
2-1 
 

Chapter 2:  Theoretical and Experimental Methods: 

2.1 - Electronic/Thermal Transport Properties Measurement 

Thermoelectric efficiency depends on the relevant transport properties: S, 𝜌𝜌, 𝜅𝜅 being the Seebeck 

coefficient, resistivity, and thermal conductivity, respectively. These properties are each 

measureable to give the thermoelectric figure of merit, zT. Measurements were performed on 

disc-shaped samples synthesized according to the techniques described in a later section. 

2.1a - Electrical Resistivity/Conductivity and Hall Effect 

The electrical resistance is a quantity that is simply measured with a multi-meter, but resistivity is 

an intrinsic material property that does not depend on the amount of material present. The 

traditional method of measuring resistivity is accomplished with a rectangular prism sample with 

known cross sectional area, A, as detailed in Figure 2-1a. Here, a known current, I, is passed 

through the sample through contacts at either end of the prism. The voltage, V, is measured by 

probes with a known distance between them, L*, from which the resistance, R, can be estimated 

from Ohm’s law: 𝑅𝑅 = 𝑉𝑉
𝐼𝐼
. The resistivity, 𝜌𝜌, then is simply calculated using 𝜌𝜌 = 𝑅𝑅𝐴𝐴∗

𝐿𝐿∗
. This technique 

is preferred for samples which are either single crystals or ones with anisotropic properties. For 

polycrystalline or cubic samples, the Van Der Pauw method is a simpler way to obtain the 

resistivity(Figure 2-1b). Here, a known current is passed through two leads attached to a disc 

shaped sample with known thickness, t. The voltage is measured perpendicular to the current 

flow. In a second step, the current is flowed perpendicular to the first step’s current, and the 

voltage is measured on the remaining two leads. The resistivity can be calculated using the Van 

der Pauw formula 𝑒𝑒−
𝜋𝜋𝑅𝑅1𝑡𝑡
𝜌𝜌 + 𝑒𝑒−

𝜋𝜋𝑅𝑅2𝑡𝑡
𝜌𝜌 = 1, where R1 and R2 are the measured resistances. In addition 

to measuring the resistivity for the sample, additional information can be obtained upon 

performing these measurements under a magnetic field. The Hall voltage can be measured by 
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applying a magnetic field, B, perpendicular to the flowing current, I, in both the bar sample or in 

the Van der Pauw arrangement. The Hall voltage, VH, can be measured perpendicular to both I 

and B, from which the carrier concentration can be estimated: 𝑛𝑛𝐻𝐻 = − 𝐼𝐼𝐼𝐼
𝑡𝑡𝑡𝑡𝑉𝑉𝐻𝐻

. Once the number of 

carriers is known, the mobility (𝜇𝜇𝐻𝐻) of those carriers can also be expressed from the measured 

conductivity (inverse of resistivity): 𝜎𝜎 = 𝑛𝑛𝐻𝐻𝑒𝑒𝜇𝜇𝐻𝐻. While the simple measurement of the resistivity is 

all that is required for estimation of the thermoelectric performance (zT), the Hall carrier 

concentration and mobility provide much needed additional information about the underlying 

transport and charge carrier scattering mechanisms (also the sign of the Hall coefficient—𝑅𝑅𝐻𝐻 =

1
𝑛𝑛𝐻𝐻𝑡𝑡

—indicates the sign of the majority charge carrier). 

 

 

Figure 2-1: Electrical resistivity measurement schematic a) Conventional bar sample, b) disc-shaped sample via the 
Van Der Pauw method. 
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In this thesis, all of the measurements are performed on polycrystalline hot-pressed disc-shaped 

samples (synthesis procedure described in a later section) in the Van der Pauw arrangement in 

a ±2 T magnetic field using niobium pressure contacts [31]. The temperature is varied from room 

temperature up to ~500-600°C with the entire setup under high vacuum to avoid sample oxidation. 

2.1b - Seebeck Coefficient 

The Seebeck coefficient is measured in an instrument built and designed in the Snyder group lab 

as described in detail by Iwanga et al. [32] Essentially, two thermocouples  are constructed by 

passing two unlike metal wires (chromel–niobium) through thin rods with 4 narrow holes. The 

wires are threaded through at the end of the ceramic rod (Figure 2-2) to form a single point of 

contact (which is pushed onto the sample using a spring); this contact allows for both voltage and 

temperature to be measured at the sample surface. Temperature is measured by measuring the 

voltage difference between the two thermocouple wires (which are on the same side of the 

sample) and comparing this voltage to a reference junction at a known temperature. The Seebeck 

voltage is found by measuring the voltage difference across the sample with two alike wire types, 

i.e., niobium only. The thermocouples and narrow ceramic rod (both top and bottom) are passed 

through a larger, heated ceramic block which also makes direct contact to the sample. The heating 

serves two purposes: first, the cold-finger effect through the thermocouple probe is reduced so 

that the temperature at the sample surface can be accurately deduced, and second, to maintain 

good thermal contact with the sample to establish the temperature gradient.  
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Figure 2-2: Schematic of the uniaxial Seebeck coefficient measurement setup.  

During high temperature Seebeck coefficient measurements, rather than simply heating one side 

to a slightly higher temperature, taking a voltage measurement, and calculating the Seebeck 

coefficient as the voltage divided by the temperature difference, we perform temperature 

oscillation sequences. Here, the top and bottom temperatures are made to oscillate giving a range 

of different temperature differences within ±10 𝐾𝐾. The resulting voltages and temperature 

differences are plotted and a linear fit is performed to extract the Seebeck coefficient. We find that 

this method compensates for any systematic errors and gives accurate and reproducible results. 

