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Chapter 7:  The “Fermi Surface Complexity Factor” and Band 

Engineering using Ab-Initio Boltzmann Transport Theory 

7.1 - Introduction: 

The calculation of electronic and thermoelectric properties from electronic band structure 

has received much attention lately with the increasing availability of computational algorithms and 

resources. Ab-initio calculations are very important from a materials’ design perspective in that 

they provide insight into the underlying electronic states which give rise to the experimentally 

measurable thermoelectric properties. However, the correlation between calculated properties 

and experimental results is usually qualitative at best. Therefore, it is important to understand the 

methods that experimentalists use to characterize the thermoelectric performance, specifically in 

the context of what the results indicate about the electronic band structure. In this chapter, I 

develop a new metric for determining the viability of thermoelectric materials whose electronic 

band structures have been computed using ab-initio techniques. The approach is rooted in the 

Boltzmann transport equation, but is based on semi-empirical band engineering models and 

techniques which have been discussed in detail in this thesis (Single Parabolic Band model, 

Chapter 2). I will also give examples where band engineering (and degeneracy) simply cannot 

capture the behavior, which is most often observed in systems where additional topological 

features (in addition to individual isolated carrier pockets) arise. I apply the technique over a large 

database of compounds to show its validity in high-throughput screening of thermoelectric 

materials, allowing computations to overcome the limitations of the constant relaxation time 

approximation (CRTA). 

One of the primary modes of improving thermoelectric materials as described in this thesis 

is through band engineering and carrier concentration tuning, which are often explained using the 

SPB model where the material properties are assumed to be described by a “free electron”-like 
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band which has a certain effective mass (𝑚𝑚𝑆𝑆
∗). In terms of the thermoelectric figure of merit, 𝑧𝑧𝑧𝑧, 

the optimum value can be found to scale with the quality factor (assuming acoustic phonon 

scattering, “APS”),  𝐵𝐵𝐴𝐴𝐴𝐴𝑆𝑆 = 2𝑘𝑘𝐵𝐵
2ℏ

3𝜋𝜋
𝑁𝑁𝑣𝑣𝐶𝐶𝑙𝑙

𝑚𝑚𝑐𝑐
∗𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑

2  𝜅𝜅𝐿𝐿
𝑧𝑧 (Equation 2-6) [18]. Of the parameters in B, the valley 

degeneracy (Nv) has been shown to be critical for improving zT and has been a theme of this 

thesis (Chapter 4, 6) [16, 26, 132, 169, 170]. 

7.2 - Theory 

7.2a - Effective Valley Degeneracy (Nv*) 

The valley degeneracy, Nv, is defined as the number of distinct Fermi surfaces that exist 

at the Fermi level. The origin of these degeneracies can be broken down into two parts: 𝑁𝑁𝑣𝑣 =

𝑁𝑁𝑣𝑣,𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁𝑣𝑣,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, where Nv,symmetry is related to the degeneracy of a given point in the Brillouin 

zone and Nv,band is the number of individual bands that are converged at that energy. Valley 

degeneracy manifests itself by increasing the density of states effective mass, 𝑚𝑚𝑏𝑏
∗ = 𝑁𝑁𝑣𝑣

2/3𝑚𝑚𝑏𝑏
∗ , 

relative to the single valley effective mass (𝑚𝑚𝑏𝑏
∗ ). This is beneficial for the thermoelectric properties 

because each individual pocket conducts in parallel while the overall Fermi level does not rise too 

quickly (allowing the material to simultaneously maintain a high Seebeck coefficient and high 

mobility). In order to maximize Nv, a highly symmetric Brillouin zone (usually found in high 

symmetry materials) with band extrema that exist at low symmetry points lead to the highest 

degeneracy. As described in Figure 7-1, for PbTe and other IV-VI materials,  the primary valence 

band exists at the L-point  with Nv,symmetry=4, and a Nv,band=1, and a secondary along the 𝛴𝛴 line with 

a high degeneracy of Nv,symmetry=12, and a Nv,band=1.  

While many semiconductors have their band extrema at the 𝛤𝛤 point (the point of highest 

symmetry in the Brillouin zone), this point only has a Nv,symmetry of 1 (although some have multiple 

degenerate bands, Nv,band>1). The lead chalcogenides, on the other hand, have their primary 

valence band (and conduction band) at the L-point with 𝑁𝑁𝑣𝑣,𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 4  and a secondary valence 
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band along the 𝛴𝛴 line, which shows high degeneracy of 12 (see Figure 7-1a).  While utilizing the 

first Brillouin zone’s symmetry to simply count the number of degenerate valleys for a given 

material’s primary band is useful for determining whether multiple Fermi surfaces might benefit 

the thermoelectric performance, it is not always clear how to quantify how much nearby bands 

contribute. Because electron transport is dominated by charge carriers with energies within a few 

kBT of the Fermi level, additional bands must be in this range to lead to zT enhancement: for 

example, if EF is well within the first L-band, but is more than a few kBT from the 𝛴𝛴 band, then the 

transport properties will only reflect that of the L-band (as we observed for low carrier 

concentrations in SnTe—Chapter 4).  

In this thesis chapter, I develop a metric that can serve as an estimate of valley 

degeneracy in the regions where multiple bands participate in conduction. The “effective valley 

degeneracy”, 𝑁𝑁𝑣𝑣∗, describes the Fermi level-dependent valley degeneracy in order to estimate the 

benefit to thermoelectric properties (and quality factor, B) as a result of these multi-band effects. 

This concept has been used before to indicate band convergence: for example, in PbTe, where 

the L and 𝛴𝛴 bands are converged the effective degeneracy is thought to be ≈ 16 [16, 18]. Beyond 

cases where well-defined, individual charge carrier pockets exist, additional enhancements to 

thermoelectric performance can occur as a result of non-trivial topological features.  
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Figure 7-1: Fermi surfaces in p-type PbTe a) showing the separate ellipsoids of the L and Σ bands (leading to 
an increase in Nv*) and b) showing the more complex Fermi surface once both the L and Σ bands have been reached, 
which leads to an increase in K*. 

