Band Engineering in Thermoelectric Materials Using Optical, Electronic, and Ab-Initio Computed Properties

Thesis by
Zachary M. Gibbs

In Partial Fulfillment of the Requirements
For the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California
2015
(Defense Date: May 11, 2015)
Acknowledgements

I would like to acknowledge many people who helped me along the way during this PhD thesis. First, I would like to thank my lovely wife Gina for loving and supporting me during my time at Caltech. I would also like to thank my Australian cattle dog, Aspen, for understanding that I could not play fetch because I had to do more thermoelectrics research. I would like to thank my family for their support (even from afar) during my PhD.

Professionally, I have many colleagues to thank and acknowledge. Of course the entirety of the Snyder group has been wonderful over the years. I would like to especially thank Yanzhong Pei and Heng Wang (for mentoring me through the band engineering concepts); Nick Heinz, Tristan Day, Wolfgang Zeier, and Hyun Sik Kim (for providing endless entertainment at lunch time); and collaborators and coauthors Yinglu Tang, Hyun Sik Kim, Min Zhou, Wolfgang Zeier, and Jennifer Schmitt. I would like to acknowledge Jeff Snyder for always being willing to talk about a project and being an overall wonderful adviser. I would like to acknowledge the Molecular Materials Research Center (MMRC) in the Beckman Institute at Caltech for allowing use of their optical measurement systems free-of-charge. I would like to acknowledge several collaborators who performed DFT calculations in this thesis including Hyoungchul Kim, Massoud Kaviany (University of Michigan), and Luis Agapito (University of North Texas). I would also like to acknowledge funding and support from the Materials Project; I would like to especially acknowledge useful discussions with Geoffroy Hautier, Anubhav Jain, and Hong Zhu.
Abstract

Thermoelectric materials have demanded a significant amount of attention for their ability to convert waste heat directly to electricity with no moving parts. A resurgence in thermoelectrics research has led to significant enhancements in the thermoelectric figure of merit, zT, even for materials that were already well studied. This thesis approaches thermoelectric zT optimization by developing a detailed understanding of the electronic structure using a combination of electronic/thermoelectric properties, optical properties, and ab-initio computed electronic band structures. This is accomplished by applying these techniques to three important classes of thermoelectric materials: IV-VI materials (the lead chalcogenides), Half-Heusler’s (XNiSn where X=Zr, Ti, Hf), and CoSb$_3$ skutterudites.

In the IV-VI materials (PbTe, PbSe, PbS) I present a shifting temperature-dependent optical absorption edge which correlates well with the computed *ab-initio* molecular dynamics result. Contrary to prior literature that suggests convergence of the primary and secondary bands at 400 K, I suggest a higher convergence temperature of 700, 900, and 1000 K for PbTe, PbSe, and PbS, respectively. This finding can help guide electronic properties modelling by providing a concrete value for the band gap and valence band offset as a function of temperature.

Another important thermoelectric material, ZrNiSn (half-Heusler), is analyzed for both its optical and electronic properties; transport properties indicate a largely different band gap depending on whether the material is doped n-type or p-type. By measuring and reporting the optical band gap value of 0.13 eV, I resolve the discrepancy in the gap calculated from electronic properties (maximum Seebeck and resistivity) by correlating these estimates to the electron-to-hole weighted mobility ratio, Λ, in narrow gap materials (Λ is found to be approximately 5.0 in ZrNiSn).

I also show that CoSb$_3$ contains multiple conduction bands that contribute to the thermoelectric properties. These bands are also observed to shift towards each other with temperature, eventually reaching effective convergence for $T>500$ K. This implies that the electronic structure in CoSb$_3$ is critically important (and possibly engineerable) with regards to its high thermoelectric figure of merit.
Contents

Acknowledgements .. iii
Abstract .. iv
List of Figures .. viii
List of Tables .. xv
List of Symbols and Notation .. xvi

Chapter 1: Introduction .. 1-1
1.1 - Thermoelectric Motivation and Applications ... 1-1
1.2 - Thermoelectric Materials, Band Engineering, and Summary of Work 1-3
1.3 - Doping and zT Optimization .. 1-6
1.4 - Multiple Band Phenomena in Thermoelectric Materials .. 1-7
1.5 - Band Gap in Thermoelectric Materials .. 1-10
1.6 - Band Engineering from Ab-Initio Calculations .. 1-12
1.7 - Conclusions .. 1-13

Chapter 2: Theoretical and Experimental Methods: ... 2-1
2.1 - Electronic/Thermal Transport Properties Measurement .. 2-1
 2.1a - Electrical Resistivity/Conductivity and Hall Effect .. 2-1
 2.1b - Seebeck Coefficient .. 2-3
 2.1c - Thermal Conductivity ... 2-4
2.2 - Optical Properties Measurement and Analysis .. 2-5
 2.2a - Optical Band Gap Extraction .. 2-8
2.3 - Estimating Band Gap from Temperature Dependent Electronic Properties 2-9
 2.3a - Resistivity .. 2-10
 2.3b - Band Gap Estimate from the Maximum Seebeck Coefficient 2-10
2.4 - Band Engineering .. 2-11
 2.4a - Single Parabolic Band Model – Carrier Concentration Optimization 2-11
 2.4b - Valley Degeneracy and Band Anisotropy ... 2-14
 2.4c - Multiple Band Effects ... 2-16
 2.4d - Band Non-Parabolicity ... 2-18
2.5 - Ab-Initio Calculations .. 2-19
2.6 - Sample Preparation .. 2-19

