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Chapter 5:  Resolving the True Band Gap in ZrNiSn: The Effect of the 

Weighted Mobility Ratio in Bipolar Semiconductors 

5.1 - Introduction 

Temperature-dependent electronic transport measurements serve as the primary 

characterization tool for most thermoelectric materials. With regards to the electronic band 

structure, these measurements can be used to determine things like the effective mass, 

deformation potential, band offset (Δ𝐸𝐸) in the case of two-band systems with the same type of 

carrier (as discussed in Chapter 4 for the IV-VI materials), or band gap (Eg) for systems where 

the bipolar effects are large. Particularly in the case of band gap, these estimates are useful for 

comparing experimental and theoretical (DFT) calculations. Further, understanding the band gap 

is important for modelling electronic transport properties, primarily to distinguish and quantify band 

engineering effects. Half Heusler’s (HH) have received a lot of attention lately because of their 

flexibility with regards to composition (XYZ where X=Ti, Zr, Hf, etc., Y=Ni, Co, etc., Z=Sn, Sb, 

etc.), good electronic properties, earth-abundant elements, and reasonable thermoelectric 

performance. In this chapter, I explore the relationship between the maximum measured 

temperature-dependent thermopower (|S|), which can be used to estimate the band gap using 

Eg=2e|S|maxTmax (the Goldsmid-Sharp band gap), and the electron-to-hole weighted mobility ratio, 

A [51]. While the Goldsmid Sharp gap estimate is useful, mainly due to its simplicity and ease of 

application, it gives conflicting results in ZrNiSn and other systems that have large differences in 

electron and hole weighted mobility (defined as 𝜇𝜇0𝑚𝑚∗3/2). By combining optical measurements 

with the estimated Goldsmid-Sharp band gap in n-type and p-type samples, I am able to resolve 

the true band gap as well obtain an estimate for the electron-to-hole weighted mobility ratio in 

ZrNiSn. I also discuss the origins of the large difference in electron and hole weighted mobility in 

the context of existing literature results and the inherent disorder associated with HH materials.  
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As an extension of my findings in the ZrNiSn HH system, the second section of this chapter 

is dedicated to a more thorough theoretical investigation of the Goldsmid-Sharp band gap 

relationship in the limit of narrow gap materials, where the full Fermi statistics should be 

considered. I present a chart that can be used to quickly estimate deviations in the 2eSmaxTmax 

relation from the true band gap as a function of the maximum Seebeck coefficient and the 

majority-to-minority carrier weighted mobility ratio, A. I also discuss what deviations in this relation 

can occur as the band gap is narrowed significantly and the Seebeck rollovers occur while the 

Fermi level is degenerate.  

5.2 - ZrNiSn Half Heusler Thermoelectric Materials– Resolving the True Band Gap 

5.2a - Introduction 

Half-Heusler (HH) compounds with the general formula XNiSn (X= Ti, Zr, Hf) have 

generated significant interest as a promising class of materials for thermoelectric applications 

because of their high thermopower, reasonable mobility, earth-abundant elements, and good 

performance [212, 213]. The numerous possibilities to manipulate each of the three lattice sites 

provide an excellent opportunity to influence the electronic and thermal transport properties. In 

the case of XNiSn, isoelectronic alloying on the X site [214] or partial substitution on the Ni site 

[215] can lead to thermal conductivity reduction owing to lattice strain and mass fluctuations by 

point-defect scattering of phonons. Beyond simply alloying, a wide range of HH composites have 

utilized phase separation, which can result in remarkably low thermal conductivities and even 

enhanced electrical properties [216-219]. In fact, much of the work on the HH’s has involved 

phase-separating alloys which benefit greatly from the increased phonon scattering from 

nano/microstructure features. The XNiSn system is the most extensively studied n-type HH 

material [23, 212, 213, 219-225] showing good zTs of 0.6-1.4 (usually optimizing at high 

temperatures, T>900 K) [223]. 
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Much of the existing literature focuses on the thermoelectric characterization of n-type 

XNiSn, which show the best thermoelectric performance in comparison to their p-type analogs. 

The most promising p-type HHs are found in the XCoSb system (X= Ti, Zr, Hf) [213, 226-228]. 

However, for the construction of thermoelectric modules, it is desirable for the n-type and p-type 

materials to have similar chemical, thermal, and mechanical properties. In order to be most 

compatible with high-performance HH n-type materials that are currently being explored for 

modules [229], a suitable p-type analog in the XNiSn system is desirable. Some work has already 

been done to this end; for example: Xie et al. [230] studied the substitution of Ni by Co and 

demonstrated that a conversion from n- to p-type behavior for the XNiSn system could be 

achieved. Likewise, Horyn’ et al. [231] studied the effects of substituting Sc for Ti or Zr; the 

resulting compounds showed promising positive thermopower at room temperature.  

The electronic transport properties of semiconducting materials, such as thermopower and 

electrical conductivity, are reflections of the electronic energy band structure in k-space and the 

electronic states which make up the valence and conduction bands. A crucial parameter that 

determines the thermoelectric performance is the band gap. For narrow band-gap 

semiconductors, the onset of bipolar conduction (both electrons and holes contributing) occurs at 

lower temperatures than their higher gap analogs. The compensating Seebeck coefficient of the 

minority carriers leads to a peak in the thermopower, limiting the temperature-dependent zT 

values.  

In this work, I aim to extend the existing studies of p-type XNiSn HH compounds by 

thoroughly investigating Sc substitutions in Zr1-xScxNiSn. Through Sc substitution, we successfully 

doped ZrNiSn to be p-type and then measured its thermoelectric properties up to 850 K. I 

estimated the band gap size using the commonly used Goldsmid-Sharp formula: 
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 𝑬𝑬𝒈𝒈 = 𝟐𝟐𝟐𝟐|𝑺𝑺|𝒎𝒎𝒎𝒎𝒎𝒎𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎 Equation 5-1 
 

where Tmax is the temperature at which the maximum of the thermopower (|S|max) occurs [51]. Eg 

here is referred to as the Goldsmid-Sharp band gap and is obtained from high temperature 

thermopower measurements. In this work, synthesized ZrNiSn HH samples give a discrepancy 

between the values obtained from our p-type samples (~0.05 eV) and the n-type results from the 

literature (>0.23 eV), both of which are different from the ab-initio calculated result of 0.5 eV [232]. 

With the aid of the optical measurements, we used the Goldsmid-Sharp formula to resolve this 

apparent discrepancy by considering a large difference in weighted mobility between electrons 

and holes. I would like to acknowledge work from Jennifer Schmitt, who was an equally 

contributing coauthor on the work that this section is based upon [52]. 

5.2b - Results 

X-ray Diffraction 

Figure 5-1 shows a representative XRD pattern for Zr0.95Sc0.05NiSn, which conforms to the 

well-defined cubic structure typical for the HH phase containing negligible amounts of Sn metal. 

The calculation of the lattice parameter and the crystal structure refinements were done using the 

Rietveld method, which yielded a lattice parameter of a = 6.1148 Å for the undoped sample, which 

is in agreement with the values reported in the literature [233]. The inset in Figure 5-1 shows a 

roughly monotonic increase with increasing Sc amount, which agrees well with Vegard’s law. The 

increase serves as evidence of the substitution of slightly larger Sc atoms (radius = 1.60 Å) for Zr 

(radius = 1.55 Å). Each of these observations is consistent with previous synchrotron results on 

Ti1-xScxNiSn compounds synthesized in a similar way [232]. 
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Figure 5-1 Powder XRD pattern for the Zr0.95Sc0.05NiSn sample (Iexp) with the Rietveld refinement (IRR) and the 
difference profile (Iexp-RR). The inset shows the dependence of the lattice parameter a (Å) for Zr1-xScxNiSn versus Sc 
content (x). The straight line represents the linear fit to Vegard’s law. 

Electrical Transport Properties 

The electrical properties of the Zr1-xScxNiSn (x = 0 ,…, 0.10) solid solution are shown in 

Figure 5-2a. At room temperature, the samples exhibit high electrical resistivity, which decreases 

with increasing temperature for all the samples, indicating semiconducting behavior. For high 

substitution levels, both the room temperature value and the temperature dependence of the 

resistivity decreases, pointing to a shift of the Fermi level towards the valence band as a result of 

an increasing p-type carrier concentration. 