Because the Seebeck coefficient is squared in the final estimate of zT, it is critical to reduce error 

in this measurement (a 10% error in Seebeck propagates to a 20% error in zT). Several “round 

robin” measurement cycles have been performed to determine what spread of properties 

measured on different instruments can be observed [33].  

2.1c - Thermal Conductivity 

Thermal conductivity has, of the three properties in zT, been one of the more difficult to accurately 

measure over the years. In the simplest case, the measurement is performed by passing a known 

power through a well-insulated sample and measuring the temperature at different points. 

Unfortunately, careful calibration is required to account for radiative losses, especially at high 

temperatures. Recently, the standard for thermal measurements in the thermoelectrics 

Thermocouple
Contact Tip Ttop

Tbottom
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community has changed towards measuring the thermal diffusivity using the commercial Netzsch 

Laser Flash Apparatus (LFA 457). In this technique, a laser pulse slightly heats the sample 

surface inside of a furnace (which is heated to the desired measurement temperature). An optical 

detector carefully measures the time-dependent temperature increase and decrease at the 

sample surface. A model (Cowan Model with Pulse Correction) is used to correlate this time-

dependence directly to the thermal diffusivity, 𝐷𝐷 = 𝜅𝜅
𝑑𝑑𝐶𝐶𝑝𝑝

, where 𝜅𝜅 is the thermal conductivity, d is 

the sample density, and 𝐶𝐶𝑝𝑝 is the heat capacity. The sample density is usually either measured 

directly (by estimating the volume from the sample thickness and diameter, and the mass by 

weighing with a scale), or it is estimated from the lattice parameter (which can be obtained from 

x-ray diffraction). All of the samples were coated with a thin layer of graphite to minimize emissivity 

errors. The heat capacity is sometimes estimated using the Dulong–Petit method (Cp = 3 kB per 

atom) (as in the ZrNiSn case), or it is extracted from previous literature in the case of the IV-VI 

materials [34]. 

2.2 - Optical Properties Measurement and Analysis 

Optical properties measurements have been used extensively in this work to provide information 

about the electronic states near the band gap. I do this by analyzing the optical absorption edge 

(as discussed in the introduction). In order to experimentally measure the frequency dependent 

absorption coefficient, several techniques can be used. In this thesis, I have chosen to focus on 

Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), which is straightforward 

to perform and yields consistent results. In DRIFTS, a light source (black body radiator) 

illuminates a sample by way of an ellipsoidally shaped mirror (See Figure 2-3). The sample, which 

is usually a finely ground powder, diffusely reflects the light in all directions. The reflected light is 

collected with the ellipsoidal mirror and refocused onto a detector. Kubelka Munk theory derives 

a simple relation between the fraction of reflected light (R) and the absorption coefficient (𝛼𝛼): 
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 𝑭𝑭(𝑹𝑹) =
𝜶𝜶
𝑲𝑲�

=
(𝟏𝟏 − 𝑹𝑹)𝟐𝟐

𝟐𝟐𝑹𝑹
 Equation 2-1 

 

  

where 𝐾𝐾� is the scattering coefficient (an unknown parameter). Figure 2-3b shows some 

measurement results from a few relevant thermoelectric materials. I observe the correct ordering 

of the absorption edges in these materials: Bi2Te3 (~0.1 eV), PbSe (~0.27 eV), PbTe (~0.29 eV), 

and PbS (~0.42 eV), consistent with literature results. 

 

Figure 2-3: a) Schematic of the Diffuse Reflectance technique for measuring spectral absorption. b) Representative 
DRIFTS results for several relevant thermoelectric materials (at 300 K). 

For particle sizes greater than the light wavelengths measured (20  - 2 μm), the scattering 

coefficient is understood to be approximately independent of frequency [35]. For all 

measurements in this thesis, I use a Nicolet 6700 FTIR Spectrometer with a deuterated triglycine 

sulfate (DTGS) detector equipped with a KBr beamsplitter. All samples were referenced to the 

provided alignment mirror, this was found to give nearly same results as when referenced to KBr 

powder without the added impurity features from KBr itself. This optical setup gave good spectral 

intensity for photon energies between ~0.05 eV up to 0.8 eV (with severely deteriorating spectral 

quality above ~0.6 eV). This range was ideal for studying most thermoelectric materials, which 
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are usually narrow gap (Eg<0.5 eV) semiconductors. Several other methods for measuring the 

optical properties are available for materials with gaps in this range. 

Many of the previous reports of optical band gap measurements on PbTe have used single crystal 

samples measured in transmission [27, 36-42]. Transmission experiments have a few 

disadvantages: first, optically transparent single crystals are often used to avoid internal 

reflections and light scattering at the grain boundaries, which are generally more difficult to 

prepare than polycrystalline powder samples. Second, the samples must be polished quite thin 

since the absorbance scales exponentially with the absorption coefficient and sample thickness 

through Beer's law, 𝐴𝐴 = exp(𝛼𝛼𝛼𝛼), where 𝛼𝛼 is the absorption coefficient and t is the sample 

thickness. This limits the highest absorption coefficient that can be measured for a given sample 

thickness. Lastly, in cases where the samples were sufficiently thin (i.e., thin film samples with 

thicknesses on the order of the light wavelength), oscillations can result in the measured 

absorbance. These Fabry-Perot fringes are related to interference during internal reflection. While 

the effect can be mitigated through mathematical models, additional analysis is required.  

Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used exclusively in this 

work for optical measurements due to its ease of sample preparation and data analysis. Diffuse 

reflectance can be obtained in a thin sample layer of a ground powder. The measurement requires 

only a small amount of polycrystalline sample (200 mg or less). Because of the Fourier transform 

analysis, light at all frequencies can be measured simultaneously, greatly reducing sampling time 

relative to techniques which vary frequency using a diffraction grating. Relating the diffuse 

reflectance to sample absorption can be performed using the Kubelka-Munk function (Equation 

2-1). Chapter 3 of this thesis shows that DRIFTS is very sensitive to small changes in the energy 

of direct transitions across the band gap due to progressively higher doping levels. With proper 

extrapolation the small shifts associated with doping can be shown and understood according to 

existing optical analysis techniques. Additionally, small, temperature-dependent shifts in the band 
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structure can be detected using a high temperature stage (as shown in Chapter 4 and Chapter 

6). A Praying Mantis attachment (Harrick) was used to collect the DRIFTS spectra. A high/low 

temperature stage, also from Harrick (CHC), was also used to vary the sample temperature from 

120 to 673 K. Measurements were performed under an argon atmosphere after rough pumping 

and purging the sample chamber several times. Temperature dependent scans were referenced 

to either KBr standard samples taken at the same temperatures or a room temperature scan of 

the alignment mirror (although both references gave similar results). 

2.2a - Optical Band Gap Extraction 

The theory of optical transitions in semiconducting materials is discussed in detail in many 

references [43-45]. Typically, the method of extraction of the optical band gap depends on the 

type of transition observed. In the case of direct transitions, electron crystal momentum, k, is 

conserved. As is the case in PbTe, which has its valence band maximum and conduction band 

minimum at the same points in k-space (the L-point), direct transitions simply require the incoming 

photon to impart its energy on the valence-band electron. In this case, the absorption coefficient 

is proportional to the joint density of states, which in the case of two parabolic bands has the form:  

 𝜶𝜶ℏ𝝎𝝎 ∝ �ℏ𝝎𝝎 − 𝑬𝑬𝒈𝒈�
𝟏𝟏/𝟐𝟐 Equation 2-2 

  

for ℏ𝜔𝜔 > 𝐸𝐸𝑔𝑔 according to the Tauc method [45, 46]. Other authors have plotted 𝛼𝛼2 vs. ℏ𝜔𝜔 for fitting 

the direct gap[37], but both methods give similar results (within the measurement error ~0.005 

eV). 

Many semiconducting systems contain indirect band gaps. For example,  silicon has an indirect 

gap from the valence band at the Γ point to the conduction band which lies along the Γ − 𝑋𝑋 line 

[47]. For indirect gaps, i.e., where the initial and final electron momentum is not the same, either 

emission or absorption of a phonon (a lattice vibration) is required in order to shift k to its final 

value. Generally, even the highest energy phonons have energies on the order of 10-50 meV, 
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and therefore do not impart much energy in comparison to the photons required for excitation. In 

the case of indirect absorption the absorption coefficient is known to scale as: 

 𝜶𝜶ℏ𝝎𝝎 ∝ �ℏ𝝎𝝎 − 𝑬𝑬𝒈𝒈�
𝟐𝟐 Equation 2-3 

 

following the same Tauc-formula as direct gap, but with a different exponent. Some works suggest 

𝛼𝛼 ∝ �ℏ𝜔𝜔 − 𝐸𝐸𝑔𝑔�
2, but as was the case in direct gaps, the results do not change significantly. 

Nonetheless, because indirect gaps require both a phonon and a photon simultaneously, their 

transitions often occur with much lower probability (a factor of 10-100x less [48]). However, 

because the transition frequency inherently depends on the number of valence and conduction 

band states, indirect transitions from states with significantly larger density of states than direct 

ones can still have a large absorption magnitude, as we will show in CoSb3 and other systems in 

Chapter 5. 

Optical band gaps in this work were generally obtained using the Tauc method (unless otherwise 

specified), where (𝛼𝛼ℏ𝜔𝜔)𝑛𝑛  and where n=2 for direct transitions and n=1/2 for indirect. The Tauc 

function is extrapolated on a plot versus photon energy, ℏ𝜔𝜔, to zero (normalized) absorption; the 

zero is determined by either normalizing the sample to the minimum absorption coefficient value 

or by fitting and subtracting the free carrier absorption contribution: 𝛼𝛼𝐹𝐹𝐶𝐶 = 𝑎𝑎(ℏ𝜔𝜔)𝑏𝑏 + 𝑐𝑐 (which will 

be discussed more thoroughly in Chapter 3). 

2.3 - Estimating Band Gap from Temperature Dependent Electronic Properties 

As mentioned in Chapter 1, there are several experimental methods of measuring the band gap, 

both using electronic and optical properties. 

2.3a - Resistivity 

First, the band gap can be estimated from electronic resistivity for an intrinsic semiconductor 

(where the number of holes and electrons are approximately equal). In the case where the 
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electron and hole mobilities the same, one can derive that the temperature dependent resistivity 

should decrease in the intrinsic region as: 

 𝝆𝝆 ∝ 𝐞𝐞𝐞𝐞𝐞𝐞 ( 𝑬𝑬𝒈𝒈
𝟐𝟐𝟐𝟐𝑩𝑩𝑻𝑻

)  
 

Equation 2-4 

where Eg is the band gap, and T is the temperature. The band gap can be extracted from the 

slope of a plot of log of resistivity as a function of 1/T. This is a common technique for determining 

the band gap in semiconductor materials in the absence of other estimates, but the linear region 

will not be reached if the materials is too heavily doped. In that case, the resistivity will behave as 

a metal, i.e., increasing resistivity with temperature. 

