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Abstract

The ability of cells to establish and remember their gene expression states is a cornerstone of

multicellular life. This thesis explores how gene expression states are regulated dynamically,

and how these regulations differ in individual cells even under the same conditions. These

properties underlie cellular state decisions and often determine the balance between different

cell types in a multicellular system, but are typically inaccessible to conventional techniques

that rely on static snapshots and population averaging. We address these issues in two

separate contexts, one natural and one synthetic, using time-lapse imaging and other single-

cell techniques.

In the first context, we use embryonic stem (ES) cells, which were shown to exist in a

mixed population of at least two cellular states with distinct differentiation propensities, as a

model to study natural dynamics of cellular states. These cells display rare, stochastic, and

spontaneous transitions between the two states, as well as more frequent fluctuations in gene

expression levels within each state. Our system enables us to further investigate how these

dynamics are modulated under a cell signaling environment that enhances pluripotency,

and the role DNA methylation plays in maintaining these states.

In the second context, we investigate how chromatin regulators (CRs), part of a complex

system that enables cells to modulate gene expression and epigenetic memory, operate

dynamically in individual cells. We build a synthetic platform to measure the isolated
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effect of recruitment and de-recruitment of four individual CRs. In contrast to conventional

transcription factor control, all CRs tested regulate gene expression in all-or-none events,

controlling the probability of stochastic transitions between fully active and silent states

rather than the strength of gene expression. The qualitative and quantitative responses of

a cell population are determined by the set of event rates associated with each CR, as well

as the duration of CR recruitment. These results provide a framework for understanding

and engineering chromatin-based cellular states and their dynamics.
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Chapter 1

Introduction

The development and operation of a multicellular organism is an intricate business. Devel-

opment begins with a single cell, the fertilized egg, and spontaneously unfolds over many

cell divisions and cellular differentiation, eventually giving rise to an adult body. Take hu-

mans as an example: An adult human consists of about 30 trillion cells [1], in over hundreds

of different cell types [2]. Some of these cell types can be incredibly stable – for instance,

a neuron can maintain its identity for decades. On the other hand, some cells can switch

cell types when necessary, a property that is especially critical during development and

in response to environmental signals. With a few exceptions, most notably in the adap-

tive immune system, where genetic recombination and mutation are harnessed to generate

diversity, all of these cells rely on essentially the same genome [3].

How do cells sharing the same genetic material give rise to different cell types and

provide the remarkably diverse range of functions? This is possible because cells can inhabit

different cellular states, defined as a collection of expression states across the various genes

within a genome (Figure 1.1A). Within a cellular state, specific genes that are required

for a particular cell type are set in active expression, while those that are unnecessary are

repressed. Just as importantly, cells need to remember who they are by maintaining these

gene expression states over time, and be able to switch to different states when needed.
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Balance / ratio?
Timing?
Memory / stability?
Regulation?Cellular state

Cell state A Cell state B

Gene expression states
Gene A     Gene B     Gene C  .....

High Low High

Function and phenotype
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Figure 1.1: Cellular states and their dynamics
(A) A cellular state is defined by the collection of gene expression states, which determine
the function and phenotype of the cell. See Section 1.1 for detailed discussions.
(B) Fundamental questions about cellular state dynamics and regulation.

Many genome-wide studies have revealed profiles of gene expression levels of different cell

types, as well as specific transcription factors whose expressions are required for these

cells [4–6]. Nevertheless, fundamental questions about gene expression states remain to be

answered (Figure 1.1B). For instance, how are gene expression states regulated? What is

the expression dynamics of a gene within a gene expression state? What happens when a

gene switches from one state to another? How fast and frequently do switches occur, and

how long do the new states last? Understanding these processes could eventually enable us

to control cellular identity in synthetic systems and correct aberrant gene expression states

in diseases.

A relevant issue in the study of gene expression states is the inherent heterogeneity

in biological systems. This heterogeneity can manifest in the variability in gene expression

levels among individual cells as well as the way these cells behave in under the same condition

(reviewed in [7], see also [8, 9]). As a result, the study of cellular states may be obscured.

Nevertheless, phenotypic variation may be a desirable feature in a system in certain contexts,

such as to brace the system against fluctuating environmental conditions (bet-hedging) [7,
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10–12]. Using single cell techniques, we can directly characterize the extent of heterogeneity

in a system and separate that from the underlying changes in cellular states.

This thesis explores the properties of cellular states and seeks to understand how cells

set, maintain, and alter their memories in gene expression. We employ single-cell techniques

to investigate these questions in two separate contexts. Embryonic stem (ES) cells exist in

mixed populations of at least two cellular states. Chromatin regulators (CRs) are members

of a complex system that is capable of establishing gene expression states and memory.

These two contexts are used as a natural and a synthetic model system, respectively, for

the the study of gene expression states. In the remainder of this chapter, we further our

discussions on cellular states and heterogeneity, including a review on the molecular mecha-

nisms behind these phenomena. We also provide the background for ES cells and chromatin

modifications, and present the specific questions related to these systems. In Chapter 2,

we measure natural dynamics of genes that are critical to the identity of ES cells. These

naturally occurring dynamics allow us to distinguish the fluctuations in expression levels

inherent to a gene expression state from those that arise from cells switching between dif-

ferent states. In Chapter 3, we build a synthetic system to study how the expression of a

gene responds to active recruitment and de-recruitment of different CRs. This system of

artificial perturbations using CRs enables us to isolate the different dynamic responses in

gene expression and types of memory that each of these regulators can produce. Further-

more, these results form the foundation of a unified quantitative model, which allows us to

formalize our understanding of the regulation of cellular states, and engineer new synthetic

genetic circuits that take advantage of these regulations. More generally, the results reveal

a recurring theme: in both contexts studied, transition of a gene from one state to another

occurs through stochastic and mostly digital, switch-like events. In both cases, transition
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rates are tunable by either changing the signaling environment (in ES cells), or switching

the regulators recruited (in the synthetic recruitment system). Together, we propose that

these dynamic properties enable multicellular systems to do two things: to establish stable,

well-defined gene expression states, and to tune the fraction of cells in each of these states.

This is discussed in detail in Chapter 3.

1.1 Cellular and Gene Expression States

1.1.1 What are cellular states?

One way to define a cell type or cellular state is at the phenotypic level – what morphology

a cell adopts and what function it is capable of performing. For instance, a neuron can

be excited electrically and communicate with other neurons through synaptic connections;

a näıve T lymphocyte can be activated into different types of mature T cells to carry out

cell-mediated immunity. Another approach to define a cell type is by the cell’s potential

to differentiate into other cell types. In mouse blastocysts, for instance, trophoblast cells

can give rise to the placenta, while cells in the inner cell mass can give rise to the embryo

proper. However, these broad definitions of cell types can be problematic, since many of the

functions and differentiation potentials of cells are not static but can fluctuate over time.

For example, when nutrients are limited, the soil bacteria Bacillus subtilis can transiently

become genetically competent, a differentiated state that allows DNA uptake from the

environment [13]. Additionally, even cells that are grown under the same condition and

have similar morphologies may not share the same differentiation potential. For B. subtilis,

only about 10-20% of all cells will become competent, even when conditions are optimal and

applied across the entire culture [14]. The study of cellular states therefore critically requires
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indicators that can track cellular functions and differentiation potentials dynamically, and

in individual cells. This role could be served by the expression of key regulatory genes.

Both the functions and differentiation potentials of a cell ultimately originate from the

activities of and interactions between different biomolecules in a cell, including DNA, RNA

and proteins. The transcription of genes from DNA, partly controlled by the levels of

transcription factors in the cell, governs the levels of RNA and proteins, and through their

activities, the rate of biochemical reactions inside the cell. Furthermore, the level of some

proteins and RNA (e.g. transcription factors and miRNA) can feed back into regulating

gene expression and, collectively, these interactions form the genetic circuits. Thus, the

expression levels of different genes reflect a cell’s function as well as the active interactions

within the genetic circuit at a given time. Here, we define cellular state as the collection of

gene expression states in a cell. Since gene expression is an intrinsically stochastic process,

a gene expression state does not deterministically specify a single expression level of a gene

in the cell. Instead, it is associated with a probability distribution of gene expression levels

[15, 16]. This inherent variability in gene expression levels within a single cellular state can

obscure the identification of cellular states, as we will discuss in detail in Section 1.2.1.

1.1.2 How do cellular states arise?

The implementation of a cellular state requires a coordinated program of gene expression –

selective expression of genes required for the cellular function and repression of those that

are unnecessary. This program needs to persist for as long as it is necessary for the cellular

state, the timescale of which corresponds to the level of gene expression memory. Regulation

of gene expression and memory can be achieved by at least two mechanisms at the molecular

level – chromatin modifications and transcription feedback. Broadly speaking, chromatin
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modifications can control the accessibility of a gene locus to transcriptional activity, while

transcription factors can interact with each other to form feedback circuits that lock in

expression levels of the genes involved. These modes of action are discussed in detail below.

Nevertheless, these two systems are not mutually exclusive, as some transcription factors

are known to alter chromatin modifications, and factors that primarily alter chromatin

modifications can regulate each other and form a circuit.

Chromatin modifications and regulators

In eukaryotes, DNA is wrapped around histone proteins to form nucleosomes, the basic

structural units of chromatin. Without altering the sequence of the DNA, and therefore

the identity of the RNA and protein encoded, chromatin can be covalently modified to reg-

ulate the expression of genes nearby [17]. The first chromatin modification discovered was

cytosine methylation on DNA at CpG dinucleotides, which was associated with repressed

gene expression in vertebrates [18–20]. In the two decades that followed, many more chro-

matin modifications were identified, including cytosine hydroxymethylation on DNA, and

methylation, acetylation, phosphorylation, ubiquitination, as well as other modifications on

various amino acid residues on the N-terminal of histone proteins [17, 21, 22]. Methylation

and hydroxymethylation of DNA in vertebrate genomes mostly occur at CpG sites. In con-

trast, modifications on histones are more complicated, since modifications can be added to

histones at different amino acid residues and for different number of times. For instance,

histone 3 (H3) can be methylated at different lysine residues (e.g. H3K4, H3K9, H3K27

etc.), and for one to three times (e.g. H3K4me, H3K4me2, H3K4me3, H3K9me etc.).

Many proteins, known as chromatin regulators (CRs), have been identified to alter chro-

matin modifications and mediate their effects on gene regulation. These regulators include
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factors that can specifically add or remove modifications (writers and erasers, respectively),

as well as factors that specifically bind to the modifications (readers). Readers can, in turn,

recruit other factors, including writers and erasers. Take DNA methylation, for example;

methyl groups are specifically added to CpG dinucleotides by DNA methyltransferases (Dn-

mts, writers), and removed through a partially mapped mechanism that involves conversion

of methylcytosine to hydroxymethylcytosine by Tet proteins (erasers). Writers and erasers

are often part of larger chromatin-modifying complexes that include other subunits with

context-dependent DNA-binding properties. Finally, methylated CpG can be specifically

bound by a family of methyl-CpG-binding proteins, including MeCP2 (readers).

Many chromatin modifications and regulators have been studied extensively and asso-

ciated with gene activation and repression, as well as different degrees of gene expression

memory [17, 23]. For example, DNA methylation and H3K9me3 at a gene promoter are

associated with stable and inheritable gene silencing [24, 25]. In contrast, histone acetyla-

tion typically has a high turnover rate and its presence at a gene promoter is associated

with genes that are being actively transcribed [26, 27]. A change in gene expression pattern

without altering the DNA sequence is one of the definitions of epigenetics, though the use

of this term to describe non-heritable changes is a subject of debate [28–30]. Here we adopt

the broader definition of epigenetics and will refer to chromatin modifications and epigenetic

modifications interchangeably in the remainder of this thesis. The mechanisms by which

chromatin modifications regulate gene expression and memory will be explored in greater

detail in Section 1.4.
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Transcription feedback

Transcription factors are proteins that bind to specific DNA sequences and alter the level

of transcription of adjacent genes, either up-regulating (activators) or down-regulating (re-

pressors) them. In eukaryotes, the mechanisms of transcription regulation fall into two

conceptual categories [31]. In the first category, transcription factors can control recruit-

ment and activity of the transcription apparatus. Activators can physically bind to the

RNA polymerase II-containing transcription initiation apparatus and recruit it to the tar-

get gene, or promote transcription elongation by the polymerase. In contrast, repressors

can interfere with the binding of the transcription initiation apparatus to DNA, or compete

for the activator binding sites. In the second category, transcription factors can recruit

CRs that write or erase chromatin modifications. Although transcription factors in this

second category may regulate gene expression and memory through chromatin modifica-

tions, non-chromatin-modifying transcription factors are themselves sufficient to generate

gene expression memory through the formation of transcription factor circuits. We will

focus our discussion on this emergent property of transcription factor circuits.

Because a transcription factor binds to DNA by recognizing a specific binding site, it

can be recruited to an arbitrary number of genes, including the transcription factor itself,

simply by having its binding site inserted near the promoter of these genes. This allows the

transcription factor to regulate the expression of its target genes in a concerted manner.

These target genes may code for proteins that carry out various biological functions, or

other transcription factors. Different transcription factors can therefore connect to form a

regulatory network, i.e. a transcription factor circuit.

The dynamic and steady-state behaviors of a transcription factor circuit depend on the

wiring between different factors, and have been the subject of active research, combining
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experiments and mathematical modeling, since the 2000s (reviewed in [32, 33], also see [34]).

Genetic circuits that display oscillation [35], multi-stability [36], reduced variability [37],

switch-ability [38], or excitability [13] were synthesized and tested in living cells. Many of

these circuits contain motifs where a transcription factor regulates its own expression, either

directly (auto-regulatory) or indirectly (through other factors). These motifs are shown to

produce well-defined gene expression levels and/or result in gene expression memory [39].

For instance, a single transcription factor that down-regulates its own expression creates a

simple negative feedback loop, which produces stable expression of the factor with a reduced

range of fluctuation [37]. In contrast, positive feedback loops, in their simplest forms as

one-node (auto-regulatory) [36] or two-node (two factors that mutually repress each other)

[38] systems, can generate bi-stability. Whereas a one-node system can either be fully OFF,

or locked into an ON state, a two-node system can be locked into expressing either one, but

not both, of the two factors. Effectively, a system with a positive feedback loop can generate

more than one gene expression state. Since transcription factor molecules are partitioned

more or less evenly into daughter cells over cell division events, gene expression regulation

can be maintained over these events. As a result, the expression state in a cell can persist

through cell generations. Transcription feedback can therefore be used, and is used, in both

natural and synthetic systems to establish and maintain gene expression states.

1.2 Heterogeneity in Multicellular Systems

The study of cellular and gene expression states cannot be complete without considering

heterogeneity in biological systems. Individual cells within an isogenic population and

under the same growth conditions can exhibit variation in the level of cellular molecules

and their phenotypes [8, 9, 16, 40]. As a result, cells that inhabit the same state can exhibit
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different expression levels of one gene (Figure 1.2). On the contrary, distinct states that

are close to each other in their mean expression levels can overlap in their expression level

distributions at the population level, making it difficult to discern the state of a cell with

just one measurement of the expression of one gene. In this section, we will explore the

origins of heterogeneity in multicellular systems, and the experimental techniques used to

study this phenomenon.
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Figure 1.2: Cell-cell variability in gene expression levels Cells within a single state
can exhibit variation in gene expression levels due to gene expression noise (left hand side,
blue and red arrows indicate variance in each distribution). Mixture of cells in different
states can convolute the estimation of the number of states within the system, and the
assigning of state to cells found within the overlapping range of expression levels (right
hand side, magenta arrow).

1.2.1 How does heterogeneity in gene expression levels arise?

In theory, variability in gene expression can arise through at least two mechanisms – the

co-existence of multiple cellular states and the inherent stochasticity in the gene expression

process. On one hand, a cell population can exist as a mixture of cells that are in different

states. As outlined in Section 1.1.2, these states can be established either by chromatin

modifications or through multi-stability generated by feedbacks in the transcription factor

circuit. Both of these processes can lead to memory in gene expression levels associated

with an individual cell. As a result, individual cells in a cell population can express a gene

at different levels, depending on what states they are in.
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On the other hand, the gene expression process itself has long been proposed to con-

tribute to significant variability in gene expression levels. This phenomenon, termed gene

expression noise, arises due to the inherent stochastic nature of the gene expression process,

which involves random interactions of small numbers of molecules and stochastic switch-

ing between different chromatin configurations of the promoter. These models have been

reviewed extensively [7, 16], and are supported by an abundance of recent experimental

studies [9, 40–42]. As a result of gene expression noise, even cells that inhabit a single state

can display a range of expression levels of a gene.

As discussed above, variability in gene expression can confound the investigation of cel-

lular states. Nevertheless, gene expression noise can also be important to cell fate decision.

In some cases, cells have been shown to take advantage of this noise in gene expression and

augment it through positive feedback to generate phenotypic variation to the benefit of the

multicellular system as a whole [7, 13, 43, 44]. The quest for quantifying heterogeneity is

therefore twofold – to distinguish the underlying cellular states from noisy gene expression,

and to characterize the extent of noise in different genes, which may help us understand

how noise contributes to cellular behaviors [45–47].

1.2.2 Techniques to study cellular states and heterogeneity

Until recently, studies of cellular states, using genome-wide techniques such as microarray

and sequencing, have relied on static snapshots to provide average measurements over large

numbers of cells, typically due to the minimal initial material required by these techniques

[4–6, 48]. These assays provided a vast reserve of knowledge on the average levels of gene

expression associated with different tissues and cell types, but were unable to access the

variability in gene expression among individual cells. Except in exceptional cases where
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gene expression heterogeneity results in observable phenotypic differences, such as in fur

color of calico cats due to random X chromosome inactivation [49, 50] and eye color of

mutant Drosophila due to position-effect variegation [51, 52], this heterogeneity among

otherwise identical cells can only be visualized using in situ hybridization or other imaging

techniques [53, 54]. Alternatively, cell-cell variability may be detected using non-imaging

based methods at the single-cell level when the limitation of initial sample size is overcome

[55, 56]. These techniques, however, remain limited to static measurements due to their

reliance on fixed or lysed cells.

With the advent of fluorescent proteins [57], it has recently become possible to measure

and follow the expression levels of specific genes in living cells. Combining fluorescent

reporter transgenes with techniques that enable signal quantification of individual cells,

such as flow cytometry and fluorescence time-lapse microscopy, now gives us the tools to

separate the dynamic behaviors of individual cells from the averaged properties of a cell

population. These tools also allow us to investigate the dynamic nature of transcription

circuits [13, 35, 58, 59].

Together, quantitative analysis of single-cell dynamics can help us identify cellular states

and reveal fundamental properties of the processes that establish and regulate these states.

This thesis explores the properties of cellular states and their regulatory dynamics at the

single-cell level. We use ES cells as a model system to study naturally occurring multi-state

dynamics, and a inducible CR recruitment platform as a synthetic model system to study

the dynamics of cellular state regulation. In the next two sections, we will provide further

background for these systems.
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1.3 ES Cells, Cellular States and Dynamic Heterogeneity

1.3.1 What are ES cells?

After fertilization, a mammalian egg undergoes several rounds of cell cleavage to give rise

to a spherical mass of cells known as the morula, followed by compaction of these cells

and further cell divisions to generate a blastocyst. The early blastocyst (∼3.5 days post

fertilization, or dpf, in mice; ∼5 dpf in humans) consists of a cavity and chiefly two distinct

lineages of cells (Figure 1.3): the trophectoderm (TE), which forms the outer layer of the

blastocyst, and the inner cell mass (ICM), which resides in one side of the cavity. It is from

the ICM that ES cells are derived, by explanting and culturing in a supporting medium

[60–62]. The inner cell mass (ICM) and ES cells are both pluripotent, in that they can

contribute to all cell types within the body when they are re-introduced into the embryo.

