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ABSTRACT 

Pulse-height and time-of-flight methods have been used to meas-

h 1 · · · f · ·1 f 12c ure t e e ectron~c stopp~ng cross sect~ons or proJ ect~ es o , 

23N a, slowing in helium, neon, argon, kryp-

ton, and xenon. The ion energies were in the range 185 keV ~ E ~ 

2560 keV. 

A semiempirical calculation of the electronic stopping cross 

section for projectiles with atomic numbers between 6 and 13 passing 

through the inert gases has been performed using a modification of 

the Firsov model. Using Hartree-Slater-Fock orbitals, and summing 

over the losses for the individual charge states of the projectiles , 

good agreement has been obtained with the experimental data. The 

main features of the stopping cross section seen in the data, such 

as the z
1 

oscillation and the variation of the velocity dependence 

on zl and z2, are prese nt in the calculation. The inclusion of a 

modified form of the Bethe-Bloch formula as an additional term 

allows the increase of the velocity dependence for projectile velo-

cities above v to be reproduce d in the calculation. 
0 
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I. GENERAL INTRODUCTION 

As energetic particles pass through matter, they lose energy by 

various interaction processes. By dividing the rate of this energy 

loss by the density of target atoms, N, the stopping power is obtained: 

s 1 
- - dE/dx 

N 
(1) 

Significant effects due to the stopping powers of various media arise 

in many different kinds of measurements, such as determination of abso-

lute cross sections and nuclear lifetimes. Particle identifications 

are often made on the basis of stopping power alone, or in conjunction 

with other data. 

Since the rate at which particles lose energy while passing through 

matter is a factor in so many measurements, much effort has been devoted 

to developing the theory of stopping power starting with the fi rst at-

tempts by Thomson (1906, 1912), Rutherford (1911), and Bohr (1912). 

Their models were, of course, based on classical physics, but with minor 

modifications their results are still valid for many cases. With the 

development of quantum mechanics, the work in stopping-power theory and 

measurement continued, and periodically the current state of the art was 

summarized in review articles such as those by Livingston and Bethe 

(1937), Bohr (1948) , Whaling (1958), Northcliffe (1963), and Northcliffe 

and Schilling (1970). In general, each of these reviews considered a 

wider range of atomic numbers and energies than the previous reviews. 

The work in this thes is originated out of the need to know both 

the electronic and nuc lear components of the stopping powe rs of helium 
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and xenon gases for atomic projectiles such as aluminum. The data were 

needed for use in the doppler-shift-attenuation method of lifetime de-

termination. It was noted by Ormrod et al. (1963) that for projectiles 

passing through amorphous carbon with velocities of the order of the 

velocity of a lS electron in hydrogen, the stopping powers differed 

greatly in form from those calculated by Lindhard and Scharff (1961). 

This was not surprising since the LS model was based on a statistical 

model of the atom, whereas shell effects should be important for such 

velocities. 

Calculations of stopping power are more difficult for projectile 

velocities of the order of v 
0 

10 
ac (a = 1/137, c = 2.998 x 10 em/sec) 

than for much higher velocities. There are several reasons for this. 

At sufficiently high velocities, the ion is stripped of all electrons 

and may be treated as a moving point charge. The target electrons are 

relatively slow and usually their motion can be neglected. The situa-

tion is considerably more complicated when the ion velocity drops to the 

order of v
0 

Here, the ion is only partially ionized so that target 

sees a shielded charge. The number of elec trons bound to the i on is 

not constant but rather fluctuates about an average value. In fact, 

in this velocity domain, the _interactions betwe en the projectile elec-

trons and targe t electrons play a major role in the s topping power, a 

role which vanishe s at higher velocities as the electrons are s tripped. 

When statistica l approaches are used, the major trends in the 

stopping powe rs are obtaine d. However, for many combinations of atomic 

numbers , deviations from the gene ral trend are suffic iently large 
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that factor-of-two errors typically occur. The deviations fall into 

two groups. According to the Lindhard-Scharff model and the Firsov 

model, the rate of energy loss is proportional to the square root of 

the energy of the projectile, and the stopping powers are monotonic 

functions of the atomic numbers of the projectiles and targets. Both 

of these predictions are violated for many types of projectiles and 

targets whether amorphous or crystalline. In these cases, the energy 

dependence ranges from about the cube root of energy to linear with 

energy. A sample of these observations is shown in Figure 1, which is 

drawn from the data of Hvelplund (1971) and shows the stopping power 

of helium for various projectiles with velocities equal to 0.9 v • The 
0 

part of the oscillation shown in his data is characteristic of those 

projectiles and is similar in other stopping media. Current theories 

of stopping power do not explain the energy dependence, although several 

do explain the oscillations. In this thesi~ a model is developed which 

explains both effects with some success. 

In Chapter II the general theory of electronic stopping power is 

reviewed including the models applicable to high-velocity projectiles. 

Also discussed are the statistical models which supply the general 

trends for the stopping of particles with velocities of the order of 

v • Recent modifications in the statistical theories designed to ex
o 

plain the oscillations are described. 

The effects of nuclear collisions in stopping-power measurements 

are considered in Chapter III. A short review of the previous work in 

this area is given including the universal approach of Lindhard et al. 
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Current calculations using Green-Sellin-Zachor potentials are presented 

along with a discussion of interatomic potentials. An expression for 

the nuclear stopping power is also provided in this chapter. 

Chapter IV deals with the current calculations. It includes a 

discussion of the effects of the varying charge of the projectile along 

with the method used to estimate the equilibrium. charge fractions. A 

term due to ionization is introduced. The effects of nuclear colli sions 

are considered and a correction term is given in order to apply the re-

sults of the calculation to experimental situations. 

Chapter V contains the details of the methods used to measure the 

stopping powers. Both the direct energy-loss method and the time-of-

flight method are discussed. 

Chapter VI compares the results of the model calculation to the 

current data and compares the current data to previous results. 

Appendix A discusses a Monte Carlo calculation performed to test 

the validity of the multiple-scattering method in the determination of 

the cut-off parameter, r . , used in some of the modified Firsov calnun 

culations. The method is shown to be invalid. 

Appendix B discusses the approach to equilibrium of beams which 

begin as singly charged. 

Appendix C discusses an application of this work to the measure-

ment of nuclear lifetimes using the Doppler-shi ft attenuation method. 
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II. THEORY OF ELECTRONIC STOPPING POWER 

Introduction 

Figure 2 shows a qualitative stopping-power graph for a projectile 

with atomic number z
1 

and stopper with atomic number z
2

. The low

energy parts vary in shape somewhat for different z
1

' s and z
2
's with 

three representative values being shown in the figure. The energy 

scale is approximately divided into four regions to simplify the discus~ 

sian of the various stopping-power theories. 

In Region I, stopping is caused primarily by scattering in the 

shielded nuclear coulomb field. Very little energy is lost through the 

ionization or excitation of the electrons of either the projectile or 

the target. Projectiles in Region II carry along some bound electrons 

so that the net ionic charge tends to zero near the low end of the 

region, and to z
1 

near the high end of the region. In this region, 

energy loss is dominated by the excitation and ionization of both the 

projectile and target atoms. In the lower part of this region, some 

energy is lost through nuclear collisions. In Region III, the projec

tile is almost completely ionized and nearly all of the energy loss is 

accounted for by the ionization and excitation of the target. Region 

IV is the relativistic extension of Region III. 

Theory of Bohr 

Before the advent of quantum mechanics, Bohr (1913) calculated the 

energy loss of a heavy charged particle passing through a target whose 

atoms consisted of electrons harmonically bound to fixed centers of 

force. His result may be written as 
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(1) 

in which e is the charge of an electron, m is the rest mass of an elec-

tron, v is projectile velocity, and w. is the effective frequency of 
1 

the i-th electron in the target atom. Equation (1) is valid only in 

Region III when the parameter 

K 

ts much greater than one (Bohr 1948). 

(2) 

The constant v is often written 
0 

as ac where a is the fine structure constant (1/137. 039) and c is the 

speed of light. 

Theory of Bethe 

Using the Born approximation, Bethe (1930) obtained the quantum 

mechanically correct result 

s 
e 

2 4 2 (4TT z1 e /mv ) (3) 

where fi is the oscillator strength of the i-th atomic oscillator. 

Equation (3) applies in Region III whenever K << 1 so that Equations 

(1) and (3) are valid in mutually exclusive sections of Re gion III. With 

2 
the insertion of several terms of order (v/c) , both theories may be ex-

tended into Region IV. 

Theory of Bloch 

In the intermediate region whe re v"' z
1 

v 
0

, Equations (1) and (3) 

differ by a factor of about two in the logarithmic argument. Bloch 
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(1933) examined this difference and found that when the distortion of 

the wave functions during the collision was included, the following 

equation was obtained 

s 
e 

z2 

I f 
j=l j 

v 
- RIJ!(l + iZl :) 

where IJ!(z) is the logarithmic derivative of the gamma function 

(4) 

(Abramowitz and Stegun 1964). R refers to the real part of the com-

plex function. As the quantity z1 v
0
/v goes to zero, Equation (4) 

approaches Equation (3), while as the same quantity becomes very 

large, the real part of IJ!(z) becomes equal to log(z) and Equation (4) 

becomes equal to the Bohr result (1). Equation (4) should therefore 

be valid throughout Region III. 

In practice, the summations are performed by replacing the sum-

mation sign and fj by z
2

, and~ wj by a parameter I which is usually 

determined experimentally as that value which provides the best fit to 

the data. I may be interpreted as an average ionization potential and 

for most targets may be written as a constant times z
2 

(Bloch 1933b). 

When Equation (4) is cast in this form, the expression must be cor-

rected for the K-shell and L-shell electrons which may be so tightly 

bound that they do not participate directly in the stopping (Livingston 

1937). 

Theory of Lindhard and Winther 

The ide ntification of "I" with an ave rage ionization potential 
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is not the only possible identification. An alternate identification 

is provided by the work of Lindhard (1954) and Lindhard and Winther 

(1964). They consider the stopping medium to be an electron gas with 

a plasma frequency given by 

where n is the density of electrons. For high-velocity projectiles 

such as in Region III, the Lindhard-,-linther result may be written 

• n (6) 

Thus by associating 11w with I, one has the alternate interpretation 
0 

of I as a measure of the plasma frequency of the electron gas. 

At lower velocities, the term which yields a logarithmic depend-

ence at high velocities goes as the cube of the velocity. Thus in 

Region II, the stopping power due to electronic interactions with the 

projectile is proportional to v • This result had been previously 

derived by Fermi and Teller (1947) for fission fragments stopping in 

electron gases. \-lith the addition of the relativistic terms, the 

Lindhard-Hinther approach may be us ed in Regions II, III , and IV . For 

velocities of the order of v , the assumption of the target as an elec
o 

tron gas becomes questionable. 

Theory of Lindhard and Scharff 

Lindhard and Scharff (1961) extended the theory of projectiles 

passing through uniform-de ns ity electron gases to projectiles. passing 

through Thomas-Fermi atoms . They found that reasonable agreement with 
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data was achieved for projectile velocities below zi13v
0 

by the ex-

pression 

s 
e 

where ~e is an adjustable parameter which varies approximately as 

Zl/6 
1 . 

Theory of Firsov 

(7) 

Firsov (1959) calculated the mean excitation energy for Thomas-

Fermi atoms colliding with impact parameter r • By using two variaa 

tional arguments, he obtains an interatomic potential (1957) which is 

correct to within 4% for statistical atoms and is written as a Thomas-

Fermi potential of a scaled argument, as is shown in Chapter III. By 

assuming that the transfer of electrons between the projectile and 

target atoms is the mechanism for energy loss, Firsov obtains the fol-

lowing expression for the energy lost in a single collision at impact 

parameter r 
0 

E = 

Equation (8) is valid only for those pairs of z
1 

and z
2 

which differ by 

no more than a factor of 4. Firsov's result is especially useful in 

energy-loss calculations of channeled particles for which the impact 

parameter is known. The stopping power of a crystal is lower for chan-

neled particles. In order to obtain an estimate of the electronic 

stopping power of amorphous targets, Teplova et al. (1962) integrate 

Equation (8) over impact parameters from zero to infinity to obtain the 
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-15 2 . 
5.15 · 10 (Z

1 
+Z

2
) v/v

0 
(ev-cm /atom) . (9) 

Equation (9) is valid in the lower part of Region II just as Equation 

(7) is. Actually Equation (9) is surprisingly good considering that 

Equation (8) is only valid for impact parameters between about a and 
0 

several times a . This will be discussed below when the Firsov model 
0 

is considered in greater detail. 

Equations (7) and (9) provide good estimates of the general trend 

of stopping powers as one varies z
1

, z
2

, and v, over their respective 

ranges. Since Equations (7) and (9) were derived, measurements by many 

groups (Ormrod, 1963, 1965; Fastrup 1966; Eriksson 1967; Hvelplund 

1968, 1971; Eisen 1968) have shown that z
1 

and z
2 

oscillations exist in 

the data and that the proportionality of the stopping power with the 

projectile velocity is only approximate. The monotonic dependence of 

Equations (7) and (9) on the atomic numbers is due to the use of the 

statistical theory of the atom. Late r, some attempts to mo dify both the 

Lindhard and Scharff, and the Firsov models are discussed, but first the 

Firs ov model is considered. 

In a series of papers, Firsov (1957, 1958a, 1958b, 1959) derives 

and uses a scaled Thomas-Fermi atomic interaction p o tential to calcula te 

the mean electron excitation energy. Be c aus e the Firsov model is used 

as the basis for many different calculations, including the current one , 

it is presented in detail. 

Before i nt e racting, and while the projec tile a nd t a rget are far 

apart, the electrons b e long ing to e a ch nuc leus h a v e velocitie s which a re, 
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on the average, identical with that of the nucleus. During the colli-

sion the situation is very complicated. Electrons moving in the region 

between the two nuclei are subject to rapidly changing electromagnetic 

fields, and as a result are force d to move in non-cyclical loops or 

spirals which for practical reasons make a microscopic description of 

the collision impossible for all but the simplest atomic collisions. 

For this reason, the details of the collisions are ignored and only the 

statistical effe cts are considered. 

As the projectile approaches the target nucleus, a potential 

ridge is formed between the nuclei by summing the shielded potentials 

from the two nuclei (see Figure 3). For atomic numbers differing by 

less than a factor of four, the position of this ridge is located ap-

proximately half way betwe en the two nucle i. Firsov constructs a plane 

along this ridge, perpendicular to the line of centers of the nucle i as 

shown in Figure 4. A flux of electrons crosses the surface S of the 

plane from both sides, and it is assumed that once an electron crosses 

S it is transferred to the other nucleus. It is captured and the elec-

tron assumes the average v e locity of the new parent nucleus. It is 

further assumed that the velocity of the projectile does not change 

during the course of the collision so that the force on the projectile 

due to the transf e r of e l ectrons i s given by 

-+ 
F mv • dS mv f nu/4 dS 

s 
(10) 

-+ 
in which n is the densi ty of ele ctrons, u is the mean e lectron 

-+ 
v e locity, and u i s the magnitude of u • The tota l work d on e on the 
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projectile is equal to the excitation energy 

00 

mv f (f n u/4 dS) dx 

- co S 

(11) 

where x is measured along the trajectory. Firsov now assumes that 

neither the density distribution nor the velocity distribution are af-

fected by the collision. This assumption is not well founded--but it 

is needed to simplify the problem to a solvable level. The problems 

introduced by this assumption are treated in Chapter IV in the discus-

sian of the minimum impact parameter. It is quite clear that when the 

projectile velocities are of the same order of magnitude as the orbital-

electron velocities, there are going to be drastic changes in the indi-

vidual orbitals. However, for soft enough collisions this might not be 

a severe problem. For very small impact parameters, the Firsov model 

badly overestimates the excitation energy. Using the Thomas-Fermi model, 

the electron mean velocity is written as 

u = (12) 

Firsov then writes the density in terms of the total potential ~ 

n (2m e </>) 312 I (3n
2 

113 ) • (13) 

Substituting (12) and (13) into Equation (11), Firsov obtains 

00 

(14) 



-13-

For ¢ , Firsov uses an approximation to the previously derived (Firsov 

1957) potential, 

(15) 

where X is the Thomas-Fermi screening function. After making suit-

able approximations in the integral~ the result given in Equation (8) 

is obtained. 

The Firsov model has shown itself to be very adaptable to modi-

fications. Some of the previously tried modifications are now sum-

marized. 

Theory of El-Hoshy and Gibbons 

El-Hoshy and Gibbons (1968) observed that the z
1 

oscillations 

were similar for projectiles stopping in carbon, aluminum, tungsten, 

silicon, and argon. Therefore, they decided that as a first approxi-

mation, the z
1 

oscillations should be attributed entirely to proper

ties of the projectiles. They also noted that for channeled projec-

tiles in crystals of silicon and tungsten (along the 110 channel), the 

Firsov model gave a good estimate of the electronic stopping power 

providing the z
1 

oscillations were averaged. They chose effective 

atomic numbers, Zeff' based on how close the outer shell was to a 

filled shell. The motivation for the procedure was provided by the 

observation that the minima of the oscillations tended to coincide with 

filled outermost shells and the maxima tended to coincide with approxi-

mately half-filled shells. The effective number was chosen to be 

equal to the number of electrons in a less than half-filled shell, and 
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equal to the number of holes in a more than half-filled shell. The 

effective impact parameter was chosen to be smaller than the actual 

impact parameter in order to correct for the Firsov potential being 

too small between the nuclei. The s topping powers predicted by this 

method agree quite acceptably with published data for channeled pro

jectiles. However, it must be pointed out that the effective atomic 

numbers were chosen because they mimicked the desired behavior. The 

conclusion that the oscillations are caused by shell effects is correct. 

Theory of Winterbon 

Winterbon (1968) pointed out that, for similar atomic numbers, 

larger projectiles tended to lose energy faster than smaller projectiles 

in the same medium at the same velocity. He also noted that channeled 

ions tended to exhibit more pronounced oscillations than non-channeled 

projectiles. This indicated a size effect also. Winterbon used the 

Firsov model, but replaced the Thomas-Fermi density with nodeless wave 

functions taken from Clementi's tables (1965). Since electrons are 

gained and lost during the collisions, Winterbon set up the equilibrium 

equations for the various charge states and summed the energy-loss 

contributions from each of the charge states. The results of his calcu

lation have the oscillations in the correct places, but with too small 

an amplitude. One problem with Winterbon's method is that he r e lies on 

all electrons crossing the Firsov S plane being captured by the other 

nucleus. This is surely not the case. 