Chapter 3: Optical Properties of Doped Semiconductors .. 3-1
3.1 - Introduction .. 3-1
3.2 - Theory of Free Carrier Contributions to Optical Spectra .. 3-2
 3.2a - Free Carrier Absorption .. 3-2
 3.2b - Urbach Edge .. 3-4
 3.2c - Burstein Moss Shift/ Renormalization .. 3-5
3.3 - Results and Discussion .. 3-7
3.4 - Conclusions .. 3-20

Chapter 4: Multi Band Behavior, Optical, and Electronic Properties in IV-VI materials 4-1
4.1 - Introduction .. 4-1
4.2 - Lead Chalcogenides, Band Engineering, and Band Convergence 4-2
 4.2a - Lead Chalcogenide Literature Review ... 4-3
 4.2b - Results ... 4-7
 4.2c - Discussion, Impact, and interpretation of the results .. 4-11
 4.2d - Conclusions ... 4-18
 4.2e - Methods ... 4-19
4.3 - Band Engineering and Band Convergence through Alloying in the Lead Chalcogenides 4-20
 4.3a - Introduction ... 4-20
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3b</td>
<td>Results and Discussion</td>
<td>4-21</td>
</tr>
<tr>
<td>4.3c</td>
<td>Conclusion</td>
<td>4-27</td>
</tr>
<tr>
<td>4.3d</td>
<td>Methods</td>
<td>4-28</td>
</tr>
<tr>
<td>4.4</td>
<td>Two Band Thermoelectric Performance in SnTe—Optimization Towards Single Band Behavior</td>
<td>4-29</td>
</tr>
<tr>
<td>4.4a</td>
<td>Introduction</td>
<td>4-29</td>
</tr>
<tr>
<td>4.4b</td>
<td>Results and Discussion</td>
<td>4-32</td>
</tr>
<tr>
<td>4.4c</td>
<td>Conclusion</td>
<td>4-41</td>
</tr>
<tr>
<td>4.4d</td>
<td>Methods</td>
<td>4-42</td>
</tr>
<tr>
<td>4.5</td>
<td>Conclusions</td>
<td>4-43</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>5-1</td>
</tr>
<tr>
<td>5.2</td>
<td>ZrNiSn Half Heusler Thermoelectric Materials—Resolving the True Band Gap</td>
<td>5-2</td>
</tr>
<tr>
<td>5.2a</td>
<td>Introduction</td>
<td>5-2</td>
</tr>
<tr>
<td>5.2b</td>
<td>Results</td>
<td>5-4</td>
</tr>
<tr>
<td>5.2c</td>
<td>Discussion</td>
<td>5-11</td>
</tr>
<tr>
<td>5.2d</td>
<td>Electronic Structure Origin of the Weighted Mobility</td>
<td>5-17</td>
</tr>
<tr>
<td>5.2e</td>
<td>Conclusions</td>
<td>5-18</td>
</tr>
<tr>
<td>5.2f</td>
<td>Methods</td>
<td>5-19</td>
</tr>
<tr>
<td>5.3</td>
<td>Extending the Weighted Mobility Ratio/Goldsmid-Sharp Gap Analysis to Low Gap Materials</td>
<td>5-20</td>
</tr>
<tr>
<td>5.3a</td>
<td>Introduction</td>
<td>5-20</td>
</tr>
<tr>
<td>5.3b</td>
<td>Theory</td>
<td>5-23</td>
</tr>
<tr>
<td>5.3c</td>
<td>Results</td>
<td>5-24</td>
</tr>
<tr>
<td>5.3d</td>
<td>Conclusions</td>
<td>5-34</td>
</tr>
<tr>
<td>5.4</td>
<td>Conclusions</td>
<td>5-34</td>
</tr>
<tr>
<td>5.1a</td>
<td>Introduction</td>
<td>5-20</td>
</tr>
<tr>
<td>5.1b</td>
<td>Results</td>
<td>5-4</td>
</tr>
<tr>
<td>5.1c</td>
<td>Discussion</td>
<td>5-11</td>
</tr>
<tr>
<td>5.1d</td>
<td>Electronic Structure Origin of the Weighted Mobility</td>
<td>5-17</td>
</tr>
<tr>
<td>5.1e</td>
<td>Conclusions</td>
<td>5-18</td>
</tr>
<tr>
<td>5.1f</td>
<td>Methods</td>
<td>5-19</td>
</tr>
<tr>
<td>5.2</td>
<td>Fermi Surface Complexity Factor (Nv ∗ K∗)</td>
<td>7-7</td>
</tr>
<tr>
<td>5.2a</td>
<td>Effective Valley Degeneracy (Nv∗)</td>
<td>7-2</td>
</tr>
<tr>
<td>5.2b</td>
<td>Effective Anisotropy Factor (K*)</td>
<td>7-4</td>
</tr>
<tr>
<td>5.2c</td>
<td>Fermi Surface Area to Volume Ratio</td>
<td>7-6</td>
</tr>
<tr>
<td>5.2d</td>
<td>Fermi Surface Complexity Factor (Nv ∗ K∗)</td>
<td>7-7</td>
</tr>
</tbody>
</table>

