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Abstract

The high computational cost of correlated wavefunction theory (WFT) calculations

has motivated the development of numerous methods to partition the description of

large chemical systems into smaller subsystem calculations. For example, WFT-in-

DFT embedding methods facilitate the partitioning of a system into two subsystems:

a subsystem A that is treated using an accurate WFT method, and a subsystem B

that is treated using a more efficient Kohn-Sham density functional theory (KS-DFT)

method.1–3 A primary challenge of WFT-in-DFT embedding is the accurate represen-

tation of the embedding potential, which describes the inter-subsystem interactions.

In many WFT-in-DFT embedding methods, the embedding potential is treated using

the approximations of orbital-free DFT, which can lead to large errors in the result-

ing energies. This dissertation describes the development and application of improved

embedding methods that enable accurate and efficient calculation of the properties

of large chemical systems.

This work builds upon several key studies. In Ref. 4, a method was described for

calculating numerically exact KS-DFT embedding potentials through the use of an

optimized effective potential (OEP) step. The first general implementation of this

method for many-electron systems was introduced in Ref. 5, with additional chal-

lenges associated with the treatment of particularly complex systems being addressed

in Ref. 6. Several variations of the OEP-based approach have also been proposed.7–10

More recently, the projection-based WFT-in-DFT embedding method has been devel-

oped, enabling the calculation of numerically exact embedding potentials without the
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need for a computationally challenging OEP step. The projection-based embedding

method has been published in Ref. 11 and in Ref. 12.

Chapter 1 introduces a generalization of the projection-based WFT-in-DFT em-

bedding method that is suitable for application to the study of large chemical systems.

In the original implementation of the projection-based embedding method, all calcu-

lations on subsystem A were performed using the basis set of the full system. When

the wavefunction of subsystem A is represented using the basis set of the full system,

the computational cost of the WFT calculation on subsystem A increases with re-

spect to the size of the full system; this characteristic imposes practical limitations

on the applicability of the projection-based embedding method to large chemical sys-

tems. In principle, by truncating the basis set representation of the subsystem A

wavefunction to include only a subset of the basis functions associated with the full

system, it is possible to ensure that the cost of the WFT calculation on subsystem

A is independent of the size of the full system. We show that näıve truncation of

the basis set associated with subsystem A can lead to large numerical artifacts, and

present a method for truncating the basis set associated with subsystem A that en-

ables systematic control of these artifacts. The truncation method is applied to both

covalently and non-covalently bound test cases, including water clusters and polypep-

tide chains, and it is demonstrated that errors associated with basis set truncation

are controllable to well within chemical accuracy. This work has been published in

Ref. 13.

Chapter 2 describes the application of the projection-based embedding method

to investigate the oxidative stability of lithium-ion batteries. A central challenge in

the refinement of lithium-ion batteries is the control of cathode-induced oxidative

decomposition of electrolyte solvents, such as ethylene carbonate (EC) and dimethyl

carbonate (DMC). We study the oxidation potentials of neat EC, neat DMC, and

1:1 mixtures of EC and DMC by using the projection-based embedding approach to
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accurately calculate the vertical ionization energy (IE) of individual molecules at the

CCSD(T) level of theory, while explicitly accounting for the solvent using a combi-

nation of DFT and molecular mechanics interactions. We find that the ensemble-

averaged distributions of vertical IEs are consistent with a linear response interpre-

tation of the statistics of the solvent configurations, enabling determination of both

the intrinsic oxidation potential of the solvents and the corresponding solvent reor-

ganization energies. Interestingly, we reveal that large contributions to the solvation

properties of DMC originate from quadrupolar interactions, resulting in a much larger

solvent reorganization energy than that predicted using simple dielectric continuum

models. Demonstration that the solvation properties of EC and DMC are governed

by fundamentally different intermolecular interactions provides insight into key as-

pects of lithium-ion batteries, with relevance to electrolyte decomposition processes,

solid-electrolyte interphase formation, and the local solvation environment of lithium

cations. This work has been published in Ref. 14.
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Chapter 1

Accurate basis set truncation for
wavefunction embedding

1.1 Introduction

The computational cost of electronic structure calculations has motivated the devel-

opment of methods to partition the description of large systems into smaller subsys-

tem calculations. Among these are the QM/MM,1–6 ONIOM,7,8 fragment molecular

orbital (FMO),9–15 and WFT-in-DFT embedding16–30 approaches, which allow for

the treatment of systems that would not be practical using conventional wavefunc-

tion theory (WFT) approaches. In particular, WFT-in-DFT embedding utilizes the

theoretical framework of density functional theory (DFT) embedding to enable the

WFT description of a given subsystem in the effective potential that is created by

the remaining electronic density of the system.16–30 We recently introduced a simple,

projection-based method for performing accurate WFT-in-DFT embedding calcula-

tions30 that avoids the need for a numerically challenging optimized effective potential

(OEP) calculation24,25,31–34 via the introduction of a level-shift operator. It was shown

that this method enables the accurate calculation of WFT-in-DFT subsystem correla-

tion energies, as well as many-body expansions (MBEs) of the total WFT correlation

energy.30

In our original implementation, projection-based embedding was performed in
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the supermolecular basis, such that the embedded subsystem electronic structure

calculation is performed in the atomic orbital (AO) basis set of the full system.30

From a computational efficiency standpoint, this is not ideal. Although the embedded

subsystem calculation has fewer occupied MOs than that performed over the full

system, the number of virtual MOs is not reduced. The cost of traditional WFT

methods typically depends more strongly on the number of virtual MOs than on the

number of occupied MOs; for example, the CCSD(T) method scales as o3v4, where o

and v indicate the number of occupied and virtual MOs, respectively.35 Truncation

of the AO basis set in which the embedded subsystem is represented would lead to a

reduction in the number of virtual MOs, thus significantly reducing the computational

cost of the embedded subsystem calculation.

In the current work, we present a method for accurately truncating the AO basis

set for embedded subsystem calculations, and we demonstrate its accuracy for both

covalently and non-covalently bound systems. It is shown that this approach provides

a means of controlling truncation errors and of systematically switching between ex-

isting approximate embedding methods and rigorous projection-based embedding.

Furthermore, we present both embedded WFT calculations and embedded MBE cal-

culations for molecular clusters and polypeptides.

1.2 Projection-Based Embedding

We now review the projection-based embedding method,30 which provides a rigorous

framework for embedding either a WFT subsystem description in a self-consistent

field (SCF) environment (WFT-in-SCF embedding) or an SCF subsystem descrip-

tion in an SCF environment (SCF-in-SCF embedding). The method builds upon

earlier ideas to maintain orthogonality between subsystem orbitals, including frozen-

core approximations,36 the Philips-Kleinman pseudopotential approach,37 the incre-
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mental scheme of Stoll et al.,38 the region method of Mata et al.,39 and Henderson’s

embedding scheme.40

In projection-based embedding, an SCF calculation (either HF or Kohn-Sham

(KS)-DFT) is first performed over the full system. The resulting set of occupied

MOs, {φi}, is then optionally rotated before it is partitioned into sets {φi}A and

{φi}B, which correspond to subsystems A and B, respectively. These two sets of

orbitals are used to construct the respective subsystem density matrices in the AO

basis set, γA and γB.

In the embedded subsystem calculation, orthogonality between the subsystem

MOs is enforced via the addition of a projection operator, PB, to the subsystem A

embedded Fock matrix, such that

fA = hA in B[γA, γB] + g[γAemb], (1.1)

where the embedded core Hamiltonian is

hA in B[γA, γB] = h + g[γA + γB]− g[γA] + µPB, (1.2)

h is the standard one-electron core Hamiltonian, g includes all two-electron terms,

and µ is a level-shift parameter; γAemb is the density matrix associated with the MO

eigenfunctions of fA. The projection operator is given by

PB
αβ ≡ 〈bα|

{∑
i∈B

|φi〉〈φi|

}
|bβ〉, (1.3)

where the bα are the AO basis functions and the summation spans the MOs in {φi}B.

In the limit of µ → ∞, the MOs of subsystem A are constrained to be mutually or-

thogonal with those of subsystem B.36–43 Enforcement of this orthogonality condition

eliminates the need for an OEP calculation, since non-additive contributions to the
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kinetic energy vanish in this limit. The embedded SCF calculation using the Fock

matrix in Eq. 2.4 is iterated to self-consistency with respect to γAemb. The energy of

the resulting SCF-in-SCF embedding calculation is then

ESCF[γAemb; γA, γB] = ESCF[γAemb] + ESCF[γB] + Enad
SCF[γA, γB]

+ tr
[
(γAemb − γA)(hA in B[γA, γB]− h)

]
,

(1.4)

where ESCF is the SCF energy and Enad
SCF[γA, γB] is the non-additive interaction energy

between the densities γA and γB. The last term in Eq. 1.4 is a first-order correc-

tion to the difference between Enad
SCF[γA, γB] and Enad

SCF[γAemb, γ
B].25 For µ → ∞, the

SCF-in-SCF embedding energy is identical to the energy of the corresponding SCF

calculation performed over the full system; as a result, the projection-based approach

is numerically exact for SCF-in-SCF embedding calculations. In our previous work,30

we introduced an additional perturbative correction to the SCF-in-SCF energy to

account for the finite value of µ in a given computation; this correction is typically

far smaller than the energy differences discussed in the current paper and is thus

neglected throughout.

For the special case of DFT-in-DFT embedding, the two-electron potential terms

include contributions from the electron-electron electrostatic repulsion and exchange-

correlation, such that

g[γA + γB] = J[γA + γB] + vxc[γ
A + γB]. (1.5)

The associated non-additive interaction energy is

Enad
SCF[γA, γB] = Jnad[γA, γB] + Enad

xc [γA, γB], (1.6)
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where

Jnad[γA, γB] =

∫
dr1

∫
dr2

γA(1)γB(2)

r12
(1.7)

and

Enad
xc [γA, γB] = Exc[γ

A + γB]− Exc[γ
A]− Exc[γ

B]. (1.8)

Evaluation of Jnad[γA, γB] is straightforward, and although the exact form of Enad
xc [γA, γB]

is not known, approximate exchange-correlation (XC) functionals are well-established.

Eq. 1.6 does not include any contributions from the non-additive kinetic energy

(NAKE), T nad
s [γA, γB], as this term vanishes due to the explicit mutual orthogonal-

ization of the subsystem MOs. Similarly, the special case of HF-in-HF embedding

is obtained by replacing the exchange-correlation potential and energy functionals,

vxc[γ
A + γB] in Eq. 1.5 and Enad

xc [γA, γB] in Eq. 1.6, with the corresponding HF

exchange terms.30

Projection-based embedding also allows for WFT-in-SCF embedding, in which

subsystem A is treated at the WFT level and subsystem B is described at the SCF

level.30 This simply involves replacing the standard one-electron core Hamiltonian in

a WFT calculation with the embedded core Hamiltonian of Eq. 2.5. The electronic

energy from the WFT-in-SCF approach is

EWFT[ΨA; γA, γB] = 〈ΨA|ĤA in B[γA, γB]|ΨA〉

+ ESCF[γB] + Enad
SCF[γA, γB]

− tr
[
γA(hA in B[γA, γB]− h)

]
,

(1.9)

where |ΨA〉 is the embedded wavefunction from the WFT-in-SCF embedding cal-

culation and ĤA in B[γA, γB] is the Hamiltonian resulting from replacing the stan-

dard core Hamiltonian with the embedded core Hamiltonian. Because the term
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tr
[
γAemb(hA in B[γA, γB]− h)

]
is included in the first term of Eq. 2.7, it does not

appear in the last term, unlike Eq. 1.4.

1.3 AO Basis Set Truncation

1.3.1 The Challenges of AO Basis Set Truncation

Practical implementation of WFT-in-DFT embedding for large systems requires trun-

cation of the AO basis set for the subsystem that is described at the WFT level of

theory. We now illustrate the challenges of this task by analyzing the errors that arise

from truncation of the AO basis set; in particular, we show that significant numerical

errors can arise due to the difficulty of constructing MOs in the truncated AO basis

set that are sufficiently orthogonal to the projected MOs in subsystem B.

Calculations utilizing the truncated AO basis set are referred to as truncated em-

bedding calculations, as opposed to supermolecular embedding calculations for which

the AO basis set is not truncated. Specifically, the truncated embedding calculation

for subsystem A is performed within an AO basis set, {bα}A, that is a subset of

the AO basis set for the full system, {bα}. All calculations are performed using the

implementation of projection-based embedding in the Molpro software package.44

As a starting point, we present a set of HF-in-HF supermolecular embedding

calculations against which truncated embedding calculations can be compared. A

closed-shell HF calculation is performed on a water hexamer in the BK-1 geometry45

using the cc-pVDZ basis set;46,47 all geometries employed in this study are provided

in the appendices (Section 1.6-1.8). We number the molecules of the water hexamer

as shown in Fig. 2.1(a). Following Pipek-Mezey localization of the canonical HF

MOs,48 subsystem partitioning is performed by assigning the five MOs with the largest

Mulliken population on water molecule 1 to {φi}A; the remaining MOs are assigned

to {φi}B. A HF-in-HF embedding calculation is then performed over a range of values
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1 

2  4  6 

5 3 
Border Ac/ve 

Distant 

(a)  (b) 

Figure 1.1: (a) The BK-1 water hexamer, with molecule numbering indicated. (b)
Illustration of the atom sets defined in Section 1.3.2, with one possible choice of the
active, border, and distant atoms indicated.

for the level-shift parameter µ.

The solid line in Fig. 1.2(a) presents the µ-dependence of the HF-in-HF embedding

error,

EHF
err ≡ EHF

emb − EHF
full , (1.10)

where EHF
emb is the energy of the HF-in-HF embedding calculation, and EHF

full is the

energy of the HF calculation performed over the full system. As previously ob-

served,30 the error in the SCF-in-SCF supermolecular embedding calculations is sub-

microhartree and varies little with respect to µ over several orders of magnitude.

The dashed line in Fig. 1.2(a) shows the results of a naive HF-in-HF truncated

embedding calculation, in which {bα}A is defined to include only the AO basis func-

tions centered on the atoms in water molecules 1, 2, and 3. Calculation of the HF

MOs, {φi}, and the subsystem density matrices, γA and γB, is performed in the su-

permolecular basis, {bα}. The embedded core Hamiltonian in Eq. 2.5 is initially

constructed in the supermolecular basis, after which all matrix elements in hA in B

that do not correspond to the truncated AO basis are discarded. The embedded

calculation for subsystem A is then performed in the truncated AO basis. Unlike

the supermolecular case, Fig. 1.2(a) illustrates that these naive truncated embedding

calculations (solid) produce energies which strongly vary with respect to µ.

The dashed-dotted line and the crosses in Fig. 1.2(a) show the dependence of

errors in the truncated embedding calculations with respect to the choice of which
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Figure 1.2: (a) HF-in-HF embedding error for molecule 1 of the BK-1 water hexamer.
The solid curve provides the supermolecular embedding results, while the results of
naive truncation of the AO basis set are shown in the dashed curve. Also shown is the
effect of partitioning the projection operator for HF-in-HF embedding in the trun-
cated basis set, with either {µ′, µ′′} = {µ, 0} (dashed-dotted) or {µ′, µ′′} = {106, µ}
(crosses). (b) The corresponding truncation error for the CCSD(T)-in-HF truncated
embedding calculations.
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MOs in subsystem B are projected. In these results, the projection operator is parti-

tioned into two parts, PB′

αβ and PB′′

αβ , each with a different level-shift parameter. The

partitioned projection operators are defined as

PB′

αβ ≡ 〈bα|

{∑
i∈B′

|φi〉〈φi|

}
|bβ〉 (1.11)

and

PB′′

αβ ≡ PB
αβ − PB′

αβ. (1.12)

The summation in Eq. 1.11 is over the set of MOs {φi}B′ , which is a subset of {φi}B.

Eq. 1.12 corresponds to the projection of the set of MOs, {φi}B′′ , that consists of

all subsystem B MOs that are not included in {φi}B′ . The resulting embedded core

Hamiltonian (from Eq. 2.5) is

hA in B = h + g[γA + γB]− g[γA] + µ′PB′

+µ′′PB′′
.

(1.13)

In these calculations, a particular MO in {φi}B is assigned to {φi}B′ only if its com-

bined Mulliken population on the basis functions centered on water molecules 2 and

3 is greater than 0.5, such that only the 10 (doubly-occupied) MOs in subsystem B

that are localized on water molecules 2 and 3 are included. Setting µ′ to a positive

value while µ′′ = 0 corresponds to projecting only the MOs that are localized within

the truncated AO basis set, {bα}A.

As illustrated by the dashed-dotted curve in Fig. 1.2(a), the error in the truncated

embedding calculation exhibits very little dependence on µ′, which suggests that

the µ-dependence observed in the dashed curve is caused primarily by projection of

the subsystem B MOs that are not localized within the AO basis set accessible to

subsystem A. This conclusion is also supported by the set of crosses, which shows the
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effect of changing µ′′ while leaving µ′ fixed at 106.

The results from Fig. 1.2(a) may seem counterintuitive, since the overlap between

{φi}B′′ and the truncated AO basis set is much smaller than the overlap between

{φi}B′ and the truncated AO basis set; it might be expected that projection of the

MOs in {φi}B′′ would have little impact on the truncated embedding calculation.

However, the observed behavior can be understood in terms of the difficulty of con-

structing MOs that are orthogonal to {φi}B′′ within the truncated Hilbert space of

subsystem A. Because the orbitals that are projected by µ′′ do not strongly overlap

with the basis functions accessible to subsystem A, achieving orthogonality between

the subsystem A MOs and {φi}B′′ places severe demands on the diffuse functions of

the truncated AO basis set; in the supermolecular basis set, this difficulty is elimi-

nated. For cases in which the truncated basis set is insufficiently flexible to construct

MOs that are effectively orthogonal to {φi}B′′ , the error in the truncated embedding

calculation increases linearly with the level-shift parameter µ′′.

Fig. 1.2(b) shows that the same trends hold for WFT-in-HF embedding. The fig-

ure plots the truncation error in the correlation energy of the WFT-in-HF embedding

calculations,

Ecorr
err ≡ Ecorr

trunc − Ecorr
super, (1.14)

where Ecorr
trunc is the correlation energy of a WFT-in-HF truncated embedding calcula-

tion (i.e., the difference between the WFT-in-HF and HF-in-HF embedding energies)

and Ecorr
super is the correlation energy of a WFT-in-HF supermolecular embedding cal-

culation obtained with the same choices of {φi}B and µ′. In the supermolecular

embedding calculation, all members of {φi}B are assigned to {φi}B′ . The correlation

energy is defined in the standard way:

Ecorr ≡ EWFT − EHF. (1.15)
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The WFT calculations in Fig. 1.2(b) are performed at the CCSD(T) level of theory,49

and the subsystems are partitioned as in the corresponding HF-in-HF embedding

calculations. As observed for the HF-in-HF truncated embedding calculations, the

errors of the CCSD(T)-in-HF truncated embedding calculations exhibit very little

dependence on µ′ and strong dependence on µ′′.