Theory of Chesire, Dearnale y , and Poate 

Chesire, Dea rnaley, and Poa t e (1968) us e d the basic Firsov model 
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with the Slater orbits of Clementi. Since they were interested only 

in channeled ions in silicon along the 110 axis, they considered all 

projectiles to be in a +1 state and considered a single ~mpact param-

eter. Their calculations reproduce the oscillations fairly well, 

but the minima are much too high. Part of this problem may be 

attributed to approximating the crystal as free atoms. Better agree-

ment with the data would have been obtained if higher charge states 

for neon, sodium, and magnesium had been used. At 8 
v = 1. 5 x 10 em/ sec 

(0.69 v ), magnesium is most probably in a +2 state (Wittkower 1973). 
0 

Chesire et al. (1969) continued their calculation for stopping 

in amorphous carbon. In order to compare their calculation with the 

data of Hvelplund and Fastrup (1968),a minimum impact parameter was 

chosen so that no single deflection was greater than 0.17°. This cor-

responded to the half-angle subtended by the detection system. 

Considering only ions in a plus one state, the agreement is excellent 

for z
1 

less than 25, but is not as good above that value. For chan-

neled ions in silicon, the agreement is not as good being high b y about 

-14 2 
2 x 10 ev-cm / atom , or 30% at the maxima of the oscillation and 400% 

at the minima. 

Theory of Harrison 

Harrison (1968) showed quantitatively that the oscil.lations could 

be understood in terms of the radial electron densities as calculated 

by the Hartree-Fock-Slater program of Herman and Skillma n (1963). The 

same periodicity found in the oscillations is also present in the 

radial dens ities of singly cha r ged ions. At a radius of about 2.5 
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the oscillation is quite pronounced explaining why channeled particles 

show larger amplitude oscillations. 

Theory of Bhalla, Bradford, and Reese 

Bhalla, Bradford, and Reese (1970) considered the modified forms 

of the Firsov model in detail. They showed that the radial electron 

densities are better represented by Hartree-Fock-Slater orbitals than 

by the Slater orbitals of Clementi. The reason for this is that the 

Clementi orbitals (which are nodeless) contain electrons in the outermost 

orbitals with too little kinetic energy. They also allow the position 

of the Firsov plane to be located at the maximum of the potential ridge 

rather than half way between the nuclei. A minimum impact parameter is 

calculated from a multiple-s catte ring argument. (The assumptions made 

in this argument are invalid as is demonstrated in Appendix A.) Fortui

tously, the minimum impact parameter chosen is close to the values which 

may be derived from other considerations. These are described in Chapter 

IV. In any case, the results are in fairly good agreement with the data. 

They show that there is not a large difference in the stopping power, if 

those electrons classically incapable of passing over the potential ridge 

are excluded from the calculation. 

Theory of Komarov and Kumakhov 

Komarov and Kumakhov (1973) use Slater orbitals (Clementi 1967) in 

a modified Firsov approach. By using analytic wave functions and the 

method of steepest descent to perform the integrations, they were able 

to carry out the various integral s and thereby reduce the calculation to 

a summation. In considering amorphous targets, they too used the 
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multiple-scattering argument to provide an estimate of the minimum 

impact parameter. The agreement with the stopping power of carbon is 

acceptable. 

It should be noted that all of the above modificat ions of the 

Firsov model retain the proportionality b e tween stopping power and 

projectile velocity. 

Theory of Pietsch, Hauser, and Neuwirth 

Pietsch, Hauser, and Neuwirth (1976) modified the Lindhard-Scharff 

model to account for the z 1 and z 2 oscillations. They state that the Z 

dependence of the stopping power is determi ned by the screening length 

used in the atomic-interaction potential. Lindhard and Scharff chose 

as 0. 8853 a o czi13 + z;13) -l/
2 

which is a good approximation when deal-

ing with Thomas-Fermi potentials, but neglects s hell effects. The 

shell effects may be included by using s caling factors, o ( Z ,r), which 

•..rhere 

a = 0. 8853 a Z-l/3 and r is a parameter which is fixed for all Z , 
0 p 

but may vary with the projectile. At present, r is determined for only 
p 

a few cases so that a genera l rule for a semi-empirical determination is 

not available. Only best fits to the data have been considered. The 

scaling factors are introduced into the Lindhard-Scharff equation r esult-

ing in 

Using r in the rang e o f one to two atomic units, Pietsch e t al. obtain 
p 

both the zl and the z 2 oscillations for z l = 6-39 in carbon , and lithium 

projectiles i n z2 = 6~33 . 
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It would be interesting to include the effects of the various 

charge states in the determination of the 8 screening factors. It is 

possible that the o 's might exhibit a velocity dependence which would 

allow the stopping powers predicted in Equation (16) to have a nonlinear 

dependence on the projectile velocity. If this is the case and the 

results agree with the data, then a simple me thod would exist to obtain 

good estimates of electronic stopping powers with much less computing 

time than in the current work. A computer program could be written con-

taining an analytic approximation to the Thomas-Fermi potential and the 

parameters necessary for the GSZ approximation (see n ext chapter) of the 

Hartree-Fock-Slater potential. This would allow the a 's to be calculated 

directly providing that r and the various charge fractions are given. 
p 

One problem with the method of Pietsch e t al. is that it assumes 

isotropic targets and thus is not directly applicable to channeling in 

the simple way that the Firsov approach may be applied. 
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III. THEORY OF NUCLEAR STOPPING POWER 

Introduction 

In Region I, essentially all of the energy loss occurs through 

elastic collisions with the target nuclei. In Region II, part of 

the loss is due to these collisions so that we must be able to cal-

culate the nuclear stopping power here also. 

Each of the elastic nuclear collisions causes a transfer of energy 

from the projectile to the target .nucleus. If we know the differential 

scattering cross section as a function of the energy transferred, then 

the nuclear stopping power may be written 

s 
n 

T 

f 
max 

0 

T dcr (1) 

where Tmax = 4M1 M2E I (M1 + M2) 
2 

is the maximum allowable energy trans-

fer in a collision with impact parameter zero. M
1 

is the mass of the 

projectile and M
2 

is the mass of the target. E is the energy of the 

projectile. In general, T , the energy transferred, may be written as 

a function of the impact parameter p ; then the differential cross sec-

tion is 21T pdp . However, T (p) is generally not measured, but rather 

T( 8). Therefore it is b eneficial to write T = T sin
2

(8/2) and then 
max 

calculate d(sin(8/2))/dp • In any case, the interatomic potential is 

needed. 

Inte ratomic Potentials 

We expect the interatomic potential to be a complex function of 

the atomic numbers, masses, velocities , impact parameter, spins, degree 

of ionization , as well as the nuclear separation . Such potentials would 
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be rather difficult to handle even if they were known, but fortunately, 

we are able to obtain useful approximations with fewer parameters. In 

all of the potentials considered below, the masses, velocities, spins, 

and impact parameter, are ignored. 

Bohr (1948) estimated the interatomic potential between two neutral 

atoms as 

zlz2 
2 

e 
V(r) exp(-r/aB) 

r 
(2) 

in which 

a = (Z2/3 + 2 2/3)-1/2 a 
B 1 2 0 

(3) 

This potential, as well as most of the others, may be written as the 

following product 

V(r) (4) 

where the u(r / a) are given below. 

The Bohr potential drops off too rapidly at large nuclear separa-

tions (Nikulin 1971) but its simple form makes it useful in collision 

p r ocesses since its use often l eads to simple analytic results. 

The Thomas-Fermi statistical model is used to develop several 

potentials. We may write these potentials as u(r/a) = ~TF(r/a) where 

<PTF is the Thomas-Fermi screening func tion and " a " is the screening 

length. Firsov (1957) shows that for statistical atoms, a good value 

for the screening distance is 

0.8853 (5) 
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Lindhard et al. (1963) chose a very similar expression for the screen-

ing distance 

0.8853 ~ (6) 

In most cases of interest, there is little difference between the 

Firsov and Lindhard screening distances. 

One of the problems with the Thomas-Fermi potentials is that they 

-3 
drop off too slowly at large distances; they drop off as r instead 

of exponentially. Another problem is that the function ~TF(x) must be 

listed as a table and is thus used point by point. Moliere (1947) fit 

the Thomas-Fermi screening function with the s um of three exponentials 

obtaining the function 

3 
I 

i=l 
a . 
~ 

exp(-8. r/a) 
~ 

(7) 

where Cl.i = 0.1, 0.55, and 0.35; Bi = 6.0, 1,2, and 0.3. ~M drops 

off faster than ~TF so that its use reduces the two objections to the 

Thomas-Fermi family of potentials. 

A rather interesting potential was derived by Csavinszky (1968) 

who recast the Thomas-Fermi equation as a variational problem. The 

chosen functional was the square of the sum of two exponentials. The 

result of the minimization procedure was given incorrectly in the 

reference; the correct result is 

2 
~C(r) = (0. 7218 exp(-0.178 r/aF) + 0. 2782 exp( -1. 76 r/aF)) . (8) 

By multiplying out Equation (8), we can directly compare the Csavinszky 

potential with that of Moliere. Using the same notation we have 
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a. = 0.08, 0.40, and 0.52, and B. 
~ ~ 

3.52, 1.94, and 0.356. Thus "' '~'c 

and ¢M are similar. 

Lindhard (1965) suggested another approximation to the Thomas-Fermi 

function 

¢L(r) = 1 - (1 + C a/r)-112 (9) 

h . . 1 31/2 w ere C ~s approx~mate y . This approximation is useful mainly 

because of its simple form. 

Riewe et al. (1973) produced potentials which are sums of exponen-

tially shielded coulomb potentials . The potentials of the individual 

atoms (or ions) are written in terms of the Green-Sellin-Zachor poten-

tials (1969) . The GSZ potential is approximated as 

N is the number of electrons bound to the ion or atom, while H and d 

are parameters which are functions of th e atomic number and ionicity 

of the species. Szydlik and Green (1974) provide values for these 

parameters for all atoms and ions with Z l ess than or equal to 18. 

Using a form-factor approach, an interatomic potential is derived 

(Riewe e t al. 1973) consisting of a sum of four Yukawa ( or Bohr) t erms 

and one unshielded coulomb term. Unlike the other potentials, this 

potential is not purely repulsive. While the other potentials are 

universal i n the sense that they are scaled for all combinations of 

z
1 

and z
2

, each of the GSZ potentials is unique to one set of z
1

, z
2

, 

N
1

, and N
2

. 
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Differential Cross Section 

Once an interatomic potential is chosen, the differential cross 

section may be calculated by a number of approximation rr.ethods. Using 

a classical method of Everhart, Stone, and Carbone (1955), we directly 

obtain the scattering angle corresponding to an impact parameter for 

any of the potentials which may be written as a sum of Bohr potentials. 

The method is valid for small deflections only, as it assumes that the 

deflection is due to a transverse impulse. For a single Bohr poten-

tial, their result may be written 

2 e = (pb/ a ) 
1/2 

1) exp(-up/a) du (11) 

in which 
2 2 

b =2Z
1
z

2 
e /(mv) and p is the impact parameter. The authors 

-1 
suggest the substitution of w for u in order to obtain an integral 

from zero to one which is then easy to integrate numerically. This is 

not necessary as the integral in Equation (11) may be performed analy-

tically by using (9.6.23) in Abramowitz and Stegun (1964). Equation 

(11) then becomes 

9 = (b/a) K
1

(p/a) (12) 

where K
1 

is the first order modified Bessel function of the second kind. 

Riewe et al. (1973) use an eikonal model to obtain a scattering 

formula. For a Bohr potential, the zeroth order eikonal phase is 

where P is the center of mass momentum and £ = (Kv) - l. 

(13) 

K is the 
0 

zeroth order modified Bessel function of the second kind. Using the 



-24-

relationship 

2P sin(B/2) = d(X (p))/dp 
0 

(14) 

and using the small angle expansion of the sine function, we obtain 

(15) 

Remembering the definition of b, we see that Equations (12) and (15) 

are the same equation. We can obtain an estimate of the accuracy of 

Equation (15) by considering the higher-order phases. 

We can handle potentials which are sums of Bohr potentials by 

merely summing the appropriate Bessel functions of the various screen-

ing parameters. 

Another approach is taken by Lindhard et al. (1968) who attempted 

to derive a universal nuclear stopping power. They used dimensionless 

variables for the energy and distance parameters 

(16) 

and 

p (17) 

where a can be any of the screening parameters, N is the target 

density, and the H's refer to the nuclear masses. A dimensionless 

energy transfer is defined by 

t 

The differential cross section may be written in terms of t: as 

do 
na

2
f(t112) dt 

2t:3/2 

(18) 

(19) 
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where f(t
112

) is tabulated in Lindhard (1968) for the potential in 

Equation (4). It should be noted that t 1 / 2 
E sin( 8/2) where 8 is 

the center of mass deflection. The nuclear stopping power is then 

written as 

E 

(dE/dp) 
n 

E-1 I f(tl/2) d(tl/2) . (20) 

0 

Although Equation (20) is a universal expression, it has several draw

backs. The function f(t
112

) is not a simple function, and in general, 

a table of values is needed. Atoms with low atomic numbers are not 

well represented by statistical models so that we expect large errors 

in Equation (20) for such cases. Even in those cases in which a statis-

tical approach is valid, we expect poor results for large impact 

parameters, since a Thomas-Fermi-type potential is used. 

We can eliminate several of these objections by using Csavinszky's 

potential (8) instead of (4). The resulting scattering formula may be 

written 

e (21) 

This expression may be extrapolated to large angles by a procedure due 

due to Lindhard et al. (1968). We replace 8 by 2 sin(8 /2) and p by 

(p2 +p~) 112 in which p
0 

is chosen so that when p is set equal to zero, 

sin(8/2) is equal to one. Hence we may write 

sin(8/2) (22) 
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The energy transferred in a collision is 
2 

T= q /(2M2) where 

q = 2P sin(6/2), and P is the center of mass momentum. Hence we ob -

tain the result 

s 
n 

00 

J T(p) 2n p dp • 

0 

(23) 

Figure 5 compares the results of Equations (20) and (23). As expected 

Equation (20) predicts a higher energy loss for low values of E 

The work involved in obtaining results similar to Equations (20) 

and (23) can be greatly reduced using the "magic formula" derived by 

Lindhard .et al. (1968). After a careful consideration of the system-

atics of power-law-potential scattering, the following approximation 

was derived 

t 
3 1/3 d 2 . -4/3 
16 w dw ( u (w) w ) 

where u(w) is defined by 
2 

V(r) = z1z
2 

e u(r/a)/r and 

(24) 

2 2 2 2 w = (p +p )/a . 
0 

Differentiating Equation (24) with respe ct to w
2

, one obtains the func-

tion f, 

where as before S 
n 

(25) 

C'-1 IE "- f (x) dx . 

0 

Using the magic formula, nuclear s topping powers are easily cal-

culated for any of the potentials considered. The non-universal GSZ 

potentials may be treated similarly and individual cases may b e com-

pared with the universal formula as is shown in Figure 6 . For £ less 

than one, the nuclear s topping powers are much smaller with the GSZ 
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potentials than with the Thomas-Fermi family of potentials. 

In the analysis of Doppler-shift-attenuation data, it is usual 

to express the total stopping power as 

The f and f are empirical constants. 
e n 

S = f S + f S (Gordon 1973). 
n n e e 

f is designed to account for 
e 

the oscillation that the Lindhard-Scharff model does not include. f 
n 

is a factor less than unity which indicates that the LSS universal 

nuclear stopping power is too large. It is possible that with the 

stopping powers based on the GSZ potentials the factor f could be 
n 

omitted. (See Appendix C.) 

In order to compare theory with experiment, it is desirable to 

separate the total stopping power into its nuclear and electronic com-

ponents. Although it is clear that both components are present in the 

same collisions, we assume that we may write the two components 

separately and sum them 

S(E) = s (E) + s (E) 
n e (26) 

As Equation (26) stands, it appears that S (E) may be extracted from 
e 

stopping-power data by merely subtracting the calculated nuclear com-

ponent. This is not always the case. In the derivation of S , it w·as 
n 

understood that no impact parameters were to be excluded. The problem 

with this assumption is that for many types of energy-loss measure-

ments, projectiles which are scattered by more than the acceptance angle 

of the detection system are unobserved. In the current experiment, 

projectiles singly scattered through an angle greater than 1° are not 

seen. The distribution of angles due to the nuclear collisions tends 

to have a width wider than the angle subtended by the detector so that 
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only a fraction of the nuclear term is observed. Hence to extract 

the electronic component from the total stopping power we perform 

s (c) = S(c) - s*(c) 
e n (27) 

where s*(c) is the fraction of the nuclear stopping which is observed. 
n 

Fastrup et al. (1966) derived this quantity using the interatomic 

potential described by Equations (4) and (6). In this derivation, it 

is assumed that the cone subtended by the detector is smaller than the 

width of the multiple-scattering distribution, and that the energy 

loss, ~E, is much smaller than the initial energy E .• As in all mul
l. 

tiple-scattering problems, we may distinguish between soft collisions 

which form a ~aussian distribution, and hard collisions which populate 

the tails of the distribution. As only the soft collisions are ob-

served, we estimate the limit on the maximum energy transfer which can 

still be considered as resulting from a soft collision. Calling this 

energy transfer T*, Bohr (1948) estimates it from 

T* 

N t.R f 
0 

2 
T do • . (28) 

Since T = T t/£
2 

and do is given by Equation (19), \ve may substi-
max 

tute in Equation (28) 

£(T*/T )1/2 
max 

to obtain a result in terms of the parameter 

F(c*) 

E* 

(c*)-4 J t f(t112) dt
1 / 2 

0 

2 -1 
(N t.R 7T a ) . (29) 

The magic formula was used to calculate the F(c*) for various potentials 

as is shown in Figure 7. It should be note d that c* is determined by 
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the propert ies of the target and projectile and not the projectile 

energy. 