Additionally, ES cells can be differentiated into various cell types in vitro. Furthermore, ES

cells can be propagated extensively in culture while largely maintaining pluripotency over

many generations, a characteristic called self-renewal. These properties make ES cells a

very attractive candidate for therapeutic research, as they may be manipulated for a poten-

tially unlimited supply of different cell types that can be used for regenerative treatment.

Furthermore, they also serve as an in vitro model for the study of differentiation.

25 years after ES cells were first derived from mouse blastocysts, a group led by Shinya

Yamanaka described a new method for generating pluripotent stem cells, which catapulted

the field of stem cell research and therapeutics to a whole different paradigm [63]. In this

method, adult fibroblast cells can be reprogrammed to gain pluripotency by forced expres-

sion of only four transcription factors – Oct4, Klf4, Sox2, and c-Myc. These reprogrammed

cells, coined induced pluripotent stem (iPS) cells by the scientists, are similar to ES cells in
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Figure 1.3: Lineage specification in early embryonic development

their ability to contribute to all somatic cell types. Unlike ES cells, however, iPS cells can

be derived directly from a patient and therefore share the same genotype. This property

provides iPS cells with the distinct advantage of obviating immune rejection when these

cells are treated and returned into the patient. The invention of iPS cells represents a big

stride towards personalized medicine, and earned Yamanaka a Nobel Prize in 2012 – a prize

he shared with John Gurdon for the latter’s research on somatic cell nuclear transfer in

1962 [64] – with simultaneously one of the shortest and longest delays between discovery

and award in the history of the prize.

1.3.2 Heterogeneity in stem cells

In the late blastocyst stage (∼4.5 dpf in mice, ∼6-7 dpf in humans), the ICM from early blas-

tocyst further segregates into two immediate lineages with distinct differentiation propen-

sities – epiblast, from which the three germ layers are derived, and primitive endoderm,

which lines the boundary between epiblast and the blastocyst cavity, and from which the
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yolk sac is derived. Similarly, ES cells are able to contribute to both epiblast and, at a

lower frequency, primitive endoderm when introduced into an early blastocyst to form a

chimera [65]. The transcription factors Nanog and Gata6 were shown to be necessary for

the establishment of epiblast and primitive endoderm, respectively [66, 67].

Surprisingly, it was later discovered that Nanog and Gata6 are expressed in opposing

salt-and-pepper patterns in the ICM of early blastocysts [68], indicating at least two cellular

states within the population. A similar pattern of Nanog expression was later found in

ES cells (Gata6 expression was also detected, albeit at a lower level) cultured under the

standard pluripotency supporting condition [69, 70]. These results suggest that the ICM

and ES cells inhabit at least two cellular states. Nevertheless, the gene expression patterns

in these cells are not deterministic, as application of inhibitors along the FGF/MEK/ERK

signaling pathway can force all cells into the higher Nanog expressing state in both contexts

[71, 72]. Finally, Oct4, a pluripotency-associated transcription factor that is expressed in

epiblast, but not primitive endoderm, is expressed uniformly in both the ICM and ES cells,

indicating that these cells are not merely mixtures of differentiated epiblast and primitive

endoderm cells. Together, these findings shattered earlier assumptions that pluripotent

cell types exist as homogeneous populations, and heralded the idea that spontaneously

generated gene expression heterogeneity may serve to prime cells into distinct lineages once

differentiation commences.

Similar discoveries of gene expression heterogeneity have since been made in hematopoi-

etic progenitor cells [47] and human breast cancer cell lines [73], as well as with other

transcription factors in ES cells [74, 75]. These observations indicate that heterogeneity

may be a common phenomenon among multipotent systems and of clinical significance. In

many of these examples, the heterogeneity is in a dynamic equilibrium, such that individ-
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ual cells switch between different cellular states. This was indicated by experiments sorting

cells into subpopulations using the level of surface markers or fluorescence reporter, and

following these subpopulations at subsequent time points. In ES cells, for instance, sorted

Nanog-high and Nanog-low subpopulations can slowly give rise to cells of the opposite state

on the timescale of days [69]. In a separate context, human breast cancer cells can be

sorted into stem-like, basal, or luminal states, with the stem-like cancer cells having higher

tumor-seeding ability and drug resistance [73]. Critically, each of these cell types is capable

of regenerating all three cell types, suggesting that a treatment regime that only targets

stem-like cancer cells is unlikely to completely ablate tumor malignance, an implication that

is of obvious clinical relevance.

1.3.3 Transcription factor circuit in ES cells

What is the origin of the heterogeneous yet dynamic system in ES cells? A candidate

mechanism, as we have introduced in the previous section, is transcription feedback. An

excitatory [13] or oscillatory [35] transcription factor circuit, for example, can generate gene

expression patterns that are both heterogeneous and dynamic. In order to obtain a picture

of the effective transcription factor circuit in ES cells – a minimal circuit that can describe

the essence of the observed dynamics and degree of heterogeneity – one needs to first identify

the nodes (transcription factors) involved in the circuit and the wiring between them.

Transcription factors connected in a circuit are likely to have their expression levels rise

and fall together (or in opposite directions, if the connection is inhibitory). Using biochem-

ical techniques, such as immunostaining, in situ hybridization, and cell sorting, followed

by reverse transcription polymerase chain reaction (RT-PCR) or western blot, several more

transcription factors were shown to have expression levels that correlate with that of Nanog
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[69, 70, 74, 75]. These include Stella, Rex1, Sox2, Klf4, Tbx3, and Esrrb. Two groups

of researchers then performed genome-wide assays to elucidate the regulatory connections

among these transcription factors and other core pluripotency associated transcription fac-

tors, such as Nanog, Oct4 and c-Myc. These experiments either map the global binding

patterns of these transcription factors [76], or the changes in global gene expression patterns

in response to perturbations of the expression levels of these factors [77]. The results from

these studies typically suggested that the transcription factor circuit regulating pluripotency

is highly interconnected, with different transcription factors often up-regulating themselves

and many other factors. At the core of these circuits are the interactions between Nanog,

Oct4 and Sox2, where Oct4 and Sox2, either independently or as a dimer, activate each

other as well as Nanog. Nanog, in turn, activates both Oct4 and Sox2. Finally, all three

factors activate themselves. This core circuitry forms a strong positive feedback system,

which is believed to generate multi-stability in gene expression, as we discussed in Section

1.1.2.

To see if this core circuitry can give rise to the dynamic and heterogeneous gene expres-

sion as indicated in Nanog by the sorting and flow cytometry experiments [69], Glauche et al.

[59] and Kalmar et al. [58] independently created three mathematical models that included

different versions of the circuitry. Stochastic simulations of these models demonstrated that

the simple circuits, each with three or fewer components, are all capable of qualitatively

replicating the experimental distribution of Nanog expression levels. Moreover, consistent

with the dynamics implied by sorting experiments, individual cells can transition between

different states in all three models. Nevertheless, even though these models only have minor

differences from one another in their configurations, they give rise to qualitatively different

dynamic behaviors. These behaviors range from a bistable system with stochastic transi-
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tions, to an oscillatory system [59], to a noise-driven excitable system [58]. At the time

of these models, there were no reported direct measurements of the dynamics of Nanog

expression in individual cells to impose restrictions on these models. It is also important to

note that all of these models were drawn from a subset of putative transcription interactions

that are each supported by some experimental evidence. The divergent dynamic behaviors

of these slightly differing models thus highlight the critical need for these theoretical ap-

proaches to the understanding of a complex system to be supplemented by direct dynamic

measurements of the system.

1.4 Chromatin Modifications, Chromatin Regulators and Gene

Expression States

1.4.1 What are chromatin modifications and chromatin regulators?

As introduced in Section 1.4, many chromatin modifications and regulators are associated

with the regulation of gene expression states and epigenetic memory. In this section, we

will focus on how these associations are uncovered, and the mechanisms through which the

regulation is mediated.

Many chromatin modifications and regulators have been studied using biochemical and

genome-wide techniques. To find out whether a chromatin mark is associated with gene

activation or repression, chromatin immunoprecipitation (ChIP) is usually performed, fol-

lowed by quantitative polymerase chain reaction (qPCR) or sequencing, which generate

maps of the levels of a mark over many gene loci. These chromatin modification maps can

be analyzed in conjunction with data from genome-wide assays of transcriptional activities,

such as RNA sequencing (RNA-seq) and genomic run-on (GRO) or RNA polymerase II
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immunoprecipitation (PolII RIP), followed by sequencing. These studies provided useful

insights on the correlation between different modifications and the level of gene activation

or repression they may provide.

1.4.2 How do chromatin modifications regulate gene expression?

There are two types of characterized mechanisms that can mediate gene regulation down-

stream of chromatin modifications. The first type involves disrupting the contacts between

different histones in neighboring nucleosomes, or that between histones and DNA [17].

Among the various types of histone modification, acetylation is at the center of this hy-

pothesis due to its ability to modulate the electric charge of histone tails. The addition

of acetyl groups neutralizes the positive charge of lysine residues, and can disrupt binding

between these lysine residues and the negatively charged phosphate backbone on DNA [78].

As for interactions between neighboring nucleosomes, the tail of nonacetylated histone H4

on one nucleosome is proposed to interact with a cluster of acidic amino acids on histones

H2A/H2B on an adjacent nucleosome [79]. This interaction could cause a multi-nucleosomal

array to condense into a compact 30nm-fiber, a secondary chromatin structure. In vitro ex-

periments demonstrated that constitutive acetylation of histone H4 at residue K16 impedes

the formation of this fiber [80]. Together, these results support a molecular mechanism in

which histone acetylation promotes a more open chromatin structure, which in turn leads to

higher accessibility to transcription machineries and increased gene expression. Removal of

acetylation by histone deacetylases (HDACs) can therefore promote chromatin compaction

and lead to gene silencing [81, 82] .

The second type of mechanism for chromatin regulation involves the differential binding

of transcription factors and readers to a gene locus depending on the presence (or absence)
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of different modifications [17]. These transcription factors and readers may provide tran-

scriptional or regulatory activities to the gene locus, or they may recruit other factors that

carry such activities. DNA methylation, for example, exhibits this type of regulation on

various levels [22].

First, methylation can directly interfere with the binding of transcription factors. In

vitro experiments showed that methylation at a viral promoter, AdMLP, blocks the binding

of a mammalian transcription factor, MLTF, and inhibits transcription from the promoter

[83]. The occlusion to binding depends on methylation at a specific CpG position within the

transcription factor binding site at the promoter, and unmethylated promoter is actively

transcribed.

Second, methylation can interfere with the binding of “insulator” proteins, which regu-

late the interactions between a promoter and its enhancers. This is shown in the imprinting

of mouse Igf2 gene, where methylation of an intergenic region is associated with active

expression of a nearby gene, as oppose to promoter methylation in the other examples.

Here, binding of “insulator” proteins, CTCFs, at an unmethylated control region on the

maternal allele prevents the action of a distal enhancer and blocks Igf2 expression [84]. On

the paternal allele, however, the CpG sites within the control region are highly-methylated,

thereby abolishing CTCF binding and enabling Igf2 to express.

Finally, methylation can also specifically recruit readers to effect further modification

of the locus. This is illustrated by a family of methyl-CpG-binding proteins, including

MeCP2, the most characterized member of this family. Mutations in this gene in human

lead to a devastating neurological disorder called Rett syndrome [85]. MeCP2 contains two

domains: a methyl-CpG-binding domain (MBD), which enables it to be recruited specifically

to methylated chromosomal regions, and a transcriptional-repressor domain (TRD), which is
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shown to associate with corepressor complex mSin3a and HDACs [86]. Binding of MeCP2

at methylated chromosomal loci therefore represses gene expression partly by removing

histone acetylation and promoting chromatin compaction as described above. Altogether,

these studies highlight the complex nature of chromatin regulation, with crosstalks between

pathways of different modifications, and the role of these modifications in gene regulation

and pathology.

1.4.3 Inheritance and propagation of chromatin modifications

The discovery of base-pairing in double stranded DNA pointed to an elegant solution to the

faithful inheritance of genetic code through replication. Similarly, the discovery of Dnmt1

foretold a simple model of maintenance for CpG methylation [87]. Dnmt1 can bind hemi-

methylated CpG, sites that are methylated on one strand only, and methylate the opposite

strand. Unmethylated DNA can acquire CpG methylation on one strand through the action

of de novo methyltransferases, Dnmt3a or Dnmt3b. The resulting hemi-methylated DNA is

then recognized by Dnmt1, which leads to methylation on both sides of the CpG palindrome.

During DNA replication, each progeny DNA will have one inherited, methylated strand

and one newly-synthesized, unmethylated strand. Continuous presence of Dnmt1 ensures

that all hemi-methylated progeny DNA will be fully methylated, and that the methylation

pattern persists over cell generations.

Whether and how histone modifications are inherited over DNA replication is less well-

established [88]. One proposed mechanism for maintaining the domain of histone marks

stems from an assumption that histone octamers are randomly (but evenly, on average)

distributed onto the two progeny DNA double-helixes, seeding each progeny with half the

dosage of each histone modification [89]. Furthermore, a few histone marks are known
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to have readers that can recruit writers/erasers for the same mark. These include Eed

(reader) and Ezh2 (writer) for H3K27me3 [90], HP1 (reader) and SUV39H (writer) for

H3K9me3 [88, 91–93], and Sir3 (reader) and Sir2 (eraser) for deacetylated H4K16 [94–96].

These reader -writer and reader -eraser pairs are proposed to recognize the inherited histones

seeded with a particular modification and replicate the same modification to neighboring,

newly incorporated histones, thereby conserving the original pattern of modifications.

This proposed mechanism, however, is challenged by recent findings that methylated

histones (H3K27me3 and H3K4me3) are replaced by non-methylated histones during DNA

replication [97]. Instead of existing histone modification seeding the progeny DNA molecules,

it is indicated that complexes writing these marks (Polycomb and Trithorax groups, for

H3K27me3 and H3K4me3, respectively) are continuously associated with the DNA during

the replication process. These results suggest a contrasting model for histone mark in-

heritance, where writer complexes remain bound to specific gene loci and re-establish the

modification patterns after replication. It will be interesting to see if this second mechanism

represents a general strategy for all histone modifications and cell types, or if the two pro-

posed mechanisms co-exist in a context-dependent manner. Regardless of the mechanism,

however, it is well-established that some histone modifications (e.g. H3K9me3) can persist

across cell divisions even in the absence of the signal that originally triggered the addition of

the mark [98]. These results provide strong evidence that chromatin marks, together with

the background machineries of CRs, are sufficient to impart gene expression regulation and

memory.

Besides inheritance of chromatin modifications over DNA replication, the association

of readers with writers or erasers for the same marks can also cause a mark to spread

along a gene locus from an initial modification at a single site [89]. Using computer sim-
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ulation of a simple stochastic model, Hathaway et al. [98] showed that modification at a

single nucleation site can lead to a steady state domain through spreading. This domain

has a finite size as a result of competition between propagation of marks to neighboring

nucleosomes and turnover of marked nucleosomes with unmarked ones. The profile of this

simulated modification domain resembles the ones obtained from chromatin immunoprecip-

itation (ChIP) assays at different sites around a single gene [98], or averaged genome-wide

across different loci [99]. These results highlighted the dynamic nature of chromatin regu-

lation, and supported a stochastic model for the underlying molecular process, suggesting

that the response at the level of individual cells may also be stochastic.

1.5 Dynamics of Cellular State Regulation: Outstanding Ques-

tions

Despite much work on elucidating the molecular players and pathways involved in cellular

states, fundamental questions on how these states are established, maintained over time,

and altered remain unanswered. More specifically, we ask:

• What are the dynamics of gene expression in individual cells within a

cellular state and in cells transitioning between states? It is now evident

that many multicellular systems exist as a dynamic mixture of different cell types,

even under constant conditions. Given that heterogeneity in gene expression levels

exists even for a promoter at a constant state, how does one distinguish between

heterogeneity that originates from the co-existence of multiple cellular states and

from transcriptional noise? Once the dynamic behavior of cells within a cellular state

is resolved, we can ask how fast and how frequently cells switch between these different



24

cell types. These questions can only be answered using single-cell techniques. The

resulting experimental platform, in turn, enables further interrogation of the system

under different perturbations.

• How do CRs control gene expression in single cells? From the perspective

of establishing a new gene expression state, either under a natural or synthetic con-

text, CRs represent a critical point of control connecting the signal that triggers CR

recruitment to the alteration of chromatin and its downstream gene regulation and

memory. What is the causal relationship between recruitment of different CRs and

the dynamic response of the target gene? How strongly and how rapidly can each

CR alter gene expression? What type of gene expression memory can they generate?

Furthermore, given the evidence of stochastic response in some context of chromatin

regulation, such as in X-inactivation and position-effect variegation, we would like to

know how the response to CR recruitment varies between individual cells.

• How can a multicellular system control the balance between different cel-

lular states? The dynamics of switching between cellular states can determine the

fraction of cells in different cell types within a multicellular system. How frequently

do cells transition between different states? How do the transition rates depend on

parameters such as inter-cellular signaling, and the strength and duration of CR re-

cruitment? If we understand how these dynamics are controlled in both natural and

synthetic systems, we may gain quantitative insights into how a multicellular system

obtains optimal balance between different cellular states, and may eventually be able

to control cellular identity in synthetic systems and correct aberrant gene expression

programs in diseases.
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1.6 Contributions of This Thesis

The chapters in this thesis investigate the dynamics of cellular state decisions at two different

levels and make several contributions to our understanding of this topic:

• Natural dynamics in ES cells. We created a platform for time-lapse imaging of ES

cells and reported novel observations of single-cell gene expression dynamics in these

cells. Combining our data from movies and single molecule mRNA fluorescence in situ

hybridization (smFISH) revealed that these dynamics are the result of two processes:

rare, abrupt transitions between two main cellular states, and frequent transcriptional

bursts within each of these states. These results demonstrated unequivocally the

existence of two broadly correlating cellular states in ES culture, even in wild-type

cells, and transitions between them. Moreover, our platform enabled us to further

investigate how signaling pathway perturbation alters pluripotency by modulating

both the timescale of transcriptional bursts and the rates of transitions between the

states, tipping the balance of the system in favor of a more pluripotent state. Finally,

we presented evidence that DNA methylation is critically involved in maintaining

bistability in the system.

• Dynamics of chromatin regulation in a synthetic system. We generated a tar-

geted recruitment platform to measure the dynamic effects of different CRs on gene

expression and memory. We directly observed, in individual cells, silencing events

triggered by CR recruitment and subsequent reactivation events after de-recruitment.