Taken together, the results in Fig. 1.2 illustrate that significant numerical arti-

facts arise from the enforcement of orthogonality between the MOs of subsystem A

in the truncated basis set and the MOs of subsystem B that are localized outside

of the truncated AO basis set. Projection of {φi}B′′ leads to significant errors, as

well as dependence upon the level-shift parameter (Figs. 1.2(a) and 1.2(b), crosses).

This problem is avoided by setting µ′′ = 0 in Eq. 1.13, resulting in truncated embed-

ding calculations that exhibit both good accuracy and very little dependence on the

remaining level-shift parameter, µ′ (Figs. 1.2(a) and 1.2(b), dashed-dotted curve).

1.3.2 An Improved AO Basis Set Truncation Algorithm

Incorporating the observations from Section 1.3.1, we now present an algorithm for

AO basis set truncation in projection-based embedding that avoids dependence on the

level-shift parameters and that yields controllable error with respect to the size of the

truncated basis set. Truncated embedding calculations require specification of (i) the

subsystem B MOs, {φi}B, (ii) the set of AO basis functions in which subsystem A is

solved, {bα}A, and (iii) the set of subsystem B MOs that are to be projected, {φi}B′ .

In the new algorithm, these specifications are made via the respective selection of (i)

a set of “active atoms” that are associated with subsystem A, (ii) a set of “border

atoms” that lie at the interface of subsystems A and B, and (iii) an MO overlap

threshold parameter, τ .

The set of active atoms is used to determine {φi}B. An SCF calculation is per-

formed over the full system using either HF theory or KS-DFT, followed by localiza-
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tion of the MOs; we employ the Pipek-Mezey localization method throughout this

paper. An MO is assigned to {φi}B if and only if the atom on which the MO has the

largest Mulliken population is not an active atom. For the BK-1 water hexamer, one

example of a choice of active atoms is provided in Fig. 2.1(b).

The set of border atoms is used to determine {bα}A. Only AO basis functions

centered on either an active atom or a border atom are included in {bα}A. Any

atom that is not assigned to either the set of active atoms or the set of border atoms

is assigned to the set of “distant atoms.” The special case in which no atoms are

included in the set of border atoms is equivalent to using the monomolecular basis,

while the special case in which no atoms are included in the set of distant atoms

corresponds to using the supermolecular basis. An example of one possible choice of

border atoms is given in Fig. 2.1(b).

The overlap threshold parameter τ is used to determine {φi}B′ . A given MO in

{φi}B is assigned to {φi}B′ if it exhibits a combined electronic population on the

border atoms, Ni, such that |Ni| > τ ; for the purpose of determining the electronic

population on individual atoms, we employ Mulliken population analysis throughout

this paper. For the special case of τ = 0, all MOs in {φi}B are assigned to {φi}B′ ,

whereas sufficiently large values of τ correspond to assigning no MOs to {φi}B′ .

Figs. 1.3(a) and 1.3(b) illustrate the effect of τ on the number of projected MOs

and on the accuracy of HF-in-HF truncated embedding calculations, respectively. The

calculations are performed using the BK-1 water hexamer geometry, and the sets of

active and border atoms correspond to the case shown in Fig. 2.1(b). The level-shift

parameters are set to {µ′, µ′′} = {106, 0}, and HF-in-HF truncated embedding calcu-

lations using the cc-pVDZ basis set (i.e., HF-in-HF/cc-pVDZ truncated embedding

calculations) are performed over a range of τ . These calculations correspond to chang-

ing the number of projected MOs, while leaving the size of the truncated AO basis set

unchanged. As τ approaches zero, the number of MOs in {φi}B′ approaches the total
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number of MOs in {φi}B (Fig. 1.3(a)). As more MOs are added to {φi}B′ , the error

increases substantially (Fig. 1.3(b)); this is consistent with the previous observation

that projection of the subsystem B MOs not localized within {bα}A results in large

errors (Fig. 1.2, crosses). For very large values of τ , the error in Fig. 1.3(b) increases

substantially due to “charge leakage,” which is discussed later in this section and in

Section 1.3.3.

Fig. 1.3(c) illustrates the sensitivity of HF-in-HF truncated embedding calcula-

tions to the size of the truncated AO basis set. The calculations use the set of active

atoms indicated in Fig. 2.1(b) and {µ′, µ′′, τ} = {106, 0, 0.5}. The set of border atoms

for each calculation is determined through the use of a cutoff parameter, RO-O. If

the oxygen atom of a particular water molecule is within a distance RO-O of an ac-

tive oxygen atom, all atoms in that water molecule are included in the set of border

atoms; the set of border atoms for each value of RO-O in Fig. 1.3(c) is indicated in

Table 1.1. Fig. 1.3(c) illustrates that the truncated embedding calculation converges

rapidly with respect to the number of border atoms.

RO-O Molecules

2.0 Å
3.0 Å 2, 3
4.2 Å 2, 3, 4
5.0 Å 2, 3, 4, 5
6.0 Å 2, 3, 4, 5, 6

Table 1.1: List of water molecules, the atoms of which comprise the set of border
atoms for each value of RO-O in Fig. 1.3(c). At RO-O = 3.0 Å, the set of border atoms
is the same as that shown in Fig. 2.1(b).

Although the algorithm described in this section works well for relatively compact

AO basis sets, such as the cc-pVDZ basis set used in all calculations up this point,

it exhibits convergence failure for calculations that employ more diffuse basis sets,

such as the aug-cc-pVDZ basis set. This is due to the well-known problem of charge

leakage, in which the neglect of repulsive interactions in an embedding calculation
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Figure 1.3: (a) The number of MOs assigned to {φi}B′ as a function of τ for the BK-1
conformation of the water hexamer. The sets of active and border atoms correspond
to the case shown in Fig. 2.1(b). (b) The absolute error in the HF-in-HF embedding
calculation as a function of τ . The data point on the far right is equivalent to the
dashed-dotted curve in Fig. 1.2(a) at µ′ = 106, while the data point on the far left
is equivalent to the cross at µ′′ = 106. Thus changing τ corresponds to switching
between the dashed-dotted curve and the set of crosses in Fig. 1.2(a). (c) The
absolute error in the HF-in-HF embedding calculation as a function of the border
atom cutoff, RO-O.
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allows for the improper transfer of electron density from the embedded subsystem to

the surrounding environment.50–52 As we show in the Section 1.3.3, this problem can

be remedied in the context of truncated projection-based embedding.

1.3.3 Switching Between Orbital Projection and Approxima-

tion of the NAKP

To address the problem of charge leakage in truncated embedding calculations employ-

ing diffuse basis sets, we include a simple modification to the truncated embedding

algorithm from Section 1.3.2. Because that algorithm does not fully enforce mutual

orthogonality between the subsystem A MOs and the MOs in {φi}B′′ , the NAKE be-

tween the corresponding electronic densities is non-zero. Accounting for this NAKE

contribution requires modification of the embedded core Hamiltonian in Eq. 1.13,

such that

hA in B ≈ h + g[γA + γB]− g[γA] + µ′PB′

+vA
NAKP[γA, γB

′′
],

(1.16)

where γB
′′

is the density matrix corresponding to the subsystem B MOs in {φi}B′′ ,

and the non-additive kinetic potential (NAKP) is

vA
NAKP[γA, γB

′′
] = vTs [γ

A + γB
′′
]− vTs [γ

A]. (1.17)

The corresponding SCF-in-SCF energy from Eq. 1.4 is then

ESCF[γAemb; γA, γB] ≈ ESCF[γAemb] + ESCF[γB]

+ Enad
SCF[γA, γB] + T nad

s [γA, γB
′′
]

+ tr
[
(γAemb − γA)(hA in B − h)

]
,

(1.18)
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where

T nad
s [γA, γB

′′
] = Ts[γ

A + γB
′′
]− Ts[γA]− Ts[γB

′′
], (1.19)

and the corresponding WFT-in-SCF energy from Eq. 2.7 is

EWFT[ΨA; γA, γB] ≈ 〈ΨA|ĤA in B|ΨA〉

+ ESCF[γB] + Enad
SCF[γA, γB] + T nad

s [γA, γB
′′
]

− tr
[
γA(hA in B − h)

]
.

(1.20)

By construction, the overlap between the MOs in subsystem A and {φi}B′′ is small;

it can thus be expected that currently available approximations to the kinetic energy

functional will provide an adequate description of the NAKE.

If all atoms are included in either the set of active or border atoms and if τ

is sufficiently small, this approach corresponds to supermolecular projection-based

embedding and involves no approximate KE functionals. In the other extreme, if no

atoms are included in the set of border atoms, then no MOs are projected and the

approach corresponds to the familiar case of monomolecular DFT embedding with

the use of an approximate KE functional. The protocol in Eqs. 1.16-1.19 thus allows

for the systematic switching between monomolecular DFT embedding and projection-

based supermolecular embedding via modulation of τ and the set of border atoms.

To demonstrate this switching, Fig. 1.4 presents a series of truncated embedding

calculations on the BK-1 water hexamer using the cc-pVDZ basis set. In each calcula-

tion, the active atoms correspond to one of the water molecules, {µ′, τ} = {106, 0.5},

and vA
NAKP[γA, γB

′′
] is obtained using the Thomas-Fermi (TF) functional;53,54 the bor-

der atoms are determined using a range of RO-O. Figs. 1.4(a) and 1.4(b) show the

effect of truncation in the HF-in-HF embedding calculations and in the CCSD(T)-

in-HF embedding calculations, respectively. In both cases, the results are seen to

quickly converge with respect to the number of border atoms.
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Figure 1.4: (a) The effect of varying RO-O on the HF-in-HF/cc-pVDZ embedding
energy of the BK-1 conformation of the water hexamer. Each curve corresponds to
assigning the constituent atoms of the indicated molecule as the set of active atoms.
For a cutoff of 2.0 Å, the calculation is equivalent to a monomolecular calculation
using TF embedding and no projection operator. At 6.0 Å, all of the calculations are
performed in the supermolecular basis, and the projection operator is used exclusively
with no approximate functionals. (b) The corresponding CCSD(T)-in-HF/cc-pVDZ
results. (c) The corresponding HF-in-HF/aug-cc-pVDZ results. (d) The correspond-
ing CCSD(T)-in-HF/aug-cc-pVDZ results.
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In Figs. 1.4(c) and 1.4(d), these calculations are repeated using the larger aug-

cc-pVDZ basis set. Again, the results converge rapidly with respect to the number

of border atoms. However, the results in Figs. 1.4(c) and 1.4(d) contrast with those

discussed in Section 1.3.2, for which truncated embedding with the larger basis set

failed due to charge leakage. We thus find that inclusion of the NAKP between

the subsystem A MOs and the MOs in {φi}B′′ helps to mitigate the issue of charge

leakage when basis set truncation is employed. This finding is consistent with earlier

observations that monomolecular DFT embedding is a useful strategy for mitigating

charge leakage.55–57

Finally, we note that Eqs. 1.16 and 1.18 can be regarded as a pairwise approxi-

mation,31,32 such that

T nad
s [γA, γB

′
+ γB

′′
] ≈ T nad

s [γA, γB
′
]

+T nad
s [γA, γB

′′
].

(1.21)

In the limit of µ′ → ∞, the embedded subsystem MOs and the MOs in {φi}B′

are constrained to be mutually orthogonal for all γA; subject to this constraint,

T nad
s [γA, γB

′
] = 0 for all γA, and

vA
NAKP[γA, γB

′
] =

δT nad
s [γA, γB

′
]

δγA
= 0. (1.22)

Therefore, the only nonzero contribution to the NAKP is vA
NAKP[γA, γB

′′
] (Eq. 1.16),

and the only contribution to the NAKE is T nad
s [γA, γB

′′
] (Eq. 1.18).
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1 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 3 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Figure 1.5: The Gly-Gly-Gly-Gly tetrapeptide, with the set of active atoms composing
the Gly2 residue (solid red box). Each of the dashed boxes indicates the union of the
sets of active and border atoms for the corresponding value of nt; any atoms outside
of the boxes are included in the set of distant atoms.

1.4 Applications

1.4.1 WFT-in-HF Truncated Embedding for Polypeptides

For a more demanding illustration of the truncated embedding approach presented in

Section 1.3.3, we consider the Gly-Gly-Gly-Gly tetrapeptide. The optimized geometry

of the tetrapeptide is determined at the HF/cc-pVDZ level, with all backbone dihedral

angles constrained to 180◦. For each of the truncated embedding calculations in this

section, the set of active atoms consists of the atoms of one of the four glycine residues.

The set of border atoms for each truncated embedding calculation is specified by a

cutoff, nt. If a backbone atom is within nt bonds of an active atom, then it is included

in the set of border atoms; if a non-backbone moiety (i.e., H, O, or OH) is bonded

to a border atom, then its associated atoms are likewise included in the set of border

atoms. Several sets of border atoms, each corresponding to a different value of nt, are

illustrated in Fig. 1.5 for the case in which the atoms of the Gly2 residue comprise

the set of active atoms.

Fig. 1.6 illustrates that WFT-in-HF truncated embedding calculations on this sys-

tem exhibit significant τ -dependence, since localization of the HF MOs yields orbitals

with significant population on two or more backbone atoms. These calculations are

performed using MP2-in-HF/aug-cc-pVDZ embedding, with the set of active atoms

comprising those in the Gly2 residue, with the set of border atoms associated with
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Figure 1.6: (a) τ -dependence of the number of projected orbitals within MP2-
in-HF/aug-cc-pVDZ truncated embedding calculations on the Gly-Gly-Gly-Gly
tetrapeptide with nt = 3. The choice of active and border atoms is indicated in
Fig. 1.5. (b) µ′-dependence of the truncation error of this calculation for several
values of τ .

nt = 3, and with vA
NAKP[γA, γB

′′
] obtained using the TF functional. Fig. 1.6(a) shows

the number of projected MOs for several values of τ , and the µ′-dependence for each

value of τ is shown in part Fig. 1.6(b). For τ ≥ 0.02, there is very little µ′-dependence,

whereas smaller values of τ lead to greater dependence on the level-shift parameter.

In general, it is preferable to set τ as small as possible without introducing signif-

icant µ′-dependence, since this results in fewer orbitals being treated at the level of

the approximate KE functional. For all systems considered in this paper, we find that

τ = 0.05 results in small µ′-dependencies; all remaining calculations reported in this

paper thus employ {µ′, τ} = {106, 0.05} and utilize the TF functional to approximate

vA
NAKP[γA, γB

′′
].

Fig. 1.7 presents additional MP2-in-HF embedding calculations using different

sets of active atoms and using a range of values for the border atom cutoff, nt. The
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Figure 1.7: (a) Convergence of the truncation error of embedding calculations on
the Gly-Gly-Gly-Gly tetrapeptide using the cc-pVDZ basis set and several values of
nt. In each curve, the set of active atoms corresponds to the indicated residue. For
nt = 9, there are no distant atoms in any of the calculations. (b) The corresponding
calculation using the aug-cc-pVDZ basis set. The inset shows the same results on a
larger scale.

set of active atoms associated with each curve corresponds to a different residue in

the tetrapeptide. The results in Fig. 1.7(a) and Fig. 1.7(b) are obtained using the cc-

pVDZ and aug-cc-pVDZ basis sets, respectively. Both sets of results converge rapidly

with respect to the number of border atoms, although it is clear that a minimum of

nt = 2 is needed for the calculations with the aug-cc-pVDZ basis set; more diffuse basis

functions in the augmented basis set lead to greater overlap between the subsystem A

MOs and the MOs in {φi}B′′ , thus increasing the contribution from the approximate

NAKP functional and yielding a stronger dependence on the border atom cutoff.
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1.4.2 Embedded MBE

A promising application domain for projection-based WFT-in-HF embedding is the

accurate MBE calculation of WFT energies.30 This approach has the advantage of

avoiding many of the challenges of more traditional MBE methods,9,58–72 including

sensitivity to the parameterization of point charges73 or the need for “cap-atom” ap-

proximations.74–79 As described previously, we perform the embedded MBE (EMBE)

expansion in the correlation energy;30 inclusion of the 1-body and 2-body terms yields

the EMBE2 expression

EEMBE2 =
∑
i

Ecorr
i −

∑
i>j

(Ecorr
ij − Ecorr

i − Ecorr
j ), (1.23)

where Ecorr
i is the WFT-in-HF correlation energy of monomer i and Ecorr

ij is the WFT-

in-HF correlation energy of the dimer ij.

1.4.2.1 Water Hexamers

EMBE2 calculations at the CCSD(T)-in-HF level are performed on a test set of 11

conformations of the water hexamer, using the 6-31G,80,81 cc-pVDZ, and aug-cc-

pVDZ basis sets. The calculations are performed with {µ′, τ} = {106, 0.05}, and

vA
NAKP[γA, γB

′′
] is obtained using the TF functional. Three of the hexamer geometries

are taken from Ref. 82 and correspond to the (1) book, (2) cage, and (3) prism

conformations; the other eight are taken from Ref. 45 and correspond to the (4)

cyclic boat-1, (5) cyclic boat-2, (6) cyclic chair, (7) cage, (8) book-1, (9) book-2, (10)

bag, and (11) an additional prism conformation. This test set includes a mixture of

planar (Conf. 4, 5, and 6), quasi-planar (Conf. 1, 8, and 9), and three-dimensional

(Conf. 2, 3, 7, and 11) conformations. Each monomer in the EMBE2 calculations

corresponds to a set of active atoms comprising the atoms associated with one of the

water molecules.
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The relative energy of the water hexamer conformations are provided in Fig.

1.8(a), obtained using supermolecular EMBE2 calculations; full CCSD(T) calcula-

tions are also reported for comparison. Energies are reported with respect to that

of Conf. (11), obtained using the corresponding level of theory and basis set. Fig.

1.8(b) presents the MBE error for each calculation, obtained using

EMBE
err ≡ EEMBE2 − Ecorr. (1.24)

The mean unsigned MBE error,
〈
|EMBE

err |
〉
, of the EMBE2 calculations performed on

this test set is 0.10 kcal/mol for the 6-31G basis set, 0.12 kcal/mol for the cc-pVDZ

basis set, and 0.06 kcal/mol for aug-cc-pVDZ. The EMBE2 calculations are thus seen

to produce smaller values of
〈
|EMBE

err |
〉

than similar calculations using point-charge

embedding;67 equally important, however, is the fact that the embedding approach

provided here rigorously avoids the problem of charge leakage and the use of arbitrary

parameters, and allows for full basis set convergence.

Fig. 1.9 presents the relative energies for the corresponding truncated embedding

calculations in the aug-cc-pVDZ basis set. The border atoms are determined in the

manner described in Section 1.3.2, using both RO-O = 0 Å (i.e., monomolecular DFT

embedding using the TF KE functional) and RO-O = 3 Å. The truncated embedding

calculations with RO-O = 3 Å are in far better agreement with the reference super-

molecular calculations, thus illustrating the potential of using truncated projection-

based embedding to significantly improve upon the accuracy of DFT embedding with

approximate KE functionals.

