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Abstract

Network information theory and channels with memory are two important but

difficult frontiers of information theory. In this two-parted dissertation, we study

these two areas, each comprising one part. For the first area we study the so-called

entropy vectors via finite group theory, and the network codes constructed from finite

groups. In particular, we identify the smallest finite group that violates the Ingleton

inequality, an inequality respected by all linear network codes, but not satisfied by

all entropy vectors. Based on the analysis of this group we generalize it to several

families of Ingleton-violating groups, which may be used to design good network codes.

Regarding that aspect, we study the network codes constructed with finite groups,

and especially show that linear network codes are embedded in the group network

codes constructed with these Ingleton-violating families. Furthermore, such codes

are strictly more powerful than linear network codes, as they are able to violate the

Ingleton inequality while linear network codes cannot. For the second area, we study

the impact of memory to the channel capacity through a novel communication system:

the energy harvesting channel. Different from traditional communication systems,

the transmitter of an energy harvesting channel is powered by an exogenous energy

harvesting device and a finite-sized battery. As a consequence, each time the system

can only transmit a symbol whose energy consumption is no more than the energy

currently available. This new type of power supply introduces an unprecedented

input constraint for the channel, which is random, instantaneous, and has memory.

Furthermore, naturally, the energy harvesting process is observed causally at the

transmitter, but no such information is provided to the receiver. Both of these features

pose great challenges for the analysis of the channel capacity. In this work we use
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techniques from channels with side information, and finite state channels, to obtain

lower and upper bounds of the energy harvesting channel. In particular, we study the

stationarity and ergodicity conditions of a surrogate channel to compute and optimize

the achievable rates for the original channel. In addition, for practical code design of

the system we study the pairwise error probabilities of the input sequences.
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Chapter 1

Summary

In information theory, communication networks and channels with memory are

among the most important and intriguing directions that attract generations of re-

searchers. Generalizing the idea of single user discrete memoryless channels, they

provide models for more practical communication systems. Despite their importance,

these two frontiers are difficult fields of study. With continuing effort of investigation,

researchers have made numerous contributions and advances in these fields; however,

many major problems still remain unsolved, especially in the first area. In this two-

parted dissertation, we study some aspects of these two areas, each of which comprises

one part.

In the first part we study the so-called entropy vectors via finite group theory,

and group network codes, which are network codes constructed from finite groups.

An entropy vector for a set of n jointly distributed discrete random variables is the

tuple of 2n− 1 (joint) entropies for these variables. The collection of all such entropy

vectors comprises an entropy region in the 2n− 1 dimensional real space, which plays

an important role in determining the capacity region of a multi-source multi-sink

wired network. It is shown that such an entropy region can be represented using

finite groups and their subgroups. This connection is potentially useful for designing

good network codes, since in principle from finite groups one can construct network

codes that are able to violate the Ingleton inequality, which is an inequality respected

by all linear network codes, but not satisfied by all entropy vectors. However, finding

a “meaningful” finite group that violates the Ingleton inequality is not a trivial task:
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from any known examples of Ingleton-violating entropy vectors one always obtains

huge permutation groups, which reveal very little information on the group structure.

In this work, we use computer search to find the smallest finite group that violates

the Ingleton inequality, and then extend it to a family of violations using the tool of

abstract group presentations. This family has a very clear structure, both in the sense

of group theory and in terms of the representing matrices. Based on the analysis of

these groups we generalize them to several families of Ingleton-violating groups, both

exploiting their matrix structure and using the theory of group actions. As mentioned

earlier these families are good candidates for constructing network codes. We study

various aspects of such group network codes, and especially show that linear network

codes are embedded in the group network codes derived from these Ingleton-violating

families. Such codes are strictly more powerful than linear network codes, as they are

able to violate the Ingleton inequality, while linear network codes cannot.

In the second part we investigate the impact of a new form of channel memory,

the memory in the input constraints, to the channel capacity, through the study of

a novel communication system—the energy harvesting channel. Different from tra-

ditional communication systems, the transmitter of an energy harvesting channel is

powered by an exogenous energy harvesting device and a finite-sized battery. As a

consequence, each time the system can only transmit a symbol whose energy con-

sumption is no more than the energy currently available. This new type of power

supply introduces an unprecedented input constraint for the channel, which is ran-

dom, instantaneous, and has memory. In addition, the energy harvesting process is

observed causally at the transmitter naturally, but no energy information is provided

to the receiver. Both of these features pose great challenges for the analysis of the

channel capacity. In this work we first use techniques from channels with causal

transmitter side information to transform the original channel to an equivalent chan-

nel, which has no input constraint or side information, but still has memory. The

capacity formula of such a channel is given by the Verdu-Han formula [1], which is not

computable in general. However, by imposing some restrictions on the input alpha-

bet, we obtain a surrogate channel, which is a finite state channel [2] in many cases.
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For this simpler model we study the required stationarity and ergodicity conditions

on the channel and source to apply the Shannon-McMillan-Breiman theorem to the

joint input-output process, and then use stochastic methods to compute and optimize

the information rates, which are achievable rates for the original channel. Such rates

serve as lower bounds for the capacity of the energy harvesting channel. For the

upper bounds, we use Gallager’s techniques for finite state channels [2] to derive a

series of capacity upper bounds in terms of finite block length mutual information.

As these bounds are highly computationally expensive (the complexity of computa-

tion is double exponential), we relax them further to achieve linear computational

complexity. In addition, we also study the pairwise error probabilities of the input

sequences, which are useful for practical code design of the energy harvesting system.
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Chapter 2

Ingleton-violating Finite Groups

In this chapter we study the problem of using finite groups to violate the Ingleton

Inequality, which is organized as follows. Section 2.1 provides a detailed description of

the background. Section 2.2 introduces the necessary notations. Section 2.3 describes

the computer search of Ingleton-violating groups and proves several conditions that

help in pruning the search. Having found the smallest violation instance, Section 2.4

studies its structure using group presentations. Section 2.5 then generalizes the in-

stance to an Ingleton-violating family in PGL(2, p), and then to PGL(2, q), through

explicitly constructing the subgroups in the format of matrices. Furthermore, the

preimage group GL(2, q) is also examined and 15 new families of Ingleton violating

subgroups are identified, in Section 2.6. The original family has a deep relation to the

theory of group actions, as disclosed in the more abstract Section 2.7, which leads to

several new violation constructions in this framework.

2.1 Introduction

Let N = {1, 2, . . . , n}, and let X1, X2, . . . , Xn be n jointly distributed discrete

random variables. For any nonempty set α ⊆ N , let Xα denote the collection of

random variables {Xi : i ∈ α}, with joint entropy hα , H(Xα) = H(Xi; i ∈ α). We

call the ordered real (2n− 1)-tuple (hα : ∅ 6= α ⊆ N ) ∈ R2n−1 an entropy vector. The

set of all entropy vectors derived from n jointly distributed discrete random variables

is denoted by Γ∗n. It is not too difficult to show that the closure of this set, i.e., Γ∗n,
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is a convex cone [3].

The set Γ∗n figures prominently in information theory since it describes the possible

values that the joint entropies of a collection of n discrete random variables can

obtain. From a practical point of view, it is of importance since it can be shown that

the capacity region of any arbitrary multi-source multi-sink wired network, whose

graph is acyclic and whose links are discrete memoryless channels, can be obtained by

optimizing a linear function of the entropy vector over the convex cone Γ∗n and a set of

linear constraints (defined by the network) [4,5]. Despite this importance, the entropy

region Γ∗n is only known for n = 2, 3 random variables and remains unknown for

n ≥ 4 random variables. Nonetheless, there are important connections known between

Γ∗n and matroid theory (since entropy is a submodular1 function) [6], determinantal

inequalities (through the connection with Gaussian random variables) [7], and quasi-

uniform arrays [8]. However, perhaps most intriguing is the connection to finite

groups, which we briefly elaborate on below.

2.1.1 Groups and Entropy

Throughout this work we use the group theory notation defined in Section 2.2. Let

G be a finite group, and let G1, G2, . . . , Gn be n of its subgroups. For any nonempty

set α ⊆ N , the group Gα ,
⋂
i∈αGi is a subgroup of G. Define

gα = log
|G|
|Gα|

.

We call the ordered real (2n − 1)-tuple (gα : ∅ 6= α ⊆ N ) ∈ R2n−1 a (finite) group

characterizable vector. Let Υn be the set of all group characterizable vectors derived

from n subgroups of a finite group.

The major result shown by Chan and Yeung in [9] is that Γ∗n = cone(Υn), i.e., the

closure of Γ∗n, is the same as the closure of the cone generated by Υn. Specifically,

every group characterizable vector is an entropy vector, whereas every entropy vector

is arbitrarily close to a scaled version of some group characterizable vector.

1A set function f on the subsets of N is submodular iff fα+fβ−fα∩β−fα∪β ≥ 0 for all α, β ⊆ N .
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To show the first part of this statement, let Λ be a random variable uniformly

distributed on the elements of G and for i = 1, . . . , n define

Xi = ΛGi,

i.e., the left coset of Gi in G with representative Λ. Then Xi is uniformly distributed

on G/Gi and H(Xi) = log |G||Gi| . To calculate the joint entropy hα = H(Xα) for a

nonempty subset α ⊆ N , let Xα denote the set of all coset tuples

{ (xGi : i ∈ α) | x ∈ G } .

Consider the intersection mapping Θα : Xα → G/Gα, where for all x ∈ G,

Θα : (xGi : i ∈ α) 7→
⋂
i∈α

xGi = xGα. (2.1)

Θα is a well defined onto function on Xα, and it is one-to-one since if (xGi : i ∈ α)

and (x′Gi : i ∈ α) are mapped to the same coset xGα = x′Gα, then x−1x′ ∈ Gα and

so x−1x′ ∈ Gi for all i, which implies

(xGi : i ∈ α) = (x′Gi : i ∈ α).

So H(Xα) = H(Θα(Xα)), and as Θα(Xα) = ΛGα, we have

hα = H(ΛGα)) = log
|G|
|Gα|

= gα.

Thus every group-characterizable vector is indeed an entropy vector. Showing the

other direction, i.e., that every entropy vector can be approximated by a scaled group-

characterizable vector, is more tricky (the interested reader may consult [9] for the

details). Here we shall briefly describe the intuition.

Consider a random variable X1 with alphabet size N and probability mass func-

tion {pi, i = 1, . . . , N}. Now, if we make T copies of this random variable to make
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sequences of length T , the entropy of X1 is roughly equal to the logarithm of the

number of strongly typical sequences divided by T . These are sequences where X1

takes its first value roughly Tp1 times, its second value roughly Tp2 times, and so

on. Therefore, assuming that T is large enough so that the Tpi are close to integers

(otherwise, we have to round things) we may roughly write

H(X1) ≈ 1

T
log

 T

Tp1 Tp2 . . . TpN−1 TpN

 ,

where the argument inside the log is the usual multinomial coefficient. Written in

terms of factorials this is

H(X1) ≈ 1

T
log

T !

(Tp1)!(Tp2)! . . . (TpN)!
. (2.2)

If we consider the group G to be the symmetric group ST , i.e., the group of per-

mutations among T objects, then clearly |G| = T !. Now partition the T objects

into N sets each with Tp1 to TpN elements, respectively, and define the group G1

to be the subgroup of ST that permutes these objects while respecting the parti-

tion. Clearly, |G1| = (Tp1)!(Tp2)! . . . (TpN)!, which is the denominator in (2.2).

Thus, H(X1) ≈ 1
T

log |G||G1| , so that the entropy h{1} is a scaled version of the group-

characterizable g{1}. This argument can be made more precise and extended to n

random variables—see [9] for the details. We note, in passing, that this construction

often needs T to be very large, so that the group G and the subgroups Gi are huge.

2.1.2 The Ingleton Inequality

As mentioned earlier, entropy satisfies submodularity and is connected to the

notion of matroids. A matroid is defined by a ground set S and a rank function r

(written as r({·}) or r{·}) defined over subsets of S, that satisfy the following axioms:

1) r is always a non-negative integer, and r(U) ≤ |U |, ∀U ⊆ S.

2) r is monotonic: if U ⊆ W ⊆ S, then r(U) ≤ r(W ).
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3) r is submodular.

Axioms 2) and 3), together with positiveness, are called the Shannon inequalities for

a set function. A matroid is defined in a way to extend the notion of a collection of

vectors (in some vector space) along with the usual definition of the rank. It is called

representable if its ground set can be represented as a collection of vectors (defined

over some finite field) along with the usual rank function. Determining whether a

matroid is representable or not is, in general, an open problem.

In 1971 Ingleton showed that for n = 4, the rank function r of any representable

matriod must satisfy the inequality [10]

r12 + r13 + r14 + r23 + r24 ≥ r1 + r2 + r34 + r123 + r124

(where for simplicity we write rij and rijk for r{i,j} and r{i,j,k}, respectively). In

fact, these Ingleton inequalities, together with the Shannon inequalities and their

combinations, are the only inequalities that the rank function of a representable

matroid needs to satisfy (which are called linear rank inequalities) when n = 4 (see

[11]). Furthermore, [11] shows that the rank function of any representable matroid

is necessarily an entropy vector, but not every linear rank inequality is respected by

a general entropy vector. For example, there are entropy vectors that violate the

Ingleton inequality (e.g., [11, 12]), so that entropy is generally not a representable

matroid. Using non-representable matroids, [13] constructs network coding problems

that cannot be solved by linear network codes (since linear network codes are, by

definition, representable).

When n ≥ 5, there are many more linear rank inequalities besides the Shannon

ones. But since the focus of this paper is the simplest case where n = 4 with only one

such inequality, we refer the interested readers to the works of Kinser [14], Dougherty

et al. [15–17], and Chan et al. [18] for recent development in this area.
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From this point on we shall only study the Ingleton inequality, with n = 4. In the

case of entropy vectors, it is written as

h12 + h13 + h14 + h23 + h24 ≥ h1 + h2 + h34 + h123 + h124. (2.3)

The following sufficient condition is proposed in [11] for four general random variables

X1, X2, X3, and X4 to satisfy (2.3):

Lemma 2.1.1. If there exists a random variable Z that is a common information

for X1 and X2, i.e., H(Z|X1) = H(Z|X2) = 0 while H(Z) = I(X1;X2), then (2.3)

is satisfied.

In general, common information does not exist for two arbitrary random vari-

ables, but when the entropies correspond to ranks of vector subspaces, their common

information does exist [11] and that is why representable matroids respect Ingleton.

In Section 2.3 we will prove a similar condition for groups to satisfy Ingleton by

constructing a common information.

As Γ∗n = cone(Υn), we know there must exist finite groups and corresponding

subgroups, such that their induced group-characterizable vectors violate the Ingleton

inequality. In [19] it was shown that abelian groups cannot violate the Ingleton

inequality, thereby giving an alternative proof as to why linear network codes (and

even the more general abelian group network codes (defined below)) cannot achieve

capacity on arbitrary networks, as the underlying groups for linear network codes

are abelian. So we need to focus on non-abelian groups and their connections to

nonlinear codes. Note that in the context of finite groups, the Ingleton inequality can

be rewritten as

|G1||G2||G34||G123||G124| ≥ |G12||G13||G14||G23||G24|. (2.4)
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2.1.3 Discussion

Since we know of distributions whose entropy vector violates the Ingleton inequal-

ity, we can, in principle, construct finite groups whose group-characterizable vectors

violate Ingleton. Two such distributions are Example 1 in [12], where the underlying

distribution is uniform over 7 points and the random variables correspond to different

partitions of these seven points, and the example on page 1445 of [20], constructed

from finite projective geometry and where the underlying distribution is uniform over

12 × 13 = 156 points. Unfortunately, constructing groups and subgroups for these

distributions using the recipe of Section 2.1.1 results in T = 29 × 7 = 203 and

T = 23 × 156 = 3588, which results in groups of size 203! and 3588!, which are too

huge to give us any insight whatsoever.

These discussions lead us to the following questions.

1) Could the connection between entropy and groups be a red herring? Are the

interesting groups too large to give any insight into the problem (e.g., the

conditions for the Ingleton inequality to be violated)?

2) What is the smallest group with subgroups that violates the Ingleton inequal-

ity? Does it have any special structure?

3) Can one construct good network codes from such Ingleton-violating groups?

In this work we address the first two questions, and try to lay some groundwork

for answering the third. We identify the smallest group that violates the Ingleton

inequality—i.e., the symmetric group S5, with 120 elements. Through a thorough

investigation of the structure of its subgroups we conclude that it belongs to the

family of groups PGL(2, q), with q ≥ 5 being a power of a prime. (PGL(2, 5) is

isomorphic to S5.) We therefore believe that the connection to groups is not a red

herring and that there may be some benefit to it.

Having a “recipe” for Ingleton violations, we generalize the family in two direc-

tions. Since PGL(2, q) is the quotient group of GL(2, q) modulo the scalar matrices,

we explore the subgroups in GL(2, q) and discover several new families of Ingleton

violations. On the other hand, the projective general linear group PGL(n, q) can be
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viewed as the image of a permutation representation induced by the action of the

general linear group GL(n, q) on its projective geometry. It turns out that in this

context, the Ingleton-violating subgroups of the family PGL(2, q) all have nice inter-

pretations: each of them is the stabilizer for a set of points in the projective geometry.

Based on this viewpoint we obtain a few new families of Ingleton violations, includ-

ing the groups PGL(n, q) and GL(n, q), and further give an abstract construction in

general 2-transitive groups.

We can use these Ingleton-violating groups to contruct network codes, which have

the potential of performing better than linear network codes, since the former can vi-

olate the Ingleton inequality while the latter cannot. We defer the detailed discussion

for group network codes to Chapter 3.

Before we proceed to present the details of our results, we would like to mention

some recent developments after our first paper [21] on this subject. In [22], Boston

and Nan mainly study symmetric groups and discover many new Ingleton violations

in the related groups. Furthermore, using the same group action theoretic approach

as above (specifically, designing the subgroups to be the stabilizers of certain sets

of points2), they systematically construct subgroups of a symmetric group to vio-

late Ingleton. Many of these new violations are quite effective (see Section 2.5.3

for more discussions). Also, while all the Ingleton-violating groups in this work are

non-solvable, [22] shows that there do exist solvable groups that violate Ingleton.

Paajanen [23], however, focuses on the subclasses p-groups and nilpotent groups and

shows that with some technical conditions they satisfy Ingleton. Recall that we have

the hierarchy of finite groups

Cyclic groups ⊂ Abelian groups ⊂ Nilpotent groups

⊂ Solvable groups ⊂ All groups

and that every nilpotent group is a direct product of groups, each of which is a p-

2In fact, in the original paper of Chan and Yeung [9] the same type of subgroups are also used
to show that every entropy vector can be approximated by a scaled group-characterizable vector.
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group for a distinct p. Now, roughly speaking we have a guideline for what class of

groups one needs to explore to violate Ingleton. For linear rank inequalities in higher

dimensions, [24] considers the case n = 5 and obtains some results on the groups that

satisfy/violate some of these inequalities.

2.2 Notation

We use the following abstract algebra notations, in this and the following chapters.

These are fairly standard (and follow Dummitt and Foote [25]). The interested reader

who may not be familiar with all the concepts below may refer to [25], or any other

standard abstract algebra textbook.

|G| the order (cardinality) of the set/group G.

|g| the order of element g = the smallest positive integer m s.t.

gm = 1.

xg the conjugate of element x by element g: xg = g−1xg. (No

confusion with the powers of x as g is an element of G.)

Xg the conjugate of subset X by element g: Xg = {xg : x ∈ X}.
G ∼= H the group G is isomorphic to the group H.

H ≤ G H is a subgroup of G.

H E G H is a normal subgroup of G, i.e., Hg = H, ∀g ∈ G.

gH the left coset of the subgroup H in G with representative g.

G/H the set of all left cosets of subgroup H in G. When H E G,

G/H is a group, called the factor group or quotient group.

HK or H ·K the “set product” of H,K ⊆ G: HK = {hk : h ∈ H, k ∈ K}.
H ×K the direct product of groups H and K. The elements are

the pairs { (h, k) : h ∈ H, k ∈ K } and (h1, k1)(h2, k2) =

(h1h2, k1k2).

Gn the direct product of n copies of the group G.

H oK the semidirect product of groups H and K. The elements are

the same as H×K, but (h1, k1)·(h2, k2) = (h1 · ϕ(k1)(h2), k1k2)
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where ϕ is a homomorphism of K into the automorphism group

of H.

〈g1, . . . , gm〉, 〈S〉 the group generated by the elements g1, . . . , gm, and by set S.

G = 〈S | R〉 〈S | R〉 is a presentation of G. S is a set of generators of

G, while R is a set of relations G should satisfy. See Defini-

tion 2.4.1.

1 the natural number “1”, identity element of a group, or the

trivial group. The meaning should be clear in different contexts

with no confusion.

Zn the integers modulo n ∼= the cyclic group of order n.

Sn the symmetric group of degree n, consisting of all permutations

on n points.

D2n the dihedral group of order 2n.

Fq the finite field of q elements.

Z×n , F×q the multiplicative group of units of Zn, and of Fq, both con-

sisting of all invertible elements under multiplication. F×q = all

nonzero elements of Fq.

GL(n, q) the general linear group of degree n on Fq, which consists of

all invertible n×n matrices with entries from Fq. The identity

element for GL(n, q) is usually denoted by I = identity matrix.

|GL(n, q)| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1).

Vq the center of GL(n, q), consisting of the collection of matrices

that commute with every matrix in GL(n, q) = all nonzero

scalar matrices = {αI : α ∈ F×q }.
PGL(n, q) the projective general linear group = GL(n, q)/Vq. |PGL(n, q)|

= |GL(n, q)|/|Vq| = |GL(n, q)|/(q − 1). In other words, it is

the group of all invertible n×n matrices with entries from Fq,

where matrices that are proportional are considered the same

group element.

SL(2, q) the special linear group = all matrices in GL(2, q) with deter-
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minant 1. |SL(2, q)| = |PGL(2, q)|.
PSL(2, q) the projective special linear group = SL(2, q)/〈−I〉. |PSL(2, q)|

= |SL(2, q)|/2.

f ◦ g the composition of two mappings f and g.

U ⊕ V the direct sum of vector spaces U and V .

To simplify expressions in later sections, let Kn , {0, 1, . . . , n − 2} for integers

n ≥ 2.

2.3 Ingleton Violation: Computer Search and Some

Conditions

Since the Ingleton inequality (2.4) involves four subgroups of a finite group and

their various intersections, designing a small admissible structure is very difficult

without an existing example. So we use computer programs to search for a small

instance. Specifically, we use the GAP system [26] to search its “Small Group”

library, which contains all finite groups of order less than or equal to 2000, except

those of 1024. We pick a group in this library (starting from the smallest, of course),

find all its subgroups, then test the Ingleton inequality for all 4-combinations of these

subgroups. This is a tremendous task, as there are already more than 1000 groups

(up to isomorphism) of order less than or equal to 100, each of which might have

hundreds of subgroups, or even more.

It is therefore extremely critical to prune our search. In fact, we used the following

conditions to exclude groups or subgroups in the search, each of which guarantees that

Ingleton is satisfied.

Condition 2.3.1. G is abelian. [19]

Condition 2.3.2. Gi E G, ∀i. [27]

Condition 2.3.3. G1G2 = G2G1, or equivalently G1G2 ≤ G.

Condition 2.3.4. Gi = 1 or G, for some i.
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Condition 2.3.5. Gi = Gj for some distinct i and j.

Condition 2.3.6. G12 = 1.

Condition 2.3.7. Gi ≤ Gj for some distinct i and j.

Note that Condition 2.3.2 subsumes Condition 2.3.1, while Condition 2.3.3 sub-

sumes Condition 2.3.2. Also Conditions 2.3.4 and 2.3.5 are contained in Condi-

tion 2.3.7. Nevertheless, we still list these more restrictive conditions as they are

easier to check using computer programs. In addition, Conditions 2.3.1, 2.3.3, and

2.3.6 are crucial in our program, as they appear in the outer loops and can save a

large amount of search work.

For the above reasons we only list the proofs for Conditions 2.3.3, 2.3.6, and 2.3.7

below:

Proof 2.3.3: Construct random variables Xi’s from uniformly distributed Λ

on G as in Section 2.1.1. As G1;2 , G1G2 ≤ G, we can similarly construct random

variable Z = ΛG1;2. In fact, Z is a common information for X1 and X2: since

|G1;2| = |G1||G2|/|G12|,

H(Z) = H(X1) +H(X2)−H(X1, X2) = I(X1;X2).

Also, H(Z|X1) = H(Z|X2) = 0 as G1, G2 ≤ G1;2. Thus Ingleton is satisfied by

Lemma 2.1.1.

In the proof above we used the group-entropy correspondence in Section 2.1.1

to translate the problem to the entropy domain. Henceforth, in order to show that

a group satisfies Ingleton, we shall either prove (2.4) directly, or equivalently prove

(2.3) using this correspondence. Furthermore, observe that the Ingleton inequality

has symmetries between subscripts 1 and 2 and between 3 and 4, i.e., if we interchange

the subscripts 1 and 2, or 3 and 4, the inequality stays the same. Thus if we prove

conditions for some i ∈ {1, 2} and j ∈ {3, 4}, we automatically get conditions for all

(i, j) ∈ {1, 2}× {3, 4}. So without loss of generality, we will just prove conditions for

the case (i, j) = (1, 3) when these symmetries apply.
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Proof 2.3.6: Realize that (2.3) can be rewritten as

δ13,14 + δ23,24 + δ134,234 − δ123,124 ≥ 0, (2.5)

where for ∅ 6= α, β ⊆ N ,

δα,β , hα + hβ − hα∩β − hα∪β.

For example, δ134,234 = h134 + h234 − h34 − h1234. By submodularity of entropies, all

δα,β ≥ 0. If G12 = 1, then δ123,124 = 0 and (2.5) holds.

Proof 2.3.7: (i, j) = (1, 2) implies Condition 2.3.3. (i, j) = (1, 3) implies

δ123,124 = 0 in (2.5). (i, j) = (3, 1) implies δ123,234 = 0 and so δ123,234 ≤ δ12,24, which

further transforms to δ123,124 ≤ δ23,24, thus (2.5) holds. For (i, j) = (3, 4), (2.4)

becomes

|G1||G2||G3||G123||G124| ≥ |G12||G13||G14||G23||G24|,

which is true as G2 ≥ G24 and by submodularity, |G1||G124| ≥ |G12||G14| and

|G3||G123| ≥ |G13||G23|.

2.4 The Smallest Violation Instance and the Group

Presentation

Using GAP we found that the smallest group that violates Ingleton is G = S5,

which has 60 sets of violating subgroups up to subscript symmetries. Further exami-

nation shows that these 60 sets of subgroups are in fact all conjugates of each other,

and are thus virtually the same in terms of group structure. We list below some
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information from GAP about one representative:3

G1 =
〈
(3, 4, 5), (1, 2)(4, 5)

〉 ∼= S3
∼= D6 |G1| = 6

G2 =
〈
(1, 2, 3, 4, 5), (1, 4, 3, 5)

〉 ∼= Z5 o Z4 |G2| = 20

G3 =
〈
(2, 3), (1, 3, 4, 2)

〉 ∼= D8 |G3| = 8

G4 =
〈
(2, 4), (1, 2, 5, 4)

〉 ∼= D8 |G4| = 8

G12 =
〈
(1, 2)(3, 5)

〉 ∼= Z2 |G12| = 2

G13 =
〈
(1, 2)(3, 4)

〉 ∼= Z2 |G13| = 2

G14 =
〈
(1, 2)(4, 5)

〉 ∼= Z2 |G14| = 2

G23 =
〈
(1, 3, 4, 2)

〉 ∼= Z4 |G23| = 4

G24 =
〈
(1, 2, 5, 4)

〉 ∼= Z4 |G24| = 4

G34 = 1 |G34| = 1

G123 = 1 |G123| = 1

G124 = 1 |G124| = 1.

Simple calculation shows that

|G1||G2||G34||G123||G124| = 120 < 128 = |G12||G13||G14||G23||G24|,

so Ingleton is violated. Also we can check that G1–G4 indeed generate G.

To illustrate the structure of these subgroups, we use the group cycle graph.

See Figure 2.1, where the dash-dotted lines denote the pairwise intersections of sub-

groups excluding identity. From the cycle graph we can obtain more structural in-

formation that GAP does not show us directly. First, not only is G2 a semidirect

product of two cyclic groups
〈
(1, 2, 3, 4, 5)

〉 ∼= Z5 and
〈
(1, 4, 3, 5)

〉 ∼= Z4, but also(
G2 \

〈
(1, 2, 3, 4, 5)

〉)⋃{1} is the union of subgroups which are all isomorphic to (in

fact, conjugate to)
〈
(1, 4, 3, 5)

〉
and have trivial pairwise intersections. We say G2

has a “flower” structure in this case. Second, G4 is the conjugate of G3 by (3, 4, 5).

3The permutations are written in cycle notation, e.g., (1, 2)(3, 4, 5) is the permutation on the
set {1, 2, 3, 4, 5} that makes the following mapping: 1 7→ 2, 2 7→ 1, 3 7→ 4, 4 7→ 5, 5 7→ 3. Also
GAP’s convention for permutations is used throughout this paper, i.e., permutations are applied to
an element from the right.
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Figure 2.1: Cycle graph of the Ingleton violating subgroups of S5

In particular, there is a conjugacy relation between the order-4 generators of G3 and

G4: (1, 3, 4, 2)(3,4,5) = (1, 4, 5, 2) = (1, 2, 5, 4)−1.

In order to generalize these subgroups to a family of violations, we seek a pa-

rameterized group presentation for G that retains the above structures. Although

these group presentations are abstract, each of them can be input to GAP to yield an

isomorphic concrete group, and Ingleton inequality can be checked against the cor-

responding subgroups. Observing that |G23| and |G24| (both equal to 4) contribute

most to the right-hand side (RHS) of (2.4), we may try to let the “petals” of G2

(conjugates of
〈
(1, 4, 3, 5)

〉
) grow while keeping other structures fixed.4 In the rest

of this section, we start from a presentation of G2 and then extend it to the whole

4This approach is a little conservative, but it is the only successful extension according to our
GAP trials. For example, one may try to expand G1 at the same time, but the structures of G3 and
G4 usually collapse.
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group G.

Let us first define a presentation of a group. For a precise definition one needs to

introduce the concept of free groups, which we will skip. The interested readers may

consult abstract algebra textbooks, e.g., [25, 28]. Here we only give an informal but

useful definition.

Definition 2.4.1 (Group Presentation). A set S of generators of a group G is a

subset of G, such that every group element can be written as a finite product of

elements of S and their inverses. An equation satisfied in G involving only S ∪ {1}
is called a relation in G among S. Let R be a set of such relations. We say G has a

presentation

〈S | R 〉

if G is the largest (“freest”) group generated by S subject only to the relations R.

(Formally, the group G is said to have the above presentation if it is isomorphic to

the quotient of a free group F on S by the normal subgroup of F generated by the

relations R.)

For example, consider a presentation 〈x | xn = 1〉. Any group generated by x

contains only the powers of x, but by the relation xn = 1 the order of such a group

cannot exceed n. Among these groups the cyclic group Zn has the maximum order,

and hence has the above group presentation.

2.4.1 Presentation of G2

Let G2 be generated by two elements a and b, with a normal subgroup N = 〈a〉 ∼=
Zn and another subgroup H = 〈b〉 ∼= Zm, for some integers m,n. This gives us a

presentation

G2 =
〈
a, b
∣∣ an = bm = 1, ab = as

〉
(2.6)

for some 0 < s < n. In order to violate Ingleton as much as possible, we may wish

for n to be small while m is large. However, the flower structure of G2 may limit the

choices of n and m. First of all, for this presentation to be a semidirect product, we
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need sm ≡ 1 (mod n) (see [28, Sec 5.4]), i.e.,

s ∈ Z×n , |s|
∣∣m, (2.7)

where |s| denotes the order of s in the multiplicative group Z×n . As a consequence,

|G2| = mn, H
⋂
N = 1, and by the relations in (2.6) we also have

(ai)b
k

= ais
k

, ∀i, k ∈ Z. (2.8)

Moreover, we need (G2 \N)
⋃{1} to be the union of subgroups which are all isomor-

phic to H with trivial pairwise intersections.

One possible way to achieve this is to restrict Hg1
⋂
Hg2 = 1, ∀g1 6= g2 ∈ N , as

in our original example. This is equivalent to Hg
⋂
H = 1, ∀g ∈ N \ {1}. If this is

the case, then there will be |N | = n “petals” of size m in G2, and the total number

of nonidentity elements will equal n(m − 1) = nm − n = |G2 \ N |, and then indeed

the flower structure would be achieved. Pick two nonidentity elements h1 = bl ∈ H,

h2 = (bk)a
i ∈ Hai for some 0 < k, l < m and some 0 < i < n. Then

h1 = h2 ⇔ a−ibkai = bl ⇔ a−i(ai)b
−k
bk = bl ⇔ a−iais

−k
= bl−k ⇔ a(s−k−1)i = bl−k.

In the last equation, LHS ∈ N and RHS ∈ H. But H
⋂
N = 1 forces that a(s−k−1)i =

bl−k = 1, i.e., l = k and n
∣∣ (s−k − 1)i.

To guarantee that Hai
⋂
H = 1 , we must have m ≤ |s|. Otherwise if we let

0 < k = |s| < m, then s−k ≡ 1 (mod n) and so n
∣∣ (s−k − 1)i is satisfied. This means

that by choosing k = l = |s|, we have found a nonidentity element h2 = (bk)a
i

= bl =

h1 in Hai
⋂
H. Therefore m ≤ |s| and as |s|

∣∣m by (2.7), m = |s|. In particular,

m ≤ |Z×n | ≤ n− 1.

For m to be as large as possible, s should be a primitive root modulo n, which

makes m = |Z×n |. Pick n = p for some prime p, then m = |Z×p | = p − 1 achieves the

upper bound m ≤ n−1. Also in this case, if 0 < k < m = |s| and 0 < i < n = p, then

n
∣∣ (s−k − 1)i requires p

∣∣ i or p
∣∣ (s−k − 1). Since p > i, the latter must be true, which
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Table 2.1: Correspondence of group elements

a b c b1 b3 b4

(1, 2, 3, 4, 5) (1, 4, 3, 5) (3, 4, 5) (1, 2)(3, 5) (1, 3, 4, 2) (1, 2, 5, 4)

implies that |s|
∣∣ k. But this is a contradiction since 0 < k < |s|. So indeed we have

Hg
⋂
H = 1, ∀g ∈ N , and the flower structure is realized. Furthermore, to make H

nontrivial, we need p > 2. Thus with such a choice of parameters, the presentation

of G2 becomes

G2 =
〈
a, b
∣∣ ap = bp−1 = 1, ab = as

〉
, (2.9)

where p > 2 is a prime and s is a primitive root modulo p.

2.4.2 Presentation of G

The next step is to extend the presentation (2.9) to the whole group G generated

by G1–G4, with the structure in Figure 2.1. Consider the dihedral groups G3 and

G4. The subgroups of rotations are just Ha3 and Ha4 , respectively, for some a3 =

ak3 , a4 = ak4 ∈ N . Also G3 and G4 each shares one element of reflection with the

dihedral group G1, while the remaining reflection of G1 is just (b
p−1
2 )a1 in G2, for some

a1 = ak1 ∈ N . Thus if we can determine the generator of the subgroup of rotations

of G1, then all elements of G1–G4 are determined. In other words, if we introduce an

element c as the generator of rotations of G1, then all elements from G1–G4 can be

expressed as products of a, b, c, and their inverses. Define

b1 = (b
p−1
2 )a

k1 , b3 = ba
k3 , b4 = ba

k4 (2.10)

for some integers k1, k3, k4. If in Figure 2.1 we let a, b, c, b1, b3, b4 correspond with

the elements specified in Table 2.1, then the subgroups and the whole group in our

presentation should be

G1 =
〈
c, b1

〉
, G2 =

〈
a, b
〉
, G3 =

〈
b1c

2, b3

〉
, G4 =

〈
b1c, b4

〉
, G =

〈
a, b, c

〉
. (2.11)
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As G1
∼= D6, we should have the relation

c3 = (cb1)2 = 1.

