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Abstract 

Generalisations of linear discriminant functions are introduced to tackle 

problems in pattern classification, and associative memory. The concept of a point 

rule is defined, and compositions of global linear maps with point rules are 

incorporated in two distinct structural forms-feedforward and feedback-to increase 

classification flexibility at low increased complexity. Three performance measures are 

utilised, and measures of consistency established. 

Feedforward pattern classification systems based on multi-channel machines are 

introduced. The concept of independent channels is defined and used to generate 

independent features. The statistics of multi-channel classifiers are characterised, and 

specific applications of these structures are considered. It is demonstrated that image 

classification invariant to image rotation and shift is possible using multi-channel 

machines incorporating a square-law point rule. The general form of rotation 

invariant classifier is obtained. The existence of optimal solutions is demonstrated, 

and good sub-optimal systems are introduced, and characterised. Threshold point 

rules are utilised to generate a class of low-cost binary filters which yield excellent 

classification performance. Performance degradation is characterised as a function of 

statistical side-lobe fluctuations, finite system space-bandwidth, and noise. 

Simplified neural network models are considered as feedback systems utilising a 

linear map and a threshold point rule. The efficacy of these models is determined for 

the associative storage and recall of memories. A precise definition of the associative 

storage capacity of these structures is provided. The capacity of these networks under 

various algorithms is rigourously derived, and optimal algorithms proposed. The 

ultimate storage capacity of neural networks is rigourously characterised. Extensions 

are considered incorporating higher-order networks yielding considerable increases in 

capacity. 
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Beauty is Truth, 

Truth Beauty; 

John Keats 

To my parents, who taught me to behold 
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CHAPTER I 

INTRODUCTION 

1. PRELUDE 

Linear systems combine the dual advantage of analytical tractability and 

implementation simplicity. Consequently, they have found ready application in divers', 

problems in signal detection and pattern classification, as well as in allied situations in 

associative or content addressable memories. Linear maps together with a non-linear 

threshold rule for instance can be fruitfully employed in good classification schemes, as 

in Matched Filtration in signal detection. In such schemes the linear map can be 

viewed as providing communication of information between the various components of 

a problem, while the threshold decision rule provides the necessary non-linear 

computation adjunct to logical problem solving. The advantages of using linear 

transformations in conjunction with a simple decision rule in these situations is clear: 

these systems allow of low cost implementations, and their performance can, in almost 

all cases, be completely characterised. 

The very simplicity of the linear map, however, precludes doing more complex 

problems. As an instance, it is not possible to achieve rotation invariance m image 

recognition using purely linear maps with a threshold decision rule. 
,,. 

The approach we will follow is to introduce low complexity generalisations of 

linear transformation to include point non-linearities. We demonstrate that the 

resultant systems expand considerably the set of problems that can be done using just 

linear machines, at relatively low cost. As the added non-linearities we consider; act 
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pointwise on the domain, all that is needed in addition; is an array of single­

input/single-output non-linear devices if the processing is done in parallel, or a single 

such device if the processing is sequential. 

We consider applications of this approach to pattern classification usmg two 

particular non-linearities: square-law and threshold rules. The problems considered 

include: a characterisation of a general class of rotation invariant image recognition 

systems, and a performance characterisation of a class of low complexity binary filters. 

With the introduction of feedback much more complex behaviour than simple 

classification can be realised in such systems. We focus on associative memory as an 

application, and obtain precise results on the capacity of simple iterated maps 

(comprised of linear transformations composed with a threshold rule) for storing 

complex associations. 

2. PATTERN CLASSIFICATION 

A. Canonical Classifiers and Discriminant Functions 

We start with a description of the classical pattern classification problem. Let 

{ n(ll, ... , n(c l} be a finite set of c states of nature which we will also refer to as 

classes. The states of nature are represented by vectors x in a pattern space IHP. We 

will assume throughout that IHP is a subset of an inner product space with the 

inherited inner product. We will denote the inner product space containing IHP by 

lliP. Instances of pattern spaces that we will use are: the Hilbert space (complex) L 2 

of square-integrable functions, the vector space of real n -tuples R" , and the set of 

vertices of the binary hypercube {-1,1 }" = ID". (For the first two examples 

IHP = mp while for the last example, HIP = IBn while IBP = fil n .) The 

occurrence of the patt..ern vectors x E IBP is specified according to the underlying 

state-conditional probability distributions F x( I I o(s l) = p {x EI I o(s l} which 

specify the probability of events { xE IC lllP } conditional upon the occurrence of a 

state of nature n(s l, and the a priori probabilities of occurrence, P { o(s l}, of the 

various states of nature. The problem is to classify the patterns x as arising from the 
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various states of nature. 

Definition. A pattern classifier is a rule C IllP --+ { f2(1l, ... , n(c l}. 

A couple of remarks are in order: 

(1) The classifier partitions the pattern space Illp into c regions corresponding to the 

states of nature. Specifically, each feature vector x E IllP is associated with some 

state of nature. 

(2) Note that we do not lose in generality by specifying the domain of the classifier C 

to be all of Illp. We could, for instance, utilise a dummy state of nature f2(o) such 

that if x is mapped to n(o) by c' then it indicates positive non-recognition of x. 

(3) While some simple situations arise when C is constrained to be a fixed mappmg 

on the pattern space, we could, in principle, allow C to be a random mappmg 

predicated upon some random specification of states of nature. Loosely speaking, in 

the first case the states of nature are fixed, and correspond to some fixed partition of 

the pattern space. In the second case, partitions of the pattern space corresponding to 

the states of nature are themselves chosen randomly. This corresponds to specifying 

an underlying probability distribution on the state-conditional probability 

distributions F xU I f2(s l) themselves. For this case, a particular realisation of a 

classifier mapping C is predicated upon a particular realisation of the state-conditional 

probability distributions. We will utilise both forms of classifiers- fixed and 

random-fruitfully. 

Two issues m re classifiers are their characterisation with regard to some 

objective measure of performance (we shall return to this issue in section 3), and the 

complexity of their implementation. Before moving on to these two issues, we first 

introduce a canonical form for pattern classifiers. Our treatment follows that of Duda 

and Hart [1]. 

Definition. A set of discriminant functions (for classifier C) is a set of c real valued 

functions on the pattern space, 88
): Illp --+ Ill, s = 1, ... ,c, such that for every 

x E Illp, 
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{l.2.1) 

if c (x) = n(I l. 

A canonical form for pattern classifiers is a machine that computes c discriminant 

functions, and selects the state of nature corresponding to the largest discriminant 

function. A block-diagrammatic representation of such a classifier is illustrated in fig. 

1.1 

The choice of discriminant function 6(8
) for a classifier C is not unique, and m 

fact the following assertion holds, as is easily seen. 

Proposition 1.2.1. Let f : IR --+ lR be any monotonically increasing function. 

Then f o 6(8
): llIP --+ JR, s = 1, ... ,c, is also a set of discriminant functions for 

classifier C . 

Thus we have an equivalence class of sets of discriminant functions for each 

classifier, with each set of discriminant functions yielding the same resultant 

classification. While such sets of discriminant functions are indistinguishable from a 

theoretical point of view, in practice, however, the appropriate choice of discriminant 

functions can lead to considerable savings in analysis and implementation. 

In the discriminant function methodology, the pattern space is partitioned into 

c decision regions R (1), ... , R (c) C lHP , with x E R (t) if 81 ) > £/ 8
) for all s =/:- t . 

The decision regions are separated by decision surfaces where two or more 

discriminant functions take on equal values. Classification of points on the decision 

surfaces can be made by using any suitable tie-breaking rule. 

,,. 
B. Linear Discriminant Functions 

In practice, the cost of realising "optimal" classifiers may well be prohibitive, as 

they would in general require very complex discriminant functions. A practical 

alternative to constructing such problem dependent optimal classifiers is to implement 
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fj c) 

Fig. I.I. Canonical classifier: Discriminant function 

realisation. 

max ( ... ) 

o(c) 
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classifiers of fixed structure. While such classifiers of necessity sacrifice some 

performance, they gain in simplicity of construction, and in being relatively easy to 

compute. 

Linear discriminant functions are classifiers of fixed structure which are affine 

linear functionals on the pattern space lHP . These are particularly attractive 

classifiers from the computational point of view as they are among the simplest non­

trivial classifiers to implement, and are very tractable analytically. They are even 

optimal classifiers for an admittedly small set of underlying distributions. As such, 

linear discriminant functions are attractive candidates for classifiers. 

We will denote the set of c linear discriminant functions corresponding to a 

linear classifier (also called a linear machine) by the functionals L( 8
): lHP -+ IR, 

s = I, ... ,c. With each L(8
) we associate a weight vector 1( 8

) in the parent inner 

product space IlIP , and a real scalar threshold I d8
) , so that for every pattern 

x E IlIP, 

(I.2.2) 

Pattern classification is by means of the threshold comparison rule of equation (1.2.1). 

Note that for the two-class case, this is just a threshold rule: decide 0(1J zf 

( 1(1) - 1(2) , x ) + ( l 0(l) - I 0(
2) ) > 0, else decide 0(2l. 

Denoting the c -tuple of linear discriminant functions by 

L = (01), ... , L(c)): lHP -+ IR.c, and the comparator of (l.2.1) by 

T : IR c -+ { 0(1l, ... , o(c l}, the linear classifier C can be written as the composition 

(To L ) : lHP -+ { 0(1), ... , o(c l}. A two-dimensional illustration of possible 

decision regions produced by such a linear machine is shown in fig. 1.2. 

Extending the analogy of fig. 1.2 to higher dimensions, each linear discriminant 

can be thought of as ~alising a separating plane (hyperplane) in a multi-dimensional 

space. The decision surfaces of the linear classifier are c separating planes, and these 

demarcate the decision regions. 
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F;g_ 1.2. Parth;onfog of pattern space by a linear machine. 
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C. Matched Filters 

A particular instance of a useful linear classifier is the matched filter. We 

illustrate this with an example in signal detection. We are presented with a situation 

where a signal or reference pattern x 0 E IllP , may or may not have been present in an 

environment of additive, zero-mean noise, with a positive definite autocorrelation 

operator Rn : IllP -+ lip . There are two states of nature corresponding to the two 

hypotheses: the presence or absence of the signal. Given a pattern x E IllP, (whose 

state-conditional probability distribution is determined by the random n01sy 

environment, together with the presence, or absence, of the signal) the problem is to 

find suitable weight vectors to achieve a reliable mapping of x into one of the two 

states of nature. 

The matched filter is a weight vector (corresponding to a linear discriminant 

function) defined by 

IA 1D -1 
- Jn.n Xo · (1.2.3) 

If the noise is white, as is frequently assumed, then i is just a scaled version of the 

signal-hence the sobriquet "matched" filter. Note that as there are only two states of 

nature, it suffices to have a single linear discriminant function corresponding to the 

hypothesis that the signal was present, with a simple threshold classification rule. 

The fact that makes the matched filter important is the following classical 

result. Let HIP denote the space of positive-definite noise-autocorrelation operators. 

Define the signal-to-noise ratio (SNR) functional p: Ilf P X HIP X JfIP -+ Ill+ by 

1(1,x)\2 p ( x ,1 ,Rn ) = ~~~-
( I , Rnl ) 

, 

(l.2.4) 

Theorem 1.2.1. For a fixed signal Xo E mp' and a fixed positive definite no1se­

auto-correlation operator, Rn E JfIP , the matched filter i E llIP maximises the signal­

to-noise ratio among all weight vectors in the Hilbert Space DIP . 
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We shall return to the issue of signal-to-noise ratios again in Section 3 when we 

consider performance measures for classifiers. The signal-to-noise ratio is a frequently 

employed performance measure because of its simplicity, and in some cases it is 

actually a good measure of classification performance. With the signal-to-noise ratio as 

a criterion then, the matched filter provides the best performance among all linear 

discriminant functions. The idea can be simply extended to multiple discriminant 

functions in the c -class recognition problem. 

D. The Capacity of a Separating Plane 

In spite of their many appealing features, however, linear discriminant functions 

are intrinsically limited in scope. The decision regions for a linear machine are 

constrained to be convex, and this in particular leads to the fact that every decision 

region must be simply connected. These factors seem to imply that the linear 

discriminant function approach is best suited for situations where the state-conditional 

probability densities are unimodal, i.e., the presence of a particular state of nature 

results in patterns which are clustered together locally in the pattern space, as 

illustrated in fig. 1.2. An instance where this fails is in image recognition. Associate 

all rotations and scales of a reference image with one class or state of nature. The 

patterns in the class are not clustered together in the image space, so that linear 

discriminant functions do not work well in this instance. 

A more serious limitation of linear discriminant functions is that they are 

seriously limited in the num her of states of nature that they can accurately classify. 

Consider a finite-dimensional Euclidean pattern space, which we take to be ffi 11 

without loss of generality. Let x(ll, ... , x(c l be c reference patterns in nr chosen 

to be in general position (i.e., any subset of n or fewer reference patterns is linearly 

independent). At the very least, we require that the reference patterns themselves be 

mapped to the appropriate states of nature. , 
The weight vectors I corresponding to linear discriminant functions are just n -

tuples of real numbers, and the inner product- is the natural one. For this case we 

have 
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n 
L(x)=(l,x)+lo= :E l;x; +lo. 

j=l 

For the two-class case, for instance, this leads to a simple threshold decision rule, as 

illustrated in fig. 1.3 (a). 

We query: how large can the number of classes c be made while ensuring that 

3 some set of linear discriminant functions which accurately maps the reference 

patterns to the appropriate class? The answer is furbished in the following result 

which we prove in chapter IX (also cf. [2]). 

Theorem 1.2.2. For every A E (0,1), as n - oo, the probability that 3 a linear 

discriminant function which accurately classifies the c reference patterns approaches 

one if c < 2(n + 1)(1 - >..),and approaches zero if c > 2(n + 1)(1 + >-). 

Thus, no more than 2 ( n + 1 ) states of nature can be accurately identified by 

linear discriminant functions if the pattern space is an n -dimensional Euclidean vector 

space. This result is consistent with an argument based on the available degrees of 

freedom: the n -dimensional weight vector together with the scalar threshold cons ti tu te 

n + 1 degrees of freedom. If we need more powerful classification capability, and 

more flexibility in classification, however, we will have to resort to more complex 

classifiers. 

E. Generalisation: Linear Maps with Point Rules 

We consider generalisations of the linear discriminant function structure which 

allow of more flexible classifiers, but which at the same time retain much of the 

simplicity of linear machines. Our approach is to introduce a "feature extraction" 

stage prior to actually computing linear discriminant functions, as is indicated 

schematically in fig. 1~3. The feature extraction procedure is a composite mapping 

from the pattern space llIP to a feature space lH / . The linear discriminant functions 

are now computed from vectors in the feature space Ill / . 
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Fig. 1.3 (a). A channel for extracting a single 

feature component. 
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Fig. 1.3 (b ). Realisation of a generalised linear discriminant 

function. 
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The feature spaces we consider are vector spaces indexed by some set. 

Specifically, lH / is a family of real-valued functions y : A-+ JR satisfying some 

suitable properties (such as continuity or square-integrability), where A is some index 

set. The following are two examples of feature spaces. 

Example 1. Choose lH / to be the space of all square integrable real-valued functions 

on the twcr-dimensional plane. The underlying index set in this instance is A = R 2. 

D 

Example 2. The vector space of real m -tuples Rm , which is indexed by the finite set 

A= {l, ... ,m }. D 

We will use the representation (y 11 : 11 EA) to explicitly represent feature vectors 

y E lH / in terms of the underlying index set A. We denote the (parent) space of 

complex-valued functions indexed by A by lH 1 , and assume that lH 1 comes equipped 

with an inner product. 

Definition. A map D : IH / --+ IH / is a point rule (on the feature space) iff there is 

a function D : ~-+ R such that 

(l.2.5) 

If the indices 11 represent time, for instance, then the point rule D 1s a memoryless 

map. 

Example 8. (Square-law point rule) 

D(y II: v EA) = ( I y 11) 2 
: II EA). D 

Example 4. (Threshold point rule) 

D(y 11 : EA)= (sgn {Rey J : 11 EA). o 
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Point rules are interesting from a practical point of view, as they are reasonably 

simple to implement-each vector component generated by a point rule depends solely 

on the corresponding component of the original vector. Point rules may be realised in 

parallel by a family of identical single-input, single-output devices (or sequentially by a 

single such device). 

The feature extraction procedure that we will consider throughout is a 

composite map (Do W): IHP - IH1 , where W: IHP - IH1 is a linear map, and 

D : IH1 - IH1 is a point rule. (In some cases, we could think of the feature­

extraction procedure as being a dimensionality reduction process which effects a 

sensible reduction of a pattern space of high dimensionality to a lower dimensional 

feature space.) The final classification stage is by means of discriminant function on 

the feature space L: IH1 - Dl. 

We will refer to the feature extraction procedure for each component z v of the 

feature vector as a channel. If the feature space is m -dimensional, we will have m -

channels to compute the components of the feature vector. 

Thus, the discriminant functions that we will be considering are of the form 

(Lo Do W) : IHP - Dl. These discriminant functions 'may be considered to be 

simple generalisations of linear discriminant functions involving the point rule D. 

Note that the particular choice of D =Id results in a simple linear discriminant 

function (Lo W) on the pattern space. Thus these new constructs are 

generalisations of linear machines, which encompass linear classifiers. Additional 

flexibility in classification is obtained by suitably specifying the (generalised) decisions 

D, and the linear maps W, and L. If D is a threshold map, for instance, the 

procedure is akin to making several partial decisions at an intermediate stage, and 

using these as features to obtain a final classification using a linear discriminant 

function. 
, 

In fig. 1.3 (b) we have a schematic representation of these generalised linear 

discriminant functions. The pattern space for this example is Euclidean n -space, 

while the feature space is Euclidean m -space. Pattern vectors x E m.n are mapped to 

n 

vectors y E lRm by an m X n matrix of weights [ wii ], with Yi = E u';i xi. The 
j =l 
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point rule D acts pointwise on each component Yi to produce an m -vector z with 

components zi =D (Yi)· Finally, the discriminant function is formed as a linear 

m 
combination E li zi + 10 of the components of the feature vector z. 

i =l 

As pointed out earlier, these generalised constructs subsume within them the 

linear discriminant functions as a trivial case. A proper choice of point rules allows of 

some added flexibility in classification. We illustrate this in the following example. 

Example 5. Consider the Boolean mapping XOR: { 0,1} X { 0,1} - { 0,1}, 

(x i,x 2) = (1,0) 
(x vx 2) = (1,1) · 

The logical XOR is a two-state classification problem which cannot be realised by any 

linear discriminant function. As illustrated in fig. 1.4 (a), there is no choice of 

separating plane which isolates points (0,0) and (1,1) from points (0,1) and (1,0). 

However, a generalised linear discriminant function using a threshold point rule can be 

constructed to solve the problem, as illustrated in fig. 1.4 (b ). Here, Boolean pairs 

(x 17 x 2) are first mapped into a two-dimensional Boolean feature space through the 

linear map with component matrix 

[ 1 -2] 
w = -2 1 ' 

and a point rule based on the threshold map 

D ( ) {
o if y < o.5 

y = I if y > 0.5 . 
,. 

The feature vectors (y 1,y 2) that are realised are hence 
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(0,I) 
0 

(0,0) 0 

Fig. 1.4 (a). No choice of separating plane can separate (0,0) and 

(1,1) from (0,1) and (1,0). 

Fig. 1.4 (b ). Generalised linear disc rim in ant function with 

threshold point rule realising XOR. 
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It can be easily seen that this procedure maps (0,0), and (1,1) to (0,0), while mapping 

(0,1) to (0,1), and (1,0) to (1,0). Finally, constructing a linear discriminant function 

with weight vector I= 0), and threshold I 0 = -0.5, on the feature space results in 

the map 

This is the required logical XOR. o 

Another instance of this acquired flexibility is examined in chapter III, where we 

analyse the problem of image classification invariant to image shift and rotation in 

some detail. This is a problem which can be solved via generalised linear discriminant 

functions, but which linear discriminant functions cannot solve in isolation. 

Simple point rules are favoured from the implementation point of view. In the 

next few chapters, we will examine classifiers of the above structure using simple point 

rules under a variety of conditions. Note, however, that with classifiers of this 

structure, the linear discriminant function at the feature space determines the actual 

number of states of nature that can be identified. Thus, if the feature space is an m -

dimensional Euclidean space, we can classify at most 2( m + 1) patterns by theorem 

(1.2.2). Thus, with a feedforward system of the sort we have been considering so far, 

we can achieve more flexibility in classification, but cannot really improve significantly 

on the capacity of the classifier (over a linear machine) unless we allow of feature 

spaces of large dimensionality. This of course is in accordance with intuition-to solve , 
complex problems we will need a great number of degrees of freedom, which in this 

case corresponds to large feature spaces. The best gains, as we shall see, will accrue 

from dispensing with the linear discriminant function stage, and considering cascades 

of linear maps and point rules, and feedback. 
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3. ASSOCIATIVE MEMORY 

A problem allied to that of pattern classificati9n is that of associative or 

content-addressable memory. Formally, an associative memory is a classifier where 

the states of nature are themselves specified patterns from the pattern space. 

Specifically, an associative memory is a map from the pattern space to itself, which 

maps a subset of the pattern space to a specified set of pattern vectors 

{ u(1l, ... , u(m l } . The specified set of vectors are called the fundamental memories. 

In a typical problem in associative memory, we specify a "similarity" metric for 

the pattern space, and require that the associative memory maps all patterns which 

are near a fundamental memory to the memory itself. 

Example 6. Consider a pattern space of binary n -tuples, IBn. Let the specified metric 

be the Hamming distance between two vectors, and let 0 < pn < ~ be the specified 

extent of similarity. For a set of m fundamental memories, u(a) E IBn, a= l, ... ,m, 

which are mutually separated by Hamming distances greater than pn, we require that 

all vectors in Hamming balls of radii pn surrounding the fundamental memories be 

mapped to the corresponding memories. 0 

We hence require an associative memory to be a nearest-neighbour pattern classifier, or 

equivalently, an error correcting code. Note that it may not be absolutely essential 

that the associative memory map patterns to precisely the fundamental memories. If a 

certain measure of error tolerance is prescribed, for instance, it may suffice that the 

mapping results in any of a number of patterns near the fundamental memory. 

System-theoretic approaches to associative memory have benefited greatly from 

neurobiological modeling of brain function, and much of the terminology, and 

approaches in vogue have a strong biological flavour (cf. [3]). Hence, while an 

associative memory is formally a pattern classifier, we will nevertheless distinguish 

between selected pattern classification problems (which we treat in the section on 
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Correlators), and problems in associative memory (which we treat in the section on 

Neural Networks). For the pattern classification problems we will consider generalised 

linear machines of the form we introduced earlier. For associative memory, however, 

we require maps from the pattern space to itself. We hence dispense with the linear 

discriminant function classification stage, and consider iterated maps of the form 

(Do W)k : IHP -+ JHP, where W: JHP -+ IHP is a linear map, and D : JHP -+ JHP 

is a point rule. 

Thus, the pattern classifiers we consider are feedforward systems which make 

hard decisions upon vectors in the pattern space through the medium of the 

generalised linear discriminant functions. Clearly, if an error is made in the decision 

process, then the classification is irretrievably in error. The associative memory 

structure we consider is a feedback system, and hence has the potential to compensate 

for occasional errors in decision. In this case, the iterated mapping considered on the 

pattern space makes soft decisions which gradually converge to a true classification 

decision. We will elucidate upon this in greater detail in the section on Neural 

Networks. 

4. MEASURES OF PERFORMANCE 

A. Consistency 

Thus far, we have alluded only briefly to criteria for judging performance. 

Objective measures of classifier performance are, however, of prim a facie importance in 

characterising classifiers and rating their relative performance. We will, in main, not 

distinguish between classifiers and associative memories in this section. The 

performance measures we develop for classifiers will continue to hold for associative 

memories as a special family of classifiers. 
I' 

Let 6. denote the family of discriminant functions. By equation (l.2.1), a c -

tuple of discriminant functions ( 6(1), ... , 8(c l) E 6. c represents a particular 

discriminant function realisation of a classifier. 
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Definition. A performance measure for classifiers is a mapping p : ..:'.). c - IR which 

induces a linear order (>) on the sets of discriminant functions corresponding to 

classifiers. We shall say that a classifier realisation ( tf...Il, ... , ftc)) is superior to a 

classifier realisation (~,Pl, ... , 1c)) with respect to a performance measure p if 

p( [fl)
1 

••• 
1 

o(c)) > p ( 11)
1 

••• 
1 1(c) ). 

Clearly, an arbitrary definition of performance measure is unlikely to subscribe 

to our intuitive notions of what a good classification scheme entails. If the 

performance measure is to reflect some "true" measure of goodness of various 

classifiers, then it must be chosen with some care, and in particular, must reflect the 

underlying a priori probabilities of the states of nature and the state-conditional 

distributions of the pattern vectors. Before returning to the issue of what constitutes 

a good performance measure, we first characterise some desirable consistency 

properties in performance measures which will be useful in classifying different 

measures. 

As we saw earlier, there exist an infinity of sets of discriminant functions 

satisfying equation {l.2.1), all of which represent a particular classifier. Hence, with 

every specified classifier c : llip - { o(ll, ... ' ore) } ' we have an associated 

equivalence class of c -tuples of discriminant functions, Sc = [ (tPl, ... ,tJc) )c ], with 

each member of Sc realising the same mapping {specified by the classifier C) from the 

pattern space to the set of the given states of nature. A desirable consistency property 

of the performance measure is that it be insensitive to the specific discriminant 

function realisation of a classifier, so that the classifier order relations are invariant to 

implementational details. 

Definition. A performance measure p is totally consistent iff for every classifier 

c : Il-JP - { o(ll, ... 'o(c)}' it yields the same value for every member of the 

equivalence class Sc . ' 
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While total consistency is clearly a very desirable property in a performance 

measure, we might suspect that this would place too rigourous a constraint on 

permissible performance measures. In fact, as can be seen from the following assertion, 

totally consistent performance measures have to be explicitly representable as 

functions of partitions of the underlying pattern space. 

Let P be the family of all partitions of the pattern space Il1P into c disjoint 

subsets. For every classifier C, let Re = { R (i), ... , R (c)} be the induced 

partition of Il1P; specifically, x E R (a) ~ C (x) = O(' ). Let g : Ac --+ P be the 

natural mapping associating c -tuples of discriminant functions with partitions of the 

pattern space; g ( b(l), ... , tJc)) = Re whenever ( tJ 1), .•• , tJc)) is a member of 

the equivalence class Sc of discriminant function c -tuples corresponding to classifier 

c. 

Proposition 1.4.1. A performance measure p : Ac --+ R is totally consistent iff 3 a 

mapping µ : P --+ IR such that p = µ o g . 

Proof. Assume 3 a map µ : P --+ IR such that p = µ o g . Let C be a classifier. 

Every discriminant function c -tuple in the equivalence class Sc is mapped into the 

same partition Re of HP by g . Hence, p = µ o g is totally consistent. 

Now fix a classifier C, and assume p is a totally consistent performance 

measure. Let ( lPl, ... , tJc}) be any member of Sc. Now, every partition in P 

corresponds to some classifier. Define the map µ : P --+ IR by 

µ (Re ) = p (( b(ll, ... , tJc} )c ) for every partition Re in P. Then p = µ o g. o 

The restriction that p be specified in terms of partitions of the pattern space 

can be quite unrealistic, especially for large (infinite!) dimensional pattern spaces. 

From a practical stanflpoint, we would like to be able to specify the performance 

measure directly m terms of the "observables," the discriminant functions. 

Proposition (l.2.1) inspires the following less demanding requirement of consistency. 
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Definition. A performance measure p is monotonically consistent iff for every 

monotonically increasing, piecewise differentiable function f : R - R, and every c -

tuple of discriminant functions ( 81), .. .,{}c)) E ~ c, 

p ( 8 1), ... , 9c)) = p( J 0 tf..ll, ... , J 0 9c) ) . 

We introduce the requirement of piecewise differentiability in the definition to allow of 

some ease in proving technical results later. The requirement restricts our attention to 

"useful" functions J . 

Monotonic consistency is clearly not as strong as total consistency, and in fact, 

totally consistent performance measures are also monotonically consistent. The 

converse is not true, however. Nevertheless, in light of proposition (1.2.1), 

monotonically consistent performance measures exhibit consistent behaviour over a 

useful range of discriminant function realisations of classifiers. 

We now return to the issue of specifying good performance measures which we 

hope are consistent in some sense. In the remainder of this section we will specify 

three measures of performance to which we will frequently have recourse. 

B. Probab£l£ty of Error 

In line with intuitive expectation, a good performance measure will reflect the 

underlying a priori probabilities of the states of nature, and the state-conditional 

probability distributions of the pattern vectors. We illustrate with an example. 

Assume the state-conditional distributions are such that the occurrence of any 

pattern vector depends solely on the presence or absence of one of the states of nature. 

In effect, the state-conditional distributions are localised in disjoint regions in the 

pattern space. This is shown schematically in fig. 1.5 (a), where we assume four states 

of nature. Here, P ( ~ I fl(')) is identically zero outside the indicated support for 

the probability distribution conditioned on O(' l. Now assume we have a classifier C 

which partitions the pattern space into c regions, as illustrated in fig. 1.5 (b ). The 

partitions here are indicated by bold lines. Clearly, ideal classifier performance would 

obtain in this instance if the decision boundaries in fig. 1.5 (b) were to coincide with 
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Pattern space H,, 

Fig. 1.5 (a). A partition of the pattern space according to 

prescribed state-conditional probability distributions; a pattern in 

a particular region will occur only if the corresponding state of 

nature occurs. 

Pattern space H 11 

..._.., ___ ......... c., .. > f1(3) 
.. · 

Fig. 1.5 (b ). A partition of the pattern space by a particular 

classifier. The shaded areas denote regions with non-optimal 

classification. 
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the boundaries demarcating the support of the state-conditional distributions in fig. 

1.5 (a). For the indicated classifier, however, there is a mismatch in the decision 

boundaries, as indicated in the hatched areas in the figure. Vectors in the hatched 

areas are erroneously identified by the classifier: in particular, some vectors arising 

from f2(2) are mistakenly identified with f2{1l, while some vectors arising from n{3) are 

associated with f2(4l. A true measure of the performance of the classifier is hence the 

extent (area) of the hatched area of erroneous classification, suitably weighted by 

appropriate a pri'ori probabilities. Performance, in general, would be deemed to 

improve if the hatched area decreases in size. More generally, optimum classifier 

performance is obtained if classification is according to the largest a posteri'ori 

probability, P { f2( 8
) I x}. This results in the Bayes classifier, which unfortunately, 

takes on a simple form only in exceptional cases. In general, for discriminant functions 

of the fixed parametric form that we consider, the resultant classification performance 

will be suboptimal. The probability of error for such classifiers tells us the extent to 

which we have sacrificed optimality by electing to look at relatively simple parametric 

structures for discriminant functions. 

We generalise this approach to allow of arbitrary state-conditional distributions 

and a priori probabilities for the states of nature. 

Let C be a classifier, and let Re = { R (I), ... , R (c) } be the partition of 

ffiP induced by C. Let the state-conditional probability distributions be denoted by 

F (I I n8 ) = p { x E I I f2( 8
) } for measurable sets I c rnp ' and let 

11'( 8 l = P { n(s l } denote the a priori probabilities of occurrence of the various states 

of nature. Then the probability of {classification} error, Pe, is defined as 

c 
Pe !:,. 1 - E rr( 8 l J dF ( x 1 n ( 8 J ) . 

B=l n(•) (1.4.1) 

"" Each term in the sum is just the probability that a particular state of nature occurs, 

and a pattern vector in the decision region R (s l results. Thus the entire sum is the 

probability, averaged over the states of nature, that classifying patterns according to 

the decision regions R (s l results in correct classification. The probability that an 
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error occurs in classification is clearly one minus this probability. 

The probability of error (or more precisely, the probability of correct 

classification) is the ultimate performance measure for classifiers. It tells us the 

expected losses that accrue from the usage of any particular classifier. (In decision­

theoretic terminology, the probability of error is the expected risk corresponding to a 

0 - 1 loss function.) 

Proposition 1.4.2. 1 - Pe is a totally consistent performance measure. 

Proof. The proof follows directly from equation (1.4.1 ), and proposition {1.4.1 ). D 

The probability of error hence imposes an absolute linear order on classifiers, 

and the goodness of other performance measures depends on how closely they 

approximate Pe. In practice, however, Pe is frequently too difficult to calculate unless 

the underlying distributions are cooperative. We hence introduce two more measures 

of performance. 

C. Bhattacharyya Coefficient 

We will restrict ourselves to the two-class case for simplicity in the ensuing 

exposition. Let o(I) and 0(2) be the two states of nature with a priori probabilities 7r(I) 

and 7r(2l, respectively. Let 8 be a discriminant function with the classification rule: 

x r-+ o(ll 

x t-+ 0(2) 

if 8 ( x ) > 0 

if 8 ( x) < 0 . 

(Note that for the two-class case, it suffices to consider a single discriminant function. 

Specifically, if fJ{I) and 82) discriminant functions as in (l.2.1), then set 8 = fJ{I) - 82l.) 
!' 

The discriminant function 8 is a random variable whose distribution is 

conditioned upon the states of nature o(ll and 0(2l. Assume the class-conditional 

probability density functions p ( ti I o(s) ), s = 1,2, exist for 8. Then the 

Bhattacharyya coefficient PB is defined by [4] 
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00 
PB A ( 11"(1)J2J)1/2 J {P ( v I n(l)) P ( v I n(2)) p12 dv . (1.4.2) 

-00 

In actuality, the Bhattacharyya coefficient ranks classifiers in inverse order. An 

appropriate performance measure ranking classifiers in their proper order is the 

Bhattacharyya distance dB = - In PB. As there is a 1-1 correspondence between dB 

and PB, however, we will continue to use PB as a performance measure with the 

understanding that classifier ranking is reversed. 

The Bhattacharyya coefficient is much simpler to compute than the probability 

of error as it does not require the explicit specification of the various decision regions. 

Furthermore, it is a good performance measure in the sense that it bounds the 

probability of error fairly tightly. 

Proposition 1.4.3. ! ( 1 - JI - 4pff) < Pe < PB . 

Proof. The proof is as in Ref. [5] with a slightly different definition of PB. 

Proposition 1.4.4. PB is a monotonically consistent performance measure. 

Proof. Let 8 be a discriminant function with Bhattacharyya coefficient PB given by 

equation (1.4.2). Let f : Ill - IR be a monotonically increasing function. For 

simplicity assume I -l is differentiable. Let p " ( v I n(s)) denote the probability 

density function of J o 8 conditioned upon the presence of nrs l for s = 1,2, and let 

p; denote the associated Bhattacharyya coefficient. We have 

,. 

The support of J o 8 is contained in the open interval(! (-oo),f (oo)). Hence, 

/(811) 

p B = ( 7r(l)rr(2l)1 12 I {p " ( v I n(l)) p " ( v I nr2l)} l/Z dv 
I (-oo) 
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= ( ,fl)11"(2))1/2 J I (oo) {p (! -1( v) I o(ll) p (! -1( v) I 0(2)) }1/2 df ~~ v) dv 

I (-oo) 

00 
= ( 11"(1)11"(2))1/2 J {p ( v I 0(1)) p ( v I 0(2)) }1/2 dv 

-00 

=PB· 
0 

The usage of Bhattacharyya coefficient as a performance measure, hence results 

m a consistent ranking of classifiers which is not too far removed from the optimal 

classifier ordering by means of the probability of error as performance criterion. In 

fact, it can be shown that Pe approaches PB in the limit of low probabilities of error 

[5], so that in the region of low errors which we are primarily interested in, PB is 

actually a very good performance measure. 

D. Normalised Mean Separation 

We will sometimes encounter situations where both the probability of error, and 

the Bhattacharyya coefficient are too cumbersome to compute. We hence introduce a 

variation of the signal-to-noise ratio defined in equation (1.2.4). Again, we consider the 

two-class case for simplicity, and assume the states of nature are equi-probable. 

Let f/ 8 l, s = 1,2, be the discriminant functions for the two-class case. Define 

and 

T/(e) =Var (8( 8
)) , s = 1,2. (1.4.3) 

We now define the norfhalised mean separation, p, by 
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(1.4.4) 

The normalised mean separation is related to the signal-to-noise ratio defined in 

equation (1.2.4). Specifically, the normalised mean separation p is one-half the signal­

to-noise ratio when the two states of nature are the presence and the absence of a 

deterministic signal in an additive noise environment. 

The performance coefficient, p, is not consistent in either of the two senses we 

have defined. Hence, its efficacy is likely to be limited to ordering classifier 

performance as parameters are changed within fixed functional forms of the 

discriminant function. However, it has the virtue of simplicity, and can be easily 

computed in most cases. Besides, under limited circumstances, p provides a reasonably 

accurate measure of performance. 

Let 8 denote the discriminant function, with pattern vector x being assigned to 

f2(l) if 8(x) > 0, and to f2(2) if 8(x) < 0. It is intuitively clear that with such a 

decision rule classification performance improves if the mean difference between the 

correlation peaks of the two classes, µ(l) - µ( 2) is made large, and the peak side-lobe 

variances, T/(I) and T/(2) are small; specifically, for such a case we can find a suitable 

(optimum) threshold t (nominally between µ(I) and µ(2l) which is several standard 

deviations from both µ(I) and µl 2l. The Bayesian risk-or more specifically, the 

probability of erroneous classification-hence tends to decrease when the average inter­

correlation peak, µ(ll - µl 2l, increases and the side-lobe variances, 77l1l and 77(:!), decrease. 

As an instance, the choice of an optimum threshold t for the case of two unimodal 

probability density functions J #1) and f 92) is illustrated in the schema of fig. 1.6: the 

probability of error (assuming equal a priori class probabilities) is proportional to the 

area of the shaded region in the figure. 
~ 

The coefficient p defined by equation (1.4.4) increases monotonically with 

increase in the average peak separation, and decrease in side-lobe variance; in this 

regard then, the behaviour of p is similar to that of the probability of error, Pe, so 

that p is a suitable performance measure. It must be noted however that the 
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Fig. 1.6. A choice of optimum threshold, t 0, given the two class-conditional densities 

f tf,l)(x ), and f {f.zi(x ). The shaded area is the minimum attainable probability of 

misclassification. 
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performance coefficient p is an ad hoc measure that we adopt because of its simplicity 

and the sustaining arguments above. In the general case-and especially in the instance 

of multi-modal densities-it is not necessary that the probability of error, Pe , be 

expressible as a monotone function of p. A simple case where Pe is indeed a monotone 

function of p is when the system outputs conditioned on the two classes, G; ,i = 1,2, 

are Gaussian with equal variances v. Then, assuming equal a priori class probabilities, 

P, =~ (-~)' 

where <l>(x) is the cumulative Gaussian distribution function 

1/2 
1 :r --

4>(x) = ~ J e 2 dy 
v27r 

--00 

As we shall see later (cf. [5] also) the Bhattacharyya coefficient is also representable as 

a monotone (decreasing) function of p when the class-conditional distributions of 8 are 

Gaussian, and the a priori probabilities of the two classes are the same. 

5. Organisation 

The dissertation is organised into four sections: Problem Methodology, tackled 

m the introductory chapter; a section on Correlators (chapters II, III, and IV) dealing 

with particular applications of the proposed generalised linear discriminant functions 

to specific problems in image and pattern recognition; a section on Neural Networks 

(chapters V, VI, VII, and VIII) considering problems in associative memory under a 

suitable iterated map; and finally, a concluding section (chapters IX and X) detailing 

some extensions and op~n problems. 

In chapter II we characterise the statistics of multi-channel classifiers realising 

generalised linear discriminant functions using point rules in an m -dimensional feature 

space. The states of nature we consider are square-integrable functions in an additive, 
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random noISe environment. We introduce the concept of independent channels, and 

obtain necessary and sufficient conditions for realising independent channels. We also 

characterise discriminant function statistics in some detail when the point rules are 

chosen to be square-law of threshold. 

In chapter III we consider the problem of achieving image recognition invariant 

to rotations and shifts of images. We demonstrate that square-law point rules in 

conjunction with suitably chosen linear transformations yield discriminant functions 

which are invariant to image rotation, and obtain the general form for such systems. 

Applying the derived statistics from chapter II, we demonstrate the existence of 

optimal rotation invariant image recognition systems with respect to the performance 

measure PB. We also demonstrate good sub-optimal rotation invariant classifiers, and 

characterise the performance sacrificed to gain rotation invariance. 

In chapter IV we consider the usage of point threshold rules in conjunction with 

linear maps to realise certain classes of binary filters which yield considerable savings 

in system complexity and cost. We demonstrate that these classes of binary filters also 

yield very satisfactory performance. 

Chapter V introduces the form of associative memory structure that we 

consider, and elucidates neurobiological terminology, and notation. We make precise 

the notion of capacity of these structures, and identify desired properties and 

parameters. 

In chapter VI we analyse in depth a particular algorithm for memory storage 

based on the outer products of the desired memories. We demonstrate that the 

dynamics of the algorithm are such as to emulate a physical content addressable 

memory, and provide heuristics to estimate its capacity. We then provide 

fundamental results with rigourous proofs estimating the storage capacity of the 

algorithm under a variety of preconditions. 

In chapter VII '#e describe alternate algorithms for memory encoding based on 

spectral approaches which intrinsically store close to the ultimate capacity of the 

associative network structure itself. We describe various features of the spectral 

approach, and compare results with the outer product algorithm. 
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In chapter VIII we present the derivation of the maximal storage capacity of the 

associative network structure when all algorithms are allowed for consideration. The 

results bound the performance of any specified algorithm, and take into consideration 

specified tolerances of error. 

Extensions of the basic neural networks structure as embodied in chapter VI 

through VIII, are considered in chapter IX, and particularly in regard to 

generalisations of the network to incorporate more communication, and computation, 

and the gains in capacity thereby, associative memory architectures using distributed 

non-linearities to compensate for specified distortions, and networks using binarised 

links. Chapter X concludes with some open problems and questions, and indicates 

possible lines of research. 
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CHAPTER II 

MULTI-CHANNEL MACHINES 

1. FINITE-DIMENSIONAL FEATURE SPACES 

In this chapter we characterise the statistics of generalised linear discriminant 

functions with point rules of the form (1.2.5) on a finite number of channels. Two 

particular instances of point rules that we analyse in some detail are square-law and 

threshold point rules. We will consider applications of these structures to classification 

problems in the following chapters. 

A. System Structure 

The pattern space we consider is a Hilbert space, H, of square-integrable, 

complex-valued functions, with inner product ( , ). For definiteness we consider 

functions f (x ,y) of two Cartesian coordinates, with the natural inner product. With 

each of c states of nature, n(s l, we identify functions f (s l from some subset of H. 

The functions (signals) f (s l are assumed to exist in a random, additive noise 

environment which determines the class-conditional distributions of pattern vectors in 

H. 

We dub the procedure for realising a generalised linear discriminant function of 

the form Lo Do W aescribed in the previous chapter, a multi-channel machine. A 

processor realising such a generalised linear discriminant function is illustrated 

schematically in fig. 2.1. 
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CHANNEL C; 

............. --- ..................... ....-... .................... -~.., 
1 FILTER POINT RULE I 

f (x ,y )-· --41•..oer t ~ h;(x ,y l} ~1 D (.) J 1 l ~i 
( ) . Nd;I 

N x ,y L ...... ....._. ~..._. ....... ..._ _. _. ..... ..._ ........... -..... ............ :... .J 

Fig. 2.1 (a). Schema for a single channel. 

• 
• 
• 

Fig. 2.1 (b). Multi-channel machine. 
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Pattern vectors f are mapped to points in the m -dimensional feature space 

IR m through the agency of a linear map W : H - CDm , followed by a point rule 

D: CDm - IR.m as in equation (1.2.5). This, in essence, constitutes a dimensionality 

reduction procedure. The linear map W is represented by the m -vector of channel 

impulse responses [h v ... , hm], where the hi 's are square-integrable functions in H. 

Each component of the feature can be thought of as being realised by a single channel, 

Ci, comprising a linear filter hi, and a (non-linear) map D. The j -th feature 

component is hence a real scalar D {(hi , f )}, when f is the input pattern. Fig. 

2.1 (a) illustrates a block-diagrammatic channel realisation. 

The discriminant functions of interest are finally realised by projecting feature 

vectors onto the real line through the linear discriminant functions L acting on the 

feature space. We represent L by the m -vector of weights (av ... , am). The 

schema of fig. 2.1 (b) illustrates the realisation of such a discriminant function. Here 

we have m channels in parallel producing the m components of the feature vector, 

and the components of the feature vector are then collapsed into a discriminant 

function through the weights a 1,a2, ... , am. The weighting factors, ai, essentially 

specify the orientation of a hyperplane in the feature space. Note that as a 

consequence we have m degrees of freedom (corresponding to the m independent 

dimensions of the feature space) in choosing a generalised linear discriminant function 

once the feature space is specified. 

B. Noz"se Consz"deratz"ons 

If the channels are so specified that feature vectors corresponding to different 

classes are linearly separable, then in principle, in the absence of noise the weight 

vector can be so chosen as to separate the various classes with no error. (However, for 

very similar image classes this may call for considerable resolution in the devices used.) 

The presence of noise, however, causes a spread in the probability distributions of the 
"' 

outputs corresponding to each class. Under such conditions the classes are no longer 

linearly separable, and the best we can hope to do is minimise the probability of error 

by choosing channels and weights tailored to the problem. 
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We consider the following specific noise models at the input and the output of 

the multi-channel processor: 

The input noise process, N(x ,y ), (as illustrated in fig. 2.1), is assumed to be 

wide-sense stationary, additive, white, and Gaussian. We assume N(x ,y) has zero 

mean, and variance u;. 
We assume some additive "detection" n01se at the output of each channel, as 

indicated in fig. 2.1; the scalar feature at the output of the j -th channel is degraded 

by an additive Gaussian noise component Nd,;. The sequence of random variables 

{Nd,j };'~ 1 is assumed to be independent, identically distributed, with mean µd, and 

variance u J. 

We now characterise the generalised liner discriminant function obtained at the 

output of the multi-channel processor. We assume an input image f E n corrupted 

by the additive noise process N(x ,y ). The multi-channel processor is completely 

specified by the m-tuple of impulse responses (h Iih 2, ... ,hm) E Hm, and the weights 

(01'02, ... , Om) E IRm. The output of each channel has an additive independent 

noise component Nd ,J. With reference to fig. 2.1, we can write the output, G i, of the 

j -th channel, for each j =1, ... ,m, as 

= D( J 00 J 00 

( f (x ,y) + N(x ,y)) hi (x ,y) dxdy) +Nd ,j (2.1.1) 
-00 -00 

The generalised linear discriminant function, G, is hence 

m 

G=Eo;G;, 
j =I , (2.1.2) 

where a i is the weight for the j -th channel. 
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C. Statistically Independent Features 

The inclusion of more (scalar) features (or equivalently, the usage of more 

channels), cannot degrade performance; at worst, we can discard non-informative or 

misleading features (by using a weight of zero) so that performance is unaffected. 

There is some theoretical evidence, however, supporting the intuitive fact that 

including more statistically independent features in the recognition algorithm improves 

performance (cf. [I], for example). We are hence motivated to characterise sets of 

channels which yield statistically independent features. 

Definition. Let { Cl>C 2, ... ,Cm} be a set of m channels. Let GJsl be the output of 

the j -th channel with input J (s l E fl (s l, s =I, ... ,c. We say that { C 1,C 2, ... ,Cm} 

constitutes a set of independent channels if the random variables G J8 l, j =1, ... ,m, are 

independent for each s =I, ... ,c. 

We define ~}8 l E ~. T/ i E IR, and the complex random variables N j for each 

s =I, ... ,c, and j =l, ... ,m, by 

00 00 

dsl b..(hj ,J(s))=J J /( 8 \x,y)hj(x,y)dxdy, (2.1.3) 
--00 -00 

00 00 

T/j D.llhill 2 =J J lhj(x,y)l 2 dxdy (2.1.4) 
--00 -00 

Define 
00 00 

Ni D. J J N(x,y)hj(x,y)dxdy (2.1.5) 
--00 --00 

With reference to equation (2.1.1), we then have the output of the j -th channel 

conditioned upon class n (s) being present, given by 

,,,. 

G (s) = D(t"(s) + N.) +Nd . J )) J ,J 
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(2.1.6) 

We now state a necessary and sufficient condition on the channel impulse 

responses, h;, corresponding to each channel C;, so that the channels,C;, j =l, ... ,m, 

are independent. 

Theorem 2.1.1. Let { C 1,C 2, ... ,Cm} be a set of m channels, and let impulse 

response h; correspond to channel C;. Then the channels, C;, j =l, ... ,m, are 

independent if, and only if, the impulse responses h; , j =1, ... ,m satisfy 

J Re (h;) Re (hk) = J Re (h;) Im (hk) = J Im (h;) Re (hk) = J Im (h;) Im (hk) = 0 , 
(2.1.7) 

for j ,k =l, ... ,m and J =/:- k, and where all integrals are over the two-dimensional 

plane. 

Proof. We need to show that the random variables G }8 l are jointly independent 

random variables if, and only if, the impulse responses h; , j = 1, ... ,m, satisfy 

(2.1.7). From a consideration of equation (2.1.6) this is equivalent to showing that for 

j =/:- k the complex random variables Ni and N k are independent if, and only if, the 

impulse responses are as in the statement of the theorem. (This follows because the 

random variables Nd,; are independent, and the s-} 8 l's are deterministic quantities). 

Note that it suffices to show pairwise independence, as the random variables Ni are 

jointly Gaussian. 

Proof of 'if' part: assume the impulse responses are as m the theorem. From 

equation (2.1.5) we have for each j =l, ... ,m 

00 00 

N; = J ,.J N(x ,y) Re ( h; (x ,y)) dxdy 
-00 -00 

00 00 

- i J J N(x ,y) Im (h; (x ,y)) dxdy 
-00 --00 

(2.1.8) 
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Hence Re(N;) and Im(N;) are the outputs of linear systems with impulse 

responses Re{h;(x,y)}, and Im{h;(x,y)}. As linear transformations of normal 

processes are also normal, we have that Re(N;) and Im(N;) are also Gaussian random 

variables. As N(x ,y) is Gaussian, white, and has zero mean and variance un2, we have 

(2.1.9) 

00 00 2 

Var (Re(N;)) =u;J J (Re(h;(x,y))) dxdy (2.1.10) 
-00 -00 

00 00 2 

Var(1m(N;))=u;J J (Im(h;(x,y))) dxdy (2.1.11) 
-00 -00 

We now prove that Re(N;) and Re(Nk) are independent. On account of their 

normality it suffices to show that they are uncorrelated. Now 

E (Re (Ni ) Re (N k ) ) 

00 00 00 00 

=J J J J E(N(x1,Y 1)N(x2,Y2))Re(h;(x,y))Re(hdx,y))dxdy 
-00 -00 --00 -00 

00 00 

=u;J J Re(h;(x,y))Re(h.i:(x,y))dxdy=O, 
-00 -00 

as N(x ,y) is white, with E (N(x 1,y 1)N(x 2,Y2)) = u;8(x 1-x2,Yi-Y2) , and 

f Re(h;) Re(hk) = 0 by assumption. 

So Re(N; ), and Re(Nk) are independent if j -:/:- k. The above argument can 

be repeated almost in toto to prove that Re(N; ), and Im(N k) are independent. Hence , 
Re(N; ), and Nk are independent. In very similar manner it can be shown that 

Im(N; ), and Nk are independent, and hence N;, and Nk are independent. 
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Hence G; is independent of Gk if j =/: k. 

To prove the 'only if' part: assume { G;} is a sequence of independent random 

variables. Then Re(N; ), and Re(Nk) are independent if j =/: k. So 

E {Re(N;) Re(Nd} = E {Re(N; )} E {Re(Nk )} = O. 

But from the proof of the 'if' part we have 

00 00 

E {Re(N;)Re(Nk)} =u; J J Re(h;(x,y)) Re(hdx,y)) dxdy, 
-00 -00 

so 
00 00 J J Re ( h; (x ,y)) Re ( hdx ,y)) dxdy = 0 , if i =/: k . 

--00 --00 

The proof of the remaining parts of equation (2.1.7) follows similarly. D 

We indicate a specialisation of the theorem to two particular cases which we 

will use in the ensuing chapters. 

Corollary 2.1.1. Let { C 1,C 2, .. .,Cm} be a set of channels. Assume the channel 

impulse responses h; are two-dimensional functions, which in polar coordinates are of 

the form 

(2.1.12) 

with k; =/: k1 if j =/: I. Then { C IiC 2, ... ,Cm} is a set of independent channels. 

I' 
Proof. From equation (2.1.12) we have 
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We can hence write 

00 00 J J Re{h;(x,y)}Re{h1(x,y)}dxdy=l 1 +1 2 +13 +1 4 , 

where 
-00 -00 

00 1~ I 2 = - J Re{ h; ,k
1 

( r ) } Im { h1 ,k, ( r ) } rdr cos k; () sin k1 () d () = 0 , 
0 0 

Hence JRe{ h;} Re{ h1 } = 0 if j ~ I. The remaining parts of equation can 

be shown to hold true in similar fashion for impulse responses of the form (2.1.12). 

Hence, by theorem (2.2.1), the channels { C 1,C 2, ... ,Cm} defined by equation (2.1.12) 

are independent. o 

Sets of channels satisfying the hypotheses of corollary (2.1.1) satisfy a further 

independence property which is useful in computing output statistics. We formally 

state this property in the following result. 

Proposition 2.1.1. For each j =I ,. .. ,m , the random variables Re{ Ni}, and 

Im{N;} are independent for channels satisfying the property of corollary (2.1.1). 

Proof. From the proof of theorem (2.1.1), we have that Re{N;} and Im{N;} are 

Gaussian random variables, and hence it suffices to show that they are uncorrelated. 

From equation (2.1.8) 



where 

And hence 
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/ 1 =f (Re{li;,ki(r)}frdr /'Ir cosk;Bsink;BdB=O, 
0 . 0 

00 /'Ir 
I 2 = I Re{ hi ,k, ( r ) } Im {hi ,k} ( r ) } rdr cos2 k i e d e 

0 0 

00 

= 'lrJ Re{h;,ki(r)} Im{h;,ki(r)} rdr, 
0 

00 =-7rJ Re{h;,ki(r)}Im{h;,k
1
(r)}rdr, 

0 

r A 2 /'Ir 
1 4 =- (1m{h/,k

1
(r)}) rdr sinkiBcoskiBdB=O. 

0 0 

E{Re(Ni )Im(Ni )} = 0. 

From equation (2.1.9), Re{ Ni} and Im{N;} have zero mean, and hence they 

are uncorrelated. o 

We will have occasion to utilise channels with impulse responses of the form 

(2.1.12) in a consideration of image classification systems which are insensitive to 

image rotation. Another class of useful impulse responses resulting in independent 

channels obtains on consideration of single lines of raster scanned images. 

,,. 
Corollary 2.1.2. Let H be the set of functions f : Ill X 7.l - Ill, with 

II! 11
2 = E I(! (x ,k ))2 dx < 00. Let { c 11 ... ' cm} be a set of channels with 

k 

impulse responses h; given by 
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h; (x ,k) = h (x ,k) 6j/, , J = l, ... ,m , (2.1.13) 

where h; E H. Then { C v ... , Cm} is a set of independent channels. 

