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Chapter 3:  Optical Properties of Doped Semiconductors 

3.1 - Introduction 

Because thermoelectric materials require doping for optimization of the thermoelectric 

properties, understanding how free carriers in a material affect its optical absorption spectrum is 

quite important. Figure 3-1 illustrates several ways that free carriers affect the optical absorption 

edge spectrum. Region 1 involves absorption of light via plasma oscillation of the bulk free 

electrons, the magnitude of which depends on the free carrier concentration. Region 2, 3, and 4 

are associated with interband transitions from the valence to conduction band, as indicated by 

the increase in absorption beginning around 0.28 eV. Region 2 precedes the onset of the 

absorption edge and is known as the Urbach tail, which is associated with randomly distributed 

impurities within the semiconductor. Regions 3 and 4 are associated with an increase or decrease 

in the band edge position, which occurs at high doping levels. The increase shown in Region 3 is 

known as the Burstein Moss shift, which occurs due to occupation of the conduction band edge 

upon heavy n-type doping. Region 4 indicates a decrease in the absorption edge energy 

(renormalization), which is thought to occur due to electron-electron repulsion. Each of these 

effects will be described in detail in the following sections. 

The difference between the optical (Burstein-Moss shifted) and true band gaps have been 

studied in many material systems [47, 67, 68] . It is important to have an understanding of the 

Burstein Moss shifts and band gap renormalization for a variety of semiconductor device 

applications where both the majority and minority carrier concentrations and band energies are 

necessary to optimize performance. In thermoelectric materials, though, there is often no 

distinction made between the true and optical gaps in doped materials [69, 70]. While the 

differences can be circumvented in the case of an undoped material (PbTe undoped binary), 

some thermoelectric materials may include simultaneous shifts in the doping level and the band 
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structure during doping that we would like to characterize in the context of band engineering. In 

this thesis chapter, I quantify the Burstein-Moss shift to the optical gap, and gap renormalization 

in Iodine doped PbTe measured using DRIFTS. We use measured Seebeck coefficients to 

estimate the chemical potential (𝜉𝜉), which is an improvement to simply measuring the Hall carrier 

concentration. Further, we attempt to improve upon renormalization estimates by self-consistently 

considering the band gap parameter for non-parabolic systems. 

 

Figure 3-1: Optical absorption edge spectrum of an Iodine doped PbTe sample indicating the four regions that 
are present when considering optical processes relevant to free carriers: 1. Free carrier absorption, 2. Urbach edge, 3. 
increase in the interband transition energy (Burstein Moss Shift), and 4. band gap reduction as a result of doping 
(renormalization). 

3.2 - Theory of Free Carrier Contributions to Optical Spectra 

3.2a - Free Carrier Absorption 

In n-type doped PbTe, a population of free carriers exists near the bottom of the 

conduction band, which can be excited to higher levels within the conduction via intraband 

transitions. The free electron cloud is perturbed by an incoming electric field, E. Solutions to the 

Maxwell equations take the form of: 𝑬𝑬 = 𝑬𝑬𝟎𝟎𝑒𝑒𝑖𝑖(𝒌𝒌∙𝒓𝒓−𝜔𝜔�̃�𝑡), (where �̃�𝑡 is the time), which yields the 

following form of the complex dielectric function (𝜖𝜖𝑐𝑐 = 𝜖𝜖1 + 𝑖𝑖𝜖𝜖2) [43]:  
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Here, 𝜏𝜏 is the Drude scattering time and the plasma frequency is defined as 𝜔𝜔𝑝𝑝 = � 𝑛𝑛𝑒𝑒2

𝑚𝑚∗𝜖𝜖∞
 . 

Using this model for the complex dielectric function, it is straightforward to obtain both the real 

and imaginary components of the refractive index, which can then be used to obtain the frequency 

dependent reflectivity and absorption coefficient. In the case of specular reflection (perfect mirror 

reflection), the measured reflectivity can be compared to the result expected from the real and 

imaginary components of the refractive index, which can be derived from the dielectric function 

using [43]: 

 𝝐𝝐𝟏𝟏 = 𝒏𝒏𝒓𝒓𝟐𝟐 − 𝜿𝜿𝒓𝒓𝟐𝟐  Equation 3-2 
   

 𝝐𝝐𝟐𝟐 = 𝟐𝟐𝒏𝒏𝒓𝒓𝜿𝜿𝒓𝒓 Equation 3-3 
 

and 

 
𝑹𝑹 =

(𝟏𝟏 − 𝒏𝒏𝒓𝒓)𝟐𝟐 + 𝜿𝜿𝒓𝒓𝟐𝟐

(𝟏𝟏 + 𝒏𝒏𝒓𝒓)𝟐𝟐 + 𝜿𝜿𝒓𝒓𝟐𝟐
 Equation 3-4 

 
which can be shown to yield a minimum in R near 𝜔𝜔𝑝𝑝 as a result of resonance between the photon 

and the bulk free electrons. The frequency at which the minimum occurs is roughly equal to 𝜔𝜔𝑝𝑝 