Furthermore, for G3 and G4 to be dihedral groups, we need

(b3 · b1c
2)2 = (b4 · b1c)

2 = 1.

At this point we can try to plug in the presentation with these relations to GAP

to find a concrete group. But still there are too many possible parameter values to

choose. Especially, when p is large, the choices of k1, k3, k4 are numerous. Also, for

a fixed p not many such combinations yield successful Ingleton violations, according

to our GAP trials. Therefore we need to ultilize more structural information from

Figure 2.1 to obtain more restrictions on k1, k3, and k4.

Observe that in the original violation G4 is the conjugate of G3 by (3, 4, 5), and

(1, 3, 4, 2)(3,4,5) = (1, 2, 5, 4)−1. In our presentation this translates to bc3 = b−1
4 , accord-

ing to Table 2.1. With this new relation, we claim that (b3 · b1c
2)2 = (b4 · b1c)

2 = 1 is

satisfied if and only if

k3 − k1 ≡ k1 − k4 (mod p).

In fact, as |b1| = 2, c3 = (cb1)2 = 1, we have cb1 = b1c
2 and b1c = c2b1. Using these

relations we can establish the following equalities:

(b3 · b1c
2)2 = b3b1c

−1b3cb1 = b3b1b
−1
4 b1,

(b4 · b1c)
2 = b4b1cb4c

−1b1 = b4b1b
−1
3 b1 =

(
(b3b1b

−1
4 b1)−1

)b1 .
So (b3 · b1c

2)2 = 1 if and only if (b4 · b1c)
2 = 1. Using (2.8) and the fact that

b
p−1
2 = (b

p−1
2 )−1 and plugging (2.10) in, we have

b3b1b
−1
4 b1 = ba

k3 (b
p−1
2 )a

k1 (b−1)a
k4 (b

p−1
2 )a

k1

= a−k3bak3−k1b
p−1
2 ak1−k4b−1ak4−k1b

p−1
2 ak1
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= a−k3 · bak3−k1b−1 · b p−1
2 · bak1−k4b−1 · ak4−k1b p−1

2 ak1

= a−k3 · a(k3−k1)s−1 · b p−1
2 · a(k1−k4)s−1 · ak4−k1b p−1

2 ak1

= a(k3−k1)s−1−k3 · (b p−1
2 )−1a(k1−k4)(s−1−1)b

p−1
2 · ak1

= a(k3−k1)s−1−k3 · a(k1−k4)(s−1−1)s(p−1)/2 · ak1

= a[(k3−k1)+(k1−k4)s(p−1)/2](s−1−1).

Since s is a primitive root modulo p, |s(p−1)/2| = 2. As Z×p is cyclic of an even order

p− 1, it is clear that there is a unique element of order 2. But −1 has order 2 in Z×p ,

so s(p−1)/2 ≡ −1 (mod p) and

(b3 · b1c
2)2 = b3b1b

−1
4 b1 = a[(k3−k1)−(k1−k4)](s−1−1).

Now p - (s−1 − 1) as s 6= 1, which implies

(b3 · b1c
2)2 = 1 ⇔ p

∣∣ [(k3 − k1)− (k1 − k4)] ⇔ k3 − k1 ≡ k1 − k4 (mod p).

This condition on k1, k3, and k4 tells us that the petals G23 and G24 of G2 should be

symmetric (modulo p) w.r.t. G12, i.e., G23, G12, and G24 should be equally spaced.5

In sum, our analysis leads to the following presentation:

G =
〈
a, b, c

∣∣ ap = bp−1 = c3 = 1, ab = as, (cb1)2 = bc3b4 = 1
〉
, (2.12)

where p is an odd prime and s is a primitive root modulo p, k3−k1 ≡ k1−k4 (mod p).

If our extension of the subgroup structures succeeds, then the orders of subgroups

and intersections would be:

|G1| = 6, |G2| = p(p− 1), |G3| = |G4| = 2(p− 1),

|G12| = |G13| = |G14| = 2, |G23| = |G24| = p− 1, |G34| = |G123| = |G124| = 1.

5With this symmetry it is very easy for GAP to produce the desired structures, even with arbitrary
choices of k1 and k3.
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Hence in (2.4) LHS = 6p(p−1) while RHS = 8(p−1)2, and so when p ≥ 5, Ingleton

should be violated.

2.5 Explicit Violation Construction with PGL(2, p)

and PGL(2, q)

Feeding the above presentation to GAP, we find that for p = 5, 7, . . . , 23 the out-

come is a finite group that violates the Ingleton inequality.6 Moreover, with GAP we

verified for the first few primes (up to p = 11) that this group is isomorphic to the pro-

jective general linear group PGL(2, p). This leads us to conjecturing that PGL(2, p)

is a family of Ingleton-violating groups. In fact, with an explicit identification of the

generators in (2.12) with matrices in PGL(2, p), we prove that PGL(2, p) is indeed

a family of Ingleton-violating groups for primes p ≥ 5 by directly constructing their

violating subgroups in (2.11) in the form of matrices. These matrix subgroups all

have clear interpretations. Furthermore, once we have the formats of these subroups,

we extend them to the Ingleton-violating family PGL(2, q) for all finite field order

q ≥ 5.

2.5.1 The Family PGL(2, p)

First we introduce some necessary notations. Let p be an odd prime. For A ∈
GL(2, p), let A denote the left coset of A in GL(2, p) with respect to the center

Vp = {αI : α ∈ F×p }. Thus A = B if and only if each entry of A is a nonzero constant

multiple of the corresponding entry of B. AT denotes the transpose of A as usual. We

denote the elements of Fp by ordinary integers, but the addition and multiplication,

as well as equality, are modulo p. Furthermore, −k and k−1 denotes the additive and

multiplicative inverses of k in Fp, respectively. If s ∈ Fp, and A has multiplicative

order p, then As simply indicates the s-th power of A, where s is viewed as an integer.

6The capability of the testing program is primarily limited by hardware. When p is too large the
program runs out of memory.
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This would not cause any confusion, as we only use elements from Fp for the entries

of matrices.

We start by identifying the generators in PGL(2, p) that correspond to presenta-

tion (2.12). Consider the following matrices in GL(2, p):

A =

1 0

1 1

 , B =

1 0

0 t

 , C =

 0 1

−1 −1

 ,
where t is a primitive root modulo p, i.e., a generator of F×p . Our guess is that

A,B,C correspond to the generators a, b, c in (2.12), respectively. The powers of

these matrices are:

Ak =

1 0

k 1

 , Bk =

1 0

0 tk

 , C2 =

−1 −1

1 0

 , C3 = I

for any integer k. Thus
∣∣A∣∣ = p,

∣∣B∣∣ = p− 1, and
∣∣C∣∣ = 3. Also,

AB = B−1AB =

 1 0

t−1 1

 = As,

where s = t−1 is also a primitive root modulo p. So A
B

= A
s
. Next we let

B1 = (B
p−1
2 )A

k1 =

 1 0

−k1 1

1 0

0 −1

 1 0

k1 1

 =

 1 0

−2k1 −1

 ,
where we calculated t

p−1
2 = −1, as it is the unique element of order 2 in F×p . Now

check

CB1 =

 −2k1 −1

2k1 − 1 1

 , (CB1)2 =

4k2
1 − 2k1 + 1 2k1 − 1

−(2k1 − 1)2 2− 2k1

 .
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Thus if we want
(
CB1

)2
= I, k1 must be 2−1 = p+1

2
. In this case,

B1 =

 1 0

−1 −1

 , CB1 =

−1 −1

0 1

 , (
CB1

)2
= I.

Let B3 = BAk3 , B4 = BAk4 . As k3 − k1 = k1 − k4, we have k3 = 1− k4.

BAk =

 1 0

k(t− 1) t

 , B3C ·B4 =

 0 1

−t k3(t− 1)− t

 1 0

k4(t− 1) t

 ,
whose (1, 1)-entry is k4(t − 1). If we want B3

C
B4 = I, i.e., B3CB4 = C, k4 must be

0, since the (1, 1)-entry of C is 0 and t 6= 1. So k3 = 1− k4 = 1,

B3 =

 1 0

t− 1 t

 , B4 =

1 0

0 t

 = B,

B3CB4 =

 0 1

−t −1

1 0

0 t

 =

 0 t

−t −t

 = C.

So far for A,B,C we have verified all the relations in (2.12). We can also prove

that they are actually a set of generators for PGL(2, p). Observe that each matrix in

GL(2, p) can be written as a product of some elementary matrices, which are

1 0

α 1

 ,
1 β

0 1

 ,
1 0

0 ti

 ,
tj 0

0 1

 ,
where α, β ∈ Fp and i, j ∈ Kp. They are generated by A,AT , B and t−1B, respectively.

So PGL(2, p) is generated by A,AT and B. Now check

B1C =

0 1

1 0

 , AB1C =

1 1

0 1

 = AT .
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Thus A,B, and C generate PGL(2, p), and hence setting

s = t−1, k1 =
p+ 1

2
, k3 = 1, k4 = 0,

we see that PGL(2, p) is a quotient of the group G in (2.12), whose generators A,B,

and C correspond precisely to the generators a, b, and c of G.

Remark 2.5.1. Note that we have not proved that (2.12) is a presentation of

PGL(2, p). To do that, one must show that the order of the group generated by

a, b, c in (2.12) is no more than |PGL(2, p)| = (p− 1)p(p+ 1), which we have not yet

been able to prove. However, identifying possible corresponding generators still gives

us a way to explicitly construct the subgroups to violate Ingleton.

Now we can write out the subgroups in PGL(2, p) corresponding to subgroups in

(2.11).

G1 =
〈
C,B1

〉
. Note that

∣∣C∣∣ = 3,
∣∣B1

∣∣ = 2, and
(
CB1

)2
= I, so CB1 = B1

(
C
)2

and G1 has at most 6 elements
{ (
B1

)i(
C
)j

: 0 ≤ i < 2, 0 ≤ j < 3
}

. Calculating

these elements we can see that |G1| = 6 exactly and thus indeed G1
∼= D6

∼= S3:

G1 =

I,
 0 1

−1 −1

,
−1 −1

1 0

,
 1 0

−1 −1

,
0 1

1 0

,
−1 −1

0 1


 .

G2 =
〈
A,B

〉
. We claim that G2 is the subgroup of lower triangular matrices7 in

GL(2, p) modulo Vp, i.e.,

G2 =


1 0

α β


∣∣∣∣∣∣∣α ∈ Fp, β ∈ F×p

 .

As A,B are lower triangular, any element in G2 is a lower triangular matrix modulo

7We would end up with upper triangular matrices for G2 if AT were used in place of A, but the
two resulting groups are actually conjugate to each other, e.g., consider conjugating by B1C.
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Vp. On the other hand, ∀α ∈ Fp, β ∈ F×p , then β = tl for some integer l. So

1 0

α β

 = AαBl ⇒

1 0

α β

 = A
α
B
l ∈ G2.

Thus |G2| = p(p − 1) and G2 has presentation (2.9). Therefore, as proved in Sec-

tion 2.4.1, G2
∼= Zp o Zp−1 and it achieves the desired flower structure.

G3 =
〈
B1

(
C
)2
, B3

〉
=
〈
CB1, B3

〉
. Note that

∣∣CB1

∣∣ = 2,
∣∣B3

∣∣ =
∣∣B∣∣ = p− 1, also

Bk
3 =

 1 0

tk − 1 tk

 , B−1
3 =

 1 0

t−1 − 1 t−1

 ,

B3 · CB1 =

 −1 −1

1− t 1

 =

 −t−1 −t−1

t−1 − 1 t−1

 = CB1

(
B3

)−1
,

so G3 has at most 2(p − 1) elements
{ (
CB1

)i(
B3

)j
: 0 ≤ i < 2, 0 ≤ j < p − 1

}
.

Calculating these elements we can see that |G3| = 2(p−1) exactly and soG3
∼= D2(p−1):

G3 =

(B3

)k
=

 1 0

tk − 1 tk

, CB1

(
B3

)k
=

 −1 −1

1− t−k 1


∣∣∣∣∣∣∣ k ∈ Kp

 .

G4 =
〈
B1C,B4

〉
. Note that

∣∣B1C
∣∣ = 2,

∣∣B4

∣∣ =
∣∣B∣∣ = p− 1. Moreover,

B4 ·B1C =

0 1

t 0

 =

0 t−1

1 0

 = B1C
(
B4

)−1
,

so G4 has at most 2(p − 1) elements
{ (
B1C

)i(
B4

)j
: 0 ≤ i < 2, 0 ≤ j < p − 1

}
.

Calculating these elements we can see that |G4| = 2(p−1) exactly and soG4
∼= D2(p−1):

G4 =

(B4

)k
=

1 0

0 tk

, B1C
(
B4

)k
=

0 tk

1 0


∣∣∣∣∣∣∣ k ∈ Kp

 .
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These are all diagonal and anti-diagonal matrices in GL(2, p) modulo Vp. Note that

we have already verified that
(
B3

)C
= B4

−1
, and also that

(
CB1

)C
= B1C, and thus

indeed G4 = GC
3 as in the original instance (Figure 2.1).

With all four subgroups explicitly written, we can easily write down the intersec-

tions:

G12 =
〈
B1

〉
=

I,
 1 0

−1 −1


 ∼= Z2,

G13 =
〈
CB1

〉
=

I,
−1 −1

0 1


 ∼= Z2,

G14 =
〈
B1C

〉
=

I,
0 1

1 0


 ∼= Z2,

G23 =
〈
B3

〉
=


 1 0

tk − 1 tk


∣∣∣∣∣∣∣ k ∈ Kp

 ∼= Zp−1,

G24 =
〈
B4

〉
=


1 0

0 tk


∣∣∣∣∣∣∣ k ∈ Kp

 ∼= Zp−1,

G34 = G123 = G124 = 1.

|G12| = |G13| = |G14| = 2,

|G23| = |G24| = p− 1.

So in (2.4), indeed

LHS = |G1||G2||G34||G123||G124| = 6p(p− 1),

RHS = |G12||G13||G14||G23||G24| = 8(p− 1)2,

LHS −RHS = 2(p− 1)(4− p).
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Thus Ingleton is violated when p ≥ 5, and the subgroup structures of S5
∼= PGL(2, 5)

are exactly reproduced.

2.5.2 The Family PGL(2, q)

With the explicit matrix forms of the Ingleton-violating subgroups, we can further

extend the above violation to PGL(2, q) for all finite field order q ≥ 5. For a finite field

Fq, we know that q = pm for some prime p (the characteristic of Fq) and some integer

m. Since Fp is the prime subfield of Fq, GL(2, p) is a subgroup of GL(2, q), which

induces an isomorphic copy of PGL(2, p) as a subgroup of PGL(2, q). Therefore,

using the same subgroups of PGL(2, p) as in the previous section, we obtain a trivial

Ingleton violation in PGL(2, q) whenever the characteristic p ≥ 5. Nevertheless, by

extending the interpretations of these subgroups to PGL(2, q), we can obtain a more

general (nontrivial) violation for each finite field order q ≥ 5.

In the field Fq, we continue to use the ordinary integers with modular arithmetic to

represent the prime subfield Fp. With this convention, all the matrices and subgroups

in Section 2.5.1 are well defined8, although now the cosets are taken with respect to

Vq rather than Vp. These subgroups constitute a trivial embedding of our previous

violation in PGL(2, q). However, in PGL(2, q), the previous sets of generators do not

guarantee that G2 is the full subgroup of all lower triangular matrices, nor that G4

contains all the diagonal and anti-diagonal matrices.

To preserve these interpretations of the subgroups, we need to make some ad-

justment to the generators of G2. Redefine t to be a primitive element of Fq, i.e., t

generates F×q . Then
∣∣B∣∣ = q − 1. Also, instead of a single A, we need to introduce

more matrices to generate the subgroup N ,
{
Aα
∣∣α ∈ Fq

}
, where for each α ∈ Fq

we define

Aα =

1 0

α 1

 .
Clearly AαAβ = Aα+β, and Akα = Akα for each integer k. Thus

∣∣Aα∣∣ = p for each

8The only problem that may arise is that when p = 2, B1 = (B
p−1
2 )A

k1
is not well defined. But

we can circumvent that by directly working with the final matrix form of B1.
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〈B4〉

G2 in PGL(2, 8) G2 in PGL(2, 9)

N
N

B1

〈B3〉 〈B4〉

B1

〈B3〉

Figure 2.2: Generalized flower structures

α ∈ F×q . Observe that Fq is an m-dimensional vector space over Fp, so we pick a basis

(ξ1, ξ2, . . . , ξm). Then for all α ∈ Fq, α =
∑m

i=1 kiξi for some k1, k2, . . . , km ∈ Fp and

Aα =
∏m

i=1A
ki
ξi

. Also
〈
Aξi
〉⋂〈

Aξj
〉

= 1 for distinct i and j. Thus

N =
〈
Aξ1 , Aξ2 , . . . , Aξm

〉 ∼= 〈 Aξ1 〉× 〈 Aξ2 〉× . . .× 〈 Aξm 〉 ∼= Zmp .

Actually, N is isomorphic to the additive group of the vector space Fq over Fp (cf.

Section 3.2.1).

Let G2 =
〈
Aξ1 , Aξ2 , . . . , Aξm , B

〉
=
〈
N,B

〉
. Similar to the previous section, it

is easy to show that now G2 is indeed the subgroup of all lower triangular matrices

modulo Vq. Furthermore, for any α ∈ Fq, we have Aα
B

= At−1α, so N E G2 and

G2 = NH, where H ,
〈
B
〉
. Also N

⋂
H = 1, and thus G2

∼= N oH ∼= Zmp o Zq−1.

Although in general G2 does not have presentation (2.6) or (2.9) anymore, since N is

not necessarily cyclic, we can prove that it does have a “generalized flower structure”

when q > 2, i.e., (G2 \N)
⋃{I} is the union of subgroups which are all isomorphic to

H with trivial pairwise intersections. Similar to the analysis of the G2 in Section 2.4.1,

it suffices to show that HAα
⋂
H = 1, ∀Aα ∈ N \ {I}. But this is true since for each
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α ∈ F×q and some integers k, l ∈ Kq,

(B
k
)Aα = B

l ⇐⇒ B
k · Aα = Aα ·Bl ⇐⇒

 1 0

tkα tk

 =

1 0

α tl

 ⇐⇒ k = l = 0.

Figure 2.2 shows two representative generalized flower structures of G2, for q = 8

and q = 9. The center point of each cycle graph denotes the identity element. For

each G2, there are |N | = q petals and one “root system” (encircled by the dash-dotted

line), which is the normal subgroup N . Every petal is a conjugate of H and has size

q− 1. Since N has q− 1 nonidentity elements that each has order p, the root system

consists of (q − 1)/(p − 1) trivially intersecting “roots/tubers”, each of which is a

p-cycle. Note that when m = 1, there is only one root/tuber, as in the original flower

structure in Figure 2.1.

Now using the same matrices,

C =

 0 1

−1 −1

 , B1 =

 1 0

−1 −1

 ,

B3 = BA1 =

 1 0

t− 1 t

 , B4 = B =

1 0

0 t

 ,
as in Section 2.5.1 (except that t now generates F×q instead of F×p ), we write down the

following subgroups:

G1 =
〈
C,B1

〉 ∼= D6
∼= S3. (Same as in Section 2.5.1.)

G2 =
〈
Aξ1 , Aξ2 , . . . , Aξm , B

〉
=
〈
N,B

〉 ∼= Zmp o Zq−1, which consists of all lower

triangular matrices in GL(2, q) modulo Vq.

G3 =
〈
B1

(
C
)2
, B3

〉
=
〈
CB1, B3

〉
. Now

∣∣B3

∣∣ = q− 1, and we still have B3 ·CB1 =

CB1

(
B3

)−1
, so

G3 =

(B3

)k
=

 1 0

tk − 1 tk

, CB1

(
B3

)k
=

 −1 −1

1− t−k 1


∣∣∣∣∣∣∣ k ∈ Kq

 ∼= D2(q−1).
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G4 =
〈
B1C,B4

〉
. Now

∣∣B4

∣∣ = q − 1 and B4 ·B1C = B1C
(
B4

)−1
, so

G4 =

(B4

)k
=

1 0

0 tk

, B1C
(
B4

)k
=

0 tk

1 0


∣∣∣∣∣∣∣ k ∈ Kq

 ∼= D2(q−1),

which comprises all diagonal and anti-diagonal matrices in GL(2, q) modulo Vq.

Next we find the intersections G12 =
〈
B1

〉
, G13 =

〈
CB1

〉
, and G14 =

〈
B1C

〉
,

which are all isomorphic to Z2; G23 =
〈
B3

〉
and G24 =

〈
B4

〉
, both of which are

isomorphic to Zq−1; and G34 = G123 = G124 = 1.

The orders of the four subgroups and the intersections are

|G1| = 6, |G2| = q(q − 1), |G3| = |G4| = 2(q − 1),

|G12| = |G13| = |G14| = 2, |G23| = |G24| = q − 1, |G34| = |G123| = |G124| = 1.

So in (2.4),

LHS = |G1||G2||G34||G123||G124| = 6q(q − 1),

RHS = |G12||G13||G14||G23||G24| = 8(q − 1)2,

LHS −RHS = 2(q − 1)(4− q).

Thus Ingleton is violated when q ≥ 5.

Remark 2.5.2. Depending on the characteristic p of Fq, the intersection G12 =
〈
B1

〉
might lie in either the petals or the roots of G2, as depicted by the dashed circles in

Figure 2.2. If p 6= 2, then q is odd and

B1 =
(
B

q−1
2

)Ak1
,

where k1 = 2−1 = p+1
2

, so G12 is on the petal HAk1 ; whereas if p = 2, then −1 = 1

and B1 = A1 ∈ N , so G12 becomes a root. Note that the patterns of the other

intersections are not changed for different q.

Remark 2.5.3. We can also show thatAξ1 , Aξ2 , . . . , Aξm , B and C generate PGL(2, q),
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using the same argument as in the previous section. The only difference is that the

elementary matrices of GL(2, q) are now generated by Aξ1 , A
T
ξ1
, . . . , Aξm , A

T
ξm
, B and

t−1B. But as AB1C
α = ATα , ∀α ∈ Fq, we see that PGL(2, q) is indeed generated by the

desired elements.

In Section 2.7, we will see that these subgroups have more fundamental interpre-

tations in the framework of group actions and groups of Lie type: each subgroup

is the stabilizer for a special set of points in the underlying projective geometry of

PGL(2, q).

2.5.3 Discussion

To measure “how much” the Ingleton inequality is violated, or how effective a set

of subgroups is in terms of violating Ingleton, we need to compare the difference of

the two sides of (2.3) for the corresponding entropy vector, i.e.,

∆h , h1 + h2 + h34 + h123 + h124 − (h12 + h13 + h14 + h23 + h24).

Translating to the finite group context, it equals log RHS
LHS

of (2.4). Thus we can make

the following definition to measure the extent to which Ingleton is violated.

Definition 2.5.1. For a 4-tuple of subgroups τ = (Gi : 1 ≤ i ≤ 4), we define the

Ingleton ratio to be

r(τ) =
|G12||G13||G14||G23||G24|
|G1||G2||G34||G123||G124|

. (2.13)

Clearly ∆h = log r and Ingleton is violated iff r > 1. The family PGL(2, q) have

the Ingleton ratio

r =
4(q − 1)

3q
,

which approaches 4/3 when q is large.

However, the Ingleton ratio is not precise enough to characterize the effectiveness

of an Ingleton violation instance. Observe that Γ∗n is a cone, and in fact, as remarked

in [22], adding an entropy vector to itself yields another entropy vector. Thus we can
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arbitrarily increase the Ingleton ratio by joining copies of a violation instance. For

example, if τ = (Gi : 1 ≤ i ≤ 4) is such an instance, for each integer N let

G′ = ×Nk=1G , G× · · · ×G

be the direct product of N copies of G and define τ ′ = (G′i : 1 ≤ i ≤ 4) with

G′i = ×Nk=1Gi for each i. Then the Ingleton ratio r(τ ′) = [r(τ)]N , which grows

unbounded when N →∞.

Therefore we need to consider the scaled version of ∆h to be able to measure

the effectiveness of an Ingleton violation. In [29] Dougherty et al. use the full joint

entropy h1234 as a scaling factor to avoid the problem above:

Definition 2.5.2. For an entropy vector h = (hα : ∅ 6= α ⊆ {1, 2, 3, 4}), define the

Ingleton score to be

σ(h) = − ∆h

h1234

.

In the context of groups, the Ingleton score of a 4-tuple τ of subgroups of G is

σ(τ) =
− log r(τ)

log(|G|/|G1234|)
.

Note that Ingleton fails iff σ < 0, and a lower score means a larger violation.

Essentially this definition forms a ray starting from the origin and passing through

the point in R24−1 corresponding to an entropy vector, then finds its intersection with

the hyperplane h1234 = 1 and computes −∆h for that point to measure the Ingleton

violation. The best Ingleton score in the family PGL(2, q) is attained when q = 13,

with σ = −0.0270. In [22] many violations obtained have lower Ingleton scores, and

hence are more effective than PGL(2, q). In [29] a conjecture concerning the lowest

Ingleton score attainable by an arbitrary entropy vector is proposed, but has been

refuted recently by Matúš and Csirmaz [30].

A perhaps more geometrically meaningful scaling factor is the 2-norm of the en-

tropy vector, as proposed in [31]:

Definition 2.5.3. For an entropy vector h = (hα : ∅ 6= α ⊆ {1, 2, 3, 4}), define the
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Ingleton violation index to be

ι(h) =
∆h

‖h‖2

=
∆h√
hTh

.

Essentially this definition measures the “sine” of the angle between an entropy

vector and the Ingleton hyperplane ∆h = 0. The Ingleton inequality fails iff ι > 0,

and a larger index means a larger violation. Note that two entropy vectors might

have the same violation index but different Ingleton scores, and vice versa. The best

Ingleton violation index in the family PGL(2, q) is again attained when q = 13, with

ι = 0.0082, whereas for an arbitrary entropy vector the best ι found in literature is

0.0276 using quasi-uniform distributions [32].

Next we discuss two directions for generalizing the above Ingleton-violating family

and finding new violations. On the one hand, PGL(2, q) is the quotient group of

GL(2, q), so supposedly GL(2, q) should have a richer choice of subgroups violating

Ingleton inequality. This approach is explored in the next section. On the other

hand, since the subgroups in the PGL(2, q) family have simple but fundamental

interpretations in terms of group actions, we can generalize them in this framework.

In particular, we obtain two new families of violations in PGL(n, q) for general n,

and further generalize to an abstract construction using 2-transitive groups. This

approach is explored in Section 2.7. Note that it is more abstract than the previous

approach and requires more background knowledge.

2.6 Ingleton Violations in GL(2, q)

As PGL(2, q) is the quotient group of GL(2, q) modulo the subgroup Vq of scalar

matrices, naturally one may ask if the general linear groups also violate Ingleton. In

fact, the following lemma shows that there is at least one set of subgroups in GL(2, q)

that violates Ingleton for all finite field orders q ≥ 5:

Lemma 2.6.1. If G is a finite group with a normal subgroup N such that H , G/N
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has a set of Ingleton-violating subgroups, then the preimages of these subgroups under

the natural homomorphism g 7→ gN are subgroups of G that also violate Ingleton.

Proof. Let (Hi : 1 ≤ i ≤ 4) be a set of Ingleton-violating subgroups in H. Define Gi

to be the preimage of Hi under the natural homomorphism, and Gi is then a group

containing N for each i. By the Lattice Isomorphism Theorem (see, e.g., [25]), for

any nonempty subset α ⊆ {1, 2, 3, 4}, Gα/N = Hα, and so |Gα| = |Hα| · |N |. Thus

by checking the orders in (2.4), (Gi : 1 ≤ i ≤ 4) also violate Ingleton.

Searching with GAP, we find GL(2, 5) to be the smallest general linear group

that violates Ingleton. Up to subscript symmetries and conjugations, it has 15 sets of

Ingleton-violating subgroups. We would like to analyze their structures and generalize

them for q ≥ 5 if possible.

Throughout this section, we always assume q is a finite field order, and p is

the characteristic of Fq. We begin our analysis by identifying the preimages of the

Ingleton-violating subgroups in the previous section under the natural homomorphism

π : GL(2, q)→ GL(2, q)/Vq = PGL(2, q),

according to Lemma 2.6.1. With no surprise, when q = 5 these correspond to one

of the 15 violation instances in GL(2, 5), and they take on nice matrix structures

similar to the subgroups in Section 2.5. Based on this set of subgroups we have 10

other instances, all of which are essentially its variants: each instance differs from the

preimages at exactly one subgroup (either G1 or G2). These 11 violation instances can

be easily extended to families of Ingleton-violating subgroups in GL(2, q) for q ≥ 5,

sometimes with an extra condition. The remaining 4 instances cannot be derived

directly from the preimages; however, they are interrelated and all their subgroups

are equal or conjugate to some known subgroups from the previous instances. They

also generalize to Ingleton-violating families in GL(2, q) with some extra conditions.

Table 2.2 summarizes how the generalization of these instances depends on the

values of p and q. We can see that when p = 2, these 15 instances collapse to only
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Table 2.2: (a) Identical instances when p = 2 (b) Cases when Ingleton is not violated

Instance Identical
No. Instance(s)

1 5

2 3, 4

6 8, 10

7 9, 11

12 13

14 15

p 6= 2,

Instance No. p = 3 q−1
2

odd

8, 9 ×
12, 14 ×
13, 15 × ×

6 dinstinct ones; also some instances need specific conditions on p and q to violate

Ingelton.
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In Table 2.3, the orders of the subgroups for the cases we have explored in

PGL(2, q) and GL(2, q) are listed. No. 0 denotes the instance in PGL(2, q), and

No. 1–15 denote the generalizations of the 15 violation instances in GL(2, 5) to

GL(2, q). Since all instances have the subgroup order symmetries

|G3| = |G4|, |G123| = |G124|, |G13| = |G14|, |G23| = |G24|,

only one of each pair of orders is listed. Note that when p = 2, there are only 6 such

dinstinct generalizations, which are Instances 1, 2, 6, 7, 12, and 14. Thus for the

order calculation of all other instances in GL(2, q) assume p 6= 2. Moreover, No. 8’,

9’, 13’, and 15’ correspond to Instances 8, 9, 13, and 15 when p 6= 2 but q−1
2

is odd,

in which case Ingleton is satisfied. Finally, the order calculation for Instances 12–15

only works for p 6= 3. From Table 2.3, we can calculate that all violation instances

in the table have the same Ingleton ratio r = 4(q− 1)/(3q), which is the same as the

family PGL(2, q). But because the scaling factors for both the Ingleton score and

the violation index are no larger than PGL(2, q) in these instances, they are no more

effective.

In the following, we present all of these extended violation families, with Sec-

tion 2.6.1 being the set of preimage subgroups, Sections 2.6.2 and 2.6.3 its 10 variants,

and Section 2.6.4 the remaining 4 instances. We continue to use the notations from

Section 2.5 with t being a primitive element of Fq, but we redefine

N = {Aα|α ∈ Fq} = 〈Aξ1 , Aξ2 , . . . , Aξm〉 ∼= 〈Aξ1〉 × 〈Aξ2〉 × . . .× 〈Aξm〉 ∼= Zmp .

In addition, we introduce the following matrices and subgroups in GL(2, q) to facili-

tate our presentation:

B′ =

−1 0

0 t

 , P =

t 0

0 1

 , P ′ =

t 0

0 −1

 ,



43

M = 〈C,B1〉 =

I,
 0 1

−1 −1

 ,
−1 −1

1 0

 ,
 1 0

−1 −1

 ,
0 1

1 0

 ,
−1 −1

0 1

 ,

K = 〈N,B〉 =


1 0

α β

∣∣∣∣∣∣ α ∈ Fq,

β ∈ F×q

 ,

K ′ = 〈N,B′〉 =


(−1)k 0

α tk

∣∣∣∣∣∣ α ∈ Fq,

k ∈ Kq

 ,

J = 〈N,P 〉 =


β 0

α 1

∣∣∣∣∣∣ α ∈ Fq,

β ∈ F×q

 ,

J ′ = 〈N,P ′〉 =


tk 0

α (−1)k

∣∣∣∣∣∣ α ∈ Fq,

k ∈ Kq

 .

Note that when p = 2, we have−1 = 1, so B′ = B, P ′ = P , and K ′ = K, J ′ = J . Also

note that M and K precisely correspond to G1 and G2 in Section 2.5, respectively.

The group M is isomorphic to D6
∼= S3, while the other four groups are all semidirect

products Zmp oZq−1, with K ∼= J and K ′ ∼= J ′. Moreover, K and J have generalized

flower structures for all q > 2. However, if p 6= 2, K ′ and J ′ only have flower structures

when q−1
2

is even, in which case they are also isomorphic to K. (See Section A.1.1 in

Appendices for proofs.) This turns out to be a necessary condition to violate Ingleton

in all the instances where K ′ and J ′ are involved.

2.6.1 Instance 1: The Preimage Subgroups

To obtain the preimage H0 of a subgroup H ≤ PGL(2, q) under π, we can generate

H0 in GL(2, q) with the generators of H (without overlines) and tI, since Vq = 〈tI〉 ∼=
Zq−1.

G1 = 〈tI, C,B1〉 = 〈Vq,M〉. Since Vq is the center of GL(2, q) and intersects M

trivially, G1 is a direct product:

G1 = { tkX |X ∈M,k ∈ Kq } ∼= Vq ×M ∼= Zq−1 × S3.
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G2 = 〈tI, Aξ1 , Aξ2 , . . . , Aξm , B〉 = 〈tI,N,B〉 = 〈Vq, K〉. G2 is the subgroups of all

lower triangular matrices in GL(2, q), and as Vq
⋂
K = 1, we have

G2
∼= Vq ×K ∼= Zq−1 × (Zmp o Zq−1).

G3 = 〈tI, B1C
2, B3〉 = 〈tI, CB1, B3〉 = 〈CB1, T 〉, where T = 〈tI, B3〉. As

Vq
⋂〈B3〉 = 1, we have

T = { tkBm
3 | k,m ∈ Kq } ∼= Vq × 〈B3〉 ∼= Zq−1 × Zq−1.

It is easy to check that (tkBm
3 )CB1 = tk+mB−m3 ∈ T , so G3 = 〈CB1〉 · T and T E G3.

Furthermore, |CB1| = 2 and T
⋂〈CB1〉 = 1, thus

G3
∼= T o 〈CB1〉 ∼= (Zq−1 × Zq−1) o Z2,

G3 =

tk
 1 0

tm − 1 tm

 , tk+m

 −1 −1

1− t−m 1

∣∣∣∣∣∣ k,m ∈ Kq
 .

G4 = 〈tI, B1C,B4〉 = 〈tI, B1C,B〉 = 〈B1C,D〉, where D = 〈tI, B〉. Since

Vq
⋂〈B〉 = 1, we have

D = { tkBm | k,m ∈ Kq } =∼= Vq × 〈B〉 ∼= Zq−1 × Zq−1,

which consists of all diagonal matrices in GL(2, q). Note that

α 0

0 β

B1C

=

β 0

0 α

 ∈ D,
so G4 = 〈B1C〉 ·D and D E G4. Since |B1C| = 2 and D

⋂〈B1C〉 = 1,

G4
∼= D o 〈B1C〉 ∼= (Zq−1 × Zq−1) o Z2.
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Table 2.4: G1 for Instances 2–5

Ins. No. 2 3 4 5

G1 〈C,B1〉 〈−C,B1〉 〈C,−B1〉 〈C, tB1〉

Actually G4 is the subgroups of all diagonal and anti-diagonal matrices in GL(2, q):

G4 =


α 0

0 β

 ,
0 β

α 0

∣∣∣∣∣∣α, β ∈ F×q

 .

