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Nomenclature

ar The nondimensional nucleus mass

ky Th fermi level for momentum wavenumber

R, The Ith nucleus spatial coordinate

r; The ith electron spatial coordinate

A The space of antisymmetric functions

Dy  The space of mixed-state N-electron density operators
H L(Q)

H.  The space of anti-symmetric wavefunctions for N electrons
H,  The space of wavefunctions for M nuclei

Xi Orthogonal plane-wave basis

Z() The indicator function for the set {}

Iy The space of orbitals for non-interacting electrons

ngV The spatially discretized space of Ky

ngw’u) The vector space of density operators in Ky that commutes with the Hamiltonian

H(o,u)
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Kﬁ]}jjfﬁ’u) The vector space of density operators in Ky that commutes with the spatiall dis-

cretized Hamiltonian H7(¢,u) in the span of the k binning basis {50 -
Kn  The vector space of self-adjoint, trace-class operator in X that has trace N
U The space of exchange-correlation potentials, £*()
U The spatially discretized space of U
VoWt
V; The spatially discretized space of V
X The vector space of self-adjoint, trace-class operator on &; with finite kinetic energy
Xy  The space of one-particle reduced density operators
Ak  The volume per k-point

AN The spectrum width of the Hamiltonian matrix

e6({Ra, -+ ,Rm}) The ground state energy for electrons given nuclei positions at {Rq, -+ ,Rm}

€39 The relaxed ground state energy of molecular system with Born-Oppenheimer ap-
proxmation

eS®S The ground state energy for the extended Kohn-Sham functional

eXEKS The ground state energy for the reformulated extended Kohn-Sham functional

€0 The ground state energy of molecular system - with relaxation of the electrons and

nuclei
eSS({Ry, - ,Rm}) The Kohn-Sham ground state energy

S:  The vector space of self-adjoint, trace-class operator on H
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x1

The one-particle reduced density operator

v(r,r') The one-particle reduced density operator in spatial coordinates

1N

The N-particle density operator

I'(Nmixea) The mixed N-particle density operator

h

)\C

>\1}

/\max

)\min

P

The reduced Planck’s constant

Eigenvalue that correspond to core electrons
Eigenvalue that correspond to valence electrons
The fermi energy of the system

The lower bound of spectrum of Hamiltonian
The upper bound of spectrum of Hamiltonian
The Krylov subspace of dimension n,

The space of electron densities that come from anti-symmetric wavefunctions with N

electrons

The space of ground state electron density (V-representable)
The V-representable density

The Lagrange multiplier for total number of electrons constraint
The spectral measure with respect to the vector &;

The electrostatic potential

®(r,r’) The electrostatic potential operator

v

The many body wavefunction for N electrons and M nuclei
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¥(r) The single electron orbital
1°(r) Eigenvector that correspond to core electrons
Y¥(r) Eigenvector that correspond to valence electrons
V.  The manybody wavefunction for the electrons
v,  The manybody wavefunctions for the nuclei
p(r) The electron density
p(r) The electron density associated with the one-particle density operator
o(H%S) The spectrum of HXS operator

¥¥(r) Smoothed eigenvector that correspond to valence electrons

Tr The approximated Trace operator

+,— The electron spin: up,down
Ec The correlation integrand
Ex The exchange integrand

{stg}’;:l The family of spectral binning basis

{tk}k_, The collection of binning nodes

Ay The nucleus spin coordinate

b(r,{Rq, - ,Rm}) The regularized nuclei charge density

B:.(p) The dual functional for By.(p)

Byc(p) —Exc(p), the negative of the exchange-correlation functional

C Computation cost
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Cr  Constant for homogeneous electron gas kinetic energy

E{;and(’y) The spectrally discretized band energy

Egand(y) The discretized band energy Tr(Hj(gb, u)v)

E®ES(~y) The extended Kohn-Sham energy functional

EREKS (4} The reformulated extended Kohn-Sham energy functional
FEpandji;(7) The spatially and spectrally discretized band energy
Epana(u, ¢,7) The band energy Tr(H (¢, u)y)

E.(p) The correlation energy functional

Fy(p) Classical electrostatic repulsion energy functional, hartree energy
Ey.(y) The exchange-correlation functional written in terms of density operators
E..(p) The exchange-correlation energy functional

E(p) The exchange energy functional

Frr(p) The Levy-Lieb universal functional

Fr(p) The Lieb universal functional

g(A\)  The matrix function for density operator

Gtermi(A) The Fermi-Dirac distribution

H The Hamiltonian Operator

h(p) The exchange-correlation integrand

H®S  The Kohn-Sham Hamiltonian operator

HYS  Hamiltonian with pseudopotential
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H.  The Hamiltonian operator for electrons
Hyox The Hamiltonian operator for N identity non-interacting particles in the box

J(v) The Coulomb energy for the molecular system written as a function of the density

operators 7y
J(p) The Coulomb energy for the molecular system
L(y) The Lagrangian functional for the reformulated Kohn-Sham energy functional

L(R;) The distance cutoff between localized basis centers for density matrix entry to be

negligible

L’(y) The discretized Lagrangian functional for the reformulated Kohn-Sham energy func-

tional

M Number of nuclei in the molecular system

m The mass of an electron
m" The mass of a nucleus
N Number of electrons

Ny Size of the Hamiltonian matrix

ng  The sparsity of Hamitlonian matrix

Ny Degree of Chebyshev polynomial approximation

Ng, Ny, N, The quantum number in x,y,and z direction for particle in the box
P()\) The resolution of identity for HXS

Q A partial isometry operator
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q The charge of an electron

R, The cut off radius for pseudopotentials.

Ry The localization region for Chebyshev approximations

S(u,®) The functional for Columb energy

S3*i(u, $) The spatially and spectrally discretized functional for Column energy
T The kinetic energy of the homogeneous electron gas

T(u) The dual functional for exchange-correlation

TT(p) The Thomas-Fermi kinetic energy functional

T7*i(u) The spatially and spectrally discretized dual functional for exchange-correlation
To(p) Kinetic energy functional for non-interacting electrons

T, The kinetic energy operator for interacting electrons

T, The kinetic energy operator for the electrons

T.(p) Kinetic energy functional for interacting electrons

T;(p) The Janak kinetic energy functional

Ty(xz) Chebyshev polynomials

T, The kinetic energy operator for the nuclei

Ty The kinetic energy per unit volume for homogeneous electron gas

u(r) The exchange-correlation potential, dual function to electron density p(r)
U(r,r’) The exchange-correlation potential operator

U™ The Thomas-Fermi interaction energies
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U._. The electron-electron repulsion energy operator

Ue—e(p) The electrostatic repulsion energy functional for interacting electrons
U,_. The nucleus-electron attraction energy operator

U,_, The nucleus-nucleus repulsion energy operator

Vbox  The potential for particles in the box

Vext(r) The external potential for the molecular system

vks(r) The Kohn-Sham potential

vxe(p) The exchange-correlation potential

A The charge of the Ith nucleus

k The electron momentum wave number for homogeneous electron gas

n The quantum number for particle in box
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Abstract

Kohn-Sham density functional theory (KSDFT) is currently the main work-horse of quan-
tum mechanical calculations in physics, chemistry, and materials science. From a mechanical
engineering perspective, we are interested in studying the role of defects in the mechanical
properties in materials. In real materials, defects are typically found at very small concen-
trations e.g., vacancies occur at parts per million, dislocation density in metals ranges from
10172 to 10®m 2, and grain sizes vary from nanometers to micrometers in polycrystalline
materials, etc. In order to model materials at realistic defect concentrations using DFT, we
would need to work with system sizes beyond millions of atoms. Due to the cubic-scaling
computational cost with respect to the number of atoms in conventional DFT implemen-
tations, such system sizes are unreachable. Since the early 1990s, there has been a huge
interest in developing DFT implementations that have linear-scaling computational cost. A
promising approach to achieving linear-scaling cost is to approximate the density matrix in
KSDFT. The focus of this thesis is to provide a firm mathematical framework to study the
convergence of these approximations. We reformulate the Kohn-Sham density functional
theory as a nested variational problem in the density matrix, the electrostatic potential, and
a field dual to the electron density. The corresponding functional is linear in the density ma-
trix and thus amenable to spectral representation. Based on this reformulation, we introduce
a new approximation scheme, called spectral binning, which does not require smoothing of
the occupancy function and thus applies at arbitrarily low temperatures. We proof conver-
gence of the approximate solutions with respect to spectral binning and with respect to an

additional spatial discretization of the domain. For a standard one-dimensional benchmark
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problem, we present numerical experiments for which spectral binning exhibits excellent

convergence characteristics and outperforms other linear-scaling methods.
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Chapter 1

Introduction

It is said that in experiments, we have a partial understanding of the full truth; and in
computation, we have a full understanding of the partial truth. Therefore, in order to predict
new material properties using computation, it is imperative that we build in as much physics
as we can into the computational model, provided that it is still computationally feasible.
Kohn-Sham Density functional theory (KSDFT) is precisely the theory for electron structure
that strikes a good balance between minimizing empiricism in the model and maximizing
computational efficiency.

Today, we find DFT in many applications: investigation of phase stability in various
materials, oxides, thermoelectrics, ferroelectrics, e.g., Hautier et al. [27], Roy et al. [64],
Doak and Wolverton [16], and Bennett et al. Bennett2011, etc; design of new alloys with
superior structural properties, e.g., Sandlobes et al. [67], Trinkle et al. [77], and Hickel et
al. [31], etc. More recently, DFT has become the primary tool for high throughput screening
of materials, e.g., Saal et al. [66], Armiento et al. [4], etc.

The rapid increase in the number of publications involving DFT best illustrates the
growing importance of DFT in physics, chemistry and materials science. Figure 1.1 plots
the number of papers that contain the name “density functional theory” in their title and
abstract from the web of science for the last 23 years. Unless there is another break-through

in computational physics, we expect DFT to sustain its momentum for many years to come.
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Figure 1.1: Number of publications with DFT as topic.

The development of DFT in 1964 by Walter Kohn was a huge break-through in physics
because it linked the ground state energy of the molecular system to the ground state electron
density. Kohn transformed the linear eigenvalue problem of finding the ground state of a
molecular system from 3N dimensions to a non-linear eigenvalue problem in 3 dimensions,
where N is the number of electrons in the systems. There are several good introductions
to DFT. The two papers everyone who is interested in DF'T should read are the pioneering
papers written by Hohenberg and Kohn in 1964 [33] and Kohn and Sham in 1965 [38].
Other helpful introductions to DFT are by Parr and Yang [55], Martin [47], Cances[12], and
Anantharaman and Cances [2].

The exchange correlation functional is crucial to the accuracy of a density functional
theory calculation. The most basic exchange correlation functional, the local density ap-
proximation (LDA) was proposed by Kohn and Sham [38]. Widely used forms of LDA
can be found in Perdew and Zunger [56] and Perdew and Wang [59]. A more sophisti-
cate exchange correlation functional, the generalized gradient approximation (GGA) is in-
troduced by Perdew [57]; different flavors of GGA exchange-correlation functionals can be
found in [60], [40], [7], and [58]. Finally, there is the more recent development of hybrid

functionals that mixes in the exact exchange energy [8].
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For those who are interested in the development of pseudopotentials for density functional
theory, the following papers would be useful: the earliest developments of pseudopotentials
are found in Hellmann [28], Herring [30], Phillips and Kleinman [61], Antoncik [3]; on norm-
conserving pseudopotential Hamann et al. [25], ultrasoft pseudopotential Vanderbilt [79],
and separable pseudopotential operators Kleinman and Bylander [37] and Troullier and
Martin [78]. Good review articles on pseudopotential can be found in Heine and Cohen [14],
Harrison [26], and Pickett [62].

Lastly, for lower complexity algorithms in DFT, such as linear scaling methods, there has
been numerous publications since the early 1990s. For density matrix expansion/approximation
methods, there are Li et al. [42], Goedecker and Colombo [20], Hernandez et al. [29], Baer
and Head-Gordon [6], Suryanarayana et al. [73], Lin et al. [45], Suryanarayana [71], Schofield
et al. [68], and Nava et al. [52], etc, for methods that approximate the subspace spanned by
the occupied orbitals, and there are Ordejon et al. [53], Mauri and Galli [50], Marzari and
Vanderbilt [48], Garcia-Cervera et al. [18], and Motamarri and Gavini [51], etc. There are
also two excellent review articles on linear scaling methods in DFT by Goedecker [23] and

Bowler et al. [10].
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Chapter 2

Density functional theory

I begin this introduction of DFT from the time-independent Schrodinger equation. Almost
all of the information in this background section comes from the following two references,
the first of which places more emphasis on explanation of the physics [55], and the second

of which places more emphasis on mathematics [12].

2.1 Many-body Schrodinger equation

Consider an isolated molecule that consists of M nuclei and N electrons. The time-independent
Schrodinger equation that governs the molecular system without accounting for relativistic

effects is,

HU = eV, (2.1)

where ¥ : R3M+N) » 1 1 5 C denotes the wavefunction for the molecular system, and
{+, —} denotes the space of spin degree of freedom; ¥ belongs to the space of H, @ H,,

where
N

H. = N\ L2(R® x {+,-},C),

i=1
and

H, = L2 (R* x Ay) x - x (R* x Ay), C).
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The /A symbol denotes the space of antisymmetric functions due to the fermionic property
of the electrons, and the “sds” subscript denotes the system-dependent symmetry properties
for the nuclei (even number of nuclei: symmetric; odd number of nuclei:antisymmetric).
The spin coordinate of the Ith nucleus is denoted by A;, and the electron spins are denoted
by {+,—}. The square of the magnitude of the wavefunction evaluated at a given spatial
and spin coordinates {ry,--- ,ry; Ry, -+, Ra; {+, —}} represents the probability density of
finding the system of nuclei and electrons at {ry,--- ,rx; Ry, - Ry {+,—}} in 3(M + N)
spatial dimensions. Hence we require the norm of ¥ in H, ® H,, to be 1; in other words, the

probability of finding all the nuclei and electron is all of space and any spin coordinates is 1.

Wb, = 7 [ v [ W de dRy - dRy = 1 2.2)
{+ } R3 R3

The operator H in equation (2.1) is the Hamiltonian operator of the molecular system:

Z1 2,4
H = +
E; S Z ZN — K]Z R, R ZZ |rl RI|
= <i<j< <J<M =1 I=1
(2.3)
where m®, m7} denote the mass of an electron and the /th nucleus, respectively; ¢ and Z;q
denote the charge of the electron and the Ith nucleus; r; and R; denote the spatial coordinate
of the ith electron and the Ith nucleus. The Hamiltonian operator is a self-adjoint operator
on the space H, ® H,,.
We can observe the paralell between the quantum Hamiltonian and the classical Hamil-

tonian. The following is the kinetic energy operator for the electrons:

T.=) - - A, (2.4)
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the kinetic energy operator for the nuclei:

h2
T, = E — AR, ,
2m? £z

I=1
the electrostatic electron-electron repulsion operator:

2

U= Y L (2.5)

1<i<j<N [t — 1]

the electrostatic nucleus-nucleus repulsion operator:

AV,
Unfn = ™ b
1<I;<M [R; — Ry

and the electrostatic nucleus-electron attraction operator:

N M
—GZ_ZZ |rz R1|

i=1 [=1

The DFT community commonly uses the atomic units where one sets:

Under this system, the electron-nucleus distance in a Hydrogen atom is of order 1, and its

ground-state energy is —0.5. The Hamiltonian operator from (2.3) reduces to

N M
1 1 AV,
H = E ——A, E ——A E E E E
i=1 2 o =1 2a; RI+1<'<'<N | i +1<I |RI - RJ’ |rl RI'
i= = <i<j< <J<M =1 I=1
(2.6)
where a; = "nt?

In practice, we are often interested in finding the ground-state (lowest energy state)
wavefunction of the molecular system in equation (2.1), i.e. the smallest eigenvalue and its

corresponding eigen-states of the Hamiltonian operator H. The ground-state corresponds
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to the wavefunction of the molecular system at 0K. In theory, for a system at non-zero
temperature, we should take into account eigen-states of the Hamiltonian with higher energy,
known as the excited states. For many applications, the calculation of the ground-state is
needed for approximation of the excited states.
Finding the ground-state in equation (2.1) corresponds to finding the infimum of the
Rayleigh quotient of H:
o= inf (V|H|V), (2.7)

 UeH.OHn

where (-|-) denotes the inner product associated with the space H, ® H.,.

It would take an audacious scientist to attempt to solve for the eigen-states of the time-
independent Schrodinger equation (2.7). The wavefunction W is a function defined on 3(M +
N) dimension, not counting the spin degree of freedoms. To illustrate the impossibility of
solving the Schrodinger equation, suppose that one discretizes each spatial dimension into
100 pieces. The system of equations would involve 1003M*+N) degrees of freedom, which
equals 1059 for a system of 50 nuclei and 50 electrons.

In addition to the large number of dimensions, there is another difficulty associated with
the Schrédinger equation written in equation (2.1): according to [12], the Hamiltonian H
has a purely continuous spectrum like the quantum position operator X and the quantum
momentum operator P. In other words, there is a continuous set of eigen-states. As a result,
the infimum in equation (2.7) cannot be attained. To avert this difficulty, physicists came
up with an approximation which allows us to separate the nuclei degree of freedom from the
electron degree of freedom, and results in a electron Hamiltonian that has a purely discrete
spectrum. This approximation is called the Born-Oppenheimer approximation. As a result
of the Born-Oppenheimer approximation, we have reduced the quantum degrees of freedom

to only those of the electrons.
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2.1.1 Born-Oppenheimer Approximation

The key assumption behind the Born-Oppenheimer approximation is that the motion of
the nuclei is slow relative to the motion of the electrons, such that at every movement of
the nuclei, the electrons have reached their ground-state configuration. In other words,
the characteristic time scale to achieve equilibrium for the nucleus is much longer than the
characteristic time scale of equilibrium for the electrons. Hence we can treat the spatial coor-
dinates of the nuclei {Ry,--- , Ry} as a parameter, and find the ground-state wavefunction
of the electrons for a given set of nuclei coordinates. This assumption is supported by the
observation that the mass of a nucleus is at least 1800 times the mass of an electron.
Mathematically, the Born-Oppenheimer approximation allows us to separate the wave-

function ¥ into a single product of an electron wavefunction and a nuclei wavefunction:

(U =0,0,:0, €H,, |V

He = 1, Wy € H, [|Wn|[3, = 1}
Substitute this approximation into the Rayleigh quotient in equation (2.7), and we get

: 1 e
o = int ([ o [ (= G VP 4 (R Ran)) )Ry - dRy ) (25)
R3 R3 oy

UneHn

where
R ) =0+ g TR o9
with the electronic Hamiltonian H,. defined by
M 1
H. = Z —5 0+ S P Vet (r1, - v, {Ra, -, Raa}), (2.10)
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where

N M Z[
Vext rm {Rh RM} - Z (Z m)
1 I=1 """

=1 =
(2.11)

M=

Vext(r1, -+ ,ry, {R1,--- ,Rm}) =

We will refer to potential due to the nuclei in the electronic problem (2.9) as an external
potential; the potential due to the electrons are internal to the problem. The classification
of everything that is not electronic potential to be external potential allows us to consider
other applied potentials such as electric or magnetic potential on the electronic system in
the same generalization. Note that we have adopted a slight abuse of notation where (-|-)
has been to used to denote both the inner product defined on H, and H,,.