It can be seen from Figure 5-2b that for increasing Sc content in the Zr1-xScxNiSn solid 

solution, the Hall mobility (𝜇𝜇𝐻𝐻 = σ · 𝑅𝑅𝐻𝐻 in units of mobility) is suppressed (and eventually becomes 

positive) by the addition of holes. The parent compound, n-type ZrNiSn, exhibits the highest 

mobility, with a value at room temperature of 25 cm2/ V·s, which is a typical value for n-type 
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XNiSn-based systems [234, 235]. This value is still significantly lower than 150 cm2/ V·s for Bi2Te3 

or 900-1400 cm2/ V-s for the lead chalcogenides [58, 236]. If we assume that each replacement 

of Zr by Sc leads to one hole, the room temperature electron concentration should be completely 

compensated when the Sc concentration exceeds ~5%. At low Sc content, the samples with 0 ≤ 

x ≤ 0.04 possess a negative value for σ · 𝑅𝑅𝐻𝐻, which is consistent with a substitutional doping 

explanation. 

 

Figure 5-2: Temperature dependence of a) the electrical resistivity ρ and b) the σ · 𝑅𝑅𝐻𝐻 product (in units of 
mobility) for the Zr1-xScxNiSn solid solution. The true Hall mobility at 300 K is largest for the intrinsic, n-type ZrNiSn 
sample (Figure 2b). With increasing Sc content, the magnitude of σ · 𝑅𝑅𝐻𝐻  decreases as a result of the influence of the 
low mobility holes. 
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With regards to the origin of the low mobility in the samples which show p-type character, 

we should consider how the Hall coefficient varies as a function of carrier mobility and 

concentration when both electrons and holes are present (in the bipolar region) [121]: 

 
𝑹𝑹𝑯𝑯 =

𝒏𝒏𝒑𝒑 𝝁𝝁𝒑𝒑𝟐𝟐  −  𝒏𝒏𝒏𝒏µ𝒏𝒏
𝟐𝟐

𝟐𝟐(𝒏𝒏𝒑𝒑 𝝁𝝁𝒑𝒑 −  𝒏𝒏𝒏𝒏µ𝒏𝒏)𝟐𝟐
 Equation 5-2 

 

Here, 𝑛𝑛𝑛𝑛 and 𝑛𝑛𝑝𝑝 are the electron and hole concentrations, respectively, and  𝜇𝜇𝑛𝑛 and  𝜇𝜇𝑝𝑝are 

the electron and hole mobilities, respectively. If 𝜇𝜇𝑛𝑛> 𝜇𝜇𝑝𝑝, the sign for the Hall coefficient RH can be 

negative even if 𝑛𝑛𝑝𝑝 > 𝑛𝑛𝑛𝑛. In order to obtain a positive value for the Hall coefficient, 𝑛𝑛𝑝𝑝 𝜇𝜇𝑝𝑝2 needs to 

exceed 𝑛𝑛𝑛𝑛𝜇𝜇𝑛𝑛2. Because the individual carrier contributions, 𝑛𝑛𝑛𝑛 and 𝜇𝜇𝑛𝑛, are unknown and difficult to 

determine, 𝑛𝑛𝐻𝐻 = 1
𝑅𝑅𝐻𝐻𝑒𝑒

 can be used assuming a single carrier type, but it will result in a value that is 

greater than either the true value for 𝑛𝑛𝑝𝑝 or 𝑛𝑛𝑛𝑛. 

The Seebeck coefficient (𝑆𝑆) for the Zr1-xScxNiSn solid solution are presented in Figure 5-

3. The pure ZrNiSn compound, without any Sc doping, displays a large negative Seebeck 

coefficient at room temperature, indicating a significant n-type defect concentration in the intrinsic 

ZrNiSn. With increasing Sc content, the value of the thermopower decreases as compensating p-

type defects (Sc3+ on Zr4+ sites) are added to the naturally n-type material. It can be seen from 

the change in sign of the Seebeck coefficient from negative to positive that holes become the 

predominant charge carriers. This sign change occurs at lower Sc contents than observed for the 

sign change of σ · 𝑅𝑅𝐻𝐻  (Figure 5-2b), indicating that in this region of mixed conduction, the holes 

probably outnumber electrons. However, because the electrons are more mobile, the Hall 

coefficient does not change sign until x > 0.05 (note that the mobilities are squared, in Equation 

5-2), whereas the Seebeck coefficient is weighted by mobility to the first power [121]. As observed 

in the Hall coefficient measurements, ambipolar conduction of both electrons and holes is most 

likely responsible for the decrease in the thermopower at high temperatures. 
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In addition to indicating the onset of bipolar conduction, the maximum of the thermopower 

can be used for the estimation of the Goldsmid-Sharp band gap, Eg, according to Equation 5-1 

[51], where we obtained values on the order of 0.05 eV. This is much smaller than the band gap 

suggested by Aliev et al. from electrical resistivity measurements (0.18 eV) [237]. The discrepancy 

between the estimation from our thermopower data and the literature estimates for the size of Eg 

in these compounds will be discussed in detail later and is the main topic of this chapter. 

 

Figure 5-3: Temperature dependence of the Seebeck coefficient for the Zr1-xScxNiSn solid solution. The 
Seebeck coefficient shows a rollover due to ambipolar conduction.  

The temperature-dependent total thermal conductivity (κtot) is shown in Figure 5-4. The 

room temperature thermal conductivity is reduced by 40% for Zr0.9Sc0.1NiSn as compared with the 

undoped ZrNiSn. Because this is accompanied by a decrease in resistivity (Figure 5-2a), it is clear 

that this must be due to scattering of phonons as a result of increased disorder in the material, 

which reduces the lattice thermal conductivity (which is much greater than the electronic thermal 

conductivity at room temperature for all Sc compositions). Above room temperature, we can see 

an increasing thermal conductivity for the doped samples, which is consistent with the existence 
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of both electrons and holes (which is also shown by the other transport properties in Figure 5-2b 

and Figure 5-3). This effect occurs at lower and lower temperatures as the Sc content is 

increased. Although the bipolar effects are less pronounced for the Seebeck coefficient 

measurements, thermal conductivity is quite sensitive to bipolar conduction because it is affected 

both by the decrease of the resistivity (increasing 𝜅𝜅𝑒𝑒) and by the increasing magnitude of the 

bipolar term of the thermal conductivity (𝜅𝜅𝑏𝑏). 

 

Figure 5-4 The total thermal conductivity of the Zr1-xScxNiSn solid solution as a function of temperature and 
Scandium content. 

Optical Absorption Edge 

Optical properties were also measured to get information about the band structure, as 

displayed in Figure 5-5. Undoped ZrNiSn was measured in diffuse reflectance at room 

temperature; the indirect optical band gap was extracted using the Tauc extrapolation method (as 

discussed in Chapter 2) [46, 95]. The estimated value of the indirect optical band gap was 0.13 

eV. Aliev et al. measured ZrNiSn samples previously using optical techniques, and they reported 

a minimum in the absorption coefficient of approximately 2000 cm-1 (~0.25 eV)—a value quite a 
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bit larger than the 0.13 eV measured in this work. The most likely reason for this discrepancy is 

due to the large difference in room temperature resistivity.  

It should be understood that the properties of ZrNiSn seem to depend significantly upon 

the method of synthesis for the sample. I performed similar DRIFTS measurements on intrinsic 

ZrNiSn samples synthesized by another collaborator using levitation melting/spark plasma 

sintering (Xie et al. [230, 238]), which yielded a minimum in the absorption coefficient around 0.2 

eV (which agrees with Aliev’s results). However, I attribute the higher absorption edge to a higher 

carrier concentration (which increases free-carrier absorption and possibly induces a Burstein 

Moss shift, see Chapter 3) than those samples presented here (synthesized using arc-melting). 

ZrNiSn from both Xie et al. and Aliev et al. show a much lower room temperature resistivity 

(~10 𝑚𝑚Ω− 𝑐𝑐𝑚𝑚) in comparison to samples from this thesis chapter (intrinsic ZrNiSn showed 

resistivity near 100 𝑚𝑚Ω − 𝑐𝑐𝑚𝑚). The lower resistivities from Xie, Aliev et al. resulted in free carrier 

absorption, which pushed the minimum absorption coefficient to higher energies.  