Calculating the intersections, we have

G12 = 〈tI, B1〉 ∼= Vq × 〈B1〉 ∼= Zq−1 × Z2,

G13 = 〈tI, CB1〉 ∼= Vq × 〈CB1〉 ∼= Zq−1 × Z2,

G14 = 〈tI, B1C〉 ∼= Vq × 〈B1C〉 ∼= Zq−1 × Z2,

G23 = T, G24 = D, G34 = G123 = G124 = 〈tI〉 = Vq.

From the calculation in Table 2.3, Ingleton is violated when q ≥ 5.

2.6.2 Instances 2–5: Variants with Different G1’s

In all the instances in this section, only G1 is different from Instance 1; it is now

a proper subgroup of 〈tI, C,B1〉 (see Table 2.4, where the generator-form for these

groups is used to better demonstrate the subgroup relations). When p 6= 2, these

instances are all distinct; however, when p = 2, clearly Instances 3 and 4 collapse to

Instance 2, while Instance 5 becomes Instance 1. From Table 2.3, we can see that

they all violate Ingleton when q ≥ 5.

2.6.2.1 Instance 2

G1 = M .

G12 = 〈B1〉, G13 = 〈CB1〉 and G14 = 〈B1C〉 are all isomorphic to Z2, and
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G123 = G124 = 1.

2.6.2.2 Instance 3

G1 = 〈−C,B1〉.
We only consider the case p 6= 2, since otherwise this is the same as Instance 2.

As |C| = 3, we have (−C)3 = −I and (−C)4 = C. Thus

G1 = 〈−I, C,B1〉 = 〈−I,M〉 ∼= 〈−I〉 ×M ∼= Z2 × S3
∼= D12,

since 〈−I〉 is a subgroup of Vq and intersects M trivially. So G1 = {±X |X ∈M},

G12 = 〈−I, B1〉 ∼= 〈−I〉 × 〈B1〉 ∼= Z2 × Z2,

G13 = 〈−I, CB1〉 ∼= 〈−I〉 × 〈CB1〉 ∼= Z2 × Z2,

G14 = 〈−I, B1C〉 ∼= 〈−I〉 × 〈B1C〉 ∼= Z2 × Z2,

G123 = G124 = 〈−I〉 ∼= Z2.

2.6.2.3 Instance 4

G1 = 〈C,−B1〉.
Here we also need only consider the case p 6= 2. Observe that |C| = 3, |–B1| = 2,

and (C · (−B1))2 = (CB1)2 = I. This gives us

G1 =
{
I, C, C2,−B1,−B1C,−CB1

}
,

so G1
∼= D6

∼= S3.

For the intersections, we have G12 = 〈−B1〉, G13 = 〈−CB1〉, and G14 = 〈−B1C〉
all isomorphic to Z2, and G123 = G124 = 1.

2.6.2.4 Instance 5

G1 = 〈C, tB1〉.
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Table 2.5: G2 for Instances 6–11

Ins. No. 6 7 8 9 10 11

G2 〈N,B〉 〈N,P 〉 〈N,B′〉 〈N,P ′〉 〈−I,N,B〉 〈−I,N, P 〉

When p = 2, q is even. Since |B1| = 2 and |t| = q − 1, we have (tB1)q = tI and

(tB1)q−1 = B1. Thus G1 = 〈tI, C,B1〉 and this instance is the same as Instance 1.

Now assume p 6= 2. As q is odd, |tB1| = q − 1. When k is even, (tB1)k = tkI

and so C(tB1)k = C. Otherwise (tB1)k = tkB1, then C(tB1)k = B1CB1 = C−1 since

(CB1)2 = I. So G1 = 〈tB1〉 · 〈C〉 and 〈C〉 E G1. Furthermore, 〈tB1〉
⋂〈C〉 = 1 and

|C| = 3, thus

G1 =
{
tkI, tkC, tkC2

∣∣ k even, k ∈ Kq
}⋃{

tkB1, t
kB1C, t

kCB1

∣∣ k odd, k ∈ Kq
}
,

G1
∼= 〈C〉o 〈tB1〉 ∼= Z3 o Zq−1.

The intersections are G12 = 〈tB1〉, G13 = 〈tCB1〉, and G14 = 〈tB1C〉, which are

all isomorphic to Zq−1, and G123 = G124 = 〈t2I〉 ∼= Z q−1
2

.

2.6.3 Instances 6–11: Variants with Different G2’s

In all the instances in this section, only G2 is different from Instance 1; it is now

a proper subgroup of 〈tI,N,B〉 (see Table 2.5). It is easy to see that these instances

are distinct when p 6= 2; otherwise Instances 8 and 10 collapse to Instance 6, while

Instances 9 and 11 become Instance 7. Thus in the analysis of Instances 8–11, we

assume p 6= 2. From Table 2.3, Instances 6, 7, 10, and 11 violate Ingleton whenever

q ≥ 5; however, if p 6= 2, Instances 8 and 9 only violate Ingleton when in addition q−1
2

is even. Please refer to Section A.1.2 in Appendices for the calculation of subgroup

intersections in Instances 8 and 9.

2.6.3.1 Instance 6

G2 = K.
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In this case, G12 = 〈B1〉 ∼= Z2 and G123 = G124 = 1. Also G23 = 〈B3〉 and

G24 = 〈B〉, both of which are isomorphic to Zq−1.

2.6.3.2 Instance 7

G2 = J .

Here G12 = 〈−B1〉 ∼= Z2, G123 = G124 = 1. Also, G23 = 〈t−1B3〉 and G24 = 〈P 〉,
and are both isomorphic to Zq−1.

2.6.3.3 Instance 8

G2 = K ′.

We have

G12 =

 〈B1〉 ∼= Z2 if q−1
2

is even

〈−I〉 ∼= Z2 otherwise
,

G123 = G124 =

 1 if q−1
2

is even

〈−I〉 ∼= Z2 otherwise
.

In this case, G23 = 〈−B
q+1
2

3 〉 and G24 = 〈B′〉 are both isomorphic to Zq−1.

2.6.3.4 Instance 9

G2 = J ′.

We have

G12 =

 〈−B1〉 ∼= Z2 if q−1
2

is even

〈−I〉 ∼= Z2 otherwise
,

G123 = G124 =

 1 if q−1
2

is even

〈−I〉 ∼= Z2 otherwise
.

Here G23 = 〈tB
q−3
2

3 〉 and G24 = 〈P ′〉 are isomorphic to Zq−1.

2.6.3.5 Instance 10

G2 = 〈−I,N,B〉.
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Now we have

G2 = 〈−I,K〉 ∼= 〈−I〉 ×K ∼= Z2 × (Zmp o Zq−1),

since 〈−I〉⋂K = 1. Thus G2 = {±X |X ∈ K }.
For the intersections, we have

G12 = 〈−I, B1〉 ∼= Z2 × Z2,

G123 = G124 = 〈−I〉 ∼= Z2,

G23 = 〈−I, B3〉 ∼= 〈−I〉 × 〈B3〉 ∼= Z2 × Zq−1,

G24 = 〈−I, B〉 ∼= 〈−I〉 × 〈B〉 ∼= Z2 × Zq−1.

2.6.3.6 Instance 11

G2 = 〈−I,N, P 〉.
Here

G2 = 〈−I, J〉 ∼= 〈−I〉 × J ∼= Z2 × (Zmp o Zq−1),

since 〈−I〉⋂ J = 1. Thus G2 = {±X |X ∈ J }.
Moreover,

G12 = 〈−I,−B1〉 = 〈−I, B1〉 ∼= Z2 × Z2,

G123 = G124 = 〈−I〉 ∼= Z2,

G23 = 〈−I, t−1B3〉 ∼= 〈−I〉 × 〈t−1B3〉 ∼= Z2 × Zq−1,

G24 = 〈−I, P 〉 ∼= 〈−I〉 × 〈P 〉 ∼= Z2 × Zq−1.

2.6.4 Instances 12–15

For these last four instances, G1 is always M , and G2–G4 are equal or conjugate

to one of K,K ′, J , and J ′, as listed in Table 2.6. Thus G2–G4 are all semidirect
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Table 2.6: Subgroups for Instances 12–15

Ins. No. G1 G2 G3 G4

12 M 〈N,B〉 〈N,P 〉E 〈N,P 〉Q

13 M 〈N,B′〉 〈N,P ′〉E 〈N,P ′〉Q

14 M 〈N,P 〉E 〈N,B〉 〈N,B〉W

15 M 〈N,P ′〉E 〈N,B′〉 〈N,B′〉W

products Zmp o Zq−1 and the structures of G3 and G4 are different from all previous

instances. The conjugators E,Q, and W and the elements of new subgroups are listed

as follows.

E =

−1 1

1 0

 , Q =

2 1

1 0

 , W =

 0 1

−1 1

 .
JE = 〈N,P 〉E =


 1− v v

1− u− v u+ v

∣∣∣∣∣∣ u ∈ F×q ,

v ∈ Fq

 ,

(J ′)E = 〈N,P ′〉E =


 (−1)j − α α

(−1)j − tj − α tj + α

∣∣∣∣∣∣ α ∈ Fq,

j ∈ Kq

 ,

JQ = 〈N,P 〉Q =


 1 + 2y y

2(x− 2y − 1) x− 2y

∣∣∣∣∣∣ x ∈ F×q ,

y ∈ Fq

 ,

(J ′)Q = 〈N,P ′〉Q =


 (−1)i + 2β β

2 (ti − 2β − (−1)i) ti − 2β

∣∣∣∣∣∣ β ∈ Fq,

i ∈ Kq

 ,

KW = 〈N,B〉W =


x y

0 1

∣∣∣∣∣∣ x ∈ F×q ,

y ∈ Fq

 =
{
XT

∣∣ X ∈ J} ,
(K ′)W = 〈N,B′〉W =


ti β

0 (−1)i

∣∣∣∣∣∣ β ∈ Fq,

i ∈ Kq

 =
{
XT

∣∣ X ∈ J ′} .
As mentioned in Table 2.2, Instances 12–15 do not violate Ingleton when p = 3.

The reasons are as follows. If p = 3, then 2 = −1, so E = Q and M ≤ JE.

Thus in Instance 12 we have G3 = G4 and G1 ≤ G3, while in Instances 13 and
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14 we have G3 = G4 and G1 ≤ G2 respectively. So these three instances satisfy

Conditions 2.3.5 and/or 2.3.7. Instance 15, however, satisfies Condition 2.3.3 in this

case (see Section A.1.3 in Appendices).

Also, we need p 6= 2 to make Instances 13 and 15 distinct, otherwise they collapse

to Instances 12 and 14, respectively. Thus in the rest of this section we always assume

p 6= 3, while for Instances 13 and 15 we assume p > 3. From Table 2.3, Instances 12

and 14 violate Ingleton when q ≥ 5 (and of course, p 6= 3), while if p 6= 2, Instances 13

and 15 only violate Ingleton when in addition q−1
2

is even. Please refer to Section A.1.4

in Appendices for the intersection calculations.

2.6.4.1 Instance 12

G2 = K,G3 = JE, G4 = JQ.

We have G12 = 〈B1〉, G13 = 〈B1C〉, and G14 = 〈CB1〉, all isomorphic to Z2, and

G34 = G123 = G124 = 1. Furthermore,

G23 =


 1 0

1− tj tj

∣∣∣∣∣∣ j ∈ Kq
 = 〈P 〉E,

G24 =


 1 0

2(ti − 1) ti

∣∣∣∣∣∣ i ∈ Kq
 = 〈P 〉Q,

both of which are isomorphic to Zq−1.

2.6.4.2 Instance 13

G2 = K ′, G3 = (J ′)E, G4 = (J ′)Q.

When q−1
2

is even, G12, G13, G14, and G34 are the same as in Instance 12. Otherwise

G12 = G13 = G14 = 1 and G34 = 〈−I〉 ∼= Z2. G123 and G124 are always trivial. Also,

G23 =


 (−1)j 0

(−1)j − tj tj

∣∣∣∣∣∣ j ∈ Kq
 = 〈P ′〉E,
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G24 =


 (−1)i 0

2 (ti − (−1)i) ti

∣∣∣∣∣∣ i ∈ Kq
 = 〈P ′〉Q,

both of which are isomorphic to Zq−1.

2.6.4.3 Instance 14

G2 = JE, G3 = K,G4 = KW .

Observe that G2 and G3 are obtained from swapping the corresponding subgroups

from Instance 12. Therefore G12 and G13 are also swapped while G23 remains the

same. It turns out that G14, G34, G123, and G124 are also the same as in Instance 12.

Furthermore,

G24 =


ti 1− ti

0 1

∣∣∣∣∣∣ i ∈ Kq
 = 〈B〉W ∼= Zq−1.

2.6.4.4 Instance 15

G2 = (J ′)E, G3 = K ′, G4 = (K ′)W .

In this case, G2 and G3 from Instance 13 are swapped to yield the corresponding

subgroups here. So G12 and G13 are also swapped while G23 stays the same. Moreover,

G14, G34, G123, and G124 are the same as in Instance 13, both when q−1
2

is even and

otherwise. Finally,

G24 =


ti (−1)i − ti

0 (−1)i

∣∣∣∣∣∣ i ∈ Kq
 = 〈B′〉W ∼= Zq−1.

2.7 Interpretation and Generalizations of Viola-

tion in PGL(2, q) using Theory of Group Ac-

tions

Instead of invertible matrices, we can also regard a general linear group as the

group of all invertible linear transformations on a vector space. In this section, we
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take this point of view and consider the actions of linear groups on their correspond-

ing projective geometries. Such actions induce a permutation representation for each

general linear group on its projective geometry, and the projective linear groups are

naturally defined in this framework. Using the theory of group actions, we show that

the Ingleton violation in PGL(2, q) from Section 2.5 has a nice interpretation: each

subgroup is some sort of stabilizer for a set of points in the projective geometry. Fur-

thermore, based on this understanding, we generalize the construction in PGL(2, q)

to two new families of Ingleton violations in PGL(n, q) for a general n.9 Finally, we

provide an abstract construction in 2-transitive groups generalizing these ideas.

Throughout this section we assume basic knowledge in the theory of group actions,

which can be found in standard group theory textbooks. In particular, we make

extensive use of the orbit-stabilizer theorem, which says that the order of the orbit

of an element is equal to the index of it stabilizer (see, e.g., [25, Sec. 4.1, Prop. 2]).

Most notations are standard abstract algebra notations (see, e.g., [25]); the rest are

introduced when they first appear. Note that this section is more abstract than the

others and assumes more background knowledge in abstract algebra.

This section is mostly based on Prof. M. Aschbacher’s correspondences with us.

We have furnished various details and explanations for clarity.

2.7.1 Preliminaries for Linear Groups

Let V be an n-dimensional vector space over a field F . Recall that GL(V ) and

SL(V ) are the general linear group and special linear group on V , respectively. They

are examples of groups of Lie type, a notion which is not totally well defined.

Each group G of Lie type possesses a building, a simplicial complex on which G

is represented as a group of automorphisms. A (abstract) simplicial complex consists

of a set X of vertices together with a collection of nonempty subsets of X called

simplices ; the only axiom says that each nonempty subset of a simplex is a simplex.

Example 2.7.1. Let X be a partially ordered set. The order complex of X is the

9Note that with Lemma 2.6.1, the families in PGL(n, q) can also be easily extended to families
of violations in GL(n, q).
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simplicial complex with vertex set X and with the simplices the nonempty chains in

the poset.

Example 2.7.2. The projective geometry PG(V ) of V is the poset of nonzero proper

subspaces of V , partially ordered by inclusion. The building of GL(V ) and SL(V )

is the order complex of this poset. Of course GL(V ) permutes the subspaces of V ,

supplying a representation of GL(V ) on PG(V ) whose kernel is the subgroup of scalar

maps. The images of GL(V ) and SL(V ) in the automorphism group Aut(PG(V ))

are the projective general linear group PGL(V ) and projective special linear group

PSL(V ). Write GL(n, F ), SL(n, F ), PGL(n, F ), PSL(n, F ) for the corresponding

group when dim(V ) = n and the field is F .

Example 2.7.3. Specialize to the case n = 2. Then PG(V ) consists of the points of

V ; i.e., the 1-dimensional subspaces of V . This is the so-called projective line. Let

X = {x1, x2} be a basis of V . We regard the projective line as Ω = F ∪ {∞}, where

∞ denotes Fx1 and for e ∈ F , e denotes F (ex1 +x2). Then given an invertible matrix

M(a, b, c, d) =

a b

c d


inGL(V ), one can check that, subject to the identification of PG(V ) with Ω, M(a, b, c, d)

acts on Ω via

M(a, b, c, d) : x 7→ ax+ b

cx+ d
,

where arithmetic involving ∞ is suitably interpreted; e.g., (a∞+ b)/(c∞+ d) = a/c

if c 6= 0 and ∞ if c = 0. So we can regard PGL(V ) = PGL(2, F ) as the group of

these projective linear maps M(a, b, c, d), ad− bc 6= 0 on the projective line Ω.

The following result is well known and easy to prove:

Lemma 2.7.1. PGL(2, F ) is sharply 3-transitive on the projective line PG(V ). That

is, PGL(V ) is transitive on ordered 3-tuples of distinct points, and only the identity

fixes three points.

Next we introduce several types of subgroups for these linear groups.
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A Borel subgroup of a group G of Lie type is the stabilizer of a maximal simplex

in its building.

Example 2.7.4. A maximal simplex in PG(V ) is a flag

τ = (0 < V1 < · · · < Vn−1 < V ) ,

where dim(Vk) = k. If we pick a basis X = {x1, ..., xn} for V such that

Vk = 〈xi : 1 ≤ i ≤ k〉,

then the Borel subgroup stabilizing τ is the subgroup whose matrices with respect to

X are the upper triangular invertible matrices.

Let G = PGL(2, F ). By definition, the stabilizers GFx1 = G∞ and GFx2 = G0

are both Borel subgroups of G. The matrices of these subgroups are upper triangular

and lower triangular, respectively. As G is transitive on Ω, for each of u = ∞, 0 we

have the bijection gGu 7→ g(u) of the coset space G/Gu with Ω (by orbit-stabilizer

theorem).

Buildings have certain special subcomplexes called apartments. For a group G of

Lie type, the pointwise stabilizer of an apartment is called a Cartan subgroup of G.

Example 2.7.5. In the projective geometry, the apartments are of the form Σ(X )

for X = {x1, · · · , xn}, a basis for V , where Σ(X ) consists of the subspaces spanned

by nonempty proper subsets of X . The matrices in the Cartan subgroup stabilizing

Σ(X ) are the diagonal matrices.

Suppose n = 2. Then Σ(X ) = {Fx1, Fx2} = {∞, 0} is just a pair of points. The

global stabilizer G(u, v) of a pair of points is the subgroup of G permuting the 2-subset

{u, v}. In G = PGL(2, F ) it is (usually) the normalizer of the Cartan subgroup and

dihedral. Furthermore, G0 ∩G(0,∞) = G0,∞ is a Cartan subgroup isomorphic to the

multiplicative group F× of F .

Let G be GL(V ) or PGL(V ) in the rest of this section.
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An element of GL(V ) is unipotent if all its eigenvalues are 1. A subgroup of

GL(V ) is unipotent if all its elements are unipotent. The unipotent radical Q(H) of a

subgroup H of GL(V ) is the largest normal unipotent subgroup of H. For example

if F is finite of characteristic p, then Q(H) is the largest normal p-subgroup of H.

Passing to images in PGL(V ), we have the corresponding notions in that group also.

A subgroup H of G is a parabolic if H is the stabilizer of a simplex in the projective

geometry PG(V ). Thus, for example, Borel subgroups are parabolics, and indeed the

parabolics are the overgroups of the Borel subgroups.

Example 2.7.6. Let F = Fq, U be an m-dimensional subspace of V with 0 < m < n,

G = GL(V ), and H = NG(U) be the (global) stabilizer of U in G. As {U} is a simplex

in PG(V ), H is a parabolic. Pick a complement W to U in V , and let X1 and X2

be bases for U and W , respectively. Then the matrices of H with respect to X1 ∪X2

have the form

K L

0 R

 with K and R invertible. Define

qn = qn(n−1)/2, Mk =
k∏
i=1

(qi − 1)

for 1 ≤ k ≤ n, then

|GL(k, q)| = qkMk,

|H| = |GL(m, q)| · |GL(n−m, q)| · qm(n−m) = qnMmMn−m.

Furthermore, in PGL(V ) the image of H has order qnMmMn−m/(q − 1).

2.7.2 Interpretation of the Ingleton Violation in PGL(2, q)

Let F = Fq and G = PGL(2, q) = PGL(2,Fq). In the Ingleton violation con-

struction in Section 2.5 we have a 4-tuple of subgroups ρ = (Gi : 1 ≤ i ≤ 4) of G.

The group G2 = GFx2 = G0 is a Borel subgroup. The subgroups G3 and G4 are

isomorphic to the dihedral group D2(q−1) of order 2(q− 1), and their intersection G2i

with G2 is cyclic of order q − 1 and with G34 of order 1. This forces G2i, i = 3, 4,
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to be distinct Cartan subgroups of G2, and hence Gi = G(0, ei) for some ei ∈ F . In

fact, from the forms of the matrices in G3 and G4 it is easy to check that e3 = −1

and e4 =∞.

Finally, G1
∼= S3 with G1i being the three subgroups of G1 of order 2 for 2 ≤ i ≤ 4.

For 2 ≤ i ≤ 4 let G1i = 〈ti〉, and for 1 ≤ j ≤ 4 let ∆j be the orbit of Gj on

Ω containing 0. Then |∆j| = |Gj : G2j| = nj, where n3 = n4 = 2 and n1 = 3.

Indeed, ∆i = {0, ti(0)} for i = 3, 4, with ∆3 = {0,−1} and ∆4 = {0,∞}. Then as

G1 = 〈t3, t4〉 and n1 = 3, ∆ = ∆1 = {0,−1,∞}. But as G is sharply 3-transitive, the

global stabilizer G(∆) is isomorphic to S3. Hence G1 = G(∆), and is determined by

G2, G3, and G4.

Thus the 4-tuple ρ is determined by the ordered triple (0,−1,∞) with the four

subgroups being various (global) stabilizers on it. Furthermore, given an arbitrary

ordered triple (α, β, γ) of distinct points in Ω, we can construct a 4-tuple ρ′ in the

same fashion, where

G2 = Gα, G3 = G(α, β), G4 = G(α, γ), G1 = G(α, β, γ).

Since G is 3-transitive on Ω, by the same element in G all four subgroups in ρ′ are

conjugate to their counterparts in ρ. In particular, the new tuple ρ′ also violates

Ingleton.

With respect to the “flower structure” of G2 = G0, this follows from the fact that

G0 is a Frobenius group on Ω′ = Ω − {0}. That is, G0 is a transitive permutation

group on Ω′ in which the maximum number of fixed points of a nonidentity element

is 1. (This is guaranteed by the sharp 3-transitivity of G.) Then by a theorem of

Frobenius, the identity 1 of G0, together with the set of elements with no fixed points,

forms a normal subgroup K called the Frobenius kernel of the Frobenius group. In

our case, K is the subgroup N in Sections 2.4 and 2.5, which is the unipotent radical

of the Borel subgroup G0 and is isomorphic to the additive group of the field F . Also

G0 − K is partitioned by the sets G0,a − {1}, a ∈ Ω′; these are the |Ω′| = q petals

in the flower. The subgroups G0,a are the q Cartan subgroups contained in G0, and
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each is isomorphic to F×.

2.7.3 Generalizations in PGL(n, q)

Let τ = (Gi : 1 ≤ i ≤ 4) be a family of subgroups of a finite group G. The

Ingleton inequality (2.4) fails iff

|G1G2| <
|G13G23||G14G24|

|G34|
.

In all constructions we will consider in this section, Gi = G1iG2i for i = 3, 4 and

|G3| = |G4|. Also |G1G2| = |G1 : G12||G2|. Hence in such constructions Ingleton is

violated iff

|G1 : G12||G2| <
|G3|2
|G34|

, (2.14)

and the Ingleton ratio (2.13) becomes

r(τ) =
|G3|2

|G1 : G12||G2||G34|
.

Now we explore three different approaches, all trying to extend the PGL(2, q)

family of violations ρ to PGL(n, q).

2.7.3.1 Generalization 1

Let G = PGL(n, q) with n ≥ 3. It is easy to see that G is doubly transitive on the

points of PG(V ) and transitive on triples of independent points. Let Pi, 2 ≤ i ≤ 4,

be independent points in V , ∆i = {P2, Pi} for i = 3, 4, and ∆ = {P2, P3, P4}. Set

G2 = NG(P2), Gi = NG(∆i), i = 3, 4, and G1 = NG(∆). Let τ = (Gi : 1 ≤ i ≤ 4).

Now G2 is a parabolic and by Example 2.7.6,

|G2| = qnMn−1. (2.15)

Next D = P2 +P3 +P4 is a 3-dimensional subspace of V , so by Example 2.7.6 again,

|NG(D)| = qnM3Mn−3/(q − 1). Further, through calculation of the preimages in
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GL(n, q) we have

|NG(D) : G1| =
|GL(3, q)|
6(q − 1)3

=
q3M3

6(q − 1)3
,

since G1 acts as the symmetric group on ∆ of order 3, and for each pair of points

there are q − 1 different choices of mappings. So

|G1| =
|NG(D)| · 6(q − 1)3

q3M3

=
6qnMn−3(q − 1)2

q3
. (2.16)

As G1 is transitive on ∆ of order 3, |G1 : G12| = 3. Therefore

|G1 : G12||G2| = 3|G2| = 3qnMn−1. (2.17)

Also for i = 3, 4, Gi and G1i are both transitive on ∆i of order 2, so |Gi : G2i| =

|G1i : G12i| = 2. Thus |G1iG2i| = |G1i : G12i||G2i| = |Gi| and Gi = G1iG2i for

i = 3, 4. Since G is doubly transitive on the points, G3 is conjugate to G4 and

so |G3| = |G4|. Further U = P2 + P3 is a 2-dimensional subspace of V , so by

Example 2.7.6, |NG(U)| = qnM2Mn−2/(q − 1). Also by calculating the preimages

|NG(U) : G3| =
|GL(2, q)|
2(q − 1)2

=
qM2

2(q − 1)2
,

|G3| =
|NG(U)| · 2(q − 1)2

qM2

=
2qnMn−2(q − 1)

q
. (2.18)

Finally, G34 = G∆ is the pointwise stabilizer of ∆. Since G1 is 3-transitive on ∆,

|G1 : G34| = 3! = 6. So by (2.16):

|G34| =
qnMn−3(q − 1)2

q3
. (2.19)

It follows from (2.17), (2.18), and (2.19) that (2.14) is satisfied iff

3qnMn−1 <
4q2
nM

2
n−2(q − 1)2 · q3

q2 · qnMn−3(q − 1)2
= 4qnqMn−2(qn−2 − 1),
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which holds iff 3(qn−1 − 1) < 4q(qn−2 − 1) iff

qn−1 − 4q + 3 > 0. (2.20)

This inequality holds when n ≥ 4 or n = 3 and q ≥ 4.

Since G is transitive on all triples of independent points, all 4-tuples in this gen-

eralization are conjugate to each other.

The Ingleton ratio is

r(τ) =
4q2
nM

2
n−2(q − 1)2 · q3

q2 · 3qnMn−1 · qnMn−3(q − 1)2
=

4q(qn−2 − 1)

3(qn−1 − 1)
,

which approaches 4/3 for large q or n; whereas in the original instance ρ, r(ρ) =

4(q − 1)/(3q), which has the same asymptotics. But the scaling factors for both the

Ingleton score and the violation index are usually larger than PGL(2, q), so in general

τ is less effective in violating Ingleton.

2.7.3.2 Generalization 2

As usual let F = Fq and G = PGL(n, q), with n ≥ 2. Let Pi, 2 ≤ i ≤ 4, be

distinct but dependent points in V . Thus Pi = Fxi, i = 2, 3, for two independent

vectors x2, x3 ∈ V , and P4 = Fx4, where x4 = ex2 + x3 for some e ∈ F . Let U , ∆,

∆i, i = 3, 4, and Gi, 1 ≤ i ≤ 4, be defined the same as in Generalization 1. Note that

when n = 2 this is our original construction ρ.

From Generalization 1, |G2| = qnMn−1 and |NG(U)| = qnM2Mn−2/(q − 1). Since

U is a 2-dimensional subspace of V , PGL(U) is sharply 3-transitive on the points of

U by Lemma 2.7.1. Now as ∆ is a set of three distinct points in U , its global stabilizer

in PGL(U) is isomorphic to S3. Thus G1 is 3-transitive on ∆. Observe that each

vector in {xi : 2 ≤ i ≤ 4} is a unique linear combination of the other two, with both

coefficients nonzero. Then, fixing a permutation of {Pi : 2 ≤ i ≤ 4}, there are only
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q − 1 linear transformations in GL(U) that respect this permutation. Hence

|NG(U) : G1| =
|GL(2, q)|
6(q − 1)

=
qM2

6(q − 1)
,

|G1| =
|NG(U)| · 6(q − 1)

qM2

=
6qnMn−2

q
. (2.21)

G1 is transitive on ∆, while for i = 3, 4, Gi and G1i are both transitive on ∆i. G is

doubly transitive on the points of PG(V ). Thus from arguments in Generalization 1

we have |G1 : G12||G2| = 3qnMn−1, Gi = G1iG2i for i = 3, 4, and |G3| = |G4|. Also

|G3| = 2qnMn−2(q − 1)/q. Since G34 = G∆ is of index 6 in G1, by (2.21):

|G34| =
qnMn−2

q
.

Thus (2.14) is satisfied iff

3qnMn−1 <
4q2
nM

2
n−2(q − 1)2 · q
q2 · qnMn−2

=
4qnMn−2(q − 1)2

q
,

which holds iff 3q(qn−1 − 1) < 4(q − 1)2 iff

3q
n−2∑
i=0

qi − 4q + 4 < 0. (2.22)

When n = 2, this inequality holds iff q > 4. When n > 2, however, it always fails

because 3q2 − q + 4 > 0 for all q.

Therefore, the original instance ρ is the only successful case in this construction,

with Ingleton ratio r(ρ) = 4(q − 1)/(3q).

2.7.3.3 Generalization 3

Again take G = PGL(n, q) with n ≥ 3. Let U2 be a point of V , Ui, i = 3, 4,

distinct 2-dimensional subspaces of V with U3 ∩ U4 = U2, and U1 = U3 + U4 the

3-dimensional subspace of V generated by U3 and U4. Set Gi = NG(Ui) for 1 ≤ i ≤ 4,

and λ = (Gi : 1 ≤ i ≤ 4). Then all the Gi are parabolics with |G2| = qnMn−1 from
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(2.15),

|G3| = |G4| =
qnM2Mn−2

q − 1
, |G1| =

qnM3Mn−3

q − 1
.

As G1 is transitive on the (q3 − 1)/(q − 1) = q2 + q + 1 points in U1, so

|G1 : G12| = q2 + q + 1, |G1 : G12||G2| = (q2 + q + 1)qnMn−1.

For i = 3, 4, Gi and G1i are both transitive on the (q2 − 1)/(q − 1) = q + 1 points

in Ui, so Gi = G1iG2i for i = 3, 4. Also G34 is the subgroup of G fixing U2 and the

points U3/U2 and U4/U2 of the quotient space U1/U2; in particular it is a subgroup of

G1. If we pick a basis X1 = {x3, x2, x4} for U1 such that U2 = 〈x2〉 and Ui = 〈x2, xi〉
for i = 3, 4, then elements of G34 correspond to the linear transformations in GL(U1)

whose matrices with respect to X1 take the form
a 0 0

x b y

0 0 c

 ,

where a, b, and c are nonzero. So

|G1 : G34| =
|GL(3, q)|
q2(q − 1)3

=
qM3

(q − 1)3
,

|G34| =
|G1|

qM3/(q − 1)3
=
qnM3Mn−3 · (q − 1)3

(q − 1) · qM3

=
qnMn−3(q − 1)2

q
.

It follows that (2.14) is satisfied iff

(q2 + q + 1)qnMn−1 <
q2
nM

2
2M

2
n−2 · q

(q − 1)2 · qnMn−3(q − 1)2
= qnq(q + 1)2(qn−2 − 1)Mn−2,

which holds iff (q2 + q + 1)(qn−1 − 1) < q(q + 1)2(qn−2 − 1) iff

qn − q3 − q2 + 1 > 0,

which holds iff n ≥ 4.
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The Ingleton ratio is

r(λ) =
q2
nM

2
2M

2
n−2 · q

(q − 1)2 · (q2 + q + 1)qnMn−1 · qnMn−3(q − 1)2
=

q(q + 1)2(qn−2 − 1)

(q2 + q + 1)(qn−1 − 1)
,

which approaches 1 for large q and (q + 1)2/(q2 + q + 1) (which is smaller than 4/3)

for large n. So this generalization seems less effective than the other two.

2.7.4 Generalizations in General 2-transitive Groups

In the following we generalize the Ingleton violation ρ in PGL(2, q) to a more

abstract construction, which includes Generalizations 1 and 2 as special cases.

Let G be a doubly transitive group on a set Ω of order l ≥ 3, let α and β be

distinct points in Ω, and assume γ ∈ Ω−{α, β} such that the global stabilizer G(∆)

of ∆ = {α, β, γ} acts as the symmetric group on ∆ (which is clearly the case when

G is 3-transitive). Let

G2 = Gα, G3 = G(α, β), G4 = G(α, γ), G1 = G(∆).

Set µ = (Gi : 1 ≤ i ≤ 4).

Let k =
∣∣Gα,β

∣∣, d = |G∆|, Γ the orbit of γ under the action of Gα,β, and c = |Γ|.
Observe that c = |Gα,β : G∆| = k/d and c ≤ l−2 as Γ ⊆ Ω−{α, β}. Further c = l−2

iff G is 3-transitive.

Since G is 2-transitive on Ω, G2 is transitive on Ω−{α}, and so |G2 : Gα,β| = l−1.

Also |G1 : G12| = 3 as G1 is transitive on ∆, thus

|G1 : G12||G2| = 3|G2| = 3(l − 1)k.

Next, G3 is conjugate to G4 by 2-transitivity of G and for i = 3, 4, Gi and G1i are

both transitive on ∆i of order 2, so G1iG2i = Gi and |Gi| = 2k for i = 3, 4. Finally

G34 = G∆ is of order d. Thus

|G3|2/|G34| = 4k2/d = 4kc,
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so condition (2.14) is satisfied iff 3(l − 1)k < 4kc iff

3(l − 1) < 4c. (2.23)

Further the Ingleton ratio r(µ) = 4c/(3(l − 1)).

If G is 3-transitive then c = l − 2, so 3(l − 1) < 4c = 4(l − 2) iff l > 5. Further

r(µ) = 4(l − 2)/(3(l − 1)).

Both Generalization 1 and 2 fit in this construction, with ρ being the only 3-

transitive case. In Generalization 1, l = (qn − 1)/(q − 1) and by independence of

points in ∆,

c =
(qn − 1)− (q2 − 1)

q − 1
=
q2(qn−2 − 1)

q − 1
,

so by (2.23), (2.14) is satisfied iff

3(
qn − 1

q − 1
− 1) <

4q2(qn−2 − 1)

q − 1
,

which gives (2.20). In Generalization 2, l has the same value, but since GL(U) is

3-transitive on the (q2 − 1)/(q − 1) = q + 1 points of U , c = q + 1− 2 = q − 1. Then

by (2.23), (2.14) is satisfied iff

3(
qn − 1

q − 1
− 1) < 4(q − 1),

which gives (2.22).

We see that the 3-transitive groups give rise to simple and effective Ingleton vio-

lation constructions. This category of groups include the alternating and symmetric

groups, the groups PGL(2, q) with l = q+1, the Mathieu groups, the affine groups of

degree 2e (which are the semidirect product of an e-dimensional vector space E over

F2 by GL(E)), and the subgroup of the affine group for e = 4, where the complement

is A7 rather than GL(4, 2) ∼= A8.
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Chapter 3

Group Network Codes

We can use the Ingleton-violating groups obtained in the previous chapter to

construct network codes that have the potential to have a better performance than

linear network codes. However, we will see that designing such a desirable code is

not a trivial task, since, in order to construct a network code from a given group,

the choice of the subgroups is subject to certain constraints. In this chapter we first

give the definitions of general network codes and group network codes, together with

some discussion of these concepts, and then study some aspects of the network code

construction for our Ingleton-violating groups.

