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Abstract

In the first part of this thesis we search for beyond the Standard Model physics

through the search for anomalous production of the Higgs boson using the razor

kinematic variables. We search for anomalous Higgs boson production using proton-

proton collisions at center of mass energy
√
s = 8 TeV collected by the Compact Muon

Solenoid experiment at the Large Hadron Collider corresponding to an integrated

luminosity of 19.8 fb−1.

In the second part we present a novel method for using a quantum annealer to train

a classifier to recognize events containing a Higgs boson decaying to two photons. We

train that classifier using simulated proton-proton collisions at
√
s = 8 TeV producing

either a Standard Model Higgs boson decaying to two photons or a non-resonant

Standard Model process that produces a two photon final state.

The production mechanisms of the Higgs boson are precisely predicted by the

Standard Model based on its association with the mechanism of electroweak sym-

metry breaking. We measure the yield of Higgs bosons decaying to two photons in

kinematic regions predicted to have very little contribution from a Standard Model

Higgs boson and search for an excess of events, which would be evidence of either

non-standard production or non-standard properties of the Higgs boson. We divide

the events into disjoint categories based on kinematic properties and the presence of

additional b-quarks produced in the collisions. In each of these disjoint categories, we

use the razor kinematic variables to characterize events with topological configura-

tions incompatible with typical configurations found from standard model production

of the Higgs boson.

We observe an excess of events with di-photon invariant mass compatible with
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the Higgs boson mass and localized in a small region of the razor plane. We observe

5 events with a predicted background of 0.54± 0.28(syst.), which observation has a

p-value of 10−3 and a local significance of 3.35σ. This background prediction comes

from 0.48 predicted non-resonant background events and 0.07 predicted SM higgs

boson events. We proceed to investigate the properties of this excess, finding that

it provides a very compelling peak in the di-photon invariant mass distribution and

is physically separated in the razor plane from predicted background. Using another

method of measuring the background and significance of the excess, we find a 2.5σ

deviation from the Standard Model hypothesis over a broader range of the razor

plane.

In the second part of the thesis we transform the problem of training a classifier

to distinguish events with a Higgs boson decaying to two photons from events with

other sources of photon pairs into the Hamiltonian of a spin system, the ground state

of which is the best classifier. We then use a quantum annealer to find the ground

state of this Hamiltonian and train the classifier. We find that we are able to do this

successfully in less than 400 annealing runs for a problem of median difficulty at the

largest problem size considered. The networks trained in this manner exhibit good

classification performance, competitive with the more complicated machine learning

techniques, and are highly resistant to overtraining. We also find that the nature

of the training gives access to additional solutions that can be used to improve the

classification performance by up to 1.2% in some regions.
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Chapter 1

Introduction

In A short history of nearly everything, Bill Bryson said [1]:

Physics is really nothing more than a search for ultimate simplicity,

but so far all we have is a kind of elegant messiness.

In particle physics, this elegant messiness is known as the Standard Model (SM),

which aims to understand the most fundamental building blocks of nature. The SM

is one of the most successful theories in the history of science and has accurately and

precisely described practically every experimental result obtained over the last few

decades at the relevant scales [2]. It has also had success at predicting the presence

of subsequently observed particles such as a wide variety of mesons, the top quark,

and the Higgs boson.

Despite all this success, the SM doesn’t conquer every experimental challenge. It

doesn’t explain the mass of neutrinos required by the observation of neutrino oscilla-

tions; it doesn’t explain dark matter or dark energy; it doesn’t reconcile with general

relativity or explain why the gravitational and electroweak scales are so far apart;

and it doesn’t explain the matter-antimatter asymmetry observed in the universe. It

also takes quite a lot of parameters as input and thus mostly can’t explain why the

particles have the masses they do (the Higgs mechanism does predict masses of some

particles based on other observables). It also doesn’t explain why (or if) there are

exactly three generations of fermions.

This thesis attempts to address some of these challenges by looking for beyond the

standard model production of the Higgs boson, and in doing so help provide experi-
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mental evidence for the deeper theory of nature: Bryson’s “ultimate simplicity.” The

production of the Higgs boson is very precisely predicted by the standard model based

on its vacuum expectation value and the masses of the fermions, so any anomalous

production is strong evidence for physics not predicted by the SM. We consider this

from the point of view of the production of supersymmetric particles that decay into

(among other things) Higgs bosons but we aim to keep this as general as possible to

allow for other interpretations. We use the di-photon decays of the Higgs boson to

perform our search, since this channel gives a very clean experimental signature and

still has a sufficiently high branching ratio to allow a large sample of decays to this

final state.

In Chapter 2 we give an overview of the portions of theory of the standard model

and supersymmetry relevant to this study. Entire theses can and have been written

on each of these theories so we restrict ourselves only to the key points relevant to

our experimental search. We discuss the particle component of the SM and how the

forces arise through preserved local symmetries of the theory. We discuss the recently

discovered Higgs boson, its theoretical origins, its properties, and the problem of

the divergence of the radiative corrections to its mass. We then discuss how this

problem can be solved through the introduction of a new supersymmetry, mostly in

the context of the minimal supersymmetric standard model. This model has a large

number of degrees of freedom, so we discuss the simplifications made to make some

of its predictions experimentally testable while retaining its key attributes.

In Chapter 3 we discuss the Large Hadron Collider (LHC) and the Compact

Muon Solenoid (CMS) detector. This analysis uses 19.8 fb−1 of data from proton-

proton collisions recorded by the CMS detector during the 2012 run of the LHC

taken at
√
s = 8 TeV. We describe the various subdetectors of CMS used to measure

different attributes of the particles produced by the collisions and discuss how the

raw measurements made by the detectors are built into detector-level quantities.

In Chapter 4 we discuss how the detector-level quantities are transformed into

measurements of the energy and momentum of particles produced in the collisions.

We discuss the algorithm used to reconstruct all particles in the events with a special
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focus paid to the method of reconstructing and identifying photons and jets. We

discuss the multivariate methods used to provide excellent estimation of the energy

of photons used in the event, which is of vital important when working in the H → γγ

channel. We also discuss the measurement of missing energy from the detector energy

deposits, which can be used to gain some information about particles escaping from

the detector.

In Chapter 5 we present the analysis used to search for anomalous production of

the Higgs boson. We describe the blinding procedure that prevents us from looking

in the signal region before freezing the analysis and the method of estimating the

backgrounds using data-driven and Monte Carlo (MC) techniques. We discuss the

kinematic variables, known as the razor variables, used to acheive excellent sensitivity

to kinematic configurations indicative of beyond the standard model processes and

used to cut away standard model background.

In Chapter 6 we unblind the analysis and show the results of the search. We

present both the results of the main analysis and a cross-check analysis designed

to measure background in a different way to ensure that we are not biased by our

method. We observe an excess of events in a signal sensitive region and proceed to

analyze and characterize this excess. While the excess has a moderate significance,

it is a small absolute number of events, so characterization cannot be performed in a

compelling way. We conclude by looking forward to the next run of the LHC, where

the true nature of the observed deviation will be resolved.
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Chapter 2

Theory

2.1 The Standard Model

The Standard Model (SM) of particle physics is our best current description of the

interactions between all known elementary particles. It includes spin-1⁄2 fermions

that make up matter and obey the Pauli exclusion principle, spin-1 bosons that

mediate forces between these fermions, and the spin-0 Higgs boson that “gives mass”

to elementary particles. The fermions are divided into leptons (Table 2.1) and quarks

(Table 2.2). The bosons are summarized in Table 2.3.

Name Symbol Charge Mass (GeV)
electron e− -1 5.11× 10−4 ± 1.1× 10−11

muon µ− -1 0.11± 3.5× 10−9

tau τ− -1 1.78± 1.6× 10−4

electron neutrino νe 0 < 2× 10−9

muon neutrino µµ 0 < 2× 10−4

tau neutrino µτ 0 < 0.02

Table 2.1: The properties of the leptons in the SM. (source: PDG [3])

Mathematically, the SM is a gauge theory defined by a Lagrangian L involving

fields. The Lagrangian of the SM is the most general renormalizable expression

respecting a set of symmetries. These symmetries are given by a gauge group, the

action of whose members leave the lagrangian invariant. The Lagrangian is required

to respect these symmetries not only globally, but locally as well. The promotion of

a global symmetry of the Lagrangian to a local symmetry requires the introduction
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Name Symbol Charge Mass (GeV)
up u +2⁄3 2.30.7

−0.5 × 10−3

charm c +2⁄3 1.3± 0.025
top t +2⁄3 173± 0.51± 0.71

down d -1⁄3 4.8+0.5
−0.3 × 10−3

strange s -1⁄3 0.095± 0.005
bottom b -1⁄3 4.18± 0.03

Table 2.2: The properties of the quarks in the SM. (source: PDG [3])

Name Symbol Charge Mass (GeV) Spin
photon γ 0 0 1

W-boson W± ±1 80.4± 0.015 1
Z-boson Z0 0 91.2± 0.0021 1
gluon g 0 0 1

Higgs boson H 0 125.7± 0.4 0

Table 2.3: The properties of the bosons in the SM. Charge represents EM charge only
and central values for the masses are quoted. (source: PDG [3])

of a bosonic field to form a gauge covariant derivative. This field can be interpreted

as a force between different points in space-time and the quantization of this field is

interpreted as the force carrier [4].

Each interaction in the SM is associated with an interaction strength α. A con-

sequence of the renormalizability of the theory is that these strengths will change, or

“run,” with the energy of the interaction. The way in which the coupling constants

run is dependent on the group structure and form factors of the symmetry group

governing the interaction and corresponding form factors.

The interactions of the standard model particles under the electromagnetic in-

teraction can be described by quantum electrodynamics (QED), which is a gauge

theory based on a U(1)em symmetry group [4]. Promoting this global symmetry to a

local symmetry requires that the lagrangian be invariant under space-time dependent

complex phase changes

ψ(x)→ eiα(x)ψ(x)

which requires the introduction of a spin-1 massless gauage boson, the photon. Tech-

nically the masslessness of the photon is a consequence of its interaction with the
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Higgs field, which will be discussed further in section 2.1.1.

In addition to their electromagnetic interactions, the quarks also interact via the

strong force. The gauge theory of the strong force, called quantum chromodynamics

(QCD), is based on the SU(3)C symmetry group [5, 6]. The quarks carry a charge

under this symmetry, known as color charge, which is selected from one of three

charges (red, green, and blue). Promoting the SU(3) symmetry to a local symmetry

introduces a massless spin-1 boson that mediates this force, known as the gluon.

Unlike in QED, where the photon is neutral, the gluon carries color charge with two

separate colors allowing differently charged quarks to interact. There are 8 gluons

with different combinations of color index corresponding to the the 8 generators of

the adjoint representation of SU(3).

The structure of the field strength tensor for the gluon gives rise to a phenomenon

known as asymptotic freedom, where the strong force weakens between particles at

high energies. Over short distances, colored particles behave like free particles, while

as distances increase the strength of the strong force increases. If two colored particles

get too far apart, there is eventually so much energy in the gluon field between them

that it is energetically favorable to create a new quark-antiquark pair. If a colored

particle is produced with a large momentum, as in LHC collisions, this process will

be repeated many times, creating a large number of color neutral baryons travelling

in the direction of the initial particle. This process is known as hadronization and

forms what we call a jet.

The final component of the SM is the weak interaction, which is based on an

SU(2)L × U(1)Y symmetry group. Gauging this group produces 4 massless spin-1

gauge bosons (in fact, the U(1)em group of the electromagnetic force is actually a

subgroup of this interaction and the gauging of this full electroweak theory produces

the photon), and the mixing of these produces the W± and Z0 bosons. These bosons

are massless in the basic electroweak theory and acquire mass through the Higgs

mechanism.
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2.1.1 The Higgs Mechanism

The Higgs mechanism is a process of adding an additional SU(2) doublet of spin-

0 fields (φ) to the electroweak lagrangian, which produces electroweak symmetry

breaking (EWSB) [7–11]. This field is assigned a quadratic potential

V (φ) = −µ2φ†φ+
λ

2
(φ†φ)2

with λ, µ2 ∈ R and µ2 > 0. This potential has a degenerate ground state where the

Higgs field acquires a nonzero vacuum expectation value (VEV) v =
√

µ2/λ due to

the requirement that µ2 > 0. This VEV breaks the SU(2)L × U(1)Y electroweak

symmetry.

One combination of generators of SU(2)L×U(1)Y leaves the VEV invariant, which

leaves the boson massless. This combination produces U(1)em and the electromagnetic

theory. The other combinations of generators acquire additional longitudinal degrees

of freedom and gain mass, and produces the W± and Z0 bosons. One neutral scalar

field from the Higgs doublet is left and is associated with the Higgs boson. This

boson in turn gives mass to the fermions through Yukawa couplings. The Higgs

boson acquires a mass from the VEV equal to mH =
√

2λv. The parameters µ2 and

λ are not set by the theory, but CMS and ATLAS have measured mH = 125.7± 0.4

GeV [3].

2.1.2 SM Higgs Boson Production Modes

At
√
s = 8 TeV, there are four major production modes to produce a Higgs boson

in pp collisions, shown in Figure 2.1 [12]. For mH = 125 GeV, the SM cross sections

and expected number of total events to be produced in the 2012 CMS dataset can be

seen in Table 2.4.

The different production modes are associated with different kinematics and final

states for the events containing the Higgs boson. Additional objects may be produced

in the interaction from initial state radiation of the partons from the proton or from



11

final state radiation of one of the produced objects. These processes are simulated

using PYTHIA 6 [13] and POWHEG [14–18] and use GEANT 4 [19] to simulate

iteraction with the detector.

g

g

H

q

q

q

W,Z

W,Z

q

H

q

q

W,Z
W,Z

H

g

g t

t

t

t

H

Figure 2.1: The four production modes of the SM Higgs boson accessible in the LHC
with

√
s = 8 TeV and

∫
Ldt = 19.8 fb−1. They are called gluon fusion (top left),

vector boson fusion (top right), vector boson associated production (bottom left) and
top associated production (bottom right).

2.2 Supersymmetry

While the Higgs mechanism provides an elegant solution to the problem of electroweak

symmetry breaking, it introduces at least one additional problem: the mass of the

higgs boson receives enormous quantum corrections from every particle that couples

to it (so, every massive particle). The Higgs boson coupling to a fermion f will receive
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Process Name Process Cross-section (pb) Expected Events in 19.8fb−1

Gluon Fusion pp→ H 19.27 869.9
Vector Boson Fusion pp→ qqH 1.578 71.2

Associated Production pp→ V H 1.1199 50.6
Top Associated Production pp→ ttH 0.1293 5.8

Total 22.1 997.6

Table 2.4: The SM Higgs boson production mechanisms considered as background to
this analysis. The cross-sections are for 8 TeV pp collisions with mH = 125 GeV. To
get the expected events, we use Br(H → γγ) = 2.28× 10−3. Cross-sections are taken
from [12].

a one loop quantum correction to its mass of

∆mH = −|λf |
2

8π2
Λ2
UV + · · ·

where λf is the strength of the coupling (|λtop| ≈ 1), ΛUV is the scale at which new

physics enters and cuts off the loop intergral, and the higher order terms go at most

with log(ΛUV ). If we consider the coupling to a scalar, we instead get contributions

of the form

∆mH =
λS

16π2
[Λ2

UV +m2
Slog(ΛUV /mS) + · · · ]

If we believe that the SM is the full theory, then we must take ΛUV ≈ MPlanck

where quantum gravity becomes important. This provides a value of mH 30 orders

of magnitude incompatible with the measured value [20–22].

One solution is to invent new physics at a lower scale so the ΛUV is lower; however,

this still raises issues if they couple even indirectly to the Higgs boson. A more

robust solution is to cancel the divergences in ∆mH by a symmetry. We notice that

the contributions from fermions and scalars have opposite sign, so if each fermion

in the standard model is accompanied by two complex scalars with λS = |λf |2 then

the quadratic divergences can cancel. Since there are no candidates for this pairing

within the standard model, a new symmetry between fermions and bosons called

supersymmetry (SUSY) is posited [23].

There are many possible models that implement this posibility, but the simplest is

the direct symmetrization of the fields of the SM, called the minimal supersymmetric
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standard model (MSSM). We form chiral supermultiplets pairing each standard model

fermion with its supersymmetric partner. Since the left-handed and right-handed

components of the fermions have different gauge transformation properties in the

SM, each must have its own complex scalar partner (hence we achieve the required 2

SUSY particles for each fermion). The scalar partners of the fermions are known as

sfermions (squarks, sleptons, etc.) and are usually denoted with a tilde (q̃, l̃, etc.).

The vector bosons are associated with spin-1/2 fermionic superpartners, referred to

as gauginos and placed in gauge supermultiplets. Before EWSB, the SU(2)L×U(1)Y

symmetry of the EW gauge is associated with 4 vector bosons: W±, W 0, and B0,

each of which has its own fermionic superpartner denoted with a˜(e.g. W̃±). After

EWSB, just as the SM W 0 and B0 mix to give the Z and γ, the W̃ 0 and B̃0 mix

to give Z̃ and γ̃. Taken together with the Higgsinos (also spin-1/2), these sparticles

can mix to form 2 mass eigenstates which we call neutralinos χ0
i=1,2; the charged W̃±

states can also mix to form 2 charginos χ±i=1,2. In many models, the lightest neutralino

(written χ0
1 or, more commonly, χ0) is the lightest supersymmetric particle.

Supersymmetry does not independently preserve baryon and lepton number, which

leaves it open to predicting proton decay and lifetimes incompatible with the obser-

vation of the lifetime of the universe and lower limits on the proton lifetime. One

way to avoid this is to introduce a quantity known as R-parity

R ≡ (−1)2s+3(B−L)

that is conserved by supersymmetry (s is the spin of the field). It can either be added

in an ad-hoc way, or it can be added as part of a model that conserves R-parity

automatically [24]. By construction, R=+1 for all SM particles and R=-1 for all

SUSY particles. The introduction of this conserved quantity inplies that there are

always an even number of SUSY particles in any interaction, which has important

phenomenological consequences:

� SUSY particles must be pair produced at the LHC

� a SUSY particle must always decay into an odd number of SUSY particles as
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well as an arbitrary number of SM particles

� the lightest supersymmetric particle (LSP) is stable

The third point follows as consequence of the second (the lightest particle has no valid

R-parity preserving decays). This implies that a weak scale LSP could potentially be

a candidate for a particle explanation of dark matter. It also means the LSPs would

escape the CMS detector undetected.

Since this whole discussion began by introducing SUSY to cancel divergences in

the Higgs boson mass, it is no surprise that massive SUSY particles couple to the SM

Higgs boson. This means that the decays q̃ → Hχ0 and χ2 → Hχ0 should be allowed

when there is enough mass splitting between the particles to allow it. So far, SUSY

has eluded all attempts to find it, but these decays, coupled with the measurement

of the mass of (a) Higgs boson, offer a promising new channel.

2.2.1 Simplified Models

If supersymmetry is realized in nature it must be a broken symmetry, since sparticle

states with identical masses to their SM partners have been excluded by previous

experiments. This implies that there must be supersymmetry violating terms in the

SUSY Lagrangian; in order to avoid adding additional ultraviolet divergences, this

breaking should be soft. With all the soft terms added, SUSY adds several hundred

new masses, mixing angles and phases to the model.

Since a model with several hundred parameters is difficult to work with when pre-

senting experimental results, we often interpret our results in the context of simplified

models that make the asumption that only a few states have masses that are accessi-

ble at the LHC [25]. In particular, in this work, we focus on a model where only the

neutralinos and charginos are accessable at the LHC, with the lightest neutralino χ̃0
1

being the LSP and the chargino χ̃±1 being the NLSP. In models such as this, the key
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decays to consider are

χ̃0
2 → Hχ̃0

1 χ̃0
2 → Zχ̃0

1

χ̃0
2 → W±χ̃∓1 χ̃±1 → W±χ̃0

1

If we assume that the χ0
2 and χ±1 are nearly degenerate (we drop the χ̃ notation

for convenience), then the 3rd decay is through a virtual W ∗, which decays to low

momentum particles. In an R-parity conserving model, the phenomenology of these

decay channels is a set of final states with either two vector bosons, two Higgs bosons,

or a vector boson and a Higgs boson, all with two additional neutralinos that escape

the detector [26]. If we consider only models where the mass splitting between the

NLSP and LSP is ∆m & 130 GeV, then all of these bosons would be on-shell. Of

course there are other potential decay channels for the neutralinos and charginos that

may or may not be allowed or dominant in different regions of parameter space, but

we focus on cases where the decays listed are most important.

From an experimental point of view, final states including a Higgs boson have

some attractive properties that can be exploited to increase the sensitivity to these

models. The Higgs boson has a much smaller width than the Z or W (≈ 4 MeV versus

2.1 and 2.5 GeV respectively), so in a real experiment the observed width is just the

resolution of the detector and the major production modes are straightforward to

model. Its decay into photons gives it a very clean experimental signature, and its

relatively small standard model cross section means it is quite easy to find kinematic

regions with virtually no predicted Higgs boson events without going onto the tails

of the distributions. In this study, therefore, we focus only on decays that produce a

Higgs boson.

Figure 2.2 shows the diagrams of the simplified model that we study here. We

require at least one leg to have the χ2 → Hχ1 decay and allow the other leg to

decay as it will. We have already said that we take the χ±1 and the χ2 to be near

degenerate, so we are left with only two more parameters to consider: the mass of the

LSP mχ0 and the mass of the NLSP mχ±1
≈ mχ2 . In order to keep the Higgs boson
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on shell, we require that ∆m = mχ2 −mχ0 > 130 GeV, but otherwise we allow for

different possible values for the two masses. We call these combinations of different

mass parameters a simplified model scan (SMS), and we will use these scans over

valid mass combinations to design the analysis and provide some interpretation for

this type of model. Since these SMSs are not really full models, we use them mostly

to help guide the analysis design and allow comparisons between different analyses.

We keep the analyses general enough to allow re-interpretation with other models.
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Figure 2.2: The diagrams under consideration in the simplified model studied here.
The diagrams on the top both have production of two neutralinos (χ2); the diagram
on the top left has both of those neutralinos decaying χ2 → Hχ0, while the diagram on
the right has one neutralino decaying χ2 → Hχ0 and the other decaying χ2 → Zχ0.
The diagram on the bottom has asymmetric χ2χ

±
1 production with the neutralino

decaying χ2 → Hχ0 and the chargino decaying χ±1 → W±χ0.

Figure 2.3 shows the expected cross-section for neutralino-neutralino and chargino-

neutralino production as a function of the mass [27, 28]. We can see that the cross-

section falls by two orders of magnitude between 130 and 500 GeV, so it is useful to

calculate how many events we expect to see in the LHC data as a function of the

mass. The LHC has collected 19.8 fb−1 of data at
√
s = 8 TeV, and we only want
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Figure 2.3: The production cross section for neutralino-neutralino and chargino-
neutralino production as a function of the mass in the simplified model under consid-
eration for pp collisions at

√
s = 8 TeV.

the decays of the Higgs boson to two photons, so we account for the branching ratio

(0.0028 at mH = 125 GeV) so we can calculate that we expect to see one event for

a model with a cross-section of σ = 0.04 pb with an acceptance of 50%. Based on

the scaling of the cross section, we only consider models with mχ2 < 200 GeV, which

would produce at least a few events under realistic acceptance. We can therefore

define the set of models that are guiding this analysis as those shown in Figure 2.2

with mχ2 < 200 GeV and mχ0
1
< 70 GeV.
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Chapter 3

Experimental Setup

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is a superconducting hadron collider located at

CERN near Geneva, Switzerland [29]. It occupies a 26.7 km circumference tunnel

that lies between 45 m and 170 m below the surface originally built for the LEP ex-

periments. It is designed to provide collisions between two beams of protons traveling

in opposite directions within the ring each with an energy of 7 TeV at a peak instanta-

neous luminosity of 1034 cm−2s−1. Thus far, the machine has achieved 8 TeV collisions

(4 TeV in each beam) and a peak luminosity nearing 7.7× 1033 cm−2s−1 [30].

The beams are divided into clusters of protons, called bunches, within the machine.

The LHC is designed to operate with a 25 ns spacing between the bunches and a

total of 2,808 bunches, each containing 1.15× 1011 protons, within the ring. Thus far

only a spacing of 50 ns between the bunches has been achieved with a peak of 1380

bunches circulating. The bunch charges have been higher than design, with a peak

of 1.6× 1011 protons per bunch achieved.

The beam circulates in two parallel rings where the bunches are bent using su-

perconducting dipole magnets. For cost and space reasons, the two counter-rotating

beams are housed in adjacent beam tubes within the same cryostat. Since the beams

have the same charge, they each require a magnetic field pointing in the opposite

direction to stay within the ring. Dipole magnets are used to achieve this, producing

two fields of nearly equal magnitude and opposite direction. This configuration is



20

shown in Figure 3.1.

Figure 3.1: Schematic cross section of an LHC dipole magnet.

The dipole magnets are NbTi superconductors maintained at 2 K by a cryostat.

They are capable of producing a field of up to 8 T, with the exact strength set

depending on the energy of the protons within the machine. The LHC rings contain

1,232 of these magnets.

3.1.1 Collisions and Pileup

As mentioned before, the peak luminosity achieved in 2012 has been L = 7.7× 1033 cm−2s−1

divided into 1380 bunches separated by 50 ns. For most of the length of the ring, the

two beams counterrotate in separate parallel beampipes. To produce collisions, the

two beams are steered into a single beampipe and pass through each other at 8 inter-

action points (IPs) around the ring [29]. The collisions are then a stochastic process,



21

where some protons from one bunch collide with other protons from the other bunch.

One can calculate the peak expected number of collisions per crossing from the peak

luminosity ( = 7.7× 1033 cm−2s−1 per bunch), the total proton-proton cross section

at
√
s = 8 TeV (σpp = 101.7 = 101.7× 10−27cm2, measured by TOTEM [31]) and the

bunch spacing (n = 5.0× 10−8s):

< I >= L ∗ σpp ∗ n = 39.1 (3.1)

So in each bunch crossing, we expect about 39 individual proton-proton interactions

at peak luminosity. We are only interested in a very tiny fraction of the collisions that

are produced, but each time one collision in the bunch crossing produces a particle of

interest (a Higgs boson, for example), we will also record all the particles produced by

the other collisions in the same bunch crossing. We call these interactions “pileup”

and dealing with it is one of the largest challenges for any analysis at the LHC.

We describe in Section 3.2.2.2 how we determine which vertex produced particles of

interest (the primary vertex) and in Section 4.3.1 how we identify and remove the

energy from particles produced by these pileup interactions from the reconstruction

of the particles produced by the interaction at the primary vertex.

3.2 The Compact Muon Solenoid

The Compact Muon Solenoid (CMS) is one of two general purpose detectors at the

LHC [32] [33]. A schematic outline is shown in Figure 3.2, showing all the major

components. CMS is designed to accurately measure all charged and neutral par-

ticles produced by a proton-proton collision using a series of different components

or sub-detectors, each specialized at measuring specific attributes of products from

the collision. At its core is the eponymous superconducting solenoid that produces a

3.8 T magnetic providing large bending power to enable precise determination of the

momentum of charged particles. The detector is divided into 4 main subdetectors:

the tracker, for measuring the path of charged particles in the magnetic field; the
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electromagnetic calorimeter (ECAL), for measuring the shower from electrons and

photons; the hadron calorimeter (HCAL), for measuring the shower from hadrons;

and the muon systems, for measuring the energy and momentum of muons.

We define a coordinate system that will be used consistently when talking about

positions of subdetectors and particles with the (0,0,0) point at the center of the

detector. The x̂ direction points toward the center of the LHC ring from the center

and the ŷ direction points upward toward the surface. The ẑ direction, then, points

along the beamline to the left side of the detector (toward the Jura mountains) to

make a right-handed coordinate system. Azimuthal angle (φ) is measured in the x-y

plane from the x axis while polar angle is measured from the z axis. We will frequently

use the variable psuedorapidity, which is defined as

η = −ln
(
tan

(
θ

2

))

We call a vector “transverse” to the beamline if ~v · ẑ = 0 (i.e., ~v lies in the x-y plane).

The detector is divided into three major regions: the barrel, covering the central

(low η) part of the detector transverse to the beamline; the endcaps, covering the

intermediate (middle η) regions; and the forward regions, covering the very forward

(high η) region where particles from the interaction emerge nearly parallel to the

beamline.

3.2.1 The CMS Solenoid

The CMS solenoid is shaped like a hollow cylinder centered around the beamline,

with an internal diameter of 6 m and a length of 12.5 m [34] [35]. It is a supercon-

ducting magnet designed around a 4 layer NbTi coil to produce a 4 T magnetic field

within the hollow bore; at full current, the solenoid has a stored energy of 2.6 GJ. The

total cold mass of the solenoid is 220 T, giving a relatively high Energy/Mass ratio

of 11.6 KJ/kg, causing a large (0.15%) mechanical deformation of the solenoid dur-

ing energizing, significantly larger than the deformations found for previous detector

magnets.
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Figure 3.2: Schematic overview of the CMS detector.

The solenoid is situated within an 10,000 T iron return yoke consisting of 3 distinct

layers divided into 7 regions (5 wheels in the central region and 2 endcap regions). A

picture of the return yoke under construction can be seen in Figure 3.3. The solenoid

produces a significant field outside the bore and the iron yoke guides the return field

back along distinct channels (see Figure 3.4), allowing muon chambers to be placed

outside the solenoid for muon identification and measurement.

3.2.2 The CMS Tracker

The CMS tracker is designed to measure the trajectory of individual charged parti-

cles produced in an interaction as they bend in the magnetic field produced by the

solenoid. At 50 ns bunch spacing, each bunch crossing produces up to 40 interactions

(see Section 3.1.1), which altogether produce around 2000 charged particles [33]. The

CMS tracker is composed of a pixel detectors with three layers in the barrel region
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Figure 3.3: The assembly of the yoke.

and 2 disks in the endcap region and a silicon strip tracker with 10 layers in the

barrel region and 3+9 disks in the endcap region [36]; the configuration can be seen

in Figure 3.5.

The three cylindrical layers of the pixel detector are situated at radii of 4.4, 7.3,

and 10.2 cm from the beamline. The two disks extend from ≈ 6 to 15 cm in the radial

direction and are located at z = ±34.5 cm and z = ±46.5 cm from the interaction

point. Together, these cover the pseudorapidity range −2.5 < η < 2.5. The barrel

pixels consist of 48 million channels while the endcap disks consist of 18 million

channels each. Each channel has dimensions 100 × 150 µm2, which allows the total

occupancy of the pixels to be kept very low (≈ 10−4) even with the very high particle

multiplicities expected at design luminosity. The placement of the barrel and pixel

layers allows almost the entire region between −2.5 < η < 2.5 to be covered by at

least 3 layers of pixels (see Figure 3.6).

The strip tracker is located outside the pixel detector and is composed of silicon de-
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Figure 3.4: Schematic view of the CMS detector with the magnetic field strength
shown (left half, color Z axis) and the magnetic field lines shown (right half). One
sees the magnetic field is strong and uniform inside the solenoid, while outside the
solenoid it is concentrated inside the iron return yokes, which guide the magnetic field
lines.

tectors with a typical cell size of 10 cm× 80 µm in the inner strips (tracker inner barrel

or TIB, and tracker inner disks or TID: 20 cm < r < 55 cm) and 25 cm× 180 µm

in the outer strips (tracker outer barrel or TOB, and tracker endcpas or TEC:

55 cm < r < 110 cm). The increased distance from the interaction point keeps the

occupancy manageable despite the larger size of the strip detectors (2-3% in the

inner strips and ≈ 1% in the outer strips). There are a total of 9.6 million strip de-

tectors arranged in 15148 detector modules covering a total area of over 200 m2. The

inner tracker (TIB/TID) provides up to 4 r− φ measurements on a given trajectory.

The TOB provides another 6 r − φ while the TEC provides up to 9 φ measurements

per trajectory. The individual measurements from the layers of the pixel and sili-

con trackers are used by the track reconstruction to reconstruct the trajectories of

particles moving through the tracker.

The material budget for the tracker is shown in Figure 3.7. One sees that in the

very central region |η| < 1, the tracker is very “thin” (less than one radiation length

and around 0.2 interaction lengths), while in the more forward regions 1.5 < |η| < 3
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Figure 3.5: The layout of the subdetectors within the CMS tracker. The three barrel
and two endcap layers of the pixel detector are shown in the box around the interaction
region (the solid dot in the middle). The silicon tracker is divided into Tracker Inner
Barrel (TIB) and Tracker Outer Barrel (TOB) layers covering the barrel and Tracker
Inner Disks (TID) and Tracker EndCaps (TEC±) covering the endcaps. From [32]

it is comparatively thick. This will play an important role in our reconstruction of

photons and electrons, which is discussed in Section 4.2.

3.2.2.1 Track Reconstruction

We reconstruct the path of charged particles through the CMS tracker using the hits

measured by the pixel and strip detectors and the equations of motion for charged

particles moving in the homogeneous magnetic field produced by the CMS solenoid.

From a given seed, the definition of which is discussed below, an initial trajectory

is estimated from the best fit to those points in 3D space, varying the kinematics of

the potential charged particle. In an iterative procedure, more hits are added to the

trajectory, to further refine the estimation until all hits are accounted for.

The iterative algorithm used to find tracks is known as the Combinatorial Track

Finder (CTF) [37]. The collection of reconstructed tracks is produced by multiple

applications (iterations) of the CTF algorithm. The aim is to find the easiest tracks

(e.g. high pT tracks produced near the interaction region) first, remove the hits
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Figure 3.6: The coverage of the pixel detector. One can see that almost the entire
region between −2.5 < η < 2.5 is covered by 3 layers of pixels, with a small region
near the edge of the coverage only covered by the innermost barrel layer and the
outermost endcap disk.

associated with these tracks, and then move on to progressively harder to find tracks

(lower pT or displaced from the interaction region) with the smaller hit collection

reducing the computational challenge at each step. The algorithm uses 6 iterations:

iterations 0-2 are designed to find prompt tracks with successively lower pT or track

quality, while iterations 3-5 are designed to find tracks originating outside of the main

interaction region.

