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Abstract 

Thermoelectric materials have demanded a significant amount of attention for their ability 

to convert waste heat directly to electricity with no moving parts. A resurgence in thermoelectrics 

research has led to significant enhancements in the thermoelectric figure of merit, zT, even for 

materials that were already well studied. This thesis approaches thermoelectric zT optimization 

by developing a detailed understanding of the electronic structure using a combination of 

electronic/thermoelectric properties, optical properties, and ab-initio computed electronic band 

structures. This is accomplished by applying these techniques to three important classes of 

thermoelectric materials: IV-VI materials (the lead chalcogenides), Half-Heusler’s (XNiSn where 

X=Zr, Ti, Hf), and CoSb3 skutterudites. 

In the IV-VI materials (PbTe, PbSe, PbS) I present a shifting temperature-dependent 

optical absorption edge which correlates well to the computed ab-initio molecular dynamics result. 

Contrary to prior literature that suggests convergence of the primary and secondary bands at 400 

K, I suggest a higher convergence temperature of 700, 900, and 1000 K for PbTe, PbSe, and 

PbS, respectively. This finding can help guide electronic properties modelling by providing a 

concrete value for the band gap and valence band offset as a function of temperature.  

Another important thermoelectric material, ZrNiSn (half-Heusler), is analyzed for both its 

optical and electronic properties; transport properties indicate a largely different band gap 

depending on whether the material is doped n-type or p-type. By measuring and reporting the 

optical band gap value of 0.13 eV, I resolve the discrepancy in the gap calculated from electronic 

properties (maximum Seebeck and resistivity) by correlating these estimates to the electron-to-

hole weighted mobility ratio, A, in narrow gap materials (A is found to be approximately 5.0 in 

ZrNiSn). 

I also show that CoSb3 contains multiple conduction bands that contribute to the 

thermoelectric properties. These bands are also observed to shift towards each other with 

temperature, eventually reaching effective convergence for T>500 K. This implies that the 

electronic structure in CoSb3 is critically important (and possibly engineerable) with regards to its 

high thermoelectric figure of merit.   
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𝜖𝜖𝐸𝐸= 5 and A=1 for a) Seebeck coefficient as a function of η. b) The reduced chemical potential 
which yields the maximum thermopower as a function of reduced band gap (at the rollover 
temperature) for A=1. c) Maximum attainable thermopower as a function of the reduced band gap 
(at A=1) for each method. d)  the ratio of the 2e|S|maxTmax estimate to Eg as a function of the 
dimensionless band gap 𝜖𝜖𝐸𝐸. The dashed line in c) represents the Goldsmid-Sharp band gap 
equation result. The dashed line in Figure (b) represents the halfway point between the VB and 
CB, and the solid grey lines represent the position of the valence and conduction bands. All 
calculations are done for a majority-to-minority carrier weighted mobility ratio of A=1.0. ........ 5-26 

Figure 5-11: Temperature dependent Seebeck coefficient for various carrier concentrations 
(corresponding to Figure 1) for A=5 and A=1/5. Dashed line represents the Goldsmid-Sharp band 
gap: Smax = Eg/2eTmax for various values of the carrier concentration; calculation details are the 
same as for Figure 5-9. ............................................................................................................ 5-27 

Figure 5-12: Result of the “Exact”, “Fermi”, and “Goldsmid-Sharp” methods assuming 𝜖𝜖𝐸𝐸 = 5 and 
A=5 (weighted mobility ratio) for a) Seebeck coefficient as a function of η,. b) The ratio of the 
2e|S|maxTmax estimate to the actual model Eg as a function of 𝜖𝜖𝐸𝐸, and c) the same ratio with 
respect to the weighted mobility ratio A at different Eg values (3, 5, and 10 kBT as indicated on 
the figure). ................................................................................................................................ 5-28 

Figure 5-13: The ratio of the 2e|S|maxTmax estimate to the actual model Eg as a function of 
thermopower for a wide variety of A and Smax. A values are noted in a rectangular box laid on top 
of each black solid lines. .......................................................................................................... 5-30 