(minor corrections have been shown by Lyden et al. [71]). In a diffuse reflectance spectrum, which 

is transformed by the Kubelka Munk function (Equation 2-1), this instead yields a maximum in 

F(R). These maxima are observed in the more heavily doped PbTe samples (nH> 2×1019 cm-3) 

where the plasma frequency becomes larger than 0.05 eV as shown in Figure 3-2a. The 

measured peak in the Kubelka Munk function occurs even though the Praying Mantis diffuse 

reflectance instrument attempts to minimize the specular component of the reflection.  
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In terms of the absorption coefficient, 𝛼𝛼, (which Diffuse Reflectance attempts to capture), 

when  𝜔𝜔 ≫ 𝜏𝜏−1: 𝛼𝛼𝐹𝐹𝐹𝐹 ∝
𝑛𝑛𝑒𝑒2

𝑛𝑛𝑟𝑟 𝑐𝑐 𝑚𝑚∗ 𝜏𝜏 𝜔𝜔2 where n is the number of free carriers, e is the elementary charge 

of an electron, nr is the real refractive index, and c is the speed of light [43]. In order to isolate 

interband transitions, these features were fit and subtracted with a power law (𝑦𝑦 = 𝑎𝑎𝑥𝑥𝑏𝑏 + 𝑐𝑐). In 

almost all cases, the exponent, b, followed the expectation for Drude carriers of b = -2.  

 

Figure 3-2: DRIFTS Spectra showing free carrier absorption contributions in Iodine doped PbTe. a) an 
increasing free carrier absorption with doping level, b) an example of a power law fit to the free carrier absorption. 

3.2b - Urbach Edge 

The second region of Figure 3-1 shows the exponential onset of absorption just below the 

fundamental absorption edge, known as the Urbach Edge (or Urbach tail). This effect is known to 

occur across a wide range of semiconductors, although ones with high impurity contents (or 

disordered alloys) have the largest Urbach tails (shown later in Chapter 4.3 for PbSe/SrSe alloys). 

The Urbach tail is thought to be related to the random distribution of impurity atoms in the material. 

For measurements done in this thesis, we also observe an approximately exponential increase in 

absorption just below the band edge [44, 45]. In this chapter, we will not treat the Urbach edge 

explicitly as we will attempt to fit the direct transitions instead, although its implications will be 

discussed.  

~

~

a) b) 
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3.2c - Burstein Moss Shift/Renormalization 

Region 3, shown in Figure 3-1, indicates an upward shift in the absorption edge energy 

with doping. Heavily doped semiconductors (most good thermoelectric materials) have free carrier 

contributions to the optical absorption that can complicate the estimate of the band gap. In the 

case of degenerately doped semiconductors, this can cause large errors in the estimate of the 

true band gap on the order of the value of the chemical potential, 𝜉𝜉 (which can be more than 0.1 

eV in heavily doped samples).  Since the early 1950’s, it has been known that the measured 

optical band gap (𝐸𝐸𝑔𝑔,𝑜𝑜𝑝𝑝𝑡𝑡) tends to change with increasing doping [72, 73]. These effects have even 

been considered in lead chalcogenides by some authors [74-77].  

In the case of a degenerately doped n-type semiconductor, states near the conduction 

band edge become partially occupied. As a result, the photon energy required for excitation 

across a direct band gap becomes higher, increasing by �1 + 𝑚𝑚𝑐𝑐𝑐𝑐
∗

𝑚𝑚𝑣𝑣𝑐𝑐
∗ � 𝜉𝜉 in the case of direct 

transitions (where 𝑚𝑚𝑐𝑐𝑏𝑏,𝑣𝑣𝑏𝑏
∗  are the conduction and valence band effective mass respectively, see 

Figure 3-3). This results in an increase in the optical band gap (𝐸𝐸𝑔𝑔,𝑜𝑜𝑝𝑝𝑡𝑡), known as the Burstein-

Moss shift [45, 72, 75, 78]. The thermal gap, 𝐸𝐸𝑔𝑔,𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒 = 𝐸𝐸𝑔𝑔 + 𝜉𝜉, is relevant to transport properties 

and minority carrier excitation across the gap. The true band gap, Eg, has been shown both 

experimentally through optical measurements [47, 79, 80] and theoretically [47, 79, 80] to be 

reduced as the carrier concentration increases in heavily doped semiconductors, known as band 

gap renormalization (Δ𝑅𝑅𝑅𝑅)12,35-37. Renormalization has been attributed to Coulombic repulsion of 

the electrons and/or exchange interactions.  Thus, the optical band gap can be expressed as: 

 
𝑬𝑬𝒈𝒈,𝒐𝒐𝒑𝒑𝒐𝒐 = 𝑬𝑬𝒈𝒈 + �𝟏𝟏 +

𝒎𝒎𝒄𝒄𝒄𝒄
∗

𝒎𝒎𝒗𝒗𝒄𝒄
∗ � 𝝃𝝃 − 𝚫𝚫𝑹𝑹𝑹𝑹 Equation 3-5 

  
which is illustrated in Figure 3-3. 
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Figure 3-3: Optical excitations across the gap in a direct gap n-type degenerately doped semiconductor 
illustrating the Burstein-Moss shift and the different estimates of the band gap. Dashed line indicates the chemical 
potential, 𝜉𝜉. 