In addition to the hits recorded by the tracker, the track reconstruction algorithm

uses information about the beam spot, which is a measurement of the average inter-

action location over many events within a given period of collisions. This serves as an

initial estimate for the interaction location for each event. Additionally, initial per-

event vertex information is reconstructed from triplets of hits in successive layers of

the pixel detectors (pixel tracks), which are extrapolated back to the interaction region

to form pixel vertices (in a manner analogous to that described in Section 3.2.2.2).

This provides a fast estimation of the locations of the primary vertices of the event,

which are then used to fit the full tracks.

The first step in the process is seed generation. The seeds are fit to define the initial
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Figure 3.7: The tracker material budget as a function of η in units of the radiation
length (left) and the hadronic interaction length (right). From [37]

track parameters and trajectory seed. The trajectory is extrapolated to subsequent

layers of the detector using the Kalman filter method [38,39] with additional hits from

the subsequent layers added and the track parameters added at each layer. Each layer

provides information about the position and uncertainty of each hit and the amount

of material crossed, which is used to account for multiple Coulomb scattering and

energy loss. This procedure continues until the edge of the tracker is reached or there

are no more valid hits. Once all the hits are identified, the entire track is refit to

obtain the best estimate of the track parameters.

Iteration 0 of the CTF algorithm uses pixel triplets as seeds with a constraint on

the fit requiring pT > 0.8 GeV. This is designed to find high-pT tracks originating

from the interaction region (called prompt tracks). Iteration 1 requires two hits either

in the pixels or in the two inner rings of the three inner TEC layers (used to increase

coverage in the high η region) in addition to a pixel vertex. This vertex is required

to pass quality criteria, the most important of which is that it be reconstructed from

at least 4 pixel tracks. In this iteration pT > 0.6 GeV is required for the track fit.

Iteration 2 is searching for low-pT prompt tracks, and so requires a pixel triplet seed

but the requirement is pT > 0.075 GeV. Iteration 3 requires mixed seeds in the pixels

and strips, which allows for slightly displaced vertices. Iterations 4-5 require seeds in
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the endcaps and barrels of the strips to find greatly displaced vertices.

Once all the 6 iterations have run, the track collection is filtered to remove likely

fakes. Tracks are rejected if the reduced χ2 of the track fit to the hits is too large, if

there are too few hits, if the track is too incompatible with a pixel vertex, or if the

track is too incompatible with the beamspot. The surviving High Purity tracks are

considered measurements of the motion of charged particles through the tracker as

well as to reconstruct the primary vertices in the event.

3.2.2.2 Primary Vertex Reconstruction

The locations of the multiple proton proton interactions within each bunch crossing

(see Section 3.1.1) are determined by the primary vertex (PV) reconstruction. This

determines the location and uncertainty of all interactions using the reconstructed

tracks. High purity tracks that are consistent with the beamspot are clustered based

on the z coordinate of the point of closest approach to the beamspot using a deter-

ministic annealing algorithm [37,40]. Each track is assigned to exactly one candidate

vertex, with the total number of candidates determined by the algorithm. The can-

didates with at least two tracks assigned to them are then fit with an adaptive vertex

fitter [41] to determine the 3D position and other parameters of the vertex.

The performance of the PV reconstruction algorithm is illustrated in Figure 3.8.

For high track multiplicities, the resolution is typically less than 20 µm in x and less

than 25 µm in z for general inelastic collisions. The efficiency to reconstruct a vertex

is also measured to be > 99.75% for vertices with more than 2 tracks (and > 98%

for vertices with 2 tracks). This excellent resolution and efficiency allows most of the

individual vertices in an event to be reconstructed distinctly even within the high

pileup regime of the LHC.

3.2.3 The CMS Electromagnetic Calorimeter

The CMS Electromagnetic Calorimeter (ECAL) is designed to provide excellent en-

ergy resolution for electrons and photons produced by the collisions. It is a crystal
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Figure 3.8: The x (left) and z (right) resolution of the CMS PV reconstruction algo-
rithm as a function of the number of tracks. The resolution in y is nearly identical
to the resolution in x. The minimum bias sample (red) estimates the resolution for
general inelastic pp collisions by requiring only the presence of the a bunch crossing
in the detector. The jet-enriched (black) sample estimates the resolution for colli-
sions producing more transverse energy by requiring the presence of a 20 GeV jet
(see Section 4.3). Figure taken from [37].

calorimeter made of 75,848 lead tungstate (PbWO4) crystals split with 61200 crystals

in the ECAL Barrel (EB) (|η| < 1.48) and 7324 crystals in each ECAL Endcap (EE)

(1.48 < |η| < 3.0) [42]. A silicon lead pre-shower detector (ES) is installed in the re-

gion 1.65 < |η| < 2.6 designed to improve the discrimination power between photons

and π0 particles. A schematic of the layout can be seen in Figure 3.9. The preshower

consists of two lead radiators each followed by a layer of silicon strip detectors. The

first is 2 radiation lengths thick and the second is 1 radiation length; these absorbers

are designed to initiate showers from incoming electromagnetic particles, which are

then detected by the silicon detectors [43].
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Figure 3.9: a schematic of the CMS ECAL layout. At top is a cut-away schematic
of the whole detector showing the barrel, endcaps, and preshower subdetectors. A
schematic showing the η coverage of the various subdetectors is shown at bottom.
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The compact, high granularity design of the ECAL is made possible by the char-

acteristics of the crystal material. Lead tungstate has a high density (8.28 g/cm3),

short radiation length (X0 = 0.89 cm), and small Molière radius (2.2 cm). These char-

acteristics mean that the showers from incident high energy electrons and photons

have small transverse spread and can be contained within relatively short crystals.

In EB, the crystals have a truncated pyramid shape with a front face measuring 2.2

cm × 2.2 cm and are 23 cm in length. In EE, the crystals are 22 cm long and their

front faces measure 2.86 cm × 2.86 cm. The crystals in the endcap are arranged in a

projective geometry, pointing toward the center of the interaction region.

Photons and electrons passing through the ECAL crystals lose energy to the crys-

tal material, which produces scintillation light. PbWO4 crystals emit scintillation

light in a broad spectrum with a maximum between 420-430 nm. The scintillation

light is measured by avalanche photodiodes (APDs) [44,45] and vacuum phototriodes

(VPTs) [46] in the EB and EE respectively. The quantum efficiency and cross-section

of the detectors are such that an incident particle depositing 1 MeV of energy in the

crystal will produce an average of 4.5 detected photoelectrons in either EB or EE.

The energy resolution of the ECAL is measured in test-beams as a function of the

energy of the incident particles [47]. In the barrel, this resolution is measured to be:

σE
E

=
2.83%√
E/(1GeV )

⊕ 12.4%

E/(1GeV )
⊕ 0.26% (3.2)

The resolution in situ will depend on additional factors, including the material budget

in front of the crystal.

3.2.3.1 ECAL Clusters

The energy deposited in each ECAL crystal during the collision is measured by the

APD or VPT attached to the crystal. Since the width of the ECAL crystals is roughly

one Molière radius of lead tungstate, we expect the deposits left by real electrons and

photons passing through the ECAL to be several crystals wide. We start by forming

basic clusters (BCs), which are 5 × 5 groups of crystals, centered around local maxima
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in the energy deposited in the ECAL [42]. In test beam measurements, it has been

shown that a cluster of this size will contain 97% of the energy deposited by a high

energy photon or electron [33,47]. In situ, however, the picture is more complicated:

the presence of the tracker in front of the ECAL and the strong magnetic field can

cause electrons to bremsstrahlung, depositing energy over a large region in the φ

direction. Similarly, it can cause photons to convert to electron-positron pairs, which

can then deposit energy over much larger areas than photons that do not convert.

To accurately reconstruct the energy with which the particle was produced in

the collision, the energy lost to bremsstrahlung must be clustered and recovered as

well. This is done by clustering the basic clusters into superclusters (SCs), which

are designed to contain all of the energy deposited in the ECAL by the particle in

question. The process of forming these clusters in the EB is called the “hybrid”

supercluster algorithm and is described extensively in [33, 48]. It starts by defining

a seed crystal with high energy and then dynamically searches in the φ direction for

more strips of high energy deposits that are more consistent with radiated energy than

a separate prompt particle. The extended area is then reclustered in the φ direction

into new basic clusters. A schematic view is shown in Figure 3.10. In the endcap the

procedure is different due primarily to the presence of the preshower detector. The

preshower is roughly 3 radiation lengths thick, which degrades the resolution of EE

by a factor of roughly 2 compared to a similar particle incident on EB. A simpler

algorithm consisting of clustering distinct basic clusters in the φ direction is used in

EE that also merges in energy information from ES.

While the supercluster is an extended object within the ECAL, it is meant to

encapsulate the energy deposited by a particle that had momentum in a specific

direction. To estimate this direction, it is important to define the position of the

supercluster as a distinct point. The position is defined as a weighted sum of the

positions of the individual hits making up the SC. Let {~xi|1 ≤ i ≤ N} be the 2D

positions of the energy deposits making up the SC in the ECAL, with each point ~xi
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Figure 3.10: An illustration of the hybrid supercluster algorithm. Green squares
indicate clustered energy while red squares indicate unclustered energy. Figure from
[48]

having energy Ei, then the SC position is defined as

~xSC =

N∑
i=1

wi~xi

N∑
i=1

wi
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where the weights are defined

wi = max

0, 4.2 + log

 Ei
N∑
i=1

Ei




The value of 4.2 in the above equation is found by optimization.

3.2.4 The CMS Hadron Calorimeter

The purpose of the CMS Hadron Calorimeter (HCAL) is to measure the energy of

charged and neutral hadrons produced by the collision. When a quark or gluon is

produced in the final state of a collision, it will quickly hadronize into jets of hadrons,

the energies and directions of all of which must be measured to reconstruct the energy

and direction of the initial particle. To measure as many of these particles as possible,

the HCAL provides many interaction lengths of material to stop particles and coverage

out to large |η|.

The HCAL is composed of three subdetectors: the HCAL barrel (HB) covering

|η| < 1.4, the HCAL endcaps (HE) covering 1.3 < |η| < 3.0, and the forward HCAL

(HF) covering 3.0 < |η| < 5.2 [33, 49]. The HB is situated between the ECAL barrel

and the solenoid covering a radius of 1.78 m < r < 2.88 m from the centerline of

the detector. The HE are placed on either side of the interaction region behind the

ECAL endcaps. The HF is placed around the beampipe on both sides of the detector

at z = ±11.2 m from the interaction point, outside the endcap return yokes. A

schematic representation of the layout can be seen in Figure 3.11. There is also an

outer hadron calorimeter (HO) placed outside the solenoid, but this was not used for

data collected in 2012.

The HB is composed of 36 identical wedges, each covering 20◦ in φ. Each wedge

is composed of 17 layers of plastic scintillators alternating with 16 layers of brass

absorber plates (except the first and last plates, which are stainless steel for structural

support). The first and last layers of scintillators are 9 mm thick and the other 15

layers are 3.7 mm. The inner stainless steel plate is 61 mm thick and the outer one is
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Figure 3.11: Schematic of the CMS detector showing the separation of subdetectors
into barrel and endcap regions as well as the HF.

75 mm thick. The first 8 layers of brass plates are 50.5 mm thick and the remaining

6 are 56.5 mm thick. Each layer of scintillator is composed of multiple tiles that are

machined to cover a region ∆η×∆φ = 0.087× 0.087(5◦), forming 32 HB “towers” in

the η direction and 144 towers in the φ direction. The scintillators are read out by

wavelength shifting fibers, each of which is read out by a multipixel hybrid photodiode

(HPD) with a gain of ≈ 2000.

The HE is tapered and overlaps with the last tower of the HB. The HE is also

divided into 20◦ slices in φ matching the HB. There are 19 active plastic scintillators

interleaved with absorbers, all of which are brass. All the absorbers are 78 mm thick

and all the scintillators are 3.7 mm. The towers cover the same range in ∆η×∆φ as

in HB up to |η| = 1.74, where the ∆φ size is increased to 0.174 (10◦) to accommodate

the bending radius of the fibers and the ∆η size increases as shown in table 3.1. The

scintillators in HE are also read out by HPDs with similar gain to those used in HB.

The forward calorimeter is meant to capture particles with large momentum par-

allel to the beam direction that end up in the very forward 3.0 < |η| < 5.0 region.

The extreme radiation flux coming from the LHC makes this a very challenging en-
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|η| range ∆η size
1.740 - 1.830 0.090
1.830 - 1.930 0.100
1.930 - 2.043 0.113
2.043 - 2.172 0.129
2.172 - 2.322 0.150
2.322 - 2.500 0.178
2.500 - 2.650 0.150
2.650 - 3.000 0.350

Table 3.1: The ∆η size of the plastic scintillators in HE as a function of η.

vironment and requires the HF to be extremely radiation hard. At design energy,

the inner edge of the HF (at |η| = 5.0) would expect to receive a radiation dose of

2×105 Gy/fb−1 compared to the expected dose in the inner edge of HE (at |η| = 3.0)

of 20 Gy/fb−1 [49]. This extreme difference in dose necessitates a very different design

for the HF detector compared to HB and HE.

The HF is compossed of radiation hard quartz fibers embedded in steel absorbers.

The fibers are split between long (1.65 m) and short (1.43 m) fibers arranged alter-

nating in the absorber with a separation of 5 mm creating effectively 2 longitudinal

sampling points within the absorber. The signal is produced by Cherenkov light in

the fibers. The fibers run parallel to the beamline and are bundled at the back of

the detector and routed to phototubes for readout. The HF is split into 13 towers;

12 have ∆η ≈ 0.175 and one (the one at highest |η|) has ∆η = 0.3. The towers have

∆φ = 0.174 up until |η| > 4.716 where the φ segmentation increases to ∆φ = 0.348.

3.2.5 The CMS Muon System

The CMS Muon system surrounds the solenoid and is responsible for the identification

and accurate measurement of muons passing through the CMS detector [50]. Muons

produced by a collision in CMS behave similarly to electrons, in that they lose energy

as they pass through matter due to bremsstrahlung radiation, but being ≈ 200 times

heavier than electrons, they lose much less energy (by a factor that goes as 1
m2 ). This

means that, while a O(10 GeV) electron is fully stopped in the ECAL, a similar

energy muon passes through the tracker, both calorimeters and the solenoid. Unlike
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a neutrino, which also passes through all of these systems, a muon deposits small

amounts of energy in each one, meaning that one can detect the presence of a muon by

looking for small energy deposits in multiple subsystems traveling out of the detector.

The muon system, then, measures the deposits of energy left by the muon after it

travels out of the central region of the detector.

The muon system is composed of three different types of subdetectors occupying

different regions in |η|. Since the magnetic field is no longer homogeneous in the

region outside the solenoid (see Figure 3.4) each subdetector is optimized to deal

with the different magnetic field regimes in which they are situated as well as the

different radiation environments. In the central region |η| < 1.2 the muon system

uses drift tube chambers (DTs), which provide excellent spatial resolution. Forward

from the DTs from 0.9 < |η| < 2.4, the muon system uses cathode strip chambers

(CSCs), which sacrifice some spatial resolution for increased radiation resistance and

less susceptibility to the more intense gradiant of the magnetic field. Resistive plate

chambers (RPCs) are used in front of the DTs and CSCs in the region |η| < 1.6 to

help with triggering by providing good temporal resolution.

The DTs are composed of 250 individual drift chambers each of which is composed

of drift cells with a ≈ 400 ns maximum drift time. These chambers are aranged

in 4 concentric rings around the beamline at radii of approximately 4.0 m, 4.9 m,

6.0 m, and 7.0 m. They are segmented into 5 distinct slices in the z-direction, each

approximately 2.7 m in length. In the φ direction, the chambers increase in size with

increasing r to ensure that each one covers 30◦ in the φ direction. The chambers are

staggered, as shown in the bottom right of Figure 3.12 to provide 360◦ φ coverage.

The CSCs consist of 234 chambers in each endcap region. The individual chambers

are staggered to provide at least 3 layers in the entire range 0.9 < η < 2.4, given the

constraints of the positioning of the solenoid and other subdetectors. The layout can

be seen exactly in Figure 3.12.
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Figure 3.12: A schematic layout of the CMS muon sytem. The top plot shows r-z
view of one quarter of the system with the DTs, CSCs, and RPCs labeled as well as
lines corresponding to the |η| within the detector. The bottom plots shows the r-z
(left) and r-φ (right) layout of the whole system as well as the readout data from a
single

√
s = 7 TeV collision; the green colored channels are the DTs and the blue

color are the CSCs (RPCs not shown). Both plots from [51].
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The muon chambers measure the hit positions of muons as they are bent by the

magnetic field channeled by the iron return yokes. The hits in the muon chambers

can be fitted by a track (in a manner similar to the tracks in the tracker) and the

momentum of the muon can be measured by the curvature of the track. The muon

momentum resolution using only these hits can be see in the left side of Figure 3.13.

One sees that the resolution becomes considerably worse as one goes to higher |η|

reflecting the lower sensitivity of the CSCs due to the harsher radiation environment.

Since muons also create tracks in the tracker, one can do a combined fit to the

hits in the tracker and those in the muon chamber to get a better estimate of the

momentum of the muon. The resolution using this fit method (with two different

implementations) is shown in the right side of Figure 3.13. One sees that, with the

full fit, CMS obtains 1-2% resolution for muons in the central region < 6% resolution

in the whole region |η| < 2.1.
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Figure 3.13: The resolution of the muon system using only the hits in the muon
chambers (left) and using a combined fit to the hits in the muon system and the hits
in the tracker (right) using two different fit methods. Plots taken from [51].
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Chapter 4

Object Reconstruction and
Identification

The goal of the analysis is to search for anomalous production of events with aH → γγ

and at least one other particle in the final state . For this we require a robust method

for identifying photons and discriminating them from electrons. We also require a

method for reconstructing other particles, which accurately determines the kinematics

of the particle, but remains agnostic to the actual type of particle. Finally, we require

a quantity that measures some of the kinematics of particles that escape the detector.

A particle produced in a collision in CMS will traverse multiple subdetectors and

leave deposits in some or all of them. The shape of these deposits, which systems they

are in, and their interaction with the magnetic field gives information about what type

of particle was produced and what its energy and direction were. We have discussed

in Section 3.2 how the raw data recorded by individual subsystems is reconstructed

into local information about the particles movements through the system. We focus

now on the approach of combining this information across subsystems to reconstruct

the global information about the particle’s kinematics.

While there are typically many objects produced in a collision, we will focus mostly

on objects with large momentum perpendicular to the beamline. We measure this by

looking at a particle’s transverse energy, defined as:

ET ≡ E/cosh(η)
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we will also be concerned with a particles transverse momentum, which is defined

simply as the x-y component of the momentum:

~pT = ~p− ~p · ẑ

We care primarily about these quantities because energy transverse to the beamline

is indicitative of the energy produced only from the interaction process while energy

parallel to the beamline has a contribution from the
√
s of the interacting partons.

4.1 Particle Flow

The goal of particle flow (pf) is to identify all stable particles produced by the event as

they pass through the detector by combining information from multiple subdetectors

[52, 53] . The goal is to end up with a list of candidate particles each with the best

estimate of its energy, direction, and ID produced from the reconstructed tracks,

calorimeter clusters and muon tracks in the event. The key then is to have a global

way of linking reconstructed elements in the 4 systems as described here. Each link

between objects in different subdetectors is assigned a score quantifying its quality

(exact methods are discussed below). The algorithm will then produce blocks of

linked objects that can be reconstructed.

It should be noted that calorimeter clusters for particle flow are formed in slightly

different ways from those described in Section 3.2. The clusters are seeded by local

maxima in the deposited energy and are then grown from these seeds by including

any cell adjacent to the cluster with energy above a certain threshold (80 MeV in EB,

300 MeV in EE and 800 MeV in HCAL). These “topological” clusters are centered at

their energy weighted geometric center in η−φ and are used in place of the traditional

clustering methods described before. Energy lost to radiation is recovered in other

ways, so there is no need to try to cluster all the radiated energy, which was the goal

of the supercluster algorithm.

The first step is to link charged tracks with calorimeter clusters. This is done by



43

taking each reconstructed high-quality track consistent with a primary vertex and

extrapolating it into the calorimeters to the following depths:

1. a depth in the ECAL corresponding to the expected maximum shower profile

or the 2 layers of the ES

2. one interaction length into the HCAL

A track is then linked to any cluster in either (or both) of those detectors that overlaps

with the extrapolated track. The link is assigned a score based on the η− φ distance

between the center of the cluster and the extrapolated track. In order to capture

any Bremsstrahlung photons produced by the charged particle, tangents along the

curved track are extrapolated linearly to the ECAL. Any clusters overlapping these

extrapolated tangents are linked with a link score determined by the distance from

the center of the cluster to the extrapolated tangent.

Next calorimeter clusters are linked between the ES, ECAL, and HCAL. These

calorimeters have different granularities, with ES being the most granular and HCAL

being the least. A cluster in a more granular calorimeter is linked to a cluster in a less

granular calorimeter if its center is within the cluster in the less granular detector. For

instance, an ECAL cluster would link to an HCAL cluster if its center were within the

HCAL tower. The link distance is defined as the η − φ distance between the centers

of the clusters.

The last step is linking charged tracks from the inner tracker to muon tracks in the

outer tracker. This is done when a global fit between an inner track and a muon track

returns a reasonable χ2. Since the granularity of the inner tracker allows multiple

charged tracks to fit one muon track, any ambiguity is resolved by selecting the track

which produces the best χ2 [32]. The χ2 of the fit is the link quality.

Blocks are then formed so that all objects within a block are linked and there are

no links between blocks. The largest possible block would be several tracks, several

ES and ECAL clusters, one HCAL cluster and one global muon track, but most

clusters will contain only a subset of these. Each block is then analyzed to check for

candidate pf particles. The algorithm runs until the pool of blocks is exhausted.
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If a block contains a muon track linked with a track from the inner tracker, it can

form a pf muon. This happens when the momentum estimated by the inner track is

within 3σ of the momentum from the combined fit. If this is the case, the inner track

and muon track are removed from the block. If, after the deletion, the block contains

only a single object or no object it is deleted, otherwise it is reinserted into the block

pool. This helps address the case of a muon overlapping with another particle.

A block containing at least one linked track and an ECAL cluster may produce a

pf electron [54]. Each track linked to a cluster goes through an identification and refit

procedure described in [37] and [54] to check if it is compatible with the way in which

an electron should lose energy in the tracker (essentially exploiting the entire tracker

as a pre-shower detector). A multivariate approach is used to determine whether the

re-fitted track and cluster are compatible with an electron. If they are determined to

be compatible, a pf electron is formed, and the linked track and cluster are removed

from the block while the block is re-entered into the block pool (if non-empty).

For the remainder of the algorithm, tracks with relative uncertainty on pT larger

than the (measured) expected uncertainty on calorimeter clusters are ignored. A

block with a valid track linked to one or more calorimeter clusters, where the sum of

the energy of the clusters is compatible with the track momentum within uncertain-

ties, forms a pf charged hadron with the momentum determined by fitting the track

momentum and the calorimeter deposits. Any remaining tracks in the block give rise

to additional pf-charged hadrons with momentum and energy taken from the track,

with the mass assumed to be the pion mass. Blocks with a track linked to calorimeter

clusters, where the track momentum is significantly bigger than the calorimeter en-

ergy, are re-checked for muons using relaxed criteria and allowing tracker-only muons

(muons without fitted tracks in the muon chambers).

Blocks with a track linked to a cluster with higher energy than the track are treated

as either a neutral hadron or a pf photon. If the ∆E between the track and the sum

of the clusters is greater than the ECAL energy, then a pf photon is created with the

ECAL energy and a pf neutral hadron is created with the remaining ∆E − EECAL,

otherwise a pf photon is created with ∆E. In either case, the energy of these neutral
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particles is removed from the clusters and the block is re-entered into the pool (by

construction, the energies of the track and the cluster are now compatible, so it will

give rise to a pf-charged candidate).

Blocks containing only linked ECAL HCAL clusters are reconstructed as neutral

hadrons. Finally, unlinked ECAL and HCAL clusters are clustered into pf photons

and pf neutral hadrons, respectively. The energies of the particles are determined

solely by the calorimeter deposits.

The pf algorithm is very good at finding many of the particles in an event with

lots of energy and tracks, where a traditional detector-by-detector algorithm might

struggle. We have found that the algorithm has some trouble discriminating between

photons and neutral hadrons. For most cases, this is not a source of problems, but for

analysis specifically trying to tag H → γγ within an event, it is. We therefore use a

different reconstruction to find an reconstruct photons, based on a more ECAL-driven

approach.

4.2 Photons

A photon is a neutral electromagnetic object, which should deposit virtually all of its

energy in the ECAL. Since it has no charge, it will not bend in the magnetic field of

the detector and will not leave a track in the tracker. Since the ECAL crystals are

≈ 26 radiation lengths in EB and ≈ 22 radiation lengths in EE, the photon should

leave most or all of its energy in the ECAL, with very little energy reaching the HCAL.

Our signature for a photon is, therefore, a cluster of energy in the ECAL which is

not consistent with the trajectory of any track in the tracker and which has a small

energy in the HCAL towers behind the ECAL clusters. Every ECAL supercluster is

a photon candidate; further information about the shape of the cluster and energy

deposits around the supercluster is used to discriminate between prompt photons

produced by the collision and other objects or non-prompt photons.
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4.2.1 Photon Identification

The key sources of superclusters not originating from real prompt photons are energy

deposited directly by hadrons, clusters produced by hadrons decaying to photons (e.g.

π0 → γγ), and superclusters from electrons. In order to veto superclusters from these

three effects we perform photon identification (vetoing clusters not consistent with

SCs from photons), photon isolation (vetoing clusters surrounded by other energy),

and electron veto (vetoing superclusters more consistent with electrons). We find that

it is extremely difficult to reliably identify photons with low pT , so we only consider

clusters with energy consistent with pT > 20 GeV [55,56].

Photon identification is concerned with making sure that the supercluster orig-

inated from a real electromagnetic object. We check that the shape of the SC is

consistent with the deposits usually left by EM objects using a variables σiηiη, which

is an energy weighted width of the cluster in the η direction. While electrons or

converted photons may bend in the magnetic field and deposit energy in a relatively

broad range of φ, they usually produce a narrow cluster in η, so this variable is useful

for both electrons, photons, and converted photons. The variable is defined as:

σ2
iηiη ≡

∑
iwi(ηi − ηseed)2∑

i

wi
(4.1)

The index i runs over the ECAL crystals in a 5 × 5 matrix centered on the most

energetic crystal. Here the weights are given by

wi ≡ max

(
0, 4.7 + ln

(
Ei
E5×5

))
(4.2)

where ηi represents the pseudorapidity of the center of the ith crystal (in units of

crystals) while Ei represents its energy. ηseed represents the energy of the seeding

crystal of the supercluster and E5×5 is the energy of a 5 × 5 crystal matrix around

the seeding crystal. The value of 4.7 in the weight equation is set so the sum in

equation 4.1 only considers crystals with energy Ei/E5×5 > 0.9% = e−4.7. This helps

protect σiηiη from being sensitive to background energy. The logarithmic dependence
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on the energy makes the variable more sensitive to relatively small energy deposits on

the outside of the matrix, which improves its usefulness since photons tend to be very

sharply peaked. One can see, then that clusters with large σiηiη will tend to have wide

distributions in η, while those with smaller values will have narrower distributions.

The distributions of σiηiη for real photons and for clusters from other objects in

MC are shown in Figure 4.1 for clusters in the barrel and endcap. We see that the

real photons have characteristically wider showers (larger σiηiη ) in EE than in EB.

This behavior is expected, since the tracker material budget (figure 3.7) and the pres-

ence of the preshower detector mean there is considerably more material between

the interaction point and EE than between the interaction point and EB (about 5

radiation lengths compared to 1). One sees that clusters originating from a prompt,

high pT (pT > 25 GeV) photon have quite narrow distribution in σiηiη compared

to clusters originating from other effects. Here “fake” photons are composed of any-

thing that is not a prompt photon, so this includes hadronic deposits, electrons, and

photons from secondary sources. We can further identify clusters from e/γ compared
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Figure 4.1: Distribution of σiηiη in MC simulation for clusters matched to a generated
photon (red) and those not matched to a generated photon (black). The distributions
are for the EB (left) and EE (right). All distributions are normalized to unit area to
see shape differences.

to clusters of hadronic origin by looking at the relative amount of energy left in the

ECAL versus the portion of the HCAL directly behind the cluster. Since the ECAL

crystals are 25-26 radiation lengths deep, we expect most of the energy to be de-

posited in the ECAL and very little to punch through and end up in the HCAL. To

measure this, we use the ratio H/E, which is the energy in the HCAL tower at the
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same η-φ position as the most energetic crystal of the SC divided by the energy of

the supercluster. For real photons, we would expect this ratio to be small or zero.

The distributions for H/E for clusters from prompt photons and those not from

prompt photons are shown in Figure 4.2. One can see that both distribution have

a large peak at 0, where there is no energy in the HCAL tower behind the cluster.

The dip in the next bin is due to zero suppression of the HCAL readout (measured

energies below a certain value are treated as zero, so very small non-zero H/E values

are suppressed), but for most of the distribution with H/E > 0.05 we have an order

of magnitude more fake photons than real photons. These variables are effective at
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Figure 4.2: Distribution of H/E in MC simulation for clusters matched to a generated
photon (red) and those not matched to a generated photon (black). The distributions
are for the EB (left) and EE (right). All distributions are normalized to unit area to
see shape differences.

rejecting deposits in the ECAL not due to real photons, but they can do very little

if real photons are produced by a non-prompt (not originating from the primary in-

teraction) process. The hadronization process of a quark or gluon produced in the

event can occasionally produce a high energy π0 or η0, which can decay to high-energy

collimated photon pairs. The signal from these will look very similar or identical to a

prompt photon in σiηiη and H/E so these variables are not effective in rejecting these

processes without rejecting substantial numbers of real photons as well. To overcome

this, we exploit the fact that hadronization usually produces large numbers of ener-

getic hadrons that interact with the tracker, ECAL and HCAL, so large amounts of

energy deposited in the detector in an annulus around the cluster of interest would

indicate that the cluster is from a non-prompt photon of this sort. We call clusters
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that do not have large energy deposits around them isolated, while those that do are

non-isolated.

We use the candidate objects reconstructed by the particle flow algorithms to

calculate the isolation of the cluster. In all cases we consider only particles within

the isolation cone: ∆R ≡
√

∆η2 + ∆φ2 < 0.3, where ∆η ≡ |ηcluster− ηpf candidate| and

∆φ ≡ |φcluster − φpf candidate|. This is broken down into 3 distinct flavors of isolation:

Charged Hadron Isolation: We sum the energy of all pf charged candidates

consistent with the primary vertex within the isolation cone and with ∆R > 0.02.

This ∆R cut is to prevent rejecting the event if the main cluster is actually an

electron, which would leave a track in the tracker and thus be could be included as a

pf charged candidate (we will reject electrons with a separate step). By “consistent

with the primary vertex” we mean that the reconstructed position of the candidate’s

vertex satisfies |zcand − zPV | < 0.2 cm and |
√
x2
cand − x2

PV +
√
y2
cand − y2

PV | < 0.1 cm.

This requirement is to help reduce the effect of pileup, which is discussed further

below.

Neutral Hadron Isolation: We sum the energy of all pf neutral candidates in

the isolation cone.

pf Photon Isolation: We sum the energy of all pf photons within isolation

cone and with ∆η > 0.015 (for clusters in EB) or ∆R > 0.07 (for clusters in EE).

We ignore pf photons that are too close to our candidate photon to avoid the com-

plications of matching our candidate photon to a pf photon, which can be technically

challenging. Since this small central region adds no additional rejection power for

secondary photons, it is more straightfoward to ignore it.

These isolation variables perform well when the vast majority of energy comes

from the primary interaction, but when a substantial amount of energy is deposited

in the detector from particles produced by pileup vertices, their efficiency to select

real electrons or photons decreases. This effect is most pronounced for the neutral

hadron and photon isolations, which are made of particles that leave no tracks in the

tracker, since we cannot associate the pf-candidates to a vertex. The effect is smaller

for the charged hadron isolation, since we require the tracks to be consistent with the
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primary vertex, but since multiple vertices can occur within small ∆z regions along

the beamline we still get an effect from particles produced at secondary vertices near

the primary vertex. For charged hadrons, each additional interaction in the event

typically adds about 1% to the total energy sum.

To combat the influence of pileup on the isolation variables, we measure the aver-

age energy from pileup in the detector in the manner described in Section 4.3.1 and

in [57] and use this to correct the variables. Let ρ be the average energy from pileup

in the detector, we then correct each isolation by subtracting ρ × Aeff , where Aeff

is an |η| dependent effective area for each isolation. The values of Aeff are shown in

Figure 4.3. They are computed by measuring the average value of the isolation sum

as a function of ρ in bins of |η| and setting Aeff equal to the measured slope in each

bin.
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Figure 4.3: The effective area (Aeff ) for the pileup correction to the isolation cones
for the three different types of isolation as a function of |η|. These values come from
the measured slope of the isolation sum in a sample of MC photons and jets.

