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Abstract 

( 1) Equation of State of Komatiite 

The equation of state (EOS) of a molten komatiite (27 wt% MgO) was detennined in the 5 to 

36 GPa pressure range via shock wave compression from 1550°C and 0 bar. Shock wave velocity, 

Us. and particle velocity, Up, in km/s follow the linear relationship Us= 3.13(±0.03) + 1.47(±0.03) 

Up. Based on a calculated density at 1550°C, 0 bar of 2.745±0.005 glee, this Us-Up relationship 

gives the isentropic bulk modulus Ks = 27.0 ± 0.6 GPa, and its first and second isentropic pressure 

derivatives, K's = 4.9 ± 0.1 and K"s = -0.109 ± 0.003 GPa-1
• 

The calculated liquidus compression curve agrees within error with the static compression 

results of Agee and Walker [1988a] to 6 GPa. We detennine that olivine (F~) will be neutrally 

buoyant in komatiitic melt of the composition we studied near 8.2 GPa. Clinopyroxene would also 

be neutrally buoyant near this pressure. Liquidus garnet-majorite may be less dense than this koma

tiitic liquid in the 20-24 GPa interval, however pyropic-garnet and perovskite phases are denser than 

this komatiitic liquid in their respective liquidus pressure intervals to 36 GPa. Liquidus perovskite 

may be neutrally buoyant near 70 GPa. 

At 40 GPa, the density of shock-compressed molten komatiite would be approximately equal 

to the calculated density of an equivalent mixture of dense solid oxide components. This observa

tion supports the model of Rigden et al. [1989] for compressibilities of liquid oxide components. 

Using their theoretical EOS for liquid forsterite and fayalite, we calculate the densities of a spectrum 

of melts from basaltic through peridotitic that are related to the experimentally studied komatiitic 

liquid by addition or subtraction of olivine. At low pressure, olivine fractionation lowers the density 

of basic magmas, but above 14 GPa this trend is reversed. All of these basic to ultrabasic liquids 

are predicted to have similar densities at 14 GPa, and this density is approximately equal to the bulk 
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(PREM) mantle. This suggests that melts derived from a peridotitic mantle may be inhibited from 

ascending from depths greater than 400 km. 

The EOS of ultrabasic magmas was used to model adiabatic melting in a peridotitic mantle. 

If komatiites are formed by >15% partial melting of a peridotitic mantle, then komatiites generated 

by adiabatic melting come from source regions in the lower transition zone (=500-670 km) or the 

lower mantle (>670 km). The great depth of incipient melting implied by this model, and the melt 

density constraint mentioned above, suggest that komatiitic volcanism may be gravitationally hin

dered. Although komatiitic magmas are thought to separate from their coexisting crystals at a tem

perature =200°C greater than that for modern MORBs, their ultimate sources are predicted to be 

diapirs that, if adiabatically decompressed from initially solid mantle, were more than 700°C hotter 

than the sources of MORBs and derived from great depth. 

We considered the evolution of an initially molten mantle, i.e., a magma ocean. Our model 

considers the thermal structure of the magma ocean, density constraints on crystal segregation, and 

approximate phase relationships for a nominally chondritic mantle. Crystallization will begin at the 

core-mantle boundary. Perovskite buoyancy at > 70 GPa may lead to a compositionally stratified 

lower mantle with iron-enriched mangesiowiistite content increasing with depth. The upper mantle 

may be depleted in perovskite components. Olivine neutral buoyancy may lead to the formation of 

a dunite septum in the upper mantle, partitioning the ocean into upper and lower reservoirs, but this 

septum must be permeable. 

(2) Viscosity Measurement with Shock Waves 

We have examined in detail the analytical method for measuring shear viscosity from the 

decay of perturbations on a corrugated shock front The relevance of initial conditions, finite shock 

amplitude, bulk viscosity, and the sensitivity of the measurements to the shock boundary conditions 
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are discussed. The validity of the viscous perturbation approach is examined by numerically solving 

the second-order Navier-Stokes equations. These numerical experiments indicate that shock instabil

ities may occur even when the Kontorovich-D'yakov stability criteria are satisfied. The experimen

tal results for water at 15 GPa are discussed, and it is suggested that the large effective viscosity 

determined by this method may reflect the existence of ice VII on the Rayleigh path of the 

Hugoniot This interpretation reconciles the experimental results with estimates and measurements 

obtained by other means, and is consistent with the relationship of the Hugoniot with the phase 

diagram for water. Sound waves are generated at 4.8 MHz at in the water experiments at 15 GPa. 

The existence of anelastic absorption modes near this frequency would also lead to large effective 

viscosity estimates. 

(3) Equation of State of Molybdenum at 1400°C 

Shock compression data to 96 GPa for pure molybdenum, initially heated to 1400°C, are 

presented. Finite strain analysis of the data gives a bulk modulus at 1400°C, Kos. of 244±2 GPa and 

its pressure derivative, ~. of 4. A fit of shock velocity to particle velocity gives the coefficients of 

Us=eo+sUp to be co=4.77±0.06 km/s and s:=1.43±0.05. From the zero pressure sound speed, c0, a 

bulk modulus of 232±6 GPa is calculated that is consistent with extrapolation of ultrasonic elasticity 

measurements. The temperature derivative of the bulk modulus at zero pressure, aKosfaTI p, is 

approximately -0.012 GPa/K. A thermodynamic model is used to show that the thermodynamic 

Griineisen parameter is proportional to the density and independent of temperature. The Mie

Griineisen equation of state adequately describes the high temperature behavior of molybdenum 

under the present range of shock loading conditions. 
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(1) Melt Densities by Shock Wave Techniques 

Ultrasonic sound speed measurements on silicate magmas indicate that they are nearly an 

order of magnitude more compressible than their crystalline counterparts. This observation, together 

with the fact that at 1 bar ultrabasic magmas are of comparable density to siliceous crystalline rocks, 

and only on the order of 10% less dense than ultrabasic rocks, led Stolper et al. [1981] to speculate 

that ultrabasic magmas may become denser than their coexisting crystalline phases at high pressure. 

If this is true, then silicate magmas generated at sufficiently great depth within the Earth's mantle 

might be inhibited from rising. In fact, magmas, with their associated heat and incompatible ele

ment enrichment, might sink. This phenomenon, if it does occur, would clearly have dramatic and 

far-reaching consequences for the evolution and chemical stratification of the Earth. 

Rigden et al. [1984, 1988, 1989] developed a shock wave technique to test dynamically the 

feasibility of this proposition. They shock-compressed liquids in the system anorthite-diopside, and 

found that liquids in this system do indeed become denser than their coexisting minerals at pressures 

greater than 16 GPa. Application of their results to natural basaltic compositions predicted that 

these magmas would be denser than equilibrium olivine at 7 GPa, and denser than the bulk mantle 

at 10 GPa These pressures are much greater than the 1-3 GPa range commonly assumed for the 

source region of basalts [Presnall et al., 1979; Green et al., 1979; Elthon and Scarfe, 1984], so if 

this density inversion phenomenon does occur it would be restricted to ultrabasic compositions that 

are denser, and are thought to originate at greater depth. 

Komatiites are amongst the most basic magmas, having MgO contents as high as 33 weight 

percent. At 1 bar, molten komatiites are denser than the crust upon which they are situated [Nisbet, 

1982]. This fact alone indicates the importance of the equation of state in the problem of komatiite 

petrogenesis. The systematics of sound speeds in silicate liquids [Rivers and Carmichael, 1987] also 
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predicts that these magmas are highly compressible. Because of their refractory character they are 

thought to originate at great depth within the mantle [e.g., Takahashi and Scarfe, 1985], thus these 

magmas are good candidates to exhibit this anomalous density phenomenon. Since komatiitic 

liquids have erupted on the Earth's surface they could not have been gravitationally hindered from 

ascending. Nevertheless, it is possible that some komatiitic magmas formed deeper than some criti

cal depth and sank, and those that originated at shallower levels in the mantle ascended. It is also 

possible that magmas more basic than erupted komatiites are formed within the Earth, but that these 

denser magmas are prohibited from ascending because of their high density. These possibilities are 

also connected to the broader issue of the role of melt densities as controlling factors in the eruption 

of basaltic magmas [Stolper and Walker, 1980; Sparks et al., 1980]. 

In addition to their high MgO contents, high density, and probable great depth of origin, 

komatiites are an ancient magma type. Nearly all komatiites are Archaean rocks, with ages in 

excess of 2500 million years, although younger rocks with komatiitic affinity do exist. The genesis 

of komatiitic magmas apparently required conditions more common in the Archaean than today. 

The equation of state of komatiites may provide some constraint on the conditions necessary for the 

genesis of these unusual magmas, and thereby shed some light on how the Archaean mantle may 

have differed from the modem mantle. 

Another motivation for studying komatiitic magmas is that they may represent very large 

degrees of partial melting of the mantle [Green, 1975], or even relicts of a wholly molten Earth 

[Nisbet and Walker, 1982; Agee and Walker, 1988]. It has long been recognized that the young 

Earth may have been molten [Daly, 1914, pp. 155-173], either as a consequence of fast accretion, 

core formation, or some other agency. The giant impact scenario, currently a widely accepted 

model for the formation of the moon, would certainly melt, and likely even vaporize part of the 

Earth [Cameron and Benz, 1989]. The course of evolution of the Earth from a molten state would 
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be strongly influenced by the equation of state of ultrabasic magmas. 

The experimental measurement of the equation of state of a molten komatiite is presented in 

Chapter 1. This data is used to model the petrogenesis of komatiites by diapiric processes, and is 

used as a constraint in a model for the evolution of the Earth from an initially molten state. 

(2) Melt Viscosities- Potential Application of Shock Wave Techniques 

Equations of state determine the density contrast between coexisting liquids and solids, and 

hence the magnitude and direction of the gravitational force that drives their segregation. The rate 

at which this segregation occurs, however, is also largely determined by the liquid viscosity; 

Models for the genesis of magma and the evolution of large molten bodies, such as those considered 

in Chapter 1, are sensitive to the viscosity of magmas at high pressure. High-pressure measurements 

and theoretical models for the viscosity of silica-rich highly polymerized liquids suggest that their 

viscosity decreases with increasing pressure, and reach a minimum value at some pressure near 25 

GPa [Angell et al., 1982]. These pressures are near the limits of conventional large-volume high

pressure techniques, so a special technique is required to measure silicate liquid viscosities in this 

pressure region. Shock wave techniques have been developed to measure viscosity at high pressure, 

and the background to one of these shock wave techniques is developed in Chapter 2. 

The method considered is based on the observation that nonplanar shock waves have a ten

dency to flatten as they propagate. Sakharov et al. [1965] studied this phenomenon in a variety of 

substances and found that the approach to planarity in real materials differs from their theory based 

on the behavior of ideal inviscid liquids. With an analytical method developed by Zaidel' [1967], 

Sakharov et al. [1965] interpreted the observed departure from ideality in terms of viscous behavior, 

and thereby obtained measurements of the shear viscosity of materials at high pressure. This tech-
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nique was subsequently used to study water, mercury, and a variety of solids at high pressure. This 

technique has not been widely accepted, however, because the viscosities obtained by it are seri-

ously discrepant (by a factor of 106 in some cases) with measurements obtained by a variety of 

other techniques. The reasons for these discrepancies are not known. 

In Chapter 2, the analytical method first developed by Zaidel' [1967] is reexamined. Errors 

are corrected, and some alternative approximations are considered. Whether or not these changes 

alleviate the discrepancies mentioned above cannot be determined because the original experimental 

data is not available for reanalysis. It is hoped that this revised analytical method will make possi-

ble the use of shock waves to study the rheologic behavior of silicate liquids at high pressure. 

(3) Equation of State of Heated Molybdenum by Shock Wave Techniques 

The equation of state of molybdenum at high temperature is addressed in Chapter 3. This 

study was largely motivated by a pragmatic concern: molybdenum is used as a container in the 

molten silicate experiments. The accuracy with which we can determine the equation of state of sil-

icate liquids is limited in part by our knowledge of the equation of state of molybdenum at high 

temperature. Molybdenum is also used as a standard in the calibration of the ruby fluorescence 

pressure scale used in diamond cell experiments [Mao et al., 1978], thus its high temperature equa-

tion of state is of more general interest as well. 

References 

Agee, C.B., and D. Walker, Mass balance and phase density constraints on early differentiation of 
chondritic mantle, Earth Planet. Sci. Lett., 90, 144-156, 1988. 

Angell, C.A., P.A. Cheeseman, and S. Tamaddon, Pressure enhancement of ion mobilities in liquid 
silicates from computer simulation studies to 800 kilobars, Science, 218, 885-887, 1982. 



- 6-

Cameron, A.G.W., and W. Benz, Possible scenarios resulting from the giant impact, abstract, Lunar 
Planet. Sci. Conf., 20, 137-138, 1989. 

Daly, R.A., Igneous Rocks and Their Origin, pp. 563, McGraw-Hill, New York, 1914. 

Green, D.H., Genesis of Archean peridotitic magmas and constraints on Archean geothermal gra
dients and tectonics, Geology, 3, 15-18, 1975. 

Green, D.H., W.O. Hibberson, and A.L. Jaques, Petrogenesis of mid-ocean basalts, in The Earth: Its 
Origin, Structure, and Evolution, edited by M.W. McElhinney, pp. 256-299, Academic 
Press, London, 1979. 

Elthon, D., and C.M. Scarfe, High-pressure phase equilibria of a high-magnesia basalt and the 
genesis of primary oceanic basalts, Am. Mineral., 69, 1-15, 1984. 

Mao, H.K., P.M. Bell, J.W. Shaner, and OJ. Steinberg, Specific volume measurement of Cu, Mo, 
Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar, 
J. Appl. Phys., 49, 3276-3283, 1978. 

Nisbet, E.G., The tectonic setting and petrogenesis of komatiites, in Komatiites, edited by N.T. 
Arndt and E.G. Nisbet, pp. 501-520, George Allen and Unwin, Boston, 1982. 

Nisbet, E.G., and D. Walker, Komatiites and the structure of the Archaean mantle, Earth Planet. 
Sci. Lett., 60, 105-113, 1982. 

Presnall, D.C., J.R. Dixon, T.H. O'Donnell, and S.A. Dixon, Generation of mid-ocean ridge 
tholeiites, J. Petrol., 20, 3-35, 1979. 

Rigden, S.M., TJ. Ahrens, and E.M. Stolper, Densities of liquid silicates at high pressures, Science, 
226, 1071-1074, 1984. 

Rigden, S.M., T J. Ahrens, and E.M. Stolper, Shock compression of molten silicate: Results for a 
model basaltic composition, J. Geophys. Res., 93, 367-382, 1988. 

Rigden, S.M., T J. Ahrens, and E.M. Stolper, High-pressure equation of state of molten anorthite and 
diopside, J. Geophys. Res., 94, 9508-9522, 1989. 

Rivers, M.L., and I.S.E. Carmichael, Ultrasonic studies of silicate melts, J. Geophys. Res., 92, 
9247-9270, 1987. 

Sakharov, A.D., R.M. Zaidel', V .N. Mineev, and A.G. Oleinik, Experimental investigation of the 
stability of shock waves and the mechanical properties of substances at high pressures and 
temperatures, Sov. Phys. Doklady, 9, 1091-1094, 1965. 

Sparks, R.SJ., P. Meyer, and H. Sigurdsson, Density variation amongst mid-ocean ridge basalts: 
Implications for magma mixing and the scarcity of primitive lavas, Earth Planet. Sci. Lett., 
46, 419-430, 1980. 



- 7 -

Stolper, E., and D. Walker, Melt density and the average composition of basalt, Contrib. Mineral. 
Petrol., 74, 7-12, 1980. 

Stolper, E.M., D. Walker, B.H. Hager, and J.F. Hayes, Melt segregation from partially molten source 
regions: The importance of melt density and source region size, J. Geophys. Res., 86, 
6261-6271, 1981. 

Takahashi, E., and C.M. Searle, Melting of peridotite to 14 GPa and the genesis of komatiite, 
Nature, 315, 566-569, 1985. 

Zaidel', R.M., Development of perturbations in plane shock waves, J. Appl. Mech. Tech. Phys. 
(Eng. Trans/.), 8, 30-39, 1967. 



- 8 -

Chapter 1: The Equation of State of a Molten Komatiite, Komatiite Petrogenesis, 
and the Evolution of the Hadean Mantle 



- 9 -

The equation of state (EOS) of a molten komatiite (27 wt % MgO) was determined in the 5 to 

36 GPa pressure range via shock wave compression from 1550°C and 0 bar. Shock wave velocity, 

Us. and particle velocity, Up, in km/s follow the linear relationship Us = 3.13(±0.03) + 1.47(±0.03) 

Up. Based on a calculated density at 1550°C, 0 bar of 2.745±0.005 glee, this Us-Up relationship 

gives the isentropic bulk modulus Ks = 27.0 ± 0.6 GPa, and its first and second isentropic pressure 

derivatives, K's = 4.9 ± 0.1 and K"s = -0.109 ± 0.003 GPa-1• 

The calculated liquidus compression curve agrees within error with the static compression 

results of Agee and Walker [1988a] to 6 GPa. We determine that olivine (F~) will be neutrally 

buoyant in komatiitic melt of the composition we studied near 8.2 GPa. Clinopyroxene would also 

be neutrally buoyant near this pressure. Liquidus garnet-majorite may be less dense than this koma

tiitic liquid in the 20-24 GPa interval, however pyropic-garnet and perovskite phases are denser than 

this komatiitic liquid in their respective liquidus pressure intervals to 36 GPa. Liquidus perovskite 

may be neutrally buoyant near 70 GPa. 

At 40 GPa, the density of shock-compressed molten komatiite would be approximately equal 

to the calculated density of an equivalent mixture of dense solid oxide components. This observa

tion supports the model of Rigden et al. [1989] for compressibilities of liquid oxide components. 

Using their theoretical EOS for liquid forsterite and fayalite, we calculate the densities of a spectrum 

of melts from basaltic through peridotitic that are related to the experimentally studied komatiitic 

liquid by addition or subtraction of olivine. At low pressure, olivine fractionation lowers the density 

of basic magmas, but above 14 GPa this trend is reversed. All of these basic to ultrabasic liquids 

are predicted to have similar densities at 14 GPa, and this density is approximately equal to the bulk 

(PREM) mantle. This suggests that melts derived from a peridotitic mantle may be inhibited from 

ascending from depths greater than 400 km. 
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The EOS of ultrabasic magmas was used to model adiabatic melting in a peridotitic mantle. 

If komatiites are formed by >15% partial melting of a peridotitic mantle, then komatiites generated 

by adiabatic melting come from source regions in the lower transition woe (=500-670 km) or the 

lower mantle (>670 km). The great depth of incipient melting implied by this model, and the melt 

density constraint mentioned above, suggest that komatiitic volcanism may be gravitationally hin

dered. Although komatiitic magmas are thought to separate from their coexisting crystals at a tem

perature ::::200°C greater than that for modem MORBs, their ultimate sources are predicted to be 

diapirs that, if adiabatically decompressed from initially solid mantle, were more than 700°C hotter 

than the sources of MORBs and derived from great depth. 

We considered the evolution of an initially molten mantle, i.e., a magma ocean. Our model 

considers the thermal structure of the magma ocean, density constraints on crystal segregation, and 

approximate phase relationships for a nominally chondritic mantle. Crystallization will begin at the 

core-mantle boundary. Perovskite buoyancy at >70 GPa may lead to a compositionally stratified 

lower mantle with iron-enriched mangesiowiistite content increasing with depth. The upper mantle 

may be depleted in perovskite components. Olivine neutral buoyancy may lead to the formation of 

a dunite septum in the upper mantle, partitioning the ocean into upper and lower reservoirs, but this 

septum must be permeable. 

1. Introduction 

The pressure-volume-temperature (PVT) equation of state (EOS) of silicate melts at pressures 

of several tens to hundreds of kilobars has recently become an area of considerable interest. This 

interest stems in part from the recognition that magmatic activity extending over much of the depth 

of the upper mantle and perhaps even the lower mantle may have played a significant role in the 
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early evolution and differentiation of the Earth. If so, knowledge of the equation of state would be 

of fundamental importance in setting constraints on the consequences of such deep-seated igneous 

activity. In particular, it has been suggested [Stolper et al., 1981; Nisbet and Walker, 1982; Rigden 

et a/., 1984; Ohtani, 1985; Takahashi, 1986; Agee and Walker, 1987] that at sufficiently high pres

sures, silicate melts could become so dense that crystal-melt segregation would be impeded. This 

could result in a maximum depth from which melts could rise and could have the important conse

quence of burying heat and incompatible elements that might otherwise have reached the Earth's 

surface. In extreme cases, silicate melts could be denser than surrounding mantle rocks, resulting in 

a downward segregation of melts, heat, and heat-producing elements- quite the opposite of most 

modem shallow igneous activity. 