Table 1.2 presents a summary of the EMBE2 results for all three basis sets (6-31G,

cc-pVDZ, and aug-cc-pVDZ). The truncated embedding results using a non-empty

set of border atoms (i.e., RO-O > 0 Å) consistently produce smaller mean unsigned

MBE errors than those obtained in the monomolecular basis (i.e., RO-O = 0 Å).
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Figure 1.8: (a) Energies of water hexamer conformations obtained using both
CCSD(T) over the full system and CCSD(T)-in-HF supermolecular EMBE2 calcula-
tions. Three different basis sets are employed, with the cc-pVDZ and aug-cc-pVDZ
basis sets abbreviated as VDZ and AVDZ, respectively. Conformation energies are
reported with respect to the corresponding calculation for Conf. 11. (b) Error in the
energy of the EMBE2 calculations.
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Figure 1.9: Energies of water hexamer conformations obtained using both CCSD(T)-
in-HF supermolecular EMBE2 calculations and CCSD(T)-in-HF truncated EMBE2
calculations. The embedding calculations employ truncated embedding with a border
atom cutoff of either RO-O = 0 Å or RO-O = 3 Å. Conformation energies are reported
with respect to the corresponding calculation for Conf. 11.

The standard deviation of the errors for each set of calculations, σ[EMBE
err ], is also

provided; this quantity reports on errors in the relative conformation energies, which

may be of greater practical relevance than
〈
|EMBE

err |
〉
. For the embedding calculations

employing a cutoff of RO-O = 0 Å, σ[EMBE
err ] exceeds 1 kcal/mol when the correlation-

consistent basis sets are employed. For the embedding calculations employing a cutoff

of RO-O = 3 Å, σ[EMBE
err ] is approximately 0.4 kcal/mol for each basis set, which is

significantly smaller than the errors associated with the finite size of the basis sets

(Fig. 1.8). Furthermore, the greater consistency of σ[EMBE
err ] across the three basis

sets for calculations that employ RO-O = 3 Å rather than RO-O = 0 Å indicates that

truncated projection-based embedding provides more consistent errors in the relative

energies than DFT embedding with approximate KE functionals. Finally, we note

that in the limit of large RO-O (i.e., supermolecular projection-based embedding) the

precision of the results is further improved, in agreement with the expectation of

controllable accuracy with respect to the choice of embedding parameters.
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|EMBE

err |
〉

Truncation level 6-31G cc-pVDZ aug-cc-pVDZ

RO-O = 0 Å 0.54 3.40 6.25
RO-O = 3 Å 0.39 1.03 0.95
Supermolecular 0.10 0.12 0.06

σ[EMBE
err ]

Truncation level 6-31G cc-pVDZ aug-cc-pVDZ

RO-O = 0 Å 0.35 6.38 2.53
RO-O = 3 Å 0.42 0.40 0.40
Supermolecular 0.02 0.02 0.05

Table 1.2: Summary of the EMBE2 results on the water hexamer test set. Results are
listed using truncated embedding with a cutoff of RO-O = 0 Å, truncated embedding
with a cutoff of RO-O = 3 Å, and supermolecular embedding. All values are in
kcal/mol.

1.4.2.2 Polypeptides

EMBE2 calculations at the MP2-in-HF level are performed on several conformations

of the Gly-Gly-Gly tripeptide using the cc-pVDZ and aug-cc-pVDZ basis sets. The

calculations are performed with {µ′, τ} = {106, 0.05}, and vA
NAKP[γA, γB

′′
] is obtained

using the TF functional. The geometries are obtained via optimization at the HF/cc-

pVDZ level, with the Gly1-Gly2 bond dihedral (Ω) constrained to several values,

and with all other backbone dihedral angles constrained to 180◦. Several of these

geometries are shown at left in Fig. 1.10. Each monomer in the EMBE2 calculations

corresponds to a set of active atoms comprised of one of the tripeptide residues. The

sets of border atoms employed in the EMBE2 calculations are defined in terms of the

nt cutoff, as described in Section 1.4.1.

Figs. 1.11(a) and 1.11(b) present the correlation energies from EMBE2 calcula-

tions on the Gly-Gly-Gly tripeptide conformations using the cc-pVDZ and aug-cc-

pVDZ basis sets, respectively; each correlation energy is reported relative to that of

the corresponding calculation on the conformation with Ω =180◦. It is seen that

the truncated embedding calculations reproduce the trends in the relative energies of

the reference MP2 calculations, and that the accuracy improves with the number of
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GGG, Ω=0° 

GGG, Ω=90° 

GGG, Ω=180° 

VPL 

YPY 

Figure 1.10: Three of the Gly-Gly-Gly (GGG) tripeptide conformations are presented
on the left for several different dihedral angles. The geometries of the Val-Pro-Leu
(YPL) and Tyr-Pro-Tyr (YPY) tripeptides are presented on the right.

border atoms. Table 1.3 lists the corresponding values of
〈
|EMBE

err |
〉

and σ[EMBE
err ]. In

agreement with the results in Fig. 1.7, sets of border atoms associated with nt ≥ 2 are

needed to achieve suitable accuracy with the aug-cc-pVDZ basis set. Both
〈
|EMBE

err |
〉

and σ[EMBE
err ] are generally found to improve with increasing numbers of border atoms.

These results demonstrate that truncated EMBE2 calculations yield accurate results

for systems in which embedding is performed across covalently bound monomers.

Furthermore, since Ω is associated with rotation of a bond that connects different

monomers, these results indicate that the EMBE2 calculations are relatively robust

with respect to changes in the electronic environment in the inter-subsystem covalent

bonds.

To illustrate the corresponding calculations for tripeptides with different side-

chains, additional EMBE2 calculations are performed on the Val-Pro-Leu and Tyr-

Pro-Tyr tripeptides. These tripeptides include both hydrophobic and hydrophilic

side-chains, including residues with aromatic rings; in particular, we note that the pro-

line side-chains present an interesting challenge to the accuracy of the truncated em-

bedding calculations, since they exhibit covalent bonds to multiple backbone atoms.

Geometries for these tripeptides are optimized at the HF/cc-pVDZ level of theory,

with the initial position of the heavy atoms obtained from reported crystal structures
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Figure 1.11: (a) Gly-Gly-Gly tripeptide conformation energies obtained using MP2-
in-HF EMBE2 calculations and employing the cc-pVDZ basis. Conformation energies
are reported with respect to the corresponding calculation for the Ω =180◦ confor-
mation. The results using nt = 4 are not shown for this basis set, as they are nearly
indistinguishable from the supermolecular results. (b) The corresponding results em-
ploying the aug-cc-pVDZ basis. The results using nt = 1 are not shown for this basis
set, as they are highly inaccurate.
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|EMBE

err |
〉

Basis nt = 1 nt = 2 nt = 3 nt = 4 Super.
VDZ 0.106 0.345 0.103 0.007 0.050
AVDZ 18.549 0.678 0.216 0.054 0.056

σ[EMBE
err ]

Basis nt = 1 nt = 2 nt = 3 nt = 4 Super.
VDZ 0.112 0.033 0.028 0.008 0.002
AVDZ 19.148 0.167 0.080 0.026 0.005

Table 1.3: Summary of the EMBE2 results for the Gly-Gly-Gly tripeptide. All calcu-
lations use either the cc-pVDZ (VDZ) basis set or the aug-cc-pVDZ (AVDZ) basis set.
Results are provided for several values of nt, as well as for the supermolecular basis set
(Super.). Both the mean unsigned MBE error over all values of Ω and the standard
deviation of the MBE error are provided. All values are reported in kcal/mol.

(Fig. 1.10, right).83,84 For the truncated embedding calculations, the atoms of side-

chain moieties are only included in the set of border atoms if all backbone atoms to

which the side-chain moieties are bonded are border atoms.

Table 1.4 presents the results of EMBE2 calculations for the Val-Pro-Leu and Tyr-

Pro-Tyr tripeptides, as well as for the Gly-Gly-Gly-Gly tetrapeptide from Section

1.4.1. Due to the computational cost of the reference calculations, results employing

the aug-cc-pVDZ basis set are not included for these more complex tripeptides. As

with the Gly-Gly-Gly tripeptide calculations (Fig. 1.11 and Table 1.3), the results

yield small (sub kcal/mol) errors that systematically decrease with the number of

border atoms.

Peptide/Basis nt = 1 nt = 2 nt = 3 nt = 4 Super.
VPL/VDZ -0.029 -1.041 -0.413 -0.205 0.037
YPY/VDZ 0.604 -0.767 -0.092 -0.277 0.076
GGGG/VDZ -0.175 -0.821 -0.751 -0.066 0.095
GGGG/AVDZ 26.439 -1.513 -1.118 -0.234 0.108

Table 1.4: Summary of the EMBE2 results for the Val-Pro-Lue tripeptide, the Tyr-
Pro-Tyr tripeptide, and the Gly-Gly-Gly-Gly tetrapeptide. All calculations use either
the cc-pVDZ (VDZ) basis set or the aug-cc-pVDZ (AVDZ) basis set. Results are
provided for several values of nt, as well as for the supermolecular basis set (Super.).
All values are reported in kcal/mol.
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1.5 Conclusions

In this paper, we have presented an extension of our projection-based embedding

method to allow for truncation of the AO basis set for subsystem calculations. The

truncation approach involves combining highly accurate projection-based embedding

for nearby interactions with an approximate treatment of the NAKP between distant

MOs. Application of this approach to both molecular clusters and polypeptides il-

lustrates that the errors introduced by truncation of the AO basis set are both small

and systematically controllable with respect to the extent of truncation. EMBE cal-

culations on these systems yield accurate total and relative conformational energies,

even when the monomers in the expansion are connected by covalent bonds. Further-

more, we have demonstrated that this approach offers a means of switching between

accurate projection-based embedding and DFT embedding using approximate KE

functionals, such that it both benefits from previous research on the development of

approximate KE functionals and allows for systematic improvement upon those func-

tionals in practical applications. These results establish that our method exhibits

the essential elements necessary for efficient WFT-in-SCF embedding calculations on

large molecular systems.
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1.6 Appendix: Water Hexamer Conformations

Each conformation is numbered in the manner described in the main text. All
geometries are reported in units of Ångströms.

Conf. 1

O -0.01444 -1.40688 0.86698
H -0.82663 -1.49669 0.34972
H -0.12523 -1.87516 1.68772
O 0.00588 1.34004 0.84909
H 0.08181 0.39642 1.02379
H 0.79287 1.61382 0.36582
O 2.39229 -1.33294 -0.43486
H 1.59349 -1.47091 0.08523
H 2.24183 -1.68508 -1.30567
O 2.39226 1.39375 -0.42232
H 2.55075 0.44513 -0.49263
H 3.12911 1.78535 0.03323
O -2.40639 -1.30367 -0.41807
H -2.58996 -0.35940 -0.32660
H -2.41112 -1.51135 -1.34633
O -2.36824 1.39716 -0.44640
H -1.47660 1.53891 -0.10056
H -2.97126 1.91930 0.07093
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Conf. 2

O 0.67982 1.66847 0.22469
H 1.54472 1.23557 0.26190
H 0.80199 2.60883 0.28673
O -0.92115 -0.00176 1.65020
H -0.44806 0.77331 1.33150
H -1.76238 -0.05171 1.18135
O 0.63241 -1.64984 0.20904
H 0.08923 -1.22268 0.89198
H 0.53282 -2.59214 0.27953
O -0.42478 0.02956 -1.62376
H -0.09616 0.81284 -1.17004
H 0.00023 -0.73782 -1.22438
O 2.74478 -0.02765 -0.08537
H 2.20281 -0.78880 0.15326
H 2.94467 -0.09143 -1.01363
O -2.76330 -0.07803 -0.30968
H -2.08455 -0.14812 -0.99436
H -3.30763 0.67610 -0.50478
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Conf. 3

O 1.38240 -0.79588 1.21410
H 0.45622 -0.77606 1.50601
H 1.91210 -1.20090 1.89061
O 1.48104 1.37700 -0.30523
H 1.66217 0.81313 0.45827
H 2.14568 2.05442 -0.35742
O 1.06670 -1.01572 -1.39720
H 1.28587 -1.35829 -0.52354
H 1.27925 -0.07519 -1.39115
O -1.27339 -0.50500 1.53311
H -1.33645 0.44562 1.36259
H -1.58576 -0.94802 0.73654
O -1.20461 1.67808 0.04663
H -0.27064 1.81552 -0.13712
H -1.54482 1.05338 -0.60204
O -1.58571 -0.71089 -1.07832
H -0.70068 -0.95230 -1.38904
H -2.23434 -1.09209 -1.65835
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Conf. 4

O 18.0712 -51.4753 1.0577
H 18.3158 -52.4080 1.0702
H 18.9200 -50.9885 0.9316
O 20.4013 -50.1151 0.6787
H 20.3203 -49.3282 0.0893
H 20.8628 -49.7855 1.4593
O 20.1820 -47.9418 -0.9528
H 19.3727 -47.3927 -0.8299
H 20.2353 -48.1019 -1.9024
O 15.8359 -50.5064 -0.1649
H 15.7879 -50.8915 -1.0479
H 16.6469 -50.8938 0.2396
O 17.9552 -46.4504 -0.4572
H 17.7010 -45.6711 -0.9652
H 17.1102 -46.9274 -0.2792
O 15.6330 -47.7931 0.0179
H 15.7046 -48.7745 -0.0499
H 15.1884 -47.6406 0.8605
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Conf. 5

O 26.0243 -46.8132 0.6983
H 25.9101 -46.6716 1.6460
H 26.0029 -47.7919 0.5870
O 26.0716 -49.5194 0.3763
H 26.7867 -49.9034 -0.1830
H 25.3029 -50.0816 0.2267
O 28.1035 -50.5775 -1.1078
H 29.0003 -50.2744 -0.8287
H 28.1161 -50.5173 -2.0704
O 28.2510 -45.6677 -0.3766
H 27.9994 -45.4294 -1.2768
H 27.4402 -46.0768 0.0100
O 30.5786 -49.7113 -0.3571
H 30.9359 -50.1242 0.4385
H 30.6024 -48.7444 -0.1688
O 30.5444 -47.0387 0.1802
H 29.7277 -46.5346 -0.0448
H 31.2721 -46.4282 0.0153
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Conf. 6

O -0.1141 -45.4756 0.4357
H -0.1212 -45.0081 1.2795
H -0.9900 -45.9275 0.3939
O -2.6533 -49.4119 0.4391
H -1.8471 -49.9163 0.1772
H -2.9576 -49.8399 1.2483
O 2.1002 -46.9006 -0.2471
H 2.4044 -46.4744 -1.0573
H 1.2956 -46.3941 0.0156
O -0.4370 -50.8340 -0.2436
H 0.4396 -50.3836 -0.2009
H -0.4308 -51.2999 -1.0883
O 1.9963 -49.6175 -0.1859
H 2.6080 -49.8611 0.5191
H 2.0244 -48.6317 -0.2130
O -2.5466 -46.6945 0.3830
H -3.1568 -46.4524 -0.3238
H -2.5749 -47.6802 0.4115
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Conf. 7

O 10.1313 -39.6546 -1.2837
H 10.9834 -39.2940 -0.9427
H 10.3710 -40.2693 -1.9876
O 8.5206 -37.2415 -1.1214
H 8.9694 -38.0370 -1.4609
H 7.6674 -37.5876 -0.7864
O 10.0161 -37.0305 1.0891
H 9.4323 -36.9616 0.2835
H 9.9503 -36.1767 1.5337
O 8.7588 -39.6895 1.2947
H 9.2025 -39.9141 0.4565
H 9.1929 -38.8551 1.5467
O 12.1674 -38.3372 -0.0356
H 11.5483 -37.7652 0.4699
H 12.7194 -38.7610 0.6334
O 6.4748 -38.4556 0.3410
H 7.1523 -39.0355 0.7568
H 5.7121 -39.0216 0.1750
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Conf. 8

O 15.9468 -39.5823 0.5548
H 15.3045 -40.0871 0.0416
H 16.8221 -39.7683 0.1280
O 18.3471 -39.7460 -0.6662
H 19.1305 -40.0034 -0.1359
H 18.5029 -38.8042 -0.8557
O 20.6467 -40.0714 0.9070
H 21.4549 -40.4532 0.5435
H 20.8337 -39.1110 0.9827
O 20.8368 -37.2970 0.9070
H 20.0333 -37.0136 0.4221
H 20.8440 -36.7677 1.7135
O 16.1147 -36.8858 0.5596
H 15.9307 -37.8581 0.5885
H 15.9523 -36.5744 1.4583
O 18.5450 -36.8241 -0.6030
H 18.5146 -36.2064 -1.3439
H 17.6621 -36.7483 -0.1590
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Conf. 9

O 29.7954 -37.1884 -0.3910
H 30.6865 -36.9230 -0.1328
H 29.8886 -38.1244 -0.7014
O 29.8265 -39.8168 -1.0122
H 29.6466 -40.1441 -1.9019
H 29.0506 -40.1097 -0.4687
O 27.7083 -40.3069 0.6051
H 27.6403 -39.4409 1.0439
H 26.8649 -40.3743 0.1095
O 25.3507 -40.1183 -0.9006
H 24.5083 -40.4902 -0.6120
H 25.2501 -39.1476 -0.7875
O 25.3917 -37.3962 -0.3791
H 25.5108 -36.7584 -1.0937
H 26.1882 -37.2944 0.1837
O 27.6626 -37.4465 1.2384
H 27.7398 -36.9721 2.0750
H 28.4945 -37.2512 0.7373



40

Conf. 10

O 7.5344 -47.1952 0.4765
H 8.4160 -47.2312 0.0120
H 7.2660 -46.2693 0.4279
O 8.1630 -50.9274 0.5473
H 8.2441 -50.4060 1.3688
H 7.3554 -50.5591 0.1389
O 9.8927 -47.4450 -0.7542
H 10.6734 -47.2098 -0.2369
H 10.0133 -48.4102 -0.9487
O 10.1564 -50.1025 -1.0813
H 10.0613 -50.5472 -1.9320
H 9.4474 -50.4883 -0.5041
O 8.2958 -48.9198 2.5834
H 7.7974 -48.8686 3.4078
H 7.9420 -48.2014 2.0231
O 6.1151 -49.3715 -0.6444
H 6.4601 -48.5223 -0.3019
H 5.1679 -49.3538 -0.4625
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Conf. 11

O -1.9241 -39.9369 0.2244
H -1.7339 -40.0619 -0.7214
H -2.0308 -38.9602 0.2590
O -1.6252 -37.1872 -0.1835
H -1.3632 -37.4801 -1.0740
H -0.7751 -37.0474 0.2718
O -0.7346 -39.0353 -2.2858
H -0.6724 -39.1225 -3.2446
H 0.1927 -39.1034 -1.9556
O 1.6853 -39.1868 -1.0050
H 1.7953 -38.3281 -0.5647
H 1.4640 -39.7654 -0.2520
O 0.4498 -40.0965 1.4209
H -0.4725 -40.1381 1.0403
H 0.4880 -40.7832 2.0974
O 0.9394 -37.3782 1.1917
H 1.2480 -36.8472 1.9361
H 0.8015 -38.2813 1.5485
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1.7 Appendix: Gly-Gly-Gly Tripeptide

Conformations

The value of Ω is provided for each conformation. All geometries are reported in
units of Ångströms.

