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ABSTRACT 

 

Herein are described the total syntheses of all members of the transtaganolide and basiliolide natural 

product family.  Utilitzation of an Ireland–Claisen rearrangement/Diels–Alder cycloaddition cascade 

(ICR/DA) allowed for rapid assembly of the transtaganolide and basiliolide oxabicyclo[2.2.2]octane core.  

This methodology is general and was applicable to all members of the natural product family. 

A brief introduction outlines all the synthetic progress previously disclosed by Lee, Dudley, and 

Johansson.  This also includes the initial syntheses of transtaganolides C and D, as well as basiliolide B and 

epi-basiliolide B accomplished by Stoltz in 2011.  Lastly, we discuss our racemic synthesis of basililide C 

and epi-basiliolide C, which utilized an ICR/DA cascade to constuct the oxabicyclo[2.2.2]octane core and 

formal [5+2] annulation to form the ketene-acetal containing 7-membered C-ring. 

Next, we describe a strategy for an asymmetric ICR/DA cascade, by incorporation of a chiral silane 

directing group.  This allowed for enantioselective construction of the C8 all-carbon quaternary center 

formed in the Ireland–Claisen rearrangement.  Furthermore, a single hydride reduction and subsequent 

translactonization of a C4 methylester bearing oxabicyclo[2.2.2]octane core demonstrated a viable strategy 

for the desired skeletal rearrangement to obtain pentacyclic transtaganolides A and B.  Application of the 

asymmetric strategy culminated in the total syntheses of (–)-transtaganolide A, (+)-transtaganolide B, (+)-

transtaganolide C, and (–)-transtaganolide D.  Comparison of the optical rotation data of the synthetically 

derived transtaganolides to that from the isolated counterparts has overarching biosynthetic implications 

which are discussed. 

Lastly, improvement to the formal [5+2] annulation strategy is described.  Negishi cross-coupling of 

methoxyethynyl zinc chloride using a palladium Xantphos catalyst is optimized for iodo-cyclohexene.  

Application of this technology to an iodo-pyrone geranyl ester allowed for formation and isolation of the 

eneyne product.  Hydration of the enenye product forms natural metabolite basiliopyrone.  Furthermore, the 

eneyne product can undergo an ICR/DA cascade and form transtaganolides C and D in a single step from 

an achiral monocyclic precursor. 
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CHAPTER 1 

Transtaganolide and Basiliolide Natural Products and Early Efforts 

Toward their Total Synthesis 

1.1 INTRODUCTION 

1.1.1 ISOLATION AND BIOLOGICAL ACTIVITY 

Indigenous to the Mediterranean, plants of the genus Thapsia have been recognized to 

possess valuable therapeutic properties since the birth of western medicine.1  In modern 

times, their bioactivity has been attributed to major metabolite thapsigargin (1), a potent 

histamine releaser2 and non-tetradecanoylphorbol acetate (TPA) type tumor promoter3 

(Figure 1.1.1A).  More importantly, thapsigargin (1) is a powerful, irreversible, 

sacroplasmatic-endoplasmatic reticulum Ca2+-ATPase (SERCA-ATPase) inhibitor, which 

allows for the net transfer of endoplasmic reticular Ca2+ to the cytosol and eventual 

apoptosis resulting from the endoplasmic reticular stress.4  Furthermore, thapsigargin’s 

(1) potent SERCA-ATPases inhibitory activity has been exploited and widely utilized as 

an invaluable biochemical tool5 (Figure 1.1.1B)6. 
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Figure 1.1.1.  A) Thapsigargin (1).  B)  Crystal structure of thapsigargin (1) bound SERCA-ATPase. 

 

Further investigations of the chemical components of Thapsia have elucidated the 

existence of several additional novel metabolites (Figure 1.1.2).  These include 7-O-

geranylscopoletin (2),7 basiliopyrone (3),8 haplolonide (4),9 lactonic meroterpenoid 5,8a 

thapsitranstagin (6),10 transtaganolides A–D (7–10),11 and basiliolides B and C (11 and 

12).12  In particular, the transtaganolides and basiliolides (7–12), like thapsigargin (1), 

demonstrated SERCA-ATPase inhibitory activity, despite bearing characteristically 

different structural cores than that of thapsigargin (1), suggesting a mechanistically 

different mode of action.  Appendino, Muñoz, and coworkers found that unlike 

thapsigargin (1), Ca2+ mobilization resulting from transtaganolide C (9) and basiliolides B 

and C (11 and 12) was reversible and did not induce apoptosis.13  Furthermore, the 

possibility of trace thapsigargin (1) contamination of the transtaganolide and basiliolide 

(9, 11, and 12) samples was later ruled out when synthetically derived transtaganolide C 

was assayed and gave similar results to those of the original study.14 
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Figure 1.1.2. Natural products isolated from Thapsia. 

 

1.1.2 BIOSYNTHETIC PROPOSALS 

Following the initial isolation of transtaganolides A–D and basiliolides B and C (7–

12), Appendino and coworkers proposed a possible biosynthetic route to the tetracyclic 

framework of transtaganolides C and D (9 and 10, Scheme 1.1.1).12  Starting with 

farnesyl pyrophosphate (13), olefin cyclization triggered by carbon dioxide incorporation 

and subsequent cation quenching gives monocyclic pyrophosphate 15.  Another round of 

olefin cyclization and cation quenching forms bicycle 17, which upon addition of carbon 

dioxide and water gives bicycle 19.  Oxidation and lactonization forms tricycle 20, and 
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subsequent aldol condensation forms the tricycle 21 to give the necessary 2-carbon 

homologation observed in the carbon skeleton.  Lastly, anhydride formation and 

methylation yield the desired natural products 9 and 10. 

Scheme 1.1.1.  Appendino’s biosynthetic proposal. 

 

Two years after Appendino’s initial proposal,12 Massanet and coworkers proposed a 

different biosynthetic hypothesis for the transtaganolides C and D (9 and 10), which 

better explained the existence of many of the other co-isolated secondary metabolites 

(Scheme 1.1.2).8  From co-isolated 7-O-geranylscopoletin (2), they propose two possible 
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paths toward the biosynthesis of the transtaganolides.  Both path A (Claisen 

rearrangement, oxidation, then 6π electrocyclic rearrangement) and path B (oxidation, 6π 

electrocyclic rearrangement, followed lastly by Claisen rearrangement) form bicycle 26, 

which upon undergoing an intramoleculer Diels–Alder cycloaddition gives 

transtaganolides C and D (9 and 10).  Furthermore, co-isolated basiliopyrone (3) could be 

the hydration product of biosynthetic precursor 27, giving further credence to this 

biosynthetic hypothesis. 

Scheme 1.1.2. Massanet’s biosynthetic proposal. 
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Lastly, Johansson and coworkers, proposed a variation to Massanet’s biomimetic 

hypothesis (Scheme 1.1.2), suggesting basiliopyrone (3) was not a byproduct of the 

biosynthesis but rather a biosynthetic precursor to transtaganolides C and D (9 and 10, 

Scheme 1.1.3).15  Biosynthesis would commence with an initial Ireland–Claisen 

rearrangement of basiliopyrone (3) to form pyrone 28 with all-carbon quaternary center at 

C8.  Diels–Alder cycloaddition of 28 followed by C-ring closure could then form the 

naturals products 9 and 10.  Additionally, they hypothesized that the stereochemistry at 

the C8 all-carbon quaternary center could be set by a rare and unprecedented “Ireland–

Claisenase” enzyme. 

Scheme 1.1.3. Johansson’s biosynthetic proposal. 
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considerable challenge for total synthesis.  Using Massanet’s biomimetic proposal 

(Scheme 1.1.2) as a guide, initial efforts to form the ABD rings of transtaganolides C and 

D and basiliolides B and C utilized intramolecular pyrone Diels–Alder cycloadditions. 

Figure 1.2.1. The transtaganolide and basiliolide structural features. 

 

Stoltz and coworkers were the first to report the successful construction of the ABD 

tricyclic core via an intramolecular pyrone Diels–Alder cycloaddition reaction (Scheme 
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Scheme 1.2.1. Stoltz’s synthesis of ABD tricyclic core of the transtaganolides and basiliolides. 
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Scheme 1.2.2. A) Dudley’s synthesis of ABD tricyclic core of the transtaganolides and basiliolides.  

B). Lee’s synthesis of ABD tricyclic core of the transtaganolides and basiliolides. 
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pyrone Diels–Alder cycloaddition of acid 45, which builds the ABD tricyclic core.  The 

next disconnection is formation of the C8 all carbon quaternary center of acid 45, which 

we envision to arise from an Ireland–Claisen rearrangement of pyrone 46, the coupling 

product of acid 47 and geraniol derivative 48.  Furthermore the sequential Ireland–

Claisen, Diels–Alder cycloaddition reactions (46⇒48), could be accomplished in a single 

operation, allowing the simultaneous construction of the ABD tricyclic core as well as C4 

and C8 all-carbon quaternary stereocenters. 

Scheme 1.3.1. Retrosynthetic analysis of transtaganolides C and D (9 and 10) and basiliolides B and 

C (11 and 12). 
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1.3.2 PROGRESS FOR THE FORWARD SYNTHESIS 

Stoltz and coworkers’ original synthetic approach began with the synthesis of 

homoallylic alcohol 50 via Sonagashira cross-coupling (Scheme 1.3.2).20  Bromo 

lactonization of ester 50 followed by subsequent oxidation provided the bromo acid 52 in 

good yield.  DCC coupling of acid 52 to geraniol formed the bromo pyrone 53, which 

successfully underwent the sequential Ireland–Claisen and Diels–Alder cyclization in 

good yield over the two steps. 

Scheme 1.3.2. Stoltz’s progress toward the synthesis of transtaganolides C and D (9 and 10). 
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Scheme 1.3.3. Johansson’s progress toward the synthesis of transtaganolides C and D (9 and 10). 
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Scheme 1.4.1. Ireland–Claisen/Diels–Alder cycloaddition cascade (ICR/DA). 
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silyl esters 63a and 63b followed by the in situ cyclization upon the addition of water 

gave the natural products, transtaganolides C and D (9 and 10), in 31% yield. 

Scheme 1.4.3. Total syntheses of transtaganolides C and D (9 and 10). 
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followed by the in situ cyclization formed natural product, basiliolide B (11), and 

previously unreported epi-basiliolide B (42) in 6% and 12% yield, respectively. 

Scheme 1.5.1. Stoltz’s total syntheses of basiliolide B and epi-basiliolide B (11 and 42).
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allowed for diastereoselective C8 all-carbon quaternary center formation and access to 

basiliolide B (11). 

Lee’s synthesis began with the coupling of furfural (68) and geranyl diazoacetate (69) 

to form diazo ester  70 (Scheme 1.5.2).  Treatment of diazo 70 with copper (II) allowed 

for a diastereoselective intramolecular cyclopropanation, forming cyclopropane 71 in 

good yield.  Reduction followed by saponification and iodine displacement formed 

cyclopropane 73.  Finally, treatment of cyclopropane 73 with n-BuLi effected the desired 

ring opening reaction, giving a single diastereomer 74 that contained the required C8 all-

carbon quaternary center indicative of basiliolide B (11).   

Scheme 1.5.2. Lee’s synthesis of basiliolide B (11) 
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Having formed ester 74 with C8 all-carbon quaternary center, Lee and coworkers 

sought to finish their synthesis of basiliolide B (11, Scheme 1.5.3).  Oxidative cleavage of 

74 followed by Wittig olefination furnished enone 75 in 70% yield over the two steps.  

Achmatowicz reaction of furan 75 followed by methylation and Wittig olefination 

afforded lactal 78.  Jones oxidation of lactal 78 and subsequent olefin isomerization 

formed Diels–Alder substrate 80 in good yield.  Finally, intramolecular Diels–Alder 

cycloaddition of pyrone 80 gave tricycle 81, which following palladium assisted allyl 

ester cleavage, and intramolecular O-acylation produced basiliolide B (11) as a single 

diastereomer. 
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Scheme 1.5.3. Lee’s continued synthesis of basiliolide B (11). 
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aldehyde 83,27 with triphenylphosphonium ylide 30, to give the enoate 84 (Scheme 1.6.1).  

Subsequent reduction of α,β-unsaturated ester 84 with DIBAL-H afforded allylic alcohol 

85 in 89% yield.  Following protecting group manipulations (85→86), DCC coupling of 

alcohol 86 with pyrone acid 56 efficiently generated the ICR/DA cascade substrate 87.  

Submission of pyrone ester 87 to our ICR/DA protocol proved successful, affording 

tricycles 88a and 88b in 65% combined yield and as a 1:2 mixture of C8 diastereomers, 

respectively.  Only two diastereomers, 88a and 88b, are formed in the reaction resulting 

from the diastereoselective Diels–Alder cycloaddition, where diastereoselectivity is 

dictated by the C7 ester formed in the Ireland–Claisen rearrangement.  Protection of 

tricycles 88a and 88b gave silyl esters 89a and 89b in 74% yield.  Completion of the 

synthesis was achieved via a palladium promoted formal [5+2] annulation of tricycles 

89a and 89b with stannyl methoxyacetylide 62 to form basiliolide C (12) and previously 

unreported epi-basiliolide C (43), respectively, albeit in low yield (17% yield). 
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Scheme 1.6.1. Total syntheses of basiliolide C (12) and epi-basiliolide C (43). 

 

1.7 CONCLUSION 

In conclusion, we have discussed all previous progress toward the synthesis of (±) 

transtaganolides C and D (9 and 10).  We have summarized the ICR/DA cascade 
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of the ABD tricyclic core as well as formation of C4 and C8 all-carbon quaternary 
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syntheses of (±)-transtaganolides C and D (9 and 10), (±)-basiliolide B (11), (±)-epi-

basiliolide B (42), (±)-basiliolide C (12), and (±)-epi-basiliolide C (43). 
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1.8 EXPERIMENTAL SECTION 

1.8.1 MATERIALS AND METHODS 

Unless otherwise stated, reactions were performed in flame-dried glassware under an 

argon or nitrogen atmosphere using dry deoxygenated solvents.  Solvents were dried by 

passage through an activated alumina column under argon.  Chemicals were purchased 

from Sigma-Aldrich Chemical Company and used as received.  Pd(PPh3)4 was prepared 

using known methods.  Thin layer chromatography (TLC), both preparatory and 

analytical, was performed using E. Merck silica gel 60 F254 precoated plates (0.25 mm) 

and visualized by UV fluorescence quenching, p-anisaldehyde, I2, or KMnO4 staining.  

ICN Silica gel (particle size 0.032-0.063 mm) was used for flash chromatography.  1H 

NMR and 13C NMR spectra were recorded on a Varian Mercury 300 (at 300 MHz) or on 

a Varian Unity Inova 500 (at 500 MHz) spectrometer.  1H NMR spectra are reported 

relative to CDCl3 (7.26 ppm).  Data for 1H NMR spectra are reported as follows: chemical 

shift (ppm), multiplicity, coupling constant (Hz), and integration.  Multiplicities are 

reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, sept. = septet, m = 

multiplet, bs = broad singlet.  13C NMR spectra are reported relative to CDCl3 (77.16 

ppm).  FTIR spectra were recorded on a Perkin Elmer SpectrumBX spectrometer and are 

reported in frequency of absorption (cm-1).  HRMS were acquired using an Agilent 6200 

Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI), 

atmospheric pressure chemical ionization (APCI), or multimode-ESI/APCI. 
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1.8.2 PREPARATIVE PROCEDURES 

 

Enoate 84.  To a 23 °C solution of aldehyde 83 (1.39 g, 5.74 mmol) in benzene (57 

mL, 0.1 M) was added ylide 30 (2.92 g, 8.38 mmol).  The reaction was stirred at 60 °C 

for 6 h.  The reaction flask was then cooled to ambient temperature.  The crude mixture 

was poured directly onto a short pad of silica and subsequently flushed with Et2O (150 

mL).  Solvent was removed by rotary evaporation.  The crude oil was redissolved in 

CH2Cl2 (50 mL) and then dry loaded onto silica (5 g).  Purification by column 

chromatography (EtOAc in hexanes 1%→1.5% on silica) yielded 722 mg (41% yield) of 

enoate 84 as clear oil and a single diastereomer; 1H NMR (300 MHz, CDCl3) δ 6.72 (tq, J 

= 7.3, 1.5 Hz, 1H), 5.31 (tq, J = 6.3, 1.3 Hz, 1H), 4.18 (dd, J = 6.3, 0.8 Hz, 2H), 3.71 (s, 

3H), 2.34–2.23 (m, 2H), 2.16–2.06 (m, 2H), 1.82 (s, 3H), 1.62 (s, 3H), 0.88 (s, 9H), 0.05 

(s, 6H); 13C NMR (75 MHz, CDCl3) δ 168.7, 142.0, 135.8, 127.8, 125.3, 60.3, 51.8, 38.1, 

27.0, 26.1, 18.5, 16.5, 12.5, -5.0; FTIR (Neat Film NaCl) 2952, 2930, 2896, 2857, 1717, 

1672, 1651, 1472, 1463, 1436, 1387, 1361, 1259, 1218, 1193, 1124, 1107, 1065, 1006, 

939, 837, 814, 776, 744 cm-1; HRMS (ESI) m/z calc’d for C17H32O3SiNH4 [M+NH44]+: 

330.2459, found 330.2468. 
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Allyl alcohol 85.  To a –78 °C solution of enoate 84 (722 mg, 2.31 mmol) in Et2O (23 

mL, 0.1 M) was added neat DIBAL-H (1.03 mL, 5.78 mmol) in a dropwise fashion.  The 

reaction mixture was then stirred for 45 min at –78 °C before being carefully quenched 

by the dropwise addition of a saturated solution of Rochelle’s salt (6 mL over 5 min).  

The reaction mixture was then removed from the cold bath and allowed to warm to 

ambient temperature while being vigorously stirred for another 2 h.  The aqueous phase 

was extracted with Et2O (4 x 10 mL), and the organics were combined, washed with 

saturated brine (40 mL), and then dried over MgSO4.  Solvent was removed by rotary 

evaporation and purification by column chromatography (EtOAc in hexanes 3.5%→15% 

on silica) resulted in the isolation of 587 mg (89% yield) of allyl alcohol 85 as a clear oil; 

1H NMR (300 MHz, CDCl3) δ 5.37 (tq, J = 7.0, 1.3 Hz, 1H), 5.29 (tq, J = 6.3, 1.3 Hz, 

1H), 4.18 (dd, J = 6.4, 0.8 Hz, 2H), 3.97 (s, 2H), 2.22–2.08 (m, 2H), 2.09–1.98 (m, 2H), 

1.65 (s, 3H), 1.61 (s, 3H), 0.89 (s, 9H), 0.06 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 136.6, 

135.1, 125.8, 124.7, 69.0, 60.4, 39.2, 26.1, 25.9, 18.6, 16.4, 13.8, -4.9; FTIR (Neat Film 

NaCl) 3346, 2955, 2929, 2857, 1671, 1472, 1463, 1407, 1385, 1361, 1255, 1111, 1094, 

1066, 1006, 939, 836, 814, 776 cm-1; HRMS (ESI) m/z calc’d for C16H32O2SiNa 

[M+Na]+: 307.2064, found 307.2052. 
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Allyl acetate 85.5.  To a 0 °C solution of allyl alcohol 85 (585 mg, 2.06 mmol) in 

pyridine (2 mL, 1 M) was added acetic anhydride (390 µL, 4.11 mmol).  The reaction 

was allowed to warm to 23 °C and stirred for 3.5 h.  At this time the reaction mixture was 

diluted with Et2O (15 mL) and washed with saturated NaHCO3 solution (3 x 10 mL), 

saturated CuSO4 solution (3 x 10 mL), and brine (10 mL).  The organic fraction was dried 

with MgSO4 and the solvent was removed by rotary evaporation.  Purification by column 

chromatography (2.5% EtOAc in hexanes on silica) yielded 423 mg (63% yield) of the 

acetate protected product 85.5 as a clear oil; 1H NMR (300 MHz, CDCl3) δ 5.43 (tq, J = 

7.0, 1.3 Hz, 1H), 5.30 (tq, J = 6.3, 1.3 Hz, 1H), 4.43 (s, 2H), 4.18 (dq, J = 6.3, 0.9 Hz, 

2H), 2.23–2.09 (m, 2H), 2.06–1.99 (m, 5H), 1.64 (s, 3H), 1.61 (s, 3H), 0.89 (s, 9H), 0.06 

(s, 6H); 13C NMR (75 MHz, CDCl3) δ 171.1, 136.4, 130.3, 129.4, 124.9, 70.4, 60.4, 39.0, 

26.1, 21.1, 18.6, 16.5, 14.1, -4.9; FTIR (Neat Film NaCl) 2954, 2930, 2886, 2857, 1744, 

1671, 1472, 1462, 1445, 1377, 1360, 1249, 1230, 1111, 1065, 1024, 836, 776 cm-1; 

HRMS (APCI) m/z calc’d for C18H34O3SiNa [M+Na]+: 349.2169, found 349.2180. 
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additional hour, prior to quenching with saturated NH4Cl (5 mL).  The aqueous phase 

was extracted with Et2O (3 x 5 mL), and the organics were combined, washed with brine 

(15 mL), and dried over MgSO4.  Solvent was removed by rotary evaporation and 

purification by column chromatography (EtOAc in hexanes 10%→20% on silica) 

resulted in the isolation of 253 mg (92% yield) of allyl acetate 86 as a clear oil; 1H NMR 

(300 MHz, CDCl3) δ 5.44–5.30 (m, 2H), 4.39 (s, 2H), 4.08 (d, J = 6.8 Hz, 2H), 2.19–1.97 

(m, 7H), 1.61 (s, 3H), 1.60 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 171.1, 138.5, 130.2, 

129.1, 124.0, 70.2, 59.2, 38.8, 25.9, 21.0, 16.8, 14.0; FTIR (Neat Film NaCl) 3423, 2975, 

2923, 2879, 1738, 1671, 1442, 1378, 1232, 1090, 1022, 844 cm-1; HRMS (ESI) m/z 

calc’d for C12H20O3Na [M+Na]+: 235.1305, found 235.1300. 

 

 

Iodo pyrone ester 87.  To a 0 °C solution of allyl acetate 86 (254 mg, 1.20 mmol) 

and pyrone acid 56 (403 mg, 1.44 mmol) in MeCN (12 mL, 0.1 M) was added DCC (297 

mg, 1.44 mmol).  The reaction was allowed to warm to 23 °C and stirred for 1 h.  The 

crude reaction mixture was then flushed through a short pad of celite with additional 

MeCN (15 mL) to remove the insoluble urea byproduct.  Solvent was removed by rotary 

evaporation and purification by column chromatography (EtOAc in hexanes 5%→15% 

on silica) resulted in the isolation of 531 mg (94% yield) of iodo pyrone ester 87 as a 

yellow oil; 1H NMR (300 MHz, CDCl3) δ 7.45 (d, J = 9.7 Hz, 1H), 6.06 (d, J = 9.7 Hz, 
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1H), 5.45–5.38 (m, 1H), 5.33 (tq, J = 7.1, 1.3 Hz, 1H), 4.66 (d, J = 7.2 Hz, 2H), 4.43 (s, 

2H), 3.77 (s, 2H), 2.24–2.02 (m, 7H), 1.70 (s, 3H), 1.64 (s, 3H); 13C NMR (75 MHz, 

CDCl3) δ 171.1, 166.8, 160.5, 158.0, 151.3, 142.8, 130.6, 128.8, 118.0, 116.3, 70.8, 70.3, 

62.7, 42.7, 38.9, 26.0, 21.2, 16.7, 14.1; FTIR (Neat Film NaCl) 2973, 2933, 2854, 1732, 

1607, 1546, 1443, 1376, 1357, 1345, 1230, 1167, 1133, 1063, 1016, 959, 865, 821 cm-1; 

HRMS (ESI) m/z calc’d for C19H23IO6Na [M+Na]+: 497.0432, found 497.0428. 

 

 

Tricyclic acids 88a and 88b.  To a 23 °C solution of iodo pyrone ester 87 (385 mg, 

0.812 mmol) in toluene (4 mL, 0.2 M) in a 250 mL sealed tube was added N,O-

bis(trimethylsilyl)acetamide (BSA) (397 µL, 1.62 mmol) and triethylamine (11.3 µL, 

0.0812 mmol).  The reaction was heated to 110 °C and stirred for 20 min.  The solution 

was then cooled to 23 °C and diluted with toluene (200 mL, 0.004 M), leaving ample 
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and solvent was removed by rotary evaporation.  Purification by column chromatography 

(EtOAc in hexanes with 0.1% AcOH, 17%→25% on silica) gave desired tricycles 88a 

and 88b with a co-eluding impurity (<5% by 1H NMR).  Subsequent recrystallization 

from heptane and EtOAc gave 249 mg (65% yield) of pure tricyclic acids 88a and 88b as 

white solids and a 1:2 mixture of the respective diastereomers (88a and 88b). 

Minor diastereomer 88a: 1H NMR (300 MHz, CDCl3) δ 6.91 (d, J = 6.7 Hz, 1H), 6.34 

(dd, J = 17.4, 11.0 Hz, 1H), 5.17–4.96 (m, 2H), 3.86–3.61 (m, 2H), 3.20 (d, J = 6.8 Hz, 

1H), 2.95 (s, 1H), 2.09 (s, 3H), 2.00–1.37 (m, 5H), 1.37 (s, 3H), 1.11 (s, 3H); 13C NMR 

(75 MHz, CDCl3) δ 174.2, 170.9, 169.7, 140.5, 139.2, 113.5, 98.5, 84.2, 70.0, 60.6, 52.6, 

44.1, 40.3, 40.1, 38.6, 29.9, 20.9, 19.5, 18.3. 

Major diastereomer 88b: 1H NMR (300 MHz, CDCl3) δ 6.91 (d, J = 6.7 Hz, 1H), 6.01 

(dd, J = 17.4, 10.7 Hz, 1H), 5.17–4.96 (m, 2H), 3.86–3.61 (m, 2H), 3.21 (d, J = 6.7 Hz, 

1H), 3.01 (s, 1H), 2.09 (s, 3H), 2.00–1.37 (m, 5H), 1.30 (s, 3H), 1.13 (s, 3H); 13C NMR 

(75 MHz, CDCl3) δ 174.1, 170.9, 169.8, 148.0, 138.9, 111.5, 98.9, 84.1, 70.0, 59.2, 52.5, 

44.0, 40.1, 39.9, 39.5, 38.1, 20.9, 19.5, 18.3. 

