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Abstract 

Non-classical properties and quantum interference (QI) in two-photon excitation of 

a three level atom (11), 12) , 13)) in a ladder configuration, illuminated by multiple 

fields in non-classical (squeezed) and/or classical (coherent) states, is st udied . Fun

damentally new effects associated with quantum correlat ions in the squeezed fields 

and QI due to multiple excitation p athways have been observed. Theoretical stud

ies and extrapolations of these findings have revealed possible applications which are 

far b eyond any current capabilities, including ultrafast nonlinear mixing, ultrafast 

homodyne detection and frequency metrology. The atom used throughout the exper

iments was Cesium, which was magneto-optically trapped in a vapor cell to produce 

a Doppler-free sample. For the first part of the work the 11) - 12) - 13) transition 

(corresponding to the 6S1;2F = 4 - 6P3;2F' = 5 - 6D5; 2F" = 6 transition) was 

excited by using the quantum-correlated signal (£5 ) and idler (£i) output fields of a 

subthreshold non-degenerat e optical parametric oscillator, which was tuned so t hat 

the signal and idler fields were resonant with the 11) - 12) and 12) - 13) transitions, 

respectively. In contrast t o excitation with classical fields for which the excitation 

rate as a function of intensity has always an exponent greater t han or equal to two, 

excitation with squeezed-fields has been t heoretically predicted to have an exponent 

that approaches unity for small enough intensities. This was verified experimentally 

by probing the exponent down to a slope of 1.3, demonstrating for the first time a 

purely non-classical effect associated with the interaction of squeezed fields and atoms. 

In t he second part excitation of the two-photon transition by three phase coherent 

fields £1 , £2 and £0 , resonant with t he dipole 11) - 12) and 12) - 13) and quadrupole 

11) - 13) transitions, respectively, is studied. QI in the excited state population is 

observed due to two alternative excitation pathways. This is equivalent to nonlinear 

mixing of the three excitation fields by t he atom. Realizing t hat in the exp eriment 

the three fields are spaced in frequency over a range of 25 TH z , and extending this 
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scheme to other energy triplets and atoms, leads to the discovery that ranges up to 

100' s of TH z can be bridged in a single mixing step. Motivated by these results, 

a master equation model has been developed for the system and its properties have 

been extensively studied. 
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Chapter 1 Introduction 

It may be argued that an atom, especially an alkali with a single electron in its outer 

shell, is a very simple physical system. In addition, if one considers only an isolated 

sub-manifold of few (three in our case) of its energy levels, as in Fig. 1.1, then 

the dynamics of this atom under the influence of electromagnetic (EM) fields should 

be readily understood. Yet, such a simple system has given us enough material to 

investigate, keeping us occupied for the last six years. In fact, the simplicity of the 

three-level system of Fig. 1.1 has been the ideal test bench for the investigation of 

otherwise very complicated phenomena. During this time and with the aid of such an 

atom, some very fundamental concepts and principles in the field of Quantum Optics 

and Atomic and Molecular Physics have been uncovered. The journey of exploration 

through this very simple three-level atomic system and the discoveries made along 

the way are the subject of my Thesis. 

More specifically, using a three-level atom, a variety of new phenomena associated 

with the interaction of atoms with various states of the EM field have been stud

ied. As part of the work, experimental techniques have been developed, nonclassical 

phenomena have been observed, the system has been studied theoretically and the 

acquired lmowledge was extended to practical applications with implications in a va

riety of fields. The emphasis of the work was divided among two principle subjects: 

the investigation of quantum effects associated with t he interaction of atoms with 

quantum states of the EM field and the quantum features of the interaction of the 

atoms with multiple single-mode coherent states of the EM field. A combination of 

these two subjects sparked further developments and, as a result, observations have 

b een made of otherwise out of reach nonclassical correlation of fields separated in 

frequency by 25 TH z. 
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Figure 1.1: A three-level system is realized by considering an "isolated' energy sub
m anifold of an alkali atom . 

The intent is to cover in this Thesis the basic milestones and explain the physical 

principles of this work. The journey takes us from basic understanding of a t hree-level 

atom to notions such as nonclassical two-photon excitation, quantum interference in 

multiphoton excitation and the use of atoms as ultra-fast non-linear mixers. These 

subjects will all be explained in due time in the subsequent chapters, but before 

getting into the details, in the remainder of this chapter a brief overview of the t hings 

to come will b e outlined. 

1.1 The Three "Eras" of my Research 

Reflecting back on the work of the last six years, I see that my Thesis is naturally 

divided into t hree "eras" which I will conveniently use as break points in the discussion 

of our research. The first "era" I call "Basic Experimental Concepts." During t his 

t ime some of the fundamental experimental t echniques and methods needed for t he 

subsequent work were developed. At this preliminary st age a magneto-optical trap 

(MOT) was constructed to cool and trap atoms in order to produce a Doppler-free 
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sample for the subsequent experiments. Following t his, t he capability to perform high

resolution spectroscopy on the atoms in the MOT was developed and measurements 

of the previously unresolved internal structure of t he third excited state of the atom 

were p erformed. Finally, a unique facility capable of producing frequency tunable 

squeezing was modified to match t he needs of the research program that followed. 

During this era the foundations of my experimental skills were put into place. 

The next "era" was the time when one of the most challenging tasks in Quantum 

Optics, namely the observation of nonclassical effects associated with the interaction 

of squeezed light with atoms, was undertaken. This em I call "Squeezed Light and 

Atoms." During this time pioneering experiments were performed and for the first 

time complemented with observations, t heoretical predictions that existed for more 

than a decade. [1] Here an example of nonclassical behavior of atoms interacting with 

squeezed light as manifested in two-photon excitation by correlated pairs of photons 

was demonstrated. In particular, the excitation rate as a function of intensity was 

measured to deviate from the classical quadratic law and was observed to asymp

totically approach a linear dependance in accordance with theory. Until today, the 

work of this era has been the only successful attempt, and with t he exception of an 

alternative, relatively unsuccessful approach also implemented by us, [2] it remains 

the only experiment on the subject. 

Finally we come to the third "era," the era of "Quantum Interference ." This 

has been the most productive era of my graduate career, where as a well "seasoned" 

student I have produced the bulk of my work. During t his time, by modifying the 

previous experiment, a two-photon transition was excited by using multiple photons. 

As a result there were more than one possible excitation pat hway, which lead to 

Quantum Interference (QI) . Not long after the initial observations, it was realized 

that this could have profound implications in several fields. The key idea is t hat 

atoms act as ultrafast nonlinear mixers due to QI. F irst by applying these findings to 

frequency metrology, we proposed novel techniques for bridging large frequency gaps 

in single steps. Then we applied our results to optical communications and obtained 

a patent for our work. Subsequently, we also proposed to use the atoms in a novel 
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homodyne scheme and presented a proof-of-principle experiment in support of our 

claim. Finally, in order to lay some solid ground for future work on the subject, we 

have theoretically analyzed the details of our system by solving the master equation 

that produced models valid in a large range of parameters. 

With this prelude in mind we now turn to the more technical discussion. The next 

section is devoted to introducing the atomic system used throughout our experiments, 

while the following three sections are an overview of the science of each of the ems 

mentioned above. Here, the goal is to relate to the reader the main concepts and 

key ideas that will appear in the rest of the Thesis and summarize the content of 

the various chapters. The interested reader may then refer for more details to the 

subsequent chapters. 

1.2 Three-Level Energy Submanifold in Cs133 

The particular atom that was used throughout our experiments is atomic Cesiurn-133. 

The relevant transitions that comprise the three-level energy submanifold of Fig. 1.1 

are the 6S1; 2F = 4, 6P3; 2F' = 5 and 6D5 ; 2F" = 6 states, as shown in Fig. 1.2. To 

familiarize further the reader with the atomic system of Fig. 1.2, it is worthwhile to 

introduce at this point the notation and parameters which will be used repeatedly 

throughout the rest of this Thesis. First, the simplifying notation {11), 12), 13)} is 

employed to denote the energy levels {6S1; 2 F = 4, 6P3; 2 F' = 5, 6D5; 2 F" = 6}. Then 

the eigenfrequencies of the system are defined to be 

(1. 1) 

where Ei is the energy of each state. The eigenfrequencies for the atom in Fig. 1.2 have 

corresponding wavelengths equal to >-21 '.::::'. 852 nm , A32 '.::::'. 917 nm and A31 '.::::'. 442 nm. 

The FWHM atomic linewidths are 'Y2 '.::::'. 5 MHz and 'Y3 '.::::'. 3 MHz and correspond 

to the decay rates of the 12) ~ 11) and 13) ~ 12) transitions respectively. Finally, an 
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important parameter of the system is 6 , which is defined to be 

I W311 I W31 I 6 - W21 - 2 = W32 - 2 · (1.2) 

Stated differently, 6 is a measure of t he degree of non-degeneracy in the system which 

for our case is equal to 6 c:= 25 TH z . 

ffi31 

2 .... ----""""!""" ........ - 6P312F' 5 
----- ___ ; d 

Figure 1.2: The three-level energy submanifold in atomic Cesium which was used in 
our experiments. 

1.3 Basic Experimental Concepts 

In the first part of the Thesis the basic lab set-up that was used throughout the exper

iments will be described. This set-up consists of two main components: a frequency 

t unable source of squeezed light [3, 4] th at generates nonclassical states of the EM 

field and a magneto-optical trap (MOT) [5, 6] that provides a Doppler-free atomic 

sample for the experiments. 
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1.3.1 Magneto-Optical Trap 

Starting from the first part of the experimental set-up, the magneto-optical trap 

(MOT) shown schematically in Fig. 1.3 is formed by a combination of optical and 

magnetic fields. In particular, five laser beams (two with opposite directions along the 

z-axis, and three in the perpendicular plane, spaced by 120° from each other) together 

with a repumping beam, are responsible for cooling the atoms down to the Doppler 

limit of 120 µK. In addition, a pair of coils with anti-parallel currents produces a 

magnetic field gradient, which in concert with light forces produces a potential well 

in which the atoms are confined. Although this is a well established technique for 

cooling and trapping, [5, 6] some of the discussion will nevertheless be devoted in the 

particular realization in our own experiments in order to document the parameters 

and characteristics of the apparatus. To give a general idea of the trap that we had 

in our disposal, it is worth noting at this point that the physical size of the MOT 

was of the order of 0.1 - 0.3 mm in diameter, it had a temperature close to the 

Doppler cooling limit of about 120 µK , its density was estimated to be of the order 

of 109 atoms/ cm3 and hence the number of atoms in the MOT was of the order of 

500 - 15, 000. 

1.3.2 High Precision Spectroscopy of the 6D5; 2 State in Cs133 

Continuing the discussion of the preliminary phase of our research, I will then describe 

a classical spectroscopy experiment which was performed in order to study t he 6D5; 2 

state of Cs.[7] This exercise was a very crucial initial step in our work for a couple 

of reasons. First, in order to realize an isolated three-level energy submanifold, it 

is important to know the internal (hyperfine) structure of the states involved in the 

transitions. However, as it turned out, the 6D5; 2 level had not been carefully studied 

in the past, and the only available reference [9] until then quoted an accuracy for 

the measurements of only 30%. In addition, for the experiments that followed it was 

very important to learn how to perform spectroscopy on the MOT which is a very 

powerful tool in the field of high precision spectroscopy.[8, 10, 11] 
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9 MOT 

Repumping Beam 

Figure 1.3: MOT setup: five trapping beams, T1 , ... , T5 , and one repumping beam 
are responsib le for cooling the atoms. A pair of coils with antiparallel currents, I, 
produce a magnetic field gradient which in concert with the light force confine the 
atoms in a localized region in space. 

Turning now to t he actual spectroscopy experiment, it is noted that it was per

formed by exciting the two-photon transition 6S1; 2 F = 4 -7 6D5; 2F" by a tunable 

Ti:Sapphire laser and then observing the emitted fluorescence from the cascade decay 

back to the ground state. In particular, monitoring of the excited state population 

was achieved by observing the fluorescence emitted from the 6D5; 2F" -7 6P3; 2F' = 5 

transition. The main outcome of these measurements was the determination of the 

hyperfine structure (hfs) of the 6D5; 2 level as characterized in first order by the mag

netic dipole a and in second order by the electric quadruple b coefficients. These 

coefficients were measured to be a= - 4.69 ± 0.04 MHz and b = 0.18 ± 0.73 MHz. 

Here, t he solution to two main experimental problems t h at were crucial in the 

following experiments will also b e discussed. First, there was the issue of AC Stark 

shifts of the ground level and power broadening due to the strong trapping beams. 
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This was solved by implementing a chopping cycle (at 4 KHz ) for the trapping beams 

and performing the measurements only during the OFF part of the cycle. However, 

even the ON part of the cycle was interesting and by comparing spectra obtained 

during t he ON and OFF parts of the cycle, useful information about the magnitude 

of the Stark shifts and power broadening have been extracted. 

A second problem that needed special att ention was the signal-to-noise (S/N) 

ratio of the measurements. First an efficient technique for the observation of t he 

fluorescence from the 6D5; 2F" ---+ 6P3; 2F' = 5 transition had to be devised and 

then the background light (mostly from scattering from the trapping b eams which 

even during the OFF part of t he cycle was enough to produce noticeable signals) 

had to b e dealt with. In addition, during the ON part of the cycle the detector 

was oversaturating and was not recovering fast enough for the measurements to be 

made accurately during the OFF part of the cycle. However, by realizing that the 

wavelength of the trapping beams is 852 nm, while that of t he 6D5; 2F" ---+ 6P3; 2F' = 5 

transit ion was close to 917 nm and by using an interference (notch) filter centered 

at 917 nm, good isolation was provided that helped to overcome these difficulties 

by eliminating the background to acceptable levels and avoiding detector saturation 

from 852 nm light. 

1.3.3 Optical Parametric Oscillator 

The last chapter of Part I refers to the subthreshold optical parametric oscillator 

( OPO) which was the source of radiation for the experiments that followed. The 

operation of the OPO in two modes, the degenerate (DOPO) and non-degenerate 

(NDOPO), will be discussed. The setup, particularly of the NDOPO which is relevant 

for the experiments, consists of a very complex set of optical elements, alignment 

procedures, optimization techniques and electronic feedback loops (see Fig.1.4), all 

of which when put together could be a Thesis by themselves! In addition, when one 

starts to consider the properties and actual b ehavior of the output of the OPO as 

compared to t he theoretical predictions, even further complications arise. Luckily 
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there exists a lot of t heoretical [12, 13] as well as experimental [3, 4] work on the 

subject and most of the setup was already in place. Hence, the emphasis here will be 

on the operation of t he OPO and measurements t hat were taken to characterize its 

properties. In addition the modifications that have been introduced and operating 

details will be outlined. 

Ti :Sapphire 
Laser 

Fee db ack ·- - - . - - -- - -

BS 

l 
883 nm ... Doubling 

Cavity 

ND-OPO 

442 nm 

442 nm Signal, 852 nm --------- ---. - - - - - - -_. ___ __ _ _ 
Idler, 917 nm 

Figure 1.4: NDOPO setup for producing nonclassical light. 

Perhaps the most important modification in the system of Ref. [3, 4] is the fact 

that in this case the OPO was operating in a non-degenerate mode producing signal 

and idler beams that were separated in frequency by 25 TH z and had respective 

wavelengths of 852 and 917 nm. Not only was it a challenge to operat e the OPO 

cavity in this large non-degenerate mode (which effectively means that the cavity 

had to b e in double resonance with the signal and idler frequencies), but also the 

signal and idler frequencies had to be resonant with the 11) --> 12) and 12) --> 13) 

transitions, respectively, for the nonclassical spectroscopy experiments to be feasible. 

These challenges are unique tasks that had to be accomplished for the first time. 

F inally, performance measurements that characterize the NDOPO and comparison 
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wit h theoretical predictions will be discussed. In particular, m easurements of the 

spectrum of squeezing for the degenerate OPO that verify the uncertainty relation 

for conjugate quadratures of the electromagnetic field will be presented, and data 

on phase-sensitive gain will be shown and compared to phase-sensitive amplification 

and deamplification from t heory. As it t urns out these m easurements indicate small 

discrepancies from t heory t hat one needs to be aware of. 

1.4 Squeezed Light and Atoms 

After this preliminary phase in Part II, the subject of nonclassical interaction of 

squeezed light and atoms will be addressed . After a brief outline of the theory, the 

experiment will be described and explicit procedures used to treat the raw data will 

be given. Following t his, statistical analysis of the results and conclusions from the 

experiment will be discussed. 

1.4.1 Two-Photon Excitation Rate with Nonclassical Fields: 

Theory and Experiment 

At this point, preluding the work to be presented later, it is worth noting that since 

the seminal work of Milburn [14, 15] and Gardiner [16] who showed for the first time 

that nonclassical effects arise when atoms are exposed to quantum reservoirs, there 

has been considerable effort in the theoretical community to unveil as many of these 

phenomena as possible. [17] In particular, in t he origin al work of Gardiner [16] we 

see the first example where a phase-sensitive sub-natural linewidth is predicted for 

a two-level atom interacting with squeezed vacuum. In this example the degree and 

phase of squeezing as well as the efficiency with which it is coupled to the atom are 

crucial determining factors to t he size of the effect. Figure 1.5 depicts schematically 

the original idea. 

Following the above footsteps, theorists have since then predicted an abundance 

of n onclassical phenomena associat ed with the interaction of atoms with nonclas-
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Figure 1.5: Interaction of atoms with classical and squeezed vacuum, shown as circles 
and ellipses, respectively. 

sical fields. These examples include resonance fluorescence of atoms in squeezed 

vacuum,[18, 19, 20, 21, 22] optical bistability in squeezed vacuum,[23] optical pumping 

with squeezed light,[24] photon echoes and revivals,[25, 26] lasers pumped by squeezed 

light,[27, 28, 29, 30] gain without inversion,[31] electromagnetically induced trans

parency, [32] numerous cavity QED examples in the presence of squeezed light,[33, 

34, 35, 36, 37] laser cooling with squeezed light,[38] cooperative effects,[39, 40, 41] and 

finally effects associated with two-photon excitation by correlated pairs of photons,[42, 

43, 44, 45 , 46, 47] which is the subject of our own work. 

The experiment to be presented here tests the prediction of several authors [42, 

43, 44 , 45] that the rate of two-photon excita tion R 2 as a function of the excitation 

intensity I deviates from the usual quadrat ic form and b ecomes asymptotically linear 

for small enough intensities 

R Squeezed _ J 2 + ,..., J 
2 - a i '-'2 , (1.3) 

provided that the exciting fields are in a nonclassical state such as the state of the 
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NDOPO output. Here a 1 and a 2 are constants of the same order of magnitude. Recall 

that for classical fields the two-photon excitation rate versus intensity is quadratic 

and is given by 

(1.4) 

where /31 is again a constant. 

As an intuitive physical interpretation of this phenomenon, one may envision 

the two-photon excitation process 11) -+ 13) as a two-step process, where the atom 

makes first a 11) -+ 12) followed by a second 12) -+ 13) transitions. Referring to Fig. 

1. 6 (a) this process is shown to take place in the presence of two independent lasers of 

frequencies w1 and w2, tuned near resonance with the w21 and w32 eigenfrequencies, 

respectively. In Fig. l.6(b) the same process takes place with the same frequencies 

w1 and w2 produced in this case from an NDOPO. 

(a) 

C02 13) 
~C032 I Laser 2 I 0 0 0 0 00 0 0 0 12) 

I Laser 1 I • • • • • • • • • C021 

C01 11) 

(b) 

13) 

I ND-OPOI 
C02 C032 

0 0 0 0 0 0 0 12) 

• • • • • • • 
C01 C021 

11) 

Figure 1.6: (a) Classical and (b) quantum excitation of a two-photon transition. 

Loosely speaking in a language of photons as billiard balls, in the first case of Fig. 
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1.6(a) the probability distribution of time spacing between photons is for each of the 

two lasers Poissonian. Hence, the probability distribution of arrival times between 

pairs of w1 and w2 photons at the location of the atom is also Poissonian with the mean 

spacing scaling proportionally to the intensity I. Therefore, once the atom absorbs 

an w1 photon has to "wait" for a certain time (given by a Poissonian distribution) for 

a second w2 photon to arrive. During this dwell time, however, it may decay back to 

the ground state reducing in this way the overall excitation probability. Since each 

absorption probability is proportional to the intensity I of the corresponding beam, 

it is natural to expect that the overall 11) --+ 13) transition probability is the product 

of the two and hence classically it is proportional to 12 . [77] 

However, the situation is different for excitation with light emitted from an NDOPO, 

Fig. 1.6(b). In this case photons in the w1 and w2 beams are "perfectly" correlated 

and hence pairs of w1 and w2 photons arrive at the side of the atom simultaneously, 

reducing the probability for decay of the atom from the intermediate state back to 

the ground state. Because of the lack of "dwell" time, the excitation probability from 

correlated pairs of photons is then proportional to the intensity I rather than the 

square of the intensity 12
. Nevertheless, the possibility of excitation from a pair of 

uncorrelated photons still exists and hence as in the first case this process will still 

have a term proportional to 12
, justifying in this way the quadratic contribution in 

Eq. (1.3). 

To realize experimentally the above described two-photon excitation with corre

lated pairs of photons, the atoms in the MOT have been excited by the output of the 

NDOPO and then by observing the fluorescent decay of the atoms from the 13) --+ J2) 

transition, a measure of the excited state population was obtained. Having overcome 

all other technical problems of trapping the atoms, tuning the NDOPO so that to 

generate signal and idler photons in resonance with the Jl) --+ J2) and J2) --+ J3) 

transitions, respectively, and having aligned all the beams, there was still a major 

problem to overcome, namely data acquisition. 

In order to be able to observe the nonclassical behavior of the atoms, i.e., the linear 

component of Eq. (1.3), we have to probe the rate of two-photon excitation at small 
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enough intensities where the linear term dominates over the quadratic. Defining 

arbitrarily the "knee" point to be the point at which the contributions from the 

linear and quadratic parts of Eq. (1.3) become equal, we find that the corresponding 

intensity is about 0.001 mW/cm2 while the saturation intensity is of the order of 1 

mW/cm2 . Hence, it is clear that at the region of interest, the atoms will be excited 

very weakly and therefore the excited state population will be very small. Taking 

into account t he total detection efficiency, which was not more than few percent, the 

signals at the relevant region are of the order of 1 photons / sec. Given a background 

count of the order of 4 - 5 photons / sec (primarily dominated by the dark counts of 

the detector) it is clear that the observation of this effect is non trivial. Nevertheless, 

by using several experimental and statistical techniques to check against possible 

pitfalls, we were finally able to show convincingly that the nonclassical behavior of 

the atoms as manifested in Eq. (1.3) h as been observed.[48, 49] 

1.4.2 Linear Two-Photon Excitation Rate with N onclassical 

Fields: Analysis, Statistics and Results 

In Fig. 1.7 we see a typical example of data obtained from our experiments, with 

an obvious deviation from the quadratic law for excitat ion with squeezed light con

trary to that of excitation with classical light. Note that significant deviations from 

the quadratic dependence occur for counting rates close to 1 photon/sec. "To con

vince the jury" that an asymptotically linear dependance is predicted from our data, 

significant effort was given in the statistical analysis of the data. To combine the 

knowledge acquired from different experiments, two different statistics have been de

fined and detailed analysis of the data showed that a linear plus quadratic model is 

the "most likely" to describe the data. Furthermore, identical numerical treatment 

and statistical analysis of control experiments with coherent excitation suggests that 

these data are as expected governed by the classical quadratic law. Hence a case 

is built in favor of the nonclassical model. The details of these arguments and the 

procedures followed will be carefully outlined. 
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Figure 1.7: Experimental observation of two-photon excitation with (a) quantum 
correlated and (b) classical fields. The units of the counting rates, Rf queezedand 
Rf oherent, are detected photons/ sec. The solid lines are fits to the data of the form of 
Eqs.(1.3) and (1.4) , while t he dotted lines are t he linear and quadratic components 
p lotted separately for the fit to the non-classical data. The x - axis is a measure of 
t he intensity in arbitrary units. 

1.5 Quantum Interference 

In Part III quantum interference (QI) in two-photon excitation subject to illumination 

by multiple fields is investigated. First, t heory developed to describe the process is 

outlined and then a proof-of-principle experiment is presented. By extending these 

ideas to nonclassical excitation, t he possibility for ultrafast homodyne detection is 

explored and another experiment is presented. Finally, applications of the QI scheme 

in frequency metrology and optical communications with atoms utilized as ultrafast 

nonlinear mixers are suggested. 
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1.5.1 Multiple Field Two-Photon Excitation and Quantum 

Interference 

The basic idea of QI in two-photon excitation is shown in Fig. 1.8 where a three-level 

atom is excited from its ground state 11) to the third excited state 13) in the presence of 

three exciting fields. The frequencies of these fields , w1 , w2 and w 0 , are chosen so they 

are near resonance with the atomic eigenfrequencies w21 , w32 and ~, respectively. 

Therefore, the atom can be excited via two alternative pathways: a stepwise cascade 

of two dipole absorptions from th e w1 and w2 fields or a simultaneous two-photon 

absorption from the w0 field. In the case that the probability amplitudes of t hese two 

excitation pathways are coherent , we expect to observe QI as in any other quantum 

mechanical system. The particular manifestation of QI is in terms of the excited state 

population p33 , which is modulated depending on t he relative phase of the excitation 

amplitudes. 

ffi~ 
13) 

C02 - C032 C031 

C031 2 12) co --
0 2 ... -----

co 1 --0:>21 C031 

2 

11) 

Figure 1.8: Excitation of a two-photon transition by three phase-coherent lasers leads 
to quantum interference. 

More quantitatively it has been shown by solving the master equation of the sys

tem in the perturbative (weak-field excitation) limit that the excited state population 
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p33 is given by 

(1.5) 

Here X 1 and X 2 are the probability amplitudes for the two alternative excitation 

pathways and cI> is a relative phase between the three excitation lasers at the site of 

the atom. The form of Eq. (1.5) indicates interference as in any generic interference 

experiment and, since X 1 and X 2 are quantum m echanical probability amplitudes, 

the process is governed by quantum interference. 

The next st ep is to ext end the t heory to the strong-field excitation limit. Here 

t he master equation is solved with a more general approach sacrificing some of the 

simplicity of t he perturbative solution in favor of generality. As a result the solution is 

given by a matrix equation valid for both strong and weak excitation, which, although 

not analytic, requires only numerical inversion of an 8 x 8 matrix to produce readily 

numerical results that can be studied . To further aid researchers in the field, an 

interactive J ava based calculator has been constructed and is made available on the 

WWW.[50] 

Complementing the above t heory, a proof-of-principle experiment with observa

tions of QI is presented. In particular, an example where the excited state population 

was monitored as a function of the relative phase of the three lasers used for excitation 

is shown. The observation of p 33 shows a clear sinusoidal modulation, the contrast 

of which was measured to be about 0.3. To compare t o theory, calculations based on 

the experimental parameters are performed and test the models developed earlier. 

1.5.2 Ultrafast Homodyne Detection 

The next subject in the discussion is ultrafast homodyne detection u sing atoms as 

ultrafast nonlinear mixers. The goal here is to observe t he quantum correlations of 

fields that are separated in frequency by large intervals. For example, for the output 

of t he NDOPO in t he two-photon experiment (see Fig. l.6 (b)) , the signal and idler 

beams are separated by 25 TH z . In order to prove t hat indeed we have nonclassical 

correlations between these two fields, we must in princip le be able to form and observe 
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the beatnote of these two fields with respect to a reference oscillator (RO) , which 

in this case is the w0 field. However, current t echnology limits the mixing with a 

cutoff of a few tens of GHz and hence the correlations in question are far beyond 

any observational capabilities. Yet, the atom behaves as a non-linear mixer itself. 

Therefore, by modifying the example of Fig. 1.8 so that w1 and w2 are the signal 

and idler photons from the NDOPO and keeping the w0 field in a classical coherent 

state, the atom is utilized as an ultrafast mixer to demodulate the beatnote of the 

quantum fields with RO the w0 beam. As a result observations of these ultrahigh 

frequency correlations are reported. Unfortunately, observing the correlations and 

proving that they are nonclassical are two disjoint tasks, and although they have 

been observed, there is still a question of principle regarding the proof that they are 

nonclassical. In addition to the experimental observations, theory to study in more 

detail the consequences of t his scheme is presented. 

1.5.3 Atoms as Ultrafast Nonlinear Mixers 

Finally, some other applications of the notion of ultrafast atomic mixers are presented. 

The frequency response of the atomic mixers is quantified with the perturbation 

theory developed earlier. Applications in frequency metrology are discussed and a 

proposal for a novel technique for establishing new frequency standards is suggested. 

Extending the discussion even further, we show t hat the idea could be commercialized 

with implications in the field of optical communications. This latest idea has also 

been the motivation behind submitting a patent for t he work. In support of these 

applications, an ext ensive database of 6900 different three-level submanifolds from 

the alkali elements Li, Na, K , Rb and Cs which can be used in schemes similar to 

that of Fig. 1.8 has been constructed. A search algorithm has been developed based 

upon the database. Given any target wavelengths in the range of 200 - 2000 nm that 

needs to be measured , the algorithm considers all possible combinations and suggests 

an optimal strategy for achieving the goal. 
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1.6 Summary 

From this outline of topics to be discussed in the remaining of the Thesis, it is clear 

that the study of a three-level system has been proven to be very fruitful and has 

helped in the investigation of several new phenomena in the course of our research. 

During our work we have uncovered nonclassical interactions with atoms, we have 

seen QI in two-photon excitation, and we have utilized atoms as nonlinear mixers to 

perform tasks not possible with any other techniques. Before continuing, however, 

I would like to mention that we also performed several cavity QED experiments in 

order to investigate the interaction of atoms with squeezed light. [2] These projects, 

however, are somewhat disjoint from the rest of the subjects covered in this Thesis 

and, in addition, they have been extensively covered in Quentin Turchette's Ph.D. 

Thesis. For these reasons I will ignore this part of our work, which nevertheless was 

a significant effort. 

With this introduction to the subjects and science to be described in the rest of 

the Thesis, we now enter a more detailed discussion of the various topics. 
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Part I 

BASIC EXPERIMENTAL 

CONCEPTS 
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Chapter 2 Magneto-Optical Trap 

A crucial component of all our experiments was the magneto-optical trap that pro

vided a Doppler free sample of tapped atoms for our studies. In t his chapter the 

particular realization of the MOT implemented in our research will be described. 

However , the main purpose here is not to describe the physical principles dictating 

the operation of the MOT,[5, 6] but rather to document the parameters and proce

dures used in our own setup. 

2 .1 Geometry 

As noted in the introduction, Section 1.3.1, the MOT was constructed implementing 

a five-beam configuration, Fig. 1.3. These beams were arranged so that two of 

them were counter propagating along the z - axis, while the other three were on the 

x y - plane, spaced from each other by about 120° ± 20°. This particular configuration 

(somehow unusual compared to the traditional six-beam MOT) , was chosen mostly 

due to the constraints of t he available geometry in the xy - plane as shown in Fig. 

2.1. 

The trapping chamber was a spectroscopic glass cell made by Uvonic, with fairly 

good optical quality windows and dimensions ,..._, 5cm x lcm x lcm . The wall thick

ness was roughly 1 mm. This cell was connected to a Cs source which was kept at 

a low temperature of about -10 to 0 °C in order to reduce the Cs vapor pressure. 

In addition, a 2 l/ s ion pump was connected to the system and sustained a pres

sure in the chamber of about ;S 10- 7 Torr. Note that t he loading time of the trap 

strongly depends on t he Cs pressure, since it is proportional to the total number of 

Cs atoms near the cooling "zone," while the lifetime of the trap depends strongly 

on the background pressure, since the main loss mechanism is background collisions. 

[52] 
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Figure 2 .1: The xy - plane geometry of the MOT. 

The trapping beams were adjusted to a size as big as possible, about 6 - 8 mm in 

diameter. Note that the total number of atoms in t he trap grows as the 4th power of 

the trapping beam diameter ; [53, 54] hence, it was crucial for us to have large beams 

in order to accumulate enough atoms. 

The geometry of the x y-plane in the vicinity of the MOT (Fig. 2.1) is completed 

with the addition of two more elements, the lenses L 1 and £ 2 shown on Fig. 2.1. Lens 

L 1 is a collimating lens, positioned at a distance equal t o one focal length from the 

MOT, and its function is to collect light for imaging purposes. In order to have 

efficient light collection , the diameter of this lens was chosen to be comparable to its 

focal length (note that efficient collection beyond this point becomes impractical due 

to lens m anufacturing difficult ies for the working distances required in our exp eriment 

( rv 25 mm)) . This condition imposed certain geometry constraints, since the lens 

should not obscure the trapping beams entering the trapping cell, but also it should 

not sit at the path of other beams t hat go through the cell because it would then collect 

that light and send it to the detector causing saturation. An additional constraint 
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is that the lens should be parallel to one of the cell's windows in order to reduce 

aberrations which are important because the collected light must be re-focused onto 

a detector with fairly small active area (diameter ,....., 150 µm). 

Lastly, we have the lens L 2 , which is responsible for focusing the excitation fields 

onto the atoms in the MOT. This lens was chosen to be of focal length equal to 5 cm 

and was placed almost along the T3 trapping beam. Note that this has no impact in 

bringing the trapping beams into the trap, nor does it influence any other part of the 

MOT setup. 

2.2 'frapping Beams 

The five trapping beams of Fig. 1.3 are all derived from a single "homemade" diode 

laser,[55] tuned to about 10 MHz below the 6S1; 2 F = 4 -t 6P3; 2F' = 5 transition 

of Cs and locked to the signal from a saturated absorption cell. The corresponding 

wavelength of this frequency in air was measured by a wavemeter to be >..r '.:::'. 852.360 

nm, although variations in room temperature and humidity result in variations of this 

measurement by as much as ±0.003 nm. The power of each of these beams was about 

1 - 2 mW, corresponding to intensities close to saturation, but the exact power was 

not so crucial for the trap performance. However, some care was taken in arranging 

that all beams have about the same power so that the optical forces will be roughly 

balanced. The polarization of these beams was adjusted to be as close to circular as 

possible, with the helicity of the three coplanar beams in the xy - plane, opposite 

from the helicity of the beams along the z - axis. However, due to reflections of 

the beams at "funny" angles from various mirrors as well as polarization selective 

reflection from the cell walls, the polarization of these beams was in fact elliptical 

with asymmetry ratios as large as 3 : 2. 

In addition to the five trapping beams, we also had a repumping beam, derived 

from a commercially available diode laser. This laser was sometimes free running and 

sometimes locked, but in either case tuned close to the 6S1; 2F = 3 --+ 6P3; 2F' = 4 

transition in order to prevent depletion of the 6S1;2F = 4 state from which trapping 
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occurs. Due to the tight geometry we had to work with, as shown in Fig. 2.1, we 

chose to send the repumping beam along one of the other trapping beams. Most of 

the time this beam was send along the T1 beam (Fig. 2.1), although at the early 

stages of our experiments we also tried to sent it along the z - axis as shown in Fig. 

1.3. The power of this beam was a few mW; its size was comparable to the trapping 

beams; and its polarization was arbitrary. 

2.3 Magnetic Fields 

While cooling occurs by optical forces, confinement in a MOT is due to optical forces 

adding in concert with magnetic field gradients. In fact , the trap forms at the zero 

point of a magnetic field gradient, achieved by a set of anti-Helmholtz coils, parallel to 

the xy - plane and through which anti-parallel currents run. The optimum geometry 

of these coils is described in Ref. [56] and is such that the ratio of the diameter of the 

coils to the separation between them is about 1.6. Note that from symmetry and the 

divergence-free property of magnetic fields \l·B = 0, it follows that ~B = 8,,8 = -2~8 . ux uy uz 

The difference in sign for the magnetic field gradient in the xy - plane from that along 

the z-axis is also the reason why the helicity of the trapping beams in the z direction 

must be opposite from the rest. Note that reversing the direction of the current in 

both coils results in a sign flip for all components of the magnetic field gradient. 