Rigden eta/. [1984, 1988] determined the EOS of a model basalt to 340 kbar and verified that 

silicate melts can be of comparable density to mantle minerals and rocks at high pressures. The 

requisite pressures ~ GPa) are, however, much greater than those at which basaltic magmas are 

generally believed to have formed [Green and Ringwood, 1967]. Melts generated at such high pres

sures are believed to be more olivine-normative than common basaltic magmas. Komatiitic liquids 

are examples of magmas that may originate at the high pressures at which silicate magmas may be 

comparable in density to olivine-rich residual materials. Recent high-pressure melting experiments 

[Takahashi and Scarfe, 1985; Scarfe and Takahashi, 1986] have demonstrated that liquids similar to 

komatiitic magmas can be generated by partial melting of garnet lherzolite at pressures of 5 to 7 

GPa. At higher pressures, partial melting of garnet lherzolite produces even more olivine-rich mag

mas, approaching mantle-derived lherzolites in composition at =14 GPa [Scarfe and Takahashi, 

1986]. Large-scale melting of the mantle may have occurred during accretion [Kaula, 1979; Abe 

and Matsui, 1986; Matsui and Abe, 1986; Zahnle eta/., 1988; Ahrens, 1990] or impact-formation of 

the moon [Benz eta/., 1986, 1987; Cameron and Benz, 1989; Stevenson, 1989], perhaps generating 
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a komatiitic or peridotitic magma ocean extending to great depth. The equations of state of ultra

basic liquids are critical for evaluating hypotheses for the generation of komatiitic liquids and for 

quantitative evaluation of early magmatic evolution that may have extended to great depths in the 

Earth. 

Extrapolation of the high-pressure EOS of a model basalt [Rigden et al., 1984, 1988] and sim

ple mineral melts [Rigden et al., 1989] to more olivine-normative compositions involves consider

able uncertainty. In particular, liquid olivine components are believed to have a relatively large 

isentropic bulk mcxlulus (K8) to 100 kbar but their detailed behavior is unknown (e.g., high Kos and 

low oKsfoP I s (K' os) versus low Kos and high K' os) and can make a big difference in extrapolation 

of density above a few tens of kilobars [Rivers, 1985; Herzberg, 1987]. Furthermore, although 1 bar 

bulk moduli of basic and ultrabasic liquids can be modeled with reasonable accuracy [Lange and 

Carmichael, 1987; Rivers and Carmichael, 1987] their extrapolation to 100 kbar pressures is compli

cated by the fact that the form of the EOS cannot be anticipated [Rigden et al., 1988]. 

Direct high-pressure experimentation on ultrabasic liquids is required. One example of the 

direct measurement of ultrabasic liquid bulk moduli at high pressures are the olivine sink/float 

bracketing experiments of Agee and Walker [1988a]. The bulk moduli of fayalite-doped komatiitic 

melts were bracketed by observation of the sinking or floating of olivine spheres to 60 kbar. Extra

polation of these results to end member komatiite suggests flotation of olivine would occur in koma

tiitic magmas at a pressure of about 80 kbar. The compositional variability (5 to 50 wt % fayalite 

was added, and equilibrium olivines crystallized out) of these static experiments, however, makes it 

difficult to generalize their results and to explore the details and specific form of the EOS of komati

itic liquid. 

Another direct experimental method for the determination of high-pressure, high-temperature 
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liquid equations of state is shock wave compression. Shock wave compression has previously been 

used to measure the EOS of silicate liquids in the system anorthite-diopside to pressures of 400 kbar 

[Rigden et al., 1984, 1988, 1989]. These results are both consistent with available low-pressure 

compressibility data and extend these data to lower-mantle pressures through direct measurement. 

In this paper, we report the results of a study of the equation of state of molten komatiite to 360 

kbar using shock wave techniques. This is the first report of the EOS of a complex naturally

occurring melt composition to these pressures. The results of the high-pressure komatiite EOS are 

used as a basis for evaluating models of the petrogenesis of komatiitic magmas and the early evolu

tion of the mantle. 

2. Experimental method 

Although the molten silicate shock wave experiment was described by Rigden et al. [1988], 

we have made some modifications to both the experimental procedure and method of data analysis. 

We therefore will describe the entire experimental and analytical procedure, placing emphasis on 

those aspects that differ from the earlier work. 

A synthetic komatiite (glass plus approximately 10% spinifex olivine) was prepared at Com

ing Glass Works, Corning N.Y., by Dr. G. Fine. The nominal composition (Table I) was based on a 

natural komatiite from the Pike Hill area of Munro Township, Ontario [Walker et al., 1977]. 

Batches of 200 g spectroscopic grade oxides were mixed, then melted at 1650°C for 4 hrs in a Fe

saturated Pt crucible in air. The liquid was then poured onto a 6 by 6 inch cold steel slab to make a 

patty of appropriate thickness (= 0.5 em) for the shock wave sample assembly. The liquid could not 

be quenched sufficiently rapidly to prevent growth of spinifex olivines, but by pouring slabs of simi

lar thickness to our sample assembly we were able to ensure that the bulk composition used in our 
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experiments was similar to the nominal composition listed in Table I despite the chemical 

stratification of the slab. Cores of 1 em diameter were cut from the slabs with a water-cooled dia

mond coring bit. The sample size was determined by a calculation of the mass of melt needed to 

fill 85-90% of the Mo container (see below) at 1550°C. The measured volume of the Mo sample 

container, corrected to 1550°C [Touloukian et al., 1970], and the estimated melt density at 1550°C 

[Lange and Carmichael, 1987] determine the mass of sample needed to fill the container. The 10-

15% underfilling was considered necessary to prevent rupturing or distortion of the container. The 

cores were ground to the desired size with 60 J.1ffi alumina. 

Two cores, prepared as described above, were used to verify that the core preparation pro

cedure did not bias the sample composition. Thin sections were cut along the axis of the cylindrical 

cores and analyzed with the Caltech JEOL electron microprobe. Vertical and horizontal transects 

across the sections were probed at approximately 50 J.1ffi intervals. Averages are presented in Table 

I, column 2. 

Molybdenum sample containers were machined of high purity sintered Mo stock (grade ABL-

2 from Climax Specialty Metals, Coldwater, Michigan) according to the specifications of Rigden et 

al. [1988]. The inner surfaces of the container were polished to 0.3 J.1ffi with alumina to minimize 

the possibility of bubble adhesion and to provide a smooth and nominally flat metal/liquid interface. 

Some curvature of the Mo was introduced by the polishing, however, resulting in a slightly concave 

surface; the thickness of the Mo driver plate (Fig. 1) was found to vary by 10 to 50 J.1ffi between the 

perimeter of the sample well and the center. Other dimensions of the Mo container measured with 

±1 J.1ffi precision were the thickness of the driver plate outside of the sample well, and the sample 

well depth and diameter. The density of the Mo container was determined within ±0.02% by the 

Archimedean method. The measured density agreed with the published density [Straumanis and 

Shodhan, 1968] within the reported errors, confirming negligible porosity and impurities. A Mo 
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cover was machined to fit the sample container. The inner surface of the cover was lapped to 0.3 

~. and its thickness was measured to ±1 ~· The lapping produced no measurable curvature. 

The komatiite cores were placed in the Mo container, the Mo cover was seated in place, and the 

cover was electron beam welded at 400°C in vacuo. The heating under vacuum facilitates the elec

tron beam welding and has the added likely benefit of driving off volatiles adsorbed on the glass. 

After welding, the sample assembly was measured to ensure that the cap was seated properly. Cant

ing of the cap was checked by measurement of the thickness of the assembly across the cap to ±1 

~· The caps were found to be canted by less than 5 ~ across their 1 em diameter. 

The welded sample assembly was hung in a vertical furnace at 1500°C for 15-20 min to verify 

weld integrity. The liquidus temperature of the sample is approximately 1465°C, so the sample was 

completely melted. A continuous flow of dry N2 gas was maintained in the furnace to minimize 

oxidation of the Mo. The dimensions of the sample container were measured after heating to verify 

that the cap was not distended from overfilling of the sample container. The loss of thickness owing 

to Mo loss on oxidation was less than 5 ~· One sample was cut open and examined to verify that 

the sample had been completely melted. Before heating, the sample consisted of spinifex olivines in 

a glass matrix. After heating at 1500°C, all of the spinifex olivines were replaced by uniformly dis

tributed =10 ~ equant skeletal olivine crystals. This textural change indicates complete melting. 

The sample was also examined to determine whether or not all bubbles had risen to the top of the 

assembly. Some bubbles persisted at the comers between the cylindrical wall and the flat surfaces 

of the Mo container, but the majority of the vapor phase had accumulated at the top of the con

tainer. This sample was checked for Mo contamination and Fe loss with the Caltech electron probe 

(Table I, column 3). 

The top surfaces of the welded sample assemblies were mirror polished with 0.3 ~ alumina. 

Polishing made the cover measurably concave, with the center depressed up to 20 ~ relative to the 
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Table I: Experimental Komatiite Composition, wt % 

Nominal Measured a Measured a 

Oxide after heating 

in Mo container 

Si02 46.1 45.4 46.5 

MgO 27.2 26.6 27.7 

FeOb 9.7 8.6 8.5 

CaO 7.4 7.8 7.7 

Al203 7.6 8.2 8.0 

Na20 0.9 1.1 0.9 

Ti02 0.4 0.4 0.4 

CrP3 0.4 0.4 0.3 

K20 0.2 0.3 0.2 

MnO 0.1 NA NA 

M~ 0.0 0.9 

Total 100.0 98.8 101.1 

aaverage of approximately 100 analyses obtained at 50 J.1lD intervals along horizontal and vertical 
transects across the sample. 

ball Fe calculated as FeO 
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Figure 1: Schematic of shock wave sample assembly. A silicate glass is welded into a Mo sample 

container. The container is held in a fibrous Al20 3 ceramic plate adjacent to a Cu induc

tion coil, used to heat the Mo container and melt the glass. The preheat temperature is 

monitored with a Pt-Rh thermocouple pressed in a well adjacent to the sample compart

ment A metal flyer plate, embedded in a Lexan projectile, is shown in flight just prior to 

impact. When the impact occurs, a shock will be generated in the sample assembly. First 

the Mo driver plate is shocked, then the sample, and finally the cover. The arrival of the 

shock wave on the back (left) surface of the sample assembly is detected by measuring 

changes in light reflectivity as a function of time. The shock is first detected on the back 

surface of the driver at approximately the same time that the planar shock wave enters the 

sample. The shock arrival at the cover is detected with a streak camera. The inset shows 

the relevant distances: Xc, x.. and Xct· 
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perimeter. The cover and driver plate thicknesses were measured to ±1 1J.111 to determine the con

cavity and the thickness change during polishing. A 1.4 mm diameter, 1 mm deep well was drilled 

into the driver plate immediately adjacent to the sample chamber, and a Pt-Rh (type S) thermocou

ple was pressed into the well. The Mo container was then fitted into a machinable Al20 3 ceramic 

(Zircar) plate and aligned with a water-cooled pie-shaped induction coil made from Cu tubing. The 

sample assembly and induction coil were then aligned in the sample tank of the Caltech 40 mm pro

pellant gun [Ahrens et al., 1971]. A schematic illustration of the sample assembly and induction 

coil is shown in Figure 1. 

The gun barrel and sample tank were evacuated to below 100 1J.111 Hg, then the Mo sample 

assembly was induction-heated to 1550°C for ==1 min. The sample was then allowed to cool to 

800°C and the assembly was viewed through a glass port in the tank to verify that the capsule had 

not ruptured. The sample assembly was subsequently reheated to 1550°C. The sample was main

tained at 1550°C for 10 to 20 min until the gun was fired. 

The shock experiments consist of impacting the sample assembly with a metallic "flyer plate" 

attached to a Lexan projectile. The projectile is propelled in the evacuated gun with up to 500 g of 

nitroglycerine-nitrocellulose propellant to velocities up to 2.5 km/s. The projectile velocity is meas

ured with a double-exposure 30 ns X-ray shadowgraph just prior to impact. Analysis of this X-ray 

record [e.g., Rigden et al., 1988] determines the projectile velocity to within 2%. 

Prior to impact, a xenon flash lamp illuminates the polished surface of the sample assembly. 

A streak camera is used to measure the intensity of light reflected from the sample assembly along 

one spatial dimension as a function of time. The spatial axis is normally positioned horizontally 

across the center of the sample assembly. Its field of view encompasses the Mo cover and the Mo 

driver plate on either side of the sample well. We use this instrument to record relative shock wave 
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arrival times between the driver plate surface and the cover surface by detecting when the 

reflectivity of each surface changes. Free surfaces are empirically found to change their reflectivity 

when the shock wave arrives. This change could be associated with roughening due to differential 

rotation of grains on the surface of the polycrystalline material. Unfortunately, the 1550°C Mo sur

face does not show appreciable roughening by low-pressure shocks. Moreover, the impedance 

mismatch between Mo and molten silicate attenuates the strength of the shock, and the Mo cap 

experiences a lower pressure shock than does the Mo driver. Consequently, several of our streak 

camera records were so difficult to interpret, particularly in the cap region, that these data were 

rejected. 

As noted above, we necessarily had a "bubble" in the sample chamber. Most of the vapor 

was found to accumulate at the top of the container that was cut open after heating to ISOO"C. 

Aside from cutting open the containers, however, we had no method of determining the location of 

the bubble at 15500C in each sample assembly we wished to shock. The possible presence of a 

bubble in the center of the sample is of great concern since a bubble would delay the shock wave, 

resulting in an erroneous shock wave velocity measurement. The curvature of the shock wave 

arrival (discussed below), measured along the centered horizontal slit of the streak camera, could 

indicate the presence of a bubble in the center of the molten sample. However, the curvature could 

also be due to edge effects and the concavity of the polished Mo surfaces. 

One approach to determining if a bubble rose to the top of the assembly is to try to detect its 

presence at the top of the sample by using a vertically-positioned streak camera slit. We reasoned 

that a vertical-slit streak record would be strongly asymmetric if a bubble were present at the top of 

the assembly. To use a vertical slit it was necessary to rotate the reflected vertical image through 

90° with a set of three right angle prisms (Fig. 2) onto the horizontal slit of the stationary streak 

camera. We conducted 4 experiments with this vertical slit configuration. A schematic illustration 
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of the vertical-slit streak camera records, and a comparison to horizontal-slit streak records is shown 

in Figure 3. In all cases a pronounced asymmetry was evident in the vertical-slit records. Further

more, the vertical extent of the bubble's influence never extended beyond the center of the sample. 

The absence of bubble-induced delay below the centerline of the vertical-slit experiments strongly 

suggests that the horizontal slit experiments are free from any bubble influence. The vertical-slit 

streak records below the centerline were not perfectly flat, but resembled the horizontal slit records. 

This allowed us to associate the observed curvature of some horizontal streak records with edge 

effects and the effects of surface curvature. 

Interpretation of streak records 

The horizontal-slit streak record of shot #753 is reproduced in Figure 4. The time axis is hor

izontal on the figure, increasing from left to right, and the spatial dimension is vertical. This streak 

record illustrates a number of features found in some of these experiments and our interpretation of 

them. The streak record appears in three parts: the left side of the driver plate, the sample cover, 

and the right side of the driver plate. This separation into parts is a result of poor polishing of the 

driver next to the sample well. The shock wave arrival at the driver plate free surface is indicated 

on one side by an apparent increase in reflectivity, and on the other side by a decrease. The 

apparent increase is probably due to propellant gas that was shock-heated when the shock wave 

reached the free surface of the molybdenum driver plate. Note that some of the light and dark 

bands (due to scratches on the surface) can be followed across the shock wave arrival point and into 

the post-shock region of the record. In some cases these bands are offset along the spatial axis by a 

slight shearing motion, and in other cases some bands dramatically change in intensity when the 

shock wave arrives. In cases in which the pre- and post-shock light intensity is nearly equal, the 
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Figure 2: Prism assembly for rotating the sample image through 90 degrees. Three 2-inch right 

angle prisms were cemented together to enable the stationary camera (horizontal-slit plane) 

to view a vertical-slit image of the sample assembly. 
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Figure 3: Schematic horizontal- and vertical-slit streak camera records. The records show the arrival 

of the shock wave on the driver plate free surface. After the shock wave has traversed the 

sample and the cover, the shock wave arrival is seen at the center. Note the presence of 

edge effects at the edge of the raised sample chamber. The vertical slit streak record is 

asymmetric because of the bubble, shown at the top of the sample container. The bubble 

slows the arrival of the shock wave, resulting in a late arrival on the streak camera record. 

The asymmetry induced by the bubble is easily recognized. The bubble's influence on the 

shock wave arrival is not detected by the camera below the horizontal centerline. 
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changes in these bands are taken as reliable alternative indications of the shock arrival. 

The shock wave arrival at the free surface of the cover is often more difficult to interpret than 

that of the driver because, as noted earlier, the shock wave intensity is lower in the cover than in the 

driver. In Figure 4, the shock wave appears to arrive much later at the center of the sample than at 

its perimeter as judged by the sharp cutoff in light intensity. Using the disturbances in light and 

dark bands to indicate the shock arrival, however, a more uniform shock wave arrival time is indi

cated. The variation in shock transit times across the cover indicated by the light and dark bands is 

commensurate with the calculated variation based on the measured curvature of the polished sur

faces. Note that the shock wave is the first disturbance to reach the free surface: no elastic precur

sor waves have been detected in high-temperature Mo [Miller et al., 1988]. Since the shock wave is 

the first disturbance to reach the free surface, we have in all cases interpreted the first disturbance 

measured on the streak record as the shock wave arrival; all subsequent features have been inter

preted as post-shock effects. Because the change in intensity of the light bands gives a variation in 

arrival time consistent with the measured surface curvature, and because it occurs prior to any other 

change in the streak record in the sample region, we take this to be the true shock wave arrival 

time. A faint parabolic "shadow" can be seen in the region between the shock wave arrival and the 

cutoff of the reflected light This parabolic shape is a characteristic post-shock feature of high

temperature Mo [Miller et al., 1988], consistent with our interpretation of this record. Although we 

chose to illustrate this particular record to show some of the complexities in interpretation, on other 

streak records the distinction between the shock wave arrival and the post-shock image is as clear as 

the driver arrival shown in Figure 4. 
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Figure 4: The horizontal-slit streak camera record from shot #753. Reflected light along the hor

izontal spatial dimension (vertical axis on the figure) is recorded as a function of time (hor

izontal axis on figure, time increases from left to right). The shock wave arrival is detected 

by changes in the reflectivity. 
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Figure4. 
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3. Analytical Procedure 

The pressure-density state achieved in the shock experiment can be determined in an idealized 

experiment from measurement of the shock wave velocity in the sample and the particle velocity of 

the shocked sample. Neither of these measurements can be made directly in this experiment; both 

are indirectly determined. The sample shock wave velocity, U,,, and sample particle velocity, q,., 

are determined by a coupled set of impedance-match equations for the flyer-driver, driver-sample, 

and sample-cover interfaces. The known impedance properties of the flyer plate and Mo container, 

together with the measured projectile velocity and shock wave propagation time, provide the neces-

sary constraints for the impedance-match equations. 

The streak camera record gives the transit time interval, tt (Fig. 4), for the shock wave to 

travel through the sample and the cap. The shock travels at a speed u.d in the Mo driver plate, u •• 

in the sample, and Usc in the Mo cap: 

Xd X. Xc 

tt = Uad + u.. + Usc ' (1) 

where the thickness of the sample at 1550°C is x.. the thickness of the Mo cap is Xc. and the 

difference in thickness between the driver beneath the sample and the driver outside of the sample 

assembly is xd. ~ is nominally zero, however polishing and oxidation of the container make this 

dimension vary between + 120 and -120 J..l.ffi. xd is positive when the driver plate extends into the 

sample well, or negative if the sample well extends into the driver. These measurements are illus-

trated in the inset to Figure 1. The room temperature value of these thicknesses are determined 

from the sample container dimensions measured at various points in its preparation, and corrected 

for temperature with the thermal expansivity of Mo [Touloukian eta/., 1970]. Because of the driver 

plate and cover curvature, the thickness values used were those appropriate for the position on the 

streak record of the measured transit time. This set of measurements is therefore self-consistent, and 
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different self-consistent sets give identical results within the propagated errors. 

Flyer-driver impedance match 

The velocity of the flyer plate, in conjunction with its known shock impedance properties and 

those of the hot Mo [Miller et al., 1988], suffice to determine the shock velocity in the driver, Usd· 

The impedance match equation is a statement of stress equality at the flyer/driver interface: 

(2) 

where Pd is the shock pressure of the driver, and Vimp is the projectile velocity. Eqn. 2 can be 

solved as a quadratic equation in upd. 

The driver's shock velocity, Usd, and particle velocity Upd, are related by an empirical consti-

tutive equation: 

(3) 

Eqn. 3 and an analogous constitutive equation for the flyer plate is implicit in Eqn. 2. The parame-

ters of the constitutive equations, and the initial densities of the driver (pOd) and flyer (Por) are given 

in Table II. 

The shock density of the driver, Pd• is specified by its initial density and the shock and parti-

cle velocities by an equation of mass conservation across the moving shock front 

(4) 

Driver-sample impedance match 

A similar impedance match can be made to determine the shock and particle velocities of the 
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sample. The following equation is analogous to Eqns. 2 and 3: 

(5) 

The approximations used in this equation will be discussed below. Note that since a relationship 

between the sample shock velocity, u ... and the sample particle velocity, Ups, is not yet known (this 

function is the objective of the experiments), Eqn. 5 will serve as one of several coupled equations 

to be solved simultaneously for u .. and Ups. 

The zero-pressure density of the 1550°C komatiite liquid, Po. (given in Table II), is not meas-

ured but calculated from the composition and temperature with the partial molar volume data of 

Lange and Carmichael [1987]. The shocked sample density at pressure P1, p., is given by a mass 

balance equation analogous to Eqn. 4: 

Sample-cover impedance match 

u .. 
p. = Po.u -U 

II p8 

The sample-cover impedance match equation is given by: 

The approximations used in Eqn. 7 are discussed below. A constitutive equation for the cover, 

(6) 

(7) 

(8) 

is implicit in the impedance match (Eqn. 7). The shock density of the cover at shock pressure Pc is 

given by the mass balance equation: 

Usc 
Pc = P0cU -U sc pc 

(9) 



- 33-

In our experiments the driver and cap are both Mo and both initially at 1550°C, thus the numeric 

values of (POd• cOd, sd) are equal to (pOe, c0c, sJ. The shock states, however, are different (U•d*Usc, 

Upc~*Upc, Pdii'c• and Pd*Pc). 