7.2b - Effective Anisotropy Factor (K*) 

The single parabolic band model (SPB model) has an electron energy dispersion given by 

𝐸𝐸 = ℏ2𝑘𝑘2

2𝑚𝑚∗ , where k is the electron wave vector. The common definition for the effective mass is 

defined by the curvature of the band in k-space 𝑚𝑚∗ = ℏ2 �𝑏𝑏
2𝐸𝐸

𝑏𝑏𝑘𝑘2
�
−1

 (light bands have high curvature, 

heavy bands have shallow). However, real systems often show deviations from the single 

parabolic band case and require a more complicated description (possibly anisotropic Fermi 

surfaces, non-parabolic bands, as shown in Chapters 3,4, and 6, multiple valley contributions, 

and/or more complicated topological features), and the band curvature definition of effective mass 

is not necessarily applicable nor does it even display the expected trend for the property of interest 

for systems that display these complex features. 

In terms of Fermi surface anisotropy, only in the simplest cases can Fermi surfaces can 

be described as spherical pockets; many materials contain more complicated Fermi surfaces. The 

next level of complexity involves ellipsoidally shaped pockets where the anisotropy parameter, 
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𝐾𝐾 = 𝑚𝑚∥
∗

𝑚𝑚⊥
∗ , quantifies the degree of anisotropy. Many systems show Fermi surface anisotropy both 

experimentally and theoretically, such as Si/Ge [55, 56], IV-VI materials [58, 59, 360], III-V 

materials [57], and others [61]. The conductivity effective mass (which is a single valley harmonic 

average along each direction): 𝑚𝑚𝑐𝑐
∗ = 3�𝑚𝑚∥

∗−1 + 2𝑚𝑚⊥
∗ −1�

−1
 determines the carrier mobility (𝜇𝜇 = 𝑠𝑠𝑒𝑒

𝑚𝑚𝑐𝑐
∗). 

𝑚𝑚𝑐𝑐
∗ is equal to the 𝑚𝑚𝑏𝑏

∗  (geometric average: 𝑚𝑚𝑏𝑏
∗ = �𝑚𝑚∥

∗𝑚𝑚⊥
∗ 2�

1/3
) for spherical pockets (𝐾𝐾 = 𝑚𝑚∥

∗

𝑚𝑚⊥
∗ = 1), 

although in general they are different. For ellipsoidally shaped Fermi surfaces (𝐾𝐾 ≠ 1), the 

effective anisotropy 𝐾𝐾∗ parameter can be expressed as: 

 
𝑲𝑲∗ = �

𝒎𝒎𝒃𝒃
∗

𝒎𝒎𝒄𝒄
∗�

𝟑𝟑/𝟐𝟐

=
(𝟐𝟐𝑲𝑲 + 𝟏𝟏)𝟑𝟑/𝟐𝟐

𝟑𝟑𝟑𝟑/𝟐𝟐𝑲𝑲
 Equation 7-1 

  

If the density of states mass is held constant, increasing K (and K*) is good for thermoelectrics 

because it implies that the conductivity mass would decrease (corresponding to an increased 

mobility and conductivity). While anisotropy is generally beneficial, some Fermi surface anisotropy 

cannot be captured by simply considering ellipsoidally shaped carrier pockets. 

The ellipsoidal description of the Fermi surface works well in many cases, and it is easily 

extendible to systems with Nv>1 (or to systems with a Fermi-level dependent effective valley 

degeneracy, Nv*). However, some materials exhibit additional non-trivial topological features in 

their Fermi surface which cannot be accounted for in the ellipsoidal framework. For example, in 

PbTe, once the Fermi level becomes sufficiently degenerate, narrow threads are calculated to 

connect the individual L and 𝛴𝛴 bands, which results in an increasingly complex Fermi surface (as 

illustrated by the orange features in Figure 7-1b) [294, 295]. In cases where the Fermi surface 

has additional complexity, simply estimating the Nv* is not sufficient to capture the potential 

enhancement to the thermoelectric quality factor, requiring the introduction of “the effective 

anisotropy factor”, K*, which can be expressed explicitly for ellipsoidally shaped pockets (Equation 

7-1) but must be computed from the electronic structure in general. Recent work from several 
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groups has shown that additional thermoelectric enhancement can occur as a result of Fermi 

surface complexity beyond simple spherically shaped, isolated pockets in the valence bands of 

both IV-VI [59, 294, 295] compounds and Si [361] (and perhaps other group IV or III-V materials 

with similar valence band structures). This can occur as a result of oddly shaped topological 

features  such as threads (Figure 7-1) [294] or warping resulting from multiple extrema with 

drastically different masses [59]. 

7.2c - Fermi Surface Area to Volume Ratio 

While Parker et al. have attributed topological enhancements to thermoelectric 

performance in the IV-VI systems to low dimensional Fermi-surface features, I propose an 

alternative explanation involving the Fermi surface area to volume ratio. If we consider the 

Boltzmann transport equation:  