Therefore, from an operational point of view, the first time the trap is constructed, 

one arranges the helicities of the beams as described and then checks whether or not 

a trap is formed . If it is not, then the most likely reason is that either the coils are 

not positioned correctly with respect to the trapping beams or that the current is 

reversed. In the second case, flipping the current direction readily fixes the problem. 

The magnetic field gradients used in our experiments were of the order of ~~ ~ 4 - 8 

Gauss/cm. 
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2.4 Alignment 

The last thing about the MOT is alignment. This was one of the most t edious tasks 

that had to addressed every time the trap was t urned on and was crucial in performing 

successful experiments. Hence, alignment needs some special attention. 

2.4.1 MOT Alignment 

The first thing we had to do was to align t he trapping beams and position the anti

Helmholtz coils (which were fixed on an xyz translation stage) in order to achieve 

a "nicely shaped" trap. Although so far a MOT has b een implicitly described as a 

"nice" sphere, Figs . 1.3 and 2.1, this could not have been further from the truth. 

In particular , in an ideal case the trap should be an ellipsoid, since confinement in 

the axial ( z) direction is twice as much as that along the planar ( x and y) directions 

(recall that BB = BB = -28B). 
ax 8y 8z 

In practice, however , a nice ellipsoidal shape is very difficult to achieve because 

of interferometrically sensit ive alignment of the t rapping beams that set interference 

fringes in the vicinity of the MOT. In addition, imbalances in polarization and power 

of the trapping beams causes further complications. Only after careful alignment, 

and most importantly by monitoring the shap e and behavior of the MOT from two 

perpendicular directions, were nicely shaped traps obtained . For the purposes of 

monitoring, two CCD cameras that imaged the trap from t he top and side views were 

implemented. Note that sometimes it is possible to have an image of the trap from one 

direction that looks nice, but viewed from a perpendicular direction is completely out 

of shape. Notice that in order to image the trap we had to introduce to t he already 

crowded geometry even more optical elements. 

An additional t est for "good" alignment was t he modulation by 30 - 50% of the 

magnetic field gradient by turning up and down the current. If this procedure did 

not produce any erratic movements in the position and shape of t he trap, then this 

was a further indication of a stable and well aligned trap. 
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2.4.2 Excitation Fields 

The second major alignment issue that had to be addressed was the intersection of the 

two-photon excitation fields with the MOT. This was a major "targeting" exercise 

since the trap had a size of 0.1 - 0.3 mm while the excitation fields were focused 

down to,.._, 7 µm. Note that this tight focusing was necessary in order to achieve high 

intensities throughout the trap diameter as explained in Ref. [7] . 
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Figure 2.2: Imaging of the trap. A one-to-one t elescope collects light from the MOT 
and refocuses it onto the APD. 

Lens L2 in Fig. 2.1 was positioned on an xyz translation stage and by moving 
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it we could steer the direction of the excitation fields with respect to the MOT. To 

monitor the "targeting" , the two CCD cameras that imaged the trap were used to 

observe the path of a strong 852 nm beam sent along the path of the excitation fields. 1 

This beam left a bright trail of fluorescent light while traversing the vapor cell and 

hence its path could be seen. Note that due to contrast problems the trapping beams 

had to be turned off during this procedure. To know the MOT's location, a mark of 

its position was placed on the TV monitors. Also note that when aiming was right 

and the trap was turned back on, the 852 targeting beam blow the trap away since it 

delivered unbalanced, high intensity radiation to the MOT. In this procedure it was 

also crucial to monitor the targeting alignment from two perpendicular views since a 

single view could lead to alignment at the front or at the back of the trap. 

2.4.3 Imaging 

Finally, the last alignment task was to position correctly the imaging system shown 

in Fig. 2.2 in front of the trap (note that the lens £ 1 is the same as t hat of Fig. 

2.1). This imaging system consists of two parts, t he telescope assembly and the 

detector assembly. Each of t hese two parts was mounted independently on its own 

xyz translation stage. 

The telescope assembly consists of two identical lenses, £ 1 and L~, which collected 

fluorescent light from the MOT and then refocused it down onto t he detector which 

in this case was an avalanche photodiode (APD). Between the two lenses t here are 

917 nm interference filters in order to block the 852 radiation. More details about the 

telescope system will be given in the next chapter. The detector assembly consisted 

of t he APD and a CCD camera which were mounted together on a xyz t ranslational 

stage as well. The task was then to first position the telescope so that it will be 

centered with respect to the MOT and also to be at the right distance from it. Then 

the APD had to be correctly positioned so that it was situated at the image point 

of the telescope. This was a tiresome procedure, not only because t he trap position 

1 The 852 nm targeting beam was transmitted through t he OPO so t hat it had the "correct beam 
path" relative to t he signal and idler beams. 
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could change from day to day, but also because the APD detector was so small ( 150 

µm in diameter). 

The operational way around this problem was to utilize the CCD camera on the 

detector assembly. First the CCD camera which has a large active area would be 

used to image t he trap through the telescope. When a clear image was achieved then 

t he telescope was situated correctly and was properly aligned with the CCD camera. 

Then the CCD camera would be moved so that the trap image was at the center of 

a monitor at a fixed mark. Then since the APD is fixed relative to t he CCD camera, 

it was always a matter of a fixed xyz displacement of the whole detector assembly to 

bring the APD at the right place. Of course in practice we had to find this reference 

displacement for the first time, but even after the reference offset was established, the 

outlined procedure would only bring the APD to the near vicinity of t he image of the 

MOT. So finally fine tuning of the alignment was necessary using the signal from the 

APD. Nevertheless, this method greatly simplified the imaging alignment and it was 

crucial in making the experiment work. 

2.5 Summary 

In this chapter, a brief review of t he specifics of the MOT used in the following 

experiments was presented. The main goal in building the MOT was not to achieve 

ultracold temperatures or very long lifetimes or in any other way "a state of the art" 

trap, but rather to prepare a dense sample of cold atoms on which exp eriments could 

be performed. As such, t he MOT described was more t han adequate and, alt hough 

constructed without fancy vacuum chambers, very stable lasers , large beams or very 

precise magnetic field gradients, it was still a very good MOT for all our purposes. 
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Chapter 3 High Precision Spectroscopy 

of the 6D5; 2 State in Cs 

Although a lot is known about the atomic structure of alkali elements, not all of their 

energy levels have been probed or carefully measured. One of the main reasons for this 

incompleteness, is of course, the availability of laser frequencies near the corresponding 

eigenfrequencies. In the case shown in Fig. 1.2, the 6D5; 2 level in atomic Cs was such 

an unexplored state. In particular, prior to our work, the hyperfine (hf) structure of 

this level was only poorly known, with the hf splitting measured with an accuracy 

of only 303[9] while the linewidth has b een only theoretically predicted.[57] Both 

of these parameters are crucial throughout all of our subsequent experiments; first 

because the hf splitting defines the interaction with other states, which could promote 

our three-level model to a more complex system of more than t hree eigenstates, 

and second because the atomic linewidth is a crucial parameter in all theoretical 

calculations that will follow. With the results to be presented here, the hf splitting 

is determined with an experimental accuracy of 13 and the atomic linewidth to 73. 

The study of the 6D5; 2 state in Cs was limited prior to our work for two main 

reasons: the lack of laser frequencies near the eigenfrequency of the transition and 

the fact that to reach the 6D5; 2 level from the ground state (6S1; 2) requires a two

photon absorption which is a much weaker process than usual one-photon absorptions. 

These problems were solved with progress in laser technology and in magneto-optical 

trapping. In particular, the resonant frequency for the two-photon transition 6S1; 2 ~ 

6D5; 2 corresponds to a laser wavelength close to 884 nm, which is at the edge of the 

operating region of our Ti:Sapphire laser. 1 On the other hand, spectroscopy on the 

MOT simplified the problem of two-photon absorption. 

1Today, commercia l Ti:Sapphire lasers have operating ranges that can easily reach 920 nm. 
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3.1 Two-Photon Spectroscopy in a MOT vs. . 
Ill a 

Vapor Cell 

Conventional two-photon studies [58, 59] are usually carried out by implementing 

a scheme where the excitation fields enter the sample via two counter-propagating 

directions, F ig. 3.l(a). Hence, an atom absorbing a photon from each beam undergoes 

an almost Doppler free transition (w~ + w~ ~ w1 + w2, assuming w1 ~ w2) therefore 

making possible the observation of the internal structure of the state without the 

Doppler broadening that smears it out.2 However, this method is not completely 

Doppler free because of subtleties introduced by the requirement to focus tightly the 

excitation beams in order to reach high enough intensities for t he weak two-photon 

transition to take place. Contrary to this situation, spectroscopy on the MOT does 

not require counter propagating beams and also does not suffer from the problem of 

tight focusing because the atoms are cold, Fig. 3.l(b). Moreover, in the subsequent 

experiments the two-photon transition is excited by non-degenerate frequencies (852 

nm and 917 nm) and hence counter propagation would not have completely solved 

the Doppler broadening problem since w~ + w~ ~ w1 + w2 + l(k1 - k2) ·vi =/= w1 + w2 

for widely spaced w1 and w2 . 

An additional advantage of using a MOT, rather than a vapor cell, is that a 

MOT provides an atomic sample that is well localized. This is important for several 

reasons: first because focussing of the excitation beams must be such that there is 

almost uniform intensity across the sample, second because these beams must be 

tightly focused onto the atoms in order to reach high enough intensities and third 

because imaging is easier for a well localized sample. The first requirement is obvious 

in order to make intensity dependent measurements as in the nonclassical experiment 

described in Chapter 5. The second one becomes also obvious when one realizes that 

in the nonclassical experiment, the excitation rate is extremely small due to the low 

power ( ,.._, 1 pW) of the nonclassical fields. Finally, the third reason is justified since 

2 I t is also possible to absorb two co-propagating photons. In this case there is going to be twice 
as much Doppler shift and this w ill contribute towards a broad residual Doppler background. 
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Figure 3.1: Doppler free spectroscopy: (a) using counter propagating beams in a 
vapor cell, (b) using co-propagating beams in a MOT. 

the active area of the avalanche photodiode (APD) is only 150 µm x 150 µm. 

To see how a localized sample is better than a vapor cell, one needs to consider, in 

addition to the above requirements, the total fluorescence signal fp from the sample, 

which for an optically thin sample is given by 

(3.1) 

as described in Ref. [7] . Here P0 is the excitation power, .A, the excitation wavelength, 

~ is the overall collection and detection efficiency, r 2 , the two-photon cross section 

(defined by R2 = r 2I; with R 2 the two-photon excitation rate for an intensity I0 ) 
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Figure 3.2: Focusing geometry of the excitation beam. Notice that the volume of 
excited atoms that is imaged may be smaller than the diameter of the trap. 

2 
and z0 = 71"~0 , the Rayleigh length. [7] The waist of the excitation beam is given by 

w 0 , and the length of the excitation volume is equal to L (see Fig. 3.2) . 

In the experiment the waist size was w0 c::: 7 µm and the length of the volume 

of excited atoms that was imaged was L c::: 150 µm. Hence, z0 c::: 175 µm and 

arctan ( 2~0 ) c::: 0.4. Note that the maximum value that the arctan can take is ~. Also 

note that with this choice of parameters, the intensity variation across the imaged 

volume due to the beam divergence is less than 18%, as could easily be calculated 

from the geometry of Fig.3.2 (for a complete discussion on the Gaussian profile of 

laser beams, see Ref. [60]) . 

Despite of all these advantages, there is however a major disadvantage in doing 

spectroscopy with a MOT versus with a vapor cell. This is the decrease in density 

na and hence decrease in the overall signal fp (notice the two scale proportionally to 

each other, Eq. (3.1)). In particular, for the MOT in the experiment the density is 

n~OT,......, 109 atoms/cm3 while for "better" traps values of 1010 - 1012 are possible. In 
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contrast, a vapor cell of Cs heated up to I00°C will h ave a vapor pressure of,...., 7 x 10-4 

Torr , which corresponds to n~apor rv 1013 atoms/cm3 . Therefore, the atomic sample 

density for an experiment in the MOT is of the order of a IOOOO smaller than what 

could have been in a vapor cell! However, not all of this gain in density can be utilized, 

and, in particular, two important factors cancel out a large portion of it: t he residual 

Doppler broadening and the detuning from the intermediate state. 

First, the residual Doppler broadening due to the non-degeneracy of the excitation 

beams, which was not included in Eq. (3.I), has to b e taken into account. Notice 

that this is important for t he experiments to be described because the excitation 

beams with wavelengths of 852 nm and 9I 7 nm are separated by a large frequency 

interval. The magnitude of the residual Doppler broadening is of the order of ,....., 

Jk1 - k2 J Vrms (T), where Vrms (T ) is therms velocity of the atoms at temperature T . 

For 100°C, this Doppler broadening is found to be about 7 times the linewidth , hence, 

t he signal would decrease by roughly the same amount. 

The second factor that reduces the overall two photon excitation signal is the 

detuning of the fields from t he intermediate level. In particular, while for stationary 

atoms the excitation fields at 852 nm and 9I7 nm are resonant with the II)~ J2) and 

J2) ~ J3) transitions, respectively, in the case of moving atoms each of the two fields 

is detuned from the corresponding transition due to Doppler shifts. Alt hough, in the 

case of counter-propagating beams, the overall two-photon transition ( JI) ~ J3)) is 

kept resonant (except for the residual Doppler broadening described above), the fact 

that the individual one-photon transitions (JI)~ J2) and J2) ~ J3)) are off-resonance 

will significant ly reduce the two-photon excitation probability. The detuning from 

the intermediate state is of the order of b..D ,...., lki ~k2 i Vrrns (T) which in our case is 

roughly equal to 60 atomic linewidt hs of the intermediate state. Hence, the signal IF 

will be reduced approximately by a factor of b.. b c:::: 3600. 

Combining all these factors (i.e. , density, residual Doppler broadening and detun

ing from the intermediate state) implies that using a MOT, instead of a vapor cell 

at 100° C, will result in signals roughly 2.5 times bigger. Clearly for better traps 

this factor increases significantly. In addition, the 852 nm and 9I 7 nm beams are 
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generated in our experiment in co-propagating directions which makes it difficult to 

separate and implement a vapor cell scheme with counter-propagating beams such 

as that shown in Fig. (3.1). A further argument against using a vapor cell is that 

due to the residual Doppler broadening due to the non-degeneracy of the excitation 

beams, the hf states 6D5; 2F" = 6 and 6D5; 2F" = 5 start to mix, and, hence, the 

three-level system becomes a four level system, which complicates the interpretation 

of the results. 

3.2 Experimental Setup 

Turning now to the complete experimental setup, the main components of the spec

troscopy experiment are shown in Fig. 3.3. The setup can be divided into four Blocks 

(I-IV) of different functional roles in the experiment. Block I is responsible for locking 

and scanning the master laser to the right transition for the two-photon experiments. 

Block II is the master laser producing the main beam for the excitation of the atoms. 

Block III is the trapping setup described in the previous chapter. Block IV is the 

detection and data acquisition part of the experiment. 

Although each of these Blocks deserves special attention, here only Blocks I and 

IV will be described in detail. Block II is a standard Ti:Sapphire setup that has 

been discussed in the past [3, 4] and consists mainly of an Ar:Ion laser that pumps a 

homemade ring cavity containing the Ti:Sapphire crystal. Block III has already been 

discussed in the previous chapter. Therefore, the discussion will now concentrate on 

Blocks I and IV. 

3.2.1 Locking and Scanning (Block I) 

The capability of locking the master laser (Ti:Sapphire) to the two-photon transition 

and, in particular, to be able to choose a specific hf component was a crucial require

ment throughout our experiments. In addition, for the spectroscopy of the 6D5; 2 

level, it was also crucial to be able to scan continuously the Ti:Sapphire laser (while 

keeping it locked) across the frequency range spanned by the hf components of the 
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Figure 3.3: Experimental setup. 

6D5; 2 state which is about 140 NIH z. To lock the Ti:Sapphire a two step process is 

implemented, where first the Ti:Sapphire is locked a stable, high finesse cavity with 

linewidth of about 50 KHz and second the cavity is locked to the atomic transit ion. 

Direct locking of the Ti:Sapphire to the atomic transition was also possible and some

times was used, but because the atomic linewidth is about 3 MHz, this lock is not as 

"tight" or robust as t he first one. Once locked the laser was scanned by using tunable 

acousto-optic modulators as described below. 

The locking signal was produced by observing the fluorescence from a Doppler 
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free two-photon absorption, 6S1; 2F = 4 --t 6D5; 2F" in a vapor cell which was heated 

to about 50°C and through which an intense(""' 100 mW) beam was double passed. 

A detector placed at the top of the cell collected the fluorescence from the atoms; 

see Block I in Fig. 3.3. Note that a special oven had to be built for heating the 

cell since without a "full-jacket" oven, any cold spots on the cell and, in particular, 

the windows could easily be coated with Cs making them opaque. Hence, the oven 

was constructed in such a way so as to leave only three small holes for the excitation 

beams to get in and for the fluorescent signal to get out. The quality of the fluorescent 

signal from the cell was somewhat broadened, but still was good enough to distinguish 

all hf components, which were well separated in frequency, and enabled us to clearly 

choose which one to lock to. Because the F" = 6 hf component was the strongest, 

throughout all our experiments the laser was always locked to this transition. 

To tune the Ti:Sapphire, the frequency selection elements in the laser (thick and 

thin etalons and birefringent filter) were tuned so that the emitted light had a wave

length close to A0 '.:::::'. 883.729 nm. An inseparable part of the tuning procedure was 

a wavemeter that guided us. Once the laser was close to A0 , it was locked to the 

free standing reference cavity. The fine tuning was accomplished by scanning one of 

the mirrors of the cavity and having the laser follow until it reached the two-photon 

resonance 6S1; 2F = 4 --t 6D5;2F" = 6. At this point the cavity was locked to the 

two-photon signal and hence the Ti:Sapphire was locked to the same transition as 

well. Note that the reading for the two-photon wavelength deviated from day to day 

from the above value of A0 by as much as ±0.002 nm because of temperature and 

humidity variations in the room (the wavemeter measures wavelengths in air). 

The n ext task was to devise a way to scan the Ti:Sapphire laser across all hf 

components F" of the 6S5; 2 F = 4 --t 6D5; 2F" transition. This was done by using a 

locking beam that was frequency shifted from the Ti:Sapphire frequency. In partic

ular, in Fig. 3.3 Block I , we see that the vapor cell is pumped by the locking beam, 

which has first been double passed through two acousto-optic modulators, AOMl 

and AOM2. Since the Ti:Sapphire is always locked to a signal corresponding to the 

6S1; 2 F = 4 --t 6D5; 2F" = 6 transition, the frequency of this locking beam is always 
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on resonance with this transition, i.e., 2wLock-Beam = w31 , where w31 is the eigenfre

quency of the 6S1;2F = 4 ---t 6D5;2F" = 6 transition. However, this beam is shifted 

from the Ti:Sapphire frequency by Ow, i.e. , WLock- Beam = WTi:Sapphire +Ow which im

plies that 2wri:Sapphire = W31 - 2ow. The reason for using two AOM's is that in order 

to scan around w31 and since each AOM operates at a large offset frequency (,......, 80 

MHz in our case), a single AOM would not work. However, two AOM's, one that 

upshifts the frequency and the other that downshifts it, with a net offset equal to 0 

results in tunability around zero offset. Then by scanning one of the two AO M's using 

the H P8644A function generator, the Ti:Sapphire frequency was scanned around the 

~frequency. Note that because of the double passing of the beams from the AOM's, 

the frequency scan is twice that provided by the function generator. 

3.2.2 Detection and Data Acquisition (Block IV) 

We now tum to Block IV of Fig. 3.3 that shows the detection and data acquisition 

components of the experiment. The rate of two-photon excitation of the 6S1; 2F = 

4 ---t 6D5;2F" transition was monitored by observing the fluorescent decay from the 

6D5; 2F" ---t 6P3; 2F' = 5 transition which has a wavelength close to .\2 c::= 917 nm. The 

observation at .\2 was very convenient because all other laser beams in the experiment 

were at different wavelengths. Recall that the two-photon excitation 6S1; 2F = 4 ---t 

6D5; 2F" has eigenfrequency corresponding to a wavelength .\0 c::= 884 nm while the 

trapping lasers, resonant with the 6S1; 2F = 4 ---t 6P3; 2 F' = 5, have wavelength 

.\1 c::= 852 nm, see Fig. 1.2. Hence, by using 917 nm interference (notch) filters to 

isolate the detector, only the radiation from the 6D5; 2F" ---t 6P3; 2F' = 5 decay is 

measured. 

Before proceeding to the description of the rest of Block IV, the mechanical chop

per, which is actually part of Block III, must be discussed in more detail. This chopper 

was placed in the path of the trapping and repumping beams and was synchronized 

so that both beams are chopped ON/OFF simultaneously. This means that the beam 

sizes had to be about the same at the chopper side and small compared to the size 
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of the chopper slots so that the transit time between the ON and OFF parts of the 

cycle would be small. The experiment has then two phases: the ON (trapping beams 

ON) phase during which the MOT is maintained and the OFF (trapping beams OFF) 

phase, during which the measurements are performed. Note that ON/OFF chopping 

is needed for two reasons, first because even though one or two 917 nm interference 

filters are placed in front of the APD, there is still noticeable background during the 

ON part of the cycle, and second because when the beams are ON, there is significant 

light perturbation (Stark shift and power broadening) to the atoms in the MOT. The 

operating speed for ON/OFF cycle was 4 KHz. 

Returning now to Block IV, the output of the APD was fed into the SR400 photon 

counter which was interfaced with a PC using the manufacturer's control software. 

In addition to the signal from the APD, a trigger signal from the chopper was also 

fed into the SR400 to synchronize the data acquisition with the ON and OFF parts 

of the experimental cycle. Data acquisition was gated and provided two streams of 

data, the ON and OFF sequences. The trigger signal for the gating was provided by 

a photodiode placed at the exit path from the trapping cell of the T2 trapping beam; 

see Fig. 2.1. 

Finally, to perform frequency dependent measurements, frequency markers are 

needed that coincide with the scanning of the Ti:Sapphire laser. These markers were 

provided by the function generator HP8644A that was used to scan the Ti:Sapphire 

and were imported onto the computer through the photon counter. Note that the 

SR400 counter has only two gates, A and B. Hence, the signal was either for both the 

OFF and ON parts of the experimental cycle or for one of them and the frequency 

markers. The first case was used to measure the relative shift of the spectra with 

and without the trapping beams so that the Stark shift and power broadening due to 

the trapping beams can be quantified. The second case was implemented to get an 

absolute frequency calibration and measure the spacing of the hf components. 
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3.3 Theory of hf Structure for the 6D 5; 2 State 

Before presenting the results of the spectroscopy experiment it is worth briefly re

viewing the theory of hf structure as applied to the 6D5; 2 level. On this subject one 

can find references in many graduate level Quantum Mechanics textbooks as well as 

in more advanced books on the subject.[61, 62, 63] Recall that the hf structure is 

the result of the coupling of the nuclear magnetic moment l with the total angular 

momentum of the electron J and that the hf Hamiltoninan is given by 

[ ( 3(I · J) 2 +~(I - J ) - lJ(J+l)(J+l)) l z 
Hhf = fi a (I. J) + b 21 J (21 - 1) (2J - 1) + ... + Hhf· 

(3.2) 

Here a is the magnetic dipole and b the electric quadruple coefficients in a multipole 

expansion while h igher order terms are ignored. The term Ht,1 is the Zeeman splitting 

in the presence of magnetic fields, which is negligible for the magnetic fields in our 

case. 

For Cs133 the nuclear magnetic moment is l = ~ and the state of interest 6D5; 2 

has J = ~. Hence, when l is combined with J under the quantum mechanics rules for 

addition of angular momentum, we find that the 6D5; 2 state has six hf components, 

with corresponding quantum numbers F" = 1, 2, 3, 4, 5, 6. Assuming that the energy 

shift of each of these levels from the unperturbed state is given by !:!..EF'' = fi owp,,, 

one can easily plug in Eq. (3.2) the values for I and J to obtain the position of the 

various hf energy levels. In particular, it can be shown that 
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45 15 

(3 .3) - --a + -b 
4 28 ' 

8w2 
37 1 

(3.4) --a+-b 
4 4 ' 

OW3 
25 1 

(3.5) - -a - -b 
4 14 ' 

OW4 
9 3 

(3.6) --a - -b 
4 10 ' 

OW5 - ~a- 37 b 
4 140 ' 

(3.7) 
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and 
35 1 

8w5 = - a+ - b 4 4 . (3.8) 

Notice that, as it should be, the center of gravity of these hf components is the same 

as the unperturbed level , i.e. , l:F" 6.EF" (2F" + 1) = 0. 

Finally, from Eqs. (3.3)-(3.8) it can be shown that the splittings 8wij = 8wi - 8wj 

of the hf components are equal to 

and 

8w12 
2 
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(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

As it t urns out a < 0 and since b < < a (recall that a and b correspond to successive 

orders in a multipole expansion), it is clear from Eqs. (3 .3)-(3.8) that the energy level 

of the F" = 1 hf component is the highest, while that of F" = 6 is the lowest. 

3 .4 R esults 

Figure 3.4 shows the hf structure of the three energy levels of atomic C s133 that we 

are considering. The three hf components shown in bold face are the ones that will 

be used to realize a three-level syst em in the subsequent experiments. As has already 

been explained , for the purpose of the current spectroscopy experiment on the 6D5; 2 

state, the atoms have been excited using a tunable laser around >.0 ".::::'. 884 nm of power 

P0 • The rate of two-photon excitation was monitored by measuring the fluorescence 

intensity f p at AF = 917 nm from the 6D5;2F" --+ 6P3;2F' = 5 decay. The trapping 

beams, which are turned off during the measurem ents so that they would not perturb 
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the atomic energy levels, are resonant with the 6S1; 2 F = 4 ---+ 6P3 ; 2F ' = 5 transition , 

have wavelength >.r '.:::::'. 852 nm and total power (sum of powers of all five t rapping 

beams, see Fig. 1.3) Pr. 

E xc itation Beam 
Ao =8 8 3 nm 

E xcitation B e am 
Ao = 883 nm 

133 

Cs 
6D512 

F" = 1 

F" = 3 
F"=4 93 .BMHz ~::==== F" = 2 I 

- F " = 5 
,,_, ----- F II = 6 

Colle c te d 
IF 

Tra ppin g Beams 
AT= 852 nm 

68112 
F = 4 I 

'--- F = 3 

9 193 MHz 

Figure 3.4: Hyperfine structure of atomic C s 133 . 

Figure 3.5 shows a typical spectrum obtained from this experiment. Notice that 

because of the two-photon selection rule IF - F"I :=:::; 2, the 6D5;2F" = 1 state is 

inaccessible from the ground state 6S1; 2F = 4 and hence only five hf component can 

be observed. Also note that to scan across a frequency range w of the hf components 

in Fig. 3.5, we only need to tune the frequency of the >.0 excitation beam by ~ since 

the excitation is a two-photon process. Numerous spectra such as the one of Fig. 3.5 
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have been obtained and have been analyzed by fitt ing to t hem multi-Lorenzian curves 

with variable peak positions, peak amplitudes and linewidths. Then, by compiling 

the data various results about the 6D5; 2 state of atomic Cs133 are derived.3 

20 40 60 80 100 

Frequency (MHz) 

Figure 3.5: Hyperfine spectrum of the 6D5; 2 state in Cs133 . 

3.4.1 The a and b Coefficients 

The first goal is to measure the m agnetic dipole a and electric quatrapole b coefficients 

that characterize the hf structure of the 6D5; 2 as described by Eqs. (3.3)-(3.8) . To do 

so we compiled all our results for the various splittings (obtained by multi-Lorenzian 

fits to spectra similar to that of Fig. 3.5) , and by averaging all available data we 

arrived at the best estimates for each of the hf splittings. Given the relation of these 

splittings to the a and b coefficients as described by Eqs. (3.10)-(3. 13), we thus have 

an overspecified system of four equations with two unknowns. Performing a standard 

3 T he raw data and details about the analysis (mult i-Lorenzian fits and least square procedure) 
can be found in Lab Book # 3 of NPhG, p. 56-83. 
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least square fit to this data gives the best fit values for the a and b coefficients. The 

derived values are a= -4.69 ± 0.04 MHz and b = 0.18 ± 0.73 MHz. Contrasting 

our results with the previous measurement of a= -3.6 ± 1.0 M H z ,[9] we see that in 

addition to a 30-fold improvement in accuracy, we have also pinpointed a to a value 

that is lO" away from the previous measurement. 

3.4.2 Linewidths 

The next atomic property to be measured is the natural linewidth of the hf compo

nents. Because this measurement is subject to power broadening from the excitation 

beam, we have chosen to make measurements as a function of power P0 and ex

trapolate the data back to zero power. Figure 3.6 shows our data along with the 

extrapolated value of 1 3 = 3.2 ± 0.2 M H z [7] and the theoretically predicted value of 

1iheory = 2.5 M H z [57] which is significantly different from the measurement. 
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Figure 3.6: Linewidth of the hf components of the 6D5; 2 state as a function of power 
of the excitation beam. 
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3.4.3 AC Stark Shift of the Ground State 

As described earlier, the experiment is performed in two steps: first the trap is formed 

using intense 852 nm fields (resonant with t he 6S1; 2F = 4 ---+ 6P3; 2F' = 5 transition) 

and then by turning OFF these beams the measurements are taken. However, it is 

also possible to take measurements while the trapping beams are ON, but because 

t he trapping beams Stark shift the ground state, we expect the excitation spectrum 

taken with t he trapping beams ON to be shifted relative to that taken with the 

trapping beams OFF. Figure 3.7 demonstrates this with t hree spectra taken under 

different conditions. The first spectrum (a) is taken with the trapping beams OFF 

and hence serves as benchmark for the unshifted spectrum. The other two spectra 

(b) and (c) are taken with the trapping beams ON and as expected they are shifted 

(and broadened) relative to (a). The total power of the trapping beams is P~b) c:: 3.1 

mW and P~c) c:: 10.4 mW for the (b) and (c) spectra, respectively. 

To quantify the power broadening and Stark shift of the ground state as a function 

of trapping beam power, we use the shifted spectra (b) and (c) shown in Fig. 3.7. In 

particular, for spectrum (b) we find that the mean shift of t he various hf components 

relative to t hose of spectrum (a) is about 3.4 MHz , while for spectrum (c) it is about 

8 .4 M H z . The Stark shift /:;:;.Stark = cPT is proportional to the power PT of the 

perturbing (trapping) field , where c is a constant of proportionality. Therefore, the 

value of c is estimated from spectrum (b) to be l.lMHz/mW and from spectrum (c) 

to be 0.81 MHz/ mW. Taking a simple average of the two yields a value of c = 0.95 

and hence f:;:;.Stark (P) c:: (0.95~~) P. 

Similarly, the mean power broadening is estimated for each of the two spectra 

and it is found that for spectrum (b) the mean linewidth of the hf components is 

/ (b) ,..,_, 1.91 while for spectrum (c) is about /(c) ,..,_, 3.3/, where/ c:: 3.8 M H z is the 

linewidth from spectrum (a) . Notice that I is not the n atural linewidth because the 

two-photon excitation beam at ,\0 = 884 nm has power P0 c:: 3.3 mW and causes a 

non-negligible power broadening of 0.6 MHz. The power broadening of the ground 

state due to the trapping beams can then be expressed as /(PT )2 
= 1 2 + kPr,[64] 
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Figure 3.7 : Two-photon excitation spectra, which show Stark shifts and power broad
ening due to perturbation of t he ground state by the t rapping beams. a) Trapping 
beams are OFF, b ) Trapping beams ON, total power Pfb) ,....., 3.1 mW, c) Trapping 

beams ON, total power Pfc) ,....., 10.4 mW. The power of t he 884 nm, two-photon 
excitation beam , is 3.3 mW in each case. 

where I is the linewidth from spectrum (a), Pr t he power of t he trapping beams 

and k a constant of proportionality. Hence, from spectrum (b) the value of k is 

estimated to be 0.8512/mW while spectrum (c) gives in good agreement with (b) 

that k,....., 0.9512 /mW. T herefore, an average estimate of t he power broadening of the 

ground state due to the trapping beams is given by I (Pr)~ 1J1 + i.:'::::w· 

3 .4.4 "Cross-Ta lk" b etwee n hf States 

The concept of "cross-talk" (mixing) between different hf components is an important 

constraint for realizing a pure three-level system. For example, if t he atoms are to 

be excited from the 6S1; 2 F = 4 level via a two-photon absorption and the excitation 

laser is tuned somewhere between the F" = 6 and F" = 5 energy levels, then the 
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resulting absorption S will be primarily due to the sum of absorptions that lead 

to the F" = 6 and F" = 5 levels. Hence, the upper level must be described as a 

non-degenerate two-level manifold, and the overall atomic system is not any more an 

isolated three-level system. To quantify in simple terms this mixing we can define 

the total absorption S to be the incoherent sum of five absorptions, S6 , S5 , S4 , S3 

and S2 corresponding to excitations to the various F" = 6, 5, 4, 3 and 2 levels, 

respectively. Then S = S 6 + S5 + S4 + S 3 + S2 and the mixing of the F" = 2, 3, 4 

and 5 into the F" = 6 level may be quantified by the "cross-talk" ratio defined to 

be m _ Ss+S4.tssa+Sz which needs to be as small as possible. Since each of the Si has 

a Lorenzian shape (see Fig. 3.5) of about the same linewidth I "' 3 MHz, we have 

that 
~~ + k~ + ~~ + ~~ 

")'2+ (w- 6w25)2 ")'2+ (w- 6w35 )2 ")'2+(w-6w45) 2 ")'2+(w-6w55) 2 

~ 
1'2+w2 

(3.14) 

where w is the frequency of the excitation laser relative to the frequency of the F" = 6 

component and 8wi6 are the frequency splittings between the F" = 6 and F" = i hf 

components. The amplitudes A are the amplitudes of the various components of Fig. 

3.5 and are roughly equal to Ps- : 1;- : 1; : 1; = 0.5 : 0.25 : 0.13 : 0.04. The splittings 

8wi6 are equal to { 8w25, 8w35, 8w45, 8w55} :::: {84.4, 70.4, 51.6, 28.l} MHz. 

Figure 3.8 shows t he "cross-talk" m versus the probe frequency w. When w = 0 

then the excitation laser is on exact resonance with the F" = 6 hf component and 

the m is close to minimum (m (w = 0) :::: 0.008). On the contrary when w = 8wi6 

then the contribution comes mostly from the F" = i hf component and in that case 

m > 40. Clearly, if we want to have the atom as a purely three-level system, we must 

constraint w to be close to resonance with the F" = 6 hf component. Setting a rather 

arbitrary limit of 53 for the allowed contribution to the absorption S from other hf 

states (F" < 6) constraints the deviation from resonance for the excitation frequency 

tobe-ll~w~6MHz. 
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Figure 3.8: Cross-talk mas a function of the probe frequency w (w = 0 is the resonant 
frequency with the F" = 6 state) . 

3.5 Summary 

In this chapter the investigation of the 6D5; 2 state of atomic Cs133 has been presented. 

By developing capabilities for two-photon spectroscopy in a magneto-optical trap, we 

were able to determine accurately the hf structure of the 6D5; 2 level and measure 

several things. In particular, we measured to 13 t he magnetic dipole a and electric 

quatrapole b coefficients that determine the hf splittings. We also measured the 

natural linewidth and estimated the Stark shift and power broadening of the ground 

state due to the trapping beams . Finally, we quantified the "cross-talk" of the hf 

components in two-photon excitation. 
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Chapter 4 Optical Parametric Oscillator 

In the p revious two chapters the experimental t echniques that have been developed to 

perform our experiments and in particular the procedures implemented to monitor the 

two-photon excitation of a t hree-level atom have been described. In this chapter the 

focus will be on the source of nonclassical radiation, which throughout the subsequent 

experiments will be a subthreshold optical parametric oscillator (OPO). 