Full solution 

For each individual experiment, measurements ( Vimp• xd, x.. Xc, and tt) are combined with the 

assumed shock parameters of the sample (Co. and s.. assuming a linear u.-UP relationship ), the 

known impedance properties of the Mo driver/cap and flyer plate (POdlc• C()dtc, S()dtc, Poe. Cor, Sf), and 

the calculated value Pas. to yield calculated values u •• and Ups for the sample. This solution is 

obtained from simultaneous solution of Eqns. 1-9. For a series of experiments with different flyer 

plates and/or different impact velocities, a set of calculated u •• -Ups points is obtained. This set of 

values is then regressed to yield a new set of sample impedance parameters cas and s.. The original 

data for each experiment are then reanalyzed with the new set of impedance parameters, etc ... , until 

convergence is achieved. The final converged values for cas and s. are independent of the original 

assumed values. 

The development presented above has presupposed that the experimental relationship between 

u .. and Ups will be linear. In practice this assumption was not made. Rather, a set of equations 

analogous to those above was solved with a numeric method that allowed a variety of functional 

relationships (U .. = f(Ups)) to be tried, e.g., quadratic and higher-order polynomial forms and 

piecewise linear functions. A linear relationship fit the data well, as is the usual case for crystalline 

and some amorphous materials (notable exceptions include fused silica [Marsh, 1980], whose u.-uP 

slope varies continuously, and a liquid anorthite (An) diopside (Di) mixture, Ano.36Di0.64 [Rigden et 

al., 1984, 1988], which has two piecewise linear regions that join at approximately 240 kbar). 
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With the assumption of normally distributed (Gaussian) errors, differential forms of Eqns. 1-9 

can be solved simultaneously to determine the uncertainty in U,, and UP" for each individual experi-

ment This error analysis is presented in Appendix 1. The error analysis is done in conjunction 

with the determinations of u .. and U"", and the regression of these values to determine co. and s. is 

done with a weighted least-squares procedure [Bevington, 1969] where each point is weighted by 

the inverse of its propagated error squared. 

One additional assumption has been made in the preceding development. In a composite sam-

ple assembly, the flyer-driver interface is solved with the impedance match equations for two (ini-

tially) zero-pressure materials. All subsequent impedance matches, however, must describe the 

interface between a previously shocked material and an initially unshocked material. The 

impedance match equations for these interfaces require knowledge of the high-pressure impedance 

properties of the shocked material (i.e., the Hugoniot of the sample centered at the initial Hugoniot 

state). In our sample assembly we have two interfaces of this type: the driver-sample interface and 

the sample-cover interface. 

At the driver-sample interface the driver plate will isentropically release to the sample shock 

pressure. This impedance match is rigorously given by a Riemann integral formulation: 

(10) 

where K.,d is the isentropic bulk modulus of the driver plate at high pressure. This integral expres-

sion can be approximated (to second order in Ups) as: 

(11) 

by writing K.,c~ as Pd(cJll'i + (4sJll'-1)(P-P~. This approximate solution of the exact Riemann 

integral resembles the Rankine-Hugoniot equation (e.g., Eqn. 12) because, to second order in UP' the 
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Hugoniot and isentrope are equivalent. At the sample-cover interface the shocked sample will be 

shocked again to the higher pressure of the shocked cover. Assuming a linear U,-UP relationship for 

the second shock of the sample, this impedance match is given by: 

(12) 

The HP superscript denotes high-pressure values: c.F and s.F are the Hugoniot parameters of the 

driver centered at the high-pressure state Pd, and c:n' and s.HP are the Hugoniot parameters of the 

sample centered at P,. The flyer-driver impedance match is correct as given in Eqn. 2 since the 

flyer is at zero pressure prior to impact 

In these cases, the high-pressure impedance properties of the shocked material (cHP and sHP) 

are not generally known, but they can be calculated from the standard impedance properties (Co and 

s) given knowledge of the thermodynamic Griineisen parameter, ~ ln T/a ln VI 8, and its isentropic 

volume derivative, q=d lnyta In VI s [Appendix 2]: 

(c~2 = c6 + 2CQ(2s-1)Up + [1-s(6+"f-5s)JUi + ~[2+y+s(2s-y--4)1Ui , (13) 
co 

16cJs+8c6s(7s-4-y)Up+4CoS[4(4s-1)(s-1)+')(2q-"f-5S)]Ui+ 12(s-1)s2[2(s-1)-yJUi = . (14) 
16co[c6+c0(3s-l)Up+s(2(s-1)-y)Ui1 

A linear U,-UP relationship for the principal Hugoniot was assumed. 

In the case of the driver-sample impedance match, Eqns. 13 and 14 should be evaluated at Pd, 

the high-pressure state achieved by the flyer-driver impact. In practice, however, a simplifying 

assumption is often made for this impedance match. We imagine that a minuscule gap exists 

between the driver and the sample. If such a gap existed, then the driver would release to zero 

pressure prior to impact with the sample. If the release were isentropic, then the free surface of the 

driver would be traveling at twice the particle velocity. This impedance match thus resembles the 
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flyer-driver impedance match where we substitute 2UP for V imp· The same assumptions were made 

for the sample-cover impedance match in Eqn. 7. In instances where the free surface velocity is 

actually measured, this assumption has been found to be good [Jeanloz and Ahrens, 1979], and for 

solid-solid interfaces, the imaginary gap may in fact exist In the solid-liquid case, however, the 

solid surface is wetted by the liquid and no such gap exists. Nevertheless, we tested the validity of 

this assumption by using the exact form of the impedance match (Eqn. 11 for Eqn. 5, and Eqn. 12 

for Eqn. 7, with cHP and .jfP evaluated with Eqns. 13 and 14). We assumed that the Griineisen 

parameter is independent of temperature, and that it varies with specific volume according to 

dy/dV=y/V (q=1). Using these assumptions we found that the results are similar whether the more 

precise equations or the gap approximations are used, so we used the fictitious gap assumption in all 

our data reduction. 

The success of the fictitious gap assumption indicates that the impedance match equations are 

insensitive to y, hence the more rigorous analysis cannot be used to constrain y of molten komatiite 

in these experiments. 

4. Results 

The results of 12 successful molten komatiite shock-wave experiments are listed in Table III 

and shown in the U,-UP plane in Figure 5. The data clearly define a linear trend. A weighted 

least-squares fit to the data (shown as a solid line in Figure 5) gives aU, intercept, c0, of 3.13±0.03 

km/s, and a slope, s, of 1.47±0.03. No significant quadratic or higher order terms are present. A 

linear U,-UP trend is observed for most materials [Ruoff, 1967; Jeanloz and Grover, 1988; Jeanloz, 
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1989] although several notable exceptions exist [e.g., Rigden et al., 1988]. No theoretical 

justification for the linear function exists, however the absence of 2nd_ and higher-order tenns 

implies the absence of 4th- and higher-order terms in the Eulerian finite-strain EOS for typical values 

of the Griineisen parameter [Jeanloz and Grover, 1988]. A linear U,-UP shock equation therefore 

often justifies the use of a 3rc1-order Birch-Murnaghan EOS to describe isentropic compression. 

Each term in a Maclaurin series expansion of the general function U.=f(Up) can be related to 

thermodynamic properties of the sample. Such relationships for the intercept, initial slope, and ini-

tial curvature are [Ruoff, 1967; Jeanloz, 1989; Appendix 2]: 

lim U, = Co = ..JKosVo, 
uP~ 

dU, 1 
lim -- = s = -(K' os + 1) , 
up~dup 4 

, 8KosK"os + (K'os+1)(7+4yo-K'os) 
=2s= 48co ' 

(15) 

(16) 

(17) 

where Kos is the isentropic bulk modulus; K' os is the isentropic pressure derivative of Kos: K" os is 

the isentropic pressure derivative of K' os: V0 is the specific volume (llp0); c0 is the bulk sound 

speed; and y is the thermodynamic Griineisen parameter. The zero subscripts denote evaluation at 

the preshock state; i.e., 0 bar and 1550°C in our experiments. 

If we assume that the linear trend defined by our data from Up ::: 0.4 7 to 2.10 km/s can be 

extrapolated to UP-+ 0, then the coefficients of our best-fit line can be used with Eqns. 15-17 to 

determine the isentropic bulk modulus of the molten komatiite, and its isentropic pressure deriva-

tives. Kos = 27.0 ± 0.6 GPa from Eqn. 15, and from Eqn. 16 K'os = 4.9 ± 0.1. 

The absence of a quadratic term, s' (Eqn. 17), can be used to constrain K" os given an estimate 

of 'Yo- The Griineisen parameter can be calculated from the bulk modulus Kos. specific volume V o. 

heat capacity Cpo. and thermal expansivity CXo with: 
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Table III: Measured and Calculated Experimental Results 

Shot# vimp Flyer u. up p p 

[km/s] [km/s] [km!s] [GPa] [glee] 

754 1.127±0.007 2024 Al 3.85±0.05 0.47±0.01 5.0±0.1 3.13±0.01 

785a 1.290±0.005 2024 Al 3.91±0.04 0.54±0.01 5.8±0.1 3.19±0.01 

780 1.497±0.005 2024 Al 4.07±0.05 0.64±0.01 7.1±0.1 3.25±0.01 

784a 1. 767±0.007 2024 Al 4.26±0.05 0.76±0.01 8.8±0.1 3.34±0.01 

782 1.912±0.007 2024 Al 4.31±0.05 0.82±0.01 9.7±0.1 3.39±0.02 

777 1.420±0.005 Cu 4.61±0.06 1.02±0.02 12.8±0.2 3.52±0.02 

755a 1.531±0.007 Cu 4.73±0.13 1.09±0.02 14.2±0.4 3.57±0.04 

776 1.628±0.007 Cu 4.88±0.07 1.16±0.02 15.5±0.3 3.60±0.02 

775 1.812±0.006 Cu 4.98±0.07 1.29±0.02 17.7±0.3 3.71±0.03 

783a 1.694±0.007 w 5.47±0.09 1.60±0.02 24.0±0.4 3.88±0.04 

781 1.872±0.006 w 5.76±0.10 1.75±0.02 27.7±0.5 3.94±0.04 

753 2.496±0.009 Ta 6.21±0.05 2.10±0.02 35.7±0.4 4.15±0.03 

avertical slit streak record 
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Figure 5: Shock velocity (U.) and particle velocity (Up) data for 12 molten komatiite experiments. 

Individual experiments are represented by diamond symbols. The ±1-<J error bars lie 

within the symbols if not shown. The solid line is the weighted least-squares best fit to the 

experimental data, u. = 3.13 (±0.03) + 1.47 (±0.03) UP. The shaded band represents the 

±1-<J error bound on the best-fit line. The initial density at 1550°C is 2.745 (±0.005) glee 

[Lange and Carmichael, 1987]. The linear regression coefficients, together with the initial 

density, give the isentropic bulk modulus, Kos = 27.0 (±0.6) GPa, and its isentropic pressure 

derivative K'os = 4.9 (±0.1). The circle represents the measured ultrasonic sound speed of a 

26.2 wt % komatiitic melt at 1558°C from Manghnani et al., [1989] with a ±1cr error bar. 

The square symbol represents the calculated bulk sound speed from the partial-molar pro

perties of Lange and Carmichael [1987] with a ±1cr error bar, offset for clarity from its 1 

bar pressure (Up=O). 
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Cro Cvo 
(18) 

The heat capacity, 1.67 ± 0.05 J/g0 [Stebbins et al., 1984], and thennal expansivity, 8.0><10-5 ± 

1.7xl0-s K-1 [Lange and Cannichael, 1987], are calculated from partial-molar properties. With 

Eqn. 18 the Griineisen parameter is calculated to be 0.47 ± 0.10 at 1550°C and 1 bar. With s' = 0, 

K" os = -0.109 ± 0.003 GPa-1 (Eqn. 17), significantly different from the -0.204 ± 0.014 value implied 

by a 3rd-order Birch-Murnaghan EOS (K"os = [K'os(7-K'os)- 143/9]/Kos). This implies that a 41h-

or higher-order finite-strain EOS is required. We note that if volume additivity is assumed for liquid 

constituents, then an nih -order finite-strain EOS for the end members implies an (n+ 1 )lh -order finite 

strain EOS for the ideal mixture. It is not surprising, therefore, to discover high-order tenns. 

The ultrasonic sound speed of a 26.2 wt % MgO komatiitic liquid was measured by Mangh-

nani et al. [1989] to be 2.93 ± 0.15 (1--a uncertainty) km/s at 1558°C (Fig. 5). This value is very 

close to our calculated 3.13 km/s, and our extrapolation lies within their ±2--a error bars. Neverthe-

less, the difference may be significant It is possible that the komatiitic liquid is more compressible 

at low pressure than our extrapolated shock data indicate. If we accept 2.93 km/s as the true 1 bar 

sound speed (i.e., c0 = 2.93 km/s ± 0) and regress our data with this as a constraint, we find 

s = 1.63 ± 0.03 and K'os = 7.5 ± 0.1. Whether or not the difference between our extrapolated 1 bar 

sound speed and the ultrasonic measurements is real, it is important to note that the values of Kos 

and K'os derived from our data are accurate parameters for characterizing the komatiite EOS in the 

pressure interval of our experiments. 

The partial-molar derivatives av;taPI T from Lange and Cannichael [1987] can be used to 

compute the isothennal bulk modulus, KoT = 20.5 ± 4.1 GPa at 1550°C. The isentropic and isother-

mal bulk moduli are related by Kos = KoT(l+aoy0T0), from which a bulk sound speed of 2.82 ± 0.3 

km/s is calculated. This calculated value is also shown in Figure 5. The partial-molar calculated 
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value is about 10% smaller than that inferred from the u.-up fit (Co = 3.13 ± 0.03 km/s), but the 

latter lies completely within the 2-a bounds of the former. We consider this agreement to be good, 

especially considering the large uncertainties in <Xo and y0, and the fact that compositional extrapola

tion was required to apply the Lange and Carmichael [1987] coefficients. 

A close correspondence between shock wave determinations of c0 and ultrasonic measure

ments has also been observed for liquids in the system anorthite-diopside [Rigden et al., 1984, 1988, 

1989]. 

PV Systematics 

The u.-UP data have been converted to the more familiar PV plane with Eqns. 5 and 6. The 

PV data are shown in Figure 6 along with the calculated specific volume of our komatiite [Lange 

and Carmichael, 1987], and the best-fit u.-UP line (Fig. 5), converted to a curve in the PV plane. 

The shock-wave data span a pressure range from 5 to 36 GPa (50 to 360 kbar), and a compression 

range of 12 to 34%. In terms of depth within the Earth, this pressure range corresponds approxi

mately to 150 to 950 km [Dziewonski and Anderson, 1981]. 

Rigden et al. [1989] proposed a semi-quantitative model for the systematics of melt compres

sion. They noted that oxides like MgO and FeO have similar partial molar volumes in both low

pressure liquid and high-pressure crystalline phases, whereas the oxides Si02 and AI20:3 are much 

less dense in a low-pressure melt than in their high-pressure crystalline phases. This difference can 

be ascribed to the fact that in Si~ and AI20 3, Si+4 and Al+3 undergo gradual coordination number 

changes with o-2, from IV to VI, with increasing pressure. Rigden et al. noted that near 40 GPa 

liquids in the system anorthite-diopside approach the densities of ideal mixtures of dense oxides to 

within 5-10%. Such a dense-oxide calculation was performed for the komatiite composition (Fig. 6) 
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using a simplified 5 component model (Si~, MgO, FeO, A120:3, and CaO, Table IV). The remain-

ing components are not volumetrically significant, and therefore have little impact on the PV sys-

tematics. The dense-oxide PV curve has been adjusted to the calculated shock temperatures of the 

komatiite (discussed below) to facilitate direct comparison. At 40 GPa the specific volume of the 

crystalline dense oxide mixture is approximately equal to that of the komatiite, consistent with the 

prediction of their model. As remarked earlier, the rate of change of the incompressibility of the 

An-Di system with pressure increases rapidly when the density of the liquid approaches the density 

of the dense oxide mixture. By analogy, we might expect the komatiite to exhibit this stiffening 

behavior above = 40 GPa (1000 km). 

Shock Temperatures 

The shock-wave EOS data specify the internal energy, pressure, and density of the high-

pressure molten sample. However, the temperatures achieved in the shocked state have not been 

measured in these experiments and must be calculated. This temperature calculation relies heavily 

on the thermodynamic Griineisen parameter, whose pressure and temperature dependence are poorly 

constrained. Shock wave experiments using porous samples suggest that y is a weak function of 

specific volume and independent of temperature. The fuoctional form usually adopted for y is: 

where (cf. Bassett et al., 1968): 

q= ~~ 
alnV Is 

1 aK I 
= 1 + 'Y- K'os - -- __ s I 

aKos aT lp. 

(19) 

(20) 

Using our shock wave data, values of 'Yo and ao discussed above, and using accfaTI p = -1.4xl0-3 ± 

0.9x10-3 km/s [Rivers and Carmichael, 1987] to calculate the temperature derivative of Kos. we 
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Table IV: EOS parameters for crystalline oxides t 

Po [glee] Kos [GPa] K'os 

Al20:3 3.988 252.-fl 4.3a 

CaO 2.245 112.0b 4.8b 

FeO 5.864 158c 4c 

MgO 3.584 162.7a 4.27a 

Si02 4.290 316.0d 4e 

a b Anderson et a/., 1968. 
Jeanloz and Ahrens, 1980. 

~ Jeanloz and Sato-Sorensen, 1986. 
Weidner eta/., 1982. 

e Lyzenga et a/., 1982. 
t q is assumed to be 1.0, and Cv to be 3R/atom for all phases. 

'Yo 

1.32a 

1.51b 

1.63b 

132a 

1.2~ 
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Figure 6: Pressure-Volume Hugoniot for molten komatiite. Individual experiments (diamond sym

bols) are calculated from the experimental u. and UP data and the initial density 2.745 

(±0.005) glee [Lange and Carmichael, 1987]. The ± 1-0' error bars lie within the symbol 

unless shown. The solid curve which passes through the experimental data is calculated 

from the best-fit u.-uP line. The shaded band represents the ±1--0" error bounds on this fit 

The dotted curve is the calculated volume of a solid of komatiitic composition whose EOS 

is modeled as a mixture of high-pressure, high-temperature, dense oxides. The dense oxide 

volumes are calculated for the same pressure-temperature curve as the komatiite liquid 

The dense oxide calculation assumes volume additivity, and uses the parameters listed in 

Table IV. Note that the liquid volume and that of the mixed crystalline oxides is approxi

mately equal at 40 GPa 
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calculate from Eqn. 20 that q = 8.8 ± 7.9 at 0 bar and 1550°C, the principal contribution to the 

uncertainty coming from ao [Lange and Carmichael, 1987]. Given the large error bars on q, we 

adopt the common assumption that q=l. 

An interesting possibility arises in considering how to use q. Porous shock-wave data sug-

gests the form of Eqn. 19. This form may be overly restrictive, however, particularly for liquids. 

Note that Eqn. 19 prohibits y from changing sign. If q were indeed large, and if (iytav were con-

stant rather than amytalnV, then y could become negative at high pressure. Some liquids, most not-

ably water, have negative y in some PT interval. This could be very important for large magma 

bodies because a negative y implies a negative a, which in turn means that a barrier to convection 

will exist. 

Shock temperatures are calculated by numerical integration of the differential equation: 

aT I 
-I 
av I Hugoniot 

= 
2;CpT- V(P-Po)(l+cr{f) + Ks(V0-V) 

Cp["r{\'o-V)- 2V] 
(21) 

The formulation of Walsh and Christian [1955] is a special case of Eqn. 21 for which q=l and Cv is 

assumed constant The remaining terms in Eqn. 21 are evaluated at the appropriate high-pressure 

state. The high-pressure value of Ks is given by: 

(22) 

where A. = UpfU,. A Cp or Cv function is required to calculate the temperature. From the 1 bar 

value of Cp, 1.67 ± 0.05 J/g0 from Stebbins et a/., [1984], we calculate Cv = 1.56 ± 0.06 J/g0
, and 

assume that Cv remains constant The calculation of temperature then proceeds as follows: for each 

volume, y is calculated from Eqn. 19, then Ks is calculated from Eqn. 22. With the constant value 

of Cv. a and Cp are calculated from Eqn. 18 and Cp = Cv(l+a"(('). The derivative dT/dV is then 

evaluated (Eqn. 21) from these values of y, a, K8, Cp, and V. This derivative is used with the 
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Bulirsch-Stoer numerical integration algorithm [Press et al., 1988, pp. 582-588] to calculate T along 

the Hugoniot. 

The deviation in P at constant V between the individual experiments and the best-fit curve 

(Fig. 6) are used to determine the deviation in T at constant V between the individual experiments 

and the curve obtained by integration of Eqn. 21 with the equation: 

1 
= "tPCv . (23) 

The calculated shock temperatures for the individual experiments and for the best-fit line are 

shown in Figure 7 with their ±1-o errors. For comparison, the isentropic compression temperature, 

calculated directly from the definition of y and Eqn. 19, is also shown. 