Remarkably, these events appear to be all-or-none – individual cells switch stochasti-

cally between fully active and fully silent states at rates that depend on which CR is

recruited. The identity of the CR also dictates the types and timescales of memory of
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the silent states. As a result, instead of controlling the level of expression in individual

cells, CR recruitment controls the fraction of active or silent cells, and this control

is dependent on the duration of the recruitment. These observations enabled us to

build a quantitative dynamic framework, which could potentially be applied to the

analysis of other CRs and the engineering of synthetic systems that involve chromatin

regulation.
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Chapter 2

Dynamic Heterogeneity and DNA
Methylation in Embryonic Stem
Cells

(This chapter was adapted, in part, from [100])

2.1 Abstract

Cell populations can be strikingly heterogeneous, composed of multiple cellular states, each

exhibiting stochastic noise in its gene expression. A major challenge is to disentangle these

two types of variability, and to understand the dynamic processes and mechanisms that

control them. Embryonic stem cells (ESCs) provide an ideal model system to address this

issue because they exhibit heterogeneous and dynamic expression of functionally important

regulatory factors. We analyzed gene expression in individual ESCs using single-molecule

RNA-FISH and quantitative time-lapse movies. These data discriminated stochastic switch-

ing between two coherent (correlated) gene expression states and burst-like transcriptional

noise. We further showed that the “2i” signaling pathway inhibitors modulate both types

of variation. Finally, we found that DNA methylation plays a key role in maintaining these

metastable states. Together, these results show how ESC gene expression states and dy-
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namics arise from a combination of intrinsic noise, coherent cellular states and epigenetic

regulation.

2.2 Introduction

Many cell populations appear to consist of mixtures of cells in distinct cellular states. In

fact, interconversion between states has been shown to underlie processes ranging from

adult stem cell niche control [101, 102], to bacterial fitness [13], to cancer development [73].

A central challenge is to identify transcriptional states, along with the mechanisms that

control their stability and generate transitions among them.

Single-cell transcriptional studies have revealed substantial gene expression heterogene-

ity in stem cells [47, 56, 69, 71, 103]. Moreover, subpopulations expressing different levels of

Nanog, Rex1, Dppa3, or Prdm14, show functional biases in their differentiation propensities

[70, 74, 75, 104]. This heterogeneity could in principle arise from stochastic fluctuations,

or ‘noise’, in gene expression [7, 105, 106]. Alternatively, it could reflect the coexistence

of multiple cellular states, each with a distinct gene expression pattern showing correlation

between a set of genes [56, 73, 107, 108]. Disentangling these two sources of variation is

important for interpreting the transcriptional states of individual cells and understanding

stem cell dynamics.

A related challenge is to understand the mechanisms that stabilize cellular states despite

noise. DNA methylation has been shown to be heritable over many generations, is critical for

normal development [109], and may help stabilize irreversible cell fate transitions [110–113].

However, the role of DNA methylation in the reversible cell state transitions that underlie

equilibrium population heterogeneity has been much less studied [114, 115]. Recently, it

was reported that exposing ES cells to inhibitors of MEK and GSK3 (called 2i) abolishes
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Figure 2.1: Different types of gene expression heterogeneity
(A) Intrinsic noise in gene expression can lead to uncorrelated variation (left), while the
coexistence of distinct cellular states can produce correlated variability in gene expression
(right). Both panels depict schematic static ‘snapshots’ of gene expression.
(B) Dynamically, gene expression levels could vary infrequently and abruptly (left) or more
frequently and gradually (right) both within and between cellular states (schematic).

heterogeneity and induces a ‘näıve’ pluripotent state [116, 117] with reduced methylation

[118–120]. However, a causal role linking methylation, heterogeneity, and 2i remains to be

elucidated.

Together, these observations provoke several fundamental questions: First, how do noise

and states together determine the distribution of expression levels of individual regulatory

genes (Figure 2.1A)? Second, how do gene expression levels vary dynamically in individual

cells, both within a state and during transitions between states (Figure 2.1B)? Finally, how

do cells stabilize metastable gene expression states, and what role does DNA methylation

play in this process?

Using single-molecule RNA-FISH (smFISH), we analyzed the structure of heterogeneity

in the expression of key cell fate regulators, finding that distinct cell states account for
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most variation in some genes, while others are dominated by stochastic bursts. Using time-

lapse movies of individual cells, we observed abrupt, step-like dynamics due to cell state

transitions and transcriptional bursts. Finally, using perturbations, we observed that DNA

methylation modulates the population fraction of cells in the two states, consistent with

reciprocal expression of the methyltransferase Dnmt3b and the hydroxymethylase Tet1.

Together, these results suggest how noise, dynamics, and epigenetic regulatory mechanisms

contribute to the overall distribution of gene expression states in stem cell populations.

2.3 Results

Mouse ESCs show three distinct types of gene expression distributions

The process of mRNA transcription is inherently stochastic. As a result, even a clonal

cell population in a single state is expected to display variability in the copy number of

each mRNA [9, 15, 40, 41, 121–125], potentially leading to phenotypic differences between

otherwise identical cells [13, 44, 126–128].

In order to accurately measure mRNA copy numbers in large numbers of individual

ESCs, we developed an automated platform for smFISH (Supp. Info.). This system enables

rapid analysis of four genes per cell across ∼400 cells per sample (Figure A.1A-D). We

validated the system by comparing three measures of expression of the same gene in the

same cells using a Rex1-dGFP reporter line [129] (Figure A.1E).

Using this platform, we analyzed 36 pluripotency associated regulators that play critical

roles in ESCs or are heterogeneously expressed, as well as several markers of early cell fates

and housekeeping genes. The resulting mRNA distributions exhibited a range of distribu-

tion shapes and degrees of heterogeneity (Figure 2.2A). We analyzed these distributions
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within the framework of bursty transcriptional dynamics. In this model, mRNA production

occurs in stochastic bursts that are brief compared to the mean inter-burst interval, and are

exponentially distributed in size. Bursty dynamics produce negative binomial (NB) mRNA

distributions [15, 130], whose shape is determined by the frequency and mean size of bursts.

Genes exhibited three qualitatively distinct types of mRNA distributions. First, most

genes were unimodal and well-fit by a single NB distribution (Figures 2.2B, A.2A, maximum-

likelihood estimation (MLE), χ2 Goodness of Fit (GOF) test p>0.05). This class included

Oct4, Rest, Tcf3, Smarcc1, Sall4, and Zfp281. Coefficients of variation (CV) were typically

∼0.5 for the most homogeneous genes (Figure 2.2A).

Second, a subset of unimodal genes exhibited long-tailed distributions, in which most

cells had few, if any, transcripts, while a small number of cells displayed many transcripts.

These distributions were also well fit by a single NB distribution, but with resulting distribu-

tions that generally decreased monotonically with increasing mRNA concentration (Figures

2.2B, A.2A, χ2 GOF. p >0.05). The most heterogeneous long-tailed genes had burst fre-

quencies of less than one burst per mRNA half-life. These included Tbx3 (CV=2.130.23,

means.e.m.), Dppa3 (CV=1.760.31), and Prdm14 (CV=1.5990.20). Other long-tailed genes

such as Pecam1, Klf4, Blimp1, Socs3, Nr0b1, and Fgfr2 had higher burst frequencies and

less skew. Long-tailed genes arising from rare bursts could provide a source of stochastic

variation that could propagate to downstream genes.

Third, there were some genes whose mRNA distributions were significantly better fit

by a linear combination of two NB distributions than by one (Supp. Info., Akaike’s Infor-

mation Criteria (AIC) and log-likelihood ratio test, p <0.05). These genes included Rex1,

Nanog, Esrrb, Tet1, Fgf4, Sox2, Tcl1, and Lifr (Figures 2.2B, A.2A). In some cases, the

two components of these distributions were well separated from one another (e.g. Rex1
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(A) Top: coefficients of variation (CV, meanSEM) for ESC-associated regulators and house-
keeping genes. Bottom: Distributions (violin plots) normalized by maximum expression
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and Esrrb), while in other cases they overlapped strongly (e.g. Nanog and Lifr), such that

the absolute number of transcripts for a single gene did not accurately indicate to which

state the cell belonged. These bimodal distributions suggested the existence of multiple cell

states (see below).

Markers of most differentiated fates including Pax6 (neuroectoderm), Fgf5 (epiblast),

Sox17 and FoxA2 (definitive endoderm), and Gata6 (primitive endoderm) showed no de-

tectable expression (data not shown). However, the mesendodermal regulator Brachyury

(T) was expressed at a level of ∼5-20 transcripts in 6% of Rex1-low cells. Similarly, the

two-cell-like state marker Zscan4c [131] showed ∼3-60 transcripts in 3% of cells (Figure

A.2A). These genes did not fit well to NB distributions, suggesting that processes other

than transcriptional bursting impact their expression in this small fraction of cells.

Bimodal genes vary coherently

We next used the smFISH data to determine whether the bimodal genes were correlated,

which would suggest their control by a single pair of distinct cell states, or varied inde-

pendently, which would suggest a multiplicity of states. The data revealed a cluster of

bimodal genes that correlated with one another. Rex1, Nanog, and Esrrb displayed the

strongest correlations (r≈0.7, Figures 2.2, A.2B), while genes with strong overlap between

modes, such as Tcl1, Lifr, Sox2, and Tet1, displayed somewhat weaker, but still significant,

correlations (r≈0.5, Figures 2.2C, A.2B), beyond those observed between bimodal and non-

bimodal genes (e.g. r=0.2 for Rex1 and Oct4). Thus, a cell in the high or low expression

state of one bimodal gene is likely to be in the corresponding expression state of others.

Some correlations were negative: expression of the de novo methyltransferase Dnmt3b was

reduced in the Rex1-high state (r=-0.46, Figure 2.2C). Note that cell cycle effects did not
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explain these correlations (Figure A.2C). Together, these data suggest that bimodal genes

appear to be broadly co-regulated in two distinct states.

Long-tailed genes exhibited more complex relationships. Those with very large variation

(CV>1.5) were correlated with the expression state of the bimodal gene cluster, but not

with one another (Figures 2.2C & D, A.2B). For example, genes like Dppa3, Tbx3, and

Prdm14 burst predominantly in the Rex1-high state, but even in this state, most cells

showed no transcripts of these genes (p<0.001, see Supp. Info. for statistical analysis).

Thus, it appears that these genes are expressed in infrequent, stochastic bursts that occur

mainly in one of the two cellular states.

Interestingly, expression of Socs3, a negative regulator and direct target of Stat signaling

[132], appeared conditional on expression of its bimodally expressed receptor Lifr (note ab-

sence of Socs3 expression in low Lifr cells in Figure A.2B). Analysis of additional regulators

not measured here could in principle reveal additional states or more complex distributions.

Overall, however, the multi-dimensional mRNA distributions measured here are consistent

with a simple picture based on two primary states and stochastic bursting.

The two primary states exhibit distinct DNA methylation profiles

These data contained an intriguing relationship between three factors involved in DNA

methylation: the de novo methyltransferase Dnmt3b; the hydroxylase Tet1, which has been

implicated in removing methylation [133–136]; and Prdm14, which represses expression of

Dnmt3b [104, 120, 137, 138]. While Rex1 was anticorrelated with Dnmt3b expression, and

positively correlated with Tet1 (Figure 2.3A), Prdm14 showed a long-tailed distribution

conditioned on the Rex1-high state (Figure 2.2D). Based on these relationships and the

observation that methylation increases during early development [139], we hypothesized
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that the Rex1-low state might exhibit increased methylation compared to the Rex1-high

state.

To test this hypothesis, we sorted Rex1-high and -low cells using the Rex1-dGFP re-

porter line, and performed locus-specific bisulfite sequencing at known targets of methy-

lation Dazl, Mael, and Sycp3 [140] (Figures 2.3B, A.3A & B). These promoters exhibited

2-3 times greater methylation in Rex1-low cells compared to Rex1-high cells, indicating

the two states are differentially methylated in at least some genes. In contrast, Rex1-low

cells that subsequently reverted to the Rex1-high state recovered the methylation levels of

Rex1-high cells, indicating that methylation is reversible. Similarly, quantitative enzyme-

linked immunosorbent assay (ELISA) analysis demonstrated both differential methylation

and reversibility in global methylation levels (Figure 2.3C).

We next asked more generally which genes exhibited differential promoter methylation.

We again sorted Rex1-high and -low cells and assayed DNA methylation by Reduced Rep-

resentation Bisulfite Sequencing analysis (RRBS), analysing regions 2kb upstream to 500bp

downstream of each ESC-expressed mRNA transcriptional start site [116, 139]. The distri-

butions of methylation levels across genes were bimodal in both Rex1 states, with the more

highly methylated peak shifted to even higher methylation levels in Rex1-low cells (Figure

2.3D). By analyzing the shift in methylation on a gene-by-gene basis, we found that the

increase in methylation in Rex1-low cells occurred predominantly through increased methy-

lation of the promoters that were more highly methylated in Rex1-high cells (Figures 2.3E,

A.3C). Thus, the change in promoter methylation occurs in a specific subset of promoters.

Furthermore, the overall methylation level of a gene was related to the number of CpGs in

its promoter, such that the larger the CpG content of a promoter, the lower its methylation

in both states. Not all gene promoters were well covered by RRBS. However, among those
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Figure 2.3: The two Rex1 states are differentially methylated
(A) smFISH measurements show Rex1 bimodality is correlated with Tet1, and anticorrelated
with Dnmt3b expression.
(B) Locus-specific bisulfite sequencing of the Dazl promoter. Methylation levels shown
are in the Rex1-high (top), Rex1-low (middle), and Rex1-low-to-high reverting (bottom)
populations.
(C) Global levels of 5mC measured by quantitative ELISA in the Rex1-high, -low, and
-low-to-high reverting cells.
(D) Histogram of promoter methylation shows bimodality in the Rex1-high (top) and -low
(bottom) states, as quantified by RRBS.
(E) Scatter plot of promoter methylation between Rex1-high and -low states. Each point
is the methylation fraction of a single gene promoter, color-coded by the number of CpGs
in that promoter. Divergence from the diagonal implies differential methylation between
states. Inset) Single CpGs in the promoter of the specific gene labeled, color coded by
distance from TSS; see Figure A.3C for additional genes.



37

that were, several key ES regulators including Esrrb, Tet1, and Tcl1 all showed increased

levels of methylation in the Rex1 -low state. Figures 2.3E (inset) and A.3C show methyla-

tion levels of individual CpGs for 17 gene promoters. These results provide a view of the

change in promoter methylation that occurs during transitions between the Rex1-high and

-low states.

Bursty transcription generates dynamic fluctuations in individual cells

Evidently, cells populate two transcriptional states, each characterized by distinct methy-

lation profiles. To understand the dynamic changes in gene expression that occur as indi-

vidual cells switch between these states, we turned to time-lapse microscopy. We analyzed

transcriptional reporter cell lines for Nanog and Oct4, each containing a histone 2B (H2B)-

tagged fluorophore expressed under the control of the corresponding promoter (Figure A.4A

& B; see also Supp. Info.). We imaged the reporter cell lines for ∼50-hour periods with

15-minute intervals between frames, and segmented and tracked individual cells over time

in the resulting image sequences. For each cell lineage, we quantified the instantaneous

reporter production rate, defined as the rate of increase of total fluorescent protein in the

cell, corrected for the partitioning of fluorescent protein into daughter cells during cell divi-

sion (Supp. Info.). The H2B-fluorescent protein degradation rate is negligible under these

conditions (Figure A.4C), enabling us to use the reporter production rate as a measure of in-

stantaneous mRNA level. An advantage of this approach is that it provides relatively strong

fluorescence signals per cell, but still enables high time resolution analysis [141]. Consistent

with static smFISH distributions, the production rate distributions of the Nanog and Oct4

fluorescent reporters were bimodal and unimodal, respectively (Figure 2.4A).

Dynamically, cells remained in either one of two distinct Nanog expression states for
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Figure 2.4: Movies reveal transcriptional bursting and state-switching dynamics
in individual cells
(A) Distribution of Nanog and Oct4 production rates from representative movies in
serum+LIF, and Gaussian fits to the components. Production rates were extracted from a
total of 376 and 103 tracked cell cycles for Nanog and Oct4, respectively.
(B) Production rate distributions of individual cell lineage trees, each consisting of closely
related cells descending from a single cell. Lineage trees are color-coded by the state they
spend the majority of time in.
(C) Example single lineage traces exhibiting step-like changes in production rates within a
state.
(D) Cell cycle phase distribution of steps within the Nanog-high state. Step occurrences
are normalized by the frequencies of each cell cycle phase observed in the tracked data.
(E) Representative trace showing apparent steps from simulations under the bursty tran-
scription model, using parameters estimated from mRNA distribution for the Nanog-high
state (see Supp. Info.; see Figure A.4E for simulation of Oct4 dynamics).
(F) Example traces of individual cells switching between Nanog-low and Nanog-high states.
(G) Empirical transition rates (mean SD) between the two Nanog states (NHi, Nanog-high;
NLo, Nanog-low).

multiple cell cycles (Figure 2.4B). During these periods, expression levels varied over the

full range of Nanog expression levels within each state, with no evidence for persistent

sub-states. However, closer examination revealed fluctuations within a single state, which

typically occurred in discrete steps separated by periods of steady expression (Figure 2.4C).

Using a computational step detection algorithm (Figure A.4D, Supp. Info.), we found

that Nanog and Oct4 reporters exhibited 0.38 and 0.29 steps per cell cycle, respectively.

These steps occurred in a cell cycle phase-dependent manner (Figure 2.4D), with down-

steps clustered around cell division events and up-steps more broadly distributed across cell

cycle phases.

Could these step-like dynamics arise simply from transcriptional bursting? To address

this question, we simulated single cell mRNA and protein traces using the bursty transcrip-

tion model, with parameters determined from the NB fits of the static mRNA distributions

(Supp. Info.). These simulations generated dynamic traces resembling those observed ex-

perimentally (Figures 2.4E, A.4E). In the simulations, mRNA half-life and burst frequency
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determine the characteristics of detectable steps (Figure A.4F); in general, steps were most

prominent at low burst frequencies and short mRNA half-lives, and became difficult to

discriminate at high burst frequencies and long mRNA half-lives.

Step-like dynamics appear to be a natural consequence of stochastic expression, with

up-steps reflecting burst-like production of mRNA, and down-steps resulting from ∼2-fold

reduction in mRNA copy number at cell division (Figure A.4G). This interpretation is

consistent with the observed clustering of down-steps around cell division events, and a more

uniform cell cycle distribution of up-steps (Figure 2.4D). Because large bursts can effectively

cancel out mRNA dilution at cell division events, they may appear under-represented near

cell division events. Note that most cell cycles showed no up-steps, suggesting that they

are not due to increased gene dosage after chromosome replication [142, 143].

Dynamic transitions between cellular states

We next asked how cells transition dynamically between states. Previous work has relied

on cell sorting, which can distort the signaling environments. By contrast, movies enable

direct observation of switching events within a mixed cell population. Since the Nanog

reporter production rate fluctuates even within a single state, we used a Hidden Markov

Model (HMM) to classify each cell into either Nanog-high or Nanog-low at every point

in time (Supp. Info.). We trained the HMM using time-series data of Nanog reporter

production rates, sampled at fixed intervals across all tracked cell cycles, and used it to

identify switching events and estimate switching frequencies.

Transitions from the Nanog-low to the Nanog-high state, or vice versa, occurred at a rate

of 2.3 ± 0.25, or 7.9 ± 1.2, transitions per 100 cell cycles (mean ± SD), respectively (Figure

2.4F & G). These events did not correlate between sister cells (Table A.11), consistent with
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independent, stochastic events. Inter-state switching on average showed bigger and longer-

lasting fold-changes than intra-state steps in production rates (Figure A.4H). Together,

these results suggest that gene expression dynamics are dominated by a combination of

step-like changes due to bursty transcription on shorter timescales, and abrupt, apparently

stochastic, inter-state switching events on longer timescales.

‘2i’ inhibitors modulate bursty transcription and state-switching dynamics

We next asked how gene expression heterogeneity and dynamics change in response to key

perturbations. Dual inhibition of MEK and GSK3, known as ‘2i’, was shown to enhance

pluripotency and reduce Rex1 and Nanog heterogeneity [116, 129]. However, it has remained

unclear how 2i affects the distribution of other heterogeneously expressed regulatory genes,

and what impact it has on dynamic fluctuations in gene expression.