In the limit that the mass of the nuclei go to infinity, the kinetic energy of the nu-
clei can be neglected, and the wavefunction of the nuclei is concentrated on the points
{Ry, Ry}, since the deBroglie wavelength of a nucleus is infinitesimal compared to the
deBroglie wavelength of an electron. The infimum problem in equation (2.8) becomes a

geometry optimization problem:

g0 = inf Ry, -+ ,Rur).

{Rr, Ry }CR3M

The solution of the Schrodinger equation can be solved in two steps: first solve for the
electron ground states, by finding the lowest eigenvalue and its corresponding eigenfunction
of the electronic Hamiltonian H.; then solve a geometry optimization problem to get the
ground-state energy of the molecular system. The most important consequence of the Born-
Oppenheimer approximation is that the electronic Hamiltonian H, has a purely discrete
spectrum, i.e., countable number of eigen-states in many cases. The infimum in the electronic
problem in equation (2.9) can be attained depending on the external potential. Although
the number of degrees of spatial freedom reduced from 3(M + N) to 3N, the remaining
3N dimensions is still impossible to solve directly. This difficulty led to the development of

approximate methods like DFT.
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2.2 Precursors to density functional theory

The word “density” in density functional theory refers to the electron number density in
three dimensions. It is commonly referred to as the electron density of the system; we
denote it by p(r). One should not confuse the electron density with the probability density
in equation (2.2). We will describe subsequently how to obtain the electron density from the
probability density given by the electron wavefunction W, (ry,--- ,ry).

In 1964, Kohn and Hohenberg proved that the electronic ground-state energy of the
system in equation (2.9) is a unique functional of the electron density derived from ground-
state wavefunction. Looking at the minimization problem in equation (2.9); it is not obvious
to see why the electron density is relevant. What led Kohn and Hohenberg to the electron
density of the system? In fact, Kohn-Hohenberg did not conjure up the concept of the
electron density out of nothing. Prior to DFT, there had been a number of approximate
methods developed based on relating the electron density to the ground-state energy; these
are the Thomas-Fermi models. The motivations for introducing the Thomas-Fermi model
in this thesis are two-fold: firstly, it will serve as a transition from the electron ground-
state energy as a functional the many-body electron wavefunction W, (rq,--- ,ry) in (2.9)
to electron ground state as a functional of the electron density; secondly, the exchange
energy functional of the local density approximation, which is a key component of density
functional, is taken from the same assumptions of the Thomas-Fermi models. Next we will
introduce briefly the Thomas-Fermi models. The spin degree of freedom will be neglected in
the following discussion for simplicity.

The Thomas-Fermi model is centered on the problem of non-interacting electrons confined
in a cubic box of length [; the confinement is imposed through periodic boundary conditions
on the many-body electron wavefunction at the boundary of the box. Within the box,
the electrons are not subjected to any external potential; in other words, they are “free”

electrons in the confined volume. Consider N non-interacting electrons confined in the box
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as described, and the Hamiltonian of the system inside the box is
N
H\Ije(rb T arN) = ZAri\De(rlv o 7rN) = E\Ije<r17 e ,I‘N),
i=1
subject to the boundary condition,
\IJ€<I‘1,"' 7rN) = \Ije(rl +l> arN+l)'

Since the Hamiltonian is separable with respect to the spatial coordinate of each electron
r;, the electron wavefunction ¥, can be written as a Slater determinant of single electron

orbitals [69]:

[Gi(r1)  a(r) o dn(r)

det wl(rz) wz(r2) Z/JN.<1'2> (2‘12)

1
VA s z
Yi(rn) Yolrn) oo Un(ry),

v, =

where the orbitals {1, (r)},cz are the eigenfunction to the single electron Hamiltonian in a

box:

Htin(£) = —2 Aethn(1) = M), (213)

with the periodic boundary condition:

wn(r) = wn(r + l)'

The Slater determinant form ensures that the wavefunction ¥, is antisymmetric with respect
to exchange of spatial coordinates.
Without considering the boundary conditions, the following solution for the orbitals

satisfies the single-electron Hamiltonian in equation (2.13):

Un(r) = Cexpik'r,
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and

k2
..

As a result of the boundary conditions, the wavefunction k cannot take arbitrary values;
its corresponding wavelength in each spatial dimension has to be an integer multiple of the

length of the box. The periodic boundary condition has quantized the wavenumber k. The

2mng 27Ny 27n,

pe, = SMe ] x oy, 2 represent each direction in space,

quantized wave numbers are k = |
and n = [ng,ny,n,), and n; = ---,—2,-1,0,1,2,---. The corresponding eigenvalues are
also quantized according to the quantization of the wave numbers, but since energy levels
are proportional to |k|?, there will be degenerate eigen-states, i.e., wavefunctions that differ
in wavenumber but that have the same energy. The electron levels will be filled according
to the Pauli-exclusion principle, with only two electrons (assuming a spin-paired system)
occupying a given wavefunction with a wavenumber k. The wavefunctions that correspond
to the lowest energy will be occupied first at the ground state. The maximum energy reached
by a system of N electrons is called the fermi energy, As, and the corresponding magnitude
of wavenumber k; = |ky|, the fermi wavenumber. We can find what A\; and k; for a given
system of electrons in a box by arranging all the possible wave numbers in the order of
increasing energy, and filling in the states with electrons until we reach N electrons. To find
the total energy of the system, which is purely kinetic, we can add up the energy of each
electron. In the case where the box is large, i.e., [ is very large, and the number of electrons
N is also large, we can make an approximation that allows for computation of the fermi
level and total energy with far less effort. To illustrate this approximation, let us consider a
system of electrons in a box of two dimensions. We can plot the permissible wave numbers
as follows: we see in the limit of [ is very large, the spacing between consecutive grid points
in k-space 27” decreases. The k-space volume occupied by one point (the gray region in

Figure 2.1) Ak = (27”)2 also decreases. In this limit, we can approximate the number of grid
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points within the circle marked by a radius of k; in Figure 2.1 by

k3
Np =~ E

This approximation improves as the space between grid points decreases. In three dimen-

Figure 2.1: k-points in two dimensional k-space.

sions, we can define fermi wavenumber magnitude by:

%Ak)l/g _ <37T2N>1/3.

k= ( g = (2.14)

wl

At this point, we can define a quantity which is going to be the central quantity in DFT,

the electron number density, or simply the electron density:

We can express both the fermi energy and the fermi wavenumber magnitude as a function

of electron density p:

kp = (3m%p)'/3. (2.15)

and
(3m2p)*/?

Af = 5
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And to calculate the total (kinetic) energy of the system, the bruit force method would be
T =2 AK)f(\), (2.16)
Kk
where f()) is the occupation function of the energy levels:

1, if XA <Ay,
fFA) =
0, otherwise.

To use the approximation that the box is large, we can write the summation over k in

equation (2.16) as an integral in three dimensions,

T =2 Ak)f(\) = & > AK)F(V)AK

l3
]

A(K) F(A(K))dk. (2.17)

Since we know that the energy is only a function of |k|, we can integrate equation (2.17)
using spherical coordinates,

l3 kf k4
T(ky) ~ 472/ SR

After integration, we can use the relation between k; and electron density p in equa-
tion (2.15), and write the total kinetic energy of the system as a function of the electron
density:
3
T 0 2 (32)2/303 013,
g BT

or kinetic energy per unit volume:

Ty = 3 = 1537 %p"" = Cpp™™. (2.18)
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The system described above is also called a system of homogeneous electron gas since only
homogeneous electron density p = % enters into the equation (2.18). The Thomas-Fermi
model approximates the kinetic energy per unit volume of the inhomogeneous electron gas by
carving up the system into pieces of [ocally homogeneous electron gas, as shown in Figure 2.2.

The kinetic energy of the system of the inhomogeneous system is
n
5/3
T=> Crp,"Vi.
i=1

In the limit of the homogenous volumes V; — 0, the summation becomes an integral; we

arrive at the Thomas-Fermi kinetic energy functional, as a function of the electron density:

17(p) = Cr [ o),

Q

It is important to emphasize that the locally homogeneous approximation of the inhomo-

PL | P2 | P3

P4 | P5 | P6

P8 | P7 | P9

Figure 2.2: A inhomogeneous electron gas divided into pieces of locally homogeneous electron
gas.

geneous electron gas is only appropriate when the electron density varies very gradually in
space. For instance, this assumption works well for metallic systems where the electrons
are not locally bound to any nucleus, but it works poorly for systems with ionic or covalent
bonds since the electrons tend to be bound to a given nucleus.

In addition, the Thomas-Fermi model also includes the electron-nuclei, electron-electron
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interaction energy,

TF
Un- /Rszm P

UeTFezl/ / Mdrdr'.
2 R3 JR3 |I‘—I"

So we have arrived at the Thomas-Fermi energy functional as a function of only the electron

and

density p(r):

M

-7 Ll plel)
E :c/ r5/3dr+/ S rdr—i——/ / POPY) e, (219
(0)=Cr | plr) nglRi—r\p() 3 L L e (2.19)

where Cp = 2 (312)%/3.
The Thomas-Fermi ground-state energy can be found by minimizing the energy functional

in equation (2.19) with the constraint that the total number of electrons is V:

/RS p(r)dr = N.

The Thomas-Fermi model remains an academic model because no molecular binding has
been predicted by the method [55]. Many improvements and modifications have been made
to Thomas-Fermi over the years, but we will not go into detail the different modifications
since the focus of this introduction is on DFT. Thomas-Fermi-like models also have been
referred to as “orbital”’-free DFT since the development of density functional theory. A
good introduction to orbital-free DFT is in [19]. With Thomas-Fermi models as a precursor,
Kohn and Hohenberg set out to prove rigorously in 1964 the assumption that the ground-

state energy of a molecular system can be written only as a functional of the electron density.
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2.3 Electron density and Hohenberg-Kohn Theorem

Before we state the Hohenberg-Kohn theorem and its proof, we would like to introduce the

electron density and its relation to the many-body electron wavefunction ..

2.3.1 Electron density

It is quite easy to get an intuitive understanding of what the electron density means physically
from the homogenous electron gas; it is less obvious how to find the electron density beyond
the homogenous electron gas.

Let us begin by considering |¥.(xy, - ,xx)|?, the probability density of finding electron

1 at x1, electron 2 at xy, - -, electron N at x, where x = (r: 0), and 0 € {+,—}. Then

(\Ife|\Ife> — E / |\1;e(r17... ,rN)|2dr1,--- Jdry =1,
3 3
o JR R

N

is the total probability of finding electron 1 in all of R?, electron 2 in all of R3, - - -, electron

N in all of R3. Following suit, we can understanding the following quantity, defined by,

sIgQ(rl) = Z/ /3 T 5 |‘I’e(r17r27 e 7rN)|2dr17 e 7drN7 (220)
— Ja RN 1 R

as the total probability of finding electron 1 in volume 2, and electron 2 in all of R? -- -,
electron N in all of R?. In other words, independent of the remaining electrons, the proba-
bility of finding 1 electron in €2 is Rq, and I expect to find Pg fraction of electron 1 in (2.

Since all the electrons are identical, the total number of electrons we expect to find in € is

- / p(r)dr,
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where p(r) is the electron density of the molecular system, using equation (2.20):

pr) =N

———
1

/3"' 3|\Ile(r7r27"'7rN)|2dr27"'7drN-
R R
N—

From the definition of the electron density, we see that the ground-state wavefunction con-
tains more information about the electronic system than the electron density alone. Given a
wavefunction, we can always find its corresponding electron density through integration; but
given only the electron density, we cannot recover the wavefunction. There may be many
wavefunctions that will yield the same electron density.

Next we will state the Hohenberg-Kohn theorem and its proof [33].

2.3.2 Hohenberg-Kohn theorem

Theorem 1 The ground-state electron density in the electronic problem in equation (2.9)
determines uniquely up to a constant the external potential Ve (r1, -+ ,TN) in equation (2.11)

of the system.

Proof The proof in [33] assumes the non-degeneracy (i.e., uniqueness) of the ground-state

wavefunction in equation (2.9), and we will reproduce their proof for completeness. We will

discuss later how this assumption can be lifted as result of the work by Lieb, et al. [43].
Hohenberg and Kohn proved theorem 1 with proof by contradiction. Suppose for a system

of N electrons, there exists two external potentials Vi 1, and Vey o defined by

N
V;xt,l(rb e 7rN) - Z Uext,l(ri)
=1

and

N
Vext,Q(rl, T ,I‘N) = Zvext,2(ri)-
i=1

These two potentials differ by more than a constant, and they produce ground-state wave-
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functions from equation (2.9) that yield the same electron density.! Let us denote the

Hamiltonians corresponding to the two external potentials H; and Hs, respectively:

Hl = Te + Uefe + ‘/ext,l

and

H2 = Te + Uefe + ‘/ext,Qa

where T, and U, _, are defined in equations (2.4) and (2.5). Their corresponding ground-state
wavefunctions, W, ; and W.,. Notice that H; and H, differ only by the external potential.

Now consider the variational problem in equation (2.9); for H;, we have,

E, = <\1/e,1|H1|‘I/e,1> = S 1”I}Pf ™ :1<‘I/e|H1|‘1’e>

< <\Ife72

H1|\I,e,2> = <\Ije,2|Te + Ue—e|\I]e,2> + <\Ile,2|v:ext,1|llje,2>;

similarly, consider the variation problem (2.9) for Ho:

E2 = <\Ife,2|H2|\I’e72> = inf <\IJ€|H2|\IIE>

Ve€He,||Ve|l.=1

< <‘Pe,1’H2’\I]e,1> = <\Ije,1’Te + Uefe|\1je,1> + <\I]e,1“/ext,2|qje,1>-

Next we take advantage of the fact that H; and Hy only differ by the external potential:

Ey < (WealH1|Weo) = (Weo|Tt 4+ Ue, |We2) + (Veo|Vext1 | We2)
= <‘I}e,2|Te + Ue—e + V;)xt,Q - V;:xt,2|\Ile,2> + <\I[e,2“/;xt,1“;[}e,2>

= Ey + (Veo|(Vextn — Vext,2) Pe2), (2.21)

'If the potentials differ only by a constant, then the variational problem (2.9) would yield the same
ground-state wavefunction, with the ground-state energy differing exactly by the same constant.
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and similarly,

E2 < <\Ije,1|H2|\Ije,1> = <\Ije,1|Te + Uee|\Ije,1> + <\I[e,1|‘/ext,2|\1/e,1>
- <\Ile,1|Te + Ue—e + ‘/ext,l - ‘/ext,1|\116,1> + <\I]e,1|‘/ext,2|l1/e,1>

= El + <\Ije,1|(‘/:3xt,2 - %xt,l)qjeJ)- (222)
One can show after some algebra that

<\I’e,l‘<v;xt,2 - ‘/ext,l)\pe,1> = /3 (/Uext,2(r) - Uext,l(r))p(r)dr = _<\Ije,2‘(v:3xt,l - ‘/ext,2)lpe,2>-
R

Adding equation (2.21) and equation (2.22), we get
Ei+ Ey < By + Es.

Therefore, there cannot exist two external potentials by differing more than a constant that

has the same ground-state electron density. |

From the Hohenberg-Kohn theorem, given a ground-state electron density, we can determine
the number of electrons by integration, and the external potential is determined up to a
constant, thus the Hamiltonian is completely determined, and consequently the ground-
state energy is completely determined. Further from the variational problem (2.9) for an

external potential Vg 1,

Ey = (Uoy|HL| W) = (Uor [T+ Us W) + / Ve 1 (1) p(x)d,

RS

there must exist a functional, Fyk(p), such that,

FHK(ﬂ) = <\De,l‘Te + Ue—ellpe,l>a
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where W, ; is the ground-state electron wavefunction for Hamiltonian H;. The functional
Fyk is a universal functionalji.e., independent of the external potential of the system; it
depends only on the number of electrons in the system N. Hohenberg and Kohn further
showed in [33] that there is a variational principle with respect to the electron density for a

given external potential:

Ey = inf Eyk(p) = Fuk(p) + /RS Vet (1) p(r)dr, (2.23)

peY

where V is the space of electron densities that come from ground-state wavefunctions, also
known as a V-representable electron densities. There are still two major open questions that

remain in the Hohenberg-Kohn energy functional:
1. The exact form of the universal potential Fyxk(p) is unknown.
2. The necessary and sufficient conditions for the space V is unknown.

These two open questions render the Hohenberg-Kohn energy functional to a theoretical
result; nevertheless, it illuminated a very promising direction for quantum mechanical cal-

culations.

2.4 Kohn-Sham density functional theory

A year later, in 1965, Kohn and Sham [38] came up with an approximation to Fygk using the
Slater determinant form of electron orbitals in equation (2.12), known as the Kohn-Sham
density functional theory. Kohn and Sham sought to solve the first of the two open problems,
and neglected the second open problem in their formulation. We restrict the discussion to
spin-unpolarized systems for simplicity.

Kohn and Sham approximated Fyx(p) by writing down its known contributions, and
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leaving the remaining unknown quantities to modeling:

Fux(p) = To(p) + Eu(p) + Exc(p)- (2.24)

The first term in equation (2.24) is the kinetic energy of the electrons if they are non-

interacting electrons; the second term,

EH(P):%/]RB/RB%7

is the electron-electron repulsion energy if the electrons are classical, also known as the
Hartree energy of the system.

The last term contains the remaining interaction energy that has not been accounted
for, and it is called the exchange-correlation energy of the system. The exchange-correlation
energy functionals were first approximated using the exchange and correlation energies of a
locally homogeneous electron gas as described in section 2.2. With these approximations,

the Kohn-Sham energy functional becomes

E®S(p) = To(p) + /R3 /R3 % + Ey(p) + /R3 Vet (L) p(r)dr. (2.25)

Taking the first variation with respect to the electron density of the Kohn-Sham functional

in equation (2.25), subjecting to the constant,

/R3 p(r)dr = N, (2.26)

we arrive at the Euler-Lagrange equation for the Kohn-Sham energy functional:

015 p(r) r, 0Bk
o0 d o — 0, 2.97
5,0+/Rs|r—r'| v op * vet(r) + 1 (2:27)

where p is the Lagrange multiplier for the constraint in equation (2.26).
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Kohn and Sham observed that the Euler-Lagrange equation (2.27) for a non-interacting

electron system under the external potential is

B OF p(r)
s (1) = v (1) + 5 + /R Rt (2.28)

With the assumption that all non-interacting electron systems that are subject to an external
potential admit minimizers of the Slate determinant form (2.12), Kohn and Sham came
up with an orbital formulation to Hohenberg-Kohn density functional theory. Recall from
section 2.2 that the ground-state orbitals of a system of non-interacting electrons can be
found by writing the single electron Hamiltonian and selecting its eigenfunctions according
to the Pauli-exclusion principle. The corresponding Kohn-Sham single electron Hamiltonian
is

HESy, = ( - %A + ks (p(r)))z/)i — AKSy. (2.29)

The corresponding ground-state electron density of the Kohn-Sham system is

N/2

r) =23 [vir)f* (2.30)

where the orbitals v; are the eigenfunctions that correspond to the first N/2 lowest eigen-

values. Subsequently, the kinetic energy functional takes the form

N
To(p) ZQ/RBZWm(r)Pdr.
i=1

We can rewrite the Kohn-Sham energy functional in equation (2.25) as a functional of single

electron orbitals:

N/2

2 =2 [ St [ [ A o)+ [ ot 2o
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subject to the constraint that the orbitals have to be orthonormal:

/RS i (x); (r)dr = 6.