Figure 5-14: This engineer’s guide is analogous to Figure 5-13; however, the predicted band gap 
in this case is ratioed to the thermal band gap (𝜖𝜖𝐸𝐸 + 𝜂𝜂, for degenerate or simply 𝜖𝜖𝐸𝐸 otherwise) 
instead of the true gap. ............................................................................................................ 5-31 

Figure 5-15: Comparison of results when the origin of A derives from a changing effective mass 
ratio (rather than purely mobility related). a) Goldsmid sharp effectiveness (2eSmaxTmax/Eg) for A=1 
with varying Am*. b) The varying chemical potential position for the parameters in a). c) 
2eSmaxTmax/Eg for A=5 and A=1/5 as a function of a  changing contribution due to Am*. d) The 
resulting shift in the chemical potential that yields the maximum Seebeck coefficient as a function 
of reduced band gap for the A=5 and A=1/5 (colors correspond to c). .................................... 5-33 

Figure 6-1: a) Pisarenko plot of Seebeck coefficient vs Hall carrier concentration at 300K. Black 
line is a two-band model with density of state effective mass for the light and heavy bands being 
1.1 m0 and 3.9 me, respectively. Orange and red lines are for single parabolic band models with 
the individual band masses. b) The DFT calculated electronic band structure for CoSb3. c) Fermi 
surface calculation for Fermi levels 0.12 eV above the conduction band edge. d) Room 
temperature optical absorption measurement (Kubelka Munk function) with estimated joint density 
of states from DFT. .................................................................................................................... 6-7 

Figure 6-2: Effective mass calculation (equivalent single parabolic band effective mass) in a) n-
type CoSb3 computed for experimental data along with the three-band model. The two individual 
band masses are also plotted to show the transition between them. b) Parabolic and Kane 
dispersions plotted with the same band edge effective mass showing the increasing effective 
mass (as the Kane band becomes linear). c) Seebeck Pisarenko plot for both Kane and Parabolic 
bands (full, Fermi integral calculation) illustrating that the Pisarenko mass actually decreases for 
Kane bands at high carrier concentration. ............................................................................... 6-12 
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Figure 6-3: a) Calculated theoretical effective mass (ratioed to the value for reduced Fermi level 
at the band edge) derived using the Mott relation for different scattering mechanisms (Equation 
6-5); the dashed line indicates an energy independent effective mass. A 𝛽𝛽 = 𝑘𝑘𝐶𝐶𝛥𝛥𝐸𝐸𝐸𝐸 value of 
0.083 (consistent with PbTe at 300K) was used. b) Calculated SPB Seebeck effective mass (𝑚𝑚𝑆𝑆 ∗) 
versus the reduced chemical potential calculated using the SPB model (𝜂𝜂𝑆𝑆𝜂𝜂𝐶𝐶) for experimental 
examples at 300 K (InAs [64] and InSb [64, 326]) which are believed to be dominated by polar 
scattering. c) 𝑚𝑚𝑆𝑆 ∗ versus 𝜂𝜂𝑆𝑆𝜂𝜂𝐶𝐶 for n-type PbTe [28], p-type PbTe [34], n-type PbSe [65], and p-
type SnTe [128].The solid lines in B and C indicate the best fit of the band edge mass along with 
the appropriate scattering mechanism plugged into Equation 6-5. .......................................... 6-17 

Figure 6-4: a) Temperature dependent optical absorption edge spectrum for CoSb3 from 25 to 
400°C. b) Temperature dependent extrapolated band gap for the direct (𝐸𝐸𝐸𝐸,𝛤𝛤 − 𝛤𝛤) and indirect 
(𝐸𝐸𝐸𝐸,𝛤𝛤 − 𝐶𝐶𝐶𝐶2) transitions, error bars represent a range of possible values depending on the 
extrapolation technique, dashed line is a continuation of the low temperature behavior of the direct 
gap which is overcome by free carriers for T>200°C. c) Experimental data represents zT (at 800 
K) vs. room temperature nH, along with the corresponding results for the three band model (𝛥𝛥𝐸𝐸 =
0) shown as the black line. The individual band contributions from 𝐶𝐶𝐶𝐶𝛤𝛤 and CB2 are computed as 
shown in the methods section. ................................................................................................. 6-20 