We found that addition of 2i to serum+LIF media reduced variability in the mRNA

levels of most genes (Figure 2.5A). In principle, this could reflect the elimination of one

cellular state and/or changes in burst parameters. In 2i, the bimodal genes from Figure

2.2A became unimodal, suggesting that 2i suppresses one of the two cellular states (Figures

2.5A, A.5A). In the case of Nanog, the remaining state increased its mean transcript level

by ∼1.5-fold, to what we term Nanog-SH (Super High). Tet1, Sox2, and Tcl1 also became

unimodal, but displayed an overall decrease in absolute expression. With long-tailed genes,

we found that mean Dppa3 expression decreased slightly, while Prdm14 and Tbx3 became

more homogenously expressed, exhibiting an increase in mean expression by ∼300% and

∼1000%, respectively. These changes reflect the fact that nearly all cells were now observed

to express Prdm14 and Tbx3. Thus, 2i appeared to reduce variability in most genes, either

by eliminating bimodality or by increasing their burst frequency.
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Figure 2.5: 2i and DNA methylation modulate bursty transcription and state-
switching dynamics
(A) Comparison of mRNA distributions and CV between cells grown in serum+LIF and
2i+serum+LIF. Top: For each gene, the CV in serum+LIF is plotted on the left, and the
CV for 2i+serum+LIF is plotted on the right. Dnmt3b in 2i+serum+LIF is represented in
gray to reflect its marginal case of poor quality of fit in both bimodal and long-tailed models.
Bottom: The left half of each violin represents the mRNA distribution in serum+LIF, while
the right represents 2i+serum+LIF. For each gene, both conditions are normalized by the
same value that is the larger of the pair’s 95th percentile expression level.
(B) Distribution of Nanog production rates from movies in 2i+serum+LIF.
(C) Empirical transition rates between the two Nanog states in the presence of 2i (NLo,
Nanog-low; NSH, Nanog-SH).
(D) Mixing time in each condition is estimated from auto-correlation, A(τ), of production
rate ranks shown in Figure A.5D, right panels. Red: serum+LIF; Purple: 2i+serum+LIF;
Error bars: standard deviation, bootstrap method.
(E) Comparison of transcriptional heterogeneity between Dnmt TKO (black line) and the
parental line (blue bars) as measured by smFISH for Rex1, Nanog, Esrrb, and SDHA. Note
that for Rex1/Nanog/Essrb, there are fewer off cells in the leftmost bins for the TKO than
WT.
(F) Rex1-dGFP distribution as measured by flow cytometry grown in serum+LIF with
5-aza or DMSO (carrier control). Time-points were taken after 2, 4, and 6 days.
(G) Cells were grown in 2i+serum+LIF, and subsequently re-plated into serum+LIF with
5-aza or DMSO (carrier control). Time-points were taken after 2, 4, and 6 days. GFP levels
were measured by flow-cytometry.

Recently, it was shown that 2i-treated cells exhibit differentiation propensities similar

to sorted Rex1-high subpopulations in embryoid body formation, suggesting they may rep-

resent similar functional states [116]. We used the time-lapse movie system to compare

the dynamic behavior of 2i-treated cells to that of cells in the Rex1-high subpopulation.

Consistent with mRNA measurements, 2i shifted most cells into a Nanog-SH state (96% of

total), characterized by a ∼3-fold higher median production rate compared to the Nanog-

high state in serum+LIF (Figure 2.5B). Only a small fraction of cells showed expression

overlapping with the Nanog-low state in serum+LIF at the beginning of the movies (after

6 days in treatment). Moreover, these cells switched to the Nanog-SH state at a >40-fold

higher rate than the Nanog-low to Nanog-high switching rate measured in serum+LIF, with

no reverse transitions observed (Figures 2.5C, A.5B). These observations suggest that 2i in-
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creases the Nanog-low to Nanog-high switching rate and reduces or eliminates Nanog-high

to Nanog-low transitions (Figure 2.5C).

What effect, if any, does 2i have on the dynamics of gene expression noise? Static dis-

tributions suggested that 2i increased Nanog burst frequency by ∼45%, from 0.39 to 0.55

burst/hour, using Nanog mRNA half-life previously estimated (Table A.11 in [144]) and as-

suming no change between conditions. To analyze the effects on dynamics, we computed the

mixing time, previously introduced to quantify the mean timescale over which a cell main-

tains a given expression level relative to the rest of the cell population [8]. Simulations of

the bursty gene expression model showed that higher burst frequencies lead to faster mixing

times, while burst size has little effect (Figure A.5C). Together with smFISH measurements,

this model predicted that Nanog mixing times should be faster in 2i. Qualitatively consis-

tent with this prediction, the mixing time of Nanog production rate was reduced from 8.5

hours in Nanog-high in serum+LIF media to 1.7 in Nanog-SH cells in 2i-containing media

(Figures 2.5D, A.5D).

Together, these results indicate that 2i impacts ESC heterogeneity at three levels: First,

it reduces gene expression variation in many, but not all, genes. Second, it eliminates one

cell state by increasing the rate of transitions out of the Nanog-low state and inhibiting

the reverse transition. Third, as shown for Nanog, 2i increases burst frequency and re-

duces mixing times, effectively speeding up the intra-state equilibration rate within the cell

population.

DNA methylation modulates metastability

Previous work has shown that in addition to reducing heterogeneity, 2i also diminishes

global levels of DNA methylation [119, 120, 133]. While the Rex1-high and -low states
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appear differentially methylated (Figures 2.3B-E), it remains unclear whether methylation

plays a functional role in stabilizing these states. To address this issue, we used a triple-

knockout (TKO) cell line lacking the active DNA methyltransferases Dnmt1, Dnmt3A, and

Dnmt3B [145]. We compared the expression distribution of Rex1, Nanog, and Esrrb in

TKO cells to their parental line using smFISH. The TKO cell lines had 352% fewer cells in

the Rex1-low state (Figure 2.5E), with similar results observed for Nanog and Esrrb. This

change did not reflect global up-regulation of all genes, as expression of the houskeeping

gene SDHA was indistinguishable between the two cell lines. These results suggest that

DNA methyltransferases increase the population of the Rex1-low state.

To see if these results could be recapitulated with acute rather than chronic pertur-

bations to methylation, we assayed changes in heterogeneity in Rex1-dGFP reporter cells

exposed to 70nM 5-azacytidine (5-aza), an inhibitor of DNA methylation. Within six days,

the number of cells in the Rex1-low state diminished by more than half from 29% to 13%

of all cells (Figure 2.5F). Thus, acute as well as chronic methylation inhibition reduced the

occupancy of the low state.

Finally, we asked whether methylation was similarly required for cells to return to the low

state after removal of 2i from 2i+serum+LIF conditions. The Rex1-low population began to

emerge within 48h of 2i removal (Figure 2.5G). However, when 2i was removed and replaced

with 5-aza, the emergence of Rex1-low cells was severely delayed and diminished. After 6

days, 5-aza treated cells only showed 6% Rex1-low cells, compared to 25% in DMSO-treated

cells. Together, these results suggest that methylation is required for normal exit from the

2i state. Reduced methylation in 2i thus contributes to the stability of the 2i ‘ground state’

[116, 119, 120, 133].
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2.4 Discussion

Recent work on ESC biology from a systems perspective has highlighted the apparent

complexity and strong interconnectivity of the circuit governing pluripotency [146, 147].

But it has been unclear how variably this circuit behaves in different cells, and to what

extent population average measurement techniques may obscure its single-cell dynamics.

Because gene expression is a stochastic process, levels of both mRNA and protein in each cell

are effectively random variables, best characterized by their distributions. The framework

of stochastic gene expression provides a tool to more rigorously and quantitatively separate

stochastic fluctuations inherent to gene expression from variation due to multiple cell states

specified by the underlying transcriptional and signaling circuit. While the simplified model

of bursty transcription used here can explain the data, other models, including the telegraph

model of transcription, may provide other insights [123, 148].

Our data suggest that heterogeneity emerges in three distinct ways: First, gene expres-

sion is inherently noisy, occurring in stochastic bursts, even in genes such as Oct4 that

are distributed in a relatively uniform fashion. Second, cells switch stochastically between

distinct states that impact the expression of many genes in a coordinated manner. Third,

‘long-tailed’ regulators such as Prdm14, Tbx3, and Dppa3 are uncorrelated with one an-

other and show low burst frequencies and large burst sizes, leading to very high variability.

Live cell imaging will be required to determine the absolute burst kinetics for these genes.

However, an mRNA distribution in which only a small subpopulation of cells exhibit a

large number of mRNA molecules for a particular gene need not, and most likely does not,

indicate a distinct cellular state. Moreover, infrequent bursting may provide a potential

mechanism for stochastic priming of cell fate decision-making [13, 127]. Further investiga-
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tion of this possibility will require determining whether these bursts propagate to influence

subsequent cell fate decision-making events [149, 150].

The data above implicate methylation as a key regulatory mechanism affecting stochastic

switching between states. Methylation was previously explored in ES cells at the population

level [114, 115, 119, 120, 133, 134], but it remained unclear whether methylation itself

contributes to heterogeneity [69, 74, 75, 104]. smFISH data revealed a strong reciprocal

relationship between the hydroxymethylase Tet1 and the DNA methyltransferase Dnmt3b,

with Tet1 expressed more highly in the Rex1-high state, and Dnmt3b expressed more highly

in the Rex1-low state. This difference in expression correlates with a differential global DNA

methylation and in the methylation of the promoters of key pluripotency regulators. Finally,

methylation appears to be functionally required for transitions, since either genetic deletion

of DNA methyltransferases or pharmacological inhibition both impact the populations of

the two cell states and the underlying dynamics of state-switching (Figure 2.5E-G). It will

be interesting to see whether methylation plays similar functional roles in other stochastic

state-switching systems.

These data provoke further questions about the molecular mechanisms through which

methylation is regulated and through which it modulates metastability. For example, while

known methyl binding proteins that aid in methylation-dependent chromatin compaction

and silencing are expressed in ES cells [116], DNA methylation may also inhibit binding

of transcription factors [151–153], and can control mRNA isoform selection via alternative

splicing [151]. The Esrrb gene, whose activity is central to maintenance of pluripotency

[154, 155], may provide a good model system to investigate the effects of methylation, since

its methylation levels and expression levels are both strongly state-dependent. Regulation

of this methylation likely involves Prdm14, which is known to inhibit Dnmt3b expression
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[104, 118–120, 137, 138]. Given the long-tailed expression pattern of Prdm14 observed here

in serum+LIF and its strong up-regulation in 2i, it will be interesting to see how much of

the variation in Dnmt3b/Tet1, and methylation more generally, can be attributed to bursty

expression of Prdm14.

Previous studies of ESC gene expression dynamics have focused on the equilibration of

FACS-sorted subpopulations of high and low Nanog and Rex1 expression [69, 75]. Two

groups explored transcriptional circuit models to explain the long timescales of state-

switching dynamics [58, 59]. These included noise-induced bistable switches, oscillators,

and noise-excitable circuits [156]. Our dynamic data demonstrate that both Nanog-high

and Nanog-low states in serum+LIF conditions typically persist for 4 cell cycles, and that

state-switching events are abrupt at the level of promoter activity. Depending on protein

and mRNA half-lives, the timescale of resulting protein level changes may follow somewhat

more slowly. State-switching events are also infrequent (<10% per cell cycle), and uncorre-

lated between sister cells. Together, these findings appear incompatible with oscillatory or

excitable models, which predict deterministic state-switching or an unstable excited state,

respectively, but are consistent with the stochastic bistable switch model previously pro-

posed [58]. These properties could make this state-switching system a useful model for

understanding the circuit level dynamics of spontaneous cell state transitions in single cells.

Several competing explanations were proposed for the apparent heterogeneity in Nanog

expression in serum+LIF conditions. These models suggest heterogeneity is an artifact

of knock-in reporters [157], or that it arises at least in part from monoallelic regulation

[158] or is manifested biallelically [159, 160]. Our smFISH data support the existence of

Nanog expression heterogeneity in wild-type cells in a standard feeder-free culture condition.

Further, both static and dynamic measurements indicate that intra-state heterogeneity in
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Nanog is consistent with bursty transcription, with a relatively low burst frequency of

∼0.39 burst/hour. Thus, active transcriptional loci analyzed by smFISH against nascent

transcripts [158] would be expected to ‘flicker’ on and off stochastically due to bursting.

Such bursting could also lead to the misleading appearance of weak correlations between

alleles in static snapshots, and in measurements based on destabilized fluorescent reporters.

On the other hand, the Nanog protein fusion reporters analyzed by [159] showed correlated

static levels between alleles, likely because the longer lifetime of their reporters allowed

integration of signal over many transcriptional bursts, and because transitions between

cellular states are rare and affect both alleles in a correlated fashion. The results of Faddah

et al. with dual transcriptional reporters similarly showed general correlations between

the two alleles, consistent with the smFISH correlations shown here (Figures A.1E, A.4B).

Taken together, these previous studies and the data presented here appear to converge on

a relatively simple picture of heterogeneity based on two states and stochastic bursting.

The quantitative measurement and analysis platform described above should enable

further investigation of the structure of static and dynamic heterogeneity in single ESCs.

With the advent of higher dimensionality smFISH [161, 162], single-cell RNA-Seq, and

microfluidic high-throughput qPCR approaches, as well as improved methods for rapidly

and accurately constructing knock-in reporters [163], it will soon be possible to explore

the dynamics of ESC components in higher dimensions in individual cells, both within

metastable states and during cell state transitions [164]. Ultimately, this should provide the

capability of better understanding the dynamic architecture of cell fate transition circuits.
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2.5 Materials and Methods

Culture conditions and cell lines

E14 cells (E14Tg2a.4) obtained from Mutant Mouse Regional Resource Centers were used

for smFISH studies. NKICit cells, created by Kathrin Plath, were generated by target-

ing the endogenous Nanog locus in V6.5 cells with H2B-Citrine-IRES-Neo-SV40pA (Fig-

ure A.4A). NKICit+Cer cells were generated by randomly integrating into NKICit cells a

linearized PGK-H2B-Cerulean-BGHpA-SV40-Hygro-SV40pA vector. OBACCer cells were

generated by randomly integrating into E14 cells (a kind gift from Bill Skarnes and Peri

Tate) a linearized bacterial artificial chromosome (BAC) containing the Oct4 locus (BAC-

PAC (CHORI)), in which H2B-Cerulean-SV40pA-PGK-Neo-BGHpA was inserted before

the coding sequence (Figure A.4A). Rex1-dGFP cells were kindly provided by the Austin

Smith lab [117]. All cells were maintained on gelatin-coated dishes without feeders.

smFISH hybridization, imaging, and analysis

The RNA FISH protocol from [105] was adapted for fixed cells in suspension. See supple-

mental experimental procedures for details. Semi-automated dot detection and segmenta-

tion were performed using custom Matlab software. A Laplacian-of-Gaussian (LoG) Kernel

was used to score potential dots across all cells. The distribution of these scores across all

potential dots was thresholded by Otsu’s method to discriminate between true dots and

background dots (see Figure A.1A-D).
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mRNA distribution fitting

The Negative Binomial Distribution is defined as

P (n, r, po) =

(
n+ r − 1

n

)
pr0(1− po)n,

where n=number of transcripts per cell, p0 = probability of transition from the on promoter

state to the off promoter state, and r = number of bursting events per mRNA half-life.

The average burst size is computed as b = (1 − p0)/p0. Using this model, individual

mRNA distributions were fit using maximum likelihood estimation. To discriminate between

unimodal and bimodal fits, two tests were used to ensure that the improvement of the fit

was counterbalanced by the additional degrees of freedom from the added parameters. To

be considered bimodal, a distribution was required to pass both Akaike Information Criteria

(AIC) and the log-likelihood ratio test (p <0.05).

Fluorescence time-lapse microscopy and data analysis

Reporter cells were mixed with unlabeled parental cells at 1:9 ratio and plated at a total

density of 20,000 cells/cm2 on glass-bottom plates (MatTek) coated with human laminin-

511 (BioLamina) >12 hours before imaging. Images were acquired every 15 minutes for

∼50 hours with daily medium change. Cells were segmented and tracked from the acquired

images using our own Matlab code (see supplementary for image analysis methods).

2i perturbation and analysis

For 2i treatment we supplemented serum+LIF media with MEK inhibitor PD0325901 at

1uM and GSK3 inhibitor CH99021 at 3uM. Cells grown in serum+LIF media were treated
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with 2i for 6 days before harvesting for smFISH assay and imaging for movies.

Methylation analysis and perturbation

RRBS preparation and high-throughput sequencing were performed by Zymo Research.

Analysis was performed using Bismark and Galaxy, with a single CpG coverage threshold

5. 5-azacytidine (Sigma) was used at a final concentration of 70nM. 5mC ELISA was

performed with ELISA 5mC kit (Zymo).

Accession information

Sequencing data has been deposted in NCBI’s GEO under accession number GSE58396.
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Chapter 3

Dynamics of Epigenetic Regulation
at the Single-Cell Level

(This chapter was adapted, in part, from a manuscript under review [165])

3.1 Abstract

Chromatin regulation enables cells to establish heritable gene expression states. However,

how chromatin regulators control gene expression in an individual cell, quantitatively and

over time, has remained unclear. Here, we analyzed the dynamics of gene expression in

individual cells before, during, and after recruitment of four diverse chromatin regulators

(Dnmt3b, HDAC4, EED, and KRAB) to the promoter of a reporter gene. We found that

gene silencing and subsequent reactivation both occurred through abrupt, all-or-none, and

stochastic events. Remarkably, the effects of all factors could be quantitatively described

by a unified model based on stochastic transitions among three discrete states: actively

expressing, reversibly silent, and irreversibly silent, with each factor generating a distinct

set of transition rates. These dynamics provide a simple mechanism for controlling the

fraction of cells in a given gene expression state. They also represent a predictive, statistical

framework for analyzing dynamic chromatin regulation and for engineering mammalian gene
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circuits with epigenetic memory.

3.2 Introduction

Living cells can establish gene expression states that persist for many generations. Such

epigenetic regulation plays critical roles in almost every aspect of multicellular develop-

ment, physiology, aging, and disease [166–168]. It is implemented through a system of

chromatin regulators (CRs) that read, write, and erase chemical modifications on specific

histone residues or DNA bases to set and maintain gene expression states [17, 22]. Previ-

ous work suggests that CR-based regulation can provide key dynamic capabilities to cells

and developing organisms, such as ensuring the irreversibility of cell fate decision-making

events [169–171], integrating signals over very long timescales [172, 173], and maintaining

long-term silencing of foreign or viral DNA elements (reviewed in [174]). The ability of CRs

to implement these functions depends on the quantitative and dynamic manner in which

they regulate expression of their target genes.

Recent work has begun to establish a framework for quantitative analysis of conven-

tional gene regulation systems, in which both rates of expression and levels of fluctuation

(noise) depend on the instantaneous concentrations of transcription factors in a continuous

fashion, both in prokaryotic and eukaryotic cells [34, 175–177]. A similar framework for

understanding how CRs dynamically control regulation of their target genes could provide

a better understanding of many biological processes, and enable the engineering of new cel-

lular capabilities based on chromatin regulation. Achieving such a framework will require

the addressing of one central issue: how the recruitment or removal of a given CR at a par-

ticular gene influences the present and future expression of that gene. More specifically, we

need to know: (1) what range of expression levels a CR can generate, and whether they are
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continuous or discrete; (2) how rapidly and permanently a CR exerts its effects; and (3) how

deterministic or stochastic the overall process of chromatin regulation is. Finally, we will

need to understand how all of these characteristics depend on the type of CR considered.