Note that the Kohn-Sham single electron Hamiltonian in equation (2.29) is a non-linear
functional. The Kohn-Sham potential vkg is a function of the electron density, which is a
function of the eigenfunctions of the Hamiltonian in equation (2.30). The solutions of the
eigenvalue problem in equation (2.29) can be carried out self-consistently, by starting with
an initial guess of electron density pg, and obtaining a Kohn-Sham potential vkg(po), and
finding the corresponding lowest eigenvalues of Hks(po) and then updating the new electron

density. This procedure is repeated until a self-consistent density is produced.

2.4.1 Exchange-correlation functional

Since KSDF'T is formally exact with the exact exchange-correlation function, the approx-
imation of the exchange-correlation functional is critical to its accuracy. There has been
numerous flavors of exchange-correlation functionals developed since 1965. For more infor-
mation on exchange-correlation functionals, one can refer to [55] and [47]. In their semi-
nal paper [38] Kohn and Sham proposed the local density approximation(LDA). The LDA
exchange-correlation functional is based on the inhomogeneous electron gas model as dis-
cussed in section 2.2.

The exchange-correlation energy is split into exchange and correlation contributions:

Bulp) = Bp) + Elp) = [ plr) (eclp) + ).

RS

It is known that the exchange energy is an order of magnitude larger than the correlation
energy. In LDA, the exchange energy is computed from plugging in the one-particle density
operator ¥(r,r ) of the homogenous electron gas, into the exchange energy expression of

the Hartree-Fock(HF) approximation. The one-particle density operator is a more general
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description of the electron density (see section 2.6.1 for a detailed description), defined by:
N/2

Y ) =2 () (r).

The exchange energy from the HF approximation is

1 1 / /
E.(p) = 1 /RS /RS m’y(r,r )drdr . (2.32)

Recall from section 2.2 the nth orbital for the particle in the box is

1
Yn(r) = Vi exp(ir - k).

The corresponding one-particle density operator is

y(r, 1) = éZeXp (ikn - (r — r/)). (2.33)

In the limit of the homogenous electron gas (i.e., the limit of V' — oo and N — oo such that
p(r) = & is finite) we can replace the summation in equation (2.33) with an integral after
multiplying by %:

’

y(r,r) = % /R3 exp (tk - (r — r/)). (2.34)

Substitute equation (2.34) into the HF exchange energy in equation (2.32), and we simply

obtain the exchange energy for the homogeneous electron gas:

Ex(p) = Cx | p(r)*dr, (2.35)

R3

with Cx = 2(2)/3. This exchange energy was first calculated by Dirac in [15].
Unlike the exchange energy functional, the correlation energy functional in LDA cannot

be obtained exactly in an analytic form. The approximations are often written as a functional
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of r, defined by:
S = -
The different approximations of the correlation functional come from either random phase ap-
proximations [81] or numerical calculations of homogenous electron gas in Quantum Monte-
Carlo [13]. Since then, more sophisticated exchange-correlation functionals beyond LDA
have been introduced in order to increase the accuracy of Kohn-Sham calculations. Some
examples include generalized gradient approximation (GGA) [58] and hybrid functionals [8].

We will not go into details on these approximations.

Returning to LDA, the first Kohn-Sham LDA calculations was performed by Tong and
Sham in 1966 [76]. Since then, Kohn-Sham density functional theory has become the work-

horse of quantum mechanical calculations today.

2.4.2 Pseudopotentials

In the numerical practice of DFT, we often make what is known as the pseudopotential
approximation; since it is known that the core electrons in the atom often do not participate
in the formation of bonds between atoms, we can assume that the core electron orbitals are
“frozen”, and can be transferred from a simpler configuration such as a single atom to more
complex molecular environments. The adoption of pseudopotential brings two advantages in
computation: first, the number of electron orbitals is reduced to only the number of valence
electrons in the system; second, the pseudopotential allows us to remove the rapid oscillation
of the valence electrons orbitals near the nucleus, which was caused by the orthogonality
constraint to the core electron orbitals, hence allowing fewer number of basis to represent
the valence electron orbitals in numerical discretization.

The first advantage is evident from the frozen-core approximation, but the second advan-
tage is a result of the observation that scattering can be reproduced over a range of energies

by a different potential chosen to have more desirable properties such as smoother orbitals
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near the nucleus. The idea of the pseudopotential approximation pre-dates the development
of density functional theory, and has been used in many-body wavefunction formulations as
well as independent-electron formulations such as Hartree-Fock methods. The concept that
led to psedudopotentials used today was the orthogonal plane wave method by Herring in
1940 [30]. The original idea in Herring was to augment the plane-wave basis functions with
some other functions that are centered on the nucleus cores so as to reduce the number of
plane-wave basis required to represent the valence states. To avoid ill-condition, Herring

removed the projection of the nuclei-centered functions from the plane-wave basis:

m

YOPW(r) = exp(ik - 1) Z w;lk)w;(r

J

where

(wilk) = /RS wj(r) exp(ik - r)dr.

The choice of the nuclei-centered functions is critical to the success of the OPW method.

Herring chose a function that obeys wavefunctions of the form

1
—5Arw;(r) + Vj(r)w;(r) = Ejuw;(r).
In short, the OPW formulation is nothing but writing the valence orbitals as a linear

combination of a smoothed function and a few nuclei-centered functions:
P(r) = ¢r(r) + Y cjuwy(r). (2.36)
J

In 1959, Phillips and Kleinnman [61] adopted the OPW formulation to independent-
orbital approximations, and derived formally a pseudopotential approximation that contains
a non-local potential. They substituted equation (2.36) into the single-particle Schrodinger

equation, with w;(r) = v¥5(r), where ¥$(r) are the core electron orbitals of the reference
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system used to create the pseudopotential:

Y = X515,

and
Hw’[} — A'U/lp'l/"

Using the fact that the valence orbitals are orthogonal to the core orbitals, in bra-ket

notation:

(WilwY) = (Wld) + ) e (wfles) = 0
J
— ¢ = —(Yflv),

we can derive a Hamiltonian that yields ¢* as an eigenfunction:

H|y®y = H|{v) + > H[y5) = A'9°)
j=1

= H[yv) Z ICCATEY

U () + > 1) (W)
7j=1

,(/)U
s HP = N,

where

H+Z — XI5 (51 (27)

The potential in equation (2.37) is a repulsive potential because AV — Aj Is a positive quantity
for all j, hence giving us a weaker attractive potential than the original potential. The

resulted pseudopotential is nonlocal, which means that it cannot be written in the form
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Ves(r ') = vP(r)d(|r — r').
In practice, this is not how pseudopotential is constructed, but they retain the same non-

local structure. It’s worthwhile to point out that ¢*, {#$}72,, and Y are eigenfunctions of

=1
HP® with the corresponding eigenvalue A\V. In addition, this pseudopotential contains the core
orbitals, which are high oscillatory; it also contains the original potential V' in H = —%A—i—V,
which has a singularity at the location of the nucleus.

Many of the pseudopotentials that are used in practice are so called the “norm-conserving”

pseudopotentials, which has to satisfy the following four conditions:
1. All-electron and pseudo-valence eigenvalues agree for the chosen atomic reference con-
figuration.
2. All-electron and pseudo-valence wavefunctions agree beyond a chosen core radius R..
3. The logarithmic derivatives of the all-electron and pseudo-wavefunctions agree at R..
4. The first energy derivative of the logarithmic derivatives of the all-electron and pseudo-
wavefunctions agree at R., and therefore for all r > R..

These four conditions were given by Hamann, Schluter, and Chiang in 1979 [25]. The last
three conditions ensure a good transferability of the pseudopotential, as well as allowing
flexibility to smooth the core region of the valence orbitals. A common pseudopotential used
in practice was developed by Troullier and Martin in [78]. Another type of pseudopotential
that is common use are the ultra-soft pseudopotentials that relax the norm-conservation

constraint, developed by Vanderbilt in 1990 [79].

2.5 Density functional theory made more rigorous by

Levy and Lieb

In 1965, Kohn-Sham left open several mathematical questions. The question regarding the

space of ground-state electron densities raised in section 2.3 was solved by Levy and Lieb in
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1982 ([41] and [43]).

The names Levy and Lieb are mentioned far less frequently than their contributions
would merit in the DFT community. Levy and Lieb build a firm mathematical foundation
for DF'T that justifies the Kohn-Sham approximations. They made two key contributions in
1982:

1. They removed the restriction on the non-degeneracy of the ground-state wavefunction

assumed by Hohenberg and Kohn.

2. They removed the constraint that the space of the electron densities has to be ground-
state electron densities. They rigorously proved the existence of an energy functional
that is defined over a space of densities for which we know the necessary and sufficient

conditions.

We will now explain the contributions of Levy and Lieb in more detail, starting from the
electronic variational problem in equation (2.9). To find the ground-state energy of the
electronic problem, we have to search over the entire space of antisymmetric N-electron
wavefunctions in the space H.. Levy proposed to break H. into groups of antisymmetric
wavefunctions that have the same density, look for the minimum of equation (2.9) within a
given electron density group, and then minimize over all the possible electron densities. A
good analogy of this search method is given by [55]: suppose we are interested in finding
the tallest student in a high school. Instead of making every student in the school line up in
the order of heights, we can ask each class to find the tallest student in their class, and then
lastly look for the tallest student out of the tallest student from each class.
Going back to the electronic problem, mathematically, we have

€= inf (V. |H|V,.)

WeeHe

= inf { inf (U |T, + U._.|V.) + /R3 Vext (1) p(r)dr}, (2.38)

PEN "W.—p
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where U, — p means all the antisymmetric wavefunctions in H, that yield electron density
p, and N denotes the space of electron densities that come from antisymmetric wavefunction
of an N-particle system, which contains the space of ground-state electron densities V in the
Hohenberg-Kohn theorem. Most importantly, the necessary and sufficient conditions for the

space N is known. The conditions are

/R3 p(r)dr = N, p(r) > 0, /R3 |V+/p(r)]2dr < .

This space is known as the N-representable densities.

Hence we can define the Levy-Lieb universal functional 1 (p):

FLL(p) <\Ile|Te + Ue—e‘\pe>' (239)

= inf
Ye—p

Lieb shows the existence of minimizers for Fy(p) in [43]. We can split Frr(p) into the

kinetic energy functional and the coulomb-interaction functional by writing

FLL(p) = Te(p) + Ue—e(p>a

where
T.(p) = <\Ij5,min’Te|\IIS,min>7
and
Ue—e(P) = (V¢ min| Ue—e | WE min)
with W2 . being a minimizer to equation (2.39).

Putting everything together, we have the Levy-Lieb energy functional:

o = inf {Fus(p) + / e (K)p(e)ir).

With a more rigorous definition of the universal electronic functional Fy(p), we can



1
follow suit in the Kohn-Sham formulation to construct the Levy-Lieb universal functional
for a system of N non-interacting electrons. The Hamiltonian H, for the N non-interacting

electrons is
N N

H() = —% ZATZ + Zvext(ri).

i=1 i=1
Consequently, the universal functional for the independent electron system consists of only

the kinetic energy

N
, 1
Ty(p) = jnf (W] -5 ; Ay, |0, (2.40)

When the variational problem in equation (2.40) admits a minimizer in the form of a

Slater determinant as shown in equation (2.12), the kinetic energy functional simplifies to
1 N
—inf _ 2
Tolp) = inf 5 '§1 Vel (2.41)

where Zy = {¢p € H'(R?), [gs ¥it); = d;5, and % 14;(r)|? = p(r).}. However, not all ground-
state non-interacting electron density admits ;:élater determinant minimizer, so the orbital
formulation of Kohn-Sham density functional theory in section 2.4 constrains the search
space to only Slater-determinant representable electron densities, and hence is a strict upper

bound to the exact ground state energy.

2.6 Extended Kohn-Sham Energy Functional

To avoid the representation difficulty in the orbital formulation of the Kohn-Sham energy
functional, Lieb [43] proposed a density functional that has a precise mathematical descrip-
tion. The Lieb density functional Fj, was formulated using N-particle density operator, I'y,
which is a linear operator on H.. We will introduce the density operator before we derive

the Lieb density functional.
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2.6.1 Density Operator

In quantum mechanics, the density operator is a more general description of the electronic
system. Whenever the state of an electronic system can be described by a wavefunction,
then the system is in a pure state. When an electronic system cannot be described by any
wavefunction, (e.g., when the system is a sub-system of a larger system, and it doesn’t have
a Hamiltonian containing only its own degree of freedom), then the system is in a mized
state. A system in a mixed state has to be described using a density operator, whereas a
system in a pure state can be represented using either a wavefunction or density operator.
Suppose a system of N-electrons are in the state W.(ry,--- ,ry); then the N-particle

density operator that describes the system is

Oy = [P ) (T,

Notice that even though the wavefunction W,(ry,- - ,ry) is only unique up to a phase shift,
the N-particle density operator is completely unique for a given electronic system. In the pure
state, the N-particle density operator is idempotent, i.e., I'3 = I due to the normalization
of the wavefunction W.. An the expectation value of a given operator A on the pure-state

electron system can be written as

(A) = Te(ATy) = (V. |AJD,).

A system of N particles in a mixed state can be written as a sum of the probabilities of

finding the particles in a given pure-state, W ;:

F(N,mixed) = sz|‘l’ez><‘11ez )
i=1
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where {U,;} is orthonormal, and the p; are probabilities:

i = O,ipi = 1.
i—1

It is evident that the pure-state N-particle density operator is a special case of the mixed-

state density operator with one of the p; = 1, and the remainder p;«; = 0.

2.6.2 Extended Kohn-Sham Energy Functional

Using the N-particle density operator, the ground-state energy in equation (2.7) is equivalent

to

€ = inf _ Tr(HT (v mixea)) = ZPi(‘I’e,z‘|H|‘1/e,i>,
i—1

F(N,mixed) €Dn

where Dy ={I' = > pi|Vei) (Veil,0<p; <1,> p; =1,V,; € H.} is the set of mixed-state
=1 =1
N-particle density operators.
We can define an analogous universal functional to the Levy-Lieb universal functional

using the mixed-state density operators in Dy. This is known as the Lieb functional:

FL (p) = lnf TI‘((TG + Ue—e)FN,mixed)a

F(N,mixed) —p

where I' (v mixed) — p are the mixed-state density operators I'(y mixed) € D that have electron
density p. When we write the Lieb universal functional for a system of non-interacting

electrons, we can define the Janak kinetic energy functional as
N
Top) = inf  Te(Holvmen) = nf {213 AnPivmie)} (242)
g F(N,mixed)_ﬂo 0 ( e ) 1—‘(N,mixed)_>p 2 =1 " ( e ) . .

With some algebra, we can show that for any mixed-state N-particle density operator,

1
Tr(HOF(N,mixed)> = - §TT(A7) )
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where v is the one-particle reduced density operator associated with I'y mixeq defined by

v(ry,ry) = N/ / Zpi\I/;i(rl,rQ, o )W (r), Ty, o Ty )dradry - - - drndr .
RS R i=1

Further, we know a lot about the space of the one-particle reduced density operator that
derives from the space of mixed-state N-particle density operators: the one-particle reduced

density operators are completely described by

Xy ={y= Zni¢i(r)¢i(r/)a¢i € HI(R?))?/ Yipjdr = 05,0 <n; <1, an =N}.
i=1 R3 i=1

We can define an electron density from every v € Xy:

plr) = 5(r,x) = > (o). (243

Using this description of Xy, the Janak kinetic energy functional in equation (2.42)

simplifies to

Ts(p) = inf = nl/ |V, |*dr.

yEXN 2

Following Kohn-Sham'’s definition of the exchange-correlation functional, we have

Exe(p) = Fr(p) — Ts(p) — Eu(p).

We have now derived the eztended Kohn-Sham model:

YEXN

BERS = g {—yman)+g [ [ O dm b [ o) + Bl (240)
R3 JR3 - R3

Unlike the Kohn-Sham model, the extended Kohn-Sham model is defined over a space of

well-defined solutions X, and it enables validation as well as verification of the model.
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Chapter 3

Linear-scaling methods in density
functional theory

As we introduced in chapter 2, for a given set of nuclei positions {Ry, - , R}, finding the
ground-state energy of the Kohn-Sham energy functional consists of solving the non-linear

eigenvalue problem:
1
H"4i(r) = {—§A + vks(p) }i(r) = Nihi(r), (3.1)

where the non-linearity lies in the effective Kohn-Sham potential defined by

vks(p) :/R plr) dr’ + Vext (T) + vxe(p)

3’1’—1"

and

/UXC (p> = ap

The Kohn-Sham ground-state energy for a spin-unpolarized molecular system equals

KS({RL e vRM})
N/2

—ZN% )2 + /R/R lr_r|ddr / Ve (1, (R, Ry Dp(e)dr + Ere(p) + Upu({Ra, -+

N/2

SONETTNE - Pt [ nrhpa)e + Bup) + Ura(Ras - R,
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where {)\Z}f\i/f and {wl(r)}f\i/f are the lowest N/2 eigenvalues and the corresponding eigen-
functions of in equation (3.1), and the electron density p(r) is defined by

N/2

p(r) = QZ (). (3.2)

The eigenvalues correspond to the energy of each Kohn-Sham electron; it is important to
emphasize that the Kohn-Sham electrons are not exactly like the electrons that are in the
molecular system. The Kohn-Sham electrons do not interact with one another; they interact
only with the effective potential.

The conventional solution to the Kohn-Sham equations is the direct diagonalization of
the discretized Kohn-Sham Hamiltonian matrix; the computational cost of diagonalization

scales cubically with respect to the number of electrons in the system:
C= alNS.

The cubic-scaling cost of the diagonalizing procedure has been a bottle-neck to applying
KSDFT to molecular systems larger than a thousands of atoms. When the system size
doubles, the computation cost jumps 8-fold. This difficulty led to the development of linear-
scaling implementations of KSDFT, with computational cost that increases linearly with
respect to the system size:

C:CLQN.

The linear-scaling methods avoid the diagonalization of the discretized Kohn-Sham Hamilto-
nian matrix; they either take advantage of the localization properties of the electron orbitals
in certain types of materials and/or the sparsity of the Hamiltonian matrix to approximate
the ground-state energy of the Kohn-Sham system. The prefactor as in linear scaling meth-
ods are always larger than the prefactor a; in diagonalization methods, thereby causing a

cross-over point in the number of atoms, beyond which the linear-scaling methods will be
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cheaper computationally.

There are many flavors of linear-scaling implementations, but they are broadly divided
into two main categories: the first category approximates the density matrix, the finite
dimension realization of the one-particle density operator as defined in section 2.6.1; these
methods are known as density matrix expansion methods in literature. The second category
approximates the occupied orbitals iteratively. We will describe in details several examples
of density matrix expansion methods and briefly describe the methods from the second

category. There are several excellent reviews on linear-scaling methods in DFT ([23],[10],

and [47]).

3.0.3 Density matrix expansion methods

The basis for density matrix expansion methods lies in the observation that the ground-
state one-particle density operator v shares the same complete set of eigen-states with the
Kohn-Sham Hamiltonian operator H¥S. This observation can be seen in the definition of
the ground-state electron density in equation (3.2) and in equation (2.43); the ground-state
Kohn-Sham one-particle density operator has eigenvalue 1 for the occupied eigen-states, and

eigenvalue 0 for the unoccupied eigen-states.