Figure 6-5: Temperature-dependent absorption edge measurements in a lightly Yb-doped 
(x=0.0025) CoSb3 sample from 100-400°C. a) Raw Kubelka Munk transformed absorption data 
an arrow indicates the possible inter-conduction band absorption feature. Dashed lines indicate 
a power law fit for the free-carrier absorption. b) Resulting spectra after subtracting the free carrier 
contribution (FC) and normalizing, and an that arrow indicates the growing inter-band contribution.
 ................................................................................................................................................. 6-22 

Figure 6-6: a) Optical absorption edge results showing 𝐹𝐹(𝛥𝛥) or (𝛼𝛼𝐾𝐾), the normalized Kubelka 
Munk function, for Sr5In2Sb6 and Ca5In2Sb6 where ℏ𝜔𝜔 is the light energy in eV [355]. The two 
transitions at 0.3 eV and 0.55 eV are observed and are indicated by ℏ𝜔𝜔𝐴𝐴. F(R) is the Kubelka 
Munk function (previously represented as 𝛼𝛼𝐾𝐾. b) Calculated DFT band structure of Sr5In2Sb6 with 
the suggested direct (ℏ𝜔𝜔1 ~0.48 eV) and indirect (ℏ𝜔𝜔2 ~0.73 eV) transitions indicated [351]. Both 
calculations indicate a difference of ~0.25 eV between the direct and indirect band gaps despite 
discrepancies in the band gap values. The peak at ~0.44 eV is indicative of O-H stretching 
vibrations consistent with some water adsorbed to the powder surface. ................................. 6-30 

Figure 6-7: Optical absorption edge measurements in various Zintl 5-2-6 compounds. F(R) is the 
Kubelka Munk function (previously represented as 𝛼𝛼𝐾𝐾............................................................ 6-31 

Figure 7-1: Fermi surfaces in p-type PbTe a) showing the separate ellipsoids of the L and Σ bands 
(leading to an increase in Nv*) and b) showing the more complex Fermi surface once both the L 
and Σ bands have been reached, which leads to an increase in K*. ......................................... 7-4 

Figure 7-2: Boltztrap (300 K) and band structure calculation results for AlAs.  a) “Fermi surface 
complexity factor” and true valley degeneracy plotted as functions of the Fermi level across the 
valence and conduction band. b) The conductivity (𝑚𝑚𝑐𝑐 ∗) and density of states (as estimated from 
Seebeck coefficient,  𝑚𝑚𝑆𝑆 ∗) effective masses plotted as a function of Fermi energy. c) Band 
structure calculation results for AlAs with the near-edge extrema indicated and labelled. ...... 7-12 

Figure 7-3: Fermi surface complexity factor computed for several III-V compounds along with their 
expected valley degeneracies for a) AlP (mp-1550), b) AlSb (mp-2624), c) GaN (mp-830, Zinc 
Blende structure), and d) GaAs (mp-2534). ............................................................................. 7-14 
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Figure 7-4: The Fermi surface anisotropy factor and valley degeneracy plotted for a) PbSe (mp-
2201) and b) PbS (mp-21276). ................................................................................................ 7-16 

Figure 7-5: PbTe (mp-19717) calculated results for a) effective valley degeneracy (Nv*), b) density 
of states (m*S), and conductivity effective mass (m*c), as well as the near-edge band structure 
including the marked and labeled band extrema. The valence and conduction band edge is shown 
in a,b, as a dashed line (anything between the dashed lines exists within the band gap). c) The 
computed electronic structure of PbTe with the extrema indicated. ........................................ 7-20 

Figure 7-6: Maximum power factor for ~2300 cubic compounds plotted as a function of the Fermi 
surface complexity factor (evalulated at the Fermi level that yields the maximum power factor) at 
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List of Symbols and Notation 