FTIR (Neat Film NaCl) 3084, 2977, 2665, 2253, 1733, 1638, 1465, 1438, 1414, 1394, 

1379, 1337, 1315, 1229, 1172, 1120, 1041, 967, 913, 876, 839, 795, 735 cm-1; HRMS 

(Multimode-ESI/APCI) m/z calc’d for C19H24IO6 [M+H]+: 475.0612, found 475.0608. 
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Silyl esters 89a and 89b.  To a 23 °C solution of iodo acids 88a and 88b (115 mg, 

0.243 mmol) in DMF (1.2 mL, 0.2 M) were added sequentially imidazole (99.4 mg, 1.46 

mmol) and TBSCl (147 mg, 0.973 mmol).  The reaction was stirred for 1 h at 23 °C and 

then quenched by the addition of saturated brine (4 mL).  The resulting aqueous phase 

was extracted with a 50% solution of EtOAc in hexanes (3 x 4 mL), after which the 

organics were combined, washed with brine (6 mL), and dried with Na2SO4.  Solvent was 

removed by rotary evaporation and purification by column chromatography (EtOAc in 

hexanes 10%⇒20% on silica) gave 106 mg (74% yield) of silyl esters 89a and 89b as 

white solids and a 1:2 mixture of the respected diastereomers (89a and 89b). 

Minor diastereomer 89a: 1H NMR (300 MHz, CDCl3) δ 6.87 (d, J = 6.7 Hz, 1H), 6.36 

(dd, J = 17.4, 11.0 Hz, 1H), 5.19–4.88 (m, 2H), 3.80–3.63 (m, 2H), 3.14 (d, J = 6.8 Hz, 

1H), 2.85 (s, 1H), 2.07 (s, 3H), 1.91–1.19 (m, 8H), 1.10 (s, 3H), 0.88 (s, 9H), 0.27 (s, 

3H), 0.26 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 170.7, 169.7, 169.1, 141.0, 138.9, 113.2, 

99.2, 84.3, 70.0, 61.8, 52.8, 44.4, 40.5, 39.6, 39.2, 29.8, 25.5, 21.1, 20.91, 19.5, 17.6, -

4.8, -4.8. 

Major diastereomer 89b: 1H NMR (300 MHz, CDCl3) δ 6.87 (d, J = 6.7 Hz, 1H), 6.01 

(dd, J = 17.4, 10.6 Hz, 1H), 5.19–4.88 (m, 2H), 3.80–3.63 (m, 2H), 3.16 (d, J = 6.8 Hz, 

1H), 2.94 (s, 1H), 2.07 (s, 3H), 1.91–1.19 (m, 8H), 1.10 (s, 3H), 0.88 (s, 9H), 0.27 (s, 

3H), 0.24 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 170.7, 169.7, 168.9, 149.0, 138.7, 110.8, 
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99.6, 84.2, 70.0, 60.4, 52.6, 44.3, 40.3, 40.2, 38.5, 25.6, 21.1, 20.9, 19.52, 18.1, 17.6, -

4.7, -4.8. 

FTIR (Neat Film NaCl) 2951, 2930, 2896, 2858, 1760, 1745, 1716, 1472, 1464, 1413, 

1393, 1378, 1364, 1341, 1283, 1250, 1229, 1194, 1173, 1042, 1021, 1007, 984, 968, 939, 

930, 915, 885, 843, 828, 790, 733 cm-1; HRMS (Multimode-ESI/APCI) m/z calc’d for 

C25H38IO6Si [M+H]+: 589.1477, found 589.1496. 

 

 

Basiliolide C (12) and epi-basiliolide C (43).  In a nitrogen filled glovebox, to a 
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another 4 h of stirring at 30 °C (a total reaction time of 24 h) the reaction was filtered 

through cotton washing with MeCN in order to remove Pd(PPh3)4.  The filtrate was 

further diluted with MeCN (making a total reaction volume of 8 mL) and the reaction 
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passing a stream of air over the reaction vessel (rotary evaporation could not be 

accomplished without bumping the liquid).  The remaining liquid was diluted with 25% 

saturated brine solution in water (350 µL) and the aqueous phase extracted with EtOAc 

(4 x 750 µL).  The organics were pooled, dried over Na2SO4, and concentrated by rotary 

evaporation.  The crude oil was purified by normal phase HPLC (33% EtOAc in hexanes) 

to yield 0.51 mg (6% yield) of basiliolide C (12) and 0.97 mg (11% yield) of epi-

basiliolide C (43).  The spectroscopic data obtained from synthetic 12 match those 

published from natural sources. 

Basiliolide C (12): 1H NMR (500 MHz, CDCl3) δ 7.00 (dd, J = 17.7, 11.1 Hz, 1H), 

6.05 (dd, J = 6.5, 1.2 Hz, 1H), 5.16 (dd, J = 11.1, 1.4 Hz, 1H), 5.06 (dd, J = 17.7, 1.2 Hz, 

1H), 5.00 (d, J = 1.4 Hz, 1H), 3.73 (s, 3H), 3.73 (d, J = 10.8 Hz, 1H), 3.69 (d, J = 10.8 

Hz, 1H), 3.29 (d, J = 6.5 Hz, 1H), 3.14 (s, 1H), 2.08 (s, 3H), 1.93 (dt, J = 13.5, 3.4 Hz, 

1H), 1.75 (qd, J = 13.5, 3.0 Hz, 1H), 1.64–1.50 (m, 1H), 1.41 (td, J = 13.5, 3.0 Hz, 1H), 

1.32–1.24 (m, 1H), 1.23 (s, 3H), 1.12 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.0, 

170.7, 162.4, 157.0, 142.7, 138.6, 123.0, 112.5, 87.0, 79.2, 70.6, 56.6, 53.4, 49.8, 44.8, 

40.3, 38.6, 37.1, 28.7, 21.2, 20.9, 19.8; FTIR (Neat Film NaCl) 3083, 2942, 2873, 2851, 

1766, 1745, 1620, 1464, 1444, 1378, 1334, 1262, 1233, 1199, 1178, 1108, 1038, 1010, 

994, 955, 914, 831, 733 cm-1; HRMS (Multimode-ESI/APCI) m/z calc’d for C22H27O7 

[M+H]+: 403.1751, found 403.1736. 

Epi-basiliolide C (43): 1H NMR (500 MHz, CDCl3) δ 6.04 (dd, J = 6.5, 1.3 Hz, 1H), 

5.80 (dd, J = 17.4, 10.8 Hz, 1H), 5.11–5.03 (m, 2H), 4.98 (d, J = 1.3 Hz, 1H), 3.72 (q, J = 

10.8 Hz, 2H), 3.72 (s, 3H), 3.29 (d, J = 6.5 Hz, 1H), 3.23 (s, 1H), 2.09 (s, 3H), 1.84–1.72 

(m, 1H), 1.70–1.62 (m, 2H), 1.61 (s, 3H), 1.50–1.41 (m, 1H), 1.26 (dd, J = 13.1, 4.9 Hz, 
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1H), 1.16 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.0, 170.8, 162.1, 157.0, 146.3, 

138.9, 122.7, 113.2, 87.0, 79.0, 70.6, 56.5, 50.7, 49.7, 44.5, 38.6, 38.3, 37.0, 20.9, 20.7, 

19.9, 19.3; FTIR (Neat Film NaCl) 2931, 1763, 1742, 1666, 1619, 1442, 1377, 1335, 

1228, 1195, 1178, 1113, 1038, 1021, 999, 970, 952, 914, 830, 732 cm-1; HRMS 

(Multimode-ESI/APCI) m/z calc’d for C22H27O7 [M+H]+: 403.1751, found 403.1744. 
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A1.1 SYNTHETIC SUMMARY FOR BASILIOLIDE C AND EPI-

BASILIOLIDE C 

Scheme A1.1.1.  Retrosynthetic analysis for basiliolide C (12) and epi-basiliolide C (43). 
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Scheme A1.1.2.  Syntheses of basiliolide C (12) and epi-basiliolide C (43). 
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A2.1 COMPARISON OF 1H NMR AND 13C NMR FOR SYNTHETIC AND 

REPORTED BASILIOLIDE C 

Table A2.1.1. Comparison of 1H NMR data for synthetic and reported natural1 basiliolide C (12). 
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O
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O

O
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2 11

15

13

5
8

4
14

63 7
10

12

9

18

17 19

16

O20

21

Assignment Synthetic 12 (ppm) Multiplicity, J (Hz)

C2 6.05 6.06 dd, 6.4, 1.1

C3 3.29 3.29 d, 6.4

C4 — — —
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C1 — ——

C9 3.14 3.15 s

C10 — — —

C11 7.00 7.00 dd, 17.7, 11.1

C12 5.17 dd, 11.0, 1.0

5.06 5.06 dd, 17.7, 1.0

C13 1.23 1.24 s

C14 1.12 1.12 s

C15 3.73 3.74 d, 10.8

5.16

C8 — ——

Multiplicity, J (Hz)Natural 12 (ppm)

C16 — — —

C17 5.00 5.01 d, 1.1

C18 — — —

C19 — — —

C20 — — —

C21 2.08 2.09 s

3.73 3.74 sOMe

3.69 3.70 d, 10.8

dd, 6.5, 1.2

d, 6.5

—

qd, 13.5, 3.0

m

dt, 13.5, 3.4

td, 13.5, 3.0

m

—

s

—

dd, 17.7, 11.1

dd, 17.7, 1.2

s

s

d, 10.8

dd, 11.1, 1.4

—

—

d, 1.4

—

—

—

s

s

d, 10.8



Appendix 2–Comparison of Spectral Data for Synthetic and Reported Basiliolide C, 
as well as Biological Assays for Synthetic Transtaganolide C: Relevant to Chapter 1 

42 

 

Table A2.1.2. Comparison of 13C NMR data for synthetic and reported natural1 basiliolide C (12). 
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10
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9
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17 19
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O20

21

Assignment Synthetic 12 (ppm)

C2 123.0 122.8

C3 49.8 49.7

C4 37.1 37.0

C5 44.7

C6 21.2 21.1

C7 40.3 40.2

44.8

C1 138.6138.6

C9 53.4 53.3

C10 87.0 86.9

C11 142.7 142.6

C12 112.3

C13 28.7 28.6

C14 19.8 19.6

C15 70.6 70.4

112.5

C8 38.438.6

Natural 12 (ppm)

C16 170.7 170.7

C17 79.2 79.0

C18 157.0 156.9

C19 162.4 162.3

C20 171.0 170.8

C21 20.9 20.7

56.6 56.4OMe
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A2.2 BIOACTIVITY OF SYNTHETIC TRANSTAGANOLIDE C 

Appendino, Muñoz, and coworkers assayed naturally isolated transtaganolide C (9) 

for its effect on calcium mobilization as well as cell viability following exposure to the 

natural product 9.2  To ensure the data obtained was not the result of trace thapsigargin 

(1) contamination in the isolation sample, we sent synthetic transtaganolide C (9) to be 

tested as a control.  Both calcium mobilization (Figure A2.2.1)3 and cell viability (Figure 

A2.2.2)3 assays were consistent with those observed with naturally isolated 

transtaganolide C (9). 

Figure A2.2.1.  A) Thapsigargin (1) and transtaganolide C (9).  B) The effect of synthetic 

transtaganolide C (9) or naturally isolated thapsigargin (1) on calcium mobilization as a function of 

time (arrows indicate the time at which a reagent was added).3 
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Figure A2.2.2.  Percentage of cells still viable after 24 hours of exposure to either synthetic 

transtaganolide C (9) or thapsigargin (1).3 

 

General procedure for calcium mobilization.  Jurkat cells were incubated for 1 h 

at 37 ºC in Tyrode’s salt solution (137 mM  NaCl, 2.7 mM KCl, 1.8 mM CaCl2, 1.0 mM 
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transtaganolide C (9) or thapsigargin (1) at the indicated concentrations (μM) for 24 

hours.  Samples were then diluted with 300 μL of PBS and incubated for 1 min at 23 °C 

in the presence of propidium iodine (10 μg/ml).  After incubation, cells were immediately 

analyzed by flow cytometry.  The results are represented as the percentage of viability 

considering 100% viability for the untreated cells.3 
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Figure A3.1.2 infrared spectrum (Thin Film, NaCl) of compound 84. 

Figure A3.1.3 13C NMR (75 MHz, CDCl3) of compound 84. 
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Figure A3.2.2 infrared spectrum (Thin Film, NaCl) of compound 85. 

Figure A3.2.3 13C NMR (75 MHz, CDCl3) of compound 85. 
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Figure A3.3.2 infrared spectrum (Thin Film, NaCl) of compound 85.5. 

Figure A3.3.3 13C NMR (75 MHz, CDCl3) of compound 85.5. 
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Figure A3.4.2 infrared spectrum (Thin Film, NaCl) of compound 86. 

Figure A3.4.3 13C NMR (75 MHz, CDCl3) of compound 86. 
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Figure A3.5.2 infrared spectrum (Thin Film, NaCl) of compound 87. 

Figure A3.5.3 13C NMR (75 MHz, CDCl3) of compound 87. 
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Figure A3.6.2 infrared spectrum (Thin Film, NaCl) of compound 88a and 88b. 

Figure A3.6.3 13C NMR (75 MHz, CDCl3) of compound 88a and 88b. 
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Figure A3.7.2 infrared spectrum (Thin Film, NaCl) of compound 89a and 89b. 

Figure A3.7.3 13C NMR (75 MHz, CDCl3) of compound 89a and 89b. 
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Figure A3.8.2 infrared spectrum (Thin Film, NaCl) of basiliolide C (12). 

Figure A3.8.3 13C NMR (125 MHz, CDCl3) of basiliolide C (12). 
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Figure A3.9.2 infrared spectrum (Thin Film, NaCl) of epi-basiliolide C (43). 

Figure A3.9.3 13C NMR (125 MHz, CDCl3) of epi-basiliolide C (43). 
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CHAPTER 2 

Total Syntheses of (–)-Transtaganolide A, (+)-Transtaganolide B, 

(+)-Transtaganolide C, and (–)-Transtaganolide D and Biosynthetic 

Implications 

 

2.1 INTRODUCTION 

Enticed by the opportunity to prepare structurally novel and biologically relevant 

molecules, our group undertook extensive synthetic efforts that resulted in the 

development of a general strategy for the total syntheses of several transtaganolide1 

natural products (Figure 2.1.1, 9–11 ansd 42).2  Integral to this approach was an Ireland–

Claisen rearrangement/intramolecular pyrone Diels–Alder cyclization (ICR/DA) cascade3 

that furnished the stereochemically complex, tricyclic cores (92) in a single step from 

monocyclic, achiral precursors (91).  Additionally, a formal [5+2] annulation process 

forged the formidable C-ring (Scheme 2.1.1).2  While concise and modular, our initial 

approach fell short of achieving two key goals: 1) the preparation of enantioenriched 

products and 2) the synthesis of transtaganolides A (7) and B (8), the most complex 
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members of the natural product family.  Transtaganolides A (7) and B (8) are unique 

within their class due to their lack of an oxabicyclo[2.2.2]octene structural motif (Figure 

2.1.1, 7 and 8 vs. 9–11 and 42). In its place is a fused γ-lactone (E ring, 7 and 8), bridged 

by an ether linkage (D-ring) that contorts the pentacyclic core into a compact, caged 

structure (Figure 2.1.1 and Scheme 2.2.1, see boxed insert).  Strategies to overcome these 

synthetic challenges are presented herein, culminating in the enantioselective total 

syntheses of (–)-transtaganolide A (7) and (+)-transtaganolide B (8), which previously 

had eluded total synthesis.  Furthermore, (–)-transtaganolide C (9) and (+)-

transtaganolide D (10), which were previously prepared as racemates, have now been 

synthesized asymmetrically.  The absolute configurations of these compounds are also 

disclosed and discussed within the context of existing biosynthetic hypotheses.3b, 4 

Figure 2.1.1.  Transtaganolide and basiliolide natural products (7–11 and 42). 

 

Scheme 2.1.1.  General synthetic strategy. 
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2.2 RETROSYNTHETIC ANALYSIS 

Retrosynthetically, transtaganolides A (7) and B (8) could derive from iodo tetracycle 

93 by application of our [5+2] annulation strategy (Scheme 2.2.1).2  We envisioned that 

the tetracyclic core (93) could in turn arise from a translactonization/acetalization 

reaction of aldehyde-hydrate 94.  Tricycle 94 could be derived from an enantiospecific 

ICR/DA cascade of monocyclic precursor 95 with the requisite aldehyde oxidation state. 

Scheme 2.2.1.  Retrosynthetic analysis for the asymmetric construction of transtaganolides A (7) and 

B (8). 

 

In a similar fashion to that of transtaganolides A and B (7 and 8), enantioenriched 

transtaganolides C and D (9 and 10) could be prepared from tricycle 96, which could 

derive from a pyrone ester 97 by a stereocontrolled ICR/DA cascade reaction (Scheme 
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Scheme 2.2.2.  Retrosynthetic analysis for the asymmetric construction of transtaganolides C (9) and 

D (10). 

 

2.3 ENANTIOSELECTIVE TOTAL SYNTHESES OF TRANSTAGANOLIDES 

C AND D 

Our studies began with the application of this retrosynthetic analysis to 
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treatment with stannane 62 and Pd(PPh3)4 yielded (+)-transtaganolide C (9) and (–)-

transtaganolide D (10). 

Scheme 2.3.1.  Enantioselective total syntheses of transtaganolides C and D (9 and 10). 
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2.4 SYNTHETIC STRATEGIES FOR THE TOTAL SYNTHESES OF 

TRANSTAGANOLIDES A AND B 

Having established the feasibility of the chiral geraniol derivative approach to setting 

the critical absolute stereochemistry in this series of natural products, we sought to 

prepare the transtaganolide A (7) and B (8) novel frameworks.  The most apparent path to 

this goal relies on the utilization of a chiral (Z)-enal such as 101 in our ICR/DA 

cyclization cascade to produce aldehydes 103a and 103b, which are predisposed by 

proximity to undergo the desired ring-chain tautomerism upon hydration (Scheme 2.4.1).  

However, we found that (Z)-enal 101 was challenging to prepare and configurationally 

unstable under myriad reaction conditions.8 

Scheme 2.4.1.  Initial attempts at preparing the tricyclic cores of transtaganolides A and B (103a and 

103b). 
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Wadsworth–Emmons reaction of known γ,δ-unsaturated aldehyde 839 to form (Z)-

methylenoate 105 in 71% yield and excellent diastereoselectivity.10  DIBAL reduction of 

methylenoate 105 proceeded at –78 °C in 95% yield.  Acetate protection of alcohol 106 

followed by TBS deprotection furnished alcohol 108 in 67% yield over the two steps.  

Finally, coupling of alcohol 108 to iodo-acid 56 gave ICR/DA cascade substrate 109 in 

89% yield.  Upon submitting pyrone 109 to our standard ICR/DA cascade conditions 

formed tricycles 110a and 110b in a combined 54% yield and 2:1 dr, respectively.  

Cleavage of the acetate protecting group gave a mixture of alcohols 111a and 111b along 

with the translactonized products 112a and 112b.  For the purposes of characterization, 

the crude mixture could be stirred with Amberlyst 15 in Et2O to give solely the 

translactonized products 112a and 112b in 47% yield over the two steps.  Unfortunately 

all attempts to oxidize either alcohols 111a and 111b or the translactonized products 

112a and 112b proved fruitless and therefore we required a different approach to the 

transtaganolide A and B (7 and 8) natural product syntheses. 
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Scheme 2.4.2.  Studies for the transtaganolide A and B (7 and 8) tetracyclic core via protected 

alcohol 109. 
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with no loss of diastereoselectivity.  Subsequent TBAF deprotection of the TBS 

protecting group formed alcohol 114 in 77% yield.  Lastly, coupling to iodo-acid 56 

formed the desired ICR/DA substrate 115 in 75% yield.  Unfortunately, pyrone 115 did 

not successfully undergo the ICR/DA cascade.  For pyrone 115, the Ireland–Claisen 

rearrangement proceeded smoothly, forming silylesters 116a and 116b, but under the 

reaction conditions, even after one month of heating, no appreciable Diels–Alder product 

117a and 117b could be observed. 

Scheme 2.4.3.  Studies for the transtaganolide A and B (7 and 8) tetracyclic core via Weinreb amide 

115. 
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single hydride reduction to the aldehyde (Scheme 2.4.4).  Once again, the forward 

synthesis began with (Z)-methyl enoate 105.  Deprotection to form alcohol 118 

proceeded in 92% yield and subsequent coupling to iodo-acid 56 furnished the ICR/DA 

substrate 119 in 84% yield.  Submission of pyrone 119 to our standard ICR/DA cascade 

conditions for 13 days furnished tricycles 120a and 120b in a combined 69% yield and a 

2:1 mixture of diastereomers, respectively.  To our delight, single hydride reduction of 

tricycles 120a and 120b was accomplished at low temperature with DIBAL.  The crude 

aldehyde products 103a and 103b then underwent the desired translactonization event 

with an appropriate acid catalyst (i.e., Amberlyst 15) to form the transtaganolide A and B 

tetracyclic cores 121a and 121b in 47% yield over the two steps.  Having been able to 

successfully synthesize the transtaganolide A and B tetracyclic cores 121a and 121b, we 

turned our attentions toward accomplishing this feat asymmetrically. 



Chapter 2–Total Syntheses of (–)-Transtaganolide A, (+)-Transtaganolide B, 
(+)-Transtaganolide C, and (–)-Transtaganolide D and Biosynthetic Implications 

76 

Scheme 2.4.4.  Studies for the transtaganolide A and B (7 and 8) tetracyclic core via methylester 

119. 
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the Horner–Wadsworth–Emmons reaction allowed for formation of (Z)-methylenoate 125 

in 93% yield and excellent Z:E selectivity.10  Acetate deprotection of (Z)-methylenoate 

125 afforded alcohol 126 in 78% yield.  Efficient coupling of alcohol 126 to acid 56 

yielded the ICR/DA cascade substrate, pyrone ester 127.  Gratifyingly, prolonged heating 

of ester 127 in toluene with N,O-bis(trimethylsilyl)acetamide (BSA) in the presence of a 

catalytic amount of triethylamine afforded diastereomeric tricycles 128a and 128b in a 

combined 62% yield and as a 3:1 mixture of C8 diastereomers, respectively. 

Scheme 2.5.1.  Syntheses of enantioenriched tricyclic cores of transtaganolides A and B (128a and 

128b). 
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Remarkably, brief exposure of acids 128a and 128b to an excess of DIBAL-H at low 

temperature followed by careful quenching with acetic acid resulted in smooth, 

chemoselective ester reduction to furnish corresponding aldehydes 129a and 129b 

(Scheme 2.5.2).  Upon exposure of the crude aldehydes 129a and 129b to aqueous HBF4, 

the desired translactonization/acetalization proceeded and proteodesilylation occurred in 

one pot to yield caged tetracycles 121a and 121b.  Transient protection of the free acids 

(121a and 121b) as the TBS-esters (130a and 130b) in 67% yield, followed by 

application of our [5+2] annulation technology, allowed for the enantioselective 

syntheses of (+)-transtaganolide B (8) and (–)-transtaganolide A (7) in 35% combined 

yield and good optical purity. 
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Scheme 2.5.2.  Enantioselective total syntheses of transtaganolides A and B (7 and 8). 
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2.6 BIOSYNTHETIC IMPLICATIONS AND STEREOCHEMICAL 

ANALYSIS OF THE ENANTIOSELECTIVE TOTAL SYNTHESES OF 

TRANSTAGANOLIDES C AND D 

Recently, Johansson and co-workers have proposed that co-isolated basiliopyrone 3 is 

the direct biosynthetic precursor of transtaganolides C (9) and D (10) (Scheme 2.6.1).3b, 4  

They suggest that a rare naturally-occurring ester-enolate-Claisen rearrangement is 

responsible for the production of optically-pure transtaganolides. Enzymatically 

controlled Claisen processes are particularly uncommon, but are known, as in Chorismate 

mutase.13  Under this scenario, and assuming that the C9 proton is relatively acidic due to 

the withdrawing nature of the pyrone, it could be anticipated that an enzymatic and 

presumably enantioselective14 rearrangement would produce optically pure C9 

diastereomers 28 (with absolute stereocontrol at C8), while a non-enzymatically 

governed process would likely result in a racemic mixture of C9 diastereomers.  The 

demonstrated propensity of these systems to undergo diastereoselective Diels–Alder 

rearrangements under allylic strain control15 would lead to pseudo-enantiomeric 

transtaganolides C (9) and D (10).  Having prepared enantioenriched transtaganolides A–

D (7–10) via an analogous, synthetic enantioselective Ireland–Claisen rearrangement, we 

believe that determination of the absolute stereochemistries of the synthetic 

transtaganolides could provide insight into this biosynthetic hypothesis. 
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Scheme 2.6.1.  Johansson’s biosynthetic proposal. 

 

Hoppe has previously established the absolute stereochemistry of geraniol derivatives 
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Scheme 2.6.2.  Analysis of chiral silane directed ICR/DA cascade (where pyr = iodo pyrone). 
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transtaganolide C, we unambiguously assign its absolute structure as 9 (Scheme 2.3.1). 

Furthermore, by analogy we assigned (–)-transtaganolide D as 10 (Scheme 2.3.1), (–)-

transtaganolide A as 7, and (+)-transtaganolide B as 8 (Scheme 2.5.2). 

Scheme 2.6.3.  Determination of the absolute stereochemistry of intermediate 100a. 

 

The optical rotations obtained from synthetic and natural transtaganolides A–D (7–

10) are depicted in Table 2.6.1.1, 18  Interestingly, the synthetic transtaganolides uniformly 

rotate plane polarized light to a much greater extent than their naturally occurring 

counterparts.19  As demonstrated by our synthetic efforts, the Ireland–Claisen/Diels–

Alder cascade of prenylated pyrones similar to basiliopyrone (3) is a facile process: the 

metabolites may be biosynthetically derived from basiliopyrone (3), but without action of 

an enzymatic Claisen rearrangement. 

Table 2.6.1.  Comparison of the optical rotations of synthetic and natural transtaganolides A–D (7–
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samples derived from a synthetic, enantioselective Ireland–Claisen rearrangement rotate 

light with opposite sign (Table 2.6.1).  This data does not support the action of an 

enzymatic enolate-Claisen rearrangement, as metabolites resulting from this pathway 

would likely have analogous rotations to the synthetic transtaganolides (Scheme 2.6.1). 