An estimate of the liquidus temperature of komatiite was constructed from available high-

pressure melting experiments [Bickle et al., 1977; Takahashi and Scarfe, 1985; Scarfe and 

Takahashi, 1986; Wei et al., 1990]. According to our calculations the shocked komatiite is probably 

above its liquidus above 15 GPa and below 1 GPa, but in the 1 to 15 GPa range it is below its 

liquidus. 

At =1-15 GPa our calculations suggest that the shock-compressed komatiite is in a field of 

crystal+liquid stability. Although some crystallization may have occurred below 15 GPa, the overall 

linearity of the u.-UP data is consistent with there being a single (metastable) liquid phase along the 

Hugoniot in this pressure range. However it is possible that the change in specific volume associ-

ated with crystallization is too small to be detected within our = 2% resolution [e.g., Shaner, 1981]. 

In some systems that undergo a phase change on the Hugoniot. a two-wave shock structure may 

develop which is manifested in the u.-UP data as a discontinuous change in both slope and value. 

That we have not detected any such discontinuities in our results is consistent with, but does not 

prove, the idea that crystallization did not occur in our experiments. 
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Figure 7: Calculated shock and isentropic temperatures for molten komatiite. Shock temperatures 

are calculated from Eqn. 21. The isentrope temperature is calculated from the definition of 

the thermodynamic Griineisen parameter, y, whose zero-pressure 1550°C value is 

0.47 (±0.10). The ratio y/V is assumed constant. The shaded band represents the ±1--0" 

bounds on the calculated shock temperature. Individual experiments, computed from Eqn. 

21 with a Mie-Griineisen correction term (Eqn. 23), are represented by diamond symbols. 

The error bounds on the individual experiments include the uncertainty in shock pressure. 

The liquidus for this composition is estimated from the high-pressure melting experiments 

of Bickle eta/. [1977], Takahashi and Scarfe [1985], Scarfe and Takahashi [1986], and Wei 

eta/. [1989]. 
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We cannot rule out the possibility that crystallization occurred on the time scale of our experi

ments, but it seems unlikely. The good agreement shown in Figure 5 between our determination of 

Kos and the experiments of Manghnani et al. [1989] and the calculated value from Lange and Car

michael [1987] supports the interpretation that the lower-pressure Hugoniot states are metastable 

liquid. Moreover, there is very little time available for crystallization in these experiments. The 

transit time of the shock wave across the komatiite sample is on the order of 900 ns (x.JU.J. We 

estimate the maximum degree of supercooling to be = 120° (Fig. 7), giving an effective quench rate 

of 1.3xl08 0 /s. Although olivine, the liquidus phase in this region, is well known to crystallize 

rapidly from ultrabasic melts for quench rates of up to 0.14 °/S [Donaldson, 1976], it has been 

quenched with a splat quench technique [Williams et al., 1989]. Splat quenching rates of lOS to 1~ 

0 /s were reported for the quenching of monticellite (CaMgSi04) composition [McMillan, 1984], and 

McMillan (personal communication) believes that the quench rate for the formation of forsterite 

glass is similar to within an order of magnitude. If forsterite composition glasses can be quenched 

at rates of 107 0 /s, then we consider it unlikely that olivine crystals could have formed during our 

experiments. 

Bethe [1942] attributed a similar argument to J.G. Kirkwood. They suggested that explosions 

in water do not form ice VII, the equilibrium high-pressure phase, because the shock duration is 

shorter than the time scale for crystallization. In this case, the Hugoniot would follow the meta

stable extension of the liquid water curve. 

State of Structural Relaxation 

The objective of our experiments was to determine the equation of state of our molten komati

ite under relaxed conditions. We used shock wave compression to achieve high-pressure states, and 
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determined the pressure and density with the Rankine-Hugoniot relations. These relations are exact 

under either of two conditions [Swan et al., 1973]: (1) they are applied across a discontinuous 

shock interface, or (2) they are applied across a continuous wave with a steady profile. If it can be 

demonstrated that the shock wave achieved a steady state profile during our experiments, then the 

Rankine-Hugoniot equations are applicable. As we discuss below, the steady wave condition also 

assures that the material properties determined from the Rankine-Hugoniot equations refer to a struc-

turally relaxed state. 

Bland [1965] investigated the shape of the shock front for viscous solids and determined that 

the shock profile becomes steady when the shock wave has propagated a distance of about five times 

its steady state thickness. The shock thickness is proportional to the viscosity, and hence to the 

relaxation time of the sample [Rivers and Carmichael, 1987; Kress et al., 1989]. The Rankine-

Hugoniot equations will be applicable in a given experiment if the distance required for the shock to 

become steady is less than the sample thickness. Swegle and Grady [1985] defined the dimension-

less Bland number, B, to be the ratio of the sample thickness to the distance which the wave must 

travel to reach steady state. If the Bland number is greater than 1 then the shock becomes stable 

before traversing the sample. 

The Bland number can be approximated by [Swegle and Grady, 1985]: 

3sltJ~u .. x. 
B = 

16V oCo'-rtetJ 
(24) 

for a linear u.-UP material, where TletJ is an effective viscosity. If all relaxation mechanisms of the 

sample can be related to viscosity (e.g., by 11. = tKs where 11. is the shear viscosity, t is the relaxa-

tion time, and Ks is the isentropic bulk modulus [Rivers and Carmichael, 1987]) then Eqn. 24 will 

be a valid estimate of the Bland number. If there are relaxation mechanisms with longer time scales 

than those associated with viscous flow, however, then Eqn. 24 may be inadequate to evaluate the 
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Bland criterion. 

The effective viscosity in Eqn. 24 is defined by dimensional arguments [Jeanloz and Ahrens, 

1979] in tenns of the shock front strain rate and deviatoric stress. Experimental measurements of 

the shock profile in water [Harris and Presles, 1981] suggest that this effective viscosity is similar to 

the shear viscosity. We estimate the effective viscosity of our komatiite to be equal to the 1 bar 

shear viscosity of 4.3 poise [Bottinga and Weill, 1972]. For an average sample thickness of 3.5 

mm, we calculate Bland numbers of 7'21.) at 5 GPa and 26000 at 36 GPa These numbers are >> 1, 

suggesting that the shocks in our experiments successfully reached steady state. This, in turn, sug-

gests that our experiments probe structurally relaxed, equilibrium states, since the shock can only be 

steady if the material behind the shock achieves a well-defined, unchanging state. If, however, 

komatiitic liquids have relaxation mechanisms whose time scales are = leY times longer than the 16 

ps relaxation time implied by the effective viscosity we have chosen, then the Bland criterion may 

not be satisfied at low shock pressure. 

Although satisfaction of the Bland criterion assures the applicability of the Rankine-Hugoniot 

equations and the sampling of relaxed properties, the finite distance traveled by the shock before it 

reaches steady state contributes an inaccuracy into our detennination of U,. We experimentally 

detennine the shock wave velocity by calculating the time necessary for the shock to traverse the 

sample thickness. If the Bland number is greater than 1 then the shock will travel a distance x.B-1 

at some average velocity UIIIUtllp while it is developing its steady profile, and a distance of x.(l-B-1
) 

at its equilibrium velocity Ueq. We therefore measure a velocity: 

Umeasured ::: u ' 
B -1 + __ eq_ 

Uslaltup 

(25) 

which will differ from the desired value even though equilibrium is achieved in the experiment. We 
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use c0 as a conservative estimate of Ustartup to find the errors introduced in our measurement of u •. 

From Eqn. 25 and the Bland numbers calculated above we determine that our method of measure

ment introduced errors of 0.03% at 5 GPa and 0.002% at 36 GPa 

The Bland criterion [Swegle and Grady, 1985] differs from the criterion for reaching equili

brium in a shock experiment postulated by Dingwell and Webb [1989]. Dingwell and Webb [1989] 

suggest that the rise time of the shock front be compared to the relaxation time of the sample to 

determine whether or not equilibrium is achieved. They reasoned that when the rise time is shorter 

than the relaxation time, disequilibrium measurements may be made. However, the rise time of the 

shock is proportional to the viscosity [Bland, 1965; Jeanloz and Ahrens, 1979] which in turn is pro

portional to the relaxation time [Rivers and Carmichael, 1987; Kress et a/., 1989]. The rise of the 

shock front must be governed by the material's ability to respond to a stress gradient, thus the rise 

time will be of the same order as the relaxation time. Any gross discrepancies between calculated 

rise and relaxation times must be due to erroneous model assumptions. The rise time is only 

relevant in so far as it is related to the time needed for the shock to reach its steady state profile, 

i.e., if the rise time exceeds the transit time of the shock through the sample, the Rankine-Hugoniot 

equations will clearly not apply and the experiments will be uninterpretable. 

S. Discussion 

Comparison to Static Compression Experiments 

Agee and Walker [1988a] measured the compressibility of a komatiitic liquid near its liquidus 

by conducting sink/float bracketing experiments with olivine marker buoys. Liquid densities were 

bounded by the sink/float measurements and the calculated EOS of the olivine buoy. Experiments 
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were not conducted on liquid komatiite directly, but rather on komatiitic liquids into which varying 

amounts of fayalite had been dissolved; this was necessary to achieve olivine flotation in the 6 GPa 

range of their apparatus. Using a linear P-p model, for which !lp/M' was considered independent 

of composition, they applied the results of their fayalite-doped komatiites to the end member koma

tiite. Their end member komatiite composition is essentially the same as our nominal komatiite 

composition. 

We have calculated the EOS of our komatiite on its liquidus from our data using a Mie

Griineisen thermal pressure correction. This calculation based on our data is compared with the 

Agee and Walker [1988a] result in Figure 8. The high-pressure komatiite densities predicted by the 

static and dynamic experiments are identical, within errors, in the 0-6 GPa range of the static exper

iments. Note, however, that the slopes of the two equations of state, and hence K and K', are 

significantly different Beyond ::::8 GPa the static and dynamic results diverge, with the static linear 

P-p EOS predicting substantially higher densities. 

Comparison to Liquidus Phases 

The density of molten komatiite, calculated along its liquidus with the dynamic EOS and a 

Mie-Griineisen thermal correction, is compared to the calculated high-pressure densities of phases on 

its liquidus (also at the komatiite liquidus temperature) in Figure 9. These mineral densities are cal

culated with a Mie-Griineisen EOS: 

p = Ps + PT' (27) 

where Ps is the isentropic pressure calculated with a 3rc1-order Birch-Mumaghan EOS: 

(28) 
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Figure 8: A comparison of static and dynamic equations of state for komatiite on its liquidus. The 

static results of Agee and Walker [1988] are shown as downward-pointing triangles for 

sinks (Pol>1'Ji.q) and upward-pointing triangles for floats. The circle indicates the point at 

which they predict olivine {FOcJ<I) flotation on the komatiite liquidus. The solid band 

represents a calculation based on our work and the estimated liquidus shown in Fig. 7. 

This calculation is done by solving a Mie-Griineisen EOS for density as a function of pres

sure and liquidus temperature. 
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Figure 9: The pressure-density relationships komatiite liquid and its liquidus phases along the high

pressure liquidus. The liquidus temperature is shown in Figure 7. Liquidus phase relation

ships are taken from Wei et al. [1990], with the EOS parameters described in the text and 

given in Table V. The circle represents the point of olivine neutral density calculated by 

Agee and Walker [1988a] at 8.1 GPa. Our data suggests that olivine would be neutrally 

buoyant near 8.2 GPa (252 km), although garnet is the liquidus phase at this pressure for a 

25 wt % komatiite. 
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Table V: EOS parameters for liquidus phases t 

FOo.94 

Di 

Eno.sFSo.2 

En 

Py 

Aim 

Gr 

Mj (En) 

Pv (Eno.9FSo.t) 

~ Kumazawa and Anderson, 1969. 
Levien eta/., 1979a. 

c Watanabe, 1982. 
d Frisillo and Barsch, 1972. 
; value assumed. 

Ohashi and Finger, 1976. f Weidner eta/., 1978 . 
. Levien eta/., 1979b. 
~ Leitner et a/., 1980. t Isaak and Graham, 1976. 

1 
Halleck, 1973. 

Jeanloz, 1981. 
m Yagi eta/., 1987. 
n Jeanloz and Knittle, 1989. 

Po [glee] Kos [GPa] 

3.311. 129.4. 

3.276b 108b 

3.354d 103.5d 

3.213f 107.88 

3.562h 171 

4.31gj 180.1i 

3.617k 171.4k 

3.5181 160"' 

4.215n 262° 

0 isothermal value from Ref n corrected to isentropic value. 
t q is assumed to be 1.0, and Cv to be 3R/atom for all phases. 

K'os 

5.13· 

4.8b 

4.8" 

4.8" 

4.5i 

4.59i 

4.25k 

4.0"' 

3.9" 

'Yo 

us• 

1.1c 

1.1c 

1.1c 

1.1" 

1.1" 

1.1" 

1.1" 

1.7n 
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and PT is the thermal pressure at constant volume: 

(29) 

T s is the isentropic temperature calculated from the definition of the Griineisen parameter. Assum

ing q=1, Eqn. 29 can be rewritten: 

PT = 'YoPoCv[ T - T oe[To04'a'Pll] • (30) 

Equation 27 is solved with a Newton-Raphson technique for density at each PT point. 

Olivine is the liquidus phase of =25 wt % MgO komatiite to approximately 5.2 GPa [Bickle et 

a/., 1977; Wei et a/., 1990]. Taking K0 = (FeO/MgO)olivin.f(FeO/MgO)iiquid to be 0.30 + 0.02xP (P 

in GPa) [Takahashi and Kushiro, 1983] to 4 GPa, and 0.38 for higher pressures [Agee and Walker, 

1988a], the olivine in equilibrium with our komatiitic liquid changes from F~s at 1 bar to F0cJ4 

above 4 GPa Since the equilibrium olivine composition is nearly constant, we adopt a single set of 

physical constants {Table V). 

From approximately 5.2 to 6.8 GPa a low-Ca clinopyroxene (Cpx) is the liquidus phase of 

=25 wt % MgO komatiite [Wei et a/., 1990]. At 5.5 GPa and 1780°C Wei et a/. [1990] report a 

near-liquidus Cpx of composition WOo.135Eno.742FSo.123 (molar). The EOS of this complex composi

tion is calculated by adding volumes of positive quantities of diopside, bronzite (Eno.sFSo.:z), and 

enstatite {Table V). 

Above 6.8 GPa the liquidus phase of =25 wt % komatiite is a garnet [Wei eta/., 1990]. Wei 

et a/. [1990] report a near-liquidus garnet composition of approximately Py0.791Alm0.110Gr0.099 

(molar) (Py = pyrope, Alm = almandite, Gr = grossularite) at 10 GPa and 1860°C, although their 

analyses indicate a small majorite component. The experiments of Ohtani et a/. [1986] and Irifune 

[1987] indicate that the majorite content of garnets in equilibrium with peridotitic assemblages 

increases with pressure to 16 GPa, but that near-liquidus garnets may have lower majorite contents. 
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We explored the range of probable liquidus garnet compositions by calculating both 

Py0.791 Almo.uoGro.099 and Py0.316Alm0.044Gr0.o.whlj0.600 compositions. The EOS of these complex 

garnets are constructed from the end members (fable V) with the assumption of volume additivity. 

Near 24 GPa both the olivine and pyroxene components of the mantle transform into the 

perovskite structure [Jeanloz and Thompson, 1983]. Ito and Takahashi [1987] found that a Mg-rich 

perovskite phase is the liquidus phase for a peridotitic composition near 25 GPa. Although high

pressure experiments on komatiitic composition have not been carried out to these extreme pres

sures, we consider it likely that garnet-majorite will be replaced by perovskite as the first liquidus 

phase near 24 GPa. 

The results presented in Figure 9 indicate that the komatiite composition used in this study is 

less dense than its assumed liquidus phases at all pressures to 40 GPa, except in the 20-24 GPa 

interval where majorite-rich garnet may be buoyant in coexisting komatiitic liquid. Thus, if this 

particular komatiite were formed in the upper mantle it would be buoyant relative to coexisting cry

stals and would tend to segregate upward There is, however, substantial chemical variation in 

natural komatiites and related basalts, with MgO contents ranging from 10 to nearly 40 wt %. To a 

good first approximation, this variation is controlled by olivine addition or subtraction. As MgO 

content (and normative olivine) increases, olivine is stabilized on the komatiite liquidus to greater 

pressures. For example, experiments on a 32 wt % MgO komatiite (Wei et al., 1990) show that 

such high MgO komatiites can have olivine as the liquidus phase to 9.6 GPa. Would olivine float in 

such a liquid at this pressure? The key to answering this question is understanding the effects of 

olivine addition and subtraction on melt density. This issue is addressed in the following section. 
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Compositional Variation 

The compositional systematics of the EOS of multicomponent systems are of fundamental 

importance to the understanding of natural magmatic systems. As the melt fraction changes, due 

either to crystallization or melting, compositional changes will take place in the liquid unless the 

system is at a eutectic. For a ::::25 wt % MgO komatiite, olivine is the first liquidus phase to 5.2 

GPa [Wei et al., 1990], and crystallization of komatiite up to this pressure will result in a residual 

liquid that is more basaltic. A basaltic melt is less dense than a komatiitic melt at low pressure. At 

high pressure, however, basalt may be more dense than komatiite. This can be understood by con

sidering the behavior of the major oxide components. The partial molar volume of MgO in a sili

cate melt is similar to that of the high-pressure phase magnesiowiistite, and we anticipate its 

compressibility to be similar to that of the solid as well [Rigden et al., 1989]. In contrast, although 

the partial molar volume of Si02 in a low pressure melt is substantially greater than that of stisho

vite, we expect this density difference to diminish with increasing pressure. As the partial molar 

volume of Si02 in the liquid approaches that of stishovite, the densities of more siliceous liquids 

will begin to overtake those of ultrabasic liquids because the former are far more compressible. 

This qualitative trend is supported by shock wave data in the system anorthite-diopside [Rigden et 

al., 1984, 1988, 1989]. When the densities of a liquid basalt analog in this system and liquid koma

tiite are compared at the same temperature it can be shown that the analog basalt density is similar 

to the komatiite density near 25 GPa even though the komatiite is far denser at low pressure. Thus, 

although at lower pressures olivine fractionation leads to dramatic reduction in liquid density 

[Sparks et al., 1980; Stolper and Walker, 1980], as pressure increases the decrease in density with 

fractionation decreases, and there may be a pressure beyond which olivine fractionation increases 

the liquid density. Note that this latter phenomenon will only be observed for liquids sufficiently 



- 64-

olivine normative that olivine remains on the liquidus to very high pressures. 

If we adopt the liquid olivine EOS parameters proposed by Rigden et al. [1989], then we can 

calculate komatiite liquidus equations of state for a range of MgO contents. This calculation is 

presented in Figure 10 for MgO contents ranging from 6.9 to 35.3 wt %. We have approximated 

the effect of adding (and subtracting) olivine on the liquidus temperature by adding (or subtracting) 

20°C per wt% MgO relative to our nominal composition [Nisbet, 1982]. Although this approxima

tion is probably good at near crustal pressures, the experimental data of Wei et al. [1990] (for 25 

and 31.5 wt % MgO komatiites) indicates that the MgO dependence of the liquidus may be much 

smaller at high pressure. A more precise calculation of the fusion curves [Walker et a/., 1988] is 

underconstrained by the available data, and would have little effect on the resulting calculations 

because a is so small. This diagram illustrates three important points: First, near 13.3 GPa the 

assimilation or fractionation of olivine will not significantly change the density of the melt, i.e., 

basaltic through peridotitic magmas will have nearly the same density on their 13.3 GPa liquidi. At 

greater pressure the density of basaltic liquids exceeds that of the peridotitic liquids. This result was 

anticipated by the calculations of Ohtani [1984] and Rigden et al. [1989]. Second, if we use the 

olivine-clinopyroxene cosaturation point to indicate the probable origin of these ultramafic magmas, 

then komatiites with MgO >30 wt % will originate under conditions where their liquidus phases 

(both olivine and clinopyroxene) would float. Third, it is interesting to note that at the 13.3 GPa 

point where all komatiitic magmas have similar density, their density is approximately equal to that 

of the bulk mantle [PREM model, Dziewonski and Anderson, 1981]. 

If substantiated by further experiments the coincidence of all basaltic through peridotitic 

liquidus equations of state both with each other and with the bulk mantle would imply that it would 

be difficult for such magmas to ascend from below 400 km. Although komatiitic liquids would be 

capable of separating (up) from their coexisting crystals, the negligible density contrast between the 
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Figure 10: Komatiitic liquid liquidus equations of state calculated from our experimental data and 

the proposed liquid olivine EOS of Rigden et al [1989]. The densities of olivine liquid 

components were calculated from Eqn. 28 using an isothermal rather than an isentropic 

reference curve. The 14000C reference isotherms are given by Po = 2.825/3.718 and a= 

l.lxl0-4/l.lx10-4 K-1 [Lange and Carmichael, 1987], Kar = 24.9/20.5 GPa and K'T = 

10.2/11.2 [Rigden et al., 1989], Cv = 1.92/1.00 J/g0 [Stebbins et al., 1984], and y0 = .4/.7 

(from Eqn. 18) for forsterite/fayalite. We assume q=l. Curves are komatiite with 50 wt % 

subtracted olivine (6.9% MgO), komatiite (27.2% MgO), and komatiite with 50% added 

olivine (35.3% MgO). The liquid Fo/Fa component contents of the various liquids were 

determined by assuming Rayleigh fractionation with K0 =0.38. Liquidus temperatures were 

adjusted according to the MgO content by adding 20°C per wt % added MgO [Nisbet, 

1982]. The curves are open where olivine is the liquidus phase, bold where clinopyroxene 

is the liquidus phase, and shaded where garnet is the liquidus phase. The equation of state 

of crystalline olivine is the same as in Figure 8. (a) Calculation in the pressure range of 

our experiments. (b) Extrapolated to lower mantle conditions. 
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liquid and bulk mantle at this point might inhibit separation of the liquid from its bulk mantle 

environment. Figure 10 indicates that the specbUm of magma compositions from basaltic through 

peridotitic are approximately equal in density to the bulk cold mantle as represented by the PREM 

model. If we allow for either a hotter Archaean geotherm, or a thermal aureole surrounding the 

anomalously hot magma body, then the bulk mantle density near the magma body would likely be 

lower than the cold PREM estimate. Moreover, increasing temperature shifts the olivine ~ f3 tran

sition to higher pressures by 0.0035 GPat'C [Suito, 1972; 1977] thereby enlarging the region in 

which komatiites are negatively buoyant in the bulk mantle by moving the 140 km discontinuity to 

greater depth. A small positive temperature dependence for the reaction En~Mj (0.0015 GPa/"C, 

Irifune, 1987) has less effect on the high-temperature density profile of the transition zone. 