N/2

(e, r) =2 ea(r)w(r). (3.3)
i=1
The electron density defined by the density operator in equation (3.3) is
p(r) =~(r,r).

Using spectral theorem from the theory of self-adjoint operators [65], we can write the

density operator as a function of the Hamiltonian operator.

Theorem 2 Let P be the resolution of the identity associated with HXS, then for every
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bounded Borel function on o(H¥S), the spectrum of the Kohn-Sham Hamiltonian, it can be

written in the form,
) = [ e
o(HKS)

In other words, we can write the one-particle density operator as

v =g(H™).

The finite dimensional realization of spectral theorem is the spectral decomposition of
hermitian matrices in linear algebra. For every hermitian matrix H, we can define its spectral

decomposition:

Ng
H=> X\t @1,

i=1
where \; and v); are the eigenvalues and eigenvectors of the matrix H, and Ny is the size of

the matrix H. We can define a matrix function g(H) as
Ng
g(H) = Zg()\i)wi ® ;.
i=1
The density matrix, can defined as the matrix function g( H*5):

1, if A < Ayjo,
g\ =2 N (3.4)

0, otherwise,

where Ay/o is the IV /2 eigenvalue of the Hamiltonian matrix.
In the extended Kohn-Sham energy functional in equation (2.44), the occupation number
of the Kohn-Sham orbitals can take fractional occupations, and the density matrix can be

defined as

1, if A< A,
g(A) =2 (3.5)

0, otherwise,

where Ay is the energy of the system. It is defined so that the total number of electrons in
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the molecular system is conserved:

Tr(y) = Tr(g(H*S)) = /R3 p(r)dr = N.

It is important to emphasize here that to evaluate the density matrix exactly would
involve finding a spectral decomposition of the Hamiltonian matrix, which would incur cubic
scaling computational cost. The key intuition behind density matrix expansion methods is
that we can approximate the ground-state density matrix by using simpler functions of the

Kohn-Sham Hamiltonian matrix that can be computed at linear cost:

We will refer to these simpler functions as basis functions on the spectrum. There are several
variations of the spectral basis functions, e.g., polynomial functions and rational functions. I

will describe a few examples of the density matrix expansion methods and their algorithms.

3.0.3.1 Chebyshev polynomials

Polynomial approximations of the density matrix was first introduced by Goedecker and
Colombo in [20]; since then, there have been numerous adaptations of polynomial approxima-
tions (e.g., [22], [6], and [73]). We will introduce in detail here the polynomial approximation
using Chebyshev polynomials.

Chebyshev polynomials {Tj};";l are orthogonal polynomials with respect to the weight

function [24],

=

w(z)=(1—-2z)"2(1+z) 2.

They satisfy the following 3-term recursion relation,
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Ti(x) =z,
Tyia(x) = 20T)(x) — Ty ()

They form a complete basis for the inner product space £2 ([—1, 1], w(x)), and every function

f(z) € £2([-1,1],w(z)) can be written as
f@) =Y eiTyta).

The coefficients of expansion can be found by taking the inner product,

o= [ ST @l

In application to DF'T, the key idea is that we can approximate the density matrix using

a truncated Chebyshev polynomial expansion in the Hamiltonian matrix:
"'p
v=> ¢Ti(H).
j=1

Since the Chebyshev polynomials are only dense for functions with domain [—1.1], we first
have to transform the discretized Hamiltonian matrix so that its spectrum falls completely
within [—1.1]. This transformation requires an estimate of the largest and the smallest
eigenvalue of the Hamiltonian matrix. The methods used by Goedecker et al. is to use a
Chebyshev filter where one constructs a Chebyshev polynomial fit p,,(A) of a function that
vanishes below some Ayax, but blows up for energies larger than Ap.x. If Tr(pup,(H)) does
not vanish then we have non vanishing eigenvalues beyond A.x. The same procedure can
be used to find Apin,.

The density matrix written as a matrix function of the Hamiltonian matrix is the step
function defined in equation (3.5). Due to the discontinuity of the matrix function at Ay,

Chebyshev approximation suffers from Gibbs oscillations near the discontinuity [23]; there-
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fore, in numerical practice one has to regularize the discontinuity in equation (3.5). In [20],

the authors took the Chebyshev expansion of the Fermi-Dirac distribution:

1
Gfermi ()\) =

= 3.6
1 — exp( (36)

A=Apy ]
Tt

where kg is the Boltzmann constant, 7" is the electronic temperature, and A; is the fermi

energy, defined by the number of electrons in the molecular system:
Tr(gfermi(HKS>> = N.

The Fermi-Dirac distribution describes the distribution of N identical particles subject to
the Pauli-exclusion principle in thermo-equilibrium. This is the reason why density matrix
expansion methods are also called Fermi-operator expansion methods in literature. Of course
the choice of the regularization is by no means is unique, and the same authors also suggested

using the erf function:

FO) = %{1 —erf((A = Ap)/AN)1,

where A\ is chosen for numerical convenience, and it serves the same role as kg7 in the
Fermi-Dirac distribution.

When Goedecker and Colombo first developed the Chebyshev expansion of the density
matrix, they believed that the way to achieve linear-scaling computation cost was through
taking advantage of the decay properties of the density operator in the spatial r-basis, in
addition to taking advantage of the sparsity of the Hamiltonian matrix. We will see later
that the decay property of the density operator is not necessary.

The density operator in spatial coordinates decay algebraically in metals at zero temper-

ature [46]:

where k; is the fermi wave number magnitude described in equation (2.14). With the intro-
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duction of a finite temperature, T', equivalent to regularization of the density matrix using
the Fermi-Dirac distribution in equation (3.6), the density operator in spatial coordinates
exhibits exponential decay ([21] and [34]):

/ cos(kslr —r'|)
’y(I‘,I‘) OCk‘lf ‘I‘JC—I‘/P

where ¢ is a constant on the order of 1. In insulators, we can adapt the same finite-
temperature density operator as long as kg7 is less than the band gap of the material.

In order for the finite dimensional approximation of the density operator, the density
matrix, to reflect the decay properties of the density operator «(r,r’), one has to use a local-
ized basis to discretize the Hamiltonian matrix and the density matrix (e.g., finite element
methods, atom-centered Gaussian-type basis, finite difference method, etc). Other than
finite-difference methods, the other localized bases mentioned above are not orthonormal.
In the following discussion, we will assume that the localized basis are orthonormal. Given
that we use Ny number of basis functions, the density matrix is a Vg x Ny matrix. Using the
Chebyshev polynomial approximation, the computation cost for each column of the density
matrix can be evaluated using a recursive relation; each column of the polynomial matrix
function also obeys the recursive relation. Let t{ denote the [th column of the Chebyshev
matrix 7j(H) and e; denote the unit vector with 1 at the [th entry and zeros in all remaining

entries.

1) = lex),
tl1> = H|€l>7
") = 2H|t]) — [t 7).

We can see from the recursive relation that the computation of each column in the Cheby-
shev matrix 7;(H) only requires matrix-vector multiplications. The computation cost of

matrix-vector multiplications is Ny X ng, where ny denotes the number of non-zero ele-
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ments in each row of the Hamiltonian matrix. In general, the Hamiltonian matrix has a
sparse representation, and the sparsity ny is independent of the system size; hence the total
computation cost of each column of the density matrix is proportional with n, x Ng X ng,
where n, is the degree of the Chebyshev polynomial approximation. The computation cost
of the entire density matrix is then N7 x ny X n,, which is an improvement over the cubic
scaling cost for computing the density matrix exactly using diagonalization.

The computational cost can be further reduced if we can take advantage of the decay
behavior of density matrix. We can define a localization region |r — r/\ < Ry, which beyond
Ry, the entry in the density operator (r, r'), is zero. Using the localized basis functions, if
the distance between the center of the ith basis function and the jth basis function is beyond
a distance L(R;), then ;; = 0. This means that for the kth column of the Chebyshev matrix,
we only need to compute wy, elements above and below the kth element, where w; depends
only on Rj, and ng, independent of the system size. Then the computational cost of density
matrix is proportional to Ny X wr, X ng X n,, which has linear dependence on the system
size.

In hind-sight, the Chebyshev method doesn’t require truncation of the localization zone
in order to achieve linear scaling, the computation cost of matrix-vector multiplications was
just mis-estimated.

In order to arrive at the Chebyshev expansion of the Fermi-Dirac distribution, we need to
know the Fermi energy As. It can be found by using any root-finding algorithm that ensures
that the trace of the density matrix equals the number of particles in the system.

Examples using Chebyshev approximations of the finite-temperature density matrix can
be found in [22] and [6]. The degree of Chebyshev polynomials required for a given accuracy
has been studied by Baer et al. in [6], and they have shown that the degree n, for an accuracy
1072 is
(D - 1)8., (3.7)

ny =~

Wl N

A

ToT and AN = A\jax — Amin 1S the difference between the largest and the smallest

where 3, =
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eigenvalues of the Hamiltonian matrix. Equation (3.7) will become important in section 3.0.4

later.

3.0.3.2 Linear scaling spectral Gauss quadrature

Another flavor of polynomial approximation of the density matrix is the approximation of the
matrix trace using Gaussian quadratures along the spectrum of the Hamiltonian matrix [73].
This approximation is called the linear scaling spectral Gauss quadrature (LSSGQ) method.
To illustrate the LSSGQ approximation, we should consider the expression of the Kohn-Sham
total energy in equation (2.31) using the Kohn-Sham orbital energies from the eigenvalue

problem in equation (2.29):

N

= ~—1 M r I‘/ — r)v r)dr
60({]-:{17 7RM}) Z)\z Q/RJ /Rd |I‘—I'/| drd /]1%5 p( ) exc( )d +Eexc(p)7 (38)

=1

where \; corresponds to the ith lowest eigenvalues of the Kohn-Sham Hamiltonian matrix in
equation (2.29), and p(r) is the ground-state electron density. The first term in equation (3.8)

can be written as simply
N

> A =Ti(Hy). (3.9)

i=1
Using the fact that the ground-state one-particle density matrix + shares the same eigen-
states as the Hamiltonian matrix, we can write the matrix trace in equation (3.9) as a

summation of a family of spectral integrals along the spectrum of the Hamiltonian matrix:

) =3 [ M), (3.0

where g(A) is the zero-temperature matrix function defined in equation (3.4), and g, ¢,) is
spectral measure defined by the projection of the resolution of identity P(\) associated with

H onto the vector &;:

K& 6) = <§Z|P(/\)|§z>
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{&} is a set of complete orthonormal basis in £2(R?).

The ground-state electron density at location ry can also be written as a spectral integral:

p(ro) = ¥(ro, o) = (rol7y|ro)

= <I'0|g |I‘0 Zg r0|wz 77ZJ2|I.0>

= Z I.0| Z bzgfj Z bzk€k|r0

=1

=

N Ng Ny
= ZZZQ bng2k£] ro)é-k(ro)
o
— ZZZ i)bi;0ik&;(ro) &k (ro)
j=1 k=1 i=1
:/ 9N dhs(eg me) (A, (3.11)
o(H)

Ny Ny
where [1;) = | X bi;&;), ey = D2 &5(r0)€5), and figy, my,) 18 the spectral measure defined by
=1 =1

/”L(ﬂroﬂlro) = <nr0|P()\>|771'0>

The LSSGQ approximation consists of approximating each of the spectral integrals in
equation (3.10) using spectral Gauss quadratures. Since numerical quadratures are more
efficient computationally when the integrands are smooth, so LSSGQ adopts the finite-
temperature approximation of the density matrix, the Fermi-Dirac function in equation (3.6).

The key components of the spectral Gauss quadratures are the quadrature weights and
nodes. Taking advantage of the sparsity of the Hamiltonian matrix, the computation of
the spectral Gauss quadrature nodes and weights for each integral in equation (3.10) and
equation (3.11) can be evaluated at O(1) cost, independent of the size of the system; resulting
in a numerical scheme that scales linearly with respect to the system size for evaluation of

O(N) spectral integrals.
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To compute n, spectral Gauss quadrature nodes and weights for the spectral integral
with measure p, ¢,), we construct the Krylov subspace of dimension n, of H using ¢; as the

starting vector:

K6 = span{[&), H|&), -+, H 7€)} (3.12)

The vectors in equation (3.12) are not orthonormal, so we can orthormalize them using
the Lanczos method [39], which is a modified Gram-Schmidt orthogonalization procedure.
The Lanczos algorithm works as follows, starting with v') = &), ; = (v'|Hp!),0?) =

|Hv') — |ajo!), and then for k= 2,3, ---:

Pr1 = [I&ll,

~k
k (%

B’

o = (V" H[v"),

v

?~}k+1> — ’Hvk> . ’&kvk> o ﬁkflvkil-

We can collect the real numbers {o;} and {f;} into a tridiagonal matrix .J,, :

g 51

i B2

ﬁnpr Oénpfl ﬁnpfl

Bnp—l O,

Let ¢; and d;) denote ith eigenvalue and eigenvector of the matrix J, correspondingly. Then
{t;};2, are the spectral Gauss quadrature nodes for the spectral integral with measure pg, ¢,),

and the spectral Gauss quadrature weights are defined by

Wi = |d3|2a
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where d} is the first element in the ith eigenvector. A detailed discussion of the spectral
Gaussian quadrature nodes and weights can be found in [24]. In summary, the key distinc-
tion between Chebyshev polynomial approximation of the density matrix and the LSSGQ
approximation is that in LSSGQ, we are not approximating the density matrix by a single
polynomial function of the Hamiltonian matrix; it looks like a polynomial approximation
because the spectral Gauss quadrature has close ties to polynomial approximations.

Suryanarayana [70] studied the convergence of the LSSGQ approximation with respect
to a linear Hamiltonian matrix, and found that the rate of the convergence of the LSSGQ

approximation scales proportionally to

210
~ 9’
V1=As
where ¢ = % and \ F= %. Similar to the Chebyshev polynomial approximation of the

density matrix in section 3.0.3.1, the approximation error is proportional to the spectrum
width AX of the Hamiltonian matrix.
3.0.3.3 Rational approximation of density matrix

Goedecker [22] introduced a rational approximation of the density matrix using contour

integration. The function f(\):

1 dz
O =5 § 7

equals 1 if A is enclosed by the contour ', and 0 otherwise. We can choose a contour that
encloses exactly the occupied eigenvalues of the Hamiltonian matrix to approximate the

zero-temperature density matrix. To apply to finite temperature, we can use any rational
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functions that approximate the Fermi-Dirac distribution:

Ny w;
gfermi()\) ~ Z .
i=1 A=t

As for the specific {t;} and {w;}, Goedecker [22] used uniform spaced nodes on the con-
tour curve; Lin et al. [45] applied fast multipole method to the Matsubara pole-expansion
of the Fermi-Dirac function. To evaluate the rational expansion of the Fermi-Dirac func-
tion at linear-cost, we will need to evaluate projections of the inverse of matrices, H — t;1.
This is equivalent to solving linear systems of equations. We can use iterative methods like
conjugate gradient methods. Lin et al. [45] proposed an algorithm for selected inversion of
sparse symmetric matrix (Sellnv) involving LD L™ transform of the matrices H — ¢;I, which
is exact. However, the algorithm scales linearly with respect the number of electrons only in
the system for quasi one dimensional systems; for three dimensional molecular systems, the
algorithm scales quadratically with respect to the system size. Similar to the polynomial ap-
proximations, the number of rational functions required for a given accuracy scales inversely
with respect to the temperature 7" in the Fermi-Dirac function, and proportionally to the
spectrum width A\ of the Hamiltonian matrix. Lin et al. [45] showed that the number of

poles required given an accuracy is,

AN )
kT’

n, o< In(

3.0.4 The relationship between the spectrum width A\ and the

system size

The number of expansions in the density matrix methods described above scale proportion-
ally to the spectrum width A\ of the linearized Hamiltonian matrix, and the algorithm scale
linearly with respect to the system size if and only if A\ is independent of the system size.

In all the papers referenced above, the independence of AX from the systems has not been
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rigorously proven. In this section, we will show that for under certain assumptions, A\ is
independent of the system size when the Hamiltonian is discretized using a central finite
difference scheme.

N
Let Vy(r) = > v(r — R;) where R; denotes the position of the nuclei and N denotes the

i=1
number of atoms in the system. Assume that v(r — R;) € L*>®(Q2) and decays faster than
ﬁ away from R;, such that we have Vi, < Vy(r) < Viax independent of N. Consider

the linear eigenvalue problem in 2y with periodic boundary condition:
Hy, ¢(r) = {=A + Viv(r)}o(r) = A" 9(x). (3.14)

We show next that for central finite difference approximation with fixed discretization size
Ar, the spectrum width AM is independent of the system size N.

Consider two linear eigenvalue problems with a constant potential in the same domain
as Hy, with periodic boundary condition:

Hy  u(r) = —A + Vyu(r) = AVminy(r) (3.15)

min

and

Hy. . u(r) = —A + Viayu(r) = AV r). (3.16)
The proof can be further broken into 2 parts,

min min max

1. prove A\Ymin(Ar) < A (Ar) < AN (Ar) < \max(Ar), where )\H(Ar) denotes the

eigenvalues of the discretized Hamiltonian matrix H{}.

2. prove the bound {\/max(Ar) — A= (Ar)} is independent of N.

max min

Part 1
Discretize H"m» and H "»ax using the same central difference scheme with discretization
size Ar. Let’s denote the discretized matrix of HVmin, HVN = HVmax by HVminAr) - fr(Vn,Ar)

H(Vmax&r) et Ny(N) denotes the size of the matrix.
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HVmin,Ar) - [r(Va,Ar) - I (Vmaxs AY) gre real symmetric matrix with real eigenvalues. Let t)pax

(Vn,Ar

denote the eigenvector corresponding the largest eigenvalue of the matrix H ). Consider

the quantity:

<¢max | H(VmaxjAr) |wmax>

— (| [H7957 4 H (VoV085Y

= <wmax’H(vN’Ar) ’wmax> + <wmax‘ ﬁ((vmax_VN),Arl¢max>

vV
positive semi-definite

> \Wv

max

(Ar)

where (-, -) denotes the dot product between two vectors.