Band gaps extracted from the temperature dependent resistivity both in this work and from 

Aliev et al. show values near 0.18 eV [237]. The large range of different values for the band gap 

obtained from different methods (Goldsmid-Sharp, temperature-dependent resistivity, optical, and 

DFT) suggest that a self-consistent model for this material should be developed. The remainder 

of this section will investigate the origins of the spread in values as well as the nature of the 

valence band. Recent literature suggests that the valence band is composed of Ni-states which 

arise from disorder within the material (specifically Ni disorder onto the vacancy site) [239], which 

will be discussed in detail later.  
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Figure 5-5: Optical diffuse reflectance data plotted as the indirect band gap transformation of the Kubelka 
Munk function for pure ZrNiSn. A linear fit (red dotted line) was used to estimate the band gap by extrapolating to zero 
absorption, indicating that the band gap is ~0.13 eV. 

5.2c - Discussion 

When considering the transition from heavily doped to intrinsically semiconducting 

behavior (Eg,thermal< ~5 kBT), the Seebeck coefficient is an important indicator of the excitation of 

minority charge carriers across the band gap. In between these two regions, the thermopower will 

reach a maximum (as shown in Figure 5-3), which can be used to estimate the band-gap via the 

Goldsmid-Sharp formula (Equation 5-1). The thermopower band gaps for the Zr1-xScxNiSn solid 

solution are compared to those of a series of n-type XNiSn samples from the literature, as shown 

in Figure 5-6. 
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Figure 5-6: Estimation of the band gap for different n-type (red bars) and p-type (purple bars) half-Heusler 
compounds using the Goldsmid-Sharp formula (Eg=2eSmaxTmax) in units of eV versus the numerated HH compounds. 
The dotted line indicates the optical measured band gap of 0.13 eV for pure ZrNiSn from DRIFTS. The diamonds 
represent the estimated true band gap value that yields the experimental Smax and Tmax when using the full relation 
derived by Goldsmid and Sharp for an electron-to-hole weighted mobility ratio of A=5 : 1) Sc0.03Zr0.97NiSn, 2) 
Sc0.04Zr0.96NiSn, 3) Sc0.0.5Zr0.95NiSn, 4) Sc0.1Zr0.9NiSn, 5) ZrCo0.08Ni0.92Sn [230], 7) Zr0.75Hf0.25NiSn [240], 8) 
Zr0.5Hf0.5NiSn [240], 9) Zr0.25Hf0.75NiSn [240], 10) HfNiSn [240], 11) Ti0.95Hf0.05NiSn [241], 12) Ti0.95Hf0.05NiSn0.995Sb0.005 

[241], 13) Ti0.95Hf0.05NiSn0.99Sb0.01 [241], 14) Ti0.95Hf0.05NiSn0.98Sb0.02 [241] , 15) Hf0.75Zr0.25NiSn0.99Sb0.01 [242], 16) 
Hf0.5Ti0.25Zr0.25NiSn0.99Sb0.01 [242], and 17) Hf0.25Ti0.5Zr0.25NiSn0.99Sb0.01 [242]. 

A large difference in the Goldsmid-Sharp thermopower band gap is apparent when 

comparing Sc-doped p-type samples from this work and n-type literature results; both are much 

smaller than those estimated by ab initio calculations (~0.5 eV) [232, 233]. Here, we note that 

even though X (in XNiSn samples) varies through Zr, Hf, and Ti for n-type samples in Figure 5-6, 

the band structures and band gaps are expected to be the same (for DFT calculations) [243]. 

Although the large difference in Goldsmid-Sharp band gap between p-type and n-type samples 

might lead one to the conclusion that the choice of dopant will affect the size of the gap, it is 

important to consider the limitations of the simple Goldsmid-Sharp band gap estimation and the 

parameters that might affect the results. Following the derivation from Goldsmid and Sharp, the 

Seebeck coefficient for a mixed semiconductor is given as: 
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 𝑺𝑺 = 𝟏𝟏
𝟏𝟏+𝝈𝝈𝒏𝒏𝝈𝝈𝒑𝒑

�𝑺𝑺𝒑𝒑 + 𝝈𝝈𝒏𝒏
𝝈𝝈𝒑𝒑
𝑺𝑺𝒏𝒏�  Equation 5-3 

 

where 𝑆𝑆𝑛𝑛,𝑝𝑝 and σ𝑛𝑛,𝑝𝑝 represent the thermopower and the electrical conductivities of the two different 

carrier types, respectively. Goldsmid and Sharp derived a simple model assuming classical 

statistics [51], which estimates the electron-to-hole conductivity ratio as 

 𝝈𝝈𝒏𝒏
𝝈𝝈𝒑𝒑

= 𝑨𝑨 𝟐𝟐𝒎𝒎𝒑𝒑(𝜼𝜼𝒏𝒏 − 𝜼𝜼𝒑𝒑) Equation 5-4 

where 𝜂𝜂𝑛𝑛 and 𝜂𝜂𝑝𝑝 are the electron and hole dimensionless chemical potentials (𝜂𝜂 = 𝜉𝜉/𝑘𝑘𝐵𝐵𝑇𝑇). A is 

defined as the weighted mobility ratio: 

 
𝑨𝑨 =

𝝁𝝁𝟎𝟎,𝒏𝒏𝑵𝑵𝒗𝒗,𝒏𝒏

𝝁𝝁𝟎𝟎,𝒑𝒑𝑵𝑵𝒗𝒗,𝒑𝒑
�
𝒎𝒎𝒃𝒃,𝒏𝒏

∗

𝒎𝒎𝒃𝒃,𝒑𝒑
∗ �

𝟑𝟑/𝟐𝟐

 Equation 5-5 

 

where μ0,n,p is the electron or hole mobility parameter, Nv,n,p is the valley degeneracy of the electron 

or hole pocket (both are Nv=3 in this case), and 𝑚𝑚𝑏𝑏,𝑛𝑛𝑝𝑝
∗ is the single valley effective mass (not 

including the degeneracy of the valence or conduction bands). By substituting Equation 5-5 into 

Equation 5-4 and taking the classical limit for the thermopower and determining its maximum, 

Goldsmid and Sharp obtained: 

 

𝑺𝑺 =
𝒌𝒌𝑩𝑩
𝟐𝟐

𝟐𝟐�η𝒏𝒏 − 𝝀𝝀 − 𝟐𝟐� �
𝑬𝑬𝒈𝒈
𝒌𝒌𝑩𝑩𝑻𝑻

+ 𝟐𝟐𝝀𝝀 + 𝟑𝟑� − �−η𝒏𝒏 −
𝑬𝑬𝒈𝒈
𝒌𝒌𝑩𝑩𝑻𝑻

− 𝝀𝝀 − 𝟐𝟐�

𝟏𝟏 + 𝟐𝟐 �
𝑬𝑬𝒈𝒈
𝒌𝒌𝑩𝑩𝑻𝑻

+ 𝟐𝟐𝝀𝝀 + 𝟑𝟑�
 Equation 5-6 

And 
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Equation 5-7 

  

where 𝐸𝐸𝑔𝑔
𝑘𝑘𝐵𝐵𝑇𝑇

 is the dimensionless band gap, and 𝜆𝜆 is the scattering exponent (𝜏𝜏 = 𝜏𝜏0 �
𝐸𝐸
𝑘𝑘𝐵𝐵𝑇𝑇

�
𝜆𝜆−1/2

, 

where 𝜆𝜆 = 0 is assumed here, which represents acoustic phonon scattering). In light of the large 

mobility difference between the n-type undoped sample (~25 cm2/V∙s) and the heavily Sc-doped 

samples (p-type mobility approximately ~1-2 cm2/V∙s), a weighted mobility ratio (A) that is larger 

than unity should be considered. In order to investigate this, we first gathered estimates of the 

Goldsmid-Sharp band gap for a series of p- and n-type ZrNiSn samples, as shown by the bars in 

Figure 5-6. A clear separation is observed between p-type samples (~0.05 eV) in purple and n-

type ones in red (>~0.2 eV). For reference, the results from the optical measurements (Figure 5-

5) are also plotted as a dashed line at ~ 0.13 eV in Figure 5-6. By numerically solving Equation 

5-6 and Equation 5-7 with A = 5 (a reasonable value considering the large mobility difference 

between electrons and holes), I determined the required true band gap that would yield the 

experimentally measured Smax and Tmax, the results of which are shown as blue diamonds in 

Figure 5-6 for each of n- and p-type ZrNiSn-based HH materials. All of these values are close to 

the measured optical results of 0.13 eV, indicating that the large weighted mobility ratio between 

electrons and holes is likely responsible for the difference in the Goldsmid-Sharp thermopower 

band gap when comparing n- and p-type samples. 