Proof. As the functions h; are real, it suffices to show that ( h; , h1 ) = 0, with the 

inner product defined as in the corollary. We hence have 

E J h; (x ,k) h1 (x ,k) dx = E J ( h (x ,k )2 8;k 81k dx = 0 . 
k k 

It follows that the channels are independent by theorem (2.1.1). 0 

Channels with impulse responses as in corollary (2.1.2) occur naturally in 

certain optical signal processing systems wherein two-dimensional signals are processed 

through the agency of high quality one-dimensional optical devices. Such 

systems-sometimes termed pseudo-correlators because of the nonlinear correlations 

they perform-are interesting examples of quadratic machines which are comparable to 

Matched Filters in classification capability [2]. Their statistical analysis, however, is 

similar to that for the class of rotation invariant classification systems which we 

consider in the next chapter. We will not explore the topic further in this monograph. 

By virtue of the point rules being local to every channel, the characterisation of 

independent channels-leading to independent feature components-cquld be made solely 

in terms of the channel impulse responses, h;, irrespective of the actual nature of the 

point rule D. The determination of the class-conditional probability distributions of 

the discriminant functions, however, is strongly dependent on the nature of the point 

rule D. In the next two sections we consider two simple point rules-square-law and 

threshold-and obtain expressions for discriminant statistics for these two cases. 
,. 
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2. QUADRATIC MACHINES 

A. Square-law Poz"nt Rules 

For each channel, we consider the case of a square-law point operation with 

D (zi) = I zi j 2. The point rule D hence utilises a quadratic map in each channel, 

and in analogy with the terminology, linear machine, we christen the resultant 

processor a quadratic machine. Examples of quadratic machines include a class of 

rotation invariant image classifiers which we analyse in the next chapter, and the 

pseudocorrelator-an optical nonlinear correlator. 

Substituting for D in equation (2.1.1) we obtain 

G i I J 00 J 00 

( J (x ,y) + N(x ,y)) hi (x ,y) dxdy \2 +Nd ,j 
-00 -00 

(2.2.1) 

where ~j is the inner product between f and hi, and Ni is the inner product 

between N, and hi. The discriminant function G is given by (2.1.1). We will assume 

that the channel impulse responses hi satisfy theorem (2.1.1), so that the channels are 

independent. 

B. Single Channel Statistics 

In this section we consider the statistics at the output of a single channel. We 

obtain here an expression for the probability density function (pdf) of the output, 

G J8 l, of channel Ci, conditioned upon class 0 (s) being present at the input of the 

channel. 

Assume the channel impulse responses hi are as in corollary (2.1.1). Set 
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The impulse responses, h; , j =1, ... ,m, of the multi-channel processor are as m 

corollary {2.1.1), and are of the form {equation (2.1.12)) 

A ik 0 
h · = h · k ( r )e 1 k · E 'IL, 

1 J ' J ' 1 

and such that k; -:/:- k1 if j -:/:- I. Hence 

00 00 2 

11Reh;ll2 =J J (Re{h;(x,y)}) dxdy 
-00 -00 

=Joo I 
0 0 

After some computation we have 

00 00 2 J J (Re{h;(x,y)}) dxdy (2.2.2) 
--00 -00 

where T/j is the energy of the function h;, as defined in equation (2.1.1). Similarly, 

00 00 ( )2 1 J J Im {h; (x ,y )} dxdy = 2 1'/j (2.2.3) 
--00 -00 

From equations (2.1.10), and (2.1.11), we then have that X/ 8
) ,...._, N (Re dB l,a,?77j /2), 

and Y/ 8 l ,....._, N(Im dsl,a;rJ;/2). Furthermore, by proposition (2.1.1), they are also 

independent. Hence the joint probability density function, Px(sJy(•l(x,y), of the 
J J 

jointly Gaussian indep~dent random variables X/ 8 l, and Y/8 l is given by 
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If output noise is absent we have 

Then 

Px <•>y <•i(x ,y) dxdy . 
• J J 

Set 

x = r cos 8 and y = r sin 8 . 

Then 

p { G }·) s v} = --~- r I 
2

'K exp {- -cr-2
1
-n-. [(r cos(} - Red' l)2 

11'CTn '1; 0 0 n .,, 

Set 

Then 

+ ( r sin 8 - Im ~1· l)2 ] } rdrd (} 

X J
2

"' exp{+ (Re ~1•) cos(}+ Im ~}·J sin 9)} d 9dr . 
0 CTn 1/j 

Im ~18) 
tan <P = ---'-­

Re ~18) 
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! 'Ir { 2r I ~'')I } X exp 
2 

J cos ( 8 - </>) d 8 dr . 
0 CTnT/j 

The modified Bessel function of 0-th order is defined by 

ij 10(x) = - exp (x cos8) d(J. 
271" 0 

Hence 

P{a}·l~v}=+ r r exp{--2
1
-(r 2 + l~J·l1 2)}10 ( 2 r l 2d~ll) dr, 

u,.1/; 0 u,.1/; u,.1/J 

for v > 0. Hence, we obtain 

PG<•l = dd P {Gj') < v} 
J v 

= - 2- exp - - 2- ( v + I ~ J 8 ) I 2) I 0 ; U ( v ) , 
1 { i } [ 2 I ~'') I l 

CTn T/j CTn T/j O'n T/j 

where 

{ 
l if v > 0 u ( v ) = 0 ' if v < 0 . 

The statistics for each channel can thus be completely characterised under the 

proviso that output noise is absent, and that the channel impulse responses satisfy 

some orthogonality constraints. In the presence of output noise we are perforce 

constrained to include a convolution integral because of the addition of an independent 

noise term at the channel output; we obtain the class-conditional pdf, p/' )( v ), of G }') 

to be , 



where 

a= 
2S/4 I ~18) I .v;; 

2 
'I; Un 

-49-

uJ l ---2 ' 
'Jj Un 

and I 0(·) is the modified Bessel function of 0-th order. 

(2.2.4) 

The integral of equation (2.2.4) is analytically intractable, and numerical 

techniques have to be resorted to for its evaluation. 

C. Multi-channel Statistics: The Characteristic Function 

In view of the complexity of the expression for the pdf of the output for a single 

channel, it is not surprising that no closed form expression exists for the pdf of the 

output of a multi-channel processor. Specifically, a straightforward approach to 

evaluating the class-conditional pdf of the output yields multiple integrals, which are 

not analytically tractable. We hence adopt a different tack. 

Our approach is to obtain an orthogonal series expansion for the pdf (the 

Gram-Charlier A-Series), a few terms of which provide adequate approximations to the 

pdf (cf. [3], for example). The coefficients of the above-mentioned series are specified 

in terms of certain semi-invariant quantities called the cumulants, and these in turn 

can be computed from the characteristic function of the random variable. We shall 

hence, first explicitly evaluate the characteristic function, \jl(s l(t ), of the random 

variable G(' l. (Recall that G(') is the generalised linear discriminant function realised 

at the output of the' multi-channel processor, conditioned upon class O (s) being 

present at the input of the processor.) 
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We consider a multi-channel processor specified by the set of independent 

channels { C vC 2, ... ,Cm}, where the impulse responses h; EH corresponding to 

channel C; are as in theorem (2.1.1). In addition, to the mutual orthogonality 

provisos of theorem (2.1.1), we also assume that the channel impulse responses further 

satisfy 

J Re h; Im h; = 0 , 

so that Re h;, and Im h; are orthogonal to each other. This condition is satisfied by 

h; specified according to the provisions of corollaries (2.1.1), and (2.1.2), for instance. 

A net consequence is that proposition (2.1.1) holds for this choice of h;. Then from 

equations (2.1.2) and (2.1.6), we have the generalised linear discriminant function 

conditioned on class n (e) being present, given by 

- Ea:; [ XJ 8 l+YJ 8 l+Nd,j ]. s=1,. .. ,c 
j=l 

where we define the random variables 

and 

(2.2.5) 

From corollary 1'2.1.1) and proposition (2.1.1), we have that the random 

variable, G( 8 l, is composed of a sum of 3m statistically independent random variables. 

Hence 
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= f]:E{ eia,x}•>t )E{ eia,YJ
1

>1 )E{ eia1 N;,;t). 

, =l (2.2.6) 

The channel impulse responses, h;, have orthogonal real and imaginary parts 

by choice. Hence, Re Ni and Im Ni are independent random variables. Further, 

they are jointly normal with ReN; ,......, N(o,u;fJ;,R), and Im Ni ,......, N(o,u;T/;,1), 

where we define 

T/j ,R ~ l!Re hi 11
2 and T/j ,1 ~ llim hi 11

2 

in equations (2.1.9), (2.1.10), and (2.1.11). Hence, 

Completing squares and doing an appropriate contour integration gives 

( 
i Q x <»1 ) 

E e 1 
' 

exp 
(Re{S"Jel})2 [ 2itO:jT/j,R<1'n

2 l 
21/ j ,R u; 1 - 2 it o: j T/ j ,R u; 

~--'=--~~~~~~~~~~~~~-{:::= 

(I -2 it o: i fJ i ,R u;) 
A similar derivation yields 

( 
i a y(• l1 ) 

E e 1 1 

(2.2.7) 

(2.2.8) 
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Finally, the Nd,; 's are normally distributed with mean µd and variance a}. 

Hence (cf. [4] for example) 

j=l, ... ,m. 

Substituting equations (2.2.7)-(2.2.9) in equation (2.2.6) we get 

m 
w(s l(t) = II 

j=l 

. 2 2 t { 2} exp i a i µ d t - a; ad 2 

( 2) 1/2 ( 2) 1/2 1 - 2it a· T/ · R a 1 - 2it Q' · T/ · JU J J, n J J, n 

(2.2.9) 

(2.2.10) 

Simplifications ensue for the particular choices of impulse responses according to 

the recipes of corollaries (2.1.1), and (2.1.2). For the former case, we have from 

equations (2.2.2), and (2.2.3) that TJ;,R = TJ;,1 = ! TJ;, while for the latter case, we 

have TJ; ,R = TJ; , an d TJ; ,1 = 0. 

Note that the pdf, p (s l( v ), of the LDF conditioned upon class !l (s l being 

present, G(s l, can in theory be evaluated as the Fourier transform of the characteristic 

function , w(s l(t ). The form of w(B l(t) in equation (2.2.10) is, however, not conducive 

to analytical Fourier transformation. We hence proceed with an evaluation of the 

cumulant:;; of the rnndom variable G(B I, and then obt9.in good approx;mat.ions to the 
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pdf from a series expansion. 

D. The Cumulants of the Output Probabil£ty Distribution 

The cumulants, originally defined by Thiele, are semi-invariant quantities 

intimately related to the ordinary moments of a random variable. Besides possessing 

several intriguing properties (cf. [5] for example), these quantities are of great utility in 

orthogonal series expansions for pdf's [5]. In what follows, we obtain explicit 

expressions for the cumulants of the random variables, G( 8
), s =l, ... ,c. 

The cumulants, Xr(s) , r =1,2, ... , of the random variable G(s) are formally 

defined by 

oo (a) 

E ~(it y =log( '11(
8 \t)) . 

r =1 r · (2.2.11) 

Substituting equation (2.2.10) for w(B l( t) we have 

00 (•) 

E~(it )• 
r=l r. 

+ 
(Im i;j•l)2 ( 2ita;rJ;,1rr; ) . 
---2- . 2 +•t0t;µd 
2T/j,1<r,. I-21ta;rJ;,1rr,. 

o'[rrJt
2 

I I ] 
2 

-2log(l-2il0t;fJ;,Rrr;)-
2

log(l-2it0t;fJ;,1rr;) . 

(2.2.12) 

Now 

log ( 1 - itx ) = - E _!_ (£tx Y , 
r =1 r (2.2.13) 

itx 
1 - itx 

00 

E (itx y 
r =1 (2.2.14) 

with both series converging for I itx I < 1 , i.e., I t I < I ; I . 
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Define for j=l, ... ,m, and let 

t min = min(t vt 21 ••• , tm ). Then from equations (2.2.12)-(2.2.14) we have 

I;~(it)' = E E(2o;'7;,Ru.;1)' ~, 2 + _!_ (it)' 
oo (•) oo [ m ((Re,.(•))2 

)] 

r=l r. r=l j=l 2'7;,RO"n 2r 

when I t I < t min· 

Equating corresponding powers of t on both sides of the above equation, we get 

(2.2.15) 

where Ort is the Kronecker delta. 

In particular, we evaluate the following for future reference: the mean, 

µ( 8
) = x1(

8 l, and variance, 0'( 8 l
2 = x2(s l, of G(s) (cf. [6]). 

E{G(s)) fl. µ(s) = E O:j [I ~J8) I 2+TJjO'n2+µd]' 

j=I (2.2.16) 
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(2.2.17) 

E. An Orthogonal Series Expansion for the PDF 

The Weber-Hermite system of orthogonal polynomials is often used for 

expans10ns of the density function, and gives rise to what is known as the Gram­

Charlier A-Series [2,4]. This series is particularly well suited for the application at 

hand because the coefficients of the series expansion find particularly simple expression 

in terms of the cumulants of the pdf. In terms of this series, the class conditional pdf, 

p (a)( v ), of the generalised linear discriminant function, a(a l, is given by 

(2.2.18) 

where 

q/1 l( v) t:,. --. -- exp -· di ( 1 {-v 2 
} l 

dv 1 J2n- 2 

and the coefficients c/8) are defined in terms of the cumulants [2,4]. The first few 

coefficients are 

C (a) - C (a) - 0 1 - 2 -

C Js) -x3(s l 
3 

3!xJsl2 
I' 

c 4(8) 
xis) 

- 4!xJs )2. 
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It is worth noting that rearrangement of the terms of the A-Series leads to 

better approximations to the pdf when we require to approximate the density using a 

few terms of the series. Rearrangement of the terms of the A-Series leads to what is 

known as the Edgeworth Series; this series expansion, however, may have problems of 

convergence [6]. However, our interest lies not in convergence of the series 

representation of the pdf, but in obtaining a good approximation to the pdf using a 

few terms of the expansion. In this respect the Edgeworth series is preferable to the 

A-Series [3]. 

A further property of interest of the series expansion {2.2.18) is that this form 

of the pdf is especially conducive to the evaluation of error probabilities (probabilities 

of misclassification). This follows because integrating the Hermite polynomials results 

simply in lower-order Hermite polynomials. As a consequence, we can obtain explicit 

(if approximate) formulas for the distribution function, thus enabling us to avoid the 

irksome bother of numerical integration of the pdf's to yield error probabilities. 

A consideration of equation {2.2.5) and the results of corollary {2.1.1) and 

proposition {2.1.1), yields that the random variable G(s) is the sum of 3m independent 

random variables. It is easy to check that for large m the hypotheses of the Central 

Limit Theorem hold, so that when the number of channels in the m'\llti-channel 

processor become large the generalised linear discriminant functions a(s) ' s =l, ... ,c' 

approach normality. {A strict upper bound on the deviation of the distribution 

function from normality can be obtained by use of the Berry-Esseen inequality [7].) 

The expansion in terms of the Hermite polynomials can hence be expected to fit the 

pdf very closely, with the use of just a few terms of the series expansion providing 

good approximations. 

F. The PDF for a Pure Noise Input 

The probability 9ensity function at the output when the input is purely white 

Gaussian noise is of use in estimating the detectability of the signal term in noise. 

This corresponds to Neyman-Pearson hypothesis testing where the two hypotheses to 

be tested are the presence or the absence of a signal. In essence this determines the 

resolution available in the system. 
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For the case where the signal is absent at the input, and we have noise alone, 

the output of the processor is (from equation (2.2.5) ) 

m m 

G = E O'; I N; I 2 + E O'; Nd,; 
; =l j=l 

where the random variable Y 1 corresponds to the first summation, and the random 

variable Y 2 corresponds to the second sum. 

Now, the Nd,; 's are independent and normal with common mean µd and 

variance u f Hence Y 2 is also normal, and the pdf, Py/ v ), of Y 2 is given by 

Py 2(v) = -( -! -1~172 exp {- lm (v - µd ~a; )2
}. 

2rru J ~ a J 2u J E O' J J -l 

J =l j=l (2.2.19) 

We obtain the characteristic function, Wy
1
(t ), of Y 1 by setting the "signal 

term" d8
) = 0 for each j =l, .. ., m , and by ignoring the terms involving µd and u d 

(corresponding to the random variables Nd ,j) in equation (2.2.10). Hence 

m 

W y 
1
( f) = I1 (1 - 2if O' j TJ j ,R (f ;)

1/2 (1 - 2if O' j TJ j ,/ (f ;)l/2 . 
j=l 

Consider, for simplicity, that impulse responses are chosen according to the 

prescription of corollar~ (2.1.1), so that T/j,R = T/j,J = ~ T/j. For the case where all 

the weights, a j, are strictly positive, the pdf, Py ( v ), of Y 1 takes on a very simple 
I 

form. If aj > 0, j =l, .. .,m then the poles of W:t)t) all occur in the lower half-

plane at points t = -i /(aj T/j u;), j =l,. .. ,m. Assuming for simplicity that all the 
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poles are of multiplicity one, i.e., o:; TJ; =/:- o:1 T/1 if i =/:- l, we use the Calculus of 

Residues to evaluate Py 
1
( v ): 

Py ( v) t:. _I_ J oo W y ( t) e -ivt dt 
1 211'" I 

-00 

m 

-E 
j=l 

exp{- v 2 } U( v) 
O:;TJ;O'n 

0: j T/ j (J'; ii [ 1 - _0:_1_TJ_1 _ l 
I =1 0: j T/ j 

l'fj 

{ 
1 if v >o 

where U(v) is the unit step function U(v) = 0 if v <0. 

(2.2.20) 

Now Y1i and Y 2 are independent, and hence the pdf, Pc ( v ), of G is the 

convolution of the individual pdf's. Using equations (2.2.19) and (2.2.20) and 

performing the integration we obtain 

00 

Pc(v)=j Py(u)py(v-u)du 
I 2 

-00 

{ }

-I 

m m o:1 '1I 
E [ o:;f7;u..2II(1--;:-:-) 
j =I I =I 1 '11 

lfj 

X exp {-
1 

2 (v -µd ta, 
O:jT/jO',. I=! 

2 m ) } O"tf ~ 2 
- 2 L..JOI 

2a i '1 i 17 n I= I 

, 

x 2 a; '1; u,. 
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(2.2.21) 

where <l>(x) is the cumulative Gaussian distribution function, 

and where G represents the output of the processor with a pure noise input and with 

no image class present at the input of the processor. 

3. THRESHOLD MACHINES 

A. Threshold Po£nt Rules 

We now take to a consideration of multi-channel machines whose point rule is 

specified by independent threshold operations in each channel. In this instance, the 

point rule {l.2.5) is specified by the hardlimiting map 

{ 
1 if Re z > t 

D ( z ) = sgn (Re z - t ) = _ 1 if Re z < t 'ti z E CC . 

Here t is a fixed, real threshold. We will call the resultant processor a threshold 

machine. \Ve will consider an instance of a threshold machine in chapter IV, where we 

use the threshold point rule to generate a class of low cost binary filters which yield 

good classification performance. 

Without loss of generality, we will take all functions to be real. Substituting for 

D in equation (2.1.1) we obtain 

Gj8 l=sgn (J°" J00 

{J(s)(x,y)+N(x,y)}h1(x,y)dxdy -t) +Nd,i 
-00 -00 
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where ~}' ), and N; are as in (2.1.3), and (2.1.5), repectively. 

Using equations (2.1.9), (2.1.10), and (2.1.1), we have that 

(~}')-t)+N;......., N(d')-t,<T;TJ;)· In the following we will assume that the 

channel impulse responses, h;, are mutually orthogonal: 

00 00 J J h;(x,y)hk(z,v)dxdy =0 if J :/=-k. 
-00 -00 

By theorem (2.1.1), it follows that the random variables, (d') - t) +Ni, are jointly 

independent, normal random variables, with mean (~}') - t ), and variance u :f TJ; . 

B. Single Channel Statistics 

The case where channel output noise is absent is particularly simple. In this 

case we have the channel output given by 

(2.3.2) 

The random variables Xj') clearly take on values -1 and 1 only. AB 

(d 8 l-t)+N; ~ N(i;js)_t,u:fTJ;),wehave 

P .(s) t::,,. p {x{s)= t} =<I> ~J -
[ 

(s) t l 
J = J I , 

(1n yr/; (2.3.3) 

and 

(2.3.4) 

Now, from (2.3.1) and (2.3.2), we have 

, 
G (s) = X (a) + N · 

J J d ,] 

The random variable Nd ,j ~ N (µd ,u J) is independent of X }8 
)_ Hence, the 
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characteristic function 111 J' )( t) is given by 

Using equations (2.3.3), (2.3.4), and (2.2.9), we get 

(2.3.5) 

The probability density function, p/8 
)( v ), of G J8

) is obtained as the inverse Fourier 

transform of wJe)(t ). Hence 

p .(e )( V) = _I_ Joo \Jr (s l( t) e -ivt dt 
) 2?T ) 

--00 

where ¢>(x) is the standard Gaussian probability density function 

-z2 
1 -

¢>(x) = -- e 2 
.J'j; 

C. Multi-channel Statistics 

+l 
(2.3.6) 

Rewriting equation (2.1.2) for the processor output, we have the discriminant 

function a(s) given by 

m 
a(s) = :Eai ajs). 

j +I 

By choice of orthogonal impulse responses, the channels are independent. Hence the 
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characteristic function, q,( 8 
)( t ), of G(11

) is given by 

ITE (eia1 G}•lt). 
j=l 

Using equation (2.3.5), and taking cognisance of the weighting factors o:;, we have 

q,(s)(t) =ft wj•l(a;t) 
j=l 

Let P denote the family of ordered pairs of subsets ( J ,K ), with 

J u K = { l, ... ,m}' and J n J( = 0. Using the convention II x; = 1, we have 
j E 0 

w(sl(t) = E 
(J,K)E P 

The probability density function, p (s l( v ), of G(s) is hence given by 
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1 

Except for the simplest cases, where we have very few channels, equation (2.3.8) 

would in the general case be very cumbersome to evaluate. An alternate approach for 

this case would be to compute the cumulants of G(8 l, and then use the first few terms 

of the Edgeworth series expansion for the probability density function to obtain 

reasonable approximations to (2.3.8). 

Assume without loss of generality that P/8) > q/8 l for j = l, ... m; i.e., from 

(2.3.3), and (2.3.4), we require that ~}8 ) > t. (If ~}8 ) < t, the following results 

continue to hold by interchanging p/8
) and q}8 l.) Rewriting equation (2.3.7), we have 

From the defining equation (2.2.11) for the cumulants, Xr(s l, of the random variable 

c(s) we have 
) 

oo (s) 

:E ~(it Y =log '1!( 8 )(t) 
r =l r ! 

q .(s) 2· t 
We have I -'- e -

1 01 I < I, so that the Taylor series expansion 
P/sl 

, 

converges for all t . Hence, 

-2i a 
1 

It 
e 

I 



-64-

oo (•) oo m 

E ~(it)' = EE [a; (1 + µ, }8,1 + o:Ju'i8.2 
r=l r. •=lj=l 

+ (-2a · Y ~(-1)1 - 1 _,_· - 1•-1 ~. 00 ( q (•) )' l ,,.,,, 
J L_j p .(• l r ' l=l , . 

Equating corresponding powers of t on both sides, we obtain 

r = 1,2, ... 
(2.3.9) 

The mean, µ(s l, of G(s l, can be directly obtained from (2.3.9) as 

The form (2.3.9) is not particularly illuminating for the general form of cumulant. 

However, in the limit as P/8) --+ 1, we obtain the following asymptotic estimate for the 

cumulants. 

Using these estimates for the cumulants of c(s l, the first few terms of the senes 

{2.2.18) can be used to approximate the probability density of G(s l. 
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CHAPTER III 

ROTATION INSENSITIVE FILTERS 

1. INTRODUCTION 

A. Background 

The first application we consider is the use of quadratic machines to achieve 

invariance to image rotation in classification. While matched spatial filters have been 

demonstrated to provide an effective and simple tool for shift-invariant image 

recognition, the technique of matched filtration fails when rotations of images are 

encountered. In recent papers, Hsu, et al., [1,2] demonstrate that linear filtration using 

a circular harmonic filter, followed by an amplitude extraction operation yields 

rotation and shift invariance in image classification. The use of a single circular 

harmonic filter, however, corresponds to using only a small fraction of the information 

content in an image (except in rare cases where an image is dominated by a single 

circular harmonic component), and can lead to poor noise performance [3]. The 

problem is further exacerbated when we are faced with multiple classes in the 

recognition problem, where it may prove difficult, if not impossible, to find a single 
ti' 

circular harmonic filter which provides adequate discrimination against all classes. 

The use of a single circular harmonic filter is equivalent to using a single feature 

for discrimination purposes. The addition of more independent features can be 

intuitively expected to yield better results, and can in fact be theoretically justified (cf. 
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[4], for example). It IS reasonable hence, to consider algorithms utilising several 

independent rotation invariant features. Two approaches proposed recently 

incorporate more robustness in the classification procedure by using several circular 

harmonic filters to generate a sequence of independent rotation invariant features 

which are used in the decision algorithm: Hsu and Arsenault [5] propose a multi­

dimensional decision-making approach, while Wu and Stark [6] propose a vector 

signature-based algorithm. 

B. Quadratic Mach£nes 

Ideally, we would like to incorporate robustness in the decision making 

procedure, while at the same time avoiding the computational complexities of multi­

dimensional decision making. With this in mind we investigate generalised linear 

discriminant functions of a rotation invariant character (of which [6] is a special case) 

thereby utilising several features, while at the same time retaining a simple decision 

rule. The particular machines we will investigate in this regard are the quadratic 

machines analysed in the previous chapter. With the nature of the point rule fixed to 

be square-law, much of our effort will devolve around appropriately choosing channel 

impulse responses (corresponding to filters) which achieve the necessary rotation 

invariant discriminant functions. 

We generate a finite-dimensional subspace of a (countably) infinite-dimensional 

feature space which has the desired (rotation) invariance properties, as indicated in the 

schema of fig. 2.1 (b). Here each channel generates one independent rotation (and 

shift) invariant feature, and the resultant feature vector is projected onto the real line 

by an appropriate choice of weights, to obtain the linear discriminant function. Note 

that any choice of weights yields a generalised linear discriminant function of a 

rotation invariant character. (Consequently, we have several degrees of freedom, with 

each rotation invariant feature used in the linear discriminant function contributing 

one degree of freedom.j Each channel consists of a filter which produces correlation 

peaks insensitive to rotation, followed by a square-law device to eliminate any 

unwanted phase terms, as shown in fig. 2.1 (a). We call these filters "Rotation 

Insensitive Filters," or RIFs for brevity. 
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Multi-class image classification is achieved by constructing a series of processors 

as in fig. 2.1 (b ), each of which is geared to distinguish one particular image class from 

the other classes, as in equation . As all these processors have similar constructions, we 

consider the problem of generating just one representative multi-channel rotation 

invariant processor which distinguishes one image class from all the other classes. 

In section 2 we characterise the most general type of channel impulse response 

which yields outputs insensitive to input rotations (up to a phase factor). 

The remaining sections 3 and 4 tackle the issue of linear discriminant function 

processor performance. Clearly any approach toward optimising classification 

efficiency (minimising the probability of error) will require consideration of the 

following: 

(1) The choice of rotation insensitive filters-characterised m section 2-for each 

channel, 

(2) The optimum choice of weights for the linear discriminant function, and 

(3) The number of channels to be chosen in the multi-channel processor. 

As an alternative to strictly optimal solutions, we obtain near-optimal solutions 

which maximally separate image classes in mean in section 3. We also explore the 

possibility of ad hoc selection of weights in conjunction with maximally separating 

filters. As a final note we tackle the issue of the discrimination information content in 

multiple stages of RIFs. We demonstrate that multiple stages of RIFs can potentially 

yield good performance, using the performance of matched filters as a convenient 

yardstick. In section 4 we demonstrate that the problem of optimisation over an 

abstract function space can be reduced to a more concrete problem of optimisation 

over sets of real numbers. We prove that optimum solutions exist when output noise 

is absent, and demonstrate that an optimal solution can be obtained by consideration 

of a compact set of k-tuples of real numbers. 
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2. THE GENERAL FORM OF ROTATION INSENSITIVE 
FILTERS 

Each channel of the multi-channel processor realising the generalised linear 

discriminant function (figure 2.1) has a rotation insensitive filter as a key element. In 

this section we obtain expressions for the most general form of a rotation insensitive 

filter. 

Let f (x ,y) represent a generic image belonging to one of c classes of images 

(which are symbolically represented by 11 (ll,n (2l, ... , 11 (cl). We denote by 

J (i l(x ,y) a particular image in class n (i l. Each class of images, 11 (i l, is assumed to 

consist of all shifted and rotated versions of the specified image, f (i l( x ,y ). We use 

the nonce notation f ¢(x ,y) to denote an image, f (x ,y ), which has been rotated 

through an angle of </> radians. All functions, f , considered, are assumed to belong to 

the Hilbert space, H (complex L 2 ), of square-integrable (finite-energy) functions. 

c 
We define n CH by 11 t;:,. LJ n (i). Clearly, {11 (ll,n (2l, ... , 11 (cl} forms a 

i =l 

partition of n . 

Definition. Let A C H be a subset of H. We define a function h EH to be 

rotation insensitive to A if for each J E A , and any angle of rotation </>, the 

magnitudes of the correlation between f (x ,y) and h (x ,y ), and of that between 

f ¢(x ,y) and h (x ,y ), are equal at some point in the correlation plane. 

We say that h is rotation insensitive to H (or simply rotation insensitive) if we 

set A = JI in the above definition. 

In what follows we investigate the behaviour of two general sub-classes of finite 

energy functions, IIJ2 C II and /10 C II, which conform to the above definition, 

VIZ., 

II0° t;:,. { h E JI : h is rotation insensitive to 11}, 
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H0 ~ { h E H : h is rotation insensitive to H } . 

Clearly, if h is rotation insensitive to H, then it is also rotation insensitive to O; hence 

Hoo :::> Ho. 

Note that we do not require invariance to rotation at all points m the 

correlation plane; rather, we require invariance at only a single point. By specifying 

the filters in such a fashion that we obtain correlation peaks at the specified 

"invariance point", we could locate the "invariance point" in the correlation plane 

even when there are shifts of the input image. If input image position is controllable, 

then we could specify a fixed point in the correlation plane as our "invariance point", 

and restrict our attention to this point alone. Furthermore, note that in the definition 

of H0° , we required invariance to rotation not just for one specified image class of 

interest, but for all the image classes. This was motivated by the fact that it is 

desirable to have rotation invariance extend to all the image classes so that the 

decision rule does not have to take into account the vagaries in the output due to 

rotations in the other classes. 

Let h (x ,y) E H, J (x ,y) EA C H, and let g (E,11) denote the correlation 

between J (x ,y) and h (x ,y) at the point (E,77) in the correlation plane. Then we 

have 

00 00 

9 (E,11) = J J f (x +E,y +17)h(x ,y )dxdy 
-00 -00 

where h is the complex conjugate of h (x ,y ). 

As correlation is a shift-invariant operation we restrict ourselves to considering 

solely rotated versions of the specified images f (i l(x ,y ), i =1, ... ,c. Now for 

simplicity we require our "invariance point" to be at the origin, (0,0), of the 

correlation plane. Setting g (0,0) = g, and rewriting the correlation integral in polar 

coordinates, we have 

00 

g =I I 
271" 

f (rcos B,r sinB) h(r cosB,r sinB) r d Bdr 
0 0 
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00 21f I -I 

= J J I ( r ,8) h ( r ,0) r d O dr (3.2.1) 
0 0 

Clearly, for any angle of rotation, </>, we have 

I ¢( x 'y ) = I ¢( r cos 0' r sin 0) = I I ( r ,0 - </>) . 

Letting g ¢ denote the correlation between f ¢(x ,y) and h (x ,y) at (0,0) m the 

correlation plane, we have 

00 211" 
g ¢ = I I I I (r ,0-ef>)h' (r ,O)r d 0 dr . (3.2.2) 

0 0 

For each r E [O,oo), the functions J' (r ,0) and h' (r ,0) are periodic functions 

of 0 with period 27r. We can hence formally expand f' (r ,B) and h' (r ,B) in a Fourier 

series (the circular harmonic expansion, cf. [7]): 

00 

f' (r ,0) = E j n (r )e in e 
n =-oo (3.2.3) 

00 

h
1

(r,O)= I; hn(r)einB 
n =-oo (3.2.4) 

where i =V-1,and the circular harmonic-coefficients, Jn (r) and fin (r ), are given by 

Jn ( r ) = -
1 J J ' ( r ,0) e -in 8 d 0 , n E 'll , 

27r 0 

hn ( r ) = - 1- I h I ( r ,0) e -in e d 0 ' n E 'll . 
27r 0 , 

Substituting (3.2.3) and (3.2.4) in (3.2.2), we have 
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00 00 

I:; I:; j n ( r ) h;( r ) e i ( n -m )8-n ¢ r d 8 dr 
n =-oom =-oo 

(3.2.5) 

We now make some definitions to facilitate further discussion. Let V be a 

unitary space defined as follows: the constituent vectors, p, of V are complex-valued 

functions, p: [O,oo) -+ C, and such that r Ip (r) I 2 r dr < oo, with natural notions 
0 

of addition and multiplication by a scalar; the inner product, ( , ), in V is defined by 

( p , q ) A 2rr r p ( r ) q( r ) r dr 
0 

for each pair of vectors p, q in V. 

As a consequence of the finite energy requirements imposed on all the functions 

considered, we have from equations (3.2.3) and (3.2.5), and Parseval's identity, that 

'(i)A'(i)) A AhA() v f h 7l d h"-f n = f n (r E V, and hn = n r E , or eac n E , an eac i -1, ... ,c 

(i.e., the circular harmonic components of the finite-energy functions considered are all 

elements of V ). 

We can now simply rewrite equation (3.2.5) in vector space notation as 

(3.2.6) 

Note that from equations (3.2.1) and (3.2.2), g 0 = g. We now characterise the 

general form of RIF in the following result: 

, 

Theorem 3.2.1. Let A C II. Let h E II, and let { hn } be the circular harmonic 

coefficients of h. Then h is rotation insensitive to A if, and only if, for each f EA, 

(with corresponding circular harmonic coefficients { f n } ) 
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)
={oefJ) ifn=k(/) 

if n =f: k (! ) ' 

where k : A-+ 'IL,, and ~:A-+ CD are maps satisfying: 

(1) k (! ¢) = k (! ) \-/ f , J ¢EA, and 

(2) i;(J ¢) = e -ik (! )¢ ~(! ) , \-/ f E A , </> E IR. 

(3.2.7) 

(Note that in obtaining the circular harmonic coefficients we specify as 

coordinate origin some appropriately chosen point-say the geometric image centre-and 

exclude from our considerations RIFs using circular harmonic coefficients corresponding 

to a different origin. The justification is two-fold. On the one hand, we expect the 

averaging effect of using a linear discriminant function on the feature space to wash 

out, to some extent, the effects of not choosing the best centre of expansion for the 

circular harmonics [1]. The second argument is based on statistical grounds: RIFs using 

different centres of expansion result in features which are no more statistically 

independent.) 

Proof. To prove the "only if" part: 

Assume h is rotation insensitive to A , and fix f E A . We now define the complex 

numbers, ~n (! ) , n E 'IL,, by 

(3.2.8) 

where we make explicit the dependence of the sequence {~n (! )} noo=-oo on f EA . 

We then have from (3.2.6), and the definition of ~n (! ), 

E ,I ~nU) I ei(w.(! )-n¢) · 
(3.2.9) n =-oo 

After some algebra we can then show that 
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00 00 

I g I 2 
- I g ¢I 2 = 4 E E I ~n (! ) I I ~n +di ) I 

n=-oo k=l 

sin [\<I>) sin [ {w,+>(/ )-w, (I)}+ \4>) . 

Now by definition, h satisfies I g I 2- I g ¢ I 2 = 0 , \:I ¢ E IR . Clearly this can 

hold true for all angles of rotation ¢ if, and only if, I ~n (! ) I I ~n +k (! ) I =0, for all 

k E 7l+, and for each n E 7l. Hence the sequence frn (! )}~=-oo must be of the 

form 

~n (! ) = ef.J ) 8nk (! ) , some k (! ) E 7l , (3.2.10) 

where ~ A -+ tr: is some complex function defined on A , and 8nk (! ) is the Kronecker 

delta, 

{ 
1 if n = k (! ) 

8nk (! ) A 0 if n ~k (! ) · 

Using the above result, equation (3.2.3) and the definition of ~n (! ) we have 

and 

Hence 

so that for each j E fr, 

k (! ¢) = k (! ) ' 
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From (3.2.8) and (3.2.10), we see that equation (3.2.7) holds. Choosing 

~A - C, and k: A - 1l as above, the proof of the 'only if' part is completed. 

To prove the converse: assume there exist mappings k and ~as in the theorem. 

Fix f EA, and let <P be some (arbitrary) angle of rotation. Then from (3.2.6) and 

(3.2.7) we have 

00 

g ¢ = :E ef... f ) 6n1c (! ) e -in ¢ = ef... f ) e -ilc (! )¢> , 

n =-oo 

and 

I g I 2- I g ¢ I 2 = I ef...J ) I 2- I ef...J )e -i1c u )¢> I 2 = o . 

This is true for all f E A , and as <P was arbitrary, h is rotation insensitive to 

A. D 

We can now characterise the elements of H0n. As 0 has c distinct classes, the 

map k in the theorem can be specialised as follows; k: n - { k l,k 2, ... ,kc } c 1l, 

with k (! ) = k(2) if J E 0 (2l. (Note that the integers k(2) need not be distinct.) 

Concisely put then, the theorem requires that for any h E H0n , the circular harmonic 

coefficients, hn, satisfy two orthogonality conditions: 

(1) is orthogonal to each of the c vectors, A(l)A(2) A(c) 
f n ,f n ' ... ' f n ' if 

n ft, {k 1,k 2,. .. ,kc }, for some set of integers ki , i=l, ... ,c, 

(2) h1c is orthogonal to the vectors, f ii), j ':f: i, for i =l, ... ,c, 
I I 

where f ~i), n E 1l, are the circular harmonic coefficients of the characteristic images, 

f (i l(x ,y ), of each class, O;, i =1,. . .,c. This then is a complete characterisation of a 

general function h E 14°1 which is rotation insensitive to 0 . 

It is easily seen that non-trivial solutions rotation insensitive to 0 exist. In 

fact, the following result holds: 
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Corollary 3.2.1. Let h E H, and let hn , n E 'll, be the circular harmonic 

coefficients of h . Then h is rotation insensitive to H if, and only if, 

hn = 0 , if n ~ k, some k E 'll . 

Proof. We substitute A = H in the theorem. As h E H, we must have 

( hn , hn ) = ffbn 112 = rt_h )8n,k(h) from the theorem. (8n,k(h) is the Kronecker 

delta). Setting k (h) Ci. k, we have by properties of the norm that hn = 0 if n ~ k . 

D 

Corollary (3.2.1) essentially enunciates a necessary and sufficient condition for 

functions m H to be rotation insensitive: all functions of the form 

h' (r ,B) = h,dr )e ito, where k E 'll, and h,dr) = £.k E V, are rotation insensitive, 

and hence also rotation insensitive to 0 . A ready example of functions in this class is 

the circular harmonic filters of Hsu, et al., [1,2], which fall in this category, and are 

hence rotation insensitive to H. 

Corollary provides an easy method of obtaining functions rotation insensitive 

to 0 . The ease of formulation of the rotation insensitive functions in H0 lends itself 

to some simplicity in notation; we shall hence concentrate on these functions for 

purposes of analysis, while indicating briefly how extensions may be made to the more 

general case of functions rotation insensitive to 0 in H0° . 

3. OPTIMAL CLASSIFICATION 

A. Asymptotic Optimality 

For simplicity, we consider the two-class problem. We construct a family of 

multi-channel rotation invariant processors (which we call RIPs for brevity), by 

choosing the channel impulse responses, hi, of an m -channel quadratic machine 

according to the prescription of corollary (2.1.1). The output of each channel is 

rotation invariant, as the magnitude square operation cancels the rotation dependent 
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phase term of theorem (3.2.1). Hence, the generalised linear discriminant function that 

accrues from the machine is also rotation invariant as it is the linear combination of 

rotation invariant features from the channels. 

For the two-class case we require that the discriminant functions satisfy 

G(l) > t , and G(2) < t , for some specified threshold t . The classification rule is, as 

before: decide 0 (l) if G > t , and decide 0 (2) if G < t . 

As we saw in our discussion of performance criteria, a general approach toward 

optimising system parameters to obtain best classification performance requires the 

minimisation of the probability of error, Pe . With a choice of channel impulse 

responses, h;, as in corollary (2.1.1), we see that corollary (2.1.1) and proposition 

(2.1.1) hold, so that the results of Section II (3) hold in toto. In principle, then, we 

could utilise the expressions obtained for the statistics of the quadratic machine to 

compute the required probabilities, and optimise this by suitable choice of parameters. 

As we saw, however, simple analytical expressions do not obtain for Pe for the 

quadratic machine, so that the procedure outlined above could be quite labourious. 

Some gratuitous simplicity obtains, however, when we consider the limit of a 

large number of channels. By choice of channel impulse responses according to 

corollary (2.1.1), we obtain a quadratic machine with independent channels. 

Consequently, for a large enough number of channels, we expect the Central Limit 

Theorem to come into force, so that the discriminant function, G, approaches 

normality. (This, of course, corresponds to approximating the pdf, p (!?)( v ), by the first 

term in the A-series expansion (2.2.18).) Note that the class pdf's become unimodal 

asymptotically by virtue of the approaching Gaussian behaviour. The discriminant 

functions may hence be expected to perform well in classification. 

For independent channels, the optimum (classification performance) can be 

expected to be monotonic with the number of channels used. Hence, in the ensumg 

discussion, we will ~ume a simplicity of notation; we assume the channels are 

rotation insensitive to JI, and satisfy the hypotheses of corollaries (2.1.1) and (2.1.2). 

The general optimisation problem, where the channels are rotation insensitive to 0 , 

can be treated in similar fashion; in addition to this, generalisations to arbitrary noise 

models are discussed briefly at the end of this section. 
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Let us first consider the probability of error. Using the first term of the A-series 

expansion (2.2.18), we obtain central tendency asymptotically with m with 

p 2(v) ,.._, -t/> ( ) 1 [ v - µ (
2
) ] 

0"(2) 0"(2) (3.3.1) 

where µ( 2) and o-(2) are given m equations (1.2.17) and (1.2.18), respectively. The 

probability of error for a fixed threshold t is then given asymptotically with m by 

(3.3.2) 

The shaded area in fig. 3.1 corresponds to the probability of error. Here, of course, we 

assume that the RIFs and threshold are so chosen that µ(2) < t < µ(ll_ (Clearly, 

other choices give much larger probabilities of error.) For given system parameters, 

there, of course, exists an optimum threshold, t 0, corresponding to the point of 

crossover of the two densities in fig. 3.1. Differentiating (3.3.2) with respect to t, we 

obtain the optimum threshold (for fixed parameters) given by the following equation: 

dPe 1!"(1) [ µ(l)_to] 1!"(2) [ to-µ(2)] 
dt ( t 0) ,.._, O"(l) <I> - O"(l) - 0"(2) <I> - 0"(2) = 0 (3.3.3) 

Now, µ( 8 l and o-(8 l depend on the particular parametric realisation of the RIP. 

Rewriting equations (1.2.17) and (1.2.18) for ease of reference, 

and 

m 
µ(8)= I;o:; [ ls-}8)12+7J;O";+µd], 

j=l 

m ' 
O"( 8 

)

2 
= ~ 0: J [ 217 j O"; I S"} 8 ) I 2 + 7J J O" n4 + O" lJ . 

; =l 

(Recall that 171· R = 11 1· 1 = !L, in this instance.) 
' ' 2 
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Fig. 3.1. Probability of classification error for a choice of 

threshold t. (Equi-probable states of nature assumed.) 

v 
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The optimisation problem is then to choose system parameters-filters and 

weights-to minimise Pe (t 0). This, however, involves the solution of the 

transcendental equation (3.3.3) for every choice of system parameters (which result in 

changes in the mean, and variance), before Pe can be computed from (3.3.2). 

We introduce some analytical and computational simplicity by considering the 

Bhattacharyya distance as our performance measure instead. The Bhattacharyya 

coefficient (1.4.2) takes on a simple form when the class-conditional densities are 

normal. Specifically, by substituting (3.3.1), and carrying out the indicated 

integration, we obtain that asymptotically with m, 

(3.3.4) 

As we saw earlier, pB is a good fixed performance measure, which can frequently be 

used as a satisfactory alternative to Pe . In this case, we clearly save much m 

computation when we consider optimal systems with respect to pB. 

Specifically, given distinct integers, k v ... , km (corresponding to various 

circular=harmonic orders), we seek to choose impulse responses of the form 

hi = h1;; (r )e ik; 
9
, and weights Cl';, so as to minimise pB. (We assume that the circular 

harmonic orders ki ,j = l, ... ,m, are chosen that ::3 at least one non-trivial generalised 

linear discriminant function with µ(l) > µ( 2l.) 

B. Existence of Optimal R!Ps 

We concentrate for the nonce on RIPs which are rotation insensitive to H, and 

satisfy the hypotheses of corollary (3.3.2). We assume the circular-harmonic orders 

k bk 2, ... , km , are fixed. Let h = (h 1,h 2,. .. ,hm) E (Ho )m be an m -tuple of impulse 

responses as in coroUary (3.3.1), and let o = (0'1,0'2, ... , Cl'm) E film be the 

corresponding m -tuple of weights. The RIP is hence completely specified by 

(cr,h) E film X(Il0 )m. 
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We say that (cr0 ,h0
) E lR.m X(H0 r lS an optimum RIP if 

min {pJcr,h): µ(Il(cr,h) > µ( 2l(cr,h), s =1, ... ,c }. 
aERm 

Note that in our definition, we specialise to generalised linear discriminant 

functions for which µ(l) > µ( 2) , s =l, ... ,c so that the processing yields adequate 

discrimination between class n (I) and n (2l. 

The optimisation problem can be reduced from a "difficult" problem of 

optimisation over an abstract functional space to a comparatively "simple" problem of 

optimising over sets of real numbers, as we now show: 

Recall that we had defined the inner product space V, with product ( , ) in 

section 2. Now, for each k E 7l, we define the subspace V,e of V to consist of all 

linear combinations of the k-th circular-harmonics of each of the specified images 

f (2) ' s =1,2: 

Without loss of generality, assume rPl and rPl are linearly independent. Then the 

dimension of V,e is 2. Let { e,e .l•ek ,2} be any set of orthonormal basis vectors for V.e . 

Then, for some complex numbers 11:), we can write 

(2) -l.e, E (: , s -1,2. 
(3.3.5) 

Let V/ be the ~rthogonal subspace of V,e, and let e.e ,o be any vector of unit 

norm in V/; i.e., ( e,e ,o , e,e ,I ) = 601 , where 601 is the Kronecker delta. 

Now, for each j=l, ... ,m, the impulse responses are of the form 
A ik 9 A A 

hi = h,e
1 
(r )e 1 

, with h,e
1 
(r) = h,e

1 
E V. Clearly we can write 
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(3.3.6) 

where ft; E Vk , and ft;' E Vt , so that (ft; , h;' ) = 0. Now fi; ' lies in the 
J J J J J J J 

orthogonal subspace of vk ' and does not interact with the circular-harmonic 
J 

coefficients £1:) , i =1,2. Its only contribution to PB is hence in the energy term T/ i of 

equation (2.1.1). Now 

Hence all vectors of equal norm in Vk" are equivalent as far as performance is 
J 

concerned as their contributions to pB are the same. Without loss of generality we can 
A , f A , f 

hence consider only vectors hk of the form hk = {3k 0ek 0 , for some {3k 0 E <D. 
) ) J , ) ' J ' 

2 
~ I 

Also, hk = ~ /3k 1 ek 1 for some /3k 1 E <D. Hence, in the optimisation problem, we 
) ~ J' J' J' 

I =1 

can without loss of generality restrict ourselves to considering circular-harmonic 

coefficients of the form 

2 

~ /3k 1 ek 1 , for some /3k 1 E C . LJ J' J' J' 
1=0 (3.3.7) 

Substituting (3.3.5) and(3.3.7) m (2.1.3) and (2.1.1), we have for each 

j=l, ... ,m, 

s =1,2' 
(3.3.8) 

1J j 
(3.3.9) 
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Now, let fJ = (Re(f31:. 1 ) , Im{f31: 1 )) , 11· = 0,1,2, j =l, ... ,m, be a 6m -tuple of 
J ' J J ' J 

real numbers (corresponding to the coefficients in the expansion {3.3.7)). Using 

equations {3.3.8), (3.3.9), (2.2.16), and (2.2.17) in equation {3.3.4), we see that the 

optimisation problem over the RIPs (a,h) is equivalent to optimising over the 

m + 6m real variables (a,{J), with the proviso that µ(1l(a,{J) > µ(2l(a,{J). 

In this context, we define our performance criterion in terms of the 

Bhattacharyya coefficient. Let Q C m.m X ffi.6m be defined by 

(3.3.10) 

Clearly, Q =/= 0 by choice of the circular-harmonic orders k; , j =l, ... ,m. We now 

define the performance criterion, p : Q --+[0,1], by 

{
pJa,fJ) if a=/=O, fJ=/=O 

p(a,fJ) = 1 otherwise 

(This is clearly consistent with using the Bhattacharyya distance as our distance 

measure, with the added constraint that we require µ(1l(a,{J) > µ(2l(a,{J) for adequate 

disc rim in at ion). 

We now demonstrate the existence of an optimum RIP when output noise is 

absent in all the channels: 

Lemma 3.3.1. Assume that µd = <J d = 0. Then, for all real, non-zero constants w1 

and w2, the RIPs (a,h) and (w1a,w2h) yield the same performance. 

Proof. Follows as a special case of the monotone consistency of the Bhattachryya 

coefficient, proposition ~1.4.4). o 

The proof follows by straightforward substitution in equation (3.3.4). (Note 

that scaling the impulse responses, h, by w2 is equivalent to scaling fJ by w2.) Thus in 

the absence of output noise, the performance is invariant to scaling the weight vector 
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o or the m -tuple of impulse responses h. 

Now, note that o = 0, or P = 0 cannot be a solution to the optimisation 

problem (either case corresponds to no processing at all). The probability of error for 

either case is Pe = 1 - 1r1, which is the worst case performance for all generalised 

linear discriminant functions with µ(ll(o,p) > µ(2l(a,p). Any other assignment of 

weights and filters, o =/:- 0, P =/:- 0, will hence give at least as good a performance. 

We now show that we can restrict attention to compact sets. We define the 

compact sets Sa C m.m, and S fJ C m_Bm, by 

m 

sa.D.{a: E iajl =1}, 
i=l 

m 2 

s/J .D. {P: E E [ I Re(,B.c},1) I + I lm(,B.c},1) I l = 1} 
j =111 =0 

Now let A C S 0 XS fJ be defined by 

Lemma 3.3.2. A is compact. 

Proof. A is bounded as Sa and S fJ are bounded. So it suffices to prove that A 1s 

closed. 

Let (o0,P°) = 8° be any accumulation point of A. Clearly, s0 E S 0 xS 13 as 

Sa XS /3 is compact. 

Claim: µ(ll(s0) > µ(2)( 8~. 

We prove the claim by contradiction. Suppose µ(1l(s0
) - µ(2

)' (s0
) = -E < 0 for some 

real, positive number E. Now, without loss of generality, we can assume that each of 

the image classes has unit energy J f (2)2 = l. Hence, for s =1,2, llf Plll'.! < 1 'v' 

k E 'll. Hence, from equation (3.3.5), I 117) I < 1 '\/I =1,2 , k E 'lL. 
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Now, there is a sequence {sn} such that sn - s0 as n - oo. So, 

3 N < oo : n > N · ~ I (31J~~11 - (3"~n)1 I < l~c for each l; =1, ... ,n"
1 

, j =l, ... ,m. 

It then follows that 

and 

So 

= f; 0 ; [I ~J}l(f3°) 12 
- I ~"~l' (!3°) 12 J 

J =l 

Now sn EA ~ µ(1l(sn) > µ(2)' (s") \;/ n E 7l by definition of A . So f > f. 

So we have a contradiction, and this proves the claim. Consequently, by 

definition of A , s0 EA . As s0 was an arbitrary accumulation point of A , we have 

that A is closed. So A is compact. D 

Theorem 3.3.1. Assume µd = u d = 0. Then there exists an optimum RIP 

(a0 ,{3°) EA . 

Proof. From equation (2.3.4) it suffices to show that :3 (a0 ,{3°) EA : p(a0 ,(3°) = 

min {p(a,fJ) : (a,fJ) E Q'}. We first demonstrate that in the optimisation problem we 

can, without loss of generality, restrict our attention to A C Q. Let 

v = inf{p(a,fJ): (a,fJ) E Q }. Then ::3 a sequence {(a" ,fJ" )} C Q such that 

p(ak ,fJ") - v as k - oo. From the discussion following lemma (3.3.1), we can 

without loss of generality choose the sequence so that ak and fJ" do not approach 0 as 
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k -+ oo. So for k large enough, Qk =f=. 0 and {Jk =/=- 0. So :3 (O'k0,{Jk0
) E A , and non­

zero, real constants Wu and w2,k such that (w1,k O'k0,w2,k {Jk0) = (O'k ,{Jk ). And now by 

lemma (3.3.1), we have p(O'k0,{Jk0) = p(O'k ,{Jk)-+ v as k -+ oo. For the optimisation 

problem, we can hence restrict ourselves to the set A without any loss of generality. 

Now by lemma (3.3.2), A is compact, and as 0 </; A , we have from equation 

(3.3.4) that p is continuous on A . It then follows that 3 

(0'0,{J°) EA : p(0'0 ,{f) = min{p(O',{J): (0' 1{J) EA}. 

Claim: p(0'0,fJ°) = v. 

We prove the claim by contradiction. Assume p(0'0,fJ°) =f=. v. Then p(0'0 ,fJ°) > v by 

definition of v. Set f = p(0'0,fJ°) - v >0. Now, p(af ,{Jk0)-+ v as k -+ oo. So for k 

large enough, p(O'f ,{Jf) < v + ~ = p(a0,fJ°) - ~ < p(0'0 ,{J°). This is a contradiction 

as p achieves its minimum on A at (a0,{J°), and {(af,pk0)} C A. So p(0'0,fJ°) = v. 

0 

(In the theorem, we have used the coefficients fJ° to represent the corresponding m -

tuple of impulse responses). 

Some comm en ts are in order: 

(1) The definitions of the compact sets Sa and Sp are not sacrosanct. We could 

have chosen, for instance, the boundaries of balls of radius r > 0. 

(2) We could restrict our attention to the compact set Sa even if output noise is 

present; i.e., the discriminant function is invariant to scaling. This, of course, follows 

from proposition (1.4.4)-the Bhattacharyya coefficient is monotonically constant. 

(3) The generalisation of the above results to filters rotation insensitive to 0 is 

straightforward. We expand each circular harmonic of the filters in expansions of the 

form (3.3.7), and opti111ise over the set of real variables specified by the coefficients. 

The results, specifically theorem (3.3.1), remain unchanged. Note, however, that we 

still require independent channels as characterised in theorem (2.1.1). Also, 

proposition (2.1.1) does not hold anymore; the variance at the output of each channel, 

cj ' j =1, ... ,m' is now given by: 
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Var { GJ2)} =Var {I Re(~J2l + N;) 12
} +Var {I Im(~j2l + N;) 12

} 

+ 4r 2 Var 2{Re(N; )} Var 2{Im(N; )} , 

where r is the correlation coefficient between Re(N;) and Im(N; ). 