Opt ical parametric oscillators have been used for many years in quantum optics 

to generate and study nonclassical states of light.[65 , 66, 67, 68] In fact, a very large 

portion of quantum optics involves, in one way or the other , the use of some sort of an 

OPO which makes virtually impossible the complete coverage of all aspects of OPO's 

in t he present discussion. Instead, the discussion here concentrates on the particular 

OPO used in our own experiments and a detailed description of its various modes of 

operation will be given. 

In its most general form, an OPO is simply a nonlinear crystal, characterized by a 

non-linearity xC2), placed inside an optical cavity in-order to build up the signal and 

idler output fields. This basic configuration is shown in Fig. 4. 1 where, in addition to 

the crystal and the cavity, the pump laser at frequency wP and t he generated signal 

and idler fields at frequencies W 5 and wi, respectively, are also shown. 

From energy conservation the relation Wp = W 5 + wi must be satisfied. Note t hat 

the frequencies Ws and wi must be in resonance with the optical cavity while the pump 

frequency is usually not, although cases where wP builds up around t he OPO have 

been considered.[69, 70] Also note that as a result of t he conversion of a single pump 

photon into two (signal and idler) , the two output photons are highly correlated with 

each other. These correlations give rise to the nonclassical nature of the OPO output 

and the squeezed spectrum that characterizes it. 

Depending on whether or not the signal and idler frequencies are degenerate, the 

OPO is said to operate in a degenerate mode (DOPO) for which Ws = Wi = 3., or in a 
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Figure 4.1: A basic OPO consists of a non-linear crystal, x(2
) inside an optical cavity. 

The OPO is pumped by a laser at frequency Wp and generates a signal and idler 
output at frequencies W s and wi, respectively. 

non-degenerate mode (NDOPO) for which Ws =/. wi · The output coupler of the OPO 

has field transmissivity t (see Fig. 4.1) which translates to a cold cavity (i.e., without 

the pump) linewidth for the OPO of /OPO = 'Yo · Note that the cavity linewidth 

changes when the pump is on; see Ref. [12]. 

4.1 OPO Configuration 

4.1.1 Cavity Elements 

Turning now to our OPO, we begin the discussion by describing the geometry config

uration in the experiments shown in Fig. 4.2. Contrary to the simplified OPO of Fig. 

4.1, t he geometry implemented in our experiments is a folded ring cavity (composed 

of the mirrors M1N, M our, M 1 and M2 ) and is the same geometry that was used 

in previous experiments by our group.[3, 4] The main reason for using a ring cavity 

is that the total intracavity losses in a ring configuration are only half of those in a 

standing wave cavity, while the folded configuration permits the angles of incidence 

on the mirrors to be kept small in order to avoid birefringence from the curved mirrors 

(M1N and M our) that effectively act s as a loss mechanism. The nonlinear material 

that was used is a K Nb03 crystal of about 10 mm length. 1 

1 In the lab this crystal was m arked as Cl5. Its properties were carefully measured by E . S. Polzik. 
However, over time the quality of the crystal degraded and during our experiments apparent bulk 
defects, "stripes" inside the crystal, were present. For a summary of t he properties of the crystal, 
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The OPO is usually operating at one of two pump frequencies corresponding to 

pump wavelengths of Ap '.:::::'. 426 nm and Ap c:::: 442 nm, respectively. For the first case 

(Ap '.:::::'. 426 nm) the OPO was always operated in the degenerate mode, producing 

correlated signal and idler beams at As = Ai '.:::::'. 852 nm, while in the second case 

(Ap '.:::::'. 442 nm) t he OPO was used as either a DOPO with As = Ai '.:::::'. 884 nm or as 

a NDOPO with As '.:::::'. 852 nm and Ai '.:::::'. 917 nm. In both cases the mirrors M rN, M 1 

and M2 are high reflectors for the IR (signal and idler) frequencies and transmit the 

pump frequency (t~26 '.:::::'. t~42 ~ 0.95) . The output coupler Mour has IR transmission 

t~52 '.:::::'. 0.105 for the case Ap '.:::::'. 426 nm and t~52 '.:::::'. t~84 '.:::::'. t~17 '.:::::'. 0.07 for the case 

Ap '.:::::'. 442 nm and also transmits the pump. To switch between t he two, the mirror 

Mour is physically replaced. 

MouT 

t O)· 
I 

Figure 4.2: OPO geometry. 

The total passive losses (in power) of the cavity are usually less than 0.5% and 

see the list compiled by E . S. Polzik in Lab Book# 7 of N.Ph.G., p. 35. 
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those due to light induced absorption about 13.[71] Therefore, the total power losses 

(including the output coupler transmission t) are about lh ~ 123 for the case of 

operating the OPO with a pump frequency corresponding to Ap ~ 426 nm and oL ~ 
8.53 for the case of Ap ~ 442 nm. Hence, the finesse of the cavity, given by :F = 

'Ir~ • 'L c h f \ c l - vr=;5L, is .r ~ 50 1or t e case o A p ~ 426 nm and :F ~ 71 ior Ap ~ 442 nm. The 

total length of the OPO cavity is about L ~ 46 cm and hence the free spectral range 

is F SR = f ~ 650 MHz from which we calculate the cold cavity linewidth lo = FJ:R 
to be ?;: ~ 13 MHz for the case when we operate the OPO with Ap ~ 426 nm and 

?;: ~ 9 MHz for Ap ~ 442 nm. Note that lo is the FWHM value of the linewidth. 

The last element in the cavity is a set of Brewster windows fixed on two counter 

rotating tilt mounds. The purpose of this set of plates is to tune dispersively the 

length of the OPO so that in the NDOPO operating mode double resonance for the 

desired W 5 and wi frequencies can be achieved. These windows are positioned with 

respect to the beam path at an angle close to the Brewster angle so as to minimize 

losses. The reason for using two instead of just one is of course to avoid misalignment 

due to beam displacement of the OPO as the plates are tilted. 

4.1.2 Beam Paths 

Because of the ring configuration of the OPO, there are two distinct counter-propagating 

paths within the cavity (see Fig. 4.2) . The main path is defined by the direction of 

the pump field and it is also the direction of the signal and idler propagation. The 

opposite path is used for locking the OPO, and a beam counter propagating to the 

signal and idler is reflect ed from the output coupler Mour onto the locking detector. 

In order to minimize the degradation of the signal and idler beams, the locking beam 

is brought into the OPO through a 99/1 beamsplitter. 

One more injected beam through M 1 (along the direction of the signal and idler 

propagation) serves as a probe beam to measure the phase-sensitive gain of the OPO 

and to check if the OPO is in resonance with the atomic transitions (see below). This 

beam is turned off during the experiments. 
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4.1.3 OPO Locking 

To lock the OPO we implement the well established FM stabilization technique of Ref. 

[72] . Here the locking beam (like all other beams originating from the master-laser 

which is the Ti:Sapphire) has FM sidebands at ±27.5 MHz. When reflected from the 

OPO, this locking beam is detected on a fast photodiode, the photocurrent of which 

is demodulated by mixing with a signal from the RF generator at 27.5 MHz. The 

demodulated signal is amplified, high-pass filtered and fed into a HV amplifier that 

drives the PZT of M 2 so that the cavity stays in resonance with the locking frequency 

To avoid any cross-talk of the locking beam with the signal and idler frequen

cies due to backscattering, the locking frequency w L is detuned by about 240 MHz 

from the master-laser (Ti:Sapphire). This is achieved by double passing the locking 

beam through a tunable acousto-optic modulator. Then the OPO is locked to one 

of the transverse spatial modes of the locking beam that coincides with the longitu

dinal modes of the signal and idler beams that we want the cavity to b e resonant 

with. Note that the master-laser frequency is w0 , the OPO pump frequency (gen

erated by doubling of the Ti:Sapphire laser frequency) is 2w0 , the signal and idler 

frequencies are Ws,i = w0 ± 6. and the locking beam that also originates from the 

same Ti:Sapphire laser has frequency wL:::: w0 + 240 MHz; see Fig. 4.3. Hence, 

in the degenerate operation of the OPO, Ws,i = w0 -=/= WL , while for the NDOPO we 

have that lws,i - wLI » 240 MHz since 6. » 240 M H z . In other words, in both the 

DOPO and NDOPO, the locking b eam frequency is at least 240 MHz away from the 

signal and idler frequencies minimizing in this way the possibility of contaminating 

the squeezing by unwanted radiation. 

4.1.4 Triangular Cavity 

Finally, to complet e the discussion about the OPO setup, notice that in Fig. 4.3 the 

pump beam passes through a triangular cavity on its way from the doubling cavity 

to the OPO. This cavity is used as a transfer cavity to modematch the pump beam 
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Figure 4.3: Experimental setup to generate squeezed light. 

to the OPO. To do this, the pump from the doubling cavity is modem atched to the 

triangular cavity. Then, by injecting into the OPO an IR beam (at frequency w0 ), 

counter-propagating to the direction of the signal and idler beams, we generate light 

at the pump frequency Wp = 2w0 • This beam is propagating in the opposite direction 

of the pump and goes to the triangular cavity to which is also then modematched. 

Hence, the pump from the doubling cavity is modematch ed to the OPO. The transfer 

cavity just described is crucial for aligning the pump to the OPO since the OPO 

cavity is not resonant with the pump and hence could not be directly modem atched 

to it. 
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4.2 Degenerate Operation 

Having described in detail the experimental realization of the OPO, we now turn 

our attention to its performance characterization in the two modes of operation, the 

DOPO and NDOPO. Theory for both operating modes can be found in Ref. [12]. 

The discussion begins in this section with the DOPO, and in the next section the 

NDOPO will be described. 2 

From the analysis of Ref. [12], it follows that all OPO output characteristics (both 

for the DOPO as well as the NDOPO) can be expressed in terms of the pumping 

parameter x defined by 

x=lf, ( 4.1) 

and the OPO cold cavity linewidth lo· Here P is the pump power and Pth is the 

threshold power above which the OPO starts to lase. The parameter x is the same 

as what the authors in Ref. [12] call coth ~, which for practical reasons we choose to 

express here in terms of power instead of fields since power is what we experimentally 

measure. 

4.2.1 Phase-Sensitive Gain 

In the degenerate mode (either with Ap ~ 426 or Ap ~ 442), the DOPO was charac

terized on a day to day basis in terms of the phase-sensitive gain G~P, experimentally 

defined by 

(4.2) 

The gain G %'P corresponds to the maximum power amplification ( +) and maximum 

power deamplification ( - ) of a small injected coherent signal at frequency T, that 

enters the OPO cavity through M 1 (see Fig. 4.2). This beam is phase coherent with 

2 Note, however, that t he phase sensitive gain derived in Ref. [12], DOES NOT apply in our 
case, b ecause the derivation is based on the assumption of a single port cavity (i.e., same input and 
output ports). In our case, the two ports are different, M 1 and Mout (see Fig. 4.2). Notice, also, 
that Fig. 1 of Ref. [12] is misleading and does not correspond to the equations the authors derive 
for the phase sensitive amplification, i.e., Eq. 15 and Eq. 46 in Ref. [12]. The easiest way to see 
this discrepancy is to turn off the gain and observe that, contrary to the two sided cavity, the entire 
field transmits (see Eq. 15 in Ref. [12])! More details can be found in Appendix A. 
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Figure 4.4: Phase-sensitive gain of a coherent beam transmited through the DOPO. 

the pump (i.e. , originates from the Ti:Sapphire laser of Fig. 4.3) and is injected 

along the injection path of Fig. 4.2. The transmission of this beam is observed at 

the signal/idler output port of the OPO. In the presence of the pump this signal is 

amplified or deamplified depending on its relative phase to the pump. By modulating 

this phase, with a PZT along the injection path, we observe a p eriodic output with 

maximum value V+ and minimum V_ (see Fig. 4.4). These values, compared to the 

no-gain value Va, give G%'P as described by Eq. ( 4.2). Here an important experimental 

detail is that to determine correctly Va we should NOT block the pump power (which 

of course turns the gain off) but rather detune the t emperature of the crystal to a 

place where there is no phase matching and hence no gain from the OPO. This is 

important because the presence of the pump introduces non-linear losses due to light

induced absorption, so that if the blue is blocked in order to measure Va, its value 

will in fact be overestimated . 



56 

300 
10.0 .... 2/1 1/94 

250 £ • 4/27/94 
7.5 • 5/2/94 ... 8/4/94 

200 5.0 
+ -Theory 

(.9 
2.5 

c 
150 ·ro 

(.9 

0 
0.1 0 .2 0 .3 0.4 

g, 100 
I 
I 
I 

I , 
I 

, 
50 I , 

I , , 

0 
0.0 0.2 0.4 0.6 0.8 1.0 

Threshold Parameter x2
=(P/Pth) 

Figure 4.5: OPO gain G+ vs. the dimensionless pumping parameter x2. The solid 
line is t he theoretical prediction (G+ = (1 - x)-2

) with no free parameters. 

Expressed in terms of the pumping parameter x, the phase-sensitive gain for the 

DOPO can be shown from Ref. [73] (Eqs. 1-4) and Ref. [74] to be equal to 

and hence the relation 

G - 1 
± - (l=i=x) 2 

G G = 
1 

+ - (1 - x2)2 

(4.3) 

(4.4) 

must hold; see Appendix A.3 Clearly, by measuring G± the value of t he pumping 

p arameter x can be inferred , which is important in estimating the rest of the properties 

3 Note that for a single-sided cavity in which the injected b eam enters and escapes the cavity from 
the sam e mirror (i.e., same input and output ports), the gain is given by Eq. 15 of Ref. [12], which 
reduces to 

G = (~) 2 
± l=F x ' 

and which further implies that 
G+G - = 1. 

This expression can also be derived from Refs. [73] and [74] and details of the derivation are shown 
in Appendix A. 
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Figure 4.6: OPO gain G _ vs. the dimensionless pumping parameter x 2 . The solid 
line is the theoretical prediction (G_ = (1 + x)- 2

) with no free parameters. 

of the OPO. In particular, inverting Eq. (4.3) for x gives 

(4.5) 

In addition to the day to day measurements of G + through which t he performance 

of the OPO was monitored, specific experiments were conducted to quantify better 

the issues described above. In particular, measurements have been taken of G± versus 

P in three occasions (2/11/94, 4/27 /94, 5/2/94) with >.P c::: 426 and once (8/ 4/94) 

with >.P c::: 442. The data are compiled in Table 4.1 and plots of them are shown in 

Figs. 4.5, 4.6, 4.7 and 4.8. 

To put all the data together, the following two-step procedure has been applied: 

a) the G+ versus P data from each experiment are fitted to Eq. (4.3) to get Pth; b) 

the P axis of the data is rescaled to x by normalizing P by Pth for each experiment . 

Having performed this normalization the data, although taken at different days, which 

could mean different conditions, i.e., potentially different Pth, can be presented on the 
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Figure 4.7: The product G+G- versus the dimensionless pumping parameter x 2 . The 
solid line is the theoretical prediction G+G- = (1 - x 2
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same graph. The threshold powers extracted from fitting Eq. ( 4.3) to t he data are 

Pt2f11! 94 
'.::::'. 335 mW, Pt4f27l 94 

'.::::'. 311 mW, Pt5,(2l 94 
'.::::'. 317 mW and Pt8f4

/
94 

'.::::'. 146 

mW. Clearly, t he first three data sets have similar threshold powers, while the last 

one has a much lower value which is due to the different output couplers used. In 

particular, the first three experiments, for which the pump wavelength was Ap '.::::'. 426 

nm, were performed with a 10.53 output coupler , resulting in an OPO linewidth of 

1~}fl0 '.::::'. 13 MHz, while the last experiment, for which Ap '.::::'. 442 nm, was performed 

with a 7 3 output coupler, resulting in an OPO linewidth about 1'!;4};0 '.::::'. 9 MHz 

(see Sec. 4.1.1). Since the threshold power for the OPO scales as the square of the 

cavity linewidth (see Ref. [12] and Appendix A), we expect that the threshold in 

the case of Ap '.::::'. 426 nm (first three experiments with 10.53 output coupler) to be 

( ~3 ) 2 
'.::::'. 2. 1 times bigger than in t he case of Ap '.::::'. 442 nm (last experiment with 73 

output coupler) in accordance with the observations. 
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Figure 4.8: OPO amplification gain G+ versus deamplification G_ for all measure

ments. The solid line is t he t heoretical prediction G+ = G_ (2~ - 1)- 2
. 

4.2.2 Squeezing Spectra 

In addition to the gain measurements, we have also observed squeezing directly using 

a usual balanced homodyne setup as shown in Fig. 4.9.[75, 76] A typical spectrum 

obtained from such a measurement is shown in Fig. 4 .10. The shot-noise level W 0 

is about 10 dB above the electronics noise. When the squeezing is unblocked, the 

modulated trace in Fig. 4.10 is observed, which is an indication of squeezing. The fact 

t hat there is noise suppression below the shot-noise level is a signature of quant um 

squeezing. The frequency with which the modulation occurs is twice that of the 

modulation on the PZT of Fig. 4.9.[13] The maximum noise suppression W _ and 

the maximum noise enhancement W + correspond to t he sizes of the squeezed and 

antisqueezed quadratures, respectively. 

Systematic homodyne measurements of squeezing as a function of the pump power 

P were performed twice, once on 2/11/94 and once on 4/27 /94 along with the phase

sensitive gain measurements mentioned earlier. In both cases the homodyne detector 
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2/ 11/ 94 4/ 27/ 94 5/2/94 8/ 4/ 94 
p G+ G_ p G+ G_ p G+ G_ p G+ G_ 
60 3.8 0.45 3 1.2 0.75 65 3.5 0.43 20 1.7 0.56 

100 6.4 0.37 10 1.6 0.72 100 5.1 0.38 30 2.4 0.47 
125 8.5 0.35 30 2.1 0.57 120 6.4 0.37 40 3.4 0.38 
150 10.7 0.32 50 3.0 0.51 140 9.2 0.35 50 5.5 0.38 
170 13.2 0.32 70 3.7 0.47 60 6.7 0.27 
180 14.0 0.31 90 4.7 0.41 70 12.5 0.27 
190 14.3 0.31 110 6.2 0.42 80 21.0 0.30 

130 7.5 0.36 90 30.0 0.24 
140 9.2 0.35 100 56.0 -
160 12.5 0.33 110 96.0 -

120 168.0 -

130 290.0 -

Table 4.1: Raw data of P, G+ and G_ for the experiments of 2/ 11/94, 4/ 2/ 94, 5/ 2/ 94 
and 8/4/94. Note that P is in mW. 

was balanced at 3 MHz (to avoid the laser 's technical noise) and had noise suppression 

of about 35 dB . To observe the squeezing, the spectrum analyzer was set to zero 

span, center frequency 3 NIH z, resolution bandwidth 100 KHz and video bandwidth 

1 KHz . The overall detection efficiency was ( = 'f]2<Y.ttriout ~ 0.71 , where 'fJ ~ 0.93 was 

the homodyne visibility at each port of the 50/50 BS (Fig. 4.9, note that a cleaning 

cavity for the LO mode was not used), a~ 0.95 was the detector quantum efficiency 

(measured by Akira Furusawa in Oct. 1997, about two years after the experiments 

took place), ttr ~ 0.96 was the transport efficiency and tout ~ 0.87 was the escape 

efficiency from the OPO. Figure 4.10 is typical of the squeezing spectra from the 

experiments of 2/11/ 94 and 4/27 /94. 

The quantities of interest from the data are W± (shown in Fig. 4.10) , from which 

the sizes R± (see Eq. (4.7) below) of the squeezed and antisqueezed quadratures 

relative to the shot-noise level can be calculated. Notice that the W's are in a log scale 

while the R's are linear quantities. Furthermore, matters are somewhat complicated 

by small corrections to W± due to the finite shot-noise level above the electronics noise 

floor which was W 0 ~ 10 dB for experiment 2/11/94 and Wo ~ 8 dB for 4/27 / 94. 

To derive the transformation between the W 's and the R's, we begin by defining the 

electronic noise floor to be at a level on the spectrum analyzer Ye, the shot-noise at Yo, 
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Figure 4.9: Balanced homodyne detector . 

the maximum squeezing at y_ and the maximum antisqueezing at Y+; see Fig. 4.10. 

Hence, Wo = y0 - Ye and W± = Y± - y0 • Let Xo ,± be the size (in linear scale) of the 

shot-noise, antisqueezing and squeezing without the contribution from the electronics 

noise. T hen, 

( ~) ~ ~ Yo,± = 10 log Xo,± + 10 10 ~ Xo,± = 10 10 - 10 10, (4.6) 

where the contribution of the electronics noise is included via the term 101:ffi and is 

assumed to add incoherently to the values of Xo,±· Therefore, R ± is calculated to be 

Y±- Ye 

X± 10 10 - 1 
R± = -= ~ 

Xo 10 10 - 1 

W±+Wo 
10 10 - 1 
~ 10 1 0 - 1 

(4.7) 

The experimental uncertainties for R ±, defined to be eR±, are easily calculated from 
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Figure 4.10: A typical spectrum of squeezing. 

the experimental uncertainties ew± of W± to be 

Y-

.-- Ye 

( 4.8) 

where it is assumed that there is no uncertainty in W 0 • Note that both the values of 

W± as well as their associated uncertainties ew± have been extracted ( "by eye") from 

plots similar to t hat in F ig. 4 .10. Table 4.2 lists the values of R± and the associated 

errors eR± for the experiments of 2/ 11/ 94 and 4/27 / 94. 

Next, the size of the two conjugate quadratures of the electromagnetic field ~X± (S1) 

are calculated, which as shown if Ref. [13) are equal to 

(4.9) 
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2/ 11/ 94 4/ 27/ 94 
p R+ ± eR+ R_ ± eR_ p R+ ± eR+ R _ ± eR_ 

100 5.72± 0.65 0.42±0.05 3 1.41±0.16 0.78±0.07 
125 6.43±0.74 0.41±0.05 10 1.61±0.15 0.67±0.06 
150 7.40±0.85 0.38±0.05 30 2.24± 0.10 0.62±0.03 
170 9.35±1.07 0.45±0.05 50 2.94±0.20 0.56±0.03 
180 10.26±1.18 0.37±0.04 70 3.32±0.15 0.56±0.03 
190 10.50± 1.20 0.39± 0.04 90 3.84±0.17 0.54±0.05 

110 4.23±0.19 0.51±0.05 
130 5.34±0.37 0.51 ± 0.05 
140 6.05±0.42 0.50±0.03 
160 6.97±0.80 0.47±0.06 

Table 4.2: Size of the squeezing R_ and antisqueezing R+ relative to the shot noise 
in linear units. Corrections for the finite level of the shot noise have been included. 
Pis the pump power in mW. 

and satisfy the uncertainty relation 

D.X+ (0) D.X_ (O') 2 8 (D - D'). (4.10) 

Here n is the frequency of observation ( 3 MHz in our case) and S± is shown (see 

Ref. [13]) to be related to R± by 

(4.11) 

where ( ~ 0.71 is the overall homodyne efficiency. From these relationships the uncer

tainty relation for the quadratures of the field is written in terms of the experimentally 

measured quantities R±: 

( 
R+ - 1) (l R _ - 1) 

1 + ( + ( 2 1. (4.12) 

Note that for minimum uncertainty states D.X+D.X_ = 1 and as we approach perfect 

squeezing S+ ---t oo while S_ ---t - 1. 

Figure 4.11 shows the data plotted as the squeezed quadrature D.X+ = 1 + S+ 

versus the antisqueezed quadrature D.X_ = 1 + S_. As we can see, the data exhibit 
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quantum squeezing (i.e. , 6X_ < 1) but they do not fall on the minimum uncertainty 

curve. One explanation of this discrepancy is that there is an extra loss factor that 

has not been accounted for. By assuming that (ror = (, · (x with the extra 
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0.8 • 4/27/94 

,........ Overall Homodyne Efficiency 1;;=0.71 
N 0.6 I 
~ 
CV) 
II 
c 

0.4 '-"'; 
(f) 
+ ...--

0.2 

0.0 '--~'-----''-----''----'~--'~--'~--'~--L~--L~--L~--L~-' 
0 3 6 9 12 15 18 

1 +S +(n=3MHz) 

Figure 4.11: The squeezed (6X_ = 1 + S_) versus the antisqueezed (6X+ = 1 + S+) 
quadratures of the OPO output. The solid line is the minimum uncertainty relation 
6X+6X_ = 1. 

factor (x introduced to account for a missing efficiency, the data are fitted to the 

minimum uncertainty relation to obtain (x, which gives that for the experiment of 

2/ 11/ 94 (x = 0.93 and for 4/ 27 / 94 (x = 0.79. Figure 4.12 shows 6X+ versus 6X_ 

as calculated from Eqs. (4.9)-(4.11) taking into account the extra factor ( x, with now 

very good agreement. 

4.2.3 Summary of the DOPO Results 

Recapitulating the results for the performance measurements of the DOPO, we note 

that two independent types of experiments were performed, the phase-sensitive gain 
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Figure 4.12: The squeezed (.6.X_ = 1 + S_) versus t he antisqueezed (.6.X+ = 1 + S+) 
quadratures of the OPO output calculated taking into account an extra efficiency 
factor (x · The solid line is the minimum uncertainty relation .6.X+ .6.X_ = 1. 

m easurem ents and the direct homodyne detection of squeezing. In the first case, the 

phase-sensitive gain measurem ents are in good agreem ent with theory, while in the 

case of squeezed spectra a small discrepancy with theory h as b een det ected. However , 

this difference can be b ridged by assuming some extra loss factor which has not been 

accounted for otherwise and which degrades the squeezing. For the experiment of 

4/ 24/ 94, the loss factor that resolves th e discrepancy is 1 - ( x = 0.21, while for the 

experiment of 2/11/94 t he factors that adjust the data t o the theory is 1 - ( x = 0.07. 

4.3 Non-Degenerate Operation 

Turning now to the NDOPO, we will first discuss its operation and tuning so t hat 

the output signal and idler beams have corresponding wavelengths ).5 '.'.::::'. 852 nm and 

Ai '.'.::::'. 917 nm in resonance with the 6S1; 2F = 4 -t 6P3;2F ' = 5 and 6P3;2 F' = 5 -t 
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6D5; 2 F" = 6 transitions in Cs, respectively. Following that we will concentrate on 

the characterization and day-to-day monitoring of the performance of the NDOPO. 

Neither the operation nor the characterization are easy tasks mainly due to the fact 

that the signal and idler frequencies differ by 25 THz . First to tune the NDOPO, we 

must bring the OPO cavity to double resonance with the signal and idler wavelengths 

As -:= 852 nm and Ai -:= 917 nm. Then to deduce the squeezing produced, we must 

rely on phase-sensitive gain measurements since direct observation of the spectrum of 

squeezing is not possible. Note that nonclassical correlations exist between the signal 

and idler frequencies which are separated by Ws - wi -:= 25 TH z and hence are well 

beyond the detection capabilities of any conventional photodetector. 

4.3.1 Operation 

In order to tune the OPO cavity to double resonance with As -:= 852 nm and Ai -:= 917 

nm, the Brewster plates in Fig. 4.2 are used to scan the length of the OPO. Double 

resonance is achieved when the optical path lengths Ls and Li of the signal and idler 

beams are simultaneously equal to integer multiples of the corresponding wavelengths 

As and Ai, i.e., when Ls = PAs and Li = qAi, where p and q are integers. Assuming 

that the indices of refraction for the two wavelengths in the Brewster plates are the 

same, the double resonance condition may be written as PAs = qAi. Realizing that 

~ -:= i~ implies that if there is a double resonance in the OPO cavity for some physical 

cavity length L 0 , then the next double resonance will be at L 0 + 13Ai -:= L 0 + 14As. 

Hence, by changing the length of the OPO by at most dL0 -:= 13Ai -:= 14As -:= 12 µm 

should result in a subsequent double resonance; see Fig. 4.13. Because the required 

scanning length of 12 µm to reach double resonance is beyond the scanning range of 

the PZT, the Brewster plates are used, which provide a much larger tuning range. 

Note that if the ratio of the two wavelengths is not "close" to a ratio of two small 

integers, then the length L 0 must be tuned by much more than 12 µm before a double 

resonance is reached. Actually, b ecause the ratio is not exactly 13/14, it has been 

found that a scanning range of the order of 100As was required before the double 
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Figure 4.13: Schematic representation of double resonance in the NDOPO. The ver
tical lines denote longitudinal modes of the OPO cavity for the two wavelengths As 
(solid lines) and Ai (doted lines), which are separated by As and Ai, respectively. As 
the cavity length is changed, the resonances of the two wavelengths move relative to 
each other until they coincide and to produce another double resonance. 

resonance was optimized for the finesse of our cavity. 

To monitor the tuning to the double resonance, a small coherent probe b eam is 

injected into the OPO. The injected beam originates from an independent diode laser 

tuned at t he A852 = 852 nm resonance of the 6S1; 2F = 4 -t 6Ps;2F' = 5 transition 

in Cs, hence having the desired frequency for the signal beam. Simultaneously, the 

OPO is pumped at frequency Ap = 442 nm, obtained by doubling the frequency of 

the Ti:Sapphire laser which is locked to the two-photon transition 6S1;2F = 4 -t 

6D5; 2F" = 6 (A884 = 884 nm). Then, as t he cavity length is scanned, successive 

double resonances of w 852 with w 442-w852 are reached, at which points the transmission 

of the injected beam exhibits amplification; see Fig. 4.14. This of course happens 

because at double resonance some of the pump photons at w442 are converted to two 

photons of frequencies Ws = w 852 and wi = w 442 - W8s2 and hence the Wss2 beam is 

amplified . By optimizing the gain of the injected w 852 beam and locking to t hat point, 

the length of the OPO cavity is fixed so that it is doubly resonant with Ws = w8s2 
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Figure 4.14: When the OPO cavity is doubly resonant with the injected w 852 and 
conjugate w 442 - w 852 frequencies, there is amplification of the injected beam. 

and wi = W442 - ws52 . Since Wss2 is resonant with the 6S1; 2F = 4 -+ 6P3; 2F' = 5 

transition and since w 442 = 2 w 884 is resonant with the 6S1; 2F = 4 -+ 6D5; 2F" = 6 

transition, it follows that the wi = wg17 = w 442 - w 852 is the eigenfrequency of the 

6P3; 2F' = 5 -+ 6D5; 2F" = 6 transition. Hence, the OPO signal and idler frequencies 

are Ws '.::::'. w 852 and wi '.::::'. w917 are in approximate resonance with the two atomic 

transitions of interest. 

4 .3.2 Performance 

To monitor the NDOPO performance we observe in a series of measurements the gain 

at the signal and idler frequencies. In particular, we look at the transmission of the 

injected beam and measure its power in four different configurations; see F ig. 4.15. 

First, by detuning the crystal temperature, t he no-gain transmitted power of the 

w852 beam Vo is obtained; Fig. 4.15a. Next, the temperature is tuned to the phase 

matching point and the amplified power of the combined signal and idler beams 

Vg52+917 is observed; Fig. 4.15b. Note that as the OPO cavity is scanned, several 

• • 
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Figure 4.15: Sequence of measurements to determine the OPO gain: (a) no-gain 
measurement of the transmitted power V0 ; (b) combined power of the amplified 852 
nm and generated 917 nm beams, Vs52+917 ; (c) amplified power of the injected beam 
at 852 nm alone, Vs52 ; ( d) generated power of the idler beam at 917 nm alone, Vg17. 

longitudinal resonances of the injected beam appear, but only the one for which there 

is double resonance exhibits gain. In the third measurement only the amplified signal 

beam power Vs52 is observed by inserting an 852 nm filter in the path of the OPO 

output, Fig. 4.15c. Finally, in the last step, by replacing the 852 nm with a 917 nm 

filter, the generate idler power Vg17 is observed, Fig. 4.15d. 

Combining these measurements for the various V's, the gain (maximum amplifi-
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11/ 29/ 94 12/ 06/ 94 12/20/94 
Gexp 

852 
Gexp1 

917 
Gexp~ 

917 
G exp 

852 
Gexp1 

917 
Gexp~ 

917 
Gexp 

852 
Gexp1 

917 
Gexp~ 

917 
4.60 2.75 3.13 3.33 1.87 2.00 6.07 2.93 4.25 
3.16 1.15 1.25 2.00 1.00 0.95 3.67 2.33 2.25 
2.25 1.03 0.78 1.40 0.80 0.43 1.83 0.67 0.63 
1.75 0.28 0.42 1.17 1.33 0.20 1.67 0.83 0.45 
1.50 0.26 0.26 2.66 1.34 1.75 1.68 0.82 0.63 
1.25 0.22 0.20 6.67 5.33 5.00 3.75 0.85 1.50 
1.25 0.18 0.16 4.00 3.00 2.25 1.35 0.18 0.22 
3.00 0.57 0.71 2.00 1.40 0.75 2.41 0.53 0.68 

1.50 0.70 0.38 3.27 1.40 1.53 
1.27 0 .08 0.14 
5.22 0.28 2.81 
1.43 0.39 0.31 
2.31 0.80 0.75 

Table 4.3: Gain measurements for the NDOPO. 

cation) is defined for the signal and idler beam to be 

and 

Gexp = _1_ VS52 
852 -

T852 Va 

aexp 1 = VS52+917 - ~ Vs52 
917 - Vo ) 

( 4.13) 

( 4.14) 

where T852 is the power transmission of the 852 filter in the measurement of Fig. 

4.15c. In addition, the measurements of Fig. 4.15d give a second estimate of G917, 

namely 

a exp2 = _l_ V911 
917 - rp l/ ) 

.! 917 Vo 

(4.15) 

where T917 is the power transmission of the 917 filter. Note that in the above discus

sion it is assumed that the quantum efficiency of the detector at 852 nm and 917 nm 

is the same. 

Systematic data for the gain of the signal and idler beams have been recorded 

on three occasions, 11/ 29/94, 12/ 06/ 94 and 12/ 20/ 94, during the nonclassical two

photon excitation experiment. The data are shown in Table 4.3. To check for consis

tency of the measurements, we first plot in Fig. 4.16 G~~~ 1 versus G~~~ 2 . The data 
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fall on t he diagonal G~~~ 1 
= G~~~ 2 (as they should) and hence we take for the value 

of the gain of the idler b eam the average of the two a;~~ = ~ (a;~~ 1 + G~~~ 2 ). 

• 11/29/94 
5 • 12/06/94 

.... 12/20/94 

4 

2 

1 • 
• 

• 

0 11<..::;__~~~~~~~~~~~~~~~~~~~~~~~--I 
0 2 3 4 5 6 

1 
G 917 

Figure 4.16: Plot of the gain measurements of the idler beam G~~~ 1 versus G~~~ 2 , 
which were determined by two independent methods. For the data to be consistent, 
they must fall on t he diagonal G~~~ 1 = G~~~ 2 . 

The theory for the NDOPO is slightly different from that of DOPO. Following 

the discussion of Appendix A, we find that t he gain of the signal and idler beams of 

a NDOPO are given by 

G = 1 
s (1 - x2)2 ( 4.16) 

and 
x2 

G· = ----=-
• (1 - x2)2' 

( 4.17) 

from which it follows that 

G · =G (1--1 ) t s VGs (4.18) 

Here x is the pumping parameter as defined by Eq. ( 4.1) and all t he losses in the OPO 
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are assumed to be the same in both t he signal and idler frequencies; see Appendix 

A. Therefore, to check whether or not the data are consistent with theory, we plot 

in Fig. 4.17 the gain of the idler beam G~~~ versus the gain of the signal beam G~~~. 

Clearly, there is good agreement and the discrepancies that are present (especially for 

the experiment of 12/ 06/94) could probably be explained by unequal losses for the 

signal and idler frequencies in the OPO. 