Ω = 0◦

N -1.5267487178 0.0003318359 -4.9581655443
H -1.1002439103 0.8044479587 -5.3878527168
H -1.0766836580 -0.7843778331 -5.3995494210
C -1.2013879770 -0.0055991494 -3.5553735666
H -1.6567427374 0.8638552633 -3.0737322771
H -1.6531761866 -0.8816382678 -3.0818132984
C 0.2933923286 -0.0070391498 -3.2527855893
O 1.1066714526 -0.0211875883 -4.1333563149
N 0.6588362176 0.0064590075 -1.9467914031
H 1.6425886714 0.0044649127 -1.7577423341
C -0.2040106866 0.0221195162 -0.8023482048
H -0.8392739455 0.9118360564 -0.7687288001
H -0.8665049732 -0.8470868370 -0.7667798820
C 0.6393348427 0.0115623440 0.4636227850
O 1.8372146090 0.0017144527 0.4408726419
N -0.0699934110 0.0151224710 1.6090423115
H -1.0689271497 0.0226279731 1.6044777432
C 0.5787916540 0.0089080194 2.8912626172
H 1.2221420998 -0.8626612585 3.0175453187
H 1.2113573763 0.8862824928 3.0333087599
C -0.4639103385 -0.0058759144 3.9753557149
O -1.6357218524 -0.0058512157 3.7876339327
O 0.0837393243 -0.0177313263 5.1770809492
H -0.6116830908 -0.0257222035 5.8265257531
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Ω = 15◦

N 0.0014367247 -1.5291038900 -4.9561492742
H -0.7533584891 -1.0569089114 -5.4258220198
H 0.8326013201 -1.1256513950 -5.3557003956
C -0.0472579142 -1.2027336778 -3.5541251055
H -0.9570297247 -1.6197333500 -3.1138602241
H 0.7856605325 -1.6906300720 -3.0405338755
C -0.0085968400 0.2909200200 -3.2504825524
O 0.0586204096 1.1034647395 -4.1283720161
N -0.0961906635 0.6591750238 -1.9447505748
H -0.0066444171 1.6412577362 -1.7656879432
C 0.0777444654 -0.1934941034 -0.8040184799
H -0.6927915675 -0.9650291024 -0.7497530468
H 1.0469673607 -0.7041129690 -0.7970047451
C 0.0102021774 0.6439178266 0.4636889191
O 0.0136027100 1.8419098222 0.4443933648
N -0.0332701547 -0.0684933585 1.6065737553
H -0.0144163050 -1.0672269214 1.5998719971
C -0.0330717843 0.5774179416 2.8902887157
H 0.8282985389 1.2348499392 3.0150479918
H -0.9200922121 1.1952321972 3.0363954344
C 0.0022766767 -0.4668868235 3.9723033811
O 0.0298300068 -1.6380367807 3.7824222222
O -0.0016684237 0.0784746066 5.1751851608
H 0.0209782076 -0.6179295411 5.8232200367
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Ω = 30◦

N 0.0209323510 -1.5175297593 -4.9684376108
H -0.6730326311 -0.9996915760 -5.4817089147
H 0.8990259183 -1.1615651720 -5.3082019512
C -0.1028719023 -1.2008935668 -3.5687374666
H -1.0614368730 -1.5675583610 -3.1919929155
H 0.6659941405 -1.7400760951 -3.0087784643
C -0.0122405920 0.2852767036 -3.2430544339
O 0.1449741564 1.1037132045 -4.1017060483
N -0.2100742540 0.6450870818 -1.9393995416
H -0.0822626892 1.6256311631 -1.7685896767
C 0.1086137454 -0.1834269615 -0.8067754232
H -0.5686554882 -1.0350175744 -0.7279321503
H 1.1294471523 -0.5814770995 -0.8405065756
C 0.0102297530 0.6462839965 0.4635132096
O 0.0046923503 1.8445301984 0.4466445009
N -0.0357378622 -0.0684637904 1.6045235850
H -0.0128110024 -1.0669836515 1.5959727437
C -0.0378578377 0.5754296185 2.8892913665
H 0.8175988265 1.2408500651 3.0120784163
H -0.9301788213 1.1847733575 3.0387675405
C 0.0099685222 -0.4697741378 3.9698810588
O 0.0455299286 -1.6405005381 3.7786866260
O 0.0059775411 0.0741579724 5.1734862164
H 0.0358939489 -0.6228957252 5.8205179729
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Ω = 45◦

N 0.0359023616 -1.4897395191 -4.9990271227
H -0.5146027370 -0.8736625433 -5.5736688105
H 0.9895003359 -1.2593024075 -5.2236450333
C -0.2127726050 -1.1838727051 -3.6140516838
H -1.2465610349 -1.4313490788 -3.3590782254
H 0.4120033028 -1.8248687228 -2.9866161067
C 0.0006243574 0.2757268100 -3.2323533320
O 0.2891833194 1.0993501613 -4.0484404194
N -0.2993064597 0.6214487484 -1.9345557102
H -0.1410230528 1.5999905634 -1.7691467863
C 0.1134572257 -0.1792856157 -0.8068327951
H -0.4978900565 -1.0772788816 -0.7098314962
H 1.1600704394 -0.5008714239 -0.8687418281
C -0.0078652321 0.6457010224 0.4643971705
O -0.0504062669 1.8431740719 0.4475949825
N -0.0231368621 -0.0700312882 1.6057079808
H 0.0256182578 -1.0675216496 1.5963217785
C -0.0400061620 0.5726170423 2.8907681082
H 0.8020979252 1.2545121252 3.0165785097
H -0.9442611969 1.1643976253 3.0386708264
C 0.0266022121 -0.4724825374 3.9705212469
O 0.0907176750 -1.6418615151 3.7784093626
O 0.0054734543 0.0697537930 5.1747662379
H 0.0493444510 -0.6273150346 5.8209735100



46

Ω = 60◦

N -1.1248465263 -0.5058783252 -5.1033718830
H -0.5868096283 0.1158314347 -5.6836814763
H -0.7063613835 -1.4107165856 -5.2409789224
C -0.9771890399 -0.1181746331 -3.7238086951
H -1.4313383231 0.8644124677 -3.5630177852
H -1.5465869446 -0.8066628902 -3.0967282580
C 0.4571610861 -0.0523349885 -3.2107878778
O 1.3706469549 -0.3402646528 -3.9065027770
N 0.6735420709 0.4026725389 -1.8743750217
H 0.3989472523 1.3682956856 -1.7857518351
C 0.0617474803 -0.3458276048 -0.7974220256
H -0.9713320314 -0.6634674962 -0.9862764235
H 0.6433323499 -1.2450055522 -0.5898454617
C -0.0039066614 0.5372061901 0.4368739478
O -0.1213536829 1.7286581334 0.3506844363
N 0.0214456556 -0.1094347475 1.6167159408
H 0.1639287634 -1.0964951775 1.6653804345
C -0.0981629559 0.5997709445 2.8604331763
H 0.7103391009 1.3189774217 3.0002878742
H -1.0295776054 1.1640835019 2.9174680685
C -0.0620435016 -0.3811388743 4.0000492062
O 0.0644583207 -1.5549808920 3.8808867256
O -0.1861887407 0.2248506271 5.1676213998
H -0.1526039377 -0.4331423724 5.8541055123
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Ω = 75◦

N -1.2270726420 0.1104897221 -5.0604360714
H -0.4747107352 0.2824329904 -5.7063102378
H -1.3743672498 -0.8843372393 -5.0967070805
C -0.8112456152 0.4812243800 -3.7327203797
H -0.6146836249 1.5568818380 -3.6940978909
H -1.6338960526 0.3146410078 -3.0336483638
C 0.4115258608 -0.2529717177 -3.1961297607
O 0.9319481397 -1.1216010635 -3.8109072548
N 0.8554173758 0.0924748058 -1.8872760462
H 0.8499194741 1.0958404609 -1.7853764497
C 0.0418849878 -0.4266560996 -0.8013526686
H -1.0331260934 -0.4490589797 -1.0203818609
H 0.3415550332 -1.4470905095 -0.5615734114
C 0.2000074751 0.4711939450 0.4134706443
O 0.4408761233 1.6421478144 0.3040069580
N 0.0008481888 -0.1242791767 1.6033149262
H -0.1508158460 -1.1088616283 1.6725018846
C 0.0638826038 0.6193359106 2.8311761199
H 1.0399233401 1.0844861973 2.9766810278
H -0.6713809482 1.4244182284 2.8566500784
C -0.1988794959 -0.3047777982 3.9884084497
O -0.4118252517 -1.4681160202 3.8924111064
O -0.1614179081 0.3380071248 5.1421959617
H -0.3281852826 -0.2860615046 5.8408368111
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Ω = 90◦

N -1.0624592857 0.2428260996 -5.1556855485
H -0.2759022467 0.2707543501 -5.7829047428
H -1.3501576726 -0.7215345659 -5.1455158446
C -0.6349102635 0.6208467638 -3.8344065291
H -0.2342584845 1.6382766751 -3.8509394304
H -1.4988035510 0.6614276532 -3.1638788262
C 0.3726951998 -0.3095856773 -3.1742533964
O 0.6549550332 -1.3606603840 -3.6486725318
N 0.8320457985 0.0679998258 -1.8942558638
H 0.8226704401 1.0707929514 -1.8012942382
C 0.0380363064 -0.4490198083 -0.7931138495
H -1.0382324460 -0.4744288242 -1.0097155572
H 0.3407902112 -1.4670823845 -0.5507056349
C 0.2038589167 0.4599889257 0.4121592053
O 0.4416084861 1.6306164140 0.2906114290
N 0.0122401825 -0.1250944268 1.6080637307
H -0.1419059974 -1.1087002723 1.6859745794
C 0.0759377773 0.6295148751 2.8291047228
H 1.0553986659 1.0873165269 2.9757855353
H -0.6520410094 1.4413449220 2.8428032413
C -0.2005903691 -0.2814154569 3.9937023058
O -0.4188999171 -1.4444874286 3.9077505632
O -0.1688929257 0.3729441352 5.1411170960
H -0.3440982288 -0.2431768661 5.8447418506
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Ω = 105◦

N -0.2713337949 -0.8315994304 -5.2995694200
H -0.1733398408 0.0063978360 -5.8482849268
H 0.6517210225 -1.2316601752 -5.2707486478
C -0.6730502348 -0.4848621785 -3.9621793456
H -1.6344009885 0.0353667984 -3.9846313161
H -0.8462590270 -1.3956416444 -3.3795756171
C 0.3356357853 0.3226298054 -3.1582838219
O 1.4642175420 0.4454588177 -3.5159323199
N -0.0851458706 0.7507196383 -1.8962868980
H -1.0862434527 0.7120830374 -1.8085037387
C 0.4744501365 0.0237141488 -0.7716794993
H 0.5737399153 -1.0509698206 -0.9706009958
H 1.4675313533 0.3975093336 -0.5274824798
C -0.4551812645 0.1569817190 0.4212018128
O -1.6339409944 0.3433973296 0.2867081791
N 0.1252551995 0.0023082380 1.6247758842
H 1.1138724943 -0.1074973525 1.7142878961
C -0.6447367950 0.0446208139 2.8371533726
H -1.1542111350 1.0010364071 2.9636587875
H -1.4178995612 -0.7243142263 2.8543896113
C 0.2665474634 -0.1665776262 4.0150304912
O 1.4400882786 -0.3262878624 3.9442823868
O -0.4009304791 -0.1497731425 5.1552064905
H 0.2156132628 -0.2822968765 5.8677349896
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Ω = 120◦

N -1.4139178753 -0.7894612062 -4.4093892816
H -0.8085152203 -0.8070610243 -5.2131998774
H -1.3367345287 -1.7088059709 -4.0073389300
C -0.9278800462 0.1770755727 -3.4590479302
H -0.9477852582 1.1764846557 -3.9027249976
H -1.5892280245 0.2227353238 -2.5919873844
C 0.4537474935 -0.1090252200 -2.8915896658
O 0.9720430137 -1.1780158131 -3.0020652662
N 1.0188571576 0.8954427359 -2.1087311861
H 0.4418193472 1.7168396846 -2.1158212720
C 1.3403847403 0.5524775922 -0.7423964882
H 1.7895912921 -0.4386420775 -0.7238185760
H 2.0861760376 1.2487053560 -0.3525704837
C 0.1320689319 0.5941789934 0.1828501412
O -0.9369737227 1.0107185748 -0.1745736895
N 0.3582169528 0.1555680165 1.4356955874
H 1.2541094418 -0.1905058888 1.7110198104
C -0.6733718621 0.1760877206 2.4356647980
H -1.0764737424 1.1789029703 2.5818222844
H -1.5165949032 -0.4620270754 2.1670939463
C -0.1115439057 -0.3078104406 3.7443731220
O 1.0100926577 -0.6556316302 3.9138572390
O -1.0263283999 -0.3021646073 4.6979121802
H -0.6263420175 -0.6174491342 5.5016339739
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Ω = 135◦

N -1.2593196802 -0.6859529280 -4.6159301349
H -0.5353936139 -0.8970303782 -5.2825267553
H -1.4259327601 -1.5523909177 -4.1317923643
C -0.7759558123 0.2882726910 -3.6722995717
H -0.5374913041 1.2212347911 -4.1901661357
H -1.5587296288 0.5299798830 -2.9494374947
C 0.4150857549 -0.1527082959 -2.8381386118
O 0.7555269563 -1.2957093132 -2.7663683863
N 1.0210068599 0.8414811651 -2.0911623981
H 0.5249648634 1.7103605993 -2.1520939679
C 1.3536379781 0.5286436784 -0.7239237795
H 1.8104147260 -0.4577606243 -0.6903534638
H 2.0888452012 1.2427287808 -0.3481107453
C 0.1360673179 0.5614504522 0.1903184867
O -0.9452626086 0.9134212712 -0.1963963155
N 0.3679773324 0.1910659170 1.4646222740
H 1.2690936767 -0.1259238494 1.7570666787
C -0.6827788913 0.1762646362 2.4440786593
H -1.1290297737 1.1627077016 2.5758855327
H -1.4941534992 -0.4970574748 2.1634245492
C -0.1282305921 -0.2757761237 3.7669746547
O 1.0022327831 -0.5795023204 3.9612001612
O -1.0605737103 -0.2970157975 4.7034972182
H -0.6639765025 -0.5913568555 5.5167425123
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Ω = 150◦

N -0.1916019688 -0.4805097381 -5.4894607427
H 0.2099977048 0.3712620256 -5.8445237378
H 0.5810558299 -1.1221459621 -5.4230991638
C -0.7157323668 -0.2486075360 -4.1685415698
H -1.4896121844 0.5215836678 -4.2044994523
H -1.2082697723 -1.1562929707 -3.8066886878
C 0.3229985482 0.1153057927 -3.1169114401
O 1.4946436830 -0.0702880290 -3.2889091243
N -0.1771436916 0.5812711122 -1.9387440575
H -1.1708547542 0.5390510572 -1.8169501869
C 0.5470786082 0.3522553639 -0.7145765669
H 1.1629515528 -0.5461437872 -0.7882768749
H 1.2240072907 1.1776457628 -0.4852880689
C -0.4307941269 0.1884450462 0.4343285277
O -1.6204603785 0.1600996766 0.2692541503
N 0.1365620333 0.0692994696 1.6495159145
H 1.1278057279 0.1149052482 1.7660469567
C -0.6584867410 -0.0958277062 2.8345791953
H -1.3712343337 0.7197556932 2.9620487083
H -1.2415721933 -1.0177484825 2.8116707001
C 0.2417141862 -0.1347683046 4.0389141424
O 1.4242874592 -0.0456862615 4.0050691364
O -0.4479230918 -0.2816903341 5.1565838650
H 0.1618772178 -0.3009925293 5.8867509095
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Ω = 165◦

N -0.0735534164 -0.1278046356 -5.5988222439
H 0.4236706332 0.7320188232 -5.7613739336
H 0.6389988673 -0.8386777196 -5.6012713788
C -0.6833868256 -0.0852883855 -4.2948227894
H -1.4023279706 0.7358128407 -4.2478887592
H -1.2582507900 -1.0016531889 -4.1313844217
C 0.2942375283 0.0413808248 -3.1336408796
O 1.4786856915 -0.0926285533 -3.2750989445
N -0.2695086927 0.2851224788 -1.9265476468
H -1.2626778835 0.2283125801 -1.8200325640
C 0.4835415243 0.1113025760 -0.7151518171
H 1.0737036943 -0.8078018519 -0.7421966014
H 1.1876170253 0.9311507256 -0.5629123065
C -0.4697237292 0.0443927335 0.4628902696
O -1.6626878640 0.0090060821 0.3241503609
N 0.1213719472 0.0128306370 1.6719868169
H 1.1143929461 0.0698815684 1.7659740575
C -0.6513324174 -0.0582912847 2.8809596955
H -1.3468684809 0.7773886376 2.9691393603
H -1.2509523869 -0.9682603254 2.9295930758
C 0.2730385253 -0.0343261148 4.0672398850
O 1.4554735606 0.0397959491 4.0045065145
O -0.3948837087 -0.1051966506 5.2052977533
H 0.2294741971 -0.0855590712 5.9230416874
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Ω = 180◦

N -0.0269163945 -0.0003669973 -5.6185831999
H 0.5714960797 0.8057293587 -5.6878423688
H 0.5988200817 -0.7865317202 -5.6747167940
C -0.6691792140 -0.0004135318 -4.3299529134
H -1.3205009335 0.8733349665 -4.2447530573
H -1.3222321350 -0.8729010352 -4.2442458752
C 0.2829384544 -0.0001902358 -3.1399093201
O 1.4770616019 -0.0004021832 -3.2712393308
N -0.3103442048 -0.0002321155 -1.9273323967
H -1.3045236274 -0.0010712146 -1.8278776451
C 0.4550670986 -0.0000398520 -0.7143865871
H 1.1048562652 -0.8756293613 -0.6530794975
H 1.1038902078 0.8763750316 -0.6530191145
C -0.4887630540 -0.0001434093 0.4726209523
O -1.6834573950 -0.0002002073 0.3460622534
N 0.1133293086 0.0000202885 1.6770662164
H 1.1089865063 -0.0012817929 1.7600347228
C -0.6489538670 -0.0000504657 2.8946046756
H -1.2969697284 0.8741706656 2.9700780066
H -1.2967377301 -0.8745234412 2.9702960791
C 0.2880282786 0.0001695503 4.0711491323
O 1.4720359809 0.0003698137 3.9956032092
O -0.3705491948 0.0001130930 5.2168946799
H 0.2616940103 0.0002281862 5.9279667429
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1.8 Appendix: Additional Polypeptides

All geometries are reported in units of Ångströms.