(4) The a.ssumption of additive, white, Gaussian noise at the input was made simply 

for ease of notation. The results are valid for any noise model as long as independent 

channels are used, and the number of channels is large enough that the processor 

output is approximately normal. However, theorem (2.1.1) has to be modified for this 

case. If Rn is the noise autocorrelation operator, for instance, the first integral in 

equation (2.1.7) must be replaced by an expression of the form ( Re h; , Rn [Re ht] ), 

where ( , ) is the natural inner product in the Hilbert space, and Rn : H --+ H; similar 

inner products replace the other integrals. Equation (3.3.4) is still valid, but the means 

and variances must be replaced by more complicated expressions. In all cases, the 

means and variances can still be expressed in terms of real coefficients, f3t 1 , from 
) ' ) 

expansions as in equation {3.3.7). 

Thus, we have demonstrated that the optimisation problem can be reduced 

from the conceptually more difficult one of optimising over a function space, to the 

simpler problem of optimising over sets of real numbers. Further simplicity is effected 

because we can restrict ourselves to bounded (in fact, compact) sets, so that the 

optimisation procedure does not have to deal with unbounded terms. The proof of the 

existence of optimal solutions for the case of no output noise is a useful result in this 

regard; we can have recourse to numerical algorithms to minimise p over a compact set 

of real numbers in order to extract an optimum solution. {The optimality, or 

otherwise, of any trial point can be checked by the Kuhn-Tucker conditions (cf. [8] for 

example).) 
; 

Thus, m principle, we can find optimal solutions, though this may be 

computationally very expensive from the practical point of view because of the large 

number of variables to be handled in the optimisation procedure. Note, however, that 

given the image classes and the noise model, this expense is a one time "set-up" cost; 
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once the optimum RIP is found, no further computational costs are incurred as long as 

the problem specifications do not change. 

4. SUB-OPTIMAL CLASSIFICATION 

A. Maximally Separating Rotation Insensitive Filters 

Optimum RIPs, even when they do exist, may be computationally difficult to 

find as we saw in the last section. We hence consider here a sub-optimal solution to 

the optimisation problem which is easy to obtain, and can be expected to yield good 

(near-optimal) performance. 

To ensure reasonable performance, any RIP chosen must clearly belong to the 

set of RIPs, Q, defined in equation (3.3.10) of the last section. Now, for any set of 

specified circular harmonic orders, k 1,k 2, ... , km , the circular harmonic coefficients 

f = (f Pl,£ Pl, ... , f }1l), of the image f (l) can serve as rotation insensitive filters 
I 2 m 

(RIF's) for the RIP. Clearly, for appropriately chosen circular harmonic orders, 

k 1,k 2 , ... ,km, and weights, ct = (0'1'0'2, ... , O'm ), the RIP ( ct , f) E Q, and it is 

hence a legitimate RIP with reasonable performance. However, this is clearly not an 

optimum choice in general, and performance may be barely tolerable if the image 

classes are very similar. 

Again we consider functions rotation insensitive to II for notational simplicity. 

From equation (3.3.4) for the Bhattacharyya coefficient, we note that, if all other 

factors are being held constant, performance improves monotonically with the mean 

class separation µ(ll - Jt(2). It is hence reasonable to seek filters for which µ(I) - µ( 2) is 

large. Now, from equation (2.2.16), we have 

m 

µ(ll - µ(2
) _J E 0 i ( I ~pl I 2 

- I ~J2l I 2) · 

j=l 

(Recall that ~j2l was defined as the output of the i - th filter when class n (2l is present 

M ~h~ input.) The minimum value that I d2
) 1

2 c11n t11ke is z11ro. So we would J:ke to 
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find filters for which I ~}2) I is as close to zero as possible, and for which I dl) I is 

comparatively large. 

In order to formalise the above discussion, we introduce the mean-square error 

term, £;: V - IR, for each channel, j =1, ... ,m. Let T; > 0 be fixed. Then we 

define for each ht E V 
J 

where d2
) is as in equation (2.1.3). (We make explicit here the dependence of ~}2l on 

the filter corresponding to channel C; .) 

Definition. Let r; > 0 be a given positive real number, and let the circular 

harmonic orders k; be fixed for each j =1, ... ,m. Then we say that hto is a maximally 
J 

separating RIF for channel C,· if £; (ht0 ) = min { £1· (ht ) : ht E V}. 
J J J 

Thus, maximally separating filters achieve the best possible mean separation 

between the image class 0 (l) and 0 (2) (in a mean-square sense). We now demonstrate 

that maximally separating filters can be easily constructed: 

From 
A A., ,..._If A f 

equation (3.3.6), we have ht = ht +ht , where ht E Vt , and 
1 1 1 1 1 

(Recall that the subspace Vt of V was defined to be dense in 
1 

was defined to be the orthogonal subspace of Vk .) Choosing a 
J 

set of orthonormal basis vectors, {et 1,ek 2}, for Vt , and a vector of unit norm, 
J ' J ' ) 

et 0 E V/ , we obtain the expansions (3.3.5) and (3.3.7). 
1 ' J 

Now, let CD 2 denote the 2-dimensional inner product space composed of pairs of 

complex numbers, and let r(1l,r(2l, be the standard basis for CD2. We define the linear 

transformation Ft : V'- cr::2 as follows: (1) vt* lies in the null space of Ft , i.e., 
1 1 1 

"' , , • ,,.... A I , A 

ht E Vt ==? Ft h.t = 0, and (2) the restriction of Ft to Vt , Ft : V.t - cr:c , 
1 1 11 1 1 1 1 

has matrix elements {F,t ), / = 1J2l1 , s =1,2, l =1,2, in the basis {et / } 1
2
= 1 (where 

J ' J , 1 , 

1i~;1 is as defined in equation (3.3.5)). From equations (3.3.6) and (3.3.8), we have 
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We hence require to find £l E V1c such that the norm of the (error) vector 
J J 

F /c h; - T,· r(l) is minimised; i.e., "ht is the RIF such that f,· = llF /c h; - T · r(1)11 2 is 
J J J J J ) 

a minimum. The solution can be easily found to be 

where F /ct is the adjoint of the linear operator F /c • 
J J 

,.,,_ ' I * Clearly h1c E V1c does not interact with the image classes, and so can be 
} } 

arbitrarily chosen. In accordance with equation (3.3.7) we can write the general 

maximally separating RIF for the j -th channel to be of the form 

hA 0 - F -1 {l) + Q . -1 
k - T,· le r tJ le oe /e o , J - , .. ·, m , 

) ) ) ' } J 
(3.4.1) 

for some /31e 0 E IR. 
} ' 

The form of the maximally separating RIF above has the additional advantage 

of being independent of basis chosen for V1e , so that any convenient basis can be 
} 

chosen. 

In the general c -class case, we can proceed similarly. Here, however, some 

dependencies may exist across classes, so that the dim( V1c ) = n1c < e . In that case, 
} } 

the solution (mean-square optimal) IS the pseudo-inverse 

h1c(o)' = T,· (F1ct F1c f 1 F1c r(l) + f31c e1c , where FJ is the adjoint of F1c . (Note that 
J J J J J IJ } ,0 } J 

·r V . d .. 1 . h r'(t)r'(2) r'(c) 11 1. I 1 L IS c - 1mens1ooa, 1.e., t e vectors /e , /e , ••• , L , are a mear y 
"'1 } J .. J • 

A o/ 
independent, then we can find h1c E V1c such that the minimum mean-square error 

J J 

f · = 0. For this case we would have h1co/ = T
1
· F1c-1r 1 , so that class 0 (t) is mapped to 

J J J 

Ti > 0, and all the other classes are mapped to 0 by the maximally separating filter. 
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In general, however, dim{ V"i} = n"i < c so that f; ,min > 0.) 

With such an ad hoc choice of RIFs, the dimensionality of the optimisation 

problem can be reduced considerably. (The original problem required optimisation 

over the roughly 6m real variables (a,P); the use of maximally separating filters 

reduces this to an optimisation problem over the 3m variables 

( r; ,/3"i ,0,a;) , j =l, ... ,m ). 

An orthonormal basis for V" can easily be constructed usmg the Gram­
i 

Schmidt orthogonalisation procedure. Set 

/ - A (2) 
eL 1-fL -

"'1 • "'1 

Then the vectors ek 1 -
J • 

vectors for vk . 
J 

I 

ek
1 

,I 

lle~1 ,1 I I 
, I =1,2, are the required set of orthonormal basis 

Note also, that in all but the most pathological cases, a unit vector in Vk" may 
J 

also be constructed using a similar procedure by considering the complex conjugates of 

the circular harmonic coefficients, f j2l' = J,}2l (r ). Successively orthogonalising f pi· 
J J J 

with respect to each of the vectors ek 1 yields a vector in Vk" . 
J • J 

Again, the procedure is simply generalised to multiple classes. Also note 

that the Bhattacharyya coefficient assumes an even simpler form when maximally 

separating RIFs are used. Assuming that the circular harmonic coefficients of the 

images are linearly inde;:iendent for the channels considered (so that image classes 11 (:::!), 

m 

are mapped to 0 by each RIF), we have that µ(I) - µ(2) = ~a; T; if s =I'- t. \Ve can 
j =l 

hence write equation (3.3.4) as 
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(3.4.2} 

A particularly simple ad hoc choice of RIP which yields good performance can 

be realised as follows: 

Each channel of the RIP utilises a maximally separating filter of the form (3.4.l} 

with T1· = T =constant, and f31i: 0 = 0 for each j =l, ... ,m; (i.e., each channel yields 
J ' 

the same mean class separation of T, and we restrict our attention to the unique 

maximally separating RIF in V1i: for each j =l, ... ,m ). Further, we choose the simple 
J 

weighting rule wherein all channels have the same weight, aj = _!_, j =l, ... ,m. 
m 

(From the discussion at the end of section 3(C), it is clear that choosing the constant 

weight _!_ is permissible as scaling the weights leaves the performance unchanged}. 
m 

Then the generalised linear discriminant function is given by 

I m 
G=-EGj 

m i=l 

where E{ G j1l} - E{ G j2l} = T. 

In this scheme, each independent feature is given equal weight. Here we give an 

intuitive justification of the scheme. Assuming the features G 1,G 2, ... , Gm, have 

similar distributions (i.e., assummg the maximally separating filter energies, 

T/j , j =l, ... ,m, are approximately equal}, then for large m, G approaches normality, 

and the mean-to-standard deviation ratio determines performance. Now, the mean-

to-standard deviation ratio of G is of the order of ..;-:;;;. 
' 

hence 

G(l) - G(2) - µ(ll - µ(2) = T for large m , as a consequence of the Law of Large , 
Numbers. Thus, as long as the image energy is distributed uniformly over a large 

number of circular harmonics, such an ad hoc weighting scheme may be expected to 

give good performance. 
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Now, for independent channels, performance is monotonic with the number of 

channels used when the optimal weights are used. A point of interest in ad hoc 

weighting schemes such as the one above, is that an optimum number of channels may 

exist. We illustrate this for the above scheme in what follows. 

00 

Let { C;}; =l be a sequence of independent channels usmg maximally 

separating filters, and arranged so that the filter energies are monotonically increasing; 

For convenience let us assume that the circular harmonic 

coefficients of the image classes are linearly independent. Now, without loss of 

00 

generality, let us assume that all images have unit energy: J J (l)
2 = :E llft)ll 2 = 1. 

j=l 

Hence, the sequence {llN1)ll 2
} decreases faster than ~for sufficiently large j. Now, 

} J 

Clearly, by the Cauchy-Schwarz inequality, 

Hence the sequence { 7J;} increases faster than j for sufficiently large j. In 

order to keep the variances of equation (2.2.17) finite (in fact, uniformly bounded 

above) so that the Central Limit Theorem holds, we require that the weights o:; 

decrease faster than ~- Now, while an optimal choice of weights can be found 
J 

satisfying this constraint, it is clear that the ad hoc choice of equal weights will violate 

this constraint when the number of channels becomes sufficiently large. 
,. 

Thus, with the choice of equal weights for each channel, performance will 

actually deteriorate beyond a certain number of channels (essentially because the 

variances of the individual features start blowing up while the mean class separation 

remains constant). Consequently, an optimum number of channels can be found for 
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which best performance is obtained. 

B. Comparison of System Per/ ormance with Standard Matched 

Filters 

So far we've espoused the use of generalised linear discriminant functions 

because of the simplicity attendant upon dimensionality reduction, and the fact that 

the unimodal class distributions are well suited for analysis by these generalised linear 

discriminant functions. However, even with the use of optimal or sub-optimal 

solutions, it is not clear whether the generalised linear discriminant function can yield 

good class-discrimination performance (i.e., low probabilities of error). We then 

attempt to characterise the discrimination information content of multiple stages of 

RIFs in comparison with that of standard matched filters [9]. 

A signal-to-noise ratio comparison between the matched filter, and a single 

channel RIP where the filter is matched to a particular circular harmonic of the input 

image, shows that there is considerable degradation in the signal-to-noise ratio for the 

single channel RIP [3]. Though the comparison done was to estimate signal 

detectability in noise, the same result holds true for the classification problem with the 

distance measure of equation (3.3.4). The drop in performance of the single channel 

RIP compared to the matched filter is clearly a consequence of the fact that each 

circular harmonic contains only a small portion of the total information content in the 

image. The price to be paid for increasing within-class tolerance (rotation invariance) 

is therefore a loss in between-class discrimination. However, generalised linear 

discriminant functions constructed using multiple RIF stages may be expected to 

improve performance significantly, especially if the number of channels is large, as each 

channel incorporates more of the essential information content of the image. 

For purposes of comparison, we consider a single channel composite "matched" 

filter which maximally ~separates image f (l) from the image f (2) [10,11] on the one 

hand, and a multi-channel RIP using maximally separating RIFs on the other. We 

assume for simplicity that there is no degeneracy in the images or in the circular 

harmonics; i.e., the images f (2) are linearly independent, as are the circular harmonics 

f pl for each j =l, ... ,m. The noise models at the input and the output are as before. 
} 
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The single channel maximally separating filter: 

We introduce some notation for simplicity. Let ( , ) denote the standard inner 

product in the Hilbert space H, i.e., if J ,h EH, 

00 00 

( f , h) = J J J (x,y)h(x,y) dxdy 
-00 -00 

The output, cpl, of the single channel processor conditioned upon f (2) being 

present at the input is given by 

00 00 

cpl= ( f r2l' h ) +I I N(x ,y )h(x ,y) dxdy +Nd . 
-00 -00 

We define the maximally separating filter h E H, such that 

where 681 is the Kronecker delta. Also, we define 

T/ t:,. llh 11
2 = ( h ' h ) . 

cpl IS a Gaussian random variable, with mean µpl, and vanance 

crPl2 = cr:fT/ +er]. The variance at the output is the same for both classes, and 

µpl - µpl = I. Hence, using equation (3.3.4) we get the Bhattacharyya distance, 

d B,l' to be 

(3.4.3) 

Multiple maximally separating RIF stages: 
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We choose the maximally separating RIFs, and the weights 

o:; , j=l, ... ,m ,such that 

m 
and E o:; = 1. (This maintains a class separation of unity in mean, as for the single 

j=l 

channel filter). From equation (3.4.2), the Bhattacharyya distance,d B,t• is given by 

(3.4.4) 

Substituting for u(2l
2 

from equations (3.4.3) and (3.4.4), we get the performance 

ratio, A, given by 

d 'f"JO" n2 + O" J 
A = _fil = ------------ + 2( fJO"; + u j) 

d B,1 f; o: J ( 1/ Ju n4 + 1/ j O" n2 + O" d2 ) 

i=I 

= A1 + A2, (3.4.5) 

where .D. 1 corresponds te the first term, and .D. 2 corresponds to the second. 

Limiting expressions when the noise level is high: 
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We consider first the case of very noisy inputs, i.e., large u!. It is not difficult 

to show that both A 1 and A 2 approach zero as u; grows large. Hence, the 

performance ratio, A - 0 as u;f - oo. For large input noise we have the usual effect 

of square law processing causing considerable deterioration in performance compared 

to the linear filter. Note, however, that A 2 approaches zero very slowly as u; grows 

large, so that the deterioration in performance is not very rapid. 

We now consider the case of large output noise terms, u f - oo. Again, it is 

simple to show that A 2 approaches zero, while A 1 approaches 1 
2 

as the output 
'Eai 

noise grows large. Hence, the performance ratio A - A 0 = --
1-- as u J - oo. 

m 

'E aJ 
j=l 

m 

By 

choosing {a i } to be a discrete probability distribution so that 'E a j = 1 , a i > 0, 
j=l 

we have that 

Ao= __ I __ > 1 

Consequently, with a proper choice of weights, the performance of the multi­

channel RIP can be better than that of the composite matched filter for large output 

noise. (This is simply a consequence of the Law of Large Numbers; summing a large 

number of independent random variables essentially washes out the noise terms, thus 

giving improvement in classification performance). 

Limiting expressions for the case of low input noise when output noise is absent: 

For small u;, w; have un4 << u;; neglecting the u~ term in equation (3.4.5), 

and setting u f = 0, we get that A 2 - 0 as u ;f - 0. Hence, 
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lim ~ = --11~­
u;-o 

·u 2 =0 , d • 

(3.4.6) 

The relative performance is determined entirely by the energies of the respective 

maximally separating filters, the number of channels, and the choice of weights. While 

the expression is simple, it is not clear whether either scheme enjoys any advantage 

over the other. We then make some simplifications to obtain bounds for the 

performance ratio. 

Maximising ~ with regard to the weights o:;, and subject to the constraint 

Ea; = 1 , a; > 0, yields that the optimum choice of weights maximising {3.4.6) is 

(l;t.qjr 
""(O) -'-'-k - , k=I, ... ,m. 

T/ k 

Substituting in (3.4.6) we get 

~ = -[-t-:'--;l_l ____ l 

J =l {3.4.7) 

The bank of m maximally separating RIFs in parallel is equivalent to a single 

maximally separating filter of energy [ t 11;1]-l when the input noise level is low. 
J =l 

Note that ~ E TJj1l-l < min(TJ; ), so that this "equivalent" filter has less energy than 
l j=l 

any of the individual RIFs. From (3.4.4) we see that this implies that performance 
,,. 

improves monotonically with the number of independent stages added, and this augurs 

good results in comparison with matched filters. 
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Now, bounds on the performance ratio can be obtained by means of spectral 

l . F t" (3 4 1) h~ - F -1 {l) . -1 H ana ys1s. rom equa ion . . , ,. - ,. r , J - , .. .,m. ence 
} } 

F /i; F J is a positive definite Hermitian transformation, and thus has 2 positive 
} } 

eigenvalues. Let {>.,. 1 },2=1 be the eigenvalues of F,. F ,.t , arranged so that 
} , } } 

0 < >.,. 1 < >.,. 2. 
} , - J, 

projections of the unit vector r(l) on the basis of eigenvectors of (F,. F} t 1. Then 
} } 

2 

"' = :E >.,.~1., I r, (1) I 2 . 
l=l 

c 

Now, r(l) is a vector of unit norm; llr(l)ll 2 = E I r1 (1) I 2 = 1. Hence 
l=l 

I r1 (l) I 2 < 1. By arrangement of { >.1i;
1 
,I}, we then have 

Similarly, defining the (deterministic) correlation matrix F with elements 

Fr,
8 

= ( f (r), f (2) ), we obtain 

0 < ).. -1 < JI < ).. -1 
2 - - 1 ' 

where 0 < ).. 1 < >-. 2 are the 2 positive eigenvalues of the positive definite matrix FFt. 

Substituting in {3.4.7) we get 
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{3.4.8) 

If the weights a i are not optimally chosen, the bound is 

Thus, for the low input noise case, good performance relative to the matched 

filter can be achieved. Also, even for very similar image classes, the difference in the 

images is likely to be exhibited strongly in a few circular harmonics. By choosing just 

those circular harmonics for which there is good discrimination between classes, good 

performance can be achieved. 

Note that from equation {3.4.7), the performance of the multi-channel RIP 

improves monotonically as the energy of the "equivalent" filter, E fik
1 
(r )e ik1 

9
, 

j=l 

decreases. Further, [ t 7Jj1)-l < min(7Ji ). This dictates a good ad hoc approach to 
) =l 

00 

feature selection. Let { C;} i=l be a sequence of channels arranged so that the 

energies of the corresponding maximally separating filters, hk , are monotonic; i.e., 
) 

7/i < TJ 2 < · · · . Choosing channels C 1,C 2, ... , Cm, for the RIP then yields the 

"equivalent" filter with the least energy, and hence the best performance for the low 

noise case. 
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CHAPTER IV 

BINARY FILTERS 

1. INTRODUCTION 

In this chapter, we examine an application of threshold point rules to generating 

low cost filtration systems which emulate Matched Filter performance. As noted 

earlier, Matched Filters are commonly used in divers applications in communication 

systems, signal processing, and pattern recognition, where the objective is frequently 

the recognition of a particular signal or pattern immersed in noise. Recapitulating 

theorem (1.2.1), the principal theoretical result supporting the use of Matched Filters 

can be encapsulated as follows: among the class of all linear, shift-invariant systems, 

Matched Filters maximise a (suitably defined} signal-to-noise ratio [l ]. Specifically, if 

the (deterministic) signal of interest corrupted by additive, white noise is presented as 

the input to a linear, shift-invariant system, the ratio of the output signal power to 

the output noise power is maximised by the Matched Filter. The importance of this 

statistic, of course, depends on how well the signal-to-noise ratio reflects the (Bayesian) 

risk, or error probability. If the output correlation peak is a normal random variable, 

(which would be the case if the noise itself was a normal process, or if it was an 
"' 

independent process), then the signal-to-noise ratio statistic coincides with the risk 

function, so that the matched filter is ipso facto the optimum filter for this case. 
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Practical implementations of Matched Filters-and linear, shift-invariant systems 

in general-are much facilitated by the fundamental Fourier convolution theorem 

wherein convolutions (or correlations) in one domain are transformed into products in 

the Fourier domain. As a consequence, relatively simple analog implementations such 

as optical Fourier-plane correlators [2], and digital implementations using algorithms 

such as the Fast Fourier Transform abound. 

We focus on three issues in regard to traditional Matched Filters: 

First, the storage of the system transfer function (matched to the Fourier 

Transform of the signal of interest) presupposes an adequate available dynamic range 

(for instance, in a hologram in an optical correlator, or in computer memory in digital 

correlators). Of interest then is the amount of redundant information encoded in the 

tra.nsf er function. More precisely, at issue is the determination of the minimum 

number of bits of information required to characterise the pattern or signal, and for 

which good classification performance still obtains. The actual determination of an 

optimal, minimal cost filter, however, depends on the precise statement of the 

classification problem, as well as on the actual distribution of the classes. Our concern 

in this paper is with a class of heuristically derived filters; we demonstrate that 

pattern classes can be accurately classified using filters containing just n bits of 

information, where n is the space- (time-) bandwidth product of the signal classes. 

We investigate a form of extreme quantisation in the Fourier domain-a class of 

binarisation (or hardlimiting) operations wherein each point in the domain of the 

transfer function is mapped to a single bit: -1 or +l. The resulting binary filter is 

then a function whose range is just {-1,1}. (If the space- (or time-) bandwidth product 

of the signal is n , then the binarisation operation characterises the transfer function 

by just n bits of information. Clearly the bina.risation process need not be confined to 

the filter alone, but can also be applied to the Fourier Transform of the input signal. 

This leads us naturally'f,o the consideration of three systems: the Matched Filter with 

the reference signal (corresponding to the filter transfer function) matched to the 

desired signal, the Binary Filter with the filter being a binarised version of the 

matched filter, and the Matched Binary Filter where both the input signal, and the 

reference undergo a hardlimiting operation in the Fourier domain. We will see that all 
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three systems can be viewed within the framework of a natural generalisation of a 

traditional correlational system. The schema of fig. 4.1 illustrates the model system 

under consideration in block diagrammatic form. 

Our concern in this paper will be mainly with the derivation of results 

characterising the performance of these systems for certain classes of signals; 

experimental results detailing the use of such processors in recognition systems have 

been tabulated in [4], [5]. fig. 4.2 demonstrates experimental results for a system using 

a Binary Filter which was in practice implemented as an optical correlator. The 

system effectively recognises the letter 0 from the words MOD and OSF, as can be 

seen from the prominent auto-correlation peaks. In fig. 4.3 we demonstrate two 

correlations of a random one-dimensional input sequence; in fig. 4.3 (a) the correlation 

was accomplished using a Matched Filter, while in fig. 4.3 (b) the correlation was 

performed using a Binary Filter. Note that a correlation peak is clearly visible for the 

correlation using the Binary Filter, and that the side-lobe fluctuation levels for the 

Binary Filter are comparable to that for the Matched Filter. 

Binary systems such as the above can be of considerable practical importance. 

The requirement of a large dynamic range for the filter (corresponding to the many 

bits required to represent each sample point) is obviated, and just a single 

representation bit is utilised per sample point. The resultant decrease in required 

memory storage paves the way for low cost, low complexity systems. Of interest in an 

optical implementation is the recent availability of a two-dimensional binary spatial 

light modulator-the magneto-optic device-which has been successfully used in such 

filtration systems [4], [5]. 

The second issue we address is how classification is affected by side-lobe energy 

m the correlation output. High side-lobe peak levels can lead to confusion with the 

main correlation peak, and consequent erroneous classification. Now, for deterministic 

signals not much can be said a priori about side-lobe structure. We introduce signal ,. 
statistics and a performance measure akin to a signal-to-noise ratio which incorporates 

the expected height of the correlation peak, and the maximum spread in side-lobe 

energy averaged over the ensemble. In this regard it is helpful, though not essential, 

to think of the signal as being a sample representation of an ergodic process. The 
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a 

b 

Fig. 4.2. Recognition of the letter 0 from the words MOD and 

OSF by an optically implemented Binary Filter. 



NORMALIZED 
CORRELATION 

-107-

10 

NORMALIZED 
CORRELATION 
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Fig. 4.3 (a). Correlation of a random sequence using a Matched 

Filter (after [4]). 

Fig. 4.3 (b). Correlation of a random sequence usmg a Binary 

Filter (after [4]). 
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ensemble average of side-lobe energy is then equivalent to averaging side-lobe energy 

along the correlation output itself. 

The classical idealised Matched Filter requires an infinite system space­

bandwid th product, and this, of course, can only be approximated by physical systems. 

The third issue we address is the effect of restricting the system space-bandwidth 

product to be finite. (To this extent then, our systems become shift-variant. However, 

if the system space-bandwidth product is considerably larger than the space­

bandwidth product of the signal, shift-invariance is achieved over a reasonable range). 

Our analysis is statistical, and we do not have recourse to prolate spheroidal wave 

functions-the eigenmodes of this class of shift-variant systems [6]. In this regard, new 

results are obtained characterising the performance of the Matched Filter, the Binary 

Filter, and the Matched Binary Filter as a function of the system space-bandwidth 

product. 

In section 2 we present a detailed picture of the three correlation systems we 

consider, and introduce a performance measure as a yardstick of their relative 

performance. We describe the signal statistics in section 3, and derive certain results 

needed for the analysis. In section 4 we analyse the performance of the three systems 

in a twcrclass pattern recognition problem where the patterns belong to well-defined 

statistical classes, and are noise-free. The attrition in classification performance of the 

systems when the patterns are corrupted by additive noise is traced in section 5. 

Discussions of the relative performance of the systems under consideration are covered 

in sections 6 and 7. 

2. SYSTEM MODELS AND PERFORMANCE MEASURE 

A. A Generalisation of the Fourier-Plane Correlator 

We consider a class of systems which can be described as generalisations of 

conventional Fourier-plane correlators. These systems are characterised by a spaC'e­

bandwidth (time-bandwidth) product, p, and may incorporate point-wise 

nonlinearities in the form of hardlimiting. fig. 4.1 depicts the generic three-port 
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system under consideration in block-diagram form. 

The system has two inputs: a signal, F, which is a sample realisation from some 

(statistically characterised) signal or pattern class, and a reference signal, H, which is 

matched to the sample realisation of a specific pattern class. (In practical realisations 

of such correlator systems, the reference signal would be assimilated within the system 

as it is known a priori. We represent the reference as input to a second port in order 

to better illustrate the effect of non-linear operations on the signal and the reference.} 

For definiteness we assume that the input signals are real-valued functions of a real 

variable (space or time for instance), F: IR - IR. Henceforth we will ref er to the 

domain of definition of the input signal as "space." We will consider the two-class 

case to aid in clarity of exposition, and denote by F 1 and F 2, respectively, sample 

realisations of pattern classes C 1' and C 2. For definiteness, we henceforth denote the 

(unknown) signal F by F;, j=l,2, corresponding to either F 1 or F2 being present at 

the input. We will assume that the reference signal H is matched to the sample 

realisation F 1 of class C 1. 

Both inputs are passed through a spatial window W w which effectively limits 

the support of the input signal and the reference to [--w, w]. The windowed functions 

are then Fourier transformed to yield the complex-valued functions F; and H. These 

are simply the finite-domain (or short term) Fourier transforms of Fi and H: 

w 
F; ( u ) = J F; ( x ) e -i 2iruz dx , 

-w 

w 
H ( u ) = J H ( x ) e -i 2iruz dx , (4.2.1) 

-w 

We will refer to the (real} transform variable u as the "frequency." The signal term 

F;, and the reference term iI are then subjected to the pointwise operations 

Te: ~ - ~' and Tr: ~ - ~. respectively. We restrict our attention to two maps: 

the identity map T (a) = a, and a hardlimiting operation 

T (a)= sgn {Re (a)} = {-~ ii~~:~~~~~- The signal term and the complex­

conjugate of the reference are then multiplied pointwise, and the product is then 
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passed through a frequency window W 11 which limits the support of the product to 

[-v , v]. An inverse-Fourier transform operation finally yields the complex-valued 

output function G; of the system. To summarise then, with inputs F; (x) and H (x ), 

the output G; (x) of the system is given by 

G; (x) = J T, { F; ( u)} T, {Ji ( u)} e i 2nz du (4.2.2) 
-v 

with F; and fl given by equation (4.2.1), and where we use the notation that a bar 

above a complex variable denotes the complex-conjugate of that particular variable. 

Note that with TB = T, =Id, and w = v = oo, we just have a conventional 

Fourier-plane correlator (Matched Filter). The system under consideration represents 

a more general version of a Fourier-plane correlator. The system space-bandwidth 

product which we denote by p is given by the product of the width of the spatial and 

frequency windows, p = 4wv. (If the domain of the input-signal is time, then 

causality requirements enforce that the reference signal H be a suitably delayed 

version of F 1. To obtain reasonable correlation peaks for discrimination purposes, we 

then require that the system space-bandwidth product be at least comparable to that 

of the sign al.) 

Within the structure of the system, we have some flexibility in the choice of the 

operations TB and T,. We consider three cases. 

(1) Linear operation: TB = Id, T, = Id. This is essentially a Matched Filter with a 

(finite) system space-bandwidth product p. 

(2) Non-linearity imposed on the reference signal: TB = Id, T, = sgn o Re . This 

corresponds to a Fourier-plane correlator with a Binary Filter. 

(3) Non-linearity imposed on both input signal and reference: 

TB = sgn o Re , T, = sgn o Re . This case corresponds to binarisation of the real 

part of the Fourier Trapsform of the signal, and a Matched Binary Filter. 

In terms of the canonical generalised linear discriminant function we have been 

considering, we can consider system inputs to be a pair of functions (F(il(x ),H(:r )). 

The linear transformation W in this instance, realises a pair of Fourier transforms over 
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finite windows, W(FU)(x ),H(x)) = (F(j)(u ),H(u )). Here the feature space is the 

space of the Fourier transforms, indexed by 11 E R. The point rule D operates at each 

point 11 in the Fourier plane: D (F(j)(u ),H(u )) = T, {f'Ul(u )} X Tr {H(u )}. The 

final linear discriminant function, L, is realised by an inverse Fourier transform over a 

finite window. Note that the system is somewhat different from the threshold 

machines we introduced in chapter II. Specifically, as we will see, we no more have 

independent channels. 

B. Per/ ormance Measure 

In characterising the performance of the three correlation schemes, we 

concentrate on two key measures: the strength of the correlation peak, and the side­

lobe structure. For specific sample realisations, not much can be said about the size of 

the side-lobes; however, if signal statistics are known we can extract peak and side-lobe 

information from a consideration of the ensemble. In the next section we describe a 

specific statistical structure for the two signal classes from which we can obtain 

quantitative estimates of the performance of the three proposed schemes. 

We define the discrimination efficiency of the correlators considered in terms of 

the normalised mean separation, p, which incorporates information about correlation­

peak size, as well as the energy in the side-lobes. For j =1,2 let 

T/j =sup{ Var { G; (x )} } 
% 

We then define the performance coefficient to be 

p= 
(4.2.3) 

We denote by Pm , Pb , and Pmb , respectively, the performance coefficient for the 

Matched Filter, the Binary Filter, and the Matched Binary Filter. We shall take 

system pef ormance to be a monotonically increasing function of the coefficient p, with 
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the system with the largest p realising the best performance. 

Note that the form of the coefficient p is similar to a signal-to-noise ratio, the 

"signal" corresponding to class C 1' and the "noise" to class C 2. (In fact, when the 

output variable G is Gaussian, and the a priori probabilities of the two classes are the 

same, it turns out that the form of the Bhattacharyya coefficient [7] is identical to 

equation (4.2.3) for p.) From classical communication theory we have that for 

correlational-systems which are linear functionals of the input signal, the peak signal­

to-noise ratio for a signal immersed in white noise is obtained for the Matched Filter. 

Hence we expect that the classification performance of the Binary Filter is bounded by 

that of the Matched Filter-at least when the system space-bandwidth product is large. 

The same cannot be concluded a priori for the Matched Binary Filter, however, 

because of the non-linearity introduced in the signal path. 

3. SIGNAL STATISTICS 

We assume that the signals F 1(x) and F 2(x) corresponding to the two classes 

C 1 and C 2 are sample realisations of mutually independent, white random processes 

with 

(4.3.1) 

The signal classes have been restricted to be stationary and white in order to 

effect some simplicity in the ensuing analysis. The stationarity constraint can be 

relaxed to allow of correlation functions of the form r i (x )8(x -y ); the analysis for this 

case is essentially the eame as for the case we consider. With the added constraint 

that the process be Gaussian, one or both constraints can be relaxed to encompass 

general correlation functions of the form ri (x ,y ). 
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In what follows we derive expressions for various signal statistics that we need 

to characterise the performance of the three schemes. 

Define 

With f'U)(u) given by equation (4.2.1) we have 

Re pU )( u ) = r Fi ( x ) cos 21TUX dx , 
-w 

Im pU l( u ) = r Fi ( x ) sin 2rrux dx . 
-w 

sgn {Re pU )(u )} tl. { _1
1 

if Re f'U )( u ) > 0 
if Re p(i)( u ) < O . 

(4.3.2) 

The random processes pU l(x) are independent, and we then have by virtue of 

the Central Limit Theorem that Re f'U l( u ) and Im f'U l( u ) are Gaussian random 

processes. Further, 

E {Re f'Ul(u )} = r E {F(il(x )} cos 2rrux dx = O, 

and 
-w 

E {Im :f'Ul(u )} = r E {F(il(x )} sin 2rrux dx = O, (4.3.3) 
-w 

from equation (4.3.1). The Gaussian processes Re f'Ul(u) and Im :f'Ul(u) are hence 

zero-mean. Now, using (4.3.I) again we have 

E {Re f'Ul(u) Im f'Ul(l)} = r fw E {FUl(x) FUl(y )} coo 2rrux sin 21Tty dx dy 
-w-w 

= (j Jr cos 2rrux sin 21Ttx dx 
-w 

=0, 

as cos 2rrux is an even function of x, and sin 2rrtx is an odd function of x. 

(4.3.4) 
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Thus Re :FU)( u) and Im :FU)( u) are uncorrelated random processes, and as a 

consequence of their being normal, they are also independent. Ai; F(1)(x) and F(2)(x) 

are mutually independent, we have that Re :f'(l)( u ), Im f'(l)( u ), Re :f'(2)( u ), and 

Im :f'(2l(u) are mutually independent Gaussian random processes with zero-mean. To 

completely characterise these processes it is sufficient now to obtain their second-order 

statistics. Having recourse again to equations (4.3.1), and (4.3.2), we have for j =1,2 

E {Re :f'U)(u)Re :f'Ul(t)} = r fwE {FUl(x)F;(Y)} cos211'ux cos211'ty dxdy 

where 

sine 

-(,)-(,) 

O'~ r 
= T {cos 211'( u -t )x + cos 211'{ u +t )x } dx 

-(,) 

= u}w {sine 2w(u -t) +sine 2w(u +t )} 

1 
sm 11'X 

11'X 

if x =0 

if x =rfO 

In similar fashion we find 

E {Im f'U )( u )Im f'U l(t)} = o}w{ sine 2w( u -t) - sine 2w( u +t )} . 

(4.3.5) 

(4.3.6) 

We also require expressions for the fourth-order moments. Using the fact that 

Re f'U )( u ) is a Gaussian process, we have 

+ E {Re :fUl(u) Re f'Ul(2)} E {Re frUl(l) Re f'U)(r )} 
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(4.3.7) 

which can be evaluated with the aid of equation (4.3.5). Similarly, using equation 

(4.3.6) we can estimate 

+E{Im p(j)(u)Im f'Ul(r)}E{Im f'Ul(1)Im f'Ul(2)}. 
(4.3.8) 

We finally need to estimate the first and second moments of the random 

processes sgn {Re f'(j)(u )} and I Re f'Ul(u) j. Definer: ffi.3 -+ [-1,1] by 

( t. ) t:. sine 2w(u-t) +sine 2w(u +t) 
r u ' ,w = (1 +sine 4wu )112(1 +sine 4wt )112 (4.3.9) 

Note that from equation (4.3.5) it follows that for each u and t, r (u ,t ;w) is just the 

correlation coefficient of the random variables Re f'Ul(u) and Re f'U)(l). 

The derivation of the following results is postponed to Appendices A and B. 

Identifying the random process Re f'U l( u) with the process X ( u) in the appendices, 

we replace the correlation ru ,t of equation (A.l) by the expression on the RHS of 

equation (4.3.5); 

2 { . ru ,t = u;w smc ,,. 2w(u -t) +sine 2w(u +t )} . 

Substituting the above in equations (A.2), (B.l), (A.8), and (B.4), we obtain 

E (sgn {Re f'Ul(u )}) = O, 
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(4.3.10) 

E { I Re fUl( u) I } ~ ( 2"';; J ]"
2

(1 +sine 4wu )112 
, 

(4.3.11) 

E (sgn {Re :fUl(u )} sgn {Re :f'Ul(l)}) =~sin-Ir (u ,t ;w), 
1r (4.3.12) 

and 

E {I Re :f(il(u) I I Re :f(il(l) I} 

2wa ~ [ 
= --3

- (1 +sine 4wu )If2(1 +sine 4wt )If2(1 - [r ( u ,t ;w)]2)If2 

1r 

+ (sine 2w( u -t) + sine 2w( u +t )) sin-Ir ( u , t ;w)] . 
(4.3.13) 

We now utilise these results to quantitatively estimate the performance of the 

three proposed correlator schemes. 

4. TWO-CLASS DISCRIMINATION: NO ADDITIVE 
NOISE 

We consider the case where we have two classes of patterns CI and C 2. \Ve 

assume that the signals F(Il(x) and f( 2l(x) corresponding to classes CI and C 2 are 

uncontaminated by noise, and have the statistics described in the last section (equation 

(4.3.1)). The signals F(Il(x) and f(2l(x) are sample realisations of the corresponding 

statistical classes, and the reference signal is chosen to be f(Il(x ). 

A. The Matched Filter 

Referring back to fig. 4.1, we have T8 =Id and Tr =Id for the Matched 

Filter. The system is linear in both inputs. Substituting in equation {4.2.2) we have 

the output cUl(x) corresponding to an input signal fUl(x) and reference signal 

F(1l(x) given by 
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GU l( x ) = r :fU )( u ) p(IJ( u ) e i 2iruz dx {4.4.1) 
-v 

with f'Ul( u) given by equation (4.2.1). 

Our consideration of the Matched Filter as a correlational system described by 

equation (4.4.1) differs somewhat from the classical deterministic Matched Filter [1]. 

An immediate point of divergence from the classical system is the incorporation of 

finite system windows in space and frequency-namely, the inclusion of a finite system 

space-bandwidth product, p = 4wv, in the governing system equations. A second 

point of departure from the traditional deterministic filter is the representation of both 

signal and reference as members of a statistical class rather than as deterministic 

entities. As a consequence, the performance coefficient, p, obtained by averaging the 

relative signal strength and the "noisy" side-lobe fluctuation across the ensemble, 

yields a different performance characterisation of the system under consideration than 

the classical signal-to-noise ratio characterisation of Matched Filters. 

We now estimate the performance coefficient Pm given by equation (4.2.3) for 

the case of the Matched Filter. 

CLASS 1 : For class C 1' we have the system output given by 

c(ll(x) = f :f(ll(u) f'(ll(u) e i2irux dx 

-v 

LI 

= J {[Re :f{Il( u )]2 + [Im f'{Il( u )]2} e i 2iruz du . 

-v 

The output mean is hence 

E { c(Il(x )} ~ r (E {[Re f'(l)(u )]2} + E {[Im :f{I\u )]2}) e i 2iruz du . 

-v 

From equations (4.3.5) and (4.3.6) we have 
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v 
E { c(Il(x )} = 2wo} I e i 2iruz du = 4wvo12 sine 2vx . {4.4.2) 

-v 

µ 1 =sup { IE { G(1l(x )} I } = 4wvo1
2 . 

z {4.4.3) 

We now estimate the variance: 

v v 
E {I a(ll(x) 12 } =I 1 E {([Re :f'(ll(u )] 2 +[Im :Ft1l(u )]2)([Re :f'{ll(1)]2 +[Im :f'{ll(1)]2)} 

-v-v 

X e i2ir(u-t)z dudt . 

Using equations (4.3.5), (4.3.6), (4.3.7), and (4.3.8), and the independence of 

Re :f(l)( u ), and Im :f(l)( u ), we have, after some manipulation, that 

v v 
E {I a(ll(x) ] 2 } =4w2u14J I [1 +(sine 2w(u-t))2 + (sine 2w(u+t))2] e; 2 .. (•-t)z dudt. 

-v-v 

Using ( 4.4.2) we have 

Var c(ll(x) 

= E { I at1l(x) I 2} - IE { a(ll(x)} 1 2 

v v 
=4w2a 1

4J J [(sine 2w(u-t))2 +(sine 2w(u+t))2]eos2rr(u-t)x dudt. 
-v-v (4.4.4) 

Hence, 

7/i =sup {Var G(1l(x )} 
z 

=Var G"1(0) 

v v 
= 4w2a 1

4J J [(sine 2w( u -t ))2 +(sine 2w( u +t ))2] du dt 
-v-v 
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v v 
= 8w2u 1

4 J J [sine 2w{ u -t }] 2 du dt . 
-v-v 

Setting u -t =s, and exchanging the order of integration we find that this evaluates 

to 

2v 
171 =8w2u 1

4J (2v- Is I )[sine 2ws ]2ds 
-2v 

1 
= 64w2v2u 1

4J {I - t )(sine 4wvt )2dt , 
0 

(4.4.5) 

where we've changed the variable of integration by setting s =2vt, and used the fact 

that (1- I t I ), and (sine 4wvt )2 are both even functions oft. 

CLASS 2 : For class C 2, we have the system output given by 

v 
a(2)(x) =I f'(2)(u) tr11(u) ei2iruz du . (4.4.6) 

-v 
Hence, 

v 
E { G(2l(x )} = JE {F(2)(u) f'l1l(u )} e i 2iruz du . 

-v 

By independence of the processes F( 1l(x) and F(2\x ), and from equation (4.3.3) we 

then have 

E {a(2l(x}} = o. (4.4.7) 

Hence 

µ2 =sup { IE { a(2l(x )} I}= 0. 
z (4.4.8) 

To estimate the .output variance, we have 

v v 
E {I a(2l(x) 12} =I I E {f'(2l(u) fm(l)} E {fr(ll(u) f'(l)(l)} e i 2?r(u-I ):r dud! 

-v-v 
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where we have again used the statistical independence of the two classes. Now from 

equations (4.3.4), (4.3.5), and (4.3.6) we have 

E { 1Nn( u ) pu 1(1)} = 2wo-J sin c 2w( u -t ) . (4.4.9) 

Hence 
v v 

E { I G (2l( x ) I 2} = 4w2o}ul J J [sine 2w( u -t )]2 cos 27r( u -t )x dudt , (4.4.10) 
-v-v 

and by the same procedure as before, we obtain 

I 
f/2 = 32w2v 2ulu2

2 J (1 - t )(sine 4wvt )2dt . (4.4.11) 
0 

Define a as a function of the space-bandwidth product p by 

I 
o:(p) = J (1 - t )(sine pt )2dt (4.4.12) 

0 

Combining equations (4.2.3), (4.4.3), (4.4.5), (4.4.8), (4.4.11), and (4.4.12) we have the 

performance coefficient given by 

Pm 

{4.4.13) 

Asymptotic results: The expression (4.4.13) can be readily evaluated for extreme 

values of the system space-bandwidth product. For very low space-bandwidth 

products, p - 0, the integral in (4.4.13) converges to 1/2, so that 
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asp-o. 

For very high space-bandwidth products, p - oo, on the other hand, the integral 

asymptotically approaches the value p /2, so that 

P ul 
<122 

Pm------

( 1 + <:: l 
asp-oo. 

The asymptotic results correspond well with intuition. For very low space­

bandwidth products we expect a low processing gain for the system since very little 

correlation matching can be obtained. For very high space-bandwidth products on the 

other hand, the use of uncorrelated signals at the input yields optimal (very high) 

processing gains. (The fact that Pm grows unboundedly for large space-bandwidth 

products should not be disturbing. The use of wide-sense stationary signals at the 

input results in a very rapid growth of the correlation peak with increasing space­

bandwidth product; for wide-sense stationary processes almost all members of the 

ensemble have infinite energy. Furthermore, the uncorrelated nature of the processes 

(they are statistically independent) results in very small sidelobes; in fact, the sidelobes 

decrease very rapidly as the space bandwidth product increases. In fine, the 

performance measure Pm grows proportionally with increase in the space-bandwidth 

product. In a sense, then, the statistical structure of the input signals is particularly 

well suited for such correlation matching.) In practice, the results will be tempered by 

the practical constraints of finite signal energies, and the fact that signals tend to have ,. 
some measure of correlation (a correlation length); the one lowers the correlation peak 

value, while the other increases the energy in the sidelobes. Our results for the case 

under consideration should, however, serve to illustrate the performance trends in 

these processors. 
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It is instructive to compare the performance measure given by equation (4.4.13} 

with the classical Matched Filter result for the signal-to-noise ratio of a deterministic 

signal immersed in white noise. The processing gain of a classical system (defined to 

be the ratio of the output signal-to-noise ratio to the input signal-to-noise ratio) is 

given essentially by the signal space-bandwidth product [l]. If we define ui2/u:f to be 

a measure of the input signal-to-noise ratio for the statistical case under consideration, 

then the processing gain of our system is given by 1 
2 2 

. The term 
2a:(p }(l + 2a1 /a2 ) 

2a1
2/a2

2 appears because the statistical side-lobe fluctuations of the "signal" term F 1 

itself also introduces some "noisy" variance. Neglecting this for the nonce, we see that 

the processing gain of the system is given by l/2a:(p ). If the system space-bandwidth 

product p is large, l/2a:(p) ~ p, which is consistent with the the classical result 

(assuming the signal space-bandwidth product and the system space-bandwidth 

product are reasonably well matched}. For small p , however, the processing gain is 

approximately unity so that there is effectively no gain in the system. Thus the 

presence of a finite system space-bandwidth product manifests itself in a Joss of 

processing gain; the larger the space-bandwidth product, the more the processing gain 

realised by the system. 

B. The Binary Filter 

The Binary Filter is obtained by introducing the pointwise hardlimiting non­

linearity into the path of the reference signal input in fig. 4.1; specifically, T, = Id, 

and T, = sgn o Re. Substituting in equation (4.2.2} we have the correlation output 

of the system given by 

" cUl(x)= I pUl(u}sgn {Re p(ll(u}} ei 2
1fUX du. (4.4.14) 

-v 

, 

CLASS l : The output of the system with F(ll(x) at the input is given by substitution 

in equation (4.4.14}: 
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G(1)(x) = f f(I)(u) sgn {Re f(l)(u )} e i 2iruz du 

-v 

-v -v 
(4.4.15) 

The output mean is hence given by 

E {c(l)(x)} = r E {I Re f(l)(u) I} ei 2iruz du 

-v 

+if E {Im f(l)(u )} E {sgn {Re fr(l)(u )} } ei 2iruz du 

-v 

where we have used the fact that Re f (ll( u) and Im f (l)( u) are independent. Then 

using equations (4.3.3), (4.3.10), and (4.3.11), 

(4.4.16) 

and 

µl =sup { IE { c(ll(x )} I } 
z 

= E { G 1(0)} 

[ ) 

1/2 
8wv2a 2 

~ ~ 1 
/ (! +sine pt )'I' dt , 

(4.4.Ii) 

where, as before, p is the space-bandwidth product 4wv. 

We now obtain the output variance for class C 1. In equation (4.4.15) set 
I' 

v 
H 1(x)=J !Re f(ll(u)I 

'') e I ~iruz du ' 

-v 
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H 
2
(x) ={Im f(l)(u) sgn {Re f(l)(u )} e i 2iruz du . 

-v 
Then 

Hence 

Now 
v v 

E{H 1(x)Hix)}=f JE{IRe f(ll(u)I sgn{Re f(ll(t)}} 
-v-v 

X E {Im fr(l)(t )} ei 2ir(u-t)z dudt 

=0 

as I Re fr( 1\u) I sgn {Re fr(1\t )} is independent of Im f(l)(t ), and Im f(ll(t) has 

zero-mean (equation (4.3.3)). Also, from equation (4.4.13) we have 

E{IH 1(x)l 2}={J"'E{IRe fr(ll(u)I IRe f(l)(t)l}ei 2ir(u-t)x dudt 

-v-v 

= 2wa1
2 
{{ [ 

7r (1 +sine 4wu )112(1 +sine 4wt )112(1 - [r ( u ,t ;w)]2) 112 

-v-v 

+ {sine 2w(u -t) +sine 2w(u +t )} sin-1r (u ,t ;w) J cos 27r(u-t )x dudt , 

and from equations (4.3.6), and (4.3.12) we have 
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v v 
= J J E {Im f(l){u) Im fr(l)(t )} 

-v-v 

XE {sgn {Re f(ll(u )} sgn {Re p(ll(t )} } e i 2ir(u-t )z dudt 

= 
2
wal r r {sine 2w(u -t )- sine 2w(u +t )} sin-1r (u ,t ;w) cos 2rr(u -t )x dudt ' 

7r -v-v 

where r ( u ,t ;w) as defined in equation (4.3.9) is given by 

r (u ,t ;w) = sine 2w(u-t) +sine 2w(u +t) 
(1 +sine 4wu )112(1 +sine 4wt )112 · 

Using expression (4.4.16) for E { c(ll(x )}, we finally get 

= 
2w;12 r J11 

[2sinc 2w(u-t) sin-1r (u ,t ;w) - (1 +sine 4wu )112 

-v-v 

X (1 +sine 4wt )112{ 1 - (1 - [r ( u ,t ;w)]2) 112} ] cos 2rr( u -t )x dudt 

sine -( u -t) sin-1r ( u , t ;0.25p ) - - (1 +sine pu )112 4omeg val !JI [ p 1 

7r -1-1 2 2 

X (1 +sine pt )112(1 - VI - [r ( u ,t ;0.25p )]2)] cos 2rr( u -t )vx dudt , 
(4.4.18) 

where we've used the identity r (vu ,vt ;w) = r ( u ,t ;0.25p ), which can be verified by 

direct substitution in the defining equation (4.3.9) for r, with p = 4wv. 
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No analytic expression is available in general for 71 1 =sup {Var c(ll(x )}, and 
!II 

we have to resort to numerical evaluation for specified parameters p, u 1
2, and u:j. 

(Note that, in general, the supremum does not occur at x = 0). 

CLASS 2: From equation (4.4.14), the output for class C 2 is given by 

v 
c(2)(x) =I 

-v 

The output mean is hence 

E { c(2l(x )} = f E {fr(2l(u )} E {sgn {Re fr(1l(u )} } e i 2irux du = o 
-v 

from equations (4.3.3), and (4.3.10), and usmg the independence of F(1l(x ), and 

F(2l(x ). Hence 

(4.4.19) 

Since G(2l(x) has zero-mean, we can estimate the class variance as 

v v 
= J J E {fr(2l(u) fl2l(t)} E (sgn {Re f(ll(u )} sgn {Re f(l)(t )}) 

-v-v 

x ei2ir(u-l)z dudt. 

Using the results of equ';,tions (4.4.9), and (4.3.12), we have 

(") 4wal {Jv . Var G -(x) = -- smc 2w(u -t) sin-1r (u ,t ;w) cos 27r(u -t )x dudt 
7r -v-v 
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4w<J22 /Jl p = -- sine -( u -t) sin-1r ( u ,t ;0.25p ) cos 21r( u -t )vx dudt . 
1r -1-1 2 

(4.4.20) 

Again, no analytic expression can be found for 112 =sup {Var G(2)(x )} , m general, 
% 

and numerical evaluation must be used. 

Define (30 , (31, and (32 as functions of the space-bandwidth product p by 

f3o(P) = [ J1 
(1 +sine pt )If

2 dt r , 
0 

( 4.4.21) 

1 1 
,81(p) =sup {J J sine ~ ( u -t) sin-Ir ( u ,t ;0.25p) cos 21r{ u -t )vx du dt} (

4
.4_

22
) 

% -1-1 

and 

(32(p) = s~p {J1 J1
{sinc 1!..(u-t) sin-Ir (u ,t ;0.25p) - _!_(1 +sine pu )If2 

~ -1 -1 2 2 

X (1 +sine pt )If2{ 1 - (1 - [r ( u ,t ;0.25p )]2)If2}} cos 21r( u -t )vx du dt} . 
(4.4.23) 

Combining the results of equations (4.2.3), {4.4.17), {4.4.18), (4.4.19), and {4.4.20), and 

using the defining equations (4.4.21), (4.4.22), and (4.4.23) we obtain the performance 

coefficient, Pb , of the Binary Filter to be 

(4.4.24) 

Asymptotic expansions, and approximations of any form are rather hard to 

come by for the above expression in view of its rather complicated structure. \Ve will 

hence have recourse to numerical solutions in section 6. 
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C. The Matched Bz'nary Filter 

For this, the third of the three proposed correlator schemes, the pointwise 

thresholding operation is introduced into both signal pathways in fig. 4.1. Both the 

input signal and the reference are hence subjected to a pointwise binarisation 

operation, T, = sgn o Re , and Tr = sgn o Re . On substituting in equation 

(4.2.2), we find the correlation output when the input is F(i)(x) to be given by 

v 
c(i)(x) =I sgn {Re p(il(u )} sgn {Re p(1l(u )} e i 2iruz du . (4.4.25) 

-v 

We now obtain the output mean, and variance for the two classes. 