While the accepted view of PbTe is as a direct gap semiconductor, with evidence shown 

both experimentally [77, 81-83] and theoretically [84-86], some confusion existed in the early 

optical measurements. Some authors had also obtained good, linear fits to 𝛼𝛼1/2 vs. ℏ𝜔𝜔 expected 

for indirect transitions [27, 37]. Similar to these reports, the absorption spectra in this thesis also 

provide a linear  𝛼𝛼1/2 vs. ℏ𝜔𝜔  region where the extrapolated band-gap energy is slightly lower 

(~30-60 meV) than those fit for direct transitions. Scanlon suggests that this difference can be 

attributed to indirect transitions where a phonon is absorbed [37, 58], although single phonon 

energies are at most 12 meV or less based on a Debye temperature of 140 K [87] and neutron 

scattering experiments [88]. Prakash suggests Scanlon’s observation could also be interpreted 

as merely a coincidental fit due to the Urbach tail (exponential decrease in density of states below 

the band edge) [39]. Although we believe that Prakash’s interpretation is correct in PbTe, many 

materials do exhibit both indirect and direct transitions with some energy separation. For example, 

in germanium, both direct and indirect transitions exist with the indirect gap occurring first at about  

0.63 eV and direct transitions beginning at  0.81 eV [89]. The indirect portion involves a slow rise 

in absorption coefficient over a long energy range (~100 cm-1 over ~0.2 eV) while the direct 

absorption on the other hand gives a much steeper rise over a shorter period (~104 cm-1 over 

~0.05 eV). As a result, the direct gap is much more easily observed, particularly if both direct and 

 

𝜉𝜉 
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indirect transitions occur at close to the same energies. The absorption coefficient of PbTe 

changes ~104 cm-1 over ~0.05 eV [76, 90], suggesting that it is a direct gap semiconductor.  

Recently, it has been suggested that the true gap value is convoluted by mid-gap defect 

states [91]. While these states may affect the measured optical band gap, we see no significant 

contribution from localized states in the transport properties; transport measurements are 

characteristic of itinerant (delocalized) carriers giving metal-like transport behavior (implying that 

the suggestion of mid-gap states is incorrect). Therefore, the measured absorption edge was 

assumed to be associated with the band edge in PbTe and not mid gap defect states, although 

defect states near the band edge could certainly play a role in band gap renormalization. 

3.3 - Results and Discussion 

Figure 3-4a shows the raw absorption spectra for a series of Iodine doped PbTe samples. 

A steady shift in the absorption edge to higher energies is observed with an increase in dopant 

concentration. Upon fitting and subtracting the free carrier absorption portions at low energies 

and applying the Tauc transformation for direct gaps, the gaps can be extrapolated as shown in 

Figure 3-4b. The results of the extrapolations are plotted (Figure 3-4c) as the optical band gap 

(𝐸𝐸𝑔𝑔,𝑜𝑜𝑝𝑝𝑡𝑡) as a function of charge carrier concentration for Iodine and Lanthanum doped PbTe and 

Bromine doped PbSe. 

 

a) 
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Figure 3-4: Normalized Kubelka Munk function for PbTe1-xIx for a) raw data, and b) absorption coefficient 
direct gap extrapolation using the Tauc method. c) the resulting optical band gaps for n-type PbTe doped w/ either 
Iodine or Lanthanum and PbSe doped with Bromine. 

Figure 3-4 clearly shows the increasing optical band gap with doping level; in order to 

quantify this effect, 𝜉𝜉 must be determined. In many cases, the chemical potential is estimated by 

the 0 K limit of the parabolic band (Fermi energy, EF): 𝐸𝐸𝐹𝐹 = ℏ2

2𝑚𝑚∗ (3𝜋𝜋2𝑛𝑛)2/3 [68, 92, 93]. While this 

may be a good estimate for degenerate systems (at low temperature, high doping) with parabolic 

band shapes, a better estimate involves solving the more general temperature-dependent 

expression, 𝑛𝑛 =  ∫ 𝐷𝐷(𝐸𝐸)𝑓𝑓(𝐸𝐸, 𝜉𝜉,𝑇𝑇)𝑑𝑑𝐸𝐸∞
0 , where D is the density of states and f is the Fermi 

b) 

c) 
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distribution function. It is well known that many semiconductors, including lead chalcogenides, 

deviate significantly from parabolic behavior. Ravich has developed an adaptation of the Kane 

band model for application to the lead chalcogenides, which has shown excellent agreement to 

experimental transport data [16, 28, 58]. Using Ravich’s solution of the Kane band model applied 

to lead chalcogenides, n can be calculated by numerically integrating Equation 3-6: 