Chapter 5: Resolving the True Band Gap in ZrNiSn: The Effect of the Weighted Mobility Ratio in Bipolar Semiconductors

Chapter 6: CoSb3 and other Thermoelectric Materials with Optical Evidence of Multiple Bands
List of Figures

Figure 1-1: Schematic diagram of the Seebeck effect in which charge carriers diffuse towards the cold end of a heated material—the resulting voltage that develops determines the Seebeck coefficient: $S = -\Delta V/\Delta T$... 1-2

Figure 1-2: Carrier concentration dependence of zT and other thermoelectric properties........ 1-7

Figure 1-3: Near-edge band structure in the lead chalcogenides indicating multi-band behavior for p-type... 1-9

Figure 1-4: Bipolar conduction example in I-doped PbTe including a) Temperature dependent Seebeck coefficient and b) temperature dependent thermal conductivity [28]. 1-10

Figure 1-5: Optical absorption edge illustrating the illumination of the valence band by a photon with energy $(\hbar\omega)$, which excited an electron to the conduction band if $\hbar\omega \geq E_g$ 1-11

Figure 2-1: Electrical resistivity measurement schematic a) Conventional bar sample, b) disc-shaped sample via the Van Der Pauw method... 2-2

Figure 2-2: Schematic of the uniaxial Seebeck coefficient measurement setup.......................... 2-4

Figure 2-3: a) Schematic of the Diffuse Reflectance technique for measuring spectral absorption. b) Representative DRIFTS results for several relevant thermoelectric materials (at 300 K)..... 2-6

Figure 3-1: Optical absorption edge spectrum of an Iodine doped PbTe sample indicating the four regions that are present when considering optical processes relevant to free carriers: 1. Free carrier absorption, 2. Urbach edge, 3. increase in the interband transition energy (Burstein Moss Shift), and 4. band gap reduction as a result of doping (renormalization). .. 3-2

Figure 3-2: DRIFTS Spectra showing free carrier absorption contributions in Iodine doped PbTe. a) an increasing free carrier absorption with doping level, b) an example of a power law fit to the free carrier absorption... 3-4

Figure 3-3: Optical excitations across the gap in a direct gap n-type degenerately doped semiconductor illustrating the Burstein-Moss shift and the different estimates of the band gap. Dashed line indicates the chemical potential, ξ. ... 3-6

Figure 3-4: Normalized Kubelka Munk function for PbTe$_{1-x}$Ix for a) raw data, and b) absorption coefficient direct gap extrapolation using the Tauc method. c) the resulting optical band gaps for n-type PbTe doped w/ either Iodine or Lanthanum and PbSe doped with Bromine. 3-8

Figure 3-5: a) Seebeck Pisarenko plot for PbTe:I with the SKB model curve ($md0 = 0.276$) shown. b) The change in electrochemical potential (calculated from the Seebeck coefficient) with Hall carrier concentration as a result of doping... 3-10

Figure 3-6: Fermi spectra method projecting the Fermi distribution onto the absorption edge in PbTe$_{1-y}$I$_y$, $y = 0.0012$ fit with a Fermi function... 3-12

Figure 3-7: a) Optical band gaps fit from optical data via extrapolation by the Tauc plot method along with the curve fit from Equation 3-5. b) The true band gap, calculated from the optical gaps by $E_g = E_{g, opt} - 2\xi$ and the curve, which is given by $E_g = E_g, 0 - \Delta R N$, c) Band gap renormalization
fit: experimental data is \(\Delta R N = E_g,0 - (E_g, opt - 2\xi) \), and the curve is given by the best fit: \(\Delta R N = A n^{1/3} + \Delta R N,0 \).

Figure 3-8: Iterative self-consistent calculation of the true gap \(E_g(n) \) in accordance with the Kane band model. a) The result of different \(n \)-dependences of the Kane \(\beta \) parameter solid points represent \(E_g(n) \) in accordance with eq. 5 (using the measured optical gaps and chemical potential estimates from Seebeck coefficient measurements). b) The estimated chemical potential as a function of doping level for different dependence of \(\beta \) on \(n \); lines represent constant effective band edge mass (Eq 3, \(m^*_0 = 0.276 m_0 \)) and points are calculated from Seebeck coefficient (Equation 3-8).

Figure 4-1: Illustration of the rapidly changing state of the thermoelectrics field which until ~2010 believed that the optimum in \(zT \) was much less than 1.0. a) was taken from [114], and b) from [110].

Figure 4-2: Schematic representation of the \(L \) and \(\Sigma \) band extrema in PbX (X=Te, Se, S) and SnTe (as presented in previous work[126]).

Figure 4-3: AIMD calculated temperature dependent band gap for a) PbTe, b) PbSe, and c) PbS. Circular points represent the computed (electron-phonon + expansion) average value over several snap shots (along with the error bar plotted as a standard deviation), and solid lines represent a guide to the eye. Dashed lines show the change in band gap when electron-phonon interactions are not considered (thermal expansion only). The grey line indicates a best fit to the experimental result.