7 

6 • 11/29/94 

• 12/06/94 ... 12/20/94 
5 Theory 

4 
r-. 
Ol 

<.9 3 

2 

... 
0 

0 2 3 4 5 6 7 8 

G a52 

Figure 4.17: Idler gain G~~~ versus signal gain G~~~ . The solid line is the theoretical 

prediction for the relation of the two, namely G~~~ = G~~~ ( 1 - ~) . 

4.4 Su mmary 

The focus of this chapter has been the description and characterization of the OPO 

used in our experiments. Two main modes of operation have been discussed, the 

DOPO and NDOPO. A compilation of all available data from various experiments al-
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lows us to compare theory with experiment and to quantify the discrepancies between 

the two. In particular for the DOPO we find that the phase-sensitive gain measure

ments are in agreement with theory, while the homodyne spectra of squeezing deviate 

from theory by up to 20% which could be due to an unaccounted detection efficiency. 

For the NDOPO there is a more limited set of data which nevertheless again shows 

agreement between the gain measurements and theory. 
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Part II 

SQUEEZED LIGHT AND ATOMS 



75 

Chapter 5 Two-Photon Excitation Rate 

with N onclassical Fields: Theory and 

Experiment 

One of the most challenging tasks in quantum optics is the observation of the inter

action of nonclassical states of the electromagnetic field with atoms.[14, 15, 16, 17] 

Three main factors contribute to the overall difficulty of this type of experiment: the 

creation of nonclassical states of t he electromagnetic field in resonance with atoms, 

the efficient illumination of the atoms by these states and the efficient monitoring 

of the interaction. As mentioned in the introduction, predictions for nonclassical 

ro31 

2 ____ ;11 

Figure 5.1: Two-photon excitation by non-classical fields: a three-level atom 
{11), 12), 13)} is illuminated by t he signal and idler (ws,wi) output beams from an 
NDOPO, and they are near resonance with t he 11) --+ 12) and 12) --+ 13) transitions, 
respectively (ws ':::::'. W12 and wi ':::::'. w23) . 

effects associated with the interaction of squeezed states wit h atoms have existed in 

abundance for more than a decade, but t he difficulties outlined above have limited 
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experimental work to a minimum. To the present day there is only one experiment 

demonstrating such an effect [48, 49] and this will be discussed in the present and 

next chapters. 

Two-photon excitation of a three-level atom by the signal and idler outputs of an 

OPO (Fig. 5.1) was predicted to exhibit nonclassical behavior by several authors.[42, 

43, 44, 45] In particular, it has been shown that the rate of two-photon excitation 

as a function of intensity approaches asymptotically a linear dependance for small 

enough intensities. The basic principle behind our experiment along with an intuitive 

interpretation of the phenomenon was presented in the introduction. In the following 

section (Section 5.1) a more accurate but brief description of the underlying theory 

is presented with emphasis on what constitutes a nonclassical effect. In Section 5.2 

the setup, protocols and data of the experiment (including a control experiment) will 

be discussed. The analysis is deferred to the next chapter. 

5.1 Theory 

5.1.1 "Simple" Theory 

It has been known since the early work of Mallow in 1968 [77] that the rate of two

photon excitation R2 is proportional to the fourth-order correlation function of the 

excitation field E, 

R2 o:. (Et ( t + T) Et ( t + T) E ( t) E ( t) ) . (5.1) 

In our case, the excitation field is the output of an NDOPO Eout = E9 which can be 

expressed in terms of the transformation 

(5.2) 

of the input field Ein =Ev, taken to be the vacuum state so that (Ev (0)) = 0 (see 

Fig. 5.2) . The quantities E9 (t) and E9 (0) are related to each other by the Fourier 
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transform 

(5 .3) 

NDOPO 

PUMP, 2% I 'X' I 
~~ ~ 

OUTPUT 

Figure 5.2: The output field Eout of the OPO is related to the input state Ein via the 
transformation Eout = µEin + v E}n. 

The parameters µ and v are broadband functions of the frequency n and fully 

describe the output properties of the OP0.1 In particular, {µ (n) , v (D)} are centered 

(peak) at the signal and idler frequencies at W 8 = W 0 + [1 0 and Wi = W 0 - f20 and have 

bandwidth similar to the OPO linewidth. Without loss of generality v is taken to be 

real andµ_ lµI ei<P. In addition, from the commutation relation 

(5.4) 

it follows that 

Iµ (D)l 2 
- Iv (D)l 2 = 1 . (5.5) 

It can also be shown that{µ, v} are related to the more common squeezing parameters 

1The parameters {µ , v} are related to t he squeezing parameter s of M. J. Collet and R. Loudon, 
J. Opt. Soc. Am. B4, 1525 (1987) via 

iµI = cosh ~ and lvl = sinh ~ . 
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Mand Nin the literature by 

M (n) = µ (n) v (n) (5.6) 

and 

N (n) = Iv (r2)l2 . (5.7) 

Here the parameters M and N are the field autocorelation function and occupation 

photon number of the squeezed output of the OPO as defined by the correlation 

functions 

( E9 (n) E9 (n')) = M (n) o (n + n') (5.8) 

and 

( EJ (n) E9 (D')) = N (n) o (n - n') . (5.9) 

Expanding Eq. (5.1) and applying these definitions leads to 

(5.10) 

where ~ is a constant of order unity. For minimum uncertainty states M and N are 

related to each other by M 2 = N ( N + 1) and hence 

(5.11) 

which is in agreement with Eq. (1.3) . Here of course I is the intensity of the squeezed 

beam which is proportional to the occupation number N and also for simplicity we 

have assumed t hat N s = Ni = N where N s and Ni are the photon numbers in the 

signal and idler beams.2 Note t hat Ns and Ni are not necessarily the same if t he 

corresponding losses in the OPO are unequal. 

2 Strictly speaking, t he output intensity of t he OPO is proport ional to t he photon flux , and is given 
by I ex 2~ J dD/ ei(n-n')t N (0) . Therefore, in general I "" N and the bandwidth of the OPO cavity 
(i.e. lineshape of N (0)) has to be properly accounted for with the above integration. Nevertheless, 
for small values of N, t he two quantities are proportional to each other, i.e., 1 » N ,...., I. For more 
details see Appendix C. 
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5.1.2 "Full" Theory 

Following a more accurate theoretical description of the system , t he authors in Ref. 

[44, 45] have integrated the master equation and derived a more complicated expres

sion for R 2 in terms of the excited state population p33 

R ex _ v 2 (t9) N s {1 - v (t9) N s + [1 + ,B - ,Bv (t9)] Ni} 
2 

P33 
- [,B + ,Bv (t9) Ni+ v (t9) N s] {1 + v (t9) [2Ns +Ni - 3v (t9) Ni]}' 

(5.12) 

(see Eq. (23) in Ref. [45]) . The parameter ,B is t he ratio of the atomic linewidths as 

defined by ,B = n where 1 2 and 13 are the linewidths of t he second and third excited 
/2 

states, respectively, (6P3; 2F' = 5 and 6D5; 2F" = 6 in our case, see Fig. 5.1). Here 

the quantity v ( t9) is defined by 

v (t9) ~ [ 1 - l (3 + cos2 e) cos e] ) 0 :::; e:::; 7r (5.13) 

and accounts for imperfect coupling of the atoms with t he squeezed vacuum which 

is mainly due to the finite focusing angle t9 of the OPO output onto the atoms. In 

our experiments v (t9) « 1 and hence by expanding Eq. (5.12) and assuming that 

Ns =Ni = N, we arrive at 

v2 (t9) v2 (t9) 
p33 ~ -,B- [(1 + ,B) NsNi + Ns] + 0 [v3 (t9)] ~ -,B- ((1 + ,B) N 2 +NJ , (5.14) 

which can also be written as 

(5.15) 

Clearly, Eqs. (5 .11) and (5 .15) have t he same functional dependences in N, which 

as advertised for small enough N grow linearly with intensity. An important feature 

of Eq. (5.14) is t hat even for inefficient coupling of the atoms to the squeezed vacuum 

( v ( e) --t 0)) this non classical effect persists since the functional dependance of the 

excitation rate versus intensity is not altered. T his is not the case in examples such 

as the one originally considered by Gardiner [16] for which efficient coupling was 
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essential in preserving the nonclassical effects. This feature of two-photon excitation 

by nonclassical fields is extremely important from an experimental point of view 

because of the difficulties in achieving efficient coupling. 

Preluding the experiment that will be discussed in the next section, it is noted that 

the price to pay for small values of v ( 8) is that the overall detection signal, which 

scales proportionally to v 2 
( B), becomes very small. In our case e '.:::::'. 5° and hence 

Eq. (5.14) predicts that the excitation population is p33 :::::; 1.4 x 10-5 (~N2 + N). In 

order to observe the transition from the quadratic N 2 to the linear dependance N, 

the experiment must be performed in the region where ~N2 :::::; N, i.e., for N:::::; i and 

hence at the region of interest p33 :::::; 2 x 10- 5 . Because the overall detection efficiency 

is also small (tot ,....., 0.01 and given that the detection channel (which in our case is 

the decay from the upper to the intermediate states J3) --+ J2)) has linewidth 13 :::::; 3 

MHz, the expected counting rate at the region of interest is of the order of 

R2 ~ (tot/3P33 rv 0.5 I sec (5.16) 

Clearly, detecting 0.5 photons per second is not an easy task which is one of the 

reasons why this type of experiment is extremely difficult. 

5.1.3 Classical versus Nonclassical Effects 

Before describing the experiment, it is worth discussing what constitutes a nonclas

sical as compared to a classical effect. This question has to be clearly addressed if 

one is to claim that nonclassical effects have been observed. Setting the standard, 

throughout our research in both our attempts to such effects,[2, 48] we have used the 

strong criterion that nonclassical atomic effects are atomic features that can only be 

observed in interaction of atoms with nonclassical states of the electromagnetic field. 

Although this definition would apply to all nonclassical electromagnetic states, here 

we are only considering the limited class of nonclassical states, the so called squeezed 

states, for which the threshold for being nonclassical is defined to be the condition 

!:J.X_ < 1. Here, !:J.X_ is the minimum variance of the generalized field quadrature 
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Xe , defined by 

(5. 17) 

and where Eq is the operator for the field under consideration, which in our case is 

the squeezed output of the OPO; see Ref. [13]. 

To explore the phase space of field quadratures, we consider the plane spanned by 

the orthogonal quadratures b.X_ =Var (X0 ) and b.X+ - Var (X~ ) and discuss the 

various regions, keeping in mind the uncertainty relation 6X_6X+ 2:: 1. Figure 5.3 

shows this quadrature space with a cartoon like representation of t he various types of 

states, which in addition to the quantum squeezed states, also include thermal and 

classically squeezed st a tes. 

The states shown in Fig. 5.3 can also be distinguished from each other in terms of 

th e parameters M and N (defined by Eqs. (5.8) and (5.9)). Recall that M describes 

the autocorrelation of the fields and hence is a measure of the asymmetry in the 

quadrature space while N is the occupation photon number and hence describes th e 

overall "size" of the states. The classification in t erms of M and N is then as follows: 

• Electromagnetic vacuum, b.X+ = b.X_ = 1 <=> M = N = 0, 

• Thermal states, b.X+ = b.X_ > 1 <=> M = 0, N > 0, 

• Classically squeezed states, b.X+ #- b.X_, b.X± 2::: 1 <=> 0 < M::::; N 

• Quantum squeezed states, b.X+ #- b.X_, {b.X± > 1 and b.X'f < 1} <=> N < 

M::::;JN(N+l) 

In summary, th e criterium for h aving a quantum squeezed state is restricted in 

t he limited range 

N < M ::::; JN(N + 1). (5.18) 

Returning now to the expression for two-photon excitation, Eq. (5.15), we note 

that it applies not only to quantum squeezing but also to all other states in the plane 

in Fig. 5.3. Therefore, it is easy to see that for all non-quantum squ eezed states (i.e., 
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Figure 5.3: Quadrature space of the squeezed states of t he electromagnetic field. 
Curve (i) indicates minimum uncertainty states which satisfy D..X_l!..X+ = 1. Curve 
(ii) corresponds to thermal st ates for which l!..X_ = l!..X+ > 1. Curves (iii) and (iv) 
are for states with l!..X+ = 1 and l!..X_ = 1, respectively. States in region (a) are 
forbidden by the uncertainty relation. States in region (b) are quantum squeezed 
states characterized by the fact that either l!..X+ < 1 or D..X_ < 1. States in region 
( c) are classically squeezed states with both l!..X+ 2:'.: 1 and l!..X_ 2:'.: 1 and also with 
unequal quadratures l!..X_ =!= l!..X+. The special state D..X_ = l!..X+ = 1 corresponds 
to the electromagnetic vacuum. 

all states not satisfying Eq. (5.18)) , the two-photon excitation rate is proportion al to 

N2 

pf ;assicaz. ~ v2 ( e) N2 (5.19) 

which always has slope d(logp33
) = 2 and clearly does not have the distinctive linear 

d(logN) 

component of Eq. (5.14) . 
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5.2 Experiment 

5.2.1 Setup 

Turning now to the experiment, we have the setup shown in Fig. 5.4 which is almost 

identical to that described in Section 3.2 with the addition of Block V which is the 

part of the setup where the squeezed states are generated . The operation of Block 

V has been discussed in the previous chapter (Section 4. 1) wit h more details about 

Block V shown in Fig. 4.3. 

Reference 
Cavity 

~----'--~ 

B/S 

= 

HP8644A 

I Ar Ion Laser 

(V) 
B/S 

Ti:Sapphire =======::==~Doubling =~~'-
Laser Cavity .. ,~ 

.__ _ _ _ _, 883.73 nm 

Trapping and 
Repumping Beams 

Chop er Controller 
SR540 

917 nm Filter 

APO ~ 

441 .86 nm 

NDOPO 

1'5 =852 nm I ~ I~/ 
1'j=917 nm 

Ph otocou n ter 

SR400 

Figure 5.4: Experimental setup for two-photon excitation with non-classical fields. 

Recall t hat in F ig. 5.4 the Ti:Sapphire laser is locked to the two-photon tran

sition 6S1; 2 F = 4 --* 6D5; 2F" = 6, which is achieved by locking to a Doppler-free 
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spectroscopy signal from an auxiliary Cs vapor cell. The output of the Ti: Sapphire 

laser, at >-.0 '.'.::::'. 884 nm, is frequency doubled to Ap '.'.::::'. 442 nm and is used for pump

ing the NDOPO. The output of the NDOPO is tuned so that the signal (.As '.'.::::'. 852 

nm) and idler (.Ai '.'.::::'. 917 nm) beams are resonant with the one photon transitions 

6S1; 2F = 4 --+ 6P3;2F' = 5 and 6P3; 2F' = 5 --+ 6D5; 2F" = 6, respectively.3 The 

squeezed light from the OPO is focused onto the atomic sample which in our case is 

a MOT. The MOT is formed by diode laser beams that are chopped ON and OFF 

at 4 KHz. Finally, to measure the excitation rate, the fluorescent decay of the atoms 

from the 6D5; 2F" = 6 --+ 6P3; 2F' = 5 transition at AF '.'.::::'. 917 nm is monitored. 

The detector is an avalanche photodiode (APD) of quantum efficiency at 917 nm 

77 '.'.::::'. 0.25, and is carefully shielded to reduce background. Two interference filters are 

placed in front of it with total transmission at 917 nm equal to T917 '.'.::::'. 0.74. The 

solid angle over which light is collected is defined by the 1-1 telescope shown in Fig. 

2.2, which has opening angle e '.'.::::'. 60° and hence the solid angle that is covered is 

equal to O" = ~ = ~ (1 - cos%) '.'.::::'. 0.07. Combining the solid angle coverage, filter 

transmission and detector quantum efficiency gives an overall detection efficiency 

(tot '.'.::::'. 77 Tg11 ()" '.'.::::'. 0.01. 

5.2.2 ON/OFF Protocol 

The measurement cycle consists of two parts, the so-called ON and OFF phases of the 

experiment which differ from each other only with regard to the state of the trapping 

beams which are either turned on or off, respectively (see Fig. 5.5). The frequency 

of the ON/OFF cycle is regulated by the mechanical chopper shown in Fig. 5.4 and 

is adjusted to be 4 KHz . During the ON part of the cycle, Fig. 5.5a, the trap is 

formed and the two-photon transition is excited by the combination of the trapping 

beams and the OPO output, providing a measure for the OPO output intensity R 1 . 

During the OFF part of the cycle, Fig. 5.5b, the two-photon transition is excited by 

the signal and idler beams of the OPO and the fluorescent decay R 2 gives a measure 

3It is estimated that the fields at 884 nm, 852 nm and 917 nm were kept within 1 !VI H z from 
resonance with their corresponding atomic transition. 



of the nonclassical excitation rate. 

a) Trapping Beams ON 

Trapping Beams 
A.T = 852 nm 

85 

b) Trapping Beams OFF 

Signal Beam 
A. s = 852 nm 

-------6s112 F = 4 

Figure 5.5: a) With the trapping beams turned ON, the rate R 1 is proportional to 
the intensity of the idler field. b) When the trapping beams are turned OFF, the rate 
R 2 is proportional to the two-photon excitation rate by the signal and idler beams 
from the NDOPO. 

In particular, during the ON part of the cycle, Fig. 5.5a, t he trapping beams 

saturate the 6S1; 2 F = 4 --+ 6P3; 2F' = 5 transition and a considerable fraction of the 

atoms are excited to the 6P3; 2F' = 5 level. The contribution of the signal beam from 

the NDOPO is negligible because the power in this beam is several orders of magnitude 

lower than the power of the trapping beams. Therefore, indep endently of the NDOPO 

output power, the excited state population of the 6P3; 2F' = 5 level is constant during 

the ON phase of the experimental cycle. However, the idler beam, resonant with the 

6S1; 2F = 4 --+ 6P3; 2F' = 5 transition, excites atoms from the intermediate to the 

upper level at a rate that is proportional to its intensity. Monitoring the fluorescent 

decay from the 6D5; 2F" = 6 --+ 6P3; 2F' = 5 transition gives R1 which is a measure 

of the idler beam intensity h i.e., R 1 ex h 
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On the other hand, during the OFF part of the exp erimental cycle, Fig. 5.5b , 

the trapping beams are turned off and the atoms are excited from the ground state 

6S1; 2F = 4 to the upper level 6D5; 2F" by the combination of the signal and idler 

beams from the OPO. Thus, monitoring the fluorescent decay from t he 6D5; 2F" = 

6 -t 6P3; 2F' = 5 transition gives R2 which is a measure of the nonclassical excitation 

probability. 

To implement this acquisition protocol, the photon counter is gated to integrate 

the signal from the APD in two distinct channels that measure R 1 and R 2 . This mea

surement is complimented by phase-sensitive gain measurements G + and G _ similar 

to those described in Section 4.3.2. To change the gain , and hence the OPO out

put power, we regulate t he pump power. Therefore, for each pump power there is a 

quadruplet of measurements {R1 , R 2 , G+, G_}. The quantit ies R 1 , G+ and G_ con

tain redundant information about the degree of squeezing, or equivalently the power 

of the squeezed output of the NDOPO, while R 2 is proportional to the nonclassical 

excitation probability. 

5.2.3 Background 

One of the critical aspects of the experiment is the accurate determination of back

ground in the R2 measurement. As estimated earlier in Eq. (5.16) (and also confirmed 

by our data, see below), the counting rate at the region of interest is R 2 ,....., 1 / sec; 

therefore, even a single photon per second leaking into the detector has dramatic 

effects on the S/N ratio of the experiment. Moreover, dubious sources of background, 

like scattering of the idler beam into the detector, would scale linearly with the OPO 

output intensity and mislead our conclusions. For these reasons several precautions 

and redundant t ests have been performed to confirm that we understand and correct ly 

eliminate all sources of background. 

First, shielding of the detector was of the highest priority. Even t hough several 

layers of isolation have been used, the best background from diffuse scattering that 

was achieved was ,....., 1/ sec. At this level, the main source of background remaining 
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was the detector itself with darkcounts of,...., 4/ sec. A third source of background was 

the scattered light from the OPO output that contributes up to 4/ sec although is 

more typically less than 0.2/ sec for alignments that minimize the scattering into the 

detector. 

Operationally, to measure the background without disturbing any of its sources, 

an interference filter that passes 917 nm radiation was placed at the OPO output. 

This filter has a double purpose: first, it turns off the two-photon excitation (since 

it blocks the signal beam at 852 nm) and, second, it does not disturb the idler 

beam which could contribute to the scattering background. Notice that scattering of 

the signal beam that is blocked by the filter does not contribute to the background 

because of the 917 nm interference filters in front of the detector. To confirm this 

background measurement, an alternative (independent) method was also used where 

the magnetic fields of the MOT were turned off. Without the magnetic fields the trap 

does not form and hence the two-photon excitation is turned off as well. Note that 

this method is non-intrusive by eliminating only the sample of cold atoms excited 

by the OPO output, and hence only turns off R 2 without affecting the background. 

These two methods give within the experimental uncertainty the same background 

levels and hence confirm each other. 

Finally, note that the integration time required to accumulate enough signal so 

as to distinguish signals of ,...., 1 / sec over a background of ,...., 6 / sec is roughly 20 min. 

During t his time the whole lab (setup of Fig. 5.4) , which includes several mechanical 

and thermal servos, has to operate without any disruption or drifts. This has proven 

to be not a trivial task! 

5.2.4 Data 

Here is a good place to document the numerical transformations on the raw data 

and make transparent the processing that leads to the counting rates R 1 and R2 for 

the one and two-photon excitation rates, respectively. Starting with data acquisition, 

Fig. 5.6 shows the gating of the counter so as to distinguish between the ON and 
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OFF parts of the experimental cycle. Usually the width of these gates was about 100 

GATE B .. .. 
ON 

OFF 

T = 1/ f = 1/4KHz = 250µs 

Figure 5.6: Gating of the photon counter. Gate A corresponds to the OFF and Gate 
B to the ON phases of the experiment . 

µsand well within the ON or OFF phase so that edge effects would not contaminate 

the measurements. The counts of each gate were integrated long enough until 1 sec of 

data is accumulated (e.g., for 100 µs gates the integration was over 10000 gates), and 

the sum was sent to a computer in two channels A and B corresponding to the ON 

and OFF parts of the cycle. So at the end we have two streams of data, for channels 

A and B , denoted by 

_ { (1) (2) (N) } XoFF - xA ,xA ' . .. , xA (5.20) 

and 

_ { (1) (2) (N) } XoN - xB ,xB , . . . ,xB ' (5.21) 

where XA and XB are counts per second for each of the channels. By averaging the 

data points in each channel, we get the mean counting rates per second RoFF and 

R oN with their corresponding uncertainties defined as usual by 

and 

N 

1 "'"""" ( i) 
RoFF/ON = N L...; x A/B 

i=l 

1 
eRoFF/ON = N 

N ( N )2 (i) 1 (i) 

~ XA/B - N ~XA/B 

(5.22) 

(5.23) 
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G+ G_ R1 R2 
0 0 0 0.00±0.50 

2.00 - 7132 2.79±0.65 
2.25 - 6374 2.39±0.61 
1.75 - 6262 1.57±0.43 
1.24 - 1465 0.61±0.51 
3.00 - 14614 9.64±0.66 
3.57 - 18389 14.85±0.91 
2.38 - 12424 5.35±0.45 
7.50 - 33677 49.19±2.78 
6.00 - 26343 30.09±1.78 
4.75 - 17944 12.82±1.09 

- - 13291 9.96±0.68 
- - 9182 4.84±0.48 

2.25 - 4384 1.84±0.26 
- - 3063 0.75±0.46 
- - 2594 0.66±0.62 

1.24 - 1947 0.23±0.25 
1.46 - 3831 1.67±0.37 
1.25 - 2689 0.44±0.42 

Table 5.1: Excitation with non-classical fields, data from experiment 11/ 17 /94. 

Three types of measurements were performed with this procedure. First, the 

atoms were illuminated by the NDOPO output to determine the rates Rg~~/ON> 

then the background was measured to obtain R~~ri::/oN and finally the OPO output 

was blocked and the atoms in the trap were illuminated by a fixed power of an 884 

nm beam to obtain R i 8ftF/ON" This last measurement was used to normalize the dat a 

to account for trap density fluctuations. Note that the 884 nm beam was propagating 

in the same direction as the squeezed light and hence probed the same region in the 

MOT t hat interacted with t he squeezed light. 

By combining these three measurements, the counting rates R 1 and R 2 are esti

mated to be 
-884 

R _ (ROPO _ R Bgnd) RoFF 

and 

1 - ON ON R 884 
OFF 

-884 

(R
OPO RBgnd) R oFF ± 

R 2 = OFF - OFF R 884 
OFF 

( e ROPO ) 
2 

+ ( eRB gnd ) 
2 

+ ( et.f.) 
2 

' OFF OFF 

(5.24) 

(5.25) 
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where the background has been subtracted and the trap density fluctuations have 

been factored out. The counting rate R~;F is an arbitrary reference level for nor

malizing the density fluctuations and is usually taken to be the mean of t he R~8j.F 

measurements. Notice that the normalization for the trap density fluctuations is the 

same for both the R 1 and R 2 rates. Also note that because of the high counting rate 

for R 1 , the error of this measurement is negligible and therefore not quoted. Finally, 

note that the error for the R 2 measurement is a combination of three factors: the 

Poissonian counting errors eRoPo and eRBgnd, and an estimated 5% fractional error 
OFF OFF 

-884 

_ O O (ROPO RBgnd) ROFF 
et.f. = · 5 OFF - OFF R884 

OFF 
(5.26) 

due to the trap density fluctuations. 

G+ G_ R1 R2 

0 0 0 0.00±0.50 
4.9 3.13 22479 25.04±1.61 
3.2 1.25 13701 10.26±0.83 
2.3 0.78 9000 4.24±0.43 
1.8 0.42 6319 2.68±0.33 
1.5 0.26 4566 1.88±0.28 
1.3 0.20 4048 1.50±0.53 
1.3 0.16 2544 0.35±0.32 

Table 5.2: Excitation with non-classical fields, data from experiment 11/29/94. 

Tables 5.1 - 5.5 show the data for the five experiments performed. Note that G_ 

is the value of the phase-sensitive gain for the idler as determined by Eq. (4.15) . 

5.2.5 Control Experiment 

In addition to t he two-photon excitation with nonclassical fields (the spontaneously 

generated signal and idler beams from the NDOPO) , a control experiment of exci

tation with classical fields (two coherent beams resonant with the 6S1; 2F = 4 -+ 

6P3; 2 F' = 5 and 6P3; 2F' = 5 -+ 6D5; 2F" = 6 transitions, respectively) was also 

performed. To generate the coherent beams, a small signal beam resonant with the 
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G+ G _ Ri R2 
0 0 0 0.00±0.50 

3.3 2.00 25356 17.53±1.06 
2.0 0.95 13142 6.08±0.51 
1.4 0.43 6516 1.87±0.25 
1.2 0.20 3181 0.51± 0.18 
2.7 1.75 20602 13.02±0.84 
6.7 5.00 44457 55.13±3.00 

- - 31968 26.95±1.50 
- - 25055 16.06±1.08 

4.0 2.25 20173 13.81±0.96 
2.0 0.75 9909 3.39±0.34 
1.5 0.38 4437 0.70±0.23 

Table 5.3: Excitation with non-classical fields, data from experiment 12/06/ 94. 

G+ G_ R i R2 
0 0 0 0.00±0.2 

6.07 4.25 17400 35.06±2.07 
3.67 2.25 9909 11.30±0.76 
1.83 0.63 4576 3.06±0.61 
1.67 0.45 3363 1.59±0.39 
1.67 0.45 2744 1.41±0.44 
1.68 0.63 3565 2.27±0.38 

Table 5.4: Excitation with non-classical fields, data from experiment 12/20/94-a. 

6S1; 2 F = 4 -t 6P3; 2F' = 5 transition was injected into the OPO and was paramet

rically amplified; see Fig. 5.7. As a result , an additional (idler) beam was generated 

by the NDOPO that was resonance with the 6P3; 2F' = 5 -t 6D5; 2F " = 6 transition 

as described in the previous ch apter , Section 4.3. 

These two beams (the signal and idler output beams of the NDOPO) are in a 

superposition of coh er ent states wit h a small contribution from the squeezed vac-

uum that is simultaneously generated. To remove t he squeezing, a strong attenuator 

(transmission 3 x 10-4
) is placed at the output of the OPO (Fig. 5. 7) . The power 

of t he coherent signal and idler beams is regulated by controlling the power of the 

injected coherent beam. The same set of measurements t o obtain R 1 and R 2 as before 

are taken with t his arrangement. 

This experiment was performed twice, once on 12/22/94 and once on 1/ 12/95. 
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G+ G_ R1 R2 
0 0 0 0.00±0.20 

4.17 - 7049 11.96±0.84 
1.35 022 1277 1.52± 0.40 
2.41 0.68 3581 4.50±0.53 
3.27 1.53 6352 9.72±0.70 
1.27 0.14 756 0.37±0.32 
1.27 0.14 795 0.79±0.31 
1.85 - 3123 3.62±0.48 

- - 9800 23.32±1.48 
5.22 2.81 7927 16.14±1.00 
1.43 0.31 1319 0.72±0.26 
2.31 0.75 3149 2.91±0.33 

Table 5.5: Excitation wit h non-classical fields, data from experiment 12/20/ 94-b. 

~~ 
y'b~'),/ 

ATTENUATOR NDOPO // 

~ A5 =852 nm I 'X I 
• ......:------ .. • .... I==== 

/q=91 7 nm l.. p=442nm 
MOT 

Figure 5.7: Setup for generating two coherent beams at 852 nm and 917 nm in 
resonance with the 6S1; 2F = 4 - 6P3; 2F' = 5 and 6P3; 2F' = 5 - 6D5; 2F" = 6 
transit ions, respectively. 

In the first experiment the gain of the NDOPO was G+ c::::'. 2.5 and in the second 

G+ c::::'. 5.0. Table 5.6 lists the data from these experiments. 

5.3 Summary 

In this chapter the theory and exp erimental realization of two-photon excitation with 

nonclassical fields has been presented. Two different theoretical approaches were out

lined, the simple Mollow description [77] and the more complete integration of the 

master equation. [44, 45]. In both treatments the rate of two-photon excitation is pre-
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12/22/94 1/12/95 
R1 R2 R1 R2 

0 0.00±0.50 0 0.00±0.50 
13350 25.66±1.55 69923 987.00±50.56 

5455 4.46±0.58 44240 378.00±19.55 
2775 1.28±0.32 24301 115.00±6.09 
1355 0.37±0.29 14704 41.52±2.41 
1672 -0.24± 0.52 11519 19.62±1.17 
1941 0.95±0.35 5072 3.50±0.42 
3835 2.33±0.42 2093 1.19±0.37 
8090 10.00±0.79 1068 0.33±0.34 

1410 0.43±0.33 

Table 5.6: Excitation with coherent fields, data from experiments on 12/22/94 and 
1/ 12/95. 

dieted to approach asymptotically a linear dependance for small enough intensit ies 

with the particular functional form p33 ex N 2 + ~ IMl2 , Eqs. (5.10) and (5.15). By 

analyzing different types of states it has been shown that the linear component exists 

only for nonclassical states as defined by N < M ::; v N ( N + 1). The experimen

tal realization was then presented in detail. Both t he setup, acquisition protocols 

and data filtering have been carefully explained and the data have explicitly been 

reported. Finally, a control experiment of two-photon excitation with coherent fields 

was described. In the next chapter the data from these experiments will be analyzed 

and the results will be discussed. 
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Chapter 6 Two-Photon Excitation Rate 

with N onclassical Fields: Analysis, 

Statistics and Results 

In the previous chapter t he theory and experimental realization of nonclassical two

photon excitation was presented. Here, the data obtained in the experiments of 

Chapter 5 (Tables 5. 1-5.5 and 5.6) will be analyzed and, based on statistical argu

ments, it will be demonstrated t hat an asymptotically linear dependance has been 

observed. In particular, it will be shown t hat the rate of nonclassical two-photon 

excitation is best described by the combination of a linear plus a quadratic term of 

the excitation intensity which is in sharp contrast with the observations of classical 

excitation in the control experiments for which the dependance is purely quadratic. 

Absolute comparison with theory is achieved by incorporating the gain measurements 

and estimating the "knee" position defined to be the point at which t he contributions 

from t he quadratic and linear terms are equal. Furthermore, by normalizing t he data 

to t he t heory, a combination of all data point s on a single graph will be presented 

which will clearly demonst rate in a visual manner as well the deviation from the 

classical quadratic law. 

6.1 Statistical Analysis Part I: :Functional Form of 

R2 vs. R1 

6.1.1 Fitting P rocedure 

The first issue in the analysis is to identify the correct functional form that describes 

the R 2 versus R 1 data. As explained in the previous chapter, t he excited state pop-
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ulation p33 is proportional to the experimentally determined rate R 2 , 

(6.1) 

while the intensity of the excitation fields I is proportional to R 1 , 

(6.2) 

Here a 1 and a 2 are constants of proportionality which include the experimental effi

ciencies, atomic cross sections and trap conditions. In general a 1 and a2 will differ 

from experiment to experiment, and therefore the data from different runs can not 

be all represented on a single graph without some sort of normalization. Equations 

(6.1) and (6.2) also imply that investigating the functional dependance of p33 as a 

function of intensity I, p33 = F (I), is equivalent to investigating R 2 = f (R1). Recall 

that our goal is to demonstrate that the rate of nonclassical two-photon excitation 

is a combination of a linear term plus a quadratic term, F (I) = a1 I + a2I 2 (see Eq. 

(5 .15)) and hence we must show that f (R1 ) = a~R1 + a;R2 . 

From a mathematical point of view, identifying the best functional form f that 

fits a given set of data is not an easy task. However, with some physical insight the 

choices in this case can be limited to the following four alternative models that will 

be examined in detail. The first of these is the quadratic model 

(6.3) 

which describes classical excitation corresponding to an excitation probability that 

scales quadratically with intensity. Then, the quadratic plus constant model 

(6.4) 

describes a "pitfall" case in the experiment, corresponding to a classical quadratic rate 

plus a constant background contribution {33 that has not been correctly identified and 



96 

removed from the data. If such a contribution is present, then at low intensities 

(I -+ 0 ~ R 1 -+ 0) the data will exhibit a divergence from the quadratic law that 

could mislead to an interpretation as nonclassical excitation. The third model is a 

power law which is neither quadratic nor linear but rather depends on an arbitrary 

power, 

(6.5) 

Finally, t he forth model is a quadratic plus linear function 

(6.6) 

which is in accordance with the theoretical prediction for nonclassical excitation, 

Eq. (5.15). Note that the model fQ+L could also be observed if we h ad dubious 

sources of background, such as scattered light, that scale linearly with intensity. 

This, however , has been excluded by the procedures for background determination 

explained in Section 5.2.3. 

Based on these four models, the statistical question imposed is which of them 

best describes the data of the nonclassical excitation experiments and which the data 

of the classical excitation (control) experiments. Note that the procedures (such as 

background determination and data acquisition protocol) , as well as the counting rates 

at the low end of the data, are for both types of experiments ident ical. Therefore, if 

there are deficiencies or pitfalls in the experiments with nonclassical excitation, they 

should also be present in the classical excitation experiments. On the other hand, if 

differences are discovered between the two types of experiments, then these differences 

are most likely due to intrinsic differences in the underlying physical processes. 

The analysis b egins by fitting the data from each exp eriment to the four models of 

Eqs. (6.3)-(6.6). The fitting is done as usual by minimizing the x<2) "score" function 

defined by 

n (R(i) - f (R(i))) z 
x(2) = 2= 2 1 , 

i=l eI4_'l 
(6.7) 
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where n is the number of points in each experiment, { R~i), R~i) , e Wii) } are data points, 

and f is one of the test functions fQ, fQ+c, fp and fQ+L· The "goodness" of each fit 

is quantified in terms of the x<2l of the fit and also the significance level S defined by 

S = {00 

Fn- d (x) dx, 
l x.(2) 

(6.8) 

where Fn- d is the x<2l distribution with n - d degrees of freedom, and where n is 

the number of points in the experiment and d the number of fit parameters. [78] It is 

noted however that in some special cases, some or all of the fits could be degenerate 

as for example when the data are described by a purely quadratic relation, which 

in an ideal case would result in a set of fit paramet ers {/31 , /32, /33 , /34 , /35 , /36 , /37 } -

{/31,/31,0,/31,2,/31,0} that implies fQ = fQ+c = fp = fQ+L = /31Ri . 