 
𝒏𝒏 =

(𝟐𝟐𝐦𝐦∗𝒌𝒌𝑩𝑩𝑻𝑻)
𝟑𝟑
𝟐𝟐

𝟑𝟑𝝅𝝅𝟐𝟐ℏ𝟑𝟑
𝑭𝑭𝟎𝟎 𝟎𝟎
𝟑𝟑/𝟐𝟐  Equation 3-6 

 
where 𝑚𝑚𝑑𝑑,0

∗  is the band edge density of states effective mass, 𝜖𝜖 is the dimensionless energy (𝜖𝜖 =

𝐸𝐸
𝑘𝑘𝐵𝐵𝑇𝑇

), β is the non-parabolicity parameter (𝛽𝛽 = 𝑘𝑘𝐵𝐵𝑇𝑇
𝐸𝐸𝑔𝑔

 from Ravich), η is the reduced chemical 

potential 𝜂𝜂 = 𝜉𝜉
𝑘𝑘𝐵𝐵𝑇𝑇

, and 𝐹𝐹𝑛𝑛 𝑒𝑒
𝑚𝑚 = ∫ �−𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
� 𝜖𝜖𝑛𝑛(𝜖𝜖 + 𝛽𝛽𝜖𝜖2)𝑚𝑚[(1 + 2𝛽𝛽𝜖𝜖) + 2]𝑒𝑒/2𝑑𝑑𝜖𝜖∞

0  (a modified version of 

the Fermi integrals, Equation 2-17, from Wang et al [65]). The band gap parameter in the Kane 

model was assumed to have a constant value equal to that of the undoped PbTe, 0.295 eV, for 

this analysis. Calculation of the chemical potential as a function of the true carrier concentration 

is rather straightforward, but in order to compare to the Hall carrier concentration the Hall factor, 

rH, is needed [58, 65]: 

 
𝒓𝒓𝑯𝑯 =

𝟑𝟑𝟑𝟑(𝟑𝟑 + 𝟐𝟐)
(𝟐𝟐𝟑𝟑 + 𝟏𝟏)𝟐𝟐

𝑭𝑭𝟎𝟎 𝟎𝟎
𝟏𝟏/𝟐𝟐 𝑭𝑭𝟎𝟎 𝟎𝟎

𝟑𝟑/𝟐𝟐

� 𝑭𝑭𝟎𝟎 −𝟐𝟐
𝟏𝟏 �

𝟐𝟐  Equation 3-7 

where K (as defined in Chapter 2) is the anisotropy factor (𝐾𝐾 = 𝑚𝑚∥
∗

𝑚𝑚⊥
∗ = 3.58 [16]). By combining 

Equation 3-6 and Equation 3-7 to obtain 𝑛𝑛𝐻𝐻 = 𝑛𝑛/𝑟𝑟𝐻𝐻, we can plot the chemical potential dependent 

carrier concentration in Figure 3-5b (blue line) for 𝑚𝑚𝑑𝑑,0
∗ = 0.276 𝑚𝑚𝑒𝑒.  

Alternatively, using the Boltzmann transport equation, it is possible to obtain an estimate 

for the chemical potential, 𝜉𝜉, directly from the measured Seebeck coefficient with no assumption 

about the band edge effective mass (Equation 3-8) [58, 65]. The raw Seebeck data as a function 

of Hall carrier concentration is plotted in Figure 3-5a along with an S vs nH (Pisarenko plot) 
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estimate using the SKB model (Red line derived using Equation 3-6, Equation 3-7, and Equation 

3-8). 

 
𝑺𝑺 =

𝒌𝒌𝑩𝑩
𝒆𝒆

(
𝑭𝑭𝟏𝟏 −𝟐𝟐
𝟏𝟏

𝑭𝑭𝟎𝟎 −𝟐𝟐
𝟏𝟏 − 𝜼𝜼) Equation 3-8 

  

 

Figure 3-5: a) Seebeck Pisarenko plot for PbTe:I with the SKB model curve (𝑚𝑚𝑑𝑑0
∗ =0.276) shown. b) The change 

in electrochemical potential (calculated from the Seebeck coefficient) with Hall carrier concentration as a result of 
doping. 