Figure 4-4: a) Temperature-dependent optical absorption spectra for PbS, PbTe, and PbSe. b) Extrapolated direct band gap as a function of temperature for PbTe measured at Caltech, OU (University of Oklahoma), Tauber et al. [27], Gibson et al. [36], and Saakyan et al. [166]. c) Extrapolated results for PbSe and PbS measured at Caltech along with references from Jones et al. [143] and Devyatkova et al [136].

Figure 4-5: Temperature dependent band gap for the direct (dir) and indirect (ind) extrapolations of the absorption edge along with linear fits as functions of temperature for PbTe, PbSe, and PbS.

Figure 4-6: Calculated temperature dependent gap between either the \(L \) or \(\Sigma \) valence bands and \(L \) conduction bands for a) PbTe, b) PbSe, and c) PbS with temperature-dependent Fermi distribution overlaid indicating that the region of effective convergence occurs at temperatures below the actual \(T_{Cvg} \).

Figure 4-7: a) The measured band gap \(E_g \) and the proposed energy separation between two valence bands \(\Delta E_{L,\Sigma} \) of Pb\(_{1-x}\)Sr\(_x\)Se alloys, each is consistent with calculated values. b) Lattice thermal conductivity as function of Sr content at 300 K and 850 K. 300 K values are from undoped samples. c) Normalized Hall mobility as function of Sr content for undoped samples at 300 K and doped samples with same carrier density at 850 K. d) Pisarenko relation of p-type PbSe and Pb\(_{1-x}\)Sr\(_x\)Se alloys. Lines are calculated using the proposed band model. e) The calculated DOS spectrum of Pb\(_{1-x}\)Sr\(_x\)Se alloys; kinks in DOS around -0.1 eV are used to estimate \(\Delta E_{L,\Sigma} \), and the inset illustrates the proposed band model, which is also given in (a).

Figure 4-8: Optical data over a series of (PbSe)\(_{1-x}\)/(SrSe)\(_x\) samples at room temperature—showing a) the normalized Kubelka Munk function, b) the log of the normalized Kubelka Munk function, c) the indirect extrapolation of the normalized Kubelka Munk function, and d) the direct extrapolation. Black dots on the axes indicate the extrapolated values.
Figure 4-9: Temperature dependent optical band gap (direct extrapolation) in \((\text{PbSe})_{1-x}(\text{SrSe})_x\) from room temperature to ~200°C [174]. ...4-26

Figure 4-10: The observed \(zT\) of samples that have highest \(zT\) at 900 K and the corresponding Hall carrier densities at room temperature for \(\text{Pb}_{1-x}\text{Sr}_x\text{Se}\) with different Sr content (\(zT\) for samples with different carrier density at each Sr content shown in supplementary), compared to the maximum \(zT\) evaluated for p-type PbSe. ...4-27

Figure 4-11: a) Seebeck coefficient and b) Hall mobility as a function of Hall carrier concentration at 300 K for \(\text{SnTe}_{1-x}\text{I}_x\) and \(\text{SnTe}_{1+y}\), \(\text{Gd}_2\text{Sn}_{1-z}\text{Te}\). Solid squares are our experimental results, open squares are Rogers’ reported results [130], solid curves are calculated from a two band model. c) A schematic diagram of the near edge band structure in PbTe and SnTe. (Rogers et al reported a band offset of 0.3 eV for SnTe. Our results yielded different fitting parameters, and we found that 0.4 eV was required for best fit.) 4-31

Figure 4-12: Hall carrier concentration as a function of dopant concentration a) Gd, Te excess as acceptors, b) I as donor. Solid lines represent guides to the eye for our data and correspond to 1.7 holes per atom for the Gd/excess Te case shown in a, and 0.4 electrons per iodine atom as in b. .. 4-33

Figure 4-13: Thermoelectric transport properties for various SnTe samples: a) resistivity of SnTe and SnTe\(_{1-x}\text{I}_x\), b) resistivity of SnTe, SnTe\(_{1+y}\), and \(\text{Gd}_2\text{Sn}_{1-z}\text{Te}\), c) Seebeck of SnTe and SnTe\(_{1-x}\text{I}_x\), d) Seebeck of SnTe, SnTe\(_{1+y}\), and \(\text{Gd}_2\text{Sn}_{1-z}\text{Te}\), e) thermal conductivity and lattice thermal conductivity of SnTe and SnTe\(_{1-x}\text{I}_x\), and f) thermal conductivity and lattice thermal conductivity of SnTe, SnTe\(_{1+y}\), and \(\text{Gd}_2\text{Sn}_{1-z}\text{Te}\). Legends indicate room temperature Hall carrier concentrations and a brief description of the samples as follows: SnTe\(_{1-x}\text{I}_x\), Sn\(_{1-x}\text{Gd}_x\text{Te}\), and SnTe\(_{1+y}\) for iodine doped (a,c,e), Gd doped (b, d, f), and excess Te (b, d, f) samples, respectively. All plots show both raw experimental data (points) and polynomial fits (lines). .. 4-35

Figure 4-14: a) \(zT\) of SnTe\(_{1-x}\text{I}_x\) as function of temperature, data (dashed lines) are from the literature [199], b) \(zT\) of SnTe\(_{1+y}\) and \(\text{Gd}_2\text{Sn}_{1-z}\text{Te}\) as function of temperature. c) The average \(zT\) between 300 and 773 K for optimally doped samples; data of SnTe:In are from the literature[199]. \(zT\) estimates are obtained from polynomial fits of transport data in Figure 3. ...4-37