In Figure lOb we show this same calculation for lower mantle conditions. The results must be 

considered speculative since our data have been extrapolated well beyond the 36 GPa limit of our 

experiments. This calculation indicates that perovskite, ostensibly the densest lower mantle crystal

line phase, may be less dense than the range of basic to ultrabasic magma compositions. If this is 

true then ultrabasic magmas would be incapable of ascending from below =1000 km. Ohtani [1983] 

arrived at the same conclusion, and suggested that downward migration of melts in the lower mantle 

would transport incompatible and radiogenic elements toward the core. We feel that this is unlikely, 

even if our calculation is correct, since such melts would likely freeze upon adiabatic compression. 

While neutral or negative buoyancy would preclude the upward segregation of a liquid from a 

static matrix, it might be possible to extract the liquid if the matrix were transported upward in part 

of a large scale convection system. In this case, both liquid and solid would rise together until the 

density contrast becomes sufficient for separation to occur. When partial melting is initiated by the 

adiabatic decompression of upwelling mantle plumes, continued upward transport of the plume may 

permit escape of the liquid even if it were initially too dense. If chemical equilibrium is maintained 
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in the source region, however, the chemistry of the liquid will evolve as the upwelling continues. A 

dense liquid that escapes by this upward transport mechanism would therefore be indistinguishable 

from a positively buoyant liquid generated at shallower depths if chemical equilibrium is main

tained. 

6. Application to adiabatic melting and komatiite genesis 

Adiabatic gradients 

Melting accompanying the adiabatic decompression of mantle diapirs has long been recog

nized as a possible source of basic and ultrabasic magma [Verhoogen, 1954]. The basic idea is that 

temperature diminishes more gradually with decreasing pressure in a totally solid system than does 

the temperature of the anhydrous solidus of typical mantle rocks. An adiabatic diapir may conse

quently cross the solidus as it rises, thereby undergoing partial fusion. Since the adiabatic gradient 

of a wholly molten system is solely a function of the EOS of the liquid, and that of a partially mol

ten system is a strong function of the liquid EOS, our komatiitic liquid EOS provides a useful con

straint on melting or crystallization under adiabatic conditions for ultrabasic systems. In this sec

tion, we develop a semiquantitative formulation of the adiabatic gradient in the melting interval of 

peridotite and consider its application to diapirism in the mantle and the genesis of komatiites. 

An adiabatic process is one in which neither mass nor heat is exchanged with the surround

ings. Adiabaticity implies constant entropy under reversible conditions. It can also imply constant 

enthalpy under irreversible conditions [Waldbaum, 1971], however this reduces to the isentropic 

case if stress is hydrostatic [Ramberg, 1971]. In this discussion we will equate adiabatic conditions 

with isentropic conditions. 
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Several liquid komatiite adiabats are shown in Figure 11. These were calculated using the 

equation for the adiabatic gradient of a single, homogeneous phase in the absence of phase changes: 

aT 
pCp 

=1£ 
Ks · 

(31) 

The high-pressure isentropic bulk modulus was determined by differentiation of the Birch-

Murnaghan EOS. For adiabats off the principal 1550°C isentrope, we determined Ks from the prin-

cipal isentrope and applied a Mie-Griineisen type correction: 

aKs I _, = ..,..rv(1+~' aT lv W'-' I'V • 
(32) 

These adiabats are characterized by steep initial slopes but flatten substantially at high pressure. 

This flattening is due in part to the rapidly increasing bulk modulus and to a lesser extent to our 

assumption regarding y, i.e., y=y0(V /V0)q=1• 

In a molten system the adiabatic gradient is wholly specified by the liquid properties, 'Yiiq and 

Ks liq· Under subsolidus conditions, and in the absence of subsolidus reactions, these terms are 

evaluated for the appropriate crystalline assemblage. In crossing the solidus, however, the adiabatic 

gradient is modified by the entropy of fusion. To maintain adiabaticity, the temperature of the 

diapir must drop sufficiently to accommodate the entropy of fusion. The thermodynamics of this 

process have been described by Carmichael et al. [1974] for one-component systems and by Rumble 

[1976] for tw<K:omponent systems. An analogous problem, that of condensation in a multi-

component adiabatic atmosphere, has also been studied extensively [e.g., Houghton, 1977]. The 

meteorological term "wet adiabat" is used to describe the adiabat modified by a phase change, and 

we will adopt this term here to distinguish this case from the simple adiabat of Eqn. 31. 
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Figure 11: Several adiabatic gradients for our komatiitic composition. Adiabatic gradients were 

calculated as described in the text with the assumptions Cv=3R and q= 1. 
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We will approach this problem from the limit of complete melting where our data provide the 

most useful constraints. An expression for the adiabatic gradient can be derived by first writing the 

specific entropy of a magma. crystals plus liquid: 

Ssystem = (1-x)Sliquid + xScryota~a = Sliquid - xliS , (33) 

where Sliquid• the specific entropy of the liquid, and liS, the instantaneous difference in specific 

entropy between the liquid and coexisting crystals, are functions of the liquid and crystal composi-

tions at crystal mass fraction x as well as temperature and pressure. Differentiating Eqn. 33 then 

leads to: 

dS ::: - - liS -I dT- aV - liS -I -I dP [ 
Cp ax I J [ ax I ar IJ 

systan T dT lp aT lp ap I ' 
(34) 

where we have made the approximation that ~ is constant, which will be taken to be approxi-

mately R/g-atom [Stishov, 1969, 1988; Jeanloz, 1985] and independent of liquid composition and 

the crystallizing species. Experimental determinations of the entropy of fusion, liSr. for silicates at 

1 bar indicate that the first of these approximations is good to better than a few percent for simple 

ultrabasic systems (~(R is 1.03 for fayalite, 1.01 for enstatite, 1.00 for diopside at their respective 

1 bar melting temperatures [Stebbins, et al., 1984]). In a complex liquid the entropy is given by the 

sum of the entropies of its components and an additional term arising from the permutability of the 

mixture. This latter term is always positive, hence the entropy of fusion in a polymineralic system 

will always be greater than liSr for a simple mineral end member. For complex crystalline phases, 

site mixing also contributes a permutability term to the solid entropy, and there is an analogous con-

tribution to the entropy of fusion but with opposite sign. We anticipate that the greater permutabil-

ity of the liquid will always favor liSr > R for ultrabasic systems. The average entropy difference 

between a wholly molten mantle and a wholly crystalline mantle (at constant T and P) will, there-

fore, almost certainly be greater than R/g-atom. The specific entropies per atom of several 
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components of mantle phases (forsterite, enstatite, diopside, jadeite, pyrope, and Tschermack's 

pyroxene) are all quite similar [Robie et al., 1978]. They differ from one another by less than R/4, 

thus the instantaneous entropy difference between liquid and coexisting solid (~S in Eqn. 3) will 

probably be ~ as well. The assumption that ~ has a constant value of Rig-atom will probably, 

therefore, lead to an underestimation of the average difference between ultrabasic liquid and crystal 

entropies. This will lead to conservative conclusions, as will be demonstrated, so we will adopt it 

for purposes of illustration. 

Setting dSsystem = 0 in Eqn. 34 we obtain the slope of the wet adiabat: 

= 
[ yrl - T~S ~~ dT I 

Ks liquid Cpliq oT lp oP lx 
(35) 

The first term in the numerator is the adiabatic gradient of the crystal-free liquid. Note that when 

the slope of the constant x contour (oT/oPI J is equal to the slope of the crystal-free adiabat 

(df/oPI s.x=O = "{f/Ks). the wet adiabat will have this same slope. For a given value of ~S. the 

steeper the liquidus and solidus are relative to the liquid adiabat, the more rapidly (in terms of pres-

sure or depth) the wet adiabat will cross through the melting interval. If the liquidus and solidus are 

shallow, as they are believed to be for the deeper upper-mantle, adiabats are slow to pass through 

the melting interval. 

Rigorous evaluation of ox/oTI p and oT/oPI X requires detailed knowledge of the Gibbs free 

energy surfaces of the liquid and crystalline phases [Rumble, 1976]. We can make several generali-

zations without evaluating these terms, however. A constant entropy curve can be constructed for 

the liquid at all pressures, and a similar curve can be drawn for the crystalline assemblage for the 

same value of specific entropy. Since the specific entropy of the solid is always less than that of the 
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liquid at a given temperature and pressure, the solid isentrope must always be at higher temperature 

(Figure 12). Note that the phases and assemblages described by the isentropes shown in Figure 12 

are metastable where the isentrope is shown as a lighter curve. The wet adiabat connects the liquid 

adiabat at its intersection with the liquidus to the solid adiabat at its intersection with the solidus. 

While the shape of this wet adiabat curve will depend on the thermodynamics of the phase transi

tion, its intersections at the solidus and liquidus are uniquely specified by knowing the all-liquid and 

all-solid adiabats (for the same value of specific entropy) and the liquidus and solidus. The points 

of incipient melting and incipient crystallization under adiabatic conditions can therefore be deter

mined without knowledge of the function x(1). 

In going from a completely liquid state to a completely solid state (at constant P) we lower 

the specific entropy of the system by =R/g-atom. In order to bring the entropy of the solid to the 

same value as the liquid, temperature must be increased. This temperature rise is given by 

dT/dx = RT/Cp, so the solid must be hotter than the liquid by dT = Tliquidus[exp(R/Cp)-1]. Since 

Cp=3R, d T is approximately 0.4xT liquidus• or about 800 K in the upper mantle. To the degree that 

we have underestimated the entropy of fusion by ignoring the permutability of the liquid, we may 

have also underestimated this change in temperature. For a solid diapir to melt completely upon 

adiabatic decompression its initial temperature would have to be at least 800 K greater than that of 

the emergent liquid. The probable phase diagrams for typical peridotitic or chondritic compositions 

(discussed later) preclude this possibility for solid diapirs that begin to melt in the upper mantle, 

because the high pressure solidus is not 800 K hotter than the low pressure liquidus anywhere in the 

pressure range of the upper mantle and transition zone. Consequently, the only way that adiabatic 

diapirs could become significantly molten (~50 wt %) in the upper mantle is if they originate in the 

transition zone or lower mantle or if they were already partially molten (e.g., by heating at a boun

dary layer) when adiabatic ascent within the upper mantle was initiated. 
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Figure 12: Cartoon showing that the points of incipient melting and incipient crystallization under 

adiabatic conditions are determined uniquely by the all-liquid and all-solid adiabats and by 

the liquidus and solidus. Since the solid has an intrinsically lower specific entropy at con

stant T and P, it must be hotter than the liquid to have the same specific entropy. The 

intersection of the liquid adiabat with the liquidus is the point of incipient crystallization, 

and the intersection of the solid adiabat with the solidus is the point of incipient melting. 

These intersection points are joined in the two-phase region by the wet adiabat whose shape 

is a complex function of the Gibbs free energy surfaces. Two possible wet adiabats have 

been drawn. The straight line (a) corresponds approximately to the case where crystallinity 

varies linearly with temperature. The curved wet adiabat (b) corresponds to the case where 

crystallinity changes rapidly near the liquidus and solidus but more slowly in between. 
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In order to understand the qualitative features of an adiabatic system in the melting interval, it 

is necessary to evaluate ax1aTI p and aT/aPI x· To do so we will make another simplifying approxi-

mation. A crude estimate of the degree of crystallinity can be made by assuming the crystal mass 

fraction varies linearly with temperature at constant pressure: 

X :: 
T liquidUI-T soJidUI 

(37) 

for TliquidUI 2: T 2: Tsolidus· Alternatively, we also consider the empirical parameterization of McKen-

zie and Bickle [1988], who have shown that a cubic polynomial provides a good pressure-

independent fit to a variety of experimental x(T) measurements in a garnet peridotite system at low 

pressure. These two models are shown in Figure 13. We doubt that either of these models accu-

rately describes the details of crystallization, particularly at high pressure (>10 GPa). However, the 

general features of the resulting calculations are similar regardless of which function is employed, so 

at least those aspects of the calculations that are not sensitive to the details of x(T) can be 

evaluated. Again we emphasize that this function only governs the behavior of the adiabat within 

the melting interval. For a particular value of specific entropy, all functions x(T) will converge at 

their liquidus and solidus intersection points (Fig. 12). 

A phase diagram for an upper mantle comprised of fertile peridotite has been schematically 

constructed from the high pressure experiments of Takahashi and Scarfe [1985], Takahashi [1986], 

and Ito and Takahashi [1987] on the KLB-1 spinel lherzolite (Figure 14). The mantle liquidus rises 

sharply at low pressure but flattens significantly near =12 GPa and may even have a maximum 

[Scarfe and Takahashi, 1986]. With increasing pressure to =15 GPa, the melting interval 

(Tliquidua-T10Jidus) also probably decreases [Herzberg, 1983]. 

Adiabatic gradients through the melting interval have been constructed as described above for 

the two x(T) functions and are shown in Figure 14. The extent of melting is shown in Figure 15 for 
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Figure 13: Models for crystallinity (x) as a fuoction of temperature in the melting interval: (a) 

crystallinity varies linearly in temperature, and (b) the experimentally constrained parame

terization of McKenzie and Bickle [1988]. 
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Figure 14: Model phase diagrams for the upper mantle with superimposed adiabats: (a) linear x(T) 

relationship, and (b) experimental x(T) relationship from McKenzie and Bickle [1988]. 

Adiabats are calculated at 50° intervals (at P=O) in each case. The circle represents the 

olivine-clinopyroxene liquidus cosaturation point for a komatiite broadly similar to the sam

ple we studied [Wei et al., 1990]. The stippled band is the trace of the komatiite liquidus. 

An estimate of the modem subcontinental mantle geotherm [Mercier and Carter, 1975; Sta

cey, 1975] is given by the bold dashed line. Changes in entropy associated with subsolidus 

reactions have been ignored. 



21
 i - """
' 

~
 

30
00

 

25
00

 

,....
....,

 
u .....

.... j 2
00

0 
8. ~ 

15
00

 0 
20

0 

K
L

B
-1

 

L
iq

ui
d 

D
ep

th
 [

K
m

] 

40
0 

60
0 

10
00

 
-

. 
. 

. 
-
.
.
.
.
.
 

0 
P

re
ss

ur
e 

[G
Pa

] 

I 0
0

 
N

 
I 



::n OC
I a ~ 

30
00

 

25
00

 

,....
....,

 
u .....

.....
 j 2

00
0 

&
 a ~
 

15
00

 0 
20

0 

K
L

B
-1

 / 
I 

/ 

L
iq

ui
d 

/ 
/ 

D
ep

th
 

[K
m

] 

40
0 

--

60
0 

--
--

--
--

-
C

on
ti

ne
nt

al
 g

eo
th

er
m

 

I 

10o
o 0~~

~~
~~

~~
~~

~~
~~

~~
~~

J_
~~

~·
 

S
ol

id
 

5 
15

 
20

 
10

 
P

re
ss

ur
e 

[G
P

a]
 

25
 

I 0
0

 
I.

H
 

I 



- 84-

the two calculations. We have used the adiabatic gradient from our komatiite as that of the liquid, 

independent of the extent of fusion, since attempts to account for chemical variation (through addi

tion or subtraction of olivine components) yield similar results. The crystal-free adiabats have 

roughly the same slope as the liquidus, thus the degree of crystallinity does not vary rapidly with 

pressure. Note in particular that melt fraction is nearly constant in the 200-400 km interval of the 

upper mantle (Fig. 15). In no case does an adiabat cross from the liquidus to the solidus in the pres

sure region of the upper mantle and transition zone, thus, as pointed out above, adiabatic diapirs 

with very large degrees of partial melting would have to originate in the transition zone or lower 

mantle. If the permutability contribution to the entropy of fusion were properly accounted for, the 

depth of incipient melting would probably be even greater for a given degree of partial melting. 

With a linear x(1) model, melting is distributed evenly between the liquidus and solidus. With the 

McKenzie and Bickle [1988] parameterization, crystallinity varies rapidly near the solidus and 

liquidus, but more slowly in between. The adiabats are consequently nearly tangential to the solidus 

and liquidus curves. With the linear model, up to 50% partial melting is possible if a diapir crossed 

the solidus at the base of the upper mantle (400 km). Only 40% melting is possible with the param

eterization of McKenzie and Bickle [1988] under the same conditions. 

In the 0-5 GPa range our calculations predict degrees of partial melting similar to the calcula

tion of McKenzie and Bickle [1988]. We predict melt fractions about 20% smaller than their model 

(comparing our Figure 15b with Figure 7a of McKenzie and Bickle [1988]). This difference can be 

attributed in part to different assumptions regarding £\S; they assumed a value of about 0.63R. In 

order to generate the amount of melt they consider to be typical of MORB (7 km integrated melt 

thickness), we require that the mantle be at least 100° hotter than the 1280°C potential temperature 

(defined as the temperature a mantle parcel would have at 1 bar if it were adiabatically 

decompressed as a metastable solid) that they advocate. 
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Figure 15: Weight fraction of liquid generated under adiabatic conditions for (a) linear x(l) model, 

and (b) MacKenzie and Bickle [1988] parameterization. Each curve represents a single adi

abat The numbers on the curves represent the final 1 bar temperatures of the partially mol

ten diapirs (in degrees Celsius). These curves are the Px projections of the PT adiabats in 

Figure 14. The circle represents the point of olivine-clinopyroxene cosaturation on a koma

tiite liquidus [Wei et al., 1990], and the stippled band is the projection of the trace of the 

komatiite liquidus. Note that melt fractions do not vary significantly in the lower 200 km 

of the upper mantle. 
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Diapiric origin of komatiites 

Wei et al. [1990] determined the phase diagram for a komatiite of broadly similar composition 

to the one we have studied. This phase diagram is superimposed on the KLB-1 phase diagram (Fig. 

14) in Figure 16. Wei et al. [1990] suggest that this komatiite could have separated from either an 

olivine+elinopyroxene residue at 5.2 GPa and 1780°C, or an olivine residue at lower pressure and 

temperature. The olivine+elinopyroxene cosaturation point for this komatiite is within ::::25°C of the 

maximum temperature at which olivine+elinopyroxene saturated liquids can be generated by melting 

of KLB-1 at 5.2 GPa, so the phase equilibria are generally compatible with the idea that a komati

itic liquid of this composition could have been segregated from a KLB-1-like source under these 

conditions. Wei et al. [1990] state that based on a mass balance calculation, such a komatiitic 

liquid could be formed by 10-30% partial melting of a KLB-1-like source at the cosaturation point. 

This is similar to the 34-35% melting at 5.2 GPa, 1780°C indicated by our calculations (Fig. 15), 

which, although dependent on the specific form of the x(T) functions we have used, are thus also 

compatible with this particular view of komatiite genesis. If komatiitic liquids of this composition 

were generated by 10-30% partial melting of adiabatic KLB-1-like diapirs, then our calculations 

suggest that the source region of the diapirs (provided they were initially unmelted) would have to 

be in the 10-20 GPa range, and that they would have begun to melt between 10 GPa, 1850°C (10%) 

and 20 GPa, 2150°C (30%). Whether the melt fraction is 10% or 30% makes such a big difference 

in the minimum depth because melt fraction does not change significantly in the =8-16 GPa (::::250-

450 km) interval; melt fractions greater than =15% require that melting commence in the transition 

zone. 

The Wei et al. [1990] phase relations for komatiite and those for KLB-1 peridotite are also 

compatible with segregation of komatiitic liquid from olivine residue at pressures lower than 5.2 
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Figure 16: Liquidus and solidus for a 25 wt% MgO komatiite determined by Wei et al. [1990]. 

This komatiite is similar in composition to the one we have studied. This phase diagram is 

superimposed upon the phase diagram for mantle peridotite (KLB-1, Takahashi [1986]). 

The appearance of olivine (ol), garnet (gt), clinopyroxene (cpx) and orthopyroxene (opx) 

are shown for the peridotite. Liquidus appearance of olivine, clinopyroxene, and garnet are 

indicated on the komatiite liquidus. If this komatiite were formed by the partial fusion of 

peridotite, then the komatiite would have segregated from residual olivine at pressures less 

than 5.2 GPa. Higher pressures lead to inconsistencies between the peridotite and komatiite 

phase equilibria. This diagram also suggests that the komatiite represents =35% melting. 
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GPa, implying >35% partial melting. Estimates of the degree of partial melting of peridotite 

required to generate komatiitic liquid plus residual olivine (e.g., Arndt [1977]) are typically on the 

order of 50-80%. In order to reconcile such high melt fractions with the results of our calculations 

and the komatiite liquidus given by Wei et al. [1990], the komatiitic liquid would have to separate 

from its olivine residue at pressures of about 1 GPa (for the x{T) function of McKenzie and Bickle 

[1988]) to 3 GPa (for the linear x(T) function). Subsolidus diapirs that could generate these degrees 

of partial melting would have to originate below =21 GPa in the transition zone with temperatures 

near 2180°C. 