Figure 3-5b shows the calculated chemical potential for each iodine doped sample 

calculated using a single Kane band model both from the room temperature Seebeck 

measurements (solid points) along with the result assuming 𝑚𝑚𝑑𝑑0
∗ = 0.276 𝑚𝑚0 (best fit of the 

Seebeck vs. nH Pisarenko plot). Here, we can see the chemical potential for the most heavily 

doped samples increases to ~0.15 eV from the band edge. It is important to note that the chemical 

potential estimate can vary significantly depending on the particular band model. In the case of a 

single parabolic band, the chemical potential can change to be as much as 50% higher for the 

same doping level and effective mass (this is a consequence of the Kane band effective mass 

increasing with increasing 𝜉𝜉). Once 𝜉𝜉 is known, it is possible to estimate the true gap from the 

optical gap measurement (Figure 3-4). As an alternative to the Tauc method, the gap can also be 

fit using the spectral Fermi distribution. 

The Fermi distribution can be projected onto the unperturbed interband absorption as a 

multiplicative factor, shown in Equation 3-9. This technique and similar methods have been 

a) b) 
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performed on a variety of materials, including lead chalcogenides [75, 76] and other materials [47, 

67, 72, 94].  

 𝜶𝜶(ℏ𝝎𝝎) ∝ 𝜶𝜶𝟎𝟎(ℏ𝝎𝝎) [𝟏𝟏 − 𝒇𝒇(ℏ𝝎𝝎, 𝜻𝜻,𝑻𝑻) ] Equation 3-9 
  

Here, 𝛼𝛼0 is the absorption for an unpopulated conduction band at T = 0 K, which for parabolic 

bands is proportional to 𝛼𝛼0 = �ℏ𝜔𝜔−𝐸𝐸𝑔𝑔
ℏ𝜔𝜔

=
�ℏ𝜔𝜔−�𝐸𝐸𝑔𝑔,𝑜𝑜𝑜𝑜𝑜𝑜−�1+

𝑚𝑚𝑐𝑐𝑐𝑐
∗

𝑚𝑚𝑣𝑣𝑐𝑐
∗  �𝜉𝜉�

ℏ𝜔𝜔
. f is the Fermi distribution, which is 

related to the photon energy as  𝑓𝑓(ℏ𝜔𝜔, 𝜉𝜉,𝑇𝑇) =  �1 + exp� ℏ𝜔𝜔−𝐸𝐸𝑔𝑔,𝑜𝑜𝑜𝑜𝑜𝑜

�1+
𝑚𝑚𝑐𝑐𝑐𝑐
∗

𝑚𝑚𝑣𝑣𝑐𝑐
∗ �𝑘𝑘𝐵𝐵𝑇𝑇

��

−1

. The second term in 

Equation 3-9 represents the electronic excitation probability based on the electron population from 

Fermi distribution. 

Using the proportionality factor and the band gap value as a fitting parameter, it is possible 

to obtain an estimate for the optical band gap using Equation 3-9 from the measured absorption 

spectra for a given estimate of the chemical potential, 𝜉𝜉 (as estimated from either room 

temperature Seebeck and nH measurements). A resulting fit of the absorption spectrum is shown 

in Figure 3-6. The Fermi projection method gives the optical band gap near the inflection point in 

the absorption (where the slope is the largest) which agrees approximately in trend obtained 

directly from extrapolation (Figure 3-7a) using the Tauc method (although is ~0.01-0.02 eV higher 

in energy than the Tauc extrapolation method). Results regarding the Fermi broadening method 

are included in a separate work on the subject [95], but in the remainder of this thesis I will only 

present results using the Tauc extrapolations (Figure 3-4). 



3-12 
 

 

Figure 3-6: Fermi spectra method projecting the Fermi distribution onto the absorption edge in PbTe1-yIy, y 
=0.0012 fit with a Fermi function. 
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Figure 3-7: a) Optical band gaps fit from optical data via extrapolation by the Tauc plot method along with 
the curve fit from Equation 3-5. b) The true band gap, calculated from the optical gaps by Eg = Eg,opt - 2𝜉𝜉 and the 
curve, which is given by 𝐸𝐸𝑔𝑔 = 𝐸𝐸𝑔𝑔,0 − 𝛥𝛥𝑅𝑅𝑅𝑅, c) Band gap renormalization fit: experimental data is 𝛥𝛥𝑅𝑅𝑅𝑅 = 𝐸𝐸𝑔𝑔,0 − (𝐸𝐸𝑔𝑔,𝑜𝑜𝑝𝑝𝑡𝑡 −
2𝜉𝜉), and the curve is given by the best fit: 𝛥𝛥𝑅𝑅𝑅𝑅 = 𝐴𝐴𝑛𝑛1/3 + 𝛥𝛥𝑅𝑅𝑅𝑅,0. 

Figure 3-7a shows an increasing optical gap with doping level, known as a Burstein-Moss 

shift. As the doping level increases, the chemical potential in the conduction band moves upward, 

which creates occupied states nearest the band edge, requiring a higher energy photon for 

excitation of a carrier across the gap. Following Figure 3-3 (and Equation 3-5) we can relate the 

optical gap to the true gap, Eg. 