We 

which is 

determine 

in terms 

s*(E) 
n 

s*(£) from 
n 

T>'( 

* I s (£) T do n 
0 

of dimensional units 

• £~~ (d£* /dp) (ev-cm2 /atom) 
n 

(30) 

(31) 

Since £* i s independent of energy, s* is inversely proportional t o the 
n 

energy . This energy depen dence is not influenced by the choice of t he 

interaction potential. As can be seen in Figure 7, there is lit t le 

difference in s* for the various potent ials for £* greater than one . 
n 
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IV. PRESENT CALCULATION 

Introduction 

As was shown in the first two chapters, the Z oscillations and the 

variable velocity dependence together have not been predicted in any of 

the existing theories of electronic stopping power designed to cover 

Region II. Some success has been achieved in calculating the oscilla

tions by modifying the Firsov model; for that reason, the basic Firsov 

model was adopted as a basis for this work. The Lindhard-Winther model 

(1964) was also considered as it has been used with considerable success 

by Ziegler and Chu (1974) in fitting the z
2 

oscillations in the stopping 

power for helium ions with velocities above 2ac. The perturbation 

formalism used in the Lindhard-Winther model required the projectile 

velocity to be greater than ac for the plasma approximation to hold. 

Since the Lindhard-Winther model breaks down in the region of interest, 

it was abandoned as no modification was found to extend it for slower 

projectiles. 

The variable velocity dependence was not within the scope of the 

unmodified Firsov model because all of the velocity dependence is con

tained explicitly in a term proportional to the projectile velocity. 

Therefore, it was decided to investigate what effects the velocity might 

have on the projec tile to see if there might be an implicit dependence 

on velocity which would be ignored in the basic Firsov approach . Two 

such effects were uncovered. In Region II, the faster a projectile goes, 

the more electrons it loses, and the higher the average charge state. 



-31-

As is shown later, with all other parameters held constant, a more 

highly charged projectile loses less energy than a less ionized pro-

jectile. This effect tends to lower the velocity dependence. At the 

same time, as the projectile velocity increases, the cutoff parameter 

is reduced as is described below. This tends to increase the velocity 

dependence. Which of these effects dominates, determines in each case 

whether the velocity dependence is stronger or weaker than in the un-

modified Firsov model. 

As the basic Firsov model has already been described in detail, 

we will concentrate mainly on the departures from that theorj. As a 

first step, we calculate the mean energy lost in a single collision 

with impact parameter p between a projectile with atomic number z
1 

and net charge Q, and a neutral target atom with atomic number z
2

• In 

this work, all targets are considered to be isolated free atoms so that 

the only molecular effects entering into the problem are those resulting 

from the quasimolecule formed during the collision. 

According to Equation (11) in Chapter II, the energy lost in the 

above collision is given by 

00 

{I nu/4 dS} dx (1) 

-00 s 

Location of the S Plane 

Instead of locating the S plane half way between .the nuclei, . as 

Firsov did, we locate the S plane along the potential ridge formed by 

summing the potential wells of the two nuclei as shown in Figure 4. The 

ridge location is a function of the nuclear separation as is shown by 
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Bhalla et al. (1970). At a nuclear separation R, the distance from 

the projectile to S is f3R, and the distance from the target to S is 

aR, so that a+ f3 1. As an approximation, we assume that a and B 

remain constant during the collision and are set equal to the values 

determined at the nuclear separation equal to the impact parameter. 

This is a reasonable assumption since the variation of a and B with 

R is relatively small, and most of the energy transfer occurs when the 

nuclei are closest. In determining the location of the ridge, we have 

also assumed that the electron orbitals have not been greatly altered 

in the collision. This assumption clearly fails for small impact param

eters and for projectile speeds which are small with respect to the 

orbital speeds. At small impact parameters , the Firsov model predicts 

energy transfers which are too large--larger, in fact, than the maximum 

possible for head-on collisions (Hille r 1974). To retain accuracy, a 

cutoff parameter will be introduced to compensate for these effects. 

How this parameter is chosen is discussed later. 

Calculation of Hartree-Fock-Slater Atoms and Ions 

In order to obtain the oscillations, we use Hartree-Fock-Slater 

wavefunctions and potentials as calculated by the computer code of Hermann 

and Skillman (1963) which was altered only in the minor details required 

to execute the code on the IBM 370 at Caltech. The orbital calculations 

all used the modified potential as described in the reference, which cor

rects for the potential being too small at large distances from the 

nucleus resulting from allowing electrons to feel their own coulomb 

fields. The parameters TOL = 0.001 and THRESH= 0.00001 were used in 
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most of the calculations. This requires the maximum of 

S (TEST) m (2) 

to be less than TOL. Here vrn is the m-th point of unmodified potential 
0 

and the superscripts i and f refer to before and after the iteration. 

At the same time, the relative change in all eigenvalues must be less 

than THRESH. \fuen both of these conditions are met, convergence is as-

sumed. The program then provides the potential and wavefunctions as a 

table of values. 

Thus we replace n u in Equation (1) by 

nu (3) 

where ~ . is the normalized wavefunction for the i-th orbital of the 
1 

projectile, W · th t• b d <u2.>112 1·s the 0 'MS . 1s e occupa 1on num er, an = 
1 1 

velocity; the j subscript defines the same quantities for the targe t. 

The RMS velocity is found from 

(4) 

where Ei is the eigenenergy of the i-th orbital and Vi is the average 

value of the potential for the i-th orbita l. It should b e noted that 

atomic units are used here so the mass of the electron is set to 1. 

We replace the two sums in Equation (3) by <P1 and ¢ 2 so that we may 

write Equation (1) as the sum of two terms 

=: {Joo dx I ¢l(rl) 

00 

dS + J dx J (5) 

-<X> s -co s 
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or 

(6) 

Using Figure 8, each of the double integrals is reduced to a single 

integral which is integrated numerically. We have 

00 2TT 

I dx J d~ (7) 

-= 0 

but we can relate p and r
2 

by 

(8) 

so that r
2

(p) may be written 

where the region of integration is shown in Figure 8. Doing the x 

integral first, we obtain the result 

4TT 
(10) 

A similar expression is obtained for r
1 

(r
1

) by replacing S by a and 

changing the subscripts. 

Effectiveness of Target Electrons 

If all electrons crossing the surface S were captured by the other 

nucleus, as Firsov assumed, then Equation (4) would correctly calculate 

the mean excitation energy. However, the assumption is not correct . 

While it is not important whether or not the electrons leaving the pro-

jectile are captured directly by the target atom, it is important to know 
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whether the projectile captures an electron from the target. The reason 

for this asymmetry is as follows. The mechanism for energy loss is the 

work done on the projectile in changing the v e locity of the transferred 

electrons. The momentum carried by the electrons leaving the projectile 

is lost whether or not the electron is captured by the target nucleus. On 

the other hand, if an electron from the target is not captured by the 

projectile, the electron does not have to be accelerated to the velocity 

of the projectile and the energy loss is lower. We may obtain a low es-

timate of the rate of energy loss,by counting only those target electrons 

which are captured by the projectile. In order to estimate the probabil-

ity of electron capture we modify a theory due to Bell (1953). 

Modified Bell Theory for Electron Capture 

We assume that after an electron passes through the S plane it no 

longer feels the field of the target nucleus. We now require that the 

total energy of the electron be negative for it to be captured by the 

projectile. The probability of capture is a function of the projectile 

velocity, the orbital electron velocity, and the potential of the pro-

jectile at the point of capture. If we call the potential at this point 

V , then for capture to occur, the final velocity of the electron must 
0 

be less than the escape velocity v defined by 
0 

v 
0 

2 = v /2 . 
0 

If the ini-

+ 
tial v elocity of the transferred e lectron is u . and the projectile velocity 

1. 

+ 
is v, then the final velocity with respect to the projectile nucleus is 

+ + 
u. + v as is shown in Figure 9. Hence the prob ability of capture is 

1. 

given by 

P(v,u. ,v ) 
1. 0 

0 

sin:\ d:\ (ll) 
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+ + 
where A is the angle between v and ui. A' is defined by the triangle 

with sides v, ui, and v
0

, as in Figure 8. Working out the integral in 

Equation (11) we obtain 

P(v,u. ,v ) 
1 0 

2 2 
[v -(v-u.) ]/(4vu.) 

0 1 1 

1 for v +u. ~ v 
1 0 

for lv-u.l < v <v+u . ; 
1 - o- 1 

(12) 

We may insert this expression into the integral over r
1 

which is used to 

calculate 1 1 . Gluckstern (1955) pointed out that Bell's model predicts 

capture cross sections which are too high because what is really desired 

is the probability that any electron is captured. He showed that good 

agreement is obtained with the data if the Bell capture cross sections 

are multiplied by 0.4 . 

From Equations (6), (10), and (12) we obtain the expression used 

to find the mean excitation energies 

u 4n co 2 - f3 2p2) 1 / 2 E: (p) 
4 

[- f ¢ 2(r2) r2(r2 dr
2 

f3 f3p 

47T foo 2 - a2p2)1/2 P G dr ] +- ¢1 (rl) rl (rl (13) 
a 1 

ap 

where G is the Gluckstern factor equal to 0. 4. Actually the insertion 

of P couples the two integrals a s P is a function of the various or-

bitals as well a s a function of r
2 

. However, since the integration 

takes place on the S plane, r
2 

is linearly r e lated to r 1 , and the 

coupling is removed. We have to this point suppressed the n e t charge 
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on the projectile. The net charge will be denoted by a superscript, Q. 

The calculation as indicated in Equation (13) was carried out for 

helium targets and the agreement with the experimental data was excel

lent. However, for the heavier gases the agreement became progressively 

worse so that for xenon targets the calculated stopping powers were 

unacceptably low. The source of the error appears to be the exclusion 

of those electrons which pass through the S plane and merely scatter off 

the projectile. Unfortunately, it is difficult to calculate how much 

energy these . electrons extract from the projectile. It is therefore as

sumed that the effective stopping power of the electrons from the target 

is a fraction of the stopping power calculated by assuming that all elec

trons passing through the S plane are captured. Thus the factors P and 

G are deleted from Equation (13) and are replaced with the arbitrarily 

chosen factor E which is given in Table I. The E(Z
2

) were chosen for 

helium and xenon targets to provide a good fit with the data, and the 

other values of E(Z 2) were chosen to increase uniformly with each period 

of the periodic table. The general increase in E(Z
2

) is to be expected, 

since the target binding energy of the last electron decreases from one 

gas to the next, making it more likely that the gas will be ionized. 

Equilibrium Charge States 

As i s shown in Figure 10, the mean excitation ene rgy is strongly 

dependent on the charge state of the projectile. Therefore , the stopping 

power of the target is also strongly dependent on the charge state of 

the projectile. In order to obta in good estimates of the stopping power, 

we mus t first get good estimates of the equilibrium cha rge s t a t es (ECS) 

of the projectiles in each of the t argets. The e xperimenta l de t e rmina-
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tions of the ECS are reviewed by Wittkower and Betz (1973). Their 

review contains, for most of the cases of interest here, little or no 

useful data. Furthermore, where there are abundant data for the low-Z 

projectiles, the data do not exhibit easily discernable empirical 

rules. Therefore, we must resort to the existing theories in order to 

guide extrapolations and interpolations of the existing data. 

Theory of Bohr 

Bohr developed a criterion (1940, 1941) which determines which 

electrons may be lost or captured by a projectile at a constant vela-

city, v • Simply stated, all electrons with orbital velocities less 

than v are lost, and all others are retained. Should a projectile be 

lacking an electron whose velocity would be greater than v , then it 

tends to capture the electron from the target. The target electrons 

with velocities nearest v are the most likely to be captured (Bell 

1953). Thus, using the Bohr criterion, the average charge, q, is de-

termined by counting the number of electrons with velocity less than v • 

Bohr writes the orbital velocity as u = Z* ac/v* where Z* is the effec-

tive nuclear charge for the least bound electron, and v* is the effective 

quantum number for the same electron. Since Z* is approximately the 

same as q for u = v , we obtain 

q v* v/ac (14) 

Using the statistical model, Bohr estimates 
1/3 

v* = Z for the most 

loosely bound electron. For 1 < q < Z/2 Bohr finds 

q/Z v/(ac z213) (15) 
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which then holds for velocities between ac and z213 a c. Equation 

(15) could give more accurate results if better estimates of u were 

given. In any case, no target dependence is used in this derivation, 

and, as is shown below, a target dependence b ecomes quite important at 

velocities of the order of ac . 

Theory of Lamb 

Lamb (1940) uses the ionization potentials to estimate q . The 

projectiles lose e lectrons until the ionization potential for the least 

bound electron is greater than v
2
/2. If all electrons moved in pure 

unshielded coulomb fields, this method would reduce to Bohr's method. 

The main problem in Lamb's procedure is to determine the appropriate 

ionization potentials. As in the Bohr method, the target serves merely 

as a sink or source of electrons. 

Theory of Bell 

Bell (1953) derives capture and loss cross sections which may be 

used to calculate q . The capture cross section is determined by noting 

that target electrons are stripped from the target while the nuclei are 

separated by distances several times the Bohr radius. At these dis

tances Equation (12) is use d to determine if the electron is captured . 

Thus electrons with velocities n e arly the same as the projectile are most 

likely to be captured. 

The calculation of the loss cross section is based on classical 

arguments. Just as the projectile ionizes the target, the ionized tar

get perturbs the projectile. A radius can be found at which the target 

nucleus exerts a greater influence on a projectile electron than does 
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the projectile nucleus. Using these two sets of cross sections, Bell 

calculates the most likely charge state which is always close to the 

average charge q . For projectiles with atomic number Z greater 

than 15 and velocity greater tha n 0.1 a c z213 , the relative ionization 

q/Z calculated by Bell agrees quite well with Lamb's estimates (Betz 

1972). However, in this work, we are interested in Z less than 14 and 

velocities less than 2 ac. In this r e gion, the agreement with the data 

is not good enough to make estimates for use in stopping-power calcula-

tions . 

More refined calculations have been performed for _c apture and loss 

cross sections (Betz 1972) , which can be used to improve the accuracy 

of the above calculations. However, for any such at tempt to be be able 

to predict the individual characteristics of a particular target and 

projectile combination, a better model of charge exchange is needed. 

One assumption made in Bell's work is that one electron is exchanged in 

a single encounter with the target atom; multiple exchanges are ignored. 

The various calculations generally assume that the projectile ion is 

always in its lowest state. In solids with nuclear densities of the 

order of 10
22

/cm
3 

and with projectile velocitie s of the order of 

8 -14 
2 • 10 em/sec, we expect to have only about 10 sec between collisions 

with impact para meters of the order of one Bohr radius. This time is 

usually not long enough f or de-excitation. On the other hand, in gases 

with densities of the order of 10
16 

to 10
17

/cm
3

, the time between col

lisions is of the order of 10-
8 

to l0-9sec which is comparable to ex-

cited-state lifetimes. As excited e lectrons tend to have orbits greater 

than one Bohr radius, the actual time between collisions is somewhat 
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lower. The difference in characteristic times might explain the major 

differences in q/Z for similar Z's but dissimilar phases. In addi-

tion, atoms with s hort-lived excited stat es should have smaller values 

of q/Z. In solids, the collisions occur too frequ e ntly for any dif-

ference to be apparent. 

As none of the above theories gives adequate estimates of q/Z, 

consideration is given to semi-empirical formulations. Dmitriev (1957) 

assumes that the probability of losing an electron is a function of 

v/u. where u. is the velocity characteristic of that electron. Summing 
1 1 

the probabilities for loss of each of the projectile's electrons, the 

average charge is obtained. Zaidins (196n shows how the Dmitriev pro-

cedure may be used to obtain ECS by fitting available data. He us es 

Bi 
functions of the form P. =A. exp((v/u.) ) where A. and B. are 

1 1 1 1 1 

free parameters which are varied in a least-squares fit . As the ECS 

for projectiles passing through solids tend to be similar, Zaidins indi-

cates that the data for a projectile passing through all solids may be 

fit simultaneously. In some cases there ;re not enough data to allow for 

a proper minimization, in which event some of the parameters are s et to 

reasonable values and are not varied. A similar procedure cannot b e 

used with gaseous targets. The ECS in different gases are dissimilar 

enough so that each set of data must be cons idered separately and this 

us ually leaves insufficient data for a reliable fit. Even in the few 

cases where there are enough data, there are often other problems. A 

particularly interesting case is the ECS of nitrogen projectiles in 

helium gas . As is shown in Figure 11, for low v e locities, the most 

likely charge s tate is +1 instead of the usual value of zero, a nd the 
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data cannot be fit by the Zaidins procedure. It is interesting to n o t e 

that the anomalous behavior of nitrogen decreases as heavier inert gases 

are used as targets. This suggests that the reason for the anomaly is 

that while nitrogen may be stripped of an electron even at low veloci-

ties, it is difficult to recapture an electron in another collision due 

to the high binding energy for the helium electrons. As the heavier 

inert gases have lower binding energies, the effect decreases in those 

targets. Similarly, there is little or no anomalous effect for nitrogen 

stopping in hydrogen. 

There are some regular trends in the ECS data which may be ex-

plaited. Figure 12 shows q/Z as a function of the velocity of the 

projectile in various media. The data were selected from the compilation 

of Wittkower and Betz ~1972). The available data indicate that for pro-

jectiles with atomic numbers between 5 and 15, the variation in q/Z 

with the target medium is approximately independent of the projectile. 

Thus, if q/Z is known in helium, it may be extrapolated to the other 

gases by applying the trend shown in Figure 12. Few data exist for pro-

jectile energies above 400 keV, but the ECS curves may be extrapolated 

by smooth curves keeping the Bohr criterion in mind as well as the gen-

eral trends from other cases. Such extrapolations probably give q 

correctly to within half a charge for velocities less than 2 v. 
0 

At 

any velocity, the fraction in each charge state plotted as a function of 

charge state is approximately Gaussian although somewhat skewed in favor 

of low charge states. It is assumed that the shape of this curve is 

determined by the projectile velocity and is the same for a ll of the 

stopping gases. The charge fraction curve for h e lium i s shifted to 
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obtain the appropriate q/Z valid for each of the other gases. The 

amount of the shift is given in Figure 13. It is often necessary to 

renormalize the sums of the charge fractions to unity. 

Minimum Impact Parameter 

When the target is an amorphous medi~ any impact parameter is 

possible, but small impact parameters are excluded from data-fitting 

calculations for two reasons 

(1) For sufficiently small impact parameters, the projectile is 

scattered out of the angle subtended by the detector and thus not 

observed. (Clearly, this is not the case in experiments in which the 

stopping power is deduced from the range of the projectiles.) Even 

larger impact parameters are excluded to allow for multiple scattering. 