The effect of the correction can be seen in Figure 4.4. We observe that the value of

the isolation sums for the photon and neutral hadron isolation exhibit roughly linear
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trends as a function of the number of vertices, while the charged hadron isolation

exhibits a much smaller trend. After correction the trends are strongly suppressed,

indicating we have successfully eliminated the contribution to the sum from particles

produced by pileup vertices, while leaving the contribution from particles produced

by the primary vertex.
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Figure 4.4: The mean isolation sum for photons with pT > 50 GeV for pp→ γ + j
events as a function of the number of reconstructed vertices for the three different
types of isolation. The left plot is without the ρ-correction and the right plot has the
correction applied. Figure from [56].

Cutting on all of these variables together is effective at selecting real prompt

photons and vetoing fakes. We define a series of working points at different photon

selection efficiencies, maximizing the fake rejection efficiency at each point. Since

some of the variables have different characteristics in the EB and EE, we define the

cuts differently for the two regions. The values for the cuts are given in Tables 4.1

and 4.2 for the EB and EE, respectively.

The final element to the photon identification is to separate photons and electrons.

This can be done by searching for a track consistent with an electron pointing to the

cluster. There are two methods used to construct this veto: the pixel veto and the

conversion-safe electron veto.

The pixel veto looks for any pixel track seed (see Section 3.2.2.1) that is consistent
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ECAL Barrel Loose (90%) Medium (80%) Tight (70%)
σiηiη 0.012 0.011 0.011
H/E 0.05 0.05 0.05

charged hadron isolation 2.6 1.5 0.7
neutral hadron isolation 3.5 + 0.04pγT 1.0 + 0.04pγT 0.4 + 0.04pγT

pf photon isolation 1.3 + 0.005pγT 0.7 + 0.005pγT 0.5 + 0.005pγT

Table 4.1: Variable cuts for three different working points for the photon ID and
isolation in the Barrel. Variables are required to be less than the indicated value.
The value in parenthesis is the target photon selection efficiency for the working
point.

ECAL Endcap Loose (85%) Medium (75%) Tight (65%)
σiηiη 0.034 0.033 0.031
H/E 0.05 0.05 0.05

charged hadron isolation 2.3 1.2 0.5
neutral hadron isolation 2.9 + 0.04pγT 1.5 + 0.04pγT 1.5 + 0.04pγT

pf photon isolation - 1.0 + 0.005pγT 1.0 + 0.005pγT

Table 4.2: Variable cuts for three different working points for the photon ID and
isolation in the Endcap. Variables are required to be less than the indicated value.
The value in parenthesis is the target photon selection efficiency for the working point.

with a charged track arriving within a small window around the supercluster position.

This is a relatively harsh requirement, since it can veto real photons that happened to

be consistent with a soft track from another particle as well as photons that convert to

e+e− pairs within the pixel detector. This veto is found to be 94.4% (81.0%) efficient

to select photons in the EB (EE) and 98.6% (95.7%) efficient to reject electrons in

EB (EE).

The looser conversion-safe electron veto (CSEV) can be used to recover the pho-

tons rejected by the pixel veto at the expense of allowing more electrons into the

sample. This requires that there be no reconstructed track with a hit in the inner

layer of the pixel detector pointing to the ECAL cluster. By requiring the track have

a hit in the first layer of the pixels, we reduce the chances of vetoing a converted pho-

ton, which would typically convert somewhere within the tracker and thus not leave

hits in the early layers (hence the name “conversion-safe”). We would still reject a

photon that converts upon interaction with the beampipe (before the first layer of

the pixels), but there is little that can be done to recover these photons, since they
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appear to be electrons at every point in the detector. The CSEV has higher efficiency

to select photons: 99.1% (97.8%) in the EB (EE) but also a lower efficiency to reject

electrons: 94.7% (80.4%) in the EB (EE).

4.2.2 Photon Energy Regression

One of the most important components for any search involving the Higgs boson

decaying to two photons is a very accurate measurement of the photon energy. The

Higgs boson has a very small intrinsic width (< 10 MeV), so the width of the res-

onance observed in data will be entirely dominated by the mass resolution of the

resonance. When the correct identification of the primary vertex is not an issue, the

mass resolution of a pair of photons is proportional to the sum in quadrature of the

energy resolutions of the two photons. The CMS ECAL has excellent resolution on

its own (this was one of the design goals of the detector) and we find that using

additional techniques can substantially improve the performance.

To get the best possible photon energy measurement, we use a multivariate regres-

sion that uses multiple observables about the distribution of energy deposits within

the cluster and global information about the event to estimate the energy of the pho-

ton [56, 58, 59]. We use a boosted decision tree (BDT) trained with gradient descent

for regression implemented using the TMVA package to implement the MVA [60]. This

is trained using a sample of simulated photons with pT > 25 GeV, and the training

target is to predict Etrue, which is the energy of the photon at the generator level,

given Eraw, the energy of the supercluster, using the other input variables.

There are 38 (31) input variables to the regression for photons in EB (EE) that

encode a large amount of information about the cluster and event. The most phys-

ically interesting variables are listed in Table 4.3. In addition to these, there are 14

variables describing how the hits are layed out within the most energetic basic cluster

within the SC (called the seed cluster) and 2 variables that describe the position of

the center of the SC relative to the center of the seed cluster. In the barrel we also

add information about the local position of the seed cluster, so that the regression

can learn about local features of the EB. In the EE we add information about how



54

much of the energy was deposited in the preshower detector.

variable description
ESC the energy of the supercluster
η,φ the position of the cluster
R9 the energy in a 3 × 3 crystal matrix around the most energetic

crystal divided by the cluster energy
E5×5

ESC
the energy in a 5 × 5 crystal matrix around the most energetic
crystal divided by the cluster energy

η-width, φ-width the width of the cluster in the η and φ directions
NBC number of basic clusters making up the supercluster
H/E the energy in the HCAL behind the cluster (described in Sec-

tion 4.2.1)
ρ,NPV the energy density (section 4.3.1) and number of vertices in the

event
σiηiη,σiηiφ,σiφiφ the widths of the clusters (equation 4.1 and the extension to the

η − φ and φ− φ directions)

Table 4.3: The input variables to the photon energy regression.

We measure the performance of the regression with the default energy reconstruc-

tion in samples orthogonal to the training sample, and observe that it substantially

improves the energy response. Figure 4.5 shows the value of Ereco
Etrue

for photons in

simulated H → γγ events produced through vector boson fusion. We see a large peak

at 1 for both methods, but using the regression substantially reduces the fraction

of mis-measured photons on the tails of the distribution and increases the fraction

that are well reconstructed. Table 4.4 shows the fraction of “well measured photons”

(within 2% of the true energy) and the fraction of “poorly measured” (more than 6%

from the true energy) for the regression and non-regression energy in the EB and EE.

We see that an additional 8.1% (11.7%) of photons become “well measured” in the

EB (EE) by using the regression, which indicates that it is working well.

At its most fundamental level, a regression BDT works by finding small regions

of parameter space where all the events need very similar correction and using the

average in this region as its prediction. The accuracy of this depends on a number

of things, including the size of the training sample and how well the true response

can be estimated by a smooth function, but in the real world there is always some

spread of the training targets within a single classification group. The width of the
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Figure 4.5: Ereco
Etrue

for the regression energy (black) and the default energy (red) for
photons in the EB (left) and EE (right) in a MC sample of pp→ qqH events.

region regression non-regression
EB

0.98 < Ereco
Etrue

< 1.02 82.5% 74.4%
Ereco
Etrue

< 0.94 4.0% 6.1%

1.06 < Ereco
Etrue

0.9% 0.7%

EE
0.98 < Ereco

Etrue
< 1.02 59.4% 47.7%

Ereco
Etrue

< 0.94 7.6% 9.8%

1.06 < Ereco
Etrue

2.5% 6.0%

Table 4.4: The fraction of events with reconstructed energies close to the generator
values (top lines) and far from the generator values (bottom lines) in EB (top table)
and EE (bottom table).

spread of the correction values within a class of events can be taken as an estimate

of the uncertainty on the predicted value of the photon energy. When the boosting

algorithm is applied we take the prediction of the uncertainty on the energy as the

weighted average of the uncertainties from each tree in the final set. This gives us a

per-photon estimate of the uncertainty on the error σE.

We can investigate how well this σE variable corresponds to the true error of the

prediction in MC by looking at the difference between the regression energy and the

true energy in units of σE. Figure 4.6 shows the distribution of Ereco−Etrue
σE

for photons

in the EB and EE in the same VBF H → γγ sample used in Figure 4.5. We also

include a fit of the distribution with a convolution of a crystal ball function and a

Gaussian to model the resolution. We find that there is an offset in the mean of

the fit, indicating that our energy estimate is not perfect, but that the width of the
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central part of the distribution is 0.99± 0.02 in EB and 1.12± 0.05 in EE, indicating

that our estimate of the uncertainty is doing a good job of estimating the actual error.
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Figure 4.6: The error on the regression energy in units of σE in the EB (left) and
EE (right) for photons in a MC sample of pp → qqH events. The fit is a Crystal
Ball function (a Gaussian core with a power law low end tail [61]) convoluted with a
Gaussian and the fit has a core width of 0.99± 0.02 for the EB fit and 1.12± 0.05 for
the EE fit.

This estimate of the per-photon error is extremely useful for identifying high

quality photons. One feature that we make use of in this analysis is to allow the

selection of high resolution photons that will have better mass resolution for any

resonance, such as the H → γγ. An example of this is shown in Figure 5.9, which

shows the shape of the SM Higgs boson peak for mH = 125 GeV in a category

selecting photons with good resolution (small σE/E) and another category selecting

photons with poor resolution (large σE/E). The details will be discussed in depth

later, but the conclusion is that the width of the Higgs boson peak is much smaller

with high resolution photons.

Another benefit of this resolution estimate σE/E is that it can help reject fake

photons using additional information that isn’t available to the cut-based photon ID.

When the regression is trained, it only knows about real photons, so for every object

it sees in the data, it tries to identify the region of parameter space for real photons

that look most like the object. If the object is not a real prompt photon but a jet

with a secondary photon or a neutral hadron faking a photon, it will generally not

look like a real photon and be marginalized by the regression and placed in a class
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with large variance and high σE. Figure 4.7 shows the σE/E distribution for MC

events passing a basic H → γγ selection with a pair of photons with invariant mass

110 < mγγ < 180. The MC sample is made up of prompt-prompt, prompt-fake, and

fake-fake components from a variety of different processes. The distributions shown

are per-photon and are separated into “real” photons that match a generate level

prompt photons, and “fake” photons that do not (photons matching a generator level

electron are vetoed in this distribution).
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(bottom) for events with two photons with mass in the range 110 < mγγ < 180 GeV.
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We can see from Figure 4.7 that real photons preferentially occupy small values

of σE/E (with the scale being different in the EB and EE) while fake photons typi-

cally have a much more uniform distribution. Figure 4.8 shows the percentage of all

reconstructed photons that are real prompt photons as a function of σE/E. We can

see that the ratio starts near 100% in both EB and EE and falls off slowly as the

value increases. What this suggests is that one can enhance the proportion of real

photons even in a sample already passing ID and Isolation requirements by cutting

in this variable.
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(left) and EE (right) for events with two photons with a mass in the range 110 <
mγγ < 180 GeV.
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In Figure 4.9 we can see the effect of cutting in the variable σE/E. The left plot

shows the purity of the sample left after cutting on σE/E, which is defined as the

fraction of the sample after the cut that are real photons. The right plot shows the

efficiency of the cut, which is defined as the fraction of all real photons selected by

cutting at the indicated value of σE/E. The value of the efficiency does not go to one

in the plot because there are some photons with σE/E > 0.04 in both EB and EE.
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Figure 4.9: Purity (left) and Efficiency (right) of the photon sample selecting photons
with σE/E below the value on the X-axis for photons in the EB (black) and EE (red).
For the definition of purity and efficiency see text.

While this variable has a lot of nice properties in simulation, using it in practice is

somewhat more complicated. Ideally one might want to use the shape from Figure 4.8

to assign a likelihood to each photon indicating whether it is real, which could be
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used in a multi-dimensional fit to extract a Higgs boson signal. Unfortunately, more

sophisticated techniques are stymied by the level of data/MC agreement for this

variable. Figure 4.10 shows a comparison of the σE/E variable for photons with an

analysis selection applied and an invariant mass requirement of 110 < mγγ < 150. It

is split into 4 regions in the |η| of the photon. We see that the MC does not describe

well the shape of the peak at very low σE/E in the barrel (top two plots), but does a

reasonable job describing the tail of the distribution. In the endcaps (bottom plots)

it generally performs better, though there are some regions were the shape is not

described well.

Figure 4.10: Comparison of σE/E in data (points) and MC (fill) for photons in
0.00 < |η| < 1.00 (top left), 1.00 < |η| < 1.44 (top right), 1.56 < |η| < 2.00
(bottom left), and 2.00 < |η| < 2.50 (bottom right) in events with two photons with
pT > 25 GeV passing the ID and Isolation with 110 < mγγ < 150. The ratio plots
are Data/MC in the range [0, 2].

Because the level of agreement is poor on the edge of the distribution, we cut on the

variable to select photons well away from the region of disagreement. If we choose the

value of σE/E < 0.015 in EB and σE/E < 0.20, which has roughly 80% efficiency for
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real photons in each region, we can compare the total efficiency for all reconstructed

photon objects using this cut in data versus MC. Table 4.5 shows this comparison in

the four regions. We can see that the efficiencies are relatively similar in all regions

despite the sometimes substantial difference in the shapes. In the analysis we apply

an |η|-dependent scale factor to the MC to correct for this efficiency difference, and

apply the uncertainties on the efficiency as a systematic error on the event yield in

MC.

EB 110 < mγγ < 150 GeV 150 < mγγ < 180 GeV
Data MC Data MC

0.00 < |η| < 1.00 81.3%± 0.2% 79.7%± 0.2% 84.6%± 0.3% 82.7%± 0.4%
1.00 < |η| < 1.44 57.5%± 0.2% 54.8%± 0.4% 66.3%± 0.5% 62.5%± 0.4%

EE 110 < mγγ < 150 GeV 150 < mγγ < 180 GeV
Data MC Data MC

1.56 < |η| < 2.00 58.2%± 0.3% 58.9%± 0.4% 67.1%± 0.6% 64.0%± 0.8%
2.00 < |η| < 2.50 75.3%± 0.3% 75.9%± 0.4% 79.5%± 0.6% 78.1%± 0.8%

Table 4.5: Fraction of events with σE/E < 0.015 (σE/E < 0.020) in EB (EE) in data
and MC for events with two photons with pT > 25 GeV passing the ID and Isolation
in two different invariant mass regions.

4.3 Jets

The goal of the jet reconstruction is to capture all of the particles produced by

the hadronization of quarks and gluons from the interaction. Hadrons produced in

this way may not have momenta perfectly parallel to the momentum of the initially

produced parton, so we must sum over a cone surrounding the initial direction to

capture all of the produced particles. We use the collection of all pf particles produced

by the particle flow algorithm (see Section 4.1). We cluster these particles using the

anti-kT algorithm [62] with a radius R=0.5 in ∆η-∆φ. We use the implementation of

the anti-kT algorithm provided in the FastJet package [63,64]. We label each set of

clustered particles a “jet” with a 4-vector equal to the sum of the 4-vectors of all the

constituent (clustered) pf-candidates (all treated as massless for the summation).
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4.3.1 Measuring Pileup Energy

A variation of the jet reconstruction procedure also provides a method to estimate the

average energy density (ρ) coming from particles produced by pileup vertices in the

event. To accomplish this, we cluster jets using the kT clustering algorithm [65, 66],

which has been shown to have a tendency to organize a uniform background of soft

particles into structures with area πR2, where R is the radius parameter given to the

clustering algorithm [57]. If the algorithm clusters a jet over an area which contains

only a uniform background of soft particles from pileup, then we can recover the

average energy density of these soft particles as ρ = pjetT /(πR2).

Since we cannot easily check for a given jet whether it is composed of only soft

particles from pileup, we use the kT algorithm to cluster all jets in the event with

R = 0.6 and compute the median value of rho:

ρ = median

(
pjet iT

π(0.6)2

)
(4.3)

The relatively large value of R = 0.6 is chosen to ensure that the jet areas encompass

multiple soft particles so that the calculation is not biased by the large amount of

empty area within the jet. The median in equation 4.3 is a good estimator of ρ,

since we find that the number in all cases that the number of jets clustered by this

algorithm from pileup and detector noise is much greater than the number of jets

from the hard collision.

4.3.2 Jet Corrections

The anti-kT algorithm run on pf-candidate particles produces a good estimate of the

energy of the hadronized parton, and we can improve upon this estimate by apply-

ing corrections [67–69]. These corrections are grouped into three types applied in

sequence: offset correction, MC corrections, relative correction, and absolute correc-

tion. These correction are a function of the jet pT and η as well as global information

about the event.
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The offset correction is applied first and is designed to correct for the inclusion of

particles produced by pileup vertices within the clustered jet area. In Section 4.3.1 we

detailed how the average energy from pileup is computed to get the energy density ρ;

the other ingredient is to measure the jet area A. Using the algorithm radius R = 0.5

to get the jet area tends to overestimate the size of the jet, since the algorithm need

not cluster every piece of energy within the cone. To get a better estimate of the real

size of the jet, a large number of extremely soft 4-vectors are added into the event (so

soft that they do not change any of the jet properties) and the jet clustering algorithm

is re-run. The jet area is taken to be the η−φ extent of of the soft 4-vectors that are

clustered with the jet. The corrected jet pT is then computed:

pL1 corr.
T = prawT − ρβ(η)A (4.4)

where β(η) is a pseudorapidity dependent correction for non-uniformity of the energy

response. The size of the correction as a function of η and the number of vertices is

shown in Figure 4.11.

The MC calibration is applied next, which is derived in simulation to correct jets

to have the same pT as the matched generated jet. The corrections are derived in

simulated QCD events produced with PYTHIA6.4.22 Tune Z2 [13] and simulated in

the CMS detector with GEANT4 [19]. Jets are reconstructed in the simulated events,

have the pileup correction applied, and are then spatially matched with ∆R < 0.25 to

a MC particle jet. The average response < f >=
〈
precoT

pgenT

〉
is computed in bins of the

reconstructed jet η and pT . The MC calibration correction applied in data is then

simply 1
<f>

for the η − pT bin corresponding to the jet’s kinematics. The correction

factor derived in this way is shown in Figure 4.12. The correction factor is typically

> 1, indicating that the reconstructed jets tend to underestimate the true energy (as

is expected if particles are missed by the reconstruction or clustering).

Finally, “relative” and “absolute” corrections are applied to ensure that the jet

energy scale and response is the same throughout the whole detector and at all jet

pT scales. The “relative” correction ensures that the response of jets in the forward
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Figure 4.11: The average magnitude of the pileup correction pT (Offset) = ρA as a
function of η for simulation (green) and data (black). 4 different scenarios of the
number of primary vertices (NPV ) in the event are shown, to illustrate the scaling
with pileup. Plot from [70]

region is the same as that in the central region by applying an η-dependent correction.

The “absolute” energy scale ensures that the low pT response of the jets is the same

as the high pT response by applying a pT -dependent correction.

4.3.3 Identifying bottom quark decays

The identification of jets resulting from the decays of bottom quarks is quite impor-

tant for the experiment, since many physics processes have large coupling to b-quarks,

including the top quark, the Higgs boson, and many beyond-the-standard-model pro-
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Figure 4.12: The average value of the MC calibration correction as a function of η for
3 different jet pT values. One sees that the correction factor gets smaller (the initial
pT estimate is better) for higher pT jets. Plot from [70]

cesses. While jets from b quarks look similar to jets from lighter quarks and gluons in

many respects, there are certain properties of the particle and the detector that make

it possible to discriminate with reasonable efficiency. The bottom has a relatively

long lifetime, which allows it to move several millimeters from the interaction before

decaying, mostly through b → cW ∗, which results in a final state with either three

quarks or one quark, one charged lepton, and a neutrino.

The relatively light bottom mass compared to a typical jet pT measured by CMS

means that the visible decay products of the b are mostly collimated and reconstructed

as a single jet by the pf algorithm. The b-jet identification uses the displaced decay

of the b into 2-3 charged particles, looking within each reconstructed jet for an in-

tersection of tracks displaced from the primary vertex by an amount consistent with

the lifetime of a b quark with the energy of the reconstructed jet. In practice the

algorithm uses a number of variables related to the quality of the tracks and their

level of consistency with a secondary (displaced) vertex within the jet to create a like-

lihood ratio. The full details are given in [71], but the result is called the combined
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secondary vertex (CSV) discriminator, which is a score between 0 (not-b-like) and 1

(b-like) for each jet.

Figure 4.13 shows the distribution of CSV for a sample of jets in data and MC.

One sees that the fraction of b-quark jets is highly enriched at large values of the

discriminator [72]. The discrimination is, however, not perfect, so we define a series

of working points based on the mistag rate (the probability for a non-b-jet to have

a CSV score higher than the discriminator). These are labeled CSVL (10% mistag

rate), CSVM(1% mistag rate), and CSVT(0.1% mistag rate). Table 4.6 shows the

cut values along for these working points as well as the measured efficiency to tag a

b-quark for that working point (e.g. 18% of real b-quarks will be missed by the CSVL

working point).
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Figure 4.13: The distribution of the CSV discriminator for bottom quark jets. The
data is selected in a sample with many high pT jets and the score for each jet is
plotted. The stack histogram is the distribution from MC simulation for the same
selection split by the type of jet determined by MC truth. Plot from [72].

At higher pT , it becomes more difficult to identify b-quarks. The decay products
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Working Point Score Average Mistag Rate Average b-jet efficiency
CSVL 0.244 9.9% 82%
CSVM 0.679 1.1% 68%
CSVT 0.898 0.2% 52%

Table 4.6: The cut values

become increasingly collinear, making it difficult to separate the hit patterns into two

or three distinct tracks and the tracks become straighter, making it more difficult to

accurately measure pT and constrain the track parameters. Figure 4.14 shows the

mistag probability of the medium working point as a function of the jet pT . One

sees that it is almost 4 times as likely to identify a light jet as a b-quark at 900 GeV

than at 50 GeV. The difference in mistag rate between simulation and data reflects

the slight differences between the tracks in simulation and in data.

 [GeV/c]
T

p
200 400 600 800 1000

M
is

id
en

tif
ic

at
io

n 
pr

ob
ab

ili
ty

0

0.01

0.02

0.03

0.04

0.05

CSVM tagger
Data
MC

 = 8 TeV s at -1CMS Preliminary, 19.8 fb

 [GeV/c]
T

p
200 400 600 800 1000

D
at

a 
/ M

C
 m

is
id

. S
F

0.4

0.6

0.8

1

1.2

1.4

1.6

CSVM tagger
Data / MC misid. SF

 syst⊕ stat ±

 = 8 TeV s at -1CMS Preliminary, 19.8 fb
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4.4 Missing Energy

If we could perfectly detect and measure all of the decay products from only the main

interaction, we would expect to find that the vectoral sum of their momenta in the

plane transverse to the beamline would be 0, since the incident protons have momen-

tum only in the ẑ direction. If we continue the paradigm of perfect measurement, but

take into account the existence of particles that don’t interact in our detector (e.g.

neutrinos), we expect to see some events where the sum of the transverse momentum

is non-zero indicating the presence of momentum carried away by the invisible par-

ticle. If we imagine an event where a neutrino is produced and escapes the detector

and where ~piT are the transverse momenta of the visible objects in the event, then we

expect

~pneutrinoT = −
∑
i

~piT (4.5)

We call this the missing transverse energy (MET, also denoted ~EM
T or EM

T ≡ | ~EM
T |).

Reconstructing the MET in a real event follows equation 4.5. While we don’t have

access to the ~pT of every particle produced, we can get a good estimate by using the

pf-candidates described in Section 4.1. We then compute

~EM
T = −

∑
i

~piT (4.6)

where the index i runs over all pf-candidates [73]. To the extent that the pf algorithm

has reconstructed all particles in the event, this reproduces equation 4.5.

Just as jets are corrected to provide better performance, so too are corrections

applied to the EM
T [74]. The first step is to correct for pileup. There should be little

true EM
T (neutrinos) from pileup collisions, but imperfect energy measurement of the

pf-candidates can create fake EM
T . We find that most of the mis-measurement occurs

for neutral particles, since they get no help from the tracker, so we first measure the

imbalance of charged pf candidates associated with vertices other than the primary

vertex
(
~EM
T

)
charged

= −
∑

i∈ch. pf−cand.
~piT . We take this as a good estimate of the true
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charged component of EM
T from pileup and, since the pileup should have little total

EM
T , we set

(
~EM
T

)true
neutral

= −
(
~EM
T

)
charged

. We measure in Monte Carlo as scale fac-

tor R(
(
EM
T

)
charged

) such that

〈(
~EM
T

)true
neutral

〉
= R(

(
EM
T

)
charged

)

〈(
~EM
T

)measured
neutral

〉
.

From this, we derive the PU-corrected EM
T :

(
EM
T

)PU−corr
= EM

T + (1−R(
(
EM
T

)
charged

))
∑

i∈ch. pf−cand.

~piT (4.7)

The second correction takes advantage of the derived jet energy corrections (sec-

tion 4.3.2). We partition the pf-candidate collection based on whether the candidate

was clustered into the jet collection ({clustered}) or not ({unclustered}). We can

then write

EM
T = −

∑
i∈pf−cand.

~piT = −
∑

i∈{clustered}

~piT −
∑

i∈{unclustered}

~piT

We can then replace
∑

i∈{clustered}
~piT with

∑
jets

~pjetT , where ~pjetT has all the jet corrections

applied. We can then write the fully corrected EM
T variable as

(
EM
T

)corr
= −

∑
i∈{unclustered}

~piT −
∑
jets

~pjetT +(1−R(
(
EM
T

)
charged

))
∑

i∈ch. pf−cand.

~piT (4.8)

The performance of the EM
T is measured in events with a Z boson decaying in the

channels Z → e+e− and Z → µ+µ− and in events with a high pT photon and a jet.

Figure 4.15 shows good agreement for the EM
T value between data and simulation over

a large range and a variety of processes. The resolution is measured by treating the

transverse momentum (~qT ) of the dilepton pair or the photon as perfectly measured

(which is a fair approximation given the relative resolutions between jets, EM
T and

e/µ/γ) and measuring the vectoral sum pT of the jets (~u) and the EM
T in the direction



70

parallel and perpendicular to the Z or γ.

u‖ +
(
EM
T

)
‖ = qT + ∆‖

u⊥ +
(
EM
T

)
⊥ = ∆⊥

From this one can derive an event-by-event uncertainty on the EM
T . The average

value of this uncertainty as a function of the total energy of the event (the sum of

the ET of all pf-candidates) is shown in Figure 4.16. One sees that the resolution is

consistent in all the MC samples and consistent with the value measured in data. The

somewhat poor agreement between in the EM
T variable between data and MC in the

photon plus jet sample reflects the difficulty of effectively simulating all of the QCD

processes that produce prompt, secondary, or fake photons or in their final states.

This is one of the reasons that simulated QCD diphotons events are not used for the

background prediction in the SM Higgs to two photon searches, or in this analysis.
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Figure 4.15: The distribution of EM
T for events with a high pT e+e− pair (left) or

a high pT µ+µ− pair (middle) consistent with the Z mass (60 < mll < 120 GeV)
and events with a high pT photon in the EB (right). The colored stack plots are
the distributions of EM

T in the simulation of the various background processes that
populate the selection criteria. Plot from [74].
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Figure 4.16: The resolution of the EM
T in the x (left) and y (right) directions as a

function of the sum of the energy of all pf candidates in the event. The ratios at the
bottom show that the measured resolution is consistent in simulation and data. Plot
from [74].

4.5 The CMS Trigger

The collisions at the LHC predominantly (by several orders of magnitude) produce

QCD interactions, which are not the main focus of the CMS physics program. In

order to avoid saving the data from all of these collisions, which would amount to

> 1 terabyte/s of data, a trigger system is used to select physically interesting events

in real time based on their contents [75]. The CMS trigger system is divided into two

components: the Level 1 (L1) trigger and the high level trigger (HLT). The L1 is a

hardware based system that processes every collisions observed in the detector and

uses coarse criteria to select potentially interesting events. The HLT is a software

based trigger running on 13000 CPU cores that runs on each event selected by the

L1 and is able to do a more sophisticated reconstruction.

When a collision occurs in CMS, the output from the detectors is held in a buffer

and sent to the L1 trigger system. This system must decide within 4 µs whether

to reject the event, in which case the data is flushed from the buffer, or whether



72

to accept the event, in which case the data is sent to the HLT [76]. The L1 uses

only information from the calorimeters and muon chambers (not the tracker) and is

divided into two components: the global calorimeter trigger (GCT) and the global

muon trigger (GMT). The GCT takes information from the ECAL and HCAL and

reconstructs jets and e/γ objects (it cannot distinguish between electrons and photons

because of the lack of track information) as well as global information about the event

(the total energy, the scalar sum of the jet momenta, and the missing energy). The

GMT takes the information from the muon chambers and looks for muon candidates

(again using only muon chamber information).

An L1 trigger is a request for a certain number of L1 objects or L1 global sums

to be above a given threshold. For instance, a L1 trigger could request the presence

of two e/γ objects with pT > 10 GeV, or be asymmetric and require one above

13 GeV and another above 7 GeV. Since the L1 has limited time and information

with which to reconstruct objects, the energy of the object reconstructed at L1 will

only be an estimate of the true energy of the object, and there will be some resolution

that characterizes the accuracy of this reconstruction. Since we cut on the L1 object

pT and accept any object with pT greater than the threshold, this resolution creates

a turn-on curve, which says how likely an object of a given true pT is to pass the

selection.

Figure 4.17 shows the turn-on curve for selecting an e/γ object at L1 with pT >

20 GeV. One can see that an object with a true pT of 20 GeV has only ≈ 30%

chance (efficiency) of being selected by this trigger, indicating that there is an inherent

underestimation of the energy of e/γ at L1. One also sees that there is a small < 20%

efficiency to select objects that had a true pT < 20 GeV and a 5% (12.5%) inefficiency

to reject objects in EB (EE) that had pT = 25 GeV. When we discuss triggers,

we often consider the plateau efficiency, which is the region where the efficiency is

no longer changing quickly as a function of pT and is approaching some constant

maximum value (in the case of Figure 4.17, this is at about 30 GeV and is approaching

1). In this case we say that the trigger is nearly fully efficient to select electrons with

pT > 30 GeV and the inefficiency is included as a scale factor and systematic on the
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MC yields.

Figure 4.17: The efficiency of a single e/γ object with pT > 20 GeV with the L1
trigger as a function of the true pT of electron. Plot from [77].

The L1 trigger takes in the full collision rate of 20 MHz of events and is configured

to select the most interesting 100 kHz of events. These 100 kHz of events are passed to

the HLT, which is able to do a more sophisticated reconstruction and analysis of the

events. Given the sometimes large resolution between the L1 and the true energy of

the particle, the goal of the L1 is usually to provide the loosest possible triggers that

fit within the 100 kHz bandwidth allocation (this limit is set by technical limitations

of the system).
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Since our final state contains a H → γγ decay, we are interested in final states

containing two photons. We ask for any event that passed the L1 with at least one

e/γ candidate with pT > 22 GeV (this is the loosest requirement available in the

L1). The HLT then performs a reconstruction similar to the version described above,

but with two caveats. The first is that the HLT must decide whether to accept an

event within ≈ 200 ms on average and the second is that it does not have access to

all of the calibration information about the run. The first caveat means that certain

very CPU intensive activities (like the particle flow reconstruction or certain aspects

of the tracking) cannot be run on most events. The second means that there will still

be resolution effects between the HLT and the true object energies, despite the much

more accurate reconstruction possible at the HLT.

For photons, the effects of these caveats are not extreme. The energy reconstruc-

tion of the photon does not need the particle flow information, but it is missing some

corrections that are derived offline, and it cannot use the regression. The lack of

particle flow reconstruction does, however, mean that the isolation must be done

quite differently than described in Section 4.2.1. Instead of the pf isolation, the HLT

uses detector-based isolation, which looks at energy deposited in the calorimeters and

tracker around the direction of the photon. The full details of the HLT-based isolation

can be found in [76, 78], but the essence is that the energy in the ECAL and HCAL

in an annulus around the photon plus the energy of all tracks in a cone around the

photon are summed, and the photon is rejected if this sum is above some threshold.

This is conceptually similar to the pf-based isolation, and indeed was used as the

offline isolation criteria in many early analyses from CMS [79].

Figure 4.18 shows the turn-on curve for a single photon with pT > 36 GeV at

HLT. The resolution coming from the inaccuracy in the energy reconstruction can be

seen in the width of the turn-on region, and we see that the trigger represented by the

black curve is > 95% efficient for photons with offline pT > 40 GeV. The different

colors represent three different photon identification schemes. The red represents

the isolation discussed above, where the isolation sum is required to be below some

threshold. We can see that this scheme has an inconsistent plateau efficiency, which
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reflects the mismatch of this detector-based scheme when compared to the pf-based

isolation used offline. The blue curve represents an alternate scheme that has no cut

on the ID or isolation variables, but only requires the photon to have R9 > 0.85.

This produces a smooth plateau, but does not reach 100% efficiency since not all real

offline photons have R9 > 0.85. The black curve represents the logical OR of the two

requirements, accepting photons if they either pass the ID and isolation requirements

or pass the R9 cut. This produces the black turn-on curve, which has a consistent

plateau with an efficiency near 100%. This is the trigger that is used for this analysis.

Figure 4.18: The turn-on curve for an HLT photon with pT > 36 GeV as a function
of the offline reconstructed pT of the photon. The three different colors represent
three different ID schemes that are described in the text. Plot from [78]
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Chapter 5

Search for Supersymmetry in
Events with a Higgs Boson
Decaying to Two Photons

The discovery of the Higgs boson by the CMS and ATLAS experiments [80, 81] pro-

vides new channels to search for beyond the standard model (BSM) physics at the

LHC. The production modes of the Higgs boson are fully predicted in the standard

model, so any evidence of anomalous production is prima facia evidence of BSM

physics. In particular, some models of supersymmetry predict that the Higgs boson

should be produced in the decay chain of pair produced supersymmetric particles.