Fundamental Constants 

• e – Fundamental electron charge 
• ℏ –  Planck’s constant (h) divided by 2𝜋𝜋  
• 𝑚𝑚𝑒𝑒 –  Electron rest mass 
• 𝑘𝑘𝐵𝐵 –  Boltzmann constant 
• 𝑐𝑐 – Speed of light 

Transport Properties 

• 𝛥𝛥 – Voltage 
• 𝛥𝛥– Resistance 
• 𝐼𝐼 – Electric Current 
• 𝛥𝛥𝐻𝐻 – Hall voltage 
• 𝐶𝐶 – Magnetic Field 
• 𝐴𝐴 – Carrier concentration (electrons) 
• 𝑜𝑜 – Carrier concentration (holes) 
• 𝛥𝛥𝐻𝐻 – Hall coefficient 
• 𝑟𝑟𝐻𝐻 – Hall factor (𝐴𝐴/𝐴𝐴𝐻𝐻) 
• 𝐴𝐴𝐻𝐻 – Carrier concentration ( 1

𝑅𝑅𝐻𝐻𝑒𝑒
) 

• 𝜎𝜎 – Electrical conductivity (𝐴𝐴𝑒𝑒𝜇𝜇) 
• 𝜌𝜌 – Electrical resistivity (1/𝜎𝜎) 
• 𝜇𝜇 – Carrier drift mobility 
• 𝜇𝜇𝐻𝐻 – Hall Mobility (𝜎𝜎𝛥𝛥𝐻𝐻) 
• 𝜏𝜏 – Scattering time 
• 𝜆𝜆 – Scattering coefficient (exponent) 
• 𝑁𝑁 – Drift velocity of electrons 
• 𝑆𝑆 – Seebeck coefficient 
• |𝑆𝑆| – Thermopower (magnitude of S) 
• 𝜅𝜅 – Lorenz number 
• 𝜅𝜅 – Total thermal conductivity 
• 𝜅𝜅𝑒𝑒 – Electronic thermal conductivity (𝜅𝜅𝜎𝜎𝛥𝛥 + 𝜅𝜅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 
• 𝜅𝜅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 – Bipolar thermal conductivity 
• 𝐶𝐶𝑏𝑏 –  Heat capacity (constant pressure) 
• 𝑚𝑚 – Density 
• 𝐷𝐷 –  Thermal diffusivity 
• 𝑧𝑧𝛥𝛥 –Thermoelectric figure of merit 
• 𝑆𝑆2𝜎𝜎 –Thermoelectric power factor 
• 𝜅𝜅∗ – Sample dimension 
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• 𝐴𝐴∗ – Sample cross sectional area 
• 𝑜𝑜 – Sample thickness 
• 𝛼𝛼𝐿𝐿 – Linear thermal expansion coefficient 
• 𝐾𝐾𝐵𝐵 – Bulk modulus 

Band Engineering 

• 𝑁𝑁𝑏𝑏 – Longitudinal speed of sound 
• 𝐸𝐸𝑑𝑑𝑒𝑒𝑑𝑑   – Deformation potential 
• 𝐶𝐶𝑏𝑏 – Average longitudinal elastic moduli (𝑁𝑁𝑏𝑏2𝑚𝑚) 
• 𝜏𝜏0 – Scattering time prefactor 
• 𝜇𝜇0 – Mobility prefactor (𝑒𝑒𝜏𝜏0/𝑚𝑚𝑐𝑐

∗) 
• 𝐴𝐴0 – Carrier concentration prefactor 
• 𝜎𝜎0 – Conductivity prefactor (𝐴𝐴0𝑒𝑒𝜇𝜇0) 
• 𝑚𝑚∗ – Effective mass 
• 𝑚𝑚𝑐𝑐

∗ – Conductivity effective mass 
• 𝑚𝑚𝑑𝑑

∗  – Density of states effective mass 
• 𝑚𝑚𝑏𝑏

∗  – Single valley effective mass 
• 𝑚𝑚𝑃𝑃

∗  – Effective mass obtained from electronic momentum 
• 𝑚𝑚𝑆𝑆

∗ – Effective mass obtained from Seebeck coefficient (single parabolic band) 
• 𝑚𝑚∥

