest the use of the modified Becke-Johnson semilocal 

exchange for values that more accurately represent experimental values [373, 374]). 

Further, while the valence band structure is similar among all of the III-V materials (triply 

degenerate at the 𝛤𝛤 point in the absence of spin-orbit coupling), we realize that if we had 

included spin-orbit coupling that one of the bands (the one with the intermediate effective 

mass) would split off from the other two (with the energy offset increasing with the mass 

of the elements). 
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High throughput calculations of the Fermi surface complexity factor are analyzed 

in Figure 7-6, but we limit the analysis to cubic compounds (maximum deviation in the 

eigenvalues of the power factor tensor of less than 3% along any direction) and those with 

a maximum optimum carrier concentration less than 1 × 1022 𝑐𝑐𝑚𝑚−3. We also chose to 

remove compounds that were not particularly stable or those that were metallic (we 

required that the energy above the convex hull be <0.05 eV, and that the band gap be 

>0.03 eV). 
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Chapter 8:  Conclusions and Future Directions 

In this work, I have shown several examples where band engineering concepts 

have been utilized to understand and optimize the thermoelectric properties over a range 

of material systems. Band structure characterization using optical properties, 

electronic/thermoelectric properties (as a function of doping), and ab-initio computed band 

structures provide detailed description of the electronic band structure in three important 

material systems.  

First, in the lead chalcogenides I have used optical and ab-initio techniques to 

characterize the temperature-dependent band gap. I conclude that the gap increase is 

due to both lattice expansion and electron-phonon interaction, and that a convergence 

temperature around 700 K is consistent with optical and ab-initio results. This realization 

that the convergence temperature is larger than previously believed is important and will 

likely lead to more well-refined temperature-dependent transport models, and it can be 

used to help distinguish the effectiveness of different band engineering strategies in these 

materials. 

Second, in the half Heusler (ZrNiSn) system I have considered several estimates 

for the band gap using optical, electronic, and ab-initio techniques. The optical absorption 

edge results allow us to obtain the true band gap value (0.13 eV), which we can use to 

resolve the weighted mobility ratio (A=5) between electrons and holes. I explain the 

excellent high temperature zT in n-type ZrNiSn by suppressed bipolar effects due to the 

low weighted mobility for holes in the system. I develop a chart to quickly determine the 

deviation of the Goldsmid Sharp band gap as the A value is varied. Future work can apply 

what was learned from the large A value in ZrNiSn, particularly with respect to how it 
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affects the estimate of the Goldsmid Sharp band gap, to rank bipolar suppression 

strategies in other classes of materials. 

CoSb3 is an important thermoelectric material with excellent thermoelectric 

properties upon filling of the internal voids. In this thesis, I have shown a series of Yb-filled 

CoSb3 skutterudite samples, which displayed a rapidly rising carrier concentration 

dependent effective mass (as obtained from the Seebeck coefficient). I have explained 

this rise in the context of multiple conduction band transport, which is supported by optical 

results that show two distinct absorption edges and ab-initio electronic structure 

calculations that show a high valley degeneracy (Nv=12) secondary conduction band. 

Further, these bands are found to shift together with temperature, resulting in convergence 

for T>700 K. While skutterudites are not often explored in detail for their electronic 

structure, this work suggests that the high degeneracy secondary conduction band plays 

a critical role in the electronic transport in filled CoSb3, particularly at high temperature. 

Future directions from this work will likely involve engineering the conduction band 

structure (possibly through alloying); CoSb3 shares many similar traits to other IV-VI 

materials where band engineering strategies have led to successful zT improvements. 

Lastly, the Fermi surface complexity factor (𝑁𝑁𝑣𝑣∗𝐾𝐾∗), as computed from Boltztrap 

results (and effective mass estimates), is a simple way to obtain an estimate of the Fermi-

level dependent effective valley degeneracy (𝑁𝑁𝑣𝑣∗). Further, complex Fermi surface features 

(such as threads or tubes) also manifest themselves by increasing the effective anisotropy 

factor (𝐾𝐾∗). This section provides an alternative to traditional presentation of computed 

Boltztrap data that is independent of the assumed scattering mechanism and directly 

reflects the electronic structure. I believe that this alternative is a better way to compare 

materials from a band structure perspective in a high-throughput sense. 
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While optical properties measurements in the thermoelectrics community are not 

commonplace, this thesis provides several important examples where they are critical in 

determining the band positions. By combining electronic, optical, and ab-initio computed 

properties, multiple band effects can be identified and ultimately utilized to improve the 

thermoelectric properties. Band engineering and multiple bands are a viable route towards 

improving zT, and future material enhancements will likely utilize these features. 
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