 
𝝈𝝈𝒊𝒊𝒊𝒊 = � �−

𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

�𝒗𝒗𝒊𝒊𝒗𝒗𝒊𝒊𝝉𝝉(𝒌𝒌)𝒅𝒅𝟑𝟑𝒌𝒌 =
𝑩𝑩𝑩𝑩

� �−
𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

�𝒗𝒗𝒊𝒊𝒗𝒗𝒊𝒊𝝉𝝉𝑨𝑨𝒌𝒌
𝒅𝒅𝒅𝒅

𝒅𝒅𝒅𝒅/𝒅𝒅𝒌𝒌𝑩𝑩𝑩𝑩
 Equation 7-2 

 

where f is the Fermi distribution function, vi is the electron group velocity (in the ith direction), 𝜏𝜏 is 

the scattering time, k is proportional to the electron momentum, E is the electron energy, and Ak 

is the Fermi surface area (derived by simply substituting 𝑑𝑑3𝑘𝑘 = 𝑑𝑑𝑉𝑉𝑘𝑘 = 𝐴𝐴𝑘𝑘𝑑𝑑𝑘𝑘 where V is the volume 

of the Fermi surface). In the usual, energy-dependent, form of the Boltzmann transport equation, 

the density of states is substituted 𝐷𝐷(𝐸𝐸) = 𝑏𝑏𝑏𝑏
𝑏𝑏𝐸𝐸

= 1
(2𝜋𝜋)3

𝑏𝑏𝑑𝑑
𝑏𝑏𝐸𝐸

= 1
(2𝜋𝜋)3 𝐴𝐴𝑘𝑘

𝑏𝑏𝐸𝐸
𝑏𝑏𝐸𝐸/𝑏𝑏𝑘𝑘

. However, this form allows 

us to see that the in the degenerate limit (i.e., where (− 𝑏𝑏𝑑𝑑
𝑏𝑏𝐸𝐸

) ≈ 𝛿𝛿(𝐸𝐸 − 𝐸𝐸𝐹𝐹)) the electrical conductivity 

is simply proportional to the Fermi surface area. 

If we can also consider the carrier concentration: 



7-7 
 

 𝒏𝒏 =
𝑽𝑽𝒌𝒌

(𝟐𝟐𝟐𝟐)𝟑𝟑 Equation 7-3 

 

which is simply equal to the volume enclosed by the Fermi surface divided by the volume of a 

single k-point (which the particle in a box model states is �2𝜋𝜋
𝐿𝐿∗
�
2
, where L* is the sample dimension). 

The ratio of the electronic conductivity to the carrier concentration gives a value proportional to 

the mobility; therefore, mobility is increased if the surface area to volume ratio of the Fermi surface 

is large, as is the case for many complex Fermi surface features (such as the threads in Figure 

7-1). This effect will benefit zT by allowing a larger electronic conductivity without drastically 

altering the Fermi level. Recent work by Pei et al. shows that low effective mass (i.e., high mobility) 

is desirable for thermoelectric band engineering, contrary to popular opinion which suggests high 

mass is good [106]. I believe that these complex topological features likely produce high quality 

factors owing to their large surface area to volume ratios, and that in the case where appreciable 

amounts of carriers exist in these states, they can contribute significantly to zT. 

7.2d - Fermi Surface Complexity Factor (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) 

In this thesis chapter, I will attempt to describe the effects of valley degeneracy (and more 

broadly Fermi surface complexity) with a single parameter which we will call the “Fermi surface 

complexity factor”, (𝑁𝑁𝑣𝑣∗𝐾𝐾∗). I define the “Fermi surface complexity factor” as (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) = �𝑚𝑚𝑆𝑆
∗

𝑚𝑚𝑐𝑐
∗�
3/2

 

where the conductivity mass, 𝑚𝑚𝑐𝑐
∗, and 𝑚𝑚𝑆𝑆

∗ is the effective mass obtained from Seebeck coefficient 

and carrier concentration using the SPB model. These two parameters are simply estimated from 

outputted Boltztrap calculation results and reflect parameters that are observed directly in the 

thermoelectric quality factor. Using transport properties estimated from the Boltztrap code in 

conjunction with the calculated band structure properties, we show how to obtain a chemical 

potential dependent estimate of (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) for any compound that does not depend on the assumed 
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scattering mechanism. We apply this technique across a large number of materials from the 

Materials Project high-throughput thermoelectric properties database to validate the theory. 

Single Parabolic Band Model from Boltztrap (𝑚𝑚𝑆𝑆
∗) 

Calculated Boltztrap data will be analyzed in the context of the Seebeck Pisarenko plot (S 

vs n), which is commonly used when analyzing experimental data. Using the Pisarenko plot, the 

data can easily be understood in the context of a single parabolic band model (also assuming 

constant scattering time) with the relevant fitting parameter being the effective mass (𝑚𝑚𝑏𝑏
∗ ). The 

equations are shown for the thermoelectric parameters as a function of the reduced chemical 

potential: 𝜂𝜂 = 𝜉𝜉
𝑘𝑘𝐵𝐵𝑇𝑇

 are shown below for an arbitrary power law dependence of the scattering time 

𝜏𝜏(𝜖𝜖) = 𝜏𝜏0𝜖𝜖𝜆𝜆−1/2 (𝜆𝜆 = 1/2 for constant scattering time as is assumed in Boltztrap) [24]:  

 
𝑺𝑺(𝜼𝜼) =

𝒌𝒌𝑩𝑩
𝒆𝒆
�
(𝟐𝟐 + 𝝀𝝀)
(𝟏𝟏 + 𝝀𝝀)

𝑭𝑭𝟏𝟏+𝝀𝝀(𝜼𝜼)
𝑭𝑭𝝀𝝀(𝜼𝜼)  − 𝜼𝜼� Equation 7-4 

 

 
𝒏𝒏(𝜼𝜼) =

𝟏𝟏
𝟐𝟐𝟐𝟐𝟐𝟐

�
𝟐𝟐𝒎𝒎𝒅𝒅

∗𝒌𝒌𝑩𝑩𝑻𝑻
ℏ𝟐𝟐

�

𝟑𝟑
𝟐𝟐
𝑭𝑭𝟏𝟏/𝟐𝟐(𝜼𝜼) Equation 7-5 

 

where 𝜆𝜆 determines the scattering exponent, 𝑛𝑛 is the charge carrier concentration, and 𝑚𝑚𝑏𝑏
∗  is the 

density of states effective mass. The effective mass can be determined using experimental 

parameters by supplying a measured Seebeck coefficient and n and solving for both 𝜂𝜂 and 𝑚𝑚𝑏𝑏
∗ . 