Observing that a minimum impact parameter of the order of one or two 

Bohr radii allowed their calculations to approximately agree with the 

data, several theorists (Bhalla 1970, Komarov 1973) use arguments 

based on the multiple-scattering properties of the projectile to find 

minimum impact parameters of the order of one or two Bohr radii. It is 

shown in Appendix A that these arguments are fallacious. 

(2) As was mentioned earlier, for small impact parameters, the 

Firsov model overestimates the stopping power. This may be traced to 

the use of unperturbed wavefunctions and potentials. As it would be 

exceedingly difficult to use time-varying wavefunctions to correctly 

describe the time-dependent fluxes, the approximation of a cutoff param

eter is used. By choosing this parameter judiciously, the inadequacies 

of the basic model can be greatly reduced. 
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As a starting point, we consider the nature of the perturbations 

in the wavefunctions. For slow atomic electrons, we do not allow any 

perturbation. The electrons cannot move very far during the collision 

so that in assuming time independent densities, we do not make any 

errors. On the other hand, fast electrons can change their orbits so 

much that they interact adiabatically and can be ignored in the calcu-

lation. The electrons with velocities of the order of that of the pro-

jectile are the ones affected the most. As we expect their wavefunctions 

to be strongly perturbed, we choose as a first approximation cutoff 

parameters which characterize the distance from the nucleus at which 

electrons have velocities of the order of the projectile velocity. In 

order to minimize the number of free parameters, a single set of 

velocity-dependent cutoff parameters is chosen for all atomic numbers. 

To obtain an estimate of the cutoff parameters, the statistical model is 

used. The mean velocity of an electron is given by (Firsov 1959) 

where ¢TF is the Thomas-Fermi screening function. Although v(r) is 

also a function of Z , the dependence is weak, and we assume that the 

results for Z equal to ten hold for all of the projectiles. The col-

lision lasts for a time equal approximately to 2 r/v. To avoid the S 

plane, an orbital electron (in a circular orbit) must travel~ rrr ,hence 

v b . l(r) or 1.ta 
V TI/2 (17) 

Solving Equations (16) and (17), we obtain estimates of the appropriate 

cutoff p a rameters. The set of these values for all the velocities 
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considered is shown in Table Ila. After the set of calculations was 

performed using Table Ila it was noted that improved agreement could 

be achieved using an adjusted set of values as shown in Table lib. 

As the same set of cutoff parameters i s use d for all combinations 

of atomic numbers, there is no possibility of building in the Z oscil-

lations and the variable velocity dependence. It is clear that improved 

agreement with the data is possible if the parameters are allowed to be 

a function of the projectile type. The further complication of using 

different cutoff p a rameters for the projectile and target is not justi-

fied as the model is only approximate. 

At this point , the calcula tion of the energy loss due to the 

electron-electron interactions may be completed . Calling the ECS frac-

tions 

from 

SF. (v) J.rsov 

L FQ = 1, we obtain the stopping power 
Q 

J 
()() 

r . 
ml.n 

(18) 

where rmin is the c utoff parameter. For velocities below ac, Equat ion 

(18) represents the total electronic stopping power. As the velocity 

increases, it becomes possible for target atoms to be excited or ionized 

without a significant overlap of target and projectile orbitals. For 

velocities above zi13ac, the contribution to the total stopping power by 

Equation (18) is negligible and another approach is needed . At such 

velocities, considerable success has been achieved by the Bethe-Bloch 

(Bloch 1933) derivation of the stopping power due to i onization. By al-

lowing one free parameter, which in principle may be calculated, stopping-
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power data in this region are fit to within a fe~., percent. It is 

therefore attractive to see if a low-energy limit of the Bethe-Bloch 

equation may be written which can be added to Equation (18) to obtain 

the total electronic stopping power and at the . same time lead to a 

smooth transition to the Bethe-Bloch equation. 

The Bethe-Bloch formula may be written in the nonrelativistic 

region 

(4rr zi e
4

/mv
2

) I fj {ln(2mv
2 /n wj) + ~(1) 

j 

(19) 

where the functions and variables have been defined just below Equation 

(4) in Chapter II. In order to extend the low-velocity limit of 

Equation (19), some of the assumptions which led to its derivation are 

relaxed. Usually when lower velocities were considered, correction 

terms were inserted into the curly brackets to account for tightly bound 

electrons which could not be removed by ionization (Livingston 1937). 

We consider a different approach since for velocities of the order of ac 

only a few of the electrons can be ionized by this type of interaction. 

Using a semiclassical description of the targets, we may assign 

a velocity to each electron as 

u. 
1 

((E. - V(r)}/2m)
1

/ 2 
1 

(20) 

where E. is the total energy of the electron and V(r) is the poten-
1 

tial; both of these quantities are taken from the Hartree-Fock- Slater 

calculation. The projectile is considered to be a point charge with 
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respect to the target. We allow ionization to occur only for those 

electrons with velocities u. less than v, and we treat the se elec
l. 

trans as if they were at rest. All other electrons are considered to 

react adiabatically as the projectile passes and no energy is given to 

them. The fraction of electrons which may be ionized from t h e j-th 

orbital, ¢.(v), is calculated from (20) and integrating the square of 
J 

the wavefunctions from the radius at which u = v to infinity. 
j 

We 

must average over the charge states of the projectile so that we obtain 

z, Q 2 4 2 \ { 2 I F (v)(4TI Q e /mv) l ¢kwk ln(2mv /Ik) + ~(1) 
Q=l k 

- R~(l + iQ v /v)} 
0 

(21) 

in which Ik is set to 90% of the binding energy of the k-th orbita l 

as an estimate of the effective ionization or excitation energy. The 

bracketed term is set to zero where it would be negative otherwise. 

Summing Equations (18) and (21), we obtain the total electronic stop-

ping power 

S (v) 
e 

SF. (v) + s1 (v) • 
1rsov (22) 
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V. EXPERIMENTAL PROCEDURE 

Introduction 

There are many methods available for the determination of the 

stopping power of gases for heavy ions. Common to each of these 

methods is the need to know the amount of material traversed and the 

corresponding loss of energy. In general, these needs require that 

the temperature, pressure, and path length be known, and that the pro

jectile energy be measured before and after traversing the gas. 

Another requirement is a suitable projectile beam. This is not a 

trivial requirement either, since the initial charge states of the pro

jectile beam influence the amount of energy lost in the gas. In this 

work, a sealed gas cell is used so that the difficulties associated 

with accurately measuring pressure in a differentially pumped cell are 

avoided. The projectiles are ejected from a target located in the cen

ter of the cell so that they do not have to pass through an entrance 

foil, and the initial charge state distribution is similar to the 

equilibrium charge-state distribution (ECS) present in the gas. 

Two techniques were used to measure the energy of the projectiles. 

For energies above about 800 keV, the pulse height from a calibrated 

surface barrier detector was used directly, while for lower energies the 

time-of-flight method was used. The time-of-flight measurements re

quired a larger chamber than the pulse-height measurements. Topolog

ically the two chambers were equivalent. 

In their operation, the two methods are very similar. The major 

difference between them is the way in which the energy of the ions is 



-49-

extracted from the raw data. The general procedure is as follows. A 

proton (or alpha) beam enters the gas cell and causes the recoil of 

target ions. By selecting the angles of the recoils and of the scat-

tered protons, an ion beam is defined with an energy E and a spread 
0 

OE which may be calculated from kinematics, and from the various 
0 

energy losses involved. By plotting the response of the detection 

system against the energy of the selected ions, the detection system 

is calibrated for energy for the particular ions. A measured pressure 

of the stopping gas is then admitted to the gas cell, and the proton 

beam is again allowed to be incident on the target. The ejected ions 

are again selected, but this time they are slowed in the stopping gas . 

The change in pulse height or the change in transit time indicates how 

much energy is lost in the gas. Since the amount of stopping gas is 

known, the stopping power can be deduced. In actual practice, the 

sequence of runs proceeds as follows : beam energy 1 in vacuum, beam 

. energy 2 in vacuum, beam energy 2 in gas 1, beam en ergy 2 in gas 2 

(until all gases have been covered), beam energy 2 in vacuum (to check 

for buildup on target), beam energy 3 in vacuum, and so on. With pro-

ton beams no measurable buildup occurred. The earlier measurements were 

performed in a chamber with virtual leaks, and alpha beams incident on 

the targe t d i d lead to carbon buildup, probably from cracked hydrocar-

bans. 

The Gas Cells 

Figure 14 illustrates the gas cells schematically. The cells dif-

fer only in their dimensions. The larger chamber used for the time - of-
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flight determinations will be described in detail. The chamber is a 

general purpose device with an internal diameter of 61 em. Provision 

is made for mounting two detectors on movable arms which may be ro

tated externally. A target rod may be lowered and rotated. Numerous 

ports allow the chamber to be easily adapted for special needs. A 

snout connected to the front of the chamber seals the chamber from the 

beamline vacuum and forms the gas cell . The beam, always either pro

tons or alphas, passes through the snout to the Ni entrance foil. The 

entrance foil is epoxied to an aluminum insert which seals against an 

o-ring in the snout. A tantalum collimator (0.51 mm thick,as are all 

theTa pieces) with a 2.5 mm diameter hole, located 1.3 mm upstream of 

the Ni foil, keeps the beam from hitting the edge of the entrance win

dow which has a diameter of 3.8 mm. The foil itself is a nominally 

5000 R, pinhole-free nickel foil, which is purchased commercially. An 

accurate method to measure the thickness is described in the section 

on the pulse-height method. The entrance foil is located 10.8 em from 

the center of the chamber. A Ta collimator, 5.4 em downstream from 

the entrance foil limits the scattered beam to a diameter of 1.4 mm at 

that point. An antiscattering collimator is 2.5 em further downstream 

and has a diameter of 2 .4 mm. The largest diameter beam spot on the 

target, assuming the entrance foil to be an isotropic source of beam, 

is about 4.5 mm. The targets in the center of the chamber are tilted 

at 45° to the beam axis so that their diameters of 7.8 mm project to a 

minimum width of 5.5 mrn which is greater than the maximum width of the 

beam. The angular spread of the beam due to multiple scattering in 

the entrance foil is energy dependent, but may be calculated using the 
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method described by !'1arion and Zimmerman (196 7). In this method, the 

multiple scattering is assumed to have a G3ussian angular distribution 

of the form 
2 2 

exp(-8 /8 ) where 
w 8 is the angle at which the angular 

w 

distribution has fallen to 1/e of the peak value. For 5 MeV protons 

this is about 0.4°. 

The beam axis and the target axis were verified to coincide by 

the following method which was suggested by P. Ingalls (1974). A 

target of graph paper was placed in the target holder perpendicular to 

the beam. A proton beam was applied until the graph paper became dis-

colored. The target holder was then rotated 180° and the beam applica-

tion was repeated. The two spots overlapped so that the combined spot 

was about a quarter beam diameter-wider than it was high. Hence the 

error in the snout alignment is less than 1/8 of the beam diameter. 

The ion detector is fixed at 45° to the beam axis and the surface 

of the detector is 28.23 ±0.10 ern from the target. In order to reduce 

the distance between the detector and the fast preamplifier, the detec-

tor and preamplifier are connected directly to the BNC feedthrough which 

passes through the port blankoff. In this way the total distance from 

detector to FET gate is less than 15 em. It is important to keep this 

distance as short as possible in order to reduce ringing on the leading 

edge of the pulse. Two 6.4 mm diameter Ta slits placed 2.9 and 6.4 ern 

in front of the detector serve to shade the detector from particles 

scattering about the chamber. The angular variation from one side of 

the beam spot to the other is about 2.6°. This spread in angles leads 

to a spread in ion energies. The energy of the ion recoiled from the 

target is 
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(1) 

where losses in all foils are ignored and M
1 

is the mass of the 

beam particle, M2 is the mass of the recoiling ion, 8 is the angle 

of the recoil with respect to the beam axis, and Eb is the energy 
earn 

of the beam. By differentiating Equation (1) with respect to 8 , 

and then dividing through by Equation (1), we obtain 

oE 
0 

E 
0 

= - 2 tan 8 o8 (2) 

Since 8 = 45° or n/4 , the percentage spread in energy is twice the 

spread in 8 when measured in radians. Therefore, the 2 . 6° or 0. 045 

radians leads to an overall energy spread of 9% . There are two addi-

tional causes of energy spread. Since the recoiled ions are multiply 

scattered in the target, the detector actually samples a wider range 

of angles, and since the ions lose energy while traversing the target, 

those which pass through more of the target have lower energies. 

By observing the scattered beam particle with another surface 

barrier detector, we can select ions which have a much smaller spread 

in e nergie& -with the spread actually dominated by the thickness of the 

target used in the produc tion of the ions . From the kinematics of e las-

tic collisions , the scattered beam particle should b e at an angle 

defined by (Marion and Young 1968) 

(3) 

and with e nergy 
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E E - E 
beam o 

(4) 

The angular resolution of this detector varied during the experiment 

depending on the yield of ions, but typically 6¢ was set to 1°. When 

a coincidence is required between the two detectors, the initial 

angular spread of the ions is limited to about 0.5° leading to an 

energy spread of about 2%. Since the thickness of the target intro-

duces a spread equal to about 10% for typical targets, the spread in 

target dominated and the actual size of detector slits is noncritic al. 

The distance between the target and the scattered beam detector 

was generally set to about 10 ern, but needs not be known to high pre-

cision. The scattered beam particle velocity is about ten times the 

ion velocity so that the time from the target to the beam particle de-

tector is about 1/30 the time from the target to the ion detector. Since 

the beam particles lose only a negligible amount of energy even when gas 

is introduced in the cell, the uncertai nty in scattered-beam transit 

time introduces no significant additional uncertainty in the time-of-

flight measurements described later. 

The gas cell used in the pulse-height measurements is a 12- inch 

diameter scattering chamber. The target to ion detector distance is 

11.3 ± 0.1 ern. In this chamber both detector angles could be varied, but 

for the later measurements the scattered-beam detector was fixed at 90° . 

This detector subtended either 0.5° or 1.0° with the slits being 7 rnrn in 

length so that the ful l h e ight of the detector is used . With the detec-

tor located at 90°, no additional angular spread is introduced by this 

vertical slit. 
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The resolution of the pulse-height system is determined by the 

performance of the detector. Typical full widths at half maximum of 

the peaks are of the order of 10 to 30 percent of the total energy 

which ranges from about 600 to 2200 keV. The poorer resolutions cor

respond to the lower energies. In fact, below 600 keV for Al ions, 

the resolution is too poor to be useful. In general, this method 

becomes poorer as the projectile velocity decreases, and the time-of

flight method becomes better. For higher energies the opposite is true 

as the transit times decrease. The time resolution of the time-of

flight system was always about as good as the thickness of the targets 

would allow, although the electronics could achieve FWHM resolution of 

less than 0.5 ns. In practice, the best time resolution achieved 

using signals from the detectors was 2 ns. 

Electronics 

The electronics used in these measurements is illustrated in 

block form in Figure 15. In many cases, small changes were made to 

correct for the temporary unavailability of a particular module. All 

of the detectors are surface-barrier detectors depleted to depths 

greater than 100~. The detectors used to detect scattered protons are 

depleted to greater than 300~. It is possible to mount these detectors 

at an angle of about 45° with respect to the target to detector direc

tion so that the effective thickness is about 450~. 

For the pulse height measurements, most of the charge-sensitive 

preamplifiers in the lab could be used. However, the risetimes of these 

preamps are all too slow to permit good timing, so that it was necessary 
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to construct fast risetime preamplifiers of the type designed by 

Sherman and Roddick (1968) to provide the timing signals. The timing 

signal is taken from the error signal developed by the feedback loop 

of the operational amplifier which makes up the input stage of the 

preamplifier. The risetime of the timing pulse is affected by the 

capacitance of the detector and input cable. With a typical detector 

capacitance of 50 to 100 pf, the risetime was about 2 ns. For the 

higher input capacitances, the feedback capacitor was increased from 

0.5 pf to 1.0 pf. The falltime of the timing pulse is adjustable and 

is set to 50 ns which is identical to the risetime of the charge sen

sitive outputs. The fast operational amplifier has a gain of -9 so 

that the timing signal is positive. Both polarities are available for 

the charge-sensitive outputs. 

The timing signal from the ion detector preamplifier is connected 

to the input of the Canberra 1427 ARC (amplitude-risetime-compensated) 

timer. The external delay required by this unit is set to 3 ns and is 

supplied by a measured length of RG-58 coaxial cable. The otuput from 

the ARC timer is delayed by an additional length of RG-58 cable (the 

length of the delay depended on the average transit time to be con

sidered) and is connected to the input of an EG+G Nl05/T dual discrim

inator which is set to trigger at 50 mv. The output of the discrimin

ator is fed into the stop input of an Ortec 437 TAC (time to amplitude 

converter). The reason for using the fast discriminator before the TAC 

is that the TAC triggers on pulses greate r than 250 mv; since the rise

time of delayed signals is increased with increasing delay, the use of 
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the TAC directly leads to increased walk with increased delay making 

a direct time calibration difficult. The calibration is described 

below. 

The timing signal from the proton detector preamplifier is con

nected to the input of an Ortec 454 timing filter amplifier which 

amplifies and shapes the timing pulse for the Ortec 473 constant frac

tion discriminator. The constant fraction discriminator provides a 

timing signal which is independent of the amplitude (walk less than 

± 2 ns for a 100 to 1 range of inputs). This signal is delayed by 

RG-58 cable as above, and drives the other half of the EG+G NlOS/T 

discriminator which provides the start signal for the TAC. The time 

interval between the start and stop pulses determines the transit time 

of the ion from target to detector. The only correction which must be 

made is for the transit time of the proton which is generally of the 

order of 5 ns. When gas is admitted to the cell, the transit time in

creases, and since the change in transit time is important, a direct 

time calibration is useful. It also allows the energy of the ions to 

be measured directly which is desirable since the energy of the selected 

ions is uncertain due to the uncertainties resulting from the losses in 

the foils. The direct calibration allows the actual energy to be mea-

sured more precisely. To effect the calibration, a pulse is split and 

one part is connected to the test input of the scattered beam preampli

fier. The other part is delayed by about 100 ns and attenuated by a 

factor of 10, and is connected to the test input of the ion preamplifier. 