Now let {&;} denote the orthonormal eigenvectors of the matrix H(Vm=<AY) and we can

Nd Nd
expand the eigenvector of HVNA1): oh . = 3" ¢;&;. By normalization, we have Y c? = 1.
=1 =1

Consider the same quantity:

(e | H V2= B0) p )
Ny

Ny
= (D& HYm=A01 Y i)
=1

=1

Ny
R— Vmax 2
= E )\z G
=1

S >\Vmax .

max

Hence we have shown that AY¥ (Ar) < AVmax(Ar).

max max

Similarly, if we consider the product where 9,,;, denotes the eigenvector corresponding
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to the minimum eigenvalue of the matrix H(V~v-Ar),

<¢min | H(Vmin Ar) |77Z)min>

— <¢m1n| [H(VN7Ar) + H ((VN_‘/minvAr) ] |¢m1n>

= (Wi OS2 i) + (W] HL080)

negative semi-definite

< A\ (Ar).

min

VmitnAr)
Y

Similarly, let {&} denote the orthonormal eigenvectors of the matrix H¢ we can

Ny N

d
expand the eigenvector of H(VN-A1): oh v = 3 ¢;&. By normalization, we have Y ¢? = 1.
i=1 i=1

Consider the same quantity:

<wmin ‘ H(Vmin A1) | wmin>

Ny Ny
= (3 HOmA| 3 )
=1 7j=1

Ny
J— Vmin 2
*E A
i=1

2 )\Vmin

min

Hence we have shown that A'Y (Ar) > AVmi*(Ar).
Part 2 To obtain a bound for the gap A\, consider a one-dimensional infinite system
subject to the Hamiltonian with a constant potential, as illustrated in equations (3.15)

and (3.16). Depending on the order of the central difference scheme used, the discretized

eigenvalue problem becomes

et Cong + LUt + ol + C1Ungr + Cotlpya + -+ Vb, = AV, (3.17)

where {¢;} corresponds to the coefficient of the central difference scheme. We can make a
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solution ansatz of the form,

, = Aexp(iknAr), (3.18)

where k is the wavenumber. After substituting equation (3.18) into equation (3.17), we get

the numerical dispersion relation for the discretized eigenvalue problem,
AVAT(B) = o 4 2¢1 cos(kAT) + 2¢ cos(2kAT) + -+ -+ V. (3.19)

Although this is the dispersion relation for an infinite system, when we impose a boundary
condition for a finite system, we are only limiting the largest wavelength (i.e., the smallest
wavenumber k) of plane-waves the system can sustain. In the limit of k¥ — 0, the dispersion
relation in equation (3.19) becomes:
P P 2
V,Ar ~ (nkAr)
AVA(R) e co+ ) 26, — Z2CnT +V,

n=1 n=1

to a second order approximation of k. Since

p
Co + Z 2Ci = 0,
i=1

for all central finite difference scheme for the Laplacian operator, at k = 0, we have
AVAT (k= 0) = V.

This condition dictates the lowest bound on the eigenvalues A\. We also notice that the
numerical dispersion relation in equation (3.19) is simply a linear combination of cosine
functions, hence there will be a maximum energy state A\,.., and it will only be a function
of Ar since it’s the only parameter in equation (3.19). An intuitive way of thinking about
this result is that since the potential energy is constant at V, the kinetic energy |V)|? is

what dictates the total energy \; so the eigenvectors with a larger wave number k, the



Ixxii
larger its total energy A. However, the discretization cannot support waves with arbitrarily
large wave numbers. When the wavelength is shorter than 2Ar, we will get aliasing effects.
Figure 3.1 illustrates the numerical eigenvalues obtained from different orders of central
difference schemes for a Hamiltonian with a constant potential. We can easily extended the

numerical dispersion to a 3-dimensional system subject to a constant potential.

%10°
+  Exactsolution ‘,o*
+  2ndorder CFD o
350+ dthorder GFD o T
+  Bthorder CFD o
7 fth order CFD ‘,f ]
110t order GFD e
251
i
=
i1
[y
T
151
i1k
05t

D ) 1 1 1 1 1 1 1
0 05 1 1.5 2 2.5 3 35 4

ith 2ige rvalus %10

Figure 3.1: Illustration that the exact eigenvalues are always larger than the numerical
eigenvalues.
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Chapter 4

A variational frame work for spectral
discretization in density functional
theory

In the last chapter, we introduced linear-scaling density functional theory implementations
that approximate the density matrix either by using polynomials or rational functions.
Linear-scaling methods of this type, with or without truncation, often suffer from two signif-
icant shortcomings. Firstly, they approximate the density matrix of the linearized problem
corresponding to an iteration of the self-consistent scheme; however, the global convergence
properties of the entire self-consistent scheme itself, and of approximations thereof, are not
well-established in general. Secondly, for reasons of computational expedience, linear-scaling
methods often require severe smoothing of the occupancy function, corresponding to un-
physically high temperatures.

In this chapter, we depart from the self-consistent scheme entirely and work directly with
the variational formulation of KSDFT over trace-class operators. Anantharaman and Cances
[2] have used this variational formulation to prove the existence of solutions in bounded or
unbounded domains. We use duality in the exchange-correlation functional to convert the
classical variational formulation into nested variational problems. The resulting functional
is linear in the density matrix and thus amenable to a simple spectral representation. Based
on this reformulation, we introduce a new class of operator approximations, which we refer

to as spectral binning. Spectral binning uses simple—or piecewise-constant—functions on
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the spectrum and enables an accurate representation of the occupancy function without
smoothing. The main mathematical result of this chapter consists of a proof of convergence of
spectral binning with respect to combined spatial and spectral discretizations. As an example
of application, we consider a standard one-dimensional benchmark problem (cf. [18]) and
show that, for this problem, spectral binning exhibits excellent convergence characteristics
and outperforms other linear-scaling methods.

The chapter is organized as follows: section 2 briefly reviews KSDFT and reformulates
it as a nested variational problem; section 3 collects the main theorems of existence and
convergence; section 4 presents the proof of the existence of minimizers; section 5 describes
spatial and spectral discretization; section 6 presents the proof of convergence with combined

spatial and spectral discretization.

4.1 Kohn-Sham density functional theory

For simplicity, we restrict ourselves to closed-shell, spin-unpolarized systems. We also restrict
ourselves to an open and bounded subset € of R3. This is an important restriction since the
formulation in R3 introduces non-trivial difficulties. We also restrict ourselves to the local
density approximation (LDA) for the exchange-correlation. Finally we make, as common in
this subject, the Born-Oppenheimer hypothesis that the atomic nuclei are classical and we
hold the nuclei fixed throughout this section. We start with the operator formulation used
by Anantharaman and Cances, [2]. The connection to the traditional orbital formulation is

given in Appendix B for completeness.

4.1.1 Operator formulation

Let V:WS’Q(Q), H=1L%(Q), and &; be the vector space of self-adjoint, trace-class operators
on H:
Sy = {7 € S(H) : Tr(]y]) < oo}, (4.1)
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where |y| = /77*. &1 is a separable Banach space [5]. Within &;, we can introduce the
space

X ={v€6::|Vh|V] €&}, (4.2)

and the constrained set of admissible reduced one-particle density operators
Kn={yeXx :0<y<1,Tr(y) =N} (4.3)

Remark 4.1.1 As stated in [2], for every v € Ky, we have the canonical representation in

the continuous r basis,

1) = 3 2066, (4.4

where & €V for all v € N, the factor of 2 simply accounting for spin unpolarization, and
0<a; <1, / G)g(x)dr =4, Y 20 =N. (4.5)
Q i=1
We define the electron density for every v € Ky as

py(r) = 7(r,1). (4.6)

We consider a system of M atoms with nuclei located at {Rq,--- ,Rm} = {Ry1,..., Ry} C Q
and nuclear charges 71, ..., Zy. We now follow Anantharaman and Cances, [2], and define

the extended Kohn-Sham energy functional E*55 : Ky — R as
EPRS () = To(7) + Eu(py) + Eext(py) + Unn + Exc(p4), (4.7)

where T} is the kinetic energy of the non-interacting electrons,

To(y) =Tr (—%A”y) , (4.8)



Ixxvi

Fy is the Hartree energy representing the classical electrostatic repulsion energy for a given

//’”’r_r/’ dr dr’, (4.9)

Eoy is the interaction energy between the nuclear charges and the electrons,

electron density,

Eoe(ps) = / o (£)vus(r, {Ra, -+ , Rag}) dr — / m(r)( 3 mL) dr,  (4.10)

U,_n is the classical electrostatic repulsion energy due to the nuclear charges,

1 A
Uy = ~ L1z 411
2 1<I<ZJ<M [R; — Ryl D

and Fy.(p,) is the exchange-correlation energy that is split into two terms (cf. [59]),

Exe(py) = Ex(py) + Ec(py) = /Qh(P'y) dr, (4.12)
with an exchange term,
3 /6N\1/3 473
Bdp) =5 (3)" [ o an (4.13)

and a correlation term,

Eulp) = [l 6oy ar, (4.14)

where € is taken from [59]. The connection of this formulation to the traditional formulation

is in Appendix A. The ground-state energy of the extended Kohn-Sham energy functional is
e85 = inf EFS(). (4.15)

The existence of minimizers of the extended Kohn-Sham energy functional has been shown

in [2].
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4.1.2 Reformulation

The preceding formulation of the extended KSDFT energy functional is not amenable to
spectral discretization because of the non-linearity in the terms Ey and E,.. To overcome

this difficulty, we reformulate these terms as follows.

4.1.2.1 Electrostatics

We reformulate the electrostatic terms by writing them as the solution to a Helmholtz
problem (cf., e.g., [35, 74]). We approximate the nuclear charges at a given atomic site R;
by a regularized and bounded nuclear charge distribution —Z; fg, (r) with compact support

on a small ball centered at R; satisfying

/ fr,(r)dr = 1. (4.16)
Q

We can then rewrite the electrostatic terms as the variational problem

Eu(py) + Eext(py) + Unn

=sup ¢ —Cs [ [Vo(r)Pdr+ [ (b(r,{Ra, - ,Rm}) + py(r))o(r) dr ¢ + Cear,
(o, / }

PeV

where

b(r,{Rq,--- ,Ry}) = Z Zifr,(r). (4.17)

Cs > 0 is a constant depending on the spatial dimension S (e. g. Cs = slw for S = 3); Csar
is an inessential constant that depends only on the regularization fgr, and is independent of
py and {Rq,--- ,Rm}.

To clarify the dependence of the electrostatic terms on 7, we introduce an unbounded

local operator:

O(r,r') = ¢(r)o(r, '), (4.18)
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and use its coordinate representation so that

Ti(@7) = [ o, (r)dr. (4.19)

The Coulomb energy is

J(py) = Eu(py) + Eex(py) + Unn

= sup {Tr(@y) - C's/Q |Vo(r)|* dr + /Qb(r, {Rq, - ,Rm})o(r) dr} + Cearr. (4.20)

PV
4.1.2.2 Exchange-correlation energy

Next, we reformulate the exchange-correlation energy F,.. We make the following assump-

tions on the integrand h(t) in the exchange-correlation energy introduced in equation (4.12):
(P1) Smoothness condition: the function h: R, — R and h(t) € C*(R?).
(P2) Curvature condition: the function h is concave in R*.

(P3) Zero density condition:
h(0) = 0. (4.21)

(P4) Non-positivity condition: h(t) <0 for all t € RT.

(P5) Decay condition: for t € R the function h satisfies
h'(t) < 0. (4.22)
(P6) Growth conditions: for t € RT, the function h satisfies the bounds
C1[t)3 + Cy < |h(t)| < Cslt)? + Cy, (4.23)

for some real constants C; > 0, Cy, <0, C3 > 0 and Cy > 0.
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By reflection, we can extend h to a function from R, to R, setting h(t) = h(|t]) for t < 0.

This extended function, again denoted by h, is continuous in R due to property (P3).

Remark 4.1.2 Since h(t) is continuous in R and since |h(t)| < Cs|t|5 +Cy, from the upper

bound in (4.23), with Fatou’s Lemma it follows that Ex.(p) is continuous in L3 (R3).

We proceed to rewrite the exchange-correlation functional using a Legendre transform. We
define

Bye(py) = —Exe(p4)- (4.24)

From property (P2) of the exchange-correlation function h, By.(p,) is a convex and contin-
uous functional in £¥3(R?). Let

U= LN (4.25)

As explained in Appendix B, there exists a dual functional B (u) : Y + R such that

Bye(py) = 31615{%, u) — By (u)}, (4.26)

where the dual product (v, u) for any v € £¥3(R?) and u € L*(R?) is defined by

(v, u) :/Qv(r)u(r) dr. (4.27)

Using arguments from [17], we can rewrite the exchange-correlation functional,

Eye (pv) = — By (pv)

= — sup{(ﬂm ’LL> - B)tc(u)}

uel

= inf {~(pyu) + Bi(u)}
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Finally, we introduce the unbounded local operator
U(r,r’) = u(r)d(r,r), (4.28)

using its coordinate representation. We can then rewrite the exchange-correlation functional

as

Exe(py) = inf {=Te(U7) + Bie(u)}- (4.29)

4.1.2.3 Reformulated Extended Kohn-Sham Functional

Substituting (4.20) and (4.29) in (4.7) and omitting the inessential constant Ce for brevity,

we obtain the reformulated extended KS(REKS) energy functional EREKS : IOy — R as

E"(y) = inf sup L(u, ¢,7), (4.30)

where L : U xV x Ky is

L(u, ¢,7) = Tr(H(¢, u)y) + / (= Cs[Vo(r)]* + b(R,r)o(r)) dr + By (u), (4.31)

Q

with the Hamiltonian

H(6,u) = —%A DU (4.32)

and @, U defined in (4.18), (4.28). The ground-state energy of the system with M atoms is

eREKS — ipf EFREKS(

nf )

— inf inf L(u, ¢, 4.33
B o) 4:33)

= inf inf sup {Tr(H(gb, u)y) + / (= Cs|Vo(r)]* +b(r, {Ri, - ,Rm})o(r)) dr + B;C(u)}
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4.2 Main results

We prove the following theorems on the reformulated extended KS functional.

REKS (7)

Theorem 3 The reformulated extended KS energy functional E in (4.30) possesses

a minimizer in Ky.

Theorem 4 The order of the infimum and supremum in the computation of the ground-state

energy of the reformulated KS energy functional (4.33) can be exchanged:

REKS . .
€ = inf inf sup L(u
0 VGKNUEU(beg ( 7¢77)

= inf inf L(u, ¢,7), 4.34
i sup 5t Llw 6.7 .

where L is given by (4.31).

Theorem 4 enables the spectral discretization. Note that v appears linearly in the func-
tional L and only in Tr(H(¢,u)y). It is easy to show that, for every u € U and every
peV,

inf Tr(H (¢, u)y) (4.35)

YEKN

is attained and the minimizer commutes with 7. Therefore, the problem is unchanged if we
seek the infimum over a subset K& C Ky of operators that commute with H or equivalently
over the Borel functions of H (see (4.83) below). We obtain a spectral discretization by
limiting v to KF , made of k simple functions of H (see (4.103) below).

We are also interested in spatial discretization. Hence, we consider finite-dimensional
subspaces V; and U; of V and U, respectively, with H’, L7 to be discrete Hamiltonian and
functional on these subspaces. We have the following result on the combined convergence

with respect to spatial and spectral discretization.
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Theorem 5 Let k; — 0o as j — oo. Then, the diagonal sequence of spatially and spectrally

discrete reformulated extended KS energies converges to the full KS ground-state energy:

lim infsup inf L7(u,¢,v) = ilz}f sup inf L(u,¢,7) = g™, (4.36)
v

Jmroo Uy, ,ngk@,u) Kﬁ(‘j”“)
()

4.3 Existence of solutions

To establish the existence of minimizers in Iy for the KS-DFT problem in equation (4.30),
we use tools similar to those used in the more general proof given by Anantharaman and
Cances in [2] and restate their results for an open, bounded, and Lipschitz domain 2 for
completeness. The proof follows the framework of the direct method in the calculus of
variations. Specifically, we consider the weak*-topology of the vector space X endowed with

the norm

- Ml = Te(]- 1) + Te([IV] - [V]]) (4.37)

in the convex set Ky defined in (4.3).
For clarity of notation, in the remainder of this chapter, we change our notation on the
repulsive energy functionals (4.12) and (4.20) in order to emphasize their dependence on the

reduced one-particle density operator and write

Ew(7) = Exe(py),  J(7) = J(py)- (4.38)

Remark 4.3.1 Since X is a separable and normed linear space, every uniformly bounded

sequence {yp}nen in X contains a weak*-convergent subsequence.
For a proof of Remark 4.3.1, see for instance Part II of Theorem 2.2.1 in [36].

Lemma 4.3.2 For all v € Ky, the following inequalities hold.
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1. Lower bound on the kinetic energy,

1 1 1

SVl < Tr(—5A9) = STH(V V) (4.39)
2. Lower bound on the Coulomb energy,

0<J(). (4.40)

3. Lower bound on the exchange-correlation energy,

—C5|QTYENYE — 04|Q| < Exe(7). (4.41)

4. Lower bound on the reformulated extended KS energy functional,
Iyl = Cs < ERFR5(y) (4.42)

for a constant Cs > 0 independent of . In particular, by (4.42), EREES(v) is coercive

w.r.t. the weak*-topology of X .

Proof 1. Lower bound on the kinetic energy. In the canonical representation, the elec-

tron density is

py(r) = Z 20,(r)”. (4.43)

By direct inspection and Cauchy—Schwarz’s inequality, we find

o 21205 aibi(r)VEi(r)?
MVl =T e
< 2 Doy @il&i(0) P 30 i VEi(x)[?
N Zi’il a;&;(r)? .
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After integration, this yields

1 1 1
§||V\/P_v||52(9) < TT(—§A7) = §Tr(|V|7|V|). (4.44)

. Lower bound on the Coulomb energy. We have

—21615{/¢ b({Ra, -+ ,Rm},r) + py(r ))dr—Cs/ch Ier} >0,
(4.45)

where we use the test function ¢(r) = 0 in Q to obtain the lower bound.

. Lower bound on the exchange-correlation energy.

Using the bounds from equation (B.6) in Appendix B, the LDA exchange-correlation

functional integrand A in equation (4.12) is bounded from below:

Ee(v) = 51615{ Tr(Uv) + Be(u)}
> 1{2{,{—“(“) + Cigllul| 240y + Crol 21}
= —Tr(Uyy) + Cislluy I 219y + Crol Q| (4.46)

> —Tr(Uyy) + CholQ

v

—C|Q 73 (Tr(7)) " + il

= —C|Q7VENY2 1 C)Q), (4.47)

where u, denotes a minimizer of equation (4.46) and U, is its corresponding operator.

It is evident that there exists a minimizer for the variational problem (4.46).

. Lower bound on ER¥XS_ Coercivity of EREKS,

Putting together all the inequalities in the equations (4.45) and (4.47), we end up with

1
S (3) > T (— S Aq) ~CI0 N4 0|0 = 2 (TH( V| V14T (1)) ~Cs. (449

N
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Here, we introduced the new constant

N
Cs = C|Q|7Y2NY3 — Cy|Q] + - (4.49)

For the derivation of (4.48), we used that for every v € Ky, directly from the definition
of this set,

Tr(y) = Te(y) = V. (4.50)

The estimate (4.48) implies that for any ¢t € R the level sets
{v € Kn:ERS(y) <t} (4.51)

are bounded,

t+Cs > %(Tr(lvl) +Te([VIyIV]) = Sl (4.52)

N | —

Consequently there exists a subsequence of v, that converges w.r.t. the weak*-topology

and we conclude that EREES(v) is coercive w.r.t. the weak*-topology in Ky. |
Lemma 4.3.3 The set Ky is closed in X w.r.t. the weak*-topology.

Proof Let €(#) denote the vector space of compact linear operators on H. For all 7, = 7,
we have Tr(y,W) — Tr(yW) for all W € €(H) in the limit n — oo.

We define the rank-one operator

W = ) (4], (4.53)

where |[¢[|z2() = 1. Due to the weak*-convergence of 7,,

0 < lim Tr(y, W) = Tr(yW), (4.54)

n—oo
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and

Tr(;W) = lim Tr(y,W) = lim (1, 7,0) < {,0) = 1. (4.55)

n—o0

Since the estimate (4.55) holds for all normalized ¢ € H, we find with (4.54) that 0 <~ < 1.