Comparison of the natural compounds to the synthetic counterparts by chiral phase 

chromatography is needed before conclusions about the stereochemistry and 

enantiopurity of this series of natural products can be drawn.20  Unfortunately, it appears 

that there are no available samples of natural 7–10 for thorough comparison.  At this 

juncture, however, our optical data strongly suggest that basiliopyrone (3) is not a 

Claisenase substrate in the biosynthesis of transtaganolides C and D (9 and 10).  As 

previously proposed by Massanet and co-workers, basiliopyrone (3) can instead be 

viewed as a decomposition product of epoxide 24 or oxepine 27, which can be derived 

from co-isolated 7-O-geranylscopoletin (2) by oxidation (Scheme 2.6.4).4  Furthermore, 

these high energy intermediates (24 and 27) could undergo a series of non-enzymatic, 

pericyclic transformations to produce the natural products. 
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Scheme 2.6.4.  Proposed biosynthesis of basiliopyrone (3). 
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2.8 EXPERIMENTAL SECTION 

2.8.1 MATERIALS AND METHODS 

Unless otherwise stated, reactions were performed in flame-dried glassware under an 

argon or nitrogen atmosphere using dry deoxygenated solvents.  Solvents were dried by 

passage through an activated alumina column under argon.  Chemicals were purchased 

from Sigma-Aldrich Chemical Company and used as received.  Pd(PPh3)4 was prepared 

using known methods.  Thin layer chromatography (TLC), both preparatory and 

analytical, was performed using E. Merck silica gel 60 F254 precoated plates (0.25 mm) 

and visualized by UV fluorescence quenching, p-anisaldehyde, I2, or KMnO4 staining. 

Analytical super critical fluid (SFC) chromatography was performed using a Thar SFC 

and either Chiralpak IA or AD-H columns.  Preparatory SFC was performed with a Jasco 

SFC and a prep AD-H column (21 x 250 mm, 5mic part# 19445).   ICN Silica gel 

(particle size 0.032–0.063 mm) was used for flash chromatography.  1H NMR and 13C 

NMR spectra were recorded on a Varian Mercury 300 (at 300 MHz) or on a Varian Unity 

Inova 500 (at 500 MHz).  1H NMR spectra are reported relative to CDCl3 (7.26 ppm).  

Data for 1H NMR spectra are reported as follows: chemical shift (ppm), multiplicity, 

coupling constant (Hz), and integration.  Multiplicities are reported as follows: s = 

singlet, d = doublet, t = triplet, q = quartet, sept. = septet, m = multiplet, bs = broad 

singlet, bm = broad multiplet.  13C NMR spectra are reported relative to CDCl3 (77.16 

ppm).  FTIR spectra were recorded on a Perkin Elmer SpectrumBX spectrometer and are 

reported in frequency of absorption (cm-1).  HRMS were acquired using an Agilent 6200 

Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI), 
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atmospheric pressure chemical ionization (APCI), or multimode-ESI/APCI.  

Crystallographic data were obtained from the Caltech X-Ray Diffraction Facility. 
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2.8.2 PREPARATIVE PROCEDURES 

 

Enantioenriched allyl silane 99.  To a 23 °C solution of known diisopropyl geraniol 

carbamate6a (98, 519 mg, 1.84 mmol) in toluene (9.2 mL, 0.2M) was added freshly 

distilled (–)-sparteine (635 µL, 2.76 mmol) and TMSCl (352 µL, 2.76 mmol).  The 

solution was then cooled to –78 °C and a solution of 2.5M n-BuLi in hexanes (1.1 mL, 

2.76 mmol) was added dropwise.  The reaction was allowed to stir at –78 °C for 3 h.  The 

reaction was then quenched at –78 °C by slow addition of MeOH (250 µL) and allowed 

to warm to 23 °C.  The reaction was washed with saturated NH4Cl (2 x 10 mL).  Aqueous 

layers were combined and back extracted with Et2O (3 x 20 mL).  The combined organics 

were than washed with saturated brine (20 mL), dried over MgSO4, and concentrated by 

rotary evaporation.  This crude oil could be taken on without further purification.  

Purification, if desired, was done via column chromatography (EtOAc in hexanes 

2%→10% on silica) to yield 602 mg (92% yield) of allyl silane 134 as a colorless oil. 

Allyl silane 134 (2.36 g, 6.7 mmol) was dissolved in THF (67 mL, 0.1M with respect 

to substrate) and hexanes (40 mL, 1.0 M with respect to DIBAL-H) and cooled to 0 °C.  

To this 0 °C solution was slowly added neat DIBAL-H (7.1 mL, 40.2 mmol) dropwise.  

After the addition, the reaction was warmed to 23 °C and stirred for 6 h.  The reaction 

O

SiMe3

134

ON

O

98

n-BuLi, TMSCl
(–)-sparteine

 –78 °C, PhMe 

(92% yield)

N

O

HO

SiMe3

99

90% ee

DIBAL-H, 0→23 °C

THF/hexanes

(91% yield)



Chapter 2–Total Syntheses of (–)-Transtaganolide A, (+)-Transtaganolide B, 
(+)-Transtaganolide C, and (–)-Transtaganolide D and Biosynthetic Implications 

89 

was then cooled to 0 °C and slowly quenched with saturated aqueous Rochelle’s salt (35 

mL) with vigorous stirring.  After addition of Rochelle’s salt, the reaction was allowed to 

warm to 23 °C and celite (10 g) was added.  The suspension was vigorously stirred for 

another 5 min and then filtered through a small pad of celite.  The organic layer was 

collected, washed with saturated brine (35 mL), dried over MgSO4, and concentrated by 

rotary evaporation.  The crude oil could be taken on without further purification. If 

desired, purification was accomplished by column chromatography (EtOAc in hexanes 

2%→20% on silica) to yield 1.38 g (91% yield) of colorless oil 99.  [α]

€ 

D
20 = +69.71 (c 

1.00 in CHCl3).  Enantiomeric excess (ee) was determined for 97 inferred for 99.  All 

other spectral data matches the literature.7a 

 

 

Pyrone ester 97.  To a solution of enantioenriched geraniol derivative 99 (202 mg, 

0.89 mmol) in MeCN (9 mL, 0.1 M) at 0 °C was added sequentially pyrone acid 56 (300 

mg, 1.07 mmol) and DCC (221 mg, 1.07 mmol).  After 20 min at 0 °C, the reaction was 

filtered through a small pad of celite washing with MeCN.  The filtrate was collected and 

concentrated by rotary evaporation and the crude oil was purified by column 

chromatography (EtOAc in hexanes 2%→10% on silica) to yield 384 mg (88% yield) of 

ICR/DA precursor 97 as a colorless oil; 1H NMR (500 MHz, CDCl3) δ 7.46 (d, J = 9.7 
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1H), 5.04 (tm, J = 6.2, 1H), 3.76 (s, 2H), 2.16 – 2.00 (m, 4H), 1.66 (d, J = 1.4 Hz, 6H), 

1.59 (d, J = 1.2 Hz, 3H), 0.01 (s, 9H); 13C NMR (125 MHz, CDCl3) δ 166.6, 160.6, 

158.6, 151.4, 138.0, 131.8, 124.1, 120.9, 116.1, 70.5, 69.7, 43.1, 40.0, 26.6, 25.9, 17.9, 

17.0, –3.7; FTIR (Neat Film NaCl) 2959, 2923, 2854, 1741, 1607, 1546, 1445, 1404, 

1382, 1336, 1293, 1273, 1249, 1206, 1170, 1134, 1062, 1016, 960, 908, 842, 819, 750 

cm-1; HRMS (Multimode-ESI/APCI) m/z calc’d for C20H28IO4Si [M–H]–: 487.0807, 

found 487.0821. 

90% ee; SFC conditions: 3.0% IPA, 2.5mL/min, AD-H column, tR (min): major = 

7.02, minor = 7.79.  A portion of this material was then separated by preparatory chiral 

SFC to obtain >99% ee material; [α]

€ 

D
20 = +69.71 (c 1.00, CHCl3, >99% ee). 

Figure 2.8.1.  Racemic SFC trace of compound 97. 

 

Figure 2.8.2.  Enantioenriched SFC trace of compound 97. 
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Vinyl silanes 100a and 100b.  To a 23 °C solution of pyrone ester 97 (384 mg, 0.79 

mmol) in toluene (4 mL, 0.2M) in a 500 mL sealed tube was added N,O-

bis(trimethylsilyl)acetamide (BSA) (384 µL, 1.58 mmol) and NEt3 (11 µL, 0.08 mmol).  

The reaction mixture was heated to 110 °C and stirred for 20 min.  The solution was then 

cooled to 23 °C and diluted with toluene (450 mL), leaving ample headspace in the 

sealed tube to allow for solvent expansion.  The reaction mixture was then re-heated to 

100 °C and stirred for 4 d until complete as determined by NMR analysis.  The reaction 

mixture was then cooled to 23 °C and 0.02% HCl(aq) (20 mL) was added, after which the 

reaction mixture was stirred vigorously for 1 min.  The organic phase was then separated 

and washed with 0.02% HCl(aq) (3 x 25 mL), making sure the aqueous phase remained 

acidic.  The aqueous phases were then combined and back extracted with ethyl acetate (3 

x 30 mL) and all organic phases were combined, dried with Na2SO4, and concentrated by 

rotary evaporation.  The crude oil was purified by column chromatography (Et2O in 

hexanes with 0.1% AcOH, 10%→20% on silica) to yield 294 mg (77% yield) of a 3:1 

diastereomeric mixture of ICR/DA products 100a and 100b as white solids. 

Major (100a): 1H NMR (300 MHz, CDCl3) δ 6.94 (d, J = 6.9 Hz, 1H), 6.12 (d, J = 

18.9 Hz, 1H), 5.64 (d, J = 18.9 Hz, 1H), 3.01 (s, 1H), 2.97 (d, J = 6.9 Hz, 1H), 1.72–1.21 

(m, 5H), 1.28 (s, 3H), 1.08 (s, 3H), 1.00 (s, 3H), 0.07 (s, 9H); 13C NMR (125 MHz, 
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CDCl3) δ 173.6, 170.8, 155.4, 140.2, 125.3, 98.0, 84.7, 59.3, 56.7, 48.1, 41.3, 38.2, 36.9, 

29.9, 24.6, 20.8, 18.5, –1.0. 

Minor (100b): 1H NMR (300 MHz, CDCl3) δ 6.94 (d, J = 6.8 Hz, 1H), 6.44 (d, J = 

19.2 Hz, 1H), 5.68 (d, J = 19.2 Hz, 1H), 2.95 (d, J = 6.8 Hz, 1H), 2.95 (s, 1H) 1.96 (dt, J 

= 13.5, 3.1 Hz, 2H), 1.72–1.21 (m, 3H), 1.31 (s, 3H), 1.04 (s, 3H), 0.99 (s, 3H), 0.06 (s, 

9H); 13C NMR (125 MHz, CDCl3) δ 173.4, 169.9, 148.0, 140.5, 127.8, 97.5, 84.8, 61.2, 

56.8, 47.9, 40.5, 38.1, 37.0, 29.7, 24.6, 20.7, 18.5, –1.1. 

FTIR (Neat Film NaCl) 3075, 3014, 2955, 2671, 2545, 1755, 1713, 1612, 1464, 1455, 

1415, 1397, 1386, 1373, 1338, 1286, 1246, 1218, 1174, 1133, 1103, 1048, 1016, 990, 

967, 932, 903, 867, 838, 796, 757 cm-1; HRMS (Multimode-ESI/APCI) m/z calc’d for 

C20H30IO4Si [M+H]+: 489.0953, found 489.0952; [α]

€ 

D
20 = +13.28 (c 2.00, CHCl3, 90% ee 

of 100a, 81% ee of 100b); SFC conditions: 15.0% IPA, 2.5 mL/min, IA column, tR(min): 

100a) major = 4.85, minor = 5.64; 100b) minor = 4.05, major = 6.05. 

Figure 2.8.3.  Racemic SFC trace of compounds 100a and 100b. 
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Figure 2.8.4.  Enantioenriched SFC trace of compounds 100a and 100b. 

 

 

 

Iodo acids 58a and 58b.  To a 23 °C solution of vinyl silanes 100a and 100b (36.5 

mg, 0.075 mmol) in MeCN (1.5 mL, 0.05M) was added HBF4(aq) (48% w/w, 75 µL, 0.60 

mmol).  The reaction was stirred for 4.5 h and then diluted with ethyl acetate (15 mL).  

The organic layer was then washed with 0.02% HCl(aq) (3 x 5 mL).  The aqueous phases 

were combined and back extracted with ethyl acetate (3 x 5 mL).  The combined organic 

phases were dried over Na2SO4 and concentrated by rotary evaporation.  Purification by 

column chromatography (EtOAc in hexanes with 0.1% AcOH, 5%→30% on silica) 

yielded 27.5 mg (89% yield) of a 4:1 diastereomeric mixture of the desilylated tricycles 

58a and 58b as white solids.  [α]

€ 

D
20  = +42.73 (c 1.00 in CHCl3).  All other spectral data 

matches the literature.2 
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TBS-esters 63a and 63b.  To a 23 °C solution of iodo acids 58a and 58b (46 mg, 

0.11 mmol,) in DMF (300 µL, 0.35M) were added sequentially imidazole (76 mg, 1.1 

mmol) and TBSCl (84 mg, 0.55 mmol).  The reaction was warmed to 40 °C and then 

stirred for 12 h.  The solution was then diluted with saturated brine (1 mL) and extracted 

with Et2O/hexane (1:1) (3 x 2 mL).  The combined organic extracts were washed with 

saturated aqueous KHSO4 (1 mL) and then with saturated brine (3 x 1 mL).  The 

combined organics were dried over Na2SO4, and concentrated by rotary evaporation.  The 

crude oil was purified by column chromatography (EtOAc in hexanes 10%→50% on 

silica) to yield 39 mg (66% yield) of a 4:1 mixture of diastereomers 63a and 63b as white 

powders.  [α]

€ 

D
20  = +41.42 (c 1.00 in CHCl3).  All other spectral data matches the 

literature.2 

 

 

Transtaganolides C and D (9 and 10).  In a nitrogen filled glovebox, to a solution of 

esters 63a and 63b (13 mg, 0.026 mmol) and Pd(PPh3)4 (33 mg, 0.029 mmol) in DMF 
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(260 µL, 0.1 M) was added tributyl(2-methoxyethynyl)stannane (62) (34 mg, 0.104 

mmol). The reaction was stirred at 30 °C for 14 h.  The reaction mixture was then filtered 

through a Kimwipe plug with Et2O (1.0 mL) (this removes a large excess of the 

undissolved Pd(PPh3)4) and removed from the glovebox.  Outside of the glovebox, the 

added Et2O was removed by rotary evaporation, and the reaction was diluted with MeCN 

(15 mL).  To this solution was then added pH 7 phosphate buffer (200 µL) and the 

reaction was stirred vigorously at 23 °C for 2 h.  Upon completion, MeCN was removed 

by rotary evaporation and the remaining aqueous solution was diluted with EtOAc (4 

mL).  This was then washed with water (3 x 1 mL) and the combined aqueous washes 

were back extracted with EtOAc (2 x 1 mL).  All organics were pooled, dried with 

Na2SO4, and concentrated by rotary evaporation. The crude oil was purified by normal 

phase HPLC to yield 1.7 mg (20% yield) of transtaganolide C (9) and 0.9 mg (11% yield) 

of transtaganolide D (10) as white powders. 

Transtaganolide C (9): 1H NMR (500 MHz, CDCl3) δ 6.07 (dd, J = 1.5, 6.5 Hz, 1H), 

5.80 (dd, J = 11.0, 17.5 Hz, 1H), 5.07 (d, J = 17.5 Hz, 1H), 5.03 (d, J = 11.0 Hz, 1H), 

5.00 (d, J = 1.5 Hz, 1H), 3.71 (s, 3H), 3.23 (s, 1H), 3.06 (d, J = 6.5 Hz, 1H), 1.71–1.63 

(m, 3H), 1.60 (s, 3H), 1.44 (m, 1H), 1.30 (m, 1H), 1.08 (s, 3H), 0.97 (s, 3H); 13C NMR 

(125 MHz, CDCl3) δ 171.8, 162.3, 156.7, 146.5, 138.0, 123.6, 112.8, 87.3, 79.3, 56.3, 

53.8, 50.6, 48.1, 38.4, 38.3, 33.3, 29.9, 24.8, 19.9, 19.2; FTIR (Neat Film NaCl) 2965, 

2928, 2872, 1791, 1761, 1668, 1619, 1456, 1334, 1267, 1233, 1178, 1115, 970, 954, 828 

cm-1; HRMS (Multimode-ESI/APCI) m/z calc’d for C20H24O5 [M+H]+: 345.1697, found 

345.1703; [α]

€ 

D
20 = +120.73 (c 0.42, CHCl3, 96% ee); SFC conditions: 8.0% IPA, 2.5 

mL/min, AD-H column, tR(min): major = 12.19, minor = 13.15. 
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Figure 2.8.5.  Racemic SFC trace of transtaganolide C (9). 

 

Figure 2.8.6.  Enantioenriched SFC trace of transtaganolide C (9). 

 

Transtaganolide D (10): 1H NMR (500 MHz, CDCl3) δ 7.00 (dd, J = 11.0, 17.5 Hz, 

1H), 6.09 (dd, J = 1.0, 6.5 Hz, 1H), 5.15 (dd, J = 1.0, 11.0 Hz, 1H), 5.05 (dd, J = 1.0, 

17.5 Hz, 1H), 5.02 (d, J = 1.0 Hz, 1H), 3.73 (s, 3H), 3.13 (s, 1H), 3.06 (d, J = 6.5 Hz, 

1H), 1.91 (dt, J = 3.5, 13.5 Hz, 1H), 1.64 (dquint, J = 3.0, 13.5 Hz, 1H), 1.58 (m, 1H), 

1.39 (dt, J = 3.5, 13.5 Hz, 1H), 1.33 (dd, J = 4.5, 13.5 Hz, 1H), 1.22 (s, 3H), 1.04 (s, 3H), 

0.97 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.7, 162.6, 156.7, 142.9, 137.7, 123.9, 

112.1, 87.3, 79.4, 56.3, 54.0, 53.3, 48.4, 40.5, 38.4, 33.3, 29.9, 28.5, 24.8, 20.5; FTIR 

(Neat Film NaCl) 2964, 2929, 2872, 1764, 1760, 1738, 1667, 1620, 1467, 1334, 1267, 

1235, 1195, 1177, 1106, 1009, 954, 827 cm-1; HRMS (Multimode-ESI/APCI) m/z calc’d 

for C20H24O5 [M+H]+: 345.1697, found 345.1698; [α]

€ 

D
20  = –51.55 (c 0.17, CHCl3,        

92% ee); SFC conditions: 6.0% IPA, 2.5 mL/min, AD-H column, tR(min): minor = 25.49, 

major = 28.77. 
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Figure 2.8.7.  Racemic SFC trace of transtaganolide D (10). 

 

Figure 2.8.8.  Enantioenriched SFC trace of transtaganolide D (10). 

 

 

 

(Z)-methylenoate 105.  To a –78 °C solution of KHMDS (2.92 g, 14.6 mmol) in 

THF (170 mL) was added a solution of phosphonate reagent 104 (4.46 g, 13.4 mmol) and 

18-crown-6 (6.45 g, 24.4 mmol) in THF (50 mL).  After stirring the reaction mixture for 

10 min at –78 °C, a solution of aldehyde 83 (2.96 g, 12.2 mmol) in THF (50 mL) was 

added.  This brings the total volume of THF to 270 mL, which is a 0.05M solution with 

respect to the Still-Gennari Reagent 104.  The reaction was stirred at –78 °C for 20 min 

and then quenched with a saturated NH4Cl solution (100 mL) at –78 °C.  After allowing 

the reaction mixture to warm to 23 °C, the organic layer was washed with saturated 

NH4Cl (2 x 100 mL).  Aqueous layers were combined and back extracted with Et2O (2 x 
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H
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150 mL).  The combined organic layers were washed with saturated brine (300 mL), 

dried over MgSO4, and concentrated by rotary evaporation.  Purification was 

accomplished by column chromatography (EtOAc in hexanes 2%→10% on silica) to 

yield 2.72 g (71% yield) >25:1, Z:E of enoate 105 as a colorless oil; 1H NMR (500 MHz, 

CDCl3) δ 5.92 (tq, J = 7.3, 1.5 Hz, 1H), 5.32 (tq, J = 6.3, 1.3 Hz, 1H), 4.18 (dq, J = 6.3, 

0.9 Hz, 2H), 3.73 (s, 3H), 2.61–2.55 (m, 2H), 2.11–2.07 (m, 2H), 1.88 (q, J = 1.5 Hz, 

3H), 1.62 (d, J = 1.3 Hz, 3H), 0.89 (s, 9H), 0.06 (s, 6H); 13C NMR (125 MHz, CDCl3) δ 

168.6, 143.0, 136.2, 127.1, 125.2, 60.4, 51.4, 39.1, 27.8, 26.1, 20.8, 18.5, 16.3, –4.9; 

FTIR (Neat Film NaCl) 2953, 2930, 2896, 2857, 1721, 1671, 1648, 1472, 1461, 1435, 

1383, 1362, 1254, 1214, 1197, 1130, 1106, 1087, 1065, 1006, 837, 776 cm-1; HRMS 

(ESI) m/z calc’d for C17H32O3SiNa [M+Na]+: 335.2020, found 335.2013. 

 

 

Alcohol 106.  To a –78 °C solution of (Z)-methylenoate 105 (1.76 g, 5.63 mmol) in 

Et2O (28 mL, 0.2M) was added DIBAL–H (2.50 mL, 14.1 mmol) dropwise.  The reaction 

mixture was then stirred at –78 °C for 45 min.  The reaction mixture was then slowly 

quenched by the dropwise addition of saturated aqueous Rochelle’s salt (20 mL) at –78 

°C.  The reaction was then allowed to warm to ambient temperature and stirred 

vigorously for 1 h.  The aqueous layer was separated from the organics and extracted 

with Et2O (4 x 15).  The organics were combined and dried over MgSO4.  Solvent was 

evaporated by rotary evaporation and purification by column chromatography (EtOAc in 

105

>25:1 Z:E
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O OMe
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(95% yield) 106
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hexanes 3.5%→15% on silica) resulted in the isolation of 1.52 g (95% yield) of alcohol 

106 as a colorless oil; 1H NMR (300 MHz, CDCl3) δ 5.30–5.20 (m, 2H), 4.16 (dq, J = 

6.5, 0.8 Hz, 2H), 4.07 (s, 2H), 2.16 (q, J = 7.5, 2H), 2.00 (t, J = 7.3, 2H), 1.78 (q, J = 1.2 

Hz, 3H), 1.62 (d, J = 1.4 Hz, 3H), 0.90 (s, 9H), 0.07 (s, 6H); 13C NMR (75 MHz, CDCl3) 

δ 136.7, 135.2, 127.4, 125.0, 61.5, 60.3, 39.4, 26.1, 25.8, 21.3, 18.6, 16.5, –5.0; FTIR 

(Neat Film NaCl) 3346, 2956, 2930, 2885, 2857, 1472, 1463, 1382, 1361, 1255, 1110, 

1066, 1006, 836, 814, 776 cm-1; HRMS (ESI) m/z calc’d for C16H32O2SiNa [M+Na]+: 

307.2064, found 307.2070. 

 

 

Acetate 107.  To a 0 °C solution of alcohol 106 (473 mg, 1.66 mmol) in pyridine (3.5 

mL, 0.5 M) was added acetic anhydride (780 µL, 8.32 mmol) dropwise.  The reaction 

was then warmed to ambient temperature and stirred for 3 h.  Following reaction 

completion the mixture was diluted with Et2O (25 mL) and washed with saturated 

aqueous CuSO4 (2 x 10 mL), saturated aqueous NaHCO3 (2 x 10 mL), saturated aqueous 

CuSO4 (1 x 10 mL), and lastly saturated brine (1 x 15 mL).  The organic mixture was 

then dried over MgSO4, concentrated by rotary evaporation, and purified by column 

chromatography (EtOAc in hexanes 1% on silica) to give 466 mg (86% yield) of acetate 

107 as a colorless oil; 1H NMR (300 MHz, CDCl3) δ 5.41–5.35 (m, 1H), 5.30 (tq, J = 6.3, 

1.3 Hz, 1H), 4.57 (s, 2H), 4.18 (dq, J = 6.3, 0.9 Hz, 2H), 2.19 (q, J = 7.3 Hz, 2H), 2.07 (s, 

3H), 2.06–1.98 (m, 2H), 1.74 (q, J = 1.3 Hz, 3H), 1.61 (d, J = 1.3 Hz, 3H), 0.90 (s, 9H), 

106

TBSO

OH
Ac2O

pyridine
0→23 °C

(86% yield)
107
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0.07 (s, 6H); 13C NMR (125 MHz, CDCl3) δ 171.3, 136.3, 130.4, 130.1, 125.1, 63.3, 60.4, 

39.6, 26.2, 26.1, 21.6, 21.1, 18.6, 16.4, –4.9; FTIR (Neat Film NaCl) 2951, 2929, 2856, 

1740, 1472, 1457, 1381, 1363, 1230, 1110, 1065, 1024, 982, 835, 775 cm-1; HRMS (ESI) 

m/z calc’d for C18H34O3SiH [M+H]+: 327.2350, found 327.2348. 

 

 

Alcohol 108.  To a 0 °C solution of acetate 107 (312 mg, 0.955 mmol) in THF (5 mL, 

0.2 M) was added a 1 M solution of TBAF in THF (1.45 mL, 1.45 mmol).  The reaction 

mixture was then stirred at 0 °C at for 2 h.  After 2 h the reaction appeared to have 

stalled, so another equiv of 1 M TBAF solution (1 mL, 1 mmol) was added and the 

reaction stirred at 0 °C for an additional hour.  The reaction mixture was quenched at 0 

°C by the addition of saturated aqueous NH4Cl (5 mL) and then allowed to warm to 

ambient temperature.  The aqueous phase was then extracted with Et2O (3 x 5 mL), the 

organics were combined, and subsequently washed with saturated brine (1 x 20 mL).  The 

organics were then dried over MgSO4, concentrated by rotary evaporation, and purified 

by column chromatography (EtOAc in hexanes 5%→20% on silica) to give 159 mg (78% 

yield) of alcohol 108 as a colorless oil; 1H NMR (300 MHz, CDCl3) δ 5.45–5.30 (m, 2H), 

4.56 (s, 2H), 4.13 (d, J = 6.9 Hz, 2H), 2.19 (q, J = 7.4 Hz, 2H), 2.06 (s, 3H), 2.08–2.00 

(m, 2H), 1.73 (s, 3H), 1.65 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 171.3, 139.0, 130.2, 

130.2, 124.0, 63.3, 59.4, 39.5, 26.1, 21.5, 21.1, 16.4; FTIR (Neat Film NaCl) 3420, 2972, 

2922, 2858, 1734, 1672, 1448, 1368, 1233, 1100, 1022, 955, 916 cm-1; HRMS (ESI) m/z 

calc’d for C12H20O3Na [M+Na]+: 235.1305, found 235.1296. 