The TAC output is recorded by the analog to digital analyzer. The delay 
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of the stop pulse is increased or decreased by 32.0 ns and the output 

is recorded. A comparison of these spectra yields the calibration. 

Identical results are obtained if the delays are varied in the start 

line. \Vhen the pulser is not used, calibration is obtained using the 

particle spectrum directly and again varying the delays. Because of 

the poorer statistics, the uncertainty in these calibrations is 

greater. The estimated error in the pulser calibrations is less than 

0.5%. 

Since some of the targets contain more than one element, the ion 

spectrum has several peaks. If high count rates are present, the 

constant background increases and can be of the same order of height 

as the peak of interest. For these cases, the pulse heights of the 

scattered protons are observed and the peak, corresponding to the 

protons scattering off the ions of interest,is used to gate the input 

of the multichannel analyzer. This leaves a simple spectrum with only 

one peak and minimal background. By selecting a wider pulse-height 

range in the scattered proton spectrum, several ions may be measured at 

the same time. 

The electronics for direct pulse-height analysis is much simpler • 

. The charge sensitive outputsof the preamplifiers (fast preamplifiers 

are not required here) are connected to shaping amplifiers such as the 

Canberra 1413 or the Ortec 410. Here again, selected proton groups 

may be used to gate the HCA yielding the energy distribution of the ions. 

In principle, both of these methods could be used simultaneously. 

llm.;rever, as these methods are best used in different energy ranges, they 

were not used together. 
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Determination of N~ R 

We define the experimental stopping power as 

S(E - ~E/2) 
0 

~E 

N ~R 
(5) 

where ~E is the energy lost in the stopper, N is the number density 

of stopper atoms, and ~R is the target to detector distance. We may 

define N ~R in terms of measurable quantities as 

P (torr) 
D(cm) , 

760 
(6) N ~R = 2.687 • 10

19 273 

where the constant is Loschmidt's number (the number of atoms/cm3 of a 

monatomic gas at standard temperature and pressure), Tis the gas tem-

perature, P is the gas pressure, and D is the target to detector dis-

tance. AR h h . I 2 
N o as t e un1ts atoms em • 

The temperature of the gas as assumed to be the same as that of 

the chamber because of the large amount of contact between the two. 

Since the ions move through the stopper gas away from the beam, local-

ized heating effects due to the beam are no problem. In no measurement 

did the beam intensity seem to affect the result beyond the probable 

error in N • The temperature of the chamber is measured using a 

thermometer with O.l°C divisions. Several thermometers of different 

manufacturers were compared and all were found to agree to within O.l°C. 

Since the experiment is performed at room temperature, the error in N 

associated with the temperature measurement is 
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oN -273 (273 + T)-2 oT (7) 

or about 0.03%. 

The earlier measurements used a Wallace and Tiernan F-160 gauge 

to measure pressure. The gauge has a full scale of 20 torr and a stated 

accuracy of 1/3% of the full scale or about 0.07 torr. A McLeod gauge 

was used to check the calibration and it was found that a correction 

graph was useful due to a pressure offset in the gauge. For the mea

surements using this system, the pressure was generally above 1 torr so 

that the associated error was less than 7%. However, for the time-of

flight measurements, a larger chamber was required, with pressures less 

than 0.5 torr. Rather than allow the fractional uncertainties in pres

sure to rise higher at these low pressures, a precision oil manometer was 

constructed, based on the National Bureau of Standards design of Thomas 

and Cross (1966). A diagram of the manometer is illustrated in Figure 

16. The surfaces of the two oil columns are observed by reflecting a 

flashlight off the surface to a white screen mounted on the back of the 

columns. Micromet:er spindles, ground to points, are raised until they 

contact the surface. When the spindles break the surface, a dark spot 

appears on the screen so that the location of the surface is determined 

to 0.0001 inches (0.0025 mm). Actually, considerable care is required 

to achieve this precision; with considerably less care the readings could 

be repeated to better than 0.0003 inches. Hence, the expected error of 

four such readings (two heights for each pressure, and two pressures (one 

of them is vacuum)) is 0.0006 inches . This effect alone leads to an 
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uncertainty in the pressure of 0.0011 torr, or for pressures of the 

order of 0.5 torr, an error of 0.22% . The uncertainty in the density 

of the oil (DC704) was estimated to be about 0.06% in a density deter-

mination using two volumetric flasks and distilled water as a stand-

a rd. The density of the oil was found to be 3 1. 0610 ± 0. 0006 g/ em at 

22°C . Adding the systematic and nonsystematic errors directly, the 

uncertainty in pressure is about 0.28% for pressures of the order of 

0.5 torr. With care in all aspects of the pressure measurement, the 

total uncertainties in pressure could be reduced to about 4· l0-4 torr 

+ 1 part in 104 of the reading, or about 0.1% for 0.5 torr. 

The target to detector distance, D , is measured by direct mea-

surement of the detector holder and an examination of the chamber blue-

prints. The distance from the sensitive surface to the detector mounting 

surface was determined by placing the detector on a piece of graph paper 

so that lines reflected by the gold electrode coincided with other 

lines in the paper. The surface is then located half way between the 

reflected and unreflected lines. The measured distance D was 28.23 em 

(11.3±0.1 and 9.26 ± 0.1 for the smaller chamber) with an assigned 

uncertainty of 0.1 em most of which is due to allowing the target to 

flex. Thus the uncertainty in D is about 0. 35% (and 1 % for the small 

chamber). 

The overall probable error in N 6R is then 

0.45% . (8) 

If the errors are normally distributed, we may obtain an es timate of 

the standard deviation from the probable error by multiplying the result 
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of Equation 8 by a pproximately 1. 48 where the factor is the reciprocal 

of the argument x defined by 

P(x) 0.5 . (9) 

Hence, for the time-of-flight measurements, the standard estimate of 

error is about 0.7%. Using the mechanical gauge leads to errors about 

ten times as large. 

Unfortunately, the dominant error is that associated with the ac-

tual determination of 6E • 

Determination of 6E--The Time-of-Flight Method 

As was described in the introduction of this chapter, the two 

methods differ mainly in the determination of 6E • The time-of-flight 

method uses the relations between a projectile's energy and velocity, 

and between the velocity and time-of-flight to determine the energy of 

the projectile when it reaches the detector. Since the transit time 

T in vacuo is given by D/v. where v. 
]. ]. 

is the initial velocity of 

the projectile when no gas is in the cell, the energy of the projectile 

is given by 

(10) 

where M is the mass of the projectile. In practice, we do not get T 

but rather T- T where T is the transit time for the scattered 
p p 

proton to its detector. Using kinematics, a good estimate of T 
p 

obtained. When gas is introduced into the chamber, Equation (10) 

i s 

no 

longer holds. We derive a s uitable r e lationship between the final ene rgy 
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of the projectile and the transit time in gas, T , as follows. Since 
g 

v = dx/dt , we may write 

T D 

f dt f 
0 0 

dx 

v 

dE(M/2) 1 / 2 

-kEpEl/ 2 (11) 

where the expression for dE/dx has been approximated by -kEP, and Ef 

is the final energy. At this point both k and p must remain as un-

known parameters whose values need not be determined. In fact, their 

determination is supposed to be the end result of this part of the 

experiment. Performing the indicated operations in Equation (11), we 

obtain 

We may 

T 
g 

eliminate 

1 (M/ 2)1/2 
k 

k by using 

dE 

El/2-p _ El/2-p 
. f 

( 
1 

1/2-p } 

JD dx t 
0 E. 1 

-k Ep 

(p i= 1/2) . (12) 

(13) 

which is obtained from the functional form used for dE/dx • From (13) 

k 

1-p 1-p 
Ei - Ef 

D(l - p) 
, (p i= 1) 

is obtained. Substituting this result in Equation (12) we get 

T 
g 

D(M/2) 1 / 2 E1/2-p _ El/2-p 
. f 1- p 

( 11-p El-p ) (1/2 - p) 
E. f 1 . 

(14) 

(15) 

Using E 2 1/2 Mv , and introducing A vf/vi we may rewrite (15) as 
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1 -
l-2p 

D A 1- p 
T ( 

- A 2-2p) (1/2 - p) g v. 1 ]. 

Since T = D/vi' tn T - T 
g 

may be written 

l-2p 
1-p D 1- A 

tn [ 
1- A2-2p 

- 1] 
v. 1/2- p 

]. 

For p = 1/2 the term in the square brackets becomes 

ln A _ 
1 A 1 ' 

and for p - 1 the bracketed term becomes 

Noting that 

1 - 1/A 

ln A 
- 1 . 

(16) 

(17) 

(17a) 

(17b) 

(18) 

it becomes desirable to solve (17) for A as a function of vi!n/D 

and of p • Figure 17 shows A or v f/v i as a function of these 

values for the cases p = 0 and p 1 . Experimental determinations 

of stopping powers for particles with velocities of the order of v 
0 

tend to be approximated by power laws with powers ranging from 0 . 3 to 

0.7. Thus for v.~T/D less than about 0.055, corresponding to an 
]. 

energy loss of about 20%, the maximum uncertainty in the stopping power 

due to varying p in this range is about 3%. After several points over 

an appreciable range of ion energies, a good estimate of p is available 

so that the procedure may be iterated wi t h the new value of p instead 

of the value of 0.5 which i s used for all first iterations. Thus the 
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choosing of p in no way prejudices the final result. No functional 

form for Figure 17 is known which gives A as a function of the other 

variables directly. We may approximate such a function so that 6 E can 

be written as a function of 8 = v.6T/D 
1 

6E 

Taking p = 1/2 we have 

(19) 

where for 6E/E. less than 30% the error in 6 E is less than 0.3% as 
1 

compared to the exact expression. Similar expressions can be derived 

for other values of p • 

The largest source of uncertainty in the stopping-power measure-

ment is the uncertainty in 6 E . 

6E directly proportional to 6T 

Keeping terms of order 8 , we have 

As E., and D 
1 

may be deter-

mined to better than 1 %, 6T is the largest source of uncertainty in 

6E. 6T is determined by locating the peaks of two distributions in 

the time spectra. We may reduce the percentage error in 6T either by 

increasing the precision with which each peak is determined, or by in-

creasing the separation between the peaks. To improve the precision 

of the peak location, either a greater number of counts must be accumu-

lated, or the FWHM of the distribution must be reduced. The · count rate 

is limited by the beam intensity, target thickness, and the angles sub-

tended by the detectors. Increasing either the target thickness or 

the total angle subtended increases the FWHM. The beam intensity can 

be increased until the entrance foil is punctured by the increasing 

heat. For 2 MeV protons, the intensity above which the entrance foil 

tends to puncture is about 1 ~amp for our collimation (Marion and 

Young 1968). As a long life is essential for the entrance foil, much 
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lower intensities are used than the puncture intensities. The only 

way to appreciably decrease the FWHM is to make the target very thin, 

and this reduces the count rate. 

The more practical way to reduce the relative error in 6 T is to 

increase 6T • This is done by increasing 6R • For this reason, a 

larger chamber is used than in the pulse-height method. By increasing 

the pressure of the stopping gas, 6T is increased--but so is the mul

tiple scattering which reduces the count rate and increases the FWHM. 

The net effect is, however, to reduce the relative error in 6 E. A 

problem with increasing 6E is that the stopping power is then aver

aged over an increasing range of energies. 

All of the above considerations hold for the pulse-height method 

provided that 6T is replaced by 6E • In this case the FWHM is 

dominated by the detector's properties so that thicker targets are 

consistent with the obtainable resolution. 

Determination of 6E--Pulse-Height Method 

The determination of 6E using the pulse-height method is straight

forward. The ion detector is calibrated for energy response by the suc

cession of different beam energies. The energies of the ions are 

calculated from kinematics and from the estimated energy losses in 

the various foils. Unlike the time-of-flight method, the pulse-height 

me thod has no provision for an absolute check of the ion energy. 

When gas is let into the cell, the pulse height from the detector 

is directly related to the energy of the ion after passing through a 
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thickness N {I.R of the gas. By applying the calibration curve to 

this pulse height, the loss of energy L1E is directly obtained. No 

assumptions need be made about the rate of stopping as in the time

of-flight method. 

Typical Spectra 

Using the electronics shown in Figure 15, including the require

ment that only a single proton peak is permitted to gate the analyzer, 

a simple spectrum, consisting of a single peak on a constant (usually 

negligible) background, is obtained. (When several proton peaks are 

accepted by the single-channel analyzer, several peaks are obtained 

on a proportionately higher random background.) A sample spectrum is 

shown in Figure 18, which resulted from the pulse-height method of 

analysis of data from a measurement which included ions of carbon, 

oxygen, and aluminum. The peak from aluminum ions is at a mean energy 

of 700 keV. The FWHH is about 110 keV, · or about 16%. The oxygen peak 

at about 1125 keV has a FWHH of also about 110 keV, or about 10%. The 

position of the carbon peak is shown by the arrow; it was deleted by 

excluding scattered protons whose energies corresponded to scatte ring 

off carbon targets. Useful spectra for aluminum below approximately 

600 keV could not be obtained. By contrast, Figure 19 shows a similar 

spectrum using the time-of-flight method for aluminum projectiles with 

a mean energy of only 340 keV. Also included are peaks representing 

oxygen ions at 550 keV and carbon ions at 700 keV. Since the peaks 

are plotted as a function of time, the higher the energy per nucleon, 

the lower the time. The ~~M of the aluminum peak is about 6 ns. 
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Since the transit time in this case is 182 ns, this corresponds to 

velocity spread of 3.3% FWHM, or in terms of energy 6.6% FWHM or 

about 22 keV. (This kind of resolution is generally possible in the 

pulse-height method only for lighter particles such as alpha particles 

or protons.) The resolution is degraded when gas is present in the 

chamber as is shown in Figure 20, in which the same particles as in 

Figure 19 pass through helium stopping gas. 

Peak Fitting 

In each method the most probable energy of the ions must b e ex

tracted from the peaks. As in all cases (but magnesium), the peaks 

are isolated so that the least chi-squares fitting programs available 

are easily used to fit the spectra, peak by peak, with a functional of 

the form, a Gaussian plus a constant background. For the time-of-flight 

spectra, the argument of the Gaussian is replaced by l/t
2 

since 

t 2 varies as the inverse of the energy tvhich is assumed to b e 

Gaussian. Actually all of the peaks are sket.;red because of the low

energy tails. In the fitting procedure, only the high-energy side of 

data plus the higher half of the low-energy side of data are generall y 

used in the fitting procedure. Since it is important to extract the 

shift in the peaks, the functional used in fitting is not as import ant 

as the constancy of shape of the peaks. Little difference in the peak 

shifts (between the vacuum and gas runs) occurred whe ther or not the 

entire peak was considered in the fitting p rocedure: Th e ND 4420 

analyzer has a peak-fitting routine in its softt-Tare t.;rhich was compared 

to the least chi-square program run on the IBM 370. It wa s found that 
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the peaks agreed within the standard error calculated by the program 

about 90% of the time. Where there was disagreement, the error was 

generally less than twice the standard error, and was usually trace

able to one or two points which were probably weighted differently by 

the two procedures. As the Nuclear Data program is proprietary, a 

listing was not readily available to verify this assumption. 

As indicated earlier, the magnesium data do not contain isolated 

peaks. Unlike the other projectiles studied in this thesis, magnesium 

has three common isotopes, leading to three overlapping peaks in the 

data. Since each of the isotopes moves at a different speed, each 

loses energy at a different rate. Therefore, the peaks move at dif

ferent rates depending on rate of change of dE/dx with respect to 

velocity. This causes a change in shape of the combined peak so that 

a simple fit to the data would lead to erroneous results. Since the 

24
Mg component included about 80% of the projectiles, and has the 

highest velocity, its high energy side is not influenced by the pres

ence of the other isotopes. Therefore, the half-height point of the 

high-energy edge is used as a point characteristic of the energy . This 

procedure, although avoidable by using isotopically pure magnesium, 

was found sufficiently accurate for our purposes. 

Target Preparation 

All of the targets used as projectile sources were either self

supporting, or were backed with carbon. The thickness of the target is 

governed by several considerations. The target must be thick enough so 
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that it remains intact during the entire measurement including the 

cycling between gas and vacuum after exposure to the beam. The thicker 

the target, the higher the count rate, but at the same time, the 

greater the spread in incident energy. This limits the resolution of 

the system. The diameter should be larger than the beam spot, but 

the larger the diameter, the greater the chance of breakage. Where 

thin targets were required (to retain sufficient resolution), a carbon 

backing was used to obtain rugged targets. Providing that the atomic 

weight of any contaminant (including the backing) differs from the ion 

of interest by more than about 15%, the contaminant may be removed by 

the coincidence requirement of protons having the proper energy. If 

the protons are too close in energy to be separated, an a beam can be 

used. While the coincident proton groups are too closely spaced in 

angle, the a groups are sufficiently separated in angle so that a geo

metric cut eliminates the contaminant. 

The targets are mounted on either Ta or Al frames which measure 

2.5 em by 1.25 em by 0.25 mm. A hole with a 0.78 em diameter is 

punched in the center of the frame using a punch which was designed 

for target frames which are 0.25 mm thick. The holes produced by this 

method have very little burr and require minimal buffing and flatten

ing. 

The frames are used to pick up floated targets, as described 

below. They are mounted on a stainless-steel holder which allows the 

frames to be clamped to the holder without introducing stresses in the 

target. Up to four targets may be mounted in the gas cell at one time. 
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The target rod may be rotated so that the targets are normal to the 

direction to the ion detector; this minimizes the effective thickness 

of the target for the ions while increasing the effective thickness for 

the beam particles. 

The details of target fabrication are now discussed for each type 

of target. 

Carbon 

Carbon foils are available commercially (Yissum Research Develop-

ment Corporation, Jerusalem, Israel; Arizona Carbon Foil Company). 

2 
Foils purchased from Yissum are specified to be 10 ± 2 11g/ em , and 

those from Arizona are 10 ± 1 11g/ cm
2

• The foils are floated off their 

microscope-slide backings onto the surface of distilled water. They 

are picked up by the target frames such that wrinkle-free targets are 

obtained. Typically, 90% of the pickup attempts were successful, 

although about 20% of these targets broke before mounting in the gas 

cell. 