Measuring these dynamic properties of CRs requires one to directly manipulate the

binding of a CR at a given site and analyze its subsequent effects on gene expression

in individual cells. To control binding, one must be able to reversibly recruit each CR.

Ideally this should be done at the same locus across CRs to enable controlled comparisons.

Such a controlled recruitment system was previously achieved by fusing specific factors to

DNA binding domains [98, 178–184], or more recently by using the CRSPR/Cas9 system

[185]. Controlled recruitment has also been used to systematically compare the activities

of different CRs in yeast [186]. However, none of these studies analyzed the effects of CR

recruitment dynamically in individual cells.

To follow the effects of CRs during and after recruitment requires quantitative single cell

time-lapse analysis of gene expression. This analysis should extend over multiple cell cycles

to capture the range of timescales over which chromatin regulation occurs. This approach

has provided powerful insights into gene regulation and differentiation circuits in microbial

and mammalian cells [141, 187–190]. Extending these techniques to CR recruitment can

elucidate the effects of different CRs on gene expression states in individual cells.

Here, we measured the dynamics of gene expression in single mammalian cells in re-

sponse to recruitment and de-recruitment of four CRs spanning a diverse set of the most

studied chromatin modifications: EED and KRAB (histone methylation), Dnmt3b (DNA

methylation), and HDAC4 (histone deacetylation). Each was previously shown to be suffi-

cient to implement gene silencing when recruited to a target promoter [178, 180, 182, 184],

making them good candidates for use in synthetic regulatory systems. EED functions as
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part of the Polycomb Repressive Complex 2 (PRC2). This complex methylates histone H3

at lysine 27 (H3K27me3) and is essential in repression of cell fate regulators [191], and many

other developmental processes [192]. KRAB (Krppel-associated box) is a silencing domain

that appears in over 400 zinc finger transcription factors [193] and is popularly utilized in

genetic engineering applications [185, 194, 195]. KRAB was previously shown to associate

with the histone methylase SetDB1, a writer of histone methylation at lysine 9 (H3K9me3),

as well with the chromatin compacting protein HP1 that binds to H3K9me3 [196]. Dnmt3b

causes de novo methylation of CpGs to silence target genes during embryonic development

[109]. Finally, the histone deacetylase HDAC4 silences gene expression by removing acetyl

groups from histones H3 and H4 [197], and is recruited to specific genes involved in bone

and muscle development by transcription factors [198].

We found that, despite their diverse mechanisms of action, all four CRs exhibited com-

mon features. Changes in gene expression occurred predominantly through stochastic,

abrupt, all-or-none silencing and reactivation events, suggesting that chromatin regula-

tion generates probabilistic, binary control over the rate of gene expression. Our results

indicate that chromatin regulation can be operationally described as a stochastic three-

state process: CR recruitment can switch actively expressing cells into a reversibly silenced

state. If CR recruitment is sustained, cells can further switch to an irreversibly silent state.

Upon removal of the CR, reactivation from the reversibly silent state occurs in a stochastic

fashion.

While all factors generated dynamic behaviors consistent with this simple general scheme,

the different CRs behaved quite differently from one another. They produced distinct molec-

ular signatures during silencing and exhibited factor-specific rates of silencing and reacti-

vation. As a result, different CRs produced different levels of epigenetic memory, ranging
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from transient (days, HDAC4), to permanent (over a month, Dnmt3b). They also imple-

mented unexpected hybrid behaviors based on a mixture of slowly reversible (weeks) and

permanent memory states in the same cell population (EED and KRAB). These results sug-

gest that even though all of the CRs analyzed here are capable of silencing, each generates

qualitatively different types and timescales of regulation and epigenetic memory.

Finally, we discuss how the all-or-none, stochastic nature of epigenetic regulation enables

population-level control of the fraction of cells in a particular state in response to signals.

Taken together, these results provide a framework for operational analysis of chromatin

regulation and, more generally, establish the beginnings of a ‘design guide’ for future use of

CRs in synthetic mammalian gene circuits.

3.3 Results

A platform for analysis of silencing and reactivation dynamics in individual

cells

In order to analyze the effects of CRs at a single, well-controlled locus in individual cells,

we constructed a reporter cell line containing the histone 2B (H2B)-Citrine gene driven by

the constitutive pEF promoter [199]. pEF naturally drives the expression of translation

elongation factor 1 in mammalian cells, and, unlike some viral promoters, tends to resist

spontaneous silencing [200]. In order to provide a controlled chromatin environment for the

reporter gene, we flanked it with two tandem copies of the HS4 insulator [201], and stably

integrated the resulting construct into a human artificial chromosome (HAC) in Chinese

Hamster Ovary (CHO) cells (Figure 3.1A). The HAC provides an ideal platform for this

analysis because it is independent of endogenous chromosomes, exists in a single copy in
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the cell and can potentially be moved to other cell lines for future analyses in other cell

contexts [202, 203].

To enable control over the timing and duration of recruitment, each CR was fused to

reverse Tet repressor (rTetR), a domain that binds DNA only in the presence of doxycycline

(dox) [204] (Figure 3.1A). This inducible domain allows CR recruitment at an array of Tet

operator (TetO) binding sites near the reporter gene. Since these binding sites are upstream

of the promoter region, recruitment of rTetR alone does not repress reporter expression

(Figure B.1A). Using a separate cell line, we verified that rTetR binding is reversible, and

that our system can detect responses to the addition and washout of dox within 82 hours

and 2.52 hours, respectively (Figure B.1B). These results indicate that the rTetR system

enables analysis of epigenetic silencing and reactivation dynamics over timescales as short

as a few hours.

We next generated cell lines that constitutively express each of the rTetR-CR fusion

proteins by randomly and stably integrating each rTetR-CR construct into the reporter cell

line. These constructs also constitutively co-express H2B-mCherry to enable cell tracking

even when the H2B-Citrine reporter is silenced (Figure 3.1A). Prior to dox treatment, the

CR cell lines expressed H2B-Citrine at levels comparable to those in the parental reporter

line (Figure B.1C). Addition of dox triggered binding of the rTetR-CR fusion proteins up-

stream of the reporter (Figure 3.1B, ‘recruitment’). This recruitment initiated downstream

regulatory processes that led to gene silencing (Figure 3.1C). Removal of dox released the

CR from the reporter locus (Figure 3.1B, ‘de-recruitment’), allowing us to test the heri-

tability of silencing and the dynamics of reactivation (Figure 3.1D). Thus, the resulting cell

lines enabled comparison of silencing and reactivation dynamics across the four CRs.
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Figure 3.1: Platform for studying the dynamic control of epigenetic regulation
(A) Schematic of cell line design. An H2B-Citrine reporter cassette was integrated at a
specific site on a human artificial chromosome (HAC) previously introduced in CHO-K1
cells. Cassettes constitutively expressing chromatin regulators fused with rTetR (top four
constructs), as well as H2B-mCherry, were added separately through random but stable
integration to create four separate cell lines (one for each CR).
(B) rTetR is recruited to TetO binding sites only in the presence of dox. Experiments
involved recruitment of regulators by addition of dox (second panel) and subsequent de-
recruitment by removal of dox (third panel). Recruitment can add or remove modifications
(blue dots) and cause changes in reporter expression.
(C & D) Filmstrips and corresponding fluorescence traces of single reporter cells responding
to recruitment (C) and de-recruitment (D) of rTetR-EED. H2B-mCherry and H2B-Citrine
are shown in magenta and yellow, respectively. H2B-Citrine reporter fluorescence is plotted
as function of time for the cell lineages circled in white (raw trace, dotted line). Cumulative
fluorescence traces (solid cyan) were obtained by computationally restoring the constant
fluorescence level lost to the sister cell at each division. This procedure facilitates continuous
quantification of reporter production rate (slope of cumulative trace). Black circles indicate
inflection points identified during silencing or reactivation events. Time points indicated
by numbers 1-10 in the graph refer to corresponding frames in the filmstrip above. Cell
lineages in (C) and (D) are highlighted in movies S1 and S5, respectively.

Silencing dynamics at the single-cell level

We first set out to characterize basic aspects of silencing dynamics – speed, extent, and

variability among cells – and compare them across CRs. We acquired time-lapse movies,

beginning with cells not previously exposed to dox. In these cells the reporter gene was

actively expressed. After ∼24 hours, we added dox to initiate recruitment of a CR, and

continued to record movies for approximately three more days (Figure 3.1C, top). From

these movies, we extracted total H2B-Citrine fluorescence per cell over time. These traces

have a sawtooth appearance, reflecting periods of constant accumulation of fluorescent

protein punctuated by cell division events at which ∼50% of fluorescence is lost to the sister

cells (dashed lines, Figure 3.1C). In order to focus on the rate of H2B-Citrine production, we

computed a cumulative trace, by adding back fluorescence levels lost to partitioning (solid

line, Figure 3.1C). Using these cumulative traces, we calculated the reporter production

rate, defined as the rate of increase of cumulative fluorescent protein in an individual cell
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(slope of solid line, Figure 3.1C). This analysis allowed us to identify silencing events, defined

as transitions from high to low production rate (circle, Figure 3.1C), and record their timing

relative to dox addition, Toff (Figure B.1E & F, see also Experimental Procedures).

The timing of silencing events (Toff ) varied widely between cells and depended on

the CR used (Figure 3.2A & B). Silencing by EED and Dnmt3b occurred at a low rate,

and with a broad distribution of Toff values, 41.4±17.2 and 50.6±19.0 hrs, respectively

(mean±s.d. of all events pooled from independent experiments). With these two factors,

we observed silencing in individual cells continually throughout the entire duration of the

movie. In contrast, silencing mediated by KRAB and HDAC4 was much faster, with mean

Toff values of 6.0±3.3 and 16.0±13.3 hrs, respectively. For these factors, most cells were

silenced by 24 hrs (Figure 3.2B). The broad variability in silencing times observed here

suggests that chromatin silencing is a stochastic process.

For factors with silencing times (Toff ) extending beyond the first cell cycle (EED and

Dnmt3b), we tested whether silencing between sister cells was correlated. Consistent with

a stochastic mechanism, we found no strict pattern of silencing between sister cells. Nev-

ertheless, we observed a higher frequency of concordant silencing between sister cells than

expected if silencing were perfectly independent (Figure B.2A), indicating that a weak pre-

disposition to silencing can be inherited from parent to daughter cells. This behavior could

reflect an underlying multi-step process that extends across cell division events, or slow

fluctuations in the concentrations of trans-acting factors.

Despite variability in silencing times, the profiles of individual silencing events were re-

markably similar between cells and across different CRs. This similarity becomes more obvi-

ous when single-cell traces are aligned around the individual silencing events (Figure 3.2C).

Averaging these aligned traces revealed that recruitment of all four factors led to complete
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Figure 3.2: Silencing occurs in a stochastic, abrupt, and all-or-none fashion
(A) Representative single-cell traces show examples of silencing events induced by recruit-
ment of the indicated factor. Only cells undergoing silencing during the movie are shown.
Circles indicate silencing event inflection points. To avoid overlap, traces are offset by ar-
bitrary amounts on the y-axis. Arrowheads indicate lineages highlighted in movies S2 to
S4.
(B) The fraction of cells remaining ON as a function of time (upper panels) and the dis-
tributions of silencing times, Toff (lower panels), are plotted for each factor (mean ± s.d.
over two of more independent experiments).
(C) All single-cell cumulative fluorescence traces (gray lines) were aligned at the silencing
event (0 on the x-axis) and superimposed. The mean trace for each factor is plotted as a
colored line.
(D) Mean reporter production rates around the silencing event, obtained by averaging the
slopes of the individual traces in (C).
(E) Silencing rates, koff (t), were estimated by dividing the number of silencing events in
each time bin after dox addition by the number of active cells at that time. Trend-lines
represent phenomenological fits to the positive portion of a logistic function (see Supple-
mentary Experimental Procedures). Dotted lines represent the asymptotic silencing rates,
as determined from the fit. In D and E, colors correspond to those in A-C. Error bars
denote the estimated s.d. of silencing rates, assuming the number of events in each bin
follows a Poisson distribution.

silencing, with the average reporter production rates after silencing close to zero (Figure

3.2D, see also Figure B.2B). Silencing events were also abrupt relative to the timescales

over which we observed gene expression. Reporter production rates typically dropped from

80% to 20% of their initial values within ∼9 to 22 hours, faster than or comparable to the

cell cycle time of ∼20 hours.

While the majority of silencing events were abrupt and all-or-none, we also observed

deviations from all-or-none expression in a minority of cells. For example, in ∼8% of all

silencing lineages with HDAC4, the silent state was not completely off, but rather reduced

to a lower basal level of gene expression (Figure B.2C), suggesting that HDAC4 could be

an intrinsically weaker silencing factor. Additionally, for HDAC4, EED, and Dnmt3b, we

observed events in which promoter activity transiently decreased and then recovered (Figure

B.2D). These dynamics occurred in ∼14% (EED), ∼22% (Dnmt3b), or ∼6% (HDAC4) of
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all lineages displaying silencing events, but were not observed for KRAB. In many of these

traces, complete silencing occurred in the next cell cycle, suggesting that silencing events

could require a minimum time to be fully committed or stabilized.

The simplest way to account for stochastic, all-or-none silencing events is through a one-

step stochastic process, in which active cells transition to a silent state at a constant rate.

To test this hypothesis, we computed the silencing rate, koff (t), defined as the fraction of

active cells that transition to the silent state per unit time, after a time interval t since the

start of recruitment. For a simple one-step process koff (t) should be constant over time.

For all factors, we observed a transient increase of koff (t), followed by a longer period of

constant koff (t) (see Figure 3.2E, where trend-lines are fits to a phenomenological function

with two parameters, which reflect the maximum koff (t) and the sharpness of its initial

increase, respectively). For HDAC4 and KRAB, koff (t) reached half of its maximum value

rapidly (∼5hrs), comparable to the time resolution of our system (4 hrs, Figure B.1D).

For EED and Dnmt3b, recruitment caused a more gradual initial increase in koff (t) with

saturating levels an order of magnitude lower than those of HDAC4 and KRAB.

The transient increase in koff (t) suggests that the silencing process involves interme-

diate steps. These steps could correspond to the stochastic gain, loss, and spreading of

chromatin marks. In fact, simple models based on such dynamics can recapitulate the

dynamics of silencing observed here (Figure B.2E & F, see also Supplementary Experimen-

tal Procedures). Nevertheless, for each factor, most of the silencing events occurred after

koff (t) reached half of its maximum value. Therefore, this plateau koff value represents

the dominant variable characterizing the silencing dynamics. In what follows, we focus on

these first-order approximations of the silencing rates.
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The molecular characteristics of silent states

All four CRs analyzed here silenced gene expression fully, but did so with quite distinct

dynamics. This observation poses the question of whether these final silent states have

distinct epigenetic signatures or whether they represent an identical, common state. In or-

der to answer this question, we used ChIP-qPCR to analyze modifications associated with

each of the four factors after different durations of factor recruitment (Figure 3.3A). More

specifically, for all factors, we analyzed H3K27me3 (associated with EED), H3K9me3 (asso-

ciated with KRAB), H3 acetylation (erased by HDAC4), and CpG methylation (written by

Dnmt3b) [140, 191, 196, 198]. We also analyzed H3K4me3, which is associated with active

transcription [205, 206]. In each case we analyzed two regions, one within the promoter,

adjacent to the factor recruitment site, and the other in the reporter gene body.

After 5 days of recruitment, gene expression was silenced in nearly all cells, by all

four factors. At this time point, each factor strongly altered the level of its corresponding

modification, and did so in the expected direction (diagonal elements of the matrix in

Figure 3.3B). In addition, all four CRs strongly reduced active marks: H3 acetylation

and H3K4me3. Finally, each factor also produced some additional silencing modifications

(off-diagonal elements, Figure 3.3B). For instance, in addition to appearing after KRAB

recruitment, H3K9me3 was also enriched in the promoter region following recruitment of

EED and Dnmt3b. However, while the molecular states produced by individual silencing

factors partially overlapped, they retained clear signatures of the recruited factor, even after

10 days of recruitment (summarized schematically in Figure 3.3C). In particular, KRAB-

and Dnmt3b-mediated silencing never produced significant enrichment of H3K27me3, and

DNA methylation was only enriched in the Dnmt3b line (Figures 3.3B and B.3). These

results suggest that each CR produces a silent state with a distinct molecular signature.
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Figure 3.3: Molecular characteristics of the silent states
(A) ChIP-qPCR assays were performed on each cell line after treatment with dox for 0,
3, 5, or 11 days to assay changes in levels of five histone modifications at two positions,
one in the promoter (orange) and one in the gene body (yellow). Parallel experiments were
performed using MeDIP-qPCR to quantify changes in DNA methylation.
(B) qPCR signals from promoter (orange) and gene body (yellow) loci were normalized
by -Actin (for active marks) or Igf2 (for repressive marks) and represented as fold-change
(mean s.d. over duplicate experiments) relative to that of parental (reporter only) cell line.
The diagonal set of plots highlights the changes seen in the levels of chromatin modifications
expected for each factor. Off-diagonal plots represent potential cross-interactions.
(C) Summary of the dominant chromatin modifications associated with the active state and
the silent states established by the different CRs. Each potential modification is indicated
by the coloring of a corresponding circle at each locus. Note that HDAC4 erases, rather
than writes, its modification.
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Reactivation dynamics and epigenetic memory

Epigenetic memory enables gene expression states to remain stable even after removal of

initiating factors. To understand how the silent states observed here differ in terms of

epigenetic memory, we tracked gene expression in cells after terminating recruitment of

CRs (Figure 3.1B, ‘de-recruitment’). This allowed us to record how long individual cells

remain silenced, and measure the gene expression dynamics if and when they reactivated.

We first analyzed the dynamics of gene expression after the end of a 5-day period of

recruitment using time-lapse movies (Figure 3.1D). For Dnmt3b, the silenced state remained

stable throughout the duration of the movie (Figure 3.4A). In contrast, for EED, KRAB,

and HDAC4, we observed reactivation events that occurred with widely varying delays

after de-recruitment. These reactivation events, like silencing, were abrupt, stochastic, and

all-or-none (Figure 3.4A).

Nevertheless, a fraction of cells did not reactivate by the end of the movies, at which

point cell densities became too high for accurate tracking. Therefore, we used flow cytometry

to extend the analysis of reactivation dynamics to longer times (up to ∼1 month). Fluores-

cence distributions measured by flow cytometry were bimodal, and the fluorescence levels

of reactivated cells were similar to cells that were never silenced (Figures 3.4B, B.4A-C),

suggesting that reactivation remained an all-or-none process even after the end of time-lapse

imaging. This bimodality permitted quantitative analysis of the fraction of cells in the silent

state as a function of time (Figure 3.4C). These data revealed that each CR produced a

qualitatively different mode of epigenetic memory. HDAC4 imparted short-term memory:

upon its removal, silencing was lost in all cells within five days. In contrast, Dnmt3b pro-

duced stable silencing over timescales of >1 month. Finally, both EED and KRAB showed

an unexpected hybrid behavior: a fraction of cells fully reactivated within ∼2 weeks, while
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Figure 3.4: Dynamics of reactivation and epigenetic memory
(A) Cumulative single-cell fluorescence traces show individual reactivation events (circles).
For EED, KRAB and HDAC4, only traces that reactivated during the movie are shown, but
many cells did not reactivate over the duration of the movie. For Dnmt3b, no reactivation
event was observed, and only silent cells are shown. Traces are vertically offset for clarity.
Arrowheads indicate lineages highlighted in movies S6 to S8.
(B) Example of flow cytometry data showing the fluorescent distributions for EED-
expressing cells treated with dox for 5 days (cyan solid, measured 7 days after dox removal),
or untreated (cyan dashed). Cells were classified as OFF (low fluorescence peak), or ON
(high fluorescence peak) with a threshold (grey line).
(C) The fraction of cells in the OFF state was measured at varying time points after the
end of recruitment. Each dot represents one flow cytometry measurement of the type
shown in (B). Spontaneous background silencing rates have been subtracted (Figure B.4A,
Experimental Procedures). Solid lines are fits to the model described in the text and panel
D.
(D) The progressive silencing model involves stochastic transitions between three function-
ally distinct epigenetic states, involving three first order rate constants, as indicated.
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the remaining fraction remained completely silenced for at least a month.