CLASS 1 : The system output when the sample realisation F(1l(x) of class C 1 is 

present at one input port with the reference signal F(1l(x) being the second input is 

given from (4.4.25) by 

c(ll(x) = f sgn {Re f'(1l(u )} sgn {Re p(l)(u )} e i 2iruz du 

-v 

=re i2iruz du 

-v 

= 2v sine 2vx . 

The output G (ll(x) is purely deterministic, and has no random component. Hence 

E { G(ll(x )} = G(ll(x ), and Var { G(1l(x )} = 0. Consequently, 

µ 1 =sup (E { c(ll(x )} ) = 2v, 
z (4.4.26) 

and , 
111 =sup {Var c(ll(x )} = O. 

z (4.4.27) 

CLASS 2 : With F(2l(x) as the input signal, equation (4.4.25) yields the system output 
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G(2l(x) to be 

v 
c(2l(x) =I sgn {Re :f'(2l(u)} sgn {Re :F(ll(u)} ei 2

1rll% du 

-v 

Hence from (4.3.10), and independence of f(1)(x ), and F(2l(x) we have 

E { G(2l(x )} = f E {sgn {Re :f'(2l(u )} } E {sgn {Re :f'(1\u )} } e i 2iruz du = o. 
-v 

µ2 =sup (E { G(2l(x )}) = 0. 
% (4.4.28) 

To estimate the variance of G (2l(x ), we see that as a consequence of G (2l(x) 

being zero mean 

v v 
= J J E {sgn {Re f'(2l(u )} sgn {Re :f(2)(1)}} 

-v-v 

XE {sgn {Re :f(ll(u )} sgn {Re :f{ll(1)}} ei 21r(u-l)z dudt 

Referring to equation (4.3.12) we have 

4 ll J Var { G(2l(x )} =~I [sin-1r (u ,t ;w)] 2 cos 27r(u -t )x dudt . ( ) 
71 4.4.29 

-v-v 
Hence 

TJ 2 =sup {Var at2l(x )} =Var { G 2(0)} 
% 

4 ""J = 7r
2 
J [sin-1 r ( u ,t ;w)]2 du dt 

-v-v 
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= 16~ J J1 
[sin-1r(u,t;0.25p)]2 du dt, 

'Jr 0 0 

as r (vu ,vt ;w) = r ( u , t ;0.25p ), 

r ( u ,t ;0.25p) = r ( u ,-t ;0.25p) = r (-u ,t ;0.25p) = r (-u ,-t ;0.25p) 

defining equation (4.3.9) of the correlation coefficient r. 

Define I as a function of the space-bandwidth product p by 

1 1 
i(p) = J J [sin-1r ( u ,t ;0.25p )] 2 dudt . 

0 0 

( 4.4.30) 

and 

from the 

(4.4.31) 

From equations (4.4.26), {4.4.27), {4.4.28), and (4.4.30), and the defining equation 

(4.4.31) we get the performance coefficient Pmb for the Binary Matched Filter to be 

Pmb (4.4.32) 

The most remarkable feature of the performance coefficient Pmb is that it 

depends only on the system space-bandwidth product p, and is independent of the 

class variances a} and al. 

5. CLASSIFICATION IN ADDITIVE NOISE 

In practice, the issue of system robustness in the face of signal degradations, 

and noise becomes important. We illustrate how noisy signals result in performance 

attrition in the three correlator systems considered. 

We consider the case where the input signal F (x) is contaminated by an 

additive noise term N (! ). (We assume that the reference signal H (x) being known a 

priori can hence be represented in a reasonably accurate, and noise-free manner). \Ve 

take N (x) to be an independent noise process which is additive and white with 

E{N(x)}=O, 
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and 

E {N(x)N(y)} = u;o(x-y). 

The input signal term is then Flil(x) + N (x ), and the reference signal term (matched 

to class 0 1) is F(ll(x). 

A. The Matched Filter 

We first demonstrate the rate of decay of system performace as the input noise 

level increases for the case of the Matched Filter. We denote by Gnlil(x) the (noisy) 

correlation output of the system when the input signal is a noisy realisation of class 

Oi, viz., F(j l(x) + N (x ). The second system input-the reference signal H (x )-is as 

before matched to the sample realisation Fl1l(x) of class 0 1. For simplicity of 

notation we denote by Bm the system operator for the Matched Filter; Bm maps the 

two inputs-the signal and the reference-to the output correlation function. For the 

noise-free input case, we have from equation (4.4.1) that 

(4.5.1) 

= r f'U \ u ) fr{ll( u ) e ; 2irux du . 

-v 

Let c(n l(x) be the system output when the input signal is a pure noise term N (x ). 

Then 

(4.5.2) 

Note that c(n l(x) has the same form as the noise-free system output when 

class 0 2 is present at ihe input; simply replacing F 2 by Nin equation (4.4.6) yields 

c(n l(x ). The analysis for class 0 2 in section 4(A) hence holds in entirety for c(n l(x ), 

as N (x) and Fl2l(x) have similar statistics, and are both independent of F(ll(x ). In 

particular, from equations (4.4.7), and (4.4.10), we have 
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(4.5.3) 

2v 
Var { G("l(x )} = 4w2a?a; J (2v - Is I )(sine 2ws )2 cos 2rrsx ds . (4.5.4) 

-2v 

Furthermore, c(n l(x) and cU l(x) are uncorrelated processes, 

E { c(nl(x )GUl(x )} = 0. This follows from the mutual independence of F(il(x) and 

N(x ), as can be verified by straightforward substitution in equations (4.5.1), and 

( 4.5.2). 

Now, the noisy output of interest when the input is corrupted by an additive 

noise component is given by 

(4.5.5) 

as the system operator Bm is linear in its first argument-the input signal term. Hence 

(4.5.5) 

It follows th en th at 

as G (n l(x) has zero-mean from equation ( 4.5.3). Hence the noisy correlation peak has 

mean value 

=sup {IE { Gn(j)(x )} I}= sup {IE { cUl(x )} I}= µj , 
x ~ x 

with µi given by equations (4.4.3) and {4.4.8). Furthermore, as cUl(x) and c(nl(x) 

are uncorrelated, we have 
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Combining equations (4.4.4), (4.4.10), and (4.5.4), we have the peak variances T/j ,n for 

each of the two classes given by 

and 

=Var G 1(0) +Var Gn (0) 

= 2p 2o}(2(Ti2 + (Tn2) f (I - t )(sine pt )2dt , 
0 

1J2,n = 2p 2(Ti2((Tl + (T;) f (1 - t )(sine pt )2dt . 
0 

The performance coefficient Pm ,n for the Matched Filter when input noise is 

present is hence given by 

Pm,n -
(µ1,n - µ2,n )2 

171,n + 712,n 

2o:(p)[l +2 2 (T12 2) ' 
(T2 + 2(T n 

where, as in equation (4.4.12), 

1 
o:(p) = J I' (1 - t) (sine pt )2 dt , 

0 

(4.5.7) 

is solely a function of the system space-bandwidth product p = 4wv. A comparison of 

equations (4.4.13) and (4.5.7) shows that the presence of additive input noise is 
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equivalent to an additive increase in the variance (or spread) of class C 2 by exactly 

twice the spread of the noise. 

B. The Binary Filter 

The case of the Binary Filter can be tackled in an exactly analogous manner. 

Defining Bb to be the system operator for the Binary Filter, we have the noisy 

correlation output given as in equation ( 4.5.5) by 

Again, Bb is linear in its first argument (the input signal term) so that Gn(j)(x) is 

given as in (4.5.6) to be the sum of the noise-free system output aUl(x ), and the 

system output a(nl(x) when the input signal is a pure noise term. Tracing through 

the same analysis yields the performance coefficient Pb ,n for the Binary Filter when 

the input is degraded by an additive noise. 

In general, however, it turns out that the form of Pb ,n is not conducive to a 

convenient representation as in equation (4.4.24) for the noise-free case; specifically, in 

equation (4.4.23), the functional {32(p) has to be replaced by a more complicated 

supremum taken over the sum of two integrals, the coefficient of one being o}, and of 

the other being o ;. (The supremum is now a function of not only the space­

bandwidth product p, but also of the signal and noise variances.) Using the fact that 

sup{ A + B} < sup{ A } + sup{B}, we can arrive at the following convenient lower 

bound estimate for Pb ,n for the sake of comparison: 

Pb ,n > 

02 

2f3o(P ) 2 1 2 2 
02 + On 

(4.5.8) 

with the functionals /30(p ), /31(p ), and /32(p) given by equations (4.4.21), (4.4.22), and 

( 4.4.23). 
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On comparing (4.4.24), and (4.5.8) we see that the effect of additive noise is to 

create a larger effective spread for class C 2 just as in the case of the Matched Filter. 

In both cases, the noise effectively reduces the ability of the system to pick out class 

C 1 by increasing side-lobe energy, and at the same time increasing the correlation 

spread of class C 2 so that the probability of erroneous identification of a spurious peak 

(side-lobes from either class) with the correlation peak of class C 1 is increased. 

C. The Matched Binary Filter 

The situation becomes more involved for the case of the Matched Binary Filter. 

Here the system operator Bmb is linear in neither input. As a consequence, the 

evaluation of the performance coefficient requires the estimation of rather complicated 

expressions for the fourth order moments of hard-limited random processes which are 

mutually correlated. We can give a simple heuristic argument, however, to 

demonstrate that additive noise is considerably more inimical to this correlation 

scheme than to the previous two schemes we've discussed. 

For the purpose of analysis, it is expedient to think of the Matched Binary 

Filter as a two-stage decison making system, with partial decisions being made initially 

at each pont in the Fourier domain, with a final classification decision being made 

based upon all the previous partial decisions. Assume Fi + N is the n01sy input 

signal to the Matched Binary Filter. The thresholding operations on the signal and 

the reference, followed by the pointwise multiplication m essence realise a hard 

decision at each point in the Fourier domain: 

The fin al classification is simply a threshold decision based upon the weighted integral , 
(Fourier transform) of the individual partial decisions. The reliability of the final 

classification decision is clearly a function of the reliability of the earlier partial 

decisions. If P [sgn {Re (F(l\u) + N(u ))}=sgn {Re fr(l)(u )}] ~ 1 for each point u 

in the Fourier domain, (or if P [sgn {Re (F(u )+v)}=-sgn {Re fr{ll(u )}] ~I for 
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each u, in which case we just have the negative of the reference), then we have 

maximally reliable partial decisions for class C 1 inputs, which result in reliable 

classification for class C 1 as correlation peaks will be well above threshold; if, on the 

other hand, P [sgn {Re (:F(ll(u) + N(u ))}=sgn {Re f'(I)(u )}] >=::::; 1/2 for each u, 

then we have maximally unreliable partial decisions for class C 1 inputs, which result in 

a high probability of overall misclassification as correlation peaks will be low. The 

reverse situation lS true for class C 2-we would like 

P [sgn {Re (F(2l(u) + N(u ))}=sgn {Re f'{Il(u )}] >=::::; 1/2 for each u so that the 

resultant correlation peak is low. 

By virtue of the two signals and the noise being mutually independent, we have 

P [sgn {Re (F(2l(u) + N(u ))}=sgn {Re F(l\u )}] = 

P [sgn {Re :f'(2)( u )}=sgn {Re :f'(Il( u )} ] = 1/2 for each u . Hence the overall 

reliability of the partial decisions is determined entirely by what happens to a noisy 

class C 1 input. For the sake of simplicity we make the following definitions. Let 

p = P [sgn {Re (:f'(I)(u) + N(u ))}=sgn {Re fr(I)(u )}], uf =Var {Re f'(ll(u )}, 

and u~ =Var {Re N(u )}, and define the Gaussian density and distribution 

functions 

¢( ) - 1 -x 2/2 x ---e j2'ff , 

and 
x 

<I>(x) = J <P(y) dy 

Then 
-00 

+JO P {Re (F(I)(u) + N(u ))<0 I Re fr(l)(u )=!} - 1 ¢(_1_) df 
UF uF 

-00 

1 r f f 1 Jo f f = - <I>(-) ¢(-) df + - <I>(- -) ¢(-) df 
uF 0 u N UF UF -oo u N UF 
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00 f (J' 

= 2 f 4>(-F) </>(/ ) df . 
0 aN (4.5.9) 

For aN << aF, we clearly have p ~ 1, in line with expectations as for the low 

noise case we expect highly reliable decisions. If aN >> aF, on the other hand, 

equation (4.5.9) yields p ~ 1/2; i.e., when the signal is swamped by noise we obtain 

unreliable partial decisions, as expected. Now consider the intermediate case with 

equal signal and noise power, a N = aF = a. From equation ( 4.5.9) we have 

00 

p = 2 J <I>(! ) ¢(! ) df 
0 

=2 J 
1/2 

4>2 
=2 

2 

1 
<I> d <I> 

1/2 

1 
2 

Th us, even when the noise level is not very high, the partial decisions are very 

unreliable, leading to poor performance. Note that both the Matched Filter and the 

Binary Filter still perform very well for noise levels of the order of the signal; in both 

cases, the noise tends to average out so that the processing gain of the system is 

sufficient to pull out a peak. Note from equations (4.5.7) and (4.5.8) that for 

a1 = a2 =an, both Pm ,n and Pb ,n decrease by at most a factor of 1/3 from the 

noise-free case. 

(The behaviour of p as a function of the noise level adds an interesting footnote: 

for fixed aF, p is not a monotonically decreasing function of a N, as might perhaps be 

expected intuitively. In fact, worst case performance for the system occurs when 

aN = aF (at which poKit p = 1/2). As aN increases beyond aF, system performance 

actually improves slightly before it drops again when aN becomes large (at which 

point p approaches 1/2 again). However, such improvement is marginal at best, and 

system performance is poor whenever the noise level exceeds that of the signal. Note 

that this sort of fine shade of performance distinction is not mirrored in our 
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performance measure p, which yields overall trends, but IS insensitive to small 

perturbations in performance. 

The Matched Binary Filter hence does not perform very well for high noise 

levels at the input. With this in mind, we develop an upper bound for the 

performance coefficient which is reasonably sharp for low noise levels at the input. 

The output of the system when the input signal is corrupted by additive noise is given 

by analogy with equation ( 4.4.25) by 

v 
Gn(il(x) = J sgn {Re (f'(il(u) + N(u ))} sgn {Re F(l\u )} e iZ?rux du (4.5.10) 

-v 

where N ( u ) is given by 

w 
N ( u ) = J N ( x ) e i Z?rux dx . 

-w 

CLASS 1 : When the input signal is a noisy version of a sample realisation of class Cl> 

the output is given by 

v 
Gn(Il(x) = Jsgn {Re cr(ll(u) + N(u ))} sgn {Re p{ll(u )} e iZ1rUX du . 

-v 

N (x) and F(1l(x) are mutually independent zero-mean random processes, and 

hence Re { N ( u )} and Re f'(l)( u) are mutually independent normal processes with 

zero-mean vide the Central Limit Theorem, and the linearity of the expectation 

operator. It then follows trivially that Re f'{l)( u) and Re (F(Il( u ) + N ( u )) are 

jointly normal as they are obtained by the linear transformation 

[ 
Re _F~))( u ) l [1 0 l [Re ~(l)( u ) ] 

Re (F(ll(u) + N(u )) = 1 1 Re N(u) 

from the jointly normal processes Re f..r ( u) and Re f'(l)( u ). Proceeding in a manner 

similar to the derivation of equations (4.3.5) and (4.3.6), we obtain 
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E {Re (f'U)(u) + N(u)) Re (f'Ul(1) + N(t ))} 

= w(a J +a ;)(sine 2w( u -t) +sine 2w( u +t )) (4.5.11) 

and 

E {Re (F(j)(u) + N(u)) Re f'(l)(l)} = wa1
2(sinc 2w(u-t) +sine 2w(u +t )) . 

We then have from equation ( 4.3.12) that, 

= r E [sgn {Re (F(ll(u) + N(u ))} sgn {Re f'(ll(u )}] ei 2
7TUX du 

-v 

2 r • -1{ W(112(1 + sine 4WU ) } e j 21TUX du 
= -; -v sm [wa1

2(1 +sine 4wu )] 112[w(ai2 +a ,?)(1 +sine 4wu )]112 

{ [ 
2 l 1/2} 4v . _ a1 . 

= - sm 1 
2 2 

smc 2vx . 
7r a1+an 

Hence 

Rather complicated fourth-order moments are required for the estimation of 

fJI,n -the maximum variance of the noisy output correlation. We avoid these 

complications with the intention of obtaining a manageable upper bound on 

performance. (An ad hoc reason for neglecting the contribution of the variance of the 

class C 1 output is that fJl == 0 for the noise-free case-cf. section 4(c). Hence, at least 
,,. 

for the low noise case the error that accrues in neglecting fJl,n will not be large. When 

noise levels are high, however, as seen earlier, the performance of the Matched Binary 

Filter drops rapidly, and the upper bound we derive may not be sharp). 
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CLASS 2 : From equation ( 4.5.10), the noisy output for class C 2 is given by 

l/ 

Gn(2l(x) = Jsgn {Re (F(2l(u) + N(u ))} sgn {Re f'(ll(u )} e i 2irux du . 

-v 

The zero-mean normal processes Re (F(2)(u) + N(u )) and Re f'(Il(u) are mutually 

independent so that 

(4.5.13) 

To estimate the variance we see from equations (4.3.12), and (4.5.11) that 

Var Gn(2l(x) =ff E {sgn {Re (F(2l(u) + N(u ))} sgn {Re (F(2l(1) + N(t ))} } 
-l/-l/ 

XE {sgn {Re f'(l)(u )} sgn {Re f'(l)(l)}} ei 2ir(u-t)x dudt 

4 l/ J = ~ J [sin-Ir ( u ,t ;w)] 2 cos 2rr( u -t )x dudt , 
-l/-l/ 

where r (u ,t ;w) is the correlation coefficient defined in equation (4.3.9). Hence 

= 16~2 J J1 
[sin-Ir ( u, t ;0.25p )]2 dudt . 

7r 0 0 (4.5.14) 

Using equations (4.5.12), (4.5.13), and (4.5.14) we have the noisy performance 

coefficient Pmb ,n bound~d by 

< 
(µI,n - µ2,n )2 

Pmb ,n 
1/2,n 



where 

I 
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[ 

. -1 0"1 ]
2 

sm 
.../ul+u;f 

'l(p) = j J1 
[sin-1r ( u ,t ;0.25p )] 2 dudt 

0 0 

(4.5.15) 

(as in equation (4.4.31)) is a function solely of the system space-bandwidth product 

p = 4wv. 

Equation ( 4.5.15) is readily reduced to a simpler form when either signal or 

noise dominates. When the signal term dwarfs the noise term, ui2 >> u :f, we obtain 

Pmb ,n ~ ~( ) in accordance with equation (4.4.32) for the noise-free case. When the 
41 p 

noise dominates the signal term however, u :f >> ul, we have, using the small angle 

0"12 
approximation, sin-1x ~ x for small x, that Pmb n ~ ---

Note that for o-1 = o-2, we have 

' 'l(P )u :f' 
11'2 

Pmb ,n < --(-) , so that the drop in 
l6'j p 

performance is at least a factor of 1/4 from the noise-free system performance 

(equation ( 4.4.32)). This is to be compared with the performance drop of by at most a 

factor of 1/3 for the Matched Filter, and the Binary Filter. 

6. NUMERICAL SOLUTIONS AND DISCUSSION 

We return now to a consideration of the relative performance of the three 

O" 2 
systems under advisement. Let o-2 represent either --;.. for the noise-free case, or 

0"2 

O" 2 

2 

1 

2 
for the noisy case. We will refer to a2 as the class spread ratio; in essence a 2 

a2 +an 

is a statistical measurn of the relative strengths of "signal" (class C 1) and "noise" 

(class C 2, and additive noise) at the input of the correlational system. Recapitulating 

the expressions for the performance coefficients derived in section 4 for easy reference, 

we have (equations (4.4.13), (4.4.24), (4.5.7), (4.5.8)), 
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()2 
Pm--------

2a{p) + 4a{p )u2 
' 

2f3o(P )u2 

where the functionals a(p ), (30(p ), (31(p ), and (32(p) are defined in equations ( 4.4.12), 

(4.4.21), (4.4.22), and (4.4.23), respectively; and for the noise-free case, the performance 

coefficient of the Matched Binary Filter is given by equation ( 4.4.32) 

1!"2 
Pmb 4')'(p) , 

with 'l(p) defined by equation (4.4.31). (Recall that the performance of the Matched 

Binary Filter deteriorates very rapidly in the presence of additive noise. Hence, for 

comparisons of system performance in noise, we consider just the Matched Filter and 

the Binary Filter.) 

Numerical solutions of the performance of the three systems are depicted in figs. 

4.4, 4.5, and 4.6. Figure 4.4 depicts the performance coefficient, Pmb, of the Matched 

Binary Filter plotted as a function of the system space-bandwidth product, p , for the 

noise-free case. Figs. 4.5 and 4.6, respectively, depict a family of performance curves 

for the Matched Filter and the Binary Filter. In each figure the performance 

coefficient p is plotted as a function of the class spread ratio u 2, and the family of 

curves is generated by varying the space-bandwidth parameter p between 8 and 256. 

In order to facilitate comparison between the Matched Filter and the Binary Filter, for 

values of p =8, and p =256, the corresponding performance curves of the two systems 

are extracted from figs. 4.5 and 4.6, and plotted on the same graph in figs. 4.7 and 4.8 

Note that if the input patterns are noise-free, the Matched Binary Filter yields 
,. 

better performance than both the Matched Filter, and the Binary Filter for all values of 

class spread ratio and system space-bandwidth product. As anticipated in the 

discussion earlier, for noise-free (or low noise) systems, the Matched Binary Filter 

makes maximally reliable partial decisions at the intermediate decision stage. Thus, 
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0 
0 

MATCHED BINARY FILTER 

inn zoo 
SYSTEM SPACE-BANDWIDTH PRODUCT 

Fig. 4.4. Plot of the performance coefficient, Pmb , of the Matched 

Binary Filter vs. the system space-bandwidth product, p , when 

the input is noise free. 
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0.900 1.000 

...... 
~ 
~ 

I 



N 

~ 0 
N 

-- I 

(/) ., 
.... ., 
o,_ 

0 
n 
"-

0 

"' ...... 
:z:O 
w 
.... 0 
Uo ....... 
u..a 
IL. 
w 
0., 
u 

o.ooo 

BINRRY FfLTER p =256-

------- p = 128 

p=64-------------------

----- p =32-----------~--
p = 16 ---,~~~~p=B ==========------------~-! 90~LE FA610R • 10 I 

0.100 
I - - I 

0.200 o.Joo 0.400 o.:soo o.eoo o.roo 0.100 o.DOo 1.000 
CLASS SPREAD RATIO 

Fig. 4.6. Plot of the performance coefficient, Pb , of the Binary 

Filter vs. the class spread ratio, a-2, with the system space­

bandwidth product, p , as a parameter. 
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even points in the Fourier domain with small signal amplitudes are assigned the 

appropriate sign; this procedure essentially assigns the same weight to every point m 

the signal domain, somewhat akin to an inverse filtering operation. (Again, as m 

inverse filtering, the procedure is very sensitive to noise.) The overall threshold 

classification based upon partial decisions over the en tire Fourier domain is very 

reliable, as a consequence of the huge processing gain obtained by making accurate 

decisions on large segments of low amplitude points. Thus, for systems with very low 

noise levels, Matched Binary Filters are viable, low-cost alternatives which can yield 

comparable, or superior performance to the other two schemes. 

It can be immediately seen from the figures that, all other things being held 

constant, the performance coefficient p is a monotonically increasing function of the 

system space-bandwidth product for all three systems. This is clearly in accordance 

with our expectations; increasing the system space-bandwidth product is equivalent to 

increasing the size of the windows W w and W v in the space and frequency domains 

(cf., fig. 4.1), and consequently, a greater degree of correlation matching can be 

obtained. 

Now, when the class spread ratio, (;2
, is large, we have a situation where the 

noise power, (j;f, and the class C 2 spread, (j2
2

, are both much smaller than the class C 1 

spread, (j/. This can be viewed as essentially saying that patterns of class C 1 can 

take on values from a much wider set than can patterns of class C 2 and the noise 

patterns. The probability of significant cross-correlation in any particular case is then 

quite small, so that we expect good classification performance for large values of (;. 

This intuitive expectation is echoed in figs. 4.5-4.8, where we see that for the Matched 

Filter and the Binary Filter, the performance coefficient p is a monotonically 

increasing function of the class spread ratio (;2
, for each performance curve 

(corresponding to fixed p ). 

For the Matched Filter, a close examination of the asymptotes and the slope 

near the origin of each performance curve reveals that "large p" behaviour holds for 

relatively small values of the system space-bandwidth product (as small asp = 8). For 

most cases of interest then, the second of the asymptotic results following equation 

(4.4.13) ho.Ids true; hence, the asymptote of the performance curve for the Matched 
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Filter is approximately p /2, and the graph near the origin is a straight line with 

positive slope p . 

As anticipated earlier, the classification performance of the Binary Filter is 

always inferior to that of the Matched Filter. However, the performance of the Binary 

Filter is surprisingly close to that of the Matched Filter though Pb is always bounded 

from above by Pm . Note that for large values of class spread ratio, the performance 

curve of the Binary Filter approaches the same asymptote p /2 as the Matched Filter, 

so that their performance is virtually identical. An examination of their relative 

performance for each p (in the range considered) indicates that when the class spread 

ratio is unity (i.e., the two classes have the same variance or spread), we have 

,......, 2 
Pb ~ 3Pm · 

These numerical simulations, coupled with the pnor success of experimental 

systems utilising binary filters, tend to bolster the intuitively accepted fact that the 

phase of the Fourier transform of the signal contains most of the information content 

in the signal. The significance of the results lies in the demonstration that for 

classification purposes, most of the information content in the signal can be extracted 

with filters of low complexity. 

Admittedly, the statistical structure of the signals we have considered is 

particularly well suited for this sort of correlational matching, as discussed in section 4. 

Our results, however, indicate performance trends. Practical constraints of finite 

signal energies, and the fact that patterns tend to be correlated over some length will, 

of course, temper our theoretical results-smaller p's will result as a consequence of a 

decrease in the correlation peak value and increase in the energy of the side-lobes-but 

these may be expected to follow the general trend of the theoretical results we have 

obtained, as evidenced in the experimental results in [4] and [5]; specifically, we expect 

the relative performance of the schemes to qualitatively mirror the results of our 

statistical analysis. 

Extensions of the analysis to two-dimensional signals (images) are 

straightforward. The statistical structure of the signals can also be generalised 

somewhat in the analysis. For instance, we could in an analogous fashion treat the 
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case where the input signals F j (x) are correlated Gaussian processes with 

E { F j ( x) Fi (y)} = r i ( x ,y ), for some correlation function r i ( x ,y ). The analysis 

will be similar (though somewhat more complicated) with each sine function being 

effectively replaced by a function of the form 

JJ rj(x,y)cos2rru(x±y) dx dy. 
-vrw 

While the success of these schemes is very encouragmg, several questions 

remam: we have demonstrated binary correlator structures based on heuristic 

algorithms; however, it is not immediately obvious whether we can specify optimum 

binary correlator structures for a given problem. As a specific instance, we can obtain 

real/complex filter structures which maximally separate pattern classes in that the 

filter is orthogonal to all unwanted patterns, thus yielding a significant correlation only 

if the desired pattern is present. It is not clear, however, whether an algorithm can be 

specified which yields the binary filter which is the best approximation to any such 

maximally separating filter. Another related area is the determination of optimum 

binary representations of patterns, so that they can be reconstructed with high fidelity 

[8]. 

The surprisingly good performance of the binary systems we have discussed 

leads us to conjecture that considerable redundancy m information storage in 

traditional filtration systems can be eliminated for a class of recognition problems. 

This can be of considerable practical import: low dynamic range requirements for the 

filter can lead to a decrease in required memory storage over conventional correlators, 

leading to low implementation costs and low system complexity. Clearly, much is also 

saved in computation. The availability of binary spatial light modulators motivates 

the utilisation of such binary techniques in optical correlators; the lack of availability 

of suitable spatial light~odulators has long been one of the constraints on such analog 

correlators. 
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Appendix A 

Let X ( u ) be a normal random process with 

E{X(u)}=O, 

E {X(u )X(t )} = ru,t , ( 4.A.1) 

and define the process Y ( u) by 

Y(u) = sgn X(u ). 

Y ( u ) is easily seen to be zero mean as 

E { Y ( u ) } = P { Y ( u )= 1} - P { Y ( u )=-1} 

= P {X(u )>o}-P {X(u )<0} = O. (4.A.2) 

The second moment of Y ( u ) is given by 

E { Y ( u) Y ( t)} = P { Y ( u) Y ( t )=l} - P { Y ( u) Y ( t )=-I} 

= 2P { Y ( u ) Y ( t )= 1} - 1 . 

Now by symmetry we have that 

P{Y(u)=I,Y(t)=I} =P{Y(u)=-I,Y(t)=-I} =0.5P{Y(u)Y(t)=I}, 

so that 

E { Y ( u ) Y ( t ) } = 4P { Y ( u )= 1, Y ( t )=I } - I 
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= 4P{X(u)>O,X(t)>0}-1. (4.A.3) 

For simplicity of notation let Pu,t =P{X(u)>O,X(t)>O}. It hence suffices to 

determine Pu,t to specify the second moment E {Y(u)Y(t)} of the hardlimited 

process Y ( u ). Now, Pu ,t is simply the probability mass in the first quadrant of the 

joint normal density function 

1 - ~(x , E;'.1x) 
271" I Eu ,1 11/2 e ' 

where Eu 1 is the correlation matrix 
' 

i: •.• ~ [:: .. : :::: l (4.A.4) 

and x ~ ( :: ) E IR2
. We hence get 

Pu ,I = r Joo 
0 0 

Define y = (Yu ) E lR2 by the linear transformation y = Eu-1/2x. The Jacobian of 
~ ' 

the transformation 1s I Eu ,t 1
1/

2 so that by transforming the variable of integration 

we then have 

I I 
1 -i(y 'y) 

P t = - e dy u, 9 ' 
- .. 11" 
D (y. ,y,) 
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where J5 (Yu ,y1 ) is the region in the Yu ,y1 plane corresponding to the first quadrant in 

the xu ,x1 plane. Expressing the result in polar coordinates, we have 

I 2 

I I 
1 - 2P,,t 

Pu ,t - 27r e Pu ,t 
D (p. ,t ,0, ,t) 

d Pu ,t d Bu ,t ' 

where 

B t -1 Yt 
u t = an - ' 

' Yu 

and 

Let eu = ( 6), and e1 = ( ~) be the standard basis vectors for the linear 

IR2 s f ~ -1/2 (Ju ,u l d f ~ -1/2 (JI ,u l B vector space . et u = ""u ,t eu = Ju ,t , an t = ""u ,t e, = J 
1 

,t · Y 

continuity of the linear transformation ~-;;Y2 then, D (Pu ,t , Bu ,t) is simply the region 

between the vectors f u, and f 1 , indicated schematically by the shaded region in fig. 

4.9. Hence we obtain 

D (Pu ,t , Bu ,t) = {( p,8) : 0 < p < oo , Bu < B < B1 } , 

with 

( ~], f a,u 
Cl:'= u ,t . 

We hence get 
o, 

Pu,t = J J°" 
o. 0 

I 2 
1 - 2Pv.t 

2
7r e Pu ,t d Pu ,t d Bu ,t 

(4.A.5) 
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To estimate Pu ,t it hence suffices to estimate the angle between the ha.sis vectors f u , 

and f 1 . We have 

(4.A.6) 

From equation ( 4.A.4) we have 

I: -1 
u ,I 

1 
[ 

r u ,u 

-ru ,t 

-r u ,t ] . 

r1 ,t 

We now estimate each of the inner products in equation (4.A.6). The linear 

transformation Li:Y2 is symmetric, and hence it follows that 

( 
"-1/2 " -1/2 ) ( "-1 ) 
L.Ju ,I eu ' L.Ju ,I el = eu ' L.Ju ,I et 

I (io) [~;~:. -ru ,t )m 
-r u ,t 

2 ' 
ru,u r1,t - ru,t 
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( I 0 ) [~;::, -ru ,t 

r, ,t imr 

and similarly, 

[ 

1/2 
llE-1/2 II - r, ,t l u,t e, - 2 

(ru,urt,t -ru,1) 

It hence follows that 

_1 [ -r u ,t l 81 - Bu = cos V . 
ru ,u r, ,t (4.A.7) 

Substituting equations (4.A.5), and (4.A.7) in equation (4.A.3), we get 

E{Y(u)Y(t)}=_i_cos-1 [ -ru,t ]-1 
271" vru,urt,t 

. _1 [ r u ,t l =sm . 
vru,u r,,, (4.A.8) 
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Appendix B 

Let X ( u ) be a normal random process as in Appendix A. Define the process Z ( u ) by 

Z(u)= IX(u)I. 

For the mean of the process Z(u) we have 

i I 00 E{Z(u)}= lxl 
/27rr u u v ' -00 

- ( 2 ll/2 r x 
7rr u ,u 0 

z2 

2r 
e "" dx 

z2 

2r 
e • ·' dx 

-[ 2r:·· re ,:.'.. 
0 

00 

(4.B.l) 

We now estimate the second moment of Z ( u ). As a consequence of Price's 

Theorem [9], we have 

aE { z ( u )Z ( t )} = E { a2
{ z ( u )Z ( t )} } 

aE { x ( u )X ( t)} ax ( u) ax ( t) 

= E { dZ ( u ) dZ ( t ) } 
dX(u) dX(t) . 
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Now we have the relation 

dZ(u) 
dX(u) 

- d I X ( u ) I = sgn X ( u ) , 
dX(u) 

which holds at all points except X ( u) = 0, which is of probability measure zero. 

Setting E {X(u )X(t )} = r as the variable of integration, we hence have 

BE {Z(u )Z(t )} = E {sgn X(u) sgn X(t )} 
8T 

=-sm 2 . -1 ( T l 
7r VTu,u Tt,t ' (4.B.2) 

which follows from equation (4.A.8). Now, if the jointly normal random variables 

X(u) and X(t) were uncorrelated (and hence also independent) we would have 

r = 0, and 

(4.B.3) 

from equation (4.B.l). Integrating both sides of equation (4.B.2) between the limits 

T = 0 and T =Tu ,t, we get 

,. r. t 

E {Z(u )Z(t )} lr=r.,
1 

- E {Z(u )Z(t )} lr=O = J . ~ sin-1 
( T 

O 7r VTu,u Tt,t 

T Tu ,t 
Sets - ~---, and Su ,t - ~---. Integrating by parts, we have 

.Jru,uTt,t VTu,uTt,t 
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E {Z(u)Z(t)} lr=r.,, - E {Z(u)Z(t)} lr=O 

2 1r r 
3

• ·' v u ,u t ,t J . -1 d ----- sm s s 
1r 0 

2 .Jru ,u r, ,t 
1r 

_s ds] 
VI - s 2 

Replacing E {Z(u )Z(t )} lr=r.,, by E {Z(u )Z(t )}, and Su,t by 

using equation (4.B.3) we finally obtain 

r u ,t 
----and 
.Jru,urt,t 

E { Z ( u )Z (t )} = ~ [ru ,t sin-I [ ru '
1 l + .Jru ,u r1 ,t [ 1 - _r/_,t -J12 

] . 
1r .Jru,urt,t ru,urt,t 

(4.B.4) 

REFERENCES 

[1] G. L. Turin, "An introduction to matched filters," IRE Trans. Inform. Theory, , 

vol. IT-6, pp. 311-329, 1960. 

[2] A. Vander Lu gt, "Signal detection by complex spatial filtering," IEEE Trans. 

Inform. Theory, vol. IT-10, pp. 139-145, 1964. 



-160-

[3] A. V. Oppenheim and R. V. Schafer, Digital Signal Processing. Englewood Cliffs, 

New Jersey: Prentice-Hall, 1975. 

[4] D. Psaltis, E. G. Paek, and S. S. Venkatesh, "Optical image correlation usmg a 

binary spatial light modulator," Opt. Eng., vol. 23, No. 6, pp. 698-704, 1984. 

[5] D. Psaltis, F. Mok, and E. G. Paek, in Spatial Li'ght Modulators and Applications, 

Uzi Efron, ed., Proc. SPIE, vol. 29, p. 465, 1984. 

[6] D. Slepian and H. 0. Pollak, "Prolate spheroidal wave functions, Fourier analysis 

and uncertainty-I," Bell Sys. Tech. Jn!., vol. 40, pp. 43-64, 1961. 

[7] T. Kailath, "The divergence and Bhattacharyya distance measures m signal 

selection," IEEE Trans. Comm. Tech., vol. COM-15, No. 1, pp. 52-60, 1967. 

[8] S. R. Curtis, A. V. Oppenheim, and J. S. Lim, "Signal reconstruction from Fourier 

Transform sign information," IEEE Trans. Acoust., Speech, Signal Proc., vol. ASSP-

33, no. 3, pp. 643-657, 1985. 

[9] R. Price, "A useful theorem for nonlinear devices having Gaussian inputs," IRE 

Trans. Inform. Theory, vol. IT-4, pp. 69-72, 1958. 



-161-

Neural Networks 

,. 



-162-

CHAPTER V 

ASSOCIATIVE NEURAL NETS 

1. NEURAL NETWORK MODELS 

A. Iterated Maps 

We preface our discussion of associative neural networks with a mathematical 

modeling of these structures, and indications as to how these models can result in 

useful computation. 

Thus far in our discussion of correlator strategies we have addressed the 

classification problem-the making of hard decisions assigning unknown patterns from 

some pattern space IHP to one (or possibly none) of a set of prescribed pattern classes 

of interest. To recapitulate, the classification decison involves two stages: a feature 

extraction stage Do W: mp ----+ m1 composed with a hard decision (classification) 

stage To L : IH1 ----+ IB. The first stage maps patterns in the pattern space IHP to a 

feature space IH / (of possibly reduced dimensionality); the linear map 

W: IHP ----+ IH 1 serves to extract critical features for classification, while the non-

linear pointwise decision rule D : IH / -+ lH / provides non-linear logical 

computational capability. The second stage is a linear discriminant function (or 

threshold gate, or pePCeptron) classification rule which determines the choice of 

separating planes in the feature space IH / which optimally partition the space of 

feature vectors according to the prescribed pattern classes. 
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The non-linear correlator structure we have considered so far is clearly a feed 

forward system with a final classification stage To L where a hard decision is made 

in a single pass. In this section we consider systems which make soft decis£ons in the 

pattern space itself through the introduction of feedback. In particular, we consider 

iterated maps of the form ( D o W )k : JHP --+- lH 1 which map the pattern space 

IHP to itself. In the terminology of the last section, this is equivalent to an infinite 

cascade of "feature extraction stages" Do W; here, however, the "feature space" 1s 

identical to the pattern space itself, and we eschew the hard decision stage To L. 

There is clearly potential for storing associations of patterns within such a 

feedback system. Specifically, a priori unknown patterns could be mapped to 

appropriate pattern classes by successive iterations in the pattern space itself. Within 

such a feedback system there is a potential for a gradual or soft correction of errors in 

distorted or noisy patterns (as opposed to the single step, hard decisions of the 

previous section) by clever choices of global linear maps W: JHP --+- JH/ and pointwise 

nonlinear rules D : IH/--+- JHP. Latent possibilities include the capability to recover 

from occasional incorrect decisions in the course of iteration. (This, of course, is not 

possible when a single hard decision is made; an error remains-quite 

incontrovertibly-an error.) 

B. Neurobiological Modeling 

We will typically consider patterns drawn from subsets of Euclidean n -space; 

specifically, in chapters VI and VII, we consider patterns chosen from the vertices of a 

binary n -cube, IHP = IDn t::. {-1,1 }n, while in chapters VII and IX we consider 

cases where patterns are chosen from real n -space, m:P = IRn. The map that we will 

consider in this section will typically be iterations of global linear maps in conjunction 

with pointwise threshold rules. Such maps find extensive application in neurobiology 

as mathematical model~ of brain function, and in turn, these neuro-anatomical models 

have proved fertile ground in the development of efficient systems of associative or 

content addressable memory. We will hence have recourse to (grossly simplified) 

models and ideas borrowed from neurobiology, and adopt neurobiological terminology. 

So first, some neurobiological motivation. 
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Neural network models based upon mathematical idealizations of biological 

memory typically consist of a densely interconnected, dynamical cellular cluster [l]. 

The processing nodes in such a structure are the neurons, and the neuronal 

interconnections are through the medium of linear synaptic conduits. Describing the 

instantaneous state of a neural network to be the collective states of each of the 

individual neurons (firing or non-firing) in the system then leads to a characterisation 

of the dynamics of the system as a motion in time through the state space of the 

system. In this form, then, the mathematical abstraction of neural function leads to a 

consideration of a finite state automaton with specified state transition rules. Other 

dynamical systems much akin to neural networks in this regard include the Ising spin 

glass models (cf. [2], for instance) and cellular automata (cf. [3]). 

We consider an associative structure based upon such a neural net. The model 

(McCulloch-Pitts) neurons we consider are simple bistable elements each being capable 

of assuming two values: -1 (off) and 1 (on). The state of each neuron then represents 

one bit of information, and the state of the system as a whole is described by a binary 

n -tuple if there are n neurons in the system. We assume that the neural net is 

(possibly) densely interconnected, with neuron i transmitting information to neuron J 

through a linear synaptic connection wij. The neural interconnection weights wij are 

considered throughout to be fixed; i.e., learning of associations has already taken place, 

and no further synaptic modifications are made in the neurobiological interpretation. 

We will frequently assume that the connection matrix is symmetric with zero diagonal. 

This, of course, implies that there is no self-reinforcement for neural sites, and that in 

practical implementations, the neural pathways need not be distinct. 

The schema of fig. 5.1 illustrates a typical example of the structure that we 

envisage for our associative memory thought of as a neural network. A five-neuron 

densely interconnected neural network is shown. The circles represent the direction of 

inter-neural information flow through the corresponding synaptic weight wij. The , 
instantaneous state of the system depicted is ( ul>u 2,u 3 ,u 4 ,u 5 ) = ( 1,-1,1,-1,-1 ). 

While it is not necessary for the matrix of weights W to be symmetric, useful 

computational behaviour obtains if, in fact, it is symmetric. 
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3 

Fig. 5.1. A five-neuron densely interconnected network. 



-166-

Logical computation in the network takes place at each neural site by means of 

a simple threshold decision rule. Each neuron evaluates the weighted sum of the 

binary states of all the neurons in the system; the new state of the neuron is -1 if the 

sum is negative and +l if the sum (equals or) exceeds zero. (In this, and in what 

follows, we almost always assume a threshold of zero.) Specifically, if 

u = ( u 1,u 2, ... , un ) is the present state of the system (with ui = ±1 being the 

state of the j -th neuron), the new state u/ of the i -th neuron is determined by the 

rule 

n 

{ E wii ui 
i=l 

} 
= { 1 if E Wij Uj > 0 

-1 if ~ w .. u. < 0 . LJ SJ J (5.1.1) 

We will discuss two modes of changing state u !--+ u *. In synchronous 

operation, each of the n neurons simultaneously evaluates and updates its state 

according to rule (5.1.1). In asynchronous operation, the components of the current 

"probe" vector u are updated one at a time according to (5.1.1), to produce a new 

probe vector. At any given "refresh" instant, the component i chosen to be updated 

is selected from among the n indices i with equal probability 1/n, independently of 

which components were updated previously and of what the values of the probe vector 

were before and after update. 

In terms of our previous formalism, the states of the system are binary n -tuples 

u = ( u 1' ... J Un ) belonging to the pattern space mn . State transitions are 

dictated by iterates of the composite map Do W: IBn ~ mn, where W is a linear 

map corresponding to communication through the synaptic weights, and D is a 

threshold rule. Both synchronous and asynchronous modes of operation can be 

accommodated within this system-theoretic formalism. 

In synchronous ~peration, the linear transformation W corresponds to the 

n X n matrix of interconnection weights [ wii ], and D is a threshold operator which 

accepts n -vectors as input, and returns n -vectors whose components are the signs of 

the input vector. (We, as before, use the convention that sgn (0) = I.) If u is the 

present state of the system, then the new system state is 
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[

sgn (E. w 11 u1 ) l 
(Do W)u = : . 

sgn (E wnj u1 ) 

Modeling is a bit more complex for the asynchronous case as we have to 

accommodate the fact that only a single, randomly chosen component of a state vector 

is evaluated at a time. We can model the situation by treating W as a random 

operator with an ensemble of n linear maps W 1, ... , W n , each occurring with 

probability I/n. Specifically, we assume that map Wi is in operation if the i-th 

component of the state vector is chosen to be updated. The matrix of components of 

Wi is simply obtained from the identity matrix by replacing the i -th row with 

( wi v ... , win) - the interconnection weights leading to the i -th neuron. The non­

linear map D is a point threshold map as before. Thus if u = ( u v ... , un) is the 

present system state, and the i -th neuron is to be updated, then wi is the linear 

operator in use, and the new state is 

sgn .(u 1) 

sgn ( ui _1) 

(D 0 wi )u = sgn CE Wij Uj) 

sgn (ui+l) 

sgn '( un) 

Ui-1 

sgn (L; wij u1 ) 

In this neural network model, the linear synaptic. weights provide global 

communication of information, while the non-linear logical operations essential to 

computation take place at the neurons. Thus, in spite of the simplicity of the highly 

stylised neural network structure that we utilise, considerable computational power is 

inherent in the system. The implementation of models of learning (the Hebbian 

hypothesis, [4]), and associative recall ([5], [6], [7], [8], [9], [10], [11]), and the solution of 

complex minimisation problems ([12], [13]) using such neural networks is indicative of 

the computational power latent in the system. 
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The central features of such associative computational systems are: (1) the 

powerful highly fanned-out distributed information processing that is evidenced as a 

natural consequence of collective system dynamics; (2) the extreme simplicity of the 

individual processing nodes; and (3) the massive parallelism in information processing 

that accrues from the global flow of information, and the concurrent processing at the 

individual neural sites of the network. To recapitulate, keynotes of such neural 

network structures include a high degree of parallelism, distributed storage of 

information, robustness, and very simple basic elements performing tasks of low 

computational complexity. 

2. ASSOCIATIVE MEMORY 

We now consider neural associative nets. Questions that we will attempt to 

answer include: Can problem specific neural networks be designed to "store" sets of 

prescribed associations? What is the storage capacity of such networks? How are 

capacity estimates modified if we require error correction or allow some error 

tolerance? 

In the rest of the chapter, we will define the associative structure that we 

consider, and make precise the notion of capacity. 

A. Association, Attraction, and Tolerance 

We will consider in main auto-associative storage wherein prescribed binary n -

tuples u E mn are stored as memories in suitably chosen neural networks. (The case 

where arbitrary associations u f-+ v are required to be stored is considered in chapter 

VIII; the results of chapters VI and VII also extend simply to hetero-associative 

storage.) We define memory m a natural fashion for these systems: we typically 

require that vectors u -in the state space of the neural network that are labelled as 

memories be fixed points of the system. Specifically, if u E Illn is specified as a 

memory, then we require that for each neuron i = I, ... ,n, 
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u· = sgn { ;, w· · u · l ' l LJ 'J J ' l j=l 

where, as before, wi; denotes the directed weight linking neuron j to neuron i. 

Specified states u E run that are to be stored will be called fundamental memories. It 

is clear that the fundamental definition of memories is independent of whether we 

have the asynchronous or synchronous models, as fixed points are the same in either 

mode. But in the structure of associations, it is a desideratum that the stored 

memories are also attractors; i.e., they exercise a region of influence around them so 

that states which are sufficiently similar to the memory are mapped to the memory by 

repeated iterates of the system operator. 

In essence, then, we shall require that if the initial state of the neural network is 

"close" to a memory then the system dynamics will proceed in a direction so that the 

neural network settles in a stable state centered at the memory, or at least close to it. 

Here we use the Hamming distance as the natural similarity measure between two 

states in the binary n -space under consideration. With this interpretation, we can 

think of an associative memory as a basket of n memories (fig. 5.2) which corrects all 

(or most of) the errors in an initial probe vector within a certain specified distance (the 

prescribed error correction capability) of a stored memory. It turns out that in many 

contexts, situations with incorrectly specified or distorted memories are redressable by 

the neural network as long as the number of components in error is fewer than n /2; 

i.e., no more than half of all the components are incorrect initially. 

There is a persuasive analogy between these ideas of associative memory and 

concepts from information theory and coding. We could view the associative memory 

as a kind of decoder for a code consisting of the m fundamental memories; the 

distorted memories or probes could be viewed as noisy patterns, and the mechanism of 

decoding would be the iterated mapping performed by the network. But the codes 

will, as we shall see, have very low rates, and hence be of limited usefulness for 

channel coding. Nonetheless, the techniques that we will use are quite reminiscent of 

coding theory, especially random coding and sphere hardening. 
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Thus, the two issues we focus on are the storage of prescribed fundamental 

memories within a neural network and their recovery. Requiring the fundamental 

memories to be fixed points ensures that they are recoverable (in a weak sense) under 

the threshold map. (Memory retrieval is error free if they are fixed points. We 

consider the effect of tolerating errors in retrieval in chapter VIII.) This constraint, by 

itself, scarce suffices for an associative memory, however, and we also require some 

error correction or "pull-in" capability. 

In what follows, we will typically assume a "forced choice" model, in which 

unknown components are labelled -1 or 1 randomly, with a probability of half that 

they are labelled correctly. If particular components are known to be correct, it is 

tempting to "clamp" them to their true values, so that they do not undergo change. 

This, however, does not increase the storage capacity because it turns out that "right" 

components never change anyway. We will assume throughout that no component is 

clamped, and any or all components can change sign. 

In probing any particular memory with a distorted vers10n of the memory, we 

assume that at least ( 1 - p) n of the components are correct, so that pn or fewer 

components are incorrect. (Here 0 <p< 1/2 is the fractional Hamming distance of the 

probe from the memory.) Our requirement is that for a specified p, the probe is 

ultimately mapped onto the corresponding fundamental memory. We call p the 

(fractional) radius of attraction. 

This property provides true associative capability. Given convergence to the 

correct memory for any given attraction radius 0 < p< 1/2, all we require is that 

(1 - 2p) n components of the memory be known. By forced choice, half of the 

rem am mg components, pn , will be correct on average, so that convergence to the 

correct memory obtains. 

There are at least three possibilities of convergence for the asynchronous case. 

First, the sphere of radius pn may be directly or monotonically attracted to its 

fundamental memory center, meaning that every transition that is actually a change in 

a component is a change in the right direction, as in fig. 5.3 (a). (Alternatively, the 

synchronous version goes to its fundamental memory center in one step.) Second, with 
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high enough probability but not probability one, a random step IS m the right 

direction, as in fig. 5.3 (b ). After enough steps, the probe has with high probability 

come very close to its fundamental memory center, so that then all subsequent changes 

are in the right direction, i.e., we are then directly attracted. (For the synchronous 

case, this implies two-iteration convergence in many algorithms.) 

The third mode of convergence, does not correspond to anything obvious in the 

synchronous case. In this mode, components can change back and forth during their 

sojourn, but at least on the average get better, i.e., are more likely to be correct after a 

change than before. After a finite number of changes, the system settles down to a 

fixed point, as we know it must, and this fixed point is either the correct memory or 

not too far from it, say within rn. These situations are diagrammed in fig. 5.3 (c). 

We will be concerned mainly with the first two modes of convergence. 

Another issue of practical importance is error tolerance. Requiring the 

memories to be fixed points enjoins no errors on retrieval. In practice, however, it may 

be permissible to allow a few components to be wrong in a retrieved memory. More 

formally, if we specify a tolerance of 0 <E< 1/2, then we require that retrieved 

memories differ from the memories in at most En components. The situation is 

illustrated in fig. 5.4, where a ball of attraction, 0 <p< 1/2, and an error tolerance, 

0 <E<p, are specified. (It turns out for the outer product algorithm of the next 

chapter, that convergence is to the surface of the epsilon ball, as illustrated 

schematically.) We will return to the subject of error tolerance and how it affects 

storage capacity in chapter VIII. For the nonce we will require, in main, that the 

fundamental memories are fixed points. 

The incorporation of sequences of associations and memory within the neural 

networks structure that we consider now naturally raises two issues: the nature of the 

memory encoding rule by means of which a desired structure of associations can be 

programmed into the network, and the capacity of the resultant system to recall the 
,,. 

stored memories with some measure of error correction. Note that with the nature of 

the thresholding operations fixed, the only flexibility that we have to realise different 

neural networks is the choice of the synaptic weights of connections wij. The memory 

encoding rule is, in essence then, an algorithm for the appropriate choice of weights 
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wij. We will treat various algorithms for memory encoding in the next two chapters. 

We now proceed to a definiton of the storage capacity of an algorithm. 

B. Capacity Definitions 

Here we introduce formally the notion of capacity of any (algorithmically 

derived) associative neural network. We will restrict our attention to auto-association, 

and require that our associations be error free. 

consider networks comprised of n neurons. Let We 

U={u(ll, . , u(m l} C IB" be a randomly chosen m set of fundamental memories 

that we wish to store in a neural network by means of a particular algorithm for 

choice of interconnection weights (which depends on U, in general). Loosely speaking, 

we will define the storage capacity of the particular algorithmic scheme under 

consideration to be the maximum rate of increase of the number of fundamental 

memories m with the number of neurons n. This is clearly a critical parameter 

determining the efficacy of that particular algorithm. 

For error free associative maps we require that u/.1') = sgn (Ewij u/a:l) for 

each component i, and for each memory. As pointed out earlier, the requirement of 

fixed points is independent of the particular mode of operation-synchronous or 

asynchronous. 

We require that the m fundamental memories u(ll, ... , u(m) E IB" be stored 

as fixed points in the neural network. (We will require that almost all of the ( 2;) 

choices of fundamental memories be allowable candidates for storage.) The m -set of 

fundamental memories is assumed to be a randomly chosen set with the components 

.(a:) . - 1 - 1 h f f B 11' . 1 'th u, , i - ,. .. ,n, a - , ... ,m, c osen rom a sequence o ernou i tna s w1 

Let algorithm X identify any particular algorithmic scheme for generating the neural 

interconnection weigh ts. For the rest of this section we identify the matrix of weigh ts 
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W = [w;;] to have been generated by algorithm X, given the memories 

a= l, ... ,m, to be stored. 

Definition. Let w; E IRn be the vector of interconnection weights associated with 

neuron i, for each neuron i =l, ... ,n. The event: 

sgn [ E W;; u/0 l] = v;(a), i =1, ... ,n , a=l, ... ,m , 
j=l (5.2.1) 

is described by saying that the neural network stores m fundamental memories. 

For the algorithmically prescribed matrix of interconnection weigh ts [w;;], the 

relations (5.2.1) describe an event whose occurrence depends on the particular values 

assumed by the randomly chosen fundamental memory components u; (a) only./ 

We now rigourously define the notion of capacity. Our definitions will subsume 

several commonly used notions of capacity. For the nonce, we consider only the 

storage of prescribed vectors as fixed points. 