Figure 4-15: a) Seebeck coefficient and b) Hall mobility as a function of Hall carrier concentration at different temperatures. Solid symbols represent our experimental results, open symbols correspond to literature data (Vedeneev {Vedeneev, 1998 #9388} and Rogers {Rogers, 1968 #9294}). Each is presented at three temperatures: 300, 573, and 723 K, which are given by squares, circles, and diamonds, respectively. Solid curves represent the results of the two band model. ...4-39

Figure 4-16: \(zT\) as a function of Hall carrier concentration for SnTe\(_{1-x}\text{I}_x\) and SnTe\(_{1+y}\), \(\text{Gd}_2\text{Sn}_{1-z}\text{Te}\). Solid curves are modeling results, and dashed lines are uncertainty values for the model \(zT\) which account for a ±10% error in \(\kappa_L\). The calculated lattice thermal conductivity of 2.5±10% W/m K (300 K), 1.23±10% W/m K (600K), and 1.0±10% W/m K (773 K) were used in the \(zT\) calculation as obtained from I-doped samples (Figure 3e). 4-40

Figure 5-1 Powder XRD pattern for the Zr\(_{0.95}\text{Sc}_{0.05}\text{NiSn}\) sample (\(I_{\text{exp}}\)) with the Rietveld refinement (\(I_{\text{RR}}\)) and the difference profile (\(I_{\text{exp-RR}}\)). The inset shows the dependence of the lattice parameter
a (Å) for Zr$_{1-x}$Sc$_x$NiSn versus Sc content (x). The straight line represents the linear fit to Vegard’s law.

Figure 5-2: Temperature dependence of a) the electrical resistivity ρ and b) the $\sigma \cdot R H$ product (in units of mobility) for the Zr$_{1-x}$Sc$_x$NiSn solid solution. The true Hall mobility at 300 K is largest for the intrinsic, n-type ZrNiSn sample (Figure 2b). With increasing Sc content, the magnitude of $\sigma \cdot R H$ decreases as a result of the influence of the low mobility holes.

Figure 5-3: Temperature dependence of the Seebeck coefficient for the Zr$_{1-x}$Sc$_x$NiSn solid solution. The Seebeck coefficient shows a rollover due to ambipolar conduction.

Figure 5-4: The total thermal conductivity of the Zr$_{1-x}$Sc$_x$NiSn solid solution as a function of temperature and Scandium content.

Figure 5-5: Optical diffuse reflectance data plotted as the indirect band gap transformation of the Kubelka Munk function for pure ZrNiSn. A linear fit (red dotted line) was used to estimate the band gap by extrapolating to zero absorption, indicating that the band gap is ~0.13 eV.

Figure 5-6: Estimation of the band gap for different n-type (red bars) and p-type (purple bars) half-Heusler compounds using the Goldsmid-Sharp formula ($E_g=2eS_{\text{max}}T_{\text{max}}$) in units of eV versus the numerated HH compounds. The dotted line indicates the optical measured band gap of 0.13 eV for pure ZrNiSn from DRIFTS. The diamonds represent the estimated true band gap value that yields the experimental S_{max} and T_{max} when using the full relation derived by Goldsmid and Sharp for an electron-to-hole weighted mobility ratio of $A=5$: 1) Sc$_{0.03}$Zr$_{0.97}$NiSn, 2) Sc$_{0.04}$Zr$_{0.96}$NiSn, 3) Sc$_{0.05}$Zr$_{0.95}$NiSn, 4) Sc$_{0.06}$Zr$_{0.94}$NiSn, 5) ZrCo$_{0.08}$Ni$_{0.92}$Sn [230], 6) Zr$_{0.75}$Hf$_{0.25}$NiSn [240], 7) Zr$_{0.5}$Hf$_{0.5}$NiSn [240], 8) Zr$_{0.5}$Hf$_{0.5}$NiSn [240], 9) HfNiSn [240], 10) Ti$_{0.95}$Hf$_{0.05}$NiSn [241], 11) Ti$_{0.95}$Hf$_{0.05}$NiSn [241], 12) Ti$_{0.95}$Hf$_{0.05}$NiSn [241], 13) Ti$_{0.95}$Hf$_{0.05}$NiSn [241], 14) Ti$_{0.95}$Hf$_{0.05}$NiSn [241], 15) Hf$_{0.75}$Zr$_{0.25}$NiSn [241], 16) Hf$_{0.5}$Ti$_{0.25}$Zr$_{0.25}$NiSn [242], 17) Hf$_{0.25}$Ti$_{0.5}$Zr$_{0.25}$NiSn [242].

Figure 5-7: A plot of the ratio of the Goldsmid-Sharp band gap (2e$S_{\text{max}}T_{\text{max}}$) to the true band gap for different p- and n-type half-Heusler compounds in red and blue, respectively, for an electron-to-hole weighted mobility ratio of $A=5$. The solid lines use Goldsmid and Sharp’s full derived equation (Equation 5-6) to estimate this ratio. Experimental points use the observed maximum Seebeck coefficient (S_{max}) and temperature (T_{max}) and the optical band gap ($E_{\text{g,optical}}$). An error of ±10% was assumed for the thermopower measurements and the band gap estimations.