3.1 Definitions

A communication network is usually represented by a directed acyclic graph G =

(V , E), where the node set V and the edge set E model the communication nodes and

channels, respectively. Let S ⊂ V be the set of source nodes and D(s) be the set of

sink nodes demanding source s for each s ∈ S. For any node v and any edge e, I(v)

and I(e) denote the sets of incoming edges to v and to the tail node of e, respectively.

A network code should include

1) the assignment of a symbol Ys from some alphabet Ys for a source message at

each source s;

2) the encoding of a symbol Ye in some alphabet Ye at each edge e, from the sym-

bols on I(e). Namely, Ye = φe (Yf : f ∈ I(e)) for some deterministic encoding
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function φe;

3) the decoding of the symbol Ys at each u ∈ D(s) for all sources s, i.e., Ys is

uniquely determined from the symbols on I(u): Ys = φu,s(Yf : f ∈ I(u)) for

some decoding function φu,s.

It is clear that at each edge e the symbol Ye is a deterministic function of the source

symbols {Ys : s ∈ S}, which is denoted by ϕe and is called the global mapping at e.

Also the source random variables {Ys : s ∈ S} are usually assumed to be independent

and uniform on their respective alphabets.

For example, a linear network code is defined as follows: 1) for each t ∈ S ∪ E ,

the alphabet Yt is a vector space F dt over a finite field F with some finite dimension

dt; 2) all encoding/decoding functions are linear: if t is an edge or a sink node, then

the encoding/decoding function φt at t can be written as

φt (Yf : f ∈ I(t)) =
∑
f∈I(t)

Mt,fYf

for some matrices Mt,f ∈ F dt × F df . Thus the global mappings at the edges are also

linear.

Group network codes were first proposed by Chan in [33, 34], where the author

considered the fact that finite groups can generate the whole entropy region, and noted

that linear network codes are included as a special case. Suppose G is a finite group,

and {Ge : e ∈ E} and {Gs : s ∈ S} are some of its subgroups. One can construct a

network code with Yt = G/Gt for each t ∈ S ∪ E if the following requirements are

met:

(R1) Source independence: H(YS) =
∑

s∈S H(Ys), which means that the cardinali-

ties of G/GS and
∏

s∈S Ys (the Cartesian product of the source alphabets) are

equal, where GS ,
⋂
s∈S Gs. This is equivalent to

∏
s∈S

|Gs| = |G||S|−1|GS |.

(R2) Encoding : ∀e ∈ E ,
⋂
f∈I(e) Gf ≤ Ge.
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(R3) Decoding : ∀s ∈ S,
⋂
f∈I(u) Gf ≤ Gs for each u ∈ D(s).

Note that the source and edge symbols for the group network code are (left) cosets.

The encoding and decoding operations are as follows: at an edge or a sink node t,

the encoding/decoding function takes an input coset tuple (Yf : f ∈ I(t)) and first

forms the intersection of them, which is a coset of GI(t), then maps this coset to the

unique coset of Ge (or Gs, whichever is appropriate) that contains it. For a rigorous

justification of the validity of such operations, and of the code being a valid network

code, see Section A.2.1 in Appendices.

We also make two observations regarding group network codes. First, the entropy

vector for the network symbols {Yt : t ∈ S ∪ E} is characterizable by the group G

and its subgroups {Gt : t ∈ S ∪E}. Second, linear network codes are a special case of

group network codes; in particular, for each linear network code we can construct an

equivalent group network code. These observations are elaborated in Sections A.2.2

and A.2.3 in Appendices, respectively.

3.2 Considerations for Constructing Group Net-

work Codes with Ingleton-violating Groups

We can use our Ingleton-violating groups to build group network codes. From

the first observation above, the resulting entropy vectors are characterizable by the

subgroups used, and are thus capable of violating the Ingleton inequality. In contrast,

the entropy vectors of linear network codes always respect Ingleton. Furthermore, let

G be any of PGL(n, p), PGL(n, q), GL(n, p), or GL(n, q). We will show in the

following that linear network codes can be embedded in the group network codes

constructed with direct products of copies of G. Apparently a direct product of any

copies of an Ingleton-violating group still violates Ingleton, and thus such classes of

group network codes are strictly more powerful than linear network codes.

To construct a group network code, the choices of subgroups are not arbitrary:

they should meet requirements (R1)–(R3). In particular, (R1) limits what subgroups
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can be associated with the sources: they need to satisfy

∏
s∈S

|Gs| = |G||S|−1|GS |. (3.1)

When this is the case, we simply say the subgroups {Gs : s ∈ S} are independent in

G. We will study the constructions of independent source subgroups in the context

of PGL(2, q) and GL(2, q) (since they have simpler structures than the other higher-

degree linear groups), and also provide a universal source subgroup construction for

direct products of groups.

3.2.1 Embeddings of Linear Network Codes

As observed above and elaborated in Section A.2.3 in Appendices, linear network

codes are a special type of group network codes. In particular, they are determined

by the underlying additive group structure. The direct sum V of source vector spaces

can be called the ambient vector space of a linear network code. Let (V,+) denote

the additive group of V . If we can find a finite group G such that (V,+) ≤ G, then

the linear network code is said to be embedded in the group network codes using G,

since we can use subgroups of G to construct an equivalent group network code.

Consider a linear network code with ambient vector space V = Fdq for some d

and q, where q = pm for some prime p and some integer m. Observing that Fq is an

m-dimensional vector space over Fp, we can establish the following facts:

i) (Fp,+) ∼= Zp,

ii) (Fq,+) ∼= (Fp,+)m ∼= Zmp ,

iii) (V,+) ∼= (Fq,+)d ∼= Zmdp .

Thus (V,+) is embedded in the direct product of m · d copies of a group G, provided

that G contains an element of order p—by Cauchy’s theorem, this condition is equiv-

alent to p divides |G|. It then follows that linear network codes over Fq are embedded

in the group network codes using direct products of copies of Gm. In particular, let

G be any of the linear groups PGL(2, p), PGL(2, q), GL(2, p), or GL(2, q). We have
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the following embeddings in these groups, using properties of the matrix A and the

subgroup N :

1) In PGL(2, p),
∣∣A∣∣ = p. So (V,+) ∼=

〈
A
〉md ≤ PGL(2, p)md.

2) In GL(2, p), |A| = p. So (V,+) ∼= 〈A〉md ≤ GL(2, p)md.

3) In PGL(2, q), N =
{
Aα
∣∣α ∈ Fq

} ∼= Zmp . So (V,+) ∼= Nd ≤ PGL(2, q)d.

4) In GL(2, q), N = {Aα|α ∈ Fq} ∼= Zmp . So (V,+) ∼= Nd ≤ GL(2, q)d.

Therefore, we also have the corresponding network code embeddings. Furthermore,

these results for the degree-2 linear groups are easily extended to degree n, since the

former are subgroups of the latter.

3.2.2 Sources Independence Requirement Considerations

If we want to utilize the Ingleton-violating groups PGL(2, q) and GL(2, q) to

construct network codes, we need to find their independent subgroups. GAP searching

shows that up to conjugation, PGL(2, 5) has 16 independent pairs of subgroups, 1

triple, and no quadruple. For GL(2, 5), the numbers are 86, 14, and 0, respectively. It

might be desirable to use some of the Ingleton-violating subgroups as sources, but we

find no independent pairs in any violation instance in either PGL(2, 5) or GL(2, 5).

Furthermore, we can prove the following negative results:

Lemma 3.2.1. Let i, j ∈ {1, 2, 3, 4} and (i, j) 6= (3, 4). For four random variables

X1, X2, X3, and X4, if Xi and Xj are independent, then the Ingelton inequality (2.3)

is satisfied.

Proof. By symmetry of (2.3), we only need to prove the result for when (i, j) = (1, 2)

or (1, 3). In the first case, h12 = h1 + h2, so

h12 + h13 + h14 + h23 + h24 ≥ h1 + h2 + h3 + h123 + h4 + h124

≥ h1 + h2 + h34 + h123 + h124,

where we used h13 + h23 ≥ h3 + h123 and h14 + h24 ≥ h4 + h124 by submodularity of

entropy. The second case is similar.
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Corollary 3.2.1. There is no independent triple or quadruple in a set of four sub-

groups that violates (2.4).

On another note, if we want to use the Ingleton-violating subgroups in the network,

Proposition A.2.2 in Appendix A.2 tells us that their intersection should contain

the intersection of all the source subgroups. Since in PGL(2, q) the intersection

of the Ingleton-violating subgroups is trivial, we need to find trivially intersecting

independent subgroups to serve as sources. In PGL(2, 5), there are 4 such pairs and

no such triples. At least one of these pairs also extends to a general family:

Proposition 3.2.1. Let U =

0 −1

t 0

 ∈ GL(2, q), where t is a primitive element in

Fq. Let H be the image of SL(2, q) in PGL(2, q) under the natural homomorphism,

which is isomorphic to PSL(2, q). When p 6= 2, H and
〈
U
〉

are independent in

PGL(2, q) with trivial intersection.

Proof. It is easy to see that
∣∣U ∣∣ = 2, detU = t. The determinant of any matrix

representing an element in H takes the form t2k ∈ 〈t2〉, for some k. But t /∈ 〈t2〉 as

q − 1 is even, so H
⋂〈

U
〉

= 1. Also

∣∣〈U〉∣∣ · |H| = 2 · |SL(2, q)|/2 = |SL(2, q)| = |PGL(2, q)|,

and thus (3.1) holds.

In GL(2, q) there are more Ingleton-violating instances, which have various in-

tersections, so the requirement on the sources is not so strict and we have a richer

class of subgroups to work with. As in PGL(2, q), there exist trivially intersecting

independent pairs, for example:

Proposition 3.2.2. In GL(2, q), SL(2, q) and 〈B〉 (or 〈P 〉) are independent with

trivial intersection.

Proof. Obviously detBk = 1 iff Bk = I, so SL(2, q) and 〈B〉 have trivial intersection.

Also

|B| · |SL(2, q)| = (q − 1) · |GL(2, q)|/(q − 1) = |GL(2, q)|,
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and thus (3.1) is satisfied. The proof for 〈P 〉 is similar.

In general it is not easy to find many independent subgroups in a group. If

the group is a direct product of n of its subgroups, however, it admits a natural

construction of n independent subgroups:

Proposition 3.2.3. If G = G1 ×G2 × · · · ×Gn, then

1×G2 × · · · ×Gn, G1 × 1× · · · ×Gn, . . . , G1 ×G2 × · · · × 1

are n trivially intersecting independent subgroups in G.

Proof. Trivial intersection is obvious, and it is easy to check that both sides of (3.1)

are equal to
∏n

i=1 |Gi|n−1.

This construction is the generalization of the source construction for linear network

codes, in which case the subgroup at source s is the Ws defined in Appendix A.2.3.

Also we see that by using direct products we can obtain independent subgroups for

an arbitrary number of sources, but the group order also grows.

If we further require the sources to be of the same alphabet size, then the inde-

pendent subgroups must have the same order. In the above proposition, this can be

simply achieved by choosing Gi to be the same subgroup for each i. Additionally, for

an arbitrary pair of independent subgroups, we have the following proposition:

Proposition 3.2.4. If Gs and Gr are independent in G, then Gs ×Gr and Gr ×Gs

are independent in G2 with the same order.

Proof. Gs and Gr satisfy |Gs||Gr| = |G||Gs

⋂
Gr|. Thus for the direct product con-

struction, the LHS and RHS of (3.1) are |Gs|2|Gr|2 and |G|2|Gs

⋂
Gr|2, respectively,

which are equal.
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Part II

Energy Harvesting Systems &

Channels with Causal CSIT
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Chapter 4

Energy Harvesting Channels and
FSC-X

4.1 Introduction

In many future wireless systems, such as low-power wireless sensor networks, one

may encounter transmitters that harvest and store energy for transmission. Such

communication systems have recently been introduced and studied by Ulukus et al.

[35, 36]. In particular [37] shows that with unlimited battery the entire capacity of

an additive white gaussian noise (AWGN) channel can be achieved. Using Shannon’s

method [38], [39] tries to analyze the AWGN channel capacity in the zero battery case;

however, the proof is incomplete.1 Nevertheless, treating such a case with a discrete

channel is elementary. The intermediate case, i.e., the case with a finite nonzero

battery, is first considered in [40], where the optimum offline transmission policy for

an energy harvesting node is obtained. However, in general, determining the channel

capacity in such a case remains open. For the simplest case of a unit-sized battery, [41]

assumes that the transmitter only uses the causal battery state information (see

Section 4.2.1) and transforms the system of a binary energy harvesting transmitter

connected to a noiseless discrete channel into a timing channel. Using related results,

a capacity formula involving an auxiliary random variable is derived and upper and

lower bounds are obtained. [42] explores the continuous case with an AWGN channel

1Two major problems of the proof in [39] are that (15) cannot be analytically extended to C2,
while (18) cannot be implied by the identity theorem on C2.
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and provides upper and lower bounds that have a constant gap. With the assumptions

that the transmitter only uses causal battery state information and that the receiver

also has the energy information, [43] studies the general discrete case. Assuming the

results of the references [4] and [5] therein can be generalized to finite state channels

(defined in [2]) with input constraints, [43] suggests that the system may have a

single-letter capacity formula under some extra assumptions.

In this work we study the capacity of a discrete energy harvesting channel with

a finite battery in its full generality. First, in the rest of this chapter, we describe

the channel models for two different energy information scenarios, as well as a re-

lated finite state channel based model. After transforming them to certain equivalent

channels, we give the channel capacities in terms of a multi-letter capacity formula

using the Verdú-Han general framework [1]. In Chapter 5 we impose some simplifying

restrictions on the inputs of the equivalent channels, and derive the required station-

arity and ergodicity conditions to use the Shannon-McMillan-Breiman theorem to

compute some achievable rates, which are lower bounds for the channels. Then the

generalized Blahut-Arimoto algorithm [44] is used to optimized these lower bounds.

For the capacity upper bounds, in Chapter 6 we assume that channel side information

is also known at the receiver, and use Gallager’s methods [2] to obtain upper bounds

in terms of block mutual information for each block size. These bounds have high

computational complexity, and hence we relax them further to make the complexity

linear. Finally, in Chapter 7 we study the pairwise error probabilities for the EHC

under maximum likelihood (ML) decoding, which serves as a guideline for the code

design.

4.1.1 Notation

In Part II of this dissertation we use the following notational conventions:

• For random variables:

– capital letters denote the random variables, e.g., Xn, Yn.

– corresponding lowercase letters denote the realizations, e.g., xn, y.
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Channel
p(y|x)Transmitter Receiver

Xn Yn

Battery

En

Figure 4.1: Energy harvesting system model

– corresponding script letters denote the alphabets, e.g., X , Y .

• A vector of generic symbols (zm, zm+1, · · · , zm+n) is denoted by zm+n
m , whereas

zn , zn1 .

• Bold symbols denote vectors, e.g., ei, vk.

• 1{·} denotes the indicator function:

1A(x) =

{
1 if x ∈ A
0 o.w.

.

When A is the solution set of an equation f(x) = 0, we write 1{f(x)=0} for

succinctness.

• {·}n2
n=n1

denotes a sequence of symbols, indexed by n. For example, {En}∞n=1

denotes the random process E1, E2, . . . , En, . . . To be concise we sometimes drop

the sub-/super- scripts and just write {En} when the context is clear.

4.2 System Model, Two Scenarios and FSC-X

We consider a communication system powered by some energy harvesting mech-

anism with a battery, as depicted in Figure 4.1. At each transmission cycle n, the

system first harvests some amount of energy, En, from the environment, and com-

bines it with Bn, the energy stored in the battery after last transmission, to transmit
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a symbol Xn ∈ X . Xn consumes some amount of energy γ(Xn), which cannot exceed

the total available energy Sn for the current cycle. The remainder, not exceeding the

battery capacity B, is saved in the battery for future transmissions. The symbol Xn

is sent over the channel p(y|x) and at the receiver a symbol Yn ∈ Y is received. The

alphabets X and Y are assumed to be finite with X ⊂ R or C, and the channel is

discrete memoryless.

To be precise, the energy constraint on the system can be written as
Sn = S(Bn, En)

γ(Xn) ≤ Sn

Bn+1 = min
{
Sn − γ(Xn), B

} , (4.1)

where the total available energy Sn is expressed as a function S of the battery energy

Bn and the harvested energy En. The form of S(·) depends on how the system

combines and utilizes Bn and En. For example, if En is immediately available for

transmission, then simply

S(Bn, En) = Bn + En. (4.2)

However, if the system can only use En to charge the battery and draws energy solely

from the battery for transmission, then

S(Bn, En) = min
{
Bn + En, B

}
. (4.3)

This energy model can also take account of more real world influences. For example,

if the battery is inefficient at charging and has leakage, characterized by the ratios η

and β, respectively, then the model (4.3) becomes

S(Bn, En) = min
{
βBn + ηEn, B

}
.

In view of the expression of Bn+1 in (4.1), for n ≥ 1 sometimes we also write

Sn+1 = S(Xn, Sn, En+1) (4.4)
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Table 4.1: Energy harvesting channel notations

Symbol Definition Alphabet

En Energy harvested between (n− 1)-th and n-th transmission EH
Bn Energy stored in the battery after (n− 1)-th transmission EB
Sn Energy available for n-th transmission S
Xn Symbol transmitted at time n X
Yn Symbol received at time n Y
B Battery capacity limit -

γ Energy cost function -

to emphasize the evolution of the {Sn} process.

The energy cost function γ(·), in general, can be any non-negative function on the

alphabet X . However, in this work, we require X to always include a zero symbol 0

and that transmitting a zero does not consume any energy, i.e.,

γ(0) = 0. (4.5)

This requirement is essential for the correct operation of the encoding/decoding pro-

cess, otherwise when Sn = 0 the transmitter cannot send any symbol to the channel

and the synchronization of the system breaks down. Moreover, γ is usually endowed

with some physical meaning. For example, we often use the quadratic cost function

to denote the instantaneous power:

γ(x) = |x|2. (4.6)

We summarize the notations for the energy harvesting system in Table 4.1.

Assume the initial energy B1 stored in the battery is a random variable and

the sequence of harvested energy {En}∞n=1 is a random process independent of B1.

To simplify the problem, we only consider a finite discrete system. Specifically, we

assume B < ∞, and that all the energy quantities involved are quantized with the
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same interval size, i.e., all En, Bn, Sn, γ(Xn) and B are integral multiples of some

common unit of energy ∆E. Hence without loss of generality we can assume all these

quantities are integers. Moreover, we further assume that the alphabet of En is a

bounded set EH of non-negative integers, so that Bn and Sn can also only take values

in finite integral sets EB and S, respectively.

Remark 4.2.1. Because of the energy constraint (4.1), the energy harvesting channel

is very different from an ordinary DMC and is much harder to analyze. During

each transmission the transmitter is not free to choose any letter in X ; instead, at

time n it can only send a symbol Xn that does not demand more than the current

available energy Sn. Since it determines how much energy the system can spend for

the current transmission, we also call Sn the energy state of the system. From the

functional dependence of Sn on Bn and En, we see that {Sn} is a random process. The

input constraint (4.1) is unprecedented in traditional communication systems, as the

constraint value Sn is random. In addition, this new constraint also differs from that

for the usual channel with average cost constraint (e.g., average power constraint) in

that it is instantaneous, and from peak power constraint in that it is time-varying.

Furthermore, in the following, we will see that the major difficulty for the analysis of

this system lies in the fact that the energy states {Sn} has memory (as demonstrated

below in Example 4.2.1).

Example 4.2.1. We use a simple example to demonstrate the interactions among

the input symbols, the harvested energy, and the energy in the battery. Assume En

is an i.i.d. Bernoulli(p) process, i.e.,

En =

{
1 w.p. p

0 w.p. 1− p

so EH = {0, 1}. The battery capacity B = 1 and the alphabets X = Y = {0, 1}.
We require En to be stored in the battery first and assume a quadratic energy cost
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Bn = 0

Bn = 1 Bn+1 = 1

Bn+1 = 0

Sn = 0

Sn = 1

En = 0

En = 1

En = 0, 1

Xn = 0

Xn = 1

Xn = 0

Figure 4.2: Evolution of battery energy

function, i.e., the energy model is (4.3) and (4.6), with

γ(0) = 0, γ(1) = 1.

Thus S = {0, 1} in this configuration. The DMC is binary symmetric (BSC) with

crossover probability q, namely

p(y|x) =

{
1− q if y = x

q if y 6= x
.

With the constraint (4.1) and energy model (4.3), we show the evolution of the energy

quantities for this system in Figure 4.2.

We study two scenarios with regard to the availability of energy information in

the energy harvesting channel. In the first scenario (abbreviation: EH-SC1), before

the n-th transmission only the energy state Sn is observed at the transmitter. In

the second scenario (abbreviation: EH-SC2), however, the transmitter knows the

initial battery level B1 and observes En at time n. In both cases the receiver has

no energy information. The second scenario is more general, since by (4.1), with Xn

the transmitter can deduce Sn from En and B1, but not vice versa. Observe that

the energy information in the system is a certain form of channel side information

causally known at the transmitter, which is reminiscent of the channels with causal
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CSIT [38,45]. In conventional channels with states and CSI, the channel states usually

affect the channel transition probabilities; in the energy harvesting channels, however,

the energy states affect the input alphabets instead. As we will see, the first scenario

for the energy harvesting channel is closely related to a certain finite state channel

with causal CSIT and state-dependent input constraints (abbreviation: FSC-X). The

second scenario also shares the same method of analysis with the FSC-X, only it

requires an (often) more complicated theory.

In what follows we describe the encoding, decoding, and channel capacity for each

of the above models, with a formal definition of the FSC-X. Note that all these chan-

nels are subject to random input constraints, so an ordinary channel encoding scheme

cannot function properly. In fact, if a message is mapped to any fixed input vector

xN , then chances are that some symbol xn does not satisfy the input constraint at

the time of transmission, since the constraint itself at that time takes a random value,

which might be incompatible with xn. Nevertheless, since these random constraint

values can be computed at the transmitter through the side information, we can de-

fine new encoding schemes analogous to those in [38,45]. These schemes not only take

account of the causal side information, but also take the random input constraints

into consideration when producing input symbols, thus resolving the above input in-

compatibility issue. For the definitions below let us denote the set of messages to be

transmitted as

M = {1, 2, · · · ,M}.

4.2.1 EH-SC1 and EH-SC2

Definition 4.2.1. A block code f (N) of length N for EH-SC1 is defined by a sequence

of N encoding functions

fn :M×Sn → X 1 ≤ n ≤ N,

such that ∀m ∈M and ∀sN ∈ SN ,
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1) the output xN of the encoder f (N) takes the form

xn = fn(m, sn) 1 ≤ n ≤ N,

which means fn is causal in {sn};
2) the energy constraint (4.1) is satisfied, in other words:

γ(xn) ≤ sn 1 ≤ n ≤ N.

Definition 4.2.2. A block code f (N) of length N for EH-SC2 is defined by a sequence

of N encoding functions

fn :M×EB × EnH → X 1 ≤ n ≤ N,

such that ∀m ∈M, ∀b1 ∈ EB and ∀eN ∈ ENH ,

1) the output xN of the encoder f (N) takes the form

xn = fn(m, b1, e
n) 1 ≤ n ≤ N,

which means fn is causal in {en};
2) the energy constraint (4.1) is satisfied.

The decoder for both scenarios are defined as usual:

g(N) : YN →M,

which receives the output yN of the channel and estimates the transmitted message

m. With the block codes properly defined, the definitions of probability of error, code

rate, achievable rate, and channel capacity follow standard texts (see, e.g., [46]).

Remark 4.2.2. The capacity for the first scenario is smaller than or at most equal

to that of the second, since the latter has more energy information at the transmitter,

as mentioned above. Hence any capacity lower bound/achievable rate for EH-SC1 is
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Transmitter
p( ynsn+1 |xnsn )

Receiver

D
Sn+1

Xn ∈ X (Sn) YnFSC

Figure 4.3: FSC-X: FSC with input constraint and Causal CSIT

also a capacity lower bound/achievable rate for EH-SC2, while any capacity upper

bound of EH-SC2 is also a capacity upper bound of EH-SC1. That said, whether the

first scenario has a strictly smaller capacity, or how much smaller the capacity is, is

still an open question which is out of the scope of this dissertation.

4.2.2 FSC-X

We introduce a certain type of channels with states, which is derived from Gal-

lager’s finite state channel (FSC) model [2] and is illustrated in Figure 4.3. In this

channel, the input, output, and state symbols at time n are denoted by Xn, Yn, and

Sn, respectively, whose respective alphabets X , Y , and S are all finite. The proba-

bility law governing the transitions of Xn, Yn, and Sn follows that of the FSC, i.e., it

is described by a conditional probability p(ynsn+1 |xnsn)2, which satisfies

p(ynsn+1 |xnsnyn−1) = p(ynsn+1 |xnsn) (4.7)

and which is time-invariant (i.e., independent of n). What distinguishes our new

channel from an ordinary FSC is that the transmitter has causal CSI, and the input

is constrained by the current state. Specifically, at time n, Sn is fed to the encoder,

which limits the input Xn to a subset X (Sn) ⊆ X . For the ease of presentation we

assume the receiver has no CSI, but by treating the CSIR as part of the output, the

capacity can be analyzed in the same way.

2Compared to the original definition in [2], we increase the indices of the states by 1 to better
accommodate our channel model (which gives a more natural physical meaning for the states).
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We refer to this channel as FSC-X, which is short for “finite state channel with

extra constraints and conditions”. The encoding, decoding, and channel capacity are

defined similarly to the subsection above.

Definition 4.2.3. A block code f (N) of length N for FSC-X is defined by a sequence

of N encoding functions

fn :M×Sn → X 1 ≤ n ≤ N,

such that ∀m ∈M and ∀sN ∈ SN ,

1) the output xN of the encoder f (N) takes the form

xn = fn(m, sn) 1 ≤ n ≤ N,

which means fn is causal in {sn};
2) the input constraint is satisfied: xn ∈ X (sn), 1 ≤ n ≤ N .

4.2.3 Relating EH-SC1 and FSC-X

In this section we show that if the energy harvesting process {En} is i.i.d., then

EH-SC1 is a special case of FSC-X, whose states are exactly the energy states {Sn}
for EH-SC1.

First we consider the transition probabilities for the input, output, and state

random variables. By (4.4) and the DMC property,

p(ynsn+1 |xnsnyn−1) = p(yn |xn)p(sn+1 |xnynsn)

= p(yn |xn) Pr (S(xn, sn, En+1) = sn+1 |xnynsn)

(∗)
= p(yn|xn)

∑
en+1

p(en+1) · 1{S(xn,sn,en+1)=sn+1}

= p(ynsn+1 |xnsn), (4.8)

where (∗) holds because by the i.i.d. property of {En}, En+1 is independent of
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all previous random variables (with index less than n + 1). Furthermore, (4.8) is

independent of n, hence defines an FSC.

Second, by (4.1) the input is constrained by Xn ∈ X (Sn), where ∀s ∈ S,

X (s) , {x ∈ X : γ(x) ≤ s}. (4.9)

Since Sn is causally known at the transmitter, the channel model for EH-SC1 fits

exactly into the regime of FSC-X.

4.3 Equivalent Channels without CSI and Con-

straints

As discussed before, the energy harvesting channel has an unprecedented random

input constraint (4.1), which is instantaneous, time-varying, and has memory. In fact

from the evolution of {Sn, Bn}, we see that the energy state Sn depends on the full

history of the harvested energy En, all the past transmitted symbols Xn−1, and the

initial battery level B1. This ever-growing memory of the energy constraint poses a

major difficulty for the analysis of the channel: since the energy information is causally

know at the transmitter, the system can be treated using approaches for channels with

causal CSIT [38,45], with encoding/decoding defined in Section 4.2.1. If {En} is i.i.d.

and the battery capacity B = 0, then the system is actually memoryless, and it is

easy to show that the channel for either scenario is simply equivalent to a DMC with

an enlarged alphabet (using similar analysis as in [38]). When this is not the case,

however, the system has infinite memory and the most general approach in [38, 45]

has to be invoked to convert it to an equivalent channel without side information

or constraints, which is much more complicated. The channel FSC-X, likewise, has

infinite memory and causal CSIT, and hence is treated in the same way.

A general channel with memory (but without feedback, channel states, constraints,

etc.) is defined by describing the input/output alphabets and the transition proba-

bilities for each block length N . For each of our three models, the equivalent channel
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can be expressed as

W ,
{
U (N), p(yN |uN), YN

}∞
N=1

, (4.10)

where we use the random variables Un and Yn to denote the new input and output

symbols, respectively. For each N this new channel corresponds to N operations of the

original channel, starting from the beginning of transmission. The output alphabet

is still the same, which is the Cartesian product YN for block length N . The input

alphabet, however, is different: an input symbol Un at each time n is now a function

of the causal side information, which respects the input constraints. It turns out that

the input alphabet for block length N is no longer the Cartesian product of N copies

of the alphabet for a single symbol, and thus it is denoted by U (N) instead of UN . The

equivalent channel operates as follows: it looks at the function Un and the (causal)

side information to produce a symbol Xn, which is then sent to the original channel to

output a symbol Yn. Hence the new transition probabilities are now the ones averaged

over the randomness of the environment or channel states. The precise definitions for

the input alphabets and transition probabilities of the equivalent channels are given

below for each model separately, starting from the simplest case, FSC-X.

4.3.1 FSC-X

The n-th input symbol for the equivalent channel is a function

un : Sn → X ,

which can also be viewed as a vector in X |S|n . The function needs to satisfy the input

constraint

un(sn) ∈ X (sn), ∀sn ∈ Sn.

Thus the input alphabets for time n and for block length N are, respectively,

Un =
∏
s∈S

X (s)|S|
n−1

, U (N) =
N∏
n=1

Un.
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The N -symbol channel transition probability is determined as follows. First with

the FSC probability model (4.7) and the functional relation xn = un(sn),

p
(
yNsN+1

2 |uNs1

)
=

N∏
n=1

p
(
ynsn+1 |uNsnyn−1

)
=

N∏
n=1

p
(
ynsn+1 |uNsnyn−1xn

)
=

N∏
n=1

p (ynsn+1 |xn = un(sn), sn) . (4.11)

Then, since in the new channel the initial state is not known at the transmitter, S1

is independent of UN :

p
(
yN |uN

)
=
∑
sN+1

p
(
yNsN+1 |uN

)
=
∑
s1

∑
sN+1
2

p
(
s1 |uN

)
p
(
yNsN+1

2 |uNs1

)
=
∑
s1

p(s1)
∑
sN+1
2

N∏
n=1

p (ynsn+1 |xn = un(sn), sn) .

4.3.2 EH-SC1

The input symbols/alphabets take the same forms as the previous case, with X (s)

defined by (4.9). Nevertheless, we restate it here for easier reference. The n-th input

symbol for the equivalent channel is a function

un : Sn → X ,

which satisfies the energy constraint (4.1)

γ(un(sn)) ≤ sn, ∀sn ∈ Sn.
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So the input alphabets for time n and for block length N are, respectively,

Un =
∏
s∈S

X (s)|S|
n−1

, U (N) =
N∏
n=1

Un

where X (s) is defined in (4.9).

The N -symbol channel transition probability is

p(yN |uN) =
∑
b1eN

p(b1e
NyN |uN)

(a)
=
∑
b1,eN

p(b1)p(eN)p(yN | b1e
NuN)

(b)
=
∑
b1,eN

p(b1)p(eN)p(yN | b1e
NuNxN)

(c)
=
∑
b1,eN

p(b1)p(eN)
N∏
n=1

p
(
yn |xn = un

(
sn
(
b1, e

n, un−1
) ) )

, (4.12)

where (a) holds because B1 and EN are independent, and in the equivalent channel

they are unknown at the transmitter, hence are independent of UN . (b) holds because

xN is determined by b1, eN , and uN from the recursion
sn = S(bn, en)

xn = un(sn)

bn+1 = min
{
sn − γ(xn), B

} ,

which also specifies the functional dependence of sn on b1, en and un−1. (c) holds

because yN is produced by the DMC, whose input is xN .

4.3.3 EH-SC2

The n-th input symbol for the equivalent channel is a function

un : EB × EnH → X ,
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which can also be viewed as a vector in X |EB |·|EH |n . The function un needs to be com-

patible with the previous input symbols, un−1, in terms of the the energy constraint

(4.1). In particular, for each block length N , a feasible input vector uN needs to

satisfy the following requirements: ∀b1 ∈ EB and ∀eN ∈ ENH ,

γ(un(b1, e
n)) ≤ sn, ∀1 ≤ n ≤ N,

where sn = sn(b1, e
n, un−1) is determined recursively by

sn = S(bn, en)

xn = un(b1, e
n)

bn+1 = min
{
sn − γ(xn), B

} . (4.13)

Thus the permitted function values of un depends not only on the energy sequence

(b1, e
n), but also on all previous input symbols un−1. In other words, the input

alphabet for time n is

Un(un−1) =
∏
b1,en

X
(
sn(b1, e

n, un−1)
)
,

where X (·) is defined in (4.9). Furthermore, the input alphabet for block length N is

U (N) =
{

(u1, · · · , uN) : un ∈ Un(un−1), ∀1 ≤ n ≤ N
}
.

That is, U (N) is the collection of all vectors of N causal functions on the energy

sequence, that are consistent with the energy constraint.

The N -symbol transition probabilities p(yN |uN) for the new channel is

p(yN |uN) =
∑
b1,eN

p(b1e
NyN |uN)

(a)
=
∑
b1,eN

p(b1)p(eN)p(yN | b1e
NuN)
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(b)
=
∑
b1,eN

p(b1)p(eN)p(yN | b1e
NuNxN)

(c)
=
∑
b1,eN

p(b1)p(eN)
N∏
n=1

p ( yn |xn = un(b1, e
n) ) , (4.14)

where as before, (a) holds because B1 and EN are independent, and are independent

of UN ; (b) holds because xN is determined by b1, eN , and uN through (4.13); (c) holds

because yN is produced by the DMC, whose input is xN .

Since there is no CSI or constraints for the equivalent channel, the encoding/decoding

maps are defined as usual:

f (N) :M→ U (N),

g(N) : YN →M.

For each model this new channel is equivalent to the original one, in the sense that

they have the same capacity. In fact, as stated in [38], block codes for the original and

the equivalent channels can be translated into each other with the same probability

of error. To be specific, fix N and let f
(N)
o be a block code for the original channel. It

is easy to check that for each m ∈M, f
(N)
o (m, ·) ∈ U (N), which can be used to define

an encoder for the equivalent channel:

f (N)
e (m) = f (N)

o (m, ·), ∀m ∈M.

By the definition of the transition probability for the equivalent channel, whenm ∈M
is sent the output conditional probability p(yN |m) is the same as the original channel.

Hence under the same decoder g(N), the error probabilities for both cases are equal.

On the other hand, if f
(N)
e is a block code for the new channel, for the original channel

we can define an encoder

f (N)
o : (m,CSIT ) 7→ f (N)

e (m)(CSIT ), ∀m ∈M,
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where CSIT denotes the corresponding side information for each channel model.

Again under the same decoder, the error probabilities for both cases are equal.

The equivalent channel avoids the difficulty of dealing with either the CSIT or

the input constraints, at the cost of a more complicated input alphabet, whose size

is larger and ever-growing. Roughly speaking, the cardinality for the input alphabet

at time n grows double-exponentially with n: the alphabet size for CSIT grows ex-

ponentially, and hence without input constraints the number of functions on CSIT

grows double-exponentially. With constraints this number is reduced, but the growth

rate is still double-exponential. We illustrate such a computation for input alphabets

in the following example.