Figure 3-7b shows the calculated true band gap with respect to doping level. In the case 

of direct transitions and similar valence and conduction band effective masses, the true band gap 

is related to the optical gap and the chemical potential as 𝐸𝐸𝑔𝑔 = 𝐸𝐸𝑔𝑔,𝑜𝑜𝑝𝑝𝑡𝑡 − 2𝜉𝜉. The result shows a 

true gap that decreases significantly with doping level relative to the undoped sample. This is a 

a) b) 

c) 
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result of the measured optical gap not increasing as quickly as expected based on the calculated 

𝜉𝜉. Over the same doping range, the optical band gap is expected to increase by 2𝜉𝜉, which is as 

much as 0.25 eV at the highest doping levels (see Figure 3-5b). The measured optical band gap, 

however, only increases by about 0.1 eV (about 40% of 𝜉𝜉) at the highest doping levels, as shown 

in Figure 3-4c/Figure 3-7c/Table 3-1. The relatively small change of the optical band gap can be 

explained by the renormalization effect, which is an estimate of band gap shrinkage with doping.  

The true band gap in Equation 3-5 can also be represented by 𝐸𝐸𝑔𝑔 = 𝐸𝐸𝑔𝑔0 − Δ𝑅𝑅𝑅𝑅, which 

accounts for a shrinking band gap with increasing doping level as shown in Figure 3-7b.  Both 

experimental and theoretical work has been done to determine how the band gap should shrink 

due to renormalization with increasing electron concentration in many semiconductors, including 

Si [47, 67, 80, 96, 97], Ge [96, 98], GaAs [68, 99], InP [79], ZnO [100], and other materials. The 

effect has proven important in semiconductor device applications where the material’s band gap 

determines many device characteristics and careful engineering is required to optimize 

performance. Gap narrowing is thought to be due to a combination of effects, including electron-

electron exchange interactions, electron-donor interactions, and band tailing [92, 96, 99, 101].  

Electron-electron exchange has been shown to scale as 𝑛𝑛1/3 in a weakly interacting free electron 

gas [96, 100]; this model is often used empirically, although the specific form may vary with crystal 

and energy band structure. The effect can be thought of as Coulombic repulsion between free 

electrons in the material, which scales as 1/r where r is the mean distance between electrons.  

Experimentally, attempts have been made to empirically fit the theoretical models. Most use a 

combination of power laws whose prefactors can in theory be calculated, but are most often used 

as fitting parameters [92, 96, 101]. Drabkin et al., for example, suggest that for PbTe a shift on 

the order of 10 meV is reasonable for doping levels on the order of 1×1019 cm-3 [76]. When using 

the method of Mahan [101], however, the predicted reduction is actually 1 meV or less due to the 

large static dielectric constant (𝜖𝜖(0) ≈ 400) for PbTe. Following other references [47, 67], I fit the 
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experimental renormalization to an n1/3 power law, including an additional constant term: Δ𝑅𝑅𝑅𝑅 =

𝐴𝐴𝑛𝑛1/3 + Δ𝑅𝑅𝑅𝑅,0. The resulting renormalized fits to the optical and true band gap are plotted in Figure 

3-7a and b and are also shown in Table I. Figure 3-7c shows the fitting result for the band gap 

renormalization. Note that the renormalization does not become non-zero until 𝜉𝜉 becomes greater 

than the conduction band edge (𝑛𝑛 > 3 × 1018𝑐𝑐𝑚𝑚−3), which is likely the origin of the Δ𝑅𝑅𝑅𝑅,0 term. 

As mentioned previously, Figure 3-7b shows that the true band gap is rather significantly 

reduced at high doping levels due to renormalization. For the three most heavily doped samples, 

𝜉𝜉, as estimated from Seebeck coefficient measurements, does not continue to increase at the 

same rate. As a result, the true gap approaches an approximately constant value of close to 0.12 

eV. The n1/3 model (blue curve Figure 3-7c) deviates significantly for carrier concentrations > ~ 

6×1019 cm-3, resulting in an estimated gap (blue curve in Figure 3-7b) that rapidly approaches 

zero above this value. While the magnitude of the gap reduction is consistent with previously 

published results for heavily doped n-type PbTe [76], Si [47, 67, 80], Ge [98], and III-V 

semiconductors [68, 79, 92, 99, 102], the apparent discrepancy at high doping is not easily 

explained using the simple n1/3 empirical model.  