Figure 5-8: Estimated conductivity prefactor using the single parabolic band model for a series of ZrNiSn samples across the p-type to n-type transition for several literature results [52, 230, 231, 238] and results from this thesis. On the x-axis I have multiplied the measured conductivity by the sign of the measured Seebeck coefficient to represent the sign change. I have plotted these results along with a two-band (valence/conduction) model that uses a $\sigma_0, CB = 1.1$ and a $\sigma_0, VB = 0.15$ and a band gap of 0.128 eV (as measured optically). Dashed line indicates the Goldsmid-Sharp band gap: $S = E_g/2eT$. The lattice thermal conductivity was estimated as $\kappa LT = 1.7 (300/T) W/m-K$, and the following Umklapp scattering is used for the zT estimate.
Figure 5-10: Result of the “Exact”, “Fermi”, and “Goldsmid-Sharp” methods calculated assuming $\epsilon g = 5$ and $A=1$ for a) Seebeck coefficient as a function of η. b) The reduced chemical potential which yields the maximum thermopower as a function of reduced band gap (at the rollover temperature) for $A=1$. c) Maximum attainable thermopower as a function of the reduced band gap (at $A=1$) for each method. d) the ratio of the $2e|S|_{\text{max}}T_{\text{max}}$ estimate to E_g as a function of the dimensionless band gap ϵg. The dashed line in c) represents the Goldsmid-Sharp band gap equation result. The dashed line in Figure (b) represents the halfway point between the VB and CB, and the solid grey lines represent the position of the valence and conduction bands. All calculations are done for a majority-to-minority carrier weighted mobility ratio of $A=1.0$.

Figure 5-11: Temperature dependent Seebeck coefficient for various carrier concentrations (corresponding to Figure 1) for $A=5$ and $A=1/5$. Dashed line represents the Goldsmid-Sharp band gap: $S_{\text{max}} = E_g/2eT_{\text{max}}$ for various values of the carrier concentration; calculation details are the same as for Figure 5-9.

Figure 5-12: Result of the “Exact”, “Fermi”, and “Goldsmid-Sharp” methods assuming $\epsilon g = 5$ and $A=5$ (weighted mobility ratio) for a) Seebeck coefficient as a function of η. b) The ratio of the $2e|S|_{\text{max}}T_{\text{max}}$ estimate to the actual model E_g as a function of ϵg, and c) the same ratio with respect to the weighted mobility ratio A at different E_g values (3, 5, and 10 kBT as indicated on the figure).

Figure 5-13: The ratio of the $2e|S|_{\text{max}}T_{\text{max}}$ estimate to the actual model E_g as a function of thermopower for a wide variety of A and S_{max}. A values are noted in a rectangular box laid on top of each black solid lines.

Figure 5-14: This engineer’s guide is analogous to Figure 5-13; however, the predicted band gap in this case is ratioed to the thermal band gap ($\epsilon g + \eta$, for degenerate or simply ϵg otherwise) instead of the true gap.

Figure 5-15: Comparison of results when the origin of A derives from a changing effective mass ratio (rather than purely mobility related). a) Goldsmid sharp effectiveness ($2eS_{\text{max}}T_{\text{max}}/E_g$) for $A=1$ with varying A_m^*. b) The varying chemical potential position for the parameters in a). c) $2eS_{\text{max}}T_{\text{max}}/E_g$ for $A=5$ and $A=1/5$ as a function of a changing contribution due to A_m^*. d) The resulting shift in the chemical potential that yields the maximum Seebeck coefficient as a function of reduced band gap for the $A=5$ and $A=1/5$ (colors correspond to c).

Figure 6-1: a) Pisarenko plot of Seebeck coefficient vs Hall carrier concentration at 300K. Black line is a two-band model with density of state effective mass for the light and heavy bands being 1.1 m_0 and 3.9 m_0, respectively. Orange and red lines are for single parabolic band models with the individual band masses. b) The DFT calculated electronic band structure for CoSb3. c) Fermi surface calculation for Fermi levels 0.12 eV above the conduction band edge. d) Room temperature optical absorption measurement (Kubelka Munk function) with estimated joint density of states from DFT.

Figure 6-2: Effective mass calculation (equivalent single parabolic band effective mass) in a) n-type CoSb3 computed for experimental data along with the three-band model. The two individual band masses are also plotted to show the transition between them. b) Parabolic and Kane dispersions plotted with the same band edge effective mass showing the increasing effective mass (as the Kane band becomes linear). c) Seebeck Pisarenko plot for both Kane and Parabolic bands (full, Fermi integral calculation) illustrating that the Pisarenko mass actually decreases for Kane bands at high carrier concentration.
Figure 6-3: a) Calculated theoretical effective mass (ratioed to the value for reduced Fermi level at the band edge) derived using the Mott relation for different scattering mechanisms (Equation 6-5); the dashed line indicates an energy independent effective mass. A $\beta = kBTg$ value of 0.083 (consistent with PbTe at 300K) was used. b) Calculated SPB Seebeck effective mass (mS^{*}) versus the reduced chemical potential calculated using the SPB model (η_{SPB}) for experimental examples at 300 K (InAs [64] and InSb [64, 326]) which are believed to be dominated by polar scattering. c) mS^{*} versus η_{SPB} for n-type PbTe [28], p-type PbTe [34], n-type PbSe [65], and p-type SnTe [128]. The solid lines in B and C indicate the best fit of the band edge mass along with the appropriate scattering mechanism plugged into Equation 6-5. 6-17