If crystal-liquid segregation is possible in ascending diapirs, then it may be possible to elim

inate dense phases, such as garnet-majorite, from them. Olivine is buoyant in komatiitic liquids at 

pressures above =9 GPa, and garnet-majorite is denser at pressures less than about 22 GPa 

Mechanisms by which garnet-majorite fractionation could occur under these relatively low melt frac

tion conditions are not certain, but majorite fractionation trends have been inferred for some South 

African peridotites [Herzberg et al., 1988], and several authors (e.g., Green [1975], Nesbitt et al. 

[1979], Jahn et al. [1982], and Ohtani [1984]) have suggested that garnet fractionation may have 

been important in the genesis of so-called aluminum-depleted komatiites. We note in particular the 

suggestion of Ohtani [1984] that the diapirs that generate Al-depleted komatiites originate deeper in 

the mantle than those that generate Al-undepleted komatiites. As a consequence of their deeper ori

gin, they achieve higher degrees of partial melting, which facilitates garnet fractionation, perhaps 

aided by the contrasting buoyancy of olivine/pyroxene and garnet in ultrabasic liquids at the relevant 

pressures. It can be seen in Figures 14 and 15 that small differences in source pressure and tem

perature at depths >500 km can lead to large differences in melt fraction at high pressure because 

the KLB-1 solidus and liquidus are steep compared to the all-liquid adiabats in this region. Accord

ing to our calculations, if garnet fractionation is controlled solely by the melt fraction and density 
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contrast, then the sources of Al-depleted komatiites could be very similar to the Al-undepleted 

komatiites, the former requiring as little as about 50° higher initial temperatures. 

Several authors have suggested that komatiitic liquids could be generated by pseudoinvariant 

melting of peridotites at high pressures [Takahashi and Scarfe, 1985; Herzberg and O'Hara, 1985; 

O'Hara et al., 1975]. Takahashi and Scarfe [1985] reported the formation of a komatiitic liquid as 

the first partial melt of KLB-1 near 5-7 GPa, although the melt fractions were not determined and 

may have been rather large given that solid-liquid segregation occurred within their charges. In a 

similar experiment by Takahashi [1986], also on KLB-1, where both liquid and crystal compositions 

were reported, the komatiitic liquid generated at 5 GPa and 1700"C (Run 53) represents over 60% 

partial melting according to mass balance calculations. If komatiitic liquids can indeed be generated 

by small degrees of partial melting in the 5-7 GPa pressure range, then they must differ from the 

one studied by Wei et al. [1990] if the phase relationships shown in Figure 16 are accurate. In par

ticular, the Wei et al. [1990] komatiite liquidus is some 100° higher than the KLB-1 solidus in this 

pressure range and its solidus is also higher. 

In summary, our calculations suggest that mechanisms for komatiite genesis that call for large 

(>15%) degrees of partial melting by adiabatic decompression require diapirs that begin to melt in 

the transition zone at pressures in excess of 20 GPa. Mantle potential temperatures in excess of 

1750°C are required. These source regions would have to have been anomalously hot with respect 

to the bulk mantle, unless the entire upper mantle were partially molten [Cawthorn, 1975]. If this 

were the case, and the entire upper mantle was partially molten, then magmatic activity originating 

in the mantle would overwhelmingly be controlled by this widely distributed partial melt. The 

existence of komatiites as a distinct rock type suggests that pervasive mixing with a partially molten 

mantle did not occur, thus some alternative source of excess heat, such as thermal boundary layers, 

is suggested. Deep thermal boundary layers that could generate such anomalously hot diapirs might 
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be between the upper mantle and transition zone [Anderson, 1984; 1989], between the transition 

zone and lower mantle [Jeanloz and Richter, 1979; Lees et a/., 1983; Jeanloz and Knittle, 1989], or 

even at the core-mantle boundary [Jarvis and Campbell, 1983]. If komatiites can be formed by 

smaller degrees (<15%) of partial melting, then more modest potential temperatures (1700°C to 

1750°C) would be allowed; e.g., if komatiitic liquids can be formed as initial melts in the 5-7 GPa 

pressure range, then potential temperatures as low as 1600°C are possible. Pyroxene geother

mometry indicates that the potential temperature of the mantle beneath continents is about 1600°C 

[Mercier and Carter, 1975], so if this latter view of the conditions required for production of komati

itic liquids is valid, it might be possible to generate komatiitic liquids in the modern mantle. What

ever the thermal conditions required for komatiite petrogenesis, the existence of paleogene magmas 

from Gorgona Island, Columbia [Gansser eta/., 1979; Echeverria, 1982] that approach komatiites in 

their chemical composition suggests that the conditions for komatiite formation may not have been 

restricted to the Archaean. 

Figure 17 compares the conditions that have been suggested for the formation of komatiitic 

liquids to those that have been suggested for the genesis of primary magmas parental to modern 

MORBs ( Presnall et a/. [1979] vs. Green et al. [1979] and Elthon and Scarfe [1984]). Note that 

we have restricted our discussion to a KLB-1 model for mantle source material. More fertile source 

materials will have lower solidi, thereby allowing greater degrees of melting for a given potential 

temperature, but depleted sources will have higher solidi and require higher temperatures. The most 

significant observation is that although the temperatures of melt segregation for komatiitic liquids 

implied by scenarios that suggest >30% partial melting are only ==200°C higher than those of 

modern MORBs, the configuration of the solidus and liquidus of likely source peridotites requires 

their ultimate sources to be diapirs that, if adiabatically decompressed from initially solid mantle, 

were more that 700°C hotter than the sources of MORBS and derived from great depth in the 
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mantle. 

7. Application to a Magma Ocean and the Evolution of the Hadean Mantle 

Many independent arguments suggest that it is plausible that at least the upper mantle of the 

Earth was substantially molten in the Hadean. This melting could have resulted from the accretion 

of the Earth [Kaula. 1979; Abe and Matsui, 1986; Matsui and Abe, 1986; Zahnle et al., 1988; 

Ahrens, 1990]. core formation [Birch, 1965; Solomon, 1978; Shaw, 1979], the impact formation of 

the moon [Benz et al., 1986, 1987; Cameron and Benz, 1989; Stevenson, 1989], or from some com

bination of these mechanisms. Recognition of this possibly molten state, together with the idea that 

ultrabasic liquids may be denser than olivine and other silicate phases at relatively shallow mantle 

depths, has prompted speculation on the evolution of the upper mantle from a magma ocean [Nisbet 

and Walker, 1982; Ohtani, 1985; Agee and Walker, 1988b]. The liquidus topologies of several 

ultrabasic systems including C1 [Ohtani et al., 1986; Ohtani and Sawamoto, 1987], peridotite 

[Takahashi and Scarfe, 1985; Scarfe and Takahashi, 1986; Ito and Takahashi, 1987], komatiite 

[Bickle et al., 1977; Wei et a/., 1990]. and perovskite [Heinz and Jeanloz, 1987; Knittle and Jean

loz, 1989] provide critical constraints on this evolution. Our new data on the equation of state of 

molten komatiite provides new constraints and allows for more quantitative modeling than was pre

viously possible. In this section we consider applications of the equation of state of a komatiitic 

liquid to the evolution of the Hadean mantle from an initial wholly molten state. 

The following discussions will focus on EOS constraints on the evolution of a molten mantle, 

but many of these constraints cannot be properly evaluated without fluid dynamical considerations. 

Density contrasts govern whether or not a crystal would rise or sink in a quiescent liquid, but 

viscosities, convection velocities, and cooling rates are equally important in determining the ultimate 
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Figure 17: Phase diagram for KLB-1 [Takahashi, 1986] with fields showing conditions under which 

komatiite [Wei et al., 1990], MORB (as primitive melt) [Presnall et al., 1979; McKenzie 

and Bickle, 1988], and picrite (also possible MORB parent) [Green et al., 1979; Elthon and 

Scarfe, 1984] could have been extracted from their source regions. Adiabatic paths for 

source material, assuming single stage melting, are indicated by light lines. The komatiite 

field is based on the phase diagram of Wei et al. [1990] for a 25 wt% MgO komatiite. 

Komatiitic liquids with higher MgO content are anticipated to form under higher PT condi

tions [Takahashi and Scarfe, 1985; Wei et al., 1990]. 
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fate of crystals in a convecting magma system. Accordingly, an effort will be made to understand 

the fluid dynamics of such a system as it evolves. 

We will assume that the entire mantle was molten, and that the undifferentiated mantle had an 

iron-depleted Cl composition [Agee and Walker, 1988b]. For simplicity, we will henceforth refer to 

this iron-depleted Cl composition simply as Cl. Because the mantle is assumed to be liquid, and 

would have low viscosity, we will also assume that the thermal state of the mantle was approxi-

mately adiabatic. As the Earth cools boundary layers may develop, and crystal segregation may 

occur. Both of these circumstances would make the system nonadiabatic, at least on local length 

scales. These special circumstances may play important roles in the evolution of the Earth, as will 

be discussed below. Furthermore, although convection requires some degree of superadiabaticity, 

we will adopt the adiabatic state as a reference state and follow its development with time. 

An approximate fit to the major element chemistry of Cl can be obtained from a mixture of 

olivine (20.4 wt% of F<>o.98Fao.02 composition), perovsldte (38.1 wt %of En0.9FSo.1 composition), and 

the komatiite we studied (41.5 wt %). From the assumption that liquids mix ideally with respect to 

volume (i.e., V= l); Vi> where V; is the specific volume of a liquid with the composition of com
; 

ponent i and x; is its mole fraction in the mixture) we can derive the adiabatic gradient of a liquid 

of Cl composition: 

[f.].._= (38) 

where Ks; is the isentropic bulk modulus of a liquid with the composition of component i, Cv; its 

constant volume heat capacity, and 'Y; its Griineisen parameter. The high-pressure, high-temperature 

thermodynamic parameters for each liquid end member (Vi> Ksio and Y;) are calculated from a 
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Birch-Murnaghan EOS (Eqns. 19 and 28) with Mie-Griineisen thermal corrections for the pressure 

(Eqn. 29) and bulk modulus (Eqn. 32). Cv is taken as 3R and q= 1 for each component; both Cv 

and y are assumed independent of temperature. 

The phase diagram for an iron-depleted C1 upper mantle has been investigated by Ohtani et 

al. [1986] and Ohtani and Sawamoto [1987]. Under lower mantle conditions we expect a 

perovskite+magnesiowiistite subsolidus mineralogy. A representative schematic phase diagram for 

this system at 100 GPa has been constructed (Fig. 18) assuming ideal mixing of liquid components 

using the data of Knittle and Jeanloz [1989] as an upper bound for perovskite melting and the calcu

lations of Ohtani [1983] for magnesiowiistite. On the basis of this model calculation we expect that 

perovskite will be the liquidus phase throughout the lower mantle. Without relying on the details of 

the perovskite-magnesiowiistite phase diagram, however, two general conclusions can be drawn. 

First. crystallization of a wholly molten mantle would begin near the core-mantle boundary (Fig. 

19). Second, if the upper mantle were wholly molten and the entire mantle were adiabatic, then the 

lower mantle would be at least partially molten to great depth [cf Agee and Walker, 1988b]. If the 

mantle were wholly molten to >30 GPa. then our calculations suggest that the zone of partial fusion 

would extend to the core-mantle boundary (under adiabatic conditions). This can be seen by follow

ing the adiabats, which, as described in the previous section, are slow to traverse the melting inter

val. This conclusion is independent of the details of crystallization (i.e., no knowledge of dr/oPI x 

and iWdT I p is required), but is, of course, sensitive to our assumed lower mantle liquidus and 

solidus. An adiabatic mantle would therefore not have a crystalline floor initially, but rather a par

tially molten zone extending to the core. Several adiabatic contours for the partially molten mantle 

are superimposed on a model C1 phase diagram in Figure 19. The wet (crystal+liquid) adiabats are 

calculated as discussed in the previous section, with crystal content varying linearly with tempera

ture at constant pressure. 
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Figure 18: Approximate phase diagram for a chondritic lower mantle at 1 Mbar. The approximate 

melting temperature of M&o.~e0. 1 Si03 perovskite is 3800 K [Knittle and Jeanloz, 1989] and 

that of M&o.~eo.40 magnesiowiistite is calculated to be :::6000 K [Ohtani, 1983]. The phase 

diagram was calculated by assuming that .6Sr is Rig-atom for each phase with a simple 

solution model. The solid diagram assumes that the molecular species in the melt phase 

are given by the mineral formula. The dashed curve assumes one molecular species per 

oxygen atom, and has been converted to the formula basis in the figure. The arrow indi

cates the approximate bulk composition of a chondritic mantle. For both models perovskite 

will be the liquidus phase at =3900 K. The solidus is at 3580 K with the formula basis, 

and 3340 K with the oxygen basis. 
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If any chemical fractionation (e.g., crystal-liquid segregation) occurs, the phase relations and 

adiabatic contours described above will not be strictly applicable to the residual liquid. In the fol

lowing sections we use this model C1 system as an approximation to fractionated systems as well. 

A more rigorous analysis is not justified given available phase equilibrium data. 

The time scale for cooling of a terrestrial magma ocean 

Although the lifetime of a magma ocean is not central to our discussion, the extent of chemi

cal fractionations may be limited by the rate at which the mantle cools. For example, in the 

absence of any atmosphere and crust, the planet might cool so rapidly that little differentiation is 

possible. At the other extreme, if we allowed an arbitrarily long cooling time, then the molten Earth 

would be quiescent (non-convecting), and could evolve through fractional crystallization to give a 

strongly layered body. Accordingly, in this section, we will attempt to constrain the rate of heat 

loss from the molten Earth. The heat flux from the molten Earth will depend on the surface tem

perature and on the opacity of the atmosphere, while the surface temperature depends on whether or 

not a crust could form. In the following subsection we discuss the importance of an atmosphere, 

and arrive at an approximation for the heat flux as a function of surface temperature. In the subse

quent subsection we consider whether or not a crust could form if the upper mantle were a 

superheated liquid, and what influence this might have on the heat flux from the magma ocean. 

(i) Heat flow through the atmosphere. The ability of a protoatmosphere to transmit heat from a 

magma ocean is strongly dependent on the chemical constitution of the atmosphere. The chemical 

composition of a protoatmosphere will, in turn, depend on the temperature of the Earth's surface. 

Very high surface temperatures lead to the formation of a metal-oxide (e.g., Na, K, SiO, Mg) atmo

sphere [Ringwood, 1979]. Lower surface temperatures lead to the formation of a predominately H2, 
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CO, H20, C02, Cf4 atmosphere [Holloway, 1988], and still lower temperatures favor an air, e.g., 

N2, atmosphere. Liquid water would not be stable at the Earth's surface if the bulk of the mantle 

were molten or partially molten. Since such a molten state is the premise of our discussion, we will 

not consider the latter case. 

The potential surface temperature of a totally molten Earth could exceed 3500 K (Fig. 19a). 

Under such conditions, a metal-oxide vapor atmosphere would form. However, condensation (i.e., 

the formation of oxide and silicate clouds) would probably limit the effective radiating temperature 

of the atmosphere to be =2000 K [Thompson and Stevenson, 1988]. The radiative black body heat 

flux corresponding to a temperature of 2000 K is ct"r = 0.9 MW/m2• 

A H20, CO, or C02 atmosphere that would form at surface temperatures below =1500 K 

could similarly regulate the radiating temperature. The numerical experiments of Zahnle et al. 

[1988] indicate that for surface temperatures below about 1500 K, a water-rich atmosphere would 

limit the net radiative heat flux to about 150 W/m2: about 6000 times less than a metal-oxide atmo

sphere. For surface temperatures above 1500 K, the water-rich atmosphere is transparent to much of 

the surface radiation, which has significant components in visible and UV wavelengths. Conse

quently, the radiative properties of the atmosphere in the surface temperature interval of 1500-2000 

K would be intermediate between the water-rich and metal-oxide cases. 

As a first approximation, we adopt a mean heat flux of 0.9 MW/m2 when the surface tempera

ture exceeds 2000 K, and a mean heat flux of 150 W/m2 when the surface temperature drops below 

1500 K. If there is no crust on the magma ocean, then the surface temperature will exceed 2000 K 

when the lower mantle of the Earth is crystallizing (Fig. 19a), and the heat flux regulating fractiona

tion of the lower mantle will be that corresponding to a metal-oxide atmosphere: 0.9 MW/m2• If no 

crust exists when the upper mantle crystallizes, then the surface temperature will be between 1500 
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Figure 19: Estimated C1 phase diagram for the mantle compiled from experimental data of Heinz 

and Jeanloz [1987], Ito and Takahashi [1987]. Knittle and Jeanloz [1989], Ohtani et al. 

[1986]. Ohtani and Sawamoto [1987], Scarfe and Takahashi [1986], and Takahashi [1986]. 

Beyond 25 GPa this phase diagram is highly schematic and based solely on the perovskite 

liquidus (see Fig. 18). The liquidus phases are olivine to =15 GPa followed by majorite to 

=25 GPa and perovskite at higher pressures. Subsolidus reaction boundaries for the 

sequence plagioclase-+spinel-+garnet and olivine--+13 modified spinel-+y 

spinel-+perovskite+mw are also indicated Superimposed on the phase diagram (Fig. 19a) 

are adiabatic contours. The entropy of fusion causes subliquidus adiabats to remain in the 

melting interval over extensive depth intervals. Note that crystallization will begin at the 

base of a whole Earth magma ocean. The actual temperature profile of a magma ocean 

will differ from the adiabatic contours wherever boundary layers develop. These boundary 

layers may form in the lower mantle because of viscosity contrasts, in the upper mantle 

because of olivine neutral buoyancy, and at the surface where an itinerant crust may form. 

The difference in energy (in 1<PO J) between a given wet adiabat and the one above it is 

written on the adiabat curves. At high temperatures the curves are at =1.4xloJ0 J intervals. 

At lower temperatures the energy difference increases. Figure 19b is an enlargement of 

Figure 19a. emphasizing the upper mantle and transition zone. Contours in this figure are 

at 50° intervals at P=O. 
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Figure 20: Cartoon snapshots of the evolution of the mantle from an initial wholly molten state. (a) 

The first crystals to fonn will be perovskite. These will fonn at the base of the lower man

tle where the adiabats first cross the liquidus (Fig. 19a). Convection would be so turbulent 

that individual crystals would not be capable of settling out (up in this case since perovskite 

could be buoyant at P> 70 GPa). Crystal enrichment at the base of the lower mantle could 

lead to the formation of a viscous boundary layer. In this boundary layer, perovskite cry

stals might be capable of rising and subsequently become entrained in the turbulent eddies 

above, leading to perovskite enrichment in the upper liquid region of the mantle. Iron

enriched residual liquid could percolate down toward the core-mantle boundary. (b) When 

the boundary layer reaches the level of perovskite neutral buoyancy, =70GPa, the direction 

of crystal-liquid segregation will change. In this snapshot. a boundary layer exists in the 

shallower lower mantle where perovskite crystals may be capable of settling downward. In 

this shallow region, perovskite-depleted liquid could percolate through the perovskite matrix 

to be mixed into the convecting liquid above. Below the boundary layer, at the level of 

perovskite neutral buoyancy, percolating iron-rich perovskite-depleted liquid will sink. The 

perovskite neutral buoyancy horizon would separate and iron-enriched perovskite-depleted 

deep lower mantle from a perovskite-enriched iron-depleted shallow lower mantle. Major

ite crystals may begin to fonn near this time, but as they are swept downward in the tur

bulent eddies they would either dissolve or convert to perovskite. The majorite~perovskite 

reaction boundary is shallower than the boundary layer at this time. The deep crystalline 

lower mantle may begin subsolidus convection. (c) When the upper mantle begins to crys

tallize, a crust may begin to fonn. The crust would be mechanically unstable and would 

founder. Olivine crystals larger than 3.5 em could also segregate from the convecting 

liquid The segregated olivine and foundered crust could fonn pockets of solid debris in 
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the shallow upper mantle that could resist being entrained in the liquid mantle flows 

because of their size and relative density. Stagnant boundary layers on the solid debris 

would allow small (<3.5 em) olivine crystals to segregate from the magma. Through these 

three mechanisms (foundered crust. large olivines, and settling of small olivines through 

stagnant boundary layers), a dunite septum could form in the shallow upper mantle (near ::::9 

GPa). In the transition zone majorite continues to crystallize. As eddies carry majorite 

from the transition wne, they either melt or convert subsolidus to perovskite or clinopyrox

ene. Majorite segregation is inhibited until the base of the magma ocean (defined as the 

=44% crystallinity boundary layer) reaches the transition zone. The crystalline deep lower 

mantle is undergoing subsolidus convection. (d) This is a schematic representation of the 

stratification of the mantle before subsolidus convection and possible rehomogenization 

takes place. A crust overlies a clinopyroxene- and garnet-rich shallow upper mantle. This 

layer forms from the upper mantle magma that was depleted in olivine components that 

sank to form the dunite septum. The dunite septum overlies a transition zone that is also 

depleted in olivine components. The principal mineralogy of the transition wne would be 

~-spinel, majorite and garnet The lower mantle consists of perovskite and 

magnesiowiistite. This stratification is not gravitationally stable. In particular, the dense 

garnet-rich shallow upper mantle is denser than the underlying dunite layer. As mentioned 

earlier, the lower mantle may also be unstably stratified with a dense perovskite-rich layer 

overlying a less dense magnesiowiistite-rich layer. Also contributing to rehomogenization 

are late-impacting iron-rich planetesimals (shown as an infalling Pe-rich body). If 

sufficiently rich in metallic iron, these bodies could sink to the core and substantially 

enhance subsolidus convection. After the upper mantle undergoes its convective overturn, 

the crust would overly a peridotitic upper mantle, that in turn would overly a garnet-
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majorite-rich transition wne. This stratification would be stable, and could prohibit the 

Earth from convecting as a single layer. A stratification of this sort has been proposed for 

the present Earth. 
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and 2500 K (Fig. 19b), and the heat flow will be between 150 W/m2 and 0.9 MW/m2• If a crust 

fonns, then the mean surface temperature cannot be greater than the solidus temperature of the 

crust, =1500 K, corresponding to a maximum heat flux of about 150 W/m2, independent of the tem

perature of the underlying magma 

The significance of heat flux for chemical fractionation can be shown by considering the 

energy budget of the molten mantle. From Figure 19a, it can be seen that to generate a crystalline 

mantle about 1.7x1031 J (the sum of the energy differences between adiabatic profiles) must be 

removed from a wholly molten mantle beginning to crystallize at its base. The surface area of the 

Earth is about 5x1014 m2
• If the Earth cooled at a mean surface temperature greater than 2000 K, 

i.e., regulated by a metal-oxide atmosphere, then the cooling time would be only 1200 yrs. This 

case is tantamount to quenching the mantle, and chemical fractionation would be limited. If the 

mean heat flux were 150 W/m2, i.e., regulated by a water-rich atmosphere (but no crust), then the 

cooling time would be 7.2x106 yrs. This longer time affords a greater opportunity for chemical 

fractionation to occur. 