This method can also be applied to calculated Boltztrap data (S vs n) to get an estimate for 𝑚𝑚𝑏𝑏
∗ , 

which we will call 𝑚𝑚𝑆𝑆
∗ (effective mass from Seebeck coefficient). 

Boltztrap Conductivity Mass (𝑚𝑚𝑐𝑐
∗) 

The conductivity effective mass is calculated directly from Boltztrap data by considering 

the electrical conductivity, σ. Boltztrap estimates the conductivity tensor (divided by 𝜏𝜏) by solving 

the Boltzmann transport equation (Equation 7-2) for a given calculated electronic structure and 
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temperature. The conductivity effective mass tensor can be calculated as 𝒎𝒎𝒄𝒄
∗ = 𝑛𝑛𝑒𝑒2(𝝈𝝈/𝜏𝜏)−1 , 

where n is the carrier concentration, e is the fundamental electron charge, and 𝝈𝝈/𝜏𝜏 is the 

conductivity tensor divided by the scattering time. Interestingly, because Boltztrap computes the 

ratio of the conductivity tensor to the scattering time (𝝈𝝈/𝜏𝜏), the conductivity mass tensor (𝒎𝒎𝒄𝒄
∗) 

should represent the band structure and should not depend on the scattering time. One complaint 

about Boltztrap thermoelectric transport results is that they use the CRTA, which we know to not 

be valid for most experimental systems that show APS. By computing 𝑚𝑚𝑆𝑆
∗ and 𝒎𝒎𝒄𝒄

∗, which 

presumably do not depend on scattering, we hope to improve the applicability of the Boltztrap 

method to experimental results, especially in the context of band engineering, effective valley 

degeneracy (𝑁𝑁𝑣𝑣∗), and effective anisotropy factor (𝐾𝐾∗). 

7.3 - Results and Discussion 

7.3a - III-V Materials 

𝑁𝑁𝑣𝑣∗, the effective valley degeneracy, can be described as the number of valleys which 

conduct in parallel. In the case where only a single carrier pocket participates in conduction (not 

considering symmetry), 𝑁𝑁𝑣𝑣∗ = 𝑁𝑁𝑣𝑣. Many real semiconducting systems have multiple band extrema 

within 1.0 eV of the band edge, implying that a Fermi-level dependent effective valley degeneracy 

should be defined which more accurately represents the changing number of degenerate pockets. 

𝑁𝑁𝑣𝑣∗ would reflect a smooth transition from one value of Nv to another as the carrier density the 

secondary pocket increases; this can be compared to the step-change in Nv that might be 

expected as the energy of the secondary band is reached just by considering the symmetry of the 

extrema alone (green line in Figure 7-2a, 𝑁𝑁𝑣𝑣(𝐸𝐸𝐹𝐹) = ∑𝑁𝑁𝑣𝑣,𝑖𝑖H(𝐸𝐸𝐹𝐹 − 𝐸𝐸𝑖𝑖) where H is the Heaviside step 

function and Ei is the energy of the ith band extrema). As the first example of where the Fermi 

surface complexity factor is applied, we have considered AlAs, shown in Figure 7-2. 
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The calculated DFT electronic band structure and Boltztrap data analyzed using the 

(𝑁𝑁𝑣𝑣∗𝐾𝐾∗) method (Materials Project, mp-2172) for AlAs are shown in Figure 7-2 along with the true 

valley degeneracy (Nv) computed directly from the band extrema positions and the Brillouin zone 

symmetry. The primary conduction band minimum occurs at the X-point (X-c Nv=3), which agrees 

with the computed (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) = 3.5 within the band gap near the conduction band edge. As the Fermi 

level moves into the conduction band, we reach the Γ−𝑐𝑐 (Nv=1, 0.28 eV above X-c) and L-c (Nv=4, 

0.51 eV above X-c) bands, the actual Nv increases to 4 and 8, respectively. The Fermi surface 

complexity factor (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) increases steadily from the band edge resulting in a value of 3.5 and 6.1 

at the Γ−𝑐𝑐 and L-c band edge energies, respectively. (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) continues to increase reaching a 

maximum value of ~12.5. This is not quite as high as one might expect based on the high 

degeneracy of the K-c extrema (Nv=12, 0.75 eV below X-c) or the additional X2-c band (Nv=3, 0.78 

eV below X-c). It is not readily apparent why the full 23 valleys are not observed through (𝑁𝑁𝑣𝑣∗𝐾𝐾∗), 

but it could be related to the fact that the thermopower is quite low (less than 20 μV/K) for these 

Fermi levels, meaning that we may be reaching the limit of the calculation resolution. Up until high 

energies, though, the thermoelectric Fermi surface complexity factor (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) seems to mirror the 

true Nv both qualitatively and quantitatively—indicating an anisotropy component, K*, that is likely 

near unity. 

If we consider the valence band of AlAs, it, like all of the III-V materials calculated in this 

chapter, consists of three degenerate bands, 𝛤𝛤1,2,3−v, each of which vary significantly in effective 

mass (light hole, heavy hole, and split-off band). As a result, the Fermi surface, even though it is 

centered at the 𝛤𝛤 point, will have a non-trivial topology (as suggested by Mecholsky et al. for 

silicon [361]), which will result in a larger K* component to the Fermi surface complexity factor. 