As indicted in the previous chapter, the nonclassical excitation experiment was 

performed five times (11/17 /94, 11/29/94, 12/ 06/94, 12/20/94-a and 12/20/94-b) 

and the control experiment twice (12/22/94 and 1/ 12/95), Tables 5.1-5.5 and 5.6. 

The results of fitting the test functions to these data sets are shown in Table 6.1.1 

Experiment f Q fQ+C f p fQ+L 
s xt:tJ s xt:t) s x t:tJ s xt:t) 

11/17 /94 0.00001 54.1 0.0024 39.6 0.0001 48.0 0.001 40.8 
11/29/94 0.04 13.2 0.55 5.9 0.53 5.1 0.68 4.0 
12/ 06/94 0.001 29.0 0.08 18.1 0.29 11.9 0.33 11.4 
12/20/94a 0.22 7.1 0.59 4.6 0.71 3.0 0.88 1.7 
12/20/94b 0.002 27.6 0.14 16.0 0.24 12.6 0.50 9.3 
12/ 22/94 0.82 3.6 0.92 3.2 0.90 2.9 0.89 2.9 
1/ 12/95 0.0001 31.3 0.0003 30.8 0.09 13.5 0.009 20.3 

Table 6.1: Significant levels S and x<2l values for fits to the test functions. The number 
of free parameters n-d in t he experiments of {11/ 17 / 94, ... , 1/ 12/95} are for fQ equal 
to {18, 7, 12, 6, 11, 8, 9} and for fQ+c, f P and fQ+L equal to {17, 6, 11, 5, 10, 7, 8}. 

By inspection of Table 6.1 several observations can be made. First, for the 

nonclassical excitation experiments (11/17 / 94, 11/29/94, 12/ 06/94, 12/20/94-a and 

12/20/94-b) it is obvious that t he fQ model is significantly inferior to the other test 

1 More details about the fits in each experiment are shown in Appendix B. 
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functions as evident from the relat ively small confidence level with respect to the 

rest. Second, for the same set of nonclassical experiments, the fit to fQ+L (which 

indicates a nonclassical excitation rate) is consistently bigger (although not by a big 

margin) from the other two alternatives fQ+c and fp. Third, all fits to the experi

ment of 11/ 17 / 94 are much worse than they are for the rest of the experiments which 

possibly indicates pathologies in this particular experiment such as unrecorded fluc

tuations in the trap density, OPO gain fluctuations or laser drifts. Next, for the 

control experiments (12/22/94 and 1/ 12/95) the best fit in both cases is the power 

model fp _ {34 Rf5 for which, however, the power dependencies are {35 = 1.9 and 2.1, 

respectively; see Appendix B. In addition, the experiment of 12/22/94 has almost 

identical significance levels for all four test functions which is a direct result of the 

special case noted earlier, namely that the models become degenerate for a set of 

data that is described by a quadratic relation. This degeneracy, and hence quadratic 

dependance, is also true for the last experiment (1/12/95), although it is not evident 

from its significant levels and x<2
) values. For both control experiments it is clear from 

the actual fit parameters that the fitted models are indistinguishable and suggest an 

almost perfect quadratic dependance. 

6.1.2 The S statistic 

The next task is to define cumulative statistics to quantify the combined knowl

edge from all experiments. This crucial step in understanding the results should be 

carefully addressed. The situation is similar to any generic measurement of a given 

quantity x, for which several data points are taken and then by averaging them a 

best estimate x for the quantity x is established. Here, "data points" are the vari

ous experiments and the quantity x is the hypothesis that a given functional form f 

describes the data. 

For each experiment we have probability measures (the significance levels) for 

the truth of the hypothesis that model f E {fq, fq+c, fp, fQ+L} describes the data. 

Therefore, a natural measure of the "average" probability of the hypothesis that the 
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data of any particular experiment are described by the model f, is the geometric mean 

S of the significant levels of all the experiments with squeezed excitation, namely 

(6.9) 

wheres?) is the significance level of the fit of the p1t model function (from fQ, fQ+c, 

fp and fQ+L) to the ith experiment (from 11/ 17 /94, 11/29/94, 12/06/94, 12/ 20/94-a 

and 12/20/94-b). Applying this definition gives SQ= 0.003, SQ+c = 0.10, Sp= 0.08, 

SQ+L = 0.15. If the first experiment, of 11/17 /94, is excluded on the basis that it is 

an "outlier," and by redefining S to be the fourth root of the product of the significant 

levels of the remaining four experiments gives S~ = 0.01, S~+c = 0.24, S~ = 0.40, 
_, 
SQ+L = 0.54. 

To quantify how much better the linear plus quadratic model fits the data as 

compared to any of the alternative model, the quantity II is defined, 

II _ min { SQ+L, SQ+L, SQ+L} . 
SQ SQ+c Sp 

(6.10) 

Note that in this definition taking the min of the ratios is equivalent to considering the 

worse case, i.e., comparing the probability of fQ+L with the second most likely model. 

Taking into account all five experiments of nonclassical excitation gives II = 1.5, while 

excluding the first experiment results in II' = 2. 25. Hence in the first case the data 

are at least 1.5 times more likely to be described by the fQ+L model than by any of 

the other test functions, while in the second case this probability increases to 2.25. 

6.1.3 The C statistic 

An alternative statistic that can be defined is the significance level of the cumulative 

xC2l value 
(2) - (2) (2) (2) (2) (2) 

XroT,j = X1,j + X2,j + X3,j + X4,j + X5,j (6.11) 

where x(2
) is the x<2l value from the fit of the p1t model function (from fQ, fQ+c, fp t,J 

and fQ+L) to the ith experiment (from 11/ 17 /94, 11/29/94, 12/06/94, 12/20/94-a and 
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12/20/94-b). The static Gj is defined to be the significance level as calculated from 

Eq. (6.8) where n is the total number of data points from all five experiments and d 

is five times the number of fit parameters in fj. Applying this statistic to the values 

in Table 6.1 for the nonclassical excitation experiments gives GQ = 2 x 10- 8 , GQ+c = 

0.001, Gp = 0.004 and GQ+L = 0.04. Excluding as before the first experiment gives 
-I -I -I -I 

GQ = 0.0001, GQ+C = 0.07, Gp= 0.44 and GQ+L = 0.72. 

Similarly with the previous case, the "likelihood" that the data are described by 

a linear plus quadratic model relatively to any of the other models is quantified in 

terms of ratios of the statistic G, defined by 

E min { GQ+L, GQ+L, GQ+L} 
GQ GQ+c Gp 

(6.12) 

As before, taking into account all five experiments of nonclassical excitation gives 

that E = 10, while excluding the first experiment results in E' = 1. 64. Hence, in this 

case as well, the data are most likely described by the linear plus quadratic model 

with a probability that is at least 1.64 times as big as the probability that they are 

described by any other model. 

6.1.4 fQ VS f Q+L 

In the above discussion all four test functions have been treated equally although 

from a physical standpoint some are better choices than others. Starting from fQ+c, 

it is noted that the issue of an additive constant has been extensively studied by the 

measurements of the background and redundant procedures implemented to check 

for such a constant during the experiments (see Section 5.2.3). Furthermore, the f p 

test function, although it may describe phenomenologically the data, has no good 

physical interpretation and can be excluded as well. In addition as noted earlier, 

degeneracy of the models forces these alternative fit functions (JQ+c and fp) to curves 

very similar with fQ or fQ+L and makes the distinction among all four choices less 

profound. Nevertheless, for completeness the results have been carefully presented 

for all models and even in this case distinction can be made in favor of fQ+L· 
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Having said all that, the study of alternative functional forms can be limited to the 

two choices of fq and fQ+L which characterize a classical quadratic and a nonclassical 

combination of a linear plus quadratic excitation rates, respectively. The distinction 

between these two is much more profound as seen from the ratios of the cumulative 

significant levels defined by the S and C statistics and are equal to: 

• s~;L = 50 ( = 54 if the 11/ 17 /94 experiment is excluded) 

• c~;L = 2 x 106 ( = 7200 if the 11/ 17 /94 experiment is excluded) 

Therefore, the distinguishability for the nonclassical excitation experiments be

tween the fq and fQ+L models is very clear and in favor of fQ+L· Note that the 

measure of distinguishability provided by the S statistic seems to be an underesti

mate relative to the estimate by the C statistic (which appears to be an overestimate). 

Figure 6.1 shows the 12/20/94-b nonclassical excitation experiment overlaid by the 

fq and fQ+L fits which even by "eye" are distinguishable and the fQ+L fit is favored. 

Moreover, the two control experiments of excitation with classical fields are de

scribed by purely quadratic functions and the alternative models yield degenerate 

curves best approximated by fq , as explained earlier. Figure 6.2 shows the data from 

the 12/ 22/ 94 experiment, plotted together with the best f Q fit. Clearly, the fit leaves 

no doubt that the data are well described by a quadratic law in contrast with the 

nonclassical excitation experiments. 

6.2 Statistical Analysis Part II: The G factor 

Beyond the analysis of the R 2 versus R 1 data, there is one more piece of information, 

the gain measurements, that has not been utilized yet. The OPO gain is experimen

tally determined in two ways, by measuring Gs52 and G911 (see Eqs (4.13) and (4.15)), 

which are related to the operation of the OPO via the relations for Gs and Gi given 

in Eqs. ( 4.16) and ( 4.17) . In particular, the intensity output of the squeezed field 

can be estimated directly from the gain measurements and hence offers an alternative 

route to investigate the functional dependance of R2 versus intensity. In addition, 
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Figure 6.1: R 2 versus R 1 from the nonclassical two-photon excitation experiment of 
12/20/94-b . The solid line is a quadratic plus linear fit (JQ+L) and the dotted line is 
a quadratic fit (JQ)· 

t he relation of R1 to the intensity (which should scale proportionally to each other) 

could also be verified. 

The photon flux in the idler beam of the squeezed output of the NDOPO (and 

hence the output intensity I) scales proportionally to the intracavity photon number 

n 917 in the idler beam, which is given by 

(6.13) 

where x is the pumping parameter defined in Eq. (4.l ).[79, 80] Then, the intracavity 

photon number n 917 is expressed in terms of the OPO gain Gs, Eq. (4.16) (or equiva

lently Ci , Eq. ( 4.17)), which is what we experimentally measure as discussed in Sec. 

4.3.2, by 



,..-... 
(..) 
Q) 
(/) -.....--

"'--'"' 
N 

0:: 

• 
10 

1 

0.1 

Exp. 12-22-94 

'e 

103 

I 

0. 01 .__ _ _.._ ........... _.__._~~--'--_..__.._..._._.........._.._._ _ ___.__.._..___._.__. ............... 
100 1000 10000 100000 

R
1 

(1/sec) 

Figure 6.2: R2 versus R1 from the two-photon classical excitation experiment of 
12/22/94. The solid line is a quadratic fit (JQ) to the data. 

n917 = ~ ( v'<Js - 1) = l ( J 4Gi + 1 - 1) , (6.14) 

and similarly n 917 and Gi are related to each other by 

ng11 = l ( J 4Gi + 1 - 1) . (6.15) 

Therefore, the question that needs to be addressed is whether or not the count ing 

rates R 1 and R 2 are the expected functions of Gs , namely 

(6.16) 
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and 

(6.17) 

which follow trivially from Eqs. (5.14) and (6.14).2 Notice that Eqs (6.16) and (6.17), 

together with R2 = fQ+L (R1), form an overspecified system that is redundant in the 

sense that by establishing Eq. (6.16) and given that R 2 = fQ+L (R1) has already been 

shown, then Eq. (6.17) automatically follows. 
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Figure 6.3: One photon counting rate R1 versus the OPO gain G 852 from the data of 
11/ 29/ 94. The solid line is a :fit of the form R 1 = a 1 ( ~ - 1). 

Instead of showing the full blown analysis of alternative functional forms for R 1 

and R 2 vs. G s,i, only two examples are shown here in support of the argument 

2 Note that during our experiments there was some confusion as to which gain we are measuring; 

see Appendix A, Sec A.2. In particular, while we thought that we were measuring G~ = ( ~:!:~~) 
2

, 

we were in fact measuring Gs = {l-~2 ) 2 . The implication of t his is that ng11 is expressed in different 

forms relative to G~ and Gs . As can easily be shown ng11 = ! ( ffs - 1) and ng17 = i ( ~ - 1) , 
hence, independently of our mistake, ng11 has the same functional dependance on Gs and G~ and 
hence the subsequent analysis of relating the gain measurements to R 1 and R 2 (Eq. (6.16) and 
(6.17)) is not affected. However, the relation of R 1 and R2 to Gi is different from what we though 
it should have been, but this was not used either explicitly at any part of our work. 
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that the gain measurements are consistent with the linear plus quadratic dep endance 

discussed in the previous section. Figure 6.3 shows th e R 1 vs G852 data from the 

experiment of 11/29/94, plotted together with t he best fit to the data of t he form 

R 1 = a 1 ( vc;;;;, - 1) . Clearly the agreement is quite good and supports t he argument 

that t he values of R1 are proportional to t he intensity. For completeness, in Fig. 6.4, 

t he R 2 data from the same experiment are plotted as a function of the gain G852 

with the solid line indicating a fit to Eq. (6.17) while t h e dashed line shows a purely 

quadratic fit. 

u 
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Figure 6.4: T wo-photon counting rate R2 versus t he OP O gain G852 from the data of 
11/29/94. The solid line is a fit of the form R 2 = a 2 ( VCJ;;;;. - 1) + a 3 ( VCJ;;;;. - 1) 2

. 

The dasshed lines shows t he quadratic fit of the form R2 = a~ ( vc;;;;, - 1) 
2

. 

6.3 "Knee" Position 

Beyond t he functional form that best describes t he data, a natural question to ask 

is how t he data compare in absolute terms with the t heory. Answering t his question 
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is not easy because the parameters a 1 and a 2 in Eqs. (6.1) and (6.2) differ from 

experiment to experiment and furthermore the efficiencies, atomic cross sections and 

trap conditions that determine these parameters have not been carefully measured. 

One absolute comparison that can be made, however, is the "knee" position, defined 

to be the intensity at which the contribution from the quadratic part of the R 2 vs. R 1 

relation equals the contribution from the linear part. To relate the knee position to 

the nonclassical correlations of the excitation field, it is chosen to express this special 

point of "equipartition" in terms of the OPO gain G~nee. 

From the theory of Ficek and Drummond [44, 45], the rate of two-photon excita

tion scales as 

R2 ex ( 1 + ~:) N 2 + N, (6.18) 

(see Eq. (5.14)), which implies that knee position is at 

Nknee,FD = 12 ~ 0.61 . 
12 + 13 

(6.19) 

To obtain the numerical value of Nknee,FD, the values 1 2 ~ 5 MHz and 13 ~ 3.2 

MHz have been used. The OPO gain at the knee point can be shown to be,[79] (see 

also Appendix C) 

c:nee,FD = 1. 33. (6.20) 

The theory of Ficek and Drummond from which the above prediction for the knee 

position is derived , is a broadband theory in contrast with the actual experiment for 

which the bandwidth of squeezing was finite (rv 7 - 9 MHz ). For this reason, Dr. A. 

S. Parkins carried out a numerical integration of the master equation [81] to produce 

more accurate results; see Appendix C. The prediction for the knee position based 

on this theory is almost identical to G~nee,F D, and has the same value to the second 

decimal point, 

c:nee = 1. 33. (6.21) 

It should be noted, that even though both the broadband theory of Ficek and Drum

mond and the narrowband theory of A. S. Parikns predict the same gain for the 
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"knee" position,as far as we can tell, this is of no fundamental significance. 

Turning now to the experiments, the knee position is determined from the fQ+L (R1 ) 

fits to the data. In particular, from the fit R2 = {36Ri + {37R1 the knee position is 

calculated in terms of R1 to be 

Rknee _ {37 
1 - {35. (6.22) 

Then, by fitting R1 = a 1 (.,/G;- l)(Eq. (6.16)) to the R 1 versus G852 data, the gain 

at the knee point is estimated to be 

G knee = (___!!!_ + 1) 2 ± e 
s {3 a, 

a1 6 
(6.23) 

with 

(6.24) 

The uncertainty ea of G~nee comes from error propagation of the uncertainties ea1 , e136 

and ep7 of a 1, {36 and {37, found by the fits. The quantity cov ({35, {37) is the covariance 

of {36 and {37 estimated from the variance-covariance matrix of the fits. 

Experiment a1 {35 ( x 10-7 ) {37( x 104
) cov ({35 ' {37) Qknee 

s 

11/ 17 / 94 18182± 691 0.37±0.04 1.2±0.5 -6.72 x 10- 14 1.39±0.20 
11/ 29/ 94 18239± 423 0.42±0.04 1.5±0.4 -l.84x 10-13 1.43±0.17 
12/06/94 27141±1339 0.24±0.01 1.1±0.3 -2.88 x 10-14 1.37± 0.13 
12/20/94a 11592± 259 1.01±0.06 1.9±0.6 -6.52x 10-13 1.35±0.16 
12/ 20/ 94b 6695± 220 1.88±0.18 4.5±1.1 -l.67 x 10-12 1.84± 0.32 

Table 6.2: Fit parameters and OPO gain at the knee position, G~nee, for the non
classical excitation experiments. 

The values of the fit parameters and the gain at the knee point derived from Eqs. 

(6.23) and (6.24) are shown in Table 6.2. The average of c;nee (calculated using the 

least squares estimator x ± e = I:: ~ / I:: -!r ± 1 / ~) is equal to 

G~nee = 1.41 ± 0.08 . (6.25) 
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Figure 6.5 shows graphically these results. Note that our data for the gain at the 

knee point are systematically higher than the theoretically predicted value, although 

after taking the average, they are only l a away from this value. Alt hough we have 

no quantative explanation for this discrepancy, we believe that it may be related to 

imperfections in the experiment as compared with t he theory, which include laser 

detunings, frequency drifts, density fluctuations in the trap and the imperfection 

of the OPO output as discussed in Chapter 4. One possible explanation for the 

deviation of our data from the full theory is that there are nonzero detunings which 

move the "knee" position as discussed in Appendix D. However, a full investigation 

of the effects of detunings has not been carried out and although we do have some 

calculations (see Appendix D) that show t hat the knee position moves around with 

detunings, it remains an issue for future investigation. 

2 .25 
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11 /1 7 /94 11 /29/94 12/06/94 12/20/94a 12/20/94b 

Figure 6.5: Gain at the knee position G~nee for t he non-classical excitation exper
iments. The solid line at G = 1.33 is the prediction from the full theory and is 
approximately the sames as the value predicted from the t heory of Ficek and Drum
mond. The solid line at G = 1.41 is the average of the experimental values and the 
two dotted lines symmetrically around it are the l a error bars. 
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6.4 Combining all Data 

To complete the analysis, a normalization procedure is implemented to combine all 

experiments into a single plot and compare them to theory. Experimentally, the 

quantities that have been measured are the one and two-photon excitation rates R 1 

and R 2 , and the OPO gain c exp . These parameters are related to the theoretical 

predictions for the excited state population p33 , the OPO output intensity character

ized by the photon flux in the idler beam n 917 and the OPO gain Gth via the simple 

proportionality relations R 2 = ,}
2

p33 and R 1 = ,}
1 
n 917 (see Eqs. (6.1) and (6.2)) and 

the equality condition for the gain cexp = Gth. Hence, the goal of normalizing the 

data to the theory reduces to identifying the parameters 0'1 and 0'2 . 

The normalization procedure begins by considering the following set of equations 

based on theory 

p 33 

.A3 (Vath - 1) , 
p33 .A4 (Vath - 1) + .As (Vath - 1) 2 

(6.26) 

(6.27) 

(6.28) 

which relate in a redundant way the quantities {p33 , n 917 , Gth} to each other. The 

coefficients .Ai are determined by fitting Eqs. (6.26)-(6.28) to a set of values of 

{ p 33 , n 917 , Qth} obtained by numerically integrating the appropriate master equa

tion for our system; Refs. [79, 81] and Appendix C. These values are found to be 

>.1 = 0.985 x 10-6, .A2 = 18.05 x 10-6, .A3 = 0.459, .A4 = .A1.A3 = 4.52 x 10-7, and 

.As = >-2>.5 = 3. 80 x 10- 6. 

Counterparts to Eqs. (6.26)-(6.28) are the following functions that describe the 

experimental data 

R2 µ1R1 + µ2Ri, 

R1 - µ3 ( ~ - 1) , 
R2 µ4(~-1)+µs(~-1)

2 

(6.29) 

(6.30) 

(6.31) 
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with the parameters µi determined from fits to the experiments. By comparing Eqs. 

(6.26)-(6.28) to Eqs. (6.29)-(6.31), the parameters µi and >..i are seen to be related to 

each other by 

A.1 
172 

µ1- , 
171 

>..2 
172 

µr2.' 
171 

A.3 - µ3(}'1, 

A4 µ4172, 

A.5 µ5(}'2. 

Taking the log of these equations leads to a linearized set of equations 

1E-6 

1 E-8 

"' "' 
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Figure 6.6: Excited state population p33 due to nonclassical two-photon excitation 
as a function of OPO output intensity expressed in terms of the intracavity photon 
number for the idler field, n 917 . The solid line is the full theory and the dotted lines 
are the linear and quadratic asymptotes to the theory. The data points are the 
normalized data from the five experiments. 
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-1 1 ln~ 
µ1 

-2 1 ln~ (1na1) µ2 

1 0 ln~ (6.37) 
ln 0"2 

µ4 

0 1 ln~ 
µ4 

0 1 ln~ 
µ5 

from which the normalization parameters 0'1 and 0'2 are calculated using the well 

known least squares procedure for a set of linear equations. 
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Figure 6.7: Residuals of the normalized data (a) relative to the quadratic and (b) 
relative to the linear asymptotes to the theory. 
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The fact that the normalization parameters 0"1 and 0"2 are determined from an 

overspecified system of linear equations implies that a priori there is no guarantee 

that there are two such parameters that would simultaneously satisfy all five condi

tions. For example, if Eqs. (6.26)-(6.28) do not describe the data, then there is no 

reason why just two parameters (0"1 and 0"2) should scale the data to these functional 

forms. On the other hand, a consistency of the linear system of these five equations 

(Eq. (6.37)) would further indicate that the data are described by the suggested 

theory. 

For each experiment the normalization parameters u 1 and u 2 are calculated and 

then t he data are scaled accordingly. Figure 6.6 shows the result of this normaliza

tion procedure along with the full theory from the integration of the master equation 

and the linear and quadratic asymptotes to this theory. The data at the low end of 

the scale extend to a region of slope ;S 1.3 which is far below the classical value of 

2 (quadratic dependance). To further demonstrate the properties of the data with 

respect to the linear and quadratic asymptotes, Fig. 6.7 shows the residuals with re

spect to these curves. Here the set of points for the quadratic residual { rQ ± erq, nb} 

is calculated from the set of experimental data points {p33 ± ep33 , nb} and the the

oretical prediction for the dependance of p33 on nb, which is broken into two parts 

according to 
L Q 

p33 = p33 + p33· (6.38) 

Here pf3 is the linear part and p~3 is the quadratic part of the theory, see Appendix 

C and are given by 

(6.39) 

and 

p~3 = 24.31 x 10- 6n; ( 1 - 0.487e- o.;kss) , (6.40) 
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respectively; see Fig. (C.l). Then the quadratic residuals are defined to be 

[ 
w l w r(i) ± e(i) = p33 _ 1 ± ep33 

Q r q - Q ( (i)) Q ( (i)) ' 
p33 nb P33 nb 

(6.41) 

where the index i signifies the ith point from the experimental data points. Similarly, 

t he linear residual is defined to be 

p33 

[ 

(i) 

(6.42) 

6 .5 Summary 

In conclusion, the analysis of the two-photon experiment has demonstrated from var

ious aspects that the data obtained from nonclassical excitation experiments exhibit 

nonclassical behavior. Observations for the excitation r ate as a function of intensity 

indicate rates that scale with intensity with slopes as low as 1.3 in sharp contrast with 

classical theory from which a quadratic relation is expected. The difference from clas

sical excitation was confirmed by control experiments which exhibit no statistically 

significant deviation from classical predictions (slope rv 2 . 0 ± 0 .1). The analysis has 

concentrated in three main areas: a) identifying the functional form that best de

scribes the data, b) comparing in absolute terms theory with experiment in terms of 

t he so called "knee" point and c) normalizing all data to the theory. In t he first part 

it has been shown that the linear plus quadratic model fQ+L describes the data better 

than any of the alternative models that were considered, which was quant ified by the 

cumulative statistics S and C. For the absolute comparison with t heory, the gain 

point at which the contributions from the quadratic and linear components become 

equal was calculated from the data to be a~xp = 1.41±0.08, which is to be compared 

to the theoretical prediction c;h = 1.33. Finally for the normalization of the data 

to the theory, two parameters a 1 and a 2 for each experiment were used, which were 

determined from the values of the fitting param eters and the full t heory of the system. 
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Part III 

QUANTUM INTERFERENCE 
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Chapter 7 Multiple-Field, Two-Photon 

Excitation and Quantum Interference 

The subject of quantum interference (QI) and control of QI has been extensively stud

ied, with applications in a variety of fields ranging from atomic and molecular physics 

to chemistry. It includes the study of quantum state synthesis in Rydberg atoms[82], 

control of chemical reaction[83], control of phase-sensitive yields of above-threshold 

ionization [84] and control of photodissociation processes[85], to m ention just a few 

examples. In addition, of p articular interest to basic atomic physics, has been the 

study of lasing without inversion,[86, 87, 88, 89, 90] and the phenomenon of electro

magnetically induced transparency,[91, 92, 93, 94, 95] and the associated enhancement 

of the index of refraction accompanied by vanishing absorption, [96, 97, 98, 99] all of 

which are direct effects of QI in atomic systems. Finally, in this admittedly brief 

(incomplete) survey of literature in t he vast field of QI, more relevant to the present 

work, is the study of inhibition or enhancement of two-photon absorption by Agar

wal et al. ,[100] and that of the manipulation of excited state populations by Luo et 

al. [101] 

W ithin the domain of this extensive theoretical and experimental studies, here 

a recent experiment [102] and the theory developed to study the underlying physics 

will be presented. This particular experiment demonstrated a new atomic system 

that exhibits QI with potential applications in frequency metrology and ultra-high 

frequency mixing. In particular, the excited state population p33 of a three-level atom 

excit ed via two-photon absorption is sensitive to the relative phase of three lasers used 

for the excitation. An extension of the initial work provided promising experimen

tal results [103] for improvements of several orders of magnitude in t he bandwidth 

of homodyne detection of nonclassical states of the electromagnetic field with the 

particular demonstration having been carried ou t for a frequency offset of 25 THz be-
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tween squeezed signal and idler fields. The common theme in both the experiments 

of Refs.(102, 103] is QI, which provides the tool not only to demodulate and observe 

beatnotes of lasers that differ in frequency by 10-lOO's of THz, but also to control 

atomic multiphoton excitation rates by controlling t he relative phase of the exciting 

lasers. Alternatively, by monitoring the two-photon excitation rate, stabilization of 

the relative phase of individual lasers could be achieved. [102] Independently from the 

work to be presented here, V. Blanchet et al. have recently also demonstrated QI in 

a similar experiment. [104] 

"P'-________ ,........,_12) 
Li 

2 

11) 

Figure 7.1: The two-photon transition 11) - 13) is excited by three fields via two 
alternative excitation pathways, which lead to QI. 

To be more specific, the physical system under consideration consists of a three

level atom, Fig. 7.1, excited by three lasers at frequencies (w1,w2,w0) chosen so that 

they are close t o the atomic eigenfrequencies (w21, w32 , ~w31 ), respectively. Atomic 

excitation can then proceed in two alternative ways, namely either via t he near reso

nant dipole absorpt ion of two photons from the w1 and w2 laser beams or via the far 

detuned quadrupole (i.e., simultaneous two-photon) absorption from the w0 beam. 

The presence of these two alternative excitation pathways gives rise to QI with the 

"control knob" being the relative optical phase of the three lasers. 
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After this brief introduction, in the remainder of this chapter, theoretical and 

experimental developments of the last two years related to QI in the atomic system 

of Fig. 7.1 will be described. First in Section 7.1 the physical system that will be 

analyzed is presented. Then, in Section 7.2, a perturbative model valid for weak field 

excitation will be discussed [105] followed by a "full" theoretical analysis based on the 

master equation for the system in Section 7.3. [106] To complement this theoretical 

discussion, a "Quantum Interference Calculator" (QuinC) has been developed and 

will be briefly outlined in Section 7.4. [50] Section 7.5 deals with a proof-of-principle 

experiment.[102] In Section 7.6 a generalization to multiphoton processes will be 

suggested and in Section 7.7 the idea of internal correlations in the atomic population 

will be put forward. Finally, the chapter concludes with a brief summary. 

7.1 The 3-level Atom and Excitation Scheme 

The basic structure of the system to be analyzed is shown in Fig. 7.1. A three-level 

atom with eigenstates 11) , 12), 13) in a ladder configuration is taken to have eigenfre

quencies (w21 , w32 , ~w31 ) defined by Wij = Ei~E; . The atom is further characterized by 

the generalized decay rates { 1 1 , /2, 13 , 112, ')'23, /l3} where /ii are the population and 

/ij i =f j the coherence decay rates. 

The total excitation in the system consists of three parts corresponding to three 

laser fields of distinct frequencies illuminating the atom, namely (w1 , w2 , w0 ), and is 

given by 

(7.1) 

where 

c - i•· c . 0 1 2 c...i = Ei e ' 1or i = , , , (7.2) 

with <Pi = wit + <h Here Ei is the amplitude and </Ji the spatial phase of the field at 

the site of the atom. The frequencies of the three lasers are chosen to be "close" to 
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the eigenfrequencies of the atom with corresponding detunings (D1 , D2 , Do) defined by 

Wz (7.3) 

Wo 

Throughout the analysis it is assumed that Di « w for i = 0, 1, 2 and w being any of 

the transition or excitation frequencies in the problem, thus allowing the elimination 

of certain rapidly oscillating terms of the form e-i(w;-o; )t. When this assumption is 

relaxed, interesting effects associated with low frequency fields at wi - Dj appear and 

will be the subject of future study. 

In addition to the Di's the quantity 8.. is defined to be 

I W31 I I W31 I 8,,_ - 2 - W32 = 2 - W21 (7.4) 

and represents the non-degeneracy frequency distance of the intermediate excited 

state from the frequency of the two-photon eigenfrequency of the atom (see Fig. 7.1). 

Throughout the following treatments it is also assumed that 8.. » Di for i = 0, 1, 2. 

To prelude the analysis, it is pointed out that the QI in the system relies on a 

particular relative phase of the three lasers used for the excitation and arises from 

imbalance between the dipole allowed (jl) -+ j2) -+ j3)) and quadrupole (jl) -+ 

j3)) excitation pahtways. More explicitly, two amplitudes contribute to p33 ,with the 

first (a1_, 2_,3 ) arising from the two polarizations of the jl) -+ j2) and j2) -+ j3) 

transitions (oscillating as ci(wi+w2 )t) and the second (a1_,3) from the direct jl) -+ 

j 3) excitation (oscillating as ciZwat) . Hence, the overall excitation population is 

given by p 33 ,......, ja1_,z_,3 + a1_,3 [
2

, which has an oscillating cross term proportional to 

[e-i(Zwa -w1 - w2 )t +cc]. Therefore, the excited state population p33 has an oscillating 

component which has the phase <P = <P1 + <P2 - 2 <Po as its argument, so that external 

variation of any of the <Pi can be viewed as a "control knob" of QI in the system . 

The phase <P can also be written as <P = 8..w · t + 8..</> with 8..w - w1 + Wz - 2wo and 
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f).cp = ¢ 1 + ¢ 2 - 2¢0 . Hence the atom acts as a nonlinear mixer that demodulates 

the frequencies (w1 , w2 , w0 ) with w0 being the analog of the local oscillator (LO) in 

the usual non-linear mixer theory and the distance 8w = lw1 - wol '.:::::'. lw2 - wol being 

the LO to ''sideband" separation at which the nonlinear mixer operates. By realizing 

that in atomic systems this separation 8 f = ~~ ranges up to lOO's of THz, it is 

recognized that this scheme offers new opportunities in the field of nonlinear mixing 

and demodulation of optical fields. [102] 

7.2 Perturbative Analysis 

7.2.1 Equation of Motion 

The starting point for the formal analysis is the general Schrodinger equation for the 

density operator,[107, 108] which in this case simplifies to 

. i 
-(rij + ZWij)Pij - !i[V, P]ij 

. 3 

-( {ij + iWij )Pij - * L (VikPkj - Pik Vij) 
k=l 

(7.5) 

where p is the reduced density matrix (Pij = Ii) (J I) representing the atom. The 

first term in the above equation describes the free Hamiltonian evolution of the atom, 

while the second term describes the atom-field interaction via the interaction potential 

V that couples the various atomic levels with the radiation field. Note that in the 

present work, all fields are taken to be in coherent states. In the usual perturbation 

approach it is assumed that only dipole interactions are allowed and hence only V12 

and Vi3 are non-zero while V'i3 = 0 and Vii = 0 for i = 1, 2, 3. The real matrix 

elements Vij = Vji have the form: 
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1132 ~2 
[(£0 + £2 ) e-192 + c.c.J (7.6) 

where '191 and '!92 are phases that arise from the fact that the atomic dipole moments 

µ 12 = µ 1e-i191 and µ23 = µ 2e-192 are taken to be complex quantities with µ 1 and µ 2 real. 

The two-photon absorption from the w0 beam that leads to the direct excitation of the 

Jl) ---+ J3) transition is thus modeled within this formalism as two far detuned (from 

the intermediate level J2) ), dipole absorptions as described by the components of 1121 

and 1132 proportional to £0 . The rest of the terms in 1121 and 1132 proportional to £1 and 

£2 , respectively, correspond to the near resonant dipole absorptions, the combinat ion 

of which completes the stepwise pathway for excitation via the J 1) ---+ J2) ---+ J3) 

transition. 

The next step is to perform a change of variables that casts t he problem into a 

dimensionless form. Towards this end the dimensionless time parameter T is intro

duced, 

(7.7) 

where 'Y is the geometric mean of the decay constants 'Y2 and 'Y3 , 

(7.8) 

In addition, the dimensionless parameter a is defined to be the square root of the 

ratio of the linewidths of the second and third excited states of the atom, 

Finally all frequencies and detunings are normalized to 'Y, i.e., 

w 
w ---+ - = w for all w's 

'Y 
b 

b ---+ = b for all b's and 
'Y 

(7.9) 

(7.10) 



With this new parametrization, by expanding the master equation given by Eq. (7.5) 

and keeping only the lowest order terms in the interaction potentials V,:j, the following 

set of equations of motion is derived: 

• 
Pn 

• 
P13 

0 ' 

- ( ~ - iw21 ) P12 + iV{2Pn , 

-et.p22 - iV;1 (P12 - P21) , 

- ( 2~ - iw31 ) P13 + iV;3P12 , 

- ((3 - iw32) P23 - i (v;1P13 - P22 v;3) 

_.!_p33 - iV;2 (p23 - p32) , 
Ct. 

where (3 is defined by 

and the new interaction potentials V:j are given by 

and 

v;l :n~ [(£0 + £1) e -i'9i + c.c.J 

:n~ [(coe-i(wor+ef>o+'91 ) + Eie-i(w1r+ef>1+'91)) + C.c.J 

v;2 :n~ [(£0 + £2) e-{}
2 + c.c.] 