Although Goldsmid and Sharp state that even with a large mobility ratio value (A = 10), 

the simple band gap estimatie should hold to within ~ 20%, I note that they assume a band gap 

of 10 kBTmax to derive this value. This is a poor assumption for most materials, as the band gap in 

our system (and many others) is less than 5 kBTmax. In order to illustrate this point, I have plotted 
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2eSmaxTmax/Eg versus Smax for a mobility ratio parameter A = 5 using Equation 5-6 and Equation 

5-7 (Figure 5-7). The red line is the result for the n-type doping and the blue line displays the 

result for p-type doping. Data points in their corresponding colors were taken from their Goldsmid-

Sharp band gap ratio to the optical band gap measured in this work (0.13 eV). The displayed error 

bars assume an error of ±10% in the thermopower and the optical band gap. Figure 5-7 shows a 

positive deviation to 2eSmaxTmax/Eg (relative to 1.0) for the n-type samples, whereas we observe a 

negative deviation for p-type ones. Qualitatively, this is because the more mobile electrons 

dominate the Seebeck coefficient equation because it is weighted by their conductivity; this forces 

the thermopower of the p-type samples to roll over at lower values, whereas n-type samples 

maintain higher thermopower at higher temperatures.  

 

Figure 5-7: A plot of the ratio of the Goldsmid-Sharp band gap (2eSmaxTmax) to the true band gap for different 
p- and n-type half-Heusler compounds in red and blue, respectively, for an electron-to-hole weighted mobility ratio of 
A=5. The solid lines use Goldsmid and Sharp’s full derived equation (Equation 5-6) to estimate this ratio. Experimental 
points use the observed maximum Seebeck coefficient (Smax) and temperature (Tmax) and the optical band gap 
(Eg,optical). An error of ±10% was assumed for the thermopower measurements and the band gap estimations. 

To probe the supposition that 𝐴𝐴 ≈ 5 in ZrNiSn, an estimate for the weighted mobility ratio 

was obtained using a single parabolic band model as fit from the measured Seebeck coefficient 

and resistivity. Rather than fitting the effective mass and 𝜇𝜇0 (or equivalently Edef), in the absence 
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of Hall data the weighted mobility (or in our case reliable estimates of the carrier concentrations 

in either the valence or conduction band), 𝜎𝜎0 can be fit. 𝜎𝜎0 is the conductivity pre-factor (a constant 

that does not depend on Fermi level that scales the conductivity) which can be expressed as: 

 
𝝈𝝈𝟎𝟎 = 𝒏𝒏𝟎𝟎𝟐𝟐𝝁𝝁𝟎𝟎 =

√𝟐𝟐(𝒌𝒌𝑩𝑩𝑻𝑻)𝟑𝟑/𝟐𝟐𝟐𝟐
𝝅𝝅𝟐𝟐ℏ𝟑𝟑

 𝝁𝝁𝟎𝟎𝒎𝒎𝒅𝒅
∗ 𝟑𝟑/𝟐𝟐 Equation 5-8 

  

which defines the relationship between the weighted mobility (𝜇𝜇0𝑚𝑚𝑑𝑑
∗ 3/2) and 𝜎𝜎0. This can be fit in 

a similar way to the effective mass for a single parabolic band (as detailed in Chapter 2) by first 

using the measured Seebeck coefficient to estimate the reduced chemical potential (𝜂𝜂), then 

solving for 𝜎𝜎0 using the measured conductivity and the relation: 

 𝝈𝝈 = 𝝈𝝈𝟎𝟎𝑭𝑭𝟎𝟎(𝜼𝜼) Equation 5-9 
 

The weighted mobility ratio (A) can then simply be defined as the ratio of the 𝜎𝜎0 terms of 

n-type and p-type samples. I gathered data from both this thesis and XNiSn literature results (with 

both donor and acceptor doping) to estimate 𝜎𝜎0 values as a function of the measured electrical 

conductivityl the results are shown in Figure 5-8. In order to minimize the effect of bipolar 

conduction, it is desirable to estimate 𝜎𝜎0 for the samples with their Fermi levels as far from the 

opposing band as possible; this is accomplished in Figure 5-8 by taking our estimates for 𝜎𝜎0,𝐶𝐶𝐵𝐵 and 

𝜎𝜎0,𝑉𝑉𝐵𝐵 for samples with the highest electrical conductivities (far left or far right of the plot 

respectively). This yields 1.1 and 0.15 (𝑚𝑚Ω − 𝑐𝑐𝑚𝑚)−1 for 𝜎𝜎0,𝐶𝐶𝐵𝐵 and 𝜎𝜎0,𝑉𝑉𝐵𝐵 respectively. I estimate a 

weighted mobility ratio given these values of 𝜎𝜎0 of 1.1
0.15

≈ 7, which agrees well with our estimate of 

5 when considering the maximum Seebeck coefficients in Figure 5-6 and Figure 5-7. I should note 

that the exact values of 𝜎𝜎0 may depend on the method of synthesis (ideally we would obtain 𝜎𝜎0 𝑛𝑛,𝑝𝑝 

for data that all used the same synthesis procedure). 
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Figure 5-8: Estimated conductivity prefactor using the single parabolic band model for a series of ZrNiSn 
samples across the p-type to n-type transition for several literature results [52, 230, 231, 238] and results from this 
thesis. On the x-axis I have multiplied the measured conductivity by the sign of the measured Seebeck coefficient in 
order to represent the sign change. I have plotted these results along with a two-band (valence/conduction) model 
that uses a 𝜎𝜎0,𝐶𝐶𝐵𝐵 = 1.1 and a 𝜎𝜎0,𝑉𝑉𝐵𝐵 = 0.15 and a band gap of 0.128 eV (as measured optically). 

5.2d - Electronic Structure Origin of the Weighted Mobility 

Recent HH literature provides a self-consistent explanation as to the origin of the valence 

band states, which we have found to yield low weighted mobility. XNiSn materials upon addition 

of one more Ni atom per unit cell form the full-Heusler analog (XNi2Sn). This crystal structure is 

known to be stable and produces a metallic material. Experimental evidence using synchrotron 

XRD and hard x-ray photoemission spectroscopy (HAXPES) confirms the existence of both in-

gap states [239, 244] and up to ~10% of the Ni atoms disordering onto vacancy sites [239, 245]. 

Defect calculation results [246-249] confirm this theory, and the observed narrow gaps obtained 

from transport are sometimes attributed to these states [248, 250] in the literature.  

With regards to the optical properties, the proposed picture of in-gap Ni states induced by 

disorder is consistent with the results obtained here. Even hydrogenic impurities, which contain a 
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single energy level rather than a band of states, can result in an absorption edge below the 

fundamental one which shows similar energy dependence to indirect transitions [45]. In the case 

of ZrNiSn, though, the Ni-vacancy interstitial defects result in an addition of a continuous band of 

states within the gap [249], which can also lead to appreciable absorption below the fundamental 

edge (as shown in Zn1-xMnxO [251]). The narrow gap observed both optically and electronically 

imply that these “in-gap” Ni-interstital states simply compose the valence band from which we 

observe optical transitions and bipolar effects. Further, the electronic properties and weighted 

mobility ratio could also be explained in this context. Specifically, the inherently disordered 

impurity band would likely have lower mobility than the conduction band states which are likely a 

result of the underlying HH framework and are probably less effected by the disorder. 

While the very small mobility in p-type ZrNiSn may be disheartening, it beneficially results 

in suppressed bipolar effects in the n-type ZrNiSn system. Thus, the low mobility minority carrier 

enables the n-type material to maintain a high thermopower at high temperatures, despite its 

narrow band gap. This is contrary to the high band gaps found in other p-type HHs, like TiCoSb 

or the recently identified FeV0.6Nb0.4Sb, where the band gap estimated from the Goldsmid-Sharp 

formula is around 0.57 eV and 0.4 eV, respectively [22, 252].  