For the valence band, (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) = 9, which is an overestimate relative to the expected degeneracy 

of Nv=3 for Γ1,2,3−𝑣𝑣. Mecholsky et al. shows that the warped Fermi surfaces, which result from the 

combination of light and heavy holes in silicon, lead to interesting consequences for the effective 
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mass and conductivities in these systems [361], consistent with inflated (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) observed for 

Γ1,2,3−𝑣𝑣 here. 

 

Figure 7-2: Boltztrap (300 K) and band structure calculation results for AlAs.  a) “Fermi surface complexity 
factor” and true valley degeneracy plotted as functions of the Fermi level across the valence and conduction band. b) 
The conductivity (𝑚𝑚𝑐𝑐

∗) and density of states (as estimated from Seebeck coefficient,  𝑚𝑚𝑆𝑆
∗) effective masses plotted as a 

function of Fermi energy. c) Band structure calculation results for AlAs with the near-edge extrema indicated and 
labelled.  

Upon calculating the Fermi surface complexity factor for other III-V compounds, we can 

see many analogs to the AlAs results. AlP (Figure 7-3a) shows a primary extrema at X-c (Nv=3), 

which (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) matches well; this is followed by the K-c (Nv=12, at 0.83 eV above X-c) and X2-c 



7-12 
 

(Nv=3, at 0.85 eV above X-c) bands, which result in a small increase in (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) up to >10.0 

(although not until ~1.2 eV above X-c edge, which is not plotted). The conduction band of AlSb in 

Figure 7-3b shows three near-converged bands with the primary L-c band (Nv=4) accompanied by 

a (Γ − 𝑋𝑋)−𝑐𝑐 (Nv=6 at 0.03 eV above L-c) and Γ−𝑐𝑐 (Nv=1 at 0.05 eV above L-c). Because these two 

bands are so close in energy (within 2 kBT at 300 K) to the conduction band edge, it is not 

surprising that (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) more closely reflects the sum of the degeneracy for these bands; even 

within the band gap, (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) ≈ 14. This value is slightly larger than the expected Nv of 11, but it is 

possible that the nearby X-c band with Nv=3 could also be contributing as well. The conduction 

bands of GaN and GaSb are a bit simpler in that their primary conduction band lays at Γ−𝑐𝑐, 

resulting in both yielding (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) ≈ 1, as expected. In the case of GaAs, a secondary band at L-c 

(Nv=4, at 0.69 eV above Γ−𝑐𝑐) results in an abrupt jump in the Fermi surface complexity factor up 

to about 7.0 around this energy. The details of each of the n-type III-V compounds’ effective 

masses, expected valley degeneracy, and Fermi surface complexity factors are included in Table 

7-3. The valence bands of all of the III-V compounds in this work showed the same triply 

degenerate at the Γ1,2,3−𝑣𝑣 behavior as in AlAs (Figure 7-2c), some were followed by a doubly 

degenerate at L12-v; however, the L12-v extrema were usually much lower in energy and did not 

effect (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) much. In all cases, (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) was between 6 and 10 at the valence band edge 

(Γ1,2,3−𝑣𝑣), which is greater than the expected Nv of 3.0, which should be attributed to the effective 

anisotropy factor (K*) as mentioned previously for AlAs. 
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Figure 7-3: Fermi surface complexity factor computed for several III-V compounds along with their expected 
valley degeneracies for a) AlP (mp-1550), b) AlSb (mp-2624), c) GaN (mp-830, Zinc Blende structure), and d) GaAs 
(mp-2534).  

Table 7-1: III-V semiconductor results regarding their true valley degeneracy extracted from band structure 
(CBM Loc, CB Deg), and their conductivity/Seebeck effective masses and Fermi surface complexity factors computed 
at the energy of the contributing band. Eg (band gap) is in eV, and MPID corresponds to the mp-id parameter used to 
store data within the Materials Project (materialsproject.org).  

 MPID Eg CBM Loc CB Deg m S 
* mc

* Nv
*K* 

AlN 1700 3.31 X,  Γ(0.69) 3, 1 0.81, 0.96 0.39, 0.47 3.0, 3.0 

AlP 1550 1.63 X, K (0.83), X 
(0.85) 3, 12, 3 0.77, 1.39, 

1.46 
0.35, 0.51, 

0.51 3.3, 4.5, 4.9 

AlAs 2172 1.5 
X, Γ (0.28), L 

(0.51), K (0.75), X 
(0.78) 

3, 1, 4, 
12, 3 

0.81, 0.97, 
1.49, 1.94, 

2.00 

0.35, 0.42, 
0.45, 0.42, 

0.42 

3.6, 3.5, 6.1, 
9.8, 10.2 

AlSb 2624 1.23 
L, Γ-X (0.03), Γ 

(0.05), X (0.23), K 
(0.49) 

4, 6, 1, 
3, 12 

1.37, 1.49, 
1.53, 2.01, 

2.05 

0.24, 0.26, 
0.27, 0.32, 

0.36 

13.7, 13.8, 
13.9, 15.5, 

13.7 

GaN 830 1.57 Γ 1 0.15 0.16 0.9 
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GaP 2490 1.59 
L, Γ (0.00), Γ-X 

(0.05), X (0.26), K 
(0.63) 

4, 1, 6, 
3, 12 

1.23, 1.23, 
1.40, 1.93, 

2.08 

0.22, 0.22, 
0.24, 0.33, 

0.39 

13.0, 13.0, 
14.1, 14.2, 

12.3 
GaAs 2534 0.19 Γ, L (0.69) 1, 4 0.03, 0.25 0.04, 0.12 0.8, 3.1 

GaSb 1156 0 Γ, L (0.32), Γ-X 
(0.93) 1, 4, 6 0.02, 0.24, 

0.89 
0.03, 0.09, 

0.22 0.5, 4.7, 8.4 

InN 20411 0 Γ 1 0.09 0.12 0.66 
InP 20351 0.47 Γ, L (0.93) 1, 4 0.055, 0.47 0.06, 0.27 0.84, 2.6 