107
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0 °C, 3h
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Pyrone ester 109.  To a 0 °C solution of alcohol 108 (173 mg, 814 mmol) in MeCN 

(8.15 mL, 0.1M) was added sequentially iodo-acid 56 (274 mg, 0.977 mmol) and DCC 

(202 mg, 0.977 mmol).  The reaction mixture was stirred at 0 °C for 30 min.  The still 

cold reaction was then filtered through a small pad of celite with MeCN to remove excess 

urea byproduct.  The organics were then concentrated by rotary evaporation and purified 

by column chromatography (EtOAc in hexanes 6%→12% on silica) to give 344 mg (89% 

yield) of pyrone ester 109 as a yellow oil; 1H NMR (300 MHz, CDCl3) δ 7.46 (d, J = 9.7 

Hz, 1H), 6.07 (d, J = 9.7 Hz, 1H), 5.38–5.30 (m, 2H), 4.66 (d, J = 7.2 Hz, 2H), 4.56 (s, 

2H), 3.77 (s, 2H), 2.19 (q, J = 7.0 Hz, 2H), 2.10–2.02 (m, 2H) 2.06 (s, 3H), 1.74 (d, J = 

1.4 Hz, 3H), 1.69 (dd, J = 1.4, 0.6 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 171.3, 166.8, 

160.5, 158.0, 151.4, 142.7, 130.4, 129.9, 118.1, 116.3, 70.8, 63.2, 62.7, 42.7, 39.5, 26.0, 

21.6, 21.1, 16.7; FTIR (Neat Film NaCl) 2966, 2937, 2853, 1732, 1606, 1548, 1445, 

1372, 1344, 1328, 1277, 1234, 1165, 1133, 1063, 1016, 959, 867, 821, 767, 728 cm-1; 

HRMS (ESI) m/z calc’d for C19H23IO6Na [M+Na]+: 497.0432, found 497.0413. 
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Tricycles 110a and 110b.  To a 23 °C solution of pyrone ester 109 (93 mg, 0.197 

mmol) in toluene (1.21 mL, 0.17 M) in a 100 mL sealed tube was added BSA (118 µL, 

0.484 mmol) and NEt3 (3.4 µL, 0.024 mmol).  The reaction mixture was heated to 110 °C 

and stirred for 20 min.  The mixture was then cooled to 23 °C and diluted with toluene 

(75 mL).  The reaction mixture was then re-heated to 100 °C and stirred for 6 d until 

completion, which was determined after monitoring by NMR.  The reaction mixture was 

then cooled to 23 °C, a 1% aqueous solution of AcOH was added (5 mL), and the 

reaction was stirred for an additional 2 min.  The reaction was washed with a 1% aqueous 

solution of AcOH (3 x 20 mL), and the aqueous phases were combined and back 

extracted with EtOAc (3 x 30 mL), while making sure the pH of the aqueous phase 

remained acidic.  The organics were combined, dried over Na2SO4 and solvent was 

removed by rotary evaporation.  Purification by column chromatography (EtOAc in 

hexanes with 0.1% AcOH, 17%→25% on silica) to give 51 mg (54% yield) of a 2:1 

mixture of ICR/DA diastereomers 110a and 110b as a white solid. 

Major (110a): 1H NMR (300 MHz, CDCl3) δ 6.95 (d, J = 7.0 Hz, 1H), 6.00 (dd, J = 

17.5, 10.6 Hz, 1H), 5.13–5.00 (m, 2H), 4.03 (dd, J = 100.4, 11.5 Hz, 2H), 3.30 (d, J = 7.0 

Hz, 1H), 3.00 (s, 1H), 2.08 (s, 3H), 2.02–1.33 (m, 5H), 1.30 (s, 3H), 1.02 (s, 3H); 13C 

O

O

I

109
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NMR (125 MHz, CDCl3) δ 173.0, 170.7, 169.8, 147.9, 139.5, 111.8, 99.2, 84.3, 67.7, 

59.3, 51.8, 48.8, 40.0, 39.9, 38.2, 24.8, 20.9, 19.0, 18.4. 

Minor (110b): 1H NMR (300 MHz, CDCl3) δ 6.95 (d, J = 7.0 Hz, 1H), 6.32 (dd, J = 

17.5, 11.0 Hz, 1H), 5.13–5.00 (m, 2H), 4.20–3.81 (m, 2H), 3.29 (d, J = 6.9 Hz, 1H), 2.94 

(s, 1H), 2.07 (s, 3H), 2.02–1.33 (m, 5H), 1.36 (s, 3H), 1.01 (s, 3H); 13C NMR (125 MHz, 

CDCl3) δ 173.1, 170.7, 169.8, 140.4, 139.9, 113.8, 98.7, 84.5, 67.7, 60.8, 51.9, 48.8, 

40.2, 39.5, 38.6, 29.9, 20.9, 19.0, 18.4. 

FTIR (Neat Film NaCl) 3084, 2970, 2932, 2668, 1746, 1455, 1377, 1338, 1315, 1234, 

1173, 1124, 1047, 1019, 967, 914, 839, 800, 733 cm-1; HRMS (Multimode-ESI/APCI) 

m/z calc’d for C19H23IO6H [M+H]+: 475.0612, found 475.0595. 

 

 

Tricycles 112a and 112b.  To a 0 °C solution of tricycles 110a and 110b (24 mg, 

0.051 mmol) in MeOH (2.5 mL, 0.02 M) was added K2CO3 (30 mg, 0.024 mmol).  The 

reaction mixture was then stirred for 2 h at 0 °C.  Upon completion of the desired 

deprotection, the reaction mixture was quenched at 0 °C by the dropwise addition of 

glacial AcOH until the solution had become acidic, as was ascertained by pH paper.  

Once acidic, the reaction mixture was concentrated by rotary evaporation to remove the 

MeOH, and then re-dissolved in EtOAc (5 mL).  The organic solution was then washed 
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with a 1% aqueous solution of AcOH (3 x 5 mL), and the aqueous phases were combined 

and back extracted with EtOAc (2 x 15 mL), while making sure the pH of the aqueous 

phase remained acidic.  The organics were combined, dried over Na2SO4 and solvent was 

removed by rotary evaporation to give a crude mixture of alcohols 111a and 111b along 

with translactonized products 112a and 112b.  For the purposes of characterization, the 

crude mixture of 111a, 111b, 112a, and 112b was dissolved in Et2O (3 mL) and stirred at 

23 °C over Amberlyst 15 (30 mg) for 12 h.  This allowed for complete conversion of 

alcohols 111a and 111b to the translactonized products 112a and 112b.  The reaction 

mixture was then filtered through a short pad of celite to remove the Amberlyst 15 resin 

with EtOAc.  Solvent was removed by rotary evaporation and subsequent purification by 

column chromatography (EtOAc in hexanes with 0.1% AcOH, 17%→25% on silica) to 

give 10 mg (47% yield) of a 2:1 mixture of tricycles 112a and 112b as a white solid. 

Major (112a): 1H NMR (300 MHz, CDCl3) δ 6.74 (d, J = 7.3 Hz, 1H), 5.91 (dd, J = 

17.3, 10.8 Hz, 1H), 5.60 (bs, 1H), 5.05–4.95 (m, 3H), 3.89 (d, J = 9.0 Hz, 1H), 2.98 (d, J 

= 7.2 Hz, 1H), 2.55 (s, 1H), 2.20–1.74 (m, 2H), 1.72–1.40 (m, 3H), 1.28 (s, 3H), 1.25 (s, 

3H); 13C NMR (125 MHz, CDCl3) δ 179.6, 176.1, 148.1, 136.3, 111.8, 109.8, 76.1, 74.8, 

59.7, 53.4, 51.2, 41.1, 38.8, 38.7, 29.8, 20.0, 19.5. 

Minor (112b): 1H NMR (300 MHz, CDCl3) δ 6.76 (d, J = 7.7 Hz, 1H), 6.44 (dd, J = 

17.6, 10.8 Hz, 1H), 5.60 (bs, 1H), 5.08–4.94 (m, 3H), 3.87 (d, J = 9.1 Hz, 1H), 2.98 (d, J 

= 7.2 Hz, 1H), 2.53 (s, 1H), 2.20–1.74 (m, 2H), 1.72–1.40 (m, 3H), 1.31 (s, 3H), 1.28 (s, 

3H); 13C NMR (125 MHz, CDCl3) δ 179.8, 176.1, 141.7, 136.7, 113.4, 109.5, 76.1, 74.9, 

61.8, 53.4, 51.8, 40.8, 40.3, 38.8, 29.9, 28.5, 19.5. 
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FTIR (Neat Film NaCl) 3362, 3083, 2962, 2923, 2877, 1760, 1690, 1460, 1397, 1379, 

1307, 1245, 1205, 1173, 1150, 1090, 1061, 1033, 986, 909, 826, 731 cm-1; HRMS 

(Multimode-ESI/APCI) m/z calc’d for C17H21IO5Na [M+Na]+: 455.0326, found 455.0323. 

 

 

Weinreb amide 113.  To a –20 °C solution of (Z)-methylenoate 105 (340 mg, 1.09 

mmol) in THF (11 mL, 0.1 M) was added sequentially N,O-dimethylhydroxyamine 

hydrochloride (165 mg, 1.69 mmol) and the slow addition of 2 M isopropylmagnesium 

chloride solution in THF (1.63 mL, 3.26 mmol) dropwise.  The reaction mixture was then 

warmed to 0 °C and stirred for 3 h.  The reaction was then quenched with saturated 

aqueous NH4Cl (2.6 mL) at 0 °C and allowed to warm to ambient temperature.  Upon 

reaching 23 °C, water was added (10 mL) and the aqueous phase separated and back 

extracted with Et2O (4 x 15 mL).  The organics were combined, washed with saturated 

brine (40 mL), dried over Na2SO4, and concentrated by rotary evaporation.  Purification 

was accomplished by column chromatography (EtOAc in hexanes 2.5%→10% on silica) 

to give 340 mg (92% yield) of Weinreb amide 113 as a colorless oil; 1H NMR (500 MHz, 

CDCl3) δ 5.39 (tq, J = 7.3, 1.6 Hz, 1H), 5.29 (tq, J = 6.3, 1.3 Hz, 1H), 4.17 (d, J = 6.3 Hz, 

2H), 3.65 (bs, 3H), 3.23 (s, 3H), 2.13 (q, J = 7.8, 7.4 Hz, 2H), 2.08–2.02 (m, 2H), 1.88 (s, 

3H), 1.59 (s, 3H), 0.89 (s, 9H), 0.05 (s, 6H); 13C NMR (125 MHz, CDCl3) δ 172.0, 136.0, 

131.5, 129.7, 124.9, 61.5, 60.2, 38.9, 32.1, 27.8, 26.0, 20.0, 18.4, 16.2, -5.1; FTIR (Neat 

Film NaCl) 2955, 2930, 2897, 2857, 1652, 1472, 1462, 1414, 1382, 1255, 1180, 1111, 

TBSO THF, –20 °C

(92% yield)

OMeO
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1088, 1063, 1004, 836, 776 cm-1; HRMS (ESI) m/z calc’d for C18H35NO3SiNa [M+Na]+: 

364.2278, found 364.2283. 

 

 

Alcohol 114.  To a 0 °C solution of Weinreb amide 113 (217 mg, 0.635 mmol) in 

THF (6.35 mL, 0.1 M) was slowly added a 1 M TBAF solution in THF (1.27 mL, 1.27 

mmol).  The reaction mixture was then stirred at 0 °C for 4 h.  After the reaction had 

gone to completion, saturated aqueous NH4Cl (1 mL) was added at 0 °C and the reaction 

was warmed to ambient temperature.  Water (4 mL) was then added, the aqueous phase 

was separated from the organics, and the aqueous phase was back extracted with EtOAc 

(3 x 6 mL).  The organics were combined, washed with saturated brine (15 mL), dried 

over Na2SO4, and concentrated by rotary evaporation.  Purification was accomplished by 

column chromatography (EtOAc in hexanes 17% → hexanes in EtOAc 20% on silica) to 

give 111 mg (77% yield) of alcohol 114 as a colorless oil; 1H NMR (300 MHz, CDCl3) δ 

5.42–5.33 (bm, 2H), 4.10 (d, J = 7.1 Hz, 2H), 3.65 (bs, 3H), 3.22 (s, 1H), 2.18–1.98 (m, 

5H), 1.89 (s, 3H), 1.64 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 172.0, 137.5, 131.4, 

129.4, 124.5, 61.5, 58.7, 38.6, 31.9, 27.9, 19.9, 16.1; FTIR (Neat Film NaCl) 3420, 2970, 

2935, 2856, 1633, 1440, 1384, 1346, 1325, 1180, 1150, 1103, 1079, 997, 898, 845, 752 

cm-1; HRMS (ESI) m/z calc’d for C12H21NO3Na [M+Na]+: 250.1414, found 250.1405. 
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Pyrone 115.  To a 0 °C solution of alcohol 114 (92 mg, 0.405 mmol) in MeCN (4 

mL, 0.1M) was added sequentially iodo-acid 56 (136 mg, 0.486 mmol) and DCC (100 

mg, 0.486 mmol).  The reaction was stirred at 0 °C for 30 min.  The still cold reaction 

was then filtered through a small pad of celite with MeCN to remove excess urea 

byproduct.  The solution was then concentrated by rotary evaporation and purified by 

column chromatography (EtOAc in hexanes 20%→35% on silica) to give 149 mg (75% 

yield) of pyrone 115 as a yellow oil; 1H NMR (300 MHz, CDCl3) δ 7.46 (d, J = 9.7 Hz, 

1H), 6.07 (d, J = 9.7 Hz, 1H), 5.41–5.29 (bm, 2H), 4.65 (d, J = 7.1 Hz, 2H), 3.77 (s, 2H), 

3.66 (bs, 3H), 3.23 (s, 3H), 2.20–2.05 (m, 5H), 1.89 (s, 3H), 1.69 (s, 3H); 13C NMR (126 

MHz, CDCl3) δ 166.6, 160.3, 157.8, 151.3, 142.4, 131.9, 129.2, 118.0, 116.1, 70.7, 62.5, 

61.6, 42.6, 38.9, 27.7, 20.1, 16.5; FTIR (Neat Film NaCl) 2969, 2934, 2853, 1742, 1641, 

1608, 1546, 1452, 1383, 1344, 1327, 1278, 1205, 1169, 1133, 1088, 1064, 1017, 994, 

926, 868, 823, 752 cm-1; HRMS (Multimode-ESI/APCI) m/z calc’d for C19H24INO6H 

[M+H]+: 490.0721, found 490.0761. 
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Attempt at tricycle 117a and 117b.  To a 23 °C solution of pyrone 115 (44 mg, 0.09 

mmol) in toluene (450 µL, 0.2 M) in a 50 mL sealed tube was added BSA (44 µL, 0.18 

mmol) and NEt3 (1.0 µL, 0.007 mmol).  The reaction mixture was heated to 110 °C and 

stirred for  20 min to form Ireland–Claisen products 116a and 116b.  The mixture was 

then cooled to 23 °C and diluted with toluene (30 mL).  The reaction mixture was then 

re-heated to    100 °C and stirred indefinitely, and no Diels–Alder product 117a and 117b 

could be observed by NMR even after one month of heating at 100 °C. 

 

 

Alcohol 118.  To a 0 °C solution of (Z)-methylenoate 105 (108 mg, 0.346 mmol) in 

THF (3.5 mL, 0.1 M) was added dropwise a 1 M solution of TBAF in THF (415 µL, 

0.415).  The reaction was stirred at 0 °C for 2 h.  After 2 h more 1 M solution of TBAF in 

THF (200 µL, 0.200 mmol) was added and the reaction was stirred for 1 h at 0 °C.  The 
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reaction was quenched by the addition of water (3 mL) at 0 °C and the mixture was 

stirred and allowed to warm to ambient temperature.  The aqueous phase was separated 

and back extracted with Et2O (3 x 2 mL) and the organics were combined.  The combined 

organics were washed with saturated brine (8 mL), concentrated by rotary evaporation, 

and purified by column chromatography (EtOAc in hexanes 5%→20% on silica) to give 

63 mg (92% yield) of alcohol 118 as a singly isomeric colorless oil; 1H NMR (300 MHz, 

CDCl3) δ 5.91 (tq, J = 7.3, 1.5 Hz, 1H), 5.42 (tp, J = 6.8, 1.3 Hz, 1H), 4.15 (d, J = 6.9 Hz, 

2H), 3.73 (s, 3H), 2.63–2.54 (m, 2H), 2.11 (td, J = 7.6, 1.0 Hz, 2H), 1.89 (q, J = 1.4 Hz, 

3H), 1.67 (dd, J = 1.4, 0.6 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 168.6, 142.5, 139.0, 

127.4, 124.2, 59.5, 51.4, 39.1, 27.8, 20.8, 16.3; FTIR (Neat Film NaCl) 3365, 2951, 2917, 

2853, 1704, 1651, 1457, 1362, 1196, 1128, 1085, 1015, 881, 822, 772 cm-1; HRMS (ESI) 

m/z calc’d for C11H18O3H [M+H]+: 199.1329, found 199.1331. 

 

 

Pyrone ester 119.  To a 0 °C solution of alcohol 118 (198 mg, 1.00 mmol) in MeCN 

(10 mL, 0.1 M) was added sequentially iodo-acid 56 (337 mg, 1.20 mmol) and DCC (248 

mg, 1.20 mmol).  The reaction mixture was stirred at 0 °C for 30 min.  The still cold 

reaction was then filtered through a small pad of celite with MeCN to remove excess urea 

byproduct.  The organics were then concentrated by rotary evaporation and purified by 

column chromatography (EtOAc in hexanes 9%→12% on silica) to give 386 mg (84% 
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yield) of pyrone ester 119 as a yellow oil; 1H NMR (300 MHz, CDCl3) δ 7.46 (d, J = 9.7 

Hz, 1H), 6.07 (d, J = 9.7 Hz, 1H), 5.90 (tq, J = 7.3, 1.5 Hz, 1H), 5.35 (tq, J = 7.1, 1.4 Hz, 

1H), 4.67 (d, J = 7.1 Hz, 2H), 3.77 (s, 2H), 3.73 (s, 3H), 2.59 (q, J = 7.6 Hz, 2H), 2.13 (t, 

J = 7.6 Hz, 2H), 1.89 (s, 3H), 1.71 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 168.4, 166.8, 

160.5, 158.1, 151.4, 142.7, 142.5, 127.4, 118.2, 116.3, 70.8, 62.7, 51.4, 42.7, 39.0, 27.7, 

20.8, 16.6; FTIR (Neat Film NaCl) 3080, 3054, 2975, 2950, 2925, 2857, 1731, 1606, 

1548, 1446, 1403, 1367, 1347, 1277, 1243, 1205, 1163, 1131, 1087, 1063, 1045, 1016, 

962, 867, 821, 770, 727 cm-1; HRMS (ESI) m/z calc’d for C18H21IO6H [M+H]+: 461.0456, 

found 461.0444. 

 

 

Tricyclic acids 120a and 120b.  To a 23 °C solution of pyrone ester 119 (218 mg, 

0.474 mmol) in toluene (2.03 mL, 0.233 M) in a 500 mL sealed tube was added BSA 

(231 µL, 0.948 mmol) and NEt3 (5.00 µL, 0.047 mmol).  The reaction mixture was 

heated to 110 °C and stirred for 20 min.  The mixture was then cooled to 23 °C and 

diluted with toluene (250 mL).  The reaction mixture was then re-heated to 100 °C and 

stirred for 13 d, until completion, which was determined after monitoring by NMR.  The 

reaction mixture was then cooled to 23 °C and 0.02% HCl(aq) (20 mL) was added and the 

mixture stirred vigorously for 1 min.  The organic phase was then separated and washed 

with 0.02% HCl(aq) (3 x 25 mL).  Aqueous phases were then combined and back extracted 
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with ethyl acetate (3 x 30 mL).  The organic phases were combined, dried with Na2SO4, 

and concentrated by rotary evaporation.  The crude oil was purified by column 

chromatography (EtOAc in hexanes with 0.1% AcOH, 5%→30% on silica) to yield 151 

mg (69% yield) of a 2:1 mixture of ICR/DA diastereomers 120a and 120b as a white 

solid. It is important to note that compounds 120a and 120b, and all subsequent 

compounds: 103a, 103b, 121a, and 121b have very poor solubility in most common 

organic solvents excluding EtOAc.  Therefore all transfers of products 120a, 120b, 103a, 

103b, 121a, and 121b should be accomplished using EtOAc and vessels should be 

repeatedly washed. 

Major (120a): 1H NMR (500 MHz, CDCl3) δ 6.95 (d, J = 7.0 Hz, 1H), 5.99 (dd, J = 

17.2, 10.8 Hz, 1H), 5.09–4.99 (m, 2H), 3.73 (s, 3H), 3.36 (d, J = 7.0 Hz, 1H), 2.95 (s, 

1H), 1.90–1.38 (m, 5H), 1.28 (s, 3H), 1.26 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 173.5, 

173.0, 168.9, 147.8, 139.7, 111.8, 99.9, 83.7, 59.2, 52.7, 51.4, 49.5, 49.2, 40.2, 38.0, 24.5, 

20.7, 18.6. 

Minor (120b): 1H NMR (500 MHz, CDCl3) δ 6.95 (d, J = 7.0 Hz, 1H), 6.34 (dd, J = 

17.4, 11.0 Hz, 1H), 5.09–4.99 (m, 2H), 3.71 (s, 3H), 3.36 (d, J = 7.0 Hz, 1H), 2.90 (s, 

1H), 1.90–1.38 (m, 5H), 1.35 (s, 3H), 1.26 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 173.4, 

173.0, 168.8, 140.3, 140.0, 113.9, 99.4, 83.9, 60.7, 52.7, 51.5, 49.7, 49.3, 39.6, 38.6, 29.6, 

24.5, 20.8. 

FTIR (Neat Film NaCl) 3083, 2950, 1770, 1732, 1713, 1456, 1434, 1413, 1381, 1309, 

1277, 1237, 1165, 1115, 969, 934, 911, 872, 731 cm-1; HRMS (Multimode-ESI/APCI) 

m/z calc’d for C18H21IO6Na [M+Na]+: 483.0275, found 483.0261. 
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Tetracyclic acetals 121a and 121b.  It is important to note that the selective single 

hydride reduction of the methyl esters of tricyclic acids 120a and 120b was only made 

possible using a glass cannula, as it allows for the precise temperature control necessary 

to effect the transformation on such a complex molecule bearing many electrophilic 

carbonyl functionalities (Figure 2.8.9).  A solution of acids 120a and 120b (25 mg, 0.055 

mmol) in toluene (550 µL, 0.1M) was stirred in the receiving chamber of the glass 

cannula at –78 °C (the entire glass cannula is placed in a –78 °C bath submerging both 

chambers and the cannula itself).  A freshly made 1M solution of DIBAL-H (270 µL, 

0.270 mmol) in toluene was added to the addition chamber of the glass cannula, further 

diluted with toluene (500 µL), and stirred at –78 °C.  Once both solutions and the entire 

glass cannula were sufficiently cooled, the –78 °C solution of DIBAL-H was slowly 

added to acids 120a and 120b dropwise.  The reaction was stirred for 10 min and then 

slowly quenched by a –78 °C solution of AcOH (100 µL) in toluene (1.5 mL) via the 

addition chamber of the glass cannula.  Once complete, the reaction vessel was removed 

from the –78 °C bath, allowed to warm to 23 °C, and then diluted with ethyl acetate (10 

mL).  The solution was washed with a 1% aqueous solution of AcOH (3 x 2 mL) and the 

aqueous phases were combined and back extracted with ethyl acetate (2 x 2 mL).  All 

organic phases were pooled, dried over Na2SO4, and concentrated by rotary evaporation 

120a and 120b = 2:1 dr
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to give 21 mg (90% crude yield) of the desired aldehydes 103a and 103b as an orange-

brown solid.  103a and 103b were used immediately in the following step without further 

purification. 

Figure 2.8.9.  Reaction schematic for the single hydride reduction of tricyclic acids 120a and 120b 

using a glass cannula. 

 

To a 23 °C solution of the crude aldehyde products 103a and 103b (21 mg, 0.049 

mmol) in benzene (10 mL, 0.005 M) was added Amberlyst 15 (25 mg).  The reaction was 

stirred for at 23 °C for 3 h and then filtered through a small pad of celite with EtOAc to 

remove the Amberlyst 15 resin.  The organics were then washed with pH 2–3 water 

(0.02% HCl solution) (3 x 3 mL), and the aqueous phases were back extracted with ethyl 

acetate (2 x 6 mL).  All organics were combined, dried over Na2SO4, and concentrated by 

rotary evaporation. Purification was accomplished by column chromatography (EtOAc in 

hexanes with 0.1% AcOH, 5%→30% on silica) to yield 11 mg (47% yield over two 
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steps) of a 2:1 mixture of the reduced, cyclized, and diastereomers 121a and 121b as a 

yellow solid. 

Major (121a): 1H NMR (500 MHz, CDCl3) δ 6.69 (d, J = 5.8 Hz, 1H), 6.03 (dd, J = 

17.3, 10.8 Hz, 1H), 5.75 (s, 1H), 5.10 (d, J = 10.8 Hz, 1H), 5.04 (d, J = 17.4 Hz, 1H), 

3.08 (d, J = 5.9 Hz, 1H), 2.92 (s, 1H), 2.21–2.14 (m, 1H), 1.97–1.38 (m, 4H), 1.36 (s, 

3H), 1.19 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 173.1, 169.5, 147.1, 136.1, 112.3, 

108.9, 107.3, 87.1, 61.5, 54.7, 49.1, 48.8, 39.7, 36.2, 20.1, 18.8, 15.9. 

Minor (121b): 1H NMR (500 MHz, CDCl3) δ 6.69 (d, J = 5.9 Hz, 1H), 6.07 (dd, J = 

17.5, 11.1 Hz, 1H), 5.67 (s, 1H), 5.12 (d, J = 11.1 Hz, 1H), 5.08 (d, J = 17.5 Hz, 1H), 

3.07 (d, J = 5.9 Hz, 1H), 2.88 (s, 1H), 2.21–2.14 (m, 1H), 1.97–1.38 (m, 4H), 1.36 (s, 

3H), 1.33 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 173.2, 169.7, 139.5, 136.3, 114.6, 

108.8, 107.0, 87.1, 63.1, 54.7, 49.3, 48.8, 39.4, 36.3, 29.6, 20.0, 15.8. 

FTIR (Neat Film NaCl) 3300, 3077, 3007, 2958, 2933, 2873, 1785, 1748, 1708, 1456, 

1375, 1286, 1239, 1217, 1199, 1182, 1157, 1115, 1083, 1046, 1034, 992, 964, 957, 910, 

895, 873, 829, 814, 796, 752 cm-1; HRMS (Multimode-ESI/APCI) m/z calc’d for 

C17H20IO5 [M+H]+: 431.0350 found 431.0359; [α]  = +18.71 (c 0.94 in CHCl3). 