(ii) ~ crust on !! superheated liquid mantle? The existence of a crust is important for the 

chemical fractionation of the mantle because it limits the maximum heat flux from the magma ocean 

to about 150 W/m2, as discussed in the previous section, and possibly much less since heat transfer 

might be limited by conduction through the crust. An essential feature of a crust on a magma ocean 

is that it is not likely to be buoyant Morse [1987] discussed this problem as it relates to a lunar 

magma ocean. Another feature of the early evolution of the magma ocean is that the ocean would 

likely be superheated at low pressure (Fig. 19). A crust would have to support a very steep thennal 

gradient (at least (fliquidus-Tsolidus)IB, where B is the thickness of the crust), and foundered crust 

would dissolve unless it were thick [Walker and Kiefer, 1985]. Nevertheless, although a crust is not 

mechanically stable, is seems likely that some glass or crystals would fonn simply because 
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convective heat transport may not keep pace locally with the extraordinarily high rate of radiative 

heat transport. In this subsection we investigate the importance of a crust when the upper mantle is 

superheated liquid. 

Assuming that some crust can be generated, but that it will ultimately sink because of its high 

density, we consider the possibility of a dynamically maintained crust As a crude model, we con-

sider a hypothetical pseudo-steady state crust of thickness S. When it founders, blocks of diameter 

S will sink according to Stokes' formula. Let us suppose that most of the radiative heat loss is 

applied to removing the latent heat of fusion of liquid that regenerates the crust. A crude heat bal-

ance is then given by: 

S2.::\pg 
1811 pMir < F (39) 

in units of energy per time per surface area. Here F is the heat flux from the magma ocean, 11 is the 

viscosity of the molten mantle (1 poise), .::\p is the density contrast (200 kglm3) between the crust of 

density p (3000 kg!m3) and the density of the liquid, .::\Hr is the latent heat of fusion (4x10S J/kg), 

and K is the thermal conductivity (2 J/m K). The surface temperature, T surface• must be below the 1 

bar liquidus (2000 K) for crystals to form. In the initial stages of the evolution of the magma 

ocean, i.e., when the lower mantle is crystallizing, we assume the temperature at the bottom of the 

crust will be approximately equal to the liquidus temperature. 

If the heat flux is 150 W/m2 we find that the crust cannot be thicker than 40 Jllll. The max-

imum heat flux, 0.9 MW/m2, gives a maximum crust thickness of 2.6 mm, but a surface temperature 

of 830 K that is inconsistent with such a high heat flux. The internally consistent solutions to Eqn. 

39 give a crust of negligible thickness. From this exercise we conclude that a dynamically main-

tained crust is not important from the perspective of heat transfer when the upper mantle is 
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superheated. The heat flow from the magma ocean would have been controlled entirely by the 

atmosphere. At later stages of evolution, when the magma ocean may contain crystals at all depths, 

viscosity below the crust will increase because of the crystal content and lower temperatures of the 

magma. This viscosity enhancement could stabilize a dynamic crust, allowing it to become an 

impediment to heat transfer. 

Crystal-liquid fractionation in the depth range of the lower mantle 

If the whole Earth were molten, then the adiabats shown in Figure 19a indicate that crystalli

zation would have begun at the core-mantle boundary. From Figure 18 we believe that the first 

phase to crystallize would be perovskite. Any crystal-liquid segregation that occurred during the 

crystallization of the lower mantle would have perturbed the chemistry of the upper mantle if the 

liquid portion of the magma ocean were well mixed. Agee and Walker [1988b, 1989] suggest on 

the basis of a major element mass balance that some perovskite fractionation is required to generate 

the modern peridotitic upper mantle. Ringwood et al. [1987], and Kato et al. [1988a, 1988b] argue, 

however, that perovskite fractionation could not have been important because of the trace element 

partitioning constraints. We showed earlier that perovskite is probably less dense than a chondritic 

melt at the conditions of the deepest lower mantle (Fig. lOb); thus perovskite might segregate in a 

quiescent mantle by flotation at P>70 GPa (d>l680 km), and by settling at P<70 GPa, possibly gen

erating the chemical fractionations inferred by Agee and Walker [1988b, 1989]. In a large convect

ing magma body, however, the flow regime will ultimately govern the extent to which segregation is 

possible. 

(i) Perovskite settlinglftoating in ~ convecting system. We assume the condition for segrega

tion in a convecting fluid in the absence of boundary layers is that the settling velocity of the cry-
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stals exceeds the convective velocity of the magma. We can estimate the convective velocity of the 

magma ocean with mixing length theory [Clayton, 1968, pp. 252-259]: 

v == [~]113 
COllY HT p ' 

(40) 

where F is the heat flux, d is the depth of the ocean, and HT is the thermal scale height: 

T 
(41) 

which we calculate to be approximately 2x1cf km. Note that the convective velocity is weakly 

dependent on the heat flux. Recall that we have assumed the heat flux to be about 0.9 MW/m2 dur-

ing crystallization of the lower mantle. The average convective velocity for a 2900 km deep 

magma ocean is then about 3 rn/s. 

For crystal segregation to occur the settling (or rising) velocity must exceed the vertical com-

ponent of the convective velocity. In a low Reynolds number regime (Re= 
2rvp for Re ~ 2, where 

11 

the Reynolds number, Re, is evaluated for crystals. Here r is the crystal radius, v is the relative 

crystal-liquid velocity approximated by Eqn. 40, 11 is the fluid viscosity, g the gravitational accelera-

tion, p is the fluid density, and 6p the density contrast This is not the Reynolds number character-

izing the convective flow of the magma ocean), the settling velocity is well approximated by Stokes' 

terminal velocity formula. In higher Re regimes a variety of empirical relationships can be used to 

determine settling velocities [Bird et al., 1960]: 



r ::: 

r::: [~]112 
2~p 

[ 
111pv2]

5
'
8
[ _!)_] 318 

16~p 2vp 

r ::: 33pv2 
200gdp 

- 117-

Re ~ 2 (42a) 

2 < Re ~ 500 (42b) 

500 < Re ~ 2x10S , (42c) 

Note that the viscosity dependence of r is different in each flow regime, and Eqn. 42c is indepen-

dent of viscosity. The dependence of crystal size on the assumed heat flux is also different in each 

regime. Comparing Eqn. 40 with Eqns. 42, we see that crystal size is proportional to F116 (Eqn. 

42a), F7'24 (Eqn. 42b), or F213 (Eqn. 42c). We estimate the crystal size by evaluating each of these 

equations, determining the Reynolds number for each case, and selecting the result that is consistent 

with the Re conditions. For perovskite in the lower mantle, the maximum crystal-liquid density 

contrast will be :::0.25 glee. If the viscosity of molten C1 obeys an Arrhenius relationship, indepen-

dent of pressure, then we would estimate a lower limit for the viscosity to be ::: 0.01 poise [Bottinga 

and Weill, 1972]. The combined pressure and temperature dependence of viscosity is unknown for 

silicate liquids under these conditions so this value for viscosity must be suspect We estimate that 

crystals 60 m in diameter would be required if segregation is to occur in such a vigorously convect-

ing system, independent of viscosity (Re is 8x108 in this case, outside the bounds of the constitutive 

relations). If we considered a heat flux 103 times smaller, then the velocity would be 30 crn/s, and 

the required crystal diameter 60 em. While EOS constraints alone might suggest crystal flotation or 

settling during lower mantle crystallization, consideration of the flow characteristics in the magma 

ocean emphatically precludes this possibility. 

As the magma ocean cools, a crystal-rich layer will develop at the base of the lower mantle. 

This crystal enrichment is not a consequence of crystal settling, but simply a result of the wet adia-

bat approaching the solidus. This crystal enrichment leads to rapidly increasing viscosity, which in 
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tum could lead to a change in the flow structure of the ocean. According to Roscoe's [1953] cri

terion, 44% (by volume) of crystals would increase the viscosity over the crystal-free viscosity by a 

factor of 10, about the maximum viscosity contrast the system can tolerate before forming a boun

dary layer [Marsh, 1989]. 

If a boundary layer forms in the lower mantle between crystal-poor magma above and 

crystal-rich magma below, then chemical fractionation could occur through two mechanisms. First. 

crystal settling or flotation could occur through this boundary layer, regardless of crystal size, since 

the moving crystals would not have to oppose convective flow. Second, interstitial liquid could be 

expelled from the compacting crystal-rich lower zone. If crystals are denser than liquid then inter

cumulus liquid will be expelled upward, leading to chemical fractionation effects in the upper man

tle by upward transport of perovskite-depleted liquid. If crystals are less dense than the liquid, then 

expelled liquid will segregate downward and the boundary zone will be enriched in crystals. This 

downward melt segregation would be hidden from the upper mantle, which would be unaffected by 

this fractionation. If these buoyant crystals become entrained in the convecting liquid above the 

boundary layer, then chemical fractionation could also occur. 

In the lower mantle, our results suggest perovskite would be buoyant in C1-like liquid compo

sitions at pressures ~70 GPa (1680 km), and more dense than the liquid at lower pressures (Fig. 

lOb). As the lower mantle crystallizes, the nature of possible chemical fractionation at the boundary 

layer would therefore change. When the boundary layer exists at greater pressure than the 

perovskite neutral buoyancy horizon (:::70 GPa), perovskite will tend to float. thereby enriching the 

magma ocean in perovskite components if boundary layer entrainment can occur. At later times, 

when the boundary layer is shallower than the perovskite neutral buoyancy horizon, perovskite will 

tend to settle out from the boundary layer. The combined effect would be to enrich the shallow 

lower mantle in perovskite components relative to the deep lower mantle. Iron-rich interstitial 
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liquids in the crystal-rich regions below the boundary layer would also tend to sink at >70 GPa (and 

perhaps from shallower levels as well, although such liquids might crystallize upon adiabatic 

compression), perhaps also leading to enrichment of the shallow lower mantle in perovskite com

ponents and enrichment of the deep lower mantle in magnesiowiistite components. Such a chemi

cal stratification would be unstable under subsolidus conditions because crystalline perovskite is 

denser than crystalline magnesiowiistite. The formation of such a stratified lower mantle would 

therefore give rise to subsequent subsolidus convection. 

If crystal-liquid segregation can occur in boundary layers and movement of interstitial liquid 

below the boundary layer is possible, solidification of the lower mantle initially enriches the overly

ing magma in perovskite components, and later, when the boundary layer is shallower than =70 

GPa, depletes the overlying magma in perovskite components. Whether the upper mantle and tran

sition zone would suffer a net enrichment or depletion of perovskite components depends on the 

relative efficiencies of the initial perovskite flotation and later perovskite settling mechanisms. If 

these processes were equally efficient, then the upper mantle and transition zone might be expected 

to be depleted in perovskite because the volume of the perovskite-enriched shallow (P<70 GPa) 

lower mantle is about 34% greater than the volume of the perovskite-depleted deeper part. 

The extent of perovskite fractionation by settling crystals through a boundary layer is difficult 

to quantify since the crystal content and velocities of turbulent eddies near the boundary layer must 

be known. Crystal size, which must also be known, depends on the mean residence time of eddies 

in the subliquidus region of the magma ocean and the kinetics of crystal growth. A simple model 

for crystal settling in a turbulently convecting magma body was developed by Martin and Nokes 

[1988]. Their model is based on experimental measurements in the limit of very low crystallinity 

(=0.3 volume %). Since the crystal fraction near the boundary layer could be very large, :::44.0 

volume %, their model is not directly applicable in this case. When the crystal fraction in the 
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boundary layer is large, the viscosity and hence settling rate for individual crystals is strongly 

dependent on the crystal content. In this limit, the problem of crystal settling through a boundary 

layer becomes in essence a problem of matrix compaction. Perovskite fractionation by matrix com-

paction is more easily quantified, and gives a lower limit to the amount of perovskite fractionation 

that could occur. This mechanism is discussed below. 

(ii) Perovskite fractionation !!1. matrix compaction. To what extent can matrix compaction lead 

to fractionation? We are interested in the case where liquid is expelled from a compacting matrix 

that is undergoing crystallization, and that is growing in vertical extent because of the crystallization 

of the overlying liquid. This compacting region may also be convecting. To evaluate this mechan-

ism we will first estimate the characteristic velocity of the compacting matrix with the method of 

Richter and McKenzie [1984] and McKenzie [1984], then compare this velocity to the upward velo-

city of the solidus in the cooling lower mantle. The characteristic velocity of the compacting matrix 

is given by [Richter and McKenzie, 1984]: 

(43) 

where ko is the permeability, ~ is the density contrast, and 4>0 is the initial volume fraction of the 

fluid phase. Let us consider the case 4>0 = 0.56, obtained above from Roscoe's criterion for a lOx 

viscosity increase. Conservative estimates of the remaining terms are Tl = 1 poise, ko = 1.7xt<r 

cm2 (using the constitutive relationship given by Eqn. 5 of Richter and McKenzie [1984], and 

assuming a crystal radius of 1 em), and ~ = 0.2. With these assumptions, the characteristic matrix 

velocity is 0.5 km/yr, proportional to the crystal size squared. 

The time scale for the growth of the crystal-rich layer can be estimated from the heat flux 

from the magma body. Given the heat flux (0.9 MW/m2), we calculate the growth of the layer from 
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the difference in heat and crystal content of the adiabatic profiles (Fig. 19) to be about 2.6 km/yr. 

Since the liquidus and solidus of the lower mantle are subparallel, the velocity of the solidus will 

also be :::2.6 km/yr. Since the velocity of the solidus exceeds the velocity of the compacting matrix 

by a factor of 5, we infer that matrix compaction may not lead to significant chemical fractionation 

effects in the lower mantle. This conclusion is not robust, however, since neither the heat flux, 

viscosity, nor crystal size are well-constrained parameters. In any case, matrix compaction or initial 

inhomogeneities in initial crystal fractions in the partially molten zones could generate regions of 

locally high fluid fraction that could ascend rapidly either as diapirs or solitary waves [Richter and 

McKenzie, 1984; Scott and Stevenson, 1984, 1986, 1988]. Some fractionation by auxiliary diapiric 

processes or enchanced porous flow as magmons may be possible even if the compaction rate is 

much smaller than the crystallization rate. We conclude that perovskite fractionation motivated by 

matrix compaction is possible, but the extent to which it would occur depends strongly on poorly 

constrained model parameters. 

Crystal-liquid fractionation in the depth range of the upper mantle and transition zone 

(i) Garnet-majorite crystallization. When gamet-majorite begins to crystallize, perovskite cry

stallization is still incomplete in the lower mantle (Fig. 19), and the floor (>44% crystals) of the 

magma ocean is deeper (=40 GPa; =1000 km) than the gamet-majorite~perovskite reaction boun

dary. Thus, if the initially crystallized gamet-majorite were able to sink it would convert to 

perovskite before reaching the floor of the magma ocean. However, gamet-majorite may begin to 

crystallize deeper than its :::22 GPa neutral buoyancy presure with komatiitic liquid (Fig. 9). Thus, 

when gamet-majorite first crystallizes in the magma ocean it may resist fractionating because of its 

tendency to float, and might be digested by the overlying superheated liquid. When the floor of the 
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magma ocean reaches the gamet-majorite~perovskite reaction boundary at about 25 GPa, fractiona

tion of the approximately neutrally buoyant gamet-majorite may be possible. Before this occurs, 

however, olivine will have begun to crystallize in the upper mantle. As discussed below, and by 

Agee and Walker [1988b], olivine crystallization could generate a boundary layer in the upper man

tle that might isolate the shallow upper mantle from the effects of gamet-majorite fractionation. 

(ii) Olivine crystallization and the formation g[ !! dunite septum. The prediction that olivine 

would be less dense than ultrabasic liquid near 8 GPa led Nisbet and Walker [1982]. Ohtani [1985], 

and Agee and Walker [1988b] to suggest that a dunite septum would develop at the depth of olivine 

neutral-buoyancy. Such a septum would separate the magma ocean into upper and lower regions 

that could evolve separately. The lower magma reservoir has been suggested by these authors as a 

source of komatiitic magma. In this subsection we will address the feasibility of this proposition. 

The phase diagram (Fig. 19b) suggests that olivine will first begin to crystallize near its neu

tral buoyancy horizon. Olivine fractionation will therefore probably not be possible initially. 

As the mantle continues to cool, olivine will begin to crystallize both above and below the 

neutral buoyancy horizon. Even when olivine crystals are stable far from the neutral buoyancy hor

izon, for example at the surface of the magma ocean, crystal settling may not occur. The convec

tive velocity (from the mixing length formula, Eqn. 40, with a heat flux of 150 Wlm'1 of the magma 

ocean will be approximately 10 cm/s. We estimate that the viscosity of crystal-free magma will be 

=1 poise [Bottinga and Weill, 1972]. With these assumptions, a crystal radius of ~3.5 em (Eqn. 

42b) is required for crystal flotation/settling to occur in the absence of a boundary layer. As dis

cussed previously, this result is weakly dependent on the assumed heat flux (r is proportional to F7124 

in this flow regime). Olivine segregation by settling or flotation could occur if =3.5 em crystals 

could form; this crystal size is proportional to the 3/8 power of viscosity, which could readily be an 
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order of magnitude higher or lower. Whether crystals of this size could form depends on the kinet

ics of crystals growth, and on the mean residence time of turbulent eddies in the shallow mantle 

where olivine is the liquidus phase. 

Agee and Walker [1988b] proposed an alternative mechanism for nucleating a septum that cir

cumvents the need for large single crystals. They proposed that meter-sized foundered blocks of 

crust would sink without dissolving [Walker and Kiefer, 1985], and come to rest near the level of 

olivine neutral buoyancy. Olivine crystals in the magma could then accumulate above and below 

the foundered crust through stagnant boundary layers or compaction processes. In this case, the for

mation of a dunite cumulate layer depends critically on the details of crust formation and crust sta

bility. 

When olivine first begins to crystallize, majorite crystallization will be nearly 10% complete 

in the transition zone, and perovskite crystallization nearly 60% complete in the 25-70 GPa interval. 

As the upper mantle cools beyond this point, regions both above and below the olivine neutral buoy

ancy point will begin to crystallize olivine. If a dunite septum develops and grows, it would do so 

by both olivine settling from above and flotation from below, so the magma reservoirs above and 

below the septum could both be depleted in olivine and perovskite. 

If an olivine septum developed, where would it be situated as the system evolved? Olivine 

below the neutral density horizon is buoyed up by a force proportional to the density contrast. 

Olivine above the neutral buoyancy horizon will experience a similar force, but of opposite sign, 

that pushes the septum downward. The septum will situate itself in a position where these forces 

are exactly balanced (Archimedes' principle). If crystal accumulation from below were not properly 

balanced by crystal accumulation from above, then the positive and negative buoyancy forces would 

not balance. The septum would have to readjust, and this readjustment would necessitate magma 
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transport through the septum. The "septwn" would therefore be permeable. Transport of magma 

through the permeable septum could transmit chemical fractionations between the upper and lower 

magma reservoirs, in a direction dependent on the relative crystallization rates of the two reservoirs. 

It seems likely that the upper, shallow reservoir would crystallize faster. If this were so then down

ward settling of the dunite septum would force magma from the lower reservoir through the perme

able septum to mix with the upper magma reservoir. When the floor of the magma ocean (:::: 44% 

crystallinity) reaches the level of majorite stability (relative to perovskite), the magma trapped 

between this floor and the dunite cumulate layer could become depleted in majorite. To the extent 

that this majorite-depleted magma could traverse the dunite cumulate layer (as this layer sagged 

downward due to addition of olivine from above faster than from below) and mix with the overlying 

magma, regions above the dunite septum might develop a majorite-depleted chemical signature. 

Majorite fractionation in the shallow upper mantle might thus be limited by the development of a 

dunite cumulate layer, but cannot be entirely excluded. 