InAs 20305 0 Γ, L (0.84) 1, 4 0.03, 0.43 0.05, 0.24 0.6, 2.4 
InSb 20012 0 Γ, L (0.44) 1, 4 0.03, 0.31 0.05, 0.13 0.5, 3.5 
7.3b - IV-VI Materials – The Lead Chalcogenides 

As mentioned previously (Chapter 4), the lead chalcogenides (including PbSe [65, 261], 

PbS [13], and their alloys [12, 19, 25, 121, 362-366]) are known to be good thermoelectric 

materials. Much of this is attributed to their high valley degeneracy resulting from an accessible 

𝛴𝛴−𝑣𝑣 band. I have applied the Fermi surface complexity factor analysis to both PbSe and PbS, the 

results of which are shown in Figure 7-4. The 𝛴𝛴−𝑣𝑣 band lays 0.34 and 0.48 eV below L-v in PbSe 

and PbS, respectively (which agree with previous experiment [25, 261, 367] and theory [25, 126, 

294]); the computed band offsets, expected valley degeneracies, and observed (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) are 

tabulated in Table 7-4. Both PbSe and PbS show good agreement with the expected Nv of 4 for 

both the conduction and valence bands within the band gap. As the Fermi level moves deeper 

into the valence band, the 𝛴𝛴−𝑣𝑣 results in a peak in (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) of ~19 and 14 for PbSe and PbS, 

respectively (close to the expected value of 16). Additional extrema at the 𝑊𝑊−𝑣𝑣 (and (𝛤𝛤 − 𝑋𝑋)−𝑣𝑣 in 

the case of PbSe) result in another large peak in (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) up to values of ~41 (at 0.75 eV below L-

v) and ~16 (at 0.94 eV below L-v) for PbSe and PbS, respectively. Each of the peak values agrees 

qualitatively with the expected Nv from band structure, although (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) is higher than expected 

for the W-v/(Γ − 𝑋𝑋)−𝑣𝑣 in PbSe, implying that K*>1. K* is likely larger due to non-trivial topological 

features that are well-known to occur in the valence band of the lead chalcogenides beginning 

below the Σ−𝑣𝑣 band (as mentioned in a previous section and shown schematically in Figure 7-1) 

[121, 294, 295]. For PbSe and PbS, the conduction band only shows some deviations from 

(𝑁𝑁𝑣𝑣∗𝐾𝐾∗) = 4 within the gap as expected from the primary conduction band, 𝐿𝐿−𝑐𝑐, but they do show 
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some increase as the secondary conduction band (𝛴𝛴−𝑐𝑐) arises at 0.79 and 0.88 eV above the 

band edge, respectively (although the value does not reach the expected value of Nv=16). 

 

Figure 7-4: The Fermi surface anisotropy factor and valley degeneracy plotted for a) PbSe (mp-2201) and b) 
PbS (mp-21276). 

Table 7-2: Valence band parameters for several IV-VI materials of thermoelectric interest. Band gaps (Eg) is 
listed in eV. VBM locations are given by their position in k-space (which also corresponds to Figure 7-5 and Figure 7-
4) as well as their energy offset relative to the valence band edge. We have included their degeneracy (individual band 
degeneracy, not cumulative, which is plotted in Figure 7-4a), the Seebeck/conductivity effective mass (𝑚𝑚𝑐𝑐

∗, 𝑚𝑚𝑆𝑆𝑠𝑠𝑠𝑠𝑏𝑏
∗ ), and 

the calculated effective valley degeneracy,  𝑁𝑁𝑣𝑣∗, at each corresponding band edge energy. For SnTe, which had a very 
low band gap, values for the L band were taken 0.1 eV below the band edge so as to avoid strong bipolar effects.  

 MPID Eg VBM Loc VBM Nv m*
Seeb m*

c Nv
* 

PbTe 19717 0.81 

L, Σ (0.12), 𝛤𝛤-X 
(0.30), W (0.30), 

Σ2 (0.64), L2,3 
(0.76) 

4, 12, 6, 6, 12, 4x2 0.71, 2.29, 
4.82, 1.37, 1.78 

0.17, 0.23, 
0.33, 0.41, 

0.45 

8.7, 30.8, 
56.9, 6.0, 

7.9 

PbSe 20667 0.43 
L, Σ (0.34), W 

(0.68), 𝛤𝛤-X (0.72) 
4, 12, 6, 6 0.37, 1.49, 

2.87, 5.22 
0.16, 0.30, 
0.47, 0.49 

3.5, 11.1, 
14.9, 34.6 

PbS 21276 0.46 
L, Σ (0.48), W 

(0.94), 𝛤𝛤-X (1.00) 
4, 12, 6, 6 0.48, 2.19, 

4.13, 2.69 
0.20, 0.38, 
0.63, 0.62 

3.8, 14.0, 
16.9, 9.0 
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SnTe 1883 0.04 L, Σ (0.36), 𝛤𝛤-X 
(0.80), W (0.82) 

4, 12, 6, 6 0.16, 1.13, 
2.58, 3.16 

0.07, 0.15, 
0.32, 0.32 

3.6, 21.7, 
22.4, 30.7 

 

Of the lead chalcogenides, PbTe has been shown to yield the best thermoelectric 

performance. Experimentally, p-type PbTe stands out from PbSe and PbS mainly due to its 

relatively small band offset between the L-v and 𝛴𝛴−𝑣𝑣  bands and lower thermal conductivity [16, 

123-126, 162]. Figure 7-5 shows the computed band structure, the Fermi surface complexity 

factor (𝑁𝑁𝑣𝑣∗𝐾𝐾∗), and computed effective masses for PbTe. Figure 7-5c shows the large number of 

near-edge bands that exist in PbTe in both the valence and conduction band.  I show the 

calculated (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) along with the expected valley degeneracy contributions for the different 

extrema (Figure 7-5a). Upon the Fermi level entering the valence band, we observe an (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) of 