 

 

Allyl acetate 122.  To a 0 °C solution of 99 (256 mg, 1.13 mmol) in pyridine (11 mL, 

0.1M) was added acetic anhydride (534 µL, 5.65 mmol).  The reaction was allowed to 

warm to 23 °C and was stirred for 6 h.  The solution was then diluted with ethyl acetate 

€ 

D
20

HO

SiMe3

99

90% ee

Ac2O (5 equiv)
pyridine, 23 °C

(86% yield) AcO

SiMe3

122
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(30 mL) and quenched with saturated NaHCO3 (10 mL).  The organic layer was washed 

with saturated aqueous CuSO4 (4 x 10 mL) until the dark blue color no longer persisted in 

the aqueous phase.  This was followed by another saturated NaHCO3 wash (10 mL), a 

brine wash (10 mL), and then drying over MgSO4.  Concentration by rotary evaporation 

gave a crude, colorless oil, which could be taken on without further purification.  

Purification, if desired, was by column chromatography (EtOAc in hexanes 2→10% on 

silica) to yield 260 mg (86% yield) of allyl acetate 122 as a colorless oil; 1H NMR (300 

MHz, CDCl3) δ 5.42 (d, J = 10.4 Hz, 1H), 5.16 (dm J = 10.4 Hz, 1H), 5.10–5.00 (m, 1H), 

2.18–1.94 (m, 7H), 1.66 (s, 6H), 1.59 (s, 3H), 0.02 (s, 9H); 13C NMR (125 MHz, CDCl3) 

δ 171.1, 137.0, 131.7, 124.2, 121.7, 67.6, 40.0, 26.6, 25.9, 21.4, 17.9, 17.0, –3.7; FTIR 

(Neat Film NaCl) 2962, 2927, 2856, 1737, 1443, 1368, 1290, 1248, 1237, 1158, 1109, 

1014, 957, 842, 750 cm-1; HRMS (ESI) m/z calc’d for C15H29O2Si [M]+: 268.1859, found 

268.1863; [α]

€ 

D
20 = +49.50 (c 1.00 in CHCl3). 

 

 

Epoxide 123.  To a –78 °C solution of allyl acetate 122 (260 mg, 0.97 mmol) in 

CH2Cl2 (10 mL, 0.1M) was added m-CPBA (max 77% by weight) (240 mg, 1.07 mmol).  

The reaction was warmed to 0 °C and stirred for 30 min until complete, as determined by 

TLC analysis. The reaction was quenched with 10% aqueous Na2SO3 (5 mL) at 0 °C.  

The organic layer was then separated from the aqueous and washed again with 10% 

Na2SO3 (5 mL).  The combined aqueous layers were then combined and back extracted 

with CH2Cl2 (3 x 10 mL).  The combined organic layers were washed with saturated 

m-CPBA, CH2Cl2

–78→0 °C

(78% yield)

AcO

SiMe3

122

AcO

SiMe3

123
O
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NaHCO3 (15 mL), brine (15 mL), and dried over MgSO4.  Concentration by rotary 

evaporation gave a crude oil, which was purified by column chromatography (EtOAc in 

hexanes 2%→10% on silica) to yield 215 mg (78% yield) of 123 as a colorless oil and a 

1:1 mixture of diastereomers; 1H NMR (500 MHz, CDCl3) δ 5.40 (d, J = 10.3 Hz, 1H), 

5.21 (d, J = 10.3, 1H), 2.69 (td, J = 6.5, 5.3 Hz, 1H), 2.24–2.05 (m, 2H), 2.02 (s, 3H), 

1.71–2.05 (m, 3H), 1.68–1.56 (m, 2H), 1.30–1.24 (m, 6H), 0.02 (s, 9H); 13C NMR (125 

MHz, CDCl3) δ 171.04, 171.02, 136.3, 136.2, 122.2, 122.1, 67.4, 64.1, 58.49, 58.48, 

36.64, 36.56, 27.7, 27.5, 25.03, 25.00, 21.3, 18.9, 18.8, 17.1, 16.9, –3.6; FTIR (Neat Film 

NaCl) 2960, 2928, 1736, 1732, 1446, 1377, 1369, 1323, 1291, 1248, 1238, 1123, 1046, 

1015, 958, 842, 795, 751, 718 cm-1; HRMS (ESI) m/z calc’d for C15H28O3SiNa [M+Na]+: 

307.1700, found 307.1706; [α]

€ 

D
20  = +34.03 (c 1.00 in CHCl3). 

 

 

Aldehyde 124.  To a solution of epoxide 123 (244 mg, 0.86 mmol) in THF (8.6 mL, 

0.1M) and water (4.8 mL, 0.18M) at 0 °C was added periodic acid (391 mg, 1.72 mmol).  

The reaction was stirred for 7 h, diluted with Et2O (25 mL), and quenched with saturated 

NaHCO3 (10 mL).  The aqueous layer was then separated from the organic and back 

extracted with Et2O (2 x 10 mL).  The combined organics were washed with saturated 

brine (3 x 15 mL), dried over MgSO4, and concentrated by rotary evaporation.  

Purification by column chromatography (EtOAc in hexanes 5%→25% on silica) yielded 

161 mg (77% yield) of aldehyde 124 as a colorless oil; 1H NMR (300 MHz, CDCl3) δ 

periodic acid
THF/H2O, 0 °C

(77% yield)AcO

SiMe3

123
O

AcO
O

SiMe3
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H
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9.74 (t, J = 1.7 Hz, 1H), 5.37 (d, J = 10.3 Hz, 1H), 5.18 (d, J = 10.3, 1H), 2.58–2.47 (m, 

2H), 2.41–2.28 (m, 2H), 2.01 (s, 3H), 1.68 (s, 3H), 0.00 (s, 9H); 13C NMR (75 MHz, 

CDCl3) δ 202.1, 171.0, 134.9, 122.7, 67.3, 42.2, 32.0, 21.3, 17.1, –3.7; FTIR (Neat Film 

NaCl) 3432, 2958, 2902, 2823, 2720, 2479, 2113, 1732, 1415, 1368, 1291, 1248, 1142, 

1115, 1046, 1016, 958, 842, 769, 752, 718 cm-1; HRMS (ESI) m/z calc’d for 

C12H22O3SiNa [M+Na]+: 265.1230, found 265.1232; [α]

€ 

D
20 = +41.93 (c 1.00 in CHCl3). 

 

 

(Z)-Enone 125.  To a –78 °C solution of KHMDS (35 mg, 0.18 mmol) in THF (2 

mL) was added a solution of phosphonate reagent 104 (53.5 mg, 0.16 mmol) and 18-

crown-6 (193.5 mg, 0.73 mmol) in THF (600 µL).  After stirring the reaction mixture for 

10 min at –78 °C, a solution of aldehyde 124 (35.5 mg, 0.15 mmol) in THF (600 µL) was 

added.  This brings the total volume of THF to 3.2 mL, which is a 0.05M solution with 

respect to the Still-Gennari Reagent 104.  The reaction was stirred at –78 °C for 20 min 

and then quenched with a saturated NH4Cl solution (1 mL) at –78 °C.  After allowing the 

reaction mixture to warm to 23 °C, it was diluted with Et2O (10 mL) and washed with 

saturated NH4Cl (1 x 3 mL).  Aqueous layers were combined and back extracted with 

Et2O (2 x 3 mL).  The combined organic layers were washed with saturated brine (10 

mL), dried over MgSO4, and concentrated by rotary evaporation.  Purification was 

accomplished by column chromatography (EtOAc in hexanes 2%→10% on silica) to 

O
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yield 42.5 mg (93% yield) >25:1, Z:E of enone 125 as a colorless oil; 1H NMR (300 

MHz, CDCl3) δ 5.88 (t, J = 7.2 Hz, 1H), 5.39 (d, J = 10.3 Hz, 1H), 5.17 (d, J = 10.5 Hz, 

1H), 3.72 (s, 3H), 2.58 (q, J = 7.5 Hz, 2H), 2.11 (t, J = 7.3 Hz, 2H), 2.02 (s, 3H), 1.88–

1.85  (m, 3H), 1.67–1.66 (m, 3H), 0.01 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 168.4, 

143.0, 136.3, 127.2, 122.3, 67.4, 51.3, 39.4, 27.9, 21.3, 20.8, 16.9, –3.7; FTIR (Neat Film 

NaCl) 2954, 2928, 2855, 1722, 1649, 1453, 1434, 1368, 1289, 1248, 1238, 1199, 1131, 

1104, 1085, 1015, 958, 842, 769, 751 cm-1; HRMS (ESI) m/z calc’d for C16H28O4SiNa 

[M+Na]+: 335.1649, found 335.1648; [α]

€ 

D
20 = +49.43 (c 1.00 in CHCl3). 

 

 

Alcohol 126.  To a 23 °C solution of (Z)-enone 125 (143 mg, 0.46 mmol) in MeOH 

(10 mL, 0.05M) was added K2CO3 (32 mg, 0.23 mmol). The resulting suspension was 

then stirred for 2.5 d until complete deprotection was observed by TLC.  Following 

completion, the reaction was diluted with Et2O (100 mL) and washed with water (2 x 75 

mL).  The combined aqueous washes were back extracted with Et2O (3 x 75 mL).  The 

organic phases were combined, washed with saturated brine (100 mL), dried over 

MgSO4, and concentrated by rotary evaporation.  Purification was accomplished by 

column chromatography (EtOAc in hexanes 5%→10% on silica) to yield 96 mg (78%) of 

>25:1, Z:E of alcohol 126 as a colorless oil; 1H NMR (300 MHz, CDCl3) δ 5.89 (t, J = 

7.3 Hz, 1H), 5.27 (d, J = 10.1 Hz, 1H), 4.16 (d, J = 10.1 Hz, 1H), 3.71 (s, 3H), 2.63–2.52 

(m, 2H), 2.11 (t, J = 7.3 Hz, 2H), 1.88–1.84 (m, 3H), 1.58 (d, J = 1.2 Hz, 3H), 0.01 (s, 

AcO

SiMe3
O OMe

MeOH, K2CO3

(78% yield)

125

>25:1 Z:E

HO
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O OMe
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9H); 13C NMR (75 MHz, CDCl3) δ 168.5, 142.9, 134.3, 127.2, 126.9, 64.5, 51.4, 39.5, 

28.0, 20.8, 16.7, –4.0; FTIR (Neat Film NaCl) 3424, 2953, 2928, 2854, 1719, 1648, 

1454, 1437, 1382, 1366, 1331, 1246, 1198, 1129, 1083, 1032, 978, 856, 841, 791, 749 

cm-1; HRMS (ESI) m/z calc’d for C14H26O3SiNa [M+Na]+: 293.1543, found 293.1538; [α]

€ 

D
20  = +56.83 (c 1.00 in CHCl3). 

 

 

Pyrone ester 127.  To a 0 °C solution of alcohol 126 (297 mg, 1.10 mmol) in MeCN 

(11mL, 0.1M) were added sequentially pyrone acid 56 (339 mg, 1.21 mmol) and DCC 

(250 mg, 1.21 mmol).  After 20 min at 0 °C the reaction was filtered through a short pad 

of celite, washing with MeCN.  The filtrate was collected and concentrated by rotary 

evaporation.  The crude oil was purified by column chromatography (EtOAc in hexanes 

2%→10% on silica) to yield 534 mg (91% yield) of pyrone ester 127 as a yellow oil; 1H 

NMR (300 MHz, CDCl3) δ 7.46 (d, J = 9.7 Hz, 1H), 6.06 (d, J = 9.7 Hz, 1H), 5.88 (t, J = 

7.2 Hz, 1H), 5.41 (d, J = 10.4 Hz, 1H), 5.16 (d, J = 10.4 Hz, 1H), 3.76 (s, 2H), 3.73 (s, 

3H), 2.59 (td, J = 7.3, 7.2 Hz, 2H), 2.13 (t, J = 7.3 Hz, 2H), 1.87 (d, J = 1.4 Hz, 3H), 1.67 

(d, J = 1.3 Hz, 3H), 0.01 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 166.6, 160.5, 158.5, 

151.4, 142.9, 137.3, 127.2, 121.5, 116.1, 70.5, 69.6, 51.4, 43.1, 39.4, 27.9, 20.9, 16.9, –

3.7; FTIR (Neat Film NaCl) 2953, 2923, 2854, 1742, 1648, 1607, 1546, 1451, 1434, 

1405, 1382, 1365, 1336, 1249, 1202, 1172, 1131, 1085, 1062, 1016, 960, 842, 764, 751, 

DCC, MeCN
0 °C

(91% yield)
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729 cm-1; HRMS (Multimode-ESI/APCI) m/z calc’d for C21H28IO6Si [M–H]–: 531.0705, 

found 531.0712; [α]

€ 

D
20  = +17.79 (c 1.00 in CHCl3). 

 

 

Vinyl silane 128a and 128b.  To a 23 °C solution of pyrone ester 127 (298 mg, 0.56 

mmol) in toluene (2.8 mL, 0.2M) in a 500 mL sealed tube was added BSA (274 µL, 1.12 

mmol) and NEt3 (8 µL, 0.06 mmol).  The reaction mixture was heated to 110 °C and 

stirred for 20 min.  The mixture was then cooled to 23 °C and diluted with toluene (450 

mL), leaving ample headspace in the sealed tube to allow for solvent expansion.  The 

reaction mixture was then re-heated to 100 °C and stirred for 19 d, until completion, 

which was determined after monitoring by NMR.  The reaction mixture was then cooled 

to 23 °C and 0.02% HCl(aq) (20 mL) was added and the mixture stirred vigorously for 1 

min.  The organic phase was then separated and washed with 0.02% HCl(aq) (3 x 25 mL).  

Aqueous phases were then combined and back extracted with ethyl acetate (3 x 30 mL).  

The organic phases were combined, dried with Na2SO4, and concentrated by rotary 

evaporation.  The crude oil was purified by column chromatography (EtOAc in hexanes 

with 0.1% AcOH, 5%→30% on silica) to yield 186 mg (62% yield) of a 3:1 mixture of 

ICR/DA diastereomers 128a and 128b as a yellow solid.  It is important to note that 

compounds 128a and 128b, and all subsequent compounds 129a, 129b, 121a, 121b, 

130a, 130b, 7, and 8 have very poor solubility in most common organic solvents 
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excluding EtOAc.  Therefore all transfers of products 128a, 128b, 129a, 129b, 121a, 

121b, 130a, 130b, 7, and 8 should be accomplished using EtOAc and vessels should be 

repeatedly washed. 

Major (128a): 1H NMR (500 MHz, CDCl3) δ 6.96 (d, J = 7.0 Hz, 1H), 6.09 (d, J = 

18.8 Hz, 1H), 5.64 (d, J = 18.8 Hz, 1H), 3.74 (s, 3H), 3.36 (d, J = 7.0 Hz, 1H), 2.96 (s, 

1H), 1.98–1.36 (m, 5H), 1.27 (s, 6H), 0.06 (s, 9H); 13C NMR (125 MHz, CDCl3) δ 173.5, 

172.1, 168.9, 154.9, 139.8, 125.8, 99.8, 83.8, 59.2, 52.7, 51.5, 49.5, 49.2, 41.4, 37.9, 24.6, 

20.8, 18.7, –1.0. 

Minor (128b): 1H NMR (500 MHz, CDCl3) δ 6.95 (d, J = 6.9 Hz, 1H), 6.41 (d, J = 

19.1 Hz, 1H), 5.64 (d, J = 19.1 Hz, 1H), 3.70 (s, 3H), 3.34 (d, J = 7.1 Hz, 1H), 2.91 (s, 

1H), 1.98–1.36 (m, 5H), 1.30 (s, 3H), 1.25 (s, 3H), 0.06 (s, 9H); 13C NMR (125 MHz, 

CDCl3) δ 173.3, 171.9, 168.0, 147.5, 140.1, 128.1, 99.2, 83.9, 61.2, 52.5, 51.5, 49.6, 

49.0, 40.6, 37.6, 29.6, 24.6, 20.7, –1.1. 

FTIR (Neat Film NaCl) 3077, 2952, 1773, 1736, 1611, 1492, 1459, 1453, 1382, 1309, 

1276, 1247, 1184, 1161, 1122, 1047, 1019, 989, 970, 935, 870, 838, 783, 754 cm-1; 

HRMS (Multimode-ESI/APCI) m/z calc’d for C21H30IO6Si [M+H]+: 533.0851, found 

533.0847; [α]

€ 

D
20 = +10.47 (c 1.00 in CHCl3). 
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Tetracyclic acetals 121a and 121b.  It is important to note that the selective single 

hydride reduction of the methyl esters of vinyl silanes 128a and 128b was only made 

possible using a glass cannula, as it allows for the precise temperature control necessary 

to effect the transformation on such a complex molecule bearing many electrophilic 

carbonyl functionalities (Figure 2.8.9).  A solution of vinyl silanes 128a and 128b (31 

mg, 0.06 mmol) in toluene (600 µL, 0.1M) was stirred in the receiving chamber of the 

glass cannula at –78 °C (the entire glass cannula is placed in a –78 °C bath submerging 

both chambers and the cannula itself).  A freshly made 1M solution of DIBAL-H (300 

µL, 0.30 mmol) in toluene was added to the addition chamber of the glass cannula, 

further diluted with toluene (500 µL), and stirred at –78 °C.  Once both solutions and the 

entire glass cannula were sufficiently cooled, the –78 °C solution of DIBAL-H was 

slowly added to vinyl silanes 128a and 128b dropwise.  The reaction was stirred for 10 

min and then slowly quenched by a –78 °C solution of AcOH (100 µL) in toluene (2 mL) 

via the addition chamber of the glass cannula.  Once complete, the reaction vessel was 

removed from the –78 °C bath, allowed to warm to 23 °C, and then diluted with ethyl 
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acetate (10 mL).  The solution was washed with a 1% aqueous solution of AcOH (3 x 2 

mL) and the aqueous phases were combined and back extracted with ethyl acetate (2 x 2 

mL).  All organic phases were pooled, dried over Na2SO4, and concentrated by rotary 

evaporation to give the desired aldehydes 129a and 129b as an orange-brown solid.  129a 

and 129b were used immediately in the following step without further purification. 

To a 23 °C solution of the crude aldehyde products (129a and 129b) in MeCN      

(150 µL, 0.4M assuming quantitative yield from the reduction) was added aqueous HBF4 

(48% w/w, 100 µL, 0.78 mmol).  The reaction was stirred at 23 °C for 8 h and then 

diluted with ethyl acetate (5 mL).  This was washed with pH 2–3 water (0.02% HCl 

solution) (3 x 1 mL), and the aqueous phases were back extracted with ethyl acetate (2 x 

1 mL).  All organics were combined, dried over Na2SO4, and concentrated by rotary 

evaporation. Purification was accomplished by column chromatography (EtOAc in 

hexanes with 0.1% AcOH, 5%→30% on silica) to yield 15 mg (57% yield over two 

steps) of a 3:1 mixture of the reduced, cyclized, and desilylated diastereomers 121a and 

121b as a yellow solid. 

Major (121a): 1H NMR (500 MHz, CDCl3) δ 6.69 (d, J = 5.8 Hz, 1H), 6.03 (dd, J = 

17.3, 10.8 Hz, 1H), 5.75 (s, 1H), 5.10 (d, J = 10.8 Hz, 1H), 5.04 (d, J = 17.4 Hz, 1H), 

3.08 (d, J = 5.9 Hz, 1H), 2.92 (s, 1H), 2.21–2.14 (m, 1H), 1.97–1.38 (m, 4H), 1.36 (s, 

3H), 1.19 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 173.1, 169.5, 147.1, 136.1, 112.3, 

108.9, 107.3, 87.1, 61.5, 54.7, 49.1, 48.8, 39.7, 36.2, 20.1, 18.8, 15.9. 

Minor (121b): 1H NMR (500 MHz, CDCl3) δ 6.69 (d, J = 5.9 Hz, 1H), 6.07 (dd, J = 

17.5, 11.1 Hz, 1H), 5.67 (s, 1H), 5.12 (d, J = 11.1 Hz, 1H), 5.08 (d, J = 17.5 Hz, 1H), 

3.07 (d, J = 5.9 Hz, 1H), 2.88 (s, 1H), 2.21–2.14 (m, 1H), 1.97–1.38 (m, 4H), 1.36 (s, 
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3H), 1.33 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 173.2, 169.7, 139.5, 136.3, 114.6, 

108.8, 107.0, 87.1, 63.1, 54.7, 49.3, 48.8, 39.4, 36.3, 29.6, 20.0, 15.8. 

FTIR (Neat Film NaCl) 3300, 3077, 3007, 2958, 2933, 2873, 1785, 1748, 1708, 1456, 

1375, 1286, 1239, 1217, 1199, 1182, 1157, 1115, 1083, 1046, 1034, 992, 964, 957, 910, 

895, 873, 829, 814, 796, 752 cm-1; HRMS (Multimode-ESI/APCI) m/z calc’d for 

C17H20IO5 [M+H]+: 431.0350 found 431.0359; [α]

€ 

D
20  = +18.71 (c 0.94 in CHCl3). 

 

 

TBS-ester 130a and 130b. To a 23 °C solution of acetals 121a and 121b (15 mg, 

0.034 mmol) in DMF (600 µL, 0.055M) were added sequentially imidazole (14 mg, 0.21 

mmol) and TBSCl (21 mg, 0.14 mmol).  The reaction was stirred at 23 °C for 2 h.  The 

reaction mixture was then diluted with saturated brine (2 mL) and extracted with 

EtOAc/hexanes (1:1) (4 x 3 mL).  The combined organic extracts were washed with 

saturated aqueous NaHCO3 (3 mL) and then with brine (2 x 3 mL).  The combined 

organics were dried over Na2SO4 and concentrated by rotary evaporation.  The crude oil 

was purified by column chromatography (EtOAc in hexanes 10%→50% on silica) to 

yield 12.5 mg (67% yield) of a 4:1 mixture of diastereomers 130a and 130b as a white 

solid. 

Major (130a): 1H NMR (500 MHz, CDCl3) δ 6.61 (d, J = 6.0 Hz, 1H), 6.00 (dd, J = 

17.4, 10.7 Hz, 1H), 5.68 (s, 1H), 4.99 (d, J = 10.7 Hz, 1H), 4.98 (d, J = 17.4 Hz, 1H), 

TBSCl, imidazole

   DMF, 23 °C, 2 h

(67% yield)
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2.98 (dd, J = 6.0, 0.8 Hz, 1H), 2.80 (s, 1H), 2.08–2.00 (m, 1H), 1.90–1.35 (m, 4H), 1.29 

(s, 3H), 1.18 (s, 3H), 0.92 (s, 9H), 0.31 (s, 3H), 0.25 (s, 3H); 13C NMR (125 MHz, 

CDCl3) δ 174.4, 169.7, 149.2, 135.4, 110.9, 110.0, 109.8, 87.0, 61.1, 55.1, 49.5, 48.7, 

40.0, 37.4, 25.7, 20.6, 18.2, 17.7, 16.0, –4.7. 

Minor (130b): 1H NMR (500 MHz, CDCl3) δ 6.61 (d, J = 6.1 Hz, 1H), 6.26 (dd, J = 

17.6, 11.0 Hz, 1H), 5.58 (s, 1H), 5.03 (dd, J = 11.0, 1.1 Hz, 1H), 4.97 (dd, J = 17.6, 1.1 

Hz, 1H), 2.96 (dd, J = 6.1, 0.9 Hz, 1H), 2.72 (s, 1H), 2.08–2.00 (m, 1H), 1.90–1.35 (m, 

4H), 1.32 (s, 3H), 1.26 (s, 3H), 0.93 (s, 9H), 0.31 (s, 3H), 0.25 (s, 3H); 13C NMR (125 

MHz, CDCl3) δ 174.5, 169.9, 141.4, 135.6, 112.8, 109.9, 109.4, 87.0, 62.6, 55.1, 49.6, 

48.9, 39.6, 37.7, 30.4, 25.6, 20.6, 17.6, 15.9, –4.8. 

FTIR (Neat Film NaCl) 3083, 2930, 2857, 1784, 1716, 1638, 1601, 1471, 1463, 1413, 

1390, 1362, 1338, 1317, 1282, 1250, 1235, 1222, 1196, 1183, 1160, 1144, 1115, 1084, 

1049, 1036, 1000, 960, 942, 908, 895, 884, 868, 843, 828, 816, 787, 752 cm-1; HRMS 

(Multimode-ESI/APCI) m/z calc’d for C23H34IO5Si [M+H]+: 545.1215, found 545.1218; 

[α]

€ 

D
20 = +49.09 (c 1.00 in CHCl3). 
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Transtaganolides B and A (8 and 7).  In a nitrogen filled glovebox, to a solution of 

TBS-esters 130a and 130b (9 mg, 0.0165 mmol) and Pd(PPh3)4 (21 mg, 0.018 mmol) in 

DMF (165 µL, 0.1M) was added tributyl(2-methoxyethynyl)stannane (62) (22 mg, 0.066 

mmol). The heterogeneous reaction mixture was vigorously stirred at 31 °C for 7.5 h. The 

reaction mixture was then filtered through a Kimwipe with MeCN (1.5 mL) (this removes 

a large excess of the undissolved Pd(PPh3)4) and removed from the glovebox.  pH 7 

phosphate buffer (75 µL) was added to the MeCN solution, which was then vigorously 

stirred for 36 h.  The reaction was then concentrated by rotary evaporation, so as to 

remove some of the copious amounts of MeCN, and then diluted with EtOAc (2 mL).  

This was then washed with water (3 x 750 µL) and the combined aqueous washes were 

back extracted with EtOAc (2 x 750 µL).  All organics were pooled, dried with Na2SO4, 

and concentrated by rotary evaporation. The crude oil was purified by normal phase 

HPLC to yield 1.5 mg (25% yield) of transtaganolide B (8) and 0.6 mg (10% yield) of 

transtaganolide A (7) as white powders. 
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Transtaganolide B (8): 1H NMR (500 MHz, CDCl3) δ 5.80 (dd, J = 17.4, 10.8 Hz, 

1H), 5.65 (t, 0.8 Hz, 1H), 5.58 (dd, J = 6.0, 1.1 Hz, 1H), 5.05 (dd, J = 17.4, 0.6 Hz, 1H), 

5.02 (d, J = 10.8, 0.6 Hz, 1H), 4.96 (t, 0.8 Hz, 1H), 3.68 (s, 3H), 3.12 (dt, J = 6.0, 0.9 Hz, 

1H), 3.08 (s, 1H), 1.94 (dd, J = 12.3, 6.3 Hz, 1H), 1.72 (ddt, J = 13.1, 6.3, 3.3 Hz, 1H), 

1.63 (ddd, J = 13.1, 3.9, 2.7 Hz, 1H), 1.55 (s, 3H), 1.55–1.35 (m, 2H), 1.33 (s, 3H); 13C 

NMR (125 MHz, CDCl3) δ 175.6, 163.8, 154.5, 146.7, 144.2, 119.4, 112.7, 109.8, 87.7, 

84.4, 56.5, 51.6, 49.8, 49.5, 48.8, 38.1, 37.0, 20.1, 19.4, 15.9; FTIR (Neat Film NaCl) 

2948, 2931, 2874, 2855, 1782, 1668, 1447, 1372, 1348, 1324, 1296, 1252, 1237, 1167, 

1109, 1059, 1024, 999, 966, 912, 897, 843, 812, 736 cm-1; HRMS (Multimode-

ESI/APCI) m/z calc’d for C20H21O6 [M–H]–: 357.1344, found 357.1356; [α]

€ 

D
20  = +207.93 

(c 0.15, CHCl3, 81% ee); SFC conditions: 30% IPA, 2.5 mL/min, AD-H column, tR(min): 

major = 2.83, minor = 4.68. 