The hybrid behavior of the EED and KRAB silenced cells suggests that cells can oc-

cupy at least two functionally distinct silent states, characterized by very different rates

of reactivation. In this model, recruitment of a silencing CR causes cells to stochastically

advance from the active state (A) to a reversibly silent state (R), and then to an irreversibly

silent state (I) (Figure 3.4D). These dynamics can be summarized as A ↔ R → I, with

both forward silencing rates (koff for A→ R, and kirr for R→ I) dependent on continued

recruitment of the silencing factor. After the end of recruitment, the forward silencing rates

become negligible, allowing cells from the R state to reactivate (A← R, rate kon). Defining

COFF (t, τ) as the fraction of cells silenced at time t after the end of a recruitment period

of duration τ , we have

COFF (t, τ) = CR(τ)e−kont + CI(τ),

where CR(τ) and CI(τ) are the fraction of cells in the R and I states, respectively, at

the end of recruitment.

One prediction of this model is that longer durations of recruitment should increase

the fraction of irreversibly silenced cells. To test this hypothesis, we systematically varied

the duration of recruitment and analyzed the subsequent reactivation dynamics (Figure

3.5A). For both EED and KRAB, the fraction of cells remaining silent after 30 days of

de-recruitment increased with the duration of the recruitment phase, as shown by the pro-

gression from green to red data points in Figure 3.5B & C. We noted a small time lag

between the end of recruitment and the onset of the reactivation phase, especially for dura-

tions of recruitment over 3 days. One possible mechanism to explain this lag is progressive



70

spreading of nucleosome modifications during continuous recruitment [98]. In this scenario,

longer silencing times would result in more modifications, which could require more time

to reduce sufficiently for reactivation. Remarkably, aside from this relatively small lag (1-2

days), once reactivation started, all data for a given factor could be fit with a single reac-

tivation rate, kon, across a range of different recruitment durations (continuous curves in

Figure 3.5B-E).

While the rate constants thus appeared constant for each individual factor, they varied

substantially across factors (Figure 3.5B-E). For example, even though KRAB and EED

memory modes were qualitatively similar, they still showed significantly different reacti-

vation rates, with KRAB reactivating about three times faster than EED (kon = 0.25d−1

versus kon = 0.07d−1). Moreover, HDAC4 and Dnmt3b could be fit by simplified forms

of this model. For HDAC4, the majority of cells were reversibly silenced for recruitment

times varying between 1 and 5 days (CI = 0), making the irreversible state unnecessary

(A ↔ R only). In contrast, for Dnmt3b, once silenced, cells remained irreversibly off for

at least a month (CR = 0), suggesting that Dnmt3b-mediated silencing effectively bypasses

the reversible state (A→ I only). Taken together, these results provide a simple quantita-

tive framework capable of describing a wide range of behaviors of epigenetic memory and

reactivation dynamics across different CRs.

3.4 Discussion

Silencing and reactivation events are stochastic, abrupt and all-or-none

Epigenetic regulation has been studied extensively in diverse systems, but the dynamic

process through which a single CR changes the expression level of a target gene within an
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single set of rate constants. Transition rates between active (A), reversibly silent (R) and
irreversibly silent (I) states are in units of day−1. A to R silencing rates (koff ) represent
the asymptotic values measured from movies (Figure 3.2E), R to A reactivation rates (kon)
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individual cell has remained unclear. By combining an inducible recruitment platform with

quantitative time-lapse microscopy, we were able to study silencing and reactivation events

dynamically in single cells.

Silencing occurred through abrupt, all-or-none stochastic events whose timing varied

among individual cells. Similarly, reactivation events observed after the termination of CR

recruitment were also abrupt, all-or-none, and stochastic, resembling silencing events in re-

verse. These observations are consistent with the bimodal distributions of gene expression

previously observed in response to HP1 recruitment [98]. The fact that CRs with very

different molecular mechanisms and dynamic behaviors produced qualitatively similar si-

lencing and reactivation events in our studies suggests that these are likely to be general

features of epigenetic regulation. Extending this method to some of the many other known

CRs, such as the 223 different CRs recently studied in yeast [186], could help to establish

how general the binary chromatin response is in other cellular contexts.

Functionally, abrupt, all-or-none silencing and reactivation events could facilitate sharp

transitions between discrete cell fates. In fact, such transitions, with accompanying epige-

netic changes, have been shown to be sudden and/or stochastic in T cell activation [207,

208], ES cell differentiation [209], and the response of fibroblasts to stimulation by tumor-

necrosis factor (TNF)-α [190]. Similarly, recent single-cell analysis in mouse ES cells re-

vealed abrupt stochastic transitions between two states with different gene expression and

DNA methylation profiles [100]. An abrupt, all-or-none switch in the expression of a key

regulatory protein, for instance, could help to stochastically trigger a differentiation event,

while avoiding potentially ambiguous intermediate gene expression levels of its targets.
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Connecting silencing and reactivation events to epigenetic mark dynamics

In this study, we focused on characterizing the dynamics of silencing and reactivation events.

Nevertheless, our results raise fundamental questions about the molecular mechanism un-

derlying these events. In particular, what gives rise to the all-or-none, stochastic and abrupt

nature of silencing and reactivation? Using the prevailing model of chromatin spreading,

we can reproduce the stochastic nature of silencing in individual cells and the progression

of silencing rates over time (Figures 3.2E, B.2E & F). However, it remains unclear what

generates the abruptness of silencing and reactivation events. In one scenario, the chro-

matin spreading model can be extended to include cooperative propagation of the marks

[210]. Under this regime, the domain size of chromatin marks can change suddenly, leading

to abrupt gene regulation events. Recently developed single-cell techniques that detect his-

tone modification at a specific locus [211] could be combined with the time-lapse approaches

used here to map the extent of a particular histone mark before and immediately after si-

lencing. The resulting distribution of histone domain sizes could reveal whether spreading

is gradual or bimodal and whether a sharp domain size threshold is required to initiate

silencing. Alternatively, sudden changes in gene expression could result from larger scale

processes such as chromatin compaction [212] or movement to the nuclear lamina [213].

Operational, dynamic perspective on epigenetic states and memory

The effects of distinct CRs have previously been studied at two distinct levels. At the molec-

ular level, each CR recruitment can produce a characteristic set of molecular modifications

[214–217]. At the gene expression level, CR recruitment can lead to varying degrees of gene

repression or activation in population average studies [179, 181, 183, 186]. The results ob-

tained here suggest a complementary view, in which epigenetic states can be distinguished
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both by the level of gene expression they produce (i.e on or off), and by their propensity

for switching to other epigenetic states (i.e. reversible or irreversible) (Figure 3.4D).

Within this framework, the behavior of each of the four CRs can be quantitatively

described with just three, and sometimes only two, states. Cells transition stochastically

between active, reversibly silenced, and irreversibly silenced epigenetic states (Figure 3.4D).

This model provides a coarse-grained view of the dynamics over the timescales of days to

weeks investigated here. We did observe some evidence for possible additional sub-states

not explicitly incorporated in the model (e.g. the delays before the onset of silencing and

reactivation). Nevertheless, the 3-state model describes the major dynamic behavior of

these diverse systems over the most relevant timescales, making it a useful framework for

characterizing and designing CR regulatory systems.

Critically, while this model can describe much of the dynamics generated from all four

factors, the states themselves differ at both functional and molecular levels depending on

the CR used. Functionally, each CR generated silenced states with distinct propensities for

reactivation or irreversible silencing. These transition rates explain the type of epigenetic

memory achievable by each factor: permanent (Dnmt3b), transient (HDAC4), or a hybrid

of the two (EED and KRAB) (Figure 3.6A). DNA methylation and histone deacetylation

were previously suggested to enable permanent and transient regulation, respectively [24,

26]. The hybrid memory observed for EED and KRAB represents a distinct mode of

regulation, in which all three states come into play, providing two timescales for epigenetic

memory from the same factor. The distinct set of transition rates, koff , kirr, and kon,

encapsulates the functionality offered by each factor (Figure 3.6B).

Molecularly, each CR produced a distinct chromatin modification signature (Figure 3.3).

For example, even after extended periods of EED and KRAB recruitment sufficient to ir-
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Figure 3.6: Operational framework and design space of epigenetic regulation
(A) The rates of stochastic switching between three functional states (top panel) determine
the dynamic response of different chromatin regulators (bottom four panels) to an interval
of chromatin recruitment (schematic). At the population level, the response of gene expres-
sion to factor recruitment is fractional. Individual cells within a population (circle stacks)
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(B) Each CR occupies a distinct operating point within the larger potential design space
defined by the three transition rates between epigenetic states.
(C) The hybrid form of memory observed for histone methylases enables a dual response
to signals. Increasing signal durations (top), while resulting in the same, full short-term
population response, lead to increasing levels of long-term memory manifested as fractions
of irreversibly silenced cells (bottom).
(D) When the cell division and silencing rates are similar (kdiv ≈ koff ), the number of cells
remaining ON can be held constant (open circles, orange line), while the total number of
cells grows exponentially (open + closed circles, black line). This regime occurred under
continuous EED recruitment. X’s indicate data points, averaged over three independent
experiments.
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reversibly silence substantial fractions of cells, these factors did not directly or indirectly

cause DNA methylation (Figures 3.3, B.3). This contrasts with the observation that DNA

methylation is necessary for persistent epigenetic memory generated by HP1 recruitment

[98]. Conversely, Dnmt3b-dependent methylation did not lead indirectly to H3K27 methy-

lation. These results suggest that complete silencing can be generated through distinct

molecular chromatin states.

Epigenetic regulation enables fractional control at the population level

In stochastic fractional control systems, the magnitude and/or duration of input signals con-

trols the fraction of cells that respond, with each individual cell responding in an all-or-none

manner [55]. For example, in the immune system, the fraction of T cells that differentiate

into effector cells appears to depend quantitatively on the duration of stimulation (reviewed

in [218]). Similarly, recent work has suggested that adipocyte differentiation can also occur

stochastically in a small fraction of cells [219]. Finally, in plant vernalization, the probabil-

ity of flowering changes with the durations of exposure to cold, through a mechanism that

involves progressive fractional silencing by PRC2 [172, 173].

Despite large quantitative differences in silencing and reactivation rate constants, as

well as qualitative differences in the types of chromatin marks they write, all CRs studied

here effectively implemented stochastic fractional control of gene expression, and did so in

several distinct ways: First, during continuous recruitment of a silencing factor, the fraction

of silenced cells (I and R states) grows monotonically with time. In this mode, the steepness

of the input-output response is determined by the value of the silencing rate, koff (Figure

3.6A, all factors). Because koff differs among silencing factors, the choice of CR determines

the sensitivity of the silenced fraction to the duration of the input signal. Second, for factors



77

that allow full reactivation, the fraction of cells that remain silent at a given time reflects

the time elapsed since the end of recruitment (Figure 3.6A, HDAC4). Third, for factors that

generate permanent memory, the fraction of cells that remain irreversibly silenced encodes

the total duration of recruitment (Figure 3.6A, Dnmt3b, EED, and KRAB).

Furthermore, the hybrid memory observed for EED and KRAB separates the timescales

associated with response and memory. For example, if KRAB recruitment is maintained

for timescales ranging from 2-5 days, all cells in the population can be silenced, but the

fraction of irreversibly silenced cells varies (Figure 3.6C). This enables a cell population to

generate an identical initial system-wide response to a signal while encoding recruitment

duration in the long-term memory.

Finally, stochastic binary gene regulation also enables a system to fix the absolute num-

ber of cells in a particular state, by matching rates of cell division and stochastic silencing.

In this scenario, each cell division will result, on average, in one silenced and one active

daughter. Since the silent state is heritable, its population will grow exponentially, while

the total number of active cells remains constant. In fact, we observed this behavior with

EED recruitment under the conditions investigated here (Figure 3.6D). This mechanism

provides a very simple way to maintain a fixed population size, a feature of stem cell niches

that balances self-renewal and differentiation [220]. However, exactly matching the silencing

and division rates requires ‘fine-tuning’ [221]. Perhaps for this reason, naturally occurring

systems appear to involve more complex mechanisms such as feedback loops and cell-to-cell

signaling [222, 223]. It remains to be seen how these different population control strategies

compare at the systems level.
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Exploring the epigenetic regulation design space

Our approach here has been to take a design-oriented view of chromatin regulation, centered

on understanding the quantitatively and qualitatively distinct gene regulation capabilities

provided by each CR. For the four factors analyzed here, these capabilities can be captured

by three key parameters: the rates of silencing and commitment to the irreversibly silent

state in the presence of the CR, koff and kirr, respectively, and the rate of reactivation in the

absence of the CR, kon. Each of the four factors tested occupies a distinct location within

this three-dimensional design space (Figure 3.6B), with a corresponding behavior (Figure

3.6A). Dnmt3b is a slow, but complete, committer: it has a low, stochastic silencing rate, but

irreversibly commits cells to a silent state. HDAC4 is a reverter: it displays fast silencing

with a relatively short memory. In contrast, EED and KRAB, both writers of histone

methylation marks, are partial committers: they silence on one timescale, and commit on

another, producing a mixture of reversibly and irreversibly silenced cells at intermediate

timescales. While EED and KRAB both show similar transition rates to the permanently

silenced state (R → I), they induce the initial silencing step (A → R) at quite different

rates, thus occupying different points in the design space (Figure 3.6C). Because of these

different characteristics each of these specific CRs could provide distinct capabilities for

epigenetic applications in synthetic biology.

More generally, the CRs investigated here exist within a larger design space of potential

regulatory modes. Other CRs not yet analyzed could differ from these quantitatively, in

the values of their dynamic rate constants (Figure 3.6B), or qualitatively, for example by

generating additional, functionally distinct epigenetic states. It will therefore be interesting

to determine where other CRs fit within this space and how their behaviors depend on

genomic context, cell type, and promoter architecture. Recent advances in targeted recruit-
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ment techniques, such as CRISPRs and TALs, provide further opportunities to expand the

analysis to additional genomic loci and to explore the effects of combinatorial recruitment

of multiple CRs [181, 185]. Understanding the design space of chromatin regulation will

both produce a better understanding of why specific CRs are employed in natural genetic

circuits and enable the design of synthetic gene circuits that take advantage of the inherent

temporal control and memory capabilities provided by epigenetics.

3.5 Materials and Methods

Cell lines construction

The reporter line was created by co-transfecting CHO-K1 cells carrying the MI-HAC arti-

ficial chromosome [203] with 600 ng PhiC31-Neo-ins-5xTetO-pEF-H2B-Citrine-ins reporter

plasmid and 200 ng PhiC31 integrase plasmid. Transfection was done using Lipofectamine

2000 (Invitrogen). Cells were transferred to 6-well plates 24 hours later and selected with

400 ng/ul geneticin for 12 days, starting 40 hours after the transfection. Single clones were

obtained by limiting dilution. The integration of the reporter in the HAC was verified by

genomic PCR, and a single clone was chosen for further analysis. Each of the CR plas-

mids (pEF-H2B-mCherry-T2A-rTet-CR) was randomly integrated into this reporter line

by transfection with Lipofectamine 2000 (Invitrogen). These cells were selected using 300

ng/ul zeocin starting 24 hours after transfection for a total of 12 days. Finally, single clones

were selected for each CR by limiting dilution. See Supplemental Experimental Procedures

for details on plasmids construction and culture conditions.
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Fluorescence time-lapse movies

Reporter cells expressing each of the four CRs were plated around 12 hours before imag-

ing, at low density (1,500 cells/cm2), on glass-bottom plates (MatTek) coated with 5g/ml

hamster fibronectin (Oxford Biomedical Research). Imaging was done using an inverted

Olympus IX81 with Zero Drift Control (ZDC), a 20X objective, and an iKon-M CCD cam-

era (Andor, Belfast, NIR). Fluorophores were excited using an X-Cite XLED1 light source

(Lumen Dynamics). Images were automatically acquired every 20 minutes, using Meta-

morph software (Molecular Devices). The microscope was encased in a chamber kept at

37C and 5% CO2, and the imaging growth media (see Supplemental Experimental Proce-

dures) was changed daily. Silencing movies began with reporter cells actively expressing

the reporter gene. Dox (1g/ml) was added to the cells at ∼24 hours, after which imaging

continued for at least 3 more days and until cell tracking became difficult due to high cell

density. Cells were then replated similarly and at low density, in the presence of dox, for the

subsequent acquisition of reactivation movies. Imaging began with these cells ∼12 hours

after re-plating, and dox was washed-out at ∼24 hours into the movies (5 days since the

beginning of dox addition). See Supplemental Experimental Procedures for details on movie

analysis and event detection.

ChIP-qPCR and MeDIP-qPCR

Each cell line was treated with dox (1ug/ml) for 0, 3, 5, and 11 days before harvesting. ChIP

and MeDIP were performed using LowCell# ChIP and MagMeDIP kits, respectively, with

the Bioruptor sonicator (all from Diagenode). For ChIP, we used the following antibodies:

anti-H3K27me3 (Milipore, 07-449), anti-H3K9me3 (Abcam, ab8898), anti-acetyl-H3 (Milli-

pore, 06-599), anti-H3K4me3 (Abcam, ab8580). For MeDIP, we used the 5-methylcytidine
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antibody from the MagMeDIP kit (Diagenode). qPCR was performed using SsoFast Eva-

Green Supermix on a CFX96-C1000 Real-Time PCR System (both from Bio-Rad Labora-

tories). For qPCR primer sequences, see Table B.1. Reported fold-enrichment values from

qPCR experiments were obtained by normalizing first against an internal positive control

locus, and then against the parental cell line without any CR, i.e.,

fold− change =
2{Ct(control,CF )−Ct(locus,CF}

2{Ct(control,parental)−Ct(locus,parental}
.

The internal control loci account for variations in the amount of DNA and pull-down

efficiency for each sample, and are chosen to be actin for the marks associated with active

genes (H3K4me3) and Igf2 for the silencing marks (H3K27me3, H3K9me3, and 5mC). Igf2

was chosen for its lack of expression in mouse adult ovary cells (MGI Ref. ID J:46439) and

elevated levels of H3K9me3 and H3K27me3 implicated in the imprinting of the locus [224].