µ2 [ ( Eoe- i(wor+ef>o+{)2) + E2e - i(w2r+ef>2+{)2)) + C.c.J 
2n,'Y 

7.2.2 Solution for p33 and QI 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

(7.15) 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

Within the context of a perturbative solution, the above system of differential equa

tions (Eqs. (7.11)-(7.16)) is solved by first assuming t hat the ground state population 
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p11 is fixed and then integrating the equations in the order they appear, while substi

tuting the solutions in turn into subsequent equations. It is easy to see that the first 

equation is of oth order in the interaction potentials Vij, the second of 1st order, the 

third and fourth of 2nd order, the fifth of 3rd order and finally the sixth equation is 

of 4th order in t he Vi/s. 

The details of integration and the solutions of the equations of motion (Eqs. 

(7.11)-(7.16)) are documented elsewhere (105]. Here, only the solution to the excited 

state population p 33 of the third excited level will be given. In particular, the analytic 

solution for p33 , cast in a very suggestive way for QI, is found to be 

p33 ( T) = X 2 
- 2 X Y Sin ( 8 + <l>) + Y 2 (7.20) 

with X and Y defined by 

X = 
(482 + _ l ) , 

0 4 a2 

(7.21) 

Y = 
Oi n~ 

----
(8? + ia2

) ((81 + 82)
2 + ~) 

(7.22) 

Clearly the quantities X and Y in Eq. (7.20) play the role of path amplitudes and 

indeed from their definitions (Eqs. (7.21) and (7.22)) they are evidently the excitation 

probability amplitudes for the 11) --+ 13) and jl) --+ j2) --+ 13) excitation pathways, 

respectively. 

The three dimensionless Rabi frequencies involved in t he definitions of X and Y 

have been defined to be 

n1 

n 2 -

and 

µ1E1 

2h/y 
µ2E2 

2n,, 

, (7.23) 

(7.24) 

(7.25) 
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Note that Q 0 is an effective two-photon Rabi frequency that is proportional to the 

intensity rather than the amplitude of the field, and to the square rather than the 

linear expectation value of the position operator for the electron. Also notice that for 

a three-level atom (r) 12 (r)23 = (r2)13. 

The size of the interference term in Eq. (7.20) (second term) depends on the phase 

<I>+ e, where cl> and e are defined according to 

(7.26) 

and 

8 = (2wo - W2 - W1) T + (2</>o - </>2 - </>1) = (2'50 - '51 - '52) T + (2</>o - </>1 - </>2) , 

(7.27) 

respectively. Observe that the phase cl> is static and that the only dynamical phase 

in the problem is e which can be a function of time either because the excitation 

frequencies wi do not satisfy a "triangle equality" 2w0 - w2 - w1 = 0 or because the 

phases <f>i of these fields vary at the site of the atom, </>i ( T) as via Doppler shifts for 

a moving atom, 2k0 - k1 - k2 =/= 0 (which of course amounts to a frequency shift). 

In either case, p33 as a function of time will vary due to the interference term in 

Eq. (7.20) , with the temporal modulation analogous to a spatial fringe pattern and 

the depth of modulation analogous to the corresponding visibility. [109] With this 

terminology, the fringe pattern for the QI arising in Eq. (7.20) is expressible as a 

single sinusoid with cl> + 8 as its argument. The population p33 ( T) has a mean value 

of 

p~3 = X 2 + y 2 (7.28) 

and a "visibility" (depth of modulation) V defined by [109] 

PMAX - PMIN 2 XY v = 33 33 
- PMAx + PM1N x2 + y2 

(7.29) 

With these definitions at hand, p33 can be rewritten as 
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(7.30) 

7.3 "Full" Theory 

Although the preceding analysis gives simple analytic results that have an intuitive 

meaning, t he solution is limited to weak field excitation and interesting saturation 

and inversion effects are not within the scope of that calculation. For this reason, 

further analysis was performed that incorporates the case of strong field excitation 

by applying a semiclassical formalism based upon the master equation with t he usual 

dipole interaction Hamiltonian to describe one-photon absorption and with an effec

tive interaction Hamiltonian to describe quadrupole (two-photon) absorption . As a 

result, a set of optical Bloch equations was derived, the solutions of which fully de

scribe QI in t he three-level atom excited by three fields of arbitrary strength in the 

semiclassical regime. It is noted that although this formalism is different from t hat 

of the previous section, solutions derived here apply not only to the strong excitation 

limit, but also encompass the weak excitation of perturbative aproach as a special 

case. However, the generality of the current approach is gained at a loss of some of 

the simplicity of t he solutions of Section 7.2. In particular, while in the perturbation 

theory, analytical expressions for the excited stat e population and visibility of the QI 

have been derived, giving insight into the underlying physical process, in the present 

work only a matrix solution is given (valid under a "closed-triangle" constraint, see 

below), which however can easily be numerically inverted to generate explicit results. 

7.3.1 Hamiltonian Formalism 

The starting point of this analysis is the master equation in t he interaction picture, 

given by (110] 

op i [H ] 1 ~ I ( s+s- s+s- 2s- s+) i(w,-w;)t at = -h J, p - 2 .~ 'Yi+lj+ l p i j + i j p - j p i e ' 
•,J=l 

(7.31) 
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where the first term arises from the reversible interaction of the atom with the input 

fields while t he second term describes spontaneous emission . In the above equation 

the st are transition operators defined by st = Ii+ 1) (i i and si- = (St ) t for 

i = 1, 2. The decay rates 'Y:j are defined by "(~2 "(2, "(~3 - "(3 while the diagonal 

terms 'Y;3 = 'Y~2 correspond to the transfer rate that couples the 2 ---+ 3 and 2 ---+ 1 

coherences.[110] However, 'Y;3 and 'Y~2 will not play any role in the final solutions 

because they represent rapidly oscillating terms that can be neglected.[110] Recall 

that this is a consequence of the assumption that the spacings between the atomic 

energy levels are not equal and, in fact, are very large as compared to the atomic 

linewidths. 

The interaction Hamiltonian H1 is taken to be 

H1 - - i li'YD.1 [Sie- i(o1t+4>1) - S}ei(o1t+4>1)J 

-i!i'YD.2 [Si e-i(o2t+4>2) _ s:; ei(o2t+¢2)] 

- i1i"(2Qo [13) (11 e - i2(8ot+4>o) - 11 ) (31 ei2(8ot+4>o)J 

-1i"(
2
Qo (/3313) (31- /31 11) (11) (7.32) 

where 'Y is defined in Eq. (7.8) and the Rabi frequencies D.1, D.2 and Q0 given by Eqs. 

(7.23), (7.24) and (7.25) , respectively. 

The first and second t erms in Eq. (7.32) are the usual semiclassical terms under 

t he rotating-wave approximation for dipole induced resonance fluorescence driven by 

coherent fields £1 , £2 for t he 1 ---+ 2 and 2---+ 3 transitions , respectively.[110, 111] The 

last two t erms are "effective" interaction Hamiltonian terms,[112, 113, 114, 115, 116, 

117] and account for the interaction of the atom with the £ 0 field which is responsible 

for the quadrupole (two-photon) transition that couples the (11) , j3)) states directly 

via the simultaneous absorption of two photons from the £0 field. In particular , t he 

t hird term describes the two-photon absorption for the 11) ---+ 13) excitation and is 

of identical qualitative form to that of dipole transitions with the exception that the 

effective driving Rabi frequency is of higher order , ( Q ex µ 1µ 2E
2

, [113]). The fourth 

term in Eq. (7.32) is due to dynamical Stark shifts induced by Eo and is a necessary 
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addition to the "effective" Hamiltonian that describes the interaction of the atoms 

with £0 in order to properly account for the case of strong driving £0 fields. [113, 117] 

The parameters /31 and /33 quantify the strength of the intensity-dependent Stark shifts 

of the 11) and 13) levels, respectively, due to the virtual transition to the intermediate 

(12)) level. [117] These parameters, /31 and /33 , can be shown from Ref.[113], Eq. (63) 

to be related to each other and in particular to satisfy the following equation 

(7.33) 

where the last equality follows from Eq. (21) in Ref. [44]. 

Finally, note that while the inclusion of the fourth term is necessary to account 

correctly for effects associated with strong £0 fields, the corresponding strong field 

effects associated with the £1 and £2 fields are built into the model since the full 

microscopic Hamiltonian is used to describe the interaction of the atom with £1 and 

£2 . In particular, by setting £0 = 0 this theory reduces to the case studied in Ref. 

[110] (which likewise accounts for strong £1 and £2 fields with £0 = 0). In fact , it 

has been verified that the two theories (that of Ref. [110] and the present) predict 

identical results. 

7.3.2 Equation of Motion 

Similarly with perturbation theory the master equation in this case, Eq. (7.31), is 

cast in a dimensionless form by changing time variables according to Eq. (7.7) . After 

some algebra the following equation of motion for the atomic populations P22 and p33 

are d erived: 

(7.34) 

(7.35) 
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while the atomic coherences p 12 , p 23 and p13 are shown to satisfy 

P• (a + . 1 Q ) + n - ifh + Q i200 + n (2 + 1) iB1 (7 36) 12= - 2 i; o P12 ~ G2P13e 0P32e ~GI P22 p33 - e , . 

The differential equations for the rest of the components of the density matrix follow 

trivially from the trace condition Tr (p) = 1 which gives Pn and from the relation 

Pij = pji which gives P21, p32 and p31. Note that due to the trace condition the 

density matrix has only eight independent components. Furthermore, it is noted that 

the definitions used here for all parameters (namely"(, a, 81 , 82 , 80 , 0 1 , 0 2 and Q0 ) 

are identical to those used in the perturbation theory which greatly simplifies the 

quantitative comparison of the results of the two theories. 

Before proceeding further, it is worth pointing out the physical significance of 

various terms in Eqs. (7.34)-(7.38) to gain insight into the underlying dynamics of 

the system. First by examining Eq. (7.34) it is obvious that the population p22 is 

increased due to the decay from level 13) and decreased due to decay to the ground 

state 11), where in the dimensionless representation used here, the corresponding rates 

of these two processes are given by a and ~'respectively. In addition the presence of 

the 0 1 and 0 2 fields couples the p 12 and p 23 coherences to the population of the second 

excited level, while the Q0 field which drives the 11) ---+ 13) transition has no direct 

influence on the population of the J2) level. Next, from Eq. (7.35) it is clear that the 

population p33 is depleted due to decay to the intermediate level 12), while the presence 

of the 0 2 and Q0 fields couple it directly to the p23 and p 13 coherences, respectively. 

Similar comments apply to t he differential equations for the coherences p 12 , p23 , and 

p13 , Eqs. (7.36)-(7.38). Finally, it is observed that the intensity dependent Stark 

shifts, due to the £0 field (terms proportional to iQ0 ), enter the above system of 

coupled differential equations only through the equations of motion of the atomic 
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coherences. 

7.3.3 Solution 

To solve the system of coupled differential equations (7.34)-(7.38), the problem is 

formulated in a matrix form where, with appropriate changes of variables, all com

ponents of the matrix become real quantities. Although t he algebra is somewhat 

involved, it is nonetheless straightforward and here only the results will be given. 

First, a set of new quantities is defined according to 

(7.39) 

for i = 2, 3 for the populations. For the coherences p 12 and p 21 introduce 

(7.40) 

(7.41) 

and similarly, for p23 and p32 define 

(7.42) 

(7.43) 

and for p13 and p31 define 

z = p e - i29o + p ei29o 
1 - 13 31 ' (7.44) 

(7.45) 

These transformations lead to equations and solutions for {W2 , W3 , X 1 , X 2 , Y1 , Y2 , 

Z1 , Z2 } from which the atomic populations are immediately identified, while for the 
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coherences the simple inverse transformations 

* X1 + iX2 iB 
P12 = P21 = e 1 

2 
(7.46) 

(7.47) 

* Z1 + iZ2 i2B 
P13 = P31 = e 0 

2 
(7.48) 

must be applied. 

Finally, the system of coupled differential equations of the density matrix compo

nents, Eqs. (7.34)-(7.38), transforms to 

(7.49) 

where 

(7.50) 

and where iii is the "initial condition" of the problem defined by 

iii = (0, 0, - 2n1, 0, 0, 0, - 2Q0 , 0) . (7.51) 

The real matrix M ( T) is defined by 

- a l. 
Q 

- n1 0 n2 0 0 0 

0 _l. 
Q 

0 0 -n2 0 - Qo 0 

4r21 2n1 Q .6.1 Qoc Qos r22c - n 2s -2 

0 0 - .6.1 Q Qos -Qoc D2s r22c 
M(T)= 

-2 

-2r22 2n2 -Qoc -Qos - (3 .6.2 - n1c r21s 
(7.52) 

0 0 -Qos Qoc -.6.2 -(3 - Dis - n1c 

2Q0 4Q0 - n2c - D2s r21c r21s 1 .6.o -2a 

0 0 r22s - r22c - n1s r21c - .6.o _ ...1. 
2a 
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where fJ = ~ (a + ±) and c - cos 8 and s - sin 8 with the angle 8 given by 

(7.53) 

The detunings t::..i , i = 0, 1, 2 include both the intensity dependent Stark shifts induced 

by the £0 field and the frequency offsets of the excitation lasers from the unshifted 

atomic energy levels and are given by 

1 
81 + -Qo 

a 

82 + aQo 

280 + (a+ ~) Qo 

(7.54) 

Note that as was the case with perturbation, there is only one dynamical phase 

(8) in the problem, which is a particular relative phase between the three exciting 

fields. A minor detail is that although Eq. (7.53) is identical to Eq. (7.27), there 

is a hidden 7f /2 difference between these two phases that traces back to the original 

Hamiltonians, namely Eq. (7.5) and Eq. (7.31), and in particular to the fact that 

Hr in Eq. (7.5) is taken to be proportional to Vij compared to iVij of Eq. (7.31). 

Therefore, direct comparisons of the 8-dependent results from the two theories over 

the region of common validity will be shifted by 7f /2, which is simply a notational 

difference. 

Note that the matrix M (T) is, in general, time dependent via the quantity 8 , 

which is either explicitly time dependent for 280 - 81 + 82 =I= 0 or if the union of c/>i 

is a function of time (e.g., as for a moving atom). However, in the special case that 

the "closed triangle" condition 280 - 81 - 82 = 0 holds, and c/>i =I= c/>i ( T), the matrix M 

becomes time independent and the steady-state solution if: = 0 is formally given 

by 

(7.55) 

In the subsequent discussion, we analyze only this special case for which a simple 

numerical matrix inversion is required and mainly concentrate on the solutions as a 
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function of the angle 8. More complex numerical integration of Eq. (7.49) will yield 

solut ions in more general cases where the "closed triangle" condition is not n ecessarily 

satisfied. 

UANTUM INTERFERENCE CALCULATOR Quine 
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Figure 7.2: Quantum Interference Calculator (QuinC) is available on the WWW at 
http://www.cco.caltech.edu/ -qoptics/ QIHome/ QuinC/ QulnC.html 

7.4 QulnC 

The t heory presented in the previous two sections reveals a very rich phenomenology 

in the two-photon excitation process of a t hree-level atom in schemes such as t he 

one shown in Fig. 7 .1. The effects of QI are profound in t he modulated atomic 

populations, in phase-sensitive atomic inversions, in "unusual" (asymmetric and with 

multiple peaks) excitation spectra and in the visibility of the QI fringe patterns. These 

effects have all b een discussed in detail elsewhere [105, 106] and for t hat reason here 

no specific examples will be given. The multidimensionality of the solut ion space 
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which is spanned by the atomic properties summarized in a = Fii., the strength v 'Y3 

of the excitation lasers characterized by D1 , D2 and Q 0 , the detunings 81 , 82 and 

80 and the relative phase of the excitation amplitudes 8, suggests that there are 

many more unexplored regimes beyond those discussed in Refs. [105, 106] . For 

this reason, in order to allow the reader to investigate further the possibilities of 

the QI scheme outlined here, a Quantum Interference Calculator ( QuinC) has been 

developed; see Fig. 7.2. The calculator implements Eq. (7.20) and (7.55) for a 

set of user defined parameters and calculates excited state populations and fringe 

visibilities. The program is written in Java and is made publicly available on the 

WWW.[50] 

7.5 Experiment 

To demonstrate that QI is indeed observable in two-photon excitation by three lasers, 

a proof-of-principle experiment was conducted.[102] The atomic system used in this 

experiment was again the 6S1;2F = 4 ---t 6P3;2F ' = 5 ---t 6D5; 2F" = 6 transition 

in Cs; see Fig. 1.2. The experimental setup is shown in Fig. 7.3 and it is very 

similar to that of the previous experiments (see Section 3.2, Fig. 3.3, and Section 

5.2, Fig. 5.4) with some minor modifications indicated in Block VI. In part icular, 

in order to generate the three coherent excitation beams, a small portion of one 

of the trapping beams (which was shifted to be resonant with the 6S1; 2F = 4 ---t 

6P3; 2F' = 5 transition) is injected into t he OPO which amplifies it and generates 

a conjugate (idler) beam. The idler is also in a coherent state and its frequency is 

resonant with the 6P3; 2F' = 5 ---t 6D5; 2 F" = 6 transition as described in Section 4.3. 

Note that as before the Ti:Sapphire laser is kept in resonance with the two-photon 

6S1; 2F = 4 ---t 6D5; 2F" = 6 transition frequency at 884 nm. Before reaching the 

MOT the coherent signal and idler outputs of the OPO are mixed with a portion of 

the master laser and so the atoms are illuminated by three beams with corresponding 

wavelengths >.1 = 852 nm, >.2 = 917 nm and >-o = 884 nm in resonance with the 

relevant atomic transitions, realizing in this way the excitation scheme of Fig. 7.1. 
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Figure 7.3: Setup for the QI experiment. 

By virtue of the process that generates t he three excitation lasers w1 , w2 and w0 , 

and despite t he fact that t here are two independent lasers involved (the Ti:Sapphire 

that generates the w0 beam at 884 nm and the "trapping" diode laser that generates 

t he w1 beam at 852 nm), the phases of these beams are interlocked and satisfy the 

relation<P1 + <P2 - 2<P0 =canst, where <Pi is defined in Eq. (7.2). The reason for this 

is the phase matching condition of the NDOPO which requires t hat the idler beam 

is generated with a phase <P2 = 2 <P0 - <P1 . This constraint further implies that the 

phase 8 =canst in Eqs. (7.20) and (7.55). Therefore, there would be no modulation 

due to QI unless some frequency shift is introduced to one of the beams, which in 
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the setup in Fig. 7.3 is accomplished by a PZT at the path of the w0 beam which is 

scanned at a rate that produces a frequency shift Wm '"'"' 10 H z of the w0 beam (i.e., 
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en 400 E 
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"" -2 300 c 
(...) ...._.. 
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(...) 
en 
~ 
::::! 
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• 

Figure 7.4: Fluorescence from the 6D5; 2F" = 6 ----t 6P312F ' = 5 transition as a 
function of time for excitation of the atoms in the MOT by a combination of three 
coherent beams with corresponding wavelengths 852 nm, 917 nm and 884 nm. The 
phase of the 884 beam is modulated with a PZT at a frequency ~ ~ 11 H z . 

Figure 7.4 shows a segment of a characteristic t ime sequence of data points ac

quired in the experiment. Plotted along the y - axis is the fluorescence from the 

6D5; 2 F" = 6 ----t 6P3; 2F' = 5 decay and the x - axis is t ime. Since the fluorescence 

is proportional to the excited state population p33 , the data may also be interpreted 

as a measure of p33 as a function of t ime. The solid line is a sinusoidal fit to the 

data with variable amplitude, phase, offset and frequency. The observed modulation 

is a clear indication of QI and exhibits some of the characteristic aspects of the t he

ory p resented earlier. In particular, note that t he modulation frequency is equal to 

~ ~ 22 H z , which is twice t he modulation frequency of the w0 beam by t he PZT 
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(which for this run was 11 Hz) as expected from the definition of 8, Eq. (7.27) 

and (7.53). The other important feature demonstrated by this experiment is that 

the visibility (contrast) of the signal is large enough so that from a practical point of 

view it can be used in applications, some of which will be proposed in the following 

two chapters. Adopting the language of fringes and visibility from the interference of 

optical fields,[109] the signal in Fig. 7.4 has visibility defined in Eq. (7.29) which in 

this case is approximately Vexp = 0.30. 

To compare directly the experimental results in Fig. 7.4 with the theory developed 

earlier in the chapter, the visibility for the conditions of the experiment is calculated 

based on the perturbation theory, Eq. (7.20) and full theory, Eq. (7.55) models. 

Note that while in the perturbation theory there is an analytic expression for V, Eq. 

(7.29), in the case of the full theory the value for V must be calculated numerically. 

The parameters that enter both calculations are {a = Fn., 0 1 , 0 2 , Q 0 , D1 , D2 , v 'Y3 

Do} and for the experiment a c:= Ji c:= 1. 29, the Rabi frequencies are estimated 

from the powers of the excitation beams, measured to be P 1 c:= P 2 c:= 0.5 nW and 

Po c:= 5 mW, and the detunings, which are all experimentally arranged to be close 

to zero, D1 c:= D2 c:= Do c:= 0. Observe that in perturbation theory only the ratio 

nb~2 = J P~J2 6,. c:= 0.35 enters the visibility calculation. Based on these parameters 

the value of V is calculated to be Vpert c:= 0.84 which is significantly higher than the 

measured value of Vex p c:= 0.30. Realizing, however, that the excitation intensities 

are close to saturation, ( Prt c:= Prt c:= 0.5 nW and p0at c:= 10 mW), it is of no 

surprise that perturbation fails. Applying the full theory model with parameters 

0 1 = 0 2 = 1 and Q0 = 0.35 (in analogy with perturbation), the estimated visibility 

is Vfull '.::::::' 0.29 ~ V exp, although admittedly, the correspondence is too good given the 

uncertainties in the parameters {a, D1, D2, Do, 0 1 , 02, Q 0 } and in the spatial overlap of 

the excitation fields. 
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7.6 Multiphoton Excitations 

Having discussed the case of quantum interference in two-photon excitation, it is 

natural then to ask about quantum interference in higher order multiphoton processes. 

Taking the simplest possible approach, we consider a generic multiphoton system 

shown in Fig. 7.5, where the nth atomic state is excited from the ground state by 

using several lasers, and inquire as to the nature of quantum interference. Without 

J~ .4~ .o. H In> 

(J)k .. ln-1 > 

(J)k-1 x 
(J) k-2 1 x2 x3 x m - - - - -

(J)3 

C02 

(J) 1 ... .4~ i 
J ~ 

1 
13> 

12> 

11> 

Figure 7.5: Multiphoton excitation with multiple lasers {w1 , w2 , ... , wk}. Several 
excitation paths {X1 , X 2 , .. . . Xm} contribute to the overall excited state population 
Pnn, resulting in QI. 

going into details that are beyond the scope of the present discussion, it is noted 

that if several lasers are employed for the excitation resulting in m distinct excitation 

pathways for reaching the nth level, then corresponding amplitudes {X1 , X 2 , . ... Xm} 

will be associated with each of these paths. While in the two-photon case these 

amplitudes were quadratic in electric field amplitudes, in this more general case the 

amplitudes will b e proportional to a set of powers {pi,P2, ···Pm} of the field, i.e. , Xi,....., 
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Ep;, depending on how many "photons" are involved in the ith excitation pathway. A 

simple generalization of Eq. (7.20), together with the assumption of phase coherence 

between the excitation amplitudes, allows to write the excited state population as 

m m-1 m 

Pnn = L x; + L L XiXjsineij (7.56) 
i=l i=l j=i+l 

where e ij are generalized relative phases corresponding to the phase e in the two

photon excitation. The complexity of the above expression and most importantly the 

nonlinearity of Eq. (7.56) in the field amplitudes suggests the possibility of a very 

complex behavior in the system. The full implications of such extensions have not 

been worked out yet, but they do promise a variety of interesting effects for future 

investigation. 

7. 7 Internal State Correlations 

Lastly, the fact that for sufficiently strong excitation all three atomic levels can have 

large phase-sensitive populations is examined. Figure 7.6 shows a particular example 

of such large modulation calculated applying the full theory model. Evidently, all 

three populations p11 , p22 and p33 , have comparable sizes and modulations in contrast 

with the perturbative regime where p 33 « P22 « Pn· 

On the other hand, the effects of quantum interference are usually manifested as 

modulation of only the final state of the system that is excited in the presence of mul

tiple excitation pathways as for example in the classic Young's double slit experiment 

best described by Feynman.[118] However, in this case, due to the additional trace 

constrain Tr (p) = 1, modulation can arise for the ground (initial) and intermediate 

state populations as well as that of the final state. For strong excitation, the com

pound nature of the atomic population feeds back the effects of interference of the 

excitation amplitudes even to the ground state. Hence, the usual meaning of "initial" 

and "final" states is lost and this "feedback" by virtue of the trace condition makes 

all states subject to modulation from QI. 
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Figure 7.6: Atomic state populations Pu, P22 and p33 as functions of the phase 8 , 

calculated from the full theory model using a = fis, 81 = - Ks' 82 = - ~' 
80 = 81 ~82 and D1 = D2 = Qo = 2. 

In somewhat more quantitative terms, the system (i.e., the atom) is divided in two 

parts by considering the combined atomic population of any two of the three levels 

together and the third by itself, i.e., P1 = Pii + Pii and p2 - Pkk for i , j , k E {1 , 2, 3} 

and i =/= j =/= k . The trace condition then trivially gives that p1 = 1 - p2 and leads to 

p erfect anticorrelation between p1 and P2, which is more formally described by 

(7.57) 



139 

with the covariance matrix C of the variables p1 and P2 taking the simple form 

(7.58) 

Moreover, one can also show that the full covariance matrix for the populations of 

the system Pn , p22 and p33 , can be written in terms of only three (instead of six) 

parameters, ( 1 , ( 2 and (3 , in the following form 

(3 -((1 + (3) 

(2 -((2 + (3) (7.59) 

-((2 + (3) (1 + (2 + 2(3 

7.8 Summary 

In conclusion, this chapter outlines the work that has been done on QI in two-photon 

excitation of a three-level atom (1 1), 12), 13)) by the combination of three excitation 

lasers (w , w2 , w3 ) in near resonance with the 11) ---+ 12), 12) ---+ 13) and II) ---+ 13) tran

sitions, respectively. Quantum interference in the system arises from the presence of 

multiple excitation pathways. Theoretical models based on a perturbative treatment 

and the master equation have been developed to study the effects in the weak and 

strong field excitation regimes. A proof-of-principle experiment was conducted that 

demonstrated that QI is observable with fairly large visibility V exp ~ 0.30, which 

compares favorably with theory. Extension of this work to multiphoton excitation 

has been suggested and interesting effects of internal correlations in the atomic pop

ulations have been described. 
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Ultrafast Homodyne 

In view of the developments in quantum interference presented in the previous chapter 

and the work on nonclassical two-photon excitation presented in Chapters 5 and 6, it is 

natural to wonder as to what would happen if quantum interference is combined with 

nonclassical excitation. In the discussion of QI presented in the previous chapter and 

Refs. [102, 105, 106], two-photon excitation by classical fields has been extensively 

considered. There the total excitation field E is taken to be composed of three parts 

Ea, E1 and E2 (i.e., E = Ea+ E1 + E2 ) and each of them is assumed to be in a coherent 

state and in near resonance with the quatrapole 11)--+ 13), dipole 11) --+ 12) and dipole 

12) --+ 13) transitions of a three-level atom, respectively (see Section 7.1). Here, the 

goal is to investigate what happens when the coherent E1 and E2 fields are replaced 

by the squeezed signal and idler Es and Ei outputs of an NDOPO. This excitation 

scheme is depicted in Figure 8.1 and will be the subject of the present chapter. 

To motivate the subsequent discussion a close analogy can be drawn between 

the usual balance homodyne detection of squeezing [75, 76] and QI in two-photon 

excitation as shown in Fig. 8.1. [103] In the case of balanced homodyne detection (Fig. 

8.2a) , a coherent local oscillator (LO) beam is mixed with the signal and idler beams 

from an OPO on a 50/ 50 beamsplitter. The frequency of the LO WLo is chosen to be 

at the center of the signal and idler frequencies W 8 and wi so that WLo = w.,twi . The 

light from each of the output ports of the beamsplitter is detected on photodiodes 

producing photocurrents i 1 and i 2 which are subtracted to produce the difference 

current b.i = i 1 - i 2 . The Fourier transform of b.i has nonzero frequency content at 

the beatnote frequency no= Ws2Wj due to nonclassical COrrelatiOnS between the signal 

and idler beams [13] which are detected in this way on a spectrum analyzer. 

By contrast, in the case of QI in two-photon excitation, an atom is illuminated by 
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Figure 8.1: Two-photon excitation by a combination of a coherent RO field with 
frequency w0 , in resonance with the two-photon /1) --+ /3) transition, and t he signal 
and idler outputs of an NDOPO at frequencies w8 and wi in resonance with t he dipole 
/1) --t /2) and /2) --t /3) transitions, respectively. 

t he combination of the signal and idler output beams from an OPO in conjunction 

with a coherent reference oscillator (RO) b eam (Fig. 8.2b). Here the RO plays t he role 

of t he LO in homodyne and it s frequency is chosen likewise to be WRo = w .. !wi . T he 

atom's response to the three fields results in a modulated signal due to QI as discussed 

in the previous chapter. Viewed differently, t he atom acts as a nonlinear mixer t hat 

combines the frequencies of the signal, idler and RO b eams to produce a demodulated 

beatnote signal around n = 0 (de-frequency), (recall that p 33 ,..__, /al-+2-+3 + a1_.3 /
2 ex: 

/e-i2wot + e - i(ws+wi)t /
2

) . Hence the size of modulation is proportional to the product 

of t he signal and idler fields, providing in this way a handle on the nonclassical 

correlations b etween the two. 

Somewhat more formally, the contrast between homodyne detection of squeezed 

light and QI with squeezed light can b e quantified with respect to the corresponding 

observables, which in the first case is the Fourier transform \Jr (.0) of the autocorrela

t ion function of the photocurrent and in the second case a photocounting time series 

whose Fourier transform is defined to be cI> (.0). Based on an extension of Mollow's 
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Figure 8.2: a) Homodyne detection of squeezing. b) Detection of nonclassical corre
lations with QI where an atom is utilized as a nonlinear mixer. 

treatment, [77] these two signals have been shown in Ref. [103] to be equal to 

\IF (D) = Ei,0 [1 + 2~eff] 8 (D) + 2Eio [N (D) +IM (D)! cos (2<ho + <Ps)] (8.1) 
ELO 

and 

<I> (D) = Eko [1 + 2~eff cos (2<ho + </>s)] 8 (D) + 2E~oN (D) (8.2) 
ERO 

Here the coherent LO (RO) field is given by £Lo = ELoe- i(ww+<!>Lo)t (£Ro = ERO 

e - i(wRo+<f>Ro)t) where ELO (ERo) is the amplitude and ¢Lo (¢Ro) the spatial phase of 

the field at the site of the atom. The parameters N (D) and M (D) = IM (D) I ei<f>s are 

defined by Eqs. (5.9) and (5.8) and characterize the quantum field. Their "effective" 
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values have been defined to be Neff= JN (O') dD/ and Meff - JIM (O')I dO'. 

Summarized in Eqs. (8.1) and (8.2) are the characteristics, features and distinctive 

differences of the two methods. More specifically, it is clear from Eq. (8.1) that in ho

modyne detection the term that gives information about the nonclassical correlation 

M peaks at the same frequency that M (0) peaks at, which is 0 0 = w.2w;. Realizing 

that photodetectors are limited in bandwidth to few lO's of GHz, it is clear that this 

sets an upper limit to t he range of detectable nonclassical correlations, which can be 

quantified by the dimensionless quantity 6.f = w,-w;. In the optical and near IR 
W o 

regions, the range 6.f is therefore limited to 6.f ;S 10- 5 . On the other hand, in the 

case of detection with QI, information about M appears in the term proportional to 

M eff at de-frequency and in principle the detectable range 6.f is not limited. In fact , 

for the atomic system considered here for which an experimental realization [103] will 

be outlined below, 6.f :::::: 0.07. Note that for large values of 6.f the form of amplitude 

quadratures changes and interesting effects (which up to now have been beyond any 

observational capabilities) have been predicted.[120, 121] 

The gain in the detectable range 6.f comes, however, at the expense of an unam

biguous classification of classical versus quantum states. In particular, in homodyne 

detection by choosing cos (2¢0 + </>s) = - 1 the second term in Eq. (8.1) becomes 

proportional to N - IMI and hence directly tests the quantum squeezing condition 

N 2 < IMl2 
::::; N (N + 1) which is only valid if N - IMI < 0. On the other hand 

with the method of QI only the condition IMI =!= 0 can be directly verified by detect

ing a non-zero modulation in Eq. (8.2) . To overcome this deficiency complementary 

methods to the QI detection scheme have been proposed. [103] 

After this brief introduction, in Section 8.1 the full theory developed to model the 

system of Fig. 8.1 will be outlined [119]. Section 8.2 presents an experiment that 

demonstrates that nonclassical correlations between the signal and idler beams from 

the NDOPO, which are separated in frequency by 25 TH z, are indeed observable as 

a result of QI with the atom acting as a nonlinear mixer. [103] 
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8.1 Theory 

8.1.1 Excitation Field 

The basic structure of the atomic system under consideration and notation to b e used 

here has been introduced in Section 7.1. However, the excitation field is replaced for 

the purposes of the current discussion by f = E0 + Eq, which is composed of two 

parts. First, the field £0 is taken to be in a coherent state with eigenvalue given by 

£0 = Eoe- i(wot+ci>o), where Eo is the amplitude and ¢0 the spatial phase of the field at 

the position of the atom. This field £0 will be referred to as the reference oscillator 

(RO). The second part of the field, ~' is taken to be the output of a subthreshold 

NDOPO. As usual,[12] the output of the NDOPO con sists of two energy carrying 

sidebands, namely the signal and idler fields with spectral distributions centered at 

frequencies ws,i = wb ± b.', which are positioned symmetrically around the frequency 

wb . Note that the NDOPO may generate many such pairs of sidebands, but due to 

atomic resonance conditions described below, only a single pair is relevant for the 

problem considered here. For the purposes of the present analysis, it is assumed that 

the frequency w0 of the coherent field fa is the same as of the central frequency wb for 

the signal and idler fields (w0 = wb) . Therefore, the electromagnetic field illuminating 

the atoms consists of three frequency components centered at w0 , Ws = w0 + b.' and 

wi = w0 - b.'. The detunings of the components of the driving field from the atomic 

eigenfrequencies are defined to be 60 , Di and Os and are given by 

Wo 

Since Ws i = w0 ± b.' , this implies that , 

W31 (j 2 + o, 

W21 +Os, 

Do+(~' - ~) 

Do - (~' - ~) 

(8.3) 

(8.4) 
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In the subsequent analysis, it is assumed that w0 ~ ~' i.e., 80 is small, and that 

6.. ~ D..' , with the residual detunings Os and Di of order the atomic linewidths ( 12 , 1 3). 

The quantum field Eq is also assumed to be a broadband field with respect to the 

atomic linewidths (12 , 1 3 ) , so that Os and Di do not enter the description of the dy

namics of the system. This assumption eliminates the complexity of finite-bandwidth 

squeezed excitation.[81] However, the coherent part of the total excitation field Ea is 

by definition narrowband, so that the detuning 80 will b e important in the system's 

dynamics. 

Finally the quantum field~ (t) in the time domain is described by the expectation 

values of the correlation functions N and M of the creation and annihilation operators 

a ( w) and a;t ( w) in frequency domain. These correlation functions are N1 , N 2 and M, 

and are defined similarly to Eqs. (5.9) and (5.8): 

(8.5) 

(8.6) 

and 

(8.7) 

8.1.2 Hamiltonian Formulation and Master Equation 

The system under consideration is similar to the one studied by Ficek and Drummond 

in Ref. [44], with the important addition of the RO field E0 . Hence the starting point 

in the analysis is the master equation of Ref. [44]. Since the bulk of t he formalism 

used here to deal with the quantum fields is drawn from Ref. (44], it will be briefly 

explained and taken as is. Note, however, that the addition of the classical RO field 

as part of the total excitation field leads to a rich new phenomenology arising from 

quantum interference of excitation pathways, which is a new arena within the context 

of the interaction of squeezed light with atoms. 