To search for phenomena of this type, we use the razor variables (described in sec-

tion 5.4) to define kinematic regions with small expected contributions from the SM

Higgs boson and from SM processes that produce two photons, and search for excess

of events compared to predicted yields.

We look for events with a resonant di-photon pair consistent with H → γγ. This

decay process has a small branching ratio (0.23% for mH = 125 GeV), making it

rare (we expect only ≈ 1000 such events in 19.8 fb−1 of data taken at
√
s = 8

TeV) and has non-trivial background from continuum di-photon production, making

finding these events challenging. This challenge is compensated by the excellent

photon resolution achieved by CMS thanks to the ECAL, ensuring that the H → γγ

decay shows up as a narrow resonance in the mγγ spectrum on top of smoothly

falling background [59]. This allows the background to be determined by a fit to the
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mγγ distribution, obviating the need for modeling of the complicated SM processes

that comprise the background. These features are why H → γγ was one of the first

channels to independently achieve 5σ significance for the presence of the Higgs boson

in 2012. We use all of these characteristics to our advantage in this search for BSM

production of the Higgs boson.

5.1 Blinding Procedure

The analysis is performed blindly, i.e. with all selection requirements determined

without using the experimental data in regions where the search is looking for sig-

nals of new physics. Specifically this is achieved by not looking at any data with

mγγ consistent with the mass of the Higgs boson (120 < mγγ < 131 GeV ) until

all background studies and estimations were completed and fully documented and

reviewed. The analysis is tuned using data in the mγγ sidebands (mγγ 6∈ [120, 131]),

MC simulation of the SM Higgs boson and MC simulation of certain benchmark

SUSY signals that produce Higgs bosons as part of the decay chain of a supersym-

metric particle. The blinded analysis is presented in chapter 5 and the unblinded

results are discussed in chapter 6.

5.2 Datasets and Triggers

The analysis uses data collected by the CMS experiment in 2012. The data collected

during that run is split into 4 eras based on computing needs and LHC machine

schedules: Run2012A, Run2012B, Run2012C, and Run2012D. The LHC evolved over

the course of 2012, providing periods of higher luminosity and pileup as the year

progressed. As a consequence, the era toward the end of 2012 (Run2012D) contained

periods of much higher pileup and luminosity than did the era at the beginning of

the year (Run2012A). These difference are summarized in Table 5.1; one can see that

Run2012D contains substantially more data and higher pileup than does Run2012A.
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Era
∫
L (fb−1) Average pileup

Run2012A 0.5 17
Run2012B 4.8 19
Run2012C 7.1 20
Run2012D 7.3 21

Table 5.1: Datasets used in analysis

We collect the data using a trigger that selects two photons. Both photons are

required to have H/E < 0.10 and either R9 > 0.85 or all of:

� σiηiη < 0.014(0.035) EB (EE)

� ECAL isolation < 5 GeV

� HCAL isolation < 5 GeV

H/E is the energy in the HCAL behind the ECAL cluster divided by the energy

in the ECAL; R9 is the energy in a 3 × 3 matrix around the highest energy crystal

divided by the energy of the supercluster, and σiηiη is the log-energy weighted width

in the η direction of the cluster (all discussed in Section 4.2.1). The ECAL and HCAL

isolation are detector level-isolation variables described in Section 4.5. The highest

pT photon is required to have pT > 36 GeV and the next highest pT photon must

have pT > 22 GeV. This trigger was used for the discovery of the standard model

Higgs boson in 2012 [59] and is designed to be extremely loose: selecting many objects

that are not photons in order to have a high efficiency to select events with two real

photons.

5.2.1 SM Higgs Boson Monte Carlo Samples

The analysis relies on using data to form background predictions wherever possible,

but the production of the Standard Model Higgs boson cannot be estimated in this

way. Since this search looks for BSM production of the Higgs bosons, its standard

model production is a background that must be accounted for. To this end, we use

MC simulation as discussed in Section 2.1.2 and summarized in Table 2.4.
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5.3 Event Selection

The selection requires the presence of two reconstructed high pT photons, since the

final state should contain a Higgs boson decaying to two photons. The pT thresholds

are the lowest possible values that keep us in the plateau of the trigger efficiency. The

razor variables used for this search require the existence of at least one additional

object in the event, so we will require the presence of at least one jet, which can be

hadrons from the production of a quark or gluon, a lepton, or a photon as described

in Section 4.3.

5.3.1 Photon Selection

We preselect events with at least two photons above 25 GeV and with at least one

above 40 GeV (vetoing any photon that falls in the psuedorapidity range 1.44 < |η| <

1.56, to avoid mismeasurement from the EB-EE transition region) passing the loose

photon ID (σiηiη and H/E requirements in tables 4.1 and 4.2). For each event in

the preselected sample, we select the pair with the highest
∑
pT of the photons with

invariant mass 100 < mγγ , satisfying the 40/25 pT requirements, the |η| veto and the

loose photon ID. In ≈ 99% of selected events, there are only two photons satisfying

the ID with sufficiently high pT , so this is simply a selection, but in the cases where

there are 3 or more photons in the event, it provides a procedure to select one pair

of photons. We call the selected pair the candidate pair.

For each preselected event, we veto the event if either photon in the event fails

the loose photon isolation (pf-isolation requirements in tables 4.1 and 4.2) or if either

photon falls in the EE (|η| > 1.5). This method for selecting the photon-pairs is

driven by the design of our analysis. In Section 5.4 we will discuss how the objects in

the event are divided into hemispheres for the construction of the razor variables; in

this procedure we will treat the two photons selected as a single massive four vector

representing the di-photon system. In the case where these photons are coming from

the decay of a single massive particle, the decay products should be forced into a single



81

hemisphere to get the correct peaking behavior from the MR variable. In the case

where the two photons come from continuum processes, this treatment will continue

to produce the smoothly falling background we expect from processes without a heavy

scale in the event.

To take advantage of this key difference between peaking background and con-

tinuum background, it is very important that in events with a Higgs boson we cor-

rectly identify the photons. We prefer to reject an event where the wrong photons

are selected rather than keep it with incorrectly determined kinematics. In ≈ 29% of

standard model H → γγ events, one of the two photons falls into EE (see Figure 5.1).

If we didn’t consider the endcaps, we could easily have events in which one photon

from the Higgs boson ends up in EE and we associate an unrelated real or fake photon

with the photon from the Higgs boson that went in EB. This would create an odd

situation where the kinematics of the di-photon system looks like background, but

the kinematics of the rest of the event is recoiling against the massive Higgs boson.

Figure 5.1: The distribution of the η (left) of the highest pT (black) and second-highest
pT (red) photons in the event and the distribution of max(ηhighest, ηsecond−highest)
(right) for an SMS with χ2χ2 → HHχ0χ0 → bbγγχ0χ0 with mχ2 = 130 GeV and
mχ0 = 1 GeV. From the right plot, one calculates that ≈ 29% of events have at least
one photon falling in the EE.

We have an analogous concern for the photon isolation: we specifically look for

events with photons in high jet multiplicity environments in this analysis, so there are

inevitably cases where a photon and a jet are in near vicinity or overlap. If we applied

the photon isolation before looking for photons, we would end up in exactly the same

situation as we considered for the inclusion of the endcap, the isolation would reject
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the photon because of the overlap with the jet, and we could end up with confused

kinematics.

We illustrate this in MC simulation of pp → tt̄H → γγ and χ2χ2 → HHχ0χ0 →

bbγγχ0χ0 events. We select pairs of photons in two ways: first, the method described

above; and second selecting the highest
∑
pT photons falling in EB passing loose ID

and isolation. We find that these two methods have very similar selection efficiencies

for ttH (31.5% for our method and 33.1% for the other) and the SUSY model (56.7%

and 57.7%, respectively). We then compare the invariant mass distributions for the

photon pairs selected by these methods in Figure 5.2. There are substantially fewer

events with incorrect mγγ (not near 125 GeV) with the selection used in the analysis.

The overall efficiency is very similar between the two methods, since in the large

majority of events there are only two photons, so there is no net difference between

the events.
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Figure 5.2: The invariant mass of the photon pairs selected using the method used
in this analysis (black) and an alternate selection where the ID, isolation, and EB
cut occur before pair selection (red) for pp → ttH MC (left) and χ2χ2 → HHχ0χ0

MC (right). The ratios are the efficiency for the “regular” selection divided by the
efficiency of the selection used in this analysis.

The photon energy is corrected using the energy regression described in Sec-

tion 4.2.2. As described, this regression gives not only an excellent estimation of

the true energy of the photon, but also a per photon uncertainty on that energy: σE.

We will use this value to group events based on the relative resolution σE/E of the

photons in the event, as described in Section 5.3.4.

Finally, the event is vetoed if the pT of the di-photon system (denoted pγγT ) is
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below 20 GeV. We select this because we find that our signal usually produces a

Higgs boson with a moderate transverse boost, while the continuum background does

not. This distribution is shown in Figure 5.3; we see that below 20 GeV there is very

little contribution from our signal hypothesis but s substantial contribution from the

continuum backgrounds.
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Figure 5.3: The distribution of the pT of the di-photon system for data in the
mγγ sideband (black), SM Higgs boson MC (red) and the SMS with χ2χ2 → HHχ0χ0

with mχ0 = 1 GeV and mχ2 = 130 GeV (blue) or 200 GeV (green). The distribution
is truncated pγγT = 100 GeV to show the low pT behavior of the distributions for op-
timizing the selection. The selected but is at pγγT > 20 GeV, where there is virtually
no contribution from SUSY-like signals.

5.3.2 Jet and EM
T Selection

We use anti-kT clustered particle flow jets with jet corrections applied as described

in Section 4.3. We consider all such jets in the event and select those meeting the

following criteria:

� pT ≥ 30 GeV
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� |η| < 3.0

� ∆R(jet, γ) > 0.5 for both selected photons

The pT requirement on the jet is motivated by the difficulty of accurately recon-

structing low pT jets as well as the observation that the jets produced in the signal

typically have a relatively hard spectrum. We require the jets to be in the HBHE

region since the resolution for jets falling in HF is worse than that in the HBHE and

it is much more difficult to remove contributions from pileup in the absence of the

tracker and ECAL. Finally, we require that the jets be far away from each photon.

Because the jets are constructed from all pf-candidates, the photons in the event are

usually reconstructed also as jets. Rather than go through the pf-candidate collection

and remove the photons (which is error prone, since the pf-Photon reconstruction dif-

fers from the regular photon reconstruction) it is simpler and more effective to simply

veto any reconstructed jet that would contain either photon within its cone.

We require at least one jet in the event to pass our jet selection, which is required

since we need at least 2 objects to compute the razor variables (described in Sec-

tion 5.4). Since our signal typically produces a Higgs boson and at least one other

object, this is a relatively mild requirement.

We use EM
T reconstructed from pf-candidates and corrected as described in Sec-

tion 4.4. We apply a full suite of filters to the events, vetoing any event which has

a possible contribution from detector noise. We also require at least 1 valid primary

vertex to be reconstructed in the event.

5.3.3 Selection of B-tagged Jets

In all selected events, each jet is analysed with the CSV algorithm to test its prob-

ability of originating from a b-quark as described in Section 4.3.3. The goal is to

identify the presence of either H → bb̄ or Z → bb̄ in the event in addition to the

photon pair. In each event we compute two values mbb,H and mbb,Z , which will be

used to test combatibility with these hypotheses.

To compute the values of these variables, we use the following algorithm:



85

1. define mbb,H = 0 and mbb,Z = 0

2. let J = {jb} be the set of all jets in the event passing the CSVL b-tag

3. if J = ∅ exit

4. let P = {(jαb , j
β
b ) : jαb ∈ J, j

β
b ∈ J, jαb 6= jβb } be the set of all pairs of jets in J

5. if P = ∅ exit

6. for all (jαb , j
β
b ) ∈ P :

(a) if jαb does not pass CSVM and jβb does not pass CSVM goto 6

(b) compute the invariant mass of the b-jets: mbb

(c) if |mbb,H − 125| > |mbb − 125| then set mbb,H = mbb

(d) if |mbb,Z − 91.2| > |mbb − 91.2| then set mbb,Z = mbb

This algorithm finds the pair of b-tag jets, one passing CSVL and one passing CSVM,

that have invariant mass closest to the mass of the Higgs boson and Z, and sets mbb,H

and mbb,Z to 0 if these cannot be found. These variables will be used to assign events

to different categories in Section 5.3.4, in order to find an enriched sample of events

consistent with HH+X → γγbb+X or HZ+X → γγbb+X. Events without b-tagged

jets, with only 1 b-tagged jet, or with two that don’t pass the CSV requirements are

not rejected from the rest of the analysis, they will simply have mbb,H = mbb,Z = 0

and be classified into one of the three non-btagged boxes.

5.3.4 Event Boxes

With the events and objects selected, we divide the events into disjoint event cate-

gories (called boxes), based on their kinematics and objects. The boxes assignment

is heirarchical and exclusive: an event is assigned only to the first box it satisfies

regardless of its other properties. The ordering of the boxes is based upon the ca-

pacity to provide improved S/B for the simplified models targetted in this analysis.

We design the final two boxes to be largely model-independent and also to capture
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any event that is distinguished from background by the razor variables. These events

do not have kinematics consistent with one of our models, but are very important to

maintain sensitivity to other potential models that this analysis can capture. We use

several variables to form these boxes:

� pγγT : the pT of the selected di-photon system

� mbb,H and mbb,Z : The masses of any b-quark pairs, defined in Section 5.3.3

� σE/E: the resolutions of each of the photons, measured from the regression

The boxes are:

1. HighPt Box: pγγT > 110 GeV

2. Hbb Box: 110 ≤ mbb,H ≤ 140

3. Zbb Box: 76 ≤ mbb,Z ≤ 106

4. HighRes Box: Both photons in the di-photon system have σE/E < 0.015

5. LowRes Box: All other events

The heirarchy of the boxes is the order in which they are enumerated. A schematic

is also shown in Figure 5.4.

As noted before, a given event will be placed in only in the highest box whose

criteria it meets, so an event in the Zbb Box would have: pγγT ≤ 110 GeV, mbb,H 6∈

[110, 140], and mbb,Z ∈ [76, 106]. An event in the Zbb box may have more than one

pair of b-tag jets, but no pair will have mass 110 < mbb < 140 (or else it would fall in

the Hbb box). Likewise, an event in the HighRes box may have any number of b-tag

jets (including 0), but no pair, with at least one CSVM jet, may have 110 < mbb < 140

or 76 < mbb < 106 (or it would have fallen into one of the Hbb or Zbb boxes). This

implies that the number of jets and number of b-tag distributions differ between the

Hbb/Zbb boxes and the others.

The different kinematic cuts in each box and the resultant difference in the object

distribution is the primary reason that no extrapolation or prediction used in one
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Figure 5.4: Hierarchy of event boxes.
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box is ever applied in any other box. The shape of the mγγ distribtuion, for example,

will be very different for events with boosted di-photon systems (HighPt box) and for

events with a high mass pair of b-tagged jets. Similarly, we expect that the resolution

of a resonance will be much sharper in events with two high resolution photons than in

events with at least one poor resolution photon. Therefore, while we can extrapolate

in the mγγ and R2 -MR planes within a box (with suitable systematic errors), we

never extrapolate between boxes, since the kinematics are fundamentally different.

The motivation for the three boxes comes from a study of the kinematics of the

simplified models we are interested in. For events where there is a large mass splitting

between the pair-produced particle and the LSP, we expect the Higgs boson produced

in the decay chain to be boosted, and hence preferentially populate the HighPt box.

We expect this box to have low background, as non-resonant processes are less likely

to produce a di-photon pair that is both high mass and highly boosted. For events

where there is a second Higgs boson produced in, for example, a second similar decay

chain, we would expect the majority of these events to decay to bb̄ pairs resonant at

the Higgs boson mass. Similarly, if there is a Z-boson produced in the event, we would

expect to see some population of events with a bb̄ near the Z-resonance. One can get

a sense of how the box selection relates to the kinematics by examining Figure 5.5.

Tables 5.2 and 5.3 shows the expected yield of background, SM Higgs boson, and

SMS events in the five analysis boxes. We can see that both SMSs should produce

most of their events in the HighPt box, consistent with our argument that the Higgs

boson system should be boosted in the models we consider. In contrast, the SM

production of the Higgs boson is predominantly in the HighRes box. Furthermore,

we can see that the highest S/B (and S/
√
B) for the χ2χ2 SMS occurs in the Hbb

and Zbb boxes, consistent with the rarity of final states with resonant bb̄ and γγ

pairs. Finally we can see that the HighRes box is significantly more powerful than

the LowRes box in terms of signal significance, consistent with the selection of high

resolution photons.

The final two categories are used to capture signal events in a less model-dependent

way. By selecting high resolution photons in the HighRes box we reject fake photons,
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Box Combinatoric Peaking Total
background background background

HighPt 348.9±+40.6 22.9+2.2
−2.1 371.9+40.6

−40.6

Hbb 3.3±+2.5 0.1+0.0
−0.0 3.5+2.5

−2.5

Zbb 6.1±+3.6 0.2+0.0
−0.0 6.3+3.6

−3.6

HighRes 829.0±+74.4 34.9+3.1
−2.9 863.9+74.5

−74.5

LowRes 1635.8±+89.0 14.5+1.4
−1.3 1650.3+89.1

−89.1

Table 5.2: The expected number of events in the signal region of each box for back-
ground processes. The events are required to have MR > 150 GeV and no selection is
applid on R2 . Monte Carlo yields are set to the expected number of events in 19.8fb−1

of
√
ŝ = 8TeV collisions with the Higgs boson cross-section is set to µ = 1.00×µSM .

Box
χ̃0

2χ̃
0
2 production χ̃0

2χ̃
±
1 production

mχ̃0
2

= 130 GeV mχ̃0
2

= 175 GeV mχ̃0
2

= 130 GeV mχ̃0
2

= 175 GeV

Efficiency Yield Efficiency Yield Efficiency Yield Efficiency Yield
HighPt 8.6+0.5

−0.5% 12.6+0.7
−0.7 11.1+0.6

−0.6% 5.1+0.3
−0.3 8.9+0.6

−0.6% 16.6+1.0
−1.0 10.7+0.5

−0.5% 6.4+0.3
−0.3

Hbb 1.8+0.1
−0.1% 2.6+0.2

−0.2 1.8+0.1
−0.1% 0.8+0.1

−0.1 0.0+0.0
−0.0% 0.0+0.0

−0.0 0.0+0.0
−0.0% 0.0+0.0

−0.0

Zbb 0.6+0.0
−0.1% 0.9+0.1

−0.1 0.7+0.1
−0.1% 0.3+0.0

−0.0 0.0+0.0
−0.0% 0.0+0.0

−0.0 0.0+0.0
−0.0% 0.0+0.0

−0.0

HighRes 4.7+0.2
−0.2% 6.9+0.3

−0.4 5.3+0.3
−0.3% 2.5+0.1

−0.1 5.2+0.3
−0.3% 9.7+0.6

−0.6 6.5+0.3
−0.3% 3.9+0.2

−0.2

LowRes 1.9+0.1
−0.1% 2.8+0.1

−0.2 2.2+0.1
−0.1% 1.0+0.1

−0.1 2.2+0.1
−0.1% 4.1+0.3

−0.3 2.6+0.1
−0.1% 1.6+0.1

−0.1

Table 5.3: The expected number of events in the signal region of each box several
signal benchmark points. The events are required to have MR > 150 GeV and no
selection is applid on R2 . Monte Carlo yields are set to the expected number of events
in 19.8 fb−1 of

√
ŝ = 8TeV collisions with the chargino and neutralino cross-sections

are set to their NLO values.

which typically have wide clusters and thus worse resolutions, and we select from

among the real photons those that were better measured and more likely to produce

a narrow resonance.

5.4 The Razor Kinematic Variables

5.4.1 General Definition

The razor variables are designed based on a generic process of pair production of heavy

particles, each decaying to a visible particle and an undetected particle. The variables

characterize, event-by-event, whether an observed event is compatible with this sort

of process [82]. These variables have been used previously by the CMS [83, 84] and
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ATLAS [85] collaborations to search for processes where a pair of heavy squarks are

produced, with each squark decaying q̃ → qχ0, where χ0 is the LSP and q represents

a quark. If we let ~pj1 ~pj2 be the momenta of the two visible jets, and pjiz ≡ ~pji · ẑ be

the z-component of the momentum, then we define the variable MR:

MR ≡
√

(|~pj1|+ |~pj2|)2 − (pj1z + pj2z )2 (5.1)

This variable is, by construction, invariant under longitudinal boosts. In the limit

where the initial state has small transverse boost, we find that

MR ≈ γ∆M∆ = γ∆

M2
q̃ −M2

χ0

Mq̃

(5.2)

where γ∆ is the boost factor from the center-of-mass frame to the di-squark rest

frame, Mq̃ is the mass of the heavy pair-produced particle (squark), and Mχ0 is the

mass of the undetected particle (LSP). In the limit where the mass of the LSP is

small compared to the squark, we then expect MR ≈ Mq̃, so MR estimates the mass

of the squark. When we relax our conditions on the initial state transverse boost, we

find that the value of MR will peak near γ∆M∆.

A second variable MR
T that uses only transverse information is defined:

MR
T ≡

1√
2

√
EM
T (pj1T + pj2T )− ~EM

T · (~p
j1
T + ~pj2T ) (5.3)

where ~pjiT are the transverse momenta of the two jets and pjiT ≡ |~p
ji
T |. For perfectly

measured jet pT and EM
T , MR

T is designed to have a kinematic endpoint M∆. We

then define the razor dimensionless ratio:

R ≡ MR
T

MR

(5.4)

Other analyses have found that background has a simple exponential shape in the

variable R2, so we will use this for consistency with the published literature even

though we do not explicitly rely on that shape in this analysis [86].
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Thus far we have considered only the case where each heavy particle decays to

exactly one visible object and one invisible object. To be more general, we must treat

the case where each heavy particle decays to many objects, and the possibility that

the decays are not symmetric. We do this by taking all visible objects in the event and

assigning them to one of two mega-jets, which are constructed as the sum of the four-

vectors of their components. The assignment is done by finding the configuration that

minimizes M2
hem 1 + M2

hem 2. With these mega-jets, we have now forced an arbitrary

event configuration into a di-jet-like topology. We then compute MR and MR
T exactly

as in equations 5.1 and 5.3 with the four-vectors of the two mega-jets used as j1 and

j2.

5.4.2 Modification of the Razor Variables for H → γγ topolo-

gies

The variables defined in Section 5.4.1 are designed to be useful for any generic signal

topology. For our specific case, where we select events that have a high invariant mass

γγ pair, we modify the definition slightly to incorporate our topology. Specifically,

we modify the mega-jet assignment algorithm to force the two photons to always

be placed in the same mega-jet, which is done by giving the mega-jet algorithm a

collection consisting of the the four vectors of all the selected jets in the event and the

four vector of the rest frame of the di-photon system (remember that the photons are

specifically excluded from the selected jet collection by the ∆R cuts). The algorithm

minimizes the sum in quadrature of the invariant mass of the mega-jets as usual.

With these ingredients, we can investigate the phenomenology of the razor vari-

ables for the signal topology of interest. Figure 5.6 shows the MR , MR
T and R2 distributions

for the model χ2χ2 → HHχ0χ0 → bb̄γγχ0χ0 at two mass splitting hypotheses. We

see the behavior predicted for the variable in Section 5.4.1: the MR distribution is

peaking near the mass splitting between the heavy particle (χ2) and the invisible

particle (χ0). The events have MR
T . M∆, where the inequality isn’t an exact edge

because of the imperfect reconstruction of jets and EM
T . Figure 5.7 shows the distri-
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bution of events in the R2 −MR plane for signal-like events and for standard model

pp→ γγ +X background (where we require 100 < mγγ).

The name “razor” comes from the ability of the R2 variable to cut away SM

background while leaving selecting signals with heavy resonances. This is illustrated

in Figure 5.8, which shows the MR distribution for background and several signal

hypotheses for various R2 cuts. One sees that the background is heavily suppressed

by the R2 cut, without compromising signal efficiency. Not only is the overall yield of

background suppressed by the razor cut, but the exponential slope is also markedly

changed, which further improves the sensitivity to models with moderate to high MR ,

since a mild R2 cut increases the potential significance of a signal.

5.5 Background Prediction

There are two major categories of background for this analysis: background from

standard model production of the Higgs boson, and background from other processes

that produce photons (or objects we mis-identify as photons). We will call these

categories “resonant” and “non-resonant,” respectively, and will treat them differ-

ently. The non-resonant background is a mixture of many different processes, some

of which are quite difficult to model. There are, for instance, contributions from

rare cases where two jets are produced through QCD processes and both jets are

mis-identified as photons, which occurs in roughly 1 in 105 QCD interactions that

produce a jet with pT > 40 GeV. Creating a sufficiently high statistics sample of

such events requires production of an intractably large number of simulated events

(10 million produced events was equivalent to only 189 pb−1 of data). Because of

these difficulties, we use data to model the background from non-resonant processes.

For the resonant processes, we use MC simulation of SM H → γγ events. We com-

bine simulated events produced through the 4 major production channels (listed in

Table 2.4) weighted by their relative production cross section.
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Figure 5.8: MR distributions for mγγ -sideband data (black) and χ2χ2 → HHχ0χ0

SMS events with Mχ0 = 1 GeV and ∆M ≈Mχ2 as indicated in the legend (expected
yields scaled by factor 20), for events with R2 cuts ranging from R2 > 0 to R2 > 0.20
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97

5.5.1 mγγ Signal Region

The first step is to define regions in the mγγ spectrum where we expect both the

photons from a Higgs boson decay (either SM or BSM production) to peak. While

the Higgs boson has a very narrow width, the resolution of the photon reconstruction

means that reconstructed mγγ for the photon pair follows some (roughly Gaussian)

distribution centered at mH but with a few GeV width. The exact width is dependent

on the kinematics of the photons, so we measure it in each box. We use MC produced

with mH = 125 GeV, select events and photon pairs in the manner described in Sec-

tion 5.3, and then examine the distribution of mγγ . Figure 5.9 shows the distribution

of mγγ for SM Higgs bosons in the HighPt, HighRes, and LowRes boxes; there are

not enough SM Higgs boson events in the Hbb and Zbb boxes to make a reliable

distribution. For the three boxes with enough statistics, we compute in each box a

value σeff , which is defined such that the interval [125 − σeff , 125 + σeff ] contains

68.2% of the expected SM Higgs boson events in the box. Since the distributions are

not perfectly Gaussian, σeff is not quite the standard deviation of the sample, but it

is an estimate of the Gaussian core of the distribution.

With σeff determined from the MC (we use σeff = 2 GeV for the Hbb and Zbb

box where there are not enough MC statistics), we then set the signal region in each

box to be [125− 2× σeff , 126 + 2× σeff ]. Since the signal is not perfectly Gaussian,

±2σeff does not necessarily contain 95.5% of the events, but it is not too far away.

The discrepancy between 125 for the lower bound and 126 for the upper bound is to

take into account the current uncertainty on the mass of the Higgs boson (the PDG

currently estimates the mass of the Higgs boson to be 125.7 ± 0.4 [3]). Table 5.4

shows the measured σeff and resulting signal regions in each box. As expected, our

box with high resolution photons (HighRes box) has the smallest σeff , while the box

explicitly containing poor resolution photons has the largest.
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Figure 5.9: mγγ distributions for selected standard model Higgs boson events. The
events are divided into the HighPt Box (top left), HighRes Box (top right), and
LowRes Box (bottom). The distributions are normalized to the expected number of
events in the indicated integrated luminosity.

5.5.2 Non-Resonant Background Prediction

We model the shape of the non-resonant background in the R2−MR plane by taking

the shape in mγγ sidebands around the signal regions in each box. The ranges of the

sideband regions are the same in the each box and are given in Table 5.5. The data

from the upper and lower sideband is summed and the resulting shape in the R2−MR

plane can be seen in Figure 5.10. One can see several important features of the razor

variables from these distributions:

1. In all boxes except the HighPt box, the data is clustered at low MR and R2 .

The kinematic requirements placed on the objects (30 GeV on the jet and 20

GeV on the di-photon system) prevent events from having MR . 50 GeV, but

after this turn on region, we see that the distribution is steeply falling in MR.

2. In the HighPt box, the requirement on the di-photon (pγγT > 110 GeV) pushes
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Box σeff Signal Region Range
HighPt 1.52 GeV [121.96,129.04]

Hbb 2 GeV* [121,130]
Zbb 2 GeV* [121,130]

HighRes 1.48 GeV [122.04,128.96]
LowRes 2.50 GeV [120,131]

Table 5.4: The σeff and resulting signal region ranges for the different boxes. The
σeff is computed from SM Higgs boson Monte Carlo and the Signal Region is defined
as [125 − 2 × σeff , 126 + 2 × σeff ]. *: For the Hbb and Zbb Categories, the MC
statistics are insufficient to compute a reliable σeff , so it is set equal to 2 GeV.

the turn-on region up to higher MR . Since these background events will mostly

have the two photons recoiling against one or more jets of equal magnitude, this

implies the existent of a jet system with pT > 110 GeV. These two systems

together make MR . 220 GeV kinematically unfavorable. Once this turn-on

region is passed, then the exponential fall begins.

3. The Hbb and Zbb boxes have very few events. This is by construction, since

the final state bb̄γγ is relatively rare and even rarer when the bb̄ pair is required

to have invariant mass near mH or mZ .

Lower Sideband 103 < mγγ < 120
Upper Sideband 131 < mγγ < 160

Table 5.5: The definitions of the Lower and Upper Sidebands.

With the shape of the non-resonant background determined, we determine the

normalization of the prediction. This is done by doing a fit to the mγγ distribution

in each box in the disjoint region mγγ ∈ [103, 120] ∪ [131, 160] and continuing the

function in the whole region 103 < mγγ < 160. The fit function chosen is a double

exponential defined as

p(mγγ ; f, α1, α2) = fe−α1mγγ + (1− f)e−α2mγγ (5.5)

where the parameters are constrained 0 < f < 1 and αi > 0. We consider several

other possible functions and find the the double exponential is a good choice for
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Figure 5.10: Distribution of events in the R2−MR plane taken from the data sideband
regions. The plots correspond to the 5 data boxes: HighPt (top), Hbb ( middle left),
Zbb (middle right), HighRes (bottom left), and LowRes (bottom right).
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our particular data, and use the very slight difference in the predicted shape as a

systematic error on the final measurement; this is discussed further in Section 5.7.3.

The fits with the mγγ distribution blinded are shown in Figure 5.11. One sees that

the selected shape is in good agreement with the data in all five boxes.

With the fit performed, the integral of the fitted shape in the signal region is taken

as the predicted number of non-resonant background events in the mγγ signal region.

From there a scale factor is computed for each box, equal to the number of predicted

events in the signal region divided by the actual number of events in the sideband

regions; the scale factor gives the amount the distributions in Figure 5.10 must be

scaled by to get the non-resonant background prediction. The derived scale factors

are shown in Table 5.6. The errors here come from the uncertainty on the integral of

the fitted function and the statistical error on the number of events in the sideband

(though the former is in all cases much larger). The scaled MR -R2 distributions are

shown in Figure 5.12. Here the binning is also coarser on the x and y axes to more

accurately represent the resolution we have on the MR and R2 variables.

Box Background Prediction Scale Factor

HightPt 0.160± 0.0046
Hbb 0.156± 0.045
Zbb 0.185± 0.053

HighRes 0.165± 0.0033
LowRes 0.260± 0.0030

Table 5.6: The scale factors derived from the fits to the mγγ background. The errors
come from Poisson sideband errors and the errors on the integral of the fit in the
signal region.

5.5.3 Resonant Background

The resonant background prediction is taken as the shape in the R2 -MR plane of the

SM Higgs boson MC within the signal regions defined in Table 5.4. The normalization

is set by scaling the MC to the number of SM Higgs boson events expected in 19.8 fb−1.

The normalized distributions are shown in Figure 5.13, with the same binning as in

Figure 5.12.



102

 (GeV)γγm
110 120 130 140 150 160

E
ve

nt
s 

/ (
 1

 G
eV

 )

0

10

20

30

40

50

60

70

CMS Preliminary HighPt Box -1=8 TeV  L = 19.78 fbs

 (GeV)γγm
110 120 130 140 150 160

E
ve

nt
s 

/ (
 1

 G
eV

 )

0

1

2

3

4

5

6
CMS Preliminary Hbb Box -1=8 TeV  L = 19.78 fbs

 (GeV)γγm
110 120 130 140 150 160

E
ve

nt
s 

/ (
 1

 G
eV

 )

0

2

4

6

8

10
CMS Preliminary Zbb Box -1=8 TeV  L = 19.78 fbs

 (GeV)γγm
110 120 130 140 150 160

E
ve

nt
s 

/ (
 1

 G
eV

 )

0

50

100

150

200

250

300

350

400

450

CMS Preliminary HighRes Box -1=8 TeV  L = 19.78 fbs

 (GeV)γγm
110 120 130 140 150 160

E
ve

nt
s 

/ (
 1

 G
eV

 )

0

100

200

300

400

500

600

CMS Preliminary LowRes Box -1=8 TeV  L = 19.78 fbs

Figure 5.11: The blinded fits to themγγ distribution in the HighPt (top left), Hbb (top
right), Zbb (middle left), HighRes (middle right), and LowRes (bottom ) categories.
Fits are shown with their ±1σ (yellow) and ±2σ (green) error bands. The gray region
is the blinding window.
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Figure 5.12: Distribution of events in the R2−MR plane taken from the data sideband
regions. The plots correspond to the 5 data boxes: HighPt (top), Hbb (middle left),
Zbb (middle right), HighRes (bottom left), and LowRes (bottom right). This plot
contains the same events as Figure 5.10 but with coarser binning, corresponding more
accurately to the actual resolution of the MR and R2 variables, and with the scale
factors applied to show the actual background prediction.
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Figure 5.13: Distribution of events in the R2 −MR plane taken from the SM Higgs
boson MC signal regions. The plots correspond to the 5 data boxes: HighPt (top),
Hbb (middle left), Zbb (middle right), HighRes (bottom left), and LowRes (bottom
right). Note that the Z-axis scale is different in each box.
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5.5.4 Sideband Extrapolation Validation

The extrapolation of the R2 − MR shape from the mγγ sideband region into the

mγγ signal region is extremely important for this analysis to function properly, so

we perform several tests to make sure that it is valid. We begin by testing the

extrapolation on events where we invert the photon isolation, which means we require

at least one of the photons to fail the isolation. Since the isolation is designed to be

highly efficient for selecting prompt photons, the inverse selects very few real photons.