2.3b - Band Gap Estimate from the Maximum Seebeck Coefficient 

Alternatively, the peak in the Seebeck coefficient can be used to estimate the band gap of a 

material. At low temperatures, a sufficiently doped sample will have an increasing Seebeck 

coefficient with temperature (approximately linear with temperature in the degenerate limit). At 

sufficiently high temperatures (i.e., when Eg~O(kBT)), a sufficient population of minority carriers 

develops which slows the increase in Seebeck coefficient, eventually resulting in a maximum in 

the thermopower. Goldsmid and Sharp have developed a relationship between the maximum 

Seebeck coefficient and the band gap [49-51]:  

 𝑬𝑬𝒈𝒈 = 𝟐𝟐𝑺𝑺𝒎𝒎𝒎𝒎𝒎𝒎𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎 Equation 2-5 
 

Similar to the temperature-dependent resistivity, this requires similar assumptions about the 

relative mobility of holes and electrons. This assumption turns out to be quite important for 

materials such as ZrNiSn [52], which I will explore in detail during this thesis in Chapter 5. I also 

developed a method for determining how far the band gap will deviate from the Goldsmid-Sharp 

estimate as a function of the electron-to-hole weighted mobility ratio, A, even for materials with 

narrow gaps (or moderate gaps at high temperature) [50]. The Goldsmid-Sharp band gap is 

usually assumed to be, at best, a qualitative estimate (within ~20%). For a more direct 
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measurement of band gap, optical methods are preferred, although they are not always feasible 

in doped samples. 

2.4 - Band Engineering 

Band engineering is a common topic in this thesis which involves optimization of thermoelectric 

efficiency through modifications in the electronic band structure. This can involve either tuning the 

Fermi level (EF) through doping to optimize the thermoelectric properties or alloying the material 

with another to alter the electronic structure to improve thermoelectric properties (possibly through 

band convergence).  

2.4a - Single Parabolic Band Model – Carrier Concentration Optimization 

The most straightforward way to optimize a thermoelectric material is by varying the doping 

content and charge carrier concentration. Improvements in this context are often explained using 

the “single parabolic band model” where the material properties are assumed to be described by 

a free electron-like band with a certain effective mass (some multiple of the mass of a free 

electron). In terms of the thermoelectric figure of merit, 𝑧𝑧𝑧𝑧, the optimum value can be found to 

scale with the quality factor:   

 𝑩𝑩 =
𝟐𝟐𝟐𝟐𝑩𝑩𝟐𝟐ℏ
𝟑𝟑𝟑𝟑

𝑵𝑵𝒗𝒗𝑪𝑪𝒍𝒍
𝒎𝒎𝒄𝒄

∗𝑬𝑬𝒅𝒅𝒅𝒅𝒅𝒅𝟐𝟐  𝜿𝜿𝑳𝑳
 Equation 2-6 

 

  

where 𝑘𝑘𝐼𝐼 is the Boltzmann constant, ℏ is Planck’s constant ratioed to 2𝜋𝜋, 𝑁𝑁𝑣𝑣 is the valley 

degeneracy, 𝐶𝐶𝑙𝑙 = 𝑑𝑑𝑣𝑣𝑙𝑙2 (where 𝑑𝑑 is the density and 𝑣𝑣𝑙𝑙 is the longitudinal speed of sound), 𝑚𝑚𝑐𝑐
∗ is the 

inertial effective mass, 𝐸𝐸𝑑𝑑𝑡𝑡𝑑𝑑 is the deformation potential (which is a measure of the strength of 

coupling between lattice vibrations and electronic structure), and 𝜅𝜅𝐿𝐿 is the lattice thermal 

conductivity. 
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The single parabolic band model is derived from the Boltzmann transport equation using the 

relaxation time approximation to obtain the thermoelectric parameters as a function of the reduced 

chemical potential [24, 53, 54], 𝜂𝜂 = 𝜉𝜉
𝑘𝑘𝐵𝐵𝑇𝑇

, where 𝜉𝜉 is the electronic chemical potential (which 

reduces to the Fermi level, EF, at T=0 K). The resulting relations for the thermoelectric transport 

properties are written below for an arbitrary power law dependence of the scattering time: 𝜏𝜏(𝜖𝜖) =

𝜏𝜏0𝜖𝜖𝜆𝜆−1/2 [24].  