~9, which continues to increase as the Fermi level moves further into the band. While in the case 

of PbSe and PbS (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) ≈ 𝑁𝑁𝑣𝑣(𝐿𝐿−𝑣𝑣) = 4 within the gap near the L-v edge, PbTe shows a larger 

band edge Fermi surface complexity factor. It is not clear whether this is due to some influence 

of the 𝛴𝛴−𝑣𝑣 band (which is computed to be only ~0.12 eV or 4.8 kBT at 300 K away from L-v), which 

would imply 𝑁𝑁𝑣𝑣∗>4, or whether it may be due to the fact that the L-v bands for PbTe are more 

ellipsoidal (K*>1) than in PbSe and PbS (observed in the literature [58, 59, 360].) As EF moves 

further into the valence band, we can see a rapid increase in 𝑚𝑚𝑆𝑆
∗ (Figure 7-5b) because of the 

additional influence of the high degeneracy 𝛴𝛴−𝑣𝑣 band. Despite the large increase in 𝑚𝑚𝑆𝑆
∗, the 

conductivity mass increases only modestly, resulting in a rapid increase in (𝑁𝑁𝑣𝑣∗𝐾𝐾∗). Once the 

Fermi level reaches the 𝛴𝛴−𝑣𝑣 band, (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) reaches values near 30, much greater than the 

expected Nv of 16. The Fermi surface complexity factor continues to increase rapidly as we reach 

the W-v, (Γ − 𝑋𝑋)−𝑣𝑣, Σ2−𝑣𝑣, and 𝐿𝐿2,3−𝑣𝑣 at 0.3, 0.3, 0.64, 0.76 eV below L-v, respectively, ultimately 

achieving an extremely large value around 60. While a large Nv is expected from the many valence 

bands (reaching a value of ~50, green line Figure 7-5a), (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) rises very quickly and reaches a 

peak value that is much higher than expected (from the actual Nv). It is clear that (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) cannot 
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be explained by simply considering 𝑁𝑁𝑣𝑣∗ alone, implying that K*>1. As mentioned previously, it is 

well-known that the lead chalcogenides exhibit a complicated Fermi surface that involves a 

merging of the separate pockets (L-v and 𝛴𝛴−𝑣𝑣) [59, 121, 294, 295], which is likely causing the large 

K* value (threads shown in Figure 7-1). As mentioned in the theory section, recent work from 

Parker et al. suggests that cylindrical “threads” that connect the L-v and 𝛴𝛴−𝑣𝑣 pockets result in a 

significantly larger Fermi surface area, which is suggested to benefit thermoelectric properties 

[295]. While Parker et al. attribute this to a reduced-dimensional Fermi surface, my explanation 

involves the large surface area to volume ratio of the states which these charge carriers occupy; 

this results in these thread-like states having an inherently large mobility and quality factor (and 

corresponding large K*).  

The conduction band also benefits from a large number of additional carrier pockets with 

high degeneracy. A corresponding analog of the 𝛴𝛴−𝑣𝑣 valence band is calculated to exist in the 

conduction band (𝛴𝛴−𝑐𝑐) at ~0.54 eV above the band edge. This band is accompanied by a doubly 

degenerate L-band (𝐿𝐿2,3−𝑐𝑐). Each of these bands increase (𝑁𝑁𝑣𝑣∗𝐾𝐾∗), resulting in a peak around this 

energy. It is important to note that experimentally in n-type PbTe, it is difficult to dope to high 

enough carrier concentration to reach any secondary conduction bands [28]; Boltztrap 

calculations suggest that carrier concentrations of >2 × 1021 𝑐𝑐𝑚𝑚−3 to reach the 𝛴𝛴−𝑐𝑐 band (whereas 

experimentally, the maximum attainable nH has been shown to be an order of magnitude less 

[28]). 
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Figure 7-5: PbTe (mp-19717) calculated results for a) effective valley degeneracy (Nv*), b) density of states 
(m*S), and conductivity effective mass (m*c), as well as the near-edge band structure including the marked and labeled 
band extrema. The valence and conduction band edge is shown in a,b, as a dashed line (anything between the dashed 
lines exists within the band gap). c) The computed electronic structure of PbTe with the extrema indicated. 
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7.3c - High Throughput Computation 

The thermoelectric quality factor (B) which scales both the maximum carrier concentration 

dependent power factor and zT is well-known for the acoustic phonon scattering regime (Equation 

2-6, the most commonly observed experimental scattering mechanism for thermoelectric 

materials at T>300 K) as outlined in the introduction of this chapter. While acoustic phonon 

scattering is the most common scattering mechanism for high temperature materials, constant 

scattering time (CRTA) is simpler to implement from a computational perspective (in Boltztrap) 

and is very commonly used to gauge a material’s thermoelectric performance directly from ab-

initio calculations. Here, the thermoelectric quality factor can be derived as: 

 
𝐁𝐁𝛕𝛕=𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 =
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Equation 7-6 

   