Gly-Gly-Gly-Gly Tetrapeptide

N -0.1381852021 -0.0000206193 -7.4229345830
H 0.4563390224 0.8074964311 -7.5082101125
H 0.4893348729 -0.7838678993 -7.4916000070
C -0.7473407180 -0.0003399168 -6.1180661359
H -1.3981910256 0.8719997096 -6.0163972754
H -1.3957295477 -0.8744949861 -6.0154608640
C 0.2353553970 0.0001663079 -4.9529754492
O 1.4256732424 -0.0021192756 -5.1165043438
N -0.3264031636 -0.0001282097 -3.7261064747
H -1.3177157713 0.0095065890 -3.6013922283
C 0.4676682616 0.0002801600 -2.5313017822
H 1.1182183902 -0.8755449804 -2.4857744828
H 1.1180917124 0.8763360238 -2.4848843545
C -0.4488387558 -0.0001981941 -1.3224527580
O -1.6471011600 -0.0005189907 -1.4246354130
N 0.1796692937 0.0001243735 -0.1344154200
H 1.1770761927 0.0033883588 -0.0658734854
C -0.5481271058 -0.0002562393 1.1030768941
H -1.1944982795 0.8758481133 1.1839170214
H -1.1930052150 -0.8774824986 1.1837400785
C 0.4379490050 0.0002517706 2.2559248645
O 1.6264745862 0.0008683186 2.0824090304
N -0.1197425862 -0.0000406320 3.4803033203
H -1.1118074578 -0.0005551970 3.5997031660
C 0.6856388935 0.0003736132 4.6703533310
H 1.3350461651 0.8751932693 4.7226604783
H 1.3358064345 -0.8738923161 4.7226979669
C -0.2107477804 -0.0000943094 5.8784540974
O -1.3965963579 -0.0007089000 5.8418951048
O 0.4864131509 0.0002640236 7.0005323306
H -0.1202150859 -0.0000524132 7.7336468398
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Val-Pro-Leu Tripeptide

N 64.1711561477 51.2834939821 52.9481710861
H 63.7320072415 51.7175191771 52.1536519743
H 64.6877418786 50.5054884195 52.5735108191
C 63.1371800321 50.7994103346 53.8475283388
H 63.6158557317 50.1259911586 54.5568018214
C 62.5612365567 51.9763329622 54.6770381388
H 63.4468229045 52.4200469289 55.1398983837
C 61.8924285105 53.0639412441 53.8316696175
H 61.6276532193 53.9089203820 54.4719012868
H 62.5596220168 53.4409519362 53.0556359900
H 60.9812377548 52.7021930133 53.3549444293
C 61.6242926071 51.5075863394 55.7937706555
H 61.3179591731 52.3594287214 56.4048052189
H 60.7184698778 51.0424457974 55.3992262079
H 62.1200513360 50.7945050123 56.4580606602
C 62.0448267733 50.0531770783 53.0740160374
O 61.6530667914 50.4896632688 52.0169982844
N 61.5133560270 48.9101815530 53.5680038559
C 61.9356046371 48.1210148413 54.7232906025
H 63.0187691336 48.0982665004 54.8182796381
H 61.5173459003 48.5217767634 55.6477756705
C 60.4131289140 48.2919642517 52.8415990225
H 60.7523289672 47.9884763541 51.8496929701
C 60.0493727469 47.0713461744 53.7019342583
H 59.6592713753 46.2488076485 53.1036945599
H 59.2884463599 47.3585041235 54.4283653634
C 61.3571693072 46.7418263389 54.4190800325
H 61.2148336888 46.1422709708 55.3180189221
H 62.0293339658 46.1963052237 53.7519574905
C 59.2281932979 49.2474488847 52.7137298384
O 58.8358647348 49.8806994140 53.6530479693
C 56.4560216764 49.4515905527 50.4308778631
O 56.9303292667 48.6863933513 49.4482089284
H 56.1905593925 48.2827429041 49.0071074120
O 55.2960331109 49.5623572144 50.6450356294
N 58.6184573687 49.2368966792 51.5046834214
H 59.1372227131 48.8684751344 50.7356233343
C 57.5550448339 50.1708368989 51.1859753505
H 57.1284669577 50.4960667765 52.1260915394
C 58.0890061038 51.3721653285 50.3867310396
H 58.8834726998 51.8192130446 50.9888293947
H 58.5665740104 50.9913813207 49.4789068866
C 57.0609748446 52.4462174019 50.0000267789
H 56.2906611992 51.9815351080 49.3745239394
C 56.3624231649 53.0604607023 51.2164764095
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H 55.6955286422 53.8681813347 50.9061012010
H 55.7570886647 52.3272769717 51.7504782041
H 57.0908036607 53.4790228005 51.9176207082
C 57.7432959664 53.5274637522 49.1575921312
H 57.0213842532 54.2769699303 48.8255881411
H 58.5185582885 54.0421388330 49.7326730213
H 58.2154625735 53.1016381617 48.2687405215
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Tyr-Pro-Tyr Tripeptide

N 17.0223234808 32.3803608336 25.2474684599
H 16.2193162877 31.8016856835 25.0612213487
H 17.7672183478 31.7461875945 25.4807228741
C 16.7195342805 33.2347739709 26.3760646713
H 17.6550365211 33.6474852860 26.7485537407
C 15.8095718160 34.4028620265 25.9342845485
H 14.9879174160 33.9771192618 25.3533554394
H 15.3510969559 34.8577013550 26.8140547639
C 16.5222300547 35.4763789131 25.1392408405
C 16.9400231986 35.2648668776 23.8212724590
H 16.7592552550 34.3070901440 23.3570900261
C 17.5921842183 36.2491145917 23.1045393250
H 17.9107777105 36.0787795436 22.0857762410
C 17.8488761296 37.4855268150 23.6902675640
O 18.4902294782 38.4120168435 22.9447263763
H 18.6003552461 39.2107024873 23.4379052389
C 16.7832348254 36.7178584732 25.7006976345
H 16.4648017549 36.9275069240 26.7147019307
C 17.4414380063 37.7188052870 24.9926045923
H 17.6282894338 38.6785220023 25.4600551123
C 15.9984966250 32.4694287857 27.4900848634
O 15.2660154939 31.5477339834 27.2039393016
N 16.1586322973 32.8758420333 28.7676020320
C 17.1366883399 33.8626698317 29.2423214893
H 18.1524297547 33.5420934743 28.9979028605
H 16.9723173354 34.8383133522 28.7883452197
C 15.5483498675 32.1275875535 29.8771298414
H 15.5437903527 31.0674880646 29.6323378565
C 16.4535861851 32.4596155789 31.0619457925
H 17.3014090502 31.7703330521 31.0649257570
H 15.9319937731 32.3783417120 32.0109268925
C 16.9235965895 33.8810598573 30.7549811970
H 17.8313266560 34.1623152113 31.2884081218
H 16.1370416081 34.5874400720 31.0179387129
C 14.0993697162 32.5763396484 30.1107350553
O 13.7790687370 33.2466109112 31.0559736139
C 11.6908807953 34.0844536882 29.3184980311
O 12.5337196843 34.7319167785 28.5180301340
H 12.3729773198 35.6619085694 28.6350025966
O 10.8939468265 34.6493046433 29.9866490822
N 13.2169522231 32.1582505891 29.1829202146
H 13.5841215949 31.7204615065 28.3611810682
C 11.8275848557 32.5713872093 29.1998468315
H 11.4371984781 32.3324594622 28.2092780753
C 10.9888466504 31.8261461116 30.2554247547
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H 11.4031772009 30.8196055456 30.3209553002
H 11.1386527217 32.2976212904 31.2239619088
C 9.5108755476 31.7238668329 29.9310382948
C 8.5669274204 32.5897488606 30.4845992273
H 8.8964514683 33.3767221162 31.1467487520
C 7.2195062764 32.4726982844 30.1937088507
H 6.4948117309 33.1463724175 30.6287609406
C 6.7780330938 31.4790453743 29.3280941183
O 5.4521769958 31.4063452716 29.0747515961
H 5.2719788831 30.6949465406 28.4793267217
C 9.0461971552 30.7344950679 29.0729165051
H 9.7451139773 30.0324323393 28.6330622876
C 7.6975168734 30.6072737796 28.7649993153
H 7.3665294280 29.8229796852 28.0941435991
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Chapter 2

Ab initio characterization of the
electrochemical stability and
solvation properties of
condensed-phase ethylene
carbonate and dimethyl carbonate
mixtures

2.1 Introduction

The commercial market for Li-ion batteries is currently dominated by cells that utilize

carbonate-based electrolytes and have cathodes that operate at potentials in the range

of 3.5-4.2 V vs. Li.1–6 Higher operational voltages would enable Li-ion batteries

with greater energy density. However, typical carbonate solvents in these batteries

undergo oxidation by the charged cathode surface at voltages exceeding 4.5 V vs. Li.5

Following oxidation, the solvent molecules further decompose via pathways that have

been implicated in capacity fade upon cycling.2,5,7–12

These issues have motivated both the investigation of additives that expand the

window of electrochemical stability of carbonate-based solvents,5,13–15 as well as the

exploration of classes of solvents with improved stability against oxidation. Among

the latter are sulfone-based electrolytes, which have been shown to exhibit improved
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stability on high voltage cathodes.10,16,17 Similarly, ionic liquids have attracted con-

siderable interest due to their high electrochemical stability.18–20 Unfortunately, these

alternatives to traditional carbonate-based solvents typically suffer from other prob-

lems, such as high viscosity or the inability to form a robust solid electolyte interphase

(SEI).17

A central obstacle in the pursuit of expanded windows of electrochemical stability

is elucidation of the mechanisms by which each electrolyte component influences the

oxidation potential of the other components. For example, the oxidation potentials

of carbonate solvents are known to be influenced by the presence of co-solvents2 and

solvated ions,21–23 as well as by the electrode composition.24,25 This makes experimen-

tal investigation of oxidation potentials challenging, since all of these factors must be

considered.

To complement these experimental efforts, theoretical studies have attempted to

identify the intrinsic oxidation potential of the individual components of battery elec-

trolytes. The intrinsic oxidation potential corresponds to the oxidation potential of

each electrolyte component in the absence of an electrode and any oxidation-inducing

decomposition reactions. The majority of these theoretical studies have been con-

ducted using DFT methods10,11,19–21,23,26–40 or WFT methods10,27,41–43 applied in ei-

ther the gas phase26,27,35 or using implicit solvation models.10,11,27,31–39,41,42 Only a

few studies on electrolytes have utilized an explicit representation of the environ-

ment; these include QM/MM calculations on large clusters,20 and condensed-phase

calculations using DFT with periodic boundary conditions.19,23,30,40

In this paper, we perform CCSD(T)-level44 calculations to determine the ver-

tical IE of solvent molecules in condensed-phase mixtures of EC and DMC. This

level of accuracy is achieved using the projection-based WFT-in-DFT embedding

method,45,46 which facilitates explicit treatment of the solvent environment at the

DFT level. Using over 3,000 WFT-in-DFT embedding calculations on condensed-
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(a)  (b) 

Ac(ve  DFT  MM 

Figure 2.1: Summary of the embedding protocol. (a) MD simulations are performed
to generate the equilibrium ensemble of solvent configurations. (b) An embedded
CCSD(T) calculation is performed on a single molecule from the MD simulation (the
“active region”), indicated by the red circle. The electron hole created upon oxidation
of the active region is illustrated by the blue electron cloud. Nearby molecules are
treated at the B3LYP level,47,48 indicated by the blue circle. More distant molecules
are treated using a point-charge molecular-mechanics (MM) model, indicated by the
brown circle.

phase systems, we examine the effect of intermolecular interactions on the vertical

IE of individual solvent molecules, and find that conventional implicit solvent mod-

els neglect interactions that are necessary to understand the electrochemistry and

solvation properties of DMC. These observations enable a simple and intuitive ex-

planation for experimentally-observed anomalies in the solvation structure of ions in

carbonate-based electrolytes.

2.2 WFT-in-DFT Embedding for Condensed-Phase

Systems

2.2.1 Overview of Embedding Strategy

Fig. 2.1 illustrates the overall embedding strategy employed for calculation of the

oxidation potentials of EC and DMC mixtures, which consists of three main steps.

The following is a brief overview of each step:

In step (1), classical MD simulations are run to generate the ensemble of liquid-
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phase configurations of the EC and DMC systems. Configurations are taken from

these equilibrium simulations, with Fig. 2.1(a) showing a typical configuration of an

MD simulation of 128 EC molecules. A more detailed description of these simulations

is provided in Section 2.2.2.

In step (2), WFT-in-DFT-in-MM embedding calculations are performed to cal-

culate the vertical IE of a single molecule in each MD configuration. The oxidized

molecule is treated at the WFT level, with the neighboring molecules being treated

at the DFT level and more distant molecules being treated using an MM point-charge

model. Fig. 2.1(b) illustrates the regions associated with each of these levels of the-

ory, which we refer to as the active region, the DFT region, and the MM region,

respectively. This step is described in more detail in Section 2.2.3.

In step (3), we perform thermodynamic averages associated with the solvent re-

organization energies and free energies of oxidation of the EC and DMC mixtures,

using the ensemble of vertical IEs obtained in the preceding steps. From this ensem-

ble, it is possible to confirm that the distribution of vertical IEs exhibit Gaussian

fluctuations consistent with the predictions of linear response theory. Then, using

this property,49–53 the solvent reorganization energies can be calculated according to

λ =
1

2
(〈∆E〉0 − 〈∆E〉+1) , (2.1)

where 〈∆E〉0 is the vertical IE of a given solvent species, averaged over an ensemble

of MD configurations of a given solvent mixture, and 〈∆E〉+1 is the vertical IE of

the same species, averaged over an ensemble of MD configurations in which the force

field representation of the molecule in the active region has a net +1 charge. Simi-

larly, the Helmholtz free energy of oxidation, which accounts for the effects of solvent
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configurational relaxation, is

∆A =
1

2
(〈∆E〉0 + 〈∆E〉+1) , (2.2)

from which the oxidation potential vs. Li+/Li can be obtained as

E =
∆A

F
− Eref, (2.3)

where F is Faraday’s constant and Eref=1.4 V is the reference oxidation potential of

the Li+/Li electrode.

2.2.2 MD Configurational Sampling

As described in step (1) of Section 2.2.1, the molecular configurations used in the

vertical IE calculations are sampled using classical MD trajectories. MD simulations

are performed for seven condensed-phase molecular systems, each having different

combinations of EC and DMC molecules and their cations. Table 2.1 shows the

molecular composition of each system.

Systems EC DMC EC+ DMC+ Cell Volume / Å3

EC 128 0 0 0 14384
EC+ 127 0 1 0 14384
DMC 0 128 0 0 19141
DMC+ 0 127 0 1 19141
EC:DMC 64 64 0 0 16503
EC+:DMC 63 64 1 0 16503
EC:DMC+ 64 63 0 1 16503

Table 2.1: Number of Molecules in Each Simulated System, and the Volume of the
Simulation Cell.

The MD trajectories are performed using the LucretiusTM Molecular Dynamics

simulation package and using previously published polarizable force-fields for neutral

EC and DMC.54,55 The bond lengths are constrained using the SHAKE algorithm,56
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with a tolerance of 10−14 The oxidized solvent molecules, EC+ and DMC+, are treated

using the same force field as the neutral molecules, except using the atomic point

charges in Table 2.2; these charges are obtained by fitting to results generated at the

MP2 level of theory57 and using the aug-cc-pVTZ basis set,58,59 in a manner similar

to that by which the neutral charges were obtained.54,55

Atom EC+ DMC+

C′ 0.4943 0.6915
C 0.3150 0.0840
O′ -0.3277 -0.5323
O 0.3409 0.3113
H 0.0576 0.1169
Lp -0.1772 -0.1628

Table 2.2: Point Charges for Each Atom in EC+ and DMC+ in the MD Simulations.

Values of the point charges of each atom in EC+ and DMC+ in MD simulations,
with C′ and O′ representing the carbonyl carbon and carbonyl oxygen atom types,
respectively. Two dummy atoms are attached to each of the sp3 oxygen atoms,
representing the lone-pair orbitals (Lp).

To generate liquid-phase configurations, a total of seven MD simulations are run

in cubic simulation cells with periodic boundary conditions in the NVT ensemble.

The Nosé-Hoover thermostat60 is used to maintain a temperature of 313.0 K, using

an associated damping frequency of 1013 s−1. To determine the simulation volumes

for the NVT trajectories, a total of three NPT simulations are performed on the

charge-neutral EC, DMC, and EC:DMC systems. The NPT simulations are run for

3.0 ns using the Anderson-Hoover barostat61 to maintain a pressure of 1.0 atm, using

an associated damping frequency of 5 × 1011 s−1. The NVT simulations on systems

that include an oxidized molecule use the cell volumes of the corresponding neutral

systems. The volume of each system is given in Table 2.1.

The MD numerical integration is performed using a multiple time-step integration

scheme.61 Following Ref. 55, the short time-step for bonded interactions is set to 0.5 fs,

the central time-step for nonbonded interactions within 7.0 Å is set to 1.5 fs, and the
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outer time-step for nonbonded interactions beyond 7.0 Å is set to 3.0 fs. Interactions

between induced dipoles are self-consistently tapered to zero62 beginning at 10.5 Å

and ending at 11.0 Å, with a convergence threshold of 10−7 Å
2
e2. As in previously

published MD simulations,55 we employ Thole screening to smear induced dipoles

and prevent over-polarization,63 and the interaction between an induced dipole and

a partial charge separated by three bonds is scaled by 0.8. The charge-charge and

charge-induced dipole interactions are calculated using the Ewald summation method,

with a short-range cutoff of 11.0 Å, α = 0.2, and 53 k-vectors.

It has previously been noted that because of the approximately 10 kcal/mol bar-

rier to cis-trans rotation in DMC, it is difficult to equilibrate DMC configurations,

particularly when an ion is present.55 To address this issue, we equilibrate systems

that contain both DMC and an oxidized molecule in four phases, with the first phase

corresponding to a 9.1 ns trajectory in which the MD force field is modified to reduce

the barrier to conformational rotation of DMC to 3.0 kcal/mol, the second phase

corresponding to an additional 9.1 ns trajectory in which the barrier is set to 5.0

kcal/mol, the third phase corresponding to an additional 9.1 ns trajectory in which

the barrier is set to 7.0 kcal/mol, and the fourth phase corresponding to an additional

9.1 ns trajectory using the unmodified force field. All other systems are equilibrated

for 1.0 ns, without any modifications to the MD force fields. Following equilibration,

a total of 151 configurations are obtained from each simulation for use in subsequent

embedding calculations, with 50 ps intervals between each configuration.

2.2.3 Projection-Based Embedding

As described in Section 2.2.1, the vertical IEs of EC and DMC molecules are calculated

using the projection-based WFT-in-DFT embedding method,45,46 which allows for a

WFT-level treatment of the electrons in the active region and a DFT-level treatment

of the electrons in surrounding molecules (see Fig. 2.1). This method describes
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all subsystem interactions at the level of DFT,45 while avoiding the need for an

optimized effective potential step,64–66 and without requiring the introduction of link-

atoms or similar approximations that are typical of other widely used embedding

approaches.67–77 It has been previously established that this method can be accurately

and efficiently applied to large systems via systematic truncation of the atomic orbital

(AO) basis set representation of the electrons treated at the WFT level,46 and it

has been shown that errors associated with the DFT-level treatment of interactions

between electrons treated at different levels of theory can be systematically analyzed

and controlled.78 These features have enabled successful application of the method

to a variety of systems, including water clusters,45,46 polypeptides,46 the components

of several prototypical organic reactions,78 and organometallic hydrogen evolution

catalysts.79

The projection-based embedding procedure is implemented as follows: first, a

DFT calculation is performed over the full system, yielding a set of occupied MOs,

{φi}. The set of atoms in the active region is used to partition the MOs into one set

corresponding to subsystem A, {φi}A, and another set corresponding to subsystem B,

{φi}B. If the atom upon which an MO in {φi} has the largest Mulliken population is

in the active region, that MO is assigned to {φi}A; otherwise, it is assigned to {φi}B.