An issue of importance in defining capacity is that of programmability. It may 

well turn out that in the process of generating weights which store a given m -set of 

fundamental memories as fixed points, that extraneous fixed points are created 

incidentally. In fact, there is some evidence that there could be as much as an 

exponential number of these extraneous fixed points [14]. For any particular 

specification of m fundamental memories to be stored, we would like to create as few 

extra fixed po in ts as possible, so that they do not interfere with system dynamics 

significantly. As an extreme example of how too many extraneous stable states can 

interfere with system dynamics, consider a matrix of weights which is just the identity 

matrix, where all the neurons are physically isolated from each other. For this case, all 

of the 2n states of the system are fixed points, and there is no attraction behaviour 

whatsoever. In fact, it turns out that some restrictions have to be imposed on the 

choices of allowable weight matrices for auto-association in order to avoid this sort of 

situation. We will return to this issue in chapter VIII. 
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Our definitions of capacity will reflect, in some sense, the maximum number of 

arbitrarily prescribed memories that can be programmed into the network by specified 

algorithms. The extraneous fixed points that build up as a consequence of the storage 

of the prescribed memories themselves are not counted as contributing to the capacity. 

Formally, we will require that almost all m -sets of fundamental memories (with m 

within the capacity of the particular algorithm in use) be programmable as fixed points 

(or even as attractors) in the network by the specified algorithm. This will serve to 

eliminate the extraneous fixed points from consideration. 

00 

Definition. A sequence of integers { C ( n)} n =I is a lower sequence of capacities for 

algorithm X iff for each A E (0,1), the neural network specified by the algorithm stores 

m fundamental memories with probability approaching one as n - oo whenever 

m < (1-A)C (n ). 

This is a lower estimate for the storage capacity; it tells us that for large n , if 

the number of associations is chosen to be less than the lower capacity, then with 

probability essentially one, we can find neural networks for almost all choices of 

fundamental memories u(a), a=l, .. .,m. Note that the requirement that almost all of 

the [ 2~) choices of m fundamental memories be programmable as fixed points in the 

network occurs naturally in the definition. This follows as a consequence of the 

random choice of memones, and the requirement that there is convergence with 

probability one. 

An alternative approach to capacity overestimates the storage capacity. 

00 

Definition. A sequence of integers { C ( n ) } n =I is an upper sequence of capacities 

for algorithm X iff for .. each A E (0,1), the event that the neural network specified by 

the algorithm stores m fundamental memories has probability zero as n - oo 

whenever m > (l+A)C(n ). 
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The above definition is an upper estimate for the storage capacity of the 

algorithm. If the number of memories, m, is chosen to be larger than the upper 

capacity, then for almost all choices of m memories, ::3 memories which are not fixed 

points. Figure 5.5 (a) illustrates the type of behaviour required by the above 

definitions. 

The definitions are not as general as they might be. For instance, upper and 

lower tolerances 0 < Q < 8 < 1 could be specified instead of probability one and zero, 

respectively. The definitions as they stand will, however, suffice for our purposes. The 

only requirement we wish to impose for the definitions to be useful is that the 

probabilities of interest behave monotonically with the number of associations m, as 

illustrated schematically in figure 5.5 (a). Specifically, we would like to rule out 

oscillatory behaviour of the probabilities with increase in m -at least in the very high 

and very low probability regions. As we shall see in the following chapters, the 

probabilities are indeed monotonic in m . 

The lower and upper capacity definitions do not result in unique sequences. 

Clearly, if { C ( n ) } is a lower sequence, then any smaller sequence is also a lower 

sequence. Similarly, if { C ( n ) } is an upper sequence, any larger sequence is also an 

upper sequence. The following result, however, indicates that from given lower 

sequences of capacity, we can actually create larger sequences (which do not differ too 

much from the original sequence) which are still lower sequences of capacity for 

algorithm X, and vice versa for upper sequences. 

Proposition 5.2.1. 

00 00 

(a) If { C(n )}n=l is a lower sequence of capacities, then so is {[1 ± o(l)]C(n )}n=l· 
00 

(b) If { C ( n)} n =l 1s an upper sequence of capacities, then so 1s 

00 

{[1 ± o(l)]C(n )}n=l·,. 

Proof. (a) Fix>. E (0,1) and consider (1->.)(1 ± o(l))C(n ). For n large enough, =:J 

>. * E (0,1) such that (1 - >.)(1 ± o(l)) < 1->. *. Choose m small enough that 

m < (1 - >-.)(1 ± o(l))C (n) < (1 - >-. * )C (n ). By assumption of { C (n )} being a 
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lower sequence of capacities, it follows that the neural network specified by algorithm 

X stores m fundamental memories with probability approaching one as n -+ oo. 

(b) The proof is similar. D 

We now combine the two definitions to give us a sharper definition of capacity. 

00 

Definition. A sequence of integers { C ( n)} n =l lS a sequence of capacities for 

algorithm X iff it is both a lower sequence, and an upper sequence of capacities for 

algorithm X, i.e., C(n) = C(n) = C(n ). 

The situation is schematically illustrated in fig. 5.5 (b ). Here, the region 

between C(n) and C(n) in fig. 5.5 (a) is eliminated as C(n) and C(n) coincide. 

The situation is rather reminiscent of sphere hardening. 

As in proposition (5.2.1), the following result demonstrates that if sequences of 

capacity do exist, then they are not very different from each other. 

Proposition 5.2.2. If { C ( n ) } 1s a sequence of capacities then so is 

{[l ± o(l)]C(n )}. Conversely, if { C(n )} and { C(n )"} are any two sequences of 

capacities, then C ( n ) " ,...___, C ( n ) as n -+ oo. 

Proof. Let { C ( n)} be a sequence of capacities. Let p denote the probability that 

the neural network specified by algorithm X stores m fundamental memories. Now, 

for every ).. E (0,1) we can find ).. " E (0,1) such that for large enough n, 

(1 ± o(l))(l - >..) < (1 - ).. "). Fix ).. E (0,1), and for n large, choose 

m < (1 - >..)(l ± o(l))C(n) < (1 - ).. ")C(n ). As { C(n )} is also a lower sequence, 

we have that p -+1 as n -+oo. {[l±o(l)]C(n)} is hence a lower sequence of 

capacities. In similar fashion it can be shown that {[1 ± o(l)]C(n )} 1s an upper 

sequence of capacities.' Hence {[1 ± o(l)]C(n )} is also a sequence of capacities for 

algorithm X. 

To prove the converse, let {C(n)} and {C(n)"} be any two sequences of 

capacities. Without loss of generality, let C(n)" =[I +Cl'n]C(n). We must prove 
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that an = ±o(l). Fix )..,).. " E (0,1). For m < (1 - >-.)C ( n )" 

= (1 - >-.)(1 +an )C (n ), we have p --+- 1 as n --+- oo. Further, for 

m > (1 + ).. ")C ( n }, we have p --+- 0 as n --+- oo. Hence, for every choice of scalars 

)..,).. " E (0,1}, we require that (1 - >-.)(1 +on) < (1 +)..") for large enough n; i.e., for 

every fixed choice of )..,).. " E (0,1}, we require that (1 +an) < (l +)..,,) for large 
(1 - >-.) 

enough n. It hence follows that I On I = o(l}. o 

The propositions establish that if sequences of capacity do exist, then: (1) they 

are not unique, and (2) they do not differ significantly from each other. In light of the 

above result, we define an equivalence class of sequences of capacities [{O(n)}J with 

equivalence relation defined as follows: if { C (n )} and { C (n )*} are members of this 

equivalence class of capacities, then they must satisfy the equivalence relation 

C ( n )" ,....., C ( n ). Henceforth, if a sequence of capacities { C ( n )} exists, then we 

shall say without elaboration that C ( n ) is the capacity of algorithm X; by this we 

mean that {C(n)} is a member of the equivalence class [{O(n)}J of sequences of 

capacities. 

The above definitions of capacity can be considered to be strong sense 

definitions as we require convergence of the requisite event-that all the prescribed 

memories be stored as fixed points-with probability one. This constraint is reasonably 

strong. An alternative scenario of interest could be where we require that almost all 

(but not necessarily all) of the memories be stored as fixed points. The situation here 

corresponds to it being permissible to "forget" a few memories as long as most of them 

are retained. This approach to memory storage leads to weak sense capacity 

definitions. 

The weak sense capacity definitions that we utilise mirror the strong sense 

definitions above, except that we substitute on-average or expected behaviour for the 
, 

probability one behaviour of the strong sense capacity definitions. In particular, for 

the definition of lower sequences of capacity (weak sense), we only require that the 

expected number of memories that are fixed points be m - o( m) for m less than 

capacity instead of requiring that all the fundamental memories be fixed points with 
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probability approaching one for large n . Similarly, for the definition of upper 

sequences of capacity (weak sense), we only require that the expected number of stored 

memories be o(m) for m larger than capacity. Sequences of capacity (weak sense) are 

then defined as before as being simultaneously upper and lower sequences. The 

constrain ts imposed by the weak sense capacity definitions are not as stringent as 

those encountered for the strong sense definitions, so that we can expect capacities 

(weak sense) to be larger than capacities (strong sense). 

For the zero error tolerance, associative structure that we are considering in this 

section, a necessary condition is that the fundamental memories themselves be fixed 

points. Hence, our definitions thus far have been geared toward characterising the 

capacities of algorithms for fixed point storage. The storage of fixed points, as noted 

earlier, is a static property of the system, and is independent of any particular mode of 

operation. For any specified mode of operation {synchronous one step, multiple 

synchronous steps, or asynchronous, for instance) the capacity definitions can be easily 

modified if we now wish to use the dynamics of the system to achieve error correction 

or attraction in addition to storing the memories as fixed points. The definitions of 

lower and upper sequences of capacities (either weak or strong sense) are modified by 

simply replacing the requirement that the fundamental memories be fixed points by 

the requirement that under the specified mode of operation the fundamental memories 

be attractors over the specified radius of attraction. The two propositions will 

continue to hold in toto for these modified definitions. 
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CHAPTER VI 

OUTER PRODUCT NETWORKS 

1. THE ENCODING ALGORITHM 

With the nature of the threshold decision rule fixed, the only flexibility we have 

m storing information is in the specification of the neural interconnection weigh ts 

[wij ]. In this chapter we consider the quantitative behaviour of an algorithm for 

memory encoding which specifies the interconnection matrix according to an outer 

product formalism. We obtain precise estimates of the capacity of the outer product 

algorithm for storing memories. The capacity results hinge on two key lemmas which 

we prove in section 5. Alternate proofs for these results can also be formulated [1]. 

A. The Interconnection Matrix 

Let u(a), a=l, ... ,m, be m (binary) state vectors of an n -neuron network that 

we wish to store as fundamental memories within the neural network. (In this chapter 

we consider specifically the case of auto-association; the extension of the analysis to 

hetero-associative storage is simple.) For each memory u(a) we form the n X n 

matrix 

where the superscript T denotes a transpose to a row vector, and In is the identity 

matrix. (For most of our results, we can subtract gin, where 0 < g < 1.) Thus, 

w(a) is just the outer product of u(a) with itself, with the proviso that zeroes are 
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placed on the diagonal. In the outer product construction the matrix of 

interconnection weights W = [wij] is formed as the sum of the outer product matrices 

w{a): 

m 

W= E w{a). 

a=l 

The directed interconnection strength linking neuron j to neuron i is hence given by 

W·· IJ 
a=l (6.1.1) 

where 0 < g < 1. (g = 0 implies that w;i = m for i = l, .. .,n, so that there is 

self-reinforcement for each neuron; g = 1 implies that wii = 0 so that we have a 

zero-diagonal weight matrix, and the neurons do not self link.) Thus, W = [wii] is a 

symmetric matrix of weights with a constant value along the diagonal of (1 - g )m. 

The above algorithm for memory encoding is based on the sum of the outer 

products of the desired memories. The m vectors u(a) are what we refer to as the 

fundamental memories. An important point to keep in mind is that we assume that 

once the fund amen ta! memories are specified, the parameters of the interconnection 

matrix are fixed; i.e., once W has been calculated, no other information about the 

chosen fundamental memories u(a) is available to the network. This is important when 

we wish to add memories to the list of things to be remembered, that is, when learning 

becomes an issue. 

Information retrieval works as follows. Starting with an n dimensional ±1 

vector x = (x vx 2, ... ,xn )T, which we call the probe, as our initial state, we require 

that the system dynamics flow in such a fashion as to terminate in the fundamental 

memory u(a) closest in Hamming distance to x, provided that x is within the requisite 

error correction range of u(a). As before, we specify the Hamming distance as the 

natural similarity metric in the binary space we consider. The operation we require is 

a nearest neighbour search in Hamming space, hopefully terminating on the nearest 

designated fundamental memory. In all this, the system dynamics of state transitions 
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is dictated purely by the choice of the connection matrix W according to the outer 

product algorithm (6.1.1), and the neural network iteration rules according to a 

threshold decision rule (threshold zero), and using either synchronous or asynchronous 

modes of operation. 

The outer product scheme has been oft-proposed, and used in the literature. 

Hopfield [2] investigated a model with asynchronous dynamics, and demonstrated that 

the flow in state space was such as to minimise a bounded "energy" functional, and 

that associative recall of chosen memories was hence feasible with a measure of error 

correction. Nakano [3] coined the term "Associatron" for the technique, and 

demonstrated that with synchronous dynamics, a time-sequence of associations, with 

some ability for recall, and error correction could be obtained. The conditions under 

which long-term correlations can exist in memory have been investigated by Little [4], 

and Little and Shaw [5] utilising a synchronous model. 

There are several seductive aspects of the algorithm that make it attractive. 

The algorithm is easily specified, and its implementation is relatively simple. 

Furthermore, additional memories can be tacked on by a simple incremental 

modification of the weights. In addition, the algorithm is robust and fault tolerant. 

These, and other aspects of the algorithm have been investigated in the references 

quoted above. The issue of the capacity of the algorithm, however, has remained an 

open question until recently [l]. The capacity as an objective measure of performance 

is a crucial parameter in determining the efficacy of the algorithm in memory storage, 

especially when large networks are to be built. We devote most of this chapter to 

providing rigourous answers to the question: What is the storage capacity of the outer 

product algorithm? 

B. Memory Stabil£ty 

We first sketch a plausibility argument to demonstrate that the memories a.re 
,,. 

stable (at least in a probabilistic sense). Assume that one of the memories u(a) is the 

initial state of the neural network. For each £ =I, ... ,n, we have 
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n 
" W· · U .(o:) LJ SJ J 
j=l 

n m 
" " u.(.B)u .(.B)u .(o:) LJLJ I J J 

j =l ,8=1 
j 7"i 

= [n - 1 + (1-g )m] u/°'l + E E u/.Blu/.Blu/°'l . 
,87"0: j 7"i (6.1.2) 

The algorithm can be viewed as a modification of a template matching 

(matched filtering) scheme for pattern classification. Here the probe (or unknown 

pattern) is matched against each of the m pattern classes (fundamental memories), 

and the resultant correlations are put together. Heuristically, we would expect the 

"signal" peak resulting from a proper match to dominate the sum of the "noisy" 

cross-correlations peaks resulting from improper matches if the number of memories, 

m, is small compared to the size, n, of the signal peak. 

To quantify the above signal-to-noise ratio argument, assume for simplicity that 

g = 1. Now assuming that the memories are generated as a sequence of mn Bernoulli 

trials, we find that the second term (the double sum) of equation (6.1.2) has zero mean, 

and variance equal to (n-l)(m-1), while the first term is simply (n-1) times the sign 

of ui (o:J. The second term in equation (6.1.2) is comprised of a sum of independent 

random variables taking on values ±1; it is hence asymptotically normal by the de 

Moivre-Laplace limit theorem. We hence have that the component ui (o:) will be stable 

only if the mean to standard deviation given by (n -l)
11
;

2 
is large. Thus, as long as 

( m -1 )1 

the storage capacity of the system is not overloaded, in a way to be made precise, we 

expect the memories to be stable in some probabilistic sense. Note that the simple 

argument used above seems to require that m = o( n ). The outer product algorithm 

hence behaves well with regard to stability of the memories provided that the number 

of memories m is small enough compared to n the number of neurons in the system 

(or alternatively, the number of components in the memory vectors). 
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C. Examples 

We illustrate the behaviour of the algorithm with a simple example. We 

consider a system of five neurons, and specify three fundamental memories as follows. 

1 1 -1 
1 -1 1 

u(l)= 1 u(2) = -1 , u(3)= -1 
1 1 -1 
1 -1 -1 

The 5 X 5 interconnection matrix of weights is then 

0 -1 1 3 1 
-1 0 1 -1 1 

W= 1 1 0 1 3 

3 -1 1 0 1 

1 1 3 1 0 

The matrix is, as expected, symmetric, zero diagonal, and requires an integral dynamic 

range of -1 to 3. (For the general outer product matrix of weights, the dynamic range 

requirement on the components is between -m to m, where m is the number of 

memories.) 

It is easy to verify m this instance that the three fundamental memones of 

choice are indeed fixed. 

Wu(l) = ( 4 0 6 4 6)T , sgn Wu(ll = ( 1 1 1 1 l)T = u(l) , 

Wu(2) = ( 2 -3 -2 2 -2)T , sgn Wu(l) = ( 1 -1 -1 1 -l)T = u(2l, 

Wu(3) = (-6 0 -4 -6 -4)T , sgn Wu(ll = (-1 1 -1 -1 -l)T = u(3 ) . 
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It is difficult, however, to adduce consistent attraction behaviour from the 

present example because of the small size of n and m . Small sample behaviour can be 

expected to be quite prominent for this case, resulting in fluctuating behaviour in the 

attraction dynamics. These effects are smoothed out for large values of n, and with 

m lying within the capacity results to be derived. 

2. ATTRACTION DYNAMICS 

The outer product algorithm, as seen in the last section, clearly has the 

potential to store memories-at least in the weak sense that prescribed fundamental 

memories can be made fixed points of the system. If the algorithm is to be useful as 

an associative memory structure, however, we require the fundamental memories to be 

not merely fixed points, but to exhibit attraction, so that degraded or noisy memories 

can still be recognised. That the prescribed outer product algorithm exhibits such a 

desired error correcting capability can be demonstrated by constructing Lyapunov 

functions for the system. The precise argument changes somewhat depending on 

whether the synchronous or the asynchronous mode is in force. We hence consider the 

two cases separately. 

A. Asynchronous Mode 

We assume that state transitions are occasioned by a single randomly chosen 

neuron changing state at any given time, so that two states seen contiguously in time 

by the system can differ in at most one bit component. The mode of analysis is 

patterned after that of Hopfield [2], and presupposes that the fundamental memories 

are indeed fixed points, i.e., u(a) t-+ u(a) for each (or perhaps "almost all") of the 

fundamental memories a= 1, ... ,m. The essential result can be stated as follows: 

Proposition 6.2.1. For any symmetric neural interconnection matrix W with non­

negative diagonal elements, the asynchronous mode of operation always results in a 

fixed point, whatever the initial state of the system. 
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Proof. For every state u m the state space mn define the quadratic form (an 

"energy functional") 

E (u) = - ~ ( u, Wu) 

The proof essentially consists of the demonstration that the energy functional E is 

non-increasing as u goes through a model trajectory. Assume that u represents the 

current state of the system, and that neuron i 0 updates its state next. (By 

assumption of asynchronous operation, all other neurons hold their current state 

fixed.) The proposition holds trivially if neuron i 0 retains the same state ui
0 

after 

n 

updating, i.e., if the potential ~ wioi uj seen by neuron i 0 has the same sign as its 
j=l 

current state ui ; in this case the energy functional undergoes no change. Let us 
0 

assume wlog then that neuron i 0 actually changes state on updating, so that 

component i 0 of the current probe vector u changes state to -uio· Let u * represent 

the 

* U· 
I 0 

new state vector. 

= -ui
0 

= sgn 

It follows that for and 

The change in energy is given by 

where .6.uio = ui: - uio· (Note that it is not requisite that the diagonal elements wii 

be zero as in the original formulation of the outer product interconnection matrix; it 

suffices that the diagonltl elements be non-negative, wii > 0.) 

Using the symmetry of the matrix W, and the fact wi i > 0, we have 
0 0 -
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- ' o l LI ' oJ J 
l::.E < - l::.u· (;, W· · U·] · 

l j=l 

We now exhaust the two possible cases. Assume u,· = 1. Then u/ = -1, and 
0 0 

n 

the potential seen by neuron i 0 must satisfy E W;
0

j ui < 0. 
j=l 

n 

!:J.E < E wioi ui < 0. 
j=l 

Hence 

Now assume u;
0 

= -1. Then ui: = 1, and the potential seen by neuron i 0 

n n 

must satisfy E wioi ui > 0. Hence l::.E < - E wioi ui < 0. 
j =l j =I 

Thus in all cases the quadratic form E is non-increasing under asynchronous 

component changes. Now E is a continuous function on the compact (actually finite) 

set IDn. Hence a finite minimum of E is reached on each trajectory. A state which is 

such an energy minimum does not necessarily have to be a fixed point, as it is possible 

that changes in sign u;
0 

= -1 f-+ u;: = 1 of a single neuron may result in no net 

change in energy, t::.E = 0. But the only such changes involve a change from -1 to 1, 

so that after a finite number (at most n) of such changes, no more changes are 

possible. A fixed point is hence ultimately reached in the asynchronous case. D 

Thus as long as the fundamental memories are fixed points, the gradient 

dynamics exhibited by the asynchronous algorithm indicate that we may expect to find 

a region of attraction around each fundamental memory if the operation is in the 

asynchronous mode. 

B. Synchronous Mode 

As seen before, the fixed points are the same for both asynchronous and 
I' 

synchronous procedures. Attraction behaviour for the synchronous case is slightly 

more complicated due to the possibility of limit cycling, with the result that fixed 

points need not always be reached. However, we can adduce an argument showing 

that the expected attraction flow is toward the closest fixed point. 
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Let u(a) represent a fundamental memory which is a fixed point. We have that 

Wu(a) = (n - l)u(a) +'I, 

where T/ is a noise vector whose components have zero me:an and standard deviation 

J(m - l)(n - 1) = o(l). The fundamental memories u(a), a= l, ... ,m, (all assumed 

to be fixed points for simplicity) are hence approximate eigenvectors of W with the 

same approximate ei"genvalue ( n - 1). (This statement holds at least in a statistical 

sense: the memories are eigenvectors-i"n-mean of the linear map W, but more on this 

later.) The spectrum of W is hence almost degenerate with the m fundamental 

memories all having roughly the same eigenvalue (n - 1). We now demonstrate that 

the maximum eigenvalue of W is essentially n, with its only other eigenvalue being 

-m ; i.e., it is ( n - m ) fold degenerate. 

Consider any vector x E lR n in the space orthogonal to that spanned by the m 

memories. We have 

m 
- ~ ~ U· (a)u .(a)x · 

L.JL.J l J) 

j=l a=l 
j oli 

m n 

- E ui(a) E u/a)Xj 

a=l j =1 a==l 

Thus all vectors orthogonal to the fundamental memories are eigenvectors of W with 

degenerate eigenvalue -"m. 

Now, let x = u(a) +bx be a state vector such that llbxll << l/u(a)ll = yf:;;; 

1.e., x is close to u(a) in Hamming distance. We have Wx = Wu(a) + Wbx = 

(n - l)u(a) +'I+ Wbx. As W is a linear transformation, ::J k such that 
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llW8xll < k ll8xll· The smallest such constant k is essentially n as m = o(n ), and 

the largest eigenvalue of Wis approximately n. Hence, llW8xll;::;, n ll8xll· Now Wx 

will approach u(a) if the contribution of the "noisy" term T/ + W8x is small compared 

to the "signal" term (n - l)u(a). Define the signal-to-noise ratio, SNR, as the ratio of 

the Euclidean norms of the signal and the noise terms. Using the triangle inequality, 

we have that 

SNR > (n - l)llu(a)ll 
11'111 + llW8xll 

Let d denote the Hamming distance between x and u(a) (2../d << Vn by 

assumption). Then llWbxll < n llbxll = 2n ..fd. Also, llu(a)ll = ..;n-. Finally, 

using the standard deviation of each component of the noise term T/ to estimate its 

nVn Vn . 
norm, we have, SNR > Vm ../d Vm .j([. For small distances d, 

n m + 2n d m + 2 d 

and for m = o(n ), we obtain a high signal-to-noise ratio. Consequently, the signal 

term tends to dominate the noisy perturbation terms, so that u(a) excercises a domain 

of attraction. 

The above argument indicating the existence of basins of attraction around the 

fundamental memories used a quadratic energy functional. Recently, other Lyapunov 

functions based on the Manhattan norm and the max norm have been shown to exist 

for synchronous neural dynamics [6], thus validating the fact that gradient dynamics 

continue to hold for the synchronous case too. 

The above implies that there is a domain or basin of attraction around each 

fundamental memory, with high probability. That is, most probe vectors lying in 

specified Hamming spheres surrounding the fundamental memories will reach the 

fundamental memory at the centre of the sphere as a stable point, in both the 

asynchronous and synchronous models, if there are not too many fundamental ,,. 

memories. This is not too surprising in retrospect; wrong components merely add to 

the noise, and we do not really expect them to significantly affect the qualitative 

behaviour of the algorithm. We will rigourise these observations in sections 4 and 5. 
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3. CAPACITY HEURISTICS 

Before gomg to the formal proofs, we present two simplified heuristic 

derivations of capacity. The two procedures utilise rather different, but appealingly 

simple hypotheses: the first derivation assumes a jointly Gaussian spread of the 

potentials evinced at each neuron, while the second derivation assumes that the 

distribution of erroneous decisions is Poisson. It turns out from the rigourous analysis 

that while both simplifying assumptions lead to the correct answer, the second 

conjecture is nearer the mark. 

A. A Gaussi"an Conjecture 

Let u(a), a= 1, ... ,m, be the m fundamental memories to be stored, and let the 

weights wij be given by equation (6.1.1). If each of the fundamental memories is to be 

a fixed point, we require that with high probability, 

n 

U;(a) = sgn ( E wij u/al) , for t = l, ... ,n , a= 1, ... ,m . 
i=l (6.3.1) 

Define the random variables {Xi (al} /~i.~=l by 

Then 

and 

1 

m-1 

n -I 

(6.3.2) 

; a 1 =I= a 2 , i 1 =I= i 2 

; a1 = az ' i 1 =I= i 2 

; a 1 =I= a 2 , i 1 = i 2 

( m -1 )( n -1) ; a 1 = a 2 , 1 1 = 1 2 
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The random variables Xi (er) are hence all pairwise correlated. Considering the 

( m X n ) matrix of random variables 

X (I) 
n 

x(2) 
n 

x(m) 
n 

we see that each random variable Xi (er) has a strong correlation with random variables 

Xi(i9) on the same column (correlation coefficient - 1-), a slightly weaker correlation 
m-1 

with random variables x/erl on the same row (correlation coefficient - 1
-), and 

n -1 

weakest correlation with all other off-row, off-column random variables X/i9l 

(correlation coefficient ( ~( ) ). 
m -1 n -1 

The requirement that each of the memories u(er) is a fixed point implies that for 

h - 1 d · - 1 th d · bl X (a) · f X (a) - 1 eac a - , ... ,m, an i - , ... ,n, e ran om vana es i sat1s y sgn i - , 

i.e., Xi (a) > 0. It is easily seen that each random variable Xi (er) ind iv id ually exhibits 

central tendency as a consequence of the DeMoivre-Laplace Limit Theorem. It is hence 

tempting to conjecture that all the random variables X/erl are jointly 

Gaussian-perhaps in some asymptotic sense. We will adopt this Gaussian hypothesis 

in the following. 

Conjecture: For n large enough, the random variables [Xi (a)] are jointly normal, with 

second order statistics given by equation (6.3.3). 

Now let {yi(al}{=o,';!=0 be an i.i.d. set of Gaussian random variables with zero 

mean, and unit varianc;.e. We construct the normal random variables { Zi (er)} i~I,';!= 1 
as follows: 
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Asymptotically the Gaussian random variables Z/") have the same statistics as the 

random variables X; (a) by the Gaussian hypothesis. Define 

t:,. m <I> [ (n - 1)- "j - f3r (m - 2)112 
- a(n - 2)112 l 

Jn (a,fJ,"f) = rJil [(m - 2)(n - 2)]1/2 

and 
a2 

00 --

In (fJ,"f) t:,. (211J1! 2 J f n (a,fJ,1)e 2 d a , (6.3.4) 
a=-oo 

where <I> is the cumulative Gaussian distribution function 

:r 
<I>(x) t:,. (27rtl/2 J e 2 d a , V x E IR . 

-00 

Let P8 ( n ) denote the probability that each of the fundamental memories is a fixed 

point, i.e., equation (6.3.1) holds. Then, under the Gaussian hypothesis for the Xi (a)'s, 

we have 

P s ( n ) = P { Z; (a) > 0 , i = 1,. . ., n , a = 1,. . ., m } 

= p y.(a) > _ 1 = 1 ... n a - 1 m 
{ [

(n -1)-Y0(o) -(n -2)12 Y;(0l-(m -2)12 YJ<>l] . } 
' - [(m-2)(n-2)] ' ' ' ' -,. . ., · 

The events 

are conditionally independent given the random variables Y J0l, Y 0(a), and Yi (o). 

Utilising the above result we can show with some manipulation of integrals that 
m 

m +1 oo oo oo - ~r E .'f,2+-ri 
Ps(n) = (27rf - 2- I I ... I [!n(P,1We r=l dp d1' 

"(=-00{3.., =-oo fJ1=-oo 
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where In (fJ,1) is as defined in equation (6.3.4). 

Equation (6.3.5) is essentially the reduction of an (nm + n + m + 1)­

dimensional Gaussian integral into an (m + 2)-dimensional integral. Asymptotic 

estimates for equation (6.3.5) can be found by partitioning the regions of integration 

with some care, and using the behaviour of the tails of the cumulative Gaussian 

distribution function <I>. It can then be shown that as n --+ oo, 

For m ,..._, n , we will have P 5 (n )--+ 1 as n--+ oo. This corresponds to a 
4 log n 

strong sense fixed point storage capacity. If we just require that most of the 

fundamental memories are fixed points, it turns out that the capacity estimate 

doubles. 

B. A Poisson Conjecture 

Consider the random variables Xi (a) defined in equation (6.3.2). The £-th 

component of memory u(a) will be in error if the random variable Xi(a) is negative. 

Now, the terms of the double sum constituting Xi(a) can be shown to be i.i.d. ±1 

random variables (proved as a special case of lemma (6.4.5)) so that, by the DeMoivre­

Laplace Limit Theorem, the probability that a single component of one of the 

memories is in error is asymptotically given by 

Thus, the expected number of component errors is asymptotically mn <I> [ ~] m 1/2 · 

Thus far the analysis is fairly ngourous. We now utilise the following 

hypothesis. 
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Conjecture: The distribution of errors is asymptotically Poisson. 

It will turn out in lemma (6.5.2) that under suitable restrictions, this statement 

holds. Assuming it for the moment, we see that the probability that each of the 

fundamental memories is a fixed point will then be given asymptotically by the 

expression 

We then obtain that Ps (n) - 1 as n - oo if the number of memories is restricted to 

m ,..._, n . This is the same result that we came up with using the Gaussian 
4 log n 

hypothesis. If we now require only that most of the fundamental memories be fixed 

points, then we get a doubling in capacity as before. 

4. PRELIMINARY LEMMAS 

In this section we present technical results needed to rigourously estimate the 

capacity of the outer product scheme. Lemma (6.4.1) indicates a good uniform 

estimate for the probability that the sum of N independent (1,0) random variables 

takes on integral values whose deviation from the mean is at most o(N 314
). The 

estimate is just the probability of the approximating normal over an interval of length 

one centred on the targeted deviation from the mean. A good uniform asymptotic 

expans10n for the cumulative distribution of a sum of N independent ±1 random 

variables, valid for the same large deviations as lemma (6.4.1), is demonstrated in 

lemma (6.4.2). The approximation is the usual normal distribution valid for small 

deviations. Lemma (6A.3) is the strong form of the large deviation Central Limit 

Theorem. Lemma (6.4.4) is a special case of Bonferroni's Inequalities [7], but is proved 

here for completeness. Finally, a result on independence of products of symmetric ±1 

random variables is stated and proved in lemma (6.4.5). 
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00 

Lemma 6.4.1. Let {Xi} i =l be an i.i.d. sequence of random variables drawn from a 

sequence of Bernoulli trials, with 

_ { 1 , with probability p 
xi - 0 ' with probability q = 1 - p ' 

where 0 < p < 1. Fix N E Zl+, and consider the sum 

As N -+ oo, let the integer k vary so that 

Then 

{ 

o(Nzf3) 
I k - Np I < B (N) = 

o(N3f4) 

if p =F q 

if p = q 
1 

=-
2 

P { Y N = k } ,....., exp _.::._!__ dt l j k -Np +lA [ 2 ) 

V27rpqN k -Np ---lJl 2pqN 

as N -+ oo, uniformly for all k satisfying (6.4.1). 

Proof. cf. Ref. [7], chp. VII, Sec. 6. 

(6.4.1) 

(6.4.2) 

Lemma 6.4.2. Under the hypothesis of lemma (6.4.1), if the real number x vanes as 

N -+ oo so that 

' { o(N
2
i
3

) if p =F q 
I x - Np I < B (N) = 1 o(N3f4) if p =q 

2 ' 

then 
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l x-Np [ t 2 l P { Y N < x } ,..._, J J exp --- dt . 
21rpqN t =--co 2pqN {6.4.3) 

Proof. cf. Ref. [7] as for the previous lemma, together with prob. 14, pg. 195. 

Lemma 6.4.3. If XN is the sum of N i.i.d. random variables, each ±1 with 

probability 1/2, and v = o(N314
), then as N -+ oo, 

p { X N < v } ,.._, _l_ J v / ./N exp [ - ; 2 l dt = <I> [ v ~ l 
Vin- t ....,_00 

v If in addition, ../Npq -+ -oo as n -+ oo, then 

v2 

p {XN < V} ,.._, _1_ Jll[ e 2N 
J2; v 

Proof. Lemma (6.4.2) applies here, with YN = (XN + N)/2, p = q = 1/2, and 

x = (v + N)/2. Hence 

[ 
2 l \2 v /2 [ 2 t 2 l 

P {SN < v} ,.._, 7rN /==--= exp -N dt 

The rest of the lemma follows from the asymptotic formula for the error function. D 

Lemma 6.4.4. Let E 1' ... ,EN be measurable subsets of a probability space. For 

1 < k < N, let ak b( the sum of the probabilities of all sets formed by intersecting 

k of the events E 1, .. .,EN: 
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k 

uk - E P { n E1J . 
i1<i2< ... <J, l=l 

Then for every [{ , with 1 < [{ < N, 

N K 
P { LJ Ei} = E (-l)k-l uk + (-l)K aK , 

i =1 k =1 (6.4.4) 

where aK > 0. 

Proof. Consider a point which lies in exactly L of the events Ei, 1 < L < N. On 

the left, this point is counted only once. On the right, it is counted exactly ( i ) 
times in each uk with k < L, for a total contribution of 

min(K ,L) k-l ( L ) { 1 - (1 - 1 )L = 1 7 for [{ > L , 
E (-l) k = K (L -1) 
k=l 1-(-1) [{ ,forl<K<L 

The latter equality is proved by induction on k usmg (}(. =.i) + ( L1(
1 ) = ( }(), 

starting from k = 1, for which L = 1 - (-l)(L -1). Hence if we define the random 

variable X by 

if L < I< , 

, if L > K , 

then equation (6.4.4) holds with 

" 

aK = E (X) > 0. D 

Lemma 6.4.5. Let J( be a fixed, positive integer, and let {X 1' ... , XK} be a set 
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of i.i.d. random variables taking on values -1 and 1 only, each with probability half. 

Let { C v ... , CK} be any set of ±1 random variables independent of the X; s. 

K 

Then the random variables { C; X;}; =l are i.i.d., and take on values -1 and 1, each 

with probability half. 

Proof. Let Y; = C; X;, j =l, ... ,K. Clearly the random variables Y; take on 

values -1 and 1 only. Now 

and 

P { Y; = 1} = P { X; = -1 , C; = -1} + P { X; = 1 , C; = 1} 

P { Y; = -1} = I - P { Y; = 1} = _!_ , 
2 

so that the Y; s are symmetric ±1 random variables. 

Let y 11 .•. , YK E IB. Then 

P {Y;=Yi, j = 1, ... ,I<} 

= p {Y1=Y1 I Y;=Y;' j = 2, ... ,K} p {Yj=Y;' j = 2, ... ,K} 

" X P {Y,-=y,-, j = 2, ... ,K}, 

where c i.X 1 E IB, and c 1x 1 = y 1. Then we have 
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P {Y;=Y;, j = !, ... ,!(} 

= ~ [ P { C 1=c 1 I Y; =yi, j = 2, ... ,K} + P { C 1=-c 1 I Yi =Y;, j = 2, ... ,K} J 

X P { Y; =yi, j = 2, ... ,K} 

Proceeding by mathematical induction, we get P { Y 1=y 1, ... , Yf< =YK} = 2-K. 

D 

5. CAPACITY: A TALE OF TWO LEMMAS 

Let U = { u(1l, ... , u(m l} C IBn be the set of specified fundamental 

memones to be stored in the n-neuron network. The fundamental memories 

u(a) = ( u la), ... , un(a))T are assumed to have been independently drawn from a 

symmetric binomial distribution; specifically, the mn components { u; (a)} t=1,:;= 1 of 

the fundamental memories are i.i.d. random variables with 

The interconnection matrix W = [wii] is formed as the sum of outer products 

of the fundamental memories as before 

m 
W· · "°' ~(a)u .(a) - gm {j. · 

I) LJ I J IJ 

a=l 

where 0 < g < 1. The case g = 1 corresponds to the original outer product matrix 

construction, where the matrix is constrained to have zeroes along the diagonal so that 
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there is no self-reinforcement at each neural site. Retaining a non-zero diagonal, 

however, does not materially affect the analysis. 

Our approach will be to first obtain a rigourous estimate for the capacity of the 

outer product algorithm under the (fairly weak) condition that the fundamental 

memories are required to be just fixed points of the system. The analysis is then 

extended rigourously to estimate capacity for attraction over a specified radius m a 

single synchronous step. Capacities are then derived for multiple synchronous step 

and asynchronous error correction over specified radii of attraction. Finally, cases of 

attraction with error tolerance are considered. 

A. Fixed Points 

For the set of fundamental memories to be a set of fixed points of the system 

we require that for each i =1, ... ,n, and each o:=l, ... ,m, 

n 

ui (a)= sgn ( E wij u/al) . 
j=l 

For large enough n, the probability that the term inside the sum is zero is very small. 

Hence, the probability that there is a row sum violation on the i-th component of the 

n 

o:-th fundamental memory u(a) is given by P { sgn ( E ui (a)wij u/al) = -1} + o(l). 
j=l 

Form the sums 

= n + (I-g )m -1 + I; I; ui (alu/alui (i9lu/i9) 

j r'- i i9r'- Cl 



-206-

= n + (l-g )m -1 + zi(a:)' 
(6.5.1) 

where we use the random variable Zi (a:) to denote the double sum. For large enough 

n, it follows that U is a set of fixed points of the system if each of the random 

· bl x.(a:J · -1 -1 · · · vana es 1 , i - , ... ,n, a- , ... ,m, is pos1t1ve. Now let T represent the probability 

of a row sum violation on the i th component of the ath fundamental memory u(a:); 

i.e., Tis the probability that the random variable xi (a:) is negative. We have 

r = P {zi(a:) < -(n + (l-g )m - 1)} + O(e-n). 

The following assertion is a result on the uniformity of the distribution of row 

sum violations. This remark will be useful in proving a sort of 0-1 law for storage 

capacity. 

Proposition 6.5.1. Let rand r* be the probabilities of row sum violations when the 

number of fundamental memories is m 

m* > m ~ r* > T. 

and * m , respectively. Then 

Proof. The random variable zi(a:) has independent summands by virtue of lemma 

(6.4.5). Further, for larger m, Zi (a:) has more independent summands for m *, than 

for m if m * > m , and hence is more likely to be large negative. In fact, the 

distribution of the number of row sum violations for m * lies below that for m, so 

that more violations are likely to occur. The converse also follows from the uniformity 

of the binomial distribution. D 

Lemma (6.5.1) below is a particular application of the Large Deviation Lemma 

to the situation we aow face. The result is an asymptotic expression for r, the 

probability that a particular row sum is violated. The result agrees with what would 

be obtained by a naive application of the Central Limit Theorem. 

Lemma 6.5.1. As n -+ oo, if m satisfies: 



(1) m = o(n ), and 

(2) m > M(n ), where M(n) 
.Jn 

then 

mv.i 

(27rn )112 
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-oo, 

(6.5.2) 

Proof. By lemma (6.4.5) the random variable Z/°'l in (6.5.1) has independent 

summands. Lemma (6.4.3) now applies to the random variable zi(a), with 

N = ( m - 1 )( n - 1) , 

v = -[n + (1-g )m - 1] . 

The hypotheses of the lemma are satisfied as m > M ( n ). Hence 

Since 

T ,....., <l> 
[ 

n + (1-g )m - 1 l 
J(m - l)(n - 1) 

n + (1-g )m - 1 
J(m -l)(n -1) 

as n ___. oo, we have by lemma (6.4.3) that 

mll! exp {- (n + (1-g )m - 1)
2

} 

(27rn)12 2(n-l)(m-1) · 

Using m /n ___. 0, and m /.Jn ___. oo, we have 
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(n + (1-g )m - 1)
2 

= ~ + 1 _ g + o(l) . 
2(n - l)(m - 1) 2m 

Hence (6.5.2) follows. D 

X (ah) h The next lemma concerns the joint distribution of q sums, i" , = 1, ... ,q. 

This is the key result leading to the capacity, and demonstrates that asymptotically as 

n -+ oo, the number of row sum violations obeys a Poisson distribution. 

Lemma 6.5.2. Let q be any fixed, positive integer, and let 

{(ih ,ah) E {1, ... ,n} X {l, ... ,m}: h = 1, ... ,q} be q distinct pairs of integers. 

Then, under the hypothesis of lemma (6.5.1), if M (n) = n" with 3/4 < K < 1, and 

as n -+ oo, 

(6.5.3) 

Proof. Without loss of generality, assume ih , o:h < q for h = 1, .. .,q. Have 

= n 

(6.5.4) 

where 

S 2
(h) - " " . (a,) .(ah) . (/3) .(t3l 

- LJ LJ U1h UJ U1h UJ 

j >q /3>q (6.5.5) 

and S 1(h) is the sum of the remammg terms; (S 1(h) IB the sum of 

(n - l)(m - 1) - (n - q)(m - q) = (q - l)(n + m - q - 1) independent, ±1 random 

variables.) Now, \;/ t: E (0, 1/4), 



and 

-209-

1 -+ f 
n 2 

-------------+O 
(q - I)3f4(n + m - q -1)3/4 ' 

1 - + f 
n 2 

-------------+O 
(q _ l)1f2(n + m _ q _ l)1/2 ' 

as n -+ oo. Hence by lemma (6.4.3) 

P { Is ih l I 
1 [ ..!. + f 2 + e} n 2 >n r-..-2<l>-

- (q -l)1/2(n +m -q 

where C 1 is a positive constant. 

- 1 )112 l 
(6.5.6) 

Let Pq be a partition of { l, ... ,q} into I Pq I < q disjoint subsets with each 

subset containing those h E { 1, ... ,q} which identify the same memory ah. Let 

el ' ... ' e I pq I E { l, ... ,q} identify I Pq I distinct memones. We identify the 

memories o:h by means of the function lq (h) : { 1, ... , q} -+ { 1, ... , I Pq I } , where 

Specifically, ah = B1q (h )· 

Similarly, let Qq be a partition of {1, ... ,q} into I Qq I < q disjoint subsets, 

with each subset containing those h E { 1, ... ,q} which identify the same neuron 

(component position) ill. Let 'lj.;1 , · · · , 'ljJ I Qq I E { 1, ... ,q} identify I Qq I distinct 

component positions. The component positions ih can now be identified by means of 

the function 8q : { 1, ... ,q} -+ { 1, ... , I Qq I } , where 
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Specifically, i,, = 'l/Js, (h )· 

Note that 

and 

as a consequence of choosing distinct pairs ( ih ,O:h ); i.e., for any two pairs ( ih 
1
,ah ), and 

(ih
2
,ah

2
), either the component ih, or the memory ah, could be the same, but not 

both. Also note that 

1 < I Pq I ' I Qq I < q ' 

and 

Now rewrite equation (6.5.5) for S 2(h) as 

S2
(h) (ad ~ u _(a,) ~ U· (~)u _(~,..) 

= ui,.. L.J J L.J '• J1i 
j >q ~>q 

As h runs through 1, ... ,q, we can group the chosen memories ah into I Pq I 
memories, with a,,=e,,(h)E{l, ... ,q}, and where lq(h)E{l, ... ,IPql}, and 

(a ) (8.., (iL)) e,l =I=- e,2 if f1 =I=- lz. Thus, the term Uj " = Uj q runs through the components of 

{ }
2IP,I IP I 

a I Pq I -vector as h varies. Let v / 1 =I = IB 9 be the set of vertices of the , 
binary hyper-cube in I Pq I -space. For each J , define the set M1 by 

M1 = {i > q v/19 (h)), h = 1, ... ,q}, 
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. h (h)) 
where we use the convention that v1 ' represents the /q (h )-th component of the 

binary I Pq I -tuple v / . We then have 

'°' u. (fi)u .(fi) 
LJ '• J • 

fi> q 

As before, as h runs through 1, ... ,q, we can group the chosen neurons 

(component positions) ih into I Qq I component positions, with 

ih = 1/Jo,(h) E {1, ... ,q }, and where 8q (h) E {l, ... , I Qq I}, and 1/;11 -¥:- 1/;12 ift 1 -¥:- t 2. 

Thus, the term ui,(fi) = u J~l(•l runs through the components of a I Qq ] -vector as h 
v 

{ } 

1 Qv 1 IQ I 
varies. Let w g 9

2 
=l = lB ' be the set of vertices of the binary hyper-cu be in 

I Qq I -space. For each g, define the set N0 by 

Wg(•\(h)), h = 1, ... ,q}, 

. (o (h)) 
where we use the convention that wg ' represents the 8q (h )-th component of the 

binary I Qq I -tuple w g. We then have 

s (h) 
2 

(a.) 
= U· '• (6.5.7) 

Let A f = I M1 I , and Wg = I Ng I . For a given f , and a given g, we 

define the events J1 (j ), j > q, and Bg (/3), /3 > q, by the following attributes. 

J1 (j) is the set of points in the ensemble on which 

J E M1 , or equivalently , 

Similarly, B9 (f3) is the set of points in the ensemble on which 
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() =W(6,(h)) h /3 E N9 , or equivalently , u if;: (Al 9 , = I, ... ,q . 
q 

Claim 1. The events J1 (j ), 1 > q, and Bg (,8), ,8 > q, are jointly independent for 

each fixed J , g . 

Proof of claim 1: Consider the events J1 (j 1), ... , J1 Ut ), and the events 

B9 (/31), ... , B9 (,81 ), for some k , I . Then 

P {JI Us) , B9 (f3t) , S = l, ... ,k, t = 1, .. .,/} 

{ 
(11.., (h)) - (7, (h)) (,Bt) (6 (h)) } 

= P ui, ' - v1 , u ¢6 <•l = Wg 
1 

, s = I, ... ,k, t = 1,. .. ,/, h = I, ... ,q 
g 

t.PJ,u(k,l). 

Note that ()7q(h) < q, 1/J6,(h) < q for h = l, ... ,q, and is > q, s = I, .. .,k, and 

f3t > q for t = 1, ... ,/. The components ui (a) are chosen independently from a 

sequence of Bernoulli trials. Hence 

k { (11'7(•))_ (7,(h)) h } 
Pt ,g (k ,/) = II p Uj, q - v, ' = I, ... ,q 

s =1 

I { (,B ) = w (c\ (h)) h } x II p U¢6t(h) g , = I, ... ,q 
t =1 1 

k I 

= II P {''Us)} II P {B9 (/3d} . 
" 8 =1 t =1 

As the l'ndex sets {1· 1· } and {/31, ... , /31 } are arbitrary, it follows that the li ... ' k ' 

events J1 (j ), j > q, and B
9 

((3), (3 > q, are jointly independent for fixed J and g. 
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Note that for j > q , and f3 > q , 

{ . } { (o7 c• >) b (h)) } 
p 1, (J) = p Uj ' = v, ' ' h = I, ... ,q 

(6.5.8) 

and 

{ } { fi9) = w (o, (h )) h } P Bu (/3) = P u!/!6 C•l /1 , = l, ... ,q 
g 

(6.5.9) 

For each f and g, define the random variables {s-1 (j )L >q, and {vu (f3)h>q 

by 

. { 1 if j E M1 
~! (J) = O if j Fl. M1 ' 

and 

{ 
1 if /3 E Nu 11u (f3) = O if f3 Fl. N

11 
• 

By claim 1 it follows that the random variables {~1 (j )} and {vu (/3)} are mutually 

independent; further, the random variables {s-1 (j )} are i.i.d. with 

and 

(6.5.10) 

from claim 1 and equation (6.5.8). Similarly, having recourse to the claim and 

equation (6.5.9), we have that the random variables {11 11 (.B)} are i.i.d. with 
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and 

(6.5.11) 

We now estimate the cardinality of the sets M1 and N
9 

using Large Deviation 

Theory for a given f , and a given g : 

For the cardinality of M1 , we have: 

>..1 I M1 I = I: ~/ (j) ' 
j >q (6.5.12) 

and so from claim 1 and equation (6.5.10), 

= 2- I Pq I (n - q) . (6.5.13) 

The random variables {~1 (j )} are i.i.d., and hence ).. / is the sum of ( n - q) 

independent (1,0) random variables. Let 0 < f. < 1/8. As n -+ oo, we have 

nfVn 
( n _ q )2/3 

and 

nfVn 
( n _ q )1/2 

Hence 

; 

1 
f - -

6 -+ 0 

,......, nf-+oo. 

' 

where C 2 is a positive constant. 

Now consider the cardinality of the index set Ng . Have 

(6.5.14) 
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I Ng I = E lJ p ({3) ' 
f3 > q {6.5.15) 

and following claim 1 and {6.5.11), we have 

(6.5.16) 

The random variables {vP (f3)} are i.i.d., and hence w9 is the sum of (m - q) 

independent (1,0) random variables. Let 0 < E < 1/8. As n -+ oo, we have 

and 

Hence 

nEVm 

(m _ q )2/3 

nEVm 

( m _ q )1/2 

~ < n E = n E - ic/6 < n E - 1/8 -+ 0 
m 1/6 - M ( n )1/6 - ' 

,..._, nE-+00. 

where C 3 is a positive constant. 

We now prove the following assertion: 

Claim 2. The random variables >.. / and wg are independent. 

(6.5.17) 

Proof of Claim 2: From equation (6.5.12), >.. / depends solely on the ( n - q) random 

variables {~1 (j )} j >q, while from (6.5.15), wg depends solely upon the (m - q) 

random variables {v0 (f3)} f3>q. From claim 1, {~1 (j )} and {vu (f3)} are mutually 

independent random variables, and hence it follows that >.. 1 and wP are independent. 
~ 

Now let the random variables x / ,g be defined by 
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(6.5.18) 

xi ,g is hence the sum of >.. 1 w9 ±1, independent random variables. Let 0 < E < 1/8. 

Then 

p { I x I ,g I > n E..;m;; } 

x p { I )... I - ~ I < n Em , I w g - w I < n Erm } 

x p { I )... I - ~ I > n E.Jn , I w g - w I < n Erm } 

x p { I).../ - ~I > n Em ' I Wg -w I > n Erm} 

=A +B 

where A is the first ter)Il in the sum, and B the remaining terms. Now, 

B < 3 max { p {I).../ - ):;'I > n Em}, p {I Wg -w I > n Erm}} 
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which follows from claim 2, and equations (6.5.14), and (6.5.17). Hence, 

We now restrict our attention to those sample points for which the events 

I >.. 1 - ~I < n fVn, and I w 9 -w I < n E.Jm" occur. As n --+ oo, we have from 

equations (6.5.13), and (6.5.16) that 

and 

nf...,r;;:;;; < nf...,r;;:;;; 
>.. Jf 4 w

9
3/4 (>.. _ n fVn )3/4 (w _ n fVm )3/4 

n f...,r;;:;;; 
)... Jf2 w/12 

nf~ 
3 3 

I P, I 3/4 - -4 I Q, I I 
2 4 n 2 m 34 

Hence A ,....__, o( e-c;n:i.), where c; is a positive constant. Thus 
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Let S be the set of sample points on which the following hold jointly: For 

0 < f < 1/8 

I S l(h) I < n l/2 + E , h = l, ... ,q, 

I Wg - w I < m 1/2 n f ' g = 1, ... ,21 Q, I' 

I xi ,g I < m 1/2n1/2 + f' f = 1, ... ,2 IP, I ' g = 1, ... ,21 Q, I . (6.5.19) 

Using (6.5.6), (6.5.14), (6.5.17), and , we now obtain 

(6.5.20) 

+ 
n + (1-gj_m -1 S1(h) 

.J>:.-w + V'i.w · 

From (6.5.13), (6.5.16) ~nd (6.5.19), we have that in S, 

---0 _Q -- . S 1(h) _ [ n 1/2 + f J - [ n f l 
.J>:.w .Jrm;" rm 
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Denote the second sum by T. In S we have 

2 JP,J 2 19,I 

I T I < 'E 'E I x J ,g I 
J =l g =l 

< 'E I Xf ,g I 
J ,g 

-0-_ ( n 2E l 
Vm 

I J>:;:;; - Jf;; I 
J>..w')..f w11 

by equations (6.5.13), (6.5.16), and (6.5.19). Hence in S we have 

+ n + (1-g )m - 1 ( n 
2

f ) 

+ O r--1n · J'i.w v m (6.5.21) 

n 2f n 2f I 
Note that r-- < = n 2f - "/

2 < n 2f -
3 8. For f taking values in the open 

vm M(n) 1l2 

11 
2£ 

interval 0 < E < 1/8, we hence have r- --> 0 as n --> oo. Now define 
vm 
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f =1 g =1 

< _ n + (1-gjm - 1 } 

J
- + b , h = I, ... ,q . 
>-w 

(6.5.22) 

Using equations (6.5.19) through (6.5.22), we have 

(6.5.23) 

for a positive constant J(. 

Let A and 0 be the set of values of A = (>-v ... , >- 1 P 1 ), and 
2 g 

w = (wv ... } w IQ I), respectively, in s. Let r and T denote the allowed partitions 
2 g 

M=(Mv ... ,M IP 1), and N=(Nv ... ,N IQ 1), respectively, of 
2 g 2 g 

{(k ,r): k ,r > q} in S. Denoting binary q -tuples by y = (y 1'· .. ,Yq) E IBq, we 

have 

where 

~ 
y E Ilg 

>.EA,wEO 
MEr,NET 

f 2( b ;y,A,w,M,N) P { y,A,w,M,N } , 

(6.5.24) 
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< - n + ( ~~ ) m -
1 + b , h = 1, ... , q I y, >. ,w ,M ,N } . 

>-.w 
(6.5.25) 

Equation (6.5.25) is the sum of probability masses over the set of lattice points 

of allowable values in the region D ( b ) in 2( IP, I + I Q, I )-space defined by the 

inequalities 

(6.5.26) 

and 

I Xf ,g I < n fv:;;;n , f = 1, ... ,2 1 P, I , g = 1, ... ,2 1 Q, 1 
. (6.5.27) 

Now note from the defining equation (6.5.18) for x1 ,g, that the x1 ,gs are sums of 

independent, ±1 random variables over disjoint sets. The random variables x 1 ,g are 

hence jointly independent, with each point probability being the product of 

2( IP, I + I Q9 I) probabilities, one for each x1 ,g. By virtue of lemma (6.4.1), each point 

probability can be replaced by a 2( IP, I + I Q, I )-dimensional integral over a box. The 

union of these rectangles is a region .ti.( b ) in 2( I P9 I + I Q9 I )-dimensional space, which 

differs from D (b) only in the addition or deletion of points on the boundary. Hence 

f 2( b; y,>.,w,M,N) ,......, F 2( b; y,>.,w,M,N) (6.5.28) 

where 



F 2( b; y,>.,w,M,N) = J 
t.( b ) 
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l dt f ,, . 