Figure 2.8.10.  Racemic SFC trace of transtaganolide B (8). 

 

Figure 2.8.11.  Enantioenriched SFC trace of transtaganolide B (8). 

 

Transtaganolide A (7): 1H NMR (500 MHz, CDCl3) δ 6.90 (dd, J = 17.9, 11.1 Hz, 

1H), 5.62 (s, 1H), 5.60 (dd, J = 5.9, 1.0 Hz, 1H), 5.12 (ddd, J = 11.1, 1.1, 0.6 Hz, 1H), 
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5.03 (dd, J = 17.9, 1.1 Hz, 1H), 4.98 (s, 1H), 3.70 (s, 3H), 3.11 (dt, J = 5.9, 0.8 Hz, 1H), 

2.98 (s, 1H), 1.95 (dd, J = 12.3, 6.3 Hz, 1H), 1.83 (ddd, J = 12.9, 3.7, 2.6 Hz, 1H), 1.60–

1.30 (m, 3H), 1.30 (s, 3H), 1.22 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 175.6, 164.1, 

154.5, 143.9, 143.8, 119.6, 111.8, 109.8, 87.6, 84.5, 56.5, 52.8, 51.6, 49.7, 48.8, 39.4, 

38.3, 28.6, 20.1, 15.8; FTIR (Neat Film NaCl) 2963, 2922, 2852, 1780, 1670, 1453, 1348, 

1323, 1259, 1236, 1167, 1113, 1058, 1021m 999, 973, 959, 921, 840, 808, 731 cm-1; 

HRMS (Multimode-ESI/APCI) m/z calc’d for C20H21O6 [M–H]–: 357.1344, found 

357.1356; [α]

€ 

D
20 = –98.76 (c 0.06, CHCl3, 90% ee); SFC conditions: 30% IPA, 2.5 

mL/min, AD-H column, tR(min): minor = 3.20, major = 4.97. 

Figure 2.8.12.  Racemic SFC trace of transtaganolide A (7). 

 

Figure 2.8.13.  Enantioenriched SFC trace of transtaganolide A (7). 
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Methyl esters 133 and 135:  Diazomethane in a solution of Et2O was added 

dropwise to a 0.1M solution of the acids 100a and 100b at 0 °C.  This was done using 

flame polished pipettes, glassware containing no ground glass joints, and open top to 

avoid detonation.  The diazomethane was added until the yellow color of diazomethane 

persisted in the reaction solution.  The reaction was then stirred for an additional 35 min, 

until the lemon-lime color faded, and all unreacted diazomethane had evaporated into the 

well-ventilated hood.  The reaction was then concentrated by rotary evacuation and 

purified by preparatory HPLC, to separate diastereomers 133 and 135.  The major 

diastereomer (133) was crystallized by slow evaporation from pentanes in order to obtain 

crystals suitable for X-ray diffraction. 

Major (133): 1H NMR (500 MHz, CDCl3) δ 6.92 (d, J = 6.8 Hz, 1H), 6.10 (d, J = 

18.9 Hz, 1H), 5.59 (d, J = 18.9 Hz, 1H), 3.61 (s, 3H), 2.97 (s, 1H), 2.94 (d, J = 6.8 Hz, 

1H), 1.70–1.40 (m, 4H), 1.34 (dd, J = 12.0, 5.3 Hz, 1H), 1.23 (s, 3H), 1.08 (s, 3H), 1.00 

(s, 3H), 0.08 (s, 9H); 13C NMR (125 MHz, CDCl3) δ 171.0, 169.3, 156.1, 140.3, 124.5, 

98.0, 84.7, 59.0, 56.9, 51.2, 48.3, 41.5, 38.2, 37.0, 30.0, 24.7, 20.9, 18.4, –0.9; FTIR 

(Neat Film NaCl) 2953, 2923, 2848, 1746, 1612, 1464, 1454, 1392, 1386, 1365, 1352, 

1302, 1246, 1209, 1196, 1167, 1141, 1052, 1011, 993, 976, 965, 939, 868, 838, 796, 756 

cm-1; HRMS (Multimode-ESI/APCI) m/z calc’d for C21H32IO4Si [M+H]+: 503.1109 found 

503.1113; [α]

€ 

D
20 = +34.50 (c 0.24 in CHCl3); MP: 125–130 ºC. 
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Minor (135): 1H NMR (500 MHz, CDCl3) δ 6.89 (d, J = 6.8 Hz, 1H), 6.48 (d, J = 

19.2 Hz, 1H), 5.57 (d, J = 19.2 Hz, 1H), 3.68 (s, 3H), 2.90 (d, J = 6.8 Hz, 1H), 2.87 (s, 

1H), 1.96 (dt, J = 13.7, 3.4 Hz, 1H), 1.66–1.51 (m, 2H), 1.41 (td, J = 13.5, 3.4 Hz, 1H), 

1.34 (dd, J = 12.6, 5.0 Hz, 1H), 1.27 (s, 3H), 1.02 (s, 3H), 0.97 (s, 3H), 0.06 (s, 9H); 13C 

NMR (125 MHz, CDCl3) δ 170.4, 169.6, 148.9, 140.4, 126.6, 110.1, 97.7, 84.5, 61.1, 

57.0, 51.7, 48.3, 40.8, 38.3, 37.2, 30.0, 24.6, 20.9, –1.1; FTIR (Neat Film NaCl) 2952, 

2893, 1760, 1745, 1608, 1455, 1435, 1394, 1372, 1354, 1304, 1246, 1224, 1190, 1168, 

1149, 1137, 1102, 1047, 1012, 994, 955, 869, 838, 799, 755, 737, 727 cm-1; HRMS 

(Multimode-ESI/APCI) m/z calc’d for C21H32IO4Si [M+H]+: 503.1109 found 503.1119; 

[α]

€ 

D
20 = –82.77 (c 0.37 in CHCl3). 
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consistently higher ee's for this extended reaction time, which is necessary to 

drive the reaction to completion.  Reproducibility was somewhat of a challenge as 

ee's varied from values as high as 90% ee and as low as 82% ee for the 3 h 
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(19) Subsequent to submission of this manuscript Prof. Giovanni Appendino 

generously provided our group with an authentic sample of the structurally, and 

presumably biosynthetically, related basiliolide B (11).17  Comparison to racemic 

synthetic basiliolide B (see ref. 16b) by chiral phase chromatography clearly 

demonstrated that naturally occurring basiliolide B is enantiopure upon isolation. 

Furthermore, consistent in magnitude with the enantioenriched synthetic 

transtaganolides, the specific rotation of natural basiliolide B was measured as     

–173° (0.24 c). 

(20) Extensive efforts were made to obtain authentic samples of 7–10 from the 

isolation chemists to no avail. 



Appendix 4–Synthetic Summary for (–)-Transtaganolide A, (+)-Transtaganolide B, 
(+)-Transtaganolide C, and (–)-Transtaganolide D: Relevant to Chapter 2 

134 

 

 

 

 

APPENDIX 4 

Synthetic Summary for (–)-Transtaganolide A, (+)-Transtaganolide B, 

(+)-Transtaganolide C, and (–)-Transtaganolide D: 

Relevant to Chapter 2 
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A4.1 SYNTHETIC SUMMARY FOR (+)-TRANSTAGANOLIDE C AND (–)-

TRANSTAGANOLIDE D 

Scheme 4.1.1.  Retrosynthetic analysis for (+)-transtaganolide C (9) and (–)-transtaganolide D (10). 

 

RO
O

O

O

96a

I

8

4

O
O

MeO

H

O

O

8

4

C

[5 + 2]

OMe

Bu3Sn
62

ICR/DA
O

O O

O

I

97

4

8

SiMe3

 R1=MeH

(+)-transtaganolide C (9)

O
O

MeO

H

O

O

8

4

C

(–)-transtaganolide D (10)

RO
O

O

O

96b

I

8

4
H

+

+



Appendix 4–Synthetic Summary for (–)-Transtaganolide A, (+)-Transtaganolide B, 
(+)-Transtaganolide C, and (–)-Transtaganolide D: Relevant to Chapter 2 

136 

Scheme 4.1.2.  Syntheses of (+)-transtaganolide C (9) and (–)-transtaganolide D (10). 
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A4.2 SYNTHETIC SUMMARY FOR (–)-TRANSTAGANOLIDE A AND (+)-

TRANSTAGANOLIDE B 

Scheme 4.2.1.  Retrosynthetic analysis for (–)-transtaganolide A (7) and (+)-transtaganolide B (8). 
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Scheme 4.2.2.  First attempt to synthesize (±)-transtaganolide A and B (7–8) tetracyclic core via 

protected alcohol 109. 
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Scheme 4.2.3.  Second attempt to synthesize (±)-transtaganolide A and B (7–8) tetracyclic core via 

Weinreb amide 115. 
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Scheme 4.2.4.  Third attempt to synthesize (±)-transtaganolide A and B (7–8) tetracyclic core via 

methylester 119. 
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Scheme 4.2.5.  Forward syntheses of (–)-transtaganolide A (7) and (+)-transtaganolide B (8). 
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Scheme 4.2.6.  Continued forward syntheses of (–)-transtaganolide A (7) and (+)-transtaganolide B 

(8). 
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A5.1 COMPARISON OF 1H NMR AND 13C NMR FOR SYNTHETIC AND 

REPORTED TRANSTAGANOLIDE A 

Table A5.1.1. Comparison of 1H NMR data for synthetic and reported natural1 transtaganolide A (7). 

 

1
2

11

15
13

5
8

4 14

63 7

10

12

9

18

17

19

16

Assignment Synthetic 7 (ppm) Multiplicity, J (Hz)

C2 5.60 5.60 dd, 5.9, 1.1

C3 3.11 3.11 d, 6.0

C4 — — —

C5 1.96 dd, 12.1, 6.2

C6 1.60–1.30 1.60 dddd, 13.3, 6.2, 2.7, 2.2
1.60–1.30 1.47 dddd, 13.3, 13.3, 12.3, 2.3

C7 1.60–1.30 1.39 ddd, 13.3, 13.3, 2.7
1.83 1.82 ddd, 12.7, 3.7, 2.3

1.95

C1 — ——

C9 2.98 2.99 s

C10 — — —

C11 4.98 4.99 bs

C12 — —

C13 — — —

C14 1.30 1.30 s

C15 5.62 5.61 s

—

C8 — ——

Multiplicity, J (Hz)Natural 7 (ppm)

C16 6.90 6.89 dd, 17.9, 11.2

C17 5.12 5.11 ddt, 11.1, 1.1, 0.6

C18 1.22 1.22 s

3.70 3.70 sOMe

dd, 5.9, 1.0

dt, 5.9, 0.8

—

m
m

m
ddd, 12.9, 3.7, 2.6

dd, 12.3, 6.3

—

s

—

s

—

s

s

—

—

dd, 17.9, 11.1

ddd, 11.1, 1.1, 0.6

s

s

O

H H
O O

O
O

MeO

5.03 5.03 dd, 17.8, 1.1dd, 17.9, 1.1
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Table A5.1.2. Comparison of 13C NMR data for synthetic and reported natural1 transtaganolide A 

(7). 

 

  

Assignment Synthetic 7 (ppm)

C2 119.6 119.4

C3 51.6 51.3

C4 48.8 48.6

C5 49.4

C6 20.1 19.9

C7 39.4 39.1

49.7

C1 143.7143.8

C9 52.8 52.5

C10 87.6 87.5

C11 84.5 84.1

C12 154.4

C13 175.6 175.5

C14 15.8 15.6

C15 109.8 109.6

154.5

C8 38.138.3

Natural 7 (ppm)

C16 143.9 143.7

C17 111.8 111.5

C18 28.6 28.3

C19 164.1 164.0

56.5 56.3OMe

1
2

11

15
13

5
8

4 14
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17

19

16

O

H H
O O

O
O

MeO



Appendix 5–Comparison of Spectral Data for Synthetic and Reported Transtaganolides 
A–D, as well as CD Spectra: Relevant to Chapter 2 

146 

A5.2 COMPARISON OF 1H NMR AND 13C NMR FOR SYNTHETIC AND 

REPORTED TRANSTAGANOLIDE B 

Table A5.2.1. Comparison of 1H NMR data for synthetic and reported natural1 transtaganolide B (8). 

 

 

1
2

11

15
13

5
8

4 14

63 7

10

12

9

18

17

19

16

Assignment Synthetic 8 (ppm) Multiplicity, J (Hz)

C2 5.58 5.58 dd, 6.0, 1.1

C3 3.12 3.12 dt, 6.0, 0.9

C4 — — —

C5 1.95 dd, 12.1, 6.3

C6 1.72 1.73 dddd, 12.9, 6.2, 3.7, 2.5
1.55–1.35 1.51 dddd, 13.0, 13.0, 13.0, 2.4

C7 1.55–1.35 1.43 ddd, 13.3, 11.9, 2.3
1.63 1.63 ddd, 13.3, 3.7, 2.3

1.94

C1 — ——

C9 3.08 3.09 s

C10 — — —

C11 4.96 4.97 t, 0.8

C12 — —

C13 — — —

C14 1.33 1.33 s

C15 5.65 5.66 t, 0.7

—

C8 — ——

Multiplicity, J (Hz)Natural 8 (ppm)

C16 5.80 5.81 dd, 17.4, 10.8

C17 5.05 5.09 dd, 10.8, 0.7

C18 1.55 1.55 s

3.68 3.68 sOMe

dd, 6.0, 1.1

dt, 6.0, 0.9

—

ddt, 13.1, 6.3, 3.3
m

m
ddd, 13.1, 3.9, 2.7

dd, 12.3, 6.3

—

s

—

t, 0.8

—

s

t, 0.8

—

—

dd, 17.4, 10.8

dd, 17.4, 0.6

s

s

O

H H
O O

O
O

MeO

5.02 5.06 dd, 17.4, 0.7dd, 10.8, 0.6
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Table A5.2.2. Comparison of 13C NMR data for synthetic and reported natural1 transtaganolide B 

(8). 

 

Assignment Synthetic 8 (ppm)

C2 119.4 119.2

C3 51.6 51.4

C4 48.8 48.6

C5 49.3

C6 19.4 19.2

C7 37.0 36.8

49.5

C1 144.0144.2

C9 49.8 49.6

C10 87.7 87.5

C11 84.4 84.2

C12 154.3

C13 175.6 175.5

C14 15.9 15.7

C15 109.8 109.6

154.5

C8 37.938.1

Natural 8 (ppm)

C16 146.7 146.5

C17 112.7 112.5

C18 20.1 19.9

C19 163.8 163.7

56.5 56.3OMe
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A5.3 COMPARISON OF 1H NMR AND 13C NMR FOR SYNTHETIC AND 

REPORTED TRANSTAGANOLIDE C 

Table A5.3.1. Comparison of 1H NMR data for synthetic and reported natural1 transtaganolide C (9). 

 

O
O

MeO

H

O

O1
2 16

15

18

5
8

4

14

63 7
10

17

9

12

11 19

13

Assignment Synthetic 9 (ppm) Multiplicity, J (Hz)

C2 6.07 6.08 dd, 6.5, 1.1

C3 3.06 3.07 d, 6.5

C4 — — —

C5 1.30 dd, 11.5, 6.5

C6 1.71–1.63 1.70–1.60 m

1.71–1.63 1.70–1.60 m

C7 1.48–1.39 1.44 ddd, 13.0, 13.0, 3.3

1.71–1.63 1.65 m

1.34–1.27

C1 — ——

C9 3.23 3.24 s

C10 — — —

C11 5.00 5.01 d, 1.1

C12 — —

C13 — —

C14 0.97 0.98 s

C15 1.08 1.09 s

—

C8 — ——

Multiplicity, J (Hz)Natural 9 (ppm)

C16 5.80 5.81 dd, 17.4, 10.8

C17 5.03 5.05 br d, 10.7

C18 1.60 1.61 s

C19 — — —

3.71 3.72 sOMe

dd, 6.5, 1.5

d, 6.5

—

m

m

m

m

m

—

s

—

d, 1.5

s

s

—

—

dd, 17.5, 11.0

d, 11.0

s

—

s

5.07 5.08 br d, 17.4d, 17.5

——
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Table A5.3.2. Comparison of 13C NMR data for synthetic and reported natural1 transtaganolide C 

(9). 

 

Assignment Synthetic 9 (ppm)

C2 123.6 123.5

C3 53.8 53.8

C4 33.3 33.2

C5 47.9

C6 19.9 19.8

C7 38.3 38.3

48.1

C1 131.9138.0

C9 50.6 50.4

C10 87.3 87.4

C11 79.3 79.1

C12 156.7

C13 171.8 172.0

C14 29.9 29.6

C15 24.8 24.8

156.7

C8 38.438.4

Natural 9 (ppm)

C16 146.5 146.5

C17 112.8 112.8

C18 19.2 19.1

C19 162.3 162.5

56.6 56.3OMe

O
O

MeO

H

O

O1
2 16

15

18

5
8

4

14

63 7
10

17

9

12

11 19

13
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A5.4 COMPARISON OF 1H NMR AND 13C NMR FOR SYNTHETIC AND 

REPORTED TRANSTAGANOLIDE D 

Table A5.4.1. Comparison of 1H NMR data for synthetic and reported natural1 transtaganolide D 

(10). 

 

O
O

MeO

H

O

O1
2 16

15

18

5
8

4

14

63 7
10

17

9

12

11 19

13

Assignment Synthetic 10 (ppm) Multiplicity, J (Hz)

C2 6.09 6.08 dd, 6.5, 1.2

C3 3.06 3.04 d, 6.6

C4 — — —

C5 1.34 dd, 12.6, 5.3

C6 1.64 1.65–1.53 m

1.59–1.56 1.65–1.53 m

C7 1.39 1.39 ddd, 13.0, 13.0, 3.3

1.91 1.89 ddd, 13.0, 3.3, 3.3

1.33

C1 — ——

C9 3.13 3.14 s

C10 — — —

C11 5.02 5.02 d, 1.1

C12 — —

C13 — — —

C14 0.97 0.96 s

C15 1.04 1.02 s

—

C8 — ——

Multiplicity, J (Hz)Natural 10 (ppm)

C16 7.00 6.98 dd, 17.8, 11.2

C17 5.15 5.11 dd, 11.1, 1.1

C18 1.22 1.21 s

C19 — — —

3.73 3.72 sOMe

dd, 6.5, 1.0

d, 6.5

—

dquint, 13.5, 3.0

m

dt, 13.5, 3.5

dt, 13.5, 3.5

dd, 13.5, 3.5

—

s

—

d, 1.0

s

s

—

—

dd, 17.5, 11.0

dd, 11.0, 1.0

s

—

s

5.05 5.03 dd, 17.8, 1.1dd, 17.5, 1.0

—
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Table A5.4.2. Comparison of 13C NMR data for synthetic and reported natural1 transtaganolide D 

(10). 

 

  

Assignment Synthetic 10 (ppm)

C2 123.9 123.8

C3 54.0 53.9

C4 33.3 33.2

C5 48.2

C6 20.5 20.3

C7 40.5 40.3

48.4

C1 137.5137.7

C9 53.3 53.1

C10 87.3 87.4

C11 79.4 79.2

C12 156.6

C13 171.7 171.9

C14 29.9 29.8

C15 24.8 24.7

156.7

C8 38.338.4

Natural 10 (ppm)

C16 142.9 142.9

C17 112.1 111.9

C18 28.5 28.4

C19 162.6 162.7

56.3 56.3OMe

O
O

MeO

H

O

O1
2 16

15

18

5
8

4

14

63 7
10

17

9
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13



Appendix 5–Comparison of Spectral Data for Synthetic and Reported Transtaganolides 
A–D, as well as CD Spectra: Relevant to Chapter 2 

152 

A5.5 CD SPECTRA OF DIFFRACTED CRYSTAL 133 

The circular dichroism (CD) spectra of crystal 133 (in green, Figure A5.5.1) and the 

CD spectra of the bulk material from which crystal 133 was obtained (in red, Figure 

A5.5.1) were compared.  Since crystal 133 was grown from 90% enantiomeric excess 

(ee) material it was possible that crystal 133 could have been the crystallized minor 

enantiomer (135).  Figure A5.5.1 demonstrates that the CD spectra of the bulk material 

(133 and 135) and crystal 133 are quite similar and therefore confirms that crystal 133 is 

representative of the major enantiomer. 

Figure A5.5.1.  CD spectral comparison of diffracted crystal 133 to 90% enantioenriched bulk 

sample of 133 and 135. 
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Figure A6.1.2 infrared spectrum (Thin Film, NaCl) of compound 97. 

Figure A6.1.3 13C NMR (125 MHz, CDCl3) of compound 97. 
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Figure A6.2.2 infrared spectrum (Thin Film, NaCl) of compounds 100a and 100b. 

Figure A6.2.3 13C NMR (125 MHz, CDCl3) of compounds 100a and 100b. 
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Figure A6.3.2 infrared spectrum (Thin Film, NaCl) of transtaganolide C (9). 

Figure A6.3.3 13C NMR (125 MHz, CDCl3) of transtaganolide C (9). 
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Figure A6.4.2 infrared spectrum (Thin Film, NaCl) of transtaganolide D (10). 

Figure A6.4.3 13C NMR (125 MHz, CDCl3) of transtaganolide D (10). 
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Figure A6.5.2 infrared spectrum (Thin Film, NaCl) of compound 105. 

Figure A6.5.3 13C NMR (125 MHz, CDCl3) of compound 105. 
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Figure A6.6.2 infrared spectrum (Thin Film, NaCl) of compound 106. 

Figure A6.6.3 13C NMR (75 MHz, CDCl3) of compound 106. 
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Figure A6.7.2 infrared spectrum (Thin Film, NaCl) of compound 107. 

Figure A6.7.3 13C NMR (125 MHz, CDCl3) of compound 107. 
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Figure A6.8.2 infrared spectrum (Thin Film, NaCl) of compound 108. 

Figure A6.8.3 13C NMR (75 MHz, CDCl3) of compound 108. 
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Figure A6.9.2 infrared spectrum (Thin Film, NaCl) of compound 109. 

Figure A6.9.3 13C NMR (75 MHz, CDCl3) of compound 109. 
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Figure A6.10.2 infrared spectrum (Thin Film, NaCl) of compounds 110a and 110b. 

Figure A6.10.3 13C NMR (125 MHz, CDCl3) of compounds 110a and 110b. 
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Figure A6.11.2 infrared spectrum (Thin Film, NaCl) of compounds 112a and 112b. 

Figure A6.11.3 13C NMR (125 MHz, CDCl3) of compounds 112a and 112b. 
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Figure A6.12.2 infrared spectrum (Thin Film, NaCl) of compound 113. 

Figure A6.12.3 13C NMR (125 MHz, CDCl3) of compound 113. 
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Figure A6.13.2 infrared spectrum (Thin Film, NaCl) of compound 114. 

Figure A6.13.3 13C NMR (125 MHz, CDCl3) of compound 114. 
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Figure A6.14.2 infrared spectrum (Thin Film, NaCl) of compound 115. 

Figure A6.14.3 13C NMR (125 MHz, CDCl3) of compound 115. 
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Figure A6.16.2 infrared spectrum (Thin Film, NaCl) of compound 118. 

Figure A6.16.3 13C NMR (125 MHz, CDCl3) of compound 118. 
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Figure A6.17.2 infrared spectrum (Thin Film, NaCl) of compound 119. 

Figure A6.17.3 13C NMR (75 MHz, CDCl3) of compound 119. 
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Figure A6.18.2 infrared spectrum (Thin Film, NaCl) of compounds 120a and 120b. 

Figure A6.18.3 13C NMR (125 MHz, CDCl3) of compounds 120a and 120b. 
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Figure A6.19.2 infrared spectrum (Thin Film, NaCl) of compound 122. 

Figure A6.19.3 13C NMR (75 MHz, CDCl3) of compound 122. 
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Figure A6.20.2 infrared spectrum (Thin Film, NaCl) of compound 123. 

Figure A6.20.3 13C NMR (125 MHz, CDCl3) of compound 123. 
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Figure A6.21.2 infrared spectrum (Thin Film, NaCl) of compound 124. 

Figure A6.21.3 13C NMR (75 MHz, CDCl3) of compound 124. 
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Figure A6.22.2 infrared spectrum (Thin Film, NaCl) of compound 125. 

Figure A6.22.3 13C NMR (75 MHz, CDCl3) of compound 125. 



Appendix 6–Spectra Relevant to Chapter 2 Total Syntheses of (–)-Transtaganolide A, 
(+)-Transtaganolide B, (+)-Transtaganolide C, and (–)-Transtaganolide D 
And Biosynthetic Implications 

198 

 
  

Fi
gu

re
 A

6.
23

.1
 1 H

 N
M

R
 (3

00
 M

H
z,

 C
D

C
l 3)

 o
f c

om
po

un
d 

12
6.

 

HO

Si
M
e 3

O
O
M
e

12
6



Appendix 6–Spectra Relevant to Chapter 2 Total Syntheses of (–)-Transtaganolide A, 
(+)-Transtaganolide B, (+)-Transtaganolide C, and (–)-Transtaganolide D 
And Biosynthetic Implications 

199 

 
  

Figure A6.23.2 infrared spectrum (Thin Film, NaCl) of compound 126. 

Figure A6.23.3 13C NMR (75 MHz, CDCl3) of compound 126. 
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Figure A6.24.2 infrared spectrum (Thin Film, NaCl) of compound 127. 

Figure A6.24.3 13C NMR (125 MHz, CDCl3) of compound 127. 
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Figure A6.25.2 infrared spectrum (Thin Film, NaCl) of compounds 128a and 128b. 

Figure A6.25.3 13C NMR (125 MHz, CDCl3) of compounds 128a and 128b. 
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Figure A6.26.2 infrared spectrum (Thin Film, NaCl) of compounds 121a and 121b. 

Figure A6.26.3 13C NMR (125 MHz, CDCl3) of compounds 121a and 121b. 
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Figure A6.27.2 infrared spectrum (Thin Film, NaCl) of compounds 130a and 130b. 

Figure A6.27.3 13C NMR (125 MHz, CDCl3) of compounds 130a and 130b. 