∗ – Effective mass along the longitudinal ellipsoid direction 
• 𝑚𝑚⊥

∗  – Effective mass along the transverse ellipsoid direction 
• 𝜇𝜇0𝑚𝑚𝑆𝑆

∗3/2 – Weighted mobility 

• 𝐶𝐶– Thermoelectric quality factor (𝜇𝜇0𝑚𝑚𝑆𝑆
∗
3
2

𝜅𝜅𝐿𝐿
) 

• 𝐴𝐴 – Majority-to-minority carrier weighted mobility ratio 
• 𝑁𝑁𝑣𝑣 – Valley degeneracy 
• 𝑁𝑁𝑣𝑣∗ – Effective valley degeneracy 

• 𝐾𝐾 – Ellipsoidal mass anisotropy parameter (𝑚𝑚∥
∗

𝑚𝑚⊥
∗ ) 

• 𝐾𝐾∗ – Effective anisotropy parameter 
• 𝑓𝑓 – Fermi distribution function 
• 𝐹𝐹𝑗𝑗 – Fermi integral of order j 
• 𝐹𝐹𝑛𝑛 𝑏𝑏

𝑚𝑚 – Generalized Fermi integral 
• 𝐸𝐸𝑔𝑔 – Band gap 
• 𝐸𝐸𝑔𝑔,𝑡𝑡ℎ𝑒𝑒𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏 – Thermal band gap 
• Δ𝐸𝐸 – Band offset 
• Tcvg – Band convergence temperature 
• 𝛽𝛽 – Dimensionless Kane band parameter (≈ 𝑘𝑘𝐵𝐵𝛥𝛥/𝐸𝐸𝑔𝑔) 
• 𝑚𝑚0

∗  – Band edge effective mass (Kane bands) 
• P– Kane band interaction matrix element 
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• 𝐷𝐷(𝐸𝐸) – Density of states 
• 𝑁𝑁𝐴𝐴 – Number of acceptors 
• 𝑁𝑁𝑑𝑑 – Number of donors 
• 𝑉𝑉𝑏𝑏 – Sign of the charge carriers in the ith band 
• 𝐸𝐸 – Electron energy 
• 𝜖𝜖 – Dimensionless energy (𝐸𝐸/𝑘𝑘𝐵𝐵𝛥𝛥) 
• 𝜉𝜉 –  Chemical potential 
• 𝐸𝐸𝐹𝐹 – Fermi level 
• 𝜂𝜂 – Dimensionless chemical potential (𝜉𝜉/𝑘𝑘𝐵𝐵𝛥𝛥) 
• 𝐴𝐴𝑘𝑘 – Fermi surface area 
• 𝛥𝛥𝑘𝑘 – Volume enclosed by the Fermi surface 

Optical Properties 

• 𝐹𝐹(𝛥𝛥) – Kubelka Munk Function, equivalently: 𝛼𝛼
𝐾𝐾�

 

• 𝛼𝛼 – Absorption coefficient 
• 𝐾𝐾� – Scattering coefficient 
• 𝜔𝜔 – Photon frequency 
• ℏ𝜔𝜔 – Photon energy 
• 𝜖𝜖𝑐𝑐 – Complex dielectric constant (𝜖𝜖1 + 𝑖𝑖𝜖𝜖2) 
• 𝜖𝜖1 – Real dielectric constant 
• 𝜖𝜖2 – Imaginary dielectric constant 
• 𝐴𝐴𝑏𝑏 – Real part of the refractive index 
• 𝜅𝜅𝑏𝑏 – Imaginary part of the refractive index 
• 𝑬𝑬 – Electric field 
• 𝜔𝜔𝑏𝑏 – Plasma frequency 
• 𝜖𝜖∞ – Screening dielectric constant 
• 𝐸𝐸𝑔𝑔,𝑏𝑏𝑏𝑏𝑡𝑡 – Optical band gap 
• Δ𝑅𝑅𝑅𝑅 – Band gap renormalization 

 

 

 

 