(6.5.29) 

Claim 3. D ( b ) is a monotonic function of b ; specifically, D ( b ) satisfies the folowing 

inclusions: b 1 > b 2 =:> D ( b 2) C D ( b 1). 

Proof of Claim 3: From (6.5.26) and (6.5.27), we see that as b mcreases, more and 

more sample points x = ( x I Ii·· .,x 1 P 1 1 9 1) T m the rectangle 
' 2 9 ,2 9 

(I P9 I+ I 9
9 

I) 
[-n fv:m;; ,n fv:m;; ]2 are included m 

([P
9

1+19
9

1) 
D (b) C [-n Ev:m;; ,n fv:m;; ]2 as the inequalities (6.5.26) are satisfied for 

more sample points. 

Now, traversing across each small rectangle centred at a sample point results in 

varying each x 1 ,g by two. The sums in (6.5.26) hence vary by 0( ~) across each 
mn 

small rectangle. Hence, we can find a suitable constant C 6 depending solely on q, 

which in conjunction with claim 3 yields the following inclusion relations: 

where the sets E Ii and E 2, contain only points which are within distance two of at 

least one of the planes defined by (6.5.27). Again having recourse to Large Deviation 

Theory (lemma (6.4.2)), and using (6.5.19), and (6.5.20), we have 

(6.5.30) 

for a positive constant 91· 

Now define 
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then 

[ 
C 6 ) -C 1 n 

2
' Fa b - .;mn- ; y,>.,w,M,N + 0( e ) < F 2( b ;y,>.,w,M,N) 

l dt1 .• ; 

(6.5.31) 

[ 
C 6 . l -C 7 n2'< < F 3 b + rm;- , y,>.,w,M,N + 0( e ) . 

(6.5.32) 

{ } 
2

1 P
9 

I 
2

1 Q
9 

I 
Let el ,g f =I , g =I be i.i.d. Gaussian random variables with 

and 

Let t: - (t: t: ) be a vector in 2 I P9 I + IQ, 1 -d1'mens1·onal space . .,, - "'11' · · · ' "' IP I IQ I ' 2 q ,2 q 

Then 

F 3( b ; y,>.,w,M,N) = P {€ED (b )} . 

Have 

{I I f ~ f _ IP, I _ 2 1 Q9 I}_ o( -C 8 n2<) P E1 ,g > n v mn , - 1, ... ,2 , g - 1, ... , - e 

for a positive constant C 8 . Set 

1/h = Yh ' h = l, ... ,q . 
(6.5.33) 

Defining the region D 0( b ) in 2 I P 9 I + I Q 9 I -space by the inequalities 
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T/ h < - n + ( ~~ m - 1 + b , h = 1, ... , q ' 
>-.w 

{ } 
C n2< 

Fa( b ; y,>..,w,M,N) = P €ED 0( b) + 0( e - 8 
) 

_ { _ n + (1-t}m - 1 _ } -C 8 n2< 
-P T/h < J- +b ,h -1, ... ,q +O(e ). 

>.w 

(6.5.34) 

(6.5.35) 

From (6.5.33), the random q -vector TJ = (TJv ... , 1Jq) is obtained by means of 

a linear transformation from the J
0

ointly normal random variables c <..,,J ,g , 

f - 1 2 IP, I - 1 2 1 Q, I Th d . bl h . . 1 l - , ... , , g - , ... , . e ran om vana es T/h are ence Jomt y norma. 

Now, we have 

and 

2
1 P

9 
I 

2
1 Q

9 
I 

E(TJh) = Yh :E E 
J =I g =I 

2
1P

9 
I 

2
1Q

9 
I 

E(TJhT/h•)=YhYh• :E :E 
J =I g =I 

(7 (h )) (o (h)) (7 (h ·) (o (h ·) 
VJ 9 Wg 

9 
VJ 9 Wg q 

If h =/::- h *, then by choice of distinct pairs (ih ,oh), at least one following must hold: 

/q (h) =/::- /q (h *) or 8q (h) =/::- 8q (h * ). In either case, at least one of the two sums in 

the above equation must be zero. Hence 

,. 

The random variables { 'r/h} hq =I are hence i.i.d., and normal, with zero mean, and 

variance 2( IP, I + IQ, I l. Hence 
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Ph t::,. P { 1Jh < - n + (J~ lm - 1 + b , h = l, ... ,q} 
>..w 

=<P [2-i(IP,l+IQ,I)(- n +(l-g)m-I +b] lq. 
v>-w 

1 
f- -

From (6.5.23), we need to estimate (6.5.35) for b = 0( n 4 
). Set 

-i(IP,l+IQ,I)[ n+(l-g)m-l O( f-+)] z =2 -
1
_ + n 

v>..w 

n +(l-g)m -1 +O(nf-1/4), 
J( n - q )( m - q) 

(6.5.36) 

which we obtain by substituting for ):_ and w from equations (6.5.13) and (6.5.16). 

Then we have 

z ,.....,_,-~as n-+oo. 

Also 

z2 = [n + (1-g )m -1]2 + o(~] 
( n - q )( m - q) Vm 

n ( m n n 
2

£ l = - + 2(1 - g) + 0 - + -,, + --
m n m~ Vm .. 

m n n n 2E 
By hypotheses, we have - -+ 0 - < -+ 0, and -- < n £ - l/4 -+ 0 as 

n ' m 2 - M ( n )2 Vm -
n -+ oo. Hence 



z 2 ,.__, ~ + 2( 1 - g ) . 
m 
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Harking back to (6.5.36), we have as n --+ oo, 

Ph = [<I>(z W ,...__, m 1/2 exp {- [ 2nm + 1 - gl } ......., T 
(27rn )1/2 

by lemma (6.5.1). Retracing our path through equations (6.5.35), (6.5.32), (6.5.28), and 

(6.5.24), we obtain 

y E E 9 

>.EA,wEO 
MEr,NET 

q 0( -C7n2l -Csnz') =r + e +e . 

Substituting in (6.5.23) we finally obtain 

P {xr (a4) h _ } q o( -Cn2<) ii. < 0, - 1, ... ,q ,.__, T + e , 

From lemma (6.5.1), we have as n --+ oo, 

__ I_ ( mn l q /2 e ;: 
(21Tfq /2 

(6.5.37) 
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( l 
q /2 qn 

~ e - 2M(n) 

> 1 ( mn ) q /2 e - { n (1 - ") 

(27r)q /2 

Tq will be the dominant term in (6.5.37) if 2E > 1 - 1c We also require that E < K/6 

for (6.5.17) to hold. Hence, we require K and E to satisfy ~ < E < .!5:..... These 
2 6 

inequalities are satisfied for the prescribed choices of 3/4 < K < 1, and 0 < E < 1/8. 

Under these conditions then, as n -+ oo, 

p { xti: h) < 0 , h = 1, ... , q } ,......_, Tq . 
D 

Lemma (6.5.2) coupled with estimates to be derived m the following theorem 

proves that the number of row sum violations is asymptotically Poisson as n -+ oo. 

Specifically, for every fixed N > 0, the probability of exactly N row sum violations is 

. EN e-N 
asymptotic as n -+ oo to N ! , where E = n r is the expected number of row sum 

violations, held essentially constant in the Theorem by proper choice of m as a 

function of n . 

We now encapsulate the above lemmas in the following theorem, which is the 

main result of this chapter. 

Theorem 6.5.1. Let b > 0 be fixed. Then, as n -+ oo, if: 

(1) If m 
n 

1 
2 log log n + 1 - g 

log n 
+log (8v'4"7r) + o(-l-) ] , 

log n (6.5.38) 2 log n 
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then the expected number of fixed vectors u(a) is asymptotically m e-8. 

(2) If m - n 
[ 

3 1 1 l 4 log log n + 2 (1 - g) + 2 log {88J2;r) ( 1 ) 
1+ +o--, 

log n log n 4 log n 

(6.5.39) 

then the probability that all m vectors are fixed is asymptotically e - 8. 

Proof. (1) Consider then events Ei = {xi(l) < o}, i = 1, ... ,n. For every fixed 

N, we have by lemma (6.5.2) that as n -+ oo, 

P {e. n e. n · · · n e. } ~ ~ 
I 1 1 2 1N 

Applying the above result to lemma (6.4.4), and taking cognisance of the fact that aN 

contains ( N) terms, we obtain 

Using (6.5.38), and (6.5.2), 

nr ~ n exp {-log n + 
2
1 

log log n +log (8}.4;) + o(l)}, 
V47r log n 

so that 

n T ~ 8. 

Choosing J( even in lemma (6.4.4), we have 

, 

For large J(, both sums are arbitrarily close to 1 - e-8
• Hence 
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P { E i LJ E 2 LJ · · · LJ En } ,....., 1 - e - 5 
• 

The above is the probability that the chosen memory u(ll is not a fixed point. The 

expected number of vectors u(a) that are fixed, which by symmetry is m times the 

probability that u(ll is a fixed point, is hence me-8. 

(2) We consider the complement of the probability 

LJ EN}, with N = mn, and the E1c s being the mn events 

{Xi (a) < o}, i = 1, ... ,n, o = 1, ... ,m. The argument unfolds in exactly the same 

fashion as the proof for part (1). D 

Corollary 6.5.1. The storage capacity (weak sense) of fixed points m the outer 

product algorithm is 
1 
n ; specifically, as n --+ oo: 

2 og n 

(1) For every fixed 0 < t < 1, the expected number of fundamental memories that 

are fixed points in the algorithm is m - o( m ) if m = n (1 - t ). 
2 log n 

(2) For every fixed E > 0, the expected number of fundamental memories that are 

fixed points in the algorithm is o(m) if m = 
1 
n (1 + E). 

2 og n 

Proof. (1) Fix 0 < t < 1, and set m = n (1 - t). Set 8 = - 1
- in the 

2 log n log n 

theorem, and let m * be the corresponding value for the number of memories. (In fact, 

all we require is that 8 is a decreasing function of n that approaches zero when n 

becomes infinite.) Let rand r* be the probabilities of row sum violations for m and 

m *, respectively. Clearly, m < m *. Hence, by proposition (6.5.1), it follows that 

T < r*. By the proof of the theorem it follows that the expected number of memories 

1 

that are fixed points is ,41,t least m e log n = m - o( m ). 

(2) Fix E > 0, and set m = 
1 
n (1 + t). Set 8 = log n m the theorem, and let 

2 og n 

m * be the corresponding value for the number of memories. (In fact, all we require is 

that 8 is an increasing function of n that becomes infinite when n becomes infinite.) 
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Let T and r* be the probabilities of row sum violations for m and m *, respectively. 

For large enough n, we have m > m *. Hence, by proposition (6.5.1), it follows that 

T > r*. By the proof of the theorem it follows that the expected number of memories 

that are fixed points is at most m e - log n = o( m ). D 

Note that the asymptotic behaviour IS stronger than was required by the 

definition of capacity. In fact, setting 8 = t m the theorem, and using the fact that 

e - f > 1 - t, we see that the expected number of memories that are fixed points in the 

algorithm is asymptotically at least m (1 - t) if 

n m 
2 log n 

log log n 
2 log n 

In particular, m - n works. 
2 log n 

Corollary 6 .5 .2. The storage capacity (strong sense) of fixed points m the outer 

product algorithm is n ; specifically, as n - oo: 
4 log n 

(1) For every fixed 0 < t < 1, the probability that all the memories are fixed points 

approaches one as n approaches infinity if m = l n (1 - t). 
4 og n 

(2) For every fixed t > 0, the probability that there is at least one fundamental 

memory that IS not fixed approaches one as n approaches infinity if 

m = 
1 
n (1 + t). 

4 og n 

Proof. The proofs are the same as for Corollary (6.5.1). D 

Again, the asymptotic behaviour is stronger than was required by the definition 

of capacity. In fact, f6r every fixed 0 < t < 1, the probability of all the memories 

being fixed is at least 1 - t as n approaches infinity if 



n 
m ----

4log n 

Again, m - n works. 
4 log n 

3 log log n 
4 log n 

-231-

+ O, [lo~ n] l 

B. One-Step Synchronous Attraction 

We now consider capacity under the constraint that the fundamental memories 

are not merely fixed points, but that they are also attractors over a specified radius of 

attraction pn, with 0 < p < 1/2. (We will frequently refer to p as the radius of 

attraction, where no confusion can ensue; p is, of course, simply the fractional radius of 

attraction.) We first consider the case of one-step synchronous attraction where we 

require that almost all state vectors in a Hamming ball of radius pn surrounding the 

fundamental memories are mapped to the corresponding memories in one synchronous 

step. 

We denote by u[a] E Ii (u(al,pn) a state within a Hamming radius pn of 

fundamental memory u(a). We assume that the probe vectors u[a] are chosen 

independently, and with uniform probability from the states within the Hamming ball 

of radius pn, 0 < p < 1/2, centred at the fundamental memory u(a). For one-step 

synchronous convergence, we hence require that under a synchronous algorithm, 

u[a] 1--+ u(a), a= l, ... ,m. Hence, for i = l, ... ,n, and a= 1, ... ,m, we require that the 

mn sums 

are positive. Now, form the sums 

Y. (a)= "~ u ·[a] u .(a) 
I L.JJ J' 

j -,Ji (6.5.40) 

and 
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(6.5.41) 

Then, we have 

Xi (a)= (I-g )m + Yi (a)+ Zi (a) . (6.5.42) 

Note that the random variables Zi (a) and Yi (a) are independent. We will need the 

following assertion, which is essentially a statement of the fact that the probability 

mass in Hamming spheres is concentrated on the surface of the spheres, with the 

interior having very small probability. 

Lemma 6.5.3. For every fixed 0 < 8 < 1, as n -+ oo, 

Proof. Let E (a) be a random variable denoting the total number of component 

errors m u[a], i.e., E(a) denotes the Hamming distance between the fundamental 

memory u(al, and the probe u[o:]. Let E/:.) denote the number of errors in 

components ui [o:], j =/=- i. We have 0 < E/:.) < pn, and E(o:) _ 1 < Ei(o:) < E(o:). 

Also, 

yi(o:) = n - 1 - 2Ei(o:) . 

The probability that yi(o:) takes on value n - 1 - 2e is the probability that there were 

e component errors in the probe with the i -th component being correct, summed 

with the probability t~at there were e + 1 component errors in the probe with the 

i -th component being in error. Hence, 
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pn 

P {yi(a) = n -1- 2e} = I; P {Ei(a) = e I E(a) = d} P {E(a) = d} 
d=O 

= P { E/ a) = e I E (a) = e } P { E (a) = e } 

For 0 < e < pn - 1, 

(~) P { Y/tl = n - 1 - 2e } = ~ --- + e + 1 

n E (~) n 
v=O 

And for e = pn , 

Hence 

P { yi(a) = n - 1 - 2pn} = 
( n ; 1) 

f (~) 
v=O 

P {I Y/a)_ n(l-2p) I > 2n 8} = P {Ei(a) < pn - n 8 -li1} 

" 

f (~) 
v=O 
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< 2pn 

[ J
n 6 1 

< 2p2n _P_ 
1 - p 

D 

Thus, as n -+ oo, with probability approaching one the probes are chosen from 

the surface of the Hamming balls of radii pn surrounding the fundamental memories. 

Rewriting equation (6.5.42), we will have a row sum violation only if 

zi(a) < -n (1 - 2p) - (1 - g )m - [Yi(a) _ n (l - 2p)]. 

Set n P = n (l - 2p). Using lemma (6.5.3), it is now easy to demonstrate that lemmas 

(6.5.1), and (6.5.2) concerning the distribution of row sum violations continue to hold 

with n P being substituted for every occurrence of n in the lemmas. The following 

theorem then follows as before. 

Theorem 6.5.2. Let 6 > 0 be fixed, and let 0 < p < 1/2 be any given radius of 

attraction. Then, as n -+ oo, if: 

(1) If m n (1 - 2p)2 [l + 
2 log n 

} log log n + 1 - g +log (8v141r) + o(-1-)], 
log n log n 

then the expected number of vectors u(a) whose entire Hamming sphere of radius pn 1s 

directly attracted to u(a) is asymptotically m e -0. 
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{2) If m - n (1 - 2p)2 [l + 
4 log n 

f log log n + }{I - g ) + } log (88J21r) l 
log n + 0 

( lo~ n ) ' 

then the probability that all m vectors are fixed is asymptotically e - 8• 

Corollary 6.5.3. 

18 
(1-2p)2 n 

The storage capacity (weak sense) of the outer product algorithm 

2 log n 
1 for one-step synchronous attraction over a radius 0 < p < 2 ; 

specifically, as n -+ oo: 

(1) For every fixed 0 < f < 1, the expected number of fundamental memories that 

are attractors over a radius pis m - o(m) if m = {l - 2P)
2 

n (1 _ <:). 
2 log n 

(2) For every fixed E > 0, the expected number of fundamental memories that are 

attractors over a radius pis o(m) if m = (l - 2P)
2 

n (1 + <:). 
2 log n 

Corollary 6.5.4. 

is (1-2p)2n 

The storage capacity (strong sense) of the outer product algorithm 

4 log n 

1 for one-step synchronous attraction over a radius 0 < p < 2 ; 

specifically, as n -+ oo: 

(1) For every fixed 0 < E < 1, the probability that all the memories are attractors 

over a radius p approaches one as n approaches infinity if m = (l - 2P)
2 

n (1 - <:). 
4 log n 

(2) For every fixed E > 0, the probability that there is at least one fundamental 

memory which is not an attractor over a radius p approaches one as n approaches 

infinity if m = (l - 2P)
2 

n (1 + <:). 
4 log n 

C. Non-Direct Convergence 

There is a loss· of a factor of (1 - 2p )2 in the storage capacity of the outer 

product algorithm, in requiring the fundamental memories to be not only fixed points, 

but in addition, attract over a ball of radius 0 < p < _!_ directly, in a single 
2 

synchronous step, or alternatively, in asynchronous fashion monotonically correcting 
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the erroneous components. Direct convergence places rather stringent constraints 

upon the system, and we expect that improvements in storage capacity could be 

effected if multiple synchronous steps (or alternatively, non-direct asynchronous 

convergence, where occasional erroneous steps are taken) were to be allowed. In point 

of fact, it turns out that allowing non-direct convergence of this sort results in 

capacity gains that countervail the losses in capacity that accrued for single-step 

synchronous attraction. 

Fix a small / > 0. If the number of fundamental memories is now chosen to 

be m = (1 - 2p*)2 l n , then by theorem (6.5.2), each fundamental memory 
4 og n 

attracts directly (one synchronous step, or monotonic asynchronous convergence) over 

a Hamming sphere of radius p * n surrounding the memory. Let p close to, but less 

than a half, be the desired radius of attraction. Extending lemma (6.5.1) for the one­

step synchronous convergence case (i.e., replacing each occurrence of n in equation 

(6.5.2) by n P = (1 - 2p)2 n ), we obtain that the asymptotic probability that a single 

component is erroneously labeled is 

1 1 - 2p * e -(1 - 2p)(l - u) 
v12; 1 - 2p 

- (l-2p)2 

1 n (l-2p•)2 

~ 
--+Oas n --+oo. 

(6.5.43) 

Consider first the multiple step synchronous case. The probe vector has 

essentially pn components incorrectly specified. The first synchronous state transition 

will map the probe vector to a state where essentially n T components are wrong, with 

high probability. For any fixed p *, however small, we can choose n large enough so 

that the probability of component misclassification T from equation (6.5.43) becomes 

smaller still. Thus, for large enough n , the probe vector will be mapped within the 

confines of a Hamming sphere of (small) radius/ surrounding the memory. By choice 

of m as dictated by th;orem (6.5.2), we have that the next state transition converges 

directly to the fundamental memory from almost all states in the Hamming sphere of 

radius p *, with very high probability. Th us, for every fixed (small) p *, and every 

choice of attraction radius p < ~, however large, we can find n large enough so that 
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states in the Hamming balls of radii p surrounding the memories will converge to the 

corresponding fundamental memories within two synchronous state transitions. Now, 

keeping p fixed we allow p* to approach zero. Thus, for every fixed attraction radius 

0 < p < ~, the (1 - 2p)2 term can be dropped from the capacity expression for large 

enough n. 

The above result also holds for the asynchronous case. In this case, however, it 

is possible for state transitions to result in wandering outside the pn -sphere, where the 

expression for T may not be valid. To compensate for this possibly deleterious effect, 

we resort to the following artifice to ensure that the state transitions are confined 

within the pn -sphere with high probability. Fix a small positive quantity 1J > 0. 

Now consider state vectors in the smaller ball of radius p(l - 77)n. For n large 

enough, we can ensure that r is smaller than 77. Now, starting from the smaller ball, 

we will be confined within the larger pn -ball with high probability. The estimate for r 

holds good here, so that we can expect ultimate convergence as above. 

In fine, the capacity (in the strong sense) of the outer product algorithm for 

non-dire ct attraction over any specified radius 0 < p < 
2
1 , is n Relaxing the 

4 log n 

capacity definition to the weak sense, effects a doubling in capacity to 
1 

n 
2 og n 

1 To summarise, for any fixed radius of attraction 0 < p < 2 , and any fixed 

0 < t < 1, for large enough n: 

(1) Almost all of the pn -sphere around almost all the m fundamental memories may 

be ultimately expected to be attracted to the correct fundamental memory if the 

number of memories are less than or equal to (1 - t) n . If the number of 
2 log n 

memories is further constrained to be less than or equal to (1 - t) n , then with 
4 log n 

high probability almost all of the pn -spheres surrounding each fundamental memory 
, 

are ultimately attracted. 

(2) At most an asymptotically negligible fraction of the fundamental memories will 

even be fixed points if the number of memories exceeds (1 + t) n . If the number 
2 log n 
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of memories is larger than (1 + E) n , then with high probability there will be at 
4 log n 

least one fundamental memory that is not a fixed point. 

An important feature of these results is that they are not dependent on the 

specified attraction radius. We can specify an attraction radius p as close to a half as 

we wish, but the asymptotic capacity results for the case of non-direct convergence 

continue to hold in toto. Of course, the closer p is to a half, the larger n will have to 

be before the predicted behaviour begins to emerge. This is in sharp contradistinction 

to the nature of the capacity results for direct one-step synchronous attraction. For 

this case, as we saw, the capacity deteriorates rapidly as the attraction radius p 

increases toward a half. The relative behaviour of the capacities under these different 

operating conditions gives rise to some interesting consequences. 

Let us assume that (1 - 2p)n components of a probe are known to be correct, 

while the remaining 2pn components are unreliably known, and are treated as "don't 

cares." We will assume a forced choice scenario, wherein, values are assigned 

randomly to the "don't care" components, so that we end up on average with pn 

incorrect components, and (1 - p)n correct components in the probe. A viable 

procedure would be to proceed by clamping the accurately known components at their 

known values. This, however, does not really improve performance, as from the 

preceeding discussion, convergence is pretty rapid in any case. 

An alternate approach would be to disable the unknown 2pn components 

initially, and then assign them values based upon computations involving solely the 

correct components. It turns out that this procedure does not affect behaviour for 

non-direct convergence, as the asymptotic behaviour does not depend upon the actual 

specified attraction radius. For the case of direct convergence, however, the picture 

changes somewhat. The capacity where we assume a forced choice for the "don't 

care" components is (1 - 2p)2 n . (We adopt the strong sense definition of 
, 4 log n 

capacity for simplicity. The results hold equally well for the weak sense definition.) 

This corresponds to the potential seen by any one neuron having a mean-to-standard 

n~ 
deviation ratio of asymptotically (1 - 2p) --. If the "don't care" components are 

m~ 
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disabled initially, however, the mean-to-standard deviation ratio goes up to 
1/2 

(1 - 2p) 1
/

2 
: 

112
. Disabling the unreliable input components hence results m an 

increase in the capacity of the outer product algorithm to (1 - 2p) n for 
4 log n 

attraction over a radius p in a single synchronous step. 

D. Error Tolerance 

The order n 
capacities that we have obtained for the outer product 

log n 

algorithm are not too niggardly, especially as they carry with them considerable error 

correction and attraction capability. From the viewpoint of the number of degrees of 

freedom used-the n 2 weights-however, the result gives us pause, as the storage does 

not appear to be very efficient. 

One answer to the problem consists in seeking alternative algorithms which 

pack information much more densely into the neural structure, and in the next chapter 

we present an algorithm which stores essentially a constant number of bits per 

interconnection. An alternate way to improve the capacity of the outer product 

algorithm is to make storage conditions a little less stringent. The culprit in this 

instance is our requirement that the fundamental memories be fixed points of the 

system. If we are willing to tolerate errors in recall of the fundamental memories, then 

the capacity of the outer product algorithm can be greatly increased [8]. We pursue 

this idea briefly, in this section, and outline the expected capacity under error tolerant 

conditions. We go into the issue of error tolerant associations in much greater detail 

in chapter IX. 

Let an attraction radius 0 < p < ~ be specified, and let 0 < E < p be the 

specified error tolerance. The error tolerance E prescribes (small) Hamming balls of 

radii E surrounding ea.ch memory, and we require that states lying in the (large) 

Hamming spheres of radius p surrounding the memories be mapped into the epsilon 

ball, and remain there. This just formalises the fact that we are willing to tolerate a 

few component errors in the retrieved memories, and the maximum amount of allowed 

component errors is En. 
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Now, as in lemma (6.5.1), the probability that a component is in error with the 

probe a distance pn from a memory is given asymptotically with n by 

( 
n 1/2 l 

T ,...._, <J> - (1 - 2p) m 1/2 . 

We assume for simplicity that a synchronous mode is in force, and that the outer 

product matrix of weights is zero diagonal. The expected number of component errors 

in each memory per synchronous iteration is hence n <!> (- (! - 2p) : 
1

:: l · We 

denote this quantity by /. If p > /, then the algorithm is moving in the direction 

of collapsing the balls of attraction into smaller balls. If p < / on the other hand, 

the algorithm is proceeding in the direction of stretching the balls of attraction 

outward. By lemma (6.5.3), we had seen that most of the volume of Hamming balls lie 

on their surface, with their interiors contributing very little of the volume. Hence, if 

the attraction balls surrounding the fundamental memories are to be collapsed into a 

smaller tolerance ball of radius E, we will require equilibrium between the diverse forces 

stretching and compressing the ball. We will hence require that 

If a number of memories linear in n, with m = Kn , is admissibile, and is to result in 

storage of the m fundamental memories with no more than En errors in components, 

then for equilibrium we need 

1 - 2E 
,,(;; l 

For a given error tolerance E, the above equation can be solved uniquely for K. 
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Thus, through the expedient of introducing error tolerance, we can actually 

increase the storage capacity of the outer product algorithm until it is linear in the 

number of neurons. The preceeding constant IC is very small, however, and diminishes 

very quickly as E becomes small. 

A note of discord in the happy performance of the algorithm is struck by the 

fact that, while states in the large ball of attraction are typically mapped to the 

surface of the small ball of error tolerance, states within the small ball of tolerance are 

also mapped to the surface of the ball. This is a consequence of the lopsided geometry 

of Hamming space, where the surfaces of spheres contain essentially all the mass of the 

sphere. This is illustrated schematically in fig. 5.4 (after Ref. [l]). 
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CHAPTER VII 

SPECTRAL APPROACHES AND 
COMPARISONS 

1. TAILORED SPECTRA FOR MEMORY ENCODING 

The outer product approach for storing memories is simple, and robust. The 

memory capacity that we derive from the scheme is, however, not quite as much as we 

could have hoped. Specifically, in the case of strong attraction where we require to 

store the fundamental memories as fixed points, the storage capacity of the outer 

n n 2 

product scheme was seen to be of the order of -- memories, or -- bits. (Since 
log n log n 

each memory consists of n constituent bits.) On the other hand, there are potentially 

n 2 degrees of freedom available in choosing n 2 weigh ts for a fully interconnected 

system. The outer product scheme hence has a capacity of the order of -
1
- bits per 

log n 

interconnection. An ever decreasing amount of information (in bits per 

interconnection) is stored in the interconnections, as the number of interconnections 

increase. By intuitive degrees of freedom arguments, on the other hand, we might 

hope to be able to store at least a constant amount of information per interconnection, 

so that the system is cost effective. (This is particularly important from the point of 

semiconductor implemeJltations of these networks; as has been long known, the major 

cost component in large planar VLSI systems is the interconnections [1].) It is hence 

important from the viewpoint of the cost of additional interconnections that more 

information be stored m the interconnections than the 0(-1-) bits per 
log n 
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interconnection that was obtained for the outer product algorithm for memory 

encoding. 

In this chapter we examine an algorithm reported previously by Venkatesh and 

Psaltis [2] and Personnaz, et al., [3], for encoding memories, wherein we achieve 

information storage of the order of 1 bit per interconnection in the neural network by 

suitably shaping the spectrum of the interconnection matrix of weigh ts. 

A. A New Perspective of the Outer Product Scheme 

We again assume that m memories u(ll,u(2l, ... , u(m l E IB" have been chosen 

randomly. For strict stabillity, we require that (.ti. o W)(u(a:)) = u(a) for a=l, ... ,m. 

Specifically, if Wu(a:) = v(a:) E Ill n , we require that sgn (vi (a:)) = ui (a) for each 

i=l, ... ,n. 

For the outer product scheme for generating the elements of the weight matrix, 

we have from equation (6.1.1) 

n n m 
~ (w ) u _(a)= ~ ~ u.(fl)u .(fl)u .(a:) 
L.J op . . J L.J L.J ' J J 

j =1 lJ j =ls =1 
j oFi 

= (n-l)ui(a:) + I; I; ui(fllu/fllu/°'l 
BoFT foFj 

where E(8ui(a)) = 0, Var (8ui(a:)) = (n -l)(m -1). Hence 

E( I ( n - l) u: ( °' l I ) 

(Var ( &ui (a:))) 
172 

(7.1.1) 

where we require that m = o(n) from theorem (6.5.1) so that the memories are stable 
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with high probability. We can hence write 

where 8u(a) has components 8u/r) whose contributions are small compared to ui(a), at 

least in a probabilistic sense. In essence, the memories u(a) are "eigenvectors-in-mean" 

or "pseudo-eigenvectors" of the linear operator wop' with "pseudo-eigenvalues" n -I. 

B. Constructive Spectral Approaches 

In this section we demonstrate constructive schemes for the generation of the weight 

matrix which yield a larger capacity than the outer product scheme at the cost of 

increased complexity in the construction of the weight matrix, and possible difficulty in 

updating it if new memories are desired to be stored. (If a small amount of extraneous 

storage of partial results from the previous stage is present, however, Greville's 

algorithm [4] allows of a systematic and easy updating of the weight-matrix when a 

new memory is to be stored.) This construction ensures that the given set of memories 

is stable under the algorithm; specifically, we obtain linear operators W 8 which ensure 

that the conditions sgn ( W 8 u(a)) i = ui (a), i =1, ... , n , r =1, ... , m are satisfied for 

m < n. The construction entails an extension of the approach outlined in the 

previous section so that the memories u(a) are true eigenvectors of the linear operator 

W 8 • Related approaches that have been considered before include those of Kohonen 

[5], who considers a purely linear mapping which is optimal in the mean-square sense, 

and Poggio's polynomial mapping technique [6]. Another scheme which seems to be 

formally related to our approach is the interesting orthogonalization technique 

proposed by Amari [7]. 

We now utilize a result due to J. Komlos on binary n -tuples, to establish two 

results which have a direct bearing on the construction of the weight matrix. 
; 

Theorem 7 .1.1. 

(1) For all randomly chosen binary (-1,l) n -tuples u(ll,u(2l, ... , u(m) E IDn with 

m < n, define the n X m (-1,1) matrix U = [ u(llu(2) · · · u(m)]. Then 
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P {rank(U) = m}-+ 1 as n -+ oo. 

(2) Let En be the family of bases for lR.n with all basis elements constrained to be 

binary n -tuples; (i.e., E = { elie2, ... , en} E En iff elie2, ..• , en E IBn are 

linearly independent). Then asymptotically as n -+ oo, almost all vectors u E IBn 

have a representation of the form 

n 

u = E aiei , ai ~ 0 for each j=l, ... ,n , 
i=l 

for almost all bases E in En . 

Proof. 

(7.1.2) 

(1) This is essentially Komlos' result [8]. Let An denote the number of singular 

n X n matrices with binary elements (-1,1). Then Komlos demonstrated that 

An 
Jim --2 = 0. 
n ->oo 2n (7.1.3) 

(Komlos' result was for n Xn(0,1) matrices, but it holds equally well for n Xn(-1,1) 

matrices.) Let An ,m denote the number of n Xm (-1,1) matrices with rank strictly 

less than m. Then we have that An ,m 2n (n-m l < An, so that from equation (7.1.3) 

we have that An ,m 2-nm -+ 0 as n -+ oo. It then follows that asymptotically as 

n -+ oo, almost all n X m (-1,1) matrices with m < n are full rank. This proves the 

first part of the theorem. 

(2) We first estimate the cardinality of Sn: 

Let en = {T={dl>d2, ... , dn }c IBn Tis a linearly dependent set}. 

We have 
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2•' [I - 2~ l [I - 22. J · .. 
(7.1.4) 

Let T-{ d 1,d2, ... , dn} E en. Then [ d1d2 · · · dn ] is a singular matrix. 

Each permutation of the column vector d1,d2, ... , dn yields another distinct singular 

matrix, so that n ! I en I < An. Using this result with equation (7.1.4) we get 

(
l- n(n-l)l 

2n -1 

An 1 
1 - -- ------- < 

2n2 
< 1 

Define the sequence {Kn} by 

(7.1.5) 

Then from equation (7.1.3) we have that Kn --+ 1 as n --+ oo. 

Define a sequence of random variables {Sn } n00
= 1 such that Sn takes on the 

value zero if a randomly chosen binary n -tuple u E mn has the representation in a 

randomly chosen basis E E Bn , and one otherwise. To complete the proof it suffices 

to show that E {Sn } = P {Sn = 1} --+ 0 as n --+ oo. 

Fix u E fin, E E En, and assume that does not hold. Then :3 j E {1,2, ... ,n} 

s.t. a i = 0. Assume without loss of generality that an = 0. Then 

n -1 , 

u= .E aiei, ai >O. 
i =l (7.1.6) 
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We hence have that { elie2, ... , en -l>u} E en . An overestimate for the 

number of choices of u and E such that (7.1.6) holds is [:~I ]2•. Also, the total 

number of ways that we can choose E E Bn, and u E IBn is I En I 2n. Hence, from 

this and equation (7.1.5), we have 

P {sn = l} < 
nrn <-------

( 
n -1 ] /\, 1---

n 2n 

By definition of /Cn, we now have that P {Sn = 1} -+ 0 as n -+ oo. 0 

We use these results to establish the validity of the following schemes for 

constructing the weight matrix W 8 • 

Fix m < n, and let >.(1),>..( 2l, ... , >.(m) E JR+ be fixed (but arbitrary) positive 

real numbers. Let u(ll,u(2l, ... , u(m l E IBn be the m randomly chosen memories to 

be stored in the memory. Assume u(1l,u(2l, ... , u(m) are linearly independent (over 

IR). 

STRATEGY 1: Define the m X m diagonal matrix A= dg[>.(ll,>.(2), ... , >.(ml], and 

the n X m (-1,1) matrix of memones U = [u(llu(2) · · · u(m l]. Set 

WB = UA( uru r1
uT. 

STRATEGY 2: Choose any (n -m) vectors u(m +1l,u(m +2l, ... , u(n l E IBn such that 

the vectors urll, ... , u(m l,u(m +ll, ... , u(n) are linearly independent. Define the 

augmented n X n diagonal matrix Aa, and the augmented n X n (-1,1) matrix U a by 
-· 

Aa = dg[>.(ll, ... , )..(m l,o, ... ,O], and U a = [u(lJ, ... , u(m l,u(m +l), ... , u(n l]. Set 

WB = Ua Aa ua-1· 
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Note that in both strategies, {A (1),A (2l, ... , A (ml} is the spectrum of the linear 

operator W,, and the memones u(ll,u(2l, ... , u(m) are the corresponding 

eigenvectors. Furthermore, there is considerable flexibiity in the choice of the ( n -m ) 

linearly independent vectors u(m +1),u(m +2l, ... , u(n) of strategy 2. (In fact, from 

theorem (7.1.1), almost all choices of (n -m) vectors will satisfy linear independence 

asymptotically.) Alternative schemes can also be obtained by combining the two 

strategies, viz., by choosing fewer than (n -m) additional linearly independent vectors 

and then using the pseudo-inverse scheme of strategy 1 on the augmented matrix of 

memories. In fact, for m =n , the two strategies are identical. 

The crucial assumption of linear independence of the memories is vindicated by 

theorem (7.1.1). Specifically, rank(U) = m, and rank(Ua) = n for almost any choice 

of memories, so that the inverses are well defined. 

C. Examples 

We consider the same example as we did for the outer product algorithm. 

Again n = 5, m = 3, and the fundamental memories are chosen to be 

1 1 -1 

1 -1 1 

u(ll = 1 
' 

u(2)= -1 
' 

u(3)= -1 

1 1 -1 

1 -1 -1 

We choose W such that u(1l, u(2l, and u(3) are each eigenvectors of W, with common 

positive eigenvalue )., = 2. We form W according to the pseudo-inverse technique of 

strategy 1. Then 

1 0 0 1 0 

0 'i. 0 0 0 

W= 0 0 1 0 1 

1 0 0 1 0 

0 0 1 0 1 
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Note that the matrix is symmetric, and that unlike the outer product algorithm, the 

weight matrix is not necessarily zero diagonal. 

It is simple to verify that u(l), u(2l, and u(3) are indeed eigenvectors of W with 

eigenvalue ).. = 2, so that the three fundamental memories are indeed fixed points. If 

the diagonal elem en ts are replaced by zeroes to enhance the attraction dynamics, it 

can be seen that u(l) and u(3) remain fixed points. Fundamental memory u(2) IB, 

however, no more a fixed point. 

2. ALGORITHM CHARACTERISATION 

A. Features 

(1) The memorz"es are fixed points for all spectral strategies. 

For strategy 1 we have for each a=l,2,. . .,m, 

as )..(a)>O so that sgn {>.(a)ui(a)) = ui(a). Similarly, for strategy 2 we have 

Thus the memories are stable whichever strategy is adopted. 

{2} The storage capacity of the scheme is n for all strategies. 

This follows immediately, as a linear transformation can have at most n 

linearly independent eigenvectors in an n -dimensional space. 

, 
{3} A small number of additional stable states are created by both strategies. 

Let us, for simplicity, consider the eigenvalues >.(a) to be equal to some value 

>. > 0. Let r = span { u(ll,u(2l, ... , u(m l} c IR n . Clearly, if u belongs to the 

restriction of r to run, then u is also stable for both strategies. (In fact, u is also an 
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eigenvector of W,, with eigenvalue >-..) Since the number of binary vectors that can 

be constructed as a linear combination of the memories is the same for both strategies, 

it follows that the n um her of additional stable states created in this fashion will also 

be the same. Furthermore, by theorem (7.1.1), there will not be many such stable 

states created if m < n. Note, however, that the number of additional stable states, 

while small compared to the total number of states, may be quite numerous compared 

to m . In addition there will be some more stable states created in more or less 

random fashion in both strategies. Such stable states satisfy the more general stability 

requirement: sgn (Wu)i = ui for each i =I, ... ,n, and are not eigenvectors of the 

linear operator W. 

(4) Both strategz"es have some capaci"ty for positive recognition of unfamiliar starting 

states. 

Let <I> C m.n denote the null space of W. For strategy 1, <I> is the orthogonal 

subspace tor, while for strategy 2, <I>= span{u(m+1l,u(m+2l, ... , u(nl}. If u E <I>, 

we have Wu= 0. Consequently, at least for a synchronous algorithm, (..::lo W 8 ) 

will iteratively map u to some vector un E IBn for all u E <I> (or else go into a limit 

cycle). The vector Un in this case represents a positive indication that the starting 

state was not familiar. Again, for both cases, the restriction of <I> to mn will have 

small probability of occurrence as a consequence of theorem (7.1.1). 

The storage capacity of all spectral strategies is clearly the same, and in light of 

the previous remarks we expect them to have similar attraction behaviour. Note, 

however, that there is a computational advantage in choosing strategy 1 as it involves 

just a m X m matrix inversion as opposed to the n X n matrix inversion required in 

strategy 2. Further, the choice of the null space in strategy 2 involves careful selection 

of the additional (n -m) vectors which span the null space; care should be taken to 
, 

ensure that these vectors are well separated (in a Hamming distance sense) from the 

memories. Vectors in the null space in strategy 1 are, however, guaranteed to be 

maximally separated from the memories as they are orthogonal to them. In what 

follows we assume that we construct W according to the prescription of strategy I. 
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B. Attraction 

Having established that storing the memones as eigenstates of the linear 

operator can increase the storage capacity to n , we now probe the question of whether 

there exists a region of attraction around each memory, so that the neuronal network 

functions as a content-addressable memory. 

We first examine the behaviour of the system operating in the synchronous 

mode. Let u(a) be a stable state of the system, and let u = u(a) +bu be a vector such 

that llbull << llu(a)ll =.Jn. Then we have Wu= Wu(a) + W8u. As Wis a linear 

transformation, ::l k s.t. llW8ull < k ll8uli, so that for ll8ull sufficiently small, the 

perturbation caused by the term is small compared to l!Wu(a)ll = )...(al.Jn. Thus, for 

small enough 8u, we expect the vector u to be mapped onto u(a) by the algorithm. We 

would then anticipate that there exists a small region of attraction around the stable 

state u(a)_ 

To expand on this theme, we assume that we construct a weight-matrix using 

the pseudo-inverse scheme of strategy 1. Let us also assume that the spectrum of W 

is chosen to be m -fold degenerate, so that )...(l) = )..(2l = · · · = )... (ml = )... >0. Then 

we claim that l!Wxll < >..!Ix 11 for all x E IR n . To see this we write x m the form 

x = X1 + Xz, where X1 Er, and Xz E <I>. (Recall that we defined 

f=span{u(ll,u(2l, ... ,u(m)}, and <I> was the orthogonal subspace to f.) Then 

Wx = Wx1 = >..x 1. Also llxll 2 = llx1ll 2 + llx2 ll 2 > llx111
2

. Hence, 

llWxll = >..llx1ll < >..llxll. 

Now, if u(a) is a stable state of the system, and u = u(a) + 8u, then 

Wu = >..u(a) + Wbu, so that u will be mapped onto u(a) by the adaptation algorithm 

only if the perturbation term W8u is sufficiently small. As a measure of the strength 

of the perturbation, we define the signal-to-noise ratio (SNR) by 

llWu(a)ll 

llWbull 
ll~ll ; .-a high SNR implies that the perturbation term is weak, and 

conversely. From the discussion m the preceding paragraph, we have that the SNR 

> .Jn If d 
- ll8ull . 

denotes the Hamming distance between u and u(al, then 

ll8ull = 2Vd. For vectors u in the immediate neighbourhood of u(al, we have 
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Vn d << n. We hence obtain a large SNR which is lower bounded by -- which is 
2../d' 

indicative of a small perturbation term (compared to the "signal" term). It hence 

follows, insofar as we accept the SNR to be an accurate barometer of attraction 

behaviour, that the stable state u(a) exercises a region of attraction around it. 

For asynchronous operation, a more direct argument can be supplied for the 

existence of a flow in the state space towards stable states. We will work with 

variants of the matrix W chosen according to strategy 1 from the last section, and 

utilize a mode of analysis patterned after that of Hopfield [9]. The energy functional 

corresponding to a particular state u is 

E = - ~ ( u , Wu ) = - ~ :t wii ui u i 
i ,j=l 

The change in energy corresponding to a single bit change m the k-th position, 

uk -+ uk + 8uk where 8uk E {-2,2} is 

(7.2.1) 

We first consider the case where the spectrum of W is m -fold degenerate, so 

that )..(1) = >..(2) = · · · = )._(m) = ).. >0. In this case we have 

wT = U(UT Ut1AUT = UA(UT ur1uT = w, so that w is symmetric. 

Let us first consider the case where we render the diagonal elements of W to be 

zero so that wa = 0. The first and second terms for fl.E are identical; further, the 

algorithm for changing states ensures that 8uk and :L;wkj ui have the same sign, so 

that fl.E lS non-positive, and the asynchronous algorithm hence proceeds in a 

direction towards decr<#asing the energy. As the energy is a bounded functional, we 

have convergence to a stable state. 

Relaxing the zero-diagonal restriction we see that the flow is again towards the 

local energy minima centered at the memories, but with an added perturbation term 



-254-

n n n 

due to wick. Let (UT Ut1 = [ars ]. Then wu = >. E arr + A E E ar8 uk(a)uk(.B)_ 
r =1 r =ls =1 

B~r 

The diagonal terms, arr, of (UT Ut1 are positive because (UT Ut1 is symmetric 

positive definite. Hence Wu consists of a strong positive term and a perturbation term 

with zero mean. Consequently LiE is typically less than zero. Also note that W is 

non-negative definite so that the energy is always non-positive. All vectors in the null 

space of W have zero energy so that the flow in state space is away from these 

vectors. Vectors in the null space hence constitute repel/or states. 

The above argument demonstrates that the asynchronous algorithm will 

typically generate flows in state space that mm1m1ze the energy functional. By an 

argument similar to that for the outer product scheme, we can show that the energy 

attains (local) minima at stable memories, so that a region of attraction around the 

memory is established. In the general case, however, this does not preclude the 

possibility of lower energy stable states being incidentally created close to a memory, 

so that the attractive flow in the region is dominated by the extraneous stable state. 

For the case of the m -fold degenerate spectral scheme, however, this does not happen, 

and, in fact, global energy minima are formed at the memories. We demonstrate this 

in what follows. 

For each memory u(o:), the energy is given by 

m 
Let u E llln be arbitrary. We can write u in the form u = E a(o:)u(o:) + uo, where 

r =1 

u 0 is a vector in the orthogonal subspace to the space spanned by the m memories 

u(ll,u(2l, ... , u(m l, and a(a) are real scalars. Then the energy is given by 
, 

E(u) = - ! ( u, Wu)= - ! ( t a(a)u(a) + u 0 , ~ >.a(o:)u(a)) 
~ ~ r =l r =1 
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m 
= - >-ii :E aJa)u(a)ii 2 

r =1 

m 

smce llull2 = II :E a,(a)u(a)ll 2 + lluoll2 by the Pythagorean theorem. We've hence 
r =1 

established that E(u) > E (u(<:>:)) for any choice of vector in ID" so that the 

contention that the memories form global energy minima in the spectral scheme is 

established when the spectrum is m -fold degenerate. This is not true in general for 

the outer product scheme. 

C. Modifications and Spectral Choice 

We saw in the last section that, with a choice of constant, positive eigenvalues, 

we obtain the desired flow m state space towards the memories. However, as m 

approaches n , the number of extraneous stable states created also increases. For 

m <n the number of these stable states is still small compared to the total number of 

states-though perhaps large compared to m -by virtue of theorem (7.1.1); for m =n 

however, all the states become stable, and W is exactly the identity matrix. 

It is thus advantageous (even when m < n) to put in some scatter m the 

eigenvalues so as to reduce the number of additional stable states created. (Linear 

combinations of eigenvectors will no longer be eigenvectors as the spectrum is no 

longer degenerate.) The choice of eigenvalues affects the radius of attraction of the 

individual stored memories, and an optimal choice of eigenvalues involves a trade-off 

between storage capacity and the radius of attraction around each memory in order to 

satisfy the requirements of a specific problem. In the next section, we investigate 

certain ad hoc metho& for selecting the eigenvalues which yield good experimental 

results. 

When the scatter of the eigenvalues is small compared to their mean value, A, 

we expect the flow in state space to be still towards the minimization of energy. 

Essentially, if I A(a) - A i < E, where E is small compared to A, then there is an 
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additional perturbation term in equation (7 .2.1) for the change in energy, and this 

term is no larger than (t-/>.) :E I wkj I . For small enough perturbation of the 

eigenvalues (small t:), we do not expect a substantial change in the overall flow in state 

space towards minimizing energy. At the same time, however, an improvement in the 

attraction radius is effected as the number of additional stable states created is 

expected to decrease. In the following we argue heuristically why we expect this to be 

true. 

The additional stable states that are incidentally created will be scattered 

around the state space of the system, and regions of attraction will be consequently 

formed around them. If such a state is formed close to one of the memories, the region 

of attraction centered on this incidental stable state will compete with the region of 

attraction centered on the memory, with a consequent decrease in the attraction radius 

of that memory. Decreasing the number of additional stable states created by 

introducing a small amount of scatter in the eigenvalues results in a smaller 

probability that additional stable states are created close to the memories. Thus, we 

expect that introduction of a small amount of scatter in the eigenvalues improves 

overall performance. 

For large perturbations of the eigenvalues around their mean, the energy 

functional is no longer appropriate for the description of the flow in state space. The 

memories, however, are still stable, and exercise a small region of attraction around 

m 

them. If u E IBn , we again write u = E O'r u(a) + u 0 , where u 0 lies in the null space 
r =1 

m 
of W. We then have Wu = :Ear >.(a)u(a)_ It can be seen from the above expression 

r=l 

that the memories corresponding to larger eigenvalues tend to dominate the flow in 

state space. To quantify this a little, we rewrite u as u(a) + 8u. Let the Hamming 

distance between u(a) and u be d. Again, as W is a linear operator, 3 

k s.t. llWxll < k llx II V x E IR. n. This yields a lower bound for the signal-to-noise 

ratio: SNR = IJ~u(a:JI > >.(a)~. The signal-to-noise ratio is lower bounded by a 
W8u 2k d 

quantity that is inversely proportional to the square root of the Hamming distance, 

and directly proportional to the eigenvalue. Hence, for a given Hamming distance, 
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increasing the eigenvalue improves the SNR, and hence improves the attraction radius. 

Th us, in general, we have that the radius of attraction increases as the corresponding 

ei"genvalue increases. 

In the next section we consider a simple ad hoc technique for introducing a 

small degree of scatter in the eigenvalues. The spread in the eigenvalues is obtained 

by using the correlations (inner products) between the memories. Let Prs denote the 

mner product between the memories and I.e.' 
n 

Prs = ( u(al,u(P)) = I; u/alui(Pl. We then choose the eigenvalues )..(a) according to 
i=l 

the prescription 

~Prs 
)..(a)= n - 8 ;;tfr 

m-1 
, r =1, ... ,m . (7.2.2) 

The rationale behind the above scheme is as follows: Prs is a measure of the 

distance between the memories u(a), and u(P). Specifically, Prs achieves its maximum 

value of n when the memories are identical, and its minimum value of -n when the 

memories are negations of one another; a value of Prs =0 indicates that the memories 

are n /2 apart. If two of the memories are close to each other, (i.e., Prs is large and 

positive), we have from equation (7.2.2) that the corresponding eigenvalues would be 

roughly equal. As a consequence, neither memory will dominate the attractive flow in 

state space, so that both memories would have comparable radii of attraction; i.e., one 

memory will not poach upon the region of attraction of the other. (Conversely, if the 

memories are far apart, a relatively large disparity in the corresponding eigenvalues is 

possible, but this would not seriously affect the attraction radii as the memones are 

well separated.) The choice of eigenvalues according to the above "correlation" 

method tends to decrease the eigenvalues corresponding to those memories that are 
; 

close (in Hamming distance) to many other memories, and to increase the eigenvalues 

corresponding to those memories which are remote from most of the other memories. 

(Note that there exists a one-to-one correspondence between the Hamming distance, 

drs, and the inner product, Prs, between two binary vectors, Prs = n -2drs, so that 
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equation {7.2.2) can be formulated equally well m terms of the Hamming distance 

between the memories.) 

We now demonstrate that the scatter in the eigenvalues introduced by the 

method of equation (7.2.2) is small. We have for r -1, .. ,m, 

and 

{ (al} _ 1 { ~ ~ } _ n Var A - 2 E L.J L.J Prs Prt - -- · 
( m -1) s i' rt i' r m -1 

(Recall that the memones are assumed to be samples taken from independent 

sequences of Bernoulli trials.) The eigenvalues are identically distributed random 

variables, with mean n , and variance _n_. The mean-to-standard deviation is hence 
m-1 

given by .Jn (m -1), so that the expected scatter is small for large n. Note that the 

scatter in the eigenvalues decreases as the number of memories stored increases. As 

very small perturbations in the eigenvalues would not affect the behaviour, the rate of 

decrease of the scatter of the eigenvalues could be reduced as m becomes large by, for 

example, replacing (m -1) by Jm -1 in equation (7.2.2). 

Equation (7.2.2) suggests a simple method of introducing scatter into the 

eigenvalues. Other methods are of course clearly possible, whereby we could pay more 

attention to high correlation terms as these are potentially more damaging. 

3. COMPUTER SIMULATIONS 

From the results of the previous sections, the storage capacity of the spectral 

algorithm is seen to be considerably more than that of the outer product scheme. A , 
question at issue in determining their relative performance is what the attraction 

radius is for the two schemes, and how rapidly it dwindles with increases in the 

number of memories stored. Sharp analytical bounds have been difficult to arrive at in 

the spectral case-in part because of the difficulty of appropriate statistical modeling. 



-259-

If a Gaussian conjecture holds for the weight matrix in this case, results similar to that 

for the outer product scheme can be derived; the larger storage capacity of the spectral 

scheme would then imply that the attraction radius would tail off more slowly with 

increase in the number of memories stored. 

Trends observed in computer simulations have bolstered the above intuitive 

supposition that the increased storage capacity of the spectral approach (vis-a-vis the 

outer product scheme) results in significantly improved performance as an associative 

memory. Systems with state vectors of 32 and 64 bits were considered for simulations 

on a digital computer, and the algorithms were run m both synchronous and 

asynchronous fashion. (In order to expedite processing time the asynchronous 

algorithms were not run by updating individual bits in random fashion; rather, state 

changes were made by altering the state of that bit for which the gradient of the 

energy function - fJE in equation (7.2.1)-was a maximum. This ensured that the 

asynchronous procedure converged quickly along the contour of steepest descent.) The 

memories were chosen using a binomial pseudo-random number generator. Vectors at 

any specified Hamming distance, dH, from any given memories were obtained by 

randomly choosing dH bits out of the n bits comprising the memory, and reversing 

their sign. Weight matrices for the spectral scheme were generated for each given set 

of memories by using the pseudo-inverse strategy, while for the outer products scheme 

the sum of Kronecker products expression of equation was used. We encapsulate 

some of the trends observed in the computer simulations in the following discussion. 

Some figures are also presented to complement the discussion. 

We utilize as our performance measure the Hamming radius of attraction 

corresponding to a given number of memories. All the plots were generated for a 

typical memory, and a typical set of "error" vectors chosen in a random fashion at the 

various Hamming distances indicated on the plots. As the plots represent a typical 

sample rather than a statistical average, some deviations from monotonicity are visible ,, 
in the figures. However, simulations on a variety of memories with different choices of 

error vectors indicate that the plots (sans the fluctuations) are quite representative of 

the average attraction behaviour of memories under the algorithm. 
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For comparison with the outer product scheme, a pseudo-inverse spectral 

strategy with an m -fold degenerate spectrum was used; the eigenvalues, )..(o:), were all 

chosen equal to n. The subsequent results were found to be largely independent of 

which memory was considered, and what the original choice of memories was. The 

memories in all cases exhibited strong qualitative and quantitative similarity in their 

attraction behaviour, with well-nigh the same radii of attraction. 