For constant scattering time, 𝐵𝐵𝑒𝑒=𝑐𝑐𝑐𝑐𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑠𝑠 ∝ (𝑁𝑁𝑣𝑣∗𝐾𝐾∗)2/3𝑚𝑚𝑏𝑏
∗ 1/2, indicating that systems with 

higher effective mass will lead to a higher predicted power factor and zT from Boltztrap 

calculations. The result is qualitatively different than 𝐵𝐵𝐴𝐴𝐴𝐴𝑆𝑆, which yields an inverse effective mass 

dependence proportional to 𝑁𝑁𝑣𝑣
𝑚𝑚𝑐𝑐
∗ (or (𝑁𝑁𝑣𝑣

∗𝐾𝐾∗)
𝑚𝑚𝑏𝑏
∗ = 𝑁𝑁𝑣𝑣∗

𝑚𝑚𝑐𝑐
∗); this implies that light mass, high mobility materials 

with high valley degeneracy are the best for thermoelectrics [106]. We propose the “Fermi surface 

complexity factor” (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) as a better predictor of thermoelectric performance than Boltztrap 

computed Seebeck coefficient or power factor because it scales directly with thermoelectric 

quality factor in both the APS and CRTA cases. Further, (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) links the desired thermoelectric 

quantities (B, conductivity, Seebeck coefficient) directly to the computed electronic band structure, 

specifically through the valley degeneracy and effective anisotropy. Also, it captures the effects 

that complex Fermi surfaces can have on the thermoelectric performance through K*.  
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The vast electronic structure database constructed through the Materials Project allows 

for large-scale screening of thermoelectric materials using Boltztrap (using the CRTA). Figure 7-

6 shows the correlation between (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) and the calculated maximum (Fermi level-dependent) 

power factor for the large group of compounds (~2300 isotropic compounds) assuming a specific 

scattering time (𝜏𝜏 = 1 × 10−14 𝑠𝑠) at 600 K. We can see a good correlation between the calculated 

Fermi surface complexity factor and the maximum attainable power factor; this is expected since 

the quality factor for constant relaxation time is expected to scale as 𝐵𝐵𝑒𝑒=𝑐𝑐𝑐𝑐𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑠𝑠 ∝ (𝑁𝑁𝑣𝑣∗𝐾𝐾∗)2/3. The 

line on Figure 7-6 indicates a 2/3 power slope, which is expressed well for the dataset.  

 

Figure 7-6: Maximum power factor for ~2300 cubic compounds plotted as a function of the Fermi surface 
complexity factor (evalulated at the Fermi level that yields the maximum power factor) at T=600 K). 

7.4 - Conclusions 

I have introduced and examined the Fermi surface complexity factor (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) and its 

relation to the valley degeneracy. I have conceptually separated the components of the Fermi 

surface complexity factor into the effective valley degeneracy (𝑁𝑁𝑣𝑣∗) and the effective anisotropy 
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factor (𝐾𝐾∗) by examining several known material systems (III-V and IV-VI semiconductors). We 

infer that the valence bands in both the III-V and IV-VI have a larger than expected Fermi surface 

complexity factor which exceeds the expected degeneracy, likely as a result of non-trivial 

topological features which enhance K*. We have also shown that (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) should not depend on 

the particular scattering time assumptions, making results from it more consistent with 

experimental observations that tend to exhibit acoustic phonon scattering. We have analyzed the 

maximum power factors and zT’s for a large set (>2300) cubic compounds from the Materials 

Project to show that (𝑁𝑁𝑣𝑣∗𝐾𝐾∗) seems to correlate well with both the maximum power factor (and 

also the quality factor). Correlation of experiments and theory is of critical importance both for 

validating theoretical calculations and for interpretation of experimental results. High throughput 

Boltztrap calculations have the potential for high-impact in the community for their predictive 

power, by understanding these calculated properties in the context of band engineering they can 

have an even broader use. 

7.5 - Methods 

Ab-initio computations in this section are from the Materials Project database [368] and 

use DFT within the generalized gradient approximation (GGA) in the Perdew-Burke-Ernzheroff 

(PBE) formulation [336]. Calculations were performed using the VASP software and projector 

augmented-wave pseudopotentials [369]. Bolztrap calculations were computed using the open-

source code [30] along with analysis and plotting software from pymatgen [370]. 

When considering the IV-VI materials, all materials are calculated in their most stable 

configuration (unit cells relaxed in the rock salt—space group 225—structure). In PbTe in 

particular, the calculated band gap from GGA is much larger than the experimental band gap 

(~0.3 eV at 300K for PbTe [126]). Literature suggests that if spin-orbit coupling (SOC) was 

considered, the gap shrinks to near the experimental values [85]; however, we have neglected 

SOC contributions in this work. Regardless, because Boltztrap calculations are done at T=300 K, 
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the band gap itself should not greatly affect the results; the results would be affected most for 

Fermi levels within the band gap, which is not where the interesting valley degeneracy effects 

occur. The effect is also present in PbSe and PbS, although to a lesser extent. 

Specifically considering the III-V materials, we have assumed that each is crystallized in 

the zinc-blende crystal structure (Space group 216), even though the nitrides are more stable in 

the hexagonal Wurtzite structure [57, 371]. We also should point out that standard DFT 

calculations do not always provide the correct ordering of the conduction band minima (at the L, 

X, Γ, and K points) [57, 372, 373], but for simplicity and to illustrate the effectiveness of the Fermi 

surface complexity factor, we have assumed that these are the correct band structures and have 

interpreted all of the results with that assumption in mind (Wang et al. suggest the use of the 

modified Becke-Johnson semilocal exchange for values that more accurately represent 

experimental values [373, 374]). Further, while the valence band structure is similar among all of 

the III-V materials (triply degenerate at the 𝛤𝛤 point in the absence of spin-orbit coupling), we 

realize that if we had included spin-orbit coupling that one of the bands (the one with the 

intermediate effective mass) would split off from the other two (with the energy offset increasing 

with the mass of the elements). 

High throughput calculations of the Fermi surface complexity factor are analyzed in Figure 

7-6, but we limit the analysis to cubic compounds (maximum deviation in the eigenvalues of the 

power factor tensor of less than 3% along any direction) and those with a maximum optimum 

carrier concentration less than 1 × 1022 𝑐𝑐𝑚𝑚−3. We also chose to remove compounds that were 

not particularly stable or those that were metallic (we required that the energy above the convex 

hull be <0.05 eV, and that the band gap be >0.03 eV). 