Table 3-1: Band gap and transport measurement results and chemical potential estimates for this series of 
samples. All Kane band calculations assume a constant β parameter of ~ 0.087 corresponding to the undoped sample 
band gap of 0.295 eV. Chemical potentials are presented for the experimental results (𝜉𝜉𝑆𝑆𝑒𝑒𝑒𝑒𝑏𝑏) and model curve fit (𝜉𝜉𝑆𝑆𝑆𝑆𝑆𝑆) 
as shown in Figure 3-5b. 

x nH 
(1018 cm-3) 

S 
(μV/K) 𝜉𝜉𝑆𝑆𝑒𝑒𝑒𝑒𝑏𝑏(eV) 𝜉𝜉𝑆𝑆𝑆𝑆𝑆𝑆(m*=0.276) 

(eV) 
Eg, opt 

(eV) 
ΔRN,Seeb 

(eV) 
0.0000 - -275.0 -0.030 -0.033 0.295 - 
0.0000 - -230.0 -0.014 -0.022 0.300 - 
0.0004 5.87 -141.4 0.021 0.020 0.304 0.033 
0.0007 1.03 -109.6 0.039 0.040 0.308 0.066 
0.0012 1.76 -81.9 0.067 0.063 0.315 0.114 
0.0020 2.94 -66.9 0.086 0.089 0.324 0.142 
0.0028 41.1 -52.0 0.108 0.108 0.331 0.181 
0.0035 51.4 -43.0 0.126 0.123 0.349 0.199 
0.0040 58.7 -42.9 0.115 0.132 0.355 0.170 
0.0055 80.8 -41.5 0.122 0.156 0.364 0.175 
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0.0100 147 -33.7 0.147 0.208 0.388 0.201 
 

In Ravich’s adapation of the Kane band model for lead chalcogenides, the band gap is a 

necessary parameter as it determines the non-parabolicity parameter: 𝛽𝛽 = 𝑘𝑘𝐵𝐵𝑇𝑇
𝐸𝐸𝑔𝑔

. Because optical 

measurements have shown evidence that the band gap in PbTe decreases with doping as a result 

of band gap renormalization, it might be expected to affect the band structure. The band edge 

effective mass in narrow gap semiconductors has been suggested to scale with the band gap 

itself [43, 58]. Ravich suggests that the energy dependent effective mass for a Kane type band 

should scale with energy as: 

 
𝒎𝒎∗ (𝐄𝐄) =

ℏ𝟐𝟐𝑬𝑬𝒈𝒈
𝟐𝟐𝑷𝑷𝟐𝟐

�𝟏𝟏 +
𝟐𝟐𝑬𝑬
𝑬𝑬𝒈𝒈
� Equation 3-10 

  
where P is the k∙p matrix element coupling states between the valence and conduction band 

states. The first term in Equation 3-10 will scale proportional to the band gap, while the second 

will scale with E, the electron energy. More often, the prefactor in Equation 3-10 is treated as a 

constant, m0*, the band edge effective mass, which can be fit from the Seebeck coefficient vs. 

carrier concentration Pisarenko plot. Because 𝑚𝑚0
∗  appears to be independent of carrier 

concentration, we will only consider the effect of the changing band gap with carrier concentration 

through the 𝛽𝛽 parameter. In order to probe the effect that this might have on the estimate of 𝜉𝜉 and 

on the transport properties, a self-consistent approach should be taken.  

For all of the previous calculations, 𝜉𝜉 has been estimated from Seebeck coefficient 

(Equation 3-8) assuming a constant Kane-band non parabolicity parameter (β used in Equation 

3-6 and Equation 3-8) given by assuming a constant band gap of 0.295 eV equal to that of the 

undoped PbTe sample. Using the fitted n-dependent gap, 𝐸𝐸𝑔𝑔(𝑛𝑛) = 𝐸𝐸𝑔𝑔0 − Δ𝑅𝑅𝑅𝑅(𝑛𝑛), we can self-

consistently calculate n as a function of chemical potential with an n-dependent nonparabolicity 
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parameter, 𝛽𝛽 = 𝑘𝑘𝐵𝐵𝑇𝑇
𝐸𝐸𝑔𝑔(𝑛𝑛)

. The new value of chemical potential was used to recalculate the gap 

renormalization using the measured optical gaps, which was again fit to an n1/3 model. After 

several iterations, the true gap appeared to converge to a self-consistent value that was slightly 

higher than the previous result which assumed constant gap. The self-consistent solution yielded 

renormalization fitting parameters of 5.6×10-8 eV-cm and -0.068 eV for A and Δ𝑅𝑅𝑅𝑅,0 respectively. 

The band gap, both fit (solid lines) and values from measurements (circles), for the model 

assuming either constant 𝛽𝛽 or an n-dependent band gap (self-consistent) are shown Figure 3-8a. 