5.2e - Conclusions 

In this section, the thermoelectric transport properties of Sc-substituted ZrNiSn HH solid 

solutions were systematically studied. The substitution of Zr by Sc led to the successful 

introduction of holes into the system, resulting in a p-type material with a maximum thermopower 

of +115 µV/K at 650 K. Owing to the introduction of holes into the system, the Seebeck coefficient 

became positive and increased with increasing temperature, reaching a maximum as the higher 

mobility n-type carriers were thermally activated. Generally, the transport properties are 

dominated by the high mobility of the electrons over that of the lower mobility holes, which can be 

seen from the 𝑅𝑅𝐻𝐻𝜎𝜎 product (in units of mobility). Both p-type data from this work and n-type 
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literature data for the thermopower gap deviated significantly from the optical measurements (0.13 

eV), but I have shown that this can be simply explained by a large difference in the weighted 

mobility between electrons and holes. A high electron-to-hole weighted mobility ratio leads to a 

suppression of the bipolar effect in the thermoelectric transport properties, which is essential for 

high zT values in n-type XNiSn (X = Ti, Zr, Hf) HH compounds. 

5.2f - Methods 

The solid solution Zr1-xScxNiSn (x = 0, … , 0.10) was prepared by arc melting of 

stoichiometric amounts of Zr (99.99%), Ni (99.999%), Sn (99.999%), and Sc (99.999%) in an Ar 

atmosphere on a water-cooled crucible. To ensure compositional homogeneity, samples were 

flipped and remelted five times. The as-cast samples were annealed in evacuated quartz tubes 

at 1220 K for 7 d, followed by quenching in ice water to ensure the crystalline order. The crystal 

structure of the samples was studied by X-ray diffraction (XRD) on a Siemens D5000 

diffractometer using Cu Kα radiation (wavelength of 1.5418 Å). The powder XRD patterns of all 

samples showed that they were a single phase with cubic C1b structure [233]. 

 The total thermal conductivity was calculated from the thermal diffusivity (D) with κ =

𝐶𝐶𝑃𝑃𝐷𝐷𝐷𝐷, where Cp is assumed to be the Dulong–Petit heat capacity and d the density calculated 

from the molar mass and the lattice parameter for each sample obtained from XRD. 
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5.3 - Extending the Weighted Mobility Ratio/Goldsmid-Sharp Gap Analysis to Low Gap 

Materials 

5.3a - Introduction 

In the previous section, I have shown how to obtain an accurate estimate of the band gap 

using optical and electronic properties in ZrNiSn, which has a large difference in electron and hole 

weighted mobility. In this section, I extend the analysis beyond the non-degenerate limit to probe 

its applicability for narrow-gap semiconductors using full Fermi statistics. I also explore some of 

the assumptions made by Goldsmid and Sharp to show when the relation breaks down and what 

the expected error might be. 

As mentioned in the previous section, band gap is an important parameter in 

thermoelectric materials because at high temperatures, bipolar excitation of carriers across the 

gap leads to a drastic drop in thermoelectric efficiency. This can be seen by plotting zT versus 

temperature for a good (representative) thermoelectric material (Figure 5-9 inset), the zT will rise 

until reaching a peak value after which it decreases. Since the peak zT values are often the metric 

by which materials are compared, it is worthwhile to understand the origins of the peak and what 

factors can influence it. Typical degenerate thermoelectric semiconductors display thermopowers 

which rise linearly with temperature to a maximum (Figure 5-9) followed by a decrease. Because 

the Seebeck coefficient is squared in the formula for zT, a maximum in the thermopower also 

results in a maximum in the temperature dependent zT.  

It is well known that the origin of the thermopower peak is most often related to the onset 

of bipolar conduction which involves thermal excitation of both electrons and holes across the 

band gap. The contribution to the overall Seebeck coefficient by both the positive and negative 

charge carriers can be described by the conductivity weighted average (analogous to Equation 

5-3): 
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𝑺𝑺 =

𝝈𝝈𝒑𝒑𝑺𝑺𝒑𝒑 − 𝝈𝝈𝒏𝒏|𝑺𝑺𝒏𝒏|
𝝈𝝈𝒑𝒑 + 𝝈𝝈𝒏𝒏

 Equation 5-10 

 

Because the minority carriers are (by definition) fewer in number, they will also have higher 

thermopower contributions (Seebeck coefficient is inversely proportional to carrier concentration). 

However, at low temperatures the population of minority carriers is small (low 𝜎𝜎), meaning that 

they will not contribute much to the overall S. At higher temperatures, though, a broadening Fermi 

distribution leads to an exponential increase in minority carrier conductivity, resulting in a 

reduction (and therefore peak) in the thermopower [51].   

The strength of bipolar conduction is determined by the value of the semiconductor band 

gap. Goldsmid and Sharp developed an analytical expression relating the band gap and the 

maximum thermopower, |S|max , and the temperature at which it occurs (Tmax) in the bipolar regime: 

Eg=2e|S|maxTmax (Equation 5-1) [51]. This simple method of estimating the band gap is ubiquitous 

in the thermoelectrics community because temperature dependent Seebeck coefficient is so 

commonly measured. Figure 5-9 shows a calculated temperature dependent Seebeck coefficient 

and corresponding zT (inset) for a valence (VB) and conduction band (CB) model with a band 

gap of 0.13 eV at various carrier concentrations. We can see that the Goldsmid-Sharp band gap 

formula accurately predicts the maximum thermopower over a wide range of carrier 

concentrations and temperatures (as demonstrated by the dashed line in Figure 5-9, which serves 

as a good upper bound for the thermopower at a particular temperature regardless of extrinsic 

doping concentration). For example, Bi2Te3 has a band gap of Eg~0.13 eV [253, 254] at room 

temperature (Tmax = 300K), yielding a maximum Seebeck coefficient near 230 μV/K—a 

reasonable estimate  [255-258]. 

While the Goldsmid-Sharp gap serves as a quick estimate of the band gap in a given 

material, it is important to understand where deviations might occur when using this analysis. In 

Goldsmid-Sharp’s full equation (Equation 5-5), the weighted mobility ratio, A, is an important 
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parameter that governs how closely the Goldsmid-Sharp gap reflects the true gap. We can also 

consider A as the ratio of the quality factors, B (Equation 2-6), between the majority and minority 

bands. In the previous section, I showed that the Goldsmid-Sharp band gap can deviate by 50-

100% of the optical band gap value mainly due to the large A values (A=5 for ZrNiSn)  and an 𝜖𝜖𝑔𝑔 

which is much less than 10 (<5 kBT in ZrNiSn) [52]. Further, the non-degenerate limit (as assumed 

by Goldsmid and Sharp) is not applicable for many common thermoelectric materials: in Bi2Te3 

[259, 260], PbSe [65, 261], and PbTe [28, 34], where the  value of the band gap is actually 5-6 

kBT at Tmax. In this section, I investigate the effects of a narrow 𝜖𝜖𝑔𝑔 by replacing Maxwell-Boltzmann 

statistics, applied in Goldsmid-Sharp’s derivation, with Fermi-Dirac statistics which can more 

accurately represent semiconductor processes in narrow-gap (𝜖𝜖𝑔𝑔 < 10), doped materials. 

Ultimately, I present a chart that can be used to quickly estimate the relationship between the true 

gap and the Goldsmid-Sharp band gaps depending on A and Smax.  