Oxygen 

Three types of oxygen targets were used in this work. Microscope 

slides, cleaned with trichlorethylene and distilled water, were placed 

in the bell jar. Eight micrograms per square centimeter of BaC1
2 

was 

vacuum evaporated to form a release layer. SiO was then vacuum evapor-

2 
ated on the slide to a thickness of 20 llg/cm . The foils were then 

floated and picked up as double layers. About 40% of the attempts to 

lift targets were successful . 
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A more satisfactory method for producing oxygen targets was to 

use an aluminum foil backed with carbon. These targets were fabri-

2 2 cated by evaporating 5 to 10 ~g/cm of aluminum on a 10 ~g/cm carbon 

slide. The foils were picked up and allowed to remain in air so that 

the aluminum oxidized. This process yields a thin sturdy oxygen tar-

get. 

The NaOH targets described below were also used as oxygen tar-

gets. 

Fluorine 

In order to produce fluorine targets, LiF was used. As LiF is 

water soluble, a special procedure was attempted. LiF was evaporated 

onto a carbon slide through a mask which allowed the LiF to form disks 

on the carbon substrate. A minimum gap of 0.3 em was left around each 

0.8 em diameter disk when the foils were floated. The foils were 

quickly picked up. When the mask was not used, the water tended to 

dissolve the LiF, first along the edges of the foil, and then across 

the foil. The thicknesses of both the LiF and the carbon were 

2 
10 ~g/cm • AlF

3 
targets were also used. 

Sodium 

Another type of fabrication was used with sodium. It was decided 

to use sodium salts as a source of sodium. NaOH was used because 

neither the oxygen nor hydrogen present in the target would cause any 

difficulties in the experiment. Fluorine is close in mass to sodium 

so that NaF could not be used, and chlorine would introduce more mul-

tiple scattering in the target than the OH groups so that NaCl was 
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ruled out. NaOH was vacuum evaporated onto previously mounted carbon 

foils to a thickness of 20 ~g/cm2 which was twice the thickness of the 

substrate. Air was leaked into the bell jar slowly, as the completed 

foils were fragile. Approximately half the foils survived to be used 

in the gas cell with some of the foils breaking during the evaporation, 

some while the jar was brought up to atmosphere, and some while the 

foils were being stored (at atmospheric pressure). 

When the first NaOH targets were used, it was noted that a very 

high atomic weight was present in the target. From the energy of the 

scattered proton peak, it was deduced that the contaminant was tungsten 

which was the material out of which the evaporation boat was made. New 

targets were made using a boat made of molybdenum coated with Al
2
o

3
• 

No high Z component was present in these targets. It is apparent that 

tungsten is attacked by NaOH at the evaporation temperature for NaOH. 

Magnesium 

Magnesium metal was evaporated from a tantalum boat fashioned 

into a trough with a depth of about three em. Attempts from shallow 

boats failed as the subliming magnesium tended to j ump out of the boats. 

2 
A thickness of 10 ~g/cm was evaporated onto a carbon slide which was 

then processed in the same manner as carbon alone. The magnesium 

tended to peel from the carbon so another approach was needed. Before 

2 
the magnesium was evaporated, a 20 ~g/cm layer of gold was evaporated 

onto the carbon slide. Then the magnesium was eva porated. This produced 

satisfactory results. 
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Aluminum 

Both backed and unbacked targets were used. For the unbacked 

targets, a slide was first cleaned with trichlorethylene and distilled 

water and placed in the bell jar. Bac1
2 

was used as a release agent 

2 
and a layer 8 ]Jg/ em was evaporated onto the slide. Aluminum was then 

evaporated from a tungsten filament onto the slide to a thickness of 

2 
10 ]Jg/cm • After floating the foils onto distilled water, they were 

lifted in double layers with total thicknesses of 20 ].1g/cm
2

• These 

double layer targets were more durable than a single-layer target with 

the same total thickness, as cracks in one layer were held together by 

the other layer. 

When thinner aluminum targets were needed , the required thickness 

of aluminum is evaporated onto a carbon slide which was then treated 

like a carbon target. 

Thickness of the Entrance Foil 

As there is no absolute energy measurement in the pulse height 

method, it is necessary to know the beam-energy loss in the entrance 

foil, especially if an a beam is u sed to recoil the projectiles . As 

this thickness may change due t o the deposit of cracked pump oil and 

other contaminants, it is necessary to measure the thickness in situ. 

An easy way to do this is s uggested by Gordon (1973). The e lastic re-

. 12 12 
act1on C(a,a) C has a resonance at 4241 ± 25 keV. By measuring the 

resonance energy without the entrance foil, and then with the foil, the 

loss of energy is directly measured. By us ing the tabulated stopping 

powers of Northcliffe and Schilling (1970), the thickness of the foil 
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is obtained. During the experiments using proton beams, no carbon 

buildup was found. 

Stopping Gas Purity 

All of the stopping gases are research grade pure (greater than 

99.99% in all cases). Since the gases must pass through a common mani

fold and stay in the gas cell for several hours, contamination is a 

greater problem than the initial purity. When the gas cell was iso

lated from the pump, the pre ssure increas ed at a rate of about one 

micron per hour. It is assumed that this rate is due to virtual leaks, 

as enclosing the chamber in a helium atmosphere for leak checking in

dicated no leaks. This leak rate amounts to about 0.2%/hr for xenon 

stopping gas, but since the stopping power of xenon is much higher than 

that of air, the net effect is negligible . For the l i ght e r gases, 

higher pressures are us ed so that the relative leak rate is smaller. As 

the leak is assumed to be virtual, the gas cell is flushed with the 

stopping gas once before taking the gas runs . 
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VI. DISCUSSION OF RESULTS 

Introduction 

In this chapter all of the experimental results available to 

date are compared. As techniques used in these stopping-power deter-

minations require different corrections which were not always applied, 

each of the methods used by the other workers is discussed. Following 

this discussion, the results of calculations presented in this thesis 

are compared with the data. Finally, a table is given which gives ap-

proximate power-law expressions for the stopping powers valid for pro-

jectile velocities between 0.5 v and 2.0 v where v = ac . 
0 0 0 

Experiment of Weyl 

Weyl (1953) measured the energy loss of nitrogen and neon ions 

in helium and argon gas, in the energy range from 150 keV to 450 keV. 

Singly charged ions were selected by a magnetic analyzer and were al-

lowed to pass through a differentially pumped gas cell, 76 em in 

length, and filled to a pressure of approximately 0.1 torr. The singly 

charged ions emerging from the cell were then magnetically analyzed for 

final energy. Weyl found a linear relat i onship between the energy lost 

and the gas pressure for pressures between 0.01 and 0.1 torr. As is 

s hown in Appendix B, projectiles in the velocity r ange consider ed in 

this thesis must pass through approximately 10
16 

atoms/cm
2 

in order to 

reach the equilibrium charge distribution. Thus in Weyl's experiment, 

for about 3% of the gas cell, the energy lost is characterized by the 

initial charge state and not the equilibrium charge distribution. 
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Weyl recognized that scattering effects alter the measured stop-

ping power, but does not correct his data so as to extract the elec-

tronic stopping power. This must be considered in comparing his data 

to the calculation. 

Experiment of Teplova et al. 

Teplova et al. (1962) measured the energy loss of nitrogen and 

neon ions in helium and argon gas for energies up to 2.4 MeV. The 

ions enter a sealed gas cell through a celluloid window. Gas pressures 

of the order of 10 rnm were used. 

Experiment of Ormrod 

Orrnrod (1968) measured the energy loss of carbon, nitrogen, oxygen, 

fluorine, and neon ions in argon gas. Projectile energies ranged from 

25 keV to 160 keV. Singly charged ions are selected for energies below 

100 keV and doubly charged ions for energies above 100 keV. The 

16 2 thickness of the gas target was about 7 x 10 atoms I em so that non-

equilibrium effects are present over about 14% of the gas cell. Orrnrod 

noticed that when the stopping power was corrected for the nuclear 

stopping effects and the resulting electronic stopping powers were ex

pressed in the form s 
e 

kEP, that p decreased with increasing 

energy. Most of his data can be fit with two power laws with one apply-

ing below 100 keV, and the other above 100 keV. The fact that singly 

charged ions are used in one of these regions and doubly charged in the 

other indicates that the results are being influenced by the initial 

ions not being in an equilibrium distribution. Th e doubly charged ions 

lose energy slower than singly charged ions, and at 160 keV, the highest 
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energy considered, 66% of the nitrogen ions,for example,are in an un-

charged state--only 3% are in a doubly charged state (Wittkower and 

Betz 1973). 

Experiment of Hvelplund 

Hvelplund (1971) measured the energy loss of carbon, nitrogen, 

oxygen, fluorine, neon, sodium, and magnesium, in helium and neon gas. 

A differentially pumped cell was used, 828 mm in length, with gas 

pressures around 0.1 torr. Ions passing through the chamb er had to 

be deflected by less than 1/3° in order to reach the magnetic energy 

analyzer. The effects of nuc lear collisions were subtracted and the 

resulting electronic stopping power was expressed in the form 

S = kEP which fit well over the entire range of energies from 200 to 
e 

500 keV. The targets used were s ufficiently thick so that the non-

equilibrium region was only a few perc·ent of the gas cell's length. 

The energy resolution of the differentially pumped s yst ems is good 

enough for the s traggling to be measured. This is not possible for 

sealed gas cells, as the entrance foil causes appreciable straggling 

which usually dominates the straggling in the stopping gas. 

Experiment of Gordon 

Gordon (1973) measured the energy loss of carbon and aluminum 

ions in helium and xenon gas for projectile energies above 600 keV. A 

sealed gas cell was used with the proj ect iles being produced as recoils 

from a target. Target thicknesses of the order of l0
18

atoms/cm
2 

were 

used. 
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Experiment of Donahue 

Donahue (1973) pointed out that since the DJppler-shift attenua-

tion factor is a function of both the lifetime of the s tate of in-

terest and the stopping powe r o f the medium for the projectile, the 

stopping power could be measured if the lifetime were known. He ap-

plied this method to several reactions which produced states with 

known lifetimes and calculated the stopping power of krypton for 

proj ectiles of oxygen, fluorine, magnesium, and aluminum. In each of 

the cases, agreement was obtained with the stopping power predicted 

by Lindhard, Scharff, and Schiott (1963). 

This method yields correct results only if the functional form of 

the stopping power is correc t. If the electronic stopping power is 

of a form not directly proportional to the velocity over the entire 

range of the calculation, the de rived stopping power will be erroneous. 

If the electronic stopping power is approximated as kEP, and p is 

greater than 0.5, the actual rate of stopping is fas ter than for the 

Lindhard model. To compensate for this, a higher value of S must be 
e 

chosen at the initial velocity. Thus it is expected that the stopping 

power predicted b y the Donahue method will be high for those projec-

tiles exhibiting power-law stopping with p greater than 0.5, and low 

for those with p less than 0.5. 

Comparison of Experimental Results 

The experimental results will be compared with the previous re-

sults for each projectile separately. Then the experimental data 

will be compared to the calculated stopping powers of Lindhard and 
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Scharff (1961), and will also be compared to the results of the calcu

lation presented in this thesis. 

Carbon 

The electronic stopping powers of the various gases for carbon 

projectiles were measured using the pulse-height method. The data are 

shown in Table III and are shown (without error bars) in Figure 21 

along with the previous determinations and the Lindhard-Scharff calcu

lations. In Figure 22, the same data are shown again for comparison 

with calculations presented in this thesis. The curr ent data agree 

well with the results of both Hvelplund and Gordon for the stopping in 

helium. Hvelplund's data for stopping in neon are about 9% below the 

current data. The two sets of data both have errors of about 5% and 

the slopes of the best fits through each set of data are about the 

same. The Ormrod data in argon are for much lower energies than the 

current data, but a single smooth curve could be consistently drawn 

through both sets of data. Agreement is also obtained with the Gordon 

data for stopping in xenon. 

As can be seen in Figure 21, the Lindhard-Scharff calculation is 

correct in the energy dependence but wrong in magnitude. In general, 

the Lindhard-Scharff calculation has the stopping power curves for the 

heavier gaseous stoppers too closely spaced. In Figure 22, it can be 

seen that the current calculation predicts too high a slope for the 

curves, but the magnitudes are about right. The overall agreement is 

much better than for the Lindhard-Scharff curves. 
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Nitrogen 

No current stopping power measurements were made for nitrogen 

projectiles. The Lindhard-Scharff prediction (see Figure 23) agrees 

in slope with the data for neon and argon targets. The data of Teplova 

et al. for helium targets are poorly fit. The present calculation (see 

Figure 24) fits the helium data only a little better than the Lindhard

Scharff prediction. The neon data are well fit, but the prediction for 

argon stopping gas, although about right in magnitude, weaves about the 

data. 

Oxygen 

Most of the electronic stopping powers of the various gases for 

oxygen projectiles were measured using the pulse-height method. Some 

of the measurements in helium used the time-of-flight method. The data 

are listed in Table IV and are shown in Figures 25 and 26 where they 

may be compared with the calculation of Lindhard-Scharff and with the 

present calculation. All of the data are internally consistent . An 

interesting feature of the oxygen calculation is that at about 600 keV 

there is a distinct change of slope. This change of slope is not found 

in the simple theories based on statistical models such as Lindhard

Scharff. The stopping-power data in helium and neon clearly indicate a 

change in slope near 600 keV. The present calculation provides a much 

better fit to the data so that more reliable extrapolations are possible 

than with the calculation of Lindhard-Scharff . 

Fluorine 

The data for the fluorine projectiles stopping in the gases taken 
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using the time-of-flight method are listed in Table V. The agreement 

with other data is acceptable, with the current data just a few per

cent below Hvelplund's data for helium stoppers, and a few percent 

above Hvelplund's data for neon stoppers. An extrapolation of Ormrod's 

data for stopping in argon gas, shown in Figures 27 and 28, is consis

tent with the current data taken above 250 keV. The Lindhard-Scharff 

calculations for fluorine stopping in argon provides a better fit to 

the data than the current calculation, but the current calculation is 

better for the other gases. The Donahue datum for krypton is lower 

than the current calculation predicts, but this might be due to Donahue's 

assumption that the stopping power is proportional to velocity, which 

is not the case for fluorine. 

As in oxygen, both the fluorine data and the current calculation 

indicate deviation from a simple power-law dependence. 

Neon 

No current stopping-power measurements were made for neon projec

tiles. The existing data for stopping in argon suggests that uncer

tainties are present in the data exceeding the limits estimated by the 

authors. As can be seen in Figure 29, it is difficult to draw a simple 

smooth curve through the combined data of Ormrod, Weyl, and Teplova 

et al. whose estimated errors are about 4.5%, 5%, and 10%, respectively. 

The Weyl data for helium are consistent with that of Hvelplund when 

the nuclear stopping corr~ction is made. The current calculation, 

shown in Figure 30, agrees well with the helium data, but is lower 

than the neon data by about 25%. The calculated curve for stopping in 
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argon, especially interesting because of the inconsistencies in the 

data, passes above the data of Ormrod and below that of Weyl, and then 

passes up through the data of Teplova et al. 

Sodium 

The data for the sodium projectiles stopping in the gases, taken 

using the time-of-flight method, are listed in Table VI. There is good 

agreement with the data of Hvelplund for stopping in neon, but there is 

serious disagreement with Hvelplund's data for stopping in helium. No 

explanation has been found for this discrepancy. Oxygen data taken at the 

same time (shown as ~'s in Figure 25) are consistent with Hvelplund's data. 

The Lindhard-Scharff calculation is too high for all cases as is seen in 

Figure 3 1. In Figure 32 the current calculation is shown to agree with 

all the data except for the three lowest energy measurements for stopping 

in helium where agreement is much better with Hvelplund's data. 

Magnesium 

The data for the magnesium projectiles stopping in the gases, taken 

using the time-of-flight method, are listed in Table VII. The data a gree 

with Hvelplund's data for stopping in helium. It is clear from Figure 34 

that the Lindhard-Scharff calculation is very poor for magnesium project

iles. The current calculation, shown in Figure 33, provides a good fit 

to the helium and neon data, but is too low for the argon data and too 

high for the xenon data. The xenon data vary approximately as the energy 

raised to the 1.2 power, which is the highest e nergy d e pend ency seen in 

this work. 

Aluminum 

The data for aluminum projectiles stopping in h e lium, taken using 

both the time-of-flight method and the pulse-hight me thod , are listed 



-83-

in Table VIII. There is no significant difference in the res ults 

obtained by the d i fferent methods. The data agree v e ry well with 

those of Gordon. The change in slope occurring around 800 keV was 

the original mo tivation for undertaking a new model calculation, since 

no other model predi cted that type of behavior. The Lindhard-Scharff 

calculation, shown in Figure 35, clearly does not des cribe the data, 

while the current calculation, shown in Figure 36, reproduces the data 

very well. 

~l Oscillations 

As wa s mentioned in Chapter I, both the Firsov model and the 

Lindhard-Scharff model predict a monotonic dependence of the stopping 

power on the atomic number of the projectile . As was also mention e d 

this trend is not present in the data. Figure 37 shows the stopping 

power for projectiles with velocities all equal to 0.71 v and the 
0 

predictions of the current calculation. The ene rgy dependence fo r the 

s ame cases is plotted in Figure 38. In both of these figures it is 

c lear tha t the main details of the stopping power are well described 

by the present mode l. 

Semi-Empirical Stopping Power Cross Sec tions 

A single set of parame ters was us e d in this c alculation to cover 

z l = 6 -13; z 2 = 2, 10, 18, 3 6 , and 54; and v = 0.5, 0 . 71, 1.00, 1.41, 

and 2.00 v • Had sep a rate s ets of p a r amete rs b e en pe rmitted for each 
0 

of the combinations of z
1 

and z
2

, a much b e tter fit c oul d, of course , 

have been obtaine d. Ce rt a in trends should b e note d in t he data . The 

e n ergy de p enden c e seems to b e a pro p erty o f the proj ect i l e with t h e 
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stopper playing a lesser role. As the stopper gas becomes heavier, 

there is little differencein the energy dependence. The rapid 

changes in slope tend to be most prominent in the data for projectiles 

stopping in helium and less so for the heavier gases. These proper

ties allow the stopping power cross sections to be approximated by 

power law expressions as listed in Table IX. The cases that had suf

ficient data were approximated by a fit (performed by eye) to data, 

and in the cases where insufficient data were present, the above trends 

were used. 
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VII. SOME FINAL REMARKS 

As the modified forms of the Firsov approach are basically clas-

sical approximations, the results of these calculations should be 

understandable in terms of a simple physical picture. The conclusion 

of Lindhard-Sclj.arff, Firsov, and others that energetic charged particles 

moving through matter with velocities of the order of v lose energy at 
0 

a rate proportional to their velocities is correct. The reason that 

this does not hold at lower v can be traced to the fact that 

the ions tend to be in different charge states at different velocities. 