 
𝑺𝑺(𝜼𝜼) =

𝟐𝟐𝑩𝑩
𝒅𝒅
�
(𝟐𝟐 + 𝝀𝝀)
(𝟏𝟏 + 𝝀𝝀)

𝑭𝑭𝟏𝟏+𝝀𝝀(𝜼𝜼)
𝑭𝑭𝝀𝝀(𝜼𝜼)  − 𝜼𝜼� Equation 2-7 

 

 
𝒏𝒏(𝜼𝜼) =

𝟏𝟏
𝟐𝟐𝟑𝟑𝟐𝟐

�
𝟐𝟐𝒎𝒎𝒅𝒅

∗𝟐𝟐𝑩𝑩𝑻𝑻
ℏ𝟐𝟐

�

𝟑𝟑
𝟐𝟐
𝑭𝑭𝟏𝟏/𝟐𝟐(𝜼𝜼) Equation 2-8 

 

 
𝒓𝒓𝑯𝑯(𝜼𝜼) =

𝟑𝟑
𝟐𝟐
𝑭𝑭𝟏𝟏/𝟐𝟐(𝜼𝜼)

�𝟏𝟏𝟐𝟐 + 𝟐𝟐𝝀𝝀�𝑭𝑭𝟐𝟐𝝀𝝀−𝟏𝟏/𝟐𝟐(𝜼𝜼)

(𝟏𝟏 + 𝝀𝝀)𝟐𝟐𝑭𝑭𝝀𝝀𝟐𝟐(𝜼𝜼)
 Equation 2-9 

  

where 𝜆𝜆 determines the scattering exponent, 𝑛𝑛 is the charge carrier concentration, 𝑚𝑚𝑑𝑑
∗  is the 

density of states effective mass, 𝑟𝑟𝐻𝐻 is the Hall coefficient, which determines the relationship 

between the measured 𝑛𝑛𝐻𝐻 = 1
𝑅𝑅𝐻𝐻𝑡𝑡

 and the chemical carrier concentration ( 𝑛𝑛
𝑛𝑛𝐻𝐻

= 𝑟𝑟𝐻𝐻), and 𝜖𝜖 = 𝐸𝐸
𝑘𝑘𝐵𝐵𝑇𝑇

. 

𝐹𝐹𝑗𝑗(𝜂𝜂) = ∫ 𝜖𝜖𝑗𝑗𝑑𝑑𝜖𝜖
1+exp (𝜖𝜖−𝜂𝜂)

∞
0 , which is defined as the jth order Fermi integral. While there are analytical 

expressions for the transport integrals in either the non-degenerate (semiconducting/insulating 

𝜂𝜂 ≪ 0) or the degenerate (heavily doped semiconducting/metallic 𝜂𝜂 ≫ 0) limits, the best 

thermoelectric materials tend to have Fermi levels somewhere in the intermediate region (𝜂𝜂 near 

the band edge), requiring  a full, numerical solution to the Fermi integrals (Python, Matlab, 

Mathematica, Excel/VBA). For most thermoelectric materials at or above room temperature, 

acoustic phonon scattering is the dominant scattering mechanism, and it usually works well to 

describe transport in thermoelectric materials, requiring: 𝜆𝜆 = 0 and 𝜏𝜏0 = 𝜋𝜋ℏ4𝐶𝐶𝑙𝑙
√2𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑

2 (𝑚𝑚𝑏𝑏∗𝑘𝑘𝐵𝐵𝑇𝑇)3/2. Here, 
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𝑚𝑚𝑏𝑏
∗  is the single valley effective mass (neglecting the effects of valley degeneracy). For systems 

where acoustic phonon scattering dominates, mobility decreases with temperature roughly as T-

3/2 (although some variation can exist if the effective mass is also temperature dependent). The 

real usefulness of Equation 2-7 through Equation 2-9 is that they relate experimentally measured 

parameters (Seebeck coefficient and Hall carrier concentration) back to the electronic band 

structure. The effectivez mass (which when estimated from the SPB Seebeck and carrier 

concentration, we will call 𝑚𝑚𝑆𝑆
∗) is directly related to the band curvature and valley degeneracy 

(𝑚𝑚𝑑𝑑
∗ = 𝑁𝑁𝑣𝑣

2/3𝑚𝑚𝑏𝑏
∗ ). In order to obtain 𝑚𝑚𝑆𝑆

∗, first, the measured Seebeck coefficient will be used to 

estimate the reduced chemical potential (𝜂𝜂) using Equation 2-7. 𝜂𝜂 can be substituted into the 

measured 𝑛𝑛𝐻𝐻 = 𝑛𝑛
𝑟𝑟𝐻𝐻

, the ratio of n (Equation 2-8) to rH (Equation 2-9), to solve for the experimental 

effective mass (𝑚𝑚𝑆𝑆
∗). 𝑚𝑚𝑆𝑆

∗ is believed to represent the density of states 𝑚𝑚𝑑𝑑
∗ , rather than the 

conductivity mass defined previously or the single band mass 𝑚𝑚𝑏𝑏
∗ . 

However, the effective mass is not the only useful parameter obtained in the single parabolic band 

model. Because Hall-effect measurements also yield the charge carrier mobility, 𝜇𝜇𝐻𝐻 =

𝜇𝜇0
�12+2𝜆𝜆�𝐹𝐹2𝜆𝜆−12

(𝜂𝜂)

(1+𝜆𝜆)𝐹𝐹𝜆𝜆(𝜂𝜂)
, it is straightforward to determine the parameter which scales the mobility, 𝜇𝜇0 =

𝑡𝑡𝜏𝜏0
𝑚𝑚𝑐𝑐
∗ , if the value has been measured experimentally. In fact, the band parameters in 𝜏𝜏0 (and the 

parameters that make it up as indicated in the previous paragraph) can also be determined if we 

assume that 𝑚𝑚𝑐𝑐
∗ = 𝑚𝑚𝑏𝑏

∗ = 𝑚𝑚𝑑𝑑
∗ , essentially requiring a single spherical Fermi surface. The 

thermoelectric quality factor, B (Equation 2-6), can be expressed in terms of 𝜇𝜇0:  
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𝑩𝑩 =