The subsystem MOs {φi}A and {φi}B are then used to construct the corresponding

density matrices, γA and γB.

The embedded electronic-structure calculation on subsystem A is performed using

a modified Fock matrix, given by

fA = hA in B[γA, γB] + g[γAemb], (2.4)

where γAemb is the density matrix associated with the MO eigenfunctions of fA, and

g consists of the two-electron contributions to the Fock matrix. The embedded core
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Hamiltonian is defined as

hA in B[γA, γB] = h + g[γA + γB]− g[γA] + µPB, (2.5)

where h is the standard one-electron core Hamiltonian, and µ is a level-shift param-

eter. Elements of the projection operator PB are given by

PB
αβ ≡ 〈bα|

{∑
i∈B

|φi〉〈φi|

}
|bβ〉, (2.6)

where the bα are the AO basis functions and the summation spans the MOs in {φi}B.

In the limit of µ → ∞, the MOs of subsystem A are enforced to be mutually or-

thogonal with those of subsystem B.80–87 For the case of DFT-in-DFT embedding,

a DFT calculation on subsystem A, using the Fock matrix in Eq. 2.4, is iterated

to self-consistency with respect to γAemb. For the case of WFT-in-DFT embedding, a

WFT calculation is performed on the electrons in subsystem A, replacing the stan-

dard one-electron core Hamiltonian with the embedding core Hamiltonian in Eq. 2.5.

A more complete description of WFT-in-DFT embedding is provided in Ref. 45.

Truncation of the AO basis set representation of subsystem A significantly reduces

the cost of the embedded WFT calculation.46 For this reason, we define a set of bor-

der atoms that correspond to the atoms within a distance rborder of any of the atoms

in the active region. The calculation on subsystem A is performed using only the

basis functions that are centered on either an atom in the active region or a border

atom. A given MO in subsystem B is included in the sum in Eq. 2.6 only if it suf-

ficiently occupies the basis functions centered on the border atoms. Specifically, for

this MO, only if the absolute value of the combined Mulliken population associated

with this set of AO basis functions exceeds a threshold τ is it included in the sum;

otherwise, interactions between that MO and the MOs in subsystem A are treated
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using the approximate Thomas-Fermi (TF) functional.88,89 For the case of rborder =

0, no MO projection is employed, and the embedding potential evaluation reduces to

that of orbital-free DFT embedding,66,90,91 with the non-additive kinetic energy com-

puted using the TF functional. The energy of a WFT-in-DFT truncated embedding

calculation is

EWFT[ΨA; γA, γB] = 〈ΨA|ĤA in B[γA, γB]|ΨA〉

+ EDFT[γA + γB]− EDFT[γA]

− tr
[
γA(hA in B[γA, γB]− h)

]
+ Ts[γ

A + γC]− Ts[γA]

− Ts[γC],

(2.7)

where |ΨA〉 is the embedded wavefunction from the WFT-in-DFT embedding calcu-

lation, ĤA in B[γA, γB] is the Hamiltonian resulting from replacing the standard core

Hamiltonian with the embedded core Hamiltonian, EDFT[γ] is the DFT-level energy,

Ts[γ] is the TF energy, and γC is the density of the MOs in subsystem B that are not

included in the projector operator. With this energy expression, interactions within

subsystem A are treated at the level of WFT, interactions within subsystem B are

treated at the level of DFT, and all interactions between subsystems are treated at

the level of DFT. A full discussion of AO truncation is provided in Ref. 46.

As indicated by the MM region in Section 2.2.1, some of the reported embedding

calculations utilize a point-charge representation for solvent molecules that are dis-

tant from the active region; we refer to such calculations as WFT-in-DFT-in-MM

embedding calculations. These calculations are performed in the same manner as

the WFT-in-DFT calculations, except that the set of DFT MOs, {φi}, is obtained

from a DFT calculation that is embedded in the potential produced by the point

charges (i.e., B3LYP-in-MM embedding), in the same manner as Ref. 92,93. The
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point-charge potential is added to the Hamiltonian in Eq. 2.5, and the DFT-level en-

ergy EDFT[γA + γB] in Eq. 2.7 includes contributions from electrostatic interactions

with the point charges.

2.2.3.1 Embedding Calculation Details

In order to obtain the vertical IEs in step (2) of Section 2.2.1, two sets of embedding

calculations are performed on each molecular configuration: one for which the active

region has a charge of 0 (the reduced state), and one for which it has a charge of +1

(the oxidized state). All of the embedding calculations are performed at either the

B3LYP-in-B3LYP-in-MM, CCSD-in-B3LYP-in-MM, or CCSD(T)-in-B3LYP-in-MM

levels of theory, using a basis set truncation parameter τ = 0.1 and a level shift

parameter µ = 106. Any molecule having an atom within a distance rDFT of any

atom in the active region is treated at the DFT level, as indicated by the blue circle

in Fig. 2.1. Any other molecule having an atom within a distance rMM of any atom

in the active region is treated using a set of point charges, as indicated by the brown

circle in Fig. 2.1; in the determination of this cutoff, dummy atoms from the MD

force field are counted as atoms. All embedding calculations are performed using the

Molpro software package.94

Except where noted in Section 2.3.1, all DFT and WFT calculations are performed

using restricted open-shell versions of the methods, and all WFT calculations use ref-

erence MOs obtained from the corresponding B3LYP calculations. For example, the

CCSD(T) reference MOs in the CCSD(T)-in-B3LYP-in-MM embedding calculations

are obtained from the corresponding B3LYP-in-B3LYP-in-MM embedding calcula-

tions. Although it is more common to use RHF reference MOs for coupled-cluster

calculations, it is not necessarily optimal to do so,95,96 and our choice of reference

MOs is found to improve the convergence of the calculations. Correct convergence of

the B3LYP-level calculations is found to be non-trivial, particularly for calculations
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in the oxidized state. To address this issue, all embedded B3LYP calculations are

performed in several steps: first, a maximum of 20 iterations of the B3LYP calcu-

lation are performed using level shifts of -20.0 Eh and -10.0 Eh for the alpha-spin

and beta-spin orbitals, respectively, followed by a maximum of 50 iterations using

level shifts of -2.0 Eh and -1.0 Eh, followed by a maximum of 50 iterations using

level shifts of -0.5 Eh and -0.25 Eh, followed by iteration until convergence using no

level shifts. To improve the convergence of the B3LYP-in-B3LYP-in-MM calculations

on the active region in the oxidized state, these calculations are initialized using the

MOs for the active region obtained from the corresponding B3LYP-in-B3LYP-in-MM

calculations in the reduced state. The basis set used for the active region is spec-

ified for each calculation (e.g., CCSD(T)-in-B3LYP-in-MM/aug-cc-pVTZ indicates

that the aug-cc-pVTZ basis set is used for the atoms in the active region), while all

calculations employ the cc-pVDZ basis set for atoms in the DFT region. The set of

MOs {φi} is obtained by performing a B3LYP-in-MM calculation, in which a B3LYP

calculation on the union of the active region and the DFT region is embedded in

the PC region; separate localization of the resulting core and valence MOs is then

performed using the Boys method.97 To avoid the tendency of DFT to overdelocalize

electron holes (see Section 2.3.1), each embedding calculation that is performed in

the oxidized state employs the B3LYP-in-MM MOs, {φi}, associated with the same

molecular configuration in the reduced state. Thus, when an embedding calculation

is performed on subsystem A in the oxidized state, the electronic distribution of sub-

system B corresponds to that of the reduced state. In Section 2.2.3.2, we describe

an iterative procedure to account for electronic relaxation of the environment in the

oxidized system.



78

2.2.3.2 Electronic Relaxation of the DFT Region with Respect to Oxida-

tion of the Active Region

To account for electronic relaxation of the molecules in the DFT region in WFT-in-

DFT-in-MM embedding calculations performed on the oxidized state of the solvent

molecules, as mentioned in Section 2.2.3.1, an iterative protocol is employed. We now

describe in detail the steps involved in this iterative protocol.

In the first step, monomolecular (rborder = 0.0 Å) density matrices are acquired for

both subsystem A and subsystem B. This is accomplished by performing a monomolec-

ular B3LYP-in-B3LYP-in-MM/cc-pVDZ embedding calculation on the active region

to acquire a monomolecular density matrix for subsystem A. Following this, a monomolec-

ular B3LYP-in-B3LYP-in-MM/cc-pVDZ embedding calculation is performed on the

DFT region (i.e., the roles of the active region and the DFT region are swapped), em-

bedded in the potential produced by the monomolecular density matrix of subsystem

A.

In the second step, the active region is oxidized. A monomolecular B3LYP-in-

B3LYP-in-MM/cc-pVDZ embedding calculation is performed on the active region,

embedded in the potential produced by the monomolecular density matrix for sub-

system B from the first step. This embedding calculation is performed with a +1

charge for the active region, yielding the electronically unrelaxed energy of the oxi-

dized state.

In the third step, the electronic density of each subsystem is iteratively permitted

to relax with respect to the electronic density of the other subsystem. Specifically,

a monomolecular B3LYP-in-B3LYP-in-MM/cc-pVDZ embedding calculation is per-

formed on the DFT region, embedded in the potential produced by the density matrix

from the preceding embedding calculation on the active region. Then, a monomolec-

ular B3LYP-in-B3LYP-in-MM/cc-pVDZ embedding calculation is performed on the

active region, embedded in the potential produced by the density matrix from the
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preceding embedding calculation on the DFT region; the calculation on the active

region is performed with a +1 charge. This third step of the electronic relaxation

protocol is iterated until convergence is achieved. Upon convergence, the energy of

the final embedding calculation on the active region corresponds to the energy of the

oxidized state.

All of the above steps are performed using the same values of rDFT and rMM as

step (2) of Section 2.2.1, but rborder is set to zero in order to ensure that charge

does not leak between subsystems. The relaxation energy is simply the difference

between the relaxed and unrelaxed energies of the oxidized state. The relaxation

energy is then added as a correction to the WFT-in-DFT embedding energies obtained

using the protocol in Section 2.2.3.1, resulting in an electronically-relaxed WFT-in-

DFT embedding energy. In Fig. 2.12 of Sec. 2.5, benchmarking calculations are

presented that both illustrate the accuracy of this protocol and demonstrate that a

single iteration of the third step in the above protocol is sufficient to converge the

calculations; as a result, all further calculations of the electronic relaxation energy

are performed using a single iteration. All calculations in Section 2.3.2 and Section

2.3.3 employ this relaxation correction.

Fig. 2.2 shows that the average contribution of the relaxation energy to the

vertical IE of EC in the EC system is -0.51 eV. Although this contribution is fairly

large, the standard deviation of the distribution is only 0.04 eV. Thus the electronic

relaxation energy adds an approximately constant shift to the vertical IEs within the

EC system.

It is important to note that although the above protocol allows for electronic

relaxation, the relaxation process constrains the excess charge associated with the

oxidized state to reside in the active region. It is worth noting that our relaxation

protocol thus achieves an effect that is similar to that of constrained DFT.98
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Figure 2.2: Contribution of the electronic relaxation of subsystem B to the vertical IE
of subsystem A, calculated for EC molecules in the EC system, and using rDFT = 4.0 Å
and rMM = 50.0 Å.

2.2.3.3 Effective Point Charges for the MM Region

Atoms in the MM region (indicated by the brown circle in Fig. 2.1) are represented

using point charges. We now describe a protocol for determining these point charges

such that they reproduce, on average, the B3LYP/cc-pVDZ molecular dipoles in

the solvent environment. The following protocol is performed using the ensemble of

sampled molecular configurations from the classical MD trajectories. The resulting

point-charge values are reported in Table 2.3.

In the first step of the protocol, for each liquid configuration of the neat EC and

neat DMC systems a B3LYP/cc-pVDZ calculation is performed on the active molecule

in isolation from the solvent environment. From these B3LYP/cc-pVDZ calculations,

we obtain the molecular dipole of the molecule and the Mulliken charge of each atom

in the molecule. An initial set of point charges for the EC and DMC molecules is

obtained by first averaging the Mulliken charges of atoms having the same bonding

configurations and then scaling these charges by a multiplicative factor in order to

reproduce the average magnitude of the molecular dipole.

In the second step, a set of B3LYP-in-B3LYP-in-MM/cc-pVDZ embedding calcu-
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lations is performed using the same liquid configurations of neat EC and neat DMC

from the first step. The molecules in the MM region are represented using the sets

of point charges obtained from the single-molecule calculations in the first step, and

the embedding cutoffs are set to rborder = 0.0 Å, rDFT = 4.0 Å, and rMM = 50.0 Å. A

new set of point charges is obtained by scaling the averaged Mulliken charges of the

molecule in the active region to reproduce the average magnitude of the molecular

dipole. These charges are then used to perform another set of B3LYP-in-B3LYP-

in-MM/cc-pVDZ embedding calculations, in order to self-consistently determine the

correct charge distribution and molecular dipole moment of the molecules in the

condensed phase. After a total of three iterations of this self-consistent process, the

average magnitude of the molecular dipoles of both EC and DMC are found to change

by less than 0.01 Debye, indicating that the calculation of the MM point charges is

converged.

The final point charges for EC and DMC molecules in the respective neat systems

are provided in Table 2.3. In order to determine an appropriate set of point charges

for EC and DMC molecules in the EC:DMC system, the same iterative process is

applied, except that for the first iteration, the initial set of point charges are chosen

to be the converged point charges of EC in the EC system and DMC in the DMC

system. As shown in Table 2.3, after a single iteration, the point charges for EC and

DMC in the mixture change very little relative to their values in the corresponding

neat systems, so no further iterations are performed.

For the purpose of performing the WFT-in-DFT-in-MM embedding calculations,

it is not necessary to determine a set of point charges for the solvent molecules in

their oxidized states, because only the molecule in the active region is ever represented

in the oxidized state. Nonetheless, for the analysis performed in Section 2.3.3.3, it

is useful to have a point-charge representation of the oxidized solvent molecules.

The point-charge representation of EC+ is determined by performing a single set of
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EC
Atom EC EC:DMC EC+

C′ 0.35813 0.35212 0.42044
C 0.16731 0.16377 0.12942
O′ -0.34325 -0.34090 -0.05581
O -0.31361 -0.30984 -0.14457
H 0.06943 0.07023 0.16641

DMC
Atom DMC EC:DMC DMC+

C′ 0.64825 0.67547 0.41529
C 0.24169 0.25136 0.08120
O′ -0.63655 -0.66405 -0.08538
O -0.51865 -0.53580 -0.12720
H 0.09037 0.09291 0.12702

Table 2.3: Point Charges Representing the EC and DMC Molecules

Top: Values of the point charges representing EC molecules in neat EC, EC molecules
in the EC:DMC mixtures, and EC+ cations in neat EC, with C′ and O′ representing
the carbonyl carbon and carbonyl oxygen atom types, respectively. The average
Mulliken point charges for EC molecules in the EC system are all scaled by a factor of
1.1811 to obtain the reported values, while the average Mulliken point charges for EC
molecules in the EC:DMC mixture are scaled by a factor of 1.1819. Bottom: Values
of the point charges representing DMC molecules in neat DMC, DMC molecules in
the EC:DMC mixtures, and DMC+ cations in neat DMC. The average Mulliken point
charges for DMC molecules in the DMC system are all scaled by a factor of 2.0105
to obtain the reported values, while the average Mulliken point charges for DMC
molecules in the EC:DMC mixture are scaled by a factor of 2.0620.

B3LYP-in-B3LYP-in-MM/cc-pVDZ embedding calculations on the neat EC system

in the oxidized state, using rborder = 0.0 Å, rDFT = 4.0 Å, and rMM = 50.0 Å. The

same approach was also used to determine the point-charge representation of DMC+.

Ensemble-averaged Mulliken charges for the EC and DMC molecules in the oxidized

state are provided in Table 2.3. In order to avoid altering the +1 charge, the partial

charges on the molecules in the oxidized systems are not scaled to self-consistently

reproduce the molecular dipoles.
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2.2.3.4 Convergence Tests for the Embedding Cutoffs

Numerical tests are performed to demonstrate the convergence of the embedding

parameters rborder, rDFT, and rMM. All tests are performed using the ensemble of 151

liquid configurations of the neat EC system. Fig. 2.3(a) shows the effect of increasing

rborder from 0.0 Å to 2.5 Å on the distribution of vertical IEs. Even at rborder = 0.0 Å,

which corresponds to TF embedding with no projection, the truncation error is fairly

small; this result is consistent with the fact that the atoms in the active region are not

covalently bound to the atoms in the environment. Fig. 2.3(b) shows the convergence

of the vertical IEs with respect to increasing rDFT. The standard deviation of this

distribution is 0.06 eV, indicating that the results are reasonably well converged at

rDFT = 3.0 Å. Fig. 2.3(c) shows the convergence of the vertical IEs with respect to

the value of rMM. The standard deviation of this distribution is 0.11 eV, indicating

that the results are reasonably well converged at rDFT = 25.0 Å. For the remainder

of this paper, the more conservative cutoffs of rborder = 2.5 Å, rDFT = 4.0 Å, and

rMM = 50.0 Å are employed in the condensed-phase embedding calculations.

2.2.3.5 Convergence Tests for the Basis Set

To illustrate the difference between vertical IEs calculated at the B3LYP and CCSD(T)

levels of theory, and to demonstrate convergence of the vertical IEs with respect to the

size of the active-region basis set, we perform calculations on isolated EC and DMC

molecules. Fig. 2.4 shows the results of CCSD(T)-in-B3LYP-in-MM and B3LYP-in-

B3LYP-in-MM calculations on isolated molecules (rborder = rDFT = rMM = 0.0 Å)

for configurations of EC in the EC system and DMC in the DMC system. Calcula-

tions are performed using the cc-pVDZ, aug-cc-pVDZ, and aug-cc-pVTZ basis sets

for the active region. Fig. 2.4(a) and Fig. 2.4(b) show that at the B3LYP level of

theory, the vertical IEs calculated using the aug-cc-pVDZ basis set are higher than

those calculated using the cc-pVDZ basis set. Increasing the size of the basis set



84

 0

 5

 10

 15

 20

 25

 30

 35

-0.1  0  0.1

D
is

tri
bu

tio
n

∆∆E (eV)

(a)
rborder

0.0 Å     2.5 Å

-0.2  0  0.2

∆∆E (eV)

(b)
rDFT

   3 Å     4 Å

-0.3  0  0.3

∆∆E (eV)

(c)
rMM

   25 Å     50 Å

Figure 2.3: Demonstration of the convergence of each of the embedding cutoffs for
CCSD(T)-in-B3LYP-in-MM/cc-pVDZ embedding calculations on configurations of
the EC system. Except where noted for each part, the embedding cutoffs are set to
rMM = 50.0 Å, rDFT = 4.0 Å, and rborder = 2.5 Å. (a) Change in the vertical IEs upon
increasing rborder from 0.0 Å to 2.5 Å. (b) Change in the vertical IEs upon increasing
rDFT from 3.0 Å to 4.0 Å. (c) Change in the vertical IEs upon increasing rMM from
25.0 Å to 50.0 Å.

from aug-cc-pVDZ to aug-cc-pVTZ only negligibly increases the B3LYP vertical IEs.