Since ¥, — 7, ||7wll1 is bounded independently of n, see Proposition 3.13 in [11]. From
equation (4.39) we have that {,/p,, }nen is bounded in W, (). Therefore, there exists a
subsequence {,/p5, }ien that converges weakly to \/p, in W, (). By the compact embed-
ding of W)*(Q) in £P(£2), the subsequence {\/P, bien converges strongly to \/p, in LP(S2)
for all 2 < p < 6, see, e.g., [1]. These considerations show that

lim Tr(y,) = lim P dr = lim [|\/py, 1122 = V/psllz20) = /va dr =Tr(y).  (4.56)

n—oo n—oo
Hence, the set Iy is closed w.r.t. the weak*-topology on X. |

Lemma 4.3.4 The functional J(7) introduced in (4.20) is lower semi-continuous w.r.t. the

weak*-topology on X.

Proof We begin by showing that Tr(®-) defines a bounded linear functional on KCy:

Te(@y)] = | 3406, 6)] < 3 200006, €0
=1 =1

< 206l 2@ 1§ 2@ = I8l Y 20ill& 70
=1 =1

< Clgllexe) Y 20l VéilZaa) = Clldll ez Te(=A9), (4.57)
i=1

where {&; }ien come from the canonical representation of v € Ky, cf. equation (4.4), and
the Gagliardo—Nirenberg—Sobolev inequality has been used to obtain equation (4.57). Con-

sequently,

J(v) = sup {Tr(cbfy) + /

eV Q

(b(r, {Ry. -~ . Rar})o(r) — csrv¢<r>r2)dr} (4.58)
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is the point-wise supremum over a family of continuous affine functionals on . Hence, it

is also lower semi-continuous with respect to the weak*-topology on Ky. |
Lemma 4.3.5 E,.(7) is continuous w.r.t. the weak*-topology on X.

Proof Similarly to the proof of Lemma 4.3.4, we can show that Tr(U~) defines a continuous
affine functional on Ky for every u € U. We prove the continuity of Fy.(y) with respect to
the weak*-topology using techniques of I'-convergence.
For every sequence 7, such that 7, — v in Ky, we consider the family of functionals on
U indexed by n defined by
—Tr(U~,) + B (u). (4.59)

We show that this family of functionals I'-converges with respect to the weak*-topology to

the functional

—Tr(U~) + By (u) (4.60)
for all 4, = 7 in Ky.
For the lim-inf condition, we need to show that for every u € U and for all u, — wu,

lim inf{—Tr(U,vn) + B (uy)} > =Tr(U~y) + B (u). (4.61)

n—o0

Since 7, — 7, for every member of a complete orthonormal basis in £2(Q), {&}ien C
W,2(Q), we have

n—o0

From the proof of Lemma 4.3.3, we have p,, — p, in £L3(Q2). Therefore, lim,, o, Tr(U,7,) =
Tr(U~). In addition, B}, (u) is weakly lower semi-continuous by duality and convexity. This
completes the proof of the lim-inf condition.

For the lim-sup condition, we choose the trivial recovery sequence u,, = u for every u € U,
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implying
lim sup{—Tr(U,v,) + Bi.(un)} > —=Tr(U~) + Bi.(u). (4.63)

n—o0

Lastly, to show equi-coercivity of the functionals, from equation (B.6) in Appendix B,
—Tr(uy,) + Bio(u) > Cugllully — (sup Cp)|ul 2 () + Crol€, (4.64)

where C, = Tr(—A~,), and C, is bounded since v, — v in X. Therefore, the family of
functionals

—Tr(uy,) + Bi.(u) (4.65)

is equi-coercive. Using Theorem 7.8 in [49], we have

Tim Beo(y) = I inf (~Te(U,) + B, ()} = i (Te(U) + BL(w)} = Buly). B

n—oo0 ueU

(4.66)

Lemma 4.3.6 Let {v,}nen be a sequence of elements in K which converges to ~ in the

weak*-topology of X. Then

EREKS (

7) < lim inf EREES (). (4.67)

n—oo

Proof To prove the lower semi-continuity of ERFES(v), we use the continuity of the func-
tional J(y) from Lemma 4.3.4 and the continuity of Fy.(7y) from Remark 4.1.2 w.r.t. the

weak*-topology.
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For any orthonormal basis {1y }ren of £L2(2) such that ¢, € W2(Q) for all k, we have

Tr(=An) = Te([V[y[V])

=D (Wi IV V[ )

= > T (W([IVIg) ([ VIex])
k=1

= > lim Tr(a(|IV (Vo))
k=1

< hggi;lfZTr(%(HVWkMIVWk\))

= lim inf Tr(|V|7,|V]). (4.68)
n—oo

This proves the lower semi-continuity of the functional EREKS(7). |

EREKS (

Theorem 1 The reformulated extended KS energy functional ) possesses a mini-

mazer in K.

Proof Consider a minimizing sequence {7, }nen of ER¥ES(5) in Ky. From Lemma 4.3.2 and
Lemma 4.3.1, we know that (7,)nen has a weak*-converging subsequence. By the closure of
the subset Ky, this subsequence converges to some vy € K. Using the lower semi-continuity

of ERFRS w1 t. the weak*-convergence in X, it follows

inf EREES(y) < BREES(4) < liminf ER¥5(q,,) = inf EREES(4). (4.69)
YEKXN n—00 YEK N
Hence, the existence of a minimizer of EREES in [Cy is established. ||

4.4 Discretization of the energy functional

Next, we introduce the spectral and spatial discretizations of the reformulated extended KS

functional and prove the convergence of the resulting approximate solutions.
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4.4.1 Justification of the spectral discretization

Before we can apply spectral discretization, as it will become evident subsequently, we need
to prove that the spinless one-particle density operator that minimizes E#FES(y) can be
written as a spectral function of the Hamiltonian H (¢, u).

We recall the definition of L : U x V x Ky from equation (4.31):

L(u, ¢,7) = Tr(H(¢,U)7)+/Q (=Cs|Vo(r)P+b({Ra. - -+, R}, 1) (r)) dr+B5 (u). (4.70)

The ground-state energy equals, cf. the equations (4.30) and (4.31),

eREKS _ 'yiEI}CfN thlelzg 21615 L(u, ¢,7). (4.71)

Since we can exchange the order of the infima, the ground-state energy is also equal to

REKS __ : :
€ = inf inf sup L(u, 6,7). (4.72)

Now we derive sufficient properties of L(u,-,-) that enable us to exchange the order of

the infimum over v € Ky and the supremum over ¢ € V.

Lemma 4.4.1 For every u € U and every ¢ € V, the functional L(u,,-) is convex and

lower semi-continuous with respect to v in X. In addition, for every ¢ € V,

lim  L(u,¢,7) = +o0. (4.73)

7]l 22—+

Proof For given u and ¢, the convexity of L(u, ¢,-) is evident since the terms involving
are linear functionals of ~.

Regarding the lower semi-continuity of L(u,¢,-), from Lemma 4.3.6 we observe that
Tr(—3A~) is lower semi-continuous in X. Since, for every sequence 7, — v in Ky, by com-

pact embedding p.,, — p, in £2(£2), the functionals Tr(®v) and Tr(U~) are also continuous
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in X.

Since u € U C L*(Q), for every v € Ky,

L, 6,7) = Tr(~5A9) + Tr(®#9) — Tx(U)

1

2 Tr(=5A7) = (ullex@ + [19lle2@) 1oyl 220
1 1 3

2 Tr(=547) = Cs([lull 2y + 19l 2@l 210y 1931125 (4.74)
1 1 3

2 Te(=547) = Grlllull 2@ + 191l c2@) Te (VD TV Vs | 220 (4.75)

for some positive real constants Cs and C', where interpolation inequalities are used to
obtain equation (4.74) and the Gagliardo—Nirenberg—Sobolev inequality is used to obtain

equation (4.75). Hence

N
— 4.76
2 ? ( )

1 3
L(u,0,7) = 5l7llx = CslIVy/Pa | 22y —

where Cs = CoNY4(||ul| c2() + || ¢l 22(0)), implying the coercivity (4.73) of L(u,,-). 1

Lemma 4.4.2 For every u € U and every v € Ky, the functional L(u,-,) is concave and

upper semi-continuous with respect to ¢ in V. In addition,

lim L(u,¢,v) = —o0. (4.77)

ll¢lly—+o0

Proof For given u and ~, the terms Tr(®v) and [, b(r,{Ry, - ,Rm})é(r) dr are linear
functionals of ¢, so they are concave. The term —Cy [, [V(r)|* dr is quadratic and concave
in |Vé(r)|. Hence, L(u, -,7) is concave.

Concerning the upper semi-continuity of L(u,-,7), by using arguments similar to those
in Lemma 4.4.1, we observe that Tr(®v) and [, b(r,{Ry,---,Rm})¢(r)dr are continuous
in V for given b(r,{Ry, - ,Rm}) and v € Ky. The quadratic term —Clg [, |V(r)[* dr is

upper semi-continuous in V as a result of Proposition 2.1 in [49].
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Finally, for every v € Ky,

—L(u,6,7) = Csl|Volzz() — 6]l c2@llpy +b(r, {Ra, -+ Raa})ll 2oy + Colu,7)

> Cuol|9l1 22 () — 19l 2@ lloy+0(r, {Ra, - -+, Raa}) [l c2) + Co(u, ), (4.78)

where the Poincaré inequality has been used to derive the second estimate, Cjy > 0, and
with

Colu,7) = Tr(3 Ay) + Tr(U) — Biu(u) (4.79)

Applying Young’s inequality to [[¢]lcz(ayllp, +b(r, {Ra, -+, Raa}llexcay in (4.78), [16]cxo
can be absorbed in ClqubH%(Q), implying the convergence of ¢ +— L(u, ¢,7) to —oo as ||¢||y

converges to +00. |

After these ancillary results, we show that it is possible to exchange the orders of the
infima and supremum when computing eX"X5. This commutativity property is important,
as it allows to apply spectral theory to the Lagrange functional L(u, ¢, 7).

Let Eyana(u, ¢,7) := Tr(H(¢, u)y).

Theorem 2 The order of the infimum and supremum in the computation of the ground-state

energy of the reformulated KS energy functional can be exchanged:

REKS e
€ = inf inf sup L(u, ¢,
0 'yEICNuEL{(Z)eg (u, ¢,7)

= inf sup inf L(u,¢o,~)

ueld bV YEXN

= inf sup inf {Eband(u, o,7) + / (= Cs|Vo(r)]> + b(R,r)¢(r)) dr + B;C(u)}

(4.80)

For every u € U and every ¢ € V, the minimizer of the band enerqy Epana(u, @,-) in Ky

commutes with the Hamiltonian H (¢, u).
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Proof Using similar arguments as in Proposition 2.2 in [17], we are guaranteed the existence
of at least one saddle point {¢, ¥} of L(u, -, -) for every u € . Hence, exchanging infimum and
supremum does not affect the ground-state energy of the reformulated KS energy functional.

Next, for every u € U and every ¢ € V, H(¢,u) is a self-adjoint unbounded operator on
L£2(Q). Associated to H(¢,u), there is a countable family of orthonormal eigenvectors that
form a basis of £2(2). From [80], since ¢(r) € V and u(r) € U, we have that H(¢,u) is
semi-bounded from below.

Let A\g, & denote the k-th eigenvalue and k-th eigenvector of H (¢, u), respectively, with
the indices ordered by increasing magnitude of the eigenvalues. Then, since the trace is

invariant with respect to a change of basis, it follows that

58 Bru.07) = i Te(H(0.07) = nf S (060766
k=1
= inf > (06 H(g,u)k)
k=1

= inf A
vler}ﬁv; k(’Ysz,fk>
N
k=1

From Theorem 1.3, Supplement 1 in [9], there exists a Borel function g : R — R with

1, if A < Ay,
g(N) = (4.81)
0, otherwise,

such that for every v € U and every ¢ € V,

argmin Epana(u, ¢,7) = g(H (¢, u)). (4.82)

veXn

To ensure the existence of a spectral function g, we replace the minimization over Ky by
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the minimization over the subset
/CIA{W’U) = {7 eEly:v= g(H(gb, u)) for a Borel function g over R, 0 < g < 1} (4.83)

and observe that

'Yler’leN Eband(uv ¢> 7) = »yelé%&’”) Tr<H(¢’ U)IY) : I (484)

)

It bears emphasis that every element in the set Icﬁ(‘b’“ can be written as a spectral function

of H(¢,u) and is thus amenable to spectral discretization.

In the next two sections, we proceed to define the spectral discretization and the spatial

discretization of the reformulated extended KS energy functional defined in (4.30).

4.4.2 Spatial discretization

We begin by discretizing problem (4.72) a la Rayleigh-Ritz, i.e., by restriction to finite-
dimensional subspaces. To this end, let V; be from a family of finite-dimensional subspaces
of V spanned by the basis {ey,...,e;}, e.g. a subspace that corresponds to a finite element
discretization, and let ¢; be from a family of finite-dimensional subspaces of & spanned by
the basis {dy,...,d;}, e.g. the piece-wise constant simple functions. Then the restriction of

the electrostatic field to V; is of the form

;(r) = aca(r). (4.85)

The nuclear charge distribution is

J
bi(r {Ra, -, R}) =y _biFrmBule (), (4.86)
a=1
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and the dual density potential u;(r) has the form

= Uady(r). (4.87)

Like-wise, the discrete density matrix, which is the restricted density operator on a finite-

dimensional subspace:

I'1,I‘2 Z Z 7111 azeal I‘1 €ay (r2) (4.88)

a1=1az2=1

where 77 denotes the matrix of coefficients, and the discrete electron density follows as

- Z Z pémzeal (I‘)ea2 (I‘), (489)

a1=1as2=1

where

105'11(12 = 7(21,612' (490>

The above restrictions define a sequence of subspaces in ICgV of density matrices,
Ki={veX:vyeSV), 0<vy<1}, (4.91)

where S(V;) denotes the vector space of symmetric linear operators on V.
The corresponding discrete Lagrangians L7, obtained by restriction of the functional in

equation (4.31) to U; x V; x K, follow as

L](u7 ¢7 ) TI’(H] ¢ u + Z Z { CSQSGJ a17a2¢a2 + b{Rl RM}Ma17a2¢a2} + B;C(u)'
a1=1az2=1

(4.92)

Before proceeding further, we remark on the notation in (4.92). Let H?(¢,u) denote the

matrix H’ defined by restriction of ¢ and u on the finite-dimensional subspaces V; and U;,

respectively. Throughout this chapter, we use a superscript index j to denote restriction
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of an operator or a functional to the finite-dimensional subspace defined by V;, U;, and
IC?V. We use a subscript index j in general to denote the j-th element in a sequence of
functions or operators. There will be cases where an operator or a function indexed by a
subscript 7 happens to coincide with the restriction of the operator or the function to the
finite-dimensional subspace U;,V;, and le\,, but there is no ambiguity from the context when
these situations arise.

Using spatial discretization, we introduce these discrete quantities:

H = SA+0 — U, (4.93)
Agy oy = / Ve, (r) - Ve, (r)dr,
Q

Mal,az = / €a, (I') * Cay (I‘) dI‘,
Q

@ilm = /Q (i%ea(r))eal(r)e@ (r)dr,

a=1
. J
Ul oy = /Q (Zuada(r)>eal(r)ea2(r) dr.
a=1
Formally, A and M also depend on j, as they are restrictions of operators to {es,...,e;}.

We omit this dependence here for simplicity of notation.

The discrete band energy Eﬁ cU; XV x IC?V becomes

and
B o (1, 6,7) = Te(H (¢, u)y). (4.94)

In addition, we need to introduce this sequence of discrete constraint sets:
/C]I\{,j(qb’u) = {7 € IC{V oy = g(Hj(gb, u)) for a Borel function g over R, 0 < g < 1}. (4.95)

With these settings, motivated by the equations (4.30)—(4.33), the corresponding sequence
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of discrete energies eOR‘JEKS becomes

egj?KS = inf sup inf L/(u,¢,7). (4.96)

u€l; PEV; GICHJ(qS )

4.4.3 Spectral discretization

Next, we proceed to spectrally discretize the minimization over v € Kﬁj((ﬁ’u) of the discrete
band energy from equation (4.94). We begin by applying the spectral decomposition theorem
(cf., e.g., [65]). For fixed j € N, since H’ defined in (4.93) is a self-adjoint operator, this

theorem states that

HI = / " AdPI(N), (4.97)

where P’ is a resolution of the identity over the Borel sets of the real line, and o(H”) denotes
the spectrum of H7. Similarly, for the restricted discrete density matrices 77 in (4.88) defined

for H7, there exist bounded Borel functions ¢’ : R — R with

i = / L AP (4.98)

Using this representation, we define

Egand( ) Tl" H] Z/Hﬂ Adl’bea ea()‘)

V=T =Y [ a0

a=1

and where

1, en(N) = (ea PP (N)]ea) (4.99)
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is a spectral measure. For instance, if H has j eigenvalues {\,, a = 1,...,j}, possibly with

repetition, then

0 i\ < A,
1o N =1 (e PPN)lea) A <A< Mgk =1,...,5 — L, (4.100)
(eal PION)ea)  if A > A,

Knowing the quantities £, ;(¢7), N’(¢7) and the spectral measures i , (\) for every
a, the calculation of the energy-minimizing discrete density matrix 77 at fixed (¢, u) reduces
to the scalar problem

inf {E],.4(¢"), 0< g’ <1, N(¢) = N}, (4.101)
gl eB

where B denotes the space of bounded real-valued Borel functions over the real line.

Numerically, spectral approximation consists of finding a minimizer in equation (4.101)
by applying the Rayleigh-Ritz method over a finite-dimensional subspace B, of 25 spanned
by a chosen spectral basis {s},..., sk}, k € N. Any basis that spans the space of real-valued
bounded measurable functions can be chosen for spectral discretization. In practice, it is

advantageous to choose a basis in which its spectral integral for each e,,a € N,

[ shovdu, 0 (4.102)
o(HI)

can be evaluated at a cost that scales better than cubic with respect to the number of
electrons in the system.

Let us introduce the subsets

_ _ k
/cf;;(m — {,y c IC]I\{,J( oy = ZCZSZ(Hj>}' (4.103)
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Then the band energy for a density matrix v € Ky k¢ )

k
Ef)and(/}/) = E%and(Z Cl;SI;) = TI'(H]’}/)
q=1
00 k '
- Z [ A s di
i=1 o(H7) q=1

{Z / . )dpd } ch kg (4.104)

and the number of electrons in the system for v € ICH (0) 4

q=1
oo k
= [ S, )
i=1 Y o(H7) 4=
k S
- Zc’;{ Z/ | sk(A) duihei()\)} = Z chnl. (4.105)
q=1 i=1 Y o(H7) ¢=1
The minimization of the energy function in equation (4.101) over By becomes
k
k K
{ckl?chk Bl ( qz:; cqsq> , (4.106)
subject to the constraints
k
0<c S Z ’; ’; = (4.107)

Next, we give an example of spectral discretization, namely, spectral binning.

4.4.3.1 Spectral binning

Spectral binning refers to a basis consisting of a collection of disjoint piecewise constant
functions, also known as simple functions. The spectral binning basis is defined over a

partition of the fixed interval [ALp, Ayp| into k sub-intervals, or bins, {t},q = 0,...,k}.



c
We require that t’g = A < Apin and Ay < Ay = tﬁ < Amax, Where A\ and A\« are
the minimum and maximum eigenvalues of H7, respectively. The choice of (ALp, A\up) must

7

ensure that the space K N, k ) includes the minimizer Ymin to the band energy functional
El (¢ Let si(A) denote the disjoint piecewise constant characteristic functions defined

on the spectrum of H7(¢,u),

1oif ek < X<tk
s (A) = (4.108)

0, otherwise.