Example 4.3.1. We continue with the setup of Example 4.2.1 and assume the second

scenario (EH-SC2). For N = 1, 2, all possible values of B1, E
2 and the corresponding

energy states S2 are listed in Table 4.2, together with all possible input function

values. The cardinalities of the input alphabets can be computed from the table as

∣∣U (1)
∣∣ = 1 · 2 · 2 · 2 = 8 = 23,

∣∣U (2)
∣∣ = (1 · 2) · (2 · 2 + 1 · 2) · (2 · 2 + 1 · 2) · (2 · 2 + 1 · 2) = 432 = 24 · 33.

With the help of computer we can further obtain
∣∣U (3)

∣∣ = 214 · 34. Roughly speaking,

the cardinality of U (N) is on the order of 22N+1
.

4.4 Channel Capacities

To compute the capacity for a channel as general as (4.10), we need to invoke Verdu

and Han’s general capacity formula for arbitrary channels without feedback [1]. First

we define an input distribution process U to be a sequence of probability distribu-

tions defined on U (N) for each N , which need not have any relation among them.

Equivalently, U can be represented by a collection of random vectors
{
U (N)

}∞
N=1

,

where each U (N) is a random vector in U (N) that corresponds exactly to the N -th

distribution of U . The corresponding output distribution process Y =
{
Y (N)

}∞
N=1

is
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Table 4.2: Input symbols for the equivalent channel

B1 E1 S1 U1(B1, E1) B2 E2 S2 U2(B1, E
2)

0

0 0

0 0 0

1
00 0

1
1

1

0

0
0

1
1

1
0

1

1
1

1

0 0 0

1
0

1

0
1

1

1

0

0

0
0

1
1

1
0

1

1
1

1

0 0 0

1
0

1

0
1

1

1

0

0
0

1
1

1
0

1

1
1

1

0 0 0

1
0

1

0

1
1

the collection of random vectors Y (N) in YN , where each Y (N) is induced by the input

random vector U (N) and the N -symbol channel transition probability p(yN |uN).

Remark 4.4.1. Note that in this context we use U (N), instead of the usual UN ,

to denote a random input vector of length N . The reason is, the latter notation by

default assumes that the first N−1 entries of UN necessarily agrees with UN−1, which

is clearly not the case in the definition of U . In contrast, U (N) need not have any

relation to U (N−1) and so is a more appropriate notation. For the same reason we use
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the notation Y (N) for the output vector.

Definition 4.4.1. Let U (N) be the input random vector for the channel (4.10) for

block length N . Define the information density between U (N) and Y (N) as

iN
(
uN ; yN

)
= iU(N);Y (N)

(
uN ; yN

)
= log

p
(
yN |uN

)
p (yN)

for all uN ∈ U (N), yN ∈ YN , where the output distribution p(yN) is induced by the

distribution of U (N) and the channel transition probability.

Definition 4.4.2. Let {AN}∞N=1 be a sequence of random variables, not necessarily

having a joint distribution. Define the liminf in probability of {AN} to be the supre-

mum of all the real numbers α for which Pr(AN ≤ α) vanishes as N →∞. In other

words, we write

liminf(P)

N→∞
AN , sup

{
α ∈ R

∣∣ lim
N→∞

Pr(AN ≤ α) = 0
}
.

Example 4.4.1. Let the probability density function of AN be

pAN (a) =
1

2
δ(a−N) +

1

2

√
N

2π
exp

(
−Na

2

2

)
,

where δ is the Dirac delta function. With probability 1/2, AN takes the value N , and

with probability 1/2, AN assumes a Gaussian distribution N (0, 1/N). From Fig 4.4,

we can easily see that liminf(P)
N→∞AN = 0.

Definition 4.4.3. Let U =
{
U (N)

}∞
N=1

be an input distribution process for the

channel (4.10), which induces an output distribution process Y =
{
Y (N)

}∞
N=1

. Define

the inf-information rate I(U ;Y ) between U and Y as the liminf in probability of the

sequence of normalized information densities, which is a sequence of random variables:

I(U ;Y ) , liminf(P)

N→∞

1

N
iN
(
U (N);Y (N)

)
.
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Figure 4.4: Probability density functions of AN

Theorem 4.4.1 (Verdu-Han formula [1]). The capacity of the channel W in (4.10)

is given by

C = sup
U

I(U ;Y ), (4.15)

where the supremum is taken over all input distribution processes U .

The channel capacities of the three models we study can all be obtained from the

definitions of their respective equivalent channels in Section 4.3 and Theorem 4.4.1.

However, owing to the following issues, the capacity formula (4.15) is not easy to

evaluate:

1) The supremum is taken over all possible input distribution processes, which is

hard to enumerate/parameterize.

2) Given an arbitrary input distribution processes U , the inf-information rate is

not always readily computable, as the asymptotic behavior for the correspond-

ing random sequence can be arbitrary.

3) As mentioned in the previous section, the input alphabet size
∣∣U (N)

∣∣ grows
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double-exponentially, which results in a double-exponential complexity when

computing either the information density or the mutual information for a single

block length N .

Nonetheless, this formula gives us a means of analyzing the channel capacities. In

the next chapter we will try to resolve these difficulties under some simplifying con-

ditions and assumptions to make the computation tractable. Such simplifications

give us achievable rates for these channels, which are lower bounds of their respective

capacities.
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Chapter 5

Achievable Rates

In this chapter we study the computation and optimization of some achievable

rates for our channel models from the general capacity formula (4.15). First we

discuss the general methodology, then for each channel model we give the detailed

description of the conditions and specific considerations. After that we use some

numerical examples to illustrate the computation. For the energy harvesting models

EH-SC1 and EH-SC2, we also have a conjecture on the form of the optimal input

functions.

5.1 Methodology

To address the issues in computing the channel capacities in the previous chapter,

we restrict the input symbols of the channel model (4.10) to a constant-sized subset of

its alphabet and obtain a surrogate channel W ′, whose capacity C ′ provides a lower

bound for the capacity C of the channel W . To be specific, instead of the full CSI

history, the input functions now can only depend on a limited amount of the causal

side information. In addition, from such limited side information the transmitter

should still be able to compute the the input constraint values. (Otherwise, as they

are random and unknown, we still have the input incompatibility issue discussed in

Section 4.2.)

Let Vn denote the new input function at time n and V denote its (constant-sized)
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alphabet. Similar to (4.10), the surrogate channel can be expressed as

W ′ ,
{
VN , p(yN | vN), YN

}∞
N=1

. (5.1)

It turns out that in many cases we are interested in, W ′ becomes a finite state channel

(FSC). The capacity of a general FSC is studied in [2,47], both of which give a series

of capacity upper and lower bounds, in terms of the mutual information between

input and output vectors for each block size N . When the FSC is indecomposable1,

the upper and lower bounds both converge to the capacity. However, these bounds

are not very desirable in our case, since i) the upper bounds are not useful since the

capacity of W ′ is only a lower bound for C; ii) the computational complexity of such

bounds is exponential in N ; iii) the bounds in [2] are too loose for small N and their

convergence is slow (see [47]); iv) the bounds in [47] are supposed to be tighter, but

their computation is not easy for a general N .

Another way of describing the capacity C ′ is through the Verdu-Han formula (cf.

Theorem 4.4.1):

C ′ = sup
V

I(V ;Y ), (5.2)

for which we define the same concepts and similar notations, as in Section 4.4, with

respect to the surrogate channel W ′. The supremum in (5.2) is taken over all input

distribution processes V . Although in general this formula is not computable, for

any given input distribution process that yields a computable inf-information rate we

still obtain an achievable rate for W ′ (and hence also for the channel W ), which is a

lower bound of the capacity C ′ (and C). In particular, assume the input distribution

process V is induced by a source random process {Vn}, so that the N -th distribution

of V corresponds exactly to the random vector V N for each N . Assume further

that the induced joint input-output process {Vn, Yn} satisfies the Shannon-McMillan-

Breiman (SMB) theorem (see Section B.4 in Appendices), then the sample entropies

for {Vn, Yn} converge almost surely to their respective entropy rates. Accordingly,

1See Definition B.2.2.
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the normalized information density, which can be written as

1

N
iN
(
V N ;Y N

)
=

1

N
log p

(
V N , Y N

)
− 1

N
log p

(
V N
)
− 1

N
log p

(
Y N
)
, (5.3)

converges almost surely to the mutual information rate2

I(V ,Y) , lim
N→∞

1

N
I(V N ;Y N) = H(V) +H(Y)−H(V ,Y),

where H(V), H(Y), and H(V ,Y) denote the (joint) entropy rates of {Vn}, {Yn}, and

{Vn, Yn}, respectively. As a result, the liminf in probability of
{

1
N
iN
(
V N ;Y N

)}∞
N=1

evaluates to the same value I(V ,Y), and so the inf-information rate corresponding to

V becomes the mutual information rate

I(V ;Y ) = I(V ,Y),

which yields a (at least theoretically) computable achievable rate. Alternatively, since

AEP holds in this case (see Section B.4 in Appendices), we can use the idea of typical

set decoding as in [46] to directly prove the achievability of the rate I(V ,Y).

The Shannon-McMillan-Breiman theorem demands certain stationarity and er-

godicity properties of the joint input-output process, which in turn require the source

and channel to satisfy some conditions in that aspect. Specifically, the version of

SMB theorem (Theorem B.4.1) suitable for our models requires the joint process

{Vn, Yn} to be asymptotically mean stationary3 (AMS) and ergodic. When the sur-

rogate channel W ′ is an FSC, it belongs to the category of Markov channels and

always produces an AMS joint input-state-output process for any AMS or stationary

source. For such a channel W ′, if (i) the source {Vn} is stationary and ergodic while

W ′ satisfies some further ergodicity conditions with respect to the source, or (ii) the

source {Vn} is finite-order Markov and induces a joint source-channel Markov chain

with some irreducibility condition, then the joint input-state-output process is AMS

2Also called the information rate.
3See Appendix B for this and other concepts in the stationarity and ergodicity theory.
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and ergodic, and so is the process {Vn, Yn}4. Due to its technical nature, we defer

the exposition of a more detailed stationarity and ergodicity theory to Appendix B,

which is largely based on the theory of Markov channels developed in [48,49].

In practice, the computation of the mutual information rate I(V ,Y) for general

source processes {Vn} is a challenging problem. One can use the sequence of fi-

nite block length mutual information to approximate I(V ,Y), but since the alphabet

sizes grow exponentially with the block length, so does the computational complex-

ity. Moreover, the convergence of such a sequence is often rather slow. With the

above stationarity and ergodicity conditions for the source and channel, however, we

have the SMB theorem and so can estimate the information rate using the sample

entropies (through (5.3)) of a very long sample sequence, which can be computed

using the transition probabilities in (5.1) and the input distribution. In addition to

that, when the source is a finite-order Markov process and the channel is an FSC, the

computation of the sample entropies in (5.3) has a complexity linear in N ; in fact one

can use the well-known BCJR algorithm [50] (a.k.a. the sum-product algorithm [51])

to compute them. This stochastic method for information rate computation was

proposed independently in [52–54], and is summarized in [55].

So far by restricting the input alphabet and imposing extra stationarity and er-

godicity conditions on the source and channel, we are able to resolve the issues 2) and

3) in Section 4.4, and efficiently compute some achievable rates for the channel W . If

we further fix the order of a Markov input process, under some conditions (described

below) we can maximize the achievable rate over a given set of transition probabil-

ities for the Markov chain, thus also resolving the issue 1) in Section 4.4 to some

extent. Specifically, we use the generalized Blahut-Arimoto algorithm (GBAA) for

the achievable rate optimization, which is proposed by Vontobel et al. in [44]. In their

work, the traditional Blahut-Arimoto algorithm [56], originally used for computing

the capacity of a DMC, is generalized in the setting of an indecomposable FSC with a

finite-order Markov input process, whose underlying chain is stationary, ergodic, and

aperiodic, to optimize the information rate over all possible transition probabilities

4See Section B.5.1 in Appendices.
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of the input Markov chain.5 The core part of the GBAA is to estimate the so-called

“T -values” defined in [44, Definition 41] through the algorithms in [44, Lemma 70] in

each iteration, which are then used both to calculate the information rate and to up-

date the optimization parameters (i.e., the transition probabilities). As we examine

the derivations and proofs in [44], we find that, to the best of our knowledge, the sole

purpose of both the indecomposable assumption of the FSC and the ergodicity and

aperiodicity of the input Markov chain is to guarantee the almost sure convergence

of the estimated T -values in [44, Lemma 70]. However, the details of that step are

not included in the proof. Nevertheless, we speculate that the required convergence

still holds as long as the joint input-state-output process satisfies the SMB theorem;

that is, the joint process is AMS and ergodic. Such a requirement is fulfilled when

the source is a stationary finite-order Markov process whose underlying chain is irre-

ducible,6 while the channel is an FSC with the ergodicity conditions mentioned earlier

(which are weaker than indecomposability). Therefore we conjecture that the GBAA

still works under these relaxed conditions. Also, in this setting we can use the GBAA

primarily as a means to find a good set of input process parameters (i.e., the Markov

transition probabilities); the resulting information rates can always be cross-checked

with those obtained using the stochastic methods described above, since the SMB

theorem applies. Therefore, when these conditions hold, we apply the GBAA to our

surrogate channel W ′ for each fixed Markov order of the input process7 to find an

optimized achievable rate. Apart from the GBAA, Han [57] also gives a stochastic

method for the information rate optimization of a finite state channel. However,

the assumptions on the channel are more stringent in [57], which limits the type of

channels this algorithm can be applied to; hence it is not used in our work.

5In fact, we found that the algorithm as it is in [44] is not applicable to all indecomposable
FSC’s, as the calculation of the critical T -values is erroneous for some channel models. However,
surprisingly, this issue does not affect the correct calculation of the information rate at each iteration,
but only affects the selection of the new optimization parameters for the next iteration. Furthermore,
after we communicated with them, the authors fixd this issue by adding certain correction terms to
the original T -values.

6A finite alphabet stationary Markov process is ergodic iff the chain is irreducible; see Theo-
rem B.3.1.

7Recall that when the order of the Markov process is k, the states of the underlying Markov chain
are the tuples of k successive input symbols.
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Lastly, we want to comment on a subtle technical issue of the surrogate channels.

In our models we will always restrict the input function to depend on a finite duration

of historical side information, which gives a constant-sized alphabet. However, this

might cause some problem for the first few input functions, as there is not enough

“history” to be used as their arguments. Nevertheless, we can fix this issue by provid-

ing some deterministic “dummy” pre-historical state variables, which also contribute

to the determination of the surrogate channel transition probability. The detailed

discussion of these dummy variables is presented in Section B.5.2 in Appendices.

5.2 FSC-X

We restrict the input function un to depend only on the m most recent states,

where m > 0 is a fixed integer. To be specific, let V be the collection of all functions

v : Sm → X such that

v(sm) ∈ X (sm), ∀sm ∈ Sm.

Therefore V =
∏

s∈S X (s)|S|
m−1

has a constant alphabet size. We restrict un in such

a way that each un is associated with a symbol vn ∈ V , and

un(sn) = vn(snn−m+1), (5.4)

where we provide the dummy variables s−m+2, · · · , s0 ∈ S as the pre-historical states,

when m > 1. Note that these states are artificial and are only used as arguments

of vn for n < m, but do not affect the distribution of S1 (which is determined by

the environment/nature). With such a configuration we define a surrogate channel

W ′ with the input alphabet V , whose transition probability is defined through the

corresponding uN for each N . In other words, according to (4.11),

p
(
yNsN+1

2 | vNs1

)
=

N∏
n=1

p
(
ynsn+1 |xn = vn(snn−m+1), sn

)
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p
(
yN | vN

)
=
∑
s1

p(s1)
∑
sN+1
2

N∏
n=1

p
(
ynsn+1 |xn = vn(snn−m+1), sn

)
. (5.5)

We claim that channel W ′ is an FSC for n ≥ m,8 whose state is defined as

Zn = Snn−m+1,

with alphabet Z = Sm. In fact, for n ≥ m, the transition probability satisfies the

following: if zn is compatible with zn+1, i.e., for some sn+1 ∈ Sn+1, zn = snn−m+1 while

zn+1 = sn+1
n−m+2, then by the FSC transition probability (4.7),

p(ynzn+1 | vnznyn−1) = p(yns
n+1
n−m+2 | vnsnyn−1)

= p(ynsn+1 | vnsnyn−1, xn = vn(snn−m+1))

= p(ynsn+1 |xn = vn(snn−m+1), sn) (5.6)

= p(ynzn+1 | vnzn).

If zn is not compatible with zn+1, then both the first and the last term of the above

equality chain is 0.

For the required stationarity and ergodicity properties for the SMB theorem, we

provide the following two set of simple conditions. We also have some stronger but

more complicated conditions, see Corollary B.2.2 and Lemma B.3.2 in Appendix B.

Lemma 5.2.1. Assume the input process {Vn} of the surrogate channel W ′ for FSC-

X is stationary and ergodic. Then the joint process {Vn, Yn} is AMS and ergodic, if

any of the following holds.

i) W ′ is indecomposable.

ii) There is a finite vector vNm with Pr(V N
m = vNm) > 0 satisfying the following

property: given V N
m = vNm, for any zm, z

′
m ∈ Z, there exists yN ∈ Y and

zN+1 ∈ Z such that when Zm = zm or z′m, we both have YNZN+1 = yNzN+1

with positive probability.

8This restriction does not affect the information rate computation, see Section B.5.3 in Appen-
dices.
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Proof. The first condition follows from Lemma B.2.5 and Theorem B.2.4 (or Corol-

lary B.2.2), and the second follows from Corollary B.2.3.

Lemma 5.2.2. Assume the input process {Vn} of the surrogate channel W ′ for FSC-

X is finite-order Markov, then so is the joint process {(Vn, Yn, Zn+1)}. If the under-

lying Markov chain for the latter is irreducible, then {Vn, Yn} is AMS and ergodic.

Proof. This lemma is a simple case of Lemma B.3.2.

5.3 EH-SC1

Again we restrict the input function un to depend only on the m > 0 most recent

(energy) states, and supply the dummy pre-historical states s−m+2, · · · , s0 ∈ S when

m > 1. Then the surrogate channel W ′ has the same input alphabet as in the previous

section, with X (s) defined in (4.9). According to (4.12) the transition probabilities

are (note that s0
−m+2(·) are provided by the dummy variables)

p
(
yN | vN

)
=
∑
b1,eN

p(b1)p(eN)
N∏
n=1

p
(
yn |xn = vn

(
snn−m+1

(
b1, e

n, un−1
) ) )

.

If the energy harvesting process {En} is i.i.d., then, as shown in Section 4.2.3, the

channel EH-SC1 is an instance of FSC-X, and by the previous section W ′ is an FSC

with state variable Zn = Snn−m+1. Note that the argument snn−m+1 for vn is contained

in zn, by (4.8) and (5.6) we have

p(ynzn+1 | vnzn) = p(yn | vnzn)p(zn+1 | vnzn). (5.7)

More generally, if {En} is Markov of order r > 0, the surrogate channel is still an

FSC for n ≥ max{m, r}, with the states

Zn = En
n−r+1S

n
n−m+1,

whose alphabet is Z = ErH×Sm. In fact, for n ≥ max{m, r}, the transition probability
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satisfies the following: if zn is compatible with zn+1, i.e., for some en+1 ∈ En+1
H and

sn+1 ∈ Sn+1, zn = enn−r+1s
n
n−m+1 while zn+1 = en+1

n−r+2s
n+1
n−m+2, then

p(ynzn+1 | vnznyn−1) = p(yne
n+1
n−r+2s

n+1
n−m+2 | vnensnyn−1)

= p(ynen+1sn+1 | vnensnyn−1xn)

= p(yn |xn) · p(en+1 | enn−r+1) · 1{S(xn,sn,en+1)=sn+1} · 1{xn=vn(snn−m+1)}
= p(ynzn+1 | vnzn),

by the structure of the channel. If zn is not compatible with zn+1, then both the first

and the last term of the above equality chain is 0. Again as the argument snn−m+1 for

vn is contained in zn, (5.7) holds.

Remark 5.3.1. We have a conjecture regarding the form of the optimal input func-

tions for both of the energy harvesting channels, EH-SC1 and EH-SC2. Observe that

the energy state Sn contains all the information about the energy constraint on the

current immediate input symbol Xn, which is the only influence the full history of

energy information has on the transmission. Thus we conjecture that for the channel

W it is enough to only consider input functions un that depends only on the cur-

rent energy state sn, i.e., setting m = 1 in the surrogate channel W ′ does not lose

optimality—the capacity C ′ = C. But we are not able to prove it yet.

Now for the stationarity and ergodicity conditions, since (5.7) is true, by Sec-

tion B.5.1 in Appendices we can just consider a smaller FSC p(zn+1 | vnzn). Hence

similar to the previous section, we have the following two set of simple conditions as

well as some stronger but more complicated conditions, Corollary B.2.2 and B.3.1.

Lemma 5.3.1. Assume the input process {Vn} of the surrogate channel W ′ for EH-

SC1 is stationary and ergodic. Then the joint process {Vn, Yn} is AMS and ergodic,

if any of the following holds.

i) W ′ is indecomposable.

ii) There is a finite vector vNm with Pr(V N
m = vNm) > 0 satisfying the following

property: given V N
m = vNm, for any zm, z

′
m ∈ Z, there exists zN+1 ∈ Z such that
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when Zm = zm or z′m, we both have ZN+1 = zN+1 with positive probability.

Lemma 5.3.2. Assume the input process {Vn} of the surrogate channel W ′ for EH-

SC1 is finite-order Markov, then so is the joint process {(Vn, Zn+1)}. If the underlying

Markov chain for the latter is irreducible, then {Vn, Yn} is AMS and ergodic.

Proof. This lemma is a simple case of Corollary B.3.1.

In the following simpler setting, we have more concrete conditions.

Theorem 5.3.1. For the FSC W ′ with m = 1, assume {En} is i.i.d., the energy

model is (4.2) or (4.3), and the distribution of En is supported on the full EH .

i) If there exists N such that for each input sequence v = {vn} and any S1 = s1,

BN = B with a positive probability, then W ′ is indecomposable.

ii) If EH is a continuous interval of non-negative integers and max EH−min EH ≥
B for the energy model (4.2), or max EH ≥ B for the model (4.3), then W ′ is

indecomposable.

iii) If {Vn} is stationary and ergodic, and there is vN with Pr(V N = vN) > 0 such

that for any S1 = s1, either BN = 0 or BN = B with positive probability, then

{Vn, Yn} is AMS and ergodic.

iv) Both i) and iii) hold if max EH > max{γ(x) : x ∈ X}.

Proof. Note that in this case Zn = Sn.

i): Whenever such N exists, the strong positive column condition holds and so

W ′ is indecomposable. (See comments below Definition B.2.2.)

ii): With a positive probability S2 can always be boosted up to s2 = B+min EH for

the model (4.2), or B for the model (4.3), hence the strong positive column condition

holds.

iii): This is a straightforward application of Lemma 5.3.1, condition ii).

iv): If max EH > max{γ(x) : x ∈ X}, then for any v and s1, at most af-

ter n = B transmissions, Sn − γ(Xn) ≥ B with a probability no smaller than

[Pr(En = max EH)]n > 0, in which case Bn+1 = B.
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Remark 5.3.2. The conditions in ii) and iv) are satisfied if En can reach a relatively

high energy level (compared to X or B) with even a very small positive probability,

which is not a harsh requirement for many natural energy sources. Alternatively,

if the input process {Vn} is stationary ergodic, and put a positive probability on a

moderately long sequence of “all zero” functions (that is, vn(sn) = 0 for all sn), or

“all-consume” functions (that is, γ(vn(sn)) = sn for all sn), then condition iii) is

satisfied.

5.4 EH-SC2

Note that as commented in Remark 4.2.2, any achievable rates from EH-SC1 is

also achievable for EH-SC2. In fact, for this scenario we can also restrict the input

function to depend only on the m most recent energy states, but we need to be

more careful about the definition. Consider an input symbol uN = (u1, · · · , uN)

whose n-th coordinate function un is only a function of Snn−m+1, then its alphabet

size is a constant that does not depend on n. To be precise, each un is associated

with an auxiliary function vn ∈ V , which is defined as above. The input function

un is defined through vn in the following way: for each (b1, e
n), it first computes

sn = sn(b1, e
n, un−1) through the recursion (4.13), then together with the previously

computed sn−1
n−m+1, un assigns the function value

un(b1, e
n) = vn(snn−m+1).

Hence the vector vN = (v1, · · · , vN) uniquely determines the input symbol uN , and

for each N there is a one-to-one correspondence between the collection U ′(N) of all

such special input symbols uN and VN .

With such a restriction for the side information, we see indeed the way that the

energy information is used falls in the regime of scenario 1, hence we can use the

results from the previous section for this scenario. Also for EH-SC2 we have the same

optimal input conjecture as stated in Remark 5.3.1.
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Figure 5.1: The information rates

5.5 Numerical Computation

We use the following example to demonstrate the computation of the achievable

rates of the energy harvesting channels.

Example 5.5.1. Assume {En} is an i.i.d. Bernoulli(0.5) process with EH = X =

{0, 1}. The energy model is (4.2) and (4.6). Assume B = 1, then S = {0, 1, 2}. Let

m = 1, then V = {va, vb, vc, vd} with

va = (0, 0, 0), vb = (0, 0, 1), vc = (0, 1, 0), vd = (0, 1, 1).

Let the DMC be a binary symmetric (BSC) with crossover probability q. Then the

condition in case ii) of Theorem 5.3.1 is satisfied and W ′ is indecomposable. The
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channel state transition probability matrices are

P (·|va, ·) = P (·|vb, ·) =


0.5 0.5 0

0 0.5 0.5

0 0.5 0.5

 ,

P (·|vc, ·) = P (·|vd, ·) =


0.5 0.5 0

0.5 0.5 0

0 0.5 0.5

 ,

where, e.g., the (1,3) entry of P (·|va, ·) represents P (0|va, 2).

The capacity for the same BSC without energy constraint is 1 − H(q), which is

an upper bound for the case of infinite battery. When energy arrival process is i.i.d.

Bernoulli(p) with p ≥ 0.5, using the same analysis in [37], we can prove this bound

is tight.

On the other extreme, when there is no battery, as commented in Section 4.3,

Shannon’s method [38] can be modified to obtain an equivalent DMC with input

alphabet U = {ua, ub}, where ua = (0, 0) and ub = (0, 1), both of which are functions

of En. The transition probability of this DMC is

p(y|u) =
∑
e∈EH

p(e)p(y|u(e)), ∀y ∈ Y , u ∈ U .

in particular, p(y|ua) = p(y|0) and p(y|ub) = 0.5. The capacity of this DMC is

H

(
1

1 + α

)
− 1 + r(1−H(q)), where

α = 2−
1−H(q)
0.5−q and r =

(1 + α)−1 − 0.5

0.5− q .

Its capacity can be easily calculated analytically.

For the channel W ′ we compute the i.u.d. rate, which is the information rate

for the i.i.d. uniform input process, and optimize the information rate over Markov

input processes of order 1 and 2. The numerical results are shown in Figure 5.1. For



109

comparison, the capacities for the same BSC without energy constraint and with zero

battery are also shown.

We have the following remarks on the numerical results:

1) The minimal non-zero battery storage can give us a great boost on the capacity;

it even achieves a significant fraction (around 70%) of the capacity without

energy constraints.

2) The Markov input processes achieve higher rate than the i.u.d. input, and with

higher order the information rate is higher. So memory in the input helps, but

increasing the Markov order by 1 only slightly increases the information rate.

5.6 Discussions

The results in this chapter can be extended to continuous energy harvesting chan-

nels, especially when the input alphabet is finite, e.g., AWGN channel with binary

input. Although the FSC and Markov channel results are both for finite alphabets,

we can consider only the state process itself as the output of an Markov channel,

and then a continuous memoryless channel is connected to the output, as discussed

in Section B.5.1. For such a case we can still derive ergodicity results and apply the

SMB theorem.

On the other hand, we can deal with finite energy harvesting channels with channel

memory. For example, if the channel is not DMC, but an FSC, we can still use the

approach in this chapter to obtain some achievable rates.
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Chapter 6

Capacity Bounds

Compared to the achievable rates (lower bounds), nontrivial upper bounds for

the energy harvesting channels are much more difficult to obtain. For the binary

noiseless case (with scenario 1) [41] derives an upper bound, assuming full CSI at the

receiver (CSIR). [58] tries to tighten this bound, though the approach seems not fully

mathematically rigorous.

In Gallager’s study of finite state channels [2], two convergent sequences in the

form of finite block length mutual information are proved to bound the channel ca-

pacity from above and below, respectively. In particular, each term of the sequences

gives an upper/lower bound. In this chapter we study our channel models and ob-

tain capacity bounds for them, most of which are in Gallager’s flavor. Especially, for

EH-SC2 we derive upper bounds when the energy harvesting process is finite-order

Markov1. For EH-SC1 we only consider the case when the energy harvesting pro-

cess is i.i.d., which is a special case of FSC-X, as proved in Section 4.2.3. Thus in

the following we only present the bounds for FSC-X and EH-SC2. These bounds,

although computable in theory for each block length N , are not practical to compute

for large N as the complexity is double exponential. To address this issue for the

upper bounds, we relax them further to allow for a dynamic programming recursion,

which has linear complexity.

We begin with an approach we use for our major upper bound results, which is

1Note that in this scenario when the process is i.i.d., a proof sketch for the same bounds also
appears in [59].
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based on techniques of Verdú and Han and Gallager.

6.1 A General Gallager-type Upper Bound

A general channel
{
X (N), p(yN |xN),Y(N)

}∞
N=1

without feedback is defined by

describing the input/output alphabets X (N), Y(N) and the transition probabilities

p(yN |xN) for each block length N . Using Fano inequality Verdú and Han [1] showed

that its capacity is upper bounded by

lim inf
N→∞

CN , (6.1)

CN , sup
P
XN

1

N
I(XN ;Y N).

In general, the upper bound is not easy to compute, since the limiting behavior of

CN is unknown. On the other hand, Gallager [2] uses the following lemma to derive

a series of computable upper bounds for finite state channels:

Lemma 6.1.1 (Fekete’s subadditive lemma). If the sequence {an}∞n=1 is subadditive,

i.e., am+n ≤ am + an for all m,n, then the limit limn→∞
an
n

exists and is equal to

inf an
n

.

If we can show that for each N , there is a CN such that

(R1) CN ≤ CN ,

(R2) {NCN}∞N=1 is subadditive,

then by Fekete’s lemma, limN→∞CN exists and is equal to inf CN . Hence (6.1) is

upper bounded by lim infN→∞CN = inf CN , and so CN is an upper bound for the

general channel capacity for each finite N . In other words, the limiting process in (6.1)

is not needed anymore, which greatly simplifies the computation of upper bounds,

especially when such computable CN ’s can be easily found.
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6.2 FSC-X Upper Bounds

We use the technique above on the equivalent channel (see Section 4.3.1) to derive

a series of Gallager-type upper bounds. First of all, the capacity can be upper bounded

by a system with full receiver side channel state information (CSIR). Then in (6.1)

we consider the mutual information I(UN ;Y NSN+1). As S1 is independent of UN ,

I
(
UN ;Y NSN+1

)
= I

(
UN ;Y NSN+1

2 |S1

)
≤ max

s1
I
(
UN ;Y NSN+1

2 | s1

)
,

where I(· ; · | s1) := I(· ; · |S1 = s1). Define

CN = max
P
UN

max
s1

1

N
I
(
UN ;Y NSN+1

2 | s1

)
, (6.2)

then CN satisfies (R1) in the previous section. Furthermore,

Theorem 6.2.1. For each N , CN defined in (6.2) is an upper bound for the capacity

of the channel FSC-X.

Proof. As described above, we can use (6.1) for the full CSIR case as an upper bound.

Since CN satisfies (R1) for this upper bound, if we can show it satisfies (R2) as well,

then CN is an upper bound for each N by Section 6.1.

Let N be arbitrary and let m,n be positive integers that sum to N . In the

following we will show that

NCN ≤ nCn +mCm, (6.3)

i.e., {NCN}∞N=1 is subadditive. For any PUN and s1 consider the decomposition

I
(
UN ;Y NSN+1

2 | s1

)
= I

(
UN ;Y nSn+1

2 | s1

)
+ I

(
UN ;Y N

n+1S
N+1
n+2 | Y nSn+1

2 s1

)
= I

(
Un;Y nSn+1

2 | s1

)
+ I

(
UN
n+1;Y nSn+1

2 | Uns1

)
+ I

(
UN
n+1;Y N

n+1S
N+1
n+2 | Y nSn+1

2 s1

)
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+ I
(
Un;Y N

n+1S
N+1
n+2 | UN

n+1Y
nSn+1

2 s1

)
= I1 + I2 + I3 + I4, (6.4)

where I1–I4 are respectively defined as the first to fourth terms in the line above

them. By the definition (6.2), I1 ≤ nCn. Next, using the property of FSC conditional

probabilities as in (4.11), for I2 and I4 we respectively have

p
(
ynsn+1

2 |uNn+1u
ns1

)
=

n∏
i=1

p
(
yisi+1 |xi = ui(s

i), si
)

= p
(
ynsn+1

2 |uns1

)
,

p
(
yNn+1s

N+1
n+2 |unuNn+1y

nsn+1
2 s1

)
=

N∏
i=n+1

p
(
yisi+1 |xi = ui(s

i), si
)

= p
(
yNn+1s

N+1
n+2 |uNn+1y

nsn+1
2 s1

)
.

Therefore I2 = I4 = 0. Furthermore,

I3 =
∑
ynsn+1

2

p
(
ynsn+1

2 | s1

)
I
(
UN
n+1;Y N

n+1S
N+1
n+2 | ynsn+1

)
. (6.5)

Fix ynsn+1. For each uNn+1 and k = 1, . . . ,m, let

ũk : Sk → X

be the projection ũk (·) = un+k (sn, ·), i.e.,

ũk
(
tk
)

= un+k

(
sn, tk

)
, ∀tk ∈ Sk.

Then ∀tk ∈ Sk, ũk
(
tk
)
∈ X (tk) and so ũk ∈ Uk. By (4.11) again

p
(
yNn+1s

N+1
n+2 |uNn+1y

nsn+1
)

=
N∏

i=n+1

p
(
yisi+1 |xi = ui(s

i), si
)
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=
m∏
k=1

p
(
yn+ksn+k+1

∣∣xn+k = un+k

(
sn, sn+k

n+1

)
, sn+k

)
=

m∏
k=1

p
(
yn+ksn+k+1

∣∣xn+k = ũk
(
sn+k
n+1

)
, sn+k

)
= Q

(
yNn+1s

N+1
n+2 | ũmsn+1

)
,

where Q , PYmSm+1
2 |UmS1

is the m-block channel transition probability given S1.

Denote the projection map

T : uNn+1 7→ ũm,

which depends on sn. Then T and PUNn+1 | ynsn+1 induce a probability distribution P̃

on U (m): for all ũm ∈ U (m),

P̃ (ũm) = Pr
(
T
(
UN
n+1

)
= ũm

∣∣Y nSn+1 = ynsn+1
)
.

=
∑

uNn+1:T(uNn+1)=ũm

p
(
uNn+1 | ynsn+1

)
.

Now it is easy to verify that

p
(
yNn+1s

N+1
n+2 | ynsn+1

)
=
∑
uNn+1

p
(
uNn+1 | ynsn+1

)
p
(
yNn+1s

N+1
n+2 |uNn+1y

nsn+1
)

=
∑
uNn+1

p
(
uNn+1 | ynsn+1

)
Q
(
yNn+1s

N+1
n+2 | ũmsn+1

)
=
∑
ũm

P̃ (ũm)Q
(
yNn+1s

N+1
n+2 | ũmsn+1

)
= R̃

(
yNn+1s

N+1
n+2 | sn+1

)
,

where R̃(· | sn+1) is the m-block channel output distribution given S1 = sn+1, induced

by P̃ and the channel Q. Thus if we denote the relative entropy

DuNn+1 | ynsn+1 , D
(
PY Nn+1S

N+1
n+2 |uNn+1y

nsn+1

∥∥PY Nn+1S
N+1
n+2 | ynsn+1

)
,
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then

DuNn+1 | ynsn+1 = D
(
Q ( · | ũmsn+1) ‖ R̃(· | sn+1)

)
.