𝝁𝝁𝟎𝟎𝒎𝒎𝑺𝑺
∗𝟑𝟑/𝟐𝟐

𝜿𝜿𝑳𝑳
 

Equation 2-10 
 

  

In addition, the lattice thermal conductivity can be estimated using the Wiedemann-Franz law, 

𝜅𝜅𝐿𝐿 = 𝜅𝜅 − 𝜅𝜅𝑡𝑡 = 𝜅𝜅 − 𝐿𝐿𝜎𝜎𝑧𝑧, where 𝜅𝜅𝑡𝑡 = 𝐿𝐿𝜎𝜎𝑧𝑧 is the electronic thermal conductivity. The expression for 

the Lorenz number, L is given by: 

 
𝑳𝑳 =

𝟐𝟐𝟐𝟐

𝒅𝒅𝟐𝟐
(𝟏𝟏 + 𝝀𝝀)(𝟑𝟑 + 𝝀𝝀)𝑭𝑭𝝀𝝀(𝜼𝜼)𝑭𝑭𝝀𝝀+𝟐𝟐(𝜼𝜼) − (𝟐𝟐 + 𝝀𝝀)𝟐𝟐𝑭𝑭𝝀𝝀+𝟏𝟏𝟐𝟐 (𝜼𝜼)

(𝟏𝟏 + 𝝀𝝀)𝟐𝟐𝑭𝑭𝝀𝝀𝟐𝟐(𝜼𝜼)
 Equation 2-11 

 

By computing 𝑚𝑚𝑆𝑆
∗, 𝜇𝜇0, and 𝜅𝜅𝐿𝐿 from experimental data, we can make a plot of the carrier 

concentration dependent thermoelectric properties, as shown in Figure 1-2. The power of this 

simple method is that this plot can be generated after making and measuring the zT for a single 

sample. We can immediately determine the value of the maximum zT, and whether the charge 

carrier concentration needs to increase or decrease to yield the optimum zT. Usually, a series of 

samples is made with different doping concentrations to reduce the uncertainty of the 𝑚𝑚𝑆𝑆
∗, 𝜇𝜇0, and 

𝜅𝜅𝐿𝐿 values. 

2.4b - Valley Degeneracy and Band Anisotropy  

Higher levels of complexity can be added to the single parabolic band transport model. To begin 

with, perhaps the most profound in terms of thermoelectric enhancement are the valley 

degeneracy (Nv) and band anisotropy (K). Each of these show up during several chapters of this 

thesis. The valley degeneracy, Nv, is defined as the number of distinct charge carrier pockets (of 

the same sign) which exist at the Fermi level. The origin of these degeneracies can be broken 

down into two parts: 𝑁𝑁𝑣𝑣 = 𝑁𝑁𝑣𝑣,𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑟𝑟𝑠𝑠𝑁𝑁𝑣𝑣,𝑏𝑏𝑏𝑏𝑛𝑛𝑑𝑑, where Nv,symmetry is related to the degeneracy of a 

given point in the Brillouin zone due to that point’s symmetry and Nv,band which is the number of 

individual bands that are converged at that energy. Valley degeneracy manifests itself by 

increasing the density of states effective mass, 𝑚𝑚𝑑𝑑
∗ = 𝑁𝑁𝑣𝑣

2/3𝑚𝑚𝑏𝑏
∗ , relative to the single valley effective 
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mass (𝑚𝑚𝑏𝑏
∗ ). This is beneficial for the thermoelectric properties because each individual pocket 

conducts in parallel while the overall Fermi level does not rise too quickly (allowing the material 

to maintain a high Seebeck coefficient). In order to maximize Nv, a highly symmetric Brillouin zone 

(usually found in high symmetry materials) with band extrema that exist at low symmetry points 

lead to the highest degeneracy. For PbTe and other IV-VI materials, the primary valence band 

exists at the L-point  with Nv,symmetry=4, and a Nv,band=1, and a secondary band exists along the 𝛴𝛴 

line with a high degeneracy of Nv,symmetry=12, and a Nv,band=1. 

The common definition for the effective mass is 𝑚𝑚∗ = ℏ2 �𝑑𝑑
2𝐸𝐸

𝑑𝑑𝑘𝑘2
�
−1

, which is the inverse of the 

curvature of the band in energy vs. k-space (light bands have high curvature, heavy bands have 

shallow). In the simplest case, this Fermi surface will have the same curvature along all directions 

in k-space, producing a single, spherically shaped pocket. However, for many common materials 

this is not the case (Si/Ge [55, 56], III-V [57], and the lead chalcogenides [58-60]). In general, the 

effective mass can be different along all three directions. For example, when describing the 

density of states in that band, the geometric average along these directions is most appropriate: 

𝑚𝑚𝑑𝑑
∗ = 𝑁𝑁𝑣𝑣

2/3𝑚𝑚𝑏𝑏
∗ = 𝑁𝑁𝑣𝑣

2/3(𝑚𝑚1
∗𝑚𝑚2

∗𝑚𝑚3
∗)1/3, where Nv is the valley degeneracy, 𝑚𝑚𝑏𝑏

∗  is the single valley 

effective mass, and 𝑚𝑚1,2,3
∗   are the effective masses along the different directions. While the 

density of states effective mass is the appropriate scaling parameter for the carrier concentration, 

the electrical conductivity and mobility are governed by the harmonic average over the different 

directions, yielding the conductivity (or inertial) effective mas: 𝑚𝑚𝑐𝑐
∗ = 3

1
𝑚𝑚1
∗+

1
𝑚𝑚2
∗+

1
𝑚𝑚3
∗
, which weights the 

lighter  (higher conductivity) directions more. Most often experimentally, Fermi surfaces are 

believed to be ellipsoidal, implying 𝑚𝑚1
∗ = 𝑚𝑚2

∗ = 𝑚𝑚⊥
∗  and 𝑚𝑚3

∗ = 𝑚𝑚∥. Often, the anisotropy is 

described by the parameter 𝐾𝐾 = 𝑚𝑚⊥
∗

𝑚𝑚∥
∗ . While it is possible to obtain information about the band 

anisotropy directly from experiments (Faraday rotation [55, 56], Shubnikov De Haas [61]), for new 

materials these experiments have usually not been performed; therefore K is assumed to be 1.  
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2.4c - Multiple Band Effects 