Figure 6-4: a) Temperature dependent optical absorption edge spectrum for CoSb$_3$ from 25 to 400°C. b) Temperature dependent extrapolated band gap for the direct ($E_g, \Gamma - \Gamma'$) and indirect ($E_g, \Gamma - CB2$) transitions, error bars represent a range of possible values depending on the extrapolation technique, dashed line is a continuation of the low temperature behavior of the direct gap which is overcome by free carriers for $T>200^\circ$C. c) Experimental data represents zT (at 800 K) vs. room temperature n_H, along with the corresponding results for the three band model ($\Delta E = 0$) shown as the black line. The individual band contributions from $CB1$ and $CB2$ are computed as shown in the methods section. 6-20

Figure 6-5: Temperature-dependent absorption edge measurements in a lightly Yb-doped (x=0.0025) CoSb$_3$ sample from 100-400°C. a) Raw Kubelk-Munk transformed absorption data an arrow indicates the possible inter-conduction band absorption feature. Dashed lines indicate a power law fit for the free-carrier absorption. b) Resulting spectra after subtracting the free carrier contribution (FC) and normalizing, and an that arrow indicates the growing inter-band contribution. 6-22

Figure 6-6: a) Optical absorption edge results showing $F(R)$ or (αK), the normalized Kubelka Munk function, for Sr$_5$In$_2$Sb$_6$ and Ca$_5$In$_2$Sb$_6$ where $h\omega$ is the light energy in eV [355]. The two transitions at 0.3 eV and 0.55 eV are observed and are indicated by $h\omega$. F(R) is the Kubelka Munk function (previously represented as αK). b) Calculated DFT band structure of Sr$_5$In$_2$Sb$_6$ with the suggested direct ($h\omega_1 \sim 0.48$ eV) and indirect ($h\omega_2 \sim 0.73$ eV) transitions indicated [351]. Both calculations indicate a difference of ~ 0.25 eV between the direct and indirect band gaps despite discrepancies in the band gap values. The peak at ~ 0.44 eV is indicative of O-H stretching vibrations consistent with some water adsorbed to the powder surface. 6-30

Figure 6-7: Optical absorption edge measurements in various Zintl 5-2-6 compounds. F(R) is the Kubelk Munk function (previously represented as αK). 6-31

Figure 7-1: Fermi surfaces in p-type PbTe a) showing the separate ellipsoids of the L and Σ bands (leading to an increase in Nv^{*}) and b) showing the more complex Fermi surface once both the L and Σ bands have been reached, which leads to an increase in K^{*}. 7-4

Figure 7-2: Boltztrap (300 K) and band structure calculation results for AlAs. a) “Fermi surface complexity factor" and true valley degeneracy plotted as functions of the Fermi level across the valence and conduction band. b) The conductivity (mc^{*}) and density of states (as estimated from Seebeck coefficient, mS^{*}) effective masses plotted as a function of Fermi energy. c) Band structure calculation results for AlAs with the near-edge extrema indicated and labelled. 7-12

Figure 7-3: Fermi surface complexity factor computed for several III-V compounds along with their expected valley degeneracies for a) AlP (mp-1550), b) AlSb (mp-2624), c) GaN (mp-830, Zinc Blende structure), and d) GaAs (mp-2534). 7-14
Figure 7-4: The Fermi surface anisotropy factor and valley degeneracy plotted for a) PbSe (mp-2201) and b) PbS (mp-21276).

Figure 7-5: PbTe (mp-19717) calculated results for a) effective valley degeneracy (N_v^*), b) density of states (m^*_s), and conductivity effective mass (m^*_c), as well as the near-edge band structure including the marked and labeled band extrema. The valence and conduction band edge is shown in a,b, as a dashed line (anything between the dashed lines exists within the band gap). c) The computed electronic structure of PbTe with the extrema indicated.

Figure 7-6: Maximum power factor for ~2300 cubic compounds plotted as a function of the Fermi surface complexity factor (evaluated at the Fermi level that yields the maximum power factor) at T=600 K.
List of Tables

Table 3-1: Band gap and transport measurement results and chemical potential estimates for this series of samples. All Kane band calculations assume a constant β parameter of ~ 0.087 corresponding to the undoped sample band gap of 0.295 eV. Chemical potentials are presented for the experimental results (ξ_{Seeb}) and model curve fit (ξ_{SKB}) as shown in Figure 3-5b.3-15

Table 5-2 Description of the three different methods of estimating the maximum thermopower in this work. ..5-23

Table 7-3: III-V semiconductor results regarding their true valley degeneracy extracted from band structure (CBM Loc, CB Deg), and their conductivity/Seebeck effective masses and Fermi surface complexity factors computed at the energy of the contributing band. E_g (band gap) is in eV, and MPID corresponds to the mp-id parameter used to store data within the Materials Project (materialsproject.org). ..7-14