Therefore we can write

I
(
UN
n+1;Y N

n+1S
N+1
n+2 | ynsn+1

)
=
∑
uNn+1

p
(
uNn+1 | ynsn+1

)
DuNn+1 | ynsn+1

=
∑
uNn+1

p
(
uNn+1 | ynsn+1

)
D
(
Q( · | ũmsn+1) ‖ R̃(· | sn+1)

)
=
∑
ũm

P̃ (ũm)D
(
Q( · | ũmsn+1) ‖ R̃(· | sn+1)

)
= IP̃

(
Um;Y mSm+1

2 |S1 = sn+1

)
≤ max

s1
IP̃
(
Um;Y mSm+1

2 | s1

)
≤ mCm,

where IP̃ denotes the mutual information induced by the input distribution P̃ . Since

this inequality holds for all ynsn+1, by (6.5) we have

I3 ≤ mCm.

Combining the results for I1–I4 with (6.4), we have

I
(
UN ;Y NSN+1

2 | s1

)
≤ nCn +mCm.

This inequality is true for all PUN and s1, so it must be true for the maximization

over them, and thus (6.3) holds.

Remark 6.2.1. Note that since the order of maximization in (6.2) can be exchanged,

CN can be calculated by finding the capacities of |S| discrete memoryless channels

(DMC), which can be efficiently computed using the Blahut-Arimoto algorithms (see,

e.g., [56]).
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6.3 EH-SC2

For this model we will obtain some new capacity bounds in the form of finite

block length mutual information, especially the Gallager-type upper bounds. We

again used the equivalent channel model (see Section 4.3.3). Note that the energy

harvesting process and the initial battery level are independent, and in the equivalent

channel neither of them is known at the transmitter, so they are also independent of

the input. For r ≥ 0, define e−r := e0
−r+1. We have

p
(
yNeN |uNb1e

−r) = p(eN |e−r)
N∏
n=1

p (yn|xn = un(b1, e
n)) . (6.6)

Next we develop some preliminary results on the input alphabet and block condi-

tional mutual information. Recall that U (N) is the collection of all causal mappings

EB × ENH → XN that are consistent with the energy constraint (4.1). Define U (N)
b1

as

the “b1-th section of U (N)”, which consists of all causal mappings ENH → XN (which

are denoted by V(N)) that together with B1 = b1 satisfy the energy constraint:

U (N)
b1

,
{
vN = uN(b1, ·) | uN ∈ U (N)

}
.

Let b1 ≤ b′1. For each eN , xN satisfies (4.1) with b′1 whenever it does with b1, so

U (N)
b1
⊆ U (N)

b′1
. In particular,

U (N)
b1
⊆ U (N)

B
, ∀b1 ∈ EB. (6.7)

Now fix b1. Define the projection map

T : U (N) → V(N)

uN 7→ uN(b1, ·)

and denote

ûN = T
(
uN
)
,
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whose image is in U (N)
b1

. Furthermore, for vN ∈ V(N) and r ≥ 0 we define

p
(
yNeN | vNe−r

)
= p

(
eN | e−r

) N∏
n=1

p (yn |xn = vn(en)) ,

p
(
yN | vN

)
=
∑
eN

p
(
yNeN | vN

)
through p(eN) and p(y|x). Then by (6.6) we have

p
(
yNeN |uNb1e

−r) = p
(
yNeN | ûNe−r

)
,

p
(
yN |uNb1

)
= p

(
yN | ûN

)
.

By the same argument as in the proof of Theorem 6.2.1,

I(UN ;Y NEN | b1e
−r) = I(ÛN ;Y NEN | e−r), (6.8)

I(UN ;Y N | b1) = I(ÛN ;Y N), (6.9)

where the distribution of ÛN = T (UN) is supported on U (N)
b1

.

Lemma 6.3.1. Let P(N)
b1

denote the family of all probability distributions on U (N)
b1

.

We have

max
P
UN

I(UN ;Y NEN |b1e
−r) = max

P
V N
∈P(N)

b1

I(V N ;Y NEN |e−r),

max
P
UN

I(UN ;Y N | b1) = max
P
V N
∈P(N)

b1

I(V N ;Y N).

Proof. We only prove the second equation since the proof of the first is essentially the

same. Denote the LHS and RHS of the second equation by CU and CV , respectively.

For any PUN , we have PÛN ∈ P
(N)
b1

and so

I(UN ;Y N | b1) ≤ CV

by (6.9), and hence CU ≤ CV . On the other hand, T−1
(
vN
)
6= ∅ for every vN ∈ U (N)

b1
.
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Thus for any PV N ∈ P(N)
b1

, define a PU(N) such that

PU(N)

(
T−1

(
vN
))

= PV N
(
vN
)

for all vN ∈ U (N)
b1

, then PV N is induced by PUN and T . Then by (6.9) again,

CU ≥ I(V N ;Y N)

and so CU ≥ CV .

Now we are ready to present the new capacity bounds.

Theorem 6.3.1. If {En}∞n=1 is i.i.d., then for each N

CN := max
P
UN

1

N
I(UN ;Y N |B1 = 0)

is a lower bound of the channel capacity for EH-SC2.

Proof. Consider using the channel in blocks of length N and restrict the input func-

tions to those that i) ignore the initially stored energy in the battery, and ii) essentially

comprise concatenations of functions in U (N)
0 . That is, for k > 0 the input ukN is only

a function of ekN and can be identified with the collection

{
vi ∈ U (N)

0 , 1 ≤ i ≤ k
}
,

where for any b1 and ekN ,

ukN
(
b1, e

kN
)

=
(
v1

(
eN
)
, . . . ,vk

(
ekN(k−1)N+1

))
.

It is a legitimate input symbol since between the transition of blocks the function

ignores the remaining battery energy, thus is always compatible with the energy

constraint (4.1).

Let yi and ei denote yiN(i−1)N+1 and eiN(i−1)N+1, respectively. By (6.6) and the i.i.d.
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assumption for En,

p
(
ykNekN |ukNb1

)
=

k∏
i=1

p(ei)p(yi |vi(ei)),

p
(
ykN |ukN

)
=

k∏
i=1

p (yi |vi) .

Note that since En is i.i.d., p (yi |vi) is independent of i. Thus kN times of using the

original channel in the specified manner is equivalent to k times of using a discrete

memoryless channel p (y |v) with input alphabet U (N)
0 , whose capacity is

max
P
V N
∈P(N)

0

I(V N ;Y N).

By Lemma 6.3.1 and considering the block length N , CN is achievable.

Theorem 6.3.2. If {En}∞n=1 is a homogeneous Markov chain of order r ≥ 0, then

for each N

CN := max
P
UN

max
e−r

1

N
I(UN ;Y N |EN , B1 = B, e−r)

is an upper bound of the channel capacity for EH-SC2.

Proof. We use the upper bounding technique in Section 6.2 and the proof parallels

that of Theorem 6.2.1. By providing full CSIR to the receiver, in (6.1) we consider

I
(
UN ;Y NEN

−r+1B1

)
= I

(
UN ;Y NEN |B1E

−r)
≤ max

b1,e−r
I
(
UN ;Y NEN | b1e

−r) ,
due to the independence between B1E

−r and UN . Now define

CN = max
P
UN

max
b1,e−r

1

N
I
(
UN ;Y NEN | b1e

−r) . (6.10)

We will show that it is equivalent to the definition in the theorem. For each b1e
−r, by
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Lemma 6.3.1, (6.7) and the independence between {En}∞n=1 and the input symbols,

max
P
UN

I(UN ;Y NEN | b1e
−r) ≤ max

P
V N
∈P(N)

B

I(V N ;Y NEN | e−r)

= max
P
UN

I(UN ;Y NEN |B1 = B, e−r)

= max
P
UN

I(UN ;Y N |EN , B1 = B, e−r)

with the equality attained when b1 = B. Now, taking the maximum of both sides

over e−r and exchanging the order of maximization, we see the equivalence of both

definitions.

From the analysis above CN satisfies (R1) in Section 6.1. Next we will show the

subadditivity (6.3) and then the theorem is proved. Let N be arbitrary and let m,n

be positive integers that sum to N . We have the decomposition

I
(
UN ;Y NEN | b1e

−r) = I
(
Un;Y nEn | b1e

−r)+ I
(
UN
n+1;Y nEn |Unb1e

−r)
+ I

(
UN
n+1;Y N

n+1E
N
n+1 |Y nEnb1e

−r)
+ I

(
Un;Y N

n+1E
N
n+1 |UN

n+1Y
nEnb1e

−r)
= I1 + I2 + I3 + I4, (6.11)

where I1–I4 are respectively defined as the first to fourth terms above. By the defini-

tion (6.10), I1 ≤ nCn. Next using (6.6) we can show that I2 = I4 = 0. Furthermore,

I3 =
∑
ynen

p
(
ynen | b1e

−r) I (UN
n+1;Y N

n+1E
N
n+1 | ynb1e

n
−r+1

)
. (6.12)

Fix ynb1e
n
−r+1. For each uNn+1 define the projection map

uNn+1 7→ ũm := uNn+1(b1e
n, ·).

Since uNn+1 is extracted from a legal input function uN ∈ U (N), for any eNn+1 the output

ũm(eNn+1) = uNn+1(b1e
n, eNn+1) needs to satisfy (4.1) with the intermediate battery level
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bn+1, which is determined by un and b1e
n. Hence

ũm ∈ U (m)
bn+1
⊆ U (m)

B

by (6.7). Now by (6.6)

p
(
yNn+1e

N
n+1 |uNn+1y

nb1e
n
−r+1

)
= p(eNn+1 | enn−r+1) · p

(
yNn+1 |uNn+1(b1e

n, eNn+1)
)

= p(eNn+1 | enn−r+1) · p
(
yNn+1 | ũm(eNn+1)

)
= PYmEm |VmE−r

(
yNn+1e

N
n+1 | ũmenn−r+1

)
,

where we used the Markov property of En. Again similar to Theorem 6.2.1, for an

induced distribution P̃ on U (m)

B

I
(
UN
n+1;Y N

n+1E
N
n+1 | ynb1e

n
−r+1

)
= IP̃

(
V m;Y mEm | enn−r+1

)
≤ max

PVm∈P
(m)

B

I(V m;Y mEm | enn−r+1)

= max
PUm

I(Um;Y mEm|B1 = B, enn−r+1)

≤ mCm,

where we used Lemma 6.3.1. Since this inequality holds for all ynb1e
n
−r+1, by (6.12)

we have

I3 ≤ mCm.

Combining the results for I1–I4 with (6.11), we have

I
(
UN ;Y NEN | b1e

−r) ≤ nCn +mCm

for arbitrary PUN and b1e
−r, thus (6.3) holds.

Remark 6.3.1. As stated in Remark 6.2.1, CN can be computed by finding the

capacities of a finite number of DMC’s.
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6.4 Linear Complexity Upper Bounds

As remarked at the end of Section 4.3, for the equivalent channel models the

alphabet size for each channel use grows double exponentially, and hence so does

the computational complexity. This poses a problem in practice for the computation

of the block mutual information bounds above. In the following we will loosen the

upper bounds to keep the alphabet size fixed, which also leads to a nice dynamic

programming recursion that gives a linear complexity algorithm. If we relax the

bounds even further, the recursions can be solved analytically. Although these relaxed

bounds are looser than the original ones for each block length N , as we can compute

them for very large N , the resulting bounds are often tighter in practice.

These relaxation methods are inspired by the study of FSC with feedback [60] [61].

6.4.1 FSC-X

For each s ∈ S define P∗s to be the set of all probability distributions on X (s) and

P∗ =
∏

s∈S P∗s . We say the conditional distribution PX|S ∈ P∗ iff PX|S(· | s) ∈ P∗s for

all s ∈ S. Let pn , PXn|Sn , we write {pn}Nn=1 ⊂ P∗ if pn ∈ P∗ for all 1 ≤ n ≤ N .

Moreover, define Q = PSn+1|XnSn , then

Q(sn+1 |xnsn) =
∑
yn

p(ynsn+1 |xnsn).

Also define

I(p, s) = I(YnSn+1;Xn |Sn = s)
∣∣
pn=p

.

Now we begin relaxing CN in Section 6.2. For a fixed S1 = s1,

I
(
UN ;Y NSN+1

2 | s1

)
=

N∑
n=1

I
(
UN ;YnSn+1 |Y n−1Sn

)
.

Observe that by (4.7), (4.11), and Xn = Un(Sn), we have

I
(
UN ;YnSn+1 |Y n−1Sn

)
= H(YnSn+1 |Y n−1Sn)−H(YnSn+1 |Y n−1SnUN)
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= H(YnSn+1 |Y n−1Sn)−H(YnSn+1 |Y n−1SnUNXn)

≤ H(YnSn+1 |Sn)−H(YnSn+1 |SnXn)

= I(YnSn+1;Xn |Sn),

I
(
UN ;Y NSN+1

2 | s1

)
≤

N∑
n=1

I(YnSn+1;Xn |Sn). (6.13)

For any PUN and PS1 , (UN , SN+1, Y N) induces a random tuple (XN , SN+1, Y N)

through the functional dependence of UN and XN . It further induces a set of con-

ditional probabilities {pn}Nn=1 ⊂ P∗, which together with PS1 and p(ynsn+1 |xnsn)

uniquely determines
∑N

n=1 I(YnSn+1;Xn |Sn). (Cf. [61, App. VIII]). On the other

hand, given PS1 and any set of conditional probabilities {pn}Nn=1 ⊂ P∗, we can always

construct a compatible random tuple (XN , SN+1, Y N). Therefore for any PUN ,

I
(
UN ;Y NSN+1

2 | s1

)
≤ c̃N,s,

c̃N,s , max
{pn}Nn=1⊂P∗

N∑
n=1

I(YnSn+1;Xn |Sn)

∣∣∣∣
S1=s

.

Hence we have a new upper bound:

Theorem 6.4.1. For each N ,

CN ≤ C̃N ,
1

N
max
s∈S

c̃N,s , (6.14)

which is a capacity upper bound for the channel FSC-X.

Observe that the optimization for c̃N,s is over the distributions {pn}Nn=1, whose al-

phabet sizes are fixed. Furthermore, the following theorem gives a recursive algorithm

to compute c̃N,s, which has a complexity linear in N .

Theorem 6.4.2. Let S1 have an arbitrary distribution π,

c̃N(π) , max
{pn}Nn=1⊂P∗

N∑
n=1

I(YnSn+1;Xn |Sn).
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Then c̃N(π) =
∑

s∈S π(s) · c̃N,s where for each s

c̃N,s = max
p(·|s)∈P∗s

[
I(p, s) +

∑
x

p(x|s)
∑
t

Q(t|xs) · c̃N−1,t

]
,

with the initial condition c̃0,s = 0, ∀s ∈ S.

Proof. From the definitions, c̃N,s = c̃N(δs) where δs puts probability 1 on s. For N =

1, the theorem is true (note that the optimization for c̃1(π) is over {p1(·|s) : s ∈ S},
which can be separated). Assume it is true for N = k, then for N = k + 1,

c̃k+1(π) = max
p1∈P∗

[∑
s

π(s)I(p1, s) + max
{pn}k+1

n=2⊂P∗

k+1∑
n=2

I(YnSn+1;Xn |Sn)

]
.

Given π and p1,

PS2(t) =
∑
x,s

π(s)p1(x|s)Q(t|xs).

Now define

(X̂k, Ŝk+1, Ŷ k) = (Xk+1
2 , Sk+2

2 , Y k+1
2 )

and so

p̂n , PX̂n|Ŝn = pn+1, 1 ≤ n ≤ k.

Using the theorem for N = k,

max
{pn}k+1

n=2⊂P∗

k+1∑
n=2

I(YnSn+1;Xn |Sn) = max
{p̂n}kn=1⊂P∗

k∑
n=1

I(ŶnŜn+1; X̂n | Ŝn)

= c̃k(PŜ1
)

= c̃k(PS2)

=
∑
t∈S

PS2(t) · c̃k,t,

since the value of
∑k

n=1 I(ŶnŜn+1; X̂n | Ŝn) is uniquely determined by PŜ1
, {p̂n}kn=1



125

and the time-invariant transition probabilities p(ynsn+1 |xnsn). Thus

c̃k+1(π) = max
p1∈P∗

[∑
s

π(s)I(p1, s) +
∑
t

PS2(t) · c̃k,t
]

= max
p1∈P∗

[∑
s

π(s)I(p1, s) +
∑
s

π(s)
∑
x

p1(x|s)
∑
t

Q(t|xs) · c̃k,t
]

=
∑
s

π(s) max
p1(·|s)∈P∗s

[
I(p1, s) +

∑
x

p1(x|s)
∑
t

Q(t|xs) · c̃k,t
]
.

Letting π = δs we obtain the statement for c̃k+1,s, which can be plugged back for

every s into the expression above to obtain the result for c̃k+1(π). So the theorem is

true for N = k + 1 and hence true for all N .

Note that for every recursion we only need to maximize the sum of a concave

function I(·, s) and a linear term over the same space P∗s , which is simple to implement

using convex optimization. The recursion can even be solved analytically if we relax

C̃N further. From (6.13) and

I(YnSn+1;Xn |Sn) ≤ H(Xn |Sn) (6.15)

we can replace the mutual information in the definitions of c̃N,s, C̃N and c̃N(π) by

the corresponding conditional entropies to define c̃′N,s, C̃
′
N and c̃′N(π) and obtain a

corresponding new theorem:

Theorem 6.4.3. Assume the base of log is e. We have

C̃N ≤ C̃ ′N ,

c̃′N(π) =
∑
s∈S

π(s) · c̃′N,s,

c̃′N,s = log
∑
x∈X (s)

exp

[∑
t

Q(t|xs) · c̃′N−1,t

]
,

with the initial condition c̃′0,s = 0, ∀s ∈ S.
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Proof. By (6.15), C̃N ≤ C̃ ′N . Using arguments similar to Theorem 6.4.2 and defining

H(p, s) = H(Xn |Sn = s)
∣∣
pn=p

,

we have

c̃′N(π) =
∑
s∈S

π(s) · c̃′N,s,

c̃′N,s = max
p(·|s)∈P∗s

[
H(p, s) +

∑
x

p(x|s)
∑
t

Q(t|xs) · c̃′N−1,t

]
.

Denote

αx =
∑
t

Q(t|xs) · c̃′N−1,t, rx = p(x|s).

The optimization problem above can be written as

maximize −∑x rx log rx +
∑

x rxαx

s.t.
∑

x rx = 1

rx ≥ 0, ∀x ∈ X (s)

,

whose solution r∗ can be easily found using KKT conditions:

r∗x =
eαx∑

x′∈X (s) e
αx′
.

Plugging into the objective function, we obtain the desired formula for c̃′N,s.

Remark 6.4.1. When Xn is uniquely determined by Yn (e.g., Yn = Xn), (6.15) holds

with equality and C̃ ′N = C̃N .

6.4.2 EH-SC2

We want to use the techniques above to obtain a linear complexity relaxation for

the upper bound in Theorem 6.3.2. For that purpose we introduce the “overall” state

Zn , En
n−r+1Sn,
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with alphabet Z , ErH × S. When r = 0, En is i.i.d. and Zn = Sn, whose transition

probability is described by (4.8). Now assume r > 0. For each zn = enn−r+1sn ∈ Z, if

zn+1 = en+1
n−r+2sn+1 for some en+1sn+1, then the transition probability

p(zn+1 |xnzn) = p(en+1 | enn−r+1) · 1{S(xn,sn,en+1)=sn+1},

otherwise

p(zn+1 |xnzn) = 0.

Note that the transition probabilities are time-invariant (independent of n).

Similar to Section 6.4.1, we define P∗z ,P∗, pn, and Q w.r.t. the state Zn and with

X (z) , {x ∈ X : |x|2 ≤ s(z)}, ∀z ∈ Z,

where s(z) is the S-component of z. Next define

I(p, z) = I(YnEn+1Zn+1;Xn | Zn = z)
∣∣
pn=p

.

Moreover, let πb1,e−r denote the distribution of Z1 when B1 = b1 and E−r = e−r,

which is determined by

p(e1s1|b1e
−r) = p(e1 | e−r) · 1{S(b1,e1)=s1}.

We start relaxing CN in Section 6.3 by providing more energy information to the

receiver. First note that CN can also be written as

max
e−r

max
P
UN

1

N
I(UN ;Y NEN |B1 = B, e−r).

For fixed B1 = B and E−r = e−r,

I(UN ;Y NEN |B1E
−r) ≤ I(UN ;Y NEN+1SN+1 |B1E

−r)

= I(UN ;E1S1 |B1E
−r)
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+
N∑
n=1

I
(
UN ;YnEn+1Sn+1 | Y n−1En

−r+1S
nB1

)
.

The first term is 0, because given B1E
−r, E1S1 is independent of the input. Note

that Xn = Un(B1, E
n) and given XnZn, YnEn+1Sn+1 is independent of all previous

random variables as well as UN . Thus by decomposing the mutual information

H
(
YnEn+1Sn+1 | Y n−1En

−r+1S
nB1U

N
)

= H
(
YnEn+1Sn+1 | Y n−1En

−r+1S
nB1U

NXn

)
= H

(
YnEn+1Sn+1 | XnZn

)
= H

(
YnEn+1Zn+1 | XnZn

)
,

H
(
YnEn+1Sn+1 | Y n−1En

−r+1S
nB1

)
≤ H(YnEn+1Zn+1 | Zn),

I
(
UN ;YnEn+1Sn+1 | Y n−1En

−r+1S
nB1

)
≤ I
(
YnEn+1Zn+1;Xn | Zn

)
,

I
(
UN ;Y NEN |B1E

−r) ≤ N∑
n=1

I(YnEn+1Zn+1;Xn | Zn).

For any PUN and PB1E−r ,
(
UN , B1, E

N+1
−r+1, S

N+1, Y N
)

determines a random tuple

(XN , EN+1
2 , ZN+1, Y N). Similar to the analysis in Section 6.4.1, for any PUN

I(UN ;Y NEN |B1 = B, e−r) ≤ c̃N
(
πB,e−r

)
,

where for any distribution π of Z1 define

c̃N(π) = max
{pn}Nn=1⊂P∗

N∑
n=1

I(YnEn+1Zn+1;Xn | Zn).

Now we can establish the following theorems.

Theorem 6.4.4. For each N ,

C̃N ,
1

N
max
e−r

c̃N
(
πB,e−r

)
≥ CN

is an upper bound for the channel capacity of EH-SC2.
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Theorem 6.4.5. Define c̃N,z = c̃N(δz) for all z ∈ Z. Then

c̃N(π) =
∑
z∈Z

π(z) · c̃N,z,

c̃N,z = max
p(·|z)∈P∗z

[
I(p, z) +

∑
x

p(x|z)
∑
w

Q(w|xz) · c̃N−1,w

]
,

with the initial condition c̃0,z = 0, ∀z ∈ Z.

Note that since En+1 is independent of Xn given Zn,

I(p, z) = I(YnSn+1;Xn |En+1, Zn = z)

with PXn|En+1Zn = pn, which simplifies the computation. Also since

I(YnEn+1Zn+1;Xn | Zn) ≤ H(Xn |Zn),

we can replace the mutual information in the definitions of c̃N,z, C̃N and c̃N(π) by the

corresponding conditional entropies to define c̃′N,z, C̃
′
N and c̃′N(π) and obtain:

Theorem 6.4.6. Assume the base of log is e. We have

C̃N ≤ C̃ ′N ,

c̃′N(π) =
∑
z∈Z

π(z) · c̃′N,z,

c̃′N,z = log
∑

x∈X (z)

exp

[∑
w

Q(w|xz) · c̃′N−1,w

]
,

with the initial condition c̃′0,z = 0, ∀z ∈ Z.

Remark 6.4.2. The proofs for Theorems 6.4.5 and 6.4.6 are similar to Theorems 6.4.2

and 6.4.3, respectively, and are omitted. Again when Xn is uniquely determined by

Yn (e.g., Yn = Xn), C̃ ′N = C̃N .



130

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Energy Havesting parameter p

C
ap

ac
ity

 B
ou

nd
s 

(B
its

/C
ha

nn
el

 u
se

)

 

 

UB, q = 0
UB’, q = 0
IR, q = 0
LB, q = 0
UB, q = 0.1
IR, q = 0.1
LB, q = 0.1

Figure 6.1: Capacity bounds for an energy harvesting channel

6.5 Numerical Results

We use an energy harvesting example to demonstrate the computation of our

bounds. In this model En is i.i.d. Bernoulli(p), B = 1, X = Y = {0, 1}. The DMC

is binary symmetric with crossover probability q and we require En to be stored in

the battery first, i.e., we use energy models (4.3) and (4.6).

Figure 6.1 shows different bounds and achievable rates from Chapter 5, [41] and

Theorems 6.3.1 and 6.3.2, where UB and UB’ denote upper bounds from Theo-

rem 6.3.2 (N = 4) and [41] respectively, IR denotes the achievable rate for optimal

i.i.d. input from Chapter 5 (m=1), and LB denotes the lower bound from Theo-

rem 6.3.1 (N = 4). Note that UB and IR work for both scenarios, whereas LB only

works for EH-SC2. For q = 0 the upper bound in [41] only works for EH-SC1, whereas

for q > 0 the result is not applicable.
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Figure 6.2: Capacity upper bounds comparison

Figure 6.2 shows the bounds CN and C̃N for EH-SC2, as well as the upper bound

in [41] for EH-SC1. Here UB denotes C4, UB′ denotes the upper bound from [41], and

UBl denotes C̃104 . Note that C̃ ′N for all q are equal to the C̃N for q = 0. For CN we

are only able to compute its value up to N = 4, whereas for C̃N we can compute it up

to N = 104 easily and the values appear to have converged to their limit. Although

C̃N is looser than CN for any fixed N , since we can make N much larger for the

former, the bound can be (much) tighter, especially when q or p is small. For q = 0,

C̃104 for EH-SC2 coincides numerically with both the C̃104 for EH-SC1 and the upper

bound in [41], suggesting that the best full CSIR upper bounds for both scenarios are

the same for a perfect channel.
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Chapter 7

Pairwise Error Probability

In this chapter we study the pairwise error probabilities for Maximum-Likelyhood

(ML) decoding of the energy harvesting channel, with the setting of the more general

scenario 2. Suppose there are two codewords, uN and vN . Assume uN is sent over

the channel and Y N is received. The decoder makes a mistake if

p
(
Y N | vN

)
> p
(
Y N |uN

)
,

or makes a mistake with probability 1/2 if

p
(
Y N | vN

)
= p
(
Y N |uN

)
.

Denote this error probability by Pe
(
vN |uN

)
, then

Pe
(
vN |uN

)
= Pr

(
p
(
Y N | vN

)
> p
(
Y N |uN

)
| uN

)
+

1

2
Pr
(
p
(
Y N | vN

)
= p
(
Y N |uN

)
| uN

)
,

where p
(
Y N | ·

)
is defined by (6.6) and (4.14). Define the pairwise error probability

between uN and vN as

Pe
(
uN , vN

)
=
[
Pe
(
vN |uN

)
+ Pe

(
uN | vN

)]
/2,
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which we want to minimize when designing codes. The formula above with a general

DMC is complicated, but for the two cases below we have some simplification. Since

the two terms in Pe
(
vN |uN

)
are similar, for simplicity we only analyze the first one,

which is denoted by P ′e
(
vN |uN

)
.

7.1 Noiseless Channel

Assume the DMC in Figure 4.1 is noiseless, i.e., Yn = Xn. Then by (6.6) and

(4.14)

p
(
yN | vN

)
=
∑
b1,eN

p(b1)p
(
eN
)
· 1{yN=vN (b1,eN )}.

Define guN ,vN
(
b1, e

N
)

as the probability of vN yielding xN = uN
(
b1, e

N
)
, i.e.,

guN ,vN
(
b1, e

N
)
,
∑
b1,eN

p(b1)p
(
eN
)
· 1{uN(b1,eN)=vN (b1,eN )}.

When uN is sent, Y N = uN
(
B1, E

N
)

and so

P ′e
(
vN |uN

)
= Pr

(
guN ,vN

(
B1, E

N
)
> guN ,uN

(
B1, E

N
))

=
∑
b1,eN

p
(
b1

)
p
(
eN
)
· 1{guN ,vN (b1,eN)>guN ,uN (b1,eN)}.

This gives us an easier formula to compute the pairwise error probability. When

B1, E
N have uniform distributions, the expression simplifies further. Let us define

KuN ,vN
(
b1, e

N
)

to be the cardinality of

{(
b1, e

N
)
| vN

(
b1, e

N
)

= uN
(
b1, e

N
)}
,

which is the number of pairs
(
b1, e

N
)

that under vN yields xN = uN
(
b1, e

N
)
. Then

guN ,vN
(
b1, e

N
)

=
KuN ,vN

(
b1, e

N
)

|EB| · |EH |N
,
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P ′e
(
vN |uN

)
=

1

|EB||EH |N
·
∣∣{(b1, e

N
)

: KuN ,vN
(
b1, e

N
)
> KuN ,uN

(
b1, e

N
)}∣∣ ,

which is proportional to the number of pairs
(
b1, e

N
)

having the following property:

the number of pairs
(
b1, e

N
)

yielding the same vector xN = uN
(
b1, e

N
)

under the

function vN is more than that of uN . Suppose each function uN is represented by its

matrix of values, whose rows and columns are indexed by the time n and different

pairs
(
b1, e

N
)
, respectively—that is, the

(
n,
(
b1, e

N
))

-th entry denote xn = un
(
b1, e

N
)
.

Then KuN ,vN
(
b1, e

N
)

is the number of columns in vN that is identical to the
(
b1, e

N
)
-th

column in uN .

Example 7.1.1. Assume the setting of Example 4.3.1 with B1 ∼ Bernoulli(1/2),

p = 1/2, q = 0. Then the conditions above are all satisfied. Let N = 1, u1 = (0, 1, 0, 1)

and v1 = (0, 1, 1, 1), with the four entries denoting the output x1 when

(b1, e1) = (0, 0), (0, 1), (1, 0), (1, 1),

respectively. Let
(
b1, e1

)
= (1, 1), with u1

(
b1, e1

)
= 1. Then Ku1,v1

(
b1, e1

)
= 3,

which is larger than Ku1,u1

(
b1, e1

)
= 2. The number of such pairs

(
b1, e1

)
is 2, so

P ′e
(
v1 |u1

)
= 1/2. Similarly P ′e

(
u1 | v1

)
= 1/4. Indeed Pe(u

N , vN) = 3/8. Presumably

as N grows we can find uN and vN such that the pairwise error probability is small.

7.2 Binary Symmetric Channel

Assume the DMC in Figure 4.1 is BSC(q), i.e., X = Y = {0, 1},

Yn = Xn ⊕ Zn

with Zn ∼ i.i.d Bernoulli(q). Then

p
(
yN |xN

)
= qwH(yN⊕xN) · (1− q)N−wH(yN⊕xN),
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where wH denotes the Hamming weight. Denote this probability by f(yN |xN) and

define

guN ,vN (b1, e
N , zN) = p

(
yN = uN

(
b1, e

N
)
⊕ zN | vN

)
=
∑
b1,eN

p(b1)p
(
eN
)
f
(
uN
(
b1, e

N
)
⊕ zN | vN

(
b1, e

N
))
.

When uN is sent,

Y N = uN(B1, E
N)⊕ ZN

and so

P ′e
(
vN |uN

)
= Pr

(
guN ,vN

(
B1, E

N , ZN
)
> guN ,uN

(
B1, E

N , ZN
))

=
∑

b1,eN ,zN

p
(
b1

)
p
(
eN
)
p
(
zN
)
· 1{guN ,vN (b1,eN ,zN)>guN ,uN (b1,eN ,zN)},

which also gives us an easier formula.
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Appendix A

Appendices for Part I

A.1 Proofs and Calculations in Section 2.6

A.1.1 Structures of M,K,K ′, J, J ′

When the characteristic p of Fq equals 2, K = K ′ and J = J ′. So for the analysis

of K ′ and J ′ we only consider the case p 6= 2.

Observe that |Aα| = p for each α ∈ F×q , and

|C| = 3, |B1| = 2, |B| = |B′| = |P | = |P ′| = q − 1.

As (CB1)2 = I, we have M ∼= D6
∼= S3. It is easy to check that ∀α ∈ Fq,

ABα = At−1α, AB
′

α = A−t−1α, APα = Atα, AP
′

α = A−tα.

Therefore, N is a normal subgroup of all K,K ′, J, J ′ and

K = N · 〈B〉, K ′ = N · 〈B′〉, J = N · 〈P 〉, J ′ = N · 〈P ′〉.

Also N trivially intersects each of 〈B〉, 〈B′〉, 〈P 〉, and 〈P ′〉, thus

K ∼= N o 〈B〉, K ′ ∼= N o 〈B′〉, J ∼= N o 〈P 〉, J ′ ∼= N o 〈P ′〉,

all of which are semidirect products Zmp o Zq−1. We claim that K ∼= J and K ′ ∼= J ′.
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Moreover, in the case p 6= 2, all the four groups are isomorphic if and only if q−1
2

is

even.

To see this, first consider the bijections σ : K → J and σ′ : K ′ → J ′, where

∀α ∈ Fq, ∀k ∈ Kq,

σ
(
AαB

k
)

= AαP
−k, σ′

(
Aα(B′)k

)
= Aα(P ′)−k.

Observe that ∀α, β ∈ Fq, ∀k, l ∈ Kq,

σ
(
AαB

k · AβBl
)

= σ
(
Aα+tkβB

k+l
)

= Aα+tkβP
−k−l

= AαP
−k · AβP−l = σ

(
AαB

k
)
· σ
(
AβB

l
)
,

so σ is indeed an isomorphism. Similarly σ′ is also an isomorphism.

Next observe that in the case p 6= 2, when q−1
2

is even, q−1
4

is an integer and so

(
q + 1

2

)2

=

(
q − 1

2
+ 1

)2

=
(q − 1)2

4
+ (q − 1) + 1 ≡ 1 (mod q − 1),

(
(B′)

q+1
2

) q+1
2

= B′,
〈
(B′)

q+1
2

〉
= 〈B′〉.

In addition, since F×q is cyclic of an even order q − 1, we have −1 = t
q−1
2 , and thus

(−t) q+1
2 =

(
t
q+1
2

) q+1
2

= t.

Consider τ : K → K ′, where

τ
(
AαB

k
)

= Aα(B′)
q+1
2
k, ∀α ∈ Fq, ∀k ∈ Kq.

Apparently τ is a bijection. Also we can show that it is a homomorphism by calcu-

lating τ
(
AαB

k · AβBl
)

with the following fact:

Aα(B′)
q+1
2
k · Aβ(B′)

q+1
2
l = A

α+(−t)
q+1
2 kβ

(B′)
q+1
2

(k+l) = Aα+tkβ(B′)
q+1
2

(k+l).
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Thus when q−1
2

is even, K ∼= K ′ and the four groups are all isomorphic.