As we are looking for Higgs bosons decaying to two real photons, this inverted isolation

sample has very few real Higgs boson events.

We predict≈ 14 realH → γγ events compared to≈ 5100 background events in the

signal region, which is a signal contamination of ≈ 0.27% distributed over the entire

razor plane. Looking at the plots in Figure 5.13 we can see that these events should

largely occupy the low R2 low MR regions of the HighPt, HighRes, and LowRes boxes,

where the background statistics are quite high. We therefore expect this region to be

totally dominated by non-resonant background, and so we can perform the sideband

extrapolation on this sample and compare it to the observed data in the signal region.

This does not violate our blinding policy, since we expect such a small contribution

from SM (and BSM) Higgs boson events and since these events are in an orthogonal

sample to our final selection. The spirit of the blinding policy is to avoid tuning cuts

in a way that might enhance features of the observed data. This helps avoid a type I

error where the analysis is tuned to enhance a fluctuation in the data. Since this data

sample with the inverted isolation cut is explicitly orthogonal to our final selection,

we are not sensitive to this sort of problem by looking at this data. While there

is some contribution from SM Higgs in this sample, it is so small compared to the

non-resonant background that it is virtually impossible to detect. We also compare

only large regions in R2 and MR to make it harder to notice small clusters in the

plane that could be evidence of a deviation.

The results of the test are shown in Figure 5.14. The plot on the bottom shows the

observed yield in the inverted isolation signal region (defined as 121 < mγγ < 130),
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while the plot on the top shows the number of standard deviations of the observed

yield from the background prediction, defined as

z =
observed− expected√

expected× (1 + fs)
(5.6)

where fs is the scale factor derived for the sample. The denominator is designed to be

the sum in quadrature of the statistical error and the systematic error coming from

the limited sideband statistics (described in detail in Section 5.7.1). This procedure

tends to over-estimate the deviation in low statistics regions, where this Gaussian

approximation breaks down, but even so we see excellent agreement between the

observed yield in the signal region and the prediction derived from the sideband.

Since the inversion of the isolation changes the makeup of the background with

respect to the real selection, we perform a second validation with the isolation ap-

plied normally, but with the regions we consider shifted. We cannot use data from

mγγ < 103 GeV, because we risk significant contributions from Z → e+e−, where

both electrons are identified as photons. The Drell-Yan cross section is high enough

that this can be significant in mass ranges compatible with the Z. This is partly a

consequence of our choice of the conversion safe electron veto (Section 4.2.1), where

we accept the lower electron rejection efficiency in order to gain the higher photon

efficiency. This minor inconvenience for one cross-check is less important for the

analysis than the higher global photon efficiency, since we have little Drell-Yan con-

tamination in the main analysis. For this test we define a shifted sideband region of

mγγ ∈ [130, 135] ∪ [150, 155] and a shifted signal region of mγγ ∈ [140, 145], where

we expect no peaking background. Figure 5.15 shows the results of the test and the

available statistics. The statistical precision is worse than in the inverted isolation

case, but we still see no deviation of the observed yield from the predicted yield.



107

Figure 5.14: Validation of the R2 −MR extrapolation of the sideband to the signal
region with the selection altered so that at least one photon fails the isolation. (top)
The actual yield in the signal region minus the prediction from the sidebands divided
by the sum in quadrature of the statistical error of the signal region and the systematic
uncertainty of the sideband prediction (from the sideband statistics). (bottom) The
number of events in the signal region. The signal region is mγγ ∈ [121, 130] and the
sideband regions are mγγ ∈ [103, 120] and mγγ ∈ [131, 160].
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Figure 5.15: Validation of the R2 −MR extrapolation of the sideband to the signal
region with shifted mγγ regions in data. (top) The actual yield in the signal region
minus the prediction from the sidebands divided by the sum in quadrature of the
statistical error of the signal region and the systematic uncertainty of the sideband
prediction (from the sideband statistics). (middle) The percent difference of the
signal region from the sideband prediction (computed as [(signal region) - (sideband
region)]/(signal region) ). (bottom) The number of events in the signal region. The
signal region is mγγ ∈ [140, 145] and the sideband regions are mγγ ∈ [130, 135] and
mγγ ∈ [150, 155].
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5.6 Signal Regions

One can see in Figure 5.12 that the limited statistics of the sideband sample requires

coarser binning to provide meaningful background predictions. In order to take into

account the falling exponential nature of the backgrounds and the expectation that

the signal should have larger R2 values than typical backgrounds, we create signal

regions that are large at high values of MR and R2 and smaller at low values of

MR and R2 , on the core of the background distribution.

The exact algorithm followed is described in Section 5.6.1; here we will explain

qualitatively what is being done to develop the intuition for the algorithm. A SUSY-

like signal can peak at any MR value (dependent on the mass-splitting between the

SUSY particles), and tends to occupy intermediate to high values of R2. A standard

model process will follow an exponentially falling distribution in both R2 and MR,

and so will tend to cluster in the lower left corner of the plane. With this in mind,

the goal is to create signal regions that encompass narrow regions (approximately

the resolution) in MR and an R2 range that cuts out most of the SM background.

Looking at the plots in Figure 5.10, one can see that the natural set of signal bins

would have a step-like shape, looking only at relatively high R2 values for small values

of MR and looking at almost the entire R2 range at high MR.

One constraint we add to the problem is that we don’t want signal regions with

very small background predictions. Since we take our background prediction from

the sidebands, there will be a granularity to the background we can predict in any

given region of the plane equal to one sideband event × the scale factor in the box we

consider, e.g. the smallest non-zero background we can predict in the HighRes box is

0.16 events, since that is the scale factor in that box. Furthermore, having a very small

background prediction means the systematic error becomes very large compared to the

background prediction (see Section 5.7.1). Having bins with 0 predicted background

creates a challenge, since it makes a single observed event extremely significant and

needlessly complicates the statistical analysis. We therefore want to choose a set of

signal regions that are predicted to never have fewer than one background event.
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These considerations determine our procedure for setting the signal regions. We

start from very high MR and look at events in the whole 0 ≤ R2 < 1 region. We

integrate downward in MR until the region we are looking at contains one predicted

background event (sideband+SM Higgs boson). Once we reach that, we call this a

signal bin. For the next bin, we don’t want to look at the whole 0 ≤ R2 < 1 region,

because we know the low R2 region will contain most of the background but little

signal (again, this can be seen in Figure 5.10). We therefore step up by 0.05 in R2 and

start from the previous MR edge we found considering the region from 0.05 ≤ R2 < 1,

again integrating to lower values in MR until we find another region that contains

one event. We call that region another signal region, move up again by 0.05 in R2

and repeat until we reach MR = 150, the lower MR edge of our plane. In this way, we

create a set of regions starting at high R2 for low MR and low R2 for high MR each

going up to R2 = 1. This procedure gives us a set of edges in MR (the places where

we moved up in R2) and R2 (the 0.05 steps); we bin the lower left corner of the plane

by tracing those down to the MR and R2 axis, respectively.

Since the non-resonant background prediction comes from data and has limited

statistics on the tails of the distribution, we perform this procedure on SM di-photon

MC plus SM Higgs boson MC. This prevents our choice of signal regions from being

unduly influenced by fluctuations on the tail of the sideband prediction. While the

MC has much higher statistics, we also don’t want to be too sensitive to any local

fluctuations in the MC. In order to be agnostic to this, when we move downward

in MR to find the one event background, we do so in relatively large steps in MR.

These steps depend on the exact value of MR we are considering and are designed

to be roughly 10%-20% of the MR value, which is close to the resolution of the MR

variable, as is discussed in the next section. The choice of the R2 = 0.05 step is based

on the observation that 0.00 ≤ R2 < 0.05 contains most of the background events

with MR > 500 GeV.
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5.6.1 Signal Region Algorithm

To create the signal regions, we follow a standard algorithm that was chosen and

frozen before studying sideband data and, of course, before looking at signal region

data. We choose the bins by examining background Monte Carlo and SM Higgs boson

Monte Carlo. We form the full MC background distribution in each box by adding the

SM background MC to the SM Higgs boson MC, and based on this distribution we

define signal regions using the following algorithm. In the following, we use p(MR, R
2)

to mean the full MC bkg distribution:

1. let R2
cut = 0 and M cut

R = 3000

2. let M edges
R = {3000}

3. define I(MR, R
2) ≡

min(Medges
R )∫

MR

dm
1∫
R2

dr p(m, r)

4. if I(M cut
R , R2

cut) ≥ 1 goto 8

5. if M cut
R ≤ 150 goto 11

6. M cut
R = M cut

R −


50 M cut

R < 500

100 500 ≤M cut
R < 1000

200 1000 ≤M cut
R

7. goto 4

8. M edges
R = M edges

R ∪ {M cut
R }

9. R2
cut = R2

cut + 0.05

10. goto 5

11. M edges
R = M edges

R ∪ {M cut
R }

This gives us a list of edges in the MR plane, listed in inverse order from 3000

to 150. If we let M edges
R = {MR,1,MR,2, · · · ,MR,N |MR,i > MR,i+1} , then divide
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the plane into bins: {[MR,2,MR,1) ⊗ [0, 1), [MR,3,MR,2) ⊗ [0, 0.05), [MR,3,MR,2) ⊗

[0, 0.10), [MR,4,MR,3)⊗[0, 0.05), [MR,4,MR,3)⊗[0.05, 0.10), [MR,4,MR,3)⊗[0.10, 1.00) · · · }.

For example, if our algorithm returns M edges
R = {3000, 1400, 400, 250, 150}, then we

would divide the plane into the following bins:

� [1400, 3000)⊗ [0, 1)

� [400, 1400)⊗ [0.00, 0.05), [400, 1400)⊗ [0.05, 1.00)

� [250, 400)⊗ [0.00, 0.05), [250, 400)⊗ [0.05, 0.10), [250, 400)⊗ [0, 10, 1.00)

� [150, 250)⊗[0.00, 0.05), [150, 250)⊗[0.05, 0.10), [150, 250)⊗[0.10, 0.15), [150, 250)⊗

[0.15, 1.00)

The sideband prediction binned according to the output of the algorithm is shown

in Figure 5.16. One can see that the HighPt and LowRes boxes each have 15 bins,

the HighRes box has 10 bins, and the Hbb and Zbb boxes each have 3 bins. One

sees that none of the bins have 0 predicted sideband events, which will simplify the

statistical analysis.

5.6.2 Signal Region Event Yields

The signal regions for each box are listed in tables 5.7- 5.11. We see in the tables the

predicted background from resonant (“SM Higgs boson”) and non-resonant (“Side-

band”) processes, as well as the expected yield from a signal of the two types of SMS

under consideration at two different mass points for the neutralino. The errors on

the background prediction and MC come from the statistics of the sideband data and

MC sample respectively, which is discussed further in Section 5.7.1.

5.7 Systematics

Our systematic errors fall into three broad categories: those affecting the normaliza-

tion of the signal and background MC, those affecting the objects within the MC, and

those describing the uncertainty on the background prediction. For each systematic
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Figure 5.16: The prediction of the non-resonant background from the mγγ sideband
binned according to the regions selected by the signal region binning algorithm.

error, we evaluate its size and its degree of correlation within the R2 -MR plane and

between the boxes.

The first category of systematics are those affecting only normalization of the

Monte Carlo. These systematics are listed in Table 5.12. The luminosity systematic

is a measurement of the uncertainty of the delivered luminosity, which gives a fully

correlated error on the MC normalization. The trigger efficiency systematic is a

measure of the uncertainty in the plateau of the trigger efficiency. We have measured

that the trigger efficiency for our selection is 81 ± 5%, where the uncertainty comes

from the statistics of the sample from which we measure the turn-on curve. The MC
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HighPt Box pp→ χ±
1 χ2 →W±Hχ0χ0 pp→ χ2χ2 → HHχ0χ0

MR Range R2 Range Sideband SM Higgs boson 130 GeV 200 GeV 130 GeV 200 GeV
150 - 200 0.00 - 0.05 3.04± 0.697 0.12± 0.017 0.00± 0.003 0.00± 0.000 0.01± 0.006 0.00± 0.000
150 - 200 0.05 - 0.10 3.20± 0.715 0.11± 0.017 0.00± 0.004 0.00± 0.004 0.01± 0.006 0.01± 0.004
150 - 200 0.10 - 0.15 0.80± 0.358 0.02± 0.006 0.01± 0.009 0.00± 0.000 0.01± 0.005 0.01± 0.006
150 - 200 0.15 - 0.20 0.16± 0.160 0.01± 0.006 0.02± 0.014 0.01± 0.006 0.00± 0.002 0.01± 0.005
150 - 200 0.20 - 1.00 0.32± 0.226 0.05± 0.011 0.21± 0.041 0.28± 0.038 0.00± 0.002 0.11± 0.018
200 - 300 0.00 - 0.05 66.52± 3.262 2.94± 0.087 0.13± 0.032 0.03± 0.013 0.49± 0.043 0.09± 0.017
200 - 300 0.05 - 0.10 31.66± 2.251 1.08± 0.052 0.22± 0.042 0.09± 0.022 0.30± 0.034 0.19± 0.024
200 - 300 0.10 - 0.15 6.24± 0.999 0.14± 0.019 0.21± 0.041 0.11± 0.024 0.07± 0.017 0.21± 0.025
200 - 300 0.15 - 1.00 1.28± 0.452 0.14± 0.019 0.66± 0.073 1.04± 0.073 0.02± 0.009 0.66± 0.045
300 - 500 0.00 - 0.05 128.09± 4.527 7.76± 0.141 0.49± 0.063 0.28± 0.038 1.38± 0.072 0.46± 0.038
300 - 500 0.05 - 0.10 19.19± 1.752 0.88± 0.047 0.41± 0.058 0.47± 0.049 0.31± 0.034 0.64± 0.044
300 - 500 0.10 - 1.00 2.40± 0.619 0.23± 0.024 0.67± 0.073 1.60± 0.091 0.05± 0.013 1.25± 0.062
500 - 1600 0.00 - 0.05 82.67± 3.637 8.83± 0.150 0.53± 0.065 0.53± 0.052 1.13± 0.065 0.65± 0.045
500 - 1600 0.05 - 1.00 1.28± 0.452 0.25± 0.025 0.43± 0.059 1.04± 0.073 0.08± 0.017 0.93± 0.053
1600 - 3000 0.00 - 1.00 2.08± 0.577 0.39± 0.032 0.01± 0.010 0.01± 0.007 0.02± 0.008 0.02± 0.007

Table 5.7: HighPt Box. Event yields for SM Higgs boson are normalized to the SM
cross section. Event yields for the SMS models are for NLO theory cross sections.
The column label refers to mχ2 ; in all columns mχ1 = 1 GeV. The errors come only
from the statistics of the sideband or MC sample.

Hbb Box pp→ χ±
1 χ2 →W±Hχ0χ0 pp→ χ2χ2 → HHχ0χ0

MR Range R2 Range Sideband SM Higgs boson 130 GeV 200 GeV 130 GeV 200 GeV
150 - 300 0.00 - 0.05 1.30± 0.451 0.01± 0.006 0.00± 0.002 0.00± 0.000 0.36± 0.037 0.07± 0.014
150 - 300 0.05 - 1.00 0.87± 0.368 0.02± 0.007 0.00± 0.005 0.00± 0.004 0.27± 0.032 0.50± 0.039
300 - 3000 0.00 - 1.00 1.16± 0.425 0.10± 0.016 0.00± 0.005 0.00± 0.004 0.17± 0.025 0.28± 0.029

Table 5.8: Hbb Box. Event yields for SM Higgs boson are normalized to the SM cross
section. Event yields for the SMS models are for NLO theory cross sections. The
column label refers to mχ2 ; in all columns mχ1 = 1 GeV. The errors come only from
the statistics of the sideband or MC sample.

is normalized to take into account the total trigger efficiency and so the uncertainty

is added as a systematic error on this normalization.

The theory uncertainties on the Higgs boson are per-process uncertainties on the

production cross section taken from [12]. These uncertainties come from uncalculated

higher-order EW and QCD radiative corrections and from uncertainties on the PDF.

While these uncertainties are quite important for the search for the SM Higgs boson,

they are relatively small contributions to our uncertainty. The signal theory uncer-

tainties affect the normalization of our signal models and are described in [27] and

Zbb Box pp→ χ±
1 χ2 →W±Hχ0χ0 pp→ χ2χ2 → HHχ0χ0

MR Range R2 Range Sideband SM Higgs boson 130 GeV 200 GeV 130 GeV 200 GeV
150 - 450 0.00 - 0.05 4.28± 0.890 0.08± 0.014 0.00± 0.005 0.00± 0.004 0.14± 0.023 0.05± 0.012
150 - 450 0.05 - 1.00 1.12± 0.454 0.04± 0.009 0.00± 0.005 0.01± 0.006 0.11± 0.020 0.27± 0.029
450 - 3000 0.00 - 1.00 0.74± 0.371 0.04± 0.010 0.00± 0.000 0.00± 0.000 0.02± 0.010 0.02± 0.008

Table 5.9: Zbb Box. Event yields for SM Higgs boson are normalized to the SM cross
section. Event yields for the SMS models are for NLO theory cross sections. The
column label refers to mχ2 ; in all columns mχ1 = 1 GeV. The errors come only from
the statistics of the sideband or MC sample.
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HighRes Box pp→ χ±
1 χ2 →W±Hχ0χ0 pp→ χ2χ2 → HHχ0χ0

MR Range R2 Range Sideband SM Higgs boson 130 GeV 200 GeV 130 GeV 200 GeV
150 - 250 0.00 - 0.05 343.53± 7.529 13.56± 0.186 0.29± 0.048 0.09± 0.022 0.75± 0.053 0.11± 0.018
150 - 250 0.05 - 0.10 134.47± 4.710 4.94± 0.112 0.41± 0.057 0.16± 0.028 0.47± 0.042 0.16± 0.022
150 - 250 0.10 - 0.15 31.64± 2.285 0.90± 0.048 0.37± 0.054 0.25± 0.036 0.11± 0.021 0.22± 0.026
150 - 250 0.15 - 1.00 7.75± 1.131 0.27± 0.026 0.52± 0.065 1.24± 0.080 0.05± 0.013 0.83± 0.050
250 - 400 0.00 - 0.05 198.08± 5.717 9.21± 0.153 0.26± 0.046 0.14± 0.027 0.41± 0.039 0.13± 0.020
250 - 400 0.05 - 0.10 14.21± 1.531 0.47± 0.035 0.17± 0.037 0.16± 0.029 0.08± 0.017 0.16± 0.022
250 - 400 0.10 - 1.00 2.58± 0.653 0.09± 0.015 0.10± 0.029 0.75± 0.062 0.01± 0.007 0.41± 0.035
400 - 1400 0.00 - 0.05 95.41± 3.968 5.36± 0.117 0.19± 0.039 0.20± 0.032 0.24± 0.030 0.14± 0.021
400 - 1400 0.05 - 1.00 0.48± 0.283 0.06± 0.012 0.05± 0.019 0.21± 0.033 0.00± 0.004 0.15± 0.022
1400 - 3000 0.00 - 1.00 0.81± 0.365 0.07± 0.014 0.00± 0.004 0.00± 0.004 0.00± 0.003 0.00± 0.003

Table 5.10: HighRes Box. Event yields for SM Higgs boson are normalized to the SM
cross section. Event yields for the SMS models are for NLO theory cross sections.
The column label refers to mχ2 ; in all columns mχ1 = 1 GeV. The errors come only
from the statistics of the sideband or MC sample.

LowRes Box pp→ χ±
1 χ2 →W±Hχ0χ0 pp→ χ2χ2 → HHχ0χ0

MR Range R2 Range Sideband SM Higgs boson 130 GeV 200 GeV 130 GeV 200 GeV
150 - 200 0.00 - 0.05 384.91± 10.583 3.01± 0.088 0.05± 0.020 0.03± 0.012 0.11± 0.020 0.02± 0.007
150 - 200 0.05 - 0.10 194.92± 7.531 1.33± 0.058 0.08± 0.026 0.03± 0.012 0.13± 0.022 0.02± 0.008
150 - 200 0.10 - 0.15 47.82± 3.730 0.26± 0.026 0.08± 0.026 0.06± 0.017 0.04± 0.012 0.04± 0.011
150 - 200 0.15 - 0.20 8.58± 1.580 0.05± 0.012 0.06± 0.023 0.04± 0.015 0.02± 0.009 0.01± 0.006
150 - 200 0.20 - 1.00 5.20± 1.230 0.05± 0.011 0.13± 0.033 0.27± 0.037 0.00± 0.004 0.19± 0.024
200 - 250 0.00 - 0.05 290.83± 9.199 2.45± 0.079 0.05± 0.021 0.01± 0.007 0.15± 0.024 0.01± 0.006
200 - 250 0.05 - 0.10 71.47± 4.561 0.54± 0.037 0.08± 0.026 0.04± 0.014 0.07± 0.017 0.05± 0.012
200 - 250 0.10 - 0.15 10.14± 1.717 0.07± 0.013 0.05± 0.021 0.04± 0.014 0.02± 0.008 0.05± 0.012
200 - 250 0.15 - 1.00 2.60± 0.870 0.01± 0.006 0.05± 0.020 0.15± 0.028 0.00± 0.003 0.20± 0.025
250 - 400 0.00 - 0.05 397.64± 10.757 3.81± 0.098 0.10± 0.028 0.07± 0.019 0.17± 0.025 0.06± 0.014
250 - 400 0.05 - 0.10 29.11± 2.910 0.25± 0.025 0.07± 0.023 0.06± 0.017 0.03± 0.010 0.05± 0.012
250 - 400 0.10 - 1.00 3.38± 0.992 0.03± 0.009 0.06± 0.022 0.29± 0.039 0.00± 0.004 0.20± 0.025
400 - 1200 0.00 - 0.05 183.23± 7.302 2.52± 0.080 0.09± 0.027 0.08± 0.020 0.10± 0.020 0.07± 0.015
400 - 1200 0.05 - 1.00 2.08± 0.778 0.02± 0.008 0.02± 0.012 0.12± 0.025 0.00± 0.004 0.05± 0.012
1200 - 3000 0.00 - 1.00 3.90± 1.065 0.08± 0.014 0.00± 0.005 0.00± 0.000 0.00± 0.000 0.00± 0.000

Table 5.11: LowRes Box. Event yields for SM Higgs boson are normalized to the SM
cross section. Event yields for the SMS models are for NLO theory cross sections.
The column label refers to mχ2 ; in all columns mχ1 = 1 GeV. The errors come only
from the statistics of the sideband or MC sample.

reflect similar sorts of normalization uncertainties. These uncertainties are relatively

important for excluding certain signal hypotheses, but can also be avoided by setting

cross section upper limits.

The next category of uncertainties are those that affect the Monte Carlo as uncer-

tainties on the properties of objects, which uncertainties are summarizes in Table 5.13.

These uncertainties are treated by varying the quantity up and down by the size of

Source value target
luminosity 2.5% Signal Models, SM Higgs boson MC

trigger efficiency 5% Signal Models, SM Higgs boson MC
Higgs boson theory 2%-8% SM Higgs boson MC

signal theory x-sec uncertainty ≈ 13%

Table 5.12: Systematic uncertainties considered in the analysis affecting only the
global normalization of MC samples.
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Source value target
jet energy scale shape(3%) Signal Models, SM Higgs boson MC

photon energy and resolution shape (1%) Signal Models, SM Higgs boson MC
b-tagging ID shape (0.1%) Signal Models, SM Higgs boson MC

σE/E uncertainty shape Signal Models, SM Higgs boson MC

Table 5.13: Object-level systematic uncertainties considered in the analysis affecting
the normalization and shape of MC samples.

uncertainty and re-running the entire analysis chain on the events with the varia-

tions. The new MC background predictions from these up/down variations are taken

as the ±1σ size of the resultant uncertainty. Apart from the b-tagging uncertainty

(discussed below), these do not affect the weight of the events (as the normalization

uncertainties do), but they can cause events to have different values of MR and/or

R2 , migrate between the boxes, or be rejected by the selection.

For an example of this, consider the first uncertainty in the table, which is the

uncertainty on the jet energy scale. To measure the effect of this, we run the analysis

taking all jets in each event to have energy 1σ less than their mean measured energy.

This could cause, for example, an event which has only a single jet of 30.1 GeV to

be rejected in the −1σ version of the analysis. Similarly, since the energies of all the

jets and EM
T in the events are less, the values of MR and R2 will be different in the

±1σ analyses, so the shapes in the R2 -MR plane will be different. We consider in

this way the uncertainties on the jet energy scale, which effects the jets and EM
T , the

photon energy and scale, and separately the uncertainty on σE/E. This uncertainty

is taken from the size of the discrepancy between σE/E in data and MC and causes

migration of events between the HighRes and LowRes categories.

The b-tagging systematic is treated a bit differently, since it changes the normal-

ization of the MC. There is a measured difference in the efficiency to tag b-quarks in

data versus that in MC that is corrected for in the analysis. This correction is done

by weighting events based on the number and pT of the b-tagged versus non-btagged

jets in the event, and the uncertainty on this correction is taken as a systematic. The

size of the uncertainty varies as a function of the number and pT of the jets in the

event, and so is computed event by event and varies the reweighting up and down.
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Source value target
background prediction uncertainty 1%− 50% background shape

sideband statistics 1− 100% statistics in the data sidebands
fit choice ≈ 1% background normalization

MC statistics varies statistics in SM Higgs boson and SMS MC

Table 5.14: Systematic uncertainties arising from limited statistics considered in the
analysis affecting the normalization and shape of the MC and sideband prediction.

The treatment of these uncertainties somewhat overestimates their effect on the

analysis. Since we vary all objects up and down at the same time, we are getting the

envelope of worst possible cases where the uncertainties are fully correlated accross

all objects. This is done in this way since the correlations are not fully known–and

not easy to measure–and because these systematics are also small compared to the

next set of systematics which represent bin-to-bin fluctuations.

The final set of systematics are those that come from statistical uncertainties and

are summarized in Table 5.14. These are by far the biggest systematics and the only

ones that affect the sideband prediction taken from data as well as the MC. They are

discussed individually below.

5.7.1 Background Statistics Systematic

As described earlier, our background prediction is composed of two pieces (the side-

band prediction and SM Higgs boson MC), each of which has finite statistics. The

amount of statistics create an uncertainty on the background prediction in each signal

bin equal to the statistical uncertainty on the number of events in the sideband of

that bin times the scale factor for the box. For example, the first bin of the HighRes

box (150 < MR < 250 0.00 < R2 < 0.05) has 2082 events in the sideband and the box

has a scale factor of 0.165, so the predicted non-resonant background in that region is

343.5 events. Using the Gaussian approximation, the error on 2082 is
√

2082 = 45.6

and so we take the systematic uncertainty on the non-resonant background prediction

to be 45.6 × 0.165 = 7.5. We perform an exactly analagous procedure for the MC,

where the statistics of the MC sample in each signal region replace the statistics of

the sideband region.
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We find that this procedure is effective even in regions with sufficiently small

statistics that the Gaussian approximation of the error on the number of sideband

events does not hold. We show this with a toy study: imagine a region in the HighRes

box (scale factor=0.165) with 2 events in the mγγ sideband and 0 contribution from

the SM Higgs boson. This gives us a predicted background of 0.33 background events.

If we observe N events in this region, the correct procedure to evaluate the significnace

of the observation is to throw toys, with a toy consisting of:

� sample N toy
sideband Pois(2)

� sample N toy
bkg Pois(N

toy
sideband × 0.165)

One then sets a p-value based on these toys. We use the statistical tools developed for

the CMS SM Higgs boson search [80], the implementation of which prefers Gaussian

systematics, so we approximate our true Poisson uncertainties by:

� sample µtoy Gaus(2 ∗ 0.165,
√

2 ∗ 0.165)

� sample N toy,approx
bkg Pois(µtoy)

Figure 5.17 shows the distribution of the number of background events found in 10,000

toy events for the full procedure and the Gaussian approximation. One sees excellent

agreement between the two accross the full range of possible N toy
bkg . We therefore use

this Gaussian approximation for as needed systematics.

5.7.2 Background Prediction Uncertainty

Figures 5.14 and 5.15 show that the sideband prediction procedure closes to within

the statistical error, but cannot exclude the possibility that there are systematic shifts

significantly smaller than the statistical error. Specifically we consider the possibility

that the R2 -MR distribution shifts significantly as a function of mγγ, and so the

upper and lower sidebands have slightly different shapes. To check this, we compute

the non-resonant background prediction using only the lower sideband and compute

the prediction using only the upper sideband and compare them. Figure 5.18 shows
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Figure 5.17: Distribution of the number of background events in 10,000 toy events
for the full uncertainty calculation (black) and the Gaussian approximation (red),
showing excellent agreement.

the comparison in each signal bin. All the deviations we see are within the statistical

uncertainty.

To cover any residual difference between the upper and lower sideband predictions,

we assign a systematic to the background yield in each bin to capture the difference

between the upper and lower predictions. We do this in the following way: in each

box, we derive two additional scale factors supper and slower to predict the signal region

background from the upper and lower sidebands, respectively. Then, for each signal

bin, we let Nupper be the number of events in the upper sideband, Nlower be the number

of events in the lower sideband, and s be the nominal scale factor derived for the box

the bin is in. The nominal background prediction is just s×(Nlower+Nupper). We then

have two additional predictions for the background: slower×Nlower and supper×Nupper.

In the case where |slowerNlower − supperNupper| > s
√
Nupper +Nlower, we apply

max(slowerNlower, supperNupper) − s × (Nlower + Nupper) as a +1σ systematic on the

background prediction and s× (Nlower +Nupper)−min(slowerNlower, supperNupper) as a
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Figure 5.18: Comparison of the predictions derived from the lower sideband only
(black) and upper sideband only (red). The comparison is broken down by box in
the HighPt box (top), Hbb box (middle left), Zbb box (middle right), HighRes box
(bottom left), and LowRes box (bottom right).

−1σ systeamtic. In the case where |slowerNlower − supperNupper| ≤ s
√
Nupper +Nlower,

we apply s
√
Nupper +Nlower as the ±1σ systematic. This reflects the fact that an

observed difference smaller than the statistical uncertainty on the background can-

not be trusted as an accurate estimate of the systematic. Note that in this case

this systematic has the exact same magnitude as the sideband statistics systematic.

This systematic is treated as uncorrelated in all signal bins to be conservative in the

treatment.
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5.7.3 Fit Choice Systematic

This systematic deals with the possibility that the double exponential was not the

best choice to fit our non-resonant background. While this function choice is well

motivated physically, it is not the only well motivated function choice. To measure

any potential impact that this could have on the background prediction, we repeat

the background fit in the 5 boxes using different choices of fit function. Table 5.15

summarizes the results (the exact definition of the functions is in Table 5.16). The

table contains the integral of the fit function in the signal region as extracted from

the fit function. We introduce a systematic on the scale factor equal to the percent

difference between the integral of the Double Exponential and the average of the

integrals of the functions.

One sees that the maxiumum deviation is 1.7% in the Hbb category, while all other

deviations are ≤ 1%. For low statistics categories, the size of this error is negligible

compared to the systematics from statistics, but in the high statatistics categories it

can become a larger effect.

Fit Function HighPt Hbb Zbb HighRes LowRes
Double Exp 0.127 0.161 0.163 0.131 0.206

Modified Exp 0.128 0.166 0.166 0.134 0.208
Single Exp 0.127 0.169 0.163 0.128 0.206

Single Power Law 0.127 0.166 0.157 0.128 0.200
Double Power Law 0.124 0.158 0.158 0.132 0.202

Average 0.127 0.164 0.161 0.131 0.204
Difference 0.4% 1.7% 1.0% 0.6% 0.6%

Table 5.15: The integral in the signal region of the fit of the specified function to
the data in the corresponding box (the integral is normalized to 1 over the whole
range 103 < mγγ < 160). The second to last line is the average of the integrals and
the final line is the percentage difference between this average and the value for the
double exponential (which is the nominal fit choice for the analysis).
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fit type formula

modified exponential eαm
λ

single exponential eαm

double exponential f × eα1m + (1− f)× eα2m

single power law mλ

double power law f ×mλ1 + (1− f)×mλ2

Table 5.16: definition of alternate fit functions

5.8 Inverted Analysis Procedure

The key technique used in the main analysis is the prediction of the non-resonant

background using the distribution of events in the mγγ sideband in the R2 -MR plane.

We have shown that this technique is very robust in both data control regions and in

Monte Carlo, but there are still systematics associated with the statistical uncertainty

on the closure tests. Since these are the largest systematics we have in this analysis,

we also perform a parallel analysis that predicts the background in a different way to

have a relatively independent cross-check of the analysis; we call this the inverse or

inverted analysis.