For a small number of memories, m, the performance of the two schemes is 

roughly the same. Almost invariably, though, the spectral strategy showed a slightly 

larger radius of attraction, but this was not significant for the range of n considered 

between 32 and 64. The observed radius of attraction for the case of small m was a 

sizeable fraction of n (approximately n / 2 for the range of n considered). 

As m increases, the performance of the outer product scheme deteriorates much 

more rapidly than that of the spectral scheme. For m large enough, (about m =6 for 

n =32, and m =12 for n =64), the outer product scheme becomes overloaded, and the 

memories themselves are not stable any longer; at this point the spectral scheme still 

shows a sizeable radius of attraction around each memory. For the range of n 

between 32 and 64 considered, memories stored using the spectral method exhibited 

some attraction behaviour for m up to the order of n /2. Of course, in all cases the 

memories themselves were stable up to m = n for the spectral scheme. 

These results are illustrated for a typical memory in figures 7.1-7.4. In figures 

7.1 and 7.2, comparative plots of radii of attraction versus the number of memories are 

made between the two schemes for synchronous and asynchronous modes of operation 

for the case of n = 32. A similar plot is made in fig. 7 .3 for the case of n = 64 for 

the synchronous mode. For these plots the number of memories, m, is plotted along 

the x-axis, and the radius of attraction plus one is plotted along the y-axis; a value of 

y = 0 indicates that the memory was not stable, a value of y = 1 indicates that the 

memory was stable bu_!- there was no attraction of nearest-neighours, and a value of 

y = j indicates attraction within a Hamming radius of j -1. In fig. 7.4 the largest 

number of memories for which there was at least a unit radius of attraction was 

plotted against n, for n lying in the range 32 to 64. The linear nature of the 

relationship, with m = n /2 is clear, for this range of n. We conjecture that this 
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result holds for all n . 

Surprisingly enough, the performance of the synchronous and the asynchronous 

algorithms was virtually identical for both schemes, as illustrated for the typical 

example of figures 7.1 and 7.2. In general, it was found that the asynchronous 

procedure enjoyed about a single bit of advantage in attraction radius over the 

synchronous procedure for the range of n considered. For synchronous processing, 

convergence of the state vector adaptation process was, in general, seen to be more 

rapid in almost every case for the spectral scheme. In what follows we will not 

explicitly differentiate between the results obtained by synchronous processing, and 

asynchronous processing, as both procedures were seen to yield essentially the same 

attraction radius for both the spectral scheme, and the outer product scheme. 

The radius of attraction decreases monotonically with the number of memories 

stored for both schemes. Specifically, converging states which were furthest removed 

from the memories were the first to cease to converge a.s additional memories were 

stored. Weak stability (where convergence is to states close to the memories rather 

than the me~ories themselves) wa.s observed when the number of memories stored wa.s 

large for both schemes. Regular trends were not observed in the attraction behaviour 

of weakly stable states. In particular, the monotonic decrease in the radius of 

convergence with increase in the number of memories stored wa.s not seen; storage of 

new memories wa.s sometimes seen to wipe out whole blocks of weakly stable states, 

and to create new weakly stable states. Overloading the outer product scheme (so 

that the memories themselves are not stable) was seen to result in the creation of 

strongly stable states which were not in general close to the memories. 

Ringing in the form of state cycles A -+ B -+A , and similar, more 

complicated state cycles, wa.s observed on occasion for the outer product scheme, but 

never for the spectral scheme. The instance of ringing in the outer product scheme 

was found to be relatiyely more frequent for the case of synchronous operation than 

for a.synchronous operation. In general, the number of cases of ringing became more 

frequent a.s the number of memories stored increased. 
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In order to test the robustness of the scheme to changes in the weight matrix, 

we considered a modified spectral weight matrix whose elements were thresholded to 

have binary values. Even for this extreme distortion of the weight matrix, the scheme 

was essentially still functional. The storage capacity was seen to decrease, but 

memories could still be stored-up to the (diminished) storage capacity-as stable states 

with attractor-like behaviour. The radius of attraction corresponding to a particular 

number of stored memories was also seen to decrease. Ringing or state space 

oscillation was noted in many cases. 

Comparisons with thresholded versions of the outer product algorithm showed 

some superiority in attraction radius for the spectral algorithm in the cases considered, 

with qualitative similarity to the behaviour for the unthresholded case. The net effect 

of thresholding in both schemes was evidenced in a (small) decrease in the storage 

capacity of the respective algorithms, and creation of considerably more locally stable 

states than in the original algorithms. In all cases simulated, the thresholded spectral 

strategy was seen to perform considerably better than the thresholded outer product 

scheme. Comparative plots are shown for the two schemes in figures 7 .5, 7 .6, and 7 .7 

for a typical memory, and a random choice of "error" vectors around the memory. 

Note that there is considerably more fluctuation in the behaviour of the curve than 

was seen in figures 7.1 and '7.2 for the unthresholded case. The fluctuations are 

indicative of the fact that many more incidental stable states are created in the 

thresholded versions of the two algorithms, with some of them being quite close to the 

memories. Any particular choice of memory hence displays certain pref erred directions 

of attraction directed away from incidentally stable states close to the memory. 

Vectors which differ from the memory along these pref erred distances will hence be 

attracted at larger Hamming distances than vectors which lie between the memory and 

another locally stable state which is close to the memory. 

We also considered some variants in the spectral approach with a view to 

improving performance: using a zero-diagonal spectral strategy, and considering the 

use of non-equal eigenvaules. 
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Rendering the diagonal of the spectral weight matrix zero: For small m, the 

performance was found to be largely unaffected in that the attraction radius remained 

essentially the same. Slight increases in the attraction radii were generally seen in 

most cases. As the number of memories increased, the improvement in performance of 

the zero-diagonal spectral scheme was seen to become more marked, especially for the 

asynchronous algorithm. Again, as the number of memories increased, the radius of 

convergence decreased. State space oscillations were noted in some cases, the 

synchronous algorithm exhibiting considerably more cases of ringing than the 

asynchronous algorithm. 

As espoused at the end of the last section, non-equal eigenvalues may be used 

with advantage in the spectral scheme. We considered first the "correlation method" 

for choosing the eigenvalues as given in equation (7.2.2). This corresponds to small 

perturbations of the eigenvalues around their mean. Finally, in order to determine the 

effect of the eigenvalues on the attraction radius corresponding to each memory, we 

considered larger perturbations of the eigenvalues, around their mean value. 

Correlation method for choice of eigenvalues: The eigenvalues A. (a) were chosen 

according to the prescription of equation (7.2.2) as A. (a) = n 

:E Prs 
s -1-r 
m-1 

where Prs is 

the inner product between the memories u(a), and u(~l. For such a choice of 

eigenvalues, the attraction radius was seen to increase slightly in most of the cases 

simulated. Again, no state space oscillations were detected, and the asynchronous 

algorithm functioned marginally better than the synchronous algorithm. Of all the 

methods implemented on the computer, combinations of the above technique with the 

diagonal of the weight matrix restricted to zero were seen to yield the best 

performance. Comparative plots for this variant of the spectral strategy and the 

spectral strategy with degenerate spectrum are shown in figures 7 .8, 7. 9 and 7 .10 for a 

typical memory. 

Perturbations of the eigenvalues: Small, random perturbations did not have a 

significant effect on performance. Decreasing a memory's eigenvalue (relative to the 

mean), in general, caused a decrease in the corresponding radius of attraction. When 

the eigenvalue was decreased sufficiently, the radius of attraction shrank to zero, and 
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thereafter until the eigenvalue reached zero ·the memory was stable, but was not an 

attractor. Increasing a memory's eigenvalue sufficiently was seen to increase the radius 

of attraction in general. (Again, small changes in eigenvalue did not affect 

performance.) Beyond a certain point the increase in attraction radius with increase in 

the corresponding eigenvalue was seen to saturate. It was also seen that if all other 

memories were far away from the test memory, then good performance could be 

achieved even with a small eigenvalue, and the deterioration in performance with 

decrease of the eigenvalue was slow. Conversely, if other memories were close to the 

test memory, the deterioration m performance with decrease in eigenvalue was more 

precipitate. These effects are m accordance with our expectations as seen in the 

previous section. Figures 7.11 and 7.12 illustrate the effect of changing the eigenvalue 

upon the attraction radius of a single memory. 
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CHAPTER VIII 

MAXIMAL EPSILON CAPACITY 

1. REDUCED MODEL FOR ERROR TOLERANT 
ASSOCIATIONS 

Thus far, we have been concerned with characterising the memory storage 

capacity of particular algorithms. The relative efficacy of various algorithms, however, 

can best be gauged if the ultimate storage capacity of the neural network model itself 

is determined. This will be our focus in this chapter. In particular, we will provide 

answers for questions such as: What is the maximum number of associations that can 

be stored when all possible (McCulloch-Pitts) neural networks are allowed for 

consideration? What gains can be achieved in capacity if there is some tolerance to 

errors? 

The rest of this section describes the reduced neural network model under 

consideration, and sets up the framework of error tolerance. A precise definition of 

capacity, consistent with the earlier definitions, is also provided. 

The capacity results are quoted in section 3 (see [1] also). The distribution of 

errors, and the universality of the capacity results are treated in section 4. Finally, 

section 5 treats the issue of how optimal networks can be found by iterative techniques 

that converge reasonab!y quickly. 
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A. One-Step Synchronous Associations 

We again consider a network of n labelled neurons. Recall that each formal 

neuron (modelled after McCulloch-Pitts) is a threshold gate characterised by a vector 

of real weights W; = (w;v ... , win), and a real threshold (which we take to be zero). 

The neurons accept real n -tuples u E IR" as input, and return binary scalars v; E IB 

n 

as output according to the threshold rule v; = sgn ( E w;j ui ). Given an input 
j=l 

u E IR", in a single synchronous transition the neural network under advisement 

yields as output a binary n -tuple v E ID", whose components v; are the outputs of 

each of the individual neurons. 

Our concern in this chapter will be mainly with hetero-associative storage 

within the neural network structure. (We indicate how the results apply to auto­

associative storage in section 3.) Specifically, we require to store prescribed 

associations of the form u t--+ v in the neural network by suitable choice of weigh ts 

We tacitly assume a synchronous mode of operation for simplicity; the inputs to 

the network are presented simultaneously to each neuron, and each neuron returns an 

output binary variable in concert. We will further restrict our attention to single step 

synchronous transitions of the form u t--+ v. The reduced network model that we 

consider is illustrated in fig. 8.1. An input pattern (a real n -vector) is simultaneously 

presented to n threshold gates (neurons), which act in concert to produce a binary n 

vector as output. The components of the output binary n vector are the various 

decisions provided by each of the threshold gates. 

The reduced model that we consider in this chapter clearly eschews the neural 

feedback mechanism, and allows consideration of only a single state transition at a 

time. Furthermore, the input patterns are now assumed to be drawn from real n 

space. The reduced sy~tem under consideration, imposes much fewer constraints than 

the fully interconnected neural systems that we had considered in the previous 

chapters, at the cost of potentially losing the capability to do more complex tasks such 

as error correction. The general capacity results derived in this chapter will hence 

bound cases where more complex associative behaviour (such as soft error correction in 
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Fig. 8.1. Single state transitions in reduced network model. 
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distorted memories) is achieved through the medium of feedback and dense neuronal 

interconnection. 

Let m denote the number of associations of the form u t-+ v to be stored in the 

network. Specifically, we require to store m associations u(a) t-+ v(a), a=l, ... ,m. We 

call the input probe vectors u(a) the fundamental memories, and the desired resultant 

vectors v(a) the associated memories. The specified m -set of fundamental memories 

{ u(1l,u(2l, ... , u(m l} C IR n is assumed to be chosen independently from any 

probability distribution invariant to reflection of coordinates in real n -space. The 

corresponding m -set of associated memories { v(ll,v(2l, ... , v(m l} C mn is also a 

randomly specified set, with components v;(o:) E {-1,1}, i=l, ... ,n, a=l, ... ,m, chosen 

from a sequence of Bernoulli trials with equal probabilities of success and failure. 

We will also refer to the components v; (a) of the associated memories v(o:) as 

decisions (made by neuron i w.r.t. fundamental memory u(al). This is motivated by 

the fact that if we consider neuron i as an isolated threshold gate, then v; (a) is simply 

the decision made by the threshold gate when pattern u(a) is the input. 

B. Error Tolerance 

For error free associative maps we require that vi (a)= sgn (~wij u/al) for 

each component i and for each corresponding pair of memories. Under error tolerant 

conditions, however, some of the components of the retrieved states could be allowed 

to be in error. We now prescribe a mechanism which determines the allowed error 

distribution in the components of the retrieved states. 

It is clear that if for a neuron (threshold gate) we specify a certain number of 

"don't care" decisions, then the number of "don't care" decisions determines the 

maximum number of decision errors made by the neuron. Similarly, if we specify 

"don't care" components for each associated memory, then the number of "don't care" 

components in each ~ociated memory determines the maximum number of errors 

made in retrieving each associated memory from the corresponding fundamental 

memory. Our approach to introducing error tolerance is hence to specify "don't care" 

decisions in the associated memories by a suitable distribution of choice such that the 

expected number of "don't care" decisions coincides with (twice) the allowable fraction 
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of errors. Specifically, we perform a sequence of mn independent and identical 

experiments to determine whether each (random) decision vi(a), i =l, ... ,n, O:'=l, ... ,m, 

is to be labelled a "don't care" decision, with the probability that any particular 

decision vi (a) be labelled a "don't care" decision given by twice the allowable fraction 

of errors. 

Formally, let 0 < t: < 1/2 denote the allowable fraction of decision errors made 

by a neuron for the case of threshold gates, and let t: also denote the allowable fraction 

of component errors in the retrieved associated memories for the case of neural 

networks. Let Vi(aJ, i =l, ... ,n, o=l, ... ,m, be the outcomes of mn identical, and 

independent experiments whose outcomes are subsets of {-1,1} such that 

with probability 1-21: 
with probability 2E . (8.1.1) 

If the outcome Vi (a)= {vi (a)}, then we will require that neuron i produce 

decision vi(a) as output whenever it receives fundamental memory u(a) as input. If, 

however, the outcome Vi(a) = IB, then we associate a "don't care" decision with 

component vi (a) of the associated memory v(a), so that neuron i can result in either -1 

or 1 as output when u(a) is input. For obvious reasons we call Vi(a) the decision set 

associated with decision v/0 l. Furthermore, we shall say that Vi(a) is normal if 

Vi (a)= {Vi (a)} (i.e., the decision has to be accurate), and We shall say that Vi (a) lS 

exceptional if Vi (a)= ll3 (i.e., the decision is "don't care"). Clearly, once the 

fundamental memories u(a), the associated memories v(a), and the decision sets Yi (a) 

have been specified, we need to find neural networks for which the neurons yield 

correct decisions only for the restricted set of decision sets which are normal. The 

definitions of chapter V now generalise naturally. 

; 

Definition. Let wi E IRn be the vector of interconnection weights associated with 

neuron i, for each neuron i =l, ... , n of a neural network. The event: 
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sgn ~ t wij u/'1')] E Vi(a), i =I, ... ,n , a=l, ... ,m , 
l j=l (8.1.2) 

is described by saymg that the neural network stores m associations with tolerance 

epsilon. 

This is the analogue of the previous definition from chapter V for error free 

associations, and generalises the definition to allow errors. The case € = 0 reverts to 

the requirement of perfect recall. 

Note that by virtue of the random decision sets Vi (a) being drawn from 

independent, and identical experiments, the actual distribution of errors is spread 

independently across the components vi (a) of the associated memories. Furthermore, 

the conditional distribution of the decision sets Vi (a) given the associated memories 

y(a) is binomial. Hence, the expected number of "don't care" decisions attributed to 

each neuron is 2Em, and the expected number of errors in each of the associated 

memories is rn. Thus the modified definitions reflect (at least in an average sense) a 

tolerance of up to a fraction € of errors in the decisions. We demonstrate in section 4 

that the number of errors evinced in the recall of each associated memory actually 

does approach the prescribed tolerance t:n. 

C. Definition of Capacity 

The previous definitions of capacity that we had utilised enabled us to 

characterise the storage capacity of specific algorithms for generating the neural 

interconnection weights. In this chapter our focus is not on any particular algorithm 

for generating interconnection weights, but on the universe of McCulloch-Pitts neural 

networks obtained by allowing all choices of real interconnection weigh ts for 

consideration. Specifically, we want to specify the maximum number of associations 

that can be stored when all possible neural networks are allowed for consideration. 

We hence apply the capacity definitions of chapter V to all possible neural network 

realisations rather than to specific network realisations obtained by the application of 

a specified algorithm. 
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Let a tolerance 0 < € < 1/2 be fixed. In querying whether there exists a choice 

of interconnection weights for which the neural network maps the fundamental 

memories to the associated memories with at most fn errors (on average), the event of 

interest is described by the following attribute: 

Event E: "3 a neural network which stores m associations with tolerance c" 

Note that the event E is defined on the sample space obtained as the product 

of the probability spaces over which the components of the fundamental memories 

ui (al, the components of the associated memories vi (a), and the decision sets Vi (a), 

(i =1, ... ,n, and a=l, ... ,m ,) are defined. In consonance with our earlier definitions of 

capacity, we now have the following definitions. 

00 

Definition. A sequence of integers {S( n ) } n =l IS a lower sequence of epsilon 

capacities for neural networks iff for each \ E (0,1), event E occurs with probability 

approaching one as n -+ oo whenever m < (1-\)S(n ). 

Again, this is a lower estimate for the storage capacity as it tells us that for 

large n, if the number of associations IS chosen to be less than the lower capacity, 

then with probability essentially one, we can find neural networks for almost all 

choices of associations u(a:) t---+ v(a:), a=l, ... ,m, such that the errors number at most a 

fraction c The following definition overestimates the storage capacity. 

00 

Definition. A sequence of integers { C £( n ) } n =l IS an upper sequence of epsilon 

capacities for neural networks iff for each A E (0,1), event E occurs with probability 

approaching zero as n -+ oo whenever m > (1+\)~(n ). 

,. 
The above definition is an upper estimate for storage capacity; if the number of 

associations is chosen to be larger than the upper capacity, then for almost every 

choice of m associations, there will exist particular associations that cannot be stored 

within the described error tolerance in any neural network. 



-285-

Again, the only requirement that we would wish to impose so that the 

definitions are useful is that the probabilities of interest behave monotonically with the 

number of associations m, as is illustrated schematically in fig. 6.5. Specifically, we 

would like to rule out oscillatory behaviour of the probabilities with increase in m. As 

we shall see in section 3, the probabilities are indeed monotonic in m . 

00 

Definition. A sequence of integers {Cf( n ) } n =I is a sequence of epsilon capacities 

for neural networks iff it is both a lower sequence, and an upper sequence of epsilon 

capacities, i.e., Ci n) = Cf( n ) = Cf( n ). 

Note that we are utilising the strong form of the capacity definitions, where 

convergence is required with probability one. Further, attraction behaviour is not 

considered-the definition is analogous to the capacity definition for fixed point storage. 

This capacity is an upper bound for capacity if error correction is desired in addition. 

Note that in our definition, (zero)-capacity corresponds to the maximum number of 

associations that can be stored under conditions of perfect recall, i.e., with the 

tolerance epsilon being identically zero. 

Proposition (5.2.1) and (5.2.2) hold m toto for the above definitions of epsilon 

capacity, as do the comm en ts following the definitions of capacity in chapter V. (The 

propositions themselves do not depend on the exact event, nor yet on the probability 

space under consideration, but are a consequence solely of the nature of asymptotic 

behaviour desired.) In particular, proposition (5.2.2) establishes that if sequences of 

epsilon capacity do exist, then: (1) they are not unique, and (2) they do not differ 

significantly from each other. Thus, we define an equivalence class of sequences of 

epsilon capacities [{ C f(n )}J with equivalence relation defined as follows: if { C f(n )} 

and { C f(n )' } are members of this equivalence class of epsilon capacities, then they 

must satisfy the equivalence relation C E(n )' r-..; C E(n ). Henceforth, if a sequence of . 
epsilon capacities {Chi)} exists, then we shall say without elaboration that C (( n ) is 

the epsilon capacity of neural networks; by this we mean that {Ci n)} is a mem her of 

the equivalence class [{ C in)}] of sequences of epsilon capacities. 
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2. PRELIMINARY RESULTS 

Before getting to the mam theorems on capacity, we will need some technical 

results. In the first part of this section we quote seven preliminary results that will be 

needed in the proofs. The second part of this section is devoted to proving the main 

lemmas which are the basis of the theorem proofs. We shall use the convention that 

all logarithms are to base e unless explicitly stated otherwise. 

A. Technical Lemmas 

Lemma 8.2.1. log (1-x) > -2x '\/ x E [0,1/2]. 

Proof. The Taylor series expansion for log (1-x) converges uniformly in the interval 

-1 < x < 1. Hence 

log (1-x) = - x 
x 2 x 3 

2 3 

2 
1+~+_:_+ 

2 3 
. " ) 

> -x ( 1 + x + x 2 + . . . ) 

-x 
1-x 

-x " 
Finally, -- > -2x whenever 0 < x < 1/2. D 

l-x 

Lemma 8.2.2. '\/integers j and k, 
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Proof. Consider 0 < j < k - 1 wlog. Then 

[ 
k1· ]-[}5__1~ 1 l = _k! 

j ! (k - j)! 
( k - 1 )! 

j ! (k - j - 1)! 

D 

Lemma 8.2.3. (De Moivre - Laplace Theorem for Large Deviations) 

00 

Let {Xi} i =I be an infinite sequence of Bernoulli trials 

xj = 1 with probability p 

= 0 with probability q = 1-p , 

N 

and where 0 < p < 1. Form the sums SN = ~Xi, and let { vN} be a sequence 
j=l 

such that 

J vN -Np J < K(N) = o([Npq ]213
) if p ~ q 

= o(N 314
) if p = q = 1/2 . 

Then 
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(vN - Np) 
as N -+ oo. If in addition, -+ -oo, then 

JNpq 

p {sN < VN} ,...._, _1_ VRPi exp {-[(vN -Np )2 ]} . 
V2; I VN - Np I 2Npq 

Proof. cf. Ref. [2], pg. 193, and prob. 14, pg. 195. 

Lemma 8.2.4. Defineµ : [0,1]-+ IR by 

µ(a)= r(l-H(a)) \J a E [0,1], 

and where 

H (a) = - a log2 (a) - (1-o:) log2 (1-o:) 

is the entropy function (in bits). Let N be a fixed positive integer. Then, for every 

fixed a E [1/2, 1], we have 

Proof. The proof follows as a special case of theorem 1 in Ref. [3]. 

Lemma (8.2.3) gjves a large deviation estimate for the binomial distribution, 

where the deviation from the mean is o(N 213
) (or o(N314

) if p = q = 1/2). Lemma 

(8.2.4) illustrates that for very large deviations (of the order of n) the tail of the 

binomial no more shows a limiting central tendency. 
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The following result is a fundamental theorem in combinatorial probability due 

originally to Schllifii. 

Definition. m points in real n space are in general position (in n space) iff any 

subset of n points or fewer is linearly independent. 

Lemma 8.2.5. (Function Counting Theorem). 

The number of dichotomies of m points in real n space that can be separated 

by a hyperplane through the origin (i.e., homogeneously linearly separable dichotomies 

of m points in n space) is at most 2 1l ( m -:-1 ). The upper bound is achieved if the 
. 0 J 
J= 

m points are in general position. 

Proof. cf. Refs. [4], and [5]. 

Lemma 8.2.6. The probability that the m -set of fundamental memones 

{ u(l),u(2), •.. } u(m )} c mn is linearly independent (over the field of the reals) 

approaches one as n -+ oo provided m is chosen less than or equal to n . 

Proof. The result follows from a result due to Komlos [6] who demonstrated that 

almost all n X n (0,1)-matrices have non-zero determinant. 

Lemma 8.2.7. (Borel-Cantelli Lemma) 

Let { ni} I'°=l be an increasing sequence of integers. Let { Ei} j~l be an infinite 

sequence of events defined on the sample space of an infinite sequence of Bernoulli 

trials and such that each Ei depends solely on the outcome of the first ni Bernoulli 

trials. If L;P {Ei} c9nverges, then with probability one only finitely many events 

E; occur. 

Proof. cf. Ref. [2], pg. 201. 
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B. Main Lemmas 

We now obtain estimates of the probability of the event E that was crucial to 

our definitions of capacity in the last section. The next lemma estimates the required 

probability for the case of perfect association: t = 0. 

Lemma 8.2.8. Fix the tolerance t to be identically zero. Define 

po( k , n ) t. 2-( k -1) E ( k --:-1 ) . 
j=O J (8.2.1) 

Then 

P { E } = Q 0( m , n ) t. [Po( m , n )t . (8.2.2) 

Proof. Fix i E { l,. .. ,n}. The particular dichotomy { Ui +, Ui -} of the m -set of 

fundamental memories that is of interest is defined by: 

and 

Event E is realised if there exists a hyperplane through the origin which separates the 

dichotomy {ui+,ui-} for each i=l, .. .,n. From SchllHli's fundamental function 

counting theorem, the number of dichotomies of the m fundamental memories u(a), 

n -1 

a=l,. .. ,m, that can be separated in n space is at most 2 E ( m -:-1 ) out of a total of 
j=O J 

2m possible dichotomies. The fundamental memories u(a) are chosen independently 

from real n space, so that all dichotomies are separable with equal probability. Hence, 

denoting the probability th at there exists a choice of weigh ts w i = ( wi 1 · · · win ) for 

which the i -th neuron makes no errors in m decisions by Pi ,o, we have 
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n-1 

Pi,O = 2--{m-l) E ( m-:-l) = Po(m ,n). 
j=O J 

Now for each i =l, ... ,n, the choices of the dichotomies { Ui +, Ui -} are mutually 

independent events as the components u/r) of the fundamental memories are chosen 

independently. Hence, 

n 

p { E } = IT Pi ,0 
i =1 

= Q 0( m , n ) t:. [Po( m , n W . 
D 

Note that for m < n , we have Q 0( m, n) = 1. This, coupled with lemma 

(8.2.6), yields an immediate lower bound on capacity. Upper bounds on capacity will 

be arrived at in the next section by examining the asymptotic behaviour of Q0(m ,n ). 

Lemma 8.2.9. Lett E [O, 1/2) be a given tolerance. Then 

p {E} ~ Q,(m,n)" [,~, (~ )(1-2<)'(2<)' Po(k,n) r. 
(8.2.3) 

Proof. Fix t E [0,1/2). Let Pi ,E denote the probability that there exists a choice of 

weights w i = ( wi 1 · · · win ) for which the i -th neuron makes m decisions with 

tolerance t. For i =l, ... ,n, we have 
m 

Pi ,E = E E P { 3 weight vector wi E m_n such that neuron yields 
k=O O:Sa 1< ... <a; :Sm 

d . . (a1) (a;) h d . . V (al) V (a;) 1 correct ec1s1ons vi ,,. ... , vi t e ec1s1on sets i , ... , i are norm a , 

and the decision sets Vi(a), o:=rfo:i, j =l, ... ,k, are exceptional } X P { the decision 

sets Vi(a 1
), ••• , Vi(a,) are normal, and the decision sets Vi(a), o:=rfo:i, j=I, ... ,k, are 

exceptional } 

m 

= E P { 3 weight 
k=O 

vector W· i for which neuron yields at least 
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k correct decisions} X (7k )(1-21:f (2t:)m-k , 

as we require only k correct decisions given that m -k are "don't cares", and the 

"don't care" decision sets follow the binomial distribution. From the proof of lemma 

(8.2.8) we now have 

Pi,f = f; (7k )(1-2t:l (2t:r-k Po(k ,n). 
k=O 

The decisions v/°'l are jointly independent, as are the decision sets Vi(al. Hence 

n 

p { E } = IT Pi ,f 

i=l 

[t ('Z )(1-2<)'(2<)m-• P 0(k,n) r 

D 

Lemma 8.2.10. For each positive integer n, P 0(k ,n) and Q 0(k ,n) are monotone 

non-increasing functions of k . 

Proof. We will demonstrate that the difference P 0(k ,n) - P 0(k + 1,n) is non­

negative for every choice of k and n. From the defining equation (8.2.1), and lemma 

(8.2.2) we have 

Po( k , n ) - P 0( k + 1, n ) = 2-k 
,. 
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Hence, for each fixed n, P 0(k ,n) is a monotone non-decreasing function of k. From 

the defining equation (8.2.2), we have Q 0(k ,n) = [P 0(k ,n )r, so that Q 0(k ,n) has 

the same monotone character as P 0(k ,n ). D 

3. EPSILON CAPACITY OF NEURAL NETWORKS 

We are now in a position to encapsulate all the prior results into a statement on 

capacity. We start with proving a result on capacity under error-free conditions. 

Using this result we extend our analysis to the case where errors are permitted, and 

obtain rigourous results on the epsilon capacity of neural networks. 

A. (Zero)-Capacity 

Theorem 8.3.1. For every fixed ).. E (0,1), 

(a) P 0( L2n (1->.)J,n), Q 0( L2n (1->.)J,n) - 1 as n - oo, 

(b) P 0(2n ,n) = 1/2, Q 0(2n ,n) = 2-n , 

(c) Poff2n (1+>.)l,n), Qoff2n (1+>--)l,n)---> 0 as n ---> oo. 

Proof. We consider the case where the tolerance f. = 0 m the defining equation 

(8.2.3). Fix ).. arbitrarily in the open interval (0,1). Now part (b) of the theorem , 
follows immediately as 

n -I 
Po(2n ,n) = r{2n-1) _E ( 2nJ-:-1 ) = 1/2' 

) =0 
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while from the defining equation {8.2.2) in lemma (8.2.8), we have 

Q o(2n ,n) = [P 0(2n ,n )Jn = 2-n . 

We now prove part (c) of the theorem. Note that it suffices to show that 

P 0( L2n (1+>-.)J,n)-+ 0 as n -+ oo, as 0 < Q 0(m ,n) = [P 0(m ,n W < Po(m ,n) for 

every choice of m and n. Now, set N = L2n (1+>-)J - 1. Then, using the defining 

equation for P 0 from lemma (8.2.10), we have 

Po(L2n(l+>-)J,n)=rL2n(1+>-)J+1 E ( L2n(lt>-)J-1) 
k=O 

N /2 - n >- - 8 
=2-N E 

k=O 
(~) 

where I o I < 2. Clearly we are working with the extreme tails of the binomial 

distribution, so that we expect the above sum to approach zero for large n. More 
3 

formally, choose a sequence of positive integers { tN} such that tN = o(N 4 ), and 

t ffe -+ oo as n -+ oo. (Note that n).. = O(N), so that trivially n >-.+8 > tN ). Then 

N /2- IN 

P 0( L2n (1+>-)J,n) < 2-N ~ 
k =0 

(~) . 

By lemma (8.2.3) we have that the righthand side of the above inequality approaches 

zero as n -+ oo. This completes the proof of part (c). 

To prove part (a) of the theorem it suffices to show that Q0( L2n (1->-)J,n)-+ 1 
; 

n 
-+ oo. Fix O < ).. < 1/2. Set M = L2n (1->-)J - 1, and a= L

2
n (I->-)J _ 

1 
· as n 

We have n = aM, and A1 -+ oo as n -+ oo. Further 
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___ 1 ___ < Cl:' < ___ 1 __ 

2 - {2A + _!_) 2 - {2A + 1_) 
n n 

Define the positive integer n 0 = I r 2 11 + 1. It is then easy to verify 
1 - 2).. 

that n > n 0 ~ 1/2 < a < 1 with inequality being strict on both sides. Henceforth 

we assume n > n 0. From lemma (8.2.8) we have 

[

-M aM-1 (M) laM 2 E k · 
k=O 

By lemma (8.2.4) we then have 

Q o( L2n (1->-.)J,n) > [ 1 - {µ(a)}M rM ) (8.3.1) 

where µ(a)= 2-(l-H(alJ. 

Now 1/2 < a< 1, so that H (a) is well-defined, and 0 < H (a) < 1, again with 

strict inequality. Hence, 1/2 < µ(a) < 1, so that we have 0 < µ(at1 < 1. Taking 

the logarithm of both sides of the inequality (8.3.1 ), we have 

log Q 0( L2n (1->-.)J,n) > aM log (1 - µ(a)M) 

[ 
/t(a)2M µ(a)31\f ) 

= - o:M ft( a )M + - 2 + 3 + ... 

where the Taylor series expansion for the logarithm converges as 0 < ft( o:)M < 1. 

Now µ(a)M --+ 0 as n --+ oo. Hence 
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logQ o( L2n (I->.)J,n) > - am ( µ(a)M + O(µ(a) 2M)) 

As Q 0( L2n (I->.)J,n) is a probability, we have 

0 > logQ 0( L2n (1->.)J,n) > - aM µ(a)M (1 + o(l)). (8.3.2) 

Now consider 

log aM µ(a)M =log a+ log M + M log µ(a) 

=log a+ log M - (1 - H(a)) M log 2. 

Now log a < log 1 = 0. So 

log aM µ(a)1'1 <log M - (1 -H(a)) M log 2. 

Define 8(>.) = 1 - H (-1-). (8(>.) is well-defined as 0 < A < _!_, so that H (-1-) is 
2-2>- 2 2-2>-

well-defined.) Have 0 < H(-1-) < 1 so that 8(>.) > 0 strictly. Consequently, to 
2-2>. 

every fixed A E (o,.l) we can associate the fixed, positive real number 8(>.) which 
2 

depends solely on A. We then have 

Hence 

1 -H (a) = 1 -H( L ( n )J l 2n 1->. - 1 

> 1 -H( 1 l 2 - 2>., 

log aM µ(a)M < log M - M 8().,) log 2-+ - oo as n -+ oo . 
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So o:M µ(o:)M -+ o- as n -+ oo. Referring back to the double-inequality {8.3.2), we see 

that log Q 0( L2n (I->-.)J,n) is bounded from above by 0, and bounded from below by a 

negative quantity that approaches zero as n approaches infinity. Hence 

log Q 0( L2n (1-:A)J,n)-+ o- as n -+ oo . 

So 

Q 0( L2n (1-:A)J,n)-+ 1 as n -+ oo. D 

Corollary 8.3.1. C 0(n) = 2n is the (zero)-capacity of neural networks. 

Proof. From part (c) of the theorem it follows that {2n} is a sequence of upper 

(zero)-capacities, and from part (a), likewise, it is also a sequence of lower (zero)­

capacities. Hence C 0(n) = 2n is the (zero)-capacity of neural networks. D 

The results of theorem (8.3.1) may seem somewhat surpnsmg at first sight. 

Recall from equation (8.2.1) that P 0(m ,n) = 1 for m < n, while for m > n, we 

have P 0(n) < 1 strictly. Further, Q 0(m ,n) = [P 0(m ,n W. Thus, for large n, in 

the range n < m < 2n, Q 0(m ,n) is the result of taking a quantity less than one to 

a large power. A naive expectation would then be that Q 0(m ,n) = 1 for m < n, 

but that Q0(m ,n) approaches zero rapidly when m > n for large n. In actual fact, 

however, theorem (8.3.l) asserts that the rate of fall of P 0( m , n ) in the range 

n < m < 2n is sufficiently small so that the asymptotic behaviour of Q 0( m , n ) is 

virtually identical to that of P 0(m ,n ). 

An insight into this asymptotic behaviour may be obtained by recalling that 

P 0( m, n) is the probability that we can find a solution vector which makes a given 

m -set of decisions, while Q 0(m ,n) is the probability that we can find n such solution 

vectors. Now, we can form 2m such m -sets of decisions. For m > n, the n m -sets 

of decisions required by the neural network form an asymptotically negligible fraction 

of the total number (2m) of decision m -sets. Hence, if we can find one solution n 

vector of weights w = (wi 1, ... ,win) with high enough probability for m ~ 2n, then 

we should also be able to find n (= o(2m )) such solution vectors with high 



-298-

probability. Theorem (8.3.1) essentially echoes this. 

The provable capacity results are somewhat looser if we restrict the 

fundamental memories to be binary n -tuples only, instead of allowing them to be 

chosen from real n -space. In this case, while { 2n } is certainly a sequence of upper 

(zero)-capacities, it is not immediately clear that it is also a sequence of lower (zero)­

capacities. Clearly, lower (zero)-capacity cannot exceed 2n (1 - o(n )). The problem in 

exactly reconciling the lower (zero)-capacity with this upper bound arises because we 

restrict our choice of fundamental memories to binary n -space. From lemma (8.2.6), 

it follows that almost all m -sets of fundamental memories with m < n are linearly 

independent. This, however, does not appear to extend to the fundamental memories 

being in general position for m > n - and specifically for m ~ 2n - so that equality 

in lemma (8.2.9) does not neccessarily obtain. In general it appears somewhat difficult 

to characterise those choices of fundamental memories that are not in general position, 

but which can still be stored. There is some experimental evidence, however, 

indicating that the lower (zero)-capacity does achieve its upper bound [7] of 2n. We 

conjecture that 2n is actually a sequence of lower (zero)-capacities, so that the (zero)­

capacity of neural networks (or the capacity of perfect recall) is also 2n. (If (zero)­

capacity exists at all for the case of fundamental memories chosen from binary n -

tuples only, then it must be 2n, as it has to be simultaneously a sequence of upper 

and lower (zero)-capacities.) The result is, however, not yet fully rigourous. Note 

that, in any case, we expect the lower (zero)-capacity to be at least n, as lemma (8.2.6) 

assures us that for m < n, almost all choices of m fundamental memories chosen 

from the vertices of the binary n cube are linearly independent as n --+ oo. 

A capacity result due to Abu-Mostafa and St. Jacques [8] gives n as an upper 

bound for the capacity of neural networks, while we anticipate a capacity of as much 

as twice n. The capacity result of [8], however, required that for every choice of m 

fundamental memories with m < capacity there must exist at least one neural , 
network in which the chosen m -set of vectors can be stored as memories. This leads 

to the upper bound of n on capacity. 
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The requirement that every choice of m fundamental memories be stored is, 

however, a bit too strict, and results in an upper bound m < 3. To see this, note 

that two vectors differing only in one component can never be stored simultaneously 

using a zero-diagonal matrix of interconnections. In order to avoid such pathological 

cases in our definition of capacity, we require that asymptotically as n -+ oo, for 

almost all choices of m fundamental memories with m < capacity, there exist some 

neural network in which the chosen m -set of vectors can be stored as memories. This 

leads to the upper bound of 2n . 

Th us, "' long "' we are willing to oech cw the roqu irom en t th at all of the [ 2; ] 

possible choices of m fundamental memories be allowable choices in favour of the 

requirement that most (but not neccessarily all) of these choices be allowable 

candidates for storage, then we can potentially gain by as much as a factor of two in 

capacity. Another consequence of the above two statements on capacity is that if 

2n > m > n, then there are guaranteed to be choices of m fundamental memories 

which cannot be stored in any neural network; such choices of fundamental memories 

will however constitute an asymptotically negligible proportion of the total number of 

choices ( 
2
; l · 

B. Epsilon Capacity 

We now extend the results of theorem (8.3.1) to the case where a degree of error 

tolerance is permitted. 

Theorem 8.3.2. Let E be a given error tolerance, 0 < f < 1/2. Then, for every 

fixed ).. in the open interval 0 < ).. < 1, the following implications hold: 

(a) Let v be fixed, but arbitrary, in the open interval 1/2 <v < 2/3. 
"' 

Then 

Q E( m , n ) -+ 1 as n -+ oo if 

m < 2n (1->-) _ [41:(1-A)tn v + v[41:(I->-.)] 2vn Zv--l + 0( n 3v-2) . 

(1-2E) (1-2E) 2(1-2E)(l-)..) 
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m > 2n (1+>-) 
(1-2<:) 
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Proof. Let E E [O, 1/2] be the given tolerance. Fix A arbitrarily in the open interval 

0 < A <I. We first prove part (b) of the theorem. 

Let m > 2
( (l+~). From the defining equation for Q f(m ,n) in lemma (8.2.9) 
1-2E 

we have 

Q,(m ,n) ~ [ '!;, (';) (1-2<)' (2,)"-' P 0(k ,n) r 
.6 C.n (1-2E)k (2E)m-k P 0(k ,n) + .E (';:) (1-2t)" (2t)m-k P 0(k ,n) 

[ 

L2n ~>./2)J m Jn 

1: =o ,, = L2n (1+>./2)J+1 

[ 

L2n ~>./2)J ]" < ,.2:j
0 

(/:) (1-2t)" (2t)m-k + P 0( L2n (1+>-/2)J,n) . 

The last inequality follows from lemma (8.2.10); the probability P 0(k ,n) has a 

monotone non-increasing character so that P 0(k,n) < P 0( L2n(l+\j2)J,n) for 

k > L2n (1+>-/2)J, and m the range 0 < k < L2n (1+>-/2)J, we have 

P o( k , n ) < P o( 0, n ) = 1. 

Now, if E = 0, we have QE(m ,n) = Q 0(m ,n ). Part (b) of the theorem then 

holds as a consequence of theorem (8.3.1) (c). Assume E > 0. Form the sequence 

{ Xn} with Xn = L2n (I+>-/2)J. Then 

, 

(8.3.3) 

Now: 
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[m (2t:)(l-2t:)]213 

-301-

Xn [m (1-2€}] 113 

[m (2t:)(l-2t:)j2/3 (2t:)2/3 

is a monotonically decreasing function of m . Choose n large enough so that 

4n £ > I. Then 

Xn - m (1-2t:) < 2n (1+>../2) - 2n (l+>-.) 
[m (2t:)(l-2t:)] 213 [4n t:(l +>-.)] 213 

- n).. 

[4n t:(l+>-.)] 213 

__ n I/3 [ ).. ] 
- [4E(l +>..)] 2/ 3 

-+-oo as n -+oo. 

From the above, and lemma (8.2.3), we see that the sum in (8.3.3) corresponds 

to the extreme tails of the binomial distribution. Hence, as n -+ oo, 

Also, Xn L2n (1+>-./2)J, so that by theorem (8.3.1), we have as n -+ oo that 

Po(xn ,n) = o(l). 

,,. 
Thus, Q f(m ,n)-+ 0 as n -+ oo. This concludes the proof of part (b) of the theorem. 

We now prove part (a): 

Fix v in the open interval 1/2 <v < 2/3, and choose n large enough so that 

the term 2n (l->-.) dominates all the other terms in the upper bound for m in (a). 
(l-2E) 
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Now, from lemma (8.2.9) we have 

Q ,(m ,n) ~ [ •~o ( k) (1-2<}' (2<)m-• Po (k ,n) r 
If k < n, we have P 0(k ,n) = 1 as can be seen from equation (8.2.1); also 

E (1,~2 ) (l-2t)k (2E)m-k = 1 \j m < n 
k=O 

so that 

(8.3.4) 

Now, if)..> 
1~2E, we have m < 2(1£~~~) < n, so that part (a) of the 

theorem holds as a consequence of equation (8.3.4). Henceforth for part (a) we take 

0 <).. < 1+2t. 
2 

Further, if£ = 0, we have 

n < m < 2 n ( 1 - ).. ) + 0( n 311-
2) 

= 2 n ( 1 - ).. ) + o( 1) 

as v < 2/3 ~ n 311-
2 -+ 0 as n -+ oo. Thus, for E = 0, theorem (8.3.1) (a) applies so 

that part (a) of theorem (8.3.2) holds trivially. So without loss of generality let 

O < <: < 1/2. Set 

(8.3.5) 

Have 

n < m < 2n (1->-.) _ [4t(l->-.W'n v + v[4t{l->-.)] 2vn 211-
1 

(1-2£) (1-2t) 2(1-2t)(l->-.) + o(l) . 
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Hence, as n - oo, we have 

and 

vm < 2n (I - >.) + o(I) , 

as can be verified from equation (8.3.5). Hence 

> [.~/o(k ,n) ('k) (1-2<)' (2<)"-' r 

the last inequality following from lemma (8.2.10). Hence 

Q ,(m ,n l > [P 0( L2n (HJ+o(1JJ,n JI" [,~J k) (1-2,)' (2,i•-• r 
= Q 0( L2n (1->.)+o(l)J,n) [ E ( ~) (l-2E)k (2E)m-k Jn . 

k =0 (8.3.6) 

By theorem (8.3.1) (a), 

Q 0( L2n (1->.)+o(l)J,n) - I as n - oo . (8.3.7) 

Further, setting p = (1-2E), and m = N, we find the hypotheses of lemma (8.2.3) are 
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satisfied; viz., 

and 

v - m (1-2€) 
m = [m (2l)(l-2f}t- 2/3 -+ 0 as n -+ oo, 

[m (2l)(l-2l)]213 

Vm - m (l-2€) 
--;:;===== = [m (2l)(l-2l}t- 1

/
2 -+ oo as n -+ oo , 

Jm (2l)(l-2l)] 

for our choice of 1/2 < v < 2/3. Let 

Hence, as n -+ oo, 

[ ( 

Vm -m (l-2€) l ln 1 
- <I> - Jm (2l)(l-2l} 

,..._, 1 - 1 exp - [m (2l){l-2l)]2v-I 
[ { } J

n 

./2n- [m (2l)(l-f}t- 1/ 2 2 

where 

X-

So 

0 > n log A ,......_, n log (I -x ) 

> - 2nx 

The upper bound of zero follows because A is a probability, so that A , An < l. The 

asymptotic lower bound of -2nx follows from lemma (8.2.1), as for large enough m, 
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the exponential term x is bounded between 0 and 1/2. Now, 

log 2nx = log n + log x + log 2 

( ) 
[m (2t:)(l 2t:)] 2

v-
1 2 

=log n - v - 1/2 log [m (2t:)(l-2t:)] -
2
- + 1/2 log--;-

[2t:(l-2t:)]2
v-1 

< log n - n 2v-I ~. ~--~--~-
2 

The last inequality follows because v > ~, and m > n. Now, we have 2v-1 > 0 

strictly, and as € > 0 is also strict, the term n 2v-1 f2t:(l-2t:)J
2
v-l dominates the log n 

2 

term for n large enough. Hence 

[2t:( 1-2€ )]2v-1 
log n - n 2v-1 - - -- -+ - cx:i as n -+ cx:i . 

2 

Thus, Jog 2nx -+ - cx:i, so that 2nx -+ o+ as n -+ cx:i. It then follows that 

0 > n log A > - 2nx -+ o- as n -+ cx:i . 

Hence 

(8.3.8) 

Rewriting equation (8.3.6) we now have 

Qo( L2n (1-A)+o(i)J,n) x [ .~o en (1-2r)' (2r)m-• r < Q ,(m ,n) < I . 

From equations (8.3.7) and (8.3.8), we see that the lower bound for Q l m ,n)-+ 1 as 

n -+ cx:i. Hence Q f(m ,n)-+ 1 as n -+ cx:i. D 
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Corollary 8.3.2. C ln) =~is the epsilon capacity of neural networks. 
l-2E 

Proof. From theorem (8.3.2) (b) it follows that ~ is a sequence of upper epsilon 
1-2E 

. 2n(l->-}* < 1 be arbitrary, and choose m < . For 
- 1- 2E 

capacities. Now, let 0 < A* 

every choice of A* , we can find A = A* (1 + o(l)) such that for every choice of 

1/2 < v < 2/3, and for large enough n, 0 < A < 1, and m satisfies the inequality in 

part (a) of theorem (8.3.2). (This follows because we can write the inequality for m m 

theorem (8.3.2) (a) as m < 2n (l - >-)(I - o(I)) .) Hence, for every choice of 
1 - 2E 

0 < A* < 1, we have Q hn ,n)-+ 1 as n -+ oo if m < 2n (l - A*), so that 2n 
1 - 2E 1 - 2E 

is also a sequence of lower epsilon capacities. 0 

As for the theorem (8.3.1), the provable epsilon capacity results are somewhat 

looser if we restrict the fundamental memories to be binary n -tuples only, instead of 

1 { 2n } IB. a al owing them to be chosen from real n -space. In this case, while 
1 - 2E 

sequence of upper epsilon capacities, the lower epsilon capacity cannot exceed 

2n (1 + o( n )). We conjecture that 2n is actually a sequence of lower epsilon 
1 - 2E 

capacities, so that the epsilon capacity of neural networks (under the proviso that the 

fundamental memories are also binary n -tuples) may also be conjectured to be 
2

n . 
1 - 2E 

The result is, however, not yet fully rigourous. Note that, n is a sequence of 
1 - 2E 

lower epsilon capacities, as a consequence of lemma (8.2.6). 

Our capacity results, so far, are for the case of associative mappings of the form 

u{a) I-+ v(a), where u(a) and v(a) are randomly specified fundamental and associated 

memories, respectively. This nominally corresponds to the case of hetero-association. 
; 

An allied form of association is auto-association where the fundamental and the 

associated memories are the same, i.e., u(a) = v(a). For autoassociation we essentially 

require that the fundamental memories be fixed points of the neural network, at least 
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for the case where we require perfect recall. While the capacity results above hold in 

toto for autoassociation, some strictures do apply on the allowable choice of linear 

transformations. That restrictions of some form are required can be easily seen: a 

choice of interconnection weights corresponding to the identity matrix, wij = 8ij, 

results in all the 2n possible state vectors being fixed points! It is clearly ridiculous to 

claim that the capacity is hence 2n . The point of essence here is programmabi/£ty; we 

would like to be able to specify linear transformations dependent upon the actual 

choice of fundamental memories, and in such a way that not too many extraneous 

stable points (corresponding to spurious memories) are created. With a choice such as 

the identity transformation, for example, the element of programmability is lost, and 

the choice of the transformation has become independent of the chosen memories 

themselves. One consequence is that all states become stable, and there can clearly be 

no basin or well of associative attraction. To avoid this type of problem, it suffices to 

discard from consideration all "identity type" transformations, as made precise in the 

following constraint. 

Suff£cient condition for autoassociative storage: Let w i = ( wi i, ... , win ), 

represent the vector of interconnection weights corresponding to neuron i, and let ei 

be a standard basis n -vector with a one in the i -th position, and zeroes everywhere 

else. For purposes of autoassociation, it suffices to restrict consideration to choices of 

interconnection weigh ts satisfying the following inequality: 

The above inequality is fully equivalent to requiring that 

Note that the argument of the first inverse cosme on the left hand side is 

this is just the relative strength of the diagonal term wii vis-a-vis the 
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length of the vector wi. The right hand side is just the modulus of the angle between 

any axis and any vertex of the hypercube. The inequality simply specifies that the 

angle between the weight vector w i and the unit vector ei pointing along the i -th 

axis be at least as large as the angle between the axis and any vertex. Choices of 

weights satisfying the above constraint will ensure that the diagonal term will not 

dominate the non-diagonal terms. A simpler requirement than the above is simply to 

require that the weight matrix is zero-diagonal, wii = 0, i.e., no neuron talks to itself. 

With such restrictions the capacity results continue to hold for auto-association. 

4. DISTRIBUTION OF ERRORS 

Recall that the distribution of errors (more accurately, the distribution of 

"don't care" decisions) is determined by those random decision sets Vi(a) which are 

exceptional, i.e., which specify a "don't care" decision. Because of the binomial 

distribution of choice of "don't care" decisions, each associated memory has an average 

of 2£n "don't care" components-half of these on average resulting in errors, and the 

other half resulting in correct decisions. However, we might query whether, when all 

the associated memories are considered jointly, there is a significant probability that 

there are much more or much less than 2£n "don't care" decisions for many of the 

memories. 

Our concern stems from an alternate, but appealing, deterministic definiton of 

epsilon capacity, wherin we require that each of the associated memories has exactly 

2£n fixed "don't care" decisions. It would be meet if our probabilistic choice of "don't 

care" decisions from a binomial distribution resulted in essentially the number of 

"don't care" decisions prescribed by some deterministic choice. 

An alternate problem of some importance is whether the capacity results are 

strongly tied to the cho"ice of a binomial distribution for "don't care" decisions-natural 

though it be in some sense. 
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A. Strong Convergence to Mean Error Rate 

By the Strong Law of Large Numbers, each individual memory has 2rn "don't 

care" decisions attributed to it with probability one. However, if our definition of 

epsilon capacity is to jell with the deterministic definition, we require that the above 

attribute holds, not just individually, but jointly for each of a very large number, m, 

of associations. As m increases very rapidly with n, it is not clear whether the joint 

probability of essentially 2£n "don't care" decisions for each associated memory also 

approaches one. In fact, we will prove the following rather stronger assertion after 

developing some notation. 

Assertion. As n -+ oo, the number of "don't care" decisions attributed to each of 

the m associated memories approaches 2£n; further, for each neural site i =l, ... ,n, 

the number of exceptional decison sets v/~l = IB approaches 2£m . 

00 

Let {mn }n=l denote the sequence of the number of associations to be stored 

indicated explicitly as a function of n . We require that mn satisfy 

_n_ < mn < ~.for some fixed error tolerance 0 < £ < 1/2. 
1-2£ - 1-2£ -

Let X/"'l be the indicator of exceptional decision sets Vi (a), i.e., 

x.(a) = {1 
' 0 

if vi (a) is exceptional 

if vi (a) is normal . 

We form the random sums 

n 
5(a)( n) = .E xi (a) ' O'=l, ... ,mn , 

i =1 

m. 

Si (n) = L;Xi(a) , i=l, .. .,n . 
a=l 
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5(a)(n) is clearly the number of "don't care" decisions attributed to associated 

memory v(a), and S; (n) is the corresponding number of "don't care" decisions 

attributed to neural site i. The assertion can now be seen to be equivalent to the 

following statement: 

and 

S;(n )-+ 2Emn 1 i=l,. . .,n , as n-+ oo. (8.4.1) 

We now prove that the assertion holds in the sense that with probability one 

5(a)(n) - 2En, and S; (n )- 2Emn become, and remain small for each G'=l,. .. ,mn, and 

i=l,. . .,n. 

Theorem 8.4.1. The assertion (8.4.1) holds with probability one. 

Proof. Let {s-n } 1 and { 1/n} be given sequences of positive real numbers. For 

G'=l,. .. ,mn, let E(a)(n 1S"n) be the event 

I 5(crl(n) - 2rn I > S"n , (8.4.2) 

and for i =l,. .. ,n 1 let Ei (n 11/n) be the event 

I Si( n) - 2Emn I > 1/n . (8.4.3) 

Define the composite event 

n m, 

E (n lS"n 11/n )'= LJ Edn 11/n) LJ E(a)(n l~n). 
i =l a=l 
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To prove the theorem it suffices to show that for every fixed <; > 0, and every 

fixed Y/ > 0, with probability one, there occur only finitely many of the events 

E(n ,n <;,n YJ). Fix a constant c > 2. In (8.4.2) and (8.4.3), set 

(8.4.4) 

and 

l ]1/2 

log n + 2 log (-4-) mn (21:)(1-2E) , 
1-2E (8.4.5) 

and consider the events E(a)(n ,<;n ), a=l, .. .,mn, and Ei (n ,1Jn ), i =1, .. .,n. Have 

_n_ < m < ~. Hence 
1-2E - n - 1-2E 

~ 1Jn 
-----~ -+ 0 as n -+ oo , 

[n (2t)(l-2t)] 213 
' [mn (2t)(l-2t)j 213 

and 

~ Y/n 

Jn (2t)(l-2E) ' Jmn (2c:)(l-2c:) 
-+oo asn -+OO. 