We define B, as the collection of constant simple functions {st;qc }';:1 associated with this
partition. These functions form a natural basis because they are dense over the space of

7

integrable real functions over [Apg, Ayg]. The density matrix ”yk e kKl N, k using the spectral

theorem in the spectral binning basis is

o —/ Zc Sp (A M) dPI(N). (4.109)
(119)

(¢u

For any v € IC with associated coefficients {c’; ’;:1 as in equation (4.109), the corre-

sponding band energy is

and
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where n’;

7 can be interpreted as the number of eigenvalues in the interval (t’;_l,t';), hence
giving rise to the name of the method, spectral binning.

The minimization over B, in equation (4.101) becomes a linear programming problem,

k

inf kI, (4.110)
{ck}CRE = 1-q
subject to the linear constraints
k
0<cf <1, > dnbi=N (4.111)
q=1

To proceed with the spectral binning discretization numerically, we have to evaluate the
quantities {n7} and {ws/}. In the next subsection we explain in more detail how this is

done.

4.4.3.2 Numerical evaluation of {n[7}}_,

By Sylvester’s law of inertia [75], n’;’j equals the number of eigenvalues of H7(¢,u) contained
in the sub-interval (t’;_l, t’;). The inertia of a given matrix H’ is denoted by the number triple
(N_, No, V), where N denotes the number of negative eigenvalues of H, Nj the dimension
of the kernel of H, and N, the number of positive eigenvalues of H?. Sylvester proved that
the inertia of a matrix is invariant under congruent transformations of the matrix.

The congruent transformation that we adopt is the decomposition H? = LDL”, where

D is a diagonal matrix and L is a lower triangular matrix. The number of negative elements

in D corresponds to the number of negative eigenvalues of the matrix H7, [54]. To find the

k

number of eigenvalues of the discrete Hamiltonian matrix H7 in an interval [t} _,,

tr], we need
to perform the LDL" decomposition twice:
Pk g T
Hi 45 \T'= Ly Dy L% .

(4.112)
H? — 377 = Ly Dy L.



cii
Here, Z7 denotes the j x j identity matrix. For a non-orthogonal spatial discretization, we
simply replace Z7 with the corresponding mass matrix M7. Let A —(Dt{;) denote the number
of negative eigenvalues of Dtg;- Then,

nF = N_(Dy) — N_(Dy ). (4.113)

q q q—1

Turning to the computational cost for the LDLT decomposition, we note that for a
j X j matrix with half bandwidth W, the number of operations for the LDL* decomposition

is [b4],
W(Ww + 1)j‘

5 (4.114)

C(LDLT =

Thus, for k partitions or “bins” of the spectrum, the total number of operations to obtain
the number of eigenvalues in each bin is

W(W + 1)kj

. (4.115)

C’binning =

However, the half bandwidth W of the Hamiltonian scales with respect to the number of
spatial discretizations depending on the spatial dimension of the system. According to [44],
the computational cost for the LDLT decomposition of a molecular system in 3D at worst
scales as N2. Note that by (4.115), the computational cost of the binning method scales

linearly with respect to the number of spectral discretizations k.

4.4.4 Numerical evaluation of {wg’j}lgzl

Unlike nf7 introduced in (4.105), it is not possible to evaluate wi” defined in (4.104) directly
at a cost that scales better than cubic with respect to the number of electrons in the system.

Therefore, we proceed to make one more approximation. Let {m’; ’;:1 be the center of mass
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of each partition, defined by

oo

Wy 1 (/
my = —— = g
= ki ok
q an J

Aoy () i () )

t5) by

We approximate the center of mass m in the interval (t* 41+ tg

th — ¢k

~ q q—1
~~ .

4 2

This approximation implies the spectral approximation of the band energy as

Tr(H (¢, u)y Z/(H Zcq)\stk )dpl, .. (N)

~ Zcq Iq”n';” = rfr(_f-_fj(<;5,u)7j).

g=1

(4.116)

(4.117)

(4.118)

This approximation of {wfj’j }’;:1 introduces an error over the Rayleigh-Ritz approximation

of the discrete band energy. However, in the following section we show that this error is

controllable.

4.5 Convergence with respect to spectral and spatial

discretization

We define relevant functionals so that we can best utilize the machinery of I'-convergence.

Part I: Definition of the limit functionals.

Starting from equation (4.80), we consider the minimization problem

E(P){EKS — ZILIEIZET( )

(4.119)
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where T': Y — R is defined by

T(u) = B;.(u) + sup S(u, ¢), (4.120)
ol%

and S(u, ) :V — Ris
S(u, ) = —/Q (Cs|Vo(r)|*=b(r,{Rq, -+ ,Rm})o(r)) d”ig;f( {Eband(u7¢a 7)+],C113<<b,u> (7)}

(4.121)

Here, I for a set M denotes the indicator function of convex analysis,

0 if u e M,
In(u) = (4.122)

+00 otherwise.

In (4.121), the minimization over Ky is replaced by the minimization over Kﬁ(d”u). This

ensures the existence of a spectral function and is justified in equation (4.84).

Part II: Definition of the functionals with combined spectral and spatial approximation.

For j € N, based on the identity (4.80), we introduce the family of energies

€jp; = inf TV (u), (4.123)

uel

where T9% : Y — R U {+o0} are defined by

T () = By (u) + sup §7 (u, ¢) + Iy (u), (4.124)
oV

and S (u,-) : YV — R U {—o0} are given by

5949(1,6) = = | (ColVOFb(r, Ry Raa}o(r)) i inf { B, (10091 o (1)} =B, 9).
(4.125)
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In (4.125), we introduced the approximated constrained sets of density matrices
. k;

=1

and the discrete band energies Ebandj’kj (u,¢,-) : X - R,

Ebandj,kj (u7 ¢7 7) = ff‘r(Hj (¢7 U)’)/) ) (4127)

where Tr(+) (depending on k;) is the approximation of the trace operator described in equa-
tion (4.118). We emphasize that this is the actual numerical approximation of the binning
algorithm introduced in Section 4.4.4.

Summarizing (4.104) and (4.118), for v, € IC ¢]’ 7) the approximate trace operator is

k;

> ‘Z+1
H‘]’Yk Z Z Cl;]m / d/"tez €4 (A)
=1 g=1
o0 k]
- Z Z Cl;] m];] (Nei,ei (tqfi-l) - :uei,ei (t];J )), (4128)
i=1 =1
where mfj’ = —q“; L denotes as in (4.117) the arithmetic mean.

We show convergence w.r.t. both spectral and spatial discretization using three nested I'-
convergence proofs. We first establish the convergence of the exact band energies Tr(H? (¢;, u;)7; ).

Then, in Section 4.5.2, we validate the convergence of the approximate trace operators.

4.5.1 The I'-convergence of the exact band energies Tr (Hj(gbj, uj)vj)

Lemma 4.5.1 Ifu; = u inlU and ¢p; — ¢ in V, then

lim inf {T (H (g, ¢5)7;) + 1 (65 >(7)} > Epana(, 6,7) + Lo (7) (4.129)

J]—00 Nk:
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for every v € X and for all ; Syin X.

Proof We consider four disjoint cases.

1. Let y € /ng(‘b’") and {7;}jen C X be a sequence with v; 2 5 such that there exists a

¢1 € N so that v; € Kﬁyk(fj “) for all j > q.

By the lower semi-continuity of the kinetic energy proved in Lemma 4.3.6,

lim inf Tr(—A~;) > Tr(=Av), (4.130)

J—00

and by the compact embedding of W;*(2) in £2(Q), 7; = ~ implies that Py, = Py in
L£2(2). This yields

lim Tr((®; — Uj)y;) = lim [ (5(r) — u;(r))p,, (r) dr = /Q (6(r) = u(r)) py(r) dr

Jj—o0 Jj—= Jq
—T((® - U)n),
leading to
lim inf Tr(H7 (¢;, u;)7v;) = Tr(H (¢, u)7y). (4.131)
J—00

2. Let v € Kﬁ(d)’") and {v;};en C X be a sequence such that there exists a ¢go € N so that

v & Kﬁjk(fj ) for all j > qo.
In this case we have trivially
hm inf {TI'(Hj(Uj, ¢])7j) +1 HI(¢j,uz) (7)} =+o0 2 Eband(u7 (ba 7) + [’CH(@u) (7)
Jj—o0 ICN,kj N
(4.132)

3. Let v & Kﬁw’“) and {7;}jeny C X be a sequence such that there exists a g3 € N so that

HI(¢j,u; .
7 & K™ for all j > gs.
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In this case we have trivially

lim inf {TT(Hj(Uj» Gi)) + 1 Hj(¢j,uj>(7)} = Eband (U, ¢,7) + Lenew (7) = +o0.
Jj—o0 ICNij N
(4.133)

. Now we show that if v & Kﬁw”"), then there cannot exist a sequence v; X~ such that

there exists a ¢4 € N so that v, € Kﬁjk(;bj ) for all Jj > qa.

Let {&}ien € Wy*(Q) represent the eigenvectors of H (¢, u), which are known to form
an orthonormal basis of £2(Q). Similarly, for j € N, let {&/};en € W32(Q) be the
eigenvectors of HY(¢;,u;). From the Rayleigh-Ritz discretization of the Hamiltonian,

we can ensure the convergence of the eigenvectors, i.e., for every i € N|

lim 1€ = &ill ez =0,  lim & =& (4.134)

Jj—o0

Since v ¢ Kﬁ(@u), for the case considered here, there must exist an eigenvector of H

which is not an eigenvector of 7. Let us denote it by &;. Therefore,
,751 = Z Clnga (4135)
q=1
and there must exist an index p € N, p # 1, such that ¢;, # 0. Consider this cy,. Then
cip = (761,&) = lim (3561,6) = lim (g; (7)1, &) (4.136)

Therefore, for p # 1,

lim (g;(H7)&1, &) = Jim (g; ())& — & + €1, &)
= lim (g;(H")¢], &) + lim (g, (') (&1 — €0). &)

Jj—o0

= lim g;(M)(&],&,) = 0.
J—00
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We then have ¢;, = 0 for all p # 1, contradicting our assumption. Hence, we have

shown that if v & IC]{I,W’U), there cannot be a sequence {v;};en with 7; € ICJ}\{J (jbj ) for
all j € N and v; = 1.
The above four cases demonstrate that for all v € X and for all ~; Xyin X,
11]H_1>111f {TI‘(Hj(Uj7 ¢j)7]) + ‘[’CHj(¢jvuj> (7)} Z Eband(“a ¢a ’7) + IK]F\II(ﬂﬁ,u) (7) I (4137)
o0 Nk

Lemma 4.5.2 Let u; = u inU and ¢; — ¢ in V. Then for all v € /Cﬁ(¢’"), there exists a

recovery sequence ; X 5 such that

hm sup TI‘(Hj<Uj, QS])")/]) < Eband (U, ¢7 P)/) (4138)
j—o0
and
i T
Tl"(H] (uj7 ¢])7) + IKHJ(¢jvuj) (’7) - Eband(u7 ¢7 7) + ]]Cg(¢’“) (’7) (4139)
N,kj

with respect to the weak*-topology in X as j — oo.

Proof We consider two disjoint cases.

1. Ifv & Kﬁ(qﬁ’u), then let the recovery sequence be defined by the finite-rank operators
that converge to v in || - [|x. This sequence of finite-rank operators exists due to the
Rayleigh-Ritz method and is dense in X. With this recovery sequence, we trivially
have

lim sup Tr (H” (uj, ¢;)7;) < Evana(u, ¢,7) = +o0. (4.140)

Jj—o0

2. If v e ICJ{I,(QS’"), then without loss of generality, we write

v =) 2088, (4.141)
=1
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where {& }ien, {€}ien denote the sets of eigenvectors of H (¢, u) and H7(¢;,u;), re-

spectively, as in Lemma 4.5.1.

Let us define the sequence of finite-rank operators:

J
v =20l (4.142)
i=1

We proceed to show that v; — v w.r.t. || - ||x. From Theorem VI.10 in [63], there

exists an unique partial isometry (), such that
v =l = Ry — ) (4.143)

Now we show the strong convergence of v; — « in the norm sense of X as follows.
Utilizing equation (4.143), the dual operator Q* of @), the Cauchy-Schwarz inequality

and the fact that both ) and Q* are isometries, we find
lim Tr(ly —~5]) = lim Tr(Q(y — 7))
Jj—o0 j—oo
= lim > Q7= 1) &)
p=1
= lim > (v = 1))6, Q"&)
p=1
< Jim Y 1 =18l 2@ Q& 2w
p=1
<lim 3 (v = %)& e 1€llezo
p=1

= lim 2 10y = )6l c2c- (4.144)
p:

Let us consider just one of the terms in equation (4.144) for fixed summation index

p. We now look at its projection onto the eigen-basis {¢;};en and find with (4.141),



CcX

(4.142)

. 2 : o 2
Jim 10 = )6 ey = Jim 3 =), 62

oo
= lim
Jj—o0
q=1

<1 7y
< lim { 22% &, €])°

2
20 §p7§q 22051 5}275] ) }

Z 20 £p> fj >

+Z

g=1l,g#p | i=1
j 2
_ . J_ ¢ \2
< lim { 20y = 320 (€] =€)+ 6)
2
- Z Zmz Ep (6] =&) +E)((E] &) + &, &) } =
g=1l,g#p | i=1
(4.145)
The above limit converges to 0, since for every ¢ € N
lim (&5 — &) = lim (¢ — £,,6) =0. (4.146)
j—00 Jj—o0
With the help of (4.145), we find that
0= thmf 1(r = )&l 20y < lim mfZ 1y = )6l 2@ (4.147)
p=1 p=1
Similarly, by Jensen’s inequality,
lim sup Z (v = 1)l ez < ) limsup [|[(y = %)&lle2) = 0. (4.148)

j—)OO J—00

p=1 p=1

As a result of (4.147), (4.148) we have 0 < liminf ||[(yv — ;)& 22() < limsup|[[(y —
j—o00 ;

J]—00

7i)pll 22() < 0, implying that

lim Tr(ly = )) < lim [[(v = 7,)&llez) = 0. (4.149)
j—00 j—00

&l
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We proceed to approximate each v; using spectral theory. By the choice of v;, there

are suitable bounded Borel functions g; such that

v = g;(H). (4.150)

Next, we define the sequence 7;; by

k
Tk = Y 7 su(H), (4.151)
i=1
where
¢’ = max{g;(t}), g;(tf.0) ). (4.152)
and {t¥, ... ¥} is the partition of the interval [Arp, Aug| introduced in Section 4.4.3.1.

We can show that for every 7 € N

Tr(|9je — 1) = 0 (4.153)

as k — oo, see Theorem 2.29 in [82]. However, the trace of 4, does not satisfy the

trace condition for every k, i.e.,

Tr(Y%) # N. (4.154)
Nevertheless, since
lim Tr(9;%) = N, (4.155)
k—o0

we can normalize the trace to N by introducing

N
L= 4.156

Here, due to (4.153), we may assume Tr(7;;) # 0 for all j and k.
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In conclusion, we have
Jim Tr(lyjpe —l) < lim {Te(lvk = Fikl) + Te(|F56 — 1)} = 0. (4.157)

Eqn. (4.157) implies that for every j there is an index k; € N, k; — 0o as j — oo, such

that

| =

Tr(lw, —wl) < = (4.158)

<

Hence, the recovery sequence for every v € IC]I\J,(d)’") can be defined as v, € /Cfé]k(jbj )

Y

and

i Te([yg; = 1) < m ATe(lye; —50) + Te(ly =D}
J—00 Jj—00

1
< lim {3 + Tr(ly; — vl)} = 0.

J—00

Now, in order to show that
Te(|[VI(w, = IVI]) =0 (4.159)
as j — 0o, we use that (1, — ) € & and
lim H'ij - 7”sup < lim Tr(|7kj —|) =0. (4.160)
Jj—00 Jj—0o0
Combining the above arguments, it follows that

lim inf Tr (V] (9, = 9)IVI|) = lim inf Te(Q|V| (3, = 7)IV])

=liminf } (Q[V|(, = IV &)
q=1

> ) liminf{(3, =)V, [V]Q€) =0, (4.161)

q=1
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and similarly

limsup Tr (| |V| (v, —9)[VI|) = limsup Te(Q[V|(v, — 7)|V])

_]*)OO ]*)OO

= hmsupz QIVI(ve; — VIV, a)

J—00 q= 1

< thsup (Y, = NIVIE, [VIQE) = 0. (4.162)

q= 1 J—00

Together, (4.161) and (4.162) yield
ggﬂqum—wNWD:O. (4.163)

¢J uy)

We have shown that, for indices (j, k;), we can choose v, € KA Nk as the recovery

sequence and vy, — v € IC @) For this sequence, the band energy converges in the

limit:
limsup Tr (H” (uj, ;)7;) = Evana(u, 6,7), (4.164)
j—o0
where v € ICH(d)u , ¢ — ¢ inV and u; — u in Y.

Together, the above two cases prove that the limsup condition is satisfied and that in the

limit j — 0o,

1 r
Tr(H (uj, 6;)7) + L nio;; (7) = Bana(w, ¢,7) + Lo (7). i (4.165)
N k;

Lemma 4.5.3 For every ¢; — ¢ in V and every u; — u in U, the family of functionals

{ T (H w5, 63)7) + 1 st (1) } (4.166)

Nlc JEN

18 equi-coercive with respect to the weak*-topology in X .
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Proof This proof is similar to the proof of Lemma 4.4.1. It is reproduced here for the sake

of completeness. For every v € ICJ}QU (;bj’uj ), we have the bounds from below:

Tr(H (uj, ¢5)7) = %Tl‘(—AV) + Tr(®;7y) — Tr(Uj7)
> %Tf(—ﬁv) — ([5llc2e@) + llwslle)l o4 ]l 220
> %Tr(—AV) — Cio([[¢ll 20 + HujHEQ(Q))HP’YH%l(Q)||:0'Y||§3(Q) (4.167)
> %Tr(—AV) — Cu(ll9ll e2(0) + ||uj||L2(Q))N1/4||V\/p_’y||§2(ﬂ) (4.168)

1 3
> §Tr(_A7) - CI2HV\/EHZ2(Q)7 (4.169)

where interpolation inequalities are used to obtain (4.167), and the Gagliardo—Nirenberg—

Sobolev inequality is used to obtain (4.168), and with the constant
012 = CH SUIE)] {H¢j HEQ(Q) + HujHEQ(Q)}Nl/ZL' (4170)
J€

Since

Tr(~A%) > [V /5 P o (4.171)

the kinetic energy is the dominating term in the inequality. Hence, for any ¢ € R the level

sets
{7 X Te(H(us,6,7) + 1 wsio,p (1) S 1} (4.172)
Nkj
are bounded:
1 3 N
t 2 Slvllx = Collvollzze) — 5 (4.173)

By the results in [36], this shows that for every j and k;, the level sets of {Tr(Hj(uj, ®;) -

) + IKH;'(%,”].) ('y)} are precompact and hence equi-coercive. |
N,k
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Lemma 4.5.4 If ¢; — ¢ iV and u; — u in U, then

lim inf {Tr(Hj(uj,gzﬁj) )+] 13 (6 ]>(7)} = iIel/’fY{Eband(u7 ®,7) +IKJAVI<¢,u) (7)} (4.174)

j—ooveEX Nk Y

Proof This is proven using Theorem 7.8 in [49], Lemma 4.5.2, and Lemma 4.5.3. [

4.5.2 I'-convergence of Ebandj_’kj with approximation of the trace

operator

In the last section, the I'-convergence of the exact band energies has been shown. Subse-
quently, we extend these convergence results to Fpang,, introduced in (4.127), i.e. to the
g

evaluation operators actually used in the binning algorithm.