In the main analysis we fit the mγγ distribution and then look at the shape in the

R2 -MR plane; in this analysis we invert this ordering by cutting on R2 and MR to

remove SM Higgs boson background and then fit the mγγ distribution. The goal is

to find a region of the R2 -MR plane with virtually no SM Higgs boson background

but large acceptance for BSM Higgs boson production and look for a resonance at

the Higgs boson mass. This is analogous to how searches for less common production

modes of the Higgs boson are performed, by going to kinematic regions with little

gluon fusion production and looking for a resonance. This method also has the benefit

of a substantially reduced look-elsewhere-effect due to the much smaller number of

signal region.

We define the cuts on MR and R2 on a box-by-box basis based on the following

considerations:

� small contribution from the SM Higgs boson: The idea is to fit mγγ in

a R2 −MR region where we expect virtually no SM Higgs boson, so if we see a
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peak at the Higgs boson mass it suggests non-standard Higgs boson production;

� small total background production: We expect any possible SUSY signals

to be relatively small, so a small background is desireable to enhance signifi-

cance;

� mass-splitting independence: SUSY models with different mass splittings

occupy difference regions of the R2−MR planes. In the main analysis we capture

this by binning in the plane, but we do not have that luxury here. We therefore

maximize significance over a wide range of mass splittings.

With these considerations in mind, we define the criteria for selecting the cuts in R2

and MR for each box. We require that there be less than one remaining SM Higgs

boson event after the cut, to satisfy the first criterion. From the possible cuts that

satisfy this, we choose the one that maximizes the expected S/
√

B for all the signal

points of our SMS with mLSP = 1GeV . Table 5.17 shows the result of using this

optimization procedure in the five analysis boxes. For all but the HighPt box, we end

up with cuts that are fairly loose and inclusive in MR and R2 . For the HighPt box,

we would be force to cut out a large portion of the plane by using a single cut, so we

use two disjoint regions to cover the plane.

Box minimum MR minimum R2

HighpT region 1 450 0.05
HighpT region 21 150 0.10

Hbb 150 0.00
Zbb 150 0.00

HighRes 250 0.05
LowRes 250 0.05

Table 5.17: Threshold on MR and R2 defining the search region in the inverse-logic
analysis. Unlike the case of the default analysis, the razor variables are used to reduce
the peaking background to a negligible level while the mγγ distribution is used to
characterize a possible signal induced by a new mechanism of Higgs boson production.
(1: This region will end at MR =450 GeV to avoid overlap with region 1)
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5.8.1 Inverse Analysis Fits

We do a S+B fit for the inverted analysis to extract the significance of any peak at or

near the Higgs boson mass. In order to cover a wide variety of possible background

shapes, we consider a number of potential background fit functions. The list of

functions considered is shown in Table 5.18. We perform the same procedure of

fitting in the sidebands of mγγ as in the main analysis to define the shape of the

background function. In order to correctly weight all of these potential background

functions based on how well they fit the sideband data, we use the Akaike Information

Criterion to form a composite background model [87–89].

fit type formula

modified exponential eαm
λ

single exponential eαm

double exponential f × eα1m + (1− f)× eα2m

single power law mλ

double power law f ×mλ1 + (1− f)×mλ2

2nd order bernstein polynomial
N=2∑
i=1

cibi,N=2(m)

3nd order bernstein polynomial
N=3∑
i=1

cibi,N=3(m)

Table 5.18: definition of background fit functions considered for the inverted analysis

To do this, we fit every function to the data and compute the AIC value defined

as:

AIC = −2log(L) + 2k +
2k(k + 1)

N − k − 1
(5.7)

where k is the number of parameters of the function and N is the number of fitted

data points. The AIC can be thought of as a goodness of fit corrected for the number

of degrees of freedom that the function has and encodes information about whether

adding more parameters to a fit is improving its quality sufficiently.

Given this set {fi} of fit functions, each with AIC value {ai}, we can compute

the minimum amin = miniai, which can be considered the best fit function found.

One could simply use this function to fit the background, but in the case that there

are many functions with similar AIC values, this may not be the optimal strategy.
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Instead we can assign each function an AIC weight

wi =
e−

1
2

(ai−amin)∑
j

e−
1
2

(aj−amin)

We can then form a composite background model fAIC =
∑
i

wifi, which contains

information about how well all the shapes considered describe the data [89].

Table 5.19 shows the ∆AIC values for the various fit choices in the six regions

of the inverse analysis. One can see that typically a single exponential is the best

choice, indicated by ∆ai = 0. In all of these cases, the double exponential and triple

exponential reduce to the same curve as the single exponential and fit no better. In

two cases the single power law is the best fit (For the Zbb this is tied with the single

exponential and in the case of HighPt1 it only beats it by a little bit). Finally, the

second order polynomial is the best fit for the HighPt2 case.

ai − amin
function Parameters HighPt1 HighPt2 Hbb Zbb HighRes LowRes

double exponential 3 4.88 4.92 7.52 15.00 4.18 4.15
single exponential 1 0.11 2.04 0.00 0.00 0.00 0.00
triple exponential 5 10.52 9.17 15.50 47.00 8.33 8.27

modified exponential 2 2.66 4.06 2.82 5.00 1.68 1.89
single power 1 0.00 1.93 0.35 0.00 0.44 0.30
double power 3 5.39 5.13 7.85 15.00 4.62 4.45

second order poly 3 4.92 0.00 7.18 11.79 3.82 3.77
third order poly 4 8.34 2.21 12.76 40.56 2.86 5.84

Table 5.19: ∆AIC values of the various fit choices in the different boxes.

We use the weights in Table 5.19 to build a composite background model

fAIC(mγγ ) =
∑
i

wifi(mγγ )

Figure 5.19 shows the composite AIC background model for the 6 analysis region

of the inverted analysis. The weights are computed from the ∆AIC values from

Table 5.19 and the parameters of the individual functions are taken from each of

their fits to the sideband data.
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This composite model will form the background only (B) hypothesis in each anal-

ysis region. To test for the presence of signal, we also create a signal plus background

(S+B) model by adding a single Gaussian as the signal model. Since we are look-

ing for the SM Higgs boson, we float the mean of the signal model with a Gaussian

penalty centered at the mγγ = 125.7 GeV with a width of 0.4 GeV (the PDG mass

an uncertainty of the SM Higgs boson). We fix the width of the signal model in each

analysis box to be equal to the σeff of the SM Higgs boson from Table 5.4. We then

float the number of signal events 0 ≤ Nsig <∞.

The systematic errors for this version of the analysis are much easier to treat.

There is no Monte Carlo, so there are not efficiency-based systematics to consider.

The key systematic comes from the uncertainty of the fit and the choice of the back-

ground function. The uncertainties of the fit can be taken into account by computing

the profile likelihood of the number of signal events to measure the significance of

any peak. We do not enforce any relationship between the number of signal events

in each box, in order to be model independent.

The uncertainty coming from the choice of the background function can be esti-

mated by measuring the uncertainties on the AIC weights from Table 5.19. We do

this using bootstrapping, which is sampling the dataset with replacement. If we let D

be the dataset with ND entries, then we form a bootstrap dataset Bi by randomly

choosing an element x ∈ D ND times where x is not removed from D after being

selected, so the same element may end up in B multiple times.

We compute 105 of these bootstrap datasets and perform the AIC procedure

on each one of them independently. This gives a 105 measurements of each of the

individual wi for each model. Since the values of wi are highly correlated, we measure

the covariance matrix of the weights from these bootstrap datasets as a measure of

the allowed variance of the weights. When measuring the statistical significance of

any potential excess, we do the AIC background fit with the AIC weights floated with

a fully-correlated Gaussian penalty term given by the covariance matrix. This gives

us a term in the profile likelihood that allows the relative AIC weights to be adjusted

to account for uncertainty in the background model selection.



127

 (GeV)γγm
110 120 130 140 150 160

E
ve

nt
s 

/ (
 1

.5
 G

eV
 )

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

 (GeV)γγm
110 120 130 140 150 160

E
ve

nt
s 

/ (
 1

.5
 G

eV
 )

0

2

4

6

8

10

 (GeV)γγm
110 120 130 140 150 160

E
ve

nt
s 

/ (
 1

.5
 G

eV
 )

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

 (GeV)γγm
110 120 130 140 150 160

E
ve

nt
s 

/ (
 1

.5
 G

eV
 )

0

0.5

1

1.5

2

2.5

3

 (GeV)γγm
110 120 130 140 150 160

E
ve

nt
s 

/ (
 1

.5
 G

eV
 )

0

2

4

6

8

10

12

 (GeV)γγm
110 120 130 140 150 160

E
ve

nt
s 

/ (
 1

.5
 G

eV
 )

0

2

4

6

8

10

12

14

16

Figure 5.19: The AIC background fits for the HighPt1 (top left), HighPt2 (top right),
Hbb (middle left), Zbb (middle right), HighRes (bottom left), and LowRes (bottom
right) inverted analysis regions. The grey area with 121 < mγγ < 130 GeV is the
blinding region.
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Chapter 6

Results and Conclusions

Having established the analysis selection path and background estimation in Chap-

ter 5 we proceed to examine the signal region in the data, i.e. unblind the analysis and

obtain the results. In Section 6.1 we examine the data in the signal mγγ region and

compare to the background prediction formed from the sum of continuum and SM

Higgs background. We observe an excess of events in one region of the R2 -MR plane,

so we proceed to attempt to characterize this excess to the extent the limited number

of events allows us. At this stage we will also establish limits on the SMS models we

used to establish the analysis design. In Section 5.8 we use a difference method of

setting the background prediction that is not subject to some of the systematics of

the main analysis; we call this analysis the inverted analysis. In Section 6.3 we look

at some of the kinematic and other properties of the events to begin to understand

the excess.

6.1 Unblinded Results

The analysis is designed to be sensitive to beyond the standard model production

of a Higgs boson and at least one other object over a wide range of masses of the

BSM particles. It does this by prioritizing configurations most typical of the expected

signature of BSM physics, with a boosted Higgs or di-Higgs production by breaking

the events down into five boxes as described in Section 5.3.4. The R2 -MR plane is

then binned to create regions with small expected background from SM signatures
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but potentially large signal from BSM processes.

Figure 6.1 shows the unblinded distributions of mγγ in the five boxes. These

are the fits from which the normalization of the continuum background is derived as

described in Section 5.5. We see no major deviation of the data from the fits in the

mγγ signal region in any other 5 boxes, which is expected since these distributions

are integrated over the entire R2 -MR plane, so background dominates over both SM

and potential BSM production of the Higgs.
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Figure 6.1: The unblinded fits to the mγγ distribution in the HighPt (top left),
Hbb (top right), Zbb (middle left), HighRes (middle right), and LowRes (bottom)
categories. Fits are shown with their ±1σ (yellow) and ±2σ (green) error bands. The
corresponding blinded distributions are in Figure 5.11
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Tables 6.1-6.5 show the observed event yield in each of the signal regions of the

analysis. The observed yield is compared against the expected yield from the sum of

sideband prediction and SM Higgs MC, where the errors are the sum in quadrature

of the systematic errors on the yield in each bin. Finally, the double-sided p-value

of the observation compared to the expectation and the associated significance are

quoted. The p-value is computed using pseudo-experiments (toys) by sampling the

predicted background for each toy from the sum of independent Gaussians for each

systematic and then throwing a Poisson around the toy mean and recording whether

the observed deviation is greater than or equal to the observed deviation in data.

One can see that the agreement between observation and expectation is excellent in

the HighPt, Hbb, Zbb, and LowRes boxes and in all but one bin in the HighRes box.

In the bin 400 < MR < 1400 0.05 < R2 < 1.00 in the HighRes box, we see 5 events

in the mγγ signal region, but predict only 0.54+0.278
−0.278, which corresponds to a p-value

of 0.001 (3.4σ).

MR region R2 region observed events expected background p-value significance (σ)
150 - 200 0.00 - 0.05 4 3.16+0.995

−0.995(syst.) 0.782000 0.28
150 - 200 0.05 - 0.10 2 3.31+1.022

−1.022(syst.) 0.656000 0.45
150 - 200 0.10 - 0.15 1 0.82+0.507

−0.507(syst.) 1.000000 -0.00
150 - 200 0.15 - 0.20 0 0.17+0.226

−0.226(syst.) 1.000000 -0.00
150 - 200 0.20 - 1.00 0 0.37+0.453

−0.452(syst.) 1.000000 -0.00
200 - 300 0.00 - 0.05 87 69.47+7.112

−7.112(syst.) 0.115000 1.58
200 - 300 0.05 - 0.10 42 32.74+4.726

−4.726(syst.) 0.211000 1.25
200 - 300 0.10 - 0.15 8 6.37+2.017

−2.017(syst.) 0.655000 0.45
200 - 300 0.15 - 1.00 1 1.42+1.391

−1.391(syst.) 1.000000 -0.00
300 - 500 0.00 - 0.05 117 135.85+13.964

−13.964(syst.) 0.306000 1.02
300 - 500 0.05 - 0.10 21 20.06+4.624

−4.624(syst.) 0.958000 0.05
300 - 500 0.10 - 1.00 3 2.63+2.172

−2.172(syst.) 1.000000 -0.00
500 - 1600 0.00 - 0.05 82 91.50+13.657

−13.657(syst.) 0.575000 0.56
500 - 1600 0.05 - 1.00 0 1.53+1.072

−1.072(syst.) 0.436000 0.78
1600 - 3000 0.00 - 1.00 2 2.47+1.734

−1.734(syst.) 1.000000 -0.00

Table 6.1: Number of Events observed in the signal region compared to expected
background in the HighPt box.

We note by comparing tables 5.10 and 5.11 that one expects roughly 43% as much

SM Higgs in the LowRes box between 400 < MR < 1200 0.05 < R2 < 1.00 compared

to the HighRes box with 400 < MR < 1400 0.05 < R2 < 1.00 (0.03 events versus 0.07
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MR region R2 region observed events expected background p-value significance (σ)
150 - 300 0.00 - 0.05 0 1.32+1.073

−1.001(syst.) 0.591000 0.54
150 - 300 0.05 - 1.00 0 0.89+0.909

−0.900(syst.) 0.748000 0.32
300 - 3000 0.00 - 1.00 1 1.26+1.545

−1.507(syst.) 1.000000 -0.00

Table 6.2: Number of Events observed in the signal region compared to expected
background in the Hbb box.

MR region R2 region observed events expected background p-value significance (σ)
150 - 450 0.00 - 0.05 1 1.89+1.073

−1.073(syst.) 0.794000 0.26
150 - 450 0.05 - 1.00 1 0.76+1.267

−0.942(syst.) 1.000000 -0.00
450 - 3000 0.00 - 1.00 1 3.63+3.523

−2.988(syst.) 0.512000 0.66

Table 6.3: Number of Events observed in the signal region compared to expected
background in the Zbb box.

events). Coupled with the observation that the non-resonant background is about 4

times larger in the LowRes box, we would expect a small signal producing a Higgs to

show up in the HighRes box but not the LowRes box.
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MR region R2 region observed events expected background p-value significance (σ)
150 - 250 0.00 - 0.05 357 357.09+29.548

−29.552(syst.) 1.000000 -0.00
150 - 250 0.05 - 0.10 147 139.41+12.551

−12.550(syst.) 0.650000 0.45
150 - 250 0.10 - 0.15 35 32.54+3.880

−3.880(syst.) 0.767000 0.30
150 - 250 0.15 - 1.00 7 8.02+2.370

−2.302(syst.) 0.788000 0.27
250 - 400 0.00 - 0.05 213 207.29+18.566

−18.565(syst.) 0.804000 0.25
250 - 400 0.05 - 0.10 20 14.68+3.762

−2.692(syst.) 0.317000 1.00
250 - 400 0.10 - 1.00 3 2.67+1.692

−1.477(syst.) 1.000000 -0.00
400 - 1400 0.00 - 0.05 109 100.77+13.843

−12.783(syst.) 0.631000 0.48
400 - 1400 0.05 - 1.00 5 0.54+0.278

−0.278(syst.) 0.001030 3.35
1400 - 3000 0.00 - 1.00 0 0.88+0.832

−0.797(syst.) 0.744000 0.33

Table 6.4: Number of Events observed in the signal region compared to expected
background in the HighRes box.

MR region R2 region observed events expected background p-value significance (σ)
150 - 200 0.00 - 0.05 407 387.92+18.491

−18.482(syst.) 0.499000 0.68
150 - 200 0.05 - 0.10 201 196.25+10.538

−10.540(syst.) 0.790000 0.27
150 - 200 0.10 - 0.15 54 48.08+3.932

−3.932(syst.) 0.487000 0.70
150 - 200 0.15 - 0.20 13 8.63+1.486

−1.486(syst.) 0.205000 1.27
150 - 200 0.20 - 1.00 5 5.25+2.527

−2.468(syst.) 1.000000 -0.00
200 - 250 0.00 - 0.05 297 293.27+14.574

−14.576(syst.) 0.876000 0.16
200 - 250 0.05 - 0.10 78 72.01+5.093

−5.093(syst.) 0.619000 0.50
200 - 250 0.10 - 0.15 7 10.20+1.624

−1.624(syst.) 0.413000 0.82
200 - 250 0.15 - 1.00 1 2.61+1.537

−1.478(syst.) 0.537000 0.62
250 - 400 0.00 - 0.05 386 401.45+23.360

−23.360(syst.) 0.616000 0.50
250 - 400 0.05 - 0.10 21 29.36+4.466

−4.466(syst.) 0.243000 1.17
250 - 400 0.10 - 1.00 4 3.41+2.464

−1.884(syst.) 0.881000 0.15
400 - 1200 0.00 - 0.05 159 185.75+18.646

−18.646(syst.) 0.218000 1.23
400 - 1200 0.05 - 1.00 4 2.10+1.754

−1.695(syst.) 0.524000 0.64
1200 - 3000 0.00 - 1.00 3 3.98+1.900

−1.841(syst.) 0.860000 0.18

Table 6.5: Number of Events observed in the signal region compared to expected
background in the LowRes box.
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6.1.1 Observed Limits in the Simplified Model Scan

Using the yields and uncertainties shown in tables 6.1-6.5, we can set limits on the

production cross-sections of the simplified models targeted by the analysis. Since the

distributions in the R2 -MR plane for the models look different depending on the mass

of the SUSY particles, we set these limits as a function of the mass of the produced

neutralino (we set the mass of the chargino in the asymmetric case to be equal to

the mass of the neutralino). Based on the level of sensitivity we achieve, we focus

on the case where the mass of the LSP is 1 GeV the limits for which can be seen in

Figure 6.2.

For these limits we assume that the branching ratios are Br(χ2 → Hχ0) = 100%

and Br(χ±1 → W±χ0) = 100%. We can see that in the case of χ2χ
±
1 production

(left plot) we exclude production cross sections between 3 and 1.5 pb in the range

130 ≤ mχ2 = mχ±1
≤ 200 GeV. For the case of symmetric χ2χ2 production in the

HH final state, the exclusion limit is slightly worse, excluding cross-sections between

4 and 1.5 pb in the range 130 ≤ mχ2 ≤ 200 GeV. It is also worth noting that the

observed limit agrees very well (left plot) or produces a stronger limit (right plot)

than expected in each case. This reflects the fact that there is excellent agreement

between observed data and predicted background in most regions and a slight deficit

of events in the Hbb box (Table 6.2), which is the most important box for the χ2χ2

case.

Figure 6.3 shows the observed and expected limit divided by the theoretical cross

section at each mass. From this, we can easily read what masses are excluded in this

model. We can exclude models with χ2χ
±
1 → HW±χ0χ0 and mχ2 = mχ±1

< 156 GeV

and models with χ2χ2 → HHχ0χ0 with mχ2 < 136 GeV. For both models we stay

within twice the theory cross-section for the entire mass range 130 ≤ mχ2 = mχ±1
≤

200 GeV.

The large deviation observed in the HighRes box is not reflected in the limits for

two important reasons. The first is that the MR value of the excess is higher than

would be typically produced by these models in the mass range of interest. From
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Figure 6.2: The observed cross-section upper limit for the χ2χ
±
1 → HW±χ0χ0 (left)

and χ2χ2 → HHχ0χ0 (right) SMSs as a function of the mass of the neutralino
(set equal to the mass of the chargino in the left plot) with the mass of the LSP
set mχ0 = 1 GeV. The expected limit, computed from the expected background, is
shown as a dashed line, while the observed limit from the observed data is shown as
the solid line. The expected theoretical cross section is shown as the dotted line with
the theory error in blue.

Figure 5.8 one can see that a model with mχ2 = 200 GeV should typically produce

three times as many events in the region 200 ≤ MR < 400 GeV than in the region

400 ≤ MR < 600 GeV and many of these should be at high R2 . Since we observe no

excess in that region, the observed excess does not resemble the expected distribution

for a low mass excess.

We can see from Figure 5.8 that a model with 400 < mχ2 < 500 would peak in

the right place for the observed excess, but this model is disfavored for other reasons.

The first is that the theoretical cross-section, which can be seen in Figure 2.3 is

≤ 4×10−3 pb for masses of this sort, so we only expect about 1 event in the best case

in the data collected so far. The second issue with this model is that we would expect

to see an excess in one of the HighPt, Hbb and/or Zbb boxes associated with the

excess in HighRes. Recalling the discussion in Section 5.3.4, these boxes are designed

to specifically target the signatures of the SMS models under consideration as shown

in Table 5.2. The absence of an excess in any of these boxes suggests that the observed

deviation is not coming from a signal that looks like the models we consider.
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Figure 6.3: The observed cross-section upper limit for the χ2χ
±
1 → HW±χ0χ0 (left)

and χ2χ2 → HHχ0χ0 (right) SMSs as a function of the mass of the neutralino
(set equal to the mass of the chargino in the left plot) with the mass of the LSP
set mχ0 = 1 GeV divided by the theory cross section. The theory error is added
in quadrature to the experimental error, though the experimental error dominates
everywhere.

6.2 Inverted Analysis Results

Using the procedure detailed in Section 5.8.1 we perform the B and S+B fits to the

data in each of the inverse analysis regions. Figure 6.4 shows the distribution of

events in mγγ in each of the region as well as the two fits. We observe no excess of

events in the HighPt2, Hbb, Zbb, and LowRes regions. We observe an excess in the

HighPt1 region and in the HighRes region.

6.2.1 Significance of the Inverted Analysis Excess

We measure the significance of the excess in the inverted analysis by looking at the

profile likelihood of the number of signal events from the fitted S+B model. We float

the AIC weights of the potential background models as described in Section 5.8.1

using the bootstrap covariance matrix. Figure 6.5 shows the profile log likelihood for

the two regions that show excesses in the inverted analysis.

The HighPt1 box has 1.4 fitted signal events in the peak. The profile likelihood in

Figure 6.5 shows that the −2∆log(L(Nsignal = 0)) = 0.62, which is a significance of

0.8σ. We expect 0.4 SM Higgs events in this region, so the observed deviation from

the SM Higgs hypothesis is −2∆log(L(Nsignal = 0.4)) = 0.30, which is a significance
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Figure 6.4: The distribution of events in mγγ for the inverse analysis for the HighPt1
(top left), HighPt2 (top right), Hbb (middle left), Zbb (middle right), HighRes (bot-
tom left), and LowRes (bottom right) regions. The fits are background only (red)
and signal plus background (blue). The background model is the AIC-weighted com-
posite model and the signal model is a single Gaussian with mean constrained by the
measured Higgs boson mass.



138

signalN
0 5 10 15 20 25

Pr
oj

ec
tio

n 
of

 P
ro

fi
le

 o
f 

nl
lW

ith
C

on
s

0

2

4

6

8

10

12

14

16

18

20

22

signalN
0 5 10 15 20 25

Pr
oj

ec
tio

n 
of

 P
ro

fi
le

 o
f 

nl
lW

ith
C

on
s

0

0.5

1

1.5

2

2.5

3

3.5

Figure 6.5: The profile log likelihood of the number of signal events for the HighPt1
box (left) and HighRes box (right) for the fit to data with the constrained floated
AIC weights background model and the Gaussian signal model.

of 0.6σ.

The HighRes box has 11.5 fitted signal events in the peak. The profile likelihood

in Figure 6.5 shows that the −2∆log(L(Nsignal = 0)) = 7.2, which is a significance of

2.7σ. We expect 0.8 SM Higgs events in this region, so the observed deviation from

the SM Higgs hypothesis is −2∆log(L(Nsignal = 0.8)) = 6.1, which is a significance

of 2.5σ.

Since the mean of the signal model is constrained by the measured value of the

SM Higgs mass and there are only six orthogonal analysis region, the look elsewhere

effect for this inverse analysis is very small. Since the inverse analysis is designed as a

cross-check analysis, we simply observe that the observed significance in the HighRes

box is inline with the look-elsewhere corrected significance in the main analysis. The

observed excess in the HighPt1 box has very small significance, and is compatible

with the level of agreement observed in the main analysis.

6.3 Excess Events Characterization

The excess of events in the HighRes box is significant enough to justify further char-

acterization of the events to check for any potential problems and to attempt to deter-

mine if their properties substantially differ from events outside the signal mγγ region

and from predicted shapes of Higgs produced through the SM channels. One impor-
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tant point from Table 5.10 is that we expect only 0.07 ± 0.02 SM Higgs events in

this region (0.06 from pp → ttH and 0.01 from pp → V H), so observing 5 would be

extremely unlikely.

6.3.1 Location within the Signal Bin

We begin by zooming in on the region of the HighRes box with the observed excess.

Figure 6.6 shows the distribution of events in the bin with the excess for the mγγ signal

region and for the background predicted from the mγγ sidebands. One sees that

the background prediction clusters at low MR and R2, which is expected for an

exponentially falling distribution, while 4 of the 5 events in the signal region are at

relatively large values of MR and R2, and are separated from the background within

the plane.

 (GeV)RM
400 500 600 700 800 900 1000

2
R

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Signal Region

Background Prediction

Signal Region

Background Prediction

CMS Preliminary -1 = 8 TeV L=19.8 fbs

Figure 6.6: The distribution of events in the mγγ signal region (black points) com-
pared with the predicted background distribution from sideband (colored regions).
The black lines indicate the edge of the bin with the observed excess.

Figure 6.7 shows the R2 distribution in the HighRes box after various MR cuts.
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One can see the deviation corresponding to the excess in the middle plot. Further-

more, one sees the physical separation of the signal events from the background in

the bottom plot with MR > 450 GeV. There we see 4 events in the mγγ signal region,

and no events in the mγγ sideband (there are 0.036 predicted SM Higgs events there.

Figure 6.8 shows the corresponding distribution in MR for two R2 cuts. The inclusive

distribution agrees extremely well, while the distribution for R2 > 0.05 has a clear

tail of events in the signal region that are not predicted in the sideband region.

Figure 6.9 shows the distribution of mγγ in the region corresponding to the excess

(MR > 400 and R2 > 0.05 in the HighRes box) together with a S+B fit. One sees the

5 events clustered in the higgs mass window together with the three events at lower

mγγ that makeup the sideband prediction. A background only (double exponential)

fit is also performed on this distribution, and we find

√
−2(log(LS+B)− log(LB)) = 4.02

corresponding to a significance of 4.05σ. Figure 6.10 shows the same distribution and

fit but with the R2 cut shifted up by 0.01 in the top plot and the MR cut shifted up

by 50 GeV in the bottom plot. One sees that shifting up in R2 cuts away two of the

events in the mγγ sideband, while leaving all 5 in the signal region, while shifting up

50 GeV in MR gives no sideband events and 4 events in the higgs mass window.

6.3.2 Event Topologies

One can gain some insight into the structure of the events and whether they could be

coming from some unlucky conspiracy of detector noise by looking at the layout of

objects and the readout of the detector. We want to observe how the Higgs system is

interacting with the jet system(s) and the ~EM
T , as well as the presence of any b-tagged

jets in the event. We see in these events no high pT isolated leptons; there is a single

30 GeV muon in one event, but it is non-isolated and overlaps with a highly b-tagged

jet (CSV=0.998) and we conclude that this muon is coming from the secondary decay

from the b quark. There are further soft muons, but none with pT exceeding 7.5 GeV.
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Figure 6.7: The R2 distribution in the HighRes box for MR > 150 GeV (top), MR >
400 GeV (middle), and MR > 450 GeV (bottom) for data in the signal region (points)
and for background prediction (red and blue fill). One sees excellent agreement
between the observed and expected distributions for the inclusive sample. One can
similarly see the deviation that occurs in the 0.05 < R2 < 0.10 bin of the middle
distribution corresponding to the observed excess.
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Figure 6.8: The MR distribution in the HighRes box for R2 > 0.00 (top) and R2 >
0.05 (bottom) for data in the signal region (points) and for background prediction
(red and blue fill). One sees excellent agreement between the observed and expected
distributions for the inclusive sample. One can similarly see the tail of events in MR

corresponding to the observed excess.
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Figure 6.9: The distribution of mγγ for events in the HighRes box with MR > 400
and R2 > 0.05 with a signal+background fit consisting of a Gaussian with width fixed
to σ = 1.48 GeV and a double exponential and a background only fit of a double
exponential.

Two of the photons in the Higgs system are also identified as electrons, but they fail

the CSEV (Section 4.2.1) because they do not have hits in the inner layer of the

pixel detector. The tracks are well within the acceptance of the pixel detector, so we

conclude that these electrons are from a secondary conversion of the photon rather

than a real produced electron.

Figures 6.11-6.19 show the layout of the objects in the five events in the px − py
plane and in the p‖−p⊥ planes. The Higgs system is shown in red, the jets are shown in

black, the mega-jets are shown in blue and the MET is shown in green. Note that when

a jet is alone in a mega-jet, the jet line overlaps with the mega-jet line. Distributions

of variables including ∆φ distributions will be shown in Section 6.3.3, but from these

schematics we see no obvious issues with the events, nor suspicious repeated features.

One thing we do notice is that all 5 events have their di-photon system pointing in

the negative direction in η. While this is unusual, it is not necessarily significant
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Figure 6.10: The distribution of mγγ for events in the HighRes box with MR > 400
and R2 > 0.06 (top) and MR > 450 and R2 > 0.05 (bottom) with a sig-
nal+background fit consisting of a Gaussian with width fixed to σ = 1.48 GeV and a
double exponential. The background only fit is a double exponential in the top plot
and a single exponential in the bottom (the lack of sideband events makes the double
exponential unstable).
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(the odds of observing all 5 events with di-photon system on one side of the detector

is 6.25%, assuming a symmetric parent distribution). We also note that 2 of the

three sideband events have di-photon systems pointing in the positive η direction,

and observing 6/8 events in one direction has a probability of 11% (p-value 0.14).
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Figure 6.11: Event 0. The layout of the four vectors of objects in the event. The
CSV score for any jet passing CSVL is also shown.
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Figure 6.12: Event Display for Event 0
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Figure 6.13: Event 1. The layout of the four vectors of objects in the event. The
CSV score for any jet passing CSVL is also shown.
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Figure 6.14: Event Display for Event 1
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Figure 6.15: Event 2. The layout of the four vectors of objects in the event. The
CSV score for any jet passing CSVL is also shown.
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Figure 6.16: Event Display for Event 2
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Figure 6.17: Event 3. The layout of the four vectors of objects in the event. The
CSV score for any jet passing CSVL is also shown.
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Figure 6.18: Event Display for Event 3
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Figure 6.19: Event 4. The layout of the four vectors of objects in the event. The
CSV score for any jet passing CSVL is also shown.
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Figure 6.20: Event Display for Event 4
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6.3.3 Event Distributions

We proceed to look at the 5 events in several variables to check for any indications of

pathological features, and to guide the effort toward classifying these events. To do

this effectively, we also compare to various backgrounds:

� mγγ sideband: Look at events in the HighRes box in the mγγ sideband with

MR > 350 R2 > 0.03

� pp → ttH: Look at events in the HighRes box in the mγγ signal region with

MR > 400 R2 > 0.05

� pp → V H: Look at events in the HighRes box in the mγγ signal region with

MR > 400 R2 > 0.05

We loosen the MR and R2 cuts on the mγγ sideband in order to get more statistics

(there are only three sideband events with MR > 400 and R2 > 0.05). We choose the

two SM Higgs processes because they are the only two that have any contribution in

this R2 −MR region (even though they shouldn’t produce this many events).

While the observed number of events is not compatible with ttH or VH based on

cross-section, one can use these comparisons to judge whether the deviation could be

coming from incorrect kinematics in the MC or from a BSM process that resembles

ttH or VH in certain kinematic quantities.

6.3.3.1 Global Event Variables

We begin by looking at the HT and EM
T of the events in Figure 6.21. One sees that

the HT of the 5 events is not very consistent with the mγγ sideband data, but could

conceivably be sampled from either of the Higgs distributions. We see a similar trend

in the EM
T distribution: the events do not look like continuum background, but are

more consistent with the Higgs processes.
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Figure 6.21: The HT (left) and EM
T (right) for the 5 events (black points) and 3

backgrounds (green, red, blue).

6.3.3.2 Photon Variables

We next look at the variables coming from the photons in the events. Figure 6.22

shows the pγγR of the events. We see that it is relatively uniform and consistent with

the backgrounds and SM Higgs. This tells us that we don’t have a clustering of events

near either the analysis selection cutoff (20 GeV) or the HighPt box cutoff (110 GeV).
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Figure 6.22: The pγγT (left) and the ∆φ between the photons (right) for the 5 events
(black points) and 3 backgrounds (green, red, blue).

In figures 6.23 and 6.24 we see the pT and η distributions of the photons in

the events. These show no obvious pathologies and the backgrounds, SM Higgs

and data are all consistent. The already observed tendency of the di-photon system

is manifest here as well, but adds no additional information from the probabilities

already observed.
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Figure 6.23: The pT for the leading (left) and subleading (right) photons for the 5
events (black points) and 3 backgrounds (green, red, blue).

 leadingγη
-3 -2 -1 0 1 2 3

E
ve

nt
s 

/ (
0.