Figure 39 shows the radial electron density (times 4nr2) as a function 

of both the radius and the charge states. These densities are taken from 

the Hartree-Fock-Slater program (Hermann and Skillman 1963) which is 

used in the current calculation. Over much of the velocity range con-

sidered in this thesis, all of these projectiles are in a plus one 

charge state except for magnesium and aluminum which are in plus two 

states. Thus, as one goes from carbon to magnesium, one sees succes-

sively smaller ions. The one remaining 3S electron in doubly charged 

aluminum makes that ion much larger than magnesium. The decreasing 

ionic radii reduce the effect of the increasing number of electrons 

present so that at constant velocity, the electronic stopping power ac-

tually decreases from oxygen to magnetsium. The larger ion, doubly 

c4arged aluminum, is stopped much faster. The energy dependence is 

strongly influenced by the rate at which the equilibrium charge states 

change. 
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APPENDIX A 

MONTE-CARLO CALCULATION TO DISPROVE THE VALIDITY OF THE MULTIPLE-

SCATTERING ARGUMENT TO PROVIDE ESTIMATES OF THE CUTOFF PARAMETER 

Both Bhalla et al. (1970) and Komarov and Kumakhov (1973) use the 

following argument to arrive at cutoff parameters for use in modifica-

tions in the Firsov model. The individual scattering angle cp of a 

projectile in the laboratory frame is given by 

(1) 

where L is the number of collisions and 8 is the final angle of the 

projectile with respect to the initial direction. L is the product of 

the thickness of the target divided by the mean free path A A is 

given by 

A = (No)-l (2) 

where N is the density of atoms and 0 is the collision cross section. 

Given the interaction potential, the scattering cross section is calcu-

lated and the radius corresponding to a deflection cp is obtained. 

8 is limited by experimental considerations such as the size of col-

limators. Thus given 8 and the scattering cross section, ¢ and then 

the cutoff parameter are determined. 

This argument assumes that the distribution of impact parameters 

is different for e greater than 8 (which is the largest deflection 
max 

still seen by the detector) from the distribution of impac t parameters 

for 8 smaller than 8 • In fact these two distributions s hould d iffer 
max 
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greatly below the angle corresponding to the chosen cutoff parameter. 

In order to test this argument, a computer simulation was per-

formed. As a typical case, the multiple scattering of neon projec-

tiles at 500 keV in helium was considered. The interatomic potential 

was chosen to be of the Csavinszk~ type (1968) or of the Bohr type 

(1948). Preliminary results indicated that the net effect of the dif-

ferent potentials was to scale the results in a simple and known way. 

Therefore, the calculation was perfoTmed using the Bohr potential 

since it w~s fast to calculate, and using Equation (15) in Chapter III, 

the differential cross section is easily obtained. Impact parameters 

greater than 1.0 a were ignored as their effect in the multiple scat
o 

tering process is dwarfed by the smaller impact collisions. For a 

18 2 
target thickness of 1 to 3 times 10 atoms/em , we expect, on the 

average, about 150 collisions with impact parameters less than 1.0 a • 
0 

Each projectile was allowed to suffer 150 collisions. Each collision 

was treated as follows. A random number p was generated between zero 

and one. The corresponding impact parameter is given by 

1/2 
rmax p (3) 

where r is set equal to 1.0. This populates a disk of radius r max max 

uniformly. The angle ¢ . is determined from 
1. 

p . • 
1. 

The original direc-

tion of the projectile defines a z-axis.After the deflection through 

¢i' the new direction is taken to ·be randomly distributed about the 

old z-axis by an angle w determined by 

w 27T p ' (4) 
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where p is a new random number. The process is repeated until 150 

collisions have occurred. At this point the final direction of the 

projectile is kno'Wll, hence 8 is determined. Depending on the size of 

8 , the distributions of the impact parameters are stored in different 

sets of bins. Two groups of distributions were selected for study; 

those which corresponded to final deflections less than 0.01 radian, 

and those corresponding to deflections greater than 0.08 radian. 

The multiscattering argument given above indicates that the two 

distributions must differ for impact parameters less than about 1 a . 
0 

As can be seen from Figure 40, the two distributions are the same down 

to impact parameters less than 0.03 a • Collisions at this impact 
0 

parameter cause individual deflections which are greater than 0.08 

radian. Hence the result of this study is that the multiple-scattering 

argument of Bhalla et al. and Komarov and Kumakhov is fallacious. In 

fact we find here that a suitable cutoff parameter is defined by the 

single scattering event. 
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APPENDIX B 

APPROACH TO EQUILIBRIUM CHARGE DISTRIBUTION FROM 

A SINGLY CHARGED BEAM 

Several of the experiments discussed in this thesis measured the 

stopping power of a target for a singly charged incident beam. As was 

shown in Chapter IV, projectiles of different charge states are stopped 

at different rates. Therefore, a si~gly charged beam will lose energy 

initially at a different rate than the same beam after charge equilibrium 

has been reached. It is important to know how long it takes for this 

equilibrium to be approached in order to correct for the non-equilibrium 

part of the process. (Actually, the equilibrium charge distribution is 

itself changing as the projectile is slowing down; however, little energy 

is lost during the approach to equilibrium.) 

In order to estimate the amount of material traversed in reaching 

equilibrium, a simplified model is used. It is assumed that little 

energy is lost during the charge-exchange process so that the projectile 

velocity is constant. The fraction of the beam in a charge state j is 

fj (N) where N is the thickness of target material traversed. It is 

assumed that all projectiles with the same charge are on the average 

identical even though we expect many different excited states to be 

present at any time. We define the charge-transfer cross section from 

charge j to charge k to be ojk(v) where v is the projectile velocity. 

Since the velocity is to be held constant, the a 's are considered to be 

constants. The rate of change of the various charge states is then 

given by the following set of coupled differential equations 
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(1) 

If fk(O) are all known as well as all crjk' then the equations are 

easily solved. In many cases the problem may be simplified by neglect-

ing transfers of two or more electrons in a single collision. 

As a sample case, we consider the approach to equilibrium of a 

singly charged nitrogen beam in helium. The charge-transfer cross sec-

tions are taken from Nikolaev (1965) for nitrogen projectiles with 

velocities equal v . As can be seen in Figure 41, equilibrium is 
0 

reached after passing through a thickness of about l0
16

atoms/cm
2

• This 

is a typical number. 
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APPENDIX C 

APPLICATION OF MEASURED AND THEORETICAL STOPPING POWERS TO 

THE DETERMINATION OF LIFETIMES WITH THE DOPPLER-SHIFT ATTENUATION METHOD 

This thesis grew out of the need for stopping power data for use in 

lifetime determinations by the Doppler-shift attenuation method (DSAM). 

In his thesis, Gordon (1973) discussed the need for these data, and in 

their absence, a possible remedy. His solution was to use the stopping 

powers calculated by Lindhard et al. (1963) and to multiply the nuclear 

and electronic components by separate constants, f and f , which were 
n e 

determined partially by a comparison of existing stopping power data 

with the LSS calculation, and partially by using the Doppler-shift at-

tenuation method to determine the stopping power using excited states 

with well known lifetimes. The latter method did not yield unique values 

for the constants, but rather sets of the two constants. 

Gordon noted (1973) that the value of the DSAM factor, F (which 

measures the reduction in Doppler shift observed at zero degrees due to 

slowing), was a function of the beam intensity. This dependence was due 

to the localized heating of the stopper gas by the beam which then reduced 

the local density of the gas. Since this has the same effect as changing 

the stopping power of the gas, this effect was included within the defin-

ition of the constants f and f • In the cases he considered, f tended 
n e n 

to be about 0.8 and f tended to be from about O.j to 1.0 . 
e 

By using F factors which are corrected for local heating effects 

and stopping powers as calculated in this thesis, the lifetimes may be 

calculated and compared with the accepted results. The nuclear stopping 

power is taken from Figure 6, and i s approximated for use in a computer 
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code as 

Sn = 0.23 for E < 2, and 

= 0.325 E-l/Z othenTise. (1) 

E is the dimensionless energy as given in Chapter III. The electronic 

stopping pmrer is taken directly from power lai·T approximations to the 

data or from pov1er law approximations of the present calculation. 

Two cases were considered. The 418-keV state of 26Al is kno"tm 

to have a lifetime of 1.81 :t: 0.05 ns (Endt and Van der Leun 19'(3). Ex-

trapolating the F factor measured at a pressure of 0.519 atm. to zero 

beam condition, the adopted F factor is taken as 0.32 ~ 0 .03 . Using 

. i 4 o. 502 26 the approx1mat on S = 0. 35 E for Al stopping in xenon for 
e 

velocitit:s belm: 0.00728 c, a lifetime of 1. 72 ~ 0.22 ns is obtained 

in good agreement with the accepted value. The uncertainty quoted in 

the result is due only to the uncertainty in F. 

16 
The 6131-keV state of 0 is known to have n lifetilllc of 24 :!= 2 ps 

(Ajzenberg-Selove 1971). A study is not reported on the relationship 

bet>veen F and the beam current. In order to correct F for the local 

heatins effect, the trends from the other cases considered in Gordon's 

thesis are assumed true for this case. This results in an adopted 

value of F = 0.50 :t: 0.05 at a xenon pressure of 21.1 atm. The same 

expressions for S are used as in the above case. For S above E = 7.2( n e 

the expression S = 0.429 E0 .90 is used, while f'or lmver energies, S 
e . e 

0.941 E0.504 is used. The resulting lifetime is 20 ~ 4 ps vrhere the 

uncertainty is due to F. Here again i..he agreeme11.t is good. 
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TABLE I 

Effectiveness-of-stopping factor E 

z2 

2 

10 

18 

36 

54 

(See page 37 ·) 

E 

0.1 

0.15 

0.2 

0.25 

0.3 
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TABLE IIa 

Estimated Cutoff Parameters 

Projectile velocity 

0.50 

o. 71 

1.00 

1. 41 

2.00 

TABLE lib 

Cutoff Parameter 

1.8 

1.3 

0.95 

0.65 

0.45 

Empirical Cutoff Parameters 

Projectile velocity 

0.50 

o. 71 

1.00 

1. 41 

2.00 

(See page 45.) 

Cutoff Parameter 

1.4 

1.2 

1.1 

1.0 

0.9 
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TABLE III 

Electronic Stopping Cross Section s for 12c :J,n Gases e 

* Gas E &! N ~ s s 
n e 

(keV) (keV) 18 I 2 (10 atoms em ) ( -14 2 I 10 eV-cm atom) 

Helium 328 73 • 4 3 . 08 :1: o . o6 0 . 02 2 .35 :1: 0 .14 

334 59 :1: 3 2.45 :1: 0.05 0.02 2.39 ':1: 0.13 

415 90 :1: 6 3.14 :1: o .o6 0 . 02 2.85 :1: 0.20 

420 62 :1: 10 2. 44:1:0.06 0 . 02 2. 50 :1: 0 . 41 

54o 83 :1: 10 2.6o :1: o .o6 o.ol ~.18 • o.4o 

556 79 :1: 10 2.69 :1: o .o6 o .ol 2 .93 :1: 0 . 38 

645 104 :1: 4 3-47 :1: 0.07 0.01 2 .98 :1: 0.13 

'\ 672 94 :1: 5 2.78 :1: o. o6 0.01 3.38 :1: 0.19 

751 122 :It 6 3.14 =1: o.o6 o.ol 3.88 =1: 0.21 

790 103 =1: 5 2.98 :1: 0.06 0.01 3.44 :1: 0.18 

790 105 :1: 5 2.98 =1: o.o6 0 . 01 3 -51 :1: 0 .18 

794 113 :1: 9 3.00 :1: o . o6 o.ol 3-75 =1: 0.31 

904 113 :I> 10 2.48 :1: 0.05 0.01 4.54 =1: 0.41 

968 137 :1: 10 3.20 :1: 0 .20 0.01 4.27 =1: 0.41 

1023 114 =1: 5 2.70 :1: 0 .05 0.01 4.21 :1: 0 . 20 

1159 114 :It 5 2.57 :1: 0 .05 o.ol 4.43 :1: 0.21 

1161 110 :1: 5 2. 61 :1: 0.05 0.01 4. 20 :1: 0.19 

1599 142 =1: 10 2.72 :1: o . o6 .,.. 5. 22 :1: 0.38 

1602 136 :1: 10 2.54 :1: 0. 05 5 ·35 :1: o. 41 

2558 153 :1: 10 2 . 35 :1: 0.05 6 . 51 :1: 0.45 
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TABLE III (continued) 

Electronic Stopping Cross Section S e f'or 12c in Gases 

* Gas E &! N6R s s 
n e 

(kev) (keV) 18 I 2 (lO atoms em ) ( -14 2 I 10 eV-cm atom) 

Neon 502 70 :l: 3·5 1.05 :l: 0.03 6.69 :l: 0 .39 

561 76 :l: 3·5 0.98 :l: 0.03 7.13 :l: o. 42 

617 87 :l: 3·5 1.07 :l: 0.03 8.11 :l: 0.41 

680 84 :l: 3·5 1.01 =1= 0.03 8.29 :l: 0.43 

751 94 :l: 3. 5 1.06 :l: 0.03 8 .89 :l: o. 43 

830 90 :l: 3·5 1.02 :l: 0.03 8.88 :l: 0.44 

917 102 :l: 3·5 1.02 :l: 0 .03 10.16 :l: 0.46 

1008 103 :ol: 3·5 1.08 :l: 0.03 9 .57 :l: o. 42 

1119 95 :l: 3·5 0.94 :ol: 0.03 10.14 :l: 0.48 

(1o17atomslcm2) (lo-13ev-cm2latom) 

Argon 420 62 =1= lO 4. 65 :l: 0 .26 1.33 :l: 0.23 

548 69 =1= lO 4.35 :l: 0.26 1.59 :l: 0.25 

645 105 :l: 4 6.44 :l: 0.26 1.63 :l: 0 .09 

645 104 :l: 4 6.32 :l: 0 . 26 1.65 :l: 0.09 

786 lll :l: 5 6.25 :l: 0 .26 1.78 :l: 0.09 

790 105 :l: 5 6.21 :l: 0.26 1.69 :l: 0.09 

1162 108 :l: 5 4.91 :l: 0 .26 2 . 20 :l: 0.15 

1190 91 :l: 5 4.24 :l: 0.26 2.15 :l: 0.18 

1599 142 :l: 10 5.28 :l: 0.26 2.69 :l: Q.23 

1607 126 =1= lO 4.80 :l: o. 26 2.63 :l: 0.25 
'\ 

2558 151 :l: 10 4. 50 :l: 0. 26 3· 35 :l: 0.29 
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TABLE III ( cont inued) 

* Gas E 6E N6R s s n e 

(keV) (keV) (1o17atoms/cm2) (1o-13eV-cm2/atom) 

Krypton 424 55 :;, 10 3. 42 :;, 0. 26 1.62 :;, 0.32 

544 76 :;, 10 4. 04:;, 0.26 l. B8 :;, 0 . 28 

646 103 :;, l~ 4. Bo :!= o . 26 2.14 :;: 0 .11~ 

647 100 :;, 4 4. 50 :;, 0.26 2. 22 :;, 0.16 

795 94:;, 4 4.20 :;, 0.26 2. 24:;, 0 .17 

802 81 :;, 4 !~. 76 :!= 0 . 26 1. 7o :1= o .13 

1150 131 :;, 5 4. 69 :;, 0 . 26 2.79 = 0 .19 

1158 115 :;, 5 4.09 = 0.26 2.81 :;, 0 . 22 

1596 149 :;: 10 4.65 * 0 . 26 3. 20 * 0.2B 

1599 142 :;: 10 4. 32 = 0 . 26 3 -29 = 0. 29 

2505 25B * 10 6.29 = 0 . 26 4.10 :;, 0 . 23 

Xenon 417 68 :;: 10 3-05 * 0 . 26 2. 22 * 0. 38 

551 62 * 10 2. 46 * 0 . 26 2. 52 = 0. 49 

636 122 = l~ 4.39 * 0.26 2. 7B * 0.19 

639 116 * 10 3.91 :!= o . 26 2.97 * 0. 32 

BoB 67 = 5 2.19 :;, 0 . 26 3 -05 :!= 0 . 43 

ll46 140 * 5 3.6B * 0.26 3.Bo * 0. 30 

1611 11B * 10 2 .B6 * 0.26 4.12 * 0 . 51 

2525 21B :;: 10 3.72 = 0 . 26 5.85 * 0. 49 

(See page 79 .) 
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TABLE IV 

Electronic Stopping Cross Se ction S 
e 

fo r 160 in Gases 

* Gas E .6E N6R 8 8 n e 

(keV) (keV) 18 I 2 (10 atoms em ) < -14 2 I 10 eV-em atom) 

He lium 503 82 ~ 10 2.81 ~ o. o6 0.12 2.82 ~ 0. 36 

652 86 ~ 10 2.81 ~ o. o6 0.09 2.99 ~ 0.36 

794 105 ~ 10 2.81 ~ 0. 06 0. 08 3.69 ~ 0. 36 

809 122 ~ 5 3· 51 ~ 0. 07 o. o8 3· 38 ~ 0.16 

938 116 ::1.- 10 2.81 ~ 0. 06 0. 07 4.09 ~ 0. 37 

1084 127 ~ 10 2.81 ~ o. o6 o.o6 4.49 ~ 0.37 

1198 141 ::1.- 4 3 .18 ~ o.o6 0. 05 4.38 ~ 0.15 

1350 157 ~ 4 3. 07 ~ o. o6 0.05 5.06 ,f. 0.17 
17 2 (10 atoms/em ) -13 2/ (10 eV-em atom) 