The hypotheses of lemma (8.2.3) are satisfied, and hence 

P {E(a)(n ,<;n )} ,..._, ~ exp {-[c log n +log (-4-)J} , 
271" <:n 1-2E 

P {Edn ,1Jn )} ,..._, ~ exp {-[c log n +log (-
4-)J}. 

271" 1Jn 1-2E 

Th us, at least for large enough n , 

m, n 

P{E(n,<;n,1Jn)} < ,EP{E(a)(n,<;n)}+ _EP{Ei(n,1Jn)} 
a=l i =l 
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< (mn + n) exp {-[c log n +log (-
4 -)J} 

1-2t 

< 2mn exp {-[c log n +log (-4-)]} 
1-2t 

< 1~1 exp {-[c log n +log (-
4-)J} 

l-2t 1-2t 

c > 2. 

Hence EP {E(n ,~n ,T/n )} converges. By lemma (8.2.7) we then have that with 

probability one only finitely many of the events E ( n ,~n ,T/n) occur with ~n and Tln 

given by equations (8.4.4) and (8.4.5), respectively. 

and 

Now assume the event E (n ,n ~,n Tl) occurs for fixed~> 0, Tl > 0. Have 

[ [ 2c log n 

n Tl > T/n 

l ]1/2 

+ 2 log (-4 -) n (2t)(l-2c) 
l-2E 

for n sufficiently large. Hence, if the event E (n ,n ~,n Tl) occurs, then so does the 

event E(n ,~n ,1/n ). Thus, if infinitely many of the events E(n ,n ~,n Tl) occur, then so 

do infinitely many of the events E (n ,~n ,T/n ), and this has probability zero. 

Clearly the above argument holds for every fixed ~ > 0, Tl > 0. Thus, for every 

fixed ~ > 0, 17 > 0, with probability one th ere occur only finitely many of the even ts 

E(n,n~,nT/). D 
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The number of components of each retrieved memory that are treated as "don't 

care" is hence essentially 2rn. As the number of components in error will be half this 

number with high probability for sufficiently large n, it follows that the number of 

components in error in each of the retrieved memories is essentially En. Similarly, the 

number of erroneous decisions made at each neural site is essentially Em. 

B. Universality of Capacity Bounds 

Thus far we have considered a particular mechanism for the introduction of 

error tolerance into the decision process. The specification of the decisions to be 

labeled "don't cares" was through the agency of the random decision sets Vi (a) 

assumed to be drawn from a binomial distribution corresponding to a sequence of mn 

Bernoulli trials, each with probability 2E of resulting in a "don't care" decision. 

This particular mode of choice of "don't care" decisions is natural and 

intuitively appealing as it outlines a method of specifying "don't care" decisions in a 

random and independent fashion. Further, for any two particular choices of sequences 

of "don't care" decisions, the choice with fewer "don't cares" is more likely in 

accordance with our preference for more accurate recall. However, as we saw from the 

theorem of the last section, typical sequences of "don't cares" are essentially 2€n in 

number for each associated memory. It is hence reasonable to say that the resultant 

·1 . f 2n . d d "fi 1 f 2 upper eps1 on capacity o -- m ee spec11es a to erance o up to en errors m 
1-2<: 

decision for each associated memory. 

The notion of introducing the random decision sets Vi (a) to specify decisions 

which we treat as "don't cares" is much more general, however. In the general case 

we could specify the values taken by Vi(a), i =l, ... ,n, a=l, ... ,m, to be taken from 

some product space, with probabilities of points in th joint ensemble given by some 

suitable distribution 

P {v.(a) _ d.(a) "=l 
I - I ! z , .. .,n (8.4.6) 

which need not, in general, correspond to the binomial distribution. The only 
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requirement we impose on the distribution of choice is that (at least in an asymptotic 

sense) the number of "don't care" decisions approaches 2fn for each associated 

memory with high probability, where f E [0,1/2) is the prescribed error tolerance. 

Thus, if for the chosen distribution we denote by f E(m ,n) the probability that 

for each associated memory v(a), the number of "don't care" decisions is less than or 

equal to a quantity p(E,n) ,.._, 2rn, then we require that 

J i m , n ) -+ 1 as n -+ oo \J m < cenu . (8.4.7) 

Note that distributions of the form (8.4.6) also include deterministic choices of 

exactly 2En "don't care" decisions for each associated memory. (For such cases 

equation (8.4.7) is of course trivially satisfied.) For deterministic choices, the 

distribution (8.4.6) has the entire probability mass concentrated at a single point, 1.e., 

p (di (a)) assumes the value one if di (a)= IB for 2fmn pairs 

( i ,a) = ( i 110'1), ... ,( i 2Emn ,azEmn ), and di (a)= {vi (a)}, (i ,a) =/= (ij ,a j ), and assumes 

the value zero otherwise. 

Example 1. (Deterministic choice) 

Vi(a) is exceptional if i < 2rn for each a, and Vi(a) 1s normal if i > 2rn+l 

for each a. 

By means of this particular (deterministic) distribution of choice of "don't care" 

decisions, we label the first 2En decisions for each associated memory as "don't cares," 

and require correct classification for all the remaining decisions. (We might suspect 

that choosing "don't care" decisions in such an uninspired fashion, with many neural 

sites not benefiting at all, will not gain us in capacity. The suspicion turns out to be 

well founded.) D 

Example 2. {Deterministic choice) 
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Vi (a) is exceptional if i and a jointly satisfy the inequalities 

k (2rn )+1 < i < (k +1)2rn, and k (2Em )+1 < a < (k +I)2Em, for k =0,l,. .. ,I/2E, 

and Vi(a) is normal otherwise. (For simplicity we assume that 1/2E is an integer.) 

Consider an n X m matrix with rows corresponding to the n neural sites z , 

and with columns corresponding to the m associated memories v(a), which has entries 

1 at positions (i ,a) where the corresponding decision sets Vi(a) is exceptional, and 

entries 0 where the corresponding decision sets v/a) are normal. The above fixed 

choice of "don't cares" represents a block diagonal matrix with each block being an 

2rn X2Em submatrix with all entries being 1. (In the case of example 1, the 

corresponding matrix has l's in its first 2rn rows, and O's in all the other rows.) 

It is clear from the structure of the "don't care" matrix that all neural sites 

benefit from "don't care" decisions to exactly the same extent, so that, in light of 

theorem (8.4.1), we might expect some rewards in capacity. This indeed turns out to 

be the case. 0 

Example 3. (Markovian choice) 

We now consider a probabilistic choice of distribution of "don't cares." Instead 

of having errors distributed randomly, and independently, as in the binomial 

distribution, we now require that the errors tend to cluster together (but not quite to 

the same extent as in examples 1 and 2.) We specify a Markovian distribution of 

"don't cares" as follows: 

The decison sets Vi (a) are the outcomes of a sequence of mn experiments such 

that for every a-:/:- /3, the outcomes V la), ... , Vn(a) are jointly independent of the 

outcomes Vlf3l, ... , Vn(i9)_ Each Vi(a) has an a priori distribution 

Vi (a) = { Vjja)} with probability 1-2E 

IB with probability 2E . 

For each a, the outcomes Vi(a) form a Markov chain with 
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p {Vi~f = 1B' V;(a) = m} = 8/2' 

p {V;~{ = {vi~f 'v/a) = m} = (1-8)/2' 

for i =l, ... ,n -1, and where 8 > ~ . The joint distribution of (8.4.6) is then given by 

m 
P (di(a)) = IT P (dn(a) I dn(~f) P (dn(~f I dn(~d) · · · P (dJa) I dla)) P (d1(a)), 

a=l 

with the conditional probabilities given by the Markov chain transition probabilities. 

0 

With a plethora of possible distributions of "don't care" decisions confronting 

us, we might wonder if by some suitable choice of distribution (8.4.6) we could obtain 

a significant increase in capacity over the Zn result obtained earlier using a binomial 
1-2t 

distribution of choice. The answer is furbished by the following: 

Theorem 8.4.2. For any mode of choice of "don't care" decisions determined by a 

probability distribution (8.4.6), the upper epsilon capacity is bounded from above by 

2n 
l-2E 

Before we prove the above statement, a digression: 

Lemma 8.4.1. Let 2onn exceptional decision sets Vi (a) be given. For each 

i=l, ... ,n, let ei be the number of "don't care" decisions corresponding to neural site 
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(a) If "fn =min( ei) < 2tm, then for each ).. > 0, and m such that 

~ < m < 2n (l->..) we have 
14 - 1-2€ ' 

n 

ITPo(m-ei,n) < [P 0(m-2tm,n)]" 
i=l (8.4.8) 

for n large enough. Equality holds in (8.4.8) \;/ m if"/= 2L 

(b) If om = min { ei : ei =/:- 0} < m , then for each ).. > 0, and m such that 

2n < m < 2n (l->..) we have 
- 1-8 ' 

n 

ITPo(m-ei,n) > [P 0(m,n)]"-2
rn 

i=l 

for n large enough. Equality holds in (8.4.9) \;/ m if 8 = 1. 

(8.4.9) 

Proof. To avoid technicalities, we assume 2rn and 2tm are integers. In part (a), if 

/ = 2t, then ei = 2tm for each i so that (8.4.8) holds for this case. Assume / < 2t. 

Have 

n 

ITPo(m-ei,n) < P 0(m-1m,n) < 1/2 
i =1 

whenever m -1m > 2n by theorem (8.3.1) (b) and lemma (8.4.1). Moreover, by 

theorem (8.3.1) (c), [P 0(m -2cm ,r1 )]'1 -+ 1 as n -+ oo \J m such that 

m -2tm < 2n (1->..) for each ).. > 0. This completes the proof of part (a). 

For part {b), equality in (8.4.9) is obvious when o = 1. Now assume o < l. 

Without loss of generality we can assume that ei > 0 for each i, as otherwise we can 
,. 

cancel the correspond mg terms P 0(m ,n) from both sides of (8.4.9). Hence, by 

theorem (8.3.1) {c) 
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n 

ITPo(m-ei ,n) > [P 0(m-8m ,n )]" -+ 1 as n -+ oo 
i=l 

whenever m -8m < 2n (1-:>..) for each ).. > 0, and 

[P 0( m , n )]" -2
rn < P 0( m , n ) -+ 0 as n -+ oo 

whenever m > 2n . D 

ITP 0(m-ei,n) is simply the maximum probability that we can find a neural 
~ 

network with the desired distribution of "don't care" decisions. Note that the 

probability upper bound in (8.4.8) corresponds to the distribution of example 2, while 

the lower bound in (8.4.9) corresponds to the distribution of example 1. Lemma (8.4.1) 

in conjunction with theorem (8.3.1) yields the following: 

Proposition 8.4.1. For any particular choice of exactly 2tmn "don't care" 

decisions, the following hold: 

2n 
(a) The maximum upper epsilon capacity of is achieved iff each associated 

1-2E 

memory has 2tn "don't care" decisions attributed to it, and each neural site has 2tm 

"don't care" decisions attributed to it. 

(b) The maximum achievable upper epsilon capacity is 2n iff there 1s at least one 

neural site which has no "don't care" decisions attributed to it. 

2n 
( c) The maximum achievable upper epsilon capacity lies between 2n and -- for any 

1-2E 

choice of 2tmn "don't care" decisions. 

Th us, for any deterministic choice of 2tmn "don't care" decisions, the capacity 

2n 
1S bounded from above by --. In light of constraint (8.4.7), hence, it is not 

1-2E 

surprising that theorem (8.4.2) holds. 

Proof of theorem (8.4.2). As before, let E denote the event that ::l a neural 

network with tolerance L Let (8.4.6) denote the distribution of choice, subject only to 
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constraint (8.4.7). By lemma (8.4.1), 

P {E} < f f(m ,n) [P o{m {1-2E),n W + 1 - f lm ,n) . 

By theorem (8.3.1), and equation (8.4.7), the upper bound converges to one as n - oo, 

whenever (1-2E)m < 2n (1->-.) for each ).. > 0, and converges to zero whenever 

(1-2E)m > 2n {1+>-.) for each ).. > 0. Hence the upper epsilon capacity is bounded 

from above by ~ for all distributions {8.4.6) satisfying constraint {8.4.7). o 
l-2E 

Recapitualting, we started out with a definition of epsilon capacity based on a 

binomial distribution of errors. As a consequence of theorem {8.4.1) it turned out that 

the original definition of epsilon capacity approached the deterministic definition of 

epsilon capacity in a rather strong sense, with the epsilon capacity being ~ for a 
l-2E 

binomial distribution of errors. Note, however, that the capacity bound may not be 

tight for arbitrary distributions of choice (as in example 1, for instance). 

5. OPTIMAL WEIGHT MATRICES 

The capacity results of the previous sections indicate that as long as the 

number of associations to be stored is within the capacity, then with high probability, 

there exist weight matrices which store the required associations within the required 

error tolerance. While it is gratifying to know that there exist networks which can 

store the prescribed associations, practical interest centres on whether these optimal 

weight matrices can be found. Fortunately, there exist iterative techniques which yield 

the desired interconnection weights. 

We fruitfully employ the formal analogy between McCuloch-Pitts neurons and 

Rosen blatt's perceptron [9] to devise an iterative technique to obtain optimal weight 

matrices. The procedure is based upon reinforcement learning which utilises single­

sample correction, and can be used to "learn" the rows of the weight matrix one by 

one. 
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Let w i [OJ = ( wil[O], ... ,win [OJ ) be some arbitrary initial choice of weight vector 

corresponding to the i-th row of the weight matrix W. The following iterative scheme 

prescribes a sequence of weight vectors { wi [k J} which converges to an optimal 

weight vector in a finite number of steps. (By an optimal weight vector wi, we mean 

a vector whose components form the i -th row of some optimal matrix for storing 

2n . . . h 1 ) --- assoc1at1ons wit to erance L 
1- 2E 

We assume that for the prescribed choice of "don't care" components, there 

2n exists a neural network which stores associations with the prescribed error 
1 - 2E 

distribution. (We know that this is ensured with high probability.) 

Let the i-th components of the associated memories which have been specified 

. (a1) (a1,) 
to be accurately retrieved be denoted by vi , ... , vi The fundamental 

memories u(a.J, k = 1, ... ,ji, are presented cyclically to neuron i, and the weight 

vector w i is modified if an incorrect decision (-vi (a,)) is returned. Correction stops 

only when all the specified memories u(a, l, k = l, ... ,ji, are classified correctly by 

neuron i. As the weight vector is modified only when there is a misclassification, we 

may just as well consider only the sequence of misclassified memories. Let u [k] 

denote the sequence of misclassified fundamental memories, and let v [k j denote the 

corresponding sequence of associated memories. The incremental rule for generating a 

sequence of weight vectors corresponding to the i -th row of the weight matrix Wis 

given by 

w i [OJ arbitrary 

Wj [ k + 1] = Wj [ k J+ Pk Vj [ k JU [ k ], 

" where Pk is a positive, incremental sequence. 

It is easily seen that at each correction, the new weight vector tends to diminish 

the error m the previous misclassification by adding a term 

Pk vi [ k J ( u[ k ],u[ k J ) = Pk n vi [ k ] to the previous potential seen by the i -th 
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neuron. The following result now assures us that the procedure actually converges. 

Theorem 8.5.1. (Perceptron Convergence Theorem) 

If the incremental sequence {Pk} satisfies 

Pk> 0, 

K 

lim E Pk = oo, 
K-+oo k =1 

and 

K 

E Pl 
lim 

k=l 
=0, 

K -.oo [,~,Pk r 
then the sequence wi [ k ] converges to an optimal solution vector wi (if it exists) in a 

finite number of steps. 

Proof. cf. [10]. 

Particular choices of increments that can be useful are the fixed increment, 

1 
Pk = constant > 0 , and the harmonic series increment, Pk = -. A factor that can 

k 

be fruitfully employed where attraction is desired, is the usage of margins. Here, a 

margin M > 0 is specified, and a fundamental memory is deemed misclassified at the 

i-th position if 
n 

{ E Wjj [ k l u j [ k l} Vj [ k l - M < 0 . 
j=l 

Convergence theorem applies for this case also. 

The Perceptron 

Thus, if an optimal solution matrix exists, we can apply the reinforcement 
~ 

learning scheme to sequentially obtain each of the constituent optimal weight (row) 

vectors w1, ... , w n , of an optimal weight matrix W. Other techniques exist for 

learning the optimal weights, such as the relaxation procedure and the Ho-I<ashyap 

methods (cf. [11], for instance). All these techniques are descent procedures, which 
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utilise incremental learning in some form or the other. 
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CHAPTER IX 

SELECTED PROBLEMS 

1. DISCUSSION 

Our dealing with associative structures based on networks of densely 

interconnected neurons lends a natural interpretation to the role of the linear map, 

and the point rule in computation. To echo our statement in the introduction, the 

linear map represents communication of information between the various processing 

nodes of the system (the neurons), and the point rule provides the necessary non-linear 

adjunct to logical computation. The neural networks we have been analysing thus far, 

for instance, can be thought of as a host of simple threshold gates communicating 

massively with each other. 

As we have determined, for simple structures determined by linear maps with 

point rules, computational capability is circumscribed fairly tightly by the number of 

available degrees of freedom. Natural questions that arise at this juncture are: Is it 

possible to significantly rncrease computational capability by 
. . 
1mprovmg 

communication and/or elemental computational power within the network? 

Alternatively, can we sacrifice some communication, and still obtain satisfactory 

performance? 

The first issue' deals with the design and specification of more complex 

processing structures which result in powerful computation, while the second problem 

deals with specifying very low complexity structures which do not sacrifice much m 

performance. A central issue here is the characterisation of processor capability rn 



-326-

terms of the available communication, and the "raw" or elemental computing power 

available at each processing node. While beggaring an answer to either question-is a 

network of locally connected CRAY III's computationally superior to a network of 

densely interconnected microprocessors?-we will examine a few selected problems 

impinging on these issues as natural generalisations of the structures we have been 

considering. There are, of course, issues here that we do not take into consideration: 

questions on representation and uniformity, the issue of programmability, and the 

amount of "preprocessing" required. All of these factors will contribute to the 

determination of the ultimate worth of any processing scheme. 

We will discuss four problems in this chapter, all dealing with modifications to 

the structure of neural networks that we have been considering. The first problem 

deals with the issue of using binary interconnections between neurons, th us saving 

considerably in implementation cost. We next consider neurons with many states, and 

determine whether they can be utilised in conjunction with suitable multiple threshold 

decision rules, and linear maps to achieve similar associative storage to the kind we 

have been analysing. The third issue we consider is the modification of system 

architecture to compensate for deterministic distortions in input patterns; we use the 

creation of shift invariant associative memories as an illustrative example in this 

regard. Finally, we discuss certain natural generalisations of neural network 

architecture to higher order systems which increase capacity tremendously. 

2. BINARY INTERCONNECTIONS 

A. Introduction 

Practical implementations of the sort of neural network structure that we have 

been discussing hinge upon the realisability of dense synaptic interconnections. 

Clearly, providing of the order of n 2 interconnections provides particular problems in 

design, even for networks of moderate size. Additional problems arise from the fact 

that the synaptic interconnections may evrnce considerable dynamic range 

requirements. As we saw, synaptic interconnections realised by the outer product 
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algorithm required a dynamic range linear in n; for more efficient structures which 

approach the computational limit of these structures, the dynamic range required in 

the synaptic strengths is exponential in n [1 ]. A practical question of import is 

whether good performance can still be obtained while placing sanctions on the allowed 

dynamic range for the synaptic weights. 

The restriction of the synaptic weights to binary (on-off) interconnections was 

considered by Hopfield [2], who concludes that reasonable performance still attains if 

the weights corresponding to the outer product algorithm are binarised. The results of 

chapter IV indicate that this is indeed a reasonable approach, wherein it appears that 

hardlimiting the weights should not drastically alter the behaviour of the network. 

We sh all adopt a slightly d iff eren t tack. 

B. MaJority Rule Based Interconnections 

Let U = { u(l) · · · u{m )} C lBn be an m -set of fundamental memones as 

before. We again assume that the random components, ui(a), 1 = l, ... ,n, a= l, ... ,m, 

of the memories are drawn from a sequence of Bernoulli trials with equal probabilities 

of success and failure: 

For each pair (i ,j) E {1, ... ,n} X {l, ... ,n }, let {UJ,Uij} be a dichotomy of 

U defined by 

u:+ = {u(a) Eu. U·(a)u ,(a)= 1} 
IJ • I J ' 

and 

u.:- = {u(a) EU· U·(a)u .(a)= -1} 
IJ • I J (9.2.1) 
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Majority Rule for Interconnection Weights: 

~ {-: if I UJI > I Ui] I 
W·· 

if I Ui/ I I Ui] I IJ < 
(9.2.2) 

(Note that Wjj = 1, i = 1, ... ,n; this follows directly from (9.2.1), as ujt = U, and 

U;i- = 0 for this case.) 

Form the random variables, Xi(al, i = I, ... n, a= 1, ... ,m, by 

n 
X- (a)= '°' W· · U· (a)u .(a) 

I LJ I) I ) 

i=I 

= 1 + '°' W· · U· (a)u .(a) LJ I) I ) • 

j 'Ii (9.2.3) 

The random variable Xi (a) is just the potential seen by the z"-th neuron when u(a) is 

the current state, multiplied by the binary component ui(a)_ As before, the 

requirement that the fundamental memories be fixed points is equivalent to the 

constraint that the random variables Xi (a) are each non-negative. 

We first develop a brief, ad hoc rationale for the majority rule algorithm. 

Define the probabilities p and q by 

and 

q = 1 - p . (9.2.4) 

By virtue of the random choice of memories, the above probabilities are 

independent of a, i, and j. Now, it is clear that p is the probability that the 

component product ui (alu/°'l of the memory u(a) takes on the majority sign. As the 

components are chosen independently, it follows that the event {u·(a)tt .(a) has 
I ) 
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majority sign} is more probable than the event { ui (alu/°'l has minority sign}; hence 

p > 1/2, and q < 1/2. From equation (9.2.2) we then have 

and 

(9.2.5) 

It then follows from equation (9.2.3) that 

E (Xi(a)) = 1 + (n - l)(p - q) > 0. (9.2.6) 

If the signal-to-noise ratio, i.e., the ratio of the square of the mean of Xi (a) to the 

variance of xi (a), is large, then we expect that xi (a) > 0 with high probability. 

The following assertion is easily seen to hold. 

Proposition 9.2.1. The majority rule neural network can be equivalently obtained 

by homogeneously thresholding the interconnection weights of an outer product neural 

network; specifically, 

w· · = sgn [ ~ u·(,B)u .(,B) - gm 8 ·] 
IJ LJ I J IJ > 

,B=l (9.2.7) 

where g = 0 or 1. As before, 

wii =sgn {(1-g)m} =I. 

Using equation (9.2.3) in conjunction with equation (9.2.7), we have 
"' 



-330-

In analogy with lemma (6.5.1), the following result holds: 

Lemma 9.2.1. As n -+ oo, let m satisfy the following: 

(1) m = o(n ), and 

( ) ( ) M(n) 
2 m > A1 n , where n 

213 
-+ oo. 

n 

Then r= P {Xi(a) < o} ,..__, Vm e m 
2Vn 

Proof. Define the ±1 random variables 

Clearly, 

Xi(a) = 1 + _E Xi}al. 

j ""i 

(9.2.8) 

The random variables xi}a) are i.i.d. as each of the terms m the ,B-sum are 

independent by lemma (6.4.5). Now, 

= P { ~ u·(a)u_(a)u.UJ)u_(fj) > -1} 
LJI) I J - " 

(3""a 

p =P{E vda,(3)>-1} 
(3""a 

The sum of the i.i.d. random variables vda,(3) 1s a random variable governed by a 
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symmetric binomial distribution. For the case m even, we have 

P = _.!_ + _.!_ p {" V·(a,8) = -1} . 
2 2 LJ IJ 1 

8~a 

while for the case m odd, we have 

In either case, through the application of Sterling's formula for large enogh n, we 

obtain 

_!_+ 1 p ,...._, 
V2rrm ' 2 

and 

1 1 
q "'-' 

2 J2rrm 

Hence, as n --+ oo, 

and 

p - q ~ r ~:,, r. 
I pq ,...._, -
4 

It is easy to verify that the Large Deviation Central Limit Theorem (lemma 

(6.4.3)) continues to hold for the sum of the random variables Xi}°'l, so that 

r = P { E xiJ °' l < -1} 
8~a 
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<I> v ---;;-;;; '"'-' <I> - V2n" [
-1-(n-1) ;-T"l ( 9 ) 

Jn-:.1 v;m-

By choice of m, we have v'2n 
--- - oo as n - oo. v;m- The lemma follows by the 

asymptotic formula for the error function. o 

The above result gives us the probability that a particular bit of memory is not 

fixed. This can be used to obtain very crude bounds on capacity. In fact, if€ E (0,1) 

is the maximum allowable probability that any particular bit of memory is not fixed, 

then for small £, as n - oo, r;::;,, € if m < n 

7r log (-
1 

) 
2£ 

The crude analysis thus gives 

us an upper bound on storage capacity which is linear with n (though with a small 

constant). To estimate the actual capacity, we utilise the Poisson conjecture for the 

distribution of errors, and obtain analogously with the results of chapter VI that the 

capacity, C (n ), of the majority rule algorithm for storing fixed points is 

C(n)=--n-
21!" log n 

The result indicates that the loss in capacity resulting from the binarisation of 

the interconnection weigh ts of the outer product scheme is surprisingly small. The 

outer product algorithm is hence robust in this sense to changes in system parameters. 

\Ve conjecture that the maximal storage capacity of networks with binary 

interconnections is n - log" n. 

,. 
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3. MULTIPLE NEURAL STATES 

A. Multiple Threshold Point Rules 

Our usage of a binary n -tuple as state-vector presupposes that data coming in 

from the real world is suitably encoded as a binary bit stream (except in those cases 

where the bit stream itself constitutes the datum). While this suffices for many 

applications, at times, however, we might wish to avail of the facility of having 

neurons with multiple states with each neural state, for example, being the direct 

encoding of some state of nature. For instance, the English alphabet together with 

delimiters could be directly encoded into 37 neural states. Of course, if each neuron 

can take on one of many possible states, then simple single threshold point rules will 

no more suffice to specify changes in neural state. We will investigate a particular case 

where inter-neural communication is through a linear map, W, as before, but each 

neuron utilises a multiple-threshold point rule. 

For some fixed integer K, we assume that each neuron can take on one of 

2K + 1 states in J( = {-K;, .. .,-1,0,1,. .. ,K}, symmetrically about zero. The n -tuple of 

neural states determines the state of the network. Clearly, there are ( 21\, + I t 
possible states of the network. Interneuron communication is through the medium of 

a linear matrix of interconnection weights W = [wij] as before. Specifically, if 

u E [( n is the present state of the system, each neuron i =l ,. . ., n perceives a 

n 

potential ~ wij ui. State transitions are determined by a multiple-threshold 
j=l 

comparison rule at each neuron. Let 2K real scalar thresholds 

-00 < t -K < f -K + 1 < . . . < f K - 1 < 00 

be fixed. Form the intervals 
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if -IC+l < / < IC-1 

if I =-IC 

if I = IC 

Clearly LJ 11 = ill., so that the intervals J1 form a partition of the real line. The 
l=-K. 

decision rule at each neuron is specified as follows: if u EK" is the present state of 

the system, then the updated state, u/ , of the i -ith neuron is determined as follows: 

n 
I 

ui = l iff I:; wii u j E 11 . 

j=l 

As before, operation can be in either synchronous or asynchronous modes. 

For each neuron, then, the weights (wi 1, ... ,win ), together with the thresholds 

t _K., ... , t K.-I> determine a set of 21C parallel hyperplanes which effectively partition the 

pattern space K" into 21C+l decision regions. The effectiveness of this structure as an 

associative memory clearly depends upon an appropriate choice of weigh ts wii and 

thresholds t1 . 

In fig. 9.1 we illustrate the partitioning of a pattern space by multiple, parallel 

hyperplanes. Here we are considering a two-dimensional structure, n =2. The set of 

values that the neurons can t.ake is K = {-1,0,1}. Fig 9.1 (a) illustrates the decision 

regions pertaining to neuron 1, while fig. 9.1 (b) illustrates the decision regions 

pertaining to neuron 2. 

B. Outer Products Revisited 

We agam have recourse to the outer product algorithm. Let 

u(ll, ... , u(m l EK" be an m -set of fundamental memories. We assume that the 

components u; (a) of the" fund amen ta) memories are i.i.d. random variables with 
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1 

0 

• (-1,1) 

-1 

(0,-1) • ( 1,-1) 

Fig. 10.l (a). Three-state neurons: decision regions for neuron l. 

-1 0 1 

(-1,1). J (1,1)• 
, 

(0,0) 

( 0,-1) 

Fig. 10.l (b ). Three-state neurons: decision regions for neuron 2. 
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-K <I<"' - -
otherwise 

The interconnection weigh ts, wij, are agam formed as the sum of Kronecker outer 

products of the fundamental memories, with 

{ ~ u,18) u/8) 
if =Fi fi=l J 

W·· = 0 if '] J = i 

Again, the zero-diagonal symmetry constraint effects a sensible improvement in system 

dynamics. 

The thresholds t1 , l = -K, ... ,K - 1 are specified by 

(9.3.1) 

(for reasons that will soon be clear). 

Let us consider, for simplicity, capacity under a fixed-point constraint. Are the 

fundamental memories fixed points? Define 

n 
X,· (a) = " W· · U .(a) 

L..J '] J 
j=l 

n 
= ui (a) I; ( u/al)2 + I; I; ui (filu/filu/al 

j =l j rfi firfa 

y. (a) + z. (a) 
J I > 

where yi(a) corresponds to the single sum, and zi(a) corresponds to the second sum. 



We have 

Also 
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and 
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" = (n - l)l I; 
j=-1' 

·2 
J 

2K + 1 

IK(K+l)(n -1) 
3 

Var {yi(a) I ui(a)= l} = / 2 I; E {u/ali} 
j oTi 

12K(K + 1)(3x:2 + 3K - l)(n - 1) 
15 

The rationale for choosing the thresholds as in equation (9.3.1) is now clear; the mean 

values of Xi(a) given the various values that ui(a) can take are spread at equal 

distances of K(K + 1)( n - 1)/3, while the variances are asymptotically compatible. 

Modifying the definition of the signal-to-noise ratio (SNR) for the present case of 

multiple thresholds, we get 

SNR 
[ 

a a (/+~)K(K+l)(n-1))
2 

E { Y; ( ) I U; ( ) = l } - 3 
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3( n - I) 
~ ~~~~--'---~---''---~~~ 

K(K + l)(m - 1)[1 + o(I)] 

Going along the lines of the previous proof, we have with the Poisson conjecture for 

the distribution of errors that the storage capacity, C (n ), is given by 

C(n)= 3n 
4K(K + I) log n 

Thus, the capacity for the outer product scheme remams the order of 72 

logn 

Some deterioration is present in the constant, as expected, however, because the 

thresholds effect a finer partition of the real line. 

C. Spectral Approaches 

As in chapter VII, we can utilise a spectral approach to improve on the 

performance of the outer product scheme. Again, let u(l), ... , u(m) E /(" be a 

randomly chosen m -set of fundamental memories. (For m < n they will be linearly 

independent with probability approaching one as n - oo.) Let U = [ u(ll, ... , ulm l] 

be the n X m matrix of fundamental memories. Let A > 0 be fixed. Analogously 

with the pseudo-inverse scheme of strategy I in chapter VII, we define the matrix of 

weights W = [wij] by W = U A (UT Ut1UT, where A= dg(>._, ... , >.-)=>-I is a 

constant diagonal matrix of eigenvalues. The eigenvalues of W are hence m -fold 

degenerate. (We could equally well have used any other spectral scheme, of course, 

but we will restrict ourselves to the pseudo-inverse strategy for simplicity.) It is now 

simple to verify that the fundamental memories are eigenvectors of W with positive 

eigenvalue >-. (This will be true modulo the assumption of linear independence of the 
" 

m -set of fundamental memories; this, however, is true with probability approaching 1 

as n - oo, as noted earlier.) Specifically, 
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n 

(W u(a))i - E Wij u/a) =).. ui (a) i =l, ... ,n, a=l, ... ,m. 
j=l 

The thresholds t1 are specified by 

t1 = ( I + 1/2) ).. , I = -K,, •.. , K,-1 . 

The fundamental memories are fixed points with probability approaching 1 as n -+ oo 

for a choice m < n, as (ui(a) - 1/2) A < ).. ui(a) < (ui(a) + 1/2) A. Thus, with the 

spectral approach, we can again realise a storage capacity of the order of n 

fundamental memories. Notice, however, that this is a considerable improvement over 

the earlier instance where we stored binary n -tuples as fundamental memories. The 

capacity of n memories derived earlier, corresponded to the storage of n 2 bits. In the 

present example, the storage capacity is actually of the order of [log2(2K + 1)] n 2 bits. 

The multiplicative factor of log2 (2"' + 1) comes about because, now, each component 

of a memory can take on (2K + 1) values (instead of two, as before), and hence 

requires log2 (2n: + 1) bits to specify it. The usage of multiple threshold hence gives us 

an improvement of a factor of log2 (21>: + 1) in information storage. 

Ultimate capacities are somewhat harder to specify for this case. Generalising 

arguments by Olafsson and Abu-Mostafa [3] which count the number of disjoint 

regions created in the pattern space by multiple thresholds, it appears that the 

ultimate storage capacity lies between 2 (n + 1>:) and 2 (2n + 1>:) memories. Again, 

there is an inc rem en tal multiplicative factor of log2 (2K + 1) in information storage in 

bits because of the multiple states attainable by each neuron. 
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4. DISTORTION INVARIANCE 

A. Generalisation: Outer Product Algorithm 

As we have seen thus far, neural associative nets can efficiently perform nearest 

neigh hour searches (or error correction). Specifically, for the instance of a binary 

pattern space, neural networks can be constructed to map points in Hamming spheres 

surrounding the fundamental memories to the memories themselves, which act as 

fixed-points, or absorbing states of a Markov chain. The volume of the Hamming 

sphere, or the number of points in it, is a measure of the error-correction capability 

available to the network. Thus, random errors that occur in the specification of 

individual components of a stored memory can be effectively compensated for by an 

associative neural net. Such error occurrence may be considered to be at a local or 

microscopic level. 

There are certain commonly occurring macroscopic errors, however, which affect 

a large number of memory components, and which cannot be compensated for by a 

neural network of the structure we have described thus far. Instances of such 

macroscopic distortions are translational shifts of pattern vectors, rotations, and scales 

of images, and in general, any (fixed) non-singular transformation acting on the 

pattern vectors. Such non-singular transformations create macroscopic changes in the 

memones as all components are altered, albeit in some invertible fashion. Thus, in 

terms of Hamming distances, such transformations create patterns which are far 

removed from the fundamental memories, and hence are not "recognised" by the 

neural network. 

For known macroscopic distortions of patterns of this nature, an approach 

toward solving the pr~blem would be to utilise a pre-processing stage which maps 

distorted patterns into Hamming balls surrounding the memories. This approach, 

however, has some inherent problems. First, the pre-processing stage itself could be 

extremely complex. Second, and perhaps more important, in the process of correcting 

for a deterministic (macroscopic) distortion, we lose part or all of the Hamming space 



-341-

originally reserved for random (microscopic) bit error. 

An alternative approach which does not sacrifice error correction capability to 

achieve compensation for fixed distortions is suggested by a closer examination of the 

outer product algorithm of chapter VI. Assume u(a) is the initial state of the system. 

The potential Xi (a) seen at each neuron can be rewritten as 

X· (a)= ~ ( .;, u .(P) U .(a)] U· (P) 
s L.JL.JJ) '. 

P=l j =l 

Thus, the potential at each neuron can be arrived at by taking individual inner­

products (or correlations) of the input state with each of the fundamental memories in 

turn, and using these correlations as weigh ts for corresponding memory conponents. 

Thus, a fully equivalent processing scenario is obtained by considering m individual 

filtering stages, with the outputs of the filters being combined to form the neural 

post-synaptic potentials. The results of the first section on correlators (specifically, 

chapter III) indicate that if we generalise the filter construct by adding a point rule 

after every filter, we might be able to achieve correction of prescribed distortions. 

Fig. 9.2 illustrates the sort of structure we envisage. We have m channels 

corresponding to each memory. Each channel comprises two filtration stages with the 

parameters of each filter determined solely by the particular memory corresponding to 

the channel. The filtration stages are separated by a point rule which acts pointwise 

on the output of the first filter to produce the input for the second filter. (If the point 

rule is the identity, we end up with the original outer product formulation.) Thus we 

have two point rules in operation: an intermediate point· rule D introduced to 

compensate for specified distortions, and a threshold point rule which, as before, 

compensates for random bit errors. 

B. Translational Shift Invariance 

Let u(ll, ... , u(m l be independently chosen fundamental memones as before. 

To allow of translational shifts, we assume that each fundamental memory is a vector 

comprised of n independently chosen ±l's in sequence, and padded with O's on either 
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side to allow of up to a shift of n on either side. For simplicity of representation, we 

allow the non-zero components of u(a) to run from 0 to n -1. The padding with zeroes 

is an artifice which allows the creation of a "dead zone" in which shifts are allowed. 

Th us we can think of a shifted memory as the occurrence of a string of n ± 1 's 

somewhere in an otherwise blank one-dimensional register of infinite extent. 

Our approach is predicated upon the fact that the autocorrelation of a shifted 

pattern with itself results in an autocorrelation peak at the shifted position. If the 

autocorrelation peak is enhanced, then a succeeding convolution with the pattern itself 
' 

will essentially result in the specified pattern dominating a bunch of weak cross-

correlations. We elaborate on this theme, using an approach described in [4]. For 

each channel we choose a filter impulse response uun- with components u .un- = u (,!I) , J -J 

for the first filtration stage (a correlation), and a filter impulse response u(,B) for the 

second filtration stage (a convolution) and interpose a square-law point rule between 

the two filtration stages. The square-law point rule acts pointwise on each point of 

the correlation resulting from the first filter, and produces a vector with support over 

2n - 1 points as input to the convolutional stage to follow. The square-law point rule 

acts as a peak enhancer, and the convolutional stage that follows essentially picks out 

the particular (shifted) memory that was presented to the system. Clearly, other 

schemes can be chosen which function as well. We consider just the above algorithm 

as an archetypal example illustrating the possibilities in this area. 

The algorithm can easily be seen to be insensitive to translational shifts. 

Shifted inputs just cause the correlations in each channel to shift by equivalent 

amounts. As the square-law rule acts pointwise on the vector components, the amount 

of shift is unaltered, so that the vector after thresholding is just shifted by the amount 

of the input shift. It only remains to be shown that the addition of the square-law 

point rule does not significantly mcrease the "noise" content, which in turn would 

reduce storage capacity . 
. • 

Let fundamental memory u(a) be the initial state (probe) of the system. The 

potential seen by the i -th neuron can be written as 
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m n-1 
x.(a) =" " C .(a,,8)2 U·(,8) 

I LJ LJ J 1-J 1 

/J-1 j=-(n-1) 

where 

n -I-j 
uk(a) u/!i E if J >o 

n -I k=O 
C .(a,,8) - E uk(a) u/!i n -1 J -

k=O :E uk(a) u/!1 if J <0 
k=-j 

Expanding terms, we obtain 

X· (a)= n 2 U· (a)+ y. (a) + z. (a) 
' ' ' i ' 

where 

n -1 

yi(a) = 2 :E 
n-1-j n-1-j 

L; :E Ut(a) u,(a) u/~k u/~/ ui~1, 
j=l k =0 1=0 

and 

+ 

We have 

as yi(a) and zi(a) are zero-mean. To obtain the signal-to-noise ratio, we now compute 

the variance of yi(a) and zi(a). We can write Zi(a)
2 

as a sum over 8 variables 

(/31,/32,j 1,j 2,k1ik2,l 1,l 2),of a product of 10 terms, each ±1. Hence, Var zi(a) is an 8-

sum of the expectation of the product of ten terms. A careful examination of the 

product yields that the only non-zero contribution to the 8-sum results under the 

following circumstances: 
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!31 = !32 , j 1 = j 2 , 11 = 12 , and k 1 = k 2; 

!31 = !32 , j 1 = j 2, 11 = k 1 , and 12 = k 2 . 

For each of the above cases the expectation of the 10-product is one. Hence 

Similarly 

6 (m -l) (n -1) n (2n -1) 
6 

........, 2mn 3 asn --+oo. 

Choosing m so that m --+ oo, as n --+ oo, we have the signal-to noise-ratio given by 

SNR 

2mn 3(1 + o(l)) 

n 
2m 

The signal-to-noise (power) ratio for the original outer product algorithm was .!:.., so 
m 
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that this result augurs a loss of about a factor of 1/2 in capacity. This loss in the 

storage capacity for fundamental memories is, however, offset by achieving full 

invariance to translational shifts of the memories, while retaining a Hamming sphere of 

correction of (random) bit errors around each memory. Experimental results are 

available in Ref. [4]. 

{An argument could be made that we actually store {2n -l)m memones, by 

viewing each shifted version of a memory as a separate entity. This would, however, 

not be strictly accurate from our definition of capacity. In the definition we require 

that it be possible to store almost all choices of memories within capacity. In the 

present case, each shifted version of a memory is clearly related to the memory; it 

would not be possible to store an arbitrary choice of (2n -l)m memories within the 

present schema.) 

Thus, the addition of a second point rule (in addition to the threshold decision 

rule) results in considerably more associative processing power. A hidden price paid 

here, however, is that the system loses robustness. The original outer product scheme 

is very resilient from system damage [2], as evinced in section 2 in this chapter; 

binarising the interconnection weights does not significantly affect system performance. 

The shift invariant system, however, is much more susceptible if system parameters 

are incorrectly specified. For instance, losing a single correlator would result in that 

particular memory being lost. 

C. Rotation and Shift Invariance 

The same architecture could be applied to correct other forms of input 

distortion with suitable choices of system parameters. Consider a pattern space of 

bipolar images f (x ,y) E IB. Let images f (I), ... , f (m) represent m fundamental 

memones. We can utilise the results of chapter III now to obtain an associative 

memory which corrects for rotations, and shifts as well. The correlator impulse 

responses in this case are chosen to be rotation insensitive filters h (a)(x ,y ), (as in 

theorem (3.2.1)) with the filter in each channel so chosen that it produces a correlation 

peak if the corresponding memory is the input. The remaining system parameters are 

kept as before. We can argue, as before, that the resultant system is invariant now to 
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both rotations and translational shifts of image. The potential now seen by neuron 

indexed by coordinates (x ,y) when f (a) is the initial state of the system is 

where 

x((a)) 
x .11 

m 

L; I I I c(a,fJ)(u,v)l 2 J(fll(x-u,y-v)du dv' 
fJ=l 

c(a.fl)(u ,v) = J J 1 (a)(s ,t )hf"PT(s +u ,t +v) ds dt . 

As before, we can show that we are left with a signal term corresponding to the 

correlation peak C (a,a)(O,O) , and a noise term. If the rotation insensitive filters are 

suitably chosen so that good correlation peaks develop, then the signal term will 

dominate the noise term, and we have the requisite associative behaviour. Note, 

however, that there is some loss in performance compared to the pure shift invariance 

case. This corresponds to the discussion in chapter III on the loss in performance that 

accrues when rotation insensitive filters are compared to matched filters. 

5. HIGHER ORDER NETWORKS 

A. Polynomial Maps 

In the last two sections we have seen that improving the elemental 

computational capabilities of the system can result in significant improvements rn 

overall computational capability. Thus, by utilising multiple thresholds instead of 

single thresholds, we improved the information capacity of the system whereas by 

introducing an additional layer of square-law point rules we could obtain distortion 

invariant, associative recognition. An alternative approach to increasing capacity is to 

improve inter-neural "communication." Specifically, while retaining a simple threshold 

point rule, we replace tl;e linear map W by a more complex (non-linear) map. 

In this section, we illustrate the gains that may be had by this approach by 

utilising polynomial maps, W, to disseminate information about neural states 

throughout the network. Polynomial maps are, Ill a sense, the natural generalisation 
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of the linear interconnections that we have been considering so far. 

We again consider an n -neuron system with the instantaneous system state 

being a binary n -tuple u E Il3n . We define polynomial map of degree d on the 

pattern space w: mn ~ IR. n by 

d 

(Wu)i 0 = E 
k =l 

E 
l:'.Si 1< ... <i. :Sn 

,i 0 =1, .. .,n. 
(9.5.1) 

\Vhere the wioi 
1 
... i, are real coefficients (weights) for the polynomial. The potential 

seen by neuron i 0 is now given by equation (9.5.1). (Note that for d =I, we have the 

case of a linear mapping.) State changes at each neuron are determined by the same 

threshold rule as before, with neuron i 0 taking on state +1 if the potential (9.5.1) is 

non-negative, and taking on state -1 if the potential is negative. Operation could be 

either synchronous of asynchronous mode, as before. Again, with the nature of the 

decision rule being fixed, the demonstration of memory encoding and associative recall 

within the structure rests purely on the choice of the coefficients w,· i ... ,· and the 
0 1 k 

degree d of the polynomial. 

B. Outer Products Agaz'n 

Let us once again consider a generalisation of what is fast becoming an old 

friend-the outer product algorithm. Let u(ll, ... , u(m l E mn be randomly specified 

fundamental memories, as before. Let d be the degree of the polynomial map. We 

form the coefficients wioi 
1 
... it of the polynomial as a generalisation of the outer 

product algorithm as follows: 

if i 0, . .. , ik are all distinct 

0 otherwise 

To demonstrate the working of the algorithm, consider the storage of fixed points. 

Assume u(a) is the initial state of the system. Because of the symmetricity of the 
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terms involved in equation (9.5.2) (all permutations of i 0,i v ... , ik yield the same 

coefficient value), we consider only terms without repetition in the sum (9.5.1). We 

have the potential Xi (a) at the i-th neuron when u(a) is the initial state, given by 

where 

d 
= U·(a) '"' ( n -I) + z.(a) 

1 o L.J k 1 o ' 
k =I 

d 
z.(a) 

'o EE E U·(/3) u.(/3) U·(/3) u·(a) · · · u,·,(a). 
I 0 I 1 • • • It I I ' 

f3~a k =l l:Si 2< ... <i; :Sn 
i2, ... ,it ~i l 

We again utilise a signal-to-noise criterion. We have 

(9.5.3) 

as Zi~a) is zero mean. Furthermore, the vanance of Zi~a) can be easily found by 

exploiting the independence of the terms ui (a). Specifically, 

The signal-to-noise (power) ratio is hence given by 

SNR 
(m -1) (9.5.4) 

Consider the case of fixed polynomial degree d. Allowing m -+ oo as n -+ oo, we get 



that asymptotically with n , 

SNR ,_..., 
nd 
--m 
d! 
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Recalling that for the unvarnished outer product scheme we had an SNR ,_..., n -,we 
m 

get, in analogy with results obtained in chapter VI (or using the Poisson conjecture for 

error distribution), that the storage capacity C ( n ;d) of the generalised outer product 

scheme for a polynomial of degree d is given by 

nd 
C(n;d) = ----

2(d+l)! log n 

For d =I (the linear case) this reduces to the form n obtained earlier. For d =2 
4 log n 

we get 
12 log n' 

already a considerable improvement m capacity. Optical 

implementations of quadratic associative nets with d =2 have been proposed by 

Psaltis and Park [5]. The interesting feature of the proposed implementation is that 

the quadratic form (9.5.1) with d =2 is formed using solely linear maps and square-law 

point rules, and in fact this generalises to arbitrary d. This can be seen specifically 

from equation (9.5.3) . The innermost sum can be replaced by the term 

It is easily verified that for fixed d, the terms with index duplication do not contribute 

significantly to the sum. Hence, the outer product polynomial map can be 

implemented by a linear map in conjunction with k-th law point devices, k = l, ... ,d. 
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This may have considerable practical import. As has been long known, the dominant 

problem in VLSI systems is that of communication [6], and in a general polynomial 

map of the form (9.5.1), we require truly massive communication. Reducing the 

communication demands of the outer product polynomial map to that of a linear map 

is hence of some importance. 

C. Generalised Spectral Approaches 

The spectral algorithm also generalises to the polynomial case to yield a 

considerable mcrease in capacity. Let U = [ u(l) · · · u(m l] be an n X m matrix 

formed by the m column vectors, u(ll, ... , u(m l, corresponding to the m 

fundamental memories. Now corresponding to each u E IB 11
, we form a column vector 

d 

u" with L; ( k) components according to the following prescription: 
k=l 

Set 

.. 
u 

u.1 

u 1 . : . ud 

Form the Nd X m matrix 

u" = [ u(l)' ... u(m)'l. 

(9.5.5) 

(9.5.6) 

Let W denote the n X Nd matrix of coefficients for the polynomial in (9.5.1) arranged 

lexicographically; i.e., 
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Wu w 112 W l,n -d +l, ... ,n 

W21 w 212 W 2,n-d +l, ... ,n W= 

Wnl Wn 12 Wn ,n -d +1, ... ,n (9.5.7) 

The right hand side of equation (9.5.1) can now be identified with the matrix product 

WU". 

Let ). . .(1l ... ,>-.(m) be m positive real number. Let A= dg [>-.(ll, ... , )..(ml]. For 

each of the fundamental memories to be a fixed point it suffices that 

The fundamental memones u(a) are hence generalised eigenvectors with generalised 

eigenvalues )..(a) of the polynomial map W. We hence set out to solve for W such that 

WU" =U A. (9.5.8) 

A solution of (9.5.8) yielding a generalisation of the pseudo-inverse strategy of chapter 

VII is 

(9.5.9) 

Of course, other solutions are possible, as pointed out in chapter VII, but (9.5.9) 

is often the easiest to compute. Note that the unequivocal evaluation of equation 

(9.5.8) depends on the Nd X m matrix U" being full rank. This will be guaranteed as 

n --. oo by Korn lbs theorem for m <Nd . 

Therefore, the storage capacity of the generalised spectral scheme is of the order 

d 

of Nd = ~ ( ~) memories. 
k =1 

memories. 

nd 
For d fixed, this evaluates to the order of 

d! 
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There Is agam an improvement by a factor log n over the outer product 

approach. 

D. Maximal Capacity of Polynomial Maps 

The map W defined by equation (9.5.1) defines a polynomial map of degree d 

on the space of binary n -tuples IBn. For Nd defined by equation (9.5.6), define 

IB"" C JBNd to be the subset of binary Nrtuples comprised of binary Nrtuples u" 

of the form (9.5.5) derived from binary n -tuples u. Clearly, I IB"" I = 2n as 

equation (9.5.5) describes a 1-1 map. From the discussion just concluded, it is clear 

that we could equiv al en tly regard W as a linear mapping on the space IB *" whose 

matrix of coefficients is then XNd matrix of equation (9.5.7). 

The results of chapter VIII now hold by treating W as a linear map on an Nd -

dimensional space. Specifically, we have the following assertion. 

Theorem 9.5.1. The epsilon capacity of a polynomial neural network of degree d Is 

2 Nd 
---, where 0 < <: < 1/2 is the prescribed error tolerance. 
1 - 2t 

2nd 
Note that for fixed d, the epsilon capacity IS ( ) . If the degree d IS 

1-2 E d ! 

allowed to grow with n, we could potentially store an exponential number of 

memories. 
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CHAPTERX 

CONCLUSIONS 

Generalising linear discriminant functions to include point rules results in 

systems of moderate complexity which have the potential of expanding considerably 

the repertoire of problems that can be tackled by linear classification machines. The 

point rules themselves need not be very complex, and even very simple point rules can 

be efficacious for specific problems as we illustrated in our considerations of the 

threshold, and square-law point rules. The general utility of the approach to various 

classes of pattern recognition problems is yet under investigation. It appears, however, 

that (linearly non-separable) classification problems of specific structure, such as 

specified distortions of reference patterns, may well be amenable to solution by usage 

of general point rules in conjunction with appropriate linear maps. The choice of 

linear map and point rule, of course, has to be tailored to the specific problem at hand. 

For such a general classification problem, it may be appropriate to think of the point 

rule as generating a multitude of partial (generalised) decisions, with the final 

classification (linear discriminant function) stage producing a decision based upon these 

partial decisions. If point rules, and linear maps, can be so chosen (for a particular, 

cooperative problem structure) that each partial decision is independently biased 

towards correct classification, then the overall decision is liable to be accurate. This 

was the case, as we saw, for multiple channel machines using rotation insensitive filters 

in each channel, as well as for the binary filters. 

The usage of point rules in reduced dimensionality situations cannot, however, 

increase the essential capacity of the classification system in terms of increasing the 

number of states of nature that the system can identify. As we saw, however, in 

situations where the problem structure is cooperative, point rules can be used fruitfully 
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to separate states of nature which are not linearly separable, while working within the 

capacity of the system. In such cases then, the major advantage conferred by utilising 

generalised linear discriminant functions is in increased flexibility in classification, while 

leaving system capacity unchanged. 

The usage of cascades of these structures and feedback results in considerable 

increases in computational capability. Non-trivial problems in association, for 

instance, can be readily handled by relatively simple constructs. However, as we saw 

in our analysis of neural networks, systems incorporating simple linear maps and 

threshold point rules are intrinsically limited in capacity. In the hunt for systems of 

wider applicability, and greater computational capability, it is essential to quantify the 

exact tradeoffs between communication and elemental, or raw computing, power. In 

this regard, the extensions of neural network structure that we considered, yield 

encouraging results. Several open questions remain, however. 

While polynomial maps for communicating between processing nodes in such a 

feedback system yield reasonable capacities, it may well pay to investigate other 

general forms of communication between nodes (neurons). Replacing single and 

multiple threshold point rules by more general Boolean point rules is another approach 

to consider. In all such generalisations, of course, difficulties m practical 

implementation and system cost are important factors. Other questions we have not 

delved into in depth include the universality of applicability, and programmability of 

these structures. 

While much of the effort m this area has gone into the characterisation of the 

fixed point structure of these networks, much less is known about the dynamics of the 

network in even very simple structures. Charting the dynamics of state flow can be of 

importance in utilising these networks for more general computation. Another 

problem of interest (of which not much is known) is the distribution of extraneous 

fixed points, and their basins of attraction. While some early work is being done in 

this area, much needs to be done. Gains in the analyses of these problems can be put 

to use, for instance, in sculpting basins of attraction, or establishing desired paths in 

the state space. 
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Stochastic systems such as the so-called Boltzman machines, and algorithms 

such as simulated annealing may be of use in particular computational problems m 

these networks. Work remains to be done in the role of the stochastic structure m 

imposing order on chaotic systems. 

Allied problems of interest include the characterisation of locally interconnected 

systems, such as cellular automata. Multi-layer machines utilising many so called 

"hidden units" may be very effective for particular computations. These and other 

similar problems can be mapped onto large systems with dense local interconnectivity, 

and sparse global interconnectivity. The analysis of these systems promises to lead to 

characterisations of a wide class of problems which fall within the province of such 

networks. 

An issue we have not touched upon at all is that of learning, wherein the 

system parameters change in time, converging towards more optimal values. The 

characterisation of learning rules, and adaptation (both supervised and unsupervised) 

remains far from complete. 

In fine, of particular interest is the role of "analog" neurons which take on a 

continuum of values, with some suitable non-discrete point rule. While early efforts 

indicate that these can be used fruitfully for computation, very little is known of their 

capabilities. They exhibit behaviour considerably different from their discrete 

counterparts, particularly in the appearance of chaotic behaviour in systems 

incorporating such analog structures. The analysis of these structures could well prove 

to be critical in evaluating the ultimate use of such densely interconnected networks 

for computation. 