When q−1
2

is odd, however, τ is not a bijection anymore, because this time B′ /∈〈
(B′)

q+1
2

〉
and τ(K) 6= K ′. Furthermore, we can prove that in this case K and K ′ are

not isomorphic, by showing that K and J have generalized flower structures whenever

q > 2, whereas if p 6= 2, K ′ and J ′ only have flower structures when q−1
2

is even. Since

K ∼= J and K ′ ∼= J ′, it is enough to only show the analysis of K and K ′. Pick α ∈ F×q
and assume k, l ∈ Kq. Similar to the G2 in Section 2.5.2, we have the relation

(Bk)Aα = Bl ⇐⇒ k = l = 0,

and thus K has a generalized flower structure whenever q > 2. On the other hand,

for K ′ we have

(B′k)Aα = B′l ⇐⇒

(−1)k 0

tkα tk

 =

 (−1)l 0

(−1)lα tl

 ,
which requires k = l and tl = (−1)l. Thus for p 6= 2, l can only be 0 or q−1

2
. If q−1

2

is even, we have (−1)
q−1
2 = 1 and so k = l = 0, then K ′ also has a generalized flower

structure (as expected since here K ∼= K ′). If q−1
2

is odd, however, this is not true:

in this case (−1)
q−1
2 = −1, so k = l = 0 or q−1

2
in the above relation. Thus ∀α ∈ F×q ,

〈B′〉
⋂
〈B′〉Aα = 〈−I〉 ∼= Z2.

When q = 3, B′ = −I and

K ′ = 〈A〉 × 〈−I〉 ∼= Z3 × Z2
∼= Z6,

when q > 3, 〈B′〉 and 〈B′〉Aα are distinct groups but have nontrivial intersection.

Therefore, in neither case does K ′ have a generalized flower structure.
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A.1.2 Intersections in Instances 8 and 9

Let p 6= 2. Observe that K ′ and J ′ are both subgroups of the G2 in Instance 1, so

all the intersections in both instances are subgroups of their respective counterparts

in Instance 1. In Instance 8, since G12 ≤ 〈tI, B1〉 and the (1,1)-entry for every matrix

in G2 = K ′ is always ±1, we have G12 ≤ 〈−I, B1〉. This further limits the (2,2)-entry

to be ±1 for each matrix in G12. As the (2,2)-entry in K ′ takes the form tk for some

k, this k can only be 0 or q−1
2

. By examining the parity of q−1
2

, we have

G12 =

 〈B1〉 ∼= Z2 if q−1
2

is even

〈−I〉 ∼= Z2 otherwise
,

G123 = G124 =

 1 if q−1
2

is even

〈−I〉 ∼= Z2 otherwise
.

Similarly we can calculate G12, G123, and G124 for Instance 9.

In both instances, G24 is simply the subgroup of all diagonal matrices in G2, and

G23 ≤ T . As matrices in K ′ and J ′ can be respectively written as

(−1)k

 1 0

α′ (−t)k

 = (−1)k

 1 0

α′ (t
q+1
2 )k

 ,

tk

 1 0

α′′ (−t−1)k

 = tk

 1 0

α′′ (t
q−3
2 )k


for some α′, α′′ ∈ Fq and k ∈ Kq, we see thatG23 = 〈−B

q+1
2

3 〉 and 〈tB
q−3
2

3 〉, respectively,

where

(−B
q+1
2

3 )k =

 (−1)k 0

tk − (−1)k tk

 , (tB
q−3
2

3 )k =

 tk 0

(−1)k − tk (−1)k

 .
Thus G23

∼= Zq−1 in both cases.
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A.1.3 The case p = 3 for Instance 15

In Instance 15, G1 = M = 〈C,B1〉 and G2 = (J ′)E. We can show that G1G2 =

G2G1 when p = 3, thus Condition 2.3.3 is satisfied. Observe that

G2 = {Xα,j |α ∈ Fq, j ∈ Kq} ,

Xα,j ,

 (−1)j − α α

(−1)j − tj − α tj + α

 .
When p = 3, we have 2 = −1, and thus C = X1,0 ∈ G2. It is easy to check that for

each α and j

XB1
α,j =

 (−1)j + α −α
(−1)j − tj + α tj − α

 = X−α,j ∈ G2.

Thus G1 normalizes G2. In particular, ∀X ∈ G2 and ∀Y ∈ G1, we have XY ∈ G2

and XY −1 ∈ G2, which imply XY ∈ G1G2 and Y X ∈ G2G1, respectively. Therefore

G1G2 = G2G1.

A.1.4 Intersections in Instances 12–15

Most intersections are easily obtained by comparing the formulae of the matrices

in the subgroups involved. For the intersection of M with any of JE, (J ′)E, JQ, or

(J ′)Q, we can utilize the properties below to facilitate calculation. Let ~ci(X) denote

the i-th column of a matrix X, and we have

~c1(X) + ~c2(X) =

1

1

 , ∀X ∈ JE;

~c1(X) + ~c2(X) = ±

1

1

 , ∀X ∈ (J ′)E;

~c1(X)− 2~c2(X) =

 1

−2

 , ∀X ∈ JQ;
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~c1(X)− 2~c2(X) = ±

 1

−2

 , ∀X ∈ (J ′)Q.

Thus, we need only seek elements of M which share these properties.

We also want to mention the calculation of G34 for Instances 13 and 15 when p > 3.

In Instance 13, finding G34 is equivalent to solving the following set of equations:

(−1)j − α = (−1)i + 2β

α = β

(−1)j − tj − α = 2 (ti − 2β − (−1)i)

tj + α = ti − 2β

⇐⇒



α = β

3β = (−1)j − (−1)i

ti = (−1)j

tj = (−1)i

.

From the last two equations, we can see that i and j can only be 0 or q−1
2

. If q−1
2

is

even, then (−1)
q−1
2 = 1, so i and j must both be 0, which yields that G34 = 1. If q−1

2

is odd, then i = 0 implies that j = 0, and i = q−1
2

implies that j = q−1
2

. In both cases

α = β = 0, therefore G34 = 〈−I〉. For G34 in Instance 15, we have similar equations

and the same discussion also applies.

A.2 Group Network Codes: Details

A.2.1 Code Construction

To establish the encoding and decoding process, we need an auxiliary lemma.

Lemma A.2.1. Let K1, K2 be two subgroups of G with K1 ≤ K2. Then the coset

mapping

π : G/K1 → G/K2

xK1 7→ xK2

(A.1)

is a well defined onto function, where xK1 is mapped to the unique coset in G/K2 that

contains it. Furthermore, if Λ1 is a uniform random variable on G/K1, then π(Λ1)

is uniform on G/K2.

Proof. π is well defined since xK2 = x′K2 whenever xK1 = x′K1. Note that K2 is
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partitioned by the m distinct cosets { yiK1 : 1 ≤ i ≤ m }, where m = |K2/K1| and

yi ∈ K2 for i = 1, 2, . . . ,m. Therefore, each xK2 ∈ G/K2 is also partitioned by the

m cosets { (xyi)K1 : 1 ≤ i ≤ m }, which are precisely the m preimages of xK2 under

π. Thus π(Λ1) is uniform on G/K2.

For any collection α of subgroups of G, the intersection mapping (2.1) is a bijec-

tion. Consider the collection of all source subgroups. Let

XS = { (xGs : s ∈ S) | x ∈ G } ⊆
∏
s∈S

Ys,

then we have the bijective intersection mapping ΘS : XS → G/GS . But with (R1),∣∣∏
s∈S Ys

∣∣ = |G/GS | = |XS | and so

XS =
∏
s∈S

Ys.

This means that any coset tuple (xsGs : s ∈ S) in
∏

s∈S Ys can be represented in the

form (xGs : s ∈ S) for a common x ∈ G, and the intersection of {xsGs : s ∈ S } is

equal to xGS . Therefore, we can rewrite the bijection ΘS as

ΘS :
∏
s∈S

Ys → G/GS ,

which maps a tuple to the intersection of all its cosets.

Moreover, let t be an edge or a sink node, and define

XI(t) = { (xGf : f ∈ I(t)) | x ∈ G }, GI(t) =
⋂

f∈I(t)

Gf .

Then the intersection mapping

ΘI(t) : XI(t) → G/GI(t)

is a bijection. With (R2) and (R3), we can also define coset mappings for edges and
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source/sink pairs as follows. For each edge e, since GI(e) ≤ Ge by (R2), define the

coset mapping πe as (A.1) with K1 = GI(e) and K2 = Ge. Similarly for each source s

with u ∈ D(s), since GI(u) ≤ Gs by (R3), define πu,s with K1 = GI(u) and K2 = Gs.

Now we can define the encoding and decoding functions. At each edge e, let the

encoding function be φe = πe ◦ ΘI(e). For each source s with u ∈ D(s), let the

decoding function be φu,s = πu,s ◦ΘI(u). In other words, at an edge or a sink node t,

the encoding/decoding function takes an input coset tuple (Yf : f ∈ I(t)) and first

forms the intersection of them, which is a coset of GI(t), then maps this coset to the

unique coset of Ge (or Gs, whichever is appropriate) that contains it. Such network

operations define a proper network code, since by the proposition below the decoding

functions always yield correct source symbols at each sink node.

Proposition A.2.1. Assume (R1) holds, and let the encoding and decoding functions

be defined as above. Then for some common x ∈ G, ∀s ∈ S, Ys = xGs and ∀e ∈ E,

Ye = xGe. Also for each source s with u ∈ D(s), Ys is recovered by the decoding

function φu,s.

Proof. Let the source symbols (Ys : s ∈ S) be an arbitrary tuple from
∏

s∈S Ys. Since

(R1) is true, as discussed above, for all s ∈ S, Ys = xGs with a common x ∈ G. As

G is directed and acyclic, we can define the “depth” of each node v as the length of

the longest path from a source node to v, and define the depth of an edge to be the

depth of its tail node. Note that e is always “deeper” than f if f ∈ I(e). Also if

Yf = xGf for all f ∈ I(e), then

Ye = φe(Yf : f ∈ I(e)) = xGe.

So by induction on the depths of the edges, Ye = xGe for all e ∈ E .

Furthermore, for each s ∈ S with u ∈ D(s), since Yf = xGf for all f ∈ I(u),

φu,s(Yf : f ∈ I(u)) = xGs = Ys.

Thus the source symbol Ys is successfully recovered at u.
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Remark A.2.1. Note that the encoding/decoding function for an edge or a sink node

t is only defined on XI(t), but not on the entire Cartesian product
∏

f∈I(t) Yf . This

is because for an arbitrary tuple in
∏

f∈I(t) Yf , it is possible that the intersection of

all cosets is the empty set, which is not a coset of GI(t). However, with (R1) this is

not a problem, as Proposition A.2.1 guarantees that (Yf : f ∈ I(t)) is always a tuple

in XI(t).

Remark A.2.2. From the proof above, even without (R1) these encoding and decod-

ing functions still constitute a valid network code, if the sources cooperate in such a

way that the transmit tuples are always from XS . But in this case the source random

variables are dependent.

A.2.2 The Entropy Vector

Here we analyze the global mappings of this group network code, and show that

the entropy vector is characterizable by the group G and its subgroups {Gt : t ∈
S∪E} when the sources are independent and uniform. First we give another auxiliary

lemma.

Lemma A.2.2. Let K ≤ G and let Gi, i = 1, . . . , n, be subgroups of G containing K.

For each i let πi be the coset mapping defined as (A.1) with K1 = K and K2 = Gi.

Let ΛK be a uniform random variable on G/K, and define Xi = πi(ΛK) for each

i. Then the entropy vector of {X1, X2, . . . , Xn} is exactly the group characterizable

vector induced by G and {G1, G2, . . . , Gn}.

Proof. For each nonempty subset α ⊆ N , since K ≤ Gα, we can define the coset

mapping πα with K and Gα. As in Section 2.1.1, the alphabet of Xα is still

Xα = { (xGi : i ∈ α) | x ∈ G },

and the intersection mapping Θα is a bijection. Also Θα(Xα) = πα(ΛK), which is
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uniform on G/Gα by Lemma A.2.1. So the joint entropy

H(Xα) = H(Θα(Xα)) = log
|G|
|Gα|

and the lemma follows.

For each s ∈ S define the coset mapping π′s as (A.1) with K1 = GS and K2 = Gs.

For every edge e we can similarly define a new coset mapping π′e with K1 = GS and

K2 = Ge, since according to the following proposition, GS ≤ Ge.

Proposition A.2.2. If (R2) is satisfied, then ∀e ∈ E, GS ≤ Ge.

Proof. The proposition is trivially true if e is emitted from a source node. Also if

GS ≤ Gf for all f ∈ I(e), then by (R2) we have GS ≤ Ge. Similar to Proposi-

tion A.2.1, by induction on the depths of the edges the proof follows.

Proposition A.2.3. ∀e ∈ E, the global mapping at e for the above group network

code is ϕe = π′e ◦ΘS . In other words, ϕe first forms the intersection of all the source

cosets to obtain a coset of GS , and then maps this coset to the unique coset of Ge

containing it.

Proof. Assume the source symbols (Ys : s ∈ S) are transmitted and let

ΛS = ΘS(Ys : s ∈ S).

Then ΛS = xGS for some x ∈ G, and Ys = xGs = π′s(ΛS) for all s ∈ S. By

Proposition A.2.1, Ye = xGe = π′e(ΛS), so ϕe = π′e ◦ΘS .

Let the source random variables {Ys : s ∈ S} be independent and uniformly

distributed, so the joint distribution is uniform on
∏

s∈S Ys. Let ΛS = ΘS(Ys : s ∈ S),

then ΛS is uniform on G/GS as ΘS is bijective. From Proposition A.2.3, ∀t ∈ S ∪ E ,

Yt = π′t(ΛS), and so by Lemma A.2.2, the entropy vector for {Yt : t ∈ S ∪ E} is

characterizable by the group G and its subgroups {Gt : t ∈ S ∪ E}.
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A.2.3 Inclusion of Linear Network Codes

In this section we carry over the group theory notations in Section 2.2 to vector

spaces, but with additive notation. For example, the left coset is now written as

v +W for a vector v and a subspace W . Further, we use ⊕ to denote the direct sum

of vector spaces. In the following we show that for each linear network code, there

exists an equivalent group network code, with essentially the same network operations

and hence the same encoding/decoding results.

Consider a linear network code C over a finite field F . For each t ∈ S ∪ E , the

alphabet Yt is a finite dimensional vector space over F . Let v denote the concatenation

of all the source vectors (Ys : s ∈ S), then v is a vector in

V , ⊕s∈S Us,

where Us , Ys. Then for each edge e, the global mapping ϕe is a linear transformation

from V to Ye, whose range is denoted by Ue. Also for each source s, let

ϕs : V → Us

be the linear projection that maps v ∈ V to its s-th section. Thus ∀t ∈ S ∪ E , we

can write Yt = ϕt(v). Let Wt be the null space of ϕt, then by the First Isomorphism

Theorem [25],

ψt : v +Wt 7→ ϕt(v)

is a vector space isomorphism between the quotient space V/Wt and Ut.

Let t be an edge or a sink node. If Yf = 0 for all f ∈ I(t), then Yt = 0 as the

encoding/decoding functions are linear. Thus
⋂
f∈I(t) Wf ≤ Wt. Further, for each

source s

Ws = { v ∈ V | s-th section of v is 0 } ∼= ⊕r∈S\{s} Ur,
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Figure A.1: Two network codes on the the butterfly network. (a) A linear network
code; (b) the subgroup assignment for the corresponding group network code; (c) the
transmitted symbols in the group network code.

so
⋂
s∈SWs = 0. Since V/Ws

∼= Us, we have

∏
s∈S

|V/Ws| = |V |.

Let G = V , Gt = Wt for all t ∈ S ∪ E . As V is a finite dimensional vector space over

a finite field, G is a finite group. It is straightforward to check that the requirements

(R1)–(R3) are all satisfied, so we can define a group network code C ′ with these

groups.

This network code is equivalent to C, since {ψt : t ∈ S ∪ E} provides a set of

bijections between their codewords at each source/edge, and these bijections respect

the encoding/decoding operations. In particular, assume in C that the source vectors

yield some v ∈ V , and so Yt = ϕt(v) is transmitted at each source/edge t. Then

with ψt the corresponding symbol for C ′ is v + Wt, which is consistent with the

encoding/decoding result of C ′ at each edge/sink node by Proposition A.2.1.

For example, Figure A.1 demonstrates a linear network code over Fq for the well-

known butterfly network (Figure A.1-(a)), and the corresponding group network code

(Figure A.1-(b),(c)). Here for the linear network code, we have

V = F2
q
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U1 = U2 = Ue34 = Fq

W1 = { (0, x) : x ∈ Fq }

W2 = { (y, 0) : y ∈ Fq }

We34 = { (z,−z) : z ∈ Fq }.

If we set G = V , G1 = W1, G2 = W2, and G3 = We34 , then the resulting group

network code is equivalent to the original linear one. In particular, for the group

network code, the transmitted symbols are

Y1 = { (a, x) : x ∈ Fq }

Y2 = { (y, b) : y ∈ Fq }

Y3 = { (a+ z, b− z) : z ∈ Fq }.
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Appendix B

Appendices for Part II: A Theory
of Stationarity and Ergodicity

To apply the Shannon-McMillan-Breiman theorem in our channel models, we need

to derive the required stationarity and ergodicity conditions. For that purpose we

introduce the theory of stationarity and ergodicity for Markov channels, mostly es-

tablished by [48,49] (also see Gray’s books [62,63]). It turns out, however, that some

results in Gray et al. [49] are inaccurate and/or not properly proved; thus before

making use of them we must fix these issues first. In addition, from the existing

theory we want to develop some extended results tailored for our own purposes, espe-

cially for the application in the finite state channels derived from energy harvesting

systems. In this appendix we first present the necessary background and preliminary

results, then state the relevant theory of Markov channels from the literature, correct

or supplement it if necessary, and in the meantime derive some extended or addi-

tional stationarity/ergodicity results of our own. Moreover, for our application we

study the special case of a finite state channel with a finite-order Markov input, and

also obtain some stationarity and ergodicity results. Following that we present the

Shannon-McMillan-Breiman theorem in the setting of an AMS ergodic process, and

then develop some specific results for the models used in this work.

Throughout this section we follow the notations in [48,49], which uses a convention

different from the main text. At first glance, it might cause confusion; however, we

wish to make the notational conventions consistent with the related literature, to
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make it more convenient for the readers to have a coherent understanding of the

related material.

B.1 Preliminaries

We gather the most frequently used notations, concepts and preliminary results

here, and refer the interested readers to the original papers [48,49] for the rest. Most

of the terminology and basic results can also be found in Gray’s books [62,63].

B.1.1 General Properties

Let (Ω,F ) be a measurable space and T : Ω→ Ω be a measurable mapping on it.

Define a probability measure µ on (Ω,F ) to be stationary1 if

µ(T−1F ) = µ(F ), ∀F ∈ F .

For a probability measure µ on (Ω,F ), if

lim
n→∞

1

n

n−1∑
i=0

µ(T−iF )

exists for all F ∈ F , we say µ is asymptotically mean stationary (AMS). The above

equation also defines a stationary probability measure on (Ω,F ), which is called the

stationary mean of µ and is usually denoted by µ̄. Define an event F to be invariant

if T−1F = F . µ is ergodic if µ(F ) is either 0 or 1 for all invariant events F . Note

that an AMS measure is ergodic iff its stationary mean is [62, Lemma 6.7.1].

We say a dynamical system (Ω,F , µ, T ) is stationary, AMS, or ergodic if the

measure µ is. The following lemmas provide some useful results regarding the AMS

property of a dynamical system (see [62, Sec. 6.2–6.3]):

1This and many subsequent notions are defined with respect to T . But for conciseness we usually
omit this modifying phrase.
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Lemma B.1.1. (Ω,F , µ, T ) is AMS iff there exists a probability measure µ̄ on (Ω,F )

which is stationary and which agrees with µ on each invariant event.

Lemma B.1.2. (Ω,F , µ, T ) is AMS if there exists a stationary probability measure

µ̄ on (Ω,F ) such that for any invariant F ∈ F , µ(F ) = 0 whenever µ̄(F ) = 0.

B.1.2 Sources, Channels, and Hookups

The dynamical systems we are interested in are sources and source-channel hookups,

both of which can be either two-sided or one-sided. Let (A,A) be a measurable space,

on which we want to define the one- and two-sided sequence spaces and sources. Let

(A∞1 ,A
∞
1 ) denote the measurable space of one-side sequences from alphabet A, whose

sample space is composed of all sequences (x1, x2, · · · ) from A and whose σ-field A∞1

is the usual product σ-field of A∞1 . Let T be the left shift on A∞1 , i.e.,

T : (x1, x2, · · · ) 7→ (x2, x3, · · · ),

which is a measurable map. A dynamical system (A∞1 ,A
∞
1 , µ, T ) of this form is

called a one-sided source, or process, and is abbreviated to [A, µ]. A two-sided source

(A∞,A∞, µ, T ) is defined analogously: the sample space A∞ consists of all two-sided

sequences (· · · , x−1, x0, x1, · · · ) from A and the σ-field A∞1 is the corresponding prod-

uct σ-field. Again, T is the left shift, which maps a sequence x = {xi}∞i=−∞ ∈ A∞ to

Tx ∈ A∞, where

(Tx)i = xi+1, ∀i ∈ Z.

Note that in this case T has an inverse (the right shift), and both T and T−1 are

measurable.

The same notation T is used for the left shifts on both spaces, but context should

make clear what the underlying space is. Furthermore, for unified treatment of both

cases, let (ΣA,ΣA) denote the one- or two-sided sequence space of (A,A), and let I

denote the time index set, which equals Z+ , {1, 2, · · · } or Z for the one- or two-sided

cases, respectively. Recall that the basic events of the sequence spaces are the (finite
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dimensional) rectangles, also called the cylinder sets, which are subsets F of the form

F = {x ∈ ΣA : xi ∈ Fi, ∀i ∈ J } ,

where J is a finite subset of I and Fi ∈ A for all i ∈ J . The sets Fi, i ∈ J are

called the coordinate events. When Fi is a singleton for each i ∈ J , F is called a thin

cylinder.

A channel [A, ν,B] with input alphabet A and output alphabet B is defined by

a family of probability measures {νx : x ∈ ΣA} on (ΣB,ΣB) such that for each event

F ∈ ΣB, the map

x 7→ νx(F )

from (ΣA,ΣA) into [0, 1] with its Borel σ-field is measurable. A channel is called

one- or two-sided if the underlying sequence space is. Given a source [A, µ] and

a channel [A, ν,B], the source-channel hookup, or the input-output process, is the

process [A×B, µν], where the measure µν is defined by

µν(F ) =

∫
ΣA

νx(Fx) dµ(x), ∀F ∈ ΣA×B,

with Fx being the section of F at x:

Fx , {y ∈ ΣB | (x, y) ∈ F}.

The corresponding left shift for this process is still denoted by T , with

T (x, y) = (Tx, Ty), ∀(x, y) ∈ ΣA × ΣB.

Sometimes when the alphabets are understood we simply denote the above source,

channel, and their hookup by the corresponding measures µ, ν, and µν, respectively.

As usual, the random processes corresponding to the source and hookup can be

denoted by their respective sequences of coordinate random variables {Xn}n∈I and
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{(Xn, Yn)}n∈I , where for any n we define

Xn : ΣA → A, x 7→ xn

Yn : ΣB → B, y 7→ yn.

Sometimes we also drop the subscript n ∈ I when there is no confusion. We say these

random processes are stationary, AMS, or ergodic if the underlying dynamic systems

are. Furthermore, for convenience we define the projection map π between the one-

and two-sided spaces on A as

π : A∞ → A∞1

x 7→ x∞1

,

where x = {xi}∞i=−∞ and

x∞1 , (x1, x2, · · · ).

Similarly define the projection maps for the alphabets B and A× B, which are still

denoted by π. It is easy to verify that π is always measurable and stationary, namely,

πT = Tπ.

A channel [A, ν,B] is said to be stationary if ∀x ∈ ΣA, ∀F ∈ ΣB

νTx(F ) = νx(T
−1F ).

The term “stationary” is justified by [63, Lemma 9.3.1], which shows that connecting

a stationary source to a stationary channel yields a stationary input-output process.

The channel is said to be AMS if, for every AMS source, the source-channel hookup

is AMS. An AMS channel ν is ergodic if the hookup µν is ergodic whenever µ is AMS

and ergodic.

A simple example of stationary channels is the family of stationary memoryless

channels2. Every channel [A, ν,B] in this family is associated with a collection of

probability measures {qa : a ∈ A} on (B,B), such that for each output rectangle

2In [63] such channels are simply called memoryless channels.
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F ∈ ΣB,

νx(F ) =
∏
i∈J

qxi(Fi),

where J is the index set and Fi, i ∈ J are the coordinate events of F . When A and

B are finite sets, ν is called a discrete memoryless channel (DMC).

B.1.3 Markov Channels and Finite State Channels

Fix the input and output measurable spaces (A,A) and (B,B), where (A,A) is

arbitrary, but B is a finite set with cardinality K and B consists of all subsets of

B. Let P denote the space of all K ×K stochastic matrices P , whose (i, j)-th entry

is denoted by P (i, j) for 1 ≤ i, j ≤ K. Using the Euclidean metric on P we can

construct its Borel σ-field to form a measurable space, which in turn induces a one-

or two-sided sequence space (ΣP ,ΣP ). Given a sequence P ∈ ΣP , let M(P ) denote

the set of all probability measures on (ΣB,ΣB) with respect to which Ym, Ym+1, · · ·
forms a (non-homogeneous) Markov chain with transition matrices Pm, Pm+1, · · · for

any integer m ∈ I. That is, λ ∈M(P ) iff ∀m ∈ I, ∀n > m, and ∀ym, · · · , yn ∈ B,

λ(Ym = ym, · · · , Yn = yn) = λ(Ym = ym)
n−1∏
i=m

Pi(yi, yi+1).

In the one-sided case only m = 1 need be verified.

As before we say a map φ : ΣA → ΣP is stationary if φT = Tφ. A channel [A, ν,B]

is called Markov if there exists a stationary measurable map φ : ΣA → ΣP such that

νx ∈M (φ(x)), ∀x ∈ ΣA.

The major results proved in [48] by Kieffer and Rahe for Markov channels is summa-

rized in the following theorem:

Theorem B.1.1. Every one- and two-sided Markov channel is AMS.

Now let A also be finite and let {Pa : a ∈ A} ⊂ P . If a one-sided Markov channel
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[A, ν,B] satisfies

φ(x)n , [φ(x)]n = Pxn , ∀n > 0,

then ν is called a finite state channel. In this case, the matrix produced by φ at time n

depends only on the input at that time, xn. This definition is equivalent to Gallager’s

finite state channel (FSC) defined in [2], in terms of channel transitions. In fact, for

the latter definition we have finite input, output, and state alphabets with respective

symbols Xn, Yn, and Sn that fulfill the conditional probability requirement3

Pr

 Yn = yn,

Sn+1 = sn+1

∣∣∣∣∣∣∣∣∣
Yi = yi, 0 < i < n;

Sj = sj, 0 < j ≤ n;

Xk = xk, k > 0

 = p(ynsn+1 |xnsn). (B.1)

In other words, conditioned on (Xn, Sn), the pair (Yn, Sn+1) is independent of all prior

inputs, outputs, and states4. If we define the new output Y ′n of the channel as the

output-state pair (Yn−1, Sn) with

Pxn
(
y′n, y

′
n+1

)
= Pxn ( (yn−1, sn), (yn, sn+1) ) , p(ynsn+1 |xnsn),

then Gallager’s model fits in the definition here. The other direction is obvious if

we define Sn = Yn. In light of their equivalence, we do not explicitly distinguish the

two definitions in this appendix. Most of the time we will find out that it is more

convenient to work with the first one when studying the general theory, while the

second one provides more flexibility when dealing with specific channel models.

3As in the main text, the state index is increased by 1 compared to the original definition in [2].
4Actually from (B.1), (Yn, Sn+1) is also conditionally independent of the future inputs. In the

definition of FSC in [2] this requirement is not explicitly stated, however, it is indeed implicitly
assumed when computing the block conditional probability (equation (4.6.1) in [2]). This subtle
requirement is reasonable: since in FSC the input symbol does not depend on any past state or
output information, (Yn, Sn+1) should have no dependence on future inputs either (see Section B.3.3
for more discussion). Also, it is indeed satisfied by the FSC models we study in Chapter 5.
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B.1.4 Constructions by Kieffer and Rahe

To prove Theorem B.1.1, Keiffer and Rahe establish some intermediate source and

channel constructions in [48], which we will need for the relevant ergodicity results

and are summarized below.

Let [A, µ] be an AMS source and [A, ν,B] be a Markov channel, with φ being the

corresponding stationary map. Since µ is AMS, by Lemma B.1.1 there is a stationary

measure µ̄ on (ΣA,ΣA) that agrees with µ on each invariant event in ΣA. (µ̄ can be

simply taken to be the stationary mean of µ.) Define a two-sided stationary source

[A, µ̄∗] as follows: if the original source is two-sided, then µ̄∗ = µ̄; otherwise let µ̄∗ be

the two-sided stationary extension5 of the one-sided measure µ̄, which is specified by

µ̄∗( (Xm, Xm+1, · · · ) ∈ F ) = µ̄(F ), ∀m ∈ Z, ∀F ∈ A∞1 .

In particular, considering m = 1 we have

µ̄∗(π−1F ) = µ̄(F ).

Also, define a two-sided stationary map φ′ by setting φ′ = φ if the original system is

two-sided, and defining

φ′(x)i = φ(x∞i )1 ∀i ∈ Z, ∀x ∈ A∞

otherwise, where x∞i , (xi, xi+1, · · · ). In particular, for the latter case

φ′(x)∞1 = φ(x∞1 ) = φ(π(x)).

Furthermore, [48] constructs a measurable subset R ⊂ P∞ and proves that the mea-

surable set

R′ = (φ′)−1(R) = {x ∈ A∞ : φ′(x) ∈ R}
5Such an extension is always possible and unique by the Kolmogorov extension theorem if the

measurable space (A,A) is standard, which is true for countable or Euclidean spaces. Interested
readers can consult [62, Ch. 2,3] for details.
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is invariant and has probability 1 under any stationary probability measure on (A∞,A∞),

in particular

µ̄∗(R′) = 1.

With these constructions Kieffer and Rahe define a two-sided channel [A, ν̂, B]

which has the following properties:

1) ν̂ is stationary and hence so is the input-output process µ̄∗ν̂.

2) ν̂x ∈M(φ′(x)) for x ∈ R′, so ν̂ has the same transition structure as ν, µ̄∗-a.e.

Besides, if the original system is two-sided, then µν is absolutely continuous w.r.t.

µ̄∗ν̂. In particular, for any invariant event F ∈ A∞ × B∞, µν(F ) = 0 whenever

µ̄∗ν̂(F ) = 0, whereas if ν is one-sided, [48] defines the “one-sided restriction” of the

two-sided measure µ̄∗ν̂ as

(µ̄∗ν̂)′ , (µ̄∗ν̂)π−1,

which is also stationary since π is. Moreover, if F ∈ A∞1 × B∞1 is invariant and

(µ̄∗ν̂)′(F ) = 0, then also µν(F ) = 0. Therefore in both cases µν is AMS by

Lemma B.1.2, and so is ν.

Remark B.1.1. In [49] property 2) of ν̂ is assumed to be true for all x ∈ A∞, which

is not the case in the original construction of [48]. This misrepresentation is one

source of inaccuracy for Lemma 2 and the proof of Theorem 2 in [49], which we will

fix in later sections.

From these facts we can also obtain the following two results regarding the er-

godicity of certain related processes, which are indispensable in current approaches

for proving ergodicity of Markov channels. Although their proofs are not difficult

and [48] uses these results without explicitly proving them, we provide the proofs

below for the sake of clarity and completeness.

Lemma B.1.3. If µ is ergodic, then so is the auxiliary measure µ̄∗ for both one- and

two-sided systems.

Proof. By construction µ̄ is ergodic iff µ is, so for the two-sided case we are done. For

the one-sided case, by the generating field structure of A∞ and [62, Lemma 6.7.4] it
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is enough to prove that

lim
n→∞

1

n

n−1∑
i=0

µ̄∗(T−iF ∩G) = µ̄∗(F )µ̄∗(G) (B.2)

for all rectangles F,G ∈ A∞ when µ is ergodic. But by the stationarity of µ̄∗, without

loss of generality we can assume the relevant coordinates for the rectangles F and

G are positive. Thus there exists rectangles F ′, G′ ∈ A∞1 such that F = π−1F ′ and

G = π−1G′. Now by the relation of µ̄ and µ̄∗ and the stationarity of π, (B.2) becomes

lim
n→∞

1

n

n−1∑
i=0

µ̄(T−iF ′ ∩G′) = µ̄(F ′)µ̄(G′),

which is true by [62, Lemma 6.7.3] when µ̄ is ergodic.

Lemma B.1.4. If the auxiliary measure µ̄∗ν̂ is ergodic, then so is µν for both one-

and two-sided systems.

Proof. Observe that the complement of an invariant event is also invariant. In the

two-sided case, if µ̄∗ν̂(F ) = 1 for an invariant F , then µ̄∗ν̂(F c) = 0 and so µν(F c) = 0,

and thus µν(F ) = 1. Hence ergodicity of µ̄∗ν̂ implies ergodicity of µν. For the one-

sided case, let F ∈ A∞1 ×B∞1 be invariant, then π−1F ∈ A∞ ×B∞ is also invariant

as π is stationary. Assume µ̄∗ν̂ is ergodic, then

(µ̄∗ν̂)′(F ) = [(µ̄∗ν̂)π−1](F ) = µ̄∗ν̂(π−1F ),

which is either 1 or 0. Again by the same argument, µν(F ) = 1 or 0 and hence µν is

also ergodic.

B.2 Ergodicity Results for Markov Channels

We are now ready to present the relevant results in [49], together with our com-

ments, amendments, and corrections. In the meantime, we will develop some supple-

mentary or extended results to apply in our own work.
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B.2.1 Weak Ergodicity of Markov Channels

Assume the same setting as the previous section, where we have an AMS source

[A, µ] and a Markov channel [A, ν,B] with the corresponding auxiliary constructions.

For any m ∈ I, ∀n > m and ∀x ∈ ΣA, we denote the output transition probability

matrix for ν from timem to n byHmn(x) = Hm,n(x). In other words, for 1 ≤ j, k ≤ K,

[Hmn(x)]jk , νx(Yn = bk |Ym = bj),

where we fix an ordered enumeration {b1, b2, · · · , bK} of B. Since νx ∈M (φ(x)),

Hmn(x) =
n−1∏
i=m

φ(x)i, ∀x ∈ ΣA. (B.3)

Similarly, for the auxiliary two-sided channel ν̂, for any m < n ∈ Z and ∀x ∈ A∞ we

define the matrix H∗mn(x) = H∗m,n(x) by

[H∗mn(x)]jk , ν̂x(Yn = bk |Ym = bj)

for 1 ≤ j, k ≤ K. Since ν̂x ∈M (φ′(x)) on R′, we have

H∗mn(x) =
n−1∏
i=m

φ′(x)i, ∀x ∈ R′. (B.4)

Thus if ν is two-sided, then φ′ = φ and so

H∗mn(x) = Hmn(x), ∀x ∈ R′, ∀n ≥ m ∈ Z, (B.5)

whereas if ν is one-sided, as φ′(x)∞1 = φ(π(x)) for all x ∈ A∞,

H∗1n(x) = H1n(π(x)), ∀x ∈ R′, ∀n ≥ 1. (B.6)

Definition B.2.1. Let Hmn denote the transition matrix from time m to n for a

non-homogeneous Markov chain with K states, for 0 < m < n. The Markov chain is
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called weakly ergodic if

lim
n→∞

|(Hmn)ij − (Hmn)kj| = 0, ∀m > 0, ∀1 ≤ i, j, k ≤ K. (B.7)

A Markov channel ν is weakly ergodic if for all x ∈ ΣA,

lim
n→∞

|[Hmn(x)]ij − [Hmn(x)]kj| = 0, ∀m ∈ I, ∀1 ≤ i, j, k ≤ K. (B.8)

We also say it is weakly ergodic on a set F if (B.8) holds for all x ∈ F . Furthermore,

ν is called weakly ergodic µ-a.e. for a probability measure µ if it is weakly ergodic on

a set with µ-measure 1.

Since φ is stationary, by (B.3)

Hmn(x) = H1,(n−m+1)(T
m−1x).