Flow cytometry for epigenetic memory analysis

For each cell line, cells were plated in multiple wells at the same time, and treated with

dox (1ug/ml) starting at different time intervals. Dox was removed simultaneously from

all samples. At different time points following dox removal, cells were harvested using

0.25% Trypsin (Life Technologies). A fraction of the cells were re-plated for the next time

point. The rest of the cells were resuspended in flow buffer (Hank’s Balanced Salt Solution

(Life Technology) and 2.5 mg/ml BSA), filtered through 40 m strainers (BD Falcon) and

their fluorescent distributions were measured with a MACSQuant VYB machine (Miltenyi

Biotec, Bergisch Gladbach, Germany). The resulting data were analyzed with a custom

Matlab program called EasyFlow. Single cells were selected based on side and forward

scatter properties. A manual gate was imposed on the Citrine fluorescence to determine
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the percent of cells in the OFF state for each sample. The gate was selected to contain

1-2% of the positive Citrine peak of untreated cells. In all cell lines containing CRs, we

noticed an increase in the percentage of silent cells over 30 days even in the absence of

dox treatment (Figure B.4D). This background silencing is a combination of spontaneous

silencing of the reporter locus (as seen in the parental line with no CRs, Figure B.4D), and

non-specific recruitment of rTetR to the reporter. In order to correct for this background

silencing, for each cell line, we subtracted the fraction of cells silenced in the untreated line

and normalized by the fraction of untreated cells that were active at each time point, i.e.

OFF=(OFF(treated)-OFF(untreated))/ON(untreated).
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Concluding Remarks

In this thesis we examined the single-cell dynamics of gene expression, either during spon-

taneous cellular state transitions in ES cells or under artificial recruitment of CRs. In both

contexts, individual cells transition between distinct states in stochastic events, without

persisting in intermediate gene expression levels. These similarities provoke the question of

what role chromatin regulation may have on state transitions in ES cells. More generally,

the diverse timescales of silencing and reactivation, and types of epigenetic memory elicited

by different CRs prompt us to wonder how these properties may be specifically utilized in

different contexts during the development. Here we discuss these issues and suggest how the

experimental and analytical framework presented in this thesis may be extended to address

them.

In Chapter 2, we reported the correlation of the two ES cell states with differential ex-

pression of Dnmt3b and Tet1, as well as changes in the global level of DNA methylation over

many genes. Furthermore, we demonstrated that DNA methylation is partially required for

the establishment and maintenance of the Nanog/Rex1-low state. These results suggest a

major role of DNA methylation in the regulation of the metastability in undifferentiated ES

cells. Nevertheless, transition between these two states likely involves many other mecha-

nisms, such as cell-cell signaling and transcription feedback. What is the hierarchy among

these regulatory processes? In one potential scenario, state transition may be initiated by
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fluctuations in the activities of various signaling pathways, such as Fgf and Wnt. These

pathways can impinge on the expression of Nanog through post-transcriptional and post-

translational mechanisms [71, 225–228]. Changes in Nanog expression can then propagate

to downstream regulators through the transcription factor circuit, and finally results in the

establishment of more stable states through changes in chromatin modifications. In an al-

ternative scenario, spontaneous fluctuations in chromatin regulator expression may initiate

changes in chromatin modifications in core regulators and their expression levels, which are

then propagated to the rest of the transcription circuit.

To distinguish between these scenarios, we can follow the dynamics of multiple genes in

the same cell during state transitions, and determine if these genes switch their expressions

under a fixed sequence. This can be done by constructing multi-fluorescence reporter cell

lines. Furthermore, we can identify a core set of genes whose changes in expression level

are sufficient to trigger state transition. This can be achieved by transient over-expression

or knock-down of one or more candidate genes, while monitoring the status of a cell state

reporter such as Nanog or Rex1. One candidate gene of particular interest is Tet1, which

we showed to be more highly expressed and less methylated in the Nanog/Rex1-high state,

and is itself involved in the process of DNA demethylation through its 5-methylcytosine

hydroxylase activity [135]. Interestingly, Tet1 and Tet2 were recently shown to associate

with Nanog through protein-protein interaction, and this interaction is implicated in the

process of reprogramming through fusing somatic cells with embryonic stem cells [229].

Furthermore, simultaneous ectopic expression of Nanog and Tet1 leads to increased levels

of 5-hydroxymethylcytosine on their common target loci, including Esrrb and Oct4 [229].

Finally, Tet1 is also known to bind to its own promoter as well as that of Nanog [136].

Together, these results suggest a positive feedback loop that involves the chromatin reg-
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ulatory activity of Tet1. It will be interesting to see if ectopic expression of Tet1 and/or

targeted recruitment of Tet1 to the promoter of itself and other target genes is sufficient

to trigger transition from Nanog/Rex1-low to Nanog/Rex1-high states. With the advent of

CRISPR-mediated RNA-guided targeting system [185], our chromatin recruitment system

in Chapter 3 can be conveniently adapted to achieve the latter goal.

In Chapter 3, we investigated the response of target gene expression to direct recruitment

and de-recruitment of four different CRs. Remarkably, all four CRs demonstrated similar

all-or-none event profiles during silencing and reactivation, while displaying a diverse range

of silencing and reactivation rates, and types of epigenetic memory. How may these differ-

ences be utilized in developmental contexts? During early embryonic development, when

cells in the epiblast differentiate into cells in the three germ layers, pluripotency-associated

genes are down-regulated, while lineage-associated genes begin to express. In particular,

genes that are associated with self-renewal and can induce dedifferentiation, such as Oct4,

needs to be permanently silenced and safeguarded against re-expression in somatic cells.

Recent research in ES cell differentiation, in response to retinoic acid, showed that this

safeguard may be achieved with a multi-step mechanism [230]. This process involves a

series of regulations in the following sequence: transcriptional repression, G9a-dependent

methylation of H3K9, removal of H3K4 methylation and histone acetylations, and, finally,

Dnmt3a/3b-dependent methylation of DNA. Interestingly, our results demonstrated that

KRAB-mediated silencing (associated with H3K9 methylation) is rapid yet only partially

permanent, while Dnmt3b-mediated silencing (associated with DNA methylation) is perma-

nent but slow. Combining different chromatin modifications and regulators may therefore

represent a unique strategy for rapid and permanent gene silencing.

It should be noted that our chromatin regulation reporter consists of a EF1α pro-
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moter, which has two adjacent CpG islands, while there is no CpG island at the Oct4

promoter. CpG islands in mammalian genes are typically unmethylated, with the excep-

tion of imprinted genes and on the inactive X chromosome. Our data demonstrated that

EF1α promoter can be methylated and permanently silenced by Dnmt3b recruitment, and

suggests that CpG island methylation is sufficient to provide the stable silencing that is

observed in imprinting and X chromosome inactivation. It will be interesting to see if the

stability of silencing varies with CpG densities at the promoter. Furthermore, since we have

demonstrated that ES cells are subject to fluctuating DNA methylation and demethylation

activities, it will also be interesting to test Dnmt3b recruitment to endogenous genes in the

ES cell context.

Together, the experimental and analytical platforms presented in this thesis provide

novel tools for investigating the natural gene expression dynamics in more biological con-

texts. Finally, insights from the results presented here and from future studies using these

platforms will enable us to design and construct novel synthetic systems with predictable

cellular state dynamics.
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Appendix A

Supplemental Information for
Chapter 2

Supplemental Experimental Procedures

Detailed Culture Conditions

All cells were maintained in humidity-controlled chambers at 37◦C, with 5% CO2 in serum+LIF

media [Glasgow Minimum Essential Medium (GMEM) supplemented with 10% FBS (Hy-

Clone, Thermo Scientific), 2 mM glutamine, 100 units/ml penicillin, 100 ug/ml strepto-

mycin, 1 mM sodium pyruvate, 1000 units/ml Leukemia Inhibitory Factor (LIF, Millipore),

1X Minimum Essential Medium Non-Essential Amino Acids (MEM NEAA, Invitrogen) and

50 uM β-Mercaptoethanol].

Correlation between Citrine and Nanog transcripts in Nanog knock-in

reporter cells (NKICit)

We validated the Nanog knock-in reporter by performing smFISH for correlation between

Nanog (unmodified allele) and Citrine (knock-in reporter on second allele) (Figure A.4B).

We observed that when grown in serum+LIF conditions, ∼10% of cells contained Nanog but

no Citrine transcripts, likely due to silenced expression of their reporter cassettes during
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prolonged propagation without antibiotics. The remaining cell population showed even

stronger correlation between Nanog and Citrine transcripts (r = 0.78). We corrected for

the potential systematic error that may result in the calculation of low-to-high switching

rate such that an observed rate of 1.9 0.29 transitions per 100 cell cycles was adjusted to the

reported 2.3 0.25 (mean SD). We note that the magnitude of this error does not alter key

conclusions, including those about the relative stabilities of the two states. Furthermore,

the asymmetry of this silencing behavior – we did not find a corresponding fraction of cells

expressing Citrine but no Nanog transcripts – suggests that this is not likely a result of

mono-allelic regulation.

smFISH procedure and imaging system

Up to 48 20mer DNA probes per target mRNA were synthesized and conjugated to Alexa

fluorophore 488, 555, 594, or 647 (Life Technologies) and then purified by HPLC. Cells for

smFISH experiments were plated at 40,000/cm2 and harvested after 48 hours. Trypsinized

cells were washed in PBS and fixed in 4% formaldehyde at room temperature for 5 mins.

Fixed cells were resuspended in 70% ethanol and stored at -20◦C overnight. The next day,

cells were hybridized with 4nM probe per target species at 30◦C, in 20% Formamide, 2X

SSC, 0.1g/ml Dextran Sulfate, 1mg/ml E.coli tRNA, 2mM Vanadyl ribonucleoside complex,

and 0.1% Tween 20 in nuclease free water. The following morning, cells were washed in

20% Formamide, 2x SSC, and 0.1% Tween 20 at 30◦C, followed by two washes in 2x SSC +

0.1% Tween 20 at room temperature. Hybridized cells were placed between #1 coverslips

and flattened by applying pressure evenly across the glass.

After flattening cells between coverslips, dots typically span two distinct focal planes.

However, to maximize the number of cells imaged in a given acquisition time, only one
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of these focal planes was captured. This results in approximately ∼60% of each cell’s

transcripts being captured in a single slice, as compared to taking a stack of images across

the entire volume of each cell (Figure A.1A-D).

Imaging was performed on a Nikon Ti-E with Perfect Focus, Semrock FISH filtersets,

Lumencor Sola illumination, 60x 1.4NA oil objective, and a Coolsnap HQ2 camera. Snap-

shots were taken using an automated grid-based acquisition system on a motorized ASI

MS-2000 stage.

Monte-Carlo bivariate Kolmogorov-Smirnov test

The 1D Kolmogorov-Smirnov test was extended to two dimensions [1] to determine whether

an empirical bivariate distribution showed any dependence between variables; the 2D Cumu-

lative Distribution Function (CDF) is computed in each possible quadrant of the 2D plane

P(x<x0), P(y<y0); P(x>x0), P(y<y0); P(x<x0), P(y>y0); and P(x>x0), P(y>y0). The

2D KS test statistic is thus defined as the largest difference between empirical and theoret-

ical distributions across each of these possible regions. In order to generate a test-statistic

distribution under the null hypothesis, we performed a Monte-Carlo simulation where sets

of random pairs of data points are sampled from the PDF formed by the product of the

marginal distributions. The resulting bivariate CDF is compared to the theoretical CDF

and the maximal difference is taken. This is performed repeatedly in order to generate a

distribution of maximal differences that would occur by chance. Finally, the test statistic

is computed from the empirical distribution, and compared to this distribution at a 95%

confidence level.
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Movie acquisition system

Images were acquired on the IX81 inverted microscope system (Olympus) using the Meta-

morph acquisition software (Molecular Devices) with the iKon Charge Coupled Device

(CCD) camera (Andor). Fluorophores were excited using X-Cite XLED1 light source (Lu-

men Dynamics) equipped with the BLX, BGX, and GYX modules.

Movie data analysis: Segmentation and tracking

The Schnitzcells script package [2] was used to segment and track cells from the acquired

images. This package performs a number of procedures as described below. Briefly, cells

were segmented with Matlab built-in edge detection script, using the Laplacian of Gaussian

method. Segmented cells in individual frames were then tracked across all time points

by performing a point-matching algorithm on successive pairs of frames to generate a cell

lineage data structure. To obtain the total fluorescence level of each cell, the images were

flattened by correcting for the nonuniformity of illumination, followed by local background

correction that takes into account the camera acquisition background, autofluorescence from

the medium and fluorescence contribution from neighboring cells.

Movie data analysis: Production rate estimation and step detection

To enable the continuous estimation of production rates (slopes), frames around cell divi-

sions are removed and fluorescence lost during divisions (to sister cells) is added back to

the trace of interest to create a continuous total fluorescence trace for each lineage. In-

stantaneous fluorescence production rates were estimated by fitting the continuous total

fluorescence of a 6-hour window to a linear section using the linear least squares method.

Distributions of reporter production rates (Figures A.4A & B) were obtained by sampling
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the instantaneous fluorescence production rates of all cell lineages at 1-hour intervals. To

characterize abrupt changes in production rates, we identified sharp inflections of the con-

tinuous total fluorescence traces by applying a custom-built step detector on overlapping

and consecutive 6-hour windows 15 minutes apart (Figure A.4D). For each window, we

obtained fits to a linear polynomial model and a continuous two-piece linear polynomial

model with a joint at midpoint using the linear least squares and non-linear least squares

methods, respectively. The continuous two-piece linear model can be represented as follows:

y =


max+ c , x < xmid,

maxmid + c+mb(x− xmid) , x ≥ xmid,

where xmid is the midpoint of the window.

We used two criteria to determine whether a given window fits better to the one-piece

or two-piece linear fits: (1) whether the noisiness of the trace can explain the deviation of

the data from the one-piece fit (mean sum of squared errors, M.S.E.), and (2) whether the

two slopes obtained from the two-piece fit are significantly different from each other. For

(1), we define the noisiness of the trace as the variance of the distribution of frame-to-frame

fluctuations in total fluorescence, i.e. var(Yt+1 − Yt). For a perfectly linear trace without

noise, the mean of Yt+1−Yt equals the slope of the trace. As the observation noise increases,

the sum of squared errors (S.S.E.) of one-piece fit increases even if the underlying trace has

a constant slope. We therefore estimated the portion of S.S.E. of one-piece fit unexplained

by the noisiness of the trace as the residual noise, defined as M.S.E.1pc/var(Yt+1 − Yt),

where n is the number of frames within a window. For (2) we obtained the 95% confidence

bounds of the two slopes in the two-piece fit and determined if they overlap. Using (1)

and (2), we identified stretches of frames where two-piece fit is significantly better than
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one-piece. The frame with the highest residual noise among each of these stretches was

designated as the point of inflection and the rest of the trace was approximated by linear

segments between these points.

Movie data analysis: Hidden Markov Model and Viterbi Algorithm

We set up a two-state HMM to estimate the frequency of state-switching events between

the higher and lower Nanog states. We assume each of the two states can produce an

independent Gaussian distribution of production rates, with specified mean and variance,

including potential overlap between the two states. Over each unit time, a cell can either

stay at its current state or switch to the other state with specified probabilities. Thus,

given a specific parameter set, there exists for the production rate time-series of each cell a

corresponding series of underlying states that has the maximum likelihood. This likelihood

is a balance between the probability of observing a production rate at the corresponding

state and that of switching to another state, such that a cell that transiently exhibits a

production rate far from the mean of its current state is more likely to be fluctuating rapidly

within a state than switching away and back. The Baum-Welch algorithm [3] maximizes

the sum of this likelihood over all cells by iteratively changing the parameters in small

increments, improving the total likelihood each time.

Prior to training the model with data, initial transition rates between the states in both

directions were set at 0.0001/hour. Initial parameters for each state were set with the mean

value drawn from the range of observed production rates and variance. Re-initializing the

random parameters in the model yielded similar results. We employed the HMM toolbox

for Matlab [4], which generated a maximum likelihood estimate of the model parameters

using the Baum-Welch algorithm. Since the production rate sequences used to train the
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HMM contained repeated time-series when multiple lineages shared the same ancestor, the

state-transition rates generated directly from HMM could be an overestimation. We applied

the Viterbi algorithm [5] to combine the model parameter estimates and the observed data

to infer the most likely state sequence for each cell lineage. From this we reported the

empirical state-transition rates, normalized to the average length of a cell cycle.

Bursty transcription simulation and mixing time analysis

Bursty transcription was simulated using the model previously described [6]. In this model, a

promoter can transit stochastically between an active and an inactive form. This is not to be

confused with a cellular state, which is usually maintained over a longer timescale and within

which a gene bursts with a characteristic burst size and frequency. Transcription occurs

only when the promoter is in its active form, producing a burst of mRNA molecules, which

decay exponentially. To aid comparison between the simulated transcription dynamics and

our experimental observations, we added protein production to the simulation. Further,

since our fluorescence protein is stable, and to restrict the source of heterogeneity in our

simulation to stochastic transcription, we assumed zero protein decay rate and deterministic

protein production at a constant rate. Lastly, both mRNA and protein are partitioned when

cells divide, which were set to have division rates similar to experimental data. This model

can be described by the following reactions:
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I
kon−−−−−−→ A,

A
koff−−−−−−→ I,

A
βm−−−−−→ A+m,

m
αm−−−−−→ ∅,

m
βp−−−−−→ m+ p.

Here, A and I denote the promoter in its active and inactive forms, respectively; m

– mRNA level; p – protein level; kon and koff – activating and inactivating rates of the

promoter, respectively; αm – mRNA degradation rate; βm – mRNA production rate; ∅ –

mRNA degradation; βp – protein production rate.

A cellular state is thus characterized by the frequency of mRNA bursts and the mean

number of mRNA molecules produced per burst. Here, we considered one limiting case of

this model, where koff is significantly larger than kon and somewhat larger than αm. This

assumption can be related physically to a scenario where bursts are relatively infrequent

and have short durations, and the distribution of mRNA levels produced under these as-

sumptions can be described with a single gamma [7] or NB function [8]. A cell changes state

in a gene when one or more of the parameters kon, koff , or βm for that gene is changed,

thus resulting in different burst frequencies and sizes.