As is the case in p-type PbTe, many good thermoelectric materials exhibit multiple band effects. 

While semiconductors are inherently multi-band systems (one valence, one conduction band), 

good thermoelectric materials are sufficiently doped, meaning that their Fermi levels are far 

enough from the minority carrier band to not have detrimental effects to the majority carrier 

properties. In systems such as PbTe, where a secondary valence band exists about 0.12 eV 

below the primary, the effects are almost always beneficial to the thermoelectric properties. This 

can be understood by considering the quality factor, B (Equation 2-6), which is proportional to the 

valley degeneracy. Any electron (or hole for p-type material) population in an additional band 

which contributes to the electronic transport properties (i.e., the band’s energy is within ~4 kBT of 

the chemical potential) can be regarded as an increase in the effective valley degeneracy (a topic 

that will be discussed in detail in Chapter 7). This increase ultimately results in a better zT than 

could have been obtained by either band separately; however, the details depend significantly 

upon the energy offset (Δ𝐸𝐸) between the bands. This thesis will focus, in a large part, on the 

details of these multiple band effects and their characterization and potential enhancement to zT 

in both an experimentally measureable and theoretical sense. 

In order to compute multi-band effects, conductivity weighted averages over the properties of the 

individual bands (the ith band) are used, as suggested by Putley [62]: 



2-17 
 

 
𝝈𝝈 = �𝝈𝝈𝒊𝒊

𝒊𝒊

 Equation 2-12 

 
𝑺𝑺 =

∑ 𝑺𝑺𝒊𝒊𝝈𝝈𝒊𝒊𝒊𝒊

∑ 𝝈𝝈𝒊𝒊𝒊𝒊
 Equation 2-13 

 𝑹𝑹𝑯𝑯 =
∑ 𝝈𝝈𝒊𝒊

𝟐𝟐𝑹𝑹𝑯𝑯𝒊𝒊𝒊𝒊

�∑ 𝝈𝝈𝒊𝒊𝒊𝒊 �
𝟐𝟐   Equation 2-14 

 
𝜿𝜿 = 𝜿𝜿𝑳𝑳 + �𝑳𝑳𝒊𝒊𝝈𝝈𝒊𝒊𝑻𝑻

𝒊𝒊

+ 𝑻𝑻(�𝝈𝝈𝒊𝒊𝑺𝑺𝒊𝒊𝟐𝟐

𝒊𝒊

− 𝑺𝑺𝟐𝟐𝝈𝝈) Equation 2-15 

where RH,i is the Hall coefficient for the ith band, defined as 𝑅𝑅𝐻𝐻,𝑖𝑖 = 1
𝑛𝑛𝐻𝐻,𝑖𝑖𝑡𝑡

= 𝑟𝑟𝐻𝐻,𝑖𝑖
𝑛𝑛𝑖𝑖𝑡𝑡

 (where 𝑟𝑟𝐻𝐻 and 𝑛𝑛 were 

defined in Equation 2-8 and Equation 2-9). Interestingly, the thermal conductivity shows a non-

trivial effect: 𝜅𝜅 = 𝜅𝜅𝐿𝐿 + 𝜅𝜅𝑡𝑡,𝐿𝐿𝐿𝐿𝑟𝑟𝑡𝑡𝑛𝑛𝐿𝐿 + 𝜅𝜅 𝑏𝑏𝑖𝑖𝑝𝑝𝐿𝐿𝑙𝑙𝑏𝑏𝑟𝑟. Essentially, the Wiedemann-Franz law accounts for 

only part of the electronic thermal conductivity in the region where multiple bands exist. The 

bipolar term is a result of a difference in the total power factor and the power factors of each 

individual band. In the region where two charge carriers exist with opposite signs (valence and 

conduction band), the bipolar thermal conductivity is observed rather strongly and is quite 

important in many thermoelectric materials. In fact, the bipolar effect at high temperature is readily 

observed in the thermal conductivity (Figure 1-4b) and is one physical origin of the maximum in 

zT. The Seebeck coefficient also is decreased in this bipolar region (Figure 1-4a). 