Renormalized gap estimates were obtained using measured optical gaps and estimates of the 

chemical potential, 𝜉𝜉 (shown in Figure 3-8b). Here, we can see the effect of the band-

nonparabolicity as an increasing band mass (which increases even faster as a result of the 

increasing 𝛽𝛽(𝑛𝑛)) as the chemical potential rises. At higher carrier concentrations (> 6×1019 cm-3), 

the renormalized band gap value becomes quite small, and errors become larger. Therefore, the 

fact that Eg(n) levels out at about 0.15 eV may not be entirely accurate since the renormalization 

effect is probably overestimated at these doping levels. Further, PbTe is known to deviate from 

the Kane model for carrier concentrations greater than this value [103]. As in the constant β case, 

the empirical n1/3 model may be an oversimplification in the case of increasingly narrow gap and/or 

the simplified Kane model of Ravich may also be an oversimplification that cannot account for 

these narrowing phenomena. 
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Figure 3-8: Iterative self-consistent calculation of the true gap Eg(n) in accordance with the Kane band model. 
a) The result of different n-dependences of the Kane β parameter solid points represent Eg(n) in accordance with eq. 5 
(using the measured optical gaps and chemical potential estimates from Seebeck coefficient measurements). b) The 
estimated chemical potential as a function of doping level  for different dependence of β on n; lines represent constant 
effective band edge mass (Eq 3, m*0 = 0.276 m0) and points are calculated from Seebeck coefficient (Equation 3-8).  

In the discussion of electronic band structure it is typically a good first approximation to 

assume the energy bands remain unaltered with doping, which is known as the rigid band 

approximation. Lee, Mahanti et al. give some examples where this may not be a good assumption 

a) 

b) 
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in Na doped PbTe [104], although the picture here is complicated by the variability in supercell 

calculations [105]. Experimental measurements of effective mass can show small changes in 

band structure when using different dopants (I or La) in PbTe, which may be related to a shift in 

band gap [106]. With the goal of band engineering in mind it is important to be able to determine 

how the band structure is altered as the materials are doped or alloyed. While the rigid band 

approximation works reasonably well for many purposes, this work demonstrates that the 

differences between true, optical, and thermal band gaps can be different of the order 0.1 eV 

(which is quite large considering that the true gap is ~0.3 eV). Most thermoelectric materials are 

heavily doped semiconductors, where Eg,thermal >> kBT. In this case, the electronic transport 

properties (electrical conductivity, Seebeck coefficient) are determined by a single band. The most 

obvious effect of a narrower band gap is the increased concentration of minority carriers. In the 

case of most thermoelectric materials, though, the chemical potential (and thermal band gap) is 

deep enough into the band to where the minority carrier population is still very small compared to 

majority carriers. The effects become more apparent at high temperatures when kBT ~ Eg,th. 

While band gap renormalization is a well-known effect that has been studied in many 

materials, it is generally ignored in thermoelectric materials in favor of the rigid band 

approximation. This work suggests that in PbTe, both approximations may play a role. While it 

seems unlikely that the band gap in these materials might become very small (or even approach 

zero), it is possible that if the material is sufficiently doped that bipolar effects can be suppressed 

and a reduced band gap would not be observed by measuring transport properties alone. 

 Ultimately, the apparent discrepancy between the rigid band approximation and band gap 

renormalization may need to be resolved with either better estimates of the n-dependent chemical 

potential, or by developing models that more accurately represent renormalization in narrow gap 

semiconductors. Perhaps more experimental and theoretical work should be done to investigate 

what is different in narrow gap, heavily doped semiconductors from other wider gap materials. 
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3.4 - Conclusions 

While the DRIFTS method of measuring the optical absorption has been thoroughly 

explored in catalysis research and has shown some promise for quantifying chemical reactions 

[107, 108], as a technique for precisely determining band gaps in semiconductors diffuse 

reflectance has only proven semi quantitative (±0.1 eV) [109].  In this work, we detect shifts in 

band gap with doping of smaller than 0.01 eV in PbTe, which can be analyzed and understood 

by methods consistent with current optical literature. 

While electronic transport measurements are essential to determine the thermoelectric 

properties for a materials, optical properties can provide more direct knowledge about the band 

structure. Although diffuse reflectance measurements have been used in the thermoelectric 

literature, it is important to account for the effects of electron population on the absorption edge 

that alters the observed optical band gap. I have shown a series of iodine doped PbTe samples 

which show a Burstein-Moss shift in the absorption edge to higher frequencies. Using estimates 

of the chemical potential from transport measurements, it is possible to estimate that a gap 

shrinkage of up to 0.15 eV occurs at the highest doping levels appropriate to thermoelectrics. An 

attempt is made to fit the true gap self-consistently using a single band Kane model, which results 

in a slight reduction in the renormalization. While renormalization has been shown to fit well-

behaved empirical models for many semiconductors, PbTe (and possibly other narrow gap 

materials) exhibits a Burstein-Moss shift and renormalization that are not readily explained with 

existing theory. 

Ultimately, even though the effects of doping on the value of the band gap can be 

accounted for using the Burstein Moss shift and renormalization effects, measuring undoped 

samples is preferred when trying to distinguish small shifts due to temperature or alloying. But, 

because it is not always possible to make undoped samples due to intrinsic defects, it is important 
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to be able to recognize the effects of doping on optical absorption edge measurements and to be 

able to account for differences that they may cause.  