 

Figure 5-9: Calculated temperature dependent Seebeck coefficient and zT (inset) for various defect 
concentrations (NA=p-n=1×1015 cm-3 in blue to 1×1020 cm-3 in red) for two parabolic bands with a band gap of 0.13 eV, 
m*=1.0 m0 , and 𝜇𝜇0(300 𝐾𝐾) = 820 𝑐𝑐𝑚𝑚2/𝑉𝑉𝑉𝑉 (VB and CB). Dashed line indicates the Goldsmid-Sharp band gap: 𝑆𝑆 =
𝐸𝐸𝑔𝑔/2𝑒𝑒𝑇𝑇. The lattice thermal conductivity was estimated as 𝜅𝜅𝐿𝐿(𝑇𝑇) = 1.7 (300/𝑇𝑇) W/m-K, and the following Umklapp 
scattering is used for the zT estimate. 
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5.3b - Theory 

The Seebeck coefficient in a multi band (valence/conduction) system can be expressed 

by Equation 5-3 [62]. In the interest of maintaining general relationships applicable for either p or 

n-type materials, we chose to use the majority and minority carrier labels by changing the n- and 

p-type terms in Equation 5-3 into the majority (maj) and minority (min) charge carrier contributions; 

Smaj, and Smin, and σmaj and σmin are the majority and minority carrier Seebeck coefficients and 

conductivities, respectively. In the case of a primarily p-type material, the majority carrier will be 

holes. While Goldsmid and Sharp proceed assuming Maxwell-Boltzmann, non-degenerate 

statistics, 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚
= 𝐴𝐴 exp�𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜂𝜂𝑚𝑚𝑚𝑚𝑛𝑛� (Equation 5-4), where 𝐴𝐴 = 𝜇𝜇0,𝑚𝑚𝑚𝑚𝑚𝑚𝑁𝑁𝑣𝑣,𝑚𝑚𝑚𝑚𝑚𝑚

𝜇𝜇0,𝑚𝑚𝑚𝑚𝑚𝑚𝑁𝑁𝑣𝑣,𝑚𝑚𝑚𝑚𝑚𝑚
�
𝑚𝑚𝑏𝑏,𝑚𝑚𝑚𝑚𝑚𝑚
∗

𝑚𝑚𝑏𝑏,𝑚𝑚𝑚𝑚𝑚𝑚
∗ �

3/2
, we will 

consider the Fermi integral solution to the Boltzmann transport equation (assuming scattering by 

acoustic phonons and parabolic bands) as presented in Chapter 2 for parabolic bands. In this 

context, the electrical conductivity ratio between the majority and minority carriers can be written 

as a function of the dimensionless chemical potential 𝜂𝜂 in terms of the Fermi integral, Fj (as 

expressed in Chapter 2): 

 𝝈𝝈𝒎𝒎𝒎𝒎𝒎𝒎
𝝈𝝈𝒎𝒎𝒎𝒎𝒏𝒏

= 𝑨𝑨
𝑭𝑭𝟎𝟎�𝜼𝜼𝒎𝒎𝒎𝒎𝒎𝒎�
𝑭𝑭𝟎𝟎(𝜼𝜼𝒎𝒎𝒎𝒎𝒏𝒏) Equation 5-11 

  

Table 5-1 Description of the three different methods of estimating the maximum thermopower in this work. 

Method 
Name 

Criterion for 
Maximum Statistics 

Goldsmid-
Sharp 𝐷𝐷𝑆𝑆/𝐷𝐷𝜂𝜂 = 0 Maxwell-

Boltzmann 

Fermi 𝐷𝐷𝑆𝑆/𝐷𝐷𝜂𝜂 = 0 Fermi 

Exact 𝐷𝐷𝑆𝑆/𝐷𝐷𝑇𝑇 = 0 Fermi 

 

In order to find the maximum thermopower, several methods can be used as differentiated 

in Table 5-2. The derivation of the Goldsmid-Sharp band gap does not explicitly find the maximum 
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in thermopower with temperature; rather, Goldsmid-Sharp find a maxima with respect to reduced 

chemical potential,  𝐷𝐷𝑆𝑆/𝐷𝐷𝜂𝜂 = 0 which is equivalent to dS/dT=0 when 𝐷𝐷𝜂𝜂/𝐷𝐷𝑇𝑇 is much larger than 

𝑑𝑑(𝜖𝜖𝑔𝑔)
𝑑𝑑𝑇𝑇

 as pointed out by Goldsmid and Sharp [51]. In this work, the “Fermi” method also assumes 

𝐷𝐷𝑆𝑆/𝐷𝐷𝜂𝜂 = 0, as in the “Goldsmid-Sharp” method, but it uses Fermi-Dirac rather than Maxwell-

Boltzmann statistics. We can test the  𝐷𝐷𝑆𝑆/𝐷𝐷𝜂𝜂 = 0 approximation by performing a full temperature 

dependent calculation of the Seebeck coefficient: the “Exact” method. This is accomplished by 

applying a charge counting balance, 𝑁𝑁𝐴𝐴 − 𝑁𝑁𝐷𝐷 = 𝑝𝑝 − 𝑛𝑛 (as described initially in Chapter 2, and in 

a later section of this chapter), at various temperatures, where NA and ND are the number of 

electron acceptors and donors, respectively (the difference of which was used as an input 

parameter), and p and n are the number of holes and electrons, respectively (for simplicity we 

have assumed that 𝐴𝐴𝑚𝑚∗ =
𝑚𝑚𝑏𝑏,𝑚𝑚𝑚𝑚𝑚𝑚
∗

𝑚𝑚𝑏𝑏,𝑚𝑚𝑚𝑚𝑚𝑚
∗ = 1, but we discuss the alternative later in this section; Figure 5-

15). The full temperature-dependent, numerically calculated results (“Exact” method) will be 

presented along with the simpler dS/dη=0 solutions using both Maxwell-Boltzmann (“Goldsmid-

Sharp”) and Fermi-Dirac (“Fermi”) statistics.  

5.3c - Results 

First, in order to probe the applicability Golsmid-Sharp’s assumption of Maxwell-

Boltzmann (non-degenerate) statistics, Figure 5-10 considers a weighted mobility ratio of A=1. 

Figure 5-10a shows the chemical potential dependent Seebeck coefficient (with η=0 being the 

valence band edge, 𝜂𝜂 = 𝜖𝜖𝑔𝑔 = 5 being the conduction band edge). As expected, the “Goldsmid-

Sharp” result overlaps well with the “Fermi” result for chemical potentials in the gap (0 < η < 5), 

but deviations begin for chemical potentials of about 1.5 kBT from either band edge, which become 

larger as the chemical potential becomes degenerate (chemical potential within the band, 𝜂𝜂 < 0 

or 𝜂𝜂 > 𝜖𝜖𝑔𝑔). Upon varying the band gap, the value of chemical potential (ηmax) that yields 𝐷𝐷𝑆𝑆/𝐷𝐷𝜂𝜂 =

0 can be obtained; the results are plotted in Figure 5-10b. For Eg>6 kBT, ηmax yield the same value 
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for the “Goldsmid Sharp” and “Fermi” methods, but deviations occur at smaller 𝜖𝜖𝑔𝑔. Figure 5-10c 

shows the magnitude of the maximum Seebeck coefficient predicted using the three different 

methods (as shown in Table 5-2). The result is useful for estimating the maximum attainable 

thermopower at a given temperature (which would be set to Tmax) for a material which has an 

electron-to-hole weighted mobility ratio (A) near 1.0 and a known band gap.  

Figure 5-10d quantifies the effectiveness of the 2e|S|maxTmax estimate for band gap at 

different 𝜖𝜖𝑔𝑔 for the three cases of interest: the dS/dη = 0 models using both the “Fermi” and 

“Goldsmid-Sharp” methods, as well as the dS/dT = 0 (or “Exact”) case. For large 𝜖𝜖𝑔𝑔, the “Fermi” 

and “Goldsmid-Sharp” solutions (dS/dη = 0) converge to 2e|S|maxTmax/Eg very near 1.0 (although 

the exact value is ~5% less at 𝜖𝜖𝑔𝑔 = 10). However, as the band gap becomes small, (𝜖𝜖𝑔𝑔<~5), 

2e|S|maxTmax/Eg increases for all three methods. The divergence for small gaps is a consequence 

of increasingly degenerate chemical potentials which yield the maximum thermopower. 

Experimentally, this would be observed for heavily doped samples that do not reach a maximum 

thermopower until very high temperatures (these details will be discussed thoroughly in a later 

section). 
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Figure 5-10: Result of the “Exact”, “Fermi”, and “Goldsmid-Sharp” methods calculated assuming 𝜖𝜖𝑔𝑔= 5 and 
A=1 for a) Seebeck coefficient as a function of η. b) The reduced chemical potential which yields the maximum 
thermopower as a function of reduced band gap (at the rollover temperature) for A=1. c) Maximum attainable 
thermopower as a function of the reduced band gap (at A=1) for each method. d)  the ratio of the 2e|S|maxTmax estimate 
to Eg as a function of the dimensionless band gap 𝜖𝜖𝑔𝑔. The dashed line in c) represents the Goldsmid-Sharp band gap 
equation result. The dashed line in Figure (b) represents the halfway point between the VB and CB, and the solid grey 
lines represent the position of the valence and conduction bands. All calculations are done for a majority-to-minority 
carrier weighted mobility ratio of A=1.0. 