Additionally, the charge neutrality equation: 

 𝑵𝑵𝑫𝑫 + �𝒑𝒑𝒊𝒊
𝒊𝒊

= 𝑵𝑵𝑨𝑨 + �𝒏𝒏𝒊𝒊
𝒊𝒊

 Equation 2-16 

can be solved with a known number of donors (ND) and/or acceptors (NA) (or difference between 

their concentrations) for the chemical potential dependent electron and hole concentrations  

(which is only be a function of 𝜂𝜂 given 𝑚𝑚𝑑𝑑,𝑖𝑖
∗  and Δ𝐸𝐸 are specified for each of the i bands at a given 

T). The charge neutrality equation is useful for determining temperature-dependent thermoelectric 

properties (assuming ND-NA is constant), and it is used in several chapters of this thesis. 
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It should be noted that the reduced chemical potential for the ith band should be defined relative 

to the first band in order to reduce the overall number of variables (given that the offset between 

the bands, Δ𝐸𝐸, is known). This can be defined as 𝜂𝜂𝑖𝑖 = 𝑠𝑠𝑖𝑖𝜂𝜂1 − Δ𝐸𝐸𝑖𝑖−1, where si is the sign of the 

band (which should be specified relative to that of band 1), Δ𝐸𝐸𝑖𝑖−1 is the band offset between the 

ith and first bands, and 𝜂𝜂𝑖𝑖 represents the reduced chemical potential for that band (which should 

be substituted into the Fermi integral equations specified previously with the sign of the Seebeck 

coefficient reflecting the sign of the band, si). 

2.4d - Band Non-Parabolicity 

In this thesis, non-parabolic bands will also be used to describe the thermoelectric transport 

properties. The two-band Kane model (which Kane originally developed for InSb [63]) involves 

interacting valence and conduction bands through the 𝑘𝑘 ∙ 𝑝𝑝 method. This model’s application to 

describing electronic transport properties is described in great detail by Zawadski [64] and Ravich 

[58]. While Zawadski takes a more general approach which includes examples across many 

material systems and considers a wide range of properties, Ravich’s more simple approach is 

geared towards thermoelectric lead chalcogenides. The equations for the transport properties are 

outlined in detail in previous work by Wang et al. and will not be repeated here [65], but the 

relevant Fermi integral is generalized to: 

 
𝑭𝑭𝒍𝒍𝒎𝒎 = � �−

𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅
� 𝒅𝒅𝒏𝒏�𝒅𝒅 + 𝜷𝜷𝒅𝒅𝟐𝟐�𝒎𝒎�(𝟏𝟏 + 𝟐𝟐𝜷𝜷𝒅𝒅)𝟐𝟐 + 𝟐𝟐�𝒍𝒍/𝟐𝟐𝒅𝒅𝒅𝒅

∞

𝟎𝟎

𝒏𝒏  Equation 2-17 
 

The degree of non-parabolicity is related to the band gap using the parameter 𝛽𝛽 = 𝑘𝑘𝐵𝐵𝑇𝑇
𝐸𝐸𝑔𝑔

; therefore 

materials with small gaps will exhibit large non-parabolicity. In fact, the band edge effective mass 

can be shown to scale as, 𝑚𝑚0
∗ = ℏ2𝐸𝐸𝑔𝑔

2𝑃𝑃2
, where P is the interaction matrix element between electrons 

and holes. In this thesis, I will apply non-parabolic models for the lead and tin chalcogenides and 

CoSb3. In Chapter 6, I discuss the effect of non-parabolicity on the effective mass, which is 

obtained through the Seebeck coefficient (𝑚𝑚𝑆𝑆
∗) by deriving the Mott relation for Kane-type bands. 
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The generalized Fermi integrals for non-parabolic bands can be used in place of parabolic ones 

(in fact, if we take 𝛽𝛽 = 0 the result reduces to the parabolic expression) when computing the 

properties for either a single or a multi-band transport model.  

2.5 - Ab-Initio Calculations 

Density functional theory (DFT) calculations are commonplace in materials and chemistry 

research. In the context of thermoelectric materials, they give a detailed description of the 

materials’ electronic structure, which is critically important to characterizing experimentally 

measured results. This thesis uses these calculations throughout to guide the research and 

provide a framework for which to understand the results. Because of the range of methods used 

by our collaborators, specific details of each calculation will be given within each chapter on the 

ab-initio results obtained. 

2.6 - Sample Preparation 

Thermoelectric samples were prepared using conventional solid-state chemistry techniques. The 

IV-VI materials (PbTe, PbSe, SnTe, and their alloys) were prepared by first weighing 

stoichiometric quantities of the elements, loading them into a quartz ampule, sealing under 

vacuum, and melting in a tube furnace for approximately 1 day at 1000 – 1100°C. The melted 

samples were quenched in water followed by annealing for ~ 3 days at 600°C to homogenize the 

sample. 

CoSb3 samples were synthesized in a similar manner to the IV-VI materials where the elements 

were melted (1080°C) and annealed (for 7 days at 600°C) within boron nitride crucibles that were 

sealed within quartz ampules.  

Half-Heusler (ZrNiSn) samples were prepared via arc-melting due to the high melting point of Zr. 

The arc-melting of the elements occurred in an Ar atmosphere within a water-cooled copper 

crucible. To ensure compositional homogeneity, samples were flipped and remelted five times. 
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The as-cast samples were annealed in evacuated quartz tubes at 1220 K for 7 d, followed by 

quenching in ice water to ensure the crystalline order.  

For each of the materials, the samples were quenched after annealing and the ingots were 

recovered and ground into a fine powder (in the glove box). Samples were prepared by loading 

this powder into a graphite dye (1/2” outer diameter) which was used for induction hot-pressing 

[66]. The resulting samples were high quality (>95% theoretical density) ½” discs which were 

polished and prepared for the electrical, thermoelectric, and thermal measurements required to 

estimate zT. X-ray diffraction was performed to ensure that the expected crystal structure was 

obtained and to discover any possible secondary phases (detection limit of ~1%). Additional 

details regarding the synthesis, as needed, will be included at the end of each section. 