Fig. 2.4(c) and Fig. 2.4(d) show that the CCSD(T) results follow a similar trend,

except that the difference between the results obtained using the aug-cc-pVDZ and

aug-cc-pVTZ basis sets is slightly larger. This is consistent with the fact that DFT

tends to converge more quickly with respect to basis set size than WFT methods.

For EC, the average vertical IE at the CCSD(T)/aug-cc-pVTZ level is 11.11 eV,

which is consistent with the experimentally measured gas-phase vertical IEs in the

range of 10.89-11.45 eV.99–102 The average B3LYP/aug-cc-pVTZ vertical IE is 10.82

eV, which falls below this experimental range. For DMC, the average vertical IE at the

CCSD(T)/aug-cc-pVTZ level is 11.02 eV, which is consistent with the experimentally

measured IE of 11.00 eV.101,102
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Figure 2.4: (a) The distribution of vertical IEs of configurations of isolated EC
molecules, calculated at the B3LYP level of theory and using the cc-pVDZ basis
set (black, dotted), the aug-cc-pVDZ basis set (blue, dashed), and the aug-cc-pVTZ
basis set (red, solid). Similarly, the other panels show the distribution of vertical
IEs for isolated molecules of (b) DMC at the B3LYP level of theory, (c) EC at the
CCSD(T) level of theory, and (d) DMC at the CCSD(T) level of theory.

2.3 Results

2.3.1 WFT-in-DFT Corrects Over-Delocalization of the Elec-

tron Hole

An important reason for the use of WFT methods for the study of oxidation poten-

tials is the propensity of DFT to over-delocalize electron holes.103–107 In this section,

it is confirmed that DFT functionals exhibit this problem when applied to carbonate

solvents, and it is further shown that WFT-in-DFT embedding corrects this problem.

Additionally, we show that even at the DFT-in-DFT level of theory, the projection-

based embedding method allows for the enforcement of constraints to ensure local-

ization of the electron hole.

Fig. 2.5(a) and Fig. 2.5(b) illustrate the electron hole produced by the B3LYP/aug-

cc-pVDZ and HF/aug-cc-pVDZ levels of theory, respectively, for a configuration of

two EC molecules in the oxidized state, (EC2)
+. At the B3LYP level, the electron
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hole is delocalized across both molecules, while at the HF level, it is localized on a

single molecule. As a measure of the extent of localization of the electron hole, we

define δmax ≡ max {δA, δB}, where δA and δB are the summed Mulliken charges of

the atoms in molecules A and B, respectively. The blue squares in Fig. 2.5(c) show

that for a series of configurations of (EC2)
+, B3LYP yields values of δmax that are

close to 0.5, indicating that the electron hole is significantly delocalized between the

two molecules. These dimer configurations are obtained from configurations of the

neat EC system taken 500 ps apart, using the molecule in the active region and a

randomly selected molecule within 4.0 Å. In contrast to the B3LYP results, the black

circles in Fig. 2.5(c) show that HF theory produces values of δmax that are always

close to +1.0, indicating that the electron hole is well localized on a single molecule.

The black pluses and blue crosses in Fig. 2.5(c) demonstrate that the unrestricted

versions of these methods (UB3LYP and UHF, respectively) yield results that are

nearly identical to the restricted open-shell versions of the methods. Shown by the

hollow red diamonds, the M05 functional108 is found to exhibit somewhat more lo-

calization than B3LYP, but a significant amount of charge is still shared between

molecules. The red triangles show that the related M05-2X functional109 typically

produces highly localized electron holes, although in four of the sixteen test cases,

the M05-2X holes are much more delocalized.

As another means of characterizing the extent of delocalization of the electron

hole, we define the delocalization energy,

Edeloc ≡ ∆EAB −min {∆EA,∆EB} . (2.8)

Here A and B correspond to each of the molecules in the two-molecule systems de-

scribed above, min {x, y} represents the minimum of x and y, ∆EAB is the vertical

IE of the full two-molecule system, and ∆EX is the vertical IE obtained from an
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Figure 2.5: (a) Isosurface of the oxidized electron hole density of a two molecule EC
system at ρ = 0.005 and calculated at the B3LYP/aug-cc-pVDZ level of theory. (b)
Same as (a), except at the HF/aug-cc-pVDZ level of theory. (c) Largest combined
Mulliken charge (δmax) on either molecule in configurations of a two-molecule EC
system, calculated at the HF (black, circles), unrestricted-HF (black, pluses), B3LYP
(blue, squares), unrestricted-B3LYP (blue, crosses), M05 (red, hollow diamonds), and
M05-2X (red, triangles) levels of theory. All calculations employed the aug-cc-pVDZ
basis set. (d) The B3LYP delocalization energy (black, circles), the MP2 delocaliza-
tion energy using B3LYP reference MOs (blue, squares), and the CCSD delocalization
energy using B3LYP reference MOs (red, triangles). (e) The HF delocalization en-
ergy (black, circles), the MP2 delocalization energy using HF reference MOs (blue,
squares), and the CCSD delocalization energy using HF reference MOs (red, trian-
gles).



88

embedding calculation in which molecule X is the molecule in the active region. The

aug-cc-pVDZ basis set is used for all atoms, and the embedding calculations use

rborder = ∞ and do not include the electronic relaxation correction introduced in

Section 2.2.3.2. The delocalization energy is defined such that a large, negative value

indicates a strong energetic penalty associated with confinement of the electron hole

on a single molecule.

The black circles in Fig. 2.5(d) show that the delocalization energy of the B3LYP

calculations is both large and negative, consistent with the observation that B3LYP

theory tends to produce highly delocalized holes; conversely, the black circles in Fig.

2.5(e) show that the delocalization energy of the HF calculations is small, consistent

with the observation that HF theory tends to produce highly localized holes. The

red triangles in Fig. 2.5(d) show the result of CCSD calculations that are performed

using B3LYP reference MOs, while the red triangles in Fig. 2.5(e) show the result of

CCSD calculations that are performed using HF reference MOs. When using B3LYP

reference MOs, the delocalization energies at the CCSD level of theory are positive,

implying that CCSD theory favors holes that are more localized than those of B3LYP

theory.

From Fig. 2.5, it is thus apparent that the delocalized electron holes from the

B3LYP level of theory are an artifact associated with the tendency of DFT functionals

to over-delocalize charge,103–107 and that this artifact is corrected at the CCSD level

of theory. This conclusion is reinforced by the trend observed in Fig. 2.5(c), in which

the amount of localization exhibited by each method increases with the amount of

exact exchange incorporated into the method (i.e., in the order B3LYP < M05 < M05-

2X < HF).107 Fig. 2.5(d) also reveals that when using B3LYP reference MOs, the

delocalization energies at the MP2 level of theory are negative, indicating that MP2

theory favors electron holes that are more delocalized than those of CCSD theory.

The propensity of DFT to over-delocalize the electron hole emphasizes the importance
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of treating the active region using high-level WFT methods, such as coupled-cluster

theory.

2.3.2 Solvation Effects on Different Length Scales

We now examine the effect of the solvent environment on the vertical IEs of condensed-

phase EC and DMC molecules. Fig. 2.6(a) shows the distribution of vertical IEs

calculated from a set of CCSD(T)-in-B3LYP-in-MM/aug-cc-pVTZ embedding calcu-

lations performed on configurations of EC molecules in the neat EC system (black)

and DMC molecules in the neat DMC system (blue), using embedding cutoffs of

rborder = 2.5 Å, rDFT = 4.0 Å, and rMM = 50.0 Å. The average vertical IE of DMC

in the condensed-phase DMC system is 0.85 eV lower than the average vertical IE of

EC in the condensed-phase EC system, despite the observation in Fig. 2.4 that the

average vertical IE of isolated EC and DMC molecules are within 0.1 eV one another.

The large difference between the condensed-phase vertical IEs of the EC and DMC

systems is a result of solvation effects, which are further investigated in Fig. 2.6(b)

and Fig. 2.6(c).

Fig. 2.6(b) shows the degree to which inclusion of the DFT region contributes

to the distributions in Fig. 2.6(a). Keeping rMM = 0.0 Å for all calculations, the

distributions show the change in vertical IEs resulting from increasing the value of

rDFT from 0.0 Å to 4.0 Å in embedding calculations for the vertical IE of EC molecules

in the EC system (black) and for DMC molecules in the DMC system (blue). Inclusion

of the DFT region shifts the average vertical IE of EC in the EC system by -0.1 eV,

while shifting the average vertical IE of DMC in the DMC system by -0.6 eV. This

accounts for a majority of the shift in the average vertical IEs of the condensed-phase

EC and DMC systems.

Fig. 2.6(c) shows the degree to which inclusion of the MM region contributes

to the distributions in Fig. 2.6(a). The distributions show the change in vertical
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Figure 2.6: (a) Distribution of vertical IEs from a series of CCSD(T)-in-B3LYP-in-
MM/aug-cc-pVTZ embedding calculations on EC molecules in the EC system (black)
and DMC molecules in the DMC system (blue), using embedding cutoffs of rborder =
2.5 Å, rDFT = 4.0 Å, and rMM = 50.0 Å. (b) Contribution of the DFT region to
the vertical IEs calculated in (a). The distributions are obtained from the difference
between vertical IEs calculated using rborder = 2.5 Å, rDFT = 4.0 Å, rMM = 0.0 Å
and vertical IEs calculated using rborder = 0.0 Å, rDFT = 0.0 Å, rMM = 0.0 Å. (c)
Contribution of the MM region to the vertical IEs calculated in (a). The distributions
are obtained from the difference between the vertical IEs calculated in part (a) and
vertical IEs calculated using rborder = 2.5 Å, rDFT = 4.0 Å, rMM = 0.0 Å.
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Figure 2.7: The difference between the CCSD(T)-in-B3LYP/aug-cc-pVTZ and
B3LYP-in-B3LYP/aug-cc-pVTZ vertical IEs for (a) the EC in the EC system and
(b) the DMC in the DMC system. The calculations are performed using embedding
cutoffs of rborder = 2.5 Å, rMM = 50.0 Å, and rDFT = 4.0 Å.

IEs resulting from increasing the value of rpc from 0.0 Å to 50.0 Å in embedding

calculations for the vertical IE of EC molecules in the EC system (black) and for

DMC molecules in the DMC system (blue). Inclusion of the MM region shifts the

average vertical IE of EC in the EC system by -0.1 eV, while shifting the average

vertical IE of DMC in the DMC system by -0.3 eV. Although these average shifts are

somewhat smaller than those caused by inclusion of the DFT region, they are still

substantial.

Fig. 2.7 illustrates the effect of describing the active region at the CCSD(T) level

of theory, rather than using B3LYP, in the condensed-phase IE calculations. The

distributions show the difference between IEs calculated using CCSD(T)-in-B3LYP-

in-MM embedding and IEs calculated using B3LYP-in-B3LYP-in-MM embedding for

both EC in the EC system (Fig. 2.7(a)) and DMC in the DMC system (Fig. 2.7(b)).

In the condensed-phase, B3LYP-in-B3LYP-in-MM embedding on average underesti-

mates the vertical IEs by more than 0.4 eV relative to CCSD(T)-in-B3LYP-in-MM

embedding.



92

2.3.3 Solvent Response to Oxidation

2.3.3.1 EC and DMC Solvation Obeys Linear Response

Fig. 2.8 examines the statistics of EC solvation from the results of CCSD(T)-in-

B3LYP-in-MM/aug-cc-pVTZ embedding calculations on neat EC, using rborder =

2.5 Å, rDFT = 4.0 Å, and rMM = 50.0 Å. The dotted black line in Fig. 2.8(a) shows

the distribution of vertical IEs for a neutral EC molecule in the condensed phase,

taken over the ensemble of configurations associated with the neutral EC system; this

distribution is identical to that presented for EC in Fig. 2.6(a). The dotted blue line

in Fig. 2.8(a) shows the distribution of vertical IEs for a neutral EC molecule in the

condensed phase, taken over the ensemble of configurations associated with the EC+

system, where the vertical IE calculation is performed on the particular EC molecule

that carried a positive charge in the generation of the EC+ ensemble. The solid curves

show Gaussian fits to each of these distributions, which have a standard deviation of

0.29 eV and 0.27 eV, respectively. These results are consistent with the application of

linear response theory for the statistical distribution of solvent configurations, which

predicts that the two distributions should exhibit Gaussian statistics having the same

standard deviation.49–53 Because linear response theory holds for this system, it is

possible to use Eq. 2.1 and Eq. 2.2 to construct Marcus-type free-energy parabolas

corresponding to the half-reaction associated with oxidation of an EC molecule, as is

depicted in Fig. 2.8(b).49–53

Similarly, Fig. 2.9 shows the corresponding vertical IE distributions for neat

DMC, EC in the EC:DMC mixture, and DMC in the EC:DMC mixture. As shown

in Table 2.4, the standard deviation of each of the reduced distributions is within

approximately 10% of the corresponding oxidized distribution. This small difference

in standard deviations is consistent with that of other systems that have been iden-

tified as obeying linear response theory.49–53 We thus conclude that, neglecting any
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Figure 2.8: (a) Equilibrium probability distributions, PM(∆E), of the vertical IE of
EC molecules, ∆E, calculated using CCSD(T)-in-B3LYP-in-MM/aug-cc-pVTZ em-
bedding. “M” corresponds either to the reduced EC system (R, black) or the oxidized
EC+ system (O, blue). The distributions have similar standard deviations, imply-
ing that the linear response approximation is accurate for this system. The best fit
Gaussian distributions, gM(∆E), are indicated in solid lines. (b) Diabatic free en-
ergy profiles constructed from the equilibrium distributions shown in (a). The solid
lines indicate the parabolas obtained from ∆A and λ, which are determined by ap-
plying Eq. 2.2 and Eq. 2.1. The sets of data points near the minimum of each
parabola (i.e., the upper left and lower right sets of data points) were obtained by
applying FM(∆E) = −β−1ln (PM(∆E)) + F ref

M , where F ref
M = β−1ln (gmax

M ) + δMO∆A,
and gmax

M is the maximum of the Gaussian fit in (a). The linear free energy relation
FO(∆E)−FR(∆E) = ∆E is then applied to these data points in order to obtain the
other sets of data points (i.e., the lower left and upper right sets of data points).
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subsequent oxidative decomposition reactions, the oxidation of EC and DMC solvents

likewise obey linear response theory.

Molecule System σ, Neutral σ, Oxidized
EC EC 0.29(2) 0.27(2)
DMC DMC 0.29(2) 0.28(1)
EC EC:DMC 0.33(1) 0.31(1)
DMC EC:DMC 0.29(2) 0.33(2)

Table 2.4: Standard Deviations of the Vertical IE Distributions.

Each standard deviation, σ, corresponds to one of the vertical IE distributions in
Fig. 2.8(a) or Fig. 2.9. The statistical uncertainty associated with the last reported
digit in these quantities, reported in parentheses, is estimated by first calculating the
standard deviations of five sets of 30 vertical IEs, and then calculating the standard
error of the mean of these values. All values are reported in eV.

The preceding demonstration of linear response justifies the use of Eq. 2.1, Eq.

2.2, and Eq. 2.3 to calculate the reorganization energies and oxidation potentials for

each system, which are provided in Table 2.5. The oxidation potential calculated

at the CCSD(T)-in-B3LYP-in-MM level is consistently 0.4-0.5 V higher than the

oxidation potential calculated at the B3LYP-in-B3LYP-in-MM level. The CCSD(T)-

in-B3LYP-in-MM and B3LYP-in-B3LYP-in-MM reorganization energies are in much

closer agreement, with all of the reorganization energies being approximately in the

range 1.2-1.3 eV.

2.3.3.2 Failure of Conventional Dielectric Continuum Models for the Treat-

ment of DMC

It is informative to compare the reorganization energies in Table 2.5 with the results

of various dielectric continuum models, starting first with a very simple description.

For a spherical ion exchanging an electron with an electrode infinitely far away, the

reorganization energy is110

λ =
e2

8πεor

(
1

εoptical
− 1

εstatic

)
, (2.9)
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Figure 2.9: Vertical IE probability distributions calculated using CCSD(T)-in-
B3LYP-in-MM/aug-cc-pVTZ embedding. (a) Vertical IE probability distribution of
DMC molecules in the DMC system (black) and DMC molecules in the DMC+ sys-
tem (blue). (b) Vertical IE probability distribution of EC molecules in the EC:DMC
system (black) and EC molecules in the EC+:DMC system (blue). (c) Vertical IE
probability distribution of DMC molecules in the EC:DMC system (black) and DMC
molecules in the EC:DMC+ system (blue).
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B3LYP-in-B3LYP-in-MM
Molecule System 〈∆E〉0 〈∆E〉+1 E λ
EC EC 10.51(2) 8.03(2) 7.87(2) 1.24(2)
DMC DMC 9.64(2) 7.31(2) 7.07(2) 1.17(2)
EC EC:DMC 10.07(3) 7.40(3) 7.33(2) 1.34(2)
DMC EC:DMC 9.93(2) 7.64(2) 7.39(2) 1.15(2)

CCSD(T)-in-B3LYP-in-MM
Molecule System 〈∆E〉0 〈∆E〉+1 E λ
EC EC 10.95(2) 8.48(2) 8.32(2) 1.24(2)
DMC DMC 10.10(2) 7.77(2) 7.54(2) 1.17(2)
EC EC:DMC 10.51(3) 7.85(3) 7.78(2) 1.33(2)
DMC EC:DMC 10.39(2) 8.08(3) 7.83(2) 1.16(2)

Table 2.5: Embedding Results for the Oxidation Potentials and Reorganization En-
ergies

The results are obtained using rborder = 2.5 Å, rDFT = 4.0 Å, and rMM = 50.0 Å
and the aug-cc-pVTZ basis set. The top results correspond to B3LYP-in-B3LYP-in-
MM embedding, while the lower results correspond to CCSD(T)-in-B3LYP-in-MM
embedding. The average vertical IE of each molecule in the indicated system, 〈∆E〉0,
is provided. Similarly, the average vertical IE of each molecule in the corresponding
oxidized system, 〈∆E〉+1, is provided. The value in parentheses indicates the statis-
tical uncertainty in the last reported digit. The intrinsic oxidation potentials, E , and
solvent reorganization energies, λ, are also provided, using Eq. 2.1 and Eq. 2.3. The
oxidation potentials are reported in V relative to Li+/Li, while all other values are
reported in eV.

where r is the radius of the ion and εoptical and εstatic are the optical and static dielectric

constants, respectively. As an estimate of the radius of EC and DMC, we use the

radius of spheres having a volume equal to the inverse number density of neat EC

and neat DMC, yielding radii of 2.99 Å and 3.29 Å, respectively. The value of εoptical

corresponds to the square of the index of refraction,111 which is 1.4158 for EC at

40◦C and 1.369 for DMC.112–114 The experimental values of εstatic are 89.78 for EC

and 3.107 for DMC.2 Using these values, Eq. 2.9 predicts a reorganization energy of

1.17 eV for neat EC, in good agreement with the embedding results in Table 2.5, and

a reorganization energy of 0.46 eV for neat DMC, which is substantially lower than

the reorganization energy obtaining using embedding.