With this in mind, the total Hamiltonian Htot of the system is written as 
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(8.8) 

where HA describes the free evolution of atomic operators and is given by 

(8.9) 

for each of the atomic eigenstates m = 1, 2, 3. H F is the free-field Hamiltonian given 

by 

(8.10) 

~ 

where t he coherent state field £0 has been ignored in HF since it contributes only a 

c-number to the overall energy. The interaction of the field with the atom is described 

by H int, defined to be 

H;n; - ih J dw [ [ ;;= f; g;; (w) S;;] a (w) - He] 
-in,,r2Q0 [(S31e-i2(6ot+¢o) - S13ei2(6ot+<Po) ) + i (f33S33 - f31S11)], (8.11) 

where g ij are coupling coefficients and s ij atomic operators defined by sij = Ii) (JI, 

i, j = 1, 2, 3. As usual these operators satisfy the commutation relation 

(8.12) 

where Oij is the Kroniker delta function. Note that in t he electric dipole-approximation, 

g13 = 0. The parameter Q0 is a "Rabi-like" frequency defined in Eq. (7.25) and as 

before / = ~- Note t hat the first term of Eq. (8.11) describes the interaction 

of the atoms with t he quantum field Eq and has been extensively discussed in Ref. 

(441. This first term is responsible for driving the 11) t--t 12) and 12) t--t 13) atomic 

transitions. To account for the additional coherent-state component £0 of the field 

the second term of Eq. (8.11) is added and is of the same form as that introduced in 

the semiclassical analysis in the previous chapter. It accounts for the driving of the 
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[ 1) -t j3) transition and the intensity dependent Stark shifts via the {31 and {33 t erms 

defined in Eq. (7.33) . 

Without getting into the details of the derivation, which are explicitly presented 

in Ref. [119], it is simply stated here that starting from the above Hamiltonian the 

master equation for the system of Fig. 8.1 can be shown to b e 

op 
fJt 

1 2 
--"YM ~ (S+ps+ - s + s+p + s+pS-!" - pS+ s+) e- i(wi+wi - 2wa)t 2 ' ~ i J J i J i i J 

i,j= l 

1 2 
- - M* ~ (s- s- _ s - s - + s- s- _ s -s- ) -i(wi+w·- 2wa)t 

2 1 ~ i P j j i P j P i P i j e 1 

i,j= l 

2 

- L Ni[ij (pSj st + Sj si+ p - 2st pSj) ei(wi-Wj)t 
i,j=l 

2 

- L (Ni+ 1) / ij (pSt Sj +st Sj p - 2sj-pSt) ei(wi - Wj)t 
i,j=l 

- 1 2Q o [(S31p - pS31) e-2i(oot+<t>o) - (S13p - pS13) e2i(oot+</>o)J 

+i/2
Qo [{33 (S33p - pS33) - f31 (Sup - pS11)], (8.13) 

where the first five t erms correspond to the results of Ficek and Drummond of 

Ref.[44]a Eq. (20), while the last two terms are due to £0 . In the above equa

tion /ii , i = 1, 2, are equal to half the radiative decay constants for the jl ) -t [2) and 

[2) -t [3) transitions (hence, 111 = ~ and 122 = ¥). The additional damping t erms 

112 and 1 21 (as defined in Eq. (21) of Ref.[44]a) are in general non-zero, but because 

it is assumed that the atom has non-equidistant energy levels, with ti. large, these 

terms are rapidly oscillating and may be dropped. Terms corresponding to Stark 

shifts due to the weak quantum field ~ as well as Lamb shifts have been neglected. 

More details and explicit derivation of Eq. (8.13) can be found in Refs. [44, 119]. 
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8.1.3 Equations of Motion 

The next step is to expand Eq. (8.13) and arrive at a set of coupled differential equa

tions for the elements of the density matrix. In particular, for the atomic populations 

P22 and p33 it is found that 

M -2i80 r M* 2i8or + N (1 ) - p13e - p31e a 1 - P22 - p33 

1 1 
- a (N1 + 1) P22 - -N2P22 + - (N2 + 1) p33 

a a 
(8.14) 

and 

Op33 1 M 2i8 r 1 M* 2i8 r 1 N 1 (N ) - P13e- 0 + -
2 

p31e 0 + - 2P22 - - 2 + 1 p33 
OT 2 a a 

-Qo (Pi3e -2i(8or+<t>o) + PJle2i(8or+<t>o)) , (8.15) 

while the atomic population of the ground state can be calculated from the trace 

condition Tr (p) = 1. For the atomic coherences p12, p23 , and p13 it is similarly found 

that 

and 

1 M* 2i8or 1 [N 1 N (N ) ] - 2 p32e - 2 2a + 1a+ 1 +1 a P12 

- iI_QoP12 + QoP32e2i(oor+4>o) , 
a 

~M*p21 e2ioor - ~ [N2± + (N2 +1) ± + (N1 +1) a] P23 

- iaQoP23 - QoP21e2i(oor+4>o) , 

(8.16) 

(8.17) 

-M*p22e2ioor + ! M* (1 - P22) e 2ioor - ! [Nia+ (N2 + 1) I.] P13 
2 2 a 

- i ( a+ ~) QoP13 + Qo (2p33 + P22 - 1) e 2i(oor+<t>o) , (8.18) 
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while the rest of the atomic coherences can be calculated from the relation Pii = pji. 

Note that Eqs. (8.14)- (8. 18) have been transformed into dimensionless form as was 

done in the previous chapter and the parameter a = fii. is the same as before. v /3 

8.1.4 Solution for the Atomic Populations 

The quantities of interest here are t he atomic populations p22 and p 33 whose derivat ion 

is simplified because the above set of differential equations decouples into two groups 

of linearly independent differential equations. In particular to solve for t he atomic 

populations only t he closed set of differential equations for p22 , p33 , p13 and p31 needs 
a 8 a(p13e-2i6o'") 

to b e considered. Therefore in steady state (£B:n. = 0 ~ = 0 = 0 and 
l 8T l 8T l 8T 

a( 2i6o'") 
~31;7 = 0) the different ial equations reduce to simple algebraic ones given by 

(Q - 2irf>o lM) - (Q 2irf>o lM*) ~ 1 N 1 (N ) oe - 2 P13 + oe - 2 P13 = a 2P22 - a 2 + 1 p33 , 

P- = ! (-~M* + Q e2i<f>o ) p + 2!Q e2i<f>o p + ! (~M* _ Q e2i<Po ) 13 A 2 o 22 A o 33 A 2 o 

where p13 is defined to be 

and the quantity A is given by 

P
- _ p e-2i6oT 

13 = 13 

A = ~ [ N1 a + ( N2 + 1) ±] + i [ 280 + (a + ±) Q a] 

(8.20) 

(8.21) 

(8.22) 

(8.23) 

After some algebra to eliminate p13 and p31 from Eqs (8.19)- (8.21), it is found that 

t he atomic populations p22 and p33 are given in terms of t he following two linear 

equ ations 

(8.24) 

and 

(8.25) 
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For the special case when the coherent-field E0 is resonant with the two-photon tran

sition, (i.e. , for 80 = 0) and assuming that fo is a weak field so that the Stark shift 

contribution (i.e., (a+~) Q0 ) can be neglected, the quantities A1 , 3 1 , A2 and 3 2 can 

be shown to be equal to 

(8.26) 

= _ -4Qo IMI cos <I>+~ [N1a + (N2 + 1) ~] (~ - aN1 + ~N2) 
~i - IMl2 

- 2 IMI Qo cos <I> - ~aN1 [ N1a + (N2 + 1) ~] ' 
(8.27) 

_ 4Q~ + 3 IMl2 
- 8Qo IMI COS <I> - ~ [N1a + (N2 + 1) ~] N2 

A2 - 2 
4Q~ + IMI - 4Qo IMI COS <I> ' 

(8.28) 

and 
~ 8Q~ - 4Q0 IMI cos <I>+~ [Nia + (N2 + 1) ~] (N2 + 1) 

.::.
2 = 4Q~ + IMl2 

- 4Q0 IMI COS <I> ' 
(8.29) 

while in the more general case these expressions became much more complicated. In 

Eqs. (8.26)-(8.29) the phase <I> is a combination of the phases of the squeezing <Ps and 

of the RO ¢0 and is given by 

(8.30) 

Hence, the solutions for the atomic populations p22 and p33 are given by 

(8.31) 

and 

(8.32) 

Note that from the above solution it is clear that the atomic populations have 

a phase-sensitive modulation determined through the dependence of Ai and Si on 

<I>, which is the only phase left in the final answer. Furthermore, all phase-sensitive 

terms are of the form IMI Q0 cos <I>, corresponding to interference between the RO 

field as described by Q 0 and the quantum field output of the NDOPO as described 

by the correlations of the field-quadrature fluctuations given by M. However, since 
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no cross (interference) terms between Ni, N2 and Q0 exist, it is obvious that these 

correlation functions are incoherent with each other and with Q 0 • Indeed, as shown 

in Ref.[13], the signal and idler outputs of the NDOPO when viewed in isolation 

from each other are described by their total intensities Ni and N2 , respectively, and 

correspond to incoherent, thermal fields and hence should not be expected to interfere 

with Q0 although they do contribute to the overall excitation probability by virtue 

of the energy they carry. More explicitly, note that for excitation with thermal fields 

(M = 0) the coupling between p 33 and pi3 due to the signal and idler fields vanishes. 

By contrast, the quantum correlations between the signal and idler fields as given 

by M drive a non-zero coupling of p13 with p33 as does Q 0 , thus giving rise to QI 

(assuming the RO and squeezed fields are phase coherent). 

Although at this point the discussion will turn away from the theoretical consid

erations, it is noted that an extensive discussion of the consequences of these results 

is presented in Ref. [119]. There, important experimental constraints of a finite fo

cusing angle of the squeezing onto the atoms are investigated. It has been shown that 

for a small focusing angle () the excited state populations p33 and p22 are given by 

P22 ~ Niv (e) + O [v2 (e)] , (8.33) 

and 

p33 ~ [4a?Q~ + (IMl 2 a 2 + NiN2) v2 (0) - 4a2Qo IMI v (e) cos <I>]+ 0 [v3 (e)] , 

(8.34) 

where 

v ( ()) = ~ [ 1 - l ( 3 + cos2 
()) cos ()] , () E ( 0, 7r) . (8.35) 

Note that Eq. (8 .34) can be rewritten as 

(8.36) 

where the quantities Xo = 2aQo and Xq = Jx;l + x;2 (with Xq1 =a IMI 'U (e) and 
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Xq2 = y'N1 N2 v (8)) are excitation amplitudes due to the coherent field £0 and the 

quantum field £q, respectively. Written in this form, p33 is obviously the result of two 

quantum interfering pathways with amplitudes X 0 and Xq
1

, plus a third incoherent 

contribution whose amplitude is Xq2 • The physical interpretation of this observation 

is that excitation via the RO and M interfere via the p13 coherence where excitation 

via N 1 and N 2 proceeds incoherently as discussed earlier so that their contribution to 

the total excitation probability adds incoherently. 

In addition, in Ref. [119] effects of phase-sensitive inversion due to squeezing have 

been analyzed and new methods for detecting nonclassical effects of the interaction 

of squeezed light with atom have been presented. 

8.2 Experiment 

Turning now to the experimental observation of QI with squeezed light the discussion 

begins with the description of the setup shown in Fig. 8.3 which is similar with the 

setup of the previous experiments and in particular with the setup for the experiment 

of QI with coherent beams described in the previous chapter. Since most of the setup 

has been described already, here only two minor modifications are noted. First, the 

beamsplitter that combines the squeezed light with the coherent 884 nm RO beam is 

a 99/ 1 beamsplitter so as to minimize the losses of squeezing and second the detection 

strategy has been changed because the signal is very weak and instead of accumulating 

the photocounting time series on the PC, the signal is Fourier transformed and viewed 

on a spectrum analyzer. 

The power of the RO b eam was measured to be P884 ~ 5 mW and that of the signal 

and idler outputs of the NDOPO was estimated from parametric gain measurements 

to be Pss2 ~ P917 ~ 1 pW. The three co-propagating beams (RO, signal and idler) 

are focused with a waist of 10 µm into the atomic Cs sample in the MOT. Their 

intensities are ~ ~ 1 and ~ ~ ~ ~ 10-3
, where !884 , !852 and I917 are the 

884 852 917 

saturation intensities of the quadrupole 6S1; 2F = 4 -+ 6D5;2F" = 6 and dipole 

6S1; 2F = 4 -+ 6P3; 2F' = 5 and 6P3; 2F' = 5 -+ 6Ds;2F" = 6 transitions, respectively. 
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Figure 8.3: Experimental setup for observation of QI with squeezed light. 

The excited state population p33 is monitored as before by observing the fluorescence 

f p from the 6D5; 2F" = 6 ---+ 6P3; 2 F' = 5 decay. With the given intensities for 

the excitation fields and for the efficiencies in the setup, the collected counting rates 

are Csq ~ 2 /sec for excitation by the squeezed field alone and CRo ~ 104 /sec for 

excitation by the coherent RO field alone. Modulation of the excited state population 

p33 due to QI is induced by scanning a PZT along the path of the RO beam at a rate 

~ ~ 11 Hz. As a result, the phase of the RO has the following time dependence 

(8.37) 



154 

where <P~b is the static spatial phase of the RO field at the side of the atom. 

Because the focussing angle of squeezing onto the atoms is only fJ ~ 5°, the excited 

state population p33 is given by Eq. (8.34) and therefore the observed signal f p ex p 33 

is of the form 

(8.38) 

where T is the photocounter integration time. Here terms of order Csq have been 

neglected since Csq « CRO· Note t hat the accumulated data is a time series of 

Ip, given by {Ip (t0 ) , Ip (t0 + T), Ip (t0 + 2T), ... }. Therefore, in order to observe 

QI fringes two constraints must be satisfied: first, the Nyquist sampling theorem 

which requires that T :::; 2~m and second a coherence constraint which requires that 

-
1
- ~Wm. Here Teoh is the coherence time between the RO and squeezed fields (i.e., 

Teoh 

the average time before stochastic jumps scramble the phase 2</J~b + <Ps) which for 

the experiment is estimated to be 100 ms. The combination of these two constraints 

imposes an upper limit on the integration time, T:::; ¥, and hence an upper limit 

for the signal lp. Rewriting lp as Ip = (IF) + Olp where (Ip) is the mean value 

of the signal and Olp the modulation due to QI, implies that for the counting rates 

Csq and CRo of the experiment (IF) ~ 500 and Olp ~ 12. Taking into account 

the uncertainty due to the Poissonian (counting) statistics of (Ip) which is of order 

.../(I;;) ~ 22 implies that direct observation of the QI modulation 8IF in the time 

domain is not possible. Therefore, an alternative strategy is implemented where the 

signal l p is Fourier transformed and viewed on a spectrum analyzer. Note that based 

on these considerations in order to observe QI with squeezing in t he time domain 

(similarly with the case for QI with coherent fields , Fig. 7.4), the condition ~ '.::::'. 
y (Ip) 

J2CsqTcoh > 1 must be satisfied. In addition, when the assumption Csq « CRo is 

relaxed so that Csq rv CRo rv c then (IF) '.::::'. (CRo + 2Csq) T and hence the signal to 

noise threshold for observation of QI in the time domain becomes ~ '.::::'. · /~CTcoh > 
y (Ip ) V 

1. 

Figure 8.4 shows two traces from the spectrum analyzer. The first one is a control 
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Frequency (Hz) 

l2coml 

Frequency (Hz) 

a) Squeezing OFF 

50 

b) Squeezing ON 

50 

Figure 8.4: Power spectrum R (!) of the photocounting time series lp. a) Control 
spectrum with the squeezing turned off for which no modulation at either Wm or 2wm 
is observed; b) spectrum with the squeezing on for which a peak at frequency 2wm 
appears. 

trace for which the squeezing is turned off by detuning the temperature of the nonlin

ear K Nb03 crystal in the OPO, and as evident there is no modulation at either Wm or 

2wm (recall that ~ "' 11 Hz). The second trace is with the squeezing turned on and 

a peak appears at '""" 22 Hz which is equal to 2wm· The peak that appears in Fig. 8.4b 

is a signature of the quantum correlat ions between the signal and idler outputs of t he 

NDOPO although strictly speaking it only demonstrates that M = ( E8s2f911) =/= 0 

but not necessarily that the quantum criterium N 2 < IMl2 
::::; N (N + 1) (where 

N = ( fJ52fss2) = ( £J17fg17)) is satisfied. Alternative methods to directly compare 

N with M using QI are currently under investigation and some indirect methods have 

already been proposed. [103] 
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8.3 Summary 

In conclusion, in this chapter the illumination of a three-level atom by a combination 

of a coherent RO field and the squeezed output of an NDOPO has been studied. 

As a result of multiple excitation pathways for two-photon excitation, QI in the 

excited state population p33 has been predicted. A theoretical model based on the 

master equation of the system has been developed to enable detail calculations of 

features of QI in the system. [119] An experimental realization with Cs has shown 

that QI with squeezed light is indeed observable. Realizing that the modulation 

t erms due to QI in the excited state population p33 are proportional to the nonclassical 

correlations, M = \ f 5 '£;) suggests that by using this method detection of squeezing 

can be achieved. Furthermore, by drawing an analogy between the behavior of the 

atom in this system and conventional nonlinear mixers, it has been pointed out that 

atoms have much greater "bandwidth." In particular, for the experimental realization 

presented, correlations have b een detected between the signal and idler beams from 

an NDOPO which are separated in frequency by 25 TH z . In the next chapter the 

use of atoms as nonlinear mixers will be examined in more detail. 
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Atoms as Ultrafast Nonlinear 

The modulation in the excited state population p33 due to QI discussed in the last 

two chapters can also be interpreted as nonlinear mixing of three fields with the atom 

acting as the mixer and the modulation in p33 being the demodulated signal. [102] 

Figure 9.1 shows schematically this analogy. In this generic representation, three 

fields with amplitudes Eo, E1 and E2, and corresponding frequencies w0 , w1 and w2, 

are the input to the nonlinear mixer which in this case is simply a three-level atom. 

The atom "processes" the input fields, and the output is the demodulated beatnote 

of them, Vaut ex 1 + ~E5E1E2 cos [(2wo - W1 - w2) t] (see Eq. (7.20)). Here Vaut is the 

voltage from a photodetector that monitors the excited state population p33 and ~ 

depends on atomic parameters. Note that t he static phase 2¢o - ¢ 1 - ¢2 + <P that 

appears in Eq. (7.20) has been neglected for simplicity. In addition, although in 

the preceding discussion monitoring of p33 has been accomplished by detecting the 

:fluorescent decay from the 13) --t 12) transition, alternative methods to observe p33 

such as excitation to a different level or ionization from the 13) excited level, may also 

be implemented. 

The important advantage of atomic nonlinear mixers (ANM's) is that they op

erate at optical frequencies and that the distance between the fields that can be 

demodulated with this technique (quantified by 8f = wi;;,w2
) can reach lOO's of TH z. 

Conventional nonlinear mixers, which in the optical range are simply fast photode

tectors, can only reach lO's of GHz. Hence, ANM's are several orders of magnitude 

"faster" than ordinary photodetectors (albeit in rather narrow windows) and can offer 

alternative solutions to comparing fields which are separated by large frequency in

tervals . In the remainder of this chapter, details and implications of atomic nonlinear 

mixing will be discussed with emphasis on potential applications. [122] 
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Figure 9.I: A three level atom acting as a nonlinear mixer. Three input fields at 
frequencies w 1 , w2 and w3 are "mixed" to result in a "demodulated" output signal. 

9.1 Characterization of Atomic Nonlinear Mixers 

Atomic nonlinear mixers based on QI are wavelength specific and operate at narrow 

frequency ranges due to the vanishing response of atoms to excitation by fields that 

are far off resonance from the eigenfrequencies. To quantify the frequency response 

of ANM's, consider an atom with energy levels {II), 12), 13)} and eigenfrequencies 

{y, w21, w 32} corresponding to the two-photon II )---+ 13) and one-photon II) ---+ 12) 

and 12) ---+ 13) transition frequencies. The atom is excited by three fields {£0 , £1 , £2 } 

with amplitudes {t:0 , E1 , t:2 } and frequencies {wo, w1 , w2} as defined in Eq. (7.2) . 

For simplicity, the spatial phases of these fields are set to zero. The detunings of 

the excitation field frequencies from the atomic eigenfrequencies are { 80 , 81 , 82 } as 

defined in Eq. (7.3). Assuming perturbation theory (see Section 7.2) we find that 

the excited state population p33 is given by Eq. (7.20). Note that the perturbation 

limit requires that p33 « I which from Eq. (7.20) is equivalent to requiring that X , 

y « 1. 
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9.1.1 ANM Frequency Response with Fixed Excitation Power 

The response of the ANM is quantified by two parameters: the mean excited state 

population pf)J = X 2 + Y 2 and the visibility of the demodulated signal v = :i2~~2 (see 

Eqs. (7.28) and (7.29)). Recall that X and Y (defined by Eqs. (7.21) and (7.22)) are 

the excitation amplitudes associated with the two alternative excitation pathways, 

namely the simultaneous two-photon absorption from the w0 field (11)----+ 13)) and the 

stepwise absorption of one photon from each of the w1 and w2 fields (I 1) ----+ I 2) ----+ I 3)), 

respectively. Optimum performance of the ANM occurs when both p;33 and V are as 

large as possible. To achieve optimum visibility (i.e., maximize the fringe contrast of 

the demodulated signal Vaut) , the amplitudes X and Y must be adjusted to be equal 

(e.g., by tuning the field amplitudes) so that V = 1. Furthermore, to maximize the 

mean signal p;3J for fixed power levels of the excitation fields, the frequency detunings 

must be all zero. Combining these two conditions (i.e., X = Y and 80 = 81 = 82 = 

0) gives that for optimized performance the Rabi frequencies (or equivalently the 

excitation field amplitudes) must satisfy 

(9.1) 

where !::,. is defined by Eq. (7.4) and a= ~- Assuming this condition is satisfied, 

the mean excited state population :033 is equal to 

(9.2) 

and the visibility of the demodulated signal is V = 1. 

Having defined a measure of "optimum" performance for the ANM (Eqs. (9.1) 

and (9.2)) , the frequency response can now be quantified with respect to these opti

mum conditions. In particular, for fixed field amplitudes that satisfy the "optimum" 

condition in Eq. (9.1) , the following two measures are defined: 

(9.3) 
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and V (81 , 82 , 80 ) - V C1b?2 = ~), which is derived from Eq. (7.29) to be 

ay/(485 + ~) (8? + ~a2) ((81 +82)
2 

+ ~) 
V (81, 82, 80) = ( 2 1 2) ( 2 1 ) a2 ( 2 1 ) (9.4) 

81 + 4a (81 + 82) + fo2 + 4 480 + 40<2 

Recall that the 8i are dimensionless quantities, since they are normalized by I = 

v'r?Y3· 
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Figure 9.2: Frequency response of pin (a), (b) and (c) and Vin (d ), (e) and (f) as 
functions of the detuning 8. Solid lines are for 81 = 8, 82 = 0, 80 = O; dotted lines 
are for 81 = 0, 82 = 8 , 80 = O; dashed lines are for 81 = 0, 82 = 0, 80 = 8. The value 

of a= j!f; is for (a) and (d) a = /fa, for (b) and (e) a= ji and for (c) and (f) 

a = j¥. Note that 8 is in units of/ = yFi?YS. 
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To elaborate further on the physical meaning of the frequency response mea

sures defined in Eqs. (9.3) and (9.4), it is first noted that p (o1 , 62 , 60 ) quantifies the 

dependence of the mean excited state population on the detunings, normalized by 

the optimum value of p33 . Therefore, when the fields are resonant with the atomic 

eigenfrequencies, this measure is equal to unity, p (D1 = 0, D2 = 0, Do= 0) = 1. As 

the detunings move away from zero, the value of p decays, indicating that the mean 

detectable signal Vout decreases accordingly. Similarly, V (D1 , D2 , 60 ) quantifies the 

visibility drop due to nonzero frequency detunings. Both p and V are complicated 

functions of {D1 , 62 , Do, a} and hence a full description of all their features is beyond 

the scope of the present discussion. However, few special cases are shown in Fig. 

9.2. In particular, the frequency dependence of p and V is shown as a function of 

one of the three detunings while the other two are kept equal to zero. Note that for 

this choice of detunings p ?: ~ which is not necessarily the case if more than one of 

the detunings are different from zero. Furthermore, notice that the linewidths of all 

curves in Fig. 9.2 are of order of few/= ..JY?i3. 
To quantify the "linewidth" of the response functions, it can be shown that for 

the special case that D2 = o0 = 0, the FWHM of the visibility function V (Eq. (9.4)) 

is equal to 

A (1) ( S: - S: - 0) - 1 
~FM HM uo - u2 - - 2a 2 (- (1 + a 4

) + J(t + a 4
)

2 + 8<>4 
( 3+ 2v3) )

(9.5) 

Similarly, for the cases that D1 = o0 = 0 and 61 = D2 = 0, the FWHM of V is given by 

(2) _ _ _ v'2 v( [;;) ,...., 3.6 
~FWHM(Oo-D1-0)--;- 3+2v3 - a' (9.6) 

and 

(9.7) 

respectively. Notice that ~~iv HM = 2~ ~iv HM and that they both scale as ±, which 
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means that in a practical application for which 60 or 62 is large, a good choice of an 

ANM would be such that o: « 1, or equivalently such that 12 « 13 . On the other 

hand, .6.~{vHM is a more complicated function and in fact it has a maximum at o: = 1 

for which .6.~{vHM (o: = 1) '.'.::::'. 1.65. Figure 9.3 shows the .6.~k,HM as functions of o:. 

Notice that for large values of o:, the linewidths .6.~{vHM and .6.~{vHM become equal, 
J\ (1) J\ (2) 
ilFWHM = ilFWHM· 
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Figure 9.3: Full width at half maximum .6.~k,HM > i = 0 , 1, 2 for the visibility V as a 

function of o: = j!f;. Note that .6.~k,HM is in units of r = ~-

9.1.2 ANM Frequency Response with Variable Excitation 

Power 

So far in the discussion of frequency response of ANM, the power of the excitation 

fields was fixed according to Eq. (9.1). However, if the power is allowed to change, 
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then the effective bandwidth of the ANM's is limited only by the available power in 

each of the fields since in principle, for any detuning, the excitation amplitudes X 

and Y can be kept constant by adjusting the field powers. In practice, of course, 

the available laser power is limited and furthermore for large detunings other atomic 

energy levels come into play. 

Nevertheless, detunings can be compensated to a large extent by increasing the 

field power. It is clear from Eq. (7.21) that in order to keep X constant for large 

detunings of the £0 field, 150 » a,~, 151 , 152 , the ratio ~ must be also kept constant. 

Similarly from Eq. (7.22) in order to keep Y constant while 151 is increased, the 

ratio fi- must be fixed while if 152 is increased the ratio ~ must be fixed. Notice 
1 2 

that the required power Po to keep X constant increases linearly with 150 while to 

keep Y constant, P 1 must be scaled as 15f and P2 as 15~ . Also note that although 

mathematically it is valid to increase P 2 to compensate for 151 , physically this does 

not work because if 152 is small, then P2 will saturate the 12) -+ 13) transition which 

will limit Y, (recall that Eq. (7.22) applies only in the p erturbative limit). Similarly, 

increasing P 1 to compensate for 152 does not work either . 

As an example of the detunings that can be compensated by increased laser power, 

consider the experiment described in Section 7.5.[102] There the excitation powers 

were P884 ~ 5 mW and P852 ~ P 917 ~ 0.5 nW. Assuming that the power could be 

increased to 1 Watt for each of the beams, it is easy to calculate that similar results 

with Fig. 7.4 could be observed for detunings as large as 15884 ~ 42 , 15852 ~ 62 and 

15917 ~ 5940 which since/~ 3.9 MHz translate to 160 MHz, 240 MHz and 23 GHz, 

respectively. 

9.2 Database of Atomic Nonlinear Mixers 

Although atomic nonlinear mixers are limited in bandwidth and work only for specific 

wavelengths due to the resonance conditions that must be satisfied, there is neverthe

less an abundance of possible excitation schemes where this method could be applied 

to. In particular, any three-level atom that can be excited by three fields via two 
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alternative excitation pathways will act as a nonlinear mixer for these three fields. 

For the purposes of the present discussion, only atoms in a ladder (2) configuration 

will b e considered, although V and A systems could also be used; see Fig. 9.4. Like

wise, the discussion is limited to the alkali elements Li, K , Na, Rb and Cs for which 

databases of their energy levels are readily available. [123, 124] Of course other atoms 

and even molecules would work in the same fashion. 

/ 
v A 

Figure 9.4: From the three possible two-photon excitation schemes, 2 , V and A, only 
the first one is considered here. The other two also exhibit QI and could be also used 
as nonlinear mixers. 

To consider all possible three-level configurations that can be used as ANM's, all 

combinations {n1L1 J 1 , n 2L2J2, n 3 L3 J3 } of energy levels in each atom must be consid

ered. Here ni is the principal quantum number, Li is the orbital angular momentum 

and Ji the total angular momentum of the ith energy level of the atom. These com

binations are limited by three constraints. First, because the discussion here is only 

for 2 systems, the condition En1 < En2 < En3 , where Eni is the energy of the ith 

level, is imposed. Second, to avoid microwave frequencies and the very closely spaced 

Rydberg states, the wavelength of each of the three transitions is constrained to be 

A.ii < 2000 nm, where A.ii is the wavelength of the Ii) -t IJ) transition. Finally, for 

the transitions to be allowed, the parity selection rules IL1 - L21 = IL2 - L3 1 = 1 

and the conservation of angular momentum selection rules JJ1 - J 2 J = 0, ± 1 and 

Jh - J 3 J = 0, ± 1 must be satisfied. Note that these constraints allow systems for 

which n 1L1 is not necessarily the ground state. For these systems, it is assumed 

that considerable atomic population can be built up in the n 1L1 level by excitation 
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from the ground state. Applying these criteria to the energy levels of Li, K, Na, Rb 

and Cs [123, 124] gives about 6900 distinct three-level systems which can be used as 

AN Ms. 

Figure 9.5 shows the sideband-to-carrier separation D..f as a function of the car

rier wavelength >-c for the data base of 6900 ANM's. Here the carrier frequency 

is defined to be the two-photon resonance frequency ~ corresponding to the qua

trapole f 1) ---+ J3) transition and the sideband-to-carrier separation is defined by 

D..f - 2~ lw21 - ~I = 2~ lw32 - ~I, where as before the frequencies w 21 and w 32 

are the resonance frequencies for the f 1) ---+ f 2) and [2) ---+ f 3) transitions, respect ively. 

Notice that our experimental demonstration of Section 7.5 [102] where demodulation 

of fields with D..f = 12.5 TH z has been observed, is rather insignificant compared to 

what is possible according to Fig. 9.5, where D..f can be as large as rv 240 TH z! 

9.3 Frequency Metrology 

The capability for optical demodulation demonstrated in the experiment described 

in Section 7.5, together with the numerous possibilities for nonlinear mixing illus

trated in Fig. 9.5 suggest exploiting QI in two-photon excitation for applications 

in frequency metrology. In particular, to obtain an absolute measurement of a 

given target frequency in terms of a handful of reference frequencies, one faces the 

daunting challenge of bridging intervals that are often comparable to the optical fre

quency itself. Numerous schemes to "conquer" these large frequency intervals have 

been investigated,[125, 126, 127, 128] including resonant multiwave mixing in atomic 

vapors. [129, 130] 

Within this context, we have proposed a new method for absolute comparison of an 

(arbitrary) target frequency Wt to one or more reference frequencies wri,Wr2 , . . . ,[128] 

by exploiting atoms as ultrafast nonlinear mixing elements. As for the actual im

plementation of the proposed scheme, the first step is to construct from the set of 

available frequencies D0 = { Wr1 , Wr2 , .. . } and Wt a new Set [21 = { W~, W~, · · .W~1 } via 

sum and difference frequency generation and harmonic conversion, where one allows 
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Figure 9.5: ANM characteristics for the sideband-to-carrier separation 6..f versus the 
carrier wavelength Ac for the database of 6900 transitions in t he alkali elements. The 
circled point corresponds to the experimental demonstration with .Ac c::: 884 nm and 
6..f c::: 12.5 THz. 

for combinations of the form Wi ± Wj with {wi,wj} ~no u Wt . This process may be 

repeated for up to k stages to generate a final set of frequencies nk with the number 

of resulting frequencies growing exponentially in k; see Fig. 9.6. 

Of course, finally we need only three of these frequencies to mix with the aid 

of an atom. To decide which three must actually be generated , all possible triplets 

( W~, W~, W~) from the set f2 = {Wt} LJ n0 LJ f21 ... LJ f2k that can be traced back to Wt 

must be considered. From this large number of possibilities, only those triplets that 

satisfy w~ + w~ - 2 w~ < 6..w', where 6..w' is the maximum offset that can be either 

directly detected or compensated via electro-optic modulation ( 6..w' ::; 500 GHz), 

must be kept. These triplets are then cross-referenced to the database of two-photon 

transitions with a search algorithm that optimizes a criterion such as t he sum I: of 
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Wt 

0o : { W1,C02 1 • .... Wm } • l __ x_<2_)_ .. _ro_i +_. _ro_J_· ...., 

• .. I __ x_(2_)_ ... _ro_i + ___ ro_J_· ...., 

• • • • • • 

• • • • • • 

L Ok= { ro1,ro,, ....• ro~,) 

Figure 9.6: By frequency sum and difference generation and harmonic conversion 
( Wi ± Wj), an initial set Of reference frequencies n0 together with the target frequency 
Wt results after k stages of nonlinear transformations into a new set of frequencies nk. 

From nk the three "best" frequencies {wa, Wb, We} for the particular application are 
chosen. 

absolute detunings, 'E = I w~ -w12 I + I w~ -w23 I + I w~ - ~w13 I, and thereby chooses 

the particular atomic transition for the measurement and a set of three frequencies 

{ Wa, wb, We} that must be generated. 

The three frequencies wa, wb and We chosen with the above procedure are linear 

combinat ions of the frequency standards Wr; E n0 and target frequencies Wt which 

can be expressed as 

(9.8) 

where n E {a, b, c} and the coefficients Pn and qn; are integers. Then, by illuminating 

the chosen atom with the three frequencies Wa, wb and We, two-photon excitation is 

induced by two alternative pathways leading to QI which is observed as a modulation 

of the excited state population. The frequency of this modulation is given by 0 8 = 
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Wa + wb - 2wc which in combination with Eq. (9.8) implies that 

W _ 0,B - I: (qa, + qb, - 2qc.) Wri 

t - (Pa +Pb - 2pc) 
(9.9) 

Clearly an additional constraint must be satisfied in order for Wt to be measurable by 

this technique, namely Pa +Pb - 2pc -/= 0. 

Once the target frequency has been measured with respect to the references which 

by definition are stable and well determined, the target itself becomes a new reference 

frequency. In this way new frequency standards may be established. Furthermore, 

by setting frequency standards as the targets, the internal consistency of the existing 

set of standards may be verified. 

9.4 Optical Communication 

A specific application of the methods described in the previous section is in optical 

communication. In particular, by using ANMs the goal is to establish frequency stan

dards in the 1.5 - 1.55 µm range which is relevant for optical communications.[131] 

As fib er networks become more crowded with techniques such as wavelength division 

multiplexing (WDM), the need for such standards increases and the ability to opera

t ionally define a frequency reference that is well measured and stabilized with respect 

to other already established frequency standards could have significant market value 

as well. Preliminary studies have indicated that the methods outlined in the previ

ous section allow for the determination of practically any frequency in the range of 

200 - 2000 nm. Therefore, this dense coverage clearly suggests that ANMs could also 

be applied for the task of establishing frequency standards in optical communication. 