Table 7-4: Valence band parameters for several IV-VI materials of thermoelectric interest. Band gaps (E_g) is listed in eV. VBM locations are given by their position in k-space (which also corresponds to Figure 7-5 and Figure 7-4) as well as their energy offset relative to the valence band edge. We have included their degeneracy (individual band degeneracy, not cumulative, which is plotted in Figure 7-4a), the Seebeck/conductivity effective mass ($m \ast_c$, $m_{Seeb} \ast$), and the calculated effective valley degeneracy, $N_v \ast$, at each corresponding band edge energy. For SnTe, which had a very low band gap, values for the L band were taken 0.1 eV below the band edge so as to avoid strong bipolar effects. ...7-16
List of Symbols and Notation

Fundamental Constants

- e – Fundamental electron charge
- \hbar – Planck’s constant ($\hbar = \frac{\hbar}{2\pi}$)
- m_e – Electron rest mass
- k_B – Boltzmann constant
- c – Speed of light

Transport Properties

- V – Voltage
- R – Resistance
- I – Electric Current
- V_H – Hall voltage
- B – Magnetic Field
- n – Carrier concentration (electrons)
- p – Carrier concentration (holes)
- R_H – Hall coefficient
- r_H – Hall factor (n / n_H)
- n_H – Carrier concentration ($\frac{1}{R_H e}$)
- σ – Electrical conductivity ($ne\mu$)
- ρ – Electrical resistivity ($1 / \sigma$)
- μ – Carrier drift mobility
- μ_H – Hall Mobility (σR_H)
- τ – Scattering time
- λ – Scattering coefficient (exponent)
- v – Drift velocity of electrons
- S – Seebeck coefficient
- $|S|$ – Thermopower (magnitude of S)
- L – Lorenz number
- κ – Total thermal conductivity
- κ_e – Electronic thermal conductivity ($L \sigma T + \kappa_{bipolar}$)
- $\kappa_{bipolar}$ – Bipolar thermal conductivity
- C_p – Heat capacity (constant pressure)
- d – Density
- D – Thermal diffusivity
- zT – Thermoelectric figure of merit
- $S^2 \sigma$ – Thermoelectric power factor
- L' – Sample dimension
- A^* – Sample cross sectional area
- t – Sample thickness
- α_L – Linear thermal expansion coefficient
- K_B – Bulk modulus

Band Engineering

- v_l – Longitudinal speed of sound
- E_{def} – Deformation potential
- C_L – Average longitudinal elastic moduli (v_l^2d)
- τ_0 – Scattering time prefactor
- μ_0 – Mobility prefactor ($e\tau_0/m^*_c$)
- n_0 – Carrier concentration prefactor
- σ_0 – Conductivity prefactor ($n_0e\mu_0$)
- m^* – Effective mass
- m^*_c – Conductivity effective mass
- m^*_d – Density of states effective mass
- m^*_b – Single valley effective mass
- m^*_p – Effective mass obtained from electronic momentum
- m^*_S – Effective mass obtained from Seebeck coefficient (single parabolic band)
- $m^*_{\|}$ – Effective mass along the longitudinal ellipsoid direction
- m^*_{\perp} – Effective mass along the transverse ellipsoid direction
- $\mu_0m^*_S^{3/2}$ – Weighted mobility
- B – Thermoelectric quality factor ($\frac{\mu_0m^*_S^{3/2}}{k_L}$)
- A – Majority-to-minority carrier weighted mobility ratio
- N_0 – Valley degeneracy
- N_0^* – Effective valley degeneracy
- K – Ellipsoidal mass anisotropy parameter ($\frac{m^*_S}{m^*_L}$)
- K^* – Effective anisotropy parameter
- f – Fermi distribution function
- F_j – Fermi integral of order j
- $\frac{n_P}{F_L^m}$ – Generalized Fermi integral
- E_g – Band gap
- $E_{g,thermal}$ – Thermal band gap
- ΔE – Band offset
- T_{cvg} – Band convergence temperature
- β – Dimensionless Kane band parameter ($\approx k_BT/E_g$)
- m^*_0 – Band edge effective mass (Kane bands)
- P – Kane band band interaction matrix element
• $D(E)$ – Density of states
• N_A – Number of acceptors
• N_D – Number of donors
• s_i – Sign of the charge carriers in the i^{th} band
• E – Electron energy
• ϵ – Dimensionless energy (E/k_BT)
• ξ – Chemical potential
• E_F – Fermi level
• η – Dimensionless chemical potential (ξ/k_BT)
• A_F – Fermi surface area
• V_F – Volume enclosed by the Fermi surface

Optical Properties

• $F(R)$ – Kubelka Munk Function, equivalently: $\frac{\alpha}{K}$
• α – Absorption coefficient
• K – Scattering coefficient
• ω – Photon frequency
• $\hbar\omega$ – Photon energy
• ϵ_∞ – Complex dielectric constant ($\epsilon_1 + i\epsilon_2$)
• ϵ_1 – Real dielectric constant
• ϵ_2 – Imaginary dielectric constant
• n_r – Real part of the refractive index
• κ_r – Imaginary part of the refractive index
• E – Electric field
• ω_p – Plasma frequency
• ϵ_∞ – Screening dielectric constant
• $E_{g,opt}$ – Optical band gap
• Δ_{RN} – Band gap renormalization