To simulate mRNA and protein dynamics for the Nanog-high state in serum+LIF con-

dition (shown in Figures A.4E, A.4E), we used the following parameters estimated from

mRNA distributions in smFISH: for Nanog – burst size = 33 mRNA/hour, burst fre-

quency = 0.39 bursts/hour; for Oct4 – burst size = 87 mRNA/hour, burst frequency =

0.52 bursts/hour. These assume that mRNA half-lives of Nanog and Oct4 are 5.85 and 7.4

hours, respectively [9].
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We utilized computer simulations of this model to explore whether changes in state affect

the intra-state dynamics of heterogeneity. Varying burst frequency and burst size results

in traces with various frequencies of apparent steps when analyzed using the same step

detector, which identified regimes in the bursty transcription parameter space where steps

of similar quality to the ones observed can be generated (Figures A.4F, A.5C). Furthermore,

the resulting dynamics also display a wide range of shapes of fluctuation and levels of

expression. We quantified these variations with an objective measurement, the mixing time,

a population metric adapted from Sigal et al. (2006). For each simulated population (n =

200 traces) using a single parameter set, we ranked all traces by their production rate at

each time point. Thus a cell starting with the lowest production rate among the population

may change in this rank when its production rate changes over time. We computed the

autocorrelation function A(τ) of this rank for each population and the mixing time is

defined as the time lag τ at which A(τ) decayed to 0.5. We opted to calculate the mixing

time using production rate but not total fluorescence level because the stable fluorescent

reporter facilitates accurate production rate estimate but may not reflect the physiological

level of endogenous proteins. Additionally, for more direct comparison between the mixing

times calculated from simulated and observed data, the production rates in simulation

were computed using the simulated protein traces after Gaussian noise similar to the level

observed was added.
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Figure A.1: (Caption on the following page.)
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Figure A.1: Validation of smFISH
(A) A stack of snapshots taken through the whole volume of a single cell; the resulting
maximum-intensity projection (green box), and a single slice (blue box) are fed into the
image-processing algorithm for dot-detection.
(B) Cumulative Distributions of dot counts for each of the two imaging approaches is shown
across a population of cells.
(C) Same distributions as in B, but normalized by the sample median.
(D) Technical replicates for the single-slice approach.
(E) Correlation between dGFP protein fluorescence as measured simultaneously with dGFP
transcripts (left), and correlation between Rex1 (unmodified allele) and dGFP (knock-in
reporter on second allele) transcripts (right). r is the Pearson correlation coefficient.
(F) (Left) Sorted subpopulations of the bimodal Rex1-dGFP knock-in reporter. (Right)
qPCR results on these subpopulations for a subset of target genes also examined by sm-
FISH. Values were normalized to expression levels of the housekeeping gene Gapdh, and
are represented as 2−∆∆Ct with respect to the ‘Rex1-high’ subpopulation
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Figure A.2: (Caption on the following page.)
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Figure A.2: mRNA distributions and correlations by smFISH
(A) Empirical distributions and MLE fits for unimodal, bimodal, and long-tailed genes.
p-values are for χ2 GOF tests. p>0.05 indicates that the fit to the distribution is indistin-
guishable from the empirically measured distribution. Where present, solid lines represent
components of the fit. Dashed line represents the overall fit to the distribution.
(B) Pairwise relationships between heterogeneously expressed genes. p-values are from the
2D KS-test. r is the Pearson correlation coefficient.
(C) Correlation and marginal distributions of Rex1 and Nanog in a control population (top)
and population synchronized by a double thymidine block fixed immediately following the
block (bottom). r is the Pearson correlation coefficient.
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Figure A.3: Differential methylation between Rex1 states
(A) Locus specific bisulfite sequencing plots between Rex1-high, -low, and -low-to-high-
reverting cells at three targets of methylation. Open circles are unmethylated, filled circles
are methylated, and x’s are unknown.
(B) Measurements from A are plotted as bar graphs for comparison.
(C) Scatter plots showing how single CpGs in the promoters of a given gene change between
Rex1-high and -low states. Color coding represents the position of a base relative to the
transcriptional state site.
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Figure A.4: (Caption on the following page.)
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Figure A.4: Construction and analysis of live cell reporters, and simulations
based on observed kinetics
(A) Schematic of Nanog reporter (top) and Oct4 reporter (bottom) construction.
(B) Correlation between Nanog (unmodified allele) and Citrine (knock-in reporter on sec-
ond allele) transcripts in NKICit cell line. r, Pearson correlation coefficient. Light blue,
presumed fraction of cells with silenced reporter cassettes (∼10% of all cells; see Supp. Info.
for discussion); dark blue, remaining cell population.
(C) H2B-Citrine protein degradation rate assayed by blocking translation during movie at
time indicated. Total YFP became flat (top) with negligible slope (bottom) shortly after
cycloheximide treatment.
(D) Identification of sharp inflections in total fluorescence traces. (i) First, frames around
cell divisions are removed and fluorescence lost during divisions is added back to the daugh-
ter trace to create a continuous trace for each lineage (ii), where a step detector spanning
a 6-hour window is applied across consecutive frames. (iii) For each window, a one-piece
linear fit is compared with a two-piece fit that is flexible at the midpoint. A two-piece fit
is considered better than a one-piece fit when two criteria are met: 1) residual noise of the
one-piece fit is higher than a threshold (see Supp. Info.), and 2) the slopes of the two-piece
fit are significantly different between the two pieces. (iv) For each stretch of frames meet-
ing both criteria 1 (magenta line indicates threshold) and 2 (orange line indicates where
two-piece fit yields significantly different slopes), the window with the highest residual noise
is assigned to be the inflection. (v) Continuized trace approximated into linear segments
between identified points of inflection.
(E) Apparent steps from simulated Oct4 expression under the bursty transcription model
using parameters estimated from smFISH.
(F) Protein traces were simulated under the bursty transcription model over various mRNA
half-life and burst frequency combinations; mean burst size was kept constant at 35
mRNA/burst. Gaussian noise proportional to the total protein level and equivalent to
the magnitude of frame-to-frame variation empirically observed was added to the simulated
traces for comparability. Arrowheads indicate detected steps on simulated trace of the
corresponding color. Note that changes in production rate around cell division events can
be identified as steps either before or after the division. Red box: estimated regime for
Nanog-Hi in serum+LIF. Right: variation in the frequency of detected steps over the same
parameter space.
(G) Production rates decrease by an average of 0.63-fold across cell divisions. Each point
represents a division event. Average production rates of the 4-hour windows before and
after each cell division are compared. Black dotted line: zero change; grey dotted line:
0.5-fold change; purple line: average trend; Inset: example trace indicating slope before
and after division.
(H) Changes in production rate over state-switching events or intra-state steps. Higher rate-
to-lower rate ratios are plotted for all steps and events, i.e. down-steps and Nanog-high-to-
Nanog-low switching events are represented by the reciprocals of rate change (p-value, KS
test).
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Figure A.5: (Caption on the following page.)
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Figure A.5: Quantitative analysis of how 2i+serum+LIF affect static distribu-
tions and dynamics of gene expression for pluripotency regulators
(A) smFISH transcript count distribution of factors in 2i+serum+LIF with MLE fits over-
laid. p-values are for χ2 GOF tests. p>0.05 indicates that the fit to the distribution is
indistinguishable from the empirically measured distribution. Where present, solid lines
represent components of the fit. Dashed line represents the overall fit to the distribution.
(B) Example trace of cells switching from Nanog-low to Nanog-SH in 2i+serum+LIF.
(C) Left: simulated traces similar to Figure A.4F, except over various combinations of burst
size and burst frequency; mRNA half-life was kept constant at 4 hours. Bottom right: rank
of production rate of 30 randomly selected traces (out of a total of 200) in each simulation
under the corresponding parameter combination. Traces are color-coded by the initial rank
at t = 0 as in D. Top right: mixing time of protein production rate, defined as the time
where auto-correlation of rank drops below 0.5.
(D) Nanog expression dynamics of cells in serum/LIF with or without 2i. Each trace
represents one cell randomly picked from a tracked lineage tree. Production rates are
normalized by cell size and ranked within the group for each time point. Traces are color-
coded by the initial rank at t = 0.
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# of sister

pairs

Neither

sister

switched

Only one

sister

switched

Both sisters

switched

Expected number of

sister pairs that both

switched [95% C.I.]**
Direction

of switch

NLo to NHi 169 7 0 [0 - 1]

NHi to NLo 139 15 2 [0 - 2]

Table A.1: State-switching events show no correlation between sister cells
Data shown are combined results from two independent experiments. Analysis of individual
data sets yields the same conclusion.
* Data points are discarded if one of the cells in a sister pair was lost or not traceable in
the movie
** Confidence interval obtained by random permutation test with 100,000 trials. Green
indicates observed frequency of sister pairs in which both cells switched falls within the
95% C.I.
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Appendix B

Supplemental Information for
Chapter 3

Supplemental Experimental Procedures

Plasmid construction

The PhiC31-Neo-ins-5xTetO-pEF-H2B-Citrine-ins reporter plasmid was assembled using

a backbone containing the PhiC31 attB site, a neomycin resistance gene, and a multiple

cloning site flanked by two 1.2kb chicken HS4 insulators on each side (phiC31-Neomycin-

2xcHS4ins-MCS-2xcHS4ins)[1]. Individual elements of the reporter were PCR amplified as

follows: five Tet binding sites from the TRE-tight plasmid (Clontech), pEF from pEF/FRT/V5-

Dest (Life Technologies), and H2B-citrine from pEV2-12xCSL-H2B-Citrine [2]. These com-

ponents were first sequentially cloned into the pExchange1 backbone using standard molec-

ular biology techniques. The entire TRE-pEF-H2B-citrine was then PCR-amplified and

combined by Gibson assembly with the phiC31-Neomycin-2xcHS4ins-MCS-2xcHS4ins back-

bone cut by AvrII. This construct was designed such that after integration, the neomycin

gene would be expressed from a PGK promoter situated upstream of the phiC31 site in the

HAC [1]. The PhiC31 integrase was a gift from the Oshimura Lab [1].

The plasmids containing the rTetR-CR fusions were built using Gibson assembly of



126

the pExchange1 backbone containing the pEF promoter (cut with BamHI and KpnI),

H2B-mCherry (PCR-amplified from a derivative of pEV-12xCSL-H2B-mCherry [2]), rTetR

(PCR-amplified from rtTA3 system, Clontech), and a PCR product for each CR. The plas-

mids encoding for the CRs were as follows: pCMV-HA-EED (Addgene 24231), HDAC4

Flag (Addgene 13821), Dnmt3b cDNA (isoform 5, OpenBiosystems MMM1013-99827219),

and PSV40-E-KRAB-pA (pWW43 [3], a gift from Martin Fussenegger).

Culture conditions

Cells were cultured at 37C, in a humidified atmosphere with 5% CO2. For all experiments,

except movies, the growth media consisted of Alpha MEM Earle’s Salts (9144, Irvine Scien-

tific) with 10% Tet Approved FBS (Clontech Laboratories) and 1X Penicillin/Streptomycin/L-

glutamine (Life Technologies) added. Media containing the appropriate antibiotics (300

g/ml neomycin and 300 g/ml zeocin) was changed every 2-3 days during maintenance.

During movies, cells were grown in low-fluorescence imaging media [2], which consisted of

Alpha-MEM without phenol red, riboflavin, folic acid, and vitamin B12 (Life Technologies,

custom made), supplemented with 10% FBS and 1X Pen/Strep/L-glutamine. During all re-

cruitment and de-recruitment experiments, media did not contain neomycin or zeocin, and

was changed every 24 hours in all wells. Cells were harvested by rinsing with Dulbecco’s

Phosphate-Buffered Saline (DPBS, Life Technologies), and incubating at room temperature

with 0.25% Trypsin (Life Technologies). For long-term storage, cells were frozen in growth

media with 10% DMSO, placed at -80C (for up to a month), and eventually transferred in

liquid nitrogen.
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Time-lapse movie analysis, event detection and silencing rate analysis

Cells were segmented and tracked using the H2B-mcherry fluorescence with in-house Matlab

code. Using the contours obtained from this algorithm, total citrine fluorescence levels were

extracted for each of the cell tracks. Since H2B-fluorophore fusion results in a stable protein

reporter, total fluorescence level increases at a steady rate when the reporter is expressed

at a constant level (Figure 3.1C, pre-recruitment), but flat-lines when expression stops

completely. At each cell division, the total fluorescence signal is approximately halved as

fluorescent protein molecules partition between daughter cells [4]. We corrected for this

partitioning of fluorescence and obtained cumulative total fluorescence traces, from which

reporter production rate can be assessed continuously across cell divisions.

To detect silencing events, a threshold on reporter production rate is set for each indi-

vidual lineage at 50% of its median reporter production rate before dox addition (Figure

B.1E). A cell is marked silenced when its reporter production rate drops and remains below

this threshold for 12 hours, to avoid misidentification due to intrinsic fluctuations in gene

expression levels. Similarly, reactivation events are identified when an OFF cell’s reporter

production rate rises and stays above a global threshold, set as 50% of the median reporter

production rate of all cells before the initial dox addition (Figure B.1F). A global thresh-

old is used for reactivation detection since cells in reactivation movies begin with reporter

production rate close to zero.

To estimate the timescale of the transient increase in silencing rates, koff (t), and its

maximum value for each factor, we fitted the experimental silencing rates over time with

the positive portion of a logistic function,

koff (t) =
2a

1 + e−bt
− a,
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where a and b are constants. In this two-parameter fit, the maximum koff is equal to

a, where the time t to reach half of the maximum koff is given by −log(1/3)/b.

Chromatin mark spreading model

For the analysis in Figure B.2E & F, we modeled silencing by simulating chromatin mark

gain, loss, and spreading over an array of 10 nucleosomes. Cells are considered silent if

9 or 10 nucleosomes are modified and active otherwise. We use a Gillespie algorithm to

simulate the time evolution of each array (cell). Briefly, at each nucleosome, the probability

of writing or erasing a modification is proportional to the corresponding rates of mark gain

and spreading versus loss. The time increments between simulation steps are chosen by

randomly sampling from an exponential distribution whose mean value equals the inverse

of the sum of the rates associated with the nucleosome modified. Each simulation is run 100

times for 1000 cells (arrays). For each simulation, we calculate the effective rate of silencing

(koff ) as a function of time in a manner similar to our experiments: we count the number

of cells that move to the off state (with 9 or more nucleosomes modified) and normalize by

the total number of cells still on at that time. The silencing rates presented in Figure 3.2

are obtained by averaging over the 100 simulations.

Targeted bisulfite sequencing

Targeted bisulfite sequencing was performed by Zymo Research using genomic DNA ex-

tracted from cell samples (with DNeasy kit, Qiagen) obtained concurrently with ChIP-

qPCR and MeDIP-qPCR experiments. Each CpG had to be contained in at least 50 reads

to be included in the analysis.
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Figure B.1: (Caption on the following page.)
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Figure B.1: Specificity and speed of recruitment and de-recruitment, and event
detection
(A) To test if recruitment of rTetR alone affects reporter expression, we measured cit-
rine fluorescence levels after transiently transfecting pEF-H2B-mCherry-T2A-rTetR into
the parental reporter cell line, followed by dox treatment. The fluorescence distributions
are identical in the absence of dox (dashed line) and after 33 hours of dox induction (con-
tinuous line), indicating that rTetR recruitment alone does not repress gene expression.
(B) In order to estimate the speed of rTetR binding and unbinding, we built a separate cell
line containing the rTetR domain alone, recruited to a CMV promoter followed by 2xTetO
sites (top cartoons). In this case, binding of rTetR directly represses expression by acting as
a transcription roadblock. We measured changes in reporter production rates using time-
lapse microscopy. By averaging over all single-cell traces, we obtained the mean production
rate as a function of time (black curve). The gray shaded curves represent SEM. Addition
of dox resulted in a reduction in gene expression within 82 hours (red arrows). Removal of
dox relieved this repression within 2.52 hours (green arrows).
(C) Citrine fluorescence distributions were measured for all cell lines in the absence of dox,
after 11 days of growth without selection antibiotics. The fluorescence of the cell lines
containing rTetR-CR fusions (colored lines) are very similar to the parental reporter line
(black), indicating that there is relatively little non-specific binding of rTetR at the reporter
gene in the absence of dox.
(D) The half-life of citrine mRNA was measured by inhibiting transcription with actino-
mycin D (5g/ml) and following the levels of mRNA as a function of time. These values were
measured by qPCR and normalized against a constant amount of mCherry mRNA spiked in
as internal control. By fitting these data to an exponential decay (red line), we determined
the half-life of the reporter mRNA to be 3.9 hours (with a 95% confidence interval of [0.9,
4.3] hours).
(E & F) Silencing (E) and reactivation (F) event detection. The cyan curves are smoothed
time derivatives of the cumulative fluorescence traces for the same lineages shown in Figure
3.1C & D, respectively. Frames immediately around cell divisions were removed when the
raw total fluorescence traces were processed to give cumulative traces (see Figure 3.1C &
D). For silencing, we calculated the median reporter production rate before dox addition,
and set a threshold at 50% of this value (dashed line in dox region). When the reporter
production rate of this lineage crossed this threshold and remained under it for 12 hours,
we assigned this event as silencing (circle). Reactivation events were detected similarly, but
in the reverse direction (F). However, because reactivation involved cell lineages silenced
prior to the start of the movie, it was impossible to obtain the median reporter production
rates for each of the lineages when the gene was active. Therefore, the median pre-dox
production rate from all lineage traces in the silencing movie immediately preceding the
reactivation movie was used to set a unifying threshold to detect reactivation events.
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Figure B.2: Sister cell correlation, completeness of silencing, and deviations
from the stereotypical silencing events
(A) Complete sister cell pairs that were tracked fully and originated from an ON parent
cell were pooled from independent experiments and tabulated according to their silencing
behaviors during this subsequent cell cycle. For each factor, the expected number and 95%
confidence interval of sister cell pairs that both turned off were computed by a random
permutation test with 100,000 trials. Red indicates cases in which it is possible to reject
the null hypothesis of complete independence between sister cells. We did not apply the
same analysis to KRAB and HDAC4, since most cells were silenced within the first cell
cycle after dox addition in these cases.
(B) Distributions of H2B-citrine production rates in various time bins relative to dox addi-
tion (normalized to the median pre-dox production rate).
(C and D) Example of non-stereotypical silencing dynamics. Circles indicate detected si-
lencing events, while x’s indicate detected reactivation events.
(E) Stochastic silencing was modeled by allowing an array of nucleosomes to transition
from unmarked (ON) to marked (OFF). The three rectangles show the types of possible
transitions at each time step (from t1 to t2): random gain, spread, or loss of epigenetic
marks at any nucleosome.
(F) The rates of silencing, koff (t), obtained from simulations are plotted against time.
The loss rate is set to 0.01 (hour−1) for all factors, while the other two rates are chosen
to produce profiles similar to the experimental data recorded for each of the four factors.
Parameters used in these simulations for each factor: gain=0.025, spread=1.6 (KRAB);
gain=0.016, spread=0.8 (HDAC4); gain=0.0035, spread=0.5 (EED); and gain=0.0031,
spread=0.4 (Dnmt3b)
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Figure B.3: Targeted bisulfite sequencing
Each of the factors was recruited for 0, 3, 5 and 11 days by dox treatment, followed by bisulfite sequencing targeting three different
genomic regions: reporter (5xTetO-pEF-H2B-Citrine), negative control for DNA methylation (beta-Actin), and positive control for DNA
methylation (Igf2). Each box represents the fraction of methylated reads at a particular CpG position for a given sample (averaged
from two technical repeats). Grey indicates CpG sites with lower than 50 reads, which were excluded from the analysis.
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Figure B.4: Reactivation after silencing
Citrine fluorescence distributions were measured by flow cytometry for cell lines expressing
rTetR fused to (A) KRAB, (B) HDAC4, or (C) Dnmt3b. Distributions are shown for cells
treated with dox for 5 days, followed by 7 days of culture without dox (solid lines), and for
cells cultured in parallel for 12 days with no dox (dashed lines). The vertical gray line in
each panel represents the threshold used to determine the fraction of cells OFF.
(D) The fractions of cells OFF due to background silencing in the absence of dox were
measured for all cell lines as a function of time. For each cell line, these background
silencing values were subtracted from the total fractions of cells OFF to obtain the curves
presented in Figures 3.4 & 3.5.
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Locus Name Sequence

pEF (promoter)
pEF F 1013ChIP ACGTATGTCGAGGTAGGCGT

pEF R 1013ChIP CTAGGCACCGGTTCAATTGC

citrine (gene body)
F cit Set2 CGGCGACGTAAACGGCCACAAGTTCAG

R cit Set2 CTTGCCGGTGGTGCAGATGAA

actin (control)
bActin F ACTGGGACGATATGGAGAAG

bActin R GGTCATCTTTTCACGGTTGG

Igf2 (control)
5-42 Igf2 F CTGTGGCCTGTAGGTCCTTG

5-43 Igf2 R CCTCTGCCTTTCCCTCTTGG

Table B.1: Primers used for ChIP-qPCR and MeDIP-qPCR
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