Neon 524 39 ::1.- 5 6.65 ,f. 0.13 0. 005 0.58 ,f. o.o8 

665 61 ,f. 5 6. 65 ~ 0.13 0.92 ,f. o.o8 

809 76 ~ 5 6. 65 .... 0 .13 1.14 ~ o. o8 

954 84 ,f. 5 6. 65 ,f. 0.13 1.26 .... o.o8 

1100 97 .... 5 6 . 65 .... 0.13 1. 46 ~ o. o8 

Argon 518 51 .... 5 4. 36 .... 0.09 1.16 ,f. 0.12 

657 76 .... 5 4.36 ~ 0 .09 l. 74 ,f. 0.12 

797 98 .... 5 4.36 ~ 0.09 2. 25 .... 0. 12 

944 105 ~ 5 4.36 .... 0.09 2. 41 .... 0.12 

1090 116 ~ 5 4.36 .... 0.09 2. 66 ,f. 0.12 
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TABLE IV (continued) 

* Gas E &: NLJR s s 
n e 

(keV) (keV) (1o17atoms/cm2) (1o-13ev~cm2/atom) 

Krypt on 510 71 d: 7 3 . 80 * 0. 07 1.86 * 0 .19 

652 86 * 4 3 .80 d: 0. 07 2.25 * 0.12 

796 100 * 6 3 .80 * 0.07 2.62 * 0.17 

938 115 * 5 3.80 * 0. 07 3. 02 * 0 .14 

1o87 122 d: 4 3 .80 * 0 . 07 3 . 22 * 0.12 

Xenon 510 67 d: 7 2. ::;6 * 0 .05 2 . 61 * 0. 27 

651 88 * 5 2.56 * 0 .05 3 - lt-4 * 0. 21 

794 104 d: 4 2.56 * 0.05 4.oo * o.18 

938 117 * 5 2.56 * 0.05 4.57 * 0.22 

1082 132 * 5 2.56 :1: 0 .05 5.16 * 0. 22 
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TABLE VIII (continued) 

Electronic Stopping Cross Section S for 27Al in He 
e 

* ~ N6R s s n e 

(keV) (keV) 
l 8 2 ( l O a:toms/cm ) -l4 2/ ( l O eV- cm atom) 

Helium 728 62 * 6 3 .l8 * o . o6 0 .09 l.86 * O. l9 

82l 7l * l O 3 -07 * o . o6 o . o8 2 .23 :t 0-33 

l746 l76 * 5 3 . 6l * 0 . 07 0 . 04 4.83 * o. l 7 

l747 l 74 * lO 3 . 54 * 0 . 07 0 . 04 4.88 * 0 . 30 

2l95 l 98 * lO 3 -65 * 0 . 07 0 . 03 5-39 '*' 0 .30 

(See page 83.) 
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TA3l..E IX 

Semi-empir i cal Electroni c Stoppin~ Cross Sections for Projectiles 

in Gases Using the for~:: ( -14 2/ S 10 ev- cm atom) e "' kE(keV)p 

E < E cut E > E cut 

Projectile k p E cut k p Gas 

Carbon 0.83 o. 51~ Xenon 

0. 71 0.52 Krypton 

0.61 0.51 Argon 

0 . 22 0.55 Neon 

0.113 0. 53 Helium 

Nitrogen o.6o o .61 Xenon 

0. 53 0 . 58 Krypton 

0. 54 0. 53 Argon 

0.29 0.50 336 0.096 o .69 Neon 

0 .12 0.51 876 0 .018 0.79 Helium 

Oxygen 1.08 o. 50 447 0.094 0 .90 Xenon 

1.05 0 . 46 580 o .o88 o .85 Krypton 

0.83 0 . 41 220 0.062 0 .87 Argon 

0. 29 0 . 51 367 0.0168 0 .99 Neon 

0 .184 0 . 44 607 0 .033 0 . 71 Helium 

Fluorine 1.33 0.43 353 0 .135 0.82 Xenon 

1.02 o.1~3 l~52 o.o88 0.83 Krypton 

0.82 0 . 41 298 o.o84 o.Bl Argon 

0.38 0.45 682 0.0127 0-97 Neon 
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TABLE IX (continued) 

Projectile k p E cut 
k p Gas 

Fluorine 0 .169 o. 41 474 0.0073 0 . 92 Helium 

Neon 1.66 0-39 34B 0.20 0.75 Xenon 

1.18 0.40 429 o .111 0.79 Krypton 

0.59 0 .45 561 0.025 0 . 95 Argon 

0. 18 0.56 622 0 . 034 0.82 Neon 

0.074 0 . 53 468 O.Oll7 0 .83 Heli um 

Sodium 0 .25 o. 69 437 0.093 o .85 Xenon 

0.25 0 . 64 564 0 .054 0.88 Krypton 

0 . 33 0 . 51 504 0 .0136 1.02 Argon 

0.186 0 . 53 694 0 . 0145 0 . 92 Neon 

0 .030 o.63 503 0 . 0034 0 . 98 Helium 

Magnesium 0.82 0 .49 266 0 . 0155 1.20 Xenon 

0 . 62 0 .47 296 0 . 024 1.04 Krypton 

0.38 0.48 211 0.0191 1.04 Argon 

0.093 o . 63 989 0 . 0055 1.04 Neon 

0.022 0 . 68 673 0 . 0011 1.14 Helium 

Aluminum l.Ol 0.47 679 0.023 l.05 Xenon 

0 .72 0.47 509 0 . 098 o. 79 Krypton 

o.87 0 . 37 60'7 0.0186 0 . 9'7 Argon 

0 . 67 0.31 '729 0.0051 l.05 Neon 

0 .134 0 .42 841 0 . 0033 0 . 97 Hel ium 

(See page 84.) 
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Fl.gure la: The electronic component S of stopping power of He 
e 

for projectiles with velocities of 0.9 v
0 

and 5 ~ z
1 
~ 12 as 

determined by Hvelplund (1971). 

function of zl. 

Note S is not a monotonic 
e 

Figure lb: The exponent p in measured stopping-power data 

approximated by the form s e 

(Fermi-Thomas) model, p = 0.5. 

( See page 3·) 

For the simple statistical 
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Figure 2: Qualitative stopping-power curves for various projectiles 

in a typical medium. The energy domain is divided into four 

regions, each corresponding to a different dominant source of 

stopping power: Nuclear collisions dominate in Region I, elec

tron orbital collisions in Region II, ionization of the target 

in Region III, and relativistic effects in Region IV. The 

region boundaries are dependent on the atomic numbers of both 

the projectile and target and are diffusely defined. 

( See page 5.) 
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Figure 3: The potential ridge formed by the approaching nuclei. 

Space is partitioned by a plane passing through the nuclei and 

the vertical dimension is used to show the potential seen by an 

electron. For noncomparable Z's, the ridge tends to curve 

toward the lower Z as it moves from the line of ce nters of 

the nuclei. 

(See page l l.) 
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Figure 4: The location of the Firsov plane S. S is located per

pendicular to the line of centers at its midpoint in the un

modified Firsov model, and at the potential ridge as shown in 

Figure 3 in the current model. The defining diagram for a and 

6 is also shown. 

(See page ll.) 
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Figure 5: The nuclear stopping cross section as calculated by 

Lindhard et al. (1968) using the potential 

V(r) 
r 

~ ( /(0 8853 ao(Zl2/3 + 222/3)-1/2)). ~TF r . 

Also shown is the nuclear stopping cross section calculated 

by using the Csavinszky (1968) potential 

V(r) 
r 

(0.7218 exp(-0.178 r/~) + 0.2782 

2 
exp(-1.76 r/aF)) 

In both calculations the wide angle extrapolation is used. 

(See page 26.) 
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Figure 6. The nuclear stopping powers calculated by using the magic 

formula with both the Thomas-Fermi potential and the GSZ poten

tial. The GSZ curves are for fluorine stopping in helium, neon, 

argon, krypton, and xenon. 

(See page 26 .) 
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Figure 7: The solution of F(£*) = 1/(N 6R 7T a
2

) as derived from the 

Csavinszky potential and the GSZ potential, both using the magic 

formula. 

(See page 28.) 
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Figure 8a: The g e ometric representa tion of the distances in t h e 

integral I 
2 

. 

Figure 8b: The region of integration for integral 1
2 

. 

( See page 34.) 
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Figure 9: The geometric requirement for electron capture within 

the framework of the Bell theory. 

(See page 3 5 • ) 
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Figure 10: The flux integral (defined on page 34) for C and Mg 

in helium. Only the flux from the projectile is shown. The 

curves are numbered as to the total charge of the projectile. 

It is important to notice the rapid decrease in the flux inte-

grals as the projectile charge is increased. The derivative 

of the flux integral, ar/ar ff , is greater for Mg than C 
cuto 

projectiles for the cutoff parameters used in this work. This, 

in part, explains why the magnesium stopping power curves 

exhibit a higher energy dependence. 

(See page 37.) 
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Figure 11: The equilibrium charge states of nitrogen projectiles 

passing through helium. The charge faction curves are iden

tified by the total charge on the ion. The data points shown 

are taken from the tables of Wittkower and Betz (1973). The 

behavior at low energies where the charge fraction for singly 

charged ions rises rapidly with decreasing energy is anomalous. 

Effects of this sort make simple models for the prediction of 

equilibrium charge states difficult to construct. 

(See page 41.) 
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Figure 12: The percent ionization of projectiles as a function of 

velocity and stopping medium. The abbreviations of the proj ec

tile names are used to plot the data points and are joined by 

solid lines for constant velocity which is indicated in paren-

theses in units of v 
0 

(1973). 

(See page 4z.) 

The data are from Wittkower and Betz 
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Figure 13: The change in percentage ionization as a function of 

stopping medium and projectile velocity. If q/Z is known 

at velocity v in helium, then the value of q/Z for one of 

the other gases is found by adding the appropriate value of 

~q/Z . 

(See page 43.) 
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Figure 14: Schematic of experimental apparatu s used in the stopping 

power measurements . The various gas cells differ mainly in 

scale. 

(See page 49 .) 
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Figure 15: The electronics used in the stopping power measurements. 

Approximate signal shapes are shown along the lines connecting 

the modules. 

(See page 54.) 
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Figure 16: The oil manometer. The micrometer spindles are ground 

to points which serve to locate the height of the columns of oil. 

(See page 59 .) 
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Figure 17: 
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as a function of ~T v./D and p • 
1 

Shown are 

the cases for which p equals zero and one. Cases for which p 

is between these limits produce curves which lie between the 

drawn curves. 

(See page 63 .) 
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Figure 18: Typical pulse-height spectra. Curve (a) shows the 

singles spectrum obtained using a carbon backed aluminum target. 

The peaks attributed to aluminum, oxygen, and carbon are seen. 

Curve (b) shows the spectrum resulting from requiring a coinci

dence with the particles which caused the recoils of the aluminum 

and oxygen targets. Both the background and the carbon peak have 

been greatly reduced by this method. 

(See page 66.) 
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Figure 19: Typical time-of-flight spectrum. 

( See page 66.) 
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Figure 20: Typical time-of-flight spectrum with helium in the 

gas cell. The arrows indicate the positions of the peaks with 

no gas in the chamber . 

(See page 67.) 
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Figure 21: The ~lectronic stopping cross section S for 
12c in 

e 

Xe, Kr, Ar, Ne, and He. The first letters of these stopping 

gases are used to represent the data points of the present work. 

The circled letters terminating the dashed and dotted l i nes 

serve to identify the stopping gas used in previ ous experiments. 

The sources of these data are as follows: 

------. . 

Ormrod (1968), 

Hve lplund (1971), 

Gordon (1973). 

The solid lines are the theoretical predictions of Lindhard and 

Scharff (1961). 

( See page 79 .) 
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Figure 22: The electronic stopping cross section S for 12c in 
e 

Xe, Kr, Ar, Ne, and He. The symbols are the same as in Figure 

21 with the exception that the solid lines are the theoretical 

predictions of the present work. 

(See page 79.) 
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Figure 23: The electronic stopping cross section S for 14N 
e 

in Xe, Kr, Ar, Ne, and He. The circled first letters of 

these stopping gases are used to identify the gas used by 

the following sources of data: 

... - ... - ... 

.. - .. - .. - .. 
Weyl (1953), 

Teplova et al. (1962), 

Ormrod (1967), 

Hvelplund (1971). 

The solid lines are the theoretical predictions of Lindhard 

and Scharff (1961). 

(See page 80 .) 
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Figure 24: 

-l6l-

The t!lectronic stopping cross section S for 14N in Xu , 
e 

Kr, Ar, Ne, and He. The symbols are the same as in Figure 21 

with the exception that the solid lines are the theoretical 

predictions of the present work. 

(See page 80.) 
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Figure 25: The electronic stopping cross section S for 16o in Xe, 
e 

Kr, Ar, Ne, and He. The first letters of these stopping gases 

are used to represent the data points of the present work. The 

barred letters refer to the time-of-flight measurements. The 

circled letters terminating the dashed and dotted lines serve 

to identify the stopping gas used in previous experiments. The 

sources of these data are as follows: 

Ormrod (1968), 

Hvelplund (1971), 

K Donahue (1973). 

The solid lines are the theoretical predictions of Lindhard and 

Scharff (1961). 

(See page 80.) 
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Figure 26. The electronic stopping cross section S for 
16o 

e 

in Xe, Kr, Ar, Ne, and He. The symbols are the same as 

in Figure 25 with the exception that the solid lines are 

the theoretical predictions of the present work. 

(See page 8o .) 
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Figure 27. The electronic stopping cross section S for 19F 
e 

in Xe, Kr, Ar, Ne, and He. The first letters of these stop-

ping gases are used to represent the data points of the 

present work. The circled letters terminating the dashed 

and dotted lines serve to identify the stopping gas used in 

previous experiments. The sources of these data are as 

follows: 

K 

Ormrod (1968) (extrapolated from 100 keV), 

Hvelplund (1971) 1 

Donahue (1973). 

The solid lines are the theoretical predictions of Lindhard 

and Scharf~ (1961). 

(See page 81.) 
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Figure 28. The electronic stopping cross section S for 19F 
e 

in Xe, Kr, Ar, Ne, and He. The symbols are the same as 

in Figure 2'7 with the exception that the solid lines are 

the theoretical predictions of the present work. 

(See page 81.) 
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Figure 29. 

-l7l-

The electronic stopping cross section S for 20Ne 
e 

in Xe, Kr, Ar, Ne, and He. The circled first letters of 

these stopping gases are used to identify the gas used by 

the following sources of data: 

-... -... 
.. - .. -. 

Weyl (1953)
1 

Teplova et al. (1962)4 

Ormrod (1968)
1 

Hvelplund (1971), 

The solid lines are the theoretical predictions of Lindhard 

and Scharff (1961). 

(See page 8l.) 
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Figure 30. 

-173-
20 The electronic stopping cross section s

2 
for Ne 

in Xe, Kr, Ar, Ne, and He. The symbols are the same as 

in Figure 29 with the exception that the solid lines are 

the theoretical predictions of the present work. 

(See page 81.) 
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Figure 31. 

-175-

The electronic stopping cross section S 
e 

23 
for Na 

in Xe, Kr, Ar, Ne, and He. The first letters of these 

stopping gases are used to represent the data points of the 

present work. The circled letters terminating the dashed 

and dotted lines serve to identify the stopping gas used in 

previous experiments. The source of these data is as follows: 

Hvelplund (1971~ 

The solid lines are the theoretical predictions of Lindhard 

and Scharff (1961). 

(See page 82.) 
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Figure 32. 

-177-

The electronic stopping cross section S 
e 

23 
for Na 

in Xe, Kr, Ar, Ne, and He. The symbols are the same as in 

Figure 3lwith the exception that the solid lines are the 

theoretical predictions of the present work. 

(See page 32.) 
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Figure 33. 

-179-

24 The electronic stopping cross section S for Mg 
e 

in Xe, Kr, Ar, Ne, and He. The first letters of these stop-

ping gases are used to represent the data points of the 

present work. The circled letters terminating the dashed 

and dotted lines serve to identify the stopping gas used in 

previous experiments . The sources of these data are as fol-

lows: 

K 

Hvelplund .(1971), 

Donahue (1973). 

The solid lines are the theoretical predictions of Lindhard 

and Scharff (1961). 

(See page 82 • ) 
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Figure 34. 

-181-

24 The electronic stopping cross section S for Mg 
e 

in Xe, Kr, Ar, Ne, and He. The symbols are the same as 

in Figure 33 with the exception that the solid lines are 

the theoretical predictions of the present work. 

(See page 82.) 
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Figure 35. The e lectronic stopping cross sectionS for 27Al 
e 

in Xe, Kr, Ar, Ne, and He. The first letters of these stop-

ping gases are used to represent the data points of the 

present work. The circled letters terminating the dashed 

and dotted lines serve to identify the stopping gas used in 

previous experiments. The sources of these data are as fol-

lows: 

-.-.-.-.-. Gordon (1973), 

K Donahue (197 3). 

The solid lines are the theoretical predictions of Lindhard 

and Scharff (1961). 

(See page 33 .) 
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Figure 36. The electronic stopping cross sectionS for 27Al 
e 

in Xe, Kr, Ar, Ne, and He. The symbols are the same as 

in Figure 34 with the exception that the solid lines are 

the theoretical predictions of the present work. 

(See page 82 .) 
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Figure 37. Electronic stopping cross section for projectiles stop

ping in helium. All projectiles have v = 0.71 v 
0 

Interpolations of the experimental data are shown as the closed 

circles and the cross sections calculated in this thesis are 

connected by solid lines. The carbon datum is extrapolated. 

(See page 83 . ) 
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Figure 38. Energy dependence of the electronic stopping cross 

section. The electronic stopping power is approximated as a 

power law s 
e 

The notation is the same as in Figure 

37. The carbon datum is extrapolated. 

(See page 83 .) 
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Figure 39. Electron densities of the projectiles. These densities 

give the number of electrons/atomic unit at a given distance 

from the nucleus. The curves for carbon are numbered as the net 

charge on the projectile in units of the e l e ctronic charge. The 

other sets of curves follow the same ordering. 

( See page 85 .) 
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Figure 40. Distribution of impact p a rame t e rs in mul t iple scatte r

ing as determined by a Monte Carlo calculation. The solid 

circles result from thos e projectiles scattered through l ess 

than 0.01 radians and the open circles result from projectiles 

scattere d through more than 0.08 radians . The solid lines 

show the distribution us ed in the selection of the i mpact 

parameters in the Monte Carlo proce ss and also the one stand

ard deviation departures from this distribution. 

(See page 88 .) 
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Figure 41. The nonequilibrium charge distribution. The curves 

are numbered by the net charge on the projectile. The arrows 

along the right axis give the experimentally determined 

equilibrium charge fractions. 

(See page 90.) 
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