For additional comparison with the reorganization energies in Table 2.5, a set of
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B3LYP/aug-cc-pVTZ calculations are performed using two continuum models: the

integral-equation-formalism polarizable continuum model (IEF-PCM)115,116 and the

solvation model density (SMD) model.117 The calculations are performed in the ox-

idized state, using B3LYP/aug-cc-pVTZ optimized geometries of the molecules in

the corresponding solvated reduced state. The calculations on each molecule use the

Gaussian09 default parameters for a generic solvent,118 except that the values of the

static and optical dielectric constants are replaced by the corresponding experimental

values for the neat solvent. The solvent reorganization energy is

λ = Gneq −Geq, (2.10)

where the subscript “eq” indicates that the solvent continuum is allowed to fully relax

to the electronic distribution of the oxidized molecule, and the subscript “neq” indi-

cates that the free energy calculation is performed using a nonequilibrium solvation

dielectric continuum associated with the reaction field of the neutral system.103 Both

zero-point energy and intramolecular vibrational contributions to the oxidation poten-

tial of EC and DMC molecules are neglected, since they are expected to be small.10,31

Table 2.6 provides the results of these calculations, which are nearly identical to the

results from Eq. 2.9. For all three dielectric continuum models considered here, it

is found that the reorganization energy of DMC is substantially underestimated in

comparison to the embedding calculations that include explicit solvation.

The oxidation potentials calculated using the implicit solvent models also disagree

with the results of the embedding calculations. Using the IEF-PCM solvation model,

the oxidation potential of neat EC is 7.39 V, while the oxidation potential of neat

DMC is 7.94. Similarly, the oxidation potentials for neat EC and neat DMC in

the SMD solvation model are 7.06 V and 7.78 V, respectively. This is qualitatively

different from the results in Table 2.5, where the oxidation potential of neat EC is
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found to be higher than that of neat DMC.

Molecule Model λref λ
EC Eq. 2.9 1.24 1.17
EC IEF-PCM 1.17
EC SMD 1.19
DMC Eq. 2.9 1.17 0.46
DMC IEF-PCM 0.48
DMC SMD 0.48

Table 2.6: Dielectric Continuum Results for the Reorganization Energies

The reorganization energies, λ, for the oxidation of EC and DMC molecules are
calculated using various dielectric continuum models. The calculations in IEF-PCM
and SMD solvation are run using the B3LYP/aug-cc-pVTZ level of theory and the
Gaussian09 defaults for a generic solvent, except that the values of ε0 and ε∞ are set
to the corresponding experimental values for the indicated molecule. Also shown for
each molecule is λref, the B3LYP-in-B3LYP-in-MM reorganization energy of the neat
liquid from Table 2.5. All values are reported in eV.

It is clear that these continuum models fail to correctly account for the relevant

intermolecular interactions between DMC molecules. In Section 2.3.3.3, we demon-

strate that this failure is a consequence of the large permanent quadrupole moment

of DMC molecules.

2.3.3.3 Importance of Quadrupolar Interactions in DMC Solvation

To investigate the inaccuracy of the dielectric continuum models for describing DMC

solvation, we first investigate the nature of the intermolecular interactions that de-

termine the relative vertical IEs of each system. Fig. 2.10 uses a simple point charge

model to confirm that the vertical IEs are primarily modulated by electrostatic inter-

actions in both the neat EC and neat DMC systems. In this point charge model, all

atoms are represented using the corresponding charge from Table 2.3, allowing calcula-

tion of the electrostatic interaction energy between the atoms in the oxidized molecule

and all other atoms, Epc. The change in Epc upon switching the atomic charges from

the neutral to the oxidized systems, ∆Epc, is then calculated for each configuration



99

 8
 9

 10
 11
 12

∆E
 (e

V)

(a)

 7
 8
 9

 10
 11

-6 -5 -4 -3 -2 -1  0  1  2
∆E

 (e
V)

∆Epc (eV)

(b)

Figure 2.10: Examination of the accuracy of the electrostatic model for estimation
of the vertical IE energy of EC and DMC molecules. (a) The vertical IE of EC in
the EC and EC+ systems, calculated using CCSD(T)-in-B3LYP-in-MM/aug-cc-pVTZ
embedding (rborder = 2.5 Å, rDFT = 4.0 Å, and rMM = 50.0 Å), is plotted against
∆Epc. The best-fit line is given by the equation ∆E = 0.78∆Epc + 10.67, with an R2

value of 0.98. Because of the bimodal nature of this distribution, a more informative
measure of the quality of this fit is the R2 value of the line when only one mode (i.e.,
the data for either the EC or EC+ system) is incorporated into the calculation of R2.
This yields R2 values of 0.59 for the EC system and 0.69 for the EC+ system. (b)
The corresponding result for DMC in the DMC and DMC+ systems. The best-fit
line is given by the equation ∆E = 0.57∆Epc + 10.19, with an R2 value of 0.97. The
corresponding R2 values for the individual DMC and DMC+ systems are 0.42 and
0.57, respectively.

of the liquid. Fig. 2.10 shows the correlation between ∆Epc and the corresponding

CCSD(T)-in-B3LYP-in-MM/aug-cc-pVTZ embedding calculations; the two clusters

of data points in each panel correspond to the configurations associated with the ox-

idized and neutral systems. Despite its simplicity, the point-charge model correlates

directly with the embedding results. This implies that the primary factor influencing

the relative vertical IEs of each solvent molecule is the extent to which ionization of

the molecule is stabilized by electrostatic interactions with the surrounding solvent

environment.

Further examination of these electrostatic interactions yields an explanation for

the failure of dielectric continuum representations of DMC. It is possible to deter-
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mine the relative contribution of dipole and quadrupole intermolecular interactions

to ∆Epc by representing all molecules, aside from the molecule to be oxidized, using

a truncated multipole expansion. We define En-pole as the electrostatic interaction

energy between the point charges associated with the molecule to be oxidized and the

truncated multipole representation of all the other molecules. Fig. 2.11(a) compares

each value of ∆Epc for the neat EC system with the corresponding value of ∆En-pole,

in which the multipole expansion is truncated at either the dipole or quadrupole level.

In the limit in which ∆En-pole is calculated using all terms in the multipole expansion,

∆Epc and ∆En-pole would agree exactly, and all points would reside on the black line.

Even when the multipole expansion is truncated at the level of dipoles, the points in

Fig. 2.11(a) agree well with the black line, indicating that intermolecular interactions

between EC molecules are dominated by dipole effects, with only a small contribution

from higher-order terms in the multipole expansion. Fig. 2.11(b) shows that this is

not the case for DMC; instead, an accurate representation of the intermolecular in-

teractions between DMC molecules requires the incorporation of quadrupole effects.

Section 2.6 confirms that this conclusion is robust with respect to the parameteriza-

tion of the DMC point charges.

The dielectric constant of a material reflects the strength of the dipole interac-

tions of the material.119,120 Nonetheless, in other explicit solvent models, it has been

observed that although the solvation properties of a material can be significantly en-

hanced by a large molecular quadrupole moment, increasing the magnitude of the

quadrupole moment often reduces the dielectric constant.121–124 Correctly accounting

for these quadrupole interactions in implicit solvent models is challenging, and in-

volves the introduction of parameters that report on microscopic-scale properties.125

For these reasons, dielectric continuum models that do not incorporate the relevant

molecular-level details of solvent interactions underestimate the reorganization energy

of DMC, as observed in Table 2.6.
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Figure 2.11: The change in electrostatic energy upon oxidation, obtained using a
simple point-charge model for each atom (∆Epc), is compared against the change in
electrostatic energy upon oxidation, obtained by truncating the point-charges of each
molecule as a multipole expansion truncated at either the dipole or quadrupole levels
(∆En-pole). The dipoles and quadrupoles are calculated relative to the center of mass
of each molecule. Values are provided for (a) EC in both the EC and EC+ systems
and for (b) DMC in both the DMC and DMC+ systems. The lines correspond to the
equation ∆Epc = ∆En-pole, and deviations from these lines indicate truncation error
in the multipole expansion.
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The important role of quadrupolar interactions in DMC solutions provides useful

insight into the nature of ion solvation in Li-ion batteries. It has long been expected

that because EC has a much larger dipole moment than DMC, the solvation shell

of ions in EC:DMC mixtures should exhibit a strong preference for neighboring EC

molecules instead of DMC molecules.126 For example, this intuition is consistent with

the Born model of ion solvation,127–129

Esolvation = − Z2e2

8πεor

(
1− 1

εstatic

)
, (2.11)

where Esolvation is the solvation energy of an ion having charge Z and radius r. Eq.

2.11 predicts that the solvation energy of an ion in EC should be higher than that

of an ion in DMC, leading to the conclusion that in EC:DMC mixtures, Li+ cations

should exhibit strong preference for EC solvation. Studies of this issue have led to

mixed conclusions; whereas the results of electrospray ionization mass spectrome-

try130–132 and 13C NMR spectroscopy133,134 have identified only a negligible amount

of DMC in coordination with Li+ cations, gas-phase QM calculations,55 liquid-phase

MD simulations,55 Raman spectroscopy,135 and 17O NMR spectroscopy136 have in-

dicated that DMC participates significantly in the coordination of Li+ cations. Al-

though previously regarded as counter-intuitive, the possibility that DMC participates

non-negligibly in the coordination of Li+ cations can be understood in terms of the

results in Fig. 2.11. Despite having a small dipole and small dielectric constant, DMC

molecules exhibit large quadrupolar interactions that can favorably solvate ions. Mod-

els that do not account for quadrupolar interactions are thus likely to underestimate

the favorability of ion solvation by DMC.
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2.4 Conclusions

We have employed high-accuracy WFT-in-DFT embedding methods to analyze the

oxidative stability of liquid-phase mixtures of EC and DMC. DFT calculations with

the B3LYP functional are found to systematically underestimate the gas-phase verti-

cal IEs by about 0.4-0.5 eV, and many DFT functionals are found to over-delocalize

the electron hole in the oxidized electrolyte solutions. To avoid these failures, we ap-

ply the newly-developed projection-based embedding method to accurately calculate

the CCSD(T)-level vertical IEs, adiabatic oxidation potentials, and reorganization

energies of EC and DMC molecules in explicit solvent.

By performing embedding calculations over ensembles of liquid configurations ob-

tained from classical MD simulations, we obtain equilibrium distributions of vertical

IEs. These distributions reveal that the reorganization of the solvent is consistent

with the predictions of linear response theory, allowing for calculation of the oxida-

tion potentials and the solvent reorganization energies. The solvent reorganization

energies of neat EC and neat DMC are both found to be 1.2 eV. Although simple di-

electric continuum models accurately reproduce the reorganization energy of EC, they

significantly underestimate the reorganization energy of DMC, which we demonstrate

to be a result of the important role of quadrupolar interactions in DMC solvation. In

addition to explaining the large solvent reorganization energy of DMC, this observa-

tion provides insight into previously identified anomalies, such as the possibility that

DMC strongly coordinates with Li+ cations in EC:DMC mixtures.
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2.5 Appendix: Benchmarking the Electronic Re-

laxation Calculations

Fig. 2.12 demonstrates both the convergence and accuracy of the electronic relaxation

protocol described in Section 2.2.3.2. Results are provided for the errors, relative to

full B3LYP calculations, of a series of IEs calculated using supermolecular (rborder =

∞) B3LYP-in-B3LYP/cc-pVDZ embedding. Inclusion of the electronic relaxation

energy is observed to reduce the errors by approximately an order of magnitude, with

a single iteration of the third step of the electronic relaxation protocol being sufficient

to converge the energies. As a result, all relaxation calculations in the main text are

performed using a single iteration of the relaxation protocol.

The data are calculated for twelve geometry configurations, obtained by modifying

a single configuration from the EC ensemble. Each configuration includes the molecule

in the active region and one of the molecules in the DFT region, with the molecule in

the active region being replaced by a calcium atom at its center-of-mass, and with the

active region corresponding to the calcium atom. This replacement was performed

because the low IE of calcium ensures that the electron hole of the oxidized system is

well localized on subsystem A, even at the B3LYP level of theory. If this analysis were

performed using EC dimers instead of the calcium-EC system, it would be difficult to

isolate errors caused by over-delocalization of the B3LYP electron hole (see Section

2.3.1 of the main text) from errors in the relaxation energy.
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Figure 2.12: Demonstration of the accuracy of the electronic relaxation protocol
described in Section 2.2.3.2 of the main text. Errors in the vertical IEs of a series
of supermolecular B3LYP-in-B3LYP/cc-pVDZ embedding calculations are reported
relative to the corresponding full B3LYP calculations. The calculations are performed
for the case in which the electronic density of subsystem B is not permitted to relax
with respect to the oxidation of subsystem A (black, circles), the case in which the
electronic density of subsystem B is permitted to relax in a single iteration (blue,
squares), and the case in which the electronic density of subsystem B is permitted to
relax in two iterations (blue, pluses).
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2.6 Appendix: Robustness of the Results with Re-

spect to the Representation of the MM Region

In Section 2.3.3.3, we observed that implicit solvent models substantially underesti-

mate the reorganization energy of DMC, due to the neglect of important quadrupolar

interactions. In this section, we demonstrate that this conclusion is robust with re-

spect to the point-charge representation of the MM region.

Table 2.7 provides the average magnitudes of the molecular dipole and quadrupole

moments of both EC and DMC. These results are obtained using B3LYP-in-B3LYP-

in-MM/cc-pVDZ embedding on 16 configurations of the neat EC system and 16 con-

figurations of the neat DMC system, taken at 500 ps intervals. The embedding

cutoffs are set to rborder = 0.0 Å, rDFT = 4.0 Å, and rMM = 50.0 Å. The dipole and

quadrupole moments of the molecule in the active region (
→
D and

↔
Q, respectively)

are calculated relative to its center-of-mass, and the magnitudes of these moments

are obtained using the expressions D ≡
(→
D ·

→
D
)1/2

and Q ≡
(

2
3

↔
Q :

↔
Q
)1/2

, respec-

tively.137,138

Molecule 〈D〉DFT 〈Q〉DFT 〈D〉MM 〈Q〉MM

EC 6.5(1) 3.2(1) 6.55(3) 3.2(1)
DMC 0.75(5) 11.8(1) 0.56(7) 29.4(1)

Table 2.7: Magnitude of the Dipole and Quadrupole Moments of EC and DMC

The average magnitude of the dipole and quadrupole moments of EC and DMC is
obtained using both B3LYP-in-B3LYP-in-MM embedding (DFT), and using the point
charge (MM) model described in Section 2.2.3.3. The dipole moments are reported
in Debye, while the quadrupole moments are reported in Debye · Å.

Table 2.7 also provides the average magnitudes of the molecular dipole and quadrupole

moments of EC and DMC, obtained using the MM point-charge representation de-

scribed in Section 2.2.3.3. The molecular dipoles produced by the MM representation

accurately reflect those obtained at the DFT level of theory, as expected due to the
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way in which the point charges were determined in Section 2.2.3.3. For EC, the mag-

nitudes of the B3LYP-level and MM quadrupoles agree very well, but for DMC, the

MM representation overestimates the quadrupole moment by a factor of 2.487. We

now investigate this issue to confirm that it does not impact our conclusions from

Section 2.3.3.3.

We first confirm that the reported conclusions regarding the oxidation potential

and reorganization energy of neat DMC calculated at the CCSD(T)-in-B3LYP-in-

MM level are not sensitive to the magnitude of the quadrupoles in the MM region.

In order to examine the sensitivity of the reorganization energy and oxidation poten-

tial of neat DMC to the magnitude of the DMC quadrupoles, we perform another

set of CCSD(T)-in-B3LYP-in-MM/aug-cc-pVTZ embedding calculations on DMC in

both the DMC and DMC+ systems. This set of calculations utilizes a point-charge

representation in which the charges for each atom in the MM region is reduced by a

factor of 2.487 relative to the values reported in Table 2.3 of the main text, and the

embedding cutoffs are set to rborder = 2.5 Å, rDFT = 4.0 Å, and rMM = 50.0 Å. The

resulting value of 〈∆E〉0 is 10.28 eV, while the value of 〈∆E〉+1 is 8.34 eV. Using

these average vertical IEs and Eq. 2.3 results in an oxidation potential of 7.91 V.

While this value is 0.37 V higher than that reported in Table 2.5, this difference does

not affect the conclusion that the oxidation potential of neat EC is higher than that

of neat DMC. Similarly, using the above ensemble-averaged vertical IEs and Eq. 2.1

results in a solvent reorganization energy of 0.97 eV. The close agreement between

this value and the neat DMC reorganization energy of 1.17 eV reported in Table 2.5

of the main text indicates that our CCSD(T)-in-B3LYP-in-MM reorganization en-

ergies are robust with respect to the point-charge representation of the MM region.

The somewhat better robustness of the reorganization energies with respect to the

parameterization of the point charges is largely a consequence of cancelation of errors

in Eq. 2.1.
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Secondly, we reconfirm the conclusion from Section 2.3.3.3 of the main text that

quadrupolar intermolecular interactions are important for correctly describing DMC

solvation, even if the magnitude of these quadrupolar interactions is reduced by a

factor of 2.487. For a series of configurations for the EC+ system, Fig. 2.13(a) shows

∆Enth-pole, which we define as the contribution of the nth order terms in the multipole

expansion of ∆En-pole; ∆Enth-pole results for both the dipole and quadrupole interac-

tions are plotted. As was observed in Fig. 2.11 in the main text, the quadrupolar

interactions (blue, squares) in neat EC are negligible compared to the dipolar in-

teractions (black, circles). By contrast, Fig. 2.13(b) demonstrates the quadrupolar

interactions in neat DMC, calculated using the point charges from Section 2.2.3.3,

are approximately as large as the corresponding dipolar interactions. Even when

the magnitudes of the quadrupole moments in neat DMC are reduced by a factor of

2.487, the resulting quadrupolar interactions (red, triangles) remain comparable to

the dipolar interactions. We thus conclude that for any reasonable parameterization

of the point charge representation of the MM region, the solvation properties of DMC

will be strongly affected by quadrupolar interactions.
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Figure 2.13: Demonstration that the conclusion that DMC quadrupolar interactions
are significant is robust with respect to the parameterization of point charges.
(a) The dipolar (black, circles) and quadrupolar (blue, squares) contributions to
∆En-pole, ∆Enth-pole, for each configuration of EC+. (b) As (a), except that the
dipolar and quadrupolar contributions are calculated for configurations of DMC+.
Also provided is the contribution of the DMC quadrupoles when the quadrupoles are
reduced by a factor of 2.487 (red, triangles).
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