Appendix 6–Spectra Relevant to Chapter 2 Total Syntheses of (–)-Transtaganolide A, 
(+)-Transtaganolide B, (+)-Transtaganolide C, and (–)-Transtaganolide D 
And Biosynthetic Implications 

208 

 
  

Fi
gu

re
 A

6.
28

.1
 1 H

 N
M

R
 (5

00
 M

H
z,

 C
D

C
l 3)

 o
f t

ra
ns

ta
ga

no
lid

e 
B

 (8
). 

O

H
H

O
O

O
O

M
eO

(+
)-t

ra
ns

ta
ga

no
lid

e 
B

 (8
)



Appendix 6–Spectra Relevant to Chapter 2 Total Syntheses of (–)-Transtaganolide A, 
(+)-Transtaganolide B, (+)-Transtaganolide C, and (–)-Transtaganolide D 
And Biosynthetic Implications 

209 

 
  

Figure A6.28.2 infrared spectrum (Thin Film, NaCl) of transtaganolide B (8). 

Figure A6.28.3 13C NMR (125 MHz, CDCl3) of transtaganolide B (8). 
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Figure A6.29.2 infrared spectrum (Thin Film, NaCl) of transtaganolide A (7). 

Figure A6.29.3 13C NMR (125 MHz, CDCl3) of transtaganolide A (7). 
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Figure A6.30.2 infrared spectrum (Thin Film, NaCl) of compound 133. 

Figure A6.30.3 13C NMR (125 MHz, CDCl3) of compound 133. 
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Figure A6.31.2 infrared spectrum (Thin Film, NaCl) of compound 135. 

Figure A6.31.3 13C NMR (125 MHz, CDCl3) of compound 135. 
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Table A7.1.5.  Hydrogen atomic coordinates 

Figure A7.1.1.  Ortep diagram of 133. The crystallographic data have been deposited in the 

Cambridge Database (CCDC) and placed on hold pending further instructions. 
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Table A7.1.1.  Crystal data and structure analysis details for 133. 

Empirical formula  C21 H31 I O4 Si 

Formula weight  502.45 

Crystallization solvent  Hexanes/Pentane  

Crystal shape  block 

Crystal color  colorless  

Crystal size 0.28 x 0.3 x 0.38 mm 

 

 Data Collection  

Preliminary photograph(s)  rotation  

Type of diffractometer  Bruker APEX-II CCD 

Wavelength  0.71073 ≈ MoK 

Data collection temperature  100 K 

Theta range for 9418 reflections used 

in lattice determination  2.69 to 49.27∞ 

Unit cell dimensions a = 7.8106(6) ≈ α = 90∞ 

 b = 9.9557(9) ≈ β = 90∞ 

 c = 29.925(3) ≈ γ  = 90∞ 

Volume 2326.9(3) ≈ 3 

Z 4 

Crystal system  orthorhombic 

Space group  P 21 21 21   (# 19) 
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Density (calculated) 1.434 g/cm3 

F(000) 1024 

Theta range for data collection 2.2 to 51.0∞ 

Completeness to theta = 25.00∞ 99.9%  

Index ranges –16 ≤ h ≤ 8, –21 ≤ k ≤ 21, –61 ≤ l ≤ 65 

Data collection scan type  and scans 

Reflections collected 91039 

Independent reflections 24693 [R
int

= 0.0329] 

Reflections > 2σ(I) 22910  

Average σ(I)/(net I) 0.0301 

Absorption coefficient 1.45 mm–1 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.8799 and 0.8128 

 

 Structure Solution and Refinement  

Primary solution method  dual 

Secondary solution method  difmap 

Hydrogen placement  geom 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 24693 / 0 / 368 

Treatment of hydrogen atoms  refall 

Goodness-of-fit on F2 1.71 
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Final R indices [I>2σ(I), 22910 reflections] R1 = 0.0322, wR2 = 0.0520 

R indices (all data) R1 = 0.0364, wR2 = 0.0525 

Type of weighting scheme used calc 

Weighting scheme used calc w=1/[^2^(Fo^2^)] 

Max shift/error  0.002 

Average shift/error  0.000 

Absolute structure parameter –0.001(5) 

Largest diff. peak and hole 2.58 and –2.43 e∑≈–3 

 

 Programs Used  

Cell refinement   SAINT V8.18C (Bruker-AXS, 2007) 

Data collection   APEX2 2012.2-0 (Bruker-AXS, 2007) 

Data reduction   SAINT V8.18C (Bruker-AXS, 2007) 

Structure solution   SHELXS-97 (Sheldrick, 1990) 

Structure refinement   SHELXL-97 (Sheldrick, 1997) 

Graphics  DIAMOND 3 (Crystal Impact, 1999) 
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Table A7.1.2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameter         

(Å2 x 103) for 133.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor 

__________________________________________________________________   

 x  y  z  Ueq 

__________________________________________________________________   

I(1) 3229(1) 3273(1) 1007(1) 15(1) 

Si(1) 8286(1) 9598(1) 296(1) 18(1) 

O(1) 5867(1) 5072(1) 2118(1) 11(1) 

O(2) 5592(1) 4487(1) 2829(1) 19(1) 

O(3) 3205(1) 6242(1) 1658(1) 17(1) 

O(4) 4368(1) 7639(1) 1154(1) 18(1) 

C(1) 6046(1) 4527(1) 1664(1) 10(1) 

C(2) 6004(1) 5727(1) 1341(1) 10(1) 

C(3) 7647(1) 6616(1) 1326(1) 12(1) 

C(4) 9209(1) 5673(1) 1298(1) 17(1) 

C(5) 9286(1) 4665(1) 1680(1) 15(1) 

C(6) 7759(1) 3724(1) 1662(1) 12(1) 

C(7) 7701(1) 2636(1) 2044(1) 13(1) 

C(8) 5895(1) 2726(1) 2272(1) 13(1) 

C(9) 4551(1) 2554(1) 1916(1) 14(1) 

C(10) 4638(1) 3483(1) 1598(1) 12(1) 

C(11) 5751(1) 4138(1) 2445(1) 12(1) 

C(12) 4363(1) 6542(1) 1412(1) 11(1) 
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C(13) 2917(1) 8524(1) 1196(1) 21(1) 

C(14) 7682(1) 7423(1) 893(1) 14(1) 

C(15) 8219(1) 8682(1) 840(1) 17(1) 

C(16) 7633(2) 8455(1) -168(1) 29(1) 

C(17) 6799(3) 11047(2) 328(1) 51(1) 

C(18) 10497(2) 10244(2) 195(1) 31(1) 

C(19) 7776(1) 7534(1) 1736(1) 15(1) 

C(20) 9053(1) 2839(1) 2411(1) 20(1) 

C(21) 7953(1) 1234(1) 1846(1) 20(1) 

__________________________________________________________________   
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Table A7.1.3.  Bond lengths [Å] and angles [°] for 133. 

___________________________________________________________   

I(1)-C(10)  2.0931(7) 

Si(1)-C(15)  1.8650(8) 

Si(1)-C(16)  1.8677(12) 

Si(1)-C(17)  1.8543(14) 

Si(1)-C(18)  1.8672(13) 

O(1)-C(1)  1.4684(9) 

O(1)-C(11)  1.3539(10) 

O(2)-C(11)  1.2063(11) 

O(3)-C(12)  1.2049(10) 

O(4)-C(12)  1.3363(10) 

O(4)-C(13)  1.4404(11) 

C(1)-C(2)  1.5377(11) 

C(1)-C(6)  1.5580(11) 

C(1)-C(10)  1.5261(11) 

C(2)-H(2)  1.015(14) 

C(2)-C(3)  1.5596(10) 

C(2)-C(12)  1.5307(10) 

C(3)-C(4)  1.5419(12) 

C(3)-C(14)  1.5258(11) 

C(3)-C(19)  1.5320(12) 

C(4)-H(4A)  1.008(15) 
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C(4)-H(4B)  0.875(17) 

C(4)-C(5)  1.5223(12) 

C(5)-H(5A)  1.052(15) 

C(5)-H(5B)  0.959(14) 

C(5)-C(6)  1.5178(12) 

C(6)-H(6)  1.030(13) 

C(6)-C(7)  1.5739(12) 

C(7)-C(8)  1.5698(11) 

C(7)-C(20)  1.5367(12) 

C(7)-C(21)  1.5297(13) 

C(8)-H(8)  1.004(16) 

C(8)-C(9)  1.5052(12) 

C(8)-C(11)  1.5022(12) 

C(9)-H(9)  0.930(16) 

C(9)-C(10)  1.3303(11) 

C(13)-H(13A)  0.951(16) 

C(13)-H(13B)  0.993(14) 

C(13)-H(13C)  0.904(18) 

C(14)-H(14)  0.928(14) 

C(14)-C(15)  1.3312(13) 

C(15)-H(15)  0.997(18) 

C(16)-H(16A)  0.915(17) 

C(16)-H(16B)  1.04(2) 
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C(16)-H(16C)  1.020(18) 

C(17)-H(17A)  0.80(3) 

C(17)-H(17B)  1.01(2) 

C(17)-H(17C)  0.99(2) 

C(18)-H(18A)  1.020(18) 

C(18)-H(18B)  0.93(2) 

C(18)-H(18C)  0.88(2) 

C(19)-H(19A)  0.904(15) 

C(19)-H(19B)  0.952(15) 

C(19)-H(19C)  0.886(16) 

C(20)-H(20A)  0.920(16) 

C(20)-H(20B)  0.950(17) 

C(20)-H(20C)  0.924(16) 

C(21)-H(21A)  1.003(14) 

C(21)-H(21B)  0.889(18) 

C(21)-H(21C)  0.987(16) 

C(15)-Si(1)-C(16) 110.06(5) 

C(15)-Si(1)-C(18) 109.60(5) 

C(17)-Si(1)-C(15) 108.59(6) 

C(17)-Si(1)-C(16) 109.91(9) 

C(17)-Si(1)-C(18) 108.64(10) 

C(18)-Si(1)-C(16) 110.01(6) 

C(11)-O(1)-C(1) 114.95(6) 



Appendix 7–X-ray Crystallography Reports: Relevant to Chapter 2 226 

C(12)-O(4)-C(13) 116.59(7) 

O(1)-C(1)-C(2) 106.94(6) 

O(1)-C(1)-C(6) 105.89(6) 

O(1)-C(1)-C(10) 107.66(6) 

C(2)-C(1)-C(6) 114.54(6) 

C(10)-C(1)-C(2) 115.60(6) 

C(10)-C(1)-C(6) 105.64(6) 

C(1)-C(2)-H(2) 105.4(8) 

C(1)-C(2)-C(3) 116.17(6) 

C(3)-C(2)-H(2) 107.3(8) 

C(12)-C(2)-C(1) 110.08(6) 

C(12)-C(2)-H(2) 103.7(8) 

C(12)-C(2)-C(3) 113.09(6) 

C(4)-C(3)-C(2) 107.88(7) 

C(14)-C(3)-C(2) 109.73(6) 

C(14)-C(3)-C(4) 105.03(6) 

C(14)-C(3)-C(19) 111.41(7) 

C(19)-C(3)-C(2) 111.72(6) 

C(19)-C(3)-C(4) 110.80(7) 

C(3)-C(4)-H(4A) 109.0(8) 

C(3)-C(4)-H(4B) 108.2(11) 

H(4A)-C(4)-H(4B) 110.6(13) 

C(5)-C(4)-C(3) 113.04(7) 
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C(5)-C(4)-H(4A) 109.2(8) 

C(5)-C(4)-H(4B) 106.8(10) 

C(4)-C(5)-H(5A) 110.4(8) 

C(4)-C(5)-H(5B) 106.8(8) 

H(5A)-C(5)-H(5B) 109.1(12) 

C(6)-C(5)-C(4) 110.45(7) 

C(6)-C(5)-H(5A) 111.9(8) 

C(6)-C(5)-H(5B) 108.1(8) 

C(1)-C(6)-H(6) 106.3(7) 

C(1)-C(6)-C(7) 109.03(6) 

C(5)-C(6)-C(1) 111.02(7) 

C(5)-C(6)-H(6) 108.4(7) 

C(5)-C(6)-C(7) 114.99(7) 

C(7)-C(6)-H(6) 106.6(7) 

C(8)-C(7)-C(6) 107.59(6) 

C(20)-C(7)-C(6) 114.06(7) 

C(20)-C(7)-C(8) 107.40(7) 

C(21)-C(7)-C(6) 110.09(7) 

C(21)-C(7)-C(8) 109.68(7) 

C(21)-C(7)-C(20) 107.94(7) 

C(7)-C(8)-H(8) 110.6(9) 

C(9)-C(8)-C(7) 108.20(6) 

C(9)-C(8)-H(8) 114.9(9) 
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C(11)-C(8)-C(7) 105.71(7) 

C(11)-C(8)-H(8) 109.7(9) 

C(11)-C(8)-C(9) 107.34(7) 

C(8)-C(9)-H(9) 119.6(9) 

C(10)-C(9)-C(8) 113.10(7) 

C(10)-C(9)-H(9) 127.0(9) 

C(1)-C(10)-I(1) 123.83(5) 

C(9)-C(10)-I(1) 120.64(6) 

C(9)-C(10)-C(1) 114.63(7) 

O(1)-C(11)-C(8) 112.82(6) 

O(2)-C(11)-O(1) 119.90(8) 

O(2)-C(11)-C(8) 127.25(8) 

O(3)-C(12)-O(4) 123.87(7) 

O(3)-C(12)-C(2) 125.54(7) 

O(4)-C(12)-C(2) 110.58(6) 

O(4)-C(13)-H(13A) 107.9(10) 

O(4)-C(13)-H(13B) 110.3(8) 

O(4)-C(13)-H(13C) 110.2(12) 

H(13A)-C(13)-H(13B) 109.1(12) 

H(13A)-C(13)-H(13C) 114.6(15) 

H(13B)-C(13)-H(13C) 104.8(14) 

C(3)-C(14)-H(14) 113.4(9) 

C(15)-C(14)-C(3) 127.14(8) 
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C(15)-C(14)-H(14) 119.3(9) 

Si(1)-C(15)-H(15) 116.0(10) 

C(14)-C(15)-Si(1) 125.05(7) 

C(14)-C(15)-H(15) 118.5(10) 

Si(1)-C(16)-H(16A) 108.5(10) 

Si(1)-C(16)-H(16B) 110.7(10) 

Si(1)-C(16)-H(16C) 113.9(11) 

H(16A)-C(16)-H(16B) 106.6(15) 

H(16A)-C(16)-H(16C) 112.0(15) 

H(16B)-C(16)-H(16C) 104.8(15) 

Si(1)-C(17)-H(17A) 105(2) 

Si(1)-C(17)-H(17B) 110.7(13) 

Si(1)-C(17)-H(17C) 103.4(14) 

H(17A)-C(17)-H(17B) 103(2) 

H(17A)-C(17)-H(17C) 126(2) 

H(17B)-C(17)-H(17C) 108.5(18) 

Si(1)-C(18)-H(18A) 111.1(11) 

Si(1)-C(18)-H(18B) 109.9(13) 

Si(1)-C(18)-H(18C) 104.1(16) 

H(18A)-C(18)-H(18B) 109.8(16) 

H(18A)-C(18)-H(18C) 108.5(18) 

H(18B)-C(18)-H(18C) 113(2) 

C(3)-C(19)-H(19A) 112.9(10) 
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C(3)-C(19)-H(19B) 112.8(9) 

C(3)-C(19)-H(19C) 110.1(9) 

H(19A)-C(19)-H(19B) 104.8(13) 

H(19A)-C(19)-H(19C) 105.1(13) 

H(19B)-C(19)-H(19C) 110.7(13) 

C(7)-C(20)-H(20A) 107.2(10) 

C(7)-C(20)-H(20B) 110.3(10) 

C(7)-C(20)-H(20C) 110.6(9) 

H(20A)-C(20)-H(20B) 107.5(13) 

H(20A)-C(20)-H(20C) 111.0(14) 

H(20B)-C(20)-H(20C) 110.3(14) 

C(7)-C(21)-H(21A) 107.9(8) 

C(7)-C(21)-H(21B) 114.7(12) 

C(7)-C(21)-H(21C) 113.7(9) 

H(21A)-C(21)-H(21B) 110.7(12) 

H(21A)-C(21)-H(21C) 109.6(12) 

H(21B)-C(21)-H(21C) 100.0(14) 

___________________________________________________________   

Symmetry transformations used to generate equivalent atoms: 
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Table A7.1.4.  Anisotropic displacement parameters (Å2x 104) for 133.  The anisotropic 

displacement factor exponent takes the form: –2π2 [h2 a*2 U11  + ... + 2 h k a* b* U12] 

_________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

_________________________________________________________________  

I(1) 153(1)  162(1) 141(1)  –20(1) –36(1)  –19(1) 

Si(1) 248(1)  130(1) 151(1)  45(1) 40(1)  16(1) 

O(1) 155(2)  82(2) 85(2)  0(2) 5(2)  6(2) 

O(2) 318(4)  150(3) 106(2)  8(2) 23(2)  13(2) 

O(3) 139(2)  179(3) 181(2)  39(2) 29(2)  33(2) 

O(4) 154(2)  162(3) 233(3)  93(2) 1(2)  34(2) 

C(1) 116(2)  85(3) 86(2)  1(2) –1(2)  3(2) 

C(2) 110(2)  91(3) 94(2)  6(2) –6(2)  –1(2) 

C(3) 120(2)  109(3) 117(3)  16(2) –6(2)  –15(2) 

C(4) 117(3)  181(4) 200(4)  68(3) 24(2)  9(2) 

C(5) 106(3)  166(4) 192(3)  48(3) –7(2)  8(2) 

C(6) 119(2)  112(3) 115(3)  6(2) 5(2)  24(2) 

C(7) 148(3)  98(3) 148(3)  17(2) –11(2)  20(2) 

C(8) 167(3)  90(3) 131(3)  22(2) –1(2)  2(2) 

C(9) 149(3)  98(3) 160(3)  5(2) 2(2)  –15(2) 

C(10) 115(2)  103(3) 128(3)  -4(2) –16(2)  –9(2) 

C(11) 161(3)  103(3) 108(3)  14(2) 5(2)  7(2) 

C(12) 118(2)  99(3) 118(3)  7(2) –19(2)  9(2) 
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C(13) 192(4)  165(4) 271(4)  34(3) –35(3)  58(3) 

C(14) 151(3)  149(3) 115(3)  23(2) 9(2)  –11(2) 

C(15) 237(3)  132(3) 147(3)  26(2) 28(3)  –6(3) 

C(16) 380(6)  294(6) 191(4)  60(4) –41(3)  –109(4) 

C(17) 732(12)  401(8) 403(8)  181(7) 221(8)  366(9) 

C(18) 363(6)  296(6) 274(5)  104(5) –16(4)  –138(5) 

C(19) 190(3)  143(3) 124(3)  8(3) –24(2)  –49(3) 

C(20) 189(3)  211(4) 188(4)  57(3) –58(3)  5(3) 

C(21) 238(4)  119(3) 256(4)  –9(3) 21(3)  51(3) 

_________________________________________________________________  
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Table A7.1.5.  Hydrogen coordinates ( x 103) and isotropic displacement parameters (Å2 x 103) for 

133. 

___________________________________________________________________  

 x  y  z  Uiso 

___________________________________________________________________  

H(2) 585(2) 532(1) 103(1) 16(3) 

H(4A) 917(2) 517(1) 100(1) 18(3) 

H(4B) 1014(2) 616(2) 132(1) 23(4) 

H(5A) 937(2) 517(2) 199(1) 20(3) 

H(5B) 1030(2) 414(1) 164(1) 11(3) 

H(6) 779(2) 321(1) 136(1) 10(3) 

H(8) 581(2) 208(2) 253(1) 24(4) 

H(9) 384(2) 181(2) 192(1) 22(3) 

H(13A) 197(2) 811(2) 105(1) 28(4) 

H(13B) 316(2) 940(1) 105(1) 16(3) 

H(13C) 273(2) 872(2) 149(1) 38(5) 

H(14) 735(2) 693(2) 64(1) 17(3) 

H(15) 848(2) 923(2) 111(1) 37(5) 

H(16A) 657(2) 812(2) –11(1) 30(4) 

H(16B) 845(2) 763(2) –19(1) 40(5) 

H(16C) 768(2) 889(2) –48(1) 42(5) 

H(17A) 587(4) 1072(3) 33(1) 80(10) 

H(17B) 680(3) 1156(2) 4(1) 65(6) 
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H(17C) 731(3) 1162(2) 56(1) 59(6) 

H(18A) 1056(2) 1077(2) –10(1) 37(5) 

H(18B) 1127(3) 953(2) 19(1) 48(6) 

H(18C) 1068(3) 1080(2) 42(1) 58(6) 

H(19A) 875(2) 802(2) 174(1) 22(4) 

H(19B) 777(2) 705(2) 201(1) 23(4) 

H(19C) 694(2) 814(2) 173(1) 21(3) 

H(20A) 885(2) 220(2) 263(1) 23(4) 

H(20B) 892(2) 370(2) 255(1) 25(4) 

H(20C) 1014(2) 275(2) 229(1) 24(4) 

H(21A) 910(2) 121(2) 170(1) 14(3) 

H(21B) 714(2) 98(2) 166(1) 31(4) 

H(21C) 788(2) 50(2) 207(1) 25(4) 

___________________________________________________________________ 
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CHAPTER 3 

Negishi Cross-Coupling of Zinc Methoxyacetylides and Protecting-

Group-Free Total Syntheses of Basiliopyrone 

And Transtaganolides C and D 

3.1 INTRODUCTION 

Having successfully synthesized transtaganolides A–B (7–10, Figure 3.1.1) 

(basiliolide B (11), epi-basiliolide B (42), basiliolide C (12), and epi-basiliolide C (43)) 

by means of a concise general synthetic strategy, we once again revisited this general 

synthetic strategy, aiming to further improve upon it.1  Our approach employed an 

Ireland–Claisen, Diels–Alder cycloaddition cascade (ICR/DA) to build the ABD tricyclic 

core followed by formal [5+2] annulation strategy to build the 7-membered C-ring.  

Although our strategy allowed for rapid assembly of the transtaganolide and basiliolide 

natural products, the key formal [5+2] annulation, which builds the ketene-acetal 

containing 7-membered C-ring, was inefficient, a trend observed in all of our reported 

total syntheses.  Transtaganolides A and B (7 and 8) proceeded in 35% combined yield 

from tetracycles 130a and 130b (Scheme 3.1.1A).  Transtaganolides C and D (9 and 10) 

proceeded in 31% combined yield from tricycles 63a and 63b (Scheme 3.1.1B).  
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Basiliolide B (11) and epi-basiliolide B (42) were formed in 18% combined yield from 

silyl esters 67a and 67b (Scheme 3.1.1C).  Lastly, basiliolide C (12) and epi-basiliolide C 

(43) were formed in 17% combined yield from tricycles 89a and 89b (Scheme 3.1.1D).  

Furthermore, these transformations require stoichiometric palladium and super-

stoichiometric quantities of the organostannane.  To date, similar cross-coupling reactions 

of organostannanes have not been accomplished on substrates of such complexity, and 

few examples are known that utilize stannyl oxy-acetylides.2  Therefore, we sought to 

improve the efficiency of this challenging cross-coupling through improved yield, 

reduced catalyst loading, and reduction or elimination of equivalents of stannane utilized. 

 

Figure 3.1.1.  Transtaganolides and basiliolides (7–12, 42, and 43). 
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Scheme 3.1.1.  A) Cross-coupling to form transtaganolides A and B (7 and 8).  B) Cross-coupling to 

form transtaganolides C and D (9 and 10).  C) Cross-coupling to form basiliolide B (11) and epi-

basiliolide B (42).  D) Cross-coupling to form basiliolide C (12) and epi-basiliolide C (43). 
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3.2 MODEL CROSS-COUPLING REACTIONS OF ZINC 

METHOXYACETYLIDES 

In 1992, Himbert and Löffler reported a palladium-catalyzed cross-coupling of zinc 

alkoxyacetylides to simple aryl iodides.3 Inspired by this precedent, we began 

investigations of palladium catalyzed cross-coupling reactions of a zinc alkoxyacetylide 

to form the characteristic C-ring of the series. 

Synthesis of the precedented zinc alkoxyacetylide (136) proceeded via known 

treatment of 1,1-dimethoxy-2-chloro-acetaldehyde (60) with 3 equivalents of lithium 

diethyl amide to form the putative lithium acetylide 614, which is then trapped as the zinc 

acetylide 136 by the addition of anhydrous zinc chloride (Scheme 3.2.1).  The 

methoxyethynyl zinc chloride (136) was stored at 0 °C as the crude solution and always 

used within hours of preparation.5 

Scheme 3.2.1.  Synthesis of methoxyethynyl zinc chloride (136). 

 

As a model system, Pd-catalyzed coupling of organozinc 136 to iodo-cyclohexene 

(137)6 was evaluated (Table 3.2.1).  Initially, we investigated a variety of bidentate 

ligands, as well as those conditions described by Himbert and Löffler.  Spontaneous 

hydration of the cross-coupled product 138 on work-up yielded methyl ester 139, which 

could be quantified to determine the overall yield of the process.  We found that the 

conditions reported by Himbert and Löffler (Table 3.2.1, entry 1) did not extend readily 

from aryl iodides to vinyl iodides such as iodo-cyclohexene (137).  The use of an N,N–
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ligand, bipyridine (entry 2) as well as a P,N-ligand, H2PHOX (entry 3) resulted in 

approximately 50% consumption of the vinyl iodide 137, giving 0% or 10% yield of the 

product 139, respectively.  This large discrepancy between substrate 137 conversion and 

the calculated of yield 139 is general and attributed to the rapid decomposition of the 

cross-coupled product 138 under the reaction conditions.  Among the diphosphines 

tested, BINAP (entry 4) gave 40% conversion of iodo-cyclohexene (137), but 

unfortunately provided the product 139 in a mere 6% yield.  Dppe (entry 6) was found to 

provide no reactivity, whereas dpp-benzene (entry 5) and dppp (entry 7) gave minimal 

conversions (13% and 22%, respectively) and poor yields (6% and 7%, respectively).  

Lastly dppb (entry 8) and dppf (entry 9) gave the highest yields (13% and 17%, 

respectively) and 100% conversion of iodo-cyclohexene (137).  Although the yields were 

quite low, we were delighted to have found conditions that employ substoichiometric 

quantities of palladium for this challenging cross-coupling reaction. 
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Table 3.2.1. Ligand screen for the cross-coupling of methoxyethynyl zinc chloride (136) and iodo-

cyclohexene (137). 