25
 )

0

0.5

1

1.5

2

2.5

3

3.5

4 Signal Region

 Sidebandγγ>0.03 m2>350 RRM

 ttH→>0.05  pp 2>400 RRM

 VH→>0.05  pp 2>400 RRM

 sub-leadingγη
-3 -2 -1 0 1 2 3

E
ve

nt
s 

/ (
0.

25
 )

0

0.5

1

1.5

2

2.5

3

3.5

4 Signal Region

 Sidebandγγ>0.03 m2>350 RRM

 ttH→>0.05  pp 2>400 RRM

 VH→>0.05  pp 2>400 RRM

Figure 6.24: The η for the leading (left) and subleading (right) photons for the 5
events (black points) and 3 backgrounds (green, red, blue).

6.3.3.3 Mega-Jets

We next look at the kinematics of the mega-jets. Figure 6.25 shows the pT of the mega-

jets of the events, where we observe that the distribution of the 5 events is somewhat

broader than any one process would predict, but not incompatible. Figure 6.27 shows

the reconstructed invariant mass of the mega-jets. Note that if a mega-jet contains

only one jet it will have a mass of zero, while if it contains only the diphoton system it

will have an invariant mass equal to mγγ . One sees several interesting trends in this

figure that illustrate the physics going into the mega-jets. The VH MC has a peak

at 125 GeV, which implies that a substantial number of events have the higgs alone

in a mega-jet, which one would expect from the final state configuration of a higgs

recoiling against a vector boson. The ttH has a peak at 300 GeV, indicating that the

Higgs is often paired with one of the two top quarks in the event. The background
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here has a peak at the top mass, indicating that there are a number of tops in the

non-resonant background.
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Figure 6.25: The pT for the mega-jet containing (left) and not-containing (right) the
di-photon system for the 5 events (black points) and 3 backgrounds (green, red, blue).
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Figure 6.26: The mass of the mega-jet containing (left) and not-containing (right)
the di-photon system for the 5 events (black points) and 3 backgrounds (green, red,
blue).

Figure 6.28 shows the ∆φ between the mega-jets and between the mega-jets and

the MET vector. We see that the configurations observed in the 5 events are consistent

with both the mγγ sideband data and the MC.

6.3.3.4 Jets

Figure 6.29 shows the pT of the jets in the events. We see that several of the events

have jets that are somewhat harder than would be predicted by any of the MC or

the sideband data. Since the backgrounds are all in the same kinematic region, it
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Figure 6.27: The invariant mass of the two mega-jets for the 5 events (black points)
and 3 backgrounds (green, red, blue).

suggests that the R2 and MR cuts alone are not sufficient to select such unusually

high pT jets.

Figure 6.30 shows several other features of the jets. The top plot, the number

of jets, suggests that these events are not consistent with ttH configurations, which

would tend to produce many more jets than we observe. Indeed, this plot is strong

evidence that the observed excess is not coming from an excess of ttH events. The

other two plots are the CSV score of the highest and second highest scored jets in

the events. We see that ttH, since it produces two real b jets, tends to have at least

1 jet with a very high CSV score, while VH tends to have a very low score, since it

does not usually produce b-jets.

6.4 Conclusion and Future Work

We have performed an analysis looking for non-standard production of the Higgs

boson using the razor kinematic variables. We have used the H → γγ decay mode

to give access to a narrow resonance on top of smoothly falling background to allow

a fully data-driven prediction for the standard model background. We have used the

R2 and MR variables to select regions of phase space with small expected resonant

and non-resonant standard model background and observed an excess with a local

significance of 3.4σ.
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Figure 6.28: The ∆φ between the two mega-jets (top), the mega-jet containing the

higgs and the ~EM
T (left) and the mega-jet not-containing the higgs and the ~EM

T (right)
for the 5 events (black points) and 3 backgrounds (green, red, blue).

We have performed a statistical analysis of the results and found that there is

no excess consistent with the SUSY simplified models targeted by the analysis. We

therefore set limits on the production cross-section of these simplified models at the

several pb level. The location of the observed excess makes it incompatible with the

expected shape of an excess for either of the models under consideration, so it has no

effect on the limits.

We have cross-checked this result using a logically inverted analysis that uses the

razor variables to reject background and then makes the mγγ fit the signal sensi-

tive part of the analysis. We have seen that this method also shows an excess with

a slightly smaller significance, but less potential correction from the look elsewhere

effect. The number of excess events is larger in the inverted analysis, but the signifi-

cance is smaller because of the larger background.

We looked at the 5 event excess in a variety of different ways, including its location

in the 3D mγγ -R2 -MR plane, which is consistent with a Higgs boson being produced
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Figure 6.29: The pT of the leading (left) and subleading (right) jets for the 5 events
(black points) and 3 backgrounds (green, red, blue).

in a non-standard way. The locations of the events in the R2 -MR plane are quite

separate from the predicted background, and the requirement of a mγγ pair near the

Higgs boson mass makes it very unlikely that this excess could be produced by some

detector malfunction, which is also confirmed by looking at the detector readouts

and object configurations. Indeed the fact that these events are peaking in both the

mγγ plane and in the R2 -MR plane, which are largely uncorrelated, makes it less

likely that this excess is coming from some mundane source.

Based on the predicted differential cross-section of the SM Higgs boson in the

R2 -MR region where the excess occurs, we can largely discount the possibility that

this is simple a fluctuation in the number of SM Higgs boson events. This is especially

true when one considers that most of the SM Higgs boson events in this region should

be produced by pp→ ttH production, and the number of jets observed in our excess

is not compatible with the ttH hypothesis (Figure 6.30). Without ttH, we are left

with only 0.1 predicted events coming from vector-boson associated production, and

several other distributions from Section 6.3.3 make this prospect less likely.

It is possible, therefore, that this is an early stage of a detection of beyond the

standard model production of the Higgs boson. While the significance of the excess

is too low to make a definitive statement, several pieces of evidence suggest that

this excess does not look very much like a fluctuation of the background or a known

production mechanism of the Higgs boson. With only five events, it is very hard to

say much more about what this could be, a large variety of models could potentially
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Figure 6.30: The number of selected jets in the event (top) and the CSV score of
the highest CSV jet (bottom left) and the second highest CSV jet (bottom right) for
the 5 events (black points) and 3 backgrounds (green, red, blue). One event has its
second jet falling out of tracker acceptance, and so its CSV score is -10 and it is not
included on the plot.

fit this observation.

The design of the analysis and the lack of an excess in other boxes can inform

model building to some extent. The lack of an excess in either of the Hbb or Zbb

boxes suggest that this is single Higgs production. Certainly any model that predicts

additional H or (to a lesser extent) Z would have to explain the null observation in

these boxes. The lack of excess in the HighPt box suggests the Higgs is not highly

boosted, although the larger background at high MR in the HighPt box could cover

this to some extent. Little can be said from the lack of excess in the LowRes box

since, by design, this box should be much less sensitive to events with real photons.

Some work is already being done to evaluate models that could produce this sort

of resonance. One curious observation is that the events are all at similar values of

R2 , typically with R2 ≈ 0.07 − 0.08. Most SUSY models have broad distributions

in R2 (see, for instance, Figure 5.7) and finding one compatible with this clustering
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in R2 is challenging. This is a place where more data is vital, since it would help

explain whether this clustering is a real phenomenon or a statistical effect. Similarly

the observed clustering of the mass of the mega-jet containing the Higgs boson near

300 GeV could be a real phenomenon, which might give some insight about what the

production mechanism is.

Because of these considerations, this analysis must be repeated with more data

and at higher energy during Run 2 of the LHC. This will help resolve the questions

about the observed clustering in some distributions. The relative yields at different

center-of-mass energies will provide some insight into the production mode if this

excess is confirmed, and higher statistics will allow finer binning in the R2 -MR plane

and more analysis boxes to isolate different effects. The potential for lower pileup

due to a 25 ns run of the LHC will also be a welcome addition to this analysis, since

identifying photons at high pileup is especially challenging and our efficiencies suffer

as a result. Finally, additional signal hypotheses will be helpful in guiding the design

of an evolved analysis. The shape of the excess observed in this analysis suggests

other types of signals might be more appropriate, so using other hypotheses that fit

the observe yield better will be helpful to better tune the Run 2 analysis.
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Chapter 7

Introduction

In part one we looked for the Higgs boson in non-standard kinematic configurations

to look for beyond the standard model physics produing standard model Higgs boson,

but its hasn’t yet been established that the particle observed by CMS and ATLAS

is the standard model Higgs boson. To show that this is the SM Higgs boson and to

understand the true form of the EW symmetry breaking largrangian requires all of

its properties to be measured to extremely high precision. To do this at a particle

collider, one needs to produce a lot of Higgs bosons and have high efficiency to select

them and reject background. We focus here on how to solve this second problem

specifically in the context of the Higgs boson decay to two photons.

The search for the SM Higgs boson in the two photon decay channel at both

ATLAS and CMS use a variety of multivariate analysis (MVA) techniques to enhance

signal sensitivity [59,80,81,90]. Typically these use a variety of boosted decision trees

and multilayer perceptrons to exploit deep correlations that differ between the signal

and background samples and so select events that don’t on their surface resemble their

true classifications. This is an extremely powerful technique used in a variety of areas,

but there are some limitations when it comes to the application to particle physics.

The first is that the training samples are taken from MC simulation of the process

in question, which must be fed through a simulation of the detector to the expected

signal in the detectors. This simulation is quite mature, but still has some trouble

especially with deep non-linear correlation between observables, which is specifically

what is used in these MVAs.
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The second issue is the sheer number of different processes that form the back-

ground to most Higgs boson searches. Without a specific model of the alternate hy-

pothesis, an MVA anomaly detector needs to be used, which essentially looks in the

data for configurations not predicted by the data. Unfortunately, unless the anomaly

detector knows about every single possible background process, it can easily promote

some rare background to attention as an anomalous signal. There are techniques to

help deal with this, but it remains an extremely difficult problem when using these

sorts of MVAs.

We propose to use a simpler type of classifier, still formally an MVA but with

far less ability to get stuck on deep non-linear correlations between variables. This

classifier relies on explicitly linearized correlations to perform the classification and

protects itself from overtraining by using binary connections. This configuration

makes it much easier to control, and if need be correct, correlations between variables

in the MC and the binary nature of the connection makes it much more robust against

getting stuck in the possibly highly non-convex optimization space. In essence this

classifier is not dissimmilar to optimizing a cut based analysis for signal sensitivity,

but does so using many more potential variables.

These advantages come at a price, training this sort of classifier is a provably NP-

hard problem, meaning that the training time increases exponentially in the number

of input variables. This sort of classifier typically needs large numbers of highly

correlated input variables to attain good performance, so this has traditionally been a

serious problem. We use the newly viable technique of quantum annealing to train the

classifier. This technique relies on the quantum adiabatic theorem to negotiate its way

through the non-convex solution landscape to find the optimal network configuration

in, ideally, polynomial time.

We use an implementation of a quantum annealer produced by D-Wave, Inc. a

company based out of Burnaby, BC, Canada. The device we use is owned by the

Lockheed Martin Corporation and jointly operated by Lockheed Martin and the Uni-

versity of Southern California. It has not been proven conclusively that the machine

is indeed a true quantum annealer, but it has been shown that it can solve problems
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correctly.

In Chapter 8 we discuss the theory of annealing and its application to solving

problems. We begin with simulated annealing, which simulates on a computer the

different but related algorithm of thermal annealing. This algorithm solves a problem

by converting it into a energy landscape and simulating a state influenced by thermal

fluctations in that landscape. The thermal excitations of the state allow it to escape

local minimia in the energy landscape and as the temperature is gradually lowered

gets progressively frozen into the solution. We then discuss the theory of quantum

annealing, which has a conceptually similar evolution except it has no thermal fluc-

tuations and uses quantum tunneling to escape from the valleys of local minima in

the ground state.

In Chapter 9 we discuss the specific implementation of the classifier we use and

how it is trained. We discuss how we cast the training problem into a form that

can be solved by quantum annealing and the details of the machine that we use to

perform the annealing. The machine has some particular engineering constraints that

complicate our problem somewhat, and we discuss the techniques used to overcome

these challenges. Finally we discuss the training sample and variables we propose to

use to train the classifier.

In Chapter 10 we show the results of the training of the classifier on the quantum

annealer. We investigate the performance of the resulting classifier and look at how

long the annealer takes to solve the problem. We show that the quantum nature of

the training is providing additional benefits in the form of added performance from

excited state solutions to our Hamiltonian that encode additional classifiers. Finally

we look toward future applications of quantum annealing to HEP and future studies

to improve the performance of our classifier.
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Chapter 8

Quantum Annealing

Quantum Annealing is process for finding the ground state solution of a complicated

Hamiltonian using adiabatic evolution. The idea is to construct a Hamiltonian whose

ground state can be easily constructed and slowly evolve the system from the Hamil-

tonian of the easy to construct ground state to the Hamiltonian of the problem that

we wish to solve. We will first discuss the related concept of simulated annealing,

which simulates thermal annealing to develop intuition for how this problem can solve

complicated systems in a fully classical regime. We will then discuss the theory be-

hind quantum annealing in Section 8.2 and the practical details of implementing it

in chapter 9.

8.1 Simulated Annealing

The problem of finding minima and maxima of various classes of functions is extremely

important in a wide variety of disciplines. Finding the lowest energy state of a system

is of fundamental importance in quantum physics and chemistry, and maximizing

global return or utility is a hallmark principle in finance and economics. There are

many different techniques for approaching this problem, from deterministic functional

methods to statistical sampling methods, and there is often more than one correct

method to solve a problem. One method that has been used with general success for

very complicated non-convex optimization problems is simulated annealing.

Simulated annealing is especially suited to problems that have a large number



172

of solutions which are local minima of the function being optimized [91, 92]. Most

iterative techniques have difficulty in topologies like this, since it is very hard to judge

whether a minimum found is a global minimum or just a local one. Certain tricks

can be used to escape from local minima, such as randomizing starting parameters

or even the problem parameters, but these can dramatically increase the solution

time of the problem. The common feature that these techniques share is a reliance on

gradient descent for the optimization, which is very effective for convex or near convex

problems, but not optimal for highly non-convex problems. Simulated annealing

solves this problem by allowing locally non-optimal steps meeting certain criteria.

Simulated annealing is an iterative technique that does not rely on gradient de-

scent, but instead uses the Metropolis algorithm to escape local minima [93]. The

calculation is started by assigning a virtual temperature T = T0, which is gradually

decreased until it reaches T = Tf = 0. Let f(~α) be the function we are seeking

to minimize over its parameters ~α, we start our function in some initial state ~α0

with energy f(~α0) at temperature T0. We then randomly choose a small offset in

the parameter of function ∆~α and compute the energy of the function at this offset

f(~α0 + ∆~α). If f(~α0 + ∆~α) < f(~α0) then we accept the update ∆~α. If, however,

f(~α0 + ∆~α) ≥ f(~α0) then we accept the update with probability e−∆E0/kT0 where

∆E0 = f(~α0 + ∆~α)− f(~α0).

This process is then repeated on the state f(~α1), which is either f(~α0) or f(~α0 +

∆~α) depending on whether the update was accepted. This algorithm is then repeated

as we lower the temperature, where at each step we accept the change with probability

max(1, e−∆Ei/kTi). These thermal fluctuations allow the solution to “jump” over small

barriers in the energy landscape and escape from local minima.

8.2 Quantum Annealing

Quantum annealing solves similar problems to simulated annealing using different

methods. If it can be realized fully, it should be able to solve certain classically hard

problems much more quickly than classical algorithms, which would make it extremely
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useful in a large number of important situations. Using quantum annealing requires

a collection of qubits that can be arranged easily into a fully entangled uniform

superposition of their 0 and 1 states, and a system for constructing a Hamiltonian

whose ground state necessarily encodes the solution to the problem. The details of

the machine used to realize this system are discussed in Section 9.4 and the procedure

for constructing a problem Hamiltonian that can encode the problem of training a

learner to recognize the Higg boson are given in Section 9.1; here we shall assume

that the hardware exists and the problem Hamiltonian can be constructed.

We have already required that it be possible to construct the time-independent

Hamiltonian Hp, so we turn to constructing a second time-independent Hamiltonian:

the initial state Hamiltonian H0. Let n be the number of qubits in the system, and

let us denote the state of our system by a vector in a 2n dimensional Hilbert space

with basis vectors

|z1〉 |z2〉 · · · |zn〉 (8.1)

We can then define a state which is a uniform superposition of all unit vectors as

|ψ0〉 =
N∏
i=1

|0〉+ |1〉√
2

=
1

2n/2

∑
basis vectors

|z1〉 |z2〉 · · · |zn〉 (8.2)

where the sum is over all basis vectors in the hilbert space [94]. We said as a require-

ment of our system that this state be easy to construct, so it must also be easy to

construct the Hamiltonian that has this as a ground state, which we will call H0. If,

for instance, we are conceptualizing our qubits as spins, then this state is achieved

by applying a large traverse magnetic field.

We now construct a new time-dependent Hamiltonian that starts equal to the

initial state H0 at t = 0 and ends as the problem state Hamiltonian Hp at t = tf .

This is easy to construct as

H(t) = A(t)H0 +B(t)Hp (8.3)
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subject to the constraints

A(0) > 0 A(tf ) = 0 (8.4)

B(0) = 0 B(tf ) > 0 (8.5)

We will place some additional requirements on A and B shortly. Figure 8.1 shows

the actual instantiations of A(t) and B(t) that are used for our study. H(t) now has

the property that at t = 0 its ground state is the state given in equation 8.2 and at

t = tf its ground state encodes the solution to the problem encoded by Hp.
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Figure 8.1: The Annealing Schedule (A(t) and B(t)) for in the quantum annealing
implementation used in our study.

We now call on the quantum adiabatic theorem, which states that if the Hamil-

tonian of a system transforms slowly from H i to Hf , a particle beginning in the nth

eigenstate of H i will end up in the nth eigenstate of Hf [95, 96]. This means that,

as long as our functions A(t) and B(t) qualify as “slowly” for the purpose of the
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adiabatic theorem, our system that starts in the ground state of H0 will end in the

ground state of Hp and thus solve the problem we have posed.

To define what “slowly” means in the context of the adiabatic theorem, let us

define s ≡ t
tf

and write our time-dependent Hamiltonian as H(s) = A(s)H i+B(s)Hf

[97]. We define Ei(s) as the eigenvalues of H(s) with

Ei(s) ≤ Ej(s) | i < j

so that E0(s) is the energy of the ground state of H at time s and E1(s) is the energy

of the first excited state. According to the adiabatic theorem, we can say that

lim
tf→∞

|〈ψ0|ψ(tf )〉| = 1 (8.6)

Following the derivation in [97] and [96], we can then define the minimum gap as

gmin = min
0≤s≤1

(E1(s)− E0(s)) (8.7)

and we can then say that the condition under which equation 8.6 holds is that

tf >>
1

g2
min

max
0≤s≤1

∣∣∣∣〈ψ1(s)

∣∣∣∣dH(s)

ds

∣∣∣∣ψ0(s)

〉∣∣∣∣ (8.8)

where |ψ1(s)〉 is the first excited state of H(s). This tells us that the required time

to anneal the problem is governed by g−2
min. This minimum energy difference also

tells us how our solution time will scale with the size of the problem; a “hard”

problem will have an exponential scaling of gmin with the problem size, and hence

an exponential scaling of the required running time, while an “easy” problem would

scale polynomially.

So far this discussion has focused on a perfectly isolated system operating at 0

temperature, so that the effects of thermal fluctuations and interaction between the

system and the enviornment causing decoherence could be ignored. These effects can

be thought of as adding additional terms to the Hamiltonian to characterize coupling
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to a thermal bath and to the environment Htot = Hanneal+Hbath+Hint, where Hanneal

is the (time-dependent) annealing hamiltonian, Hbath is the coupling of the system to

the thermal bath, and Hint is the coupling of the system to the environment [98–100].

The dynamics of this total Hamiltonian can be analyzed using Markovian master

equations that describe the time evolution of an adiabatic system weakly coupled

to a thermal bath [101]. One key insight from this analysis is that the decoherence

drives the annealer to the Gibbs state of Hanneal at the equilibrium temperature of

the system [100].

In this Gibbs state regime, the annealing system becomes inherently probabilistic:

the annealer will find the ground state with some probability related to the distri-

bution of the Gibbs state of the problem Hamiltonian. If ρ(t) is the time-dependent

density matrix of the thermally coupled system, then we can say that the probability

of ending up in the ground state will be close to

〈ψ0|ρ(tf )|ψ0〉 →
tf→∞

〈ψ0|
e−βHp

Tr e−βHP
|ψ0〉 (8.9)

in the infinite time limit [100]. In the non-infinite time limit, the success probability

depends on the nature of the spectral density of the bath and the form of the coupling

to the environment [98]. For example, if the spectral density of the bath is Ohmic

(S(ω) ∝ ω e−ω/ωc

1−e−βω , where ωc is some cutoff frequency) then we find that the probability

to end up in the ground state goes like

pGS ∝ 1− e−ε/α (8.10)

ε =

∣∣∣∣〈ψ1(s)

∣∣∣∣dH(s)

ds

∣∣∣∣ψ0(s)

〉∣∣∣∣ (8.11)

where α is a constant describing the energy scale of the interaction. For small problem

sizes, the master equations can be solved numerically to estimate the ground state

probability as a function of tf (see [100]), but for larger problems, this swiftly becomes

intractable. It is typically easier to measure the solution probability as a function of

tf and/or bath temperature and use that to gain insight about gmin and the dynamics
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of the decoherence of the system [102].
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Chapter 9

Experimental Setup

Our goal is to create a classifier that can be trained using a quantum annealer to

classify events with a real Higgs Boson and separate them from background. The

classifier takes in information about the event and returns a score reflecting how

likely it is that the object is signal. There are three key components to setting up

this system:

1. how to cast the problem of training this classifier in a way that can be encoded

on a quantum computer

2. how the quantum annealer is realized in hardware

3. how to setup the training sample in such a way that it can be used effectively

We will go through the steps of the problem in this order and then come in chapter 10

to results of the study.

9.1 Encoding the Problem

We first address the problem of training a classifier to solve a generic machine learning

problem where we have a training sample containing information about each event

and whether that event is signal or background. We will do this by turning the

problem of training such a classifier into an optimization problem, which is set up such

that finding the minimum energy solution is equivalent to finding the best classifier;
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such problems can then easily be mapped to Hamiltonians and solved by quantum

annealing [103].

Let T = {(~xi, yi)} be the training data, where ~xi is some set of variables about

event i and yi is the indicator variable

yi =

+1 if event i is signal

−1 if event i is background

we define a weak classifier z(~xi) as any function that has the property that z(~x) > 0

increases the probability that ~x is a signal event or, more formally, p(yi = +1|z(~xi) >

0) > p(yi = +1) and −1 ≤ z(~x) ≤ 1 ∀~x. If the probability of an event being signal or

background are equal before any cuts, than the weak classifier condition reduces to

saying that and event ~x is more likely to be signal than background if z(~x) > 0. So

a weak classifier is any function which separates signal signal from background, even

if the separation is extremely small.

We can find many functions over the training data that satisfy the definition of a

weak classifiers, so we can define a set of weak classifiers {zi(~x)} for 1 ≤ i ≤ N . In

a typical problem, we might be able to identify a huge number of weak classifiers, so

we would like a systematic way to select the best ones to form a stronger classifier.

Selecting the subset of weak classifiers the produce the best strong classifier is a

difficult problem, and is it this problem that we will turn into an optimization problem

and solve. We form a new classifier O(~x) as the weighted sum of weak classifiers:

O(~x; ~w) =
1

N

N∑
i=1

wizi(~x) (9.1)

where wi ∈ {0, 1} and ~w ≡ (w0, w1, · · · , wN) ∈ {0, 1}N are the to-be-determined

weights. Since the weights are binary, any instance of this classifier is selecting some

subset of the weak classifiers to evaluate. In principle we could say that O(~x; ~w) > 0

indicates signal and O(~x; ~w) < 0 indicates background, but in practice it will be

useful to think of O(~x; ~w) as a continuous output with more positive values being
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more signal like and more negative values being more background-like.

We begin by computing the error from the output of O, which is asking whether

O(~x; ~w) classifies the event ~x in the training sample correctly. We can then define a

function that indicates whether the classification of event i was successful:

L(~xi; ~w) =
1

2
(yi − sign[O(~xi)])

This function is interesting, but as mentioned before we prefer the continuous classi-

fier, since it is more useful and easier to train. We therefore define a per-event error

as

δ(~xi; ~w) = (yi −O(~xi))
2 (9.2)

This function is continuous, so it is useful for optimization, but it has a slight technical

problem in that it prefers large numbers of weights being 1, since O(~x) ∈ [− ||~w||
N
, ||~w||
N

].

This means that even a perfect classifier would have δ(~x; ~w) = (1− ||~w||
N

)2. For a typical

problem, we expect ||~w|| << N , so we can approximate the error as (1 − 2 ||~w||
N

) and

add this as a correction to the error function. We will proceed without this correction

for the time being and add it at the final step in a slightly rearranged form.

We can now compute the total error:

δ(~w) =

NT∑
i=1

δ(~xi; ~w) =

NT∑
i=1

(yi −O(~xi))
2 (9.3)

=

NT∑
i=1

y2
i +

NT∑
i=1

O(~xi)
2 − 2

NT∑
i=1

O(~xi)yi (9.4)

=

NT∑
i=1

y2
i +

NT∑
i=1

N∑
j=1

N∑
k=1

wjwkzj(~xi)zk(~xi)− 2

NT∑
i=1

N∑
j=1

yiwjzj(~xi) (9.5)

where NT is the size of the training sample, and we have substituted the expression

for O(~x) in the third line. The first term is simply equal to the size of the training

sample and may be ignored. We rewrite the remaining terms in a more suggestive
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fashion

δ(~w) ∝
N∑
j=1

N∑
k=1

wjwk

(
NT∑
i=1

cj(~xi)ck(~xi)

)
− 2

N∑
j=1

wj

(
NT∑
i=1

yicj(~xi)

)

The terms in parentheses are not dependent on the weights, so we can then define

Cjk ≡
NT∑
i=1

cj(~xi)ck(~xi) (9.6)

Cy
j ≡

NT∑
i=1

yicj(~xi) (9.7)

(9.8)

and we are left with

δ(~w) ∝
N∑
j=1

N∑
k=1

Cjkwjwk − 2
N∑
j=1

Cy
jwj (9.9)

To equation 9.9, we add the correction from equation 9.2. However, it is not

always the case that one wants to exactly cancel the error, since minimizing over

the corrected equation could still cause overtraining, where the network picks up

statistical features of the training sample. This tends to happen when the network

turns on classifiers with only small effect on the total efficiency of the network in the

training sample. To combat this, we introduce a term λ||~w|| = λ
N∑
j=1

wj, where λ is

a tunable parameter. With this term added, our problem of training the network is

now equivalent to finding the ~w that minimizes

N∑
j=1

N∑
k=1

Cjkwjwk +
N∑
j=1

(λ− 2Cy
j )wj (9.10)

For encoding on the quantum annealer, it is more convenient to write this equation

in terms of variables si ∈ {−1, 1} instead of wi ∈ {0, 1}. This is straightforward by
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assigning wi = 1
2
(si + 1); plugging this into equation 9.10 gives

1

4

N∑
j=1

N∑
k=1

Cjk(sj + 1)(sk + 1) +
1

2

N∑
j=1

(λ− 2Cy
j )(sj + 1) (9.11)

If we assign

C
′

jk =
1

4
Cjk (9.12)

Cy′

j = Cy
j −

1

2

N∑
k=1

Cjk (9.13)

and drop the constant term 1
4

N∑
j=1

N∑
k=1

Cjk and set λ
′
= 1

2
λ, then equation 9.14 becomes

N∑
j=1

N∑
k=1

C
′

jksjsk +
N∑
j=1

(λ
′ − Cy′

j )sj (9.14)

9.2 Embedding the Problem on the Chimera Graph

To understand how this problem can be embedded on a quantum annealer, it is useful

to think of equation 9.14 as describing the parameters of a fully connected graph with

N binary nodes (KN) (shown for N=6 in figure 9.1) where each node nj has some

local field Bj and the coupling between nodes i and j has strength Bjk. One can

then map the value of the weight parameter sj to the node nj, the entries of Cy′

j can

be thought of as local fields Bj and the entries of C
′

jk map to Bjk. If one defines

the energy of the node as Ej = sj ∗ Bj +
N∑
k=1

Bjksjsk and the energy of the graph as

Egraph =
N∑
j=1

sj, then the problem of minimizing equation 9.14 is identical to finding

the lowest energy configuration of the graph for nj ∈ {−1, 1}.

Casting the problem in this manner is useful, because it allows us to more easily

visualize what happens when we encode the problem onto the D-Wave. Because of

engineering constraints, the D-Wave quantum annealer does not provide couplings

between every pair of qubits; instead it implements connections between a qubit and
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Figure 9.1: A fully connected graph with 6 nodes

at most six nearest neighbors [103–108]. One can interpret the allowed connects

between qubits as a graph, where each qubit is a node and each edge is a valid

connection between a qubit and a neighbor. In this interpretation the hardware

implementation of the D-Wave, known as the chimera graph, can be be visualized

as the graph shown in figure 9.2. It consists of 8 qubit unit cells (K4,4) each glued

together by joining qubits on the right hand side of the K4,4 horizontally and those

on the left hand side vertically. In all, the hardware graph consists of an 8× 8 array

of these unit cells, totalling 512 qubits.

Clearly, our problem encoded in equation 9.14 that maps to the KN graph in

figure 9.1 will not map directly to the chimera graph unless most of the entries of

C
′

jk are 0. Since this will not generally be the case, we use a method of embedding

the fully connected graph within a larger sparsely connected graph in such a way

that they encode the same problem. In the following we will refer to the graph KN

as the logical graph and its embedding into the chimera graph as the physical graph.

Similarly, a node in the logical graph is a logical node while a node in the physical

graph is a physical node.

The key element in embedding the logical graph into the physical graph is the

mapping of logical nodes to chains of physical nodes. A chain of nodes, for this
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Figure 9.2: The unit cell (K4, 4) of the chimera graph (left) and the arrangement of
the unit cells to create the full hardware graph (right).

purpose, is a set of nodes such that there is a path through the graph that touches each

node in the chain and no nodes outside the chain. More formally, a set of nodes within

a graph G is a chain if it forms a connected subgraph of G. Let Cp = {npi |1 ≤ i ≤M}

be a chain in the physical graph and {epi,i+1|1 ≤ i ≤M−1} be a set of edges such that

epi,i+1 connects nodes npi and npi+1. If we then set the coupling strength of the edge

epi,i+1 to Ep
i,i+1 = −|Echain|, we introduce terms in the network energy that look like

N−1∑
i=1

Ep
i,i+1n

p
in

p
i+1 = −|Echain|

N−1∑
i=1

npin
p
i+1, which is obviously minimized if npi = npi+1

(i.e. if all elements in the chain point in the same direction). If we take Echain mucher

larger than any other field in the problem, then this term would outweigh any other

possible term in the energy so the solution would always keep the bits in the chain

aligned.

Using this concept, we map each logical node in the problem to a chain of nodes
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in the physical problem. If we solve the problem in the physical graph, then we can

readout the solution in the logical graph by taking the value of the nodes within each

chain and setting the the corresponding logical node to that value. We have two

criteria for the chain mapping

� all chains must be disjoint

� For each pair of logical nodes nlα and nlβ (α 6= β), mapped to physical chains

{np,αi |1 ≤ i ≤ Nα} and {np,βi |1 ≤ i ≤ Nβ} respectively, there must be an edge in

the chimera graph connecting np,αi to np,βj for some 1 ≤ i ≤ Nα and 1 ≤ j ≤ Nβ.

The first point is just saying that chains cannot cross each other. The second point

says that each chain must be adjacent to every other chain in at least one place (two

chains Ci and Cj are adjacent if there exists at least one edge of the physical graph

connect connecting nodes n and m with n ∈ Ci and m ∈ Cj).

With these definitions we can write the exact definition of the implementation of

the problem on the physical problem given a logical problem and a mapping from each

logical node to a chain of physical nodes (called an embedding). Let {nli|1 ≤ i ≤ Nlog}

be the list of logical nodes and {npj |1 ≤ j ≤ Nphys} be the list of physical nodes. For

each nli define Ci ⊂ {npj} such that {np|np ∈ Ci} is the chain corresponding to logical

node i. We can then set the coupling strength on each node npj in the physical problem

to

Ep
j =


Eli
|Ci| if ∃i | npj ∈ Ci

0 if 6 ∃i | npj ∈ Ci

The disjointness of the chains implies that if i exists, it is unique. This is essentially

saying that the energies from the logical problem are evenly divided amongst the

nodes in the corresponding logical chain.

We have already described what happens to edges within a given chain, so all that

remains is to set the edges between chains. Let E l = {(i, j)l} be the set of edges in the

logical problem (i.e. the edges of the fully connected graph) and let Ep = {(l,m)p} be

the set of edges in the physical graph (i.e. the chimera graph). Let El
i,j be the strength
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of the (i, j)l coupling, and let Ei,j = {(l,m)p | (l,m)p ∈ Ep & npl ∈ Ci & npm ∈ Cj} we

can then set

Ep
l,m =


−E2

chain if ∃i | npl , npm ∈ Ci
Eli,j
|Ei,j | if ∃i, j | (l,m)p ∈ Ei,j

0 else

The first case occurs when the nodes are within a chain, the second case divides the

coupling between logical nodes over all the valid couplings between the chains, and

the third term sets all the rest of the couplings to 0. Again, the disjointness of the

chains assures that the cases are mutually exclusive and that if ∃i, j, they are unique.

We will require many more physical nodes than logical nodes to embed the prob-

lem. We measured the median number of required physical nodes as a function of the

problem size in figure 9.3 with the median taken over 200 random problems of each

logical size. The scaling with logical problem size is found to be roughly quadratic.