The weighted mobility ratio (A) can also lead to deviations in the Goldsmid-Sharp band 

gap as illustrated in the previous section for ZrNiSn. While Bi2Te3 has similar majority and minority 

carrier weighted mobility [262, 263], other systems such as Si, Ge, and others [264] are believed 

to have values that exceed two (5 in the case of ZrNiSn). Figure 5-11 shows the A=5 and A=1/5 

results for temperature dependent Seebeck coefficient (“Exact” method), analogous to Figure 5-

9. It is clear that for A>1, the maximum Seebeck coefficient is larger than the Goldsmid-Sharp 

band gap result (dashed line) and that the converse is true for A<1.  
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Figure 5-11: Temperature dependent Seebeck coefficient for various carrier concentrations (corresponding to 
Figure 1) for A=5 and A=1/5. Dashed line represents the Goldsmid-Sharp band gap: Smax = Eg/2eTmax for various values 
of the carrier concentration; calculation details are the same as for Figure 5-9. 

In order to illustrate the effect of an increasing weighted mobility ratio, the 𝜂𝜂-dependent 

Seebeck is plotted for ZrNiSn (𝜖𝜖𝑔𝑔~5 at room temperature) in Figure 5-12a. We see that the 

magnitude of the maximum Seebeck coefficient obtained for p-type ZrNiSn (A=1/5) is significantly 

lower than that for n-type ZrNiSn (A=5). The effect of having an A different from one is that the 

magnitude of the maximum Seebeck coefficient (|S|max), as well as the temperature where it 

occurs (Tmax), is increased for the carrier type with higher weighted mobility, while those of the 

lower weighted mobility carrier are decreased. So in a system like ZrNiSn, the n-type material 

maintains a high thermopower to much higher temperatures than might be expected from its 

narrow band gap (~0.13 eV) and therefore can reach an impressive zT from 0.5 – 1.0 [215, 265]. 

On the other hand, the p-type ZrNiSn prematurely experiences reduced thermopower due to 

compensating high-mobility electrons. Figure 5-12b shows the value of the maximum Seebeck 

coefficient for the three methods, a clear split in the A=5 and A=1/5 is observed. An alternative 

representation is shown in Figure 5-12c; here it is obvious that 2e|S|maxTmax/Eg is larger than 1.0 

for all values of 𝜖𝜖𝑔𝑔when A=5, while it is less than 1.0 for all 𝜖𝜖𝑔𝑔 for A=1/5 (except at quite low 𝜖𝜖𝑔𝑔, 

the reasons for which will be discussed later). Figure 5-12d shows how 2e|S|maxTmax/Eg increases 

with increasing A value; larger deviations are observed as Eg/kBT becomes smaller. In comparison 
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with Goldsmid-Sharp’s conclusion that only ~20% deviation is observed for A=10, we find that 50-

100% errors in the estimated gap can be obtained for 𝜖𝜖𝑔𝑔 values reasonable for many relevant 

thermoelectric materials (𝜖𝜖𝑔𝑔~3-5). 

 
Figure 5-12: Result of the “Exact”, “Fermi”, and “Goldsmid-Sharp” methods assuming 𝜖𝜖𝑔𝑔 = 5 and A=5 

(weighted mobility ratio) for a) Seebeck coefficient as a function of η,. b) The ratio of the 2e|S|maxTmax estimate to the 
actual model Eg as a function of 𝜖𝜖𝑔𝑔, and c) the same ratio with respect to the weighted mobility ratio A at different Eg 
values (3, 5, and 10 kBT as indicated on the figure). 

While the Goldsmid-Sharp band gap has proven to be a simple and useful estimate for 

the real band gap, it is not without its limitations. In this section, I have shown several cases for 

which this simple approximation breaks down. Figure 5-13 shows the deviation between the 

Goldsmid-Sharp band gap and the true band gap for a wide variety of these parameters. 

Ultimately, we observe that the magnitude of the deviation is largest for materials with large 

differences between the weighted mobility of electrons and holes (A ≠ 1). From an experimental 

perspective, A ≠ 1 will result in a larger value of 2e|S|maxTmax for the higher weighted mobility 

species, and a lower value for the one with lower weighted mobility. In the case of ZrNiSn, the 
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more mobile electrons (A=5) result in an observation of about a five-fold difference in the p-type 

(~0.05 eV) and the n-type (~0.25 eV) Goldsmid-Sharp band gaps as shown in the previous 

section[52].  

Figure 5-13 can be useful in determining either an unknown A value for a material if the true 

band gap is known, or it can show the expected deviations of the Goldsmid-Sharp band gap 

relative to the true band gap for a given A value. For instance, in the case of n-type ZrNiSn with 

2e|S|maxTmax/Eg = 2.1 (using Eg,optical=0.13 eV [52]) and observed maximum Seebeck coefficient 

(~200 μV/K), we determine A~5. Alternatively, if the A is known, one can (based on the magnitude 

of the maximum Seebeck coefficient) obtain an estimate a value for 2e|S|maxTmax/Eg from Figure 

5-13, which can be used to estimate the true band gap (as described in the numbered list below).  

1. Measure temperature dependent thermopower and obtain a maximum 
2. Calculate the Goldsmid-Sharp band gap: 𝐸𝐸𝑔𝑔 = 2𝑒𝑒|𝑆𝑆|𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 
3. If |S|max<150 μV/K, be aware that the true 𝐸𝐸𝑔𝑔 may significantly differ from 

2𝑒𝑒|𝑆𝑆|𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 (see below) 
4. For |S|max>150 μV/K, estimate the majority-to-minority carrier weighted mobility 

ratio, A. 
5. Find the 2𝑒𝑒|𝑆𝑆|𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚/𝐸𝐸𝑔𝑔 ratio (r) from Figure 5-13  that is consistent with that A 

and Smax value to then calculate the corrected Eg=2𝑒𝑒|𝑆𝑆|𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚/r 
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Figure 5-13: The ratio of the 2e|S|maxTmax estimate to the actual model Eg as a function of thermopower for a 
wide variety of A and Smax. A values are noted in a rectangular box laid on top of each black solid lines. 

Smax<150 μV/K describes the degenerate crossover that leads to the upward trend in 

Figure 5-10, Figure 5-12, and Figure 5-13 mentioned previously for low values of Smax. For 

degenerate, heavily doped samples (𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚  in the majority band) Eg/kBTmax becomes a poor metric 

for describing the bipolar effects; rather, we believe the thermal band gap (𝐸𝐸𝑔𝑔,𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒

𝑘𝑘𝐵𝐵𝑇𝑇
= 𝜖𝜖𝑔𝑔 + 𝜂𝜂) is 

the relevant parameter that describes the gap. This effect is even more pronounced as A is 

decreased because the lower mobility majority carrier requires a chemical potential deep within 

the band (large 𝜂𝜂) to mitigate the effects of a highly mobile minority carrier (see Figure 5-12b). In 

order to show the effects of degeneracy, I determined when the band gap that yielded a maximum 

thermopower and corresponded to a degenerate chemical potential (𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚 within the band—see 

Figure 5-10b). I generate the analogous “Engineer’s Guide” figure for determining the 

effectiveness of the Goldsmid-Sharp band gap (as a predictor of the thermal gap) as a function 
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of the maximum Seebeck coefficient, as shown in Figure 5-14. For many thermoelectrically 

relevant maximum Seebeck coefficients, the crossover to degenerate behavior (as indicated by 

a kink in 2eSmaxTmax/Eg,thermal) occurs.  For nearly all A values, the kink (which means that 

degenerate 𝜂𝜂 is required to reach |S|max) occurs for Seebeck coefficients that are approximately 

150 μV/K (which corresponds to a band gap of ~3 kBT for the A=1 case as shown in Figure 5-

10b). While the result seems to diverge for heavily-doped samples, nearly degenerate samples 

(Smax<150 μV/K) still give reasonable results in terms of relating the Goldsmid Sharp gap to the 

thermal band gap (rather than the true value) for the A=1 case.  