Lemma 4.5.5 Let uj — u iU, ¢; = ¢ inV as j — oo and vy, € Kﬁfkj for all 7 € N.
Then

lim |Tr(H/vy,) — Tr(Hoy,)| = 0. (4.175)

]—)OO

Proof By direct estimates we find that

~ . . q+1
Tr(Hom,) — Te(Hy,)| = Sy / 5 — )55 () e, (M)
=1 1
q= N
toh .
|5 bt — o / B e (V)| (4.176)
i=1 g=1 tq]
0o kj
. k; B
= ZZC{;J( J_V )(ﬂezez@q-&-l)_ﬂEi,ei(t’;J»‘
i=1 ¢=1
hy, . _
< ZC Z /’l’ei,ez‘(tqi—l)_:uemei(t];]))'
=1
k;
~ by
= c 7771’;3 : (4.177)
q=1
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where hy, 1= maxi<j<, 1 |tfj — tfjrl\ are the widths of the binning intervals. The numbers

1/;2 e (t, t];ﬂrl) in equation (4.176) appear as a result of the mean value theorem for Riemann-
Stieltjes integrals with respect to each measure g, ,(\); see e.g., [82].
For each € > 0, there exists a k € N such that hy, < % for all k; > k. Consequently, due

to equation (4.177),

kj
k
q

| Tr(Hy,) — Te(Him,)| < inkil <e. (4.178)

N

q=

€
— Y c

1
This concludes the proof of (4.175). [

After the convergence of Tr(-) to Tr(-) has been established, we are now ready to prove

the announced I'-convergence result.

Lemma 4.5.6 For every ¢; — ¢ in V, every u; — w in U and all v € X,
Tr(H (65, 7) + Loy () = T (H (D, u)0) + Lo () (4179)
ok
in the limit j — oo.

Proof Let us begin with the liminf part of the I'-convergence proof. From Lemma 4.5.1, we

have that for all ¢; — ¢ in V and all u; — w in U, for every v € & and all ~; Aoy,

Tr(H(¢,u)y) + L (y) < lim inf {Tf(Hj(cbj,Uj)%‘) +1 ij,up(%‘)} (4.180)
N j—o0 K kj
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Using Lemma 4.5.5,

lim 1nf{ (H(gb u)y ) + ],Cjbvf(w) (7)}

j—o0
< timint {To(F7(¢5,105)15) = (7 (85, 5)7) § -+ Yim inf {Te(H2(65,5)%) + 1, (1)}
<11]Ig1£f{ r(H (¢, u5)7;) — T(Hj(ébjauj)%‘)+Tf(Hj(¢j>Uj)%‘)+1,CHJ'<_¢j,uj>(%)}

—hmlnf{ ( (¢Ja“g)%)+] HJ<¢J p(%)}

J—00

Similarly, for the limsup part, using the same recovery sequence {7, }jen as the one con-

structed in Lemma 4.5.2,

lim sup {T}(Hj(qu, ui) ;) + L i o) (Vs )}
N,kj

Jj—00

J—00

N,kj

< lim sup

Jj—0o0

—

Tr(Hj(qu, uj)'yk].) —Tr([—]j(qu7 uj)ykj)}+lim sup {Tr(Hj(qu, uj)%].) —l—flcm@j,uj) (Wk]- )}

Jj—00
< lim sup {Tr(H(ng, u)y) + Ilcﬁ(d)’“’ (7)}

Jj—0o0

Therefore, using the results of Lemma 4.5.2,

lim SUP{ v (H (65, u3) ;) + 1 ooy (i, )} Te(H (¢, u)y) + Leneow (7). (4181)

Jj—oo Nlc

This completes the proof. |

Lemma 4.5.7 If u; — v in U and ¢; — ¢ in V, then for every v € X, the family of

functionals {Tr( (¢,u;)7) + ];C]’jj;?’j*“ﬁ(w}jel\l is equi-coercive.
Wk
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Proof From Lemma 4.5.5, we have for every v € Kﬁjy(ijuj)’

ki oo

Te(HY (95, u3)7) = T (H (955 03)7) = D > (mg? = vy )eg? (e (b)) = Heve (857)
q=1 i=1

> Z(ALB - AUB)CI;J (Mei,ei (thrl) — Hege (t];J))
q=1 =1

where (ALg, Aup) denote the a-priori given bounds on the spectrum of H (¢, u) for the binning
algorithm.

Hence, from Lemma 4.5.3, especially equation (4.169),

Te(H? (¢5,u;)7) + Lty (7) = T (H (65, u)7) — Tr(H (05, u5)7)
+ Tr(Hj(quﬁ U,])’y) + ]KHj(éjvuj) (,7)

> STe(=Ay) = Call\/pyll 72y + (A — Aus) V.

DN | —

This shows that for any t € R the level sets

{7 € Te(H(6,45)7) + I _ssio,p (1) < £} (4.182)
N,k
are bounded:
1 3 N
t 2 5lvlle = CallVillzg — 5 + (Aus = Aus) V. | (4.183)

Lemma 4.5.8 If ¢; = ¢ iV and u; — u in U, then

j—ooveX YEX

tim inf { Te(H (65,14,)9) + I e, (N | = E {Tr(H(0,u)7) + Lo (1 ] (4.184)
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Proof This is a direct consequence of Theorem 7.8 in [49], Lemma 4.5.6, and Lemma 4.5.7.

4.5.3 TI'-convergence of the operators S/

In the next step we consider the I'-convergence of —S%* (u;, ¢) to —S(u, @) for u; — u.

Lemma 4.5.9 Ifu; — u in U, then for j — oo,
— Gikj (uj, d) LN —S(u, ¢) (4.185)

with respect to the weak topology in V.

Proof From Lemma 4.5.8, for every u € U and all u; — u in U,

lim inf {Ebandj,kj (uj, &,7) + IKHw,uj)(V)} = vllel)f( {Eband(u; ¢.7) + Lienom (’Y)} (4.186)

j—oo yeEX Nkj

Beginning with the liminf condition, for every ¢ € V and all ¢; — ¢ in V,

/ Cs|Vo(r) dr < liminf / |V, (r) 2 dr, (4.187)
Q I Ja

and

Jj—o0

—/Qb(r, (R, Ra))o(r) dr < lim inf (—/ﬂb(r, {Ru,-- R} () dr). (4.188)

This shows
—S(u,¢) < liminf (— S (u;, ¢)). (4.189)

j—00
For the limsup condition, we can pick the recovery sequence gz~5j to be the projection of

¢ €V onto V;. From the density of the spaces V; as j — oo, we have éj — ¢ in V. Hence,
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for this recovery sequence, we obtain

lim / Cs|Va(r)? dr = / Cs|Vo(r)P? dr (4.190)

and

J—00

lim ( - /Qb(r, {Rq, - ,Rm})o;(r) dr) = — /Q b(r,{Rq1, - ,Rm})o(r)dr.  (4.191)

In conclusion, for u; — u, the I-convergence of —S7%i(u;, #) to —S(u, @) has been estab-

lished. |

Lemma 4.5.10 If u; — u in U, then the family of functionals {—S"%i(u;, ¢)}ien is equi-

coercive with respect to the weak topology in V.

Proof Proceeding as in Lemma 4.5.3, we find

— Gk (Uj7 ¢) - / (CS|V¢<I')|2 - b(I‘, {Rlv e 7RM})¢<r)) dr

Q

— inf {Te(H7(6.4,)7) + 1 oy (1)} + 1, (9) (4.192)

YEX

> Cs||Vellzo () — I, {Ra, -+, Raa}) 2@ 19 ll 2oy — Te(H (6,15)7;) + e, -

Here, 7; € /C]Iéj,jjsu]) are minimal in (4.192) and satisfy for all j € N
Tr(H (¢, u)3;) = Te(H (6, u)3;) — ex, (4.193)

where due to Lemma 4.5.5 the sequence €, converges to 0 as j becomes infinite. It follows
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that

— 575 (uj, ¢) > Cisl| @l 22y — (I0(r, AR, -+, R}l 2y + 103, 2) 1€l 2 )
1 .
= llusllex@llps; ez + 5 Tr(=A%) + e,

> Cs| @l 22 () — Crallpll ez + Cis, (4.194)

with a constant C'y3 > 0 originating from the Poincaré inequality, and with further constants

Cu = ||b(r,{Ra, -, R}l 20 +sup 105, | 22 ()
Jje

1 .
Cis = sup { = [ llexl, 2oy + 5 TH(=A%) + 61, }.
je

With (4.194), the equi-coercivity of —Sj’kf(uj, ¢) with respect to the weak topology in V is

proved. |

Lemma 4.5.11 Ifu; — w in U, then lim sup S¥ (u;, ¢) = sup S(u, ¢).
J—00 pey PEV

Proof This is proven using Theorem 7.8 in [49], Lemma 4.5.9, and Lemma 4.5.10. |

4.5.4 I'-convergence of the operators Tk

Lemma 4.5.12 The family of functionals {T7" (u)};en converges in the I'-sense, i.e., for
J — 00,

T35 (1) = T'(u) (4.195)
with respect to the weak topology in U.

Proof We begin by showing the lim-inf condition for

T (u) = BE(u) + sup K3 (u, ). (4.196)
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From Lemma 4.5.11, we have for every u; — v in U and u € U,

lim sup S (uj, ¢) = sup S(u, @). (4.197)

J=00 gy eV

In addition, B} (u) is weakly lower semi-continuous, see [17]. Hence, the liminf condition is

proved.

In order to prove the limsup condition, for every u € U, let the recovery sequence {u; } jen
be the projections of u onto U;. For this recovery sequence, using the bounds from equa-
tion (B.6) in the appendix B, the continuity of the functional B} (u) in U can be established
through Fatou’s Lemma:

lim B (u;) = By (u). (4.198)

Jj—00
Hence, we have satisfied the limsup condition and have proven that in the limit j — oo, the

family of functionals 7% (u) converges in the I'-sense with respect to the weak topology of

U to T(u). |

Lemma 4.5.13 The family of functionals {T%* (u)};en is equi-coercive with respect to the

weak topology in U.

Proof From Proposition 1.2 in [17],

B (u) = /Q h* (u(r)) dr, (4.199)

where h*(x) : R — R is the Legendre transform of (—Ah(t)) from equation (4.12). Using the
bounds from equation (B.6) in Appendix B, there exist real constants Cjg > 0 and Cy7 such
that

Bi.(u) > Cigllully — Cie|Q. (4.200)
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The estimate (4.200) implies natural bounds from below on the functional 7%

T3 (u) = B (u) + sup S (u, )
PEV

> B + ol { T (6, 07) + (0}
> B;C(U) + N)\LB(&, U)

> Bio(u) + N (A + ¢y),

where é = 0 is a test function in V, Ap denotes the lower bound of the binning interval

ALs, Aug| for H7 (¢, ), and )\{{j(é’u) denotes the lowest eigenvalue of H7 (¢, u). Let
g = AP0 Lo (4.201)

We know that sup; |C;] is uniformly bounded, because App is only a functional of quS and u
and independent of spatial discretization.

If ff{ @) denotes the corresponding normalized eigenvector of H’ ((5, u), we can derive a

lower bound of )\{{j((ﬁ’u) by the ellipticity of the underlying variational problem,

A @) _ < HI (¢, u)e @), gfﬂ(¢7u)>

HI A,u
IVE" @20 ) = llull 20y

v

> —|lulle2@)- (4.202)

Using the inequality (4.202), we can bound 77" (u) from below by a coercive functional

which is independent of j and £;:

T35 (u) > B, (u) = N|é — ulc2(0)

> Cigllully — Nllullz (4.203)
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In the limit |lully; — oo, the term Cyg||ull}, dominates, so we have T%%i(u) — oo. Thus the

equi-coercivity of the family of functionals 7% (u) is established. |

Theorem 3 In the limit of the number of spatial discretizations 7 — 0o, and consequently
in the limit of the number of spectral discretizations k; — oo, the family of ground-state
energies of the spatially and spectrally discrete KS energy functionals converges to the full

KS ground-state energy:

lim inf 79" (u) = inf T'(u) = €. (4.204)

j—oo0 uel ueU

Alternatively, in terms of the functional L(u, ¢,~), this means that

lim infsup inf L(u,¢,7) =infsup inf L(u,d,7) = e, (4.205)
J—oo Uiy, ’ngk(?’u) u vy Kﬁw"“)
)

Proof This is proven using Theorem 7.8 in [49], Lemma 4.5.12 and Lemma 4.5.13. |
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Chapter 5

Binning in one dimension, a model
problem

We now test the efficiency of the spectral binning scheme on a one-dimensional benchmark
problem proposed by Cervera et al. [18]. Specifically, we consider a linear chain of M atoms
with N electrons spaced uniformly with R; = ¢ for ¢« € Z. The electrons in the atoms are
non-interacting electrons that interact with an effective field that depends on the positions of
the nuclei in the chain. The effective potential V' (r) is a sum of Gaussian potentials centered

at each atom in the chain:

Vir) = — %Z: \/%5 exp (-%) . (5.1)

Finding the ground-state energy of the system amounts to finding the N lowest eigenvalues

of the linear eigenvalue problem in one dimension:

Hy; = ( — 533 T V@"))%’ = €. (5.2)

The constants « and [ in the effective potential dictate the band gap in the band-structure
of the one-dimensional chain. Hence, the model has the ability to simulate either a metal
or an insulator. In this paper, we test the binning algorithm on a metallic chain, o = 10,

g = 0.45, and an insulating chain, o = 100, 5 = 0.3.
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The flowchart of the binning algorithm as used in calculations is as follows:
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do Find an initial guess to [A\Lg, A\uB);

Perform a LDLT decomposition of H' — M\,gZ7 and H? — \ypZ’;
Find N_(H’ — M\.gZ?) and N_(H’ — \ypZ?);

if N_(H? — M\gZ7) > 0;

then
| Decrease Ar,p until N_(H7 — A\,gpZ7) = 0.

end

if N (H7 — AusT’) < N;

then

Increase A\yp until N_(H? — A\yg) > N;

else

Use bisection to decrease Ayp so that N_(H’ — A\ypZ?) = N + ex with ey € Nog;
end
do Partition [ALg, A\ug] into k intervals with end points {tk t¥, ... t¥}, AL = t& and
\up = th;
for ¢=1:k;
do
Perform a LDLT decomposition of H7 — t’;Ij and find N_(H/ — t’;Zj);

end
for q=1:k;
do
nkd = N_(H) —t8T7) = N_(H? — tf_\T7);

ko (tgHtg_1)

q 2
end

k
do Minimize Y ckmink’

q=1

k .
0<c—¢g"<1 anch’;n’;’]:N.
q=1

over coefficients {c’;} C R¥ subject to the constraints

Algorithm 1: Spectral binning.
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Figure 5.1: Linear chain of M atoms with N electrons [18]. Metal: a = 10, 8 = 0.45.

A system of 1,000 atoms and 4,000 electrons with periodic boundary conditions is dis-
cretized using an 8-th order central difference stencil in finite difference. To find an initial
guess of [A\Lp, Aup|, we use the smallest and largest Ritz values obtained from a Krylov sub-
space projection of dimension k& on an arbitrary unit vector, where k denotes the number
of bins. Note that any Krylov subspace with dimension p > 2 may be used to obtain an
initial guess of [Arp, Aug]. We use an interior-point method to perform the minimization of
(4.110) with respect to the spectral binning coefficients {clg ’;:1 subject to the constraints in
equation (4.111).

The convergence of the band energies of a metallic and an insulating system calculated
using spectral binning and linear-scaling spectral Gauss quadratures (LSSGQ) with a small
temperature [73] is shown in Figs. 5.1 and 5.2. We recall that LSSGQ is a linear-scaling
method based on polynomial approximations of the Fermi-Dirac distribution (3.6) and the
use of associated Gauss quadrature rules. We see that spectral binning outperforms LSSGQ
and exhibits comparatively much better accuracy and rate of convergence. The comparison
can be made increasingly favorable to binning by further reducing the temperature, since

LSSGQ relies on smoothness, whereas binning does not.
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Figure 5.2: Linear chain of M atoms with N electrons [18]. Insulator: a = 100, 8 = 0.3.

5.1 Discussion

The number of bins required for a given accuracy is independent of the spectrum width AN\,
and therefore, is independent of the spatial discretization, whereas in spectral discretizations
using polynomial or rational functions, the number of spectral basis required for a given
accuracy grows as the A\ increases. This property is advantagous in all-electron calculations
or hard pseudopotentials where we need very fine spatial discretizations. The preceding
numerical experiments bode well for a general implementation of spectral binning. We note,
however, that in attempting such a general implementation, a difficulty that is immediately
encountered is that the exchange-correlation functionals that are commonly used in practice
are a function of the local electron density. In the context of spectral binning, the electron

density p(r) is given by
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where

1, ifth <\, <tk .,
B = (Gem),  su(dy) = ¢ == e (5.4)

0, otherwise,

for an orthonormal basis set {e,, }men, and the eigen-pairs of H are denoted by {),,&,}. In

the form of a spectral integral, as shown in [73], equation (5.3) can be written as

2

— [ ) Bty (55)
o(H)

and

mm:Z%ﬂm%mw%%» (5.6)

g=1

where

o (1) = ) e (ro)ep(r). (5.7)

p=1
Thus, the evaluation of the electron density using spectral binning requires the ability to eval-
uate the quantity (ny,, s(H)ng,). The efficient evaluation of this quantity without polynomial
or rational approximations remains an open problem. This suggests expressing the exchange
correlation function in terms of the density matrix directly, which constitutes a natural—but

heretofore unexplored—modeling paradigm worthy of further future consideration.
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Chapter 6

Conclusion

My PhD work is focused on the approximation methods of the density matrix. The basis of
density matrix methods lies in the commutativity between the density matrix and the Kohn-
Sham Hamiltonian matrix, i.e., the density matrix can be written as a matrix function of
the Kohn-Sham Hamiltonian. The rise of linear-scaling density functional theory methods
led to the applications matrix function approximations to density functional theory. A
good reference that describes the various ways to approximate a matrix function is the
book by Higham [32]. To my knowledge, there has been at least one paper published in the
linear-scaling density functional theory literature using the approaches discussed by Higham:
from polynomial based approximations using spectral Gauss quadratures to rational function
approximations. However, I think there is still room in adapting the implementation of
existing approximiations to better suit the architecture of newest supercomputers.

I would like to summarize a couple insights I learned during my PhD regarding the lin-
ear scaling spectral Gauss quadrature (LSSGQ) method [72]. First and foremost, LSSGQ
requires that the system to be discretized using an orthonormal basis. The requirement de-
rives from the need to compute the trace of the product between the density matrix and the
Kohn-Sham density matrix. The trace of a self-adjoint operator is invariant with respect to
any orthonormal basis [63]. This requirement rules out the possibility o