This relation is true for both one- and two-sided channels for all m ∈ I, noting that

in the latter case T is invertible and so Tm−1x is always a single point. Hence we

only need to verify (B.8) for the special case m = 1 to prove the weak ergodicity of

a Markov channel. Similarly, for the almost everywhere definition we have

Lemma B.2.1 (Lemma 1 in [49]). Suppose µ is a stationary source. Then a Markov

channel ν is weakly ergodic µ-a.e. iff for m = 1, (B.8) holds with µ-probability 1.

Given a K ×K stochastic matrix P , define

δ(P ) = max
s,t

∑
1≤k≤K

(Ptk − Psk)+,

where (a)+ , max{0, a}. It is the maximum total variation distances between the

rows of P , with 0 ≤ δ(P ) ≤ 1. P is called scrambling if δ(P ) < 1, which holds

iff for any two rows i and k there is at least one column j for which both Pij > 0

and Pkj > 0; or equivalently, no two rows of P are orthogonal. Moreover, for any
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stochastic matrices P and Q,

δ(PQ) ≤ δ(P )δ(Q). (B.9)

Observe that for any fixed m, (B.7) is true iff

lim
n→∞

δ(Hmn) = 0.

This gives an equivalent definition for the weak ergodicity of a non-homogeneous

Markov chain. By the same token we have the following lemma. Its first part comes

from [49, Lemma 2] with the issue of ν̂ (metioned in Remark B.1.1) fixed, while the

second part comprises two statements supplemented by ourselves.

Lemma B.2.2 (Lemma 2 in [49], amended for R′ and extended). A Markov channel

ν is weakly ergodic iff

lim
n→∞

δ(H1n(x)) = 0, ∀x ∈ ΣA.

In this case, the induced channel ν̂ is weakly ergodic on R′. Given a source [A, µ], a

Markov channel ν is weakly ergodic µ-a.e. iff the event

F ,
{
x ∈ ΣA : lim

n→∞
δ(Hmn(x)) = 0, ∀m ∈ I

}
has µ-probability 1. If the µ is stationary, then only m = 1 need be considered.

Furthermore, if µ is AMS, then ν is weakly ergodic µ-a.e. iff µ̄-a.e., in which case ν̂

is also weakly ergodic on a subset of R′ with µ̄∗-probability 1.

Proof. The first statement follows from the observation above. The second will be

considered together with the last one at the end of this proof. The µ-a.e. condition

follows again from the previous observation, and the statement for stationary µ is a

consequence of Lemma B.2.1.
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Next for the original channel define

Fm =
{
x ∈ ΣA : lim

n→∞
δ(Hmn(x)) = 0

}
, ∀m ∈ I.

Note that F =
⋂
m∈I Fm, which we will prove to be invariant. As shown before,

Hmn(x) = H1,(n−m+1)(T
m−1x) for all m, hence Fm = T−m+1F1 and

F =
⋂
m∈I

T−m+1F1.

For the two-sided case I = Z and so T−1F = F . For the one-sided case, however,

T−1F =
⋂
m≥1

T−mF1 =
⋂
m≥1

Fm+1.

Note that for a Markov chain with transition matrices {Hmn}m<n,

Hmn = Hm,(m+1)H(m+1),n. (B.10)

By (B.9) and the fact that δ(·) ≤ 1,

δ(Hmn) ≤ δ(Hm,(m+1)) · δ(H(m+1),n) ≤ δ(H(m+1),n). (B.11)

Therefore, limn→∞ δ(H(m+1),n(x)) = 0 implies that limn→∞ δ(Hmn(x)) = 0, hence

Fm+1 ⊂ Fm, and so for the one-sided channel

F =
⋂
m≥1

Fm =
⋂
m≥2

Fm = T−1F.

Now assume µ is AMS. Since F is always invariant, µ(F ) = µ̄(F ) by the definition of

µ̄. So ν is weakly ergodic µ-a.e. iff µ̄-a.e..

Finally let us consider the two-sided channel ν̂. Define

F ∗m =
{
x ∈ A∞ : lim

n→∞
δ(H∗mn(x)) = 0

}
, ∀m ∈ Z
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and set F ∗ =
⋂
m∈Z F

∗
m. Then by definition ν̂ is weakly ergodic on F ∗ ∩R′.

Assume ν is two-sided. By virtue of (B.5), F ∗m ∩R′ = Fm ∩R′ and so

F ∗ ∩R′ = F ∩R′.

If ν is weakly ergodic, then F = A∞ and ν̂ is weakly ergodic on R′. If ν is weakly

ergodic µ-a.e. for an AMS source µ, then as µ̄∗ = µ̄,

µ̄∗(F ) = µ̄(F ) = µ(F ) = 1.

As we already have µ̄∗(R′) = 1, F ∩R′ also has µ̄∗-probability 1, on which ν̂ is weakly

ergodic.

When ν is one-sided, by the stationarity of φ′ and (B.4),

H∗mn(x) = H∗1,(n−m+1)(T
m−1x), ∀x ∈ R′.

Then considering the invariance of R′,

F ∗m ∩R′ =
{
x ∈ A∞ : lim

n→∞
δ(H∗1n(Tm−1x)) = 0

}
∩R′

= T−m+1F ∗1 ∩R′

= T−m+1(F ∗1 ∩R′).

Furthermore, according to (B.6),

F ∗1 ∩R′ =
{
x ∈ A∞ : lim

n→∞
δ[H1n(π(x)) ] = 0

}
∩R′

= π−1F1 ∩R′.

If ν is weakly ergodic, then F1 = A∞1 and π−1F1 = A∞. Hence F ∗m ∩R′ = R′ and so

F ∗ ∩R′ = R′,
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on which ν̂ is weakly ergodic. If ν is weakly ergodic µ-a.e. for an AMS source

µ, then as µ̄(F ) = µ(F ) = 1 and F ⊆ F1, we also have µ̄(F1) = 1. Now since

µ̄∗(π−1F1) = µ̄(F1) by construction, also µ̄∗(R′) = 1, we have µ̄∗(F ∗1 ∩R′) = 1 and so

µ̄∗(F ∗m ∩R′) = 1

by the stationarity of µ̄∗. Hence the countable intersection F ∗ ∩ R′ also has µ̄∗-

probability 1, on which ν̂ is weakly ergodic.

The first main result in [49] provides an alternative characterization of a.e. weakly

Markov channels. Let E[ · ] denote expectation, i.e., the integration w.r.t. the corre-

sponding measure.

Theorem B.2.1 (Theorem 1 in [49]). A necessary condition for a Markov channel ν

to be weakly ergodic µ-a.e. for a stationary measure µ is that there exists an N such

that

E[ ln δ(H1N(X)) ] < 0. (B.12)

A sufficient condition for ν to be weakly ergodic µ-a.e. for a stationary and ergodic

measure µ is that there exists an N such that (B.12) holds.

Gray et al. further derive three corollaries of this theorem in [49]. However, all

of them are inaccurate in that they all require an additional condition to hold: the

source µ need be ergodic, apart from being stationary. That is because essentially the

proofs all need to use the sufficient condition of the theorem. Below we state these

corollaries as lemmas, together with the corrections and some extended results.

Lemma B.2.3 (Corollary 1 in [49], corrected and amended). Given a Markov channel

ν and a stationary ergodic source µ the following conditions are equivalent.

a) The channel is weakly ergodic µ-a.e..

b) For µ-a.e. each x, ∃n such that no two rows of H1n(x) are orthogonal; or

equivalently, H1n(x) is scrambling, i.e., δ(H1n(x)) < 1.

c) The channel has the “positive column property” µ-a.e.; that is, for µ-a.e. each

x there is an n for which H1n(x) has a positive column.
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Proof. The proof provided in [49] is mostly correct, except that the result that b)

implies a) does require the sufficient condition of Theorem B.2.1. To prove that result,

assume b) is true but a) is false. Then E[ ln δ(H1n(X)) ] = 0 for all n, otherwise by

the sufficient condition ν is indeed weakly ergodic µ-a.e.. As ln δ(·) ≤ 0, for each n we

must have ln δ(H1n(x)) = 0 on a set Fn with µ-probability 1. Thus the intersection⋂
n>1 Fn also has µ-probability 1, on which δ(H1n(x)) = 1 for all n. As a result, the

set

E ,
( ⋂
n>1

Fn

)c
= {x ∈ ΣA : ∃n > 1 s.t. δ(H1n(x)) < 1 }

is null, i.e., µ(E) = 0. This is a contradiction, since µ(E) = 1 by b).

From the proof above, the contradiction still exists as long as E—the set on which

the requirement for b) holds—has a positive µ-probability. Also, for each point x the

requirement for b) is implied by that of c). Hence we can relax the conditions b) and

c), to only requiring them to hold on a set with positive µ-probability, and the lemma

is still correct. However, actually this is not a true relaxation, in view of our next

lemma.

Lemma B.2.4. Let µ be stationary and ergodic. The corresponding requirement

for each condition of Lemma B.2.3 holds µ-a.e. iff it holds on a set of positive µ-

probability.

Proof. First consider condition a). The event F defined in Lemma B.2.2 is exactly

the set on which the channel is weakly ergodic. Since the proof of that lemma shows

that F is invariant, µ(F ) is either 0 or 1 as µ is ergodic. Therefore µ(F ) > 0 iff

µ(F ) = 1.

Next for condition b), let F denote the set on which the corresponding requirement

holds, i.e.,

F , {x ∈ ΣA : ∃n > 1 s.t. δ(H1n(x)) < 1 } .

Assume x ∈ T−1F , then there is an n such that δ(H1n(Tx)) < 1. By (B.3) and the
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stationarity of φ, this is equivalent to δ(H2,(n+1)(x)) < 1. But by (B.11)

δ(H1,(n+1)(x)) ≤ δ(H2,(n+1)(x)) < 1,

we have x ∈ F and so T−1F ⊂ F .

As a further consequence,

F ⊇ T−1F ⊇ T−2F ⊇ · · ·

while µ(T−mF ) = µ(F ) for all m > 0, by the stationarity of µ. Define

E =
⋂
m≥0

T−mF,

then T−mF ↓ E and µ(E) = limm→∞ µ(T−mF ) = µ(F ) by continuity of measures.

Moreover, it is easy to check that T−1E = E, so E is an invariant set. Since µ is

ergodic, µ(E) is either 0 or 1 and so is µ(F ). Therefore if µ(F ) > 0, then µ(F ) = 1.

Finally for condition c), similarly define F as the set on which the requirement

of c) holds, i.e., x ∈ F iff ∃n such that H1n(x) has a positive column. Assume

x ∈ T−1F , then there is an n such that H1n(Tx) = H2,(n+1)(x) has a positive column.

But H1,(n+1)(x) also has a positive column as by (B.10)

H1,(n+1)(x) = H1,2(x)H2,(n+1)(x),

all of which are stochastic matrices. Therefore x ∈ F and T−1F ⊂ F . By the previous

paragraph again, µ(F ) > 0 iff µ(F ) = 1.

Furthermore, note that for both conditions b) and c), the corresponding properties

only need to hold on a finite segment of a sequence. Combining this observation with

the definition of finite state channel, we have the following corollary.

Corollary B.2.1. Let µ be a stationary ergodic source and ν be a Markov channel.

For either condition b) or c) of Lemma B.2.3, if there exists a finite dimensional
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rectangle F possessing positive µ-probability such that the corresponding requirement

holds for all x ∈ F , then ν is weakly ergodic µ-a.e. In particular, when ν is a finite

state channel and F is a thin cylinder, we have a specific result: let (a1, · · · , an) ∈ An,

if

1) µ(X1 = a1, · · · , Xn = an) > 0,

2)
∏n

i=1 Pai is scrambling, or has a positive column,

then ν is weakly ergodic µ-a.e.

Proof. The first statement follows from the two lemmas above. For a finite state

channel ν, let F be the thin cylinder with coordinate events Fi = {ai} for 1 ≤ i ≤ n.

Then by (B.3)

H1,(n+1)(x) =
n∏
i=1

φ(x)i =
n∏
i=1

Pai , ∀x ∈ F.

Hence the second statement holds as a special case of the first one.

The second corollary of Theorem B.2.1 deals with Gallager’s concept of indecom-

posable finite state channels [2], which is generalized to all Markov channels in [49]

as follows.

Definition B.2.2. A Markov channel ν is indecomposable in the Gallager sense6 if

for every ε > 0 there is an N such that for all n ≥ N

|[H1n(x)]ij − [H1n(x)]kj| < ε, ∀x ∈ ΣA, ∀1 ≤ i, j, k ≤ K.

Remark B.2.1. For a Markov channel both the indecomposability in the Gallager

sense and the weak ergodicity require that asymptotically the rows of the transition

matrix become more and more alike. However, the former requires uniform conver-

gence for all input sequences x while the latter does not.

If a Markov channel ν is indecomposable in the Gallager sense, then ν has the

strong positive column property, that is, there is an n such that H1n(x) has a positive

6In the main text we only use the term indecomposability in the context of an FSC and it refers
exclusively to this definition.
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column for every x. If ν is a finite state channel, then [2] shows that the relation is

indeed if and only if. Since obviously strong positive column property implies positive

column property, by Lemma B.2.3 we have the following lemma.

Lemma B.2.5 (Corollary 2 in [49], corrected). A sufficient condition for a Markov

channel to be weakly ergodic µ-a.e. for a stationary and ergodic source µ is that it is

indecomposable in the Gallager sense µ-a.e.

The third corollary of Theorem B.2.1 is not used in our work and requires some

extra definitions, hence we only correct it below and refer the interested readers to

the original paper of Gray et al. for the concept of indecomposability for a Markov

channel (which is different from Definition B.2.2).

Lemma B.2.6 (Corollary 3 in [49], corrected). A sufficient condition for a Markov

channel to be weakly ergodic µ-a.e. for a stationary and ergodic source µ is that it is

indecomposable µ-a.e.

Remark B.2.2. Since Lemma B.2.5 and B.2.6 essentially use Lemma B.2.3, by

Lemma B.2.4 we only need their corresponding conditions to hold on a set of positive

probability.

B.2.2 Mixing and Ergodic Markov Channels

Before presenting the main ergodicity results for Markov channels, we require yet

another definition of a class of channels, which was first introduced by Adler in [64].

Definition B.2.3. A channel ν is called strongly mixing, or output mixing [63], or

asymptotically independent of the remote past [64] if for all output rectangles F and

G and all input sequences x

lim
n→∞

∣∣νx(F ∩ T−nG)− νx(F )νx(T
−nG)

∣∣ = 0. (B.13)

It is called strongly mixing µ-a.e. for a probability measure µ if the above condition

holds for all x in a set of µ-measure 1.
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Remark B.2.3. Immediately from the definition we can see that stationary memory-

less channels are strongly mixing. In fact, the strongly mixing channels are proposed

in [64] to generalize the idea of channels with finite memory (which obviously include

the memoryless channels).

The importance of strongly mixing channels lies in the following theorem, which

is adapted from [64] and [63, Lemma 9.4.3].

Theorem B.2.2 (Adler’s Theorem). Let ν be a stationary channel. If µ is a sta-

tionary ergodic source and ν is strongly mixing µ-a.e., then µν is also stationary and

ergodic. Similarly, if µ is AMS ergodic and ν is strongly mixing µ-a.e., then µν is

also AMS and ergodic.

Proof. For the statement with stationary µ, see [64] or [63, Lemma 9.4.3] for a proof.

For the AMS case the proof can be easily adapted from the stationary case with [63,

Lemma 9.3.2].

The following lemma connects the a.e. weak ergodicity and a.e. strongly mixing

property of Markov channels.

Lemma B.2.7 (Lemma 3 in [49], corrected). Given a stationary source µ, if a Markov

channel is weakly ergodic µ-a.e., then it is also strongly mixing µ-a.e.

Remark B.2.4. The original statement of Lemma 3 in [49] claims that the reverse

direction is also true. However, the proof for this direction has a missing link: equation

(12) in [49] is not necessarily true when νx(F ) = 0, thus one cannot deduce weak

ergodicity from strongly mixing property by (12). Nevertheless, since the reverse

direction is not used in our work, we will not discuss the possible fixes of that proof.

The proof of the above lemma in [49] indeed gives the following specific pointwise

result, which we will use later.

Lemma B.2.8. Let [A, ν,B] be a channel (not necessarily Markov) and x ∈ ΣA. If

νx corresponds to a weakly ergodic Markov chain, namely, (B.8) is true for x, then

(B.13) holds for x for all output rectangles F and G.
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Next we state the second main result in [49].

Theorem B.2.3 (Theorem 2 in [49]). If a stationary Markov channel ν is weakly

ergodic µ-a.e. for a stationary and ergodic source µ, then µν is stationary and ergodic.

A Markov channel is ergodic if it is weakly ergodic µ-a.e. with respect to all stationary

measures µ (e.g., if it is weakly ergodic everywhere).

Remark B.2.5. In fact the condition for the second statement can be weakened to

just requiring ν to be weakly ergodic µ-a.e. with respect to all stationary and ergodic

measures µ.

The proof of this theorem in [49] is mostly correct, except that the proof for the

second statement has the issue of ν̂ mentioned in Remark B.1.1. Also it is too sketchy.

In the following we use the same proof idea to extend this theorem to a more specific

one tailored for our own purposes. Its proof not only rigorously assembles various

results built up in this appendix, but also demonstrates the proper treatment of the

corresponding measurable sets on which the desired properties hold. In particular,

the above issue of ν̂ is fixed in this proof.

Theorem B.2.4. Let ν be a Markov channel and µ be an AMS ergodic source. If ν

is weakly ergodic µ-a.e., then the input-output process µν is also AMS and ergodic.

Proof. Construct the auxiliary measures/processes µ̄ and µ̄∗ and the auxiliary two-

sided channel ν̂ as in Section B.1.4. First from Theorem B.1.1 we know µν is AMS and

by Lemma B.1.3 the stationary measure µ̄∗ is also ergodic. Next, as ν is weakly ergodic

µ-a.e. and µ is AMS, ν̂ is weakly ergodic on a subset R∗ ⊆ R′ with µ̄∗-probability

1 by Lemma B.2.2. Hence by Lemma B.2.8 the condition in Definition B.2.3 for the

channel ν̂ holds for all x ∈ R∗, so ν̂ is strongly mixing µ̄∗-a.e. Now as ν̂ is also

stationary while µ̄∗ is stationary and ergodic, µ̄∗ν̂ is also stationary and ergodic by

Theorem B.2.2. Finally, µν is also ergodic by Lemma B.1.4.

Corollary B.2.2. Let ν be a Markov channel and µ be a stationary ergodic source.

If any one of the conditions in Lemmas B.2.3, B.2.5, and B.2.6 holds on a set of

positive µ-probability, then µν is AMS and ergodic.
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Proof. The result is obtained by combining Lemmas B.2.3–B.2.6, and Remark B.2.2

together with Theorem B.2.4.

Corollary B.2.3. Let ν be a finite state channel and µ be a stationary ergodic source.

Let (a1, · · · , an) ∈ An, if

1) µ(X1 = a1, · · · , Xn = an) > 0,

2)
∏n

i=1 Pai is scrambling, or has a positive column,

then µν is AMS and ergodic.

Proof. The result is obtained by combining Corollary B.2.1 and Theorem B.2.4.

B.3 Results for Finite State Channels with Markov

sources

In this section we specialize to the case of connecting a finite-order Markov in-

put process to a finite state channel, and obtain some stationarity and ergodicity re-

sults. These results provide an alternative set of sufficient conditions for the Shannon-

McMillan-Breiman theorem.

B.3.1 Extension Functions and Projection Mappings

As a preliminary step we introduce the k-step extension function g of a one-sided

process and its left inverse, the sequence projection mapping f . Consider a random

process {Xn}n>0 with a finite alphabet A and process measure µ. For k > 0 define

the k-step extension function

g : A∞1 → (Ak)∞k ,

which maps a sequence {xn}n>0 to {wn}n≥k, where wn denotes the k-tuple

(xn−k+1, · · · , xn)
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for all n ≥ k. As A is finite, g is measurable (which follows easily from [62,

Lemma 1.4.1]). Let {Wn}n≥k denote the resulting random process, then the n-th

coordinate variable satisfies

Wn = (Xn−k+1, · · · , Xn), ∀n ≥ k.

According to the functional relationship, the process measure is µg−1.

Conversely, let {Wn}n≥k be a random process with alphabet Ak and process mea-

sure η. Let f̂ : Ak → A denote the projection function that maps (x1, · · · , xk) to its

first coordinate x1. Further define the sequence projection mapping

f : (Ak)∞k → A∞1 ,

such that a sequence {wn}n≥k is mapped to {xn}n>0, with

xn−k+1 = f̂(wn)

for all n ≥ k. Again, as A is finite, f is measurable. Let {Xn}n>0 denote the random

process produced by f , then its process measure is ηf−1.

Observe that fg is the identity mapping and so f is a left inverse of g. How-

ever, gf is not identity and g is not invertible—it is one-to-one but not onto. It is

straightforward to verify that both g and f are stationary, i.e.,

gT = Tg, fT = Tf.

These stationary mappings respect the stationarity, AMS property, and ergodicity of

the processes. For example, given {Xn} with a stationary µ, it is easy to check that

the measure µg−1 is also stationary, and hence the corresponding process {Wn} as

well. If, instead, µ is AMS, then for any event F ∈
(
Ak
)∞
k

we have

lim
n→∞

1

n

n−1∑
i=0

µg−1(T−iF ) = lim
n→∞

1

n

n−1∑
i=0

µ(g−1T−iF )
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= lim
n→∞

1

n

n−1∑
i=0

µ
(
T−i(g−1F )

)
,

which always exists by the AMS property of µ, and thus {Wn} is also AMS. As

another example, assume {Wn} is given with a (stationary or AMS) ergodic η. Let

F be an invariant event for the space (A∞1 ,A
∞
1 ), then f−1F is also invariant:

T−1(f−1F ) = f−1(T−1F ) = f−1T.

Hence (ηf−1)(F ) = η(f−1F ) = 0 or 1, and so ηf−1 and the corresponding process

{Xn} are also ergodic.

B.3.2 Finite-order Markov Processes

We start with the ergodicity of finite-order Markov processes in this subsection,

and then extend to finite state channels with finite-order Markov sources in the next

one. The main theoretical tool is the following theorem for the ergodicity of stationary

Markov chains from [65].

Theorem B.3.1 (Theorem 1.19 in [65]). Consider a Markov chain on a finite state

space {1, 2, · · · , K} with transition matrix P . Assume the initial distribution π is a

positive stationary distribution for this chain, namely, πP = P and πi > 0 for all

1 ≤ i ≤ K. Then the corresponding stationary random process is ergodic iff P is

irreducible, in which case π is the unique stationary distribution for P .

Assume {Xn}n>0 is a Markov process of order k, with a finite alphabet A. Let

Wn denote the state (Xn−k+1, · · · , Xn) of the underlying Markov chain for n ≥ k,

then the state process {Wn}n≥k is exactly given by the k-step extension function g

applied to {Xn}n>0. Conversely, {Xn}n>0 is also given by the sequence projection

mapping f and {Wn}n≥k. Hence by the previous subsection, the stationarity, AMS

property, or ergodicity of one process implies the same property for the other. Let P

denote the transition matrix of the Markov chain. The process measure η of {Wn}
is determined by P and the initial distribution, and is AMS by [48, Theorem 9].
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Let η̄ be the stationary mean of η and π be the initial distribution for η̄, then π is

a stationary distribution of P .7 Denote the support of π by Γ, which is called the

contingent stationary support of the Markov process {Wn} (since it depends on the

initial distribution). It is easy to see that Γ is a closed subset of Ak, that is, Pij = 0

for all i ∈ Γ, j /∈ Γ.

Now assume that the Markov chain P is irreducible on Γ. As the conditions

for Theorem B.3.1 are satisfied on Γ with the initial distribution π, the stationary

measure η̄ is ergodic, and so is η (see [62, Lemma 6.7.1]). Hence {Wn} and {Xn} are

AMS ergodic processes. Conversely, if {Xn} or {Wn} is ergodic, then η, and so η̄ are

ergodic, and by Theorem B.3.1, P is irreducible on Γ.

Moreover, when either of the above conditions holds, Theorem B.3.1 states that

π is the unique stationary distribution for the chain on Γ. Thus if another initial

distribution on the Markov chain induces a process measure η̃, whose stationary mean

has a (stationary) initial distribution π̃ that is also supported on Γ, then necessarily

π̃ = π and the stationary mean is η̄. In particular, if Γ = Ak, or equivalently, (the full

matrix) P is irreducible, then the stationary process measures for {Wn} and {Xn}
are unique.

Summarizing the discussions above we have the following lemma.

Lemma B.3.1. Let {Xn} be a finite-alphabet finite-order Markov process, with an

underlying state process {Wn}, whose Markov transition matrix is P . Then both {Xn}
and {Wn} are AMS. Let Γ denote the contingent stationary support of {Wn}, then

{Wn} (and {Xn}) are ergodic iff P is irreducible on Γ. Furthermore, when this is

the case, any other initial distribution of the Markov chain that leads to the same

contingent stationary support induces the same stationary mean for {Wn} (and hence

also the same stationary mean for {Xn}), which are ergodic measures. In particular,

if Γ is the full state space, or equivalently, P is irreducible, then these stationary

process measures are unique.

7A stationary distribution always exists for any finite-state Markov chain [66].
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B.3.3 Finite State Channels with Markov sources

Consider a finite state channel defined in Gallager’s form (B.1). Assume the source

process {Xn}n>0 is Markov of order k > 0 and is independent of the initial state S1

of the FSC, then the joint process {(Xn, Yn, Sn+1)}n>0 is also Markov of order k. To

see that, let p denote the joint process measure. Observe that for all n ≥ 1 and when

the joint probability is nonzero, by (B.1),

p(xn, yn, sn+1) = p(s1) · p(xn) · p(ynsn+1
2 |xns1)

= p(s1) ·
n∏
i=1

p
(
xi |xi−1

)
·
n∏
i=1

p(yisi+1 |xisi),

whereas by the expansion of joint probability,

p(xn, yn, sn+1) = p(s1) ·
n∏
i=1

p
(
xi, yi, si+1 |xi−1yi−1si

)
= p(s1) ·

n∏
i=1

p
(
xi |xi−1yi−1si

)
·
n∏
i=1

p(yisi+1 |xisi).

Comparing the two expressions and induct on n, we have

p(xn |xn−1yn−1sn) = p(xn |xn−1) (B.14)

for all n. Namely, the input does not depend on the past state or output (which

is natural, since in the FSC model there is no output feedback or state information

available at the transmitter).8 Therefore, for n ≥ k, by (B.1) and (B.14)

p(xnynsn+1 |xn−1yn−1sn) = p(xn |xn−1yn−1sn) · p(ynsn+1 |xnsn)

= p(xn |xn−1) · p(ynsn+1 |xnsn)

(a)
= p(xn |xn−1

n−k) · p(ynsn+1 |xnsn) (B.15)

(b)
= p(xnynsn+1 |xn−1

n−ky
n−1
n−ks

n
n−k+1),

8This is also in accordance with the comment after (B.1) (in the footnote). Moreover, in fact,
from (B.14) and (4.7) we can also deduce (B.1), by reversing the direction of the above derivation
and induct on i for the expansion of p(ynsn+1

2 |xns1).
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where (a) follows since {Xn} is Markov of order k, (b) follows from expanding the

joint probability

p(xnynsn+1, x
n−k−1yn−k−1sn−k |xn−1

n−ky
n−1
n−ks

n
n−k+1)

and summing over (xn−k−1, yn−k−1, sn−k). Now since (B.15) is independent of n,

{(Xn, Yn, Sn+1)}n>0 is a (homogeneous) Markov process of order k.

In addition, when {Xn} is i.i.d. (i.e., k = 0), from the derivation above we see

that {(Xn, Yn, Sn+1)}n>0 is simply Markov (i.e., of order-1). Hence combining with

Lemma B.3.1, we have:

Lemma B.3.2. If the source {Xn} of an FSC is an order-k Markov process with

k ≥ 0, then {(Xn, Yn, Sn+1)} is a Markov process of order max{k, 1}. If the underlying

Markov chain for the latter is irreducible on the contingent stationary support, then

{(Xn, Yn, Sn+1)} is AMS and ergodic.

In our energy harvesting channels we often encounter FSC’s that satisfy

p(ynsn+1 |xnsn) = p(yn |xnsn)p(sn+1 |xnsn), (B.16)

for which we will show that if the input-state process is AMS ergodic, then so is the

full joint process (see Lemma B.5.1 in Section B.5.1). Thus for such channels we have:

Corollary B.3.1. If the source {Xn} of an FSC satisfying (B.16) is an order-k

Markov process with k ≥ 0, then {(Xn, Sn+1)} is a Markov process of order max{k, 1}.
If the underlying Markov chain for the latter is irreducible on the contingent stationary

support, then {(Xn, Yn, Sn+1)} is AMS and ergodic.

B.4 The Shannon-McMillan-Breiman Theorem

For a finite alphabet random process {Xn} whose probability measure is denoted

by p, we are interested in the convergence of the sample entropy − 1
n

log p(Xn) to the
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entropy rate

H(X ) , lim
n→∞

1

n
H(Xn) (B.17)

whenever the limit exists. In information theory, this property is called the asymptotic

equipartition property (AEP) [46]. When the process is i.i.d., AEP is easily proved

using law of large numbers. When {Xn} is stationary and ergodic, the Shannon-

McMillan-Breiman (SMB) theorem for stationary processes [46] also gives the AEP;

in particular, the sample entropy converges to the entropy rate with probability 1.

Yet this result is still not general enough for our application in the energy harvesting

systems, since the joint input-output process produced by the surrogate channel is

often not stationary, but AMS instead. Hence we require an SMB theorem for AMS

processes, which is also called the entropy ergodic theorem in [63].

Theorem B.4.1. (Shannon-McMillan-Breiman / Entropy Ergodic Theorem [63]) Let

{Xn} be a finite alphabet random process with an AMS ergodic process distribution p,

whose stationary mean is denoted by p̄. Then the entropy rate (B.17) exists and

lim
n→∞

− 1

n
log p(Xn) = H(X ),

where the convergence is both p-a.e. and in L1-norm. Furthermore, the value of H(X )

is the same as Hp̄(X ), the entropy rate defined under the stationary measure p̄.

B.5 Some Specific Results

In this section we derive some specific results regarding stationarity and ergodicity,

which are to be used for the FSC models in Chapter 5.

B.5.1 Joint and Marginal Processes

In our application we always have a joint process, say {Vn, Sn, Yn}, and want to

apply the SMB theorem on its various marginal processes, e.g., {Vn, Yn} or {Yn}.
It is enough to show the required AMS and ergodic properties for the joint process
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{Vn, Sn, Yn}, since from their respective definitions we can easily see that these prop-

erties are inherited by the marginal processes from the joint one.

We also have some remarks for the other direction. Consider a general chan-

nel [A, ν,B′] whose input and output symbols are Xn and Y ′n, respectively. Let

[A×B′, η, B] be another channel, whose input symbols are the pairs (Xn, Y
′
n) and

output symbols are Yn. Assume η is a stationary memoryless channel, then it is

stationary and strongly mixing and so Adler’s theorem applies. In particular, if a

source [A, µ] gives an AMS ergodic hookup µν, then by Theorem B.2.2, connect-

ing µν to η gives an AMS ergodic hookup (µν)η. In other words, the joint process

{(Xn, Y
′
n, Yn)}n∈I is also AMS and ergodic.

For the application in our energy harvesting channels, consider a special class of

FSC models whose transition probability satisfies

p(ynsn+1 |xnsn) = p(yn |xnsn)p(sn+1 |xnsn). (B.18)

We can view p(sn+1 |xnsn) as the transition probability of a smaller finite state channel

ν, with input symbols Xn and output symbols Y ′n = Sn. Furthermore, Yn can be

viewed as the output of another DMC η, whose input symbols are the pairs (Xn, Y
′
n)

with transition probability

p(yn |xny′n) = p(yn |xnsn).

Applying the argument from the previous paragraph to the channels ν and η, we have

the lemma below. As a result, to show the full joint process {(Xn, Sn, Yn)}n>0 is AMS

and ergodic we only need to consider the smaller finite state channel p(sn+1 |xnsn).

Lemma B.5.1. For the FSC model (B.18) let {Xn}n>0 be an input process that

yields an AMS ergodic joint input-state process {(Xn, Sn)}n>0, then the joint input-

state-output process {(Xn, Sn, Yn)}n>0 is also AMS ergodic.
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B.5.2 Pre-historical State Variables

To construct the surrogate channel models in Chapter 5, we restrict the input

function to depend on a finite duration of historical side information and provide

some dummy pre-historical state variables. In this subsection the influences of such

dummy variables are discussed. We use the FSC-X model as an example, and the

analysis and conclusions for the other two channel models follow similarly.

In Section 5.2, for the FSC-X we define the pre-historical states s0
−m+2 ∈ Sm−1,

which is deterministic. With these states, for each 0 < n < m, each input function

vn for the surrogate channel W ′ uniquely determines an input function un for the

channel W :

un = vn(s0
n−m+1, · ).

Hence together with (5.4) for n ≥ m, we see that once s0
−m+2 is given, each input

sequence {vn}n>0 for W ′ uniquely determines an input sequence {un}n>0 for W . A

different choice of pre-historical states leads to a potentially different input sequence

for W , thus defining a potentially different surrogate channel: since for each vN the

channel transition probability p(yN | vN) of W ′ is determined by the corresponding

uN through p(yN |uN) of W . We can also directly see the influence of s0
−m+2 on the

transition probability of W ′ from (5.5).

Therefore, given a random process {Vn}, different choices of pre-historical states

lead to potentially different surrogate channels and hence potentially different achiev-

able rates. (Sometimes the rates are indeed the same, see the next subsection.) Yet

these rates are all achievable for the channel W , since each of them corresponds to a

particular input distribution process U .

As commented in Section 5.2, these dummy pre-historical states are only used

to help determining the function values of vn for n < m, but do not affect the real

initial channel state S1, which is determined by the environment/nature/physical

mechanism. However, they do affect the transitions of the channel states S2, · · · , Sm
indirectly through the function values xn of vn, and hence also the initial state Zm

of the FSC W ′ (which starts from n = m). The impact on the ergodicity of the



180

joint input-state-output process for a given source {Vn}, is thus different in different

situations: if the FSC W ′ together with the source satisfies one of the ergodicity

conditions in Section B.2, all of which deal solely with channel transition probabilities,

then the pre-historical states do not influence the ergodicity of the system; if, instead,

W ′ and the source satisfy an ergodicity condition in Section B.3, then the choice of

pre-historical states might influence the ergodicity of the joint process, since the

conditions therein are contingent on the initial state of the system.

B.5.3 Starting Time and Initial State for Surrogate Channels

In Chapter 5, the surrogate channels are only finite state channels for n ≥ M ,

where M is a time index strictly larger than 1 in many cases. Our stationarity

and ergodicity theory, as well as the simulation/optimization algorithms, are mostly

prepared for FSC’s, which starts from time index M ; however, the computation of

information rates via sample entropies (5.3) requires a starting time index 1. Never-

theless, we can resolve this conflict by setting the starting point of sample entropy

computation to M , by virtue of the following lemma:

Lemma B.5.2 (Lemma 3.4.1 in [63]). Let {Xn} be a finite alphabet random process.

For M > 1, almost surely we have

lim
n→∞

1

n
log

p(Xn)

p(Xn
M)

= 0.

As stated in the previous subsection, the initial state ZM of the FSC W ′ is in-

fluenced by the choice of pre-historical states. It necessarily affects the information

rate computation, but in the following case two different initial state distributions of

W ′ give rise to the same rate. Assume the source is a finite-order Markov process

and the source-channel process is ergodic under some initial state distribution. Then

by Lemma B.3.2 and B.3.1, the joint input-output-state process is also finite-order

Markov, whose underlying chain is irreducible on the contingent stationary support.

Also, if two such initial state distributions of W ′ lead to the same contingent station-

ary support, then the corresponding stationary process measures are the same. Since
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by the SMB theorem (Theorem B.4.1), the information rates are determined by the

stationary measures, these two initial state distributions induce the same information

rate.
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