 

Figure 5-14: This engineer’s guide is analogous to Figure 5-13; however, the predicted band gap in this case 
is ratioed to the thermal band gap (𝜖𝜖𝑔𝑔 + 𝜂𝜂, for degenerate or simply 𝜖𝜖𝑔𝑔 otherwise) instead of the true gap. 

In terms of the weighted mobility ratio, up until this point we have not considered whether 

the difference in the weighted mobility ratio is due to the mobility (i.e., deformation potential) or 

effective mass: 𝐴𝐴 = 𝐴𝐴 𝜇𝜇𝐴𝐴𝑚𝑚∗
3/2 = �𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚

𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 
� �

𝑚𝑚𝑑𝑑,𝑚𝑚𝑚𝑚𝑚𝑚
∗

𝑚𝑚𝑑𝑑,𝑚𝑚𝑚𝑚𝑚𝑚
∗ �

3/2
. For the 𝜂𝜂-dependent Seebeck coefficient (and 
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therefore the Goldsmid-Sharp and Fermi methods which use 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0 as a criteria for a maximum), 

these separate pieces are always coupled: 𝑆𝑆 = 1

1+
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

�𝑆𝑆𝑚𝑚𝑚𝑚𝑛𝑛 + 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚
𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚� =

1

1+𝐴𝐴 𝜇𝜇𝐴𝐴𝑚𝑚∗
3/2𝐹𝐹0�𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚�

𝐹𝐹0�𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚�

�𝑆𝑆𝑚𝑚𝑚𝑚𝑛𝑛 + 𝐴𝐴 𝜇𝜇𝐴𝐴𝑚𝑚∗
3/2  𝐹𝐹0�𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚�

𝐹𝐹0(𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚) 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚�; but this is not the case for the charge neutrality 

equation. The charge neutrality equation can be expressed as 𝑁𝑁𝐴𝐴 − 𝑁𝑁𝐷𝐷 = 𝑝𝑝 − 𝑛𝑛, which upon 

substituting the single parabolic band expression for n (Equation 2-8): 

 
𝑵𝑵𝑨𝑨 − 𝑵𝑵𝑫𝑫 =

(𝟐𝟐𝒌𝒌𝑩𝑩𝑻𝑻)
𝟑𝟑
𝟐𝟐

𝒎𝒎𝒅𝒅,𝒑𝒑
∗ 𝟑𝟑/𝟐𝟐𝟐𝟐𝝅𝝅𝟐𝟐ℏ𝟑𝟑

(𝑭𝑭𝟏𝟏/𝟐𝟐(𝜼𝜼𝒑𝒑) − 𝑨𝑨𝒎𝒎∗
𝟑𝟑/𝟐𝟐𝑭𝑭𝟏𝟏/𝟐𝟐(𝜼𝜼𝒏𝒏 )) Equation 5-12 

  

While the “Fermi” and “Goldsmid-Sharp” methods do not explicitly use the charge 

neutrality equation, since they determine the maximum thermopower from 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0, the “Exact” 

method uses charge neutrality to determine the maximum via 𝑑𝑑𝑑𝑑
𝑑𝑑𝑇𝑇

= 0. In order to probe the effects 

of a varying effective mass ratio (while keeping the overall A value equal to either 1 or 5), I have 

solved the dS/dT=0 “Exact” method for a variety of cases as shown below. First, I solved for the 

A=1 case, meaning that the majority and minority carriers have the same weighted mobility, but I 

vary 𝐴𝐴𝑚𝑚∗ =
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
∗

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
∗  

 to smaller and larger values (while also varying 𝐴𝐴𝜇𝜇 to keep A=1) as shown in 

Figure 5-15a. On increasing the effective mass of the majority carrier band (𝐴𝐴𝑚𝑚∗ > 1), 

2𝑒𝑒𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚/𝐸𝐸𝑔𝑔 increases slightly but is still close to the same chemical potential and Smax as in 

the 𝐴𝐴𝑚𝑚∗ = 1 case. On the other hand, when the majority carrier band has a significantly lower 

effective mass (𝐴𝐴𝑚𝑚∗ < 1), the shift away from the 𝐴𝐴𝑚𝑚∗ = 1 case is larger. The reduced chemical 

potential position (Figure 5-15b) seems to indicate that the reason for the shift in Smax is likely due 

to a shift in 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚 towards the majority carrier band edge. This makes sense in the context of an 

increasing minority carrier effective mass which would push 𝜂𝜂 away from the minority carrier band 

to maintain the same carrier concentration. 
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For the A=5 case (Figure 5-15c,d), a similar trend is observed. However, when the majority 

carrier has a much lower weighted mobility than the minority (A=1/5), the result is not affected as 

significantly by a varying 𝐴𝐴𝑚𝑚∗. In the case where the majority carrier has higher mobility (A=5), 

though, if the majority carrier effective mass is much smaller (𝐴𝐴𝑚𝑚∗ < 1) then reductions in the 

maximum Seebeck coefficient can occur (similar to the A=1 case). For these studies we have 

considered 𝐴𝐴𝑚𝑚∗ of 2 or 5 (or the inverse), which is a feasible range of values for real 

semiconductors. In summary, we should expect larger, negative deviations in the Goldsmid-Sharp 

band gap if the majority carrier has higher weighted mobility (as in the A=5 case) but significantly 

lower effective mass (𝐴𝐴𝑚𝑚∗ < 1). Nearly negligible deviations occur in the other cases (either A<1 

or 𝐴𝐴𝑚𝑚∗ > 1). 

 

Figure 5-15: Comparison of results when the origin of A derives from a changing effective mass ratio (rather 
than purely mobility related). a) Goldsmid sharp effectiveness (2eSmaxTmax/Eg) for A=1 with varying Am*. b) The varying 
chemical potential position for the parameters in a). c) 2eSmaxTmax/Eg for A=5 and A=1/5 as a function of a  changing 
contribution due to Am*. d) The resulting shift in the chemical potential that yields the maximum Seebeck coefficient as 
a function of reduced band gap for the A=5 and A=1/5 (colors correspond to c). 
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5.3d - Conclusions 

In this section, I have developed the relevant theory for extending the Goldsmid-Sharp 

band gap to narrow gap semiconductors using the full Fermi statistics and an exact solution of 

the temperature-dependent transport integrals. I have investigated the effect of the weighted 

mobility ratio and narrow band gaps on the results, and I have shown several examples where 

the deviations can be quite large. These results should be generally applicable to any 

semiconductors (although the Engineer’s guide should be rederived for alternative scattering 

mechanisms), but they should be particularly useful for the thermoelectrics community, which 

routinely measures the temperature-dependent Seebeck coefficient and utilizes the Goldsmid-

Sharp band gap as a descriptor of the material’s band structure. This analysis takes this one step 

further and allows us to more thoroughly describe discrepancies in this estimate. 

5.4 - Conclusions 

In summary, the Goldsmid-Sharp band gap (Eg = 2e|S|maxTmax) is an extremely useful tool 

for obtaining an estimate for a material’s band gap through temperature dependent Seebeck 

measurements. However, in the case of ZrNiSn, these estimates yielded drastically different 

results when considering n-type and p-type material (a factor of 5 difference in the band gap). 

While most researchers understand that this is not an exact estimate, it is important to understand 

when and why the simple relation can break down and to what extent. In this work, we show that 

large deviations can occur for several reasons: a breakdown of Maxwell-Boltzmann statistics 

(used to derive the Goldsmid-Sharp band gap) for materials with narrow gaps, or materials with 

very large (or small) majority-to-minority carrier weighted mobility ratio (A). We use these analyses 

to explain the seemingly strange result in ZrNiSn in the context of a significantly larger weighted 

mobility for electrons than holes, which is likely a result of the nature of the valence band states 

which seem to be a result of Ni disorder. Because bipolar conduction is detrimental to 

thermoelectric performance, results from this work using the Goldsmid-Sharp gap could be used 
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to validate strategies for suppressing bipolar effects beyond altering band gap and doping [21, 

110, 260, 266], but also by other methods (including nanostructures [11, 267-269]) given that both 

n-type and p-type samples are obtainable.  
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