This comes from the linear scaling of the mean chain length shown on the right plot.

This scaling predicts that, on 512 physical nodes, we should be able to embed a logical

problem of up to 36 variables. A problem of this size, however, can only reliably be

embedded around half the time (since its a median), so to get a true upper limit on

the logical problem size one should look at the maximum physical problem size over

the 200 random problems, which is shown in figure 9.4. From this we conclude that

we can reliably embed problems with up to 32 variables. It has been shown by Choi

that the tree width of the 512 node chimera graph is 33, meaning that it can admit

an embedding of up to a theoretical maximum of 33 logical nodes, so this result is in

line with the prediction [105,109].

9.3 Practical Implementation of the Embedding

For consistency with the literature, we will adopt the traditional notation convention

for the fields being applied to the physical problem. We will use hi to mean the local

field on the ith node of the physical graph and Jij to refer to the coupling between
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Figure 9.3: The median number of physical nodes required to embed the logical
network (left) and the average length of the chains as a function of the chains (right)
as a function of the number of nodes in the logical problem.

nodes i and j of the physical problem.

In the actual implementation of the hardware, there are some additional compli-

cations to consider related to the physical limitations of the system. The first is noise

on the chip which leads to an uncertainty on the value of the coupling actually pro-

grammed onto any edge or node, compared with the intended value. Each individual

qubit has very slightly different physical properties, which are compensated for by

the design of the qubits (discussed in section 9.4), but this leads to slightly different

dynamic ranges for the magnetic fields that implement the biases and couplings (typ-

ically on order ≈ 10 picohenries). The architecture is designed so that the dynamic

range for the local biases (hi) is twice that for the inter-qubit couplers. For ease of

discussion, we will use units in which −1 ≤ Jij ≤ 1 and −2 ≤ hi ≤ 2. In these units,

it has been found that the actual value of the magnetic field implemented on the chip

has an uncertainty of ±0.05. Since our problem is invariant under uniform scaling of

the Hamiltonian, this noise model suggests that the optimal procedure is to scale all

the couplers up to the maximum value allowed by the dynamic range (i.e. so that

the largest coupler in the physical problem has max( |hi|
2
, |Jij|) = 1 in these units).

A second complication arises from the possibility that a chain is broken, which

is when the qubits within a chain are not all aligned. This creates a difficulty in

converting the physical problem back into the logical problem after optimization.

There are ways to convert broken chains, which will be discussed in the next chapter,
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but the best way to deal with them would be to prevent them from happening.

We said in the last section that the ideal way to prevent chains from breaking

would be to set the intra-chain coupling constant larger than any energy scale in

the problem to create huge energy penalties for breaking. The actual dynamics are

somewhat more subtle than this, because we still need the chains to be able to flip

when the correlation terms make it energetically favorable. Since correlation terms

touch only one or two qubit(s) in the chain, as the anneal progresses only a subset

of the qubits will see the energy penalty for (mis)alignment with a neighbor. What

needs to happen, then, is that if that energy penalty is sufficiently strong, it should

flip the qubits directly coupled, which should then induce the entire chain to flip. If

there energy coupling within the chain completely overwhelms all of the couplings

between adjacent chains, then this cannot happen and the correlation terms will have

no effect on the final solution.

If is difficult a-priori to solve this problem, so we instead set all intra-chain cou-

plings to−1 and tune the rest of the problem. Since the intra-chain Hamiltonian is not
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a part of the logical problem, we can arbitrarily rescale it with respect to the rest of the

problem. We have done studies measuring the optimal strength of the couplers with

respect to the problem and found that best performance is typically acheived when

the problem scale is slightly less than the intra-chain scale max(|J inter−chaini,j |) . 1.

This gives allows the flipping behavior required for the annealing to be useful, at the

expense of chains occassionally breaking or not all pointing in the same direction. A

method of dealing with broken chains is discussed in section 10.1.1.

9.4 The D-Wave 2TM Machine

The D-Wave 2TM is a machine built by D-Wave Systems Inc. that is designed to

implement a 512 qubit quantum annealer connected like the chimera graph of Fig-

ure 9.2. There is substantial ongoing research into whether the machine is a true

quantum annealer and whether it is able to use quantum correlations in a meaningful

way to solve problems [102, 108, 110–118]. One goal of our study is to see whether

this machine can solve large, physically motivated problems; we do not directly seek

to answer the question of whether this is a true quantum annealer, but we do look at

some metric of its performance versus other algorithms.

The qubits in the D-Wave 2TM are built from superconducting Josephson Junc-

tions (JJ), which are two superconducting materials separated by a thin layer of

insulator or non-superconducting material [119, 120]. The key insight for this ar-

rangement is that the supercurrent flowing across a JJ will be proportional to the

sine of the phase difference across the junction. The basic building block to the D-

Wave 2TM qubits are loops of superconducting wire with one Josephson junction and

an inductor called flux qubits. This creates an arrangement where an external applied

magnetic field will produce a persistent current around the loop. The flux through

this loop is quantized and, if an external magnetic field with a magnitude of half

the flux quantum is applied, it creates a Hamiltonian with two symmetric degenerate

minima separated by a tunable energy barrier.

These degenerate minima correspond to macrostates with all current circulating
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clockwise or counter-clockwise around the flux qubit. Figure 9.5 shows the shape of

the potential and the configurations of the ground and first excited states. The energy

levels of the ground state and the first excited state form the energy eigenbasis for the

qubit. An alternative basis representing the current or flux in the loop can be formed

by taking symmetric and antisymmetric combinations of the ground state and the

first excited states. The basis states in this representation correspond to clockwise

and counter-clockwise currents. Having these two alternate basis representations is

the feature that makes the flux qubit useful: the direction of current flow can be

mapped to 0 and 1 and can be easily read out at the end of a computation and, the

qubit can be placed in a uniform superposition of 0 and 1 by going to the ground

state in the energy basis.

Current

E
ne

rg
y

first excited state

ground state

↑ ↓

Figure 9.5: The configuration of the potential (black line) when the applied flux is set
to one half flux quantum. The red and blue lines show the symmetric ground state
and the antisymmetric first excited state.

The full configuration used in the D-Wave 2TM machine is described thoroughly

in [121]. It adds more loops of JJs to each flux qubit to give additional tunable

parameters for calibration and to allow the application of two distinct fields: one to

set up in the energy basis and the other to read out in the current basis. Coupling

between the qubits is achieved by adding additional loops that allow for mutual

inductance between adjacent qubits.

The qubits are fabricated on a silicon chip with Nb wires forming the loops and

JJs. The chip is cooled and operated at a temperature of 20 mK to reduce thermal
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noise (far below the critical temperature of Nb, which is 9 K). The annealing schedule

is fixed by the hardware design, with the only tunable parameter being the anneal

time (TA > 20µs). The system provides an API for programming field strengths onto

the chip, so the exact details are abstracted from the user. One sets a magnetic field

of a coupler or local field using the units described in section 9.3 where Jij ∈ [−1, 1]

and hi ∈ [−2, 2] and the API takes care of converting this into the actual bias field

that needs to be applied to any given loop. The API also reads the current values off

the chip at the end of the anneal time, returning a list of bits qi ∈ {−1, 1} representing

the measured current direction of each qubit.

A variety of sources of noise can spoil the evolution of the machine, the most

important of which is thermal noise. Given the size of the typical inductances (pH)

and current (µA) encoded on the device, typical energy level separations will be

≈ 10−5 eV, while 20 mK gives a thermal energy scale of 2× 10−6 eV. This means it

is relatively easy for thermal fluctuations to cause transitions between energy levels,

even when the system evolution is slow enough that the adiabatic theorem applies.

Furthermore, we have little control over what happens to the separation of the energy

levels during the annealing process, and as discussed in section 8.2 the difficulty of the

problem is controlled by g−2
min, where gmin is the minimum gap between the ground

state and the first excited state at any point in the annealing process.

Since the D-Wave 2TM machine operates at finite temperature, we will often be

in the regime where kT is of order gmin, and we will have some decoherence from

interactions of the system with its environment, we will invariably end up in a prob-

abilistic regime. As discussed, this means that the final state of the annealer will

be sampled from some probability distribution that will depend on the dynamics of

the interaction between the system and the bath (e.g. equation 8.9). In particular,

it will end up in the ground state with some probability related to the dynamics of

the annealing problem (e.g. equation 8.10 if the noise distribution is ohmic and the

anneal time fulfils the conditions of equation 8.8). To ensure that the ground state

is found, we can run the annealer multiple times on the same problem and take the

lowest energy solution we find. If each run of the annealer has a probability pg to end
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up in the ground state, then the probability that we find the ground state at least

once after R runs is

P (R; pg) = 1− (1− pg)R

Using this we can ensure that we find the ground state at least once with confidence

C

C ≤ 1− (1− pg)R (9.15)

Rlog(1− pg) ≤ log(1− C) (9.16)

R ≥ log(1− P (R; pg))

log(1− pg)
(9.17)

We can, therefore, find the ground state with probability C by running the annealer

at least log(1−P (R;pg)

log(1−pg)
times. Since the value of pg is usually extremely difficult to

calculate, we will usually measure pg on small problems where the ground state can

be found exactly by other means and then extrapolate to an estimate of pg for larger

problems.

9.5 Training Sample

We seek to train the network to recognize events which have a H → γγ decay and

distinguish it from events which have a di-photon system with similar invariant mass,

but arising from standard model processes. We generate events at
√
ŝ = 8 TeV

using PYTHIA 6.4 [13] for the signal H → γγ events with mH = 125 GeV produced

through gluon fusion and SHERPA [122] for the SM background events. We select

events that have two photons with |η| < 2.5 with one photon having pT > 30 GeV

and the other having pT > 22 GeV to simulate realistic detector acceptance and

trigger requirements. We also require that all events have di-photon invariant mass

122.5 < mγγ < 127.5, which ensures that we are looking only at the background

directly underneath the Higgs boson mass peak, and that the classifier cannot learn

to cut based on mass information (since this information is typically used to perform a
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fit). The major diagrams contributing to the training sample are shown in Figure 9.6.
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Figure 9.6: Diagrams generated for the training sample. The signal is gluon-fusion
higgs to two photons (top) and the background is standard model production of two
real photons (bottom).

We use the generator information about the photon kinematics as the variables for

the classifier. We identify 8 variables of interest about the problem, which are listed

in Table 9.1. These variables encode different information about the events that we

expect to differ slightly if there is a heavy particle producing the diphoton pair versus

production from other processes. Figure 9.7 shows the distributions of the variables

for the signal and background samples. One can see that all have slightly different

shapes in the different samples, though some are quite similar. These variables were

selected because they represent a large variety of different information about the

momenta and direction of the photons. The correlations of the photons from the

decay of the Higgs boson compared to the combinatorial background will typically

produce differences in variables where differences or separations of the photons are

considered.
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variable description
p1
T/mγγ transverse momentum of the highest pT photon divided by the in-

variant mass of the diphoton pair
p2
T/mγγ transverse momentum of the second-highest pT photon divided by

the invariant mass of the diphoton pair
(p1
T + p2

T )/mγγ sum of the transverse momentum of the two photons divided by
their invariant mass

(p1
T − p2

T )/mγγ difference of the transverse momentum of the two photons divided
by their invariant mass

pγγT /mγγ transverse momentum of the diphoton system divided by the in-
variant mass

∆η separation in the η direction of the two photons
∆R sum in quadrature of the separation in η and φ directions of the

two photons (
√

∆η2 + ∆φ2)
|ηγγ| the η value of the diphoton system

Table 9.1: The kinematic variables identified for use as inputs to the learner.

In order to use the treatment of the classifier discussed in section 9.1, we must

transform our kinematic variables into weak classifiers. A weak classifier should have

the property that p(~x ∈ S|z(~x) > 0) > p(~x ∈ S) and that z ∈ [−1, 1], which none of

our variables satisfy in their out-of-the-box form. Fortunately, it is easy to transform

a variable v into a weak classifier h using a standard procedure. Intuitively, what we

want to do is find a cut in the distribution where the S/B on one side of the cut is

higher than the S/B for the entire distribution. We then shift the distribution so that

this cut point is at 0 and then reflect about 0 if needed so that the higher S/B region

occurs for values greater than 0. Finally we rescale the distribution separately above

and below 0 so that it falls in the range [−1, 1]. Actually, we find that it is better

to truncate the distribution on either side so that the ranges are not driven by the

(low statistics) tails of the distributions, so we identify some maximum point in the

shifted variable and assign all values greater than this point to the classifier value +1

and some minimum point assigned to -1.

To make this discussion more precise, we detail the exact algorithm used to convert

a variable v into a weak classifier z. Using the notation that S(v) is the binned pdf

of the signal events over the variable v and B(v) is the binned background pdf, we

define several values and functions for each variable:
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1. Find the value vlow0 such that
vlow0∫
−∞

S(v′)dv′ = 0.7 and vup0 such that
∞∫
vup0

S(v′)dv′ =

0.7. vlow0 is now the point in the distribution such that 70% of signal events have

v < vlow0 , while 70% of signal events have v > vup0 .

2. Compute blow =
vlow0∫
−∞

B(v′)dv′ and bup =
∞∫
vup0

B(v′)dv′. blow now tells us how many

background events have v < vlow0 and bup tells us how many background events

have v > vup0 .

3. If blow < 0.7 let vshift(v) = vlow0 −v, otherwise if bup < 0.7 let vshift(v) = v−vup0 ,

otherwise reject the classifier. If blow < 0.7, it tells us that S/B improves by

cutting on v < vlow0 . If it doesn’t, then we check if bhigh < 0.7, in which

case cutting at v > vup0 improves S/B. If neither of these is the case, then the

distribution doesn’t lend itself to being cast as a weak classifier in a simple way.

For this study we reject these variables, but one could imagine going in and

defining these by hand.

4. Find v+1 such that
∞∫
v+1

S
[
(vshift)−1(x)

]
dx = 0.1 and v−1 such that

v−1∫
−∞

B
[
(vshift)−1(x)

]
dx =

0.1. v±1 are the truncation points for the weak classifier, if vshift(v) 6∈ [v−1, v+1],

then we will assign the output to +1 or −1 depending on whether it is above

or below the range.

With these definitions we define the classifier:

z(v) =



+1 if v+1 < vshift(v)

vshift(v)
v+1

if 0 < vshift(v) ≤ v+1

vshift(v)
|v−1| if v−1 < vshift(v) ≤ 0

−1 if vshift(v) < v−1

(9.18)

This has, by construction, the properties we require from a weak classifier. This can

be seen by noting that
∞∫
0

S
[
(vshift)−1(v′)

]
dv′ = 0.7 and

∞∫
0

B
[
(vshift)−1(v′)

]
dv′ <

0.7, so we can see that the probability of an event being a signal event given that
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vshift(v) > 0 =⇒ z(v) > 0 is

p(~x ∈ S | vshift(vx) > 0) =

NS

(∞∫
0

S
[
(vshift)−1(v′)

]
dv′
)

NS

(∞∫
0

S [(vshift)−1(v′)] dv′
)

+NB

(∞∫
0

B [(vshift)−1(v′)] dv′
)

>
0.7NS

0.7(NS +NB)
=

NS

NS +NB

= p(~x ∈ S)

Where NS is the number of signal events in the training sample and NB is the number

of background events.

Since our classifier in section 9.1 is relatively simple and our procedure for creating

the classifiers removes some information about the tails of the variables, we add more

variables to our problem that can capture some additional information about the

correlations between variables. There are several ways this can be incorporated, but

for this study we simply add the product terms between variables. Specifically, for

the 8 variables vi listed in Table 9.1 we compute the function

p(vi, vj) =



vi × vj if blowi > 0.7 & blowj > 0.7

vi × 1
vj

if blowi > 0.7 & blowj < 0.7

1
vi
× vj if blowi < 0.7 & blowj > 0.7

1
vi
× 1

vj
if blowi < 0.7 & blowj < 0.7

(9.19)

where blowi is the value computed in step 2 of the weak classifier procedure. Using

this prevents the case where we would multiply a variable which favors signal at

small values with one that favors signal at large values, which would washout the

discriminating power of their product. Using these product terms, the 8 original

variables of turn into 36 potential weak classifiers. 4 of these are rejected in the weak

classifier transformation, so we are left with 32 weak classifiers. These will be used

to train the classifier as described in this section.
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Figure 9.7: The distributions of the kinematic variables used in the learner. The
distributions are p1

T/mγγ (first row, left), p2
T/mγγ (first row, right), (p1

T + p2
T )/mγγ

(second row, left), (p1
T − p2

T )/mγγ (second row, right), pγγT /mγγ (third row, left),
∆η (third row, right), ∆R (fourth row, left), |ηγγ| (fourth row, right). In all plots,
the distribution for the signal is in red and the distribution for the background is in
black.
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Chapter 10

Results

We encode the problem of training the classifier on the D-Wave 2TM machine, run the

annealing with a 20µs anneal time and analyze the results. In Figure 9.2 we presented

the ideal chimera graph the machine seeks to implement, onto which we can reliably

encode 32 variables, which is based on the fit to the most challenging embedding

problem we found over 200 random instances. When the system is implemented in

practice, however, the actual graph is slightly different because not all the qubits are

activated (usually because they cannot be calibrated in situ to bring their performance

to acceptable levels about the noise threshold).

The graph with the dead qubits indicated is shown in Figure 10.1. There are 8

dead nodes indicated on the graph, taking the total number of qubits down from 512

to 504. While the number of lost qubits may be small, their placement within the

graph is significant because they interupt the connectivity of the graph and make

the placement of chains harder. Recalling our requirements for the chains from Sec-

tion 9.2, we need all chains to be disjoint and to be adjacent to each other chain in

at least one place in order to embed the fully connected problem. Losing one node,

which means losing 5-6 connections in the graph, complicates the embedding. The

net effect is that, rather than being able to embed up to 32 variables, we find we can

reliably embed up to 30 variables.

For all the tests done here, we define 200 training samples from our signal and

background Monte Carlo as described in Section 9.5. These samples are formed

by randomly selecting 10,000 events from each of the signal and background samples
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Figure 10.1: The chimera graph as it existed on the D-Wave 2TM machine used for
these tests. The green nodes are valid nodes that can be programmed, while the 8
red nodes are “bad” nodes that are disabled.

(without replacement). This gives us 200 training sets that have statistical differences

from each other, but represent the same processes.

10.1 Network Training Results

10.1.1 Mapping Physical Chains to Logical Nodes

The first stage of reading the output from the D-Wave 2TM is to understand how to

decode the chains in the output of the physical problem. The setup of the problem

expects that all the qubits in a single chain should point in the same direction, so that
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it can be mapped to a single qubit in the logical problem, but this does not always

occur in practice. When this is not the case, we say that the chain is broken. To get a

sense of how often this occurs, we encode a 27 variable problem onto the D-Wave 2TM

and run it 10,000 times for each of the 200 training samples. We then look within

each chain in the physical problem and check whether it is broken. Figure 10.2 shows

the fraction of chains that are not broken for each of the 200 training samples. One

can see that the fraction varies quite a bit between problems, with a few having up to

half of their chains intact but most having very few or virtually no unbroken chains.
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Figure 10.2: The fraction of non-broken chains in each of the 200 problems. This is
found by looking at every chain found in the 10,000 runs of the machine.

Figure 10.2 tells us that we will need a method to fix broken chains, rather than

discarding results when they happen. The simplest way to do this is to decide by

taking the majority vote of all qubits within a chain as the decision for the logical

qubit mapped to this chain. If there is a tie (equal number of up and down qubits),

we decide the value of the logical node by a coin flip (effectively, the machine is giving

us no information about this node). This method has the advantage of being very



202

quick to compute (requiring only a single pass over the physical network) and being

quite effective.

We evaluated two other potential algorithms to decode these problems, which

showed no substantial improvement over simple majority vote. This first was a

weighted majority vote, where the votes in the direction of the hi field were weighted

more highly than votes in the opposite direction. This showed a small improvement

in the performance for some instances, but is quite dangerous in the case that cor-

relations are more important than local fields and so is not used. The second was

an algorithm that iteratively used majority vote to fix one chain and then would

look at the nearest neighbors to each bit changed by the vote and re-evaluate the

neighbors based on the new energy landscape. This was found to slightly improve

the performance at the cost of a very long post-processing time, which depended on

the embedded graph size and the number of anneals. Since the goal is to speedup the

solution of these problems, this additional scaling is not desirable.

10.1.2 Solution Accuracy

Having defined our procedure for correcting broken chains, we now turn to the ques-

tion of whether the solutions returned solve our problem and, if so, how often. We

run the annealer 10,000 times for each of the 200 training samples, which produces

a set of 10,000 results for each sample (there can be duplicates within that set). We

decode these results by majority vote, as described above, to get a set of results for

our logical problem. We then compute the energies of each of the returned results and

take the state with the lowest energy to be the best solution found by the annealer.

To check whether the best solution found by the annealer is the true ground state

of the system, we use a CPU to exhaustively evaluate the energy of all 2N possible

configurations of the logical problem. The lowest energy state found in this method

must be the true ground state of the system. If the lowest energy state from the

annealer is the same as the true ground state, then we count the number of times

(M) that the state was found out of the 10,000 annealing runs and say that the

probability to solve the problem on the annealer is ≈ M/105. If the lowest energy
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state from the annealer is not the same as the true ground state, then the annealer

did not solve the problem and the solution probability is < 10−5.

Figure 10.3 shows the observed solution probability over the 200 training samples

for a problem where we select 21 variables (top plot) and 26 variables (bottom plot).

In all cases, fewer than 10 of the training samples were not solved correctly within

10,000 anneals, so we are not significantly biased by setting these few to 0. One sees

that the distribution has a shape that may not be well represented by the mean, with

most events being solved correctly in only a few percent of cases, so we also look

at the median problem as well. One can see that the 26 variable problem is solved

correctly less often, both on average (red lines) and in the 50th percentile case (blue

line). This also indicates that, despite the large number of broken chains seen in

Figure 10.2, we can still solve the problem effectively. The value of the mean and the

median as a function of the number of variables in the logical problem is shown in

Figure 10.4. This gives an indication of how the size of the problem influences the

success probability.

We can turn the fraction success probability shown in Figure 10.4 into an estimate

of the number of anneals required to produce at least one correct solution. We use

the Chernoff bound discussed in Section 9.4 (equation 9.17) to turn the plot of the

mean and median success probability as a function of the number of variables into

a plot of the mean and median number of anneals required to solve the problem, as

shown in Figure 10.5.

Figure 10.5 shows that with only a few hundred anneals on the machine, we can

solve a problem of average difficulty. This is a significant result, since it is one of the

largest problems encodable on the D-Wave 2TM machine (up to 350 qubits) and one

of the first applications of the machine to solving a large, real world problem.
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Figure 10.3: The distribution from the 200 training samples of the fraction of correct
results from the 10,000 annealing runs for 21 variables (top) and 26 variables (bottom).
The blue line shows the median of the distribution while the red line shows the mean.
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Figure 10.4: The fraction of the 10,000 annealing runs that returned the correct
results taken as the mean (black) and median (red) over the 200 training samples.

10.2 Performances of the Network in Classifying

Signal Events

Having shown that we can efficienctly find the ground state of the network, we now

evaluate how well it selects Higgs boson events and rejects continuum background. To

evaluate the classifier trained by the D-Wave 2TM machine, we will evaluate its receiver

operating characteristic (ROC) curve, which measures the level of signal efficiency and

background rejection acheived by cutting on the output of the classifier. For every

value v of the output of the classifier O(x) we compute the signal efficiency by looking

at the signal training sample (S) and evaluating

εS(v) =
1

|S|
∑
x∈S

Iv(x) (10.1)

where

Iv(x) =

1 if x ≥ v

0 else
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Figure 10.5: The time to solution with 99% accuracy in units of the number of
annealing runs as a function of the number of variables in the logical problem for the
mean solution (black) and the 50th percentile solution (red).

is the indicator function, so εS(v) is just the fraction of signal events with O(x) > v.

We also evaluate the background efficiency of the cut on the background sample (B):

εB =
1

|B|
∑
x∈B

Iv(x) (10.2)

and then define the background rejection as rB = 1− εB.

The second component we need to benchmark our result is another classifier

trained in a different way. We train a multilayer perceptron (MLP) [123, 124] us-

ing the TMVA package for ROOT [60] using the 8 input variables from Table 9.1.

It has been shown that MLPs can approximate any smooth function with a single

hidden layer [125], so we use a single hidden layer with 13 nodes in our network. We

have found that the performance of our network is not very sensitive to small changes

in the number of nodes or the initial seed values of our network (determined by train-

ing many times with randomized start values and training samples and observing

the results). The MLP gives us a classifier with a continuous output estimating how

signal-like or background-like an event is, which we can analyze using ROC curves in



207

an identical method to our linear classifier.

Figure 10.6 shows the ROC curve for the linear classifier trained on the D-Wave

2TM and the MLP trained using the TMVA package. One can see that they have quite

different shapes and in some regions the linear classifier gives better performance while

in some regions the MLP gives better performance. Here we use 26 variables to train

the network and set the value of the penalty term to λ = 0.01 × maxi(|hi|). This

level of performance makes the linear classifier already useful on its own, though we

will discuss ways to improve it in Section 10.4.
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Figure 10.6: The ROC curve for the linear classifier with 26 variables and λ =
0.01×maxi(|hi|) trained on the quantum annealer (green) and the MLP trained by
TMVA. The curves represent the average value of the classifier taken over the 200
training samples, but the spread is smaller than the line width for both the linear
classifier and the MLP.

Figure 10.6 showed the ROC with λ = 0.01×maxi(|hi|), but we can also investi-

gate how the performance is changed by increasing the value of λ. Figure 10.7 shows

the ROC for λ = 0.05 × maxi(|hi|) and λ = 0.80 × maxi(|hi|). One sees that the

ROC curve does not change substantially over a wide range of λ values (though it
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does become slightly worse at large values of the signal efficiency). This indicates

that the performance over most of the range is being driven by a few key variables

and the rest are being used to drive performance in the high signal efficiency regime.

This also gives us some insight into what the shape difference in Figure 10.6 is telling

us; the MLP has access to more degrees of freedom (since it can weight and combine

variables), which is most useful when you have very high signal efficiency (taking most

of the data), but the few variables that drive the linear classifier are most important

over the rest of the range.

Figure 10.7: The ROC curve for the linear classifier with 26 variables trained on the
D-Wave 2TM with λ = 0.05×maxi(|hi|) (green) and λ = 0.80×maxi(|hi|) (purple).
One sees that the performance of the classifier is not very sensitive over a wide range
of values of λ.

The remaining thing to check is whether our weak classifier is being over-trained

on the quantum annealer. Over-training occurs when the classifiers learn statistical

features of the training sample and reject real signal (or accept real background)

based on the presence of those features. Fortunately, it is easy to check whether over-

training has occurred, by looking at the distribution of the output of the classifier on

the training sample and on an orthogonal validation sample where the categories are

known. We have just such a sample for this study, since we sampled 10,000 signal

and 10,000 background events out of total samples that contained (22,000 and 42,000)
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events respectively. Figure 10.8 shows the distributions of the outputs for signal and

background samples for the training and validation sample, as well as the result of

the χ2/NDF test on the histograms. We see that there are no systematic deviations

in any of the samples tested and the χ2 test indicates good agreement in all cases.

This indicates that there is no over-training in any of these samples.
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Figure 10.8: Comparison of the output of the network for signal samples (red) and
background samples (blue) for the training sample (fill) and validation sample (points)
for λ = 0.01×maxi(|hi|) (left) and λ = 0.05×maxi(|hi|) (right). The χ2/NDF for
the histogram is reported on the plots as well.

10.3 Improving Success Probability and Performance

So far, we have looked at the ground state solution to our linear classifier problem

and evaluated its characteristics, we now investigate what happens if we include some

excited state solutions in our analysis. An excited state solution is a network that

does not minimize the energy of the logical Hamiltonian, which, if we go back to our

discussion in Section 9.1, is one that does not minimize the error of the classifier. If

we consider excited states within a few % in energy from the ground state, then these

encode solutions that almost minimize the error, so they should be valid classifiers

with slightly lower performance. Indeed, since our definition of the error is based on

how far away from +1 a signal event is placed and how far away from -1 a background

event is placed, which does not map directly to having the best ROC curve at every

point in the plane, it is entirely possible that some of the excited state ROC curves

outperform the ground state ROC at certain points.
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Let us consider some set of excited states {ei : 1 ≤ i ≤ N}; for each one we build

a ROC curve Ri(s) which gives the level of background rejection as a function of the

level of signal efficiency s. Letting R0(s) be the ROC for the ground state, we can

then define a new ROC curve

Rsup
N (s) = max

0≤i≤N
Ri(s) (10.3)

at every point of signal efficiency s, this picks the best network from all the ones we

consider. Intuitively, the purpose of the ROC curve is to help choose a working point

for the signal efficiency based on its level of background rejection (or vice-versa); this

Rsup
N can be used in the same way except when we choose the working point we also

choose the network that gives us the best performance at that working point.

With this definition, we can now sensibly define the ROC of the top N of solutions.

We look at all solutions returned by the annealer and choose the NP soluctions that

have energy within P% of the ground state energy and compute the ROC using

Equation 10.3. We evaluate this for P = 1%, 2% · · · , 10% in Figure 10.9, where we

can see the ROC curves for the excited states in the whole range in the top plot

while the bottom plot shows the same curve zoomed in on the x and y axes to show

the structure. We can see the gain from adding the excited states in Figure 10.10,

which shows the difference between the background rejection for the top N% excited

states and the ground state. We see that adding the excited states gets up to a

1% improvement in background rejection at a given signal efficiency. This effect is

more important than this numerical value indicates: an additional 0.5% background

rejection in a place where we already reject 92% of the background is a 6.3% reduction

in remaining background.

We have seen that adding excited states gives better performances for the classifier,

but this doesn’t mean that we could run the annealer just once and take whatever

excited state it returns. The annealer samples the probability distribution of the

evolvingsystem, so to ensure the level of performance seen here, we need to make

sure that the results at least sample this distribution well. Since Figure 10.9 takes
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Figure 10.9: The ROC curves for the classifier with 26 variables trained on the D-
Wave 2TM using the top n% of excited states to make the ROC curve. The top plot
shows the entire range of the curve, while the bottom plot zooms in on a region of
interest around the center to show the separation.
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N −R0, so it reflects the additional background rejection
gained from including excited states at each point of signal efficiency.

the supremum over many different excited states, we need a large number of these

to acheive this level of performance, any one of the excited states may outperform

the ground state at a single point of signal efficiency, but is extremely unlikely to

outperform it everywhere (it is possible for this to happen, since the λ penalty means

we technically don’t choose the absolute minimum error network). The excited states

should be treated as a nice benefit to the performance of the classifier, but the goal

should still be to find the ground state at least once with high probability.

10.4 Current Status and Outlook

The goal of this study was to use the D-Wave 2TM machine to solve a real problem in

high energy physics, benchmark the performance of the classifier and investigate the

dynamics of the machine output. This has been successfully achieved and we have

produced a classifier that is competitive with classifiers found using more mature
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classical technologies. There are a wide variety of additional studies that have been

considered during this project but left for future study in favor of producing a proof-

of-concept result.

The first is to optimize the variable selection that goes into this problem and see

if there are better ways to select the variables and convert them into weak classifiers.

Our technique works well for the problem under consideration, but it is deliberately

sacrificing information on the tails of the distribution that might be more important

for other problems. We have found that we can rank input variables based on the

value of λ at which they are always included in the classifier, which suggests the

possibility of dynamically pruning useless variables and including other.

We also notice that it may be possible to embed substantially more variables into

the network by cleverly manipulating the Cij matrix. We operated from the point of

view that the Cij matrix defines a fully connected graph, which it technically does.

With the noise on the couplers, however, we would be tempted to say that any value

of Cij < 0.05 is essentially mapped to a random value when applied to the physical

problem. Using this information, it would be possible to dynamically sparsify the

Cij matrix making the initial graph non-fully connected and allowing a larger initial

graph to be embedded into the same physical size. Future versions of the D-Wave

machine may improve the noise model, so it is a bit dangerous to rely on this going

forward, but it could have interesting application in the short term.

Finally, we see the simple linear classifiers we have built as an ideal candidate for

boosting. Boosting is an algorithm where one trains a classifier, evaluates it on all

members of the training sample, weights each event in the sample based on whether

the event was correctly classified and then trains a new classifier. This procedure

is done iteratively and at the end one has a large collection of classifiers, each of

which will produce a different output on a single event. This has been shown to

dramatically increase the power of simple classifiers, such as binary decision trees.

One of the key criteria for doing the boosting effectively is that each of the individual

classifiers should be hard to over-train, which our linear classifier is.

There are some technical challenges that would need to be addressed for boosting
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to be usable with this training method. To boost, one needs to be able to apply

weights to the training sample, which would essentially mean recalculating the Cij

and Ciy values after each iteration in a weighted way. This would require a procedure

where the network is trained on the annealer, the training is read off and the network

computed, then the Cij and Ciy are recomputed and the new problem is written onto

the annealer. This is certainly possible, but would be relatively slow at least in the

current instantiation of the API. Furthermore, one would need to study how a case

where the ground state is not found at one of the steps would influence the training;

my guess is that it would not be a problem, but it would need careful study.

Quantum machine learning is a rich field with many potential applications to HEP

and other fields. We have performed one of the first studies that has demonstrated

a real application of a classifier trained on a quantum annealer. It is also the first

study of which we are aware that applies a learner trained on a quantum annealer to

a problem in HEP. We have demonstrated that this training can be done successfully

and the success probability is sufficiently high to be usable. The performance of

the classifier is comparable to the performance of classifiers trained using classical

methods, and we have shown that the nature of our training has tangible benefits in

the form of the excited states.
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