 

3.3 LIGAND BITE ANGLES AND THE RELATIONSHIP TO 

ORGANOZINC CROSS-COUPLING OF METHOXYETHYNYL ZINC 

CHLORIDE 

In our reported cross-coupling reactions of organostannanes, as well as the studies 

reported by others, the major decomposition pathway was Heck polymerization of the 

137

entry

Pd2(dba)3
(5 mol%)

ligand
(15 mol%)

(136 , 1.5 equiv)
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8 dppb 100 13
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alkoxy alkynyl moiety.3  We posited that the non-productive polymerization pathway led 

to degradation of the metal methoxyacetylide (i.e., 62 or 136), degradation of the 

intermediate eneyne (e.g., 138), and degradation of the catalyst.  We reasoned that these 

non-productive pathways necessitated stoichiometric quantities of palladium in our [5+2] 

annulation.  Thus, we were pleased to find that dppb and dppf (Table 3.2.1, entry 8 and 9, 

respectively) could accomplish the coupling of organozinc 136 to iodide 137 utilizing 

substoichiometric quantities of palladium. 

The superior reactivity demonstrated by both dppb and dppf were attributed to their 

relatively large bite angles (98° and 96° bite angles, respectively).7  It has been shown 

that bidentate ligands with large bite angles are poor catalysts for ethylene carbonylative 

polymerization reactions,8 which require an inner-sphere cis-geometry of monomers.  We 

therefore envisioned that trans-chelating ligands could improve the efficiency of our 

reaction through the attenuation of acetylide polymerization, the putative catalyst, and 

substrate decomposition pathway.  Thus, we were eager to investigate Xantphos (Table 

3.3.1, entries 9–12) within our reaction manifold, because of its large bite angle (111°) 

and demonstrated propensity for trans-chelation.7, 8 

We probed this hypothesis again through cross-coupling reactions of methoxyethynyl 

zinc chloride (136) and iodo-cyclohexene (137, Table 3.3.1), tabulating the conversion 

and yield as a function of time for dppb (Table 3.3.1, entries 1–4), dppf (entries 5–8), and 

Xantphos (entries 9–12).  Consistent with our hypothesis, dppb and dppf (entries 1–4 and 

5–8 respectively) with similar bite angles of 98° and 96° gave similar yields, 35% and 

31% respectively.  Xantphos (entries 9–12) with a considerably larger bite angle of 111° 

provided the product in 48% yield.  Furthermore, for all three ligand-catalyst frameworks 
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we observed product decomposition by the end of the 4 h window that the reactions were 

monitored, suggesting polymerization was possibly still a competing pathway. 

Table 3.3.1.  Comparing dppb, dppf, and Xantphos as ligands for catalyzing the cross-coupling of 

methoxyethynyl zinc chloride (136) and iodo-cyclohexene (137) as a function of time. 

 

3.4 APPLICATIONS OF ORGANOZINC CROSS-COUPLINGS TO THE 

SYNTHESES OF TRANSTAGANOLIDE NATURAL PRODUCTS 

Having found Xantphos to be optimal for achieving the cross-coupling of acetylide 

136 to vinyl iodide 137, we moved from the model iodide 137 to the tricyclic 

transtaganolide core 63a and 63b.  Unfortunately, our procedure did not readily translate 

to the more complex vinyl iodide (63a and 63b) utilized in the total synthesis (Scheme 

3.4.1A).  Under these conditions we observed minimal substrate consumption and no 
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noticeable product formation; surprisingly, use of stoichiometric palladium loading led to 

trace product formation.  We attribute this poor reactivity to the demanding steric 

environment of the substrate when compared to the simple cyclohexene 137 utilized in 

the model studies.  In an effort to overcome the putative kinetic barrier, we explored 

heating of the reaction mixture. Ultimately, we found that microwave heating (100 °C) 

for short durations (<1 min) led to observable product formation (140a and 140b, 

Scheme 3.4.1B).  However, because of the rapid rate of product 140a and 140b 

decomposition at 100 °C, as well as the very short reaction time, the coupling could not 

be scaled and had poor reproducibility. 

Scheme 3.4.1.  A) Cross-coupling of tricycles 63a and 63b using the palladium Xantphos catalytic 

conditions developed on model cross-couplings to iodo-cyclohexene (137).  B) Cross-coupling of 

tricycles 63a and 63b facilitated by microwave irradiation. 
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ester 57 bears a heteroaromatic iodine far more accessible for cross-coupling (Scheme 

3.4.2).  To our delight, palladium catalyzed cross-coupling of ICR/DA precursor 57 and 

methoxyacetylide 136 proceeded in 19% yield.  Furthermore, we were pleased to find 

that the eneyne 141 could be purified by silica column chromatography without hydration 

or decomposition. 

Scheme 3.4.2.  Retrosynthetic Analysis illuminates a viable cross-coupling substrate pyrone ester 57. 

 

With a viable cross-coupling partner in pyrone 57, we proceeded with optimization of 

the reaction conditions.  Initial optimization was accomplished in a nitrogen filled 
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Table 3.4.1.  Comparing methoxyethynyl zinc chloride (136) equivalents, catalyst loading, and 

concentration as they effect the cross-coupling reaction at 50 °C of organozinc 136 and pyrone 57 

as a function of time. 

 

In our second optimization screen, reactions were performed at 40 °C (Table 3.4.2).  

3.0 equivalents of organozinc 136 (entries 4–6) gave higher yields than 2.0 equivalents 

(entries 1–3).  Lower catalyst loadings (comparing entries 7–12 to entries 1–6) gave 

lower yields similar to experiments executed at 50 °C (Table 3.4.1).  Furthermore, when 

comparing reactions carried out at 40 °C (Table 3.4.2, entries 1–3) to those conducted at 
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mol% Pd2(dba)3

10
10
10
10
10
10

10
10
10
10
10
10

mol% Xantphos

20
20
20
20
20
20

20
20
20
20
20
20

13 2.0 0.05 M 15 min 38
14 2.0 0.05 M 30 min 39
15 2.0 0.05 M 45 min 27
16 2.0 0.05 M 1 h —b

17 2.0 0.05 M 1.5 h 25
18 2.0 0.05 M 2.5 h —b

5
5
5
5
5
5

10
10
10
10
10
10

19 2.0 0.02 M 15 min 20
20 2.0 0.02 M 30 min 21
21 2.0 0.02 M 45 min 17
22 2.0 0.02 M 1 h 16
23 2.0 0.02 M 1.5 h 15
24 2.0 0.02 M 2.5 h —b

5
5
5
5
5
5

10
10
10
10
10
10
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50 °C (Table 3.4.1, entries 1–6), reactions times were slower, as expected, and yields 

only slightly differed.  For this reason, all remaining cross-coupling reactions were 

executed at 50 °C for substrate 57. 

Table 3.4.2.  Comparing methoxyethynyl zinc chloride (136) equivalents and catalyst loading as 

they effect the cross-coupling reaction at 40 °C of organozinc 136 and pyrone 57 as a function of 

time. 

 

Having accomplished two rounds of optimization for the cross-coupling reaction of 

pyrone 57 and methoxyethynyl zinc chloride (136), we applied what we had learned from 

the optimization and performed the cross-coupling on a larger scale (Scheme 3.4.3).  To 

our delight, using 10 mol% Pd2(dba)3, 20 mol% Xantphos, and 3.5 equivalents of 

methoxyacetylide 136, we formed product 141 in 25 min of 50 °C heating in 61% yield, 

as determined by SFC and 44% isolated yield.  The discrepancy between the 61% yield 

entry

Pd2(dba)3
Xantphos

136
THF (0.05M)
40 °C, time

OMeClZn

equiv 136

1 2.0

a Determined by SFC using diphenylether internal standard.

OO

O

O

I

57

OO

O

O

141

OMe

time yield of 141  (%) a

15 min 29
2 2.0 30 min 42
3 2.0 1 h 32

mol% Pd2(dba)3

10
10
10

mol% Xantphos

20
20
20

4 3.0 15 min 37
5 3.0 30 min 52
6 3.0 1 h 35

10
10
10

20
20
20

7 2.0 15 min 22
8 2.0 30 min 27
9 2.0 1 h 27

5
5
5

10
10
10

10 3.0 15 min 27
11 3.0 30 min 34
12 3.0 1 h 28

5
5
5

10
10
10
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as determined by SFC and the 44% isolated yield was not unexpected.  Even though 

eneyne 141 could be isolated by column chromatography, it was clear that product 141 

decomposed over time, and therefore we expected to observe some decomposition during 

purification.  

Scheme 3.4.3.  Cross-coupling of pyrone 57 and methoxyethynyl zinc chloride (136) using our 

optimized reaction conditions. 

 

3.5 PROTECTING-GROUP-FREE SYNTHESES OF BASILIOPYRONE 

AND TRANSTAGANOLIDES C AND D 

Having developed an acceptable method for the palladium catalyzed Negishi cross-

coupling of methoxyethynyl zinc chloride (136) and pyrone ester 57, we could 

successfully form eneyne 141, which could be taken on to transtaganolides C and D (9 

and 10) as well as basiliopyrone (3).  If desired, eneyne 141 could be hydrated by 

treatment with aqueous sulfuric acid in acetonitrile to cleanly furnish basiliopyrone (3) in 

40% yield (Scheme 3.5.1).  The total synthesis of basiliopyrone (3) required seven steps 

(longest linear sequence) from commercially available material. 

OO

O

O

I
Pd2(dba)3
(10 mol%)
Xantphos
(20 mol%)

(136 , 3.5 equiv)
THF, 50 °C

25 min

OMeClZn

57

OO

O

O

141

SFC yield: 61%
isolated yield: 44%

OMe
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Scheme 3.5.1.  Acid catalyzed hydration of 141 allows for the formation of basiliopyrone (3). 

 

Finally, minor modification of our reported ICR/DA cascade conditions allowed 

direct access to transtaganolides C and D (9 and 10) in a single step from the alkynyl 

pyrone ester 141 as a 2:1 mixture of diastereomers in 14% combined yield (Scheme 

3.5.2).  Because of the thermal instability of the substrate (141) the cascade was 

performed at a lower temperature (70 °C) than our standard conditions and in a nitrogen 

filled glovebox to ensure the absolute exclusion of adventitious water.  Furthermore, the 

Ireland–Claisen step of the cascade proceeded smoothly, but the Ireland–Claisen products 

(142a and 142b) we found to be unstable and prone to decomposition.  Nevertheless, we 

were satisfied to observe the successful [4+2] cycloaddition of a substrate (142a or 142b) 

bearing an electron-donating methoxy alkynyl moiety on the pyrone ring (all prior pyrone 

Diels-Alder cycloadditions had required electron-withdrawing substituents).  While low 

yielding, this one-pot procedure forms three rings, two all-carbon quaternary centers, and 

four tertiary stereocenters from a simple monocyclic, achiral precursor (141).  Finally, the 

success of this cascade process further implicates the Ireland–Claisen/Diels–Alder 

sequence as a potential biosynthetic route. 

OO

O

O

141

OMe

OO

O

O

basiliopyrone (3)

O

MeO
MeCN, 1 M
H2SO4 (aq)

 
23 °C, 24 h

(40% yield)
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Scheme 3.5.2.  A one-pot synthesis of transtaganolides C and D (9 and 10) from alkynyl pyrone 

141. 

 

3.6 CONCLUSION 

In conclusion, we have improved our previously disclosed [5+2] annulation of 

methoxy acetyl stannane 62 by obviating the need for organotin reagents and developing 

a complimentary Negishi cross-coupling of methoxyacetylide 136.  This methodology, 

which employs catalytic quantities of a Xantphos palladium complex, was used to furnish 

the alkynyl pyrone ester 141.  The cross-coupled product 141 could be hydrated to 

furnish basiliopyrone (3) or, to our delight, transformed in a single step cascade process 

into transtaganolides C and D (9 and 10). 
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+
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O
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3.7 EXPERIMENTAL SECTION 

3.7.1 Materials and Methods 

Unless otherwise stated, reactions were performed in flame-dried glassware under an 

argon or nitrogen atmosphere using dry deoxygenated solvents.  Solvents were dried by 

passage through an activated alumina column under argon.  Chemicals were purchased 

from Sigma-Aldrich Chemical Company and used as received.  Pd(PPh3)4 was prepared 

using known methods.  Thin layer chromatography (TLC), both preparatory and 

analytical, was performed using E. Merck silica gel 60 F254 precoated plates (0.25 mm) 

and visualized by UV fluorescence quenching, p-anisaldehyde, I2, or KMnO4 staining. 

Analytical super critical fluid (SFC) chromatography was performed using a Thar SFC 

and either Chiralpak IA or AD-H columns.  Preparatory SFC was performed with a Jasco 

SFC and a prep AD-H column (21 x 250 mm, 5mic part# 19445).   ICN Silica gel 

(particle size 0.032–0.063 mm) was used for flash chromatography.  1H NMR and 13C 

NMR spectra were recorded on a Varian Mercury 300 (at 300 MHz) or on a Varian Unity 

Inova 500 (at 500 MHz).  1H NMR spectra are reported relative to CDCl3 (7.26 ppm).  

Data for 1H NMR spectra are reported as follows: chemical shift (ppm), multiplicity, 

coupling constant (Hz), and integration.  Multiplicities are reported as follows: s = 

singlet, d = doublet, t = triplet, q = quartet, sept. = septet, m = multiplet, bs = broad 

singlet, bm = broad multiplet.  13C NMR spectra are reported relative to CDCl3 (77.16 

ppm).  FTIR spectra were recorded on a Perkin Elmer SpectrumBX spectrometer and are 

reported in frequency of absorption (cm-1).  HRMS were acquired using an Agilent 6200 

Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI), 
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atmospheric pressure chemical ionization (APCI), or multimode-ESI/APCI.  

Crystallographic data were obtained from the Caltech X-Ray Diffraction Facility. 
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3.7.2 PREPARATIVE PROCEDURES 

 

 

Methoxyethynyl zinc chloride (136).  In a nitrogen glovebox, to a 0 °C solution of 

HNEt2 (807 µL, 7.8 mmol) in THF (4.25 mL) was added a 2.5 M solution of n-BuLi in 

hexanes (2.72 mL, 6.8 mmol).  The reaction was stirred for 25 min at 0 °C at which point 

1,1-dimethoxy-2-chloro-acetaldehyde (60) was added (228 µL, 2.0 mmol).  The reaction 

was stirred at 0 °C and the formation of white precipitate was observed.  After 2 h of 

stirring at 0 °C, anhydrous zinc chloride was added (300 mg, 2.2 mmol), and the reaction 

was stirred for another 15 min at 0 °C or until all the zinc chloride had dissolved.  The 

resulting 0.25 M solution of methoxyethynyl zinc chloride (136) in THF was kept at 0 

°C, in the glovebox, and used, as is, within hours of its generation. 

 

 

Methyl 2-(cyclohex-1-en-1-yl)acetate (139).  General Procedure: In a nitrogen filled 

glovebox were combined Pd2(dba)3 (1.4 mg, 1.5 µmol), Xantphos (2.6 mg, 4.5 µmol), 

and THF (180 µL) in a glass vial.  The reaction mixture was stirred for 30 min at 30 °C.  

Then a 1 M solution of known iodo-cyclohexene6 (137) in THF (30 µL, 0.030 mmol), 

LiNEt2
(3 equiv)

THF
0 °C, 2 h

OMe

ClZn
136

Cl
H

OMeMeO

60

OMe

Li
61

ZnCl2
(1 equiv)

0 °C, 20 min

137

Pd2(dba)3
(5 mol%)

ligand
(15 mol%)

(136 , 1.5 equiv)
THF, 30 °C, 3 h

OMeClZn

I

138

OMe

139

OMe

O

H2O
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internal standard tridecane (6 µL, 0.025 mmol), and freshly made 0.05 M 

methoxyethynyl zinc chloride (136) solution (90 µL, 0.045 mmol) were added 

sequentially and the solution was stirred at 30 °C.  Aliquots (5 µL) were taken from the 

reaction solution at 15 min, 1 h, 2.5 h, and 4.5 h.  Aliquots were diluted with Et2O, 

pushed through a short pad of silica, and then injected on GC for analysis.  Yields of 

methyl ester 139 and consumption of vinyl iodide 137 were then quantified.  All spectral 

data for 139 match the literature.9 

 

 

(E)-3,7-dimethylocta-2,6-dien-1-yl 2-(5-(methoxyethynyl)-2-oxo-2H-pyran-6-

yl)acetate (141).  In a nitrogen filled glovebox, a solution of Pd2(dba)3 (18.8 mg, 0.0205 

mmol) and Xantphos (23.8 mg, 0.0411 mmol) in THF (900 µL) was stirred at 40 °C for 

25 min.  Following the catalyst pre-stir, 57 (85.6 mg, 0.206 mmol) was added as a 

solution in THF (350 µL) with internal standard diphenylether (37.1 mg, 0.218 mmol).  

This was subsequently followed by the addition of freshly generated 0.25 M solution of 

methoxyethynyl zinc chloride (136) (2.9 mL, 0.719 mmol).  The resulting 0.05 M 

reaction solution was heated to 50 °C and stirred for 25 min.  The reaction mixture was 

then immediately removed from heat, diluted with 0 °C THF (12 mL), removed from the 

OO

O

O

I
Pd2(dba)3
(10 mol%)
Xantphos
(20 mol%)

(136 , 3.5 equiv)
THF, 50 °C

25 min

OMeClZn

57

OO

O

O

141

SFC yield: 61%
isolated yield: 44%

OMe
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glovebox, and flushed through a short pad of silica, eluding with a 30% solution of Et2O 

in hexanes (150 mL).  A small aliquot was then shot on SFC for analysis.  Solvent was 

then removed by rotary evaporation and purified by column chromatography (EtOAc in a 

50% solution of CH2Cl2 in hexanes 1%→2% on silica) to give 31 mg (44% isolated yield, 

61% SFC yield) of 141 as a reddish, yellow oil; 1H NMR (500 MHz, CDCl3) δ  7.23 (d, J 

= 9.6 Hz, 1H), 6.20 (d, J = 9.6 Hz, 1H), 5.32 (tq, J = 7.1, 1.3 Hz, 1H), 5.08–5.04 (m, 1H), 

4.65 (d, J = 7.2 Hz, 2H), 3.96 (s, 3H), 3.71 (s, 2H), 2.13–1.98 (m, 4H), 1.69 (s, 3H), 1.67 

(s, 3H), 1.59 (s, 3H); 13C NMR (125 MHz, CDCl3) δ  167.6, 160.8, 159.9, 146.8, 143.2, 

132.0, 123.8, 117.8, 114.5, 104.4, 103.5, 66.4, 62.6, 39.6, 38.8, 31.8, 26.4, 25.8, 17.8, 

16.6; FTIR (Neat Film NaCl) 2926, 2856, 2271, 1742, 1634, 1548, 1446, 1418, 1377, 

1347, 1318, 1294, 1238, 1208, 1167, 1134, 1064, 1040, 969, 895, 870, 826 cm–1; HRMS 

(Multimode-ESI/APCI) m/z calc’d for C20H25O5 [M+H]+: 345.1697, found 345.1701. 

 

 

Basiliopyrone (3).  To a 23 °C solution of 141 (19 mg, 0.055 mmol) in MeCN (2 

mL) was added a 1M solution of H2SO4 in water (500 µL).  The reaction mixture was 

then stirred at 23 °C for 24 h.  After the reaction had gone to completion, the mixture was 

slowly quenched with a saturated solution of NaHCO3 (5 mL), such that the reaction 

mixture was no longer acidic.  The solution was then extracted with EtOAc (4x 8 mL).  

OO

O

O

141

OMe

OO

O

O

basiliopyrone (3)

O

MeO
MeCN, 1 M
H2SO4 (aq)

 
23 °C, 24 h

(40% yield)
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The organics were combined and sequentially washed with saturated NaHCO3 solution 

(25 mL), saturated brine solution (25 mL), and then once again with saturated NaHCO3 

solution (25 mL), and saturated brine solution (25 mL).  The organics were then dried 

over Na2SO4 and solvent was removed by rotary evaporation.  Purification by column 

chromatography (EtOAc in hexanes 10%→25% on silica) yielded 8.1 mg (40% yield) of 

basiliopyrone (3) as a pale yellow oil.  The spectroscopic data obtained from synthetic 3 

match those published from natural sources; 1H NMR (300 MHz, CDCl3) δ 7.27 (d, J = 

9.9 Hz, 1H), 6.27 (d, J = 9.5 Hz, 1H), 5.31 (tq, J = 7.2, 1.3 Hz, 1H), 5.10–5.04 (m, 1H), 

4.64 (d, J = 7.2 Hz, 2H), 3.71 (s, 3H), 3.59 (s, 2H), 3.35 (s, 2H), 2.16–1.98 (m, 4H), 1.69 

(s, 3H), 1.68 (s, 3H), 1.60 (s, 3H); 13C NMR (125 MHz, CDCl3) δ  170.3, 167.5, 161.3, 

155.8, 146.4, 143.4, 132.0, 123.9, 117.8, 115.3, 111.1, 62.9, 52.5, 39.7, 37.7, 34.9, 26.5, 

25.8, 17.8, 16.7; FTIR (Neat Film NaCl) 2954, 2924, 2857, 1738, 1650, 1557, 1437, 

1378, 1347, 1302, 1241, 1166, 1103, 1070, 975, 951, 872, 829 cm–1; HRMS (Multimode-

ESI/APCI) m/z calc’d for C20H26O6 [M+H]+: 363.1802, found 363.1792. 
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Transtaganolides C (9) and D (10).  To assure absolute purity of 141 (10 mg, 0.029 

mmol), directly following its isolation, the substrate (141) was submitted to 1H NMR in 

C6D6 and upon confirmation of its purity, the solvent was pumped off in the anti-chamber 

of a nitrogen filled glove box.  This limited the possibility of substrate 141 decomposition 

as well as removed any deleterious, residual water.  While the NMR solvent was removed 

in the anti-chamber, in the nitrogen filled glove box, the reaction glassware was silylated 

by the addition of BSA (20 µL), triethylamine (0.41 µL), and PhMe (5 mL).  This 

solution was heated to 70 °C and stirred for 30 min.  The solution was then cooled to 

ambient temperature and then discarded.  The reaction vessel was then rinsed with PhMe 

(3 x 1 mL).  Once all C6D6 was removed from the substrate 141, 141 (10 mg, 0.029 

mmol) was transferred to the previously silylated reaction vessel with PhMe (600 µL, 

0.05M).  To this solution was then added BSA (17.8 µL, 0.073 mmol) and triethylamine 

(0.041 µL, 0.0029 mmol).  The reaction solution was heated to 70 °C and stirred for 2.75 
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h, at which point the Ireland–Claisen rearrangement had gone to completion.  The 

reaction was then cooled to ambient temperature and diluted with PhMe (9.2 mL, 

0.003M) that had been doped with excess BSA (12.25 µL, PhMe:BSA = 1 mL:1.25 µL).  

The reaction mixture was then reheated to 70 °C and stirred for 5 d and 6 h.  The reaction 

mixture was cooled to ambient temperature and removed from the nitrogen filled 

glovebox.  The solution was concentrated by rotary evaporation and to the crude reaction 

residue was added MeCN (8 mL) and pH 7 phosphate buffer (100 µL).  This solution was 

stirred at 23 °C for 3 h to allow for silyl cleavage and cyclization to the desired natural 

products (9 and 10).  MeCN was then removed by passing a stream of air over the 

solution (rotary evaporation could not be accomplished without bumping the crude 

reaction mixture), and the remaining aqueous solution was further diluted with water 

(800 µL) and saturated brine (200 µL).  The aqueous solution was then extracted with 

EtOAc (5 x 1 mL).  The organics were pooled, dried over Na2SO4, and then concentrated 

by rotary evaporation.  The crude oil was purified by normal phase HPLC (30% EtOAc 

in hexanes) to yield 0.90 mg (9% yield) of transtaganolide C (9) and 0.46 mg (5% yield) 

of transtaganolide D (10).  The spectroscopic data obtained from synthetic 9 and 10 

match those published from natural sources. 
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A8.1 SYNTHETIC SUMMARY FOR BASILIOPYRONE AND 

TRANSTAGANOLIDES C AND D 

Scheme 8.1.1.  Protecting-group-free synthesis of basiliopyrone (3). 
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Scheme 8.1.2.  Protecting-group-free syntheses of transtaganolides C and D (9–10). 
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A9.1 GAS CHROMATOGRAPHY DATA FOR ORGANOZINC CROSS-

COUPLING OPTIMIZATION 

 

 

Yields of methyl ester 1391 and consumption of vinyl iodide 1372 were quantified 

using the calibration curves (Figure 9.1.1A and B), which graph the area ratio of gas 

chromatography (GC) peaks as a function of the molar ratio of either the methyl ester 139 

and the tridecane internal standard or substrate 137 and the tridecane internal standard.  

This data was collected from several individual GC runs depicted in Table 9.1.1. 

Figure 9.1.1.  A) Calibration curve used to determine cross-coupling yields comparing methyl ester 

139 and tridecane internal standard.  B) Calibration curve used to determine cross-coupling 

substrate consumption by comparing vinyl iodide 137 and tridecane internal standard. 
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Table 9.1.1.  A) The molar ratio of product 139 and tridecane with the associated peak area ratio 

obtained from GC analysis.  B) The molar ratio of substrate 137 and tridecane with the associated 

peak area ratio obtained from GC analysis. 

 

A9.2 SUPERCRITICAL FLUID CHROMATOGRAPHY DATA FOR 

ORGANOZINC CROSS-COUPLING OPTIMIZATION 

 

 

Yields of eneyne 141 were quantified using the calibration curves (Figure 9.2.1), 

which graph the area ratio of supercritical fluid chromatography (SFC) peaks as a 

function of the molar ratio of eneyne 141 and the diphenylether internal standard.  This 

data was collected from several individual SFC runs depicted in Table 9.2.1. 
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Figure 9.2.1.  Calibration curve used to determine cross-coupling yields comparing eneyne 141 and 

diphenylether internal standard. 

 

Table 9.2.1.  The molar ratio of product 141 and diphenylether internal standard with the associated 

peak area ratio obtained from SFC analysis. 
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A9.3 NOTES AND REFERENCES 
 

(1) Methyl ester 139 was synthesized for GC studies using known methods: Kapferer, 

T.; Brückner, R. Eur. J. Org. Chem. 2006, 2119–2133. 

(2) Iodo-cyclohexene (137) synthesized for GC studies using known methods: Kropp, 

P. J.; McNeely, S. A.; Davis, R. D. J. Am. Chem. Soc. 1983, 105, 6907–6915. 
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Figure A10.1.2 infrared spectrum (Thin Film, NaCl) of compound 141. 

Figure A10.1.3 13C NMR (125 MHz, CDCl3) of compound 141. 
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Figure A10.2.2 infrared spectrum (Thin Film, NaCl) of basiliopyrone (3). 

Figure A10.2.3 13C NMR (125 MHz, CDCl3) of basiliopyrone (3). 
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