Realizing this possibility we have filed a patent application for ANMs and the method 

of QI for demodulating frequencies that are separated by large intervals. Details and 

examples of these applications will appear in a future publication. [122] 
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9.5 Summary 

In conclusion, in this chapter the properties of ANM's have been analyzed and mea

sures to determine their frequency response have been defined. By analyzing these 

measures general dependencies of the ANM '"bandwidth" on the atomic linewidths 

have been discussed. By expanding the view to systems other than the one that has 

been studied so far (i.e., the 681;2 --+ 6P3; 2 --+ 6D5; 2 transition in Cs), a database 

of 6900 possible transitions in the alkali elements Li, Na, K, Rb and Cs has been 

constructed. Each of these transitions can be utilized as an ANM which due to QI can 

demodulate the beatnote of three incident laser fields which could differ up to lOO's 

of TH z. Applying ANMs to frequency metrology, we have suggested a novel method 

for bridging large frequency intervals and establishing new frequency standards has 

been suggested. A particular application of this method in optical communication 

could have significant technology implications. Work in these areas is continuing, and 

more details will appear in the near future. [122] 
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Chapter 10 Epilogue 

Reflecting back on my research of the last six years, it is a fair judgement to say 

that it has been a very rewarding experience with several important milestones along 

the way. The goal of this Thesis was to outline these developments and to describe 

in detail crucial aspects of the experiments. Complementing the Thesis are several 

publications which, with some unavoidable overlap, present the same subjects from a 

different point of view. In particular, five papers have already been published,[7, 48, 

49, 102, 103] three have b een submitted for publication,[105, 106, 119] and two are 

under preparation. [122] In addition, a patent has been filed for the idea of utilizing 

atoms as ultrafast nonlinear mixers. 

To summarize, it is noted that motivated by theoretical developments and predic

t ions about the interaction of squeezed light with atoms, I was the principal student 

to initiated a research program to study specific examples of these effects. Unique 

capabilities for producing tunable squeezing in resonance with atomic transitions that 

were developed earlier in our labs were adapted to perform the nonclassical excita

tion experiment described in Chapters 5 and 6. In preparation for these experiments, 

several issues had to be resolved, including the construction of a MOT and the de

velopment of experimental tools to perform spectroscopy on the atoms in the MOT. 

Furthermore, the excited level of the particular transition that we chose to study was 

not well known, and for that reason a classical high precision spectroscopy experiment 

was performed. After all this preparatory work, we finally attempted and successfully 

completed the task of observing a nonclassical effect of the interaction of atoms with 

squeezed light. This was the deviation from quadratic form and an asymptotically 

linear excitation rate in the two-photon excitation of a three-level atom by the signal 

and idler outputs of an NDOPO. Note that to the present day this is the only instance 

of such an observation. 

Subsequent to the above experiments, I entered a different arena of research and 
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studied QI in two-photon excitation by multiple fields. A proof-of-principle experi

ment strikingly demonstrated that atoms can act as ultrafast nonlinear mixers due to 

QI, which motivated me to further pursue the study of these phenomena. Most of my 

efforts have been concentrated in the theoretical analysis of QI for which perturba

tive and master equation solutions have been derived. By analyzing these solutions I 

have discovered several interesting phenomena which have been discussed elsewhere. 

Furthermore, by generalizing the particular system that was studied experimentally, 

I have created a database of 6900 possible transitions that can be used in similar fash

ion. Based on these discoveries my colleagues and I have suggested novel techniques 

for frequency metrology and optical communications. 

In addition, combining these results with nonclassical excitation, we proposed 

new techniques for observing nonclassical correlations that have been up to now be

yond reach due to the limitations in bandwidth in the existing detectors. Again, to 

demonstrate the feasibility of our suggestions, we have performed a proof-of-principle 

experiment, and to back our results I developed a theoretical model based on the 

master equation of the system. 

Last but not least there has also been a significant effort to observe the interaction 

of squeezed light with a two-level atom in a microcavity,[2] which, however, was 

not covered in t his Thesis. In these cavity QED experiments, the atoms behave as 

one-dimensional systems and the coupling of squeezing to them should be greatly 

simplified. Several experiments have been performed and significant theoretical work 

has been done in order to understand the system. The results will be published in 

the near future; they have already been extensively discussed in Quentin Turchette's 

Ph.D. Thesis. Two main accomplishments of this research are worth mentioning 

here. First a unique unidirectional coupling of two independent quantum systems 

(the mode of the OPO and the atom in the microcavity) , which were physically 

separated by several meters from each other, was accomplished. Second observations 

of the interaction of squeezed light with a two-level atom have been recorded as a 

function of several parameters. However, the situation was somewhat analogous with 

the experiment described in Section 8.2, where although there have been observations 
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of the interaction with squeezed light, there was no direct proof that this was due to 

the nonclassical character of the squeezed excitation. Despite this deficiency, these 

experiment represents the only other instance besides the experiment of Section 5.2 

that investigates the fundamental alteration of radiation processes for the interaction 

of squeezing with atoms. 

It is my hope that the foundations established by my work will contribute to fur

ther developments and better understanding of the interaction of nonclassical states 

of light with atoms, and that my work on QI will open new avenues in t he fields of 

frequency metrology and ultrafast nonlinear mixing. 
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Appendix A OPO Gain for the Single 

and Double-Sided Cavity 

A crucial parameter for the OPO characterization is the gain, which is determined 

operationally by observing the amplification and deamplification of a small injected 

beam into the cavity. The characterization of our own OPO in this fashion was 

explained in detail in Chapter 4. Here, based on input-output relations and a coupling 

term between the pump and the signal and idler fields, I derive theoretical expressions 

for the OPO gain, in terms of the pumping parameter x (see Eq. (4.1)), for a variety 

of cases. 

A.1 D egenerate OPO (DOPO) 

We begin with the DOPO case. Figure A.1 shows a very general case of an OPO 

pumped by a classical field b of frequency 2w. Here, we are only considering subthresh

old OPO's for which the pump is not depleted, and since it is also non-resonant with 

the OPO cavity, it is shown in Fig. A.l to go through the OPO unaltered. The 

fundamental mode at frequency w inside the cavity is denoted by a and is coupled to 

the pump mode b by a coupling constant µ , which is due to the nonlinear properties 

of the crystal (assumed to be also constant). Furthermore, we consider two small 

coherent injected fields (denoted by a and a') at the fundamental frequency w, which 

enter the OPO cavity either through the output coupler Mout or through the high 

reflector M1 , which are characterized by loses given in terms of the linewidths 'Y and 

'Y' , respectively. Finally, with this configuration, the output field is called aout and 

will be the one we measure to determine the OPO gain. The goal here is to express 

aout in terms of the rest of the parameters and hence derive a theoretical expression 

for the operationally determined gain, Eq. ( 4.2), as a function of the pumping pa-
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rameter x. Furthermore, to model additional losses in the OPO, e.g., light induced 

absorption, a loss factor, called"/" , is introduced. Note, that either, or both, of the 

two input coherent fields (a, a') can be turned off, and the formulas will reduce to 

the corresponding specific case. In particular, in our experiments a = 0. However, 

because we will only consider semiclassical fields, when both a and a' are turned off, 

then aout = 0. 

DOPO 

y" a 

Figure A.l: DOPO configuration. 

The starting point in the analysis is the following rate equation for the intracavity 

field a, 

da = - (! + 1' + 1" + iw) a+ 2Vµo/b +~a+ ~a'. (A.l) 
dt 

Clearly, the first term describes the decay of the intracavity field due to the various 

losses ( 'Y, 'Y' and 'Y") while the last two terms are due to the injected fields a and a'. 

The second term comes from the coupling of the fundamental mode a with the pump 

b.[73, 74] The various fields have the following forms: 

(A.2) 
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a = ae- i(wt+cf>a) 
) (A.3) 

a' =a' e - i(wt+<Pa') 
) (A.4) 

and 

b = be-i(2wt+cf>b) 
' 

(A.5) 

where the quantities with "-" over them are taken to be the real and slowly varying 

components of the fields. Hence, from Eq. (A.l) one finds that in steady state (i.e., 

da = O) 
dt 

Here x is the threshold parameter given by 

where bth is defined to be 

b 
x==-, 

bth 

( 'Y + 'Y' + 'Y") 
bth=-----2.;µ 

(A.6) 

(A.7) 

(A.8) 

Note that the above definition of xis in accord with the definition of Eq. (4.1). 

Equation (A.6) has several interesting features. First, if both a and a' are non-zero 

then there will be interference between the two which will ultimately determine the 

intracavity field in addition to the nonlinear properties of the cavity. If however one 

of them is zero, then the phase ¢0 will be "locked" to the phase of the injected beam 

and then the only phase sensitive term will be the one in the denominator. This is in 

fact the case we are interested in, namely when one of the two injected fields is zero. 

To derive the output field we use the input-output relation 

(A.9) 
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A.1.1 Probe Injected Through M 1 

The first case we consider is when a = 0. Then, 

(A.10) 

which implies that the power gain (which is what we experimentally measure, see Eq. 

( 4.2)) is equal to 

G = I-CLaut (x) 12 
aaut (x = 0) 

1 
(A.11) 

1 - 2x cos e + x2 ) 

where()= 2¢a' - ¢b· Experimentally, the phase sensitive gain is characterized by G± 

which gives the two extrema of G as the angle <Pa' is varied by a PZT at the path of 

the injected beam. Hence, 

G = 1 
± (l=i=x) 2 . 

(A.12) 

A.1.2 Probe Injected Through Mout 

In this case a' = 0, and the output field is derived to be 

_ [ 2 ( 'Y+'Y' +-y" ) ] _ 
aaut = -1 + 1 - xei(21>a - <l>b) a, (A.13) 

which implies that the gain is equal to 

1 + 2f; cos () + ~~ G- ~~~~~~....,... 
- 1 - 2x cos() + x2 ' 

(A.14) 

where () = 2</Ja - </Jb and r = - 1 + + 2,\ II. As t he phase e is scanned (e.g.) by a 
'Y 'Y 'Y 

PZT at the path of the injected beam a) then the gain is a lso modulated and the 

maximum and minimum of it can be calculated from Eq. (A.14). To compute G± 

from Eq. (A.14) we note that there are two different cases, namely r # 0 and r = 0. 
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In the first case, the extrema of the gain occur at e = 0 and 7r and take the values 

(l± x)2 
G± (r i= 0) = __I_ 

1 =f x 
(A.15) 

For the second case, r = 0 =? I = 1 ' + 1", one needs to be more careful. In particular, 

t he output field is given in this case by 

( 
xeie ) 

aaut = ·e a 1 - xei 
(A.16) 

which means that when the gain is turned off, i.e., x = 0, then the output is equal to 

zero, a0 ut = 0 and hence t he definition of the gain, Eq. (A.11), diverges. Furthermore, 

in the special case that 1»1', 1 11
, r '.:::::'. 1 and G± (r = 1) = (i*~) 2 

in accord with 

the formulas derived in Ref. [12]. 

Finally, notice that while in the case when the probe is injected through the 

output mirror Maut the additional losses in the cavity alter the gain (through r), 

when the probe is injected through the high reflector M1 then the gain is independent 

of additional losses. 

A.2 Non-Degenerate OPO (NDOPO) 

We now turn our attention to the NDOPO. The set up we are considering is shown 

in Fig. A .2. The notation is similar to the one used for the DOPO with the only 

difference being that we now have two non-degenerate modes (signal and idler, de

noted by a 1 and a2 ) that are present in the cavity. In the most general case, different 

linewidths I and couplings µ can be present, and for this reason all parameters have 

been duplicated with the subscripts 1 and 2 to distinguish between the characteris

t ics for the signal and idler modes. Finally, in this very general representation of the 

NDOPO, a maximum of four injected inputs are possible, a 1 , a 2 , a~ and a; ; see Fig. 

A.2. 

The starting point of the analysis is again the rate equations for the intracavity 
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NDOPO 

Figure A.2: NDOPO configuration. 

fields a 1 and a 2 , which are given in analogy with Eq. (A.1) by 

(A.17) 

and 

(A.18) 

In generalizing Eq. (A.1) to Eqs. (A.17) and (A.18), the Hermitian conjugates of the 

a 1 and a2 fields were taken to be a! = a2 and a~ = a;:. Following similar steps as 

before, we solve for the slowly varying components a1 and a2 of the intracavity fields 

in the steady state case. First by simplifying Eqs. (A.17) and (A.18), we obtain that 

(A.19) 
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and 

(A.20) 

to 

1 [PY, e' ( ¢., -¢., J J2-Y\ e' ( ¢., -• .J ] 
a1 

(1 - X1X2) 
1 a1 + 1 a' + 

b1 + ,,~ + ,,n b 1 + ,,~ + ,,n 1 

X1ei(} [ py,e-•(¢. ,-¢.,) a + ~e -•(•.,-•.~) O:' ] 
(A.21) 

(1 - X1X2) (12 + 1'2 + !'~) 2 
h2 + 1'2 + /'~) 2 

' 

and 

1 [ ..J'Fi2e' ( ¢.,-¢., ) ~e' ( ¢., - ¢ ·~) l 
a2 

(1 - X1X2) 
2 a2 + 2 a' + 

(12 + 1'2 + !'~) (12 + 12 + 'Y~) 2 

X2ei(} [PY, e- •( ••, - ¢., \
1 
+ J2-Y\ e - •( •., -•.J a:] 

(A.22) 
(1 - X1X2) b1 + ,,~ + in h1 + ,,~ + ,,n 1 

These expressions, along with the input-output relations 

(A.23) 

and 

(A.24) 

give the signal and idler output fields. In an experiment to measure the gain of the 

OPO, one will usually inject only a single beam into the cavity. Therefore, we assume 

that a 2 =a~ = 0 and consider the two cases as before, where either {a1 = 0, a~=/. O} 

or { a 1 =/. 0, a~ = 0}. 
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A.2.1 Probe Injected Through M 1 

In t his case (a1 = 0, a~ f- 0, a2 =a; = 0) the output fields are given by 

and 
X2 i9 2~ -1 

a2 out = ( ) e ( , ") a 1. ' 1 - X1X2 / 1 + fl + f l 

(A.25) 

(A.26) 

The gain of the OPO is then defined in accord with Eq. (4.13) and (4.15) to be 

(A.27) 

and 

G
2 
- 1 ~2,out (x1, X2) 1

2 
= /2 ( X2 ) 

2 

a1,out (b = 0) / 1 1 - X1X2 
(A.28) 

Note that b = 0 is equivalent to setting x 1 = 0 and x2 = 0. Finally, note that for the 

special case when / 1 = f 2 and x 1 = x 2 , the relation G2 = G1 (1 - k) holds. 

A .2.2 Probe Injected Through Mout 

The last case to consider is for a1 f- 0, a~ = 0 and as before a2 = a; = 0. Here the 

output fields are 

a1,out = (A.29) 

and 
X2ei(} 2..fh'Y2 

a2 out = ( ) ( 1 ") a 1 · ' 1 - X1X2 fl +fl +fl 
(A.30) 

Then the gain for the signal and idler fields is equal to 

(A.31) 
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and 

1 - 211 
( 11 +1~ +-y~') 

(A.32) 

In the special case when Tl » T~ ' T~ (e.g., in our experiment), these expressions 

simplify to 

(A.33) 

and 

G 
_ T2 4x~ 

2 -
- Tl (1 - X1X2)

2 (A.34) 

which if T2 = Tl and x1 = x 2 implies further that G1 - G 2 = 1, in accord with the 

formulas derived from Ref. [12]. 

A.3 Summary 

In this appendix we have studied the properties of the amplified or deamplified coher

ent output from a DOPO and NDOPO when a small coherent injected beam enters 

the cavity either through the output coupler or one of the high-reflectors. Analytic 

expressions for the gain have been derived in each case that correspond to what one 

would normally measure in an experiment. The goal throughout this exercise is to 

relate the experimentally measured quantity G with the fundamental parameter x for 

the OPO from which the squeezed output properties can be inferred. 
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Appendix B Nonclassical Two-Photon 

Experiment: Data Plots, Fits and Fit 

Parameters 

The goal in this appendix is to show details of our data for the nonclassical excitation 

experiments discussed in Chapters 5 and 6. For each of the experiments we show 

three graphs. In the first graph, the data points R 1 vs. R 2 are plotted on a log

log scale along with the best quadratic plus linear fit (solid lines) of t he form R 2 = 

fQ (R1 ) = {36 Ri + {37 R1 (see Eq. (6.6)), and the best quadratic fit (dashed lines) of 

the form R2 = fQ (R1 ) = {31Ri (see Eq. (6.3)). In the two bottom panels we indicate 

the residuals of the data to these two fits. The ith point of the quadratic plus linear 

residual is defined by 

and similarly the ith point of the quadratic residual is given by 

(B.2) 

where { R~i), R~i)} is the ith data point of the particular experiment. The error bars 

erQ+L and erQ of the residuals are computed from the experimental uncertainties eR2 

of R2 as indicated in the above expressions. 

Finally, for completeness, we show for each of the experiments the fit parameters 

{31, .. ., f31 for the fQ , fQ+c, fp and f Q+L model functions; see Eqs. (6.3)-(6.6). 
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B.1 Exp. 11-17-94 (Nonclassical Excitation) 

Non-Classical Excitation 
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Figure B.l: a) R 2 vs. R 1 data from the 11-17-94 experiment. The solid line is the 
best linear plus quadratic fit and the dashed line the best quadratic fit . b) Quadratic 
plus linear residual, define in Eq. (B.1) c) Quadratic residual, defined in Eq. (B.2) 

• /31 = 4.42 x 10-s 

• /32 = 4.21 x 10-s 

• {33 = 0.46 

• {34 = 1.98 x 10- 7 

• {35 = 1.85 

• /36 = 3.71 x 10-s 

• /31 = 1.20 x 10- 4 
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B.2 Exp. 11-29-94 (Nonclassical Excitation) 

Non-Classical Excitation 
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Figure B.2: a) R 2 vs. R 1 data from the 11-29-94 experiment. The solid line is the 
best linear p lus quadratic fit and the dashed line the best quadratic fit. b) Quadratic 
plus linear residual, define in Eq. (B. l ) c) Quadratic residual, defined in Eq. (B.2) 

• f31 = 5.38 x 10-3 

• /32 = 5.01 x 10-3 

• (33 = 0.47 

• f34 = 5.24 x 10-7 

• /3s = 1.76 

• /36 = 4.46 x 10- 3 

• /31 = 1.19 x 10- 4 
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B.3 Exp. 12-06-94 (Nonclassical Excitation) 

Non-Classical Excitation 
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Figure B.3: a) R 2 vs. R 1 data from the 12-06-94 experiment. The solid line is the 
best linear plus quadratic fit and the dashed line the best quadratic fit. b) Quadratic 
plus linear residual, define in Eq. (B.1) c) Quadratic residual, defined in Eq. (B.2) 

• /31 = 2.88 x 10- 8 

• /32 = 2.78 x 10- 8 

• (33 = 0.39 

• (34 = 2.70 x 10- 7 

• (35 = 1.78 

• (36 = 2.37 x 10- 8 

• /31 = 1.20 x 10- 4 
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B.4 Exp. 12-20-94a (Nonclassical Excitation) 
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Figure B.4: a) R2 vs. R 1 data from the 12-20-94a experiment. The solid line is the 
best linear plus quadratic fit and the dashed line the best quadratic fit. b) Quadratic 
plus linear residual, define in Eq. (B.1) c) Quadratic residual, defined in Eq. (B.2) 

• /31 = 1.19 x 10-7 

• /32 = 1.16 x 10-7 

• {33 = 0.24 

• {34 = 6.64 x 10-7 

• {35 = 1.82 

• /36 = 1.01 x 10- 7 

• /31 = 1.94 x 10- 4 



187 

B.5 Exp. 12-20-94b (Nonclassical Excitation) 
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Figure B.5: a) R2 vs. R 1 data from the 12-20-94b experiment. The solid line is the 
best linear plus quadratic fit and the dashed line the best quadratic fit. b) Quadrat ic 
plus linear residual, define in Eq. (B.1) c) Quadratic residual, defined in Eq. (B.2) 

• /31 = 2.56 x 10-7 

• /32 = 2.45 x 10-7 

• (33 = 0.40 

• (34 = 4.81 x 10-7 

• (35 = 1.67 

• /36 = 1.88 x 10-7 

• /31 = 4.46 x 10-4 
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Exp. 12-22-94 (Coherent Excitation) 
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Figure B.6: a) R2 vs. R 1 data from the 12-22-94 experiment. The solid line is t he 
best linear plus quadratic fit and the dashed line the best quadratic fit . b) Quadratic 
plus linear residual, define in Eq. (B.l) c) Quadratic residual, defined in Eq. (B.2) 

• /31 = 1.49 x 10-7 

• /32 = 1.46 x 10-7 

• {33 = 0.11 

• {34 = 3.18 x 10-7 

• /3s = 1.92 

• /36 = 1.34 x 10- 7 

• {37 = 1.19 x 10- 4 
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B.7 Exp. 01-12-95 (Coherent Excitation) 
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Figure B .7: a) R 2 vs. R1 data from the 01-12-95 experiment. The solid line is t he 
best linear plus quadratic fit and the dashed line the best quadratic fit . b) Quadratic 
plus linear residual, define in Eq. (B.1) c) Quadratic residual, defined in Eq. (B.2) 

• /31 = 1.80 x 10-7 

• /32 = 1.81 x 10-7 

• (33 = -0.12 

• (34 = 4.99 x 10- s 

• (35 = 2.13 

• (35 = 1.96 x 10-7 

• /31 = -2.57 x 10- 4 
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Appendix C Results from Numerical 

Integration of the Master Equation for 

the Nonclassical Two-Photon Excitation 

Experiment 

In order to better model t he nonclassical excitation experiment described in Ch. 5 

and Ch. 6, A. S. Parkins has numerically integrated the master equation of the system 

taking into account the finite bandwidth of squeezing, which was not included in Ficek 

and Drummond's work.[44, 45] T he results he has derived and details of relating his 

parameters to our experiment are presented in this Appendix. Note that numerical 

results shown here are from private communication between A. S. Parkins and the 

Caltech group that conducted the experiment, while the rest of the calculations are 

due to the present author. 

C.1 Master Equation 

The master equation that describes the interaction of the signal (a) and idler (b) 

modes of the NDOPO with a three-level atom is a special case of what was discussed 

in Ref. [81]. In particular, A. S. Parkins has considered the following master equation 

for the density matrix p of the th ree-level atom: 

8p 
at 
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(C.1) 

Here, aij = (at) t = Ii) (JI are atomic raising and lowering operators. The linewidths 

1 21 and 132 are the FWHM of the atomic linewidths of the intermediate and upper 

state of the three-level atom, respectively, while /'i,a and Kb are the FWHM linewidths 

of the "cold" OPO cavity for the signal and idler modes. Note, that implicit in 

equation Eq. (C.l) is that the signal mode a drives the II ) -----+ 12) transition, while 

the idler mode b drives the 12) -----+ 13) transition . The parameters T/a and T/b (TJa,b::; 1) 

are coupling efficiencies between the OPO output modes a and b and the three-level 

atom. Finally the parameter E is the pump strength with which the OPO is driven. 

C.2 Parameters and Notation 

Expressed in terms of E, the parameters N and M that characterize the squeezing 

are given by 

(C.2) 

and 

(C.3) 

These expressions can be rewritten in terms of the pumping parameters x 1 = -& and 
2""0. 

x2 = ~ (see Appendix A) to give the more familiar expressions 
2 1\",b 

and 
2yfxlX2 (1 + x1x2) 2x (1 + x 2

) 
M= 2 = 2, 

(1 - X1X2) (1 - x 2 ) 

(C.4) 

(C.5) 

where the last equality in Eqs. (C.4) and (C.5) come from the simplifying assumption 

that /'i,a = Kb = /'i, and hence x 1 = X2 = x. Clearly, as expected for minimum 
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uncertainty states, M 2 = N (N + 1). Furthermore, the expressions with x 1 = x 2 = x 

are identical to those derived in Ref. [12]; see Eq. (56) and (57) therein. 1 

Lastly, we must express the output photon flux and output intensity from the 

OPO in terms of the pumping parameters x1 and x 2 . These are given by 

(C.6) 

and 

(C.7) 

for i = a, b, where fi is the photon number flux of the signal and idler modes (i = a 

and i = b, respectively), Ii is the intensity and ni is the intracavity photon number. 

Note that ni # N, because one must integrate over the bandwidth of the OPO in 

order to obtain the total photon number. In particular, 

(C.8) 

and similarly for the idler mode b; see Eq. (5) in Ref. [12]. Generalization of the 

results shown in Ref. [12] (Eq. (23)) leads to the photon flux for the signal,[79] which 

is given by 
~€2 + K.a+K.b /'i,a/'i,b X1X2 

Ja = /'i,ana = /'i,a 1 = ( ' 
4/'i,a/'i,b - c2 

/'i,a + /'i,b 1 - X1X2) 
(C.9) 

and similarly the flux of the idler field,[79] which is given by 

/'i,a/'i,b X1X2 

/'i,a + K,b (1 - X1X2) 
(C.10) 

1 Combining the expression for N given in Eq. (C.4) with the expression for the operationally 
determined gain Gs (Eq. (A.27)), it is easy to see that 
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Hence, 
K,b X1X2 1 x 2 

na = = ----
"'a + "'b (1 - X1X2) 2 1- x 2 ' 

(C.11) 

and 
"'a X1X2 1 x 2 

nb = = -
"'a + "'b (1 - X1X2) 2 1 - x 2 ' 

(C.12) 

where the last equality in Eqs. (C.11) and (C.12) holds for the special case where 

0.10 0.0337 0.75 2.340 1.80 34.969 
0.15 0.0762 0.80 2.741 1.90 44.307 
0.20 0.1364 0.85 3.190 2.00 56.229 
0.25 0.2149 0.90 3.695 2.10 71.557 
0.30 0.3128 0.95 4.259 2.20 91.373 
0.35 0.4312 1.00 4.891 2.30 117.206 
0.40 0.5714 1.10 6.388 2.40 151. 182 
0.45 0.7350 1.20 8.259 2.50 196.316 
0.50 0.9241 1.30 10.599 2.60 257.167 
0.55 1.1408 1.40 13.526 2.70 339.970 
0.60 1.3876 1.50 17.196 2.80 454.404 
0.65 1.6675 1.60 21.808 2.90 614.895 
0.70 1.9838 1.70 27.619 

Table C.l: Data from numerical integration of the master equation appropriate for 
the nonclassical excitation experiment of Ch. 4 and 5. (From private communication 
with A. S. P arkins, Feb. 1995). 

C.3 Results 

The integration of the master equation described in the previous section was carried 

out for the following set of parameters, corresponding to our experiment : 

• "'a= 7.3 MHz and "'b = 8.6 MHz, 
2 It is clear from t his discussion that the OPO output intensities of the signal and idler beams are 

not exactly the same. In particular, the ratio of the two is given by 

For our experiment Aa '.::'. 852 nm and Ab'.::'. 917 nm, hence l s52 ~ 1. 08 / 917. 
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• 121 = 5.0 MHz and r32 = 3.2 MHz, 

• 'rfa = 'r/b = 0.0005 (rJ = ~ = ~ (1 - cos~), where n is the solid angle covered by 

the squeezing; e is the focusing angle which in our case is e ~ 5.6°), 

• 612 = 623 = 0 ( detunings of the a and b fields from the atomic transition 

frequencies). 

1E-6 

P33c1> = a nb + p nb2 ( 1 - y e-n/6) 

a = 1.1624E-6 ± 3.6343E-9 
p = 24.314E-6 ± 6.3755E-8 

y = 0.4868 ± 0.00097 
8 = 0.55657 ± 0.00652 

• Numerical Data 

(a) 

"' 1E-7 
"' a. 

(b) 

1 E-8 

c2> = , n + r.i. , n 2 
P33 a b ~ b 
a ' = 0.985e-6 

p' = 18.050e-6 

0 .9 1-- (1)/ (2) I 
. P33 P33 . 

o.al.======~~~~ 
0.01 0.1 

(c) 

1E-9 ~. :.____. _ _,___,__..L......L..'.:i::::::i::IC====L=::::c:::::;::::'....J......L-1....1.....L.i. __ ..___,__,__,__L.......L....__..J 
1 E-3 0.01 0.1 1 

nb (lntracavity Photon number for 917 mode) 

Figure C.l: a) Circles: Excited state population p33 as a function of the intracavity 
photon number of the idler mode nb from numerical integration of the master equation 
by A. S. Parkins. b) Solid line: "Phenomenological" fit to the numerical data of the 

form p~~ = cimb + f3n~ ( 1 - ie-~) . c) Dashed line: Best linear plus quadratic fit to 

the numerical data of the form p~~ = o/nb + f3'n~. d) Insert: Ratio of the two fits 
(1) 

shown in (b) and (c), %· 
P 33 
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The results are shown in Table C.1, where the values of the excited state pop

ulation p33 are tabulated as a function of the strength of the pumping field c. By 

converting the values of E: to intracavity photon numbers of the idler beam, nb = n 917 

as given in Eq. (C.12), we plot in Fig. C.l the excited state population p33 as a 

function of nb. To obtain an analytic expression for the full theory, we fit to the 

numerical data a "phenomenological" function of the form 

(1) 2 ( -~) p 33 = o:nb + /3nb 1 - 1e 6 , (C.13) 

which is approximately a linear plus quadratic function with a correction that enters 

via the I and 8 terms. Alternatively, the numerical data may also be fitted to a purely 

linear plus quadratic function of the form 

(2) I /3' 2 
P33 = a nb + nb, (C.14) 

which however, does not describe the data as well as the p~~ model of Eq. (C.13) . 

The difference between the two fits of Eqs. (C.13 and (C.14) is depicted in the insert 

of Fig. C.1, where the ratio of the two is plotted as a function of nb. 

C.4 "Knee Position" 

The "knee" position is defined to be the point at which the excited state population 

p33 is due to equal parts from the linear and quadratic contributions to the excitation. 

For a function of the form y = ax+ bx2 this is equal to the point x = ~. On a log-log 

scale, i.e., in a plot of logy vs. log x the "knee" position is the point at which the 

slope of the graph is equal to 1.5, as can easily be seen from 

d logy I a + 2bx I 
dlogx x=* - a+ bx x=* 

3 
2 

(C.15) 

Applying the definition of Eq. (C.15) to the two fits to the numerical data (Eqs. 

(C.13) and (C.14)) , gives that the knee position for p~~ is at n~nee,l = 0.0704, and 
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Figure C .2: Log-log slope ddl,oge33 as a function of the idler intracavity photon-number 
ognb 

nb. a) Slope of PW (solid line); b) slope of p~~ (dashed line); c) slope of pf p ( TJ « 1) 
(dotted line). 

for pg) at n~nee,2 = 0.05 46. These values of nb can be converted to values of gain, 

Gs , corresponding to what we measure experimentally, by the use of Eqs. (A.27) and 

(C.12) which relate the two via 

(C.16) 

Hence, for the parameters of our exp eriment, we conclude that the model p~~) predicts 

gain G~nee,l = 1. 33 at the "knee" point (which is very close to the value predicted 

from the theory of Ficek and Drummond; see Sec. 6.3), and the model pgi gain 

G~nee,2 = 1. 25. 

To elaborate somewhat further, we note that the log-log slope for p~~ is given 



explicitly by 
dlog/1l 

8 
- 33 

1= 
dlognb 

and for the p~;) by 
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a+ 2/3nb - /31 (2 - T) nbe- 7-
~ a + /3nb - f31nbe- 6 

dlog / 2l 
82 - 33 

dlognb 

(C.17) 

(C.18) 

For the parameters a , /3, 1, 8, a' and /3' shown in Fig. C.l, appropriate for the 

numerical data describing our experiment, the two slopes 8 1 and 8 2 are shown in 

Fig. C.2 as a function of n b. The slope 8 2 of the linear plus quadratic model varies 

smoothly, as expected, between the values of 1 and 2. The physical interpret ation 

of this behavior is, of course, that for small enough excitation intensities (i.e., small 

nb ) the excitation rate is asymptotically linear (slope of 1), while for large nb we 

approach the classical regime where the slope is 2 and the excitation probability scales 

quadratically with intensity. On the other hand, the more accurate description of the 

numerical data by p~1) has a slope that also starts at 1 for small enough intensities 

and approaches 2 for large intensities, but there is also a region where it "overshoots" 

and exhibits slopes bigger than 2. 

For completeness, in Fig. C.2 we also show the slope of the broadband theory, 

as calculated by Ficek and Drummond. [44, 45] In particular, Ficek and Drummond 

have shown that in the broadband theory, the excited state population is given by 

pff (TJ « 1) '.:::'. v2 (B) 121 [(1 + 132 ) N2 +NJ , 
132 121 

(C.19) 

see Eq. (23) in Ref. [45]. Here, for simplicity, we assume that the coupling efficiency Tl 

is the same as the p a r ameter v ( B) by Ficek and D rummond. In addition, because t h e 

theory of Ficek and Drummond is a broadband theory, we assume that N,...., 4 "'a+"'bnb 
Ka 

(which can be obtained from Eqs. (C.4) and (C.12) by assuming that nb « 1) and 

hence, the log-log slope is given by 

_ dlog [pfp (TJ « l )] 
83 = 

dlognb 
(C.20) 
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which is shown in Fig. C.2. Solving as before for the knee point (i.e., setting s3 = 1.5) 

gives that nb = 0.0700 and hence, Gs = 1.33. 
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Appendix D Effect of Detunings on the 

"Knee" Position in the Nonclassical 

Two-Photon Excitation Experiment 

In an attempt to investigate in more detail the effects of detunings in the nonclassical 

two-photon excitation experiment described in Ch. 5 and 6, A. S. Parkins has carried 

out numerical calculations with parameters close to the experimental settings. Here, 

the results of these calculations are briefly outlined. 

There are two detunings in the problem that can affect the two-photon excitation 

rate. First there is the 821 detuning defined to be 

(D.l) 

and then there is the 832 detuning, similarly defined by 

(D.2) 

Here, W21 and w32 are the eigenfrequencies of the 11) ---+ 12) and 12) ---+ 13) transitions, 

respectively, and wa and wb are the frequencies of the signal and idler modes of the 

OPO that drive these two transitions. 

The results from the numerical integration of the master equation of the system 

are shown in Table D.1. Here, the master equation given by Eq. (C.1) is integrated 

for each set of detunings (81 , 82 ) for a series of different values of E to produce the 

excited state population p33 as a function of nb, which is calculated from Eq. (C.12). 

The "knee" point n~nee is then defined to be the point at which the log-log slope is 

equal to 1.5 and from this value the gain at the "knee" point is calculated using Eq. 

( C .16). Except for the detunings, the rest of the parameters used here are the same 
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as in Sec. C.3, which correspond to the experimental conditions. 

I c521 (MHz ) c532 (MHz) 
0.0 0.0 
1.0 0.0 
0.0 1.0 
0.5 0.5 
1.0 1.0 
-1.0 1.0 
1.0 -1.0 

-2.0 2.0 
-3.0 3.0 
-5.0 5.0 

nknee 
b 

0.0695 
0.0646 
0.0627 
0.0633 
0.0510 
0.0721 
0.0721 
0.0809 
0.0949 
0.1330 

1. 326 
1. 301 
1.292 
1.295 
1.235 
1. 339 
1. 339 
1. 384 
1. 456 
1.663 

14.70 
9.76 
9.62 
9.71 
4.24 
15.0 
15.0 
16.0 
17.3 
19.1 

Table D.1: "Knee" position and detunings: data from numerical integration of the 
master equation for two-photon excitation with nonclassical fields. 
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