Post-crystallization rehomogenization processes 

The evolution of the Hadean mantle from an initially molten state described above would 

likely lead to some chemical heterogeneity in the upper mantle. For example, perovskite, majorite, 

and/or olivine fractionation could have occurred, and, indeed, aspects of the chemistry of mantle 

rocks and seismic properties of the mantle have been used to infer that they did. However, even if 

such fractionations occurred, their most extreme manifestations may have been obliterated by subse

quent rehomogenization of the mantle by subsolidus convection after most of the mantle crystal

lized. For example, Ohtani [1985] and Agee and Walker [1988b] noted that the shallow upper man

tle, depleted in olivine components by the formation of the dunite cwnulate layer, would crystallize 
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to a denser clinopyroxene and garnet assemblage. Convective overturn might later place the 

olivine-enriched cumulate at the base of the crust or remix these fractionated components. The 

extent to which such overturn and rehomogenization could have occurred would depend on the vert

ical extent of the mantle convection system, and whether the mantle convected in one, two, or many 

layers. This in turn depends on the extent to which chemical stratification developed during cry

stallization. However, that the upper and lower mantle and perhaps the transition zone may differ in 

composition today [e.g., Jeanloz and Knittle, 1989; Anderson, 1989] may suggest that convective 

rehomogenization was limited to specific regimes within the mantle. On the other hand, convection 

during the Hadean was far more vigorous than today and would have been facilitated by the gen

erally higher temperature of the mantle. 

8. Conclusions 

We have measured the Hugoniot of a molten komatiite initially at 1550°C. The data are 

smooth, indicating that rapid structural reorganization has either not occurred or is too subtle to be 

detected in the 5-36 GPa range of our experiments. This observation is consistent with Hugoniot 

measurements on molten diopside and anorthite [Rigden et al., 1989], but differs from molten 

anorthite+diopside Hugoniot results [Rigden et al., 1988], and possibly molten perovskite diamond 

cell results [Knittle and Jeanloz, 1989] for which evidence of liquid state structural reorganization is 

inferred. The isentropic bulk modulus is determined to be 27.0 ± 0.6 GPa, and its isentropic pres

sure derivative is 4.9±0.1. The pressure-density relationships obtained from these parameters is con

sistent with the static compression measurements of Agee and Walker [1988a] to 6 GPa. 

The 1550°C Hugoniot may cross below the komatiite liquidus at pressures less than 15 GPa. 

Our data shows no evidence of crystallization or anomalous compression that can be associated with 
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either crystallization or vitrification. To the extent that shear viscosity is a valid indication of the 

relaxation time, we believe that our samples were fully relaxed. The kinetics of olivine crystalliza

tion support the idea that our samples remained molten, albeit metastably, below 15 GPa. 

We confirm the hypothesis that ultrabasic liquids can be more dense than coexisting crystals at 

upper mantle pressures [Stolper et al., 1981; Ohtani, 1983, 1984]. Olivine and clinopyroxene are 

neutrally buoyant between 7 and 9 GPa, depending on the specific liquid composition. Garnet

majorite may be buoyant in ultrabasic compositions in the 20-24 GPa interval. Extrapolating our 

data to 70 GPa, we determine that perovskite could be buoyant in ultrabasic liquids in the lower 

mantle. Under upper mantle conditions, increasing the normative olivine content of a liquid 

increases its density. We predict that at higher pressure, olivine addition would diminish the liquid 

density. 

We have applied our komatiite EOS data to the problem of adiabatic melting. We have con

structed a simplified model that allows the minimum depth and temperature of a mantle diapir to be 

constrained given its final melt fraction. This model indicates that an initially unmelted source 

region for komatiitic lavas would be in the transition zone or the lower mantle if >15% melting is 

required. Phase diagrams for komatiitic compositions and fertile peridotites are consistent with this 

interpretation. If this is so, then komatiites may be formed in much the same way as modem basalts 

and picrites, the difference being that komatiites require substantially hotter (> 7000C) diapiric 

sources. 

We have discussed the early stages of the evolution of a magma ocean. Despite the simplicity 

of our calculations, several conclusions can be drawn: (1) If the mantle were adiabatic, the wholly 

molten mantle would crystallize from the bottom up. When crystallization begins in the upper man

tle, most of the transition zone and lower mantle would still be partially molten. (2) A crust at the 
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surface of the magma ocean would not have been stable while the crystallization front traversed the 

lower mantle. The surface temperature of the magma ocean would have been between 1900° and 

3200°C, favoring the existence of a metal-oxide atmosphere. (3) Although perovskite would tend to 

float at depths of ~1680 km, and sink at shallower depths, convective velocities in a magma ocean 

this deep would be so high as to prevent crystal-liquid segregation. However, as the system cools, 

the degree of crystallinity at depth along an adiabat becomes high enough (~44%) that the less cry

stalline part of the system above this level and the more crystalline part below begin to convect 

separately. Matrix compaction in the lower level could lead to expulsion of liquid downward at 

depths >1680 km, and upwards at depths <1680 km. Diapirism could facilitate this fractionation 

process. This could lead to effective fractionation of perovskite components in the liquid of the 

upper mantle. (4) When majorite first begins to crystallize, it would probably tend to float, and the 

floor of the magma ocean would be deeper than the maximum depth of majorite stability. Majorite 

would therefore be initially prohibited from fractionating. The later formation of a dunite cumulate 

layer might limit, but not completely exclude, majorite fractionation effects in the upper mantle. (5) 

A dunite cumulate layer might form in the upper mantle, either by the settling and/or rising of indi

vidual crystals or by the accumulation of crystals around foundered crust Such a septum would 

necessarily be permeable; thus, although it could limit subsequent majorite fractionation effects in 

the region above it, it would not prohibit them altogether in the upper mantle. (6) The formation 

and evolution of a molten mantle is highly dependent on the accretion scenario, and cannot be 

modeled on the basis of EOS and phase equilibrium constraints alone. Issues that are difficult to 

address include (a) the time scale of Earth accretion, (b) the rheological and physical processes that 

occur in turbulent convection in a deep system without walls, (c) rates of heat transfer through 

different protoatmospheres that form in response to different rates of planetesimal accretion, (d) the 

dynamics of crust formation and recycling on a magma ocean, and (e) the dynamics of subsolidus 
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convection to the extent this governs rehomogenization of the Earth. Future work should address 

the specific flow structure of the magma ocean, and the specific nature of the coexisting atmosphere. 
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We have examined in detail the analytical method for measuring shear viscosity from the 

decay of perturbations on a corrugated shock front The relevance of initial conditions, finite shock 

amplitude, bulk viscosity, and the sensitivity of the measurements to the shock boundary conditions 

are discussed. The validity of the viscous perturbation approach is examined by numerically solving 

the second-order Navier-Stokes equations. These numerical experiments indicate that shock instabil

ities may occur even when the Kontorovich-D'yakov stability criteria are satisfied. The experimen

tal results for water at 15 GPa are discussed, and it is suggested that the large effective viscosity 

determined by this method may reflect the existence of ice VII on the Rayleigh path of the 

Hugoniot This interpretation reconciles the experimental results with estimates and measurements 

obtained by other means, and is consistent with the relationship of the Hugoniot with the phase 

diagram for water. Sound waves are generated at 4.8 MHz in the water experiments at 15 GPa. 

The existence of anelastic absorption modes near this frequency would also lead to large effective 

viscosity estimates. 

1. Introduction 

The viscosity of high-pressure fluids is one of the fundamental parameters that controls rates 

of chemical fractionation and heat transport in the Earth. Viscosity can also be used as an indirect 

probe of the structural configuration of multicomponent liquids [e.g., Kushiro, 1977]. Order of mag

nitude viscosity changes with temperature [Bottinga and Weill, 1972] and pressure [e.g., Kushiro, 

1986] have been detected in silicate liquids. This sensitivity of viscosity to both pressure and tem

perature demonstrates that extrapolation of low pressure and/or low temperature measurements to 

high-pressure high-temperature conditions of geophysical interest is subject to very large uncertain

ties. This is particularly true in silicate systems where liquid state structural changes have been 
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inferred [e.g., Rigden et al., 1988; Knittle and Jeanloz, 1989]. The systematics of liquid silicate 

viscosity with pressure are believed to be complex. Molecular dynamics studies on liquid silicates 

[Woodcock et al., 1976; Angell et al., 1982] predict that viscosity will diminish with increasing 

pressure to a minimum value in the neighborhood of 25 GPa, and increase thereafter. Static

pressure viscosity measurements to 3 GPa [e.g., Kushiro, 1980] confirm this trend, although the 

predicted minimum remains experimentally unaccessible by this method. 

A variety of methods have been employed to experimentally determine the viscosity of liquids 

at high pressure. Under static high-pressure conditions, the Stokes drag on falling spheres [Kushiro, 

1976, 1977, 1978a,b,c, 1980, 1986; Kushiro et al., 1976; Fujii and Kushiro, 1977a,b; Scarfe et al., 

1979; Kanzaki et al., 1987] has been measured to simultaneously determine the density and viscos

ity of liquids to pressures of 3 GPa. Dynamic high-pressure experiments (shock wave) can be used 

to access a greater range of pressures and temperatures. These shock wave methods fall into three 

general categories. 

First, the rise time or width of the shock front can be related to some effective viscosity aver

aged over the range of pressures, temperatures, and compression experienced by the sample in this 

shock front region [e.g., Bland, 1965]. The rise of the shock front can be experimentally determined 

with high precision using velocity interferometry techniques, and has been related to viscosity by 

Swegle and Grady [1985]. Because this method determines the viscosity over the very broad range 

of conditions experienced in the shock front, and because the strain rates in this region are exceed

ingly large, this method may be inappropriate for determining the low frequency, i.e. relaxed, 

viscosity of the high-pressure state. 

Second, indirect indicators of viscosity have been used to estimate the viscosity of materials at 

high pressure. These indirect indicators include fluorescence lifetimes in glycerine [Huston et al., 
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1985], electrical conductivity measurements of weak electrolyte solutions [Hamann and Linton, 

1969], and the diffusion-controlled precipitation of sulfur in thiosulphate solutions [Yakusheva et al., 

1972]. The fluorescence method is based on the observation that the fluorescence lifetime of the 

crystal-violet (CV) dye molecule is correlated to the 2/3 power of the viscosity of the glycerine sol

vent [Forster and Hoffmann, 1971], whether viscosity is varied by changing pressure or temperature 

[Brey et al., 1977]. This special feature of the CV-glycerine system is critical to the success of this 

method since pressure and temperature vary simultaneously under shock compression. The conduc

tivity method is based on the theoretical argument, Walden's rule [Walden, 1906], that the product 

of ionic conductivity and viscosity is a constant for a given system. These methods can, in princi

ple, sample the low frequency viscosity, but they rely critically on the validity of the calibrations 

that link the measured properties to viscosity. For well-studied systems, where viscosity and conduc

tivity or fluorescence kinetics have been independently measured as functions of pressure and tem

perature, these indirect indicators can be applied in shock wave experiments. Such methods are 

inherently suspect outside the pressure/temperature range of static experiments where the validity of 

the calibrations cannot be assured. 

Third, direct measurements of high pressure viscosity are possible by observing induced flows 

in high pressure materials. These experiments include the measurement of the oscillatory damping 

of a sinusoidal shock front [Sakharov et al., 1965; Mineev and Savinov, 1967, 1976; Mineev and 

Zaidel', 1968], and measurement of the viscous drag on an embedded cylinder [Al'tshuler et al., 

1977, 1986; Kim, 1984]. These methods require no calibration since they are based on fluid 

mechanics of viscous flow. In the viscous drag experiment a metal cylinder is embedded in a non

conductive sample, oriented parallel to the plane of the shock. When the sample is shocked the 

cylinder is accelerated. The initial acceleration is complicated by shock wave interactions, but after 

a short time the acceleration is controlled by the viscous drag of the sample flowing past the 
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cylinder. The velocity of the cylinder, measured by detecting electrical current induced by the 

motion of the metal cylinder in a magnetic field, is recorded as a function of time. This velocity 

history is analyzed with a simple viscous flow model to give the sample's shear viscosity. Because 

velocity is detected by measuring electrical currents this technique requires a nonconductive sample. 

The oscillatory damping experiment works equally well with conductive and nonconductive samples, 

and is therefore applicable to a greater variety of materials. The oscillatory damping experiment is 

the subject of this study. 

The oscillatory damping experiment is elegant in its simplicity. Figure 1 illustrates the experi

mental apparatus of Sakharov eta/. [1965]. An explosive block is used to drive a shock into a disc 

of sample material in which a series of sinusoidal grooves are cut. When the shock intersects these 

grooves a sinusoidal perturbation is created on the shock front This perturbed shock then pro

pagates into a wedge of sample material. The curvature of the shock front generates velocity pertur

bations in the compressed sample. These velocity perturbations, modified by the sample viscosity, 

are coupled with the wave front The shock front fluctuations are therefore direct indicators of the 

shocked fluid viscosity. The wedge shape of the sample allows the amplitude of the shock front 

perturbations to be examined as a function of time. The shock profile is detected by recording gas 

flashes induced by the shock arrival between the top surface of the wedge and the overlying plastic 

buffer. 

In contrast to the simplicity of this experimental design, the analysis of these experiments is 

very complex, as is evident in the work of Zaidel' [1967]. In the particular case of shocked water, 

this method gives consistently high values of viscosity relative to other methods (Fig. 2): by a fac

tor of lot' relative to the conductivity method, and by a factor of 103 relative to the viscous drag 

method [Al'tshuler et a/., 1986]. The former discrepancy may be attributed to the failure of 

Walden's rule at high pressure [Al'tshuler et a/., 1986], but the disagreement with the viscous drag 
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Figme 1: Schematic of experimental design. An explosive block (a) generates a shock that first 

enters a sinusoidally grooved sample disc (b). The sinusoidal grooves generate perturba

tions in the shock front that then propagate into the sample wedge (c). The profile of the 

shock front is detected as a function of time by the light emitted in the flash gap (d) by the 

arrival of the shock at the free surface of the wedge. The emitted light is shuttered by the 

shock induced opacity of a plastic sheet (e), and a mask (f). 
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Figure 1. 
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Figure 2: Summary of shock wave viscosity measurements on water. Data from: Mineev and 

Zaidel' [1968], (open circles); Mineev and Savinov [1976], (closed circle); Al'tshuler et aJ. 

[1977], (open squares); Kim [1984], (closed squares); Al'tshuler et al. [1986], (open dia

monds); and shock thickness measurement of Harris and Presles [1981] (open triangle). 

Crossed circles indicate our new interpretations of the Mineev and Zaidel' [1968] 15 GPa 

experiment. (A) corresponds to linearized and second-order calculations without initial con

ditions or finite amplitude effects. (B) corresponds to calculations with initial condition and 

finite amplitude effects. The viscosity calculated by Mineev and Zaidel' at 15 GPa lies 

within the symbol for case B. In all cases it was assumed that K = 11· Symbols with 

arrows denote upper bounds. 
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Figure 3: Schematic geometry of sinusoidally perturbed shock in stationary coordinate frame (a), 

and co-moving coordinate frame (b). The arrows denote relative senses of motion, but their 

length is not scaled in proportion to the magnitudes of the velocities. 
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method is less easily explained. It is possible that the analytic method of Zaidel' [1967] is correct, 

and that water does exhibit a near-solid rheology at high pressure. Alternatively, errors in the ana

lytic method may have led to a misinterpretation of the experiments. 

The viscosities of shocked solids determined by this method, however, are in substantially 

good agreement with estimates obtained through the study of the shock welding phenomenon 

[Godunov et a/., 1971]. Melting points on the Hugoniot have also been detected by associated 

decreases in viscosity [Mineev and Savinov, 1967] by this method, and are in agreement with 

independent melting curve measurements. 

The purpose of this paper is to examine the analytic method in greater detail, and to augment 

the treatment of Zaidel' [1967] by considering some alternative approximations. First the boundary 

conditions (BC) at the shock front are derived in §2. The initial conditions (IC) are discussed 

briefly in §3. Next, the linearized equations of motion and continuity are developed in §4. The 

shock perturbation development solution follows in §5 in the inviscid limit. A viscous perturbation 

follows in §6, and again in §7 with the different set of boundary conditions proposed by Zaidel' 

[1967]. 

In §8 a summary of approximations is presented, and their impact is discussed. In §9 and § 10 

the initial conditions are reexamined and a semiquantitative initial condition model is introduced. In 

§ 11 we examine the complete viscous equations to assess the validity of the viscous perturbation 

method for finite viscosity. Numerical examples are presented that indicate that instabilities may 

occur for certain ranges of Reynolds number. Finally, in §12 experimental data for water at 15 GPa 

[Mineev and Zaidel', 1968] is discussed. 

It is assumed that the shocked material behaves as a viscoelastic fluid. Anelastic absorption 

mechanisms are not explicitly considered, although they might be important in some experiments. 
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The frequency of pressure waves generated by a perturbed shock are inversely proportional to the 

wavelength of the perturbation. For many materials it is therefore possible, at least in principle, to 

design an experiment that avoids anelastic phenomena. 

2. Boundary Conditions at Shock Front 

The boundary conditions at the shock front are readily derived from the generalized Rankine 

Hugoniot relations. Nevertheless, it seems worthwhile to derive these conditions because the result 

we obtain differs from that presented by Zaidel' [1967] without derivation. We begin the derivation 

by specifying the geometry at the shock front This allows all perturbations to be cast into vector 

components normal and tangential to the shock front. These vector components are then used with 

the generalized Rankine Hugoniot relations to obtain the boundary conditions at the shock front. 

Sign conventions follow Truesdell and Toupin [1960]. 

In following Zaidel' [1967] we adopt a co-moving coordinate system (Fig. 3) in which the 

shock front is stationary, nominally the plane x=O. The shocked material travels in the positive x 

direction at a nominal velocity v (v=Us-Up, where Us is the shock velocity, and Up is the particle 

velocity), and the unshocked material travels in the positive x direction at a nominal velocity v0 

(Us). Perturbations are present in the x and y directions, but not in the z direction. The perturba-

tions on the shock front, !;, are positive when the front is perturbed toward the shocked material. 

In the co-moving coordinate system specified above (Fig. 3), a point on the shock front can be 

given by the generalized coordinate (x,y) = (!;(y),y), or in vector form by: 

~ ~--:+ --:+ 
X~ = ~1 + YJ. (1) 

The tangent to this surface is given by ~l()y. The normalized, or unit tangent vector is then: 
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(2) 

where ~Y - i*;fey, and the unit normal vector is given by: 

ir-~J 
l't= 

VI + ~/ 
(3) 

The velocity of the surface point specified by Eqn. I is: 

(4) 

Its normal and tangential components are determined by the dot product of this velocity with the 

unit direction vectors, Eqns. 2 and 3: 

X:= 

and 

The unshocked material ahead of the shock wave is given by the generalized coordinate: 

with velocity 

-:+ 
V()l • 

This velocity can also be decomposed into normal and tangential components: 

·+ vo 
Xn = 
~ 

and 

·+ ~yvo 
Xt = 

VI + ~/ 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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Similarly, the compressed material behind the shock front is given by the generalized coordi-

nate: 

""£ = [x + vt + v'xdf + [y + v'yt:u, (11) 

where vf is the nominal velocity, and primes denote small velocity perturbations (v'xf + v'y]. The 

velocity of the shocked material is: 

(12) 

resolving into normal and tangential components 

x; = (13) 

v'y + ~y(v + v'J 

...)I+~/ 
(14) 

In a reference frame moving with the shock front we define the normal velocities u± = 

(15) 

(16) 

Before evaluating the BC, it is useful to determine the components of the stress tensor in the 

(n,t) coordinate system. We assume a Newtonian fluid with constant viscosity. The stress tensor in 

the (x,y) coordinate frame is given by the components: 

(17) 

(18) 
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2 [ avy avx] [ dv1 avy] t = -P+-11 2--- +K -+-
yy 3 ay ax ax ay 

(19) 

where 11 is the shear viscosity and K is the bulk viscosity. These components can be cast into nor-

mal and tangential stresses with the relationship: 

tkl = 1:1:<M(fi}tij . 
i j 

(20) 

Using the normal and tangent vectors determined above (Eqns. 2 and 3) these sums can be applied 

to give: 

[ 
avx avy] 'tnn = -P + 1C - + -
ax ay 

(23) 

'lJ: av'x [ _J; 2] [ av'x av'y] - 'lJ: av'y 
"-',y ax + l-.,y dy + ax "-',y dy 

.., 1+~/ (24) 

We now proceed to develop the BC. One BC at the shock front is the Stokes-Christoffel con-

dition, a conservation of mass equation [Truesdell and Toupin, 1960, pp. 519-523]: 

p+u+- pu = [I pUI] = 0 . (25) 

Substituting the quantities determined above, this relation becomes: 

(26) 

A second BC at the shock front is Cauchy's 1st law of motion [Truesdell and Toupin, 1960, 

pp. 544-548], a stress balance, in the normal direction: 
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[I tml] + p0u+[l Xnl] = 0 

[ 
2] 2 [ [ 2J av'x [ av'x av'y] [ 2 ) av'y] (P- P0) 1 + ~ - -11 2-{ - - 3~ - + - + 2~ - 1 -

y 3 y ax Yay ax y ay 

-<[I+;,'] [ ~· + ~:] +Po[~- v,)[ v,- v- v', + v' ,!;,] = 0. 

The third BC derives from Cauchy's 1• law of motion in the tangential direction: 

(27) 

(28) 

(29) 

(30) 

-11[ ~'a:.· +-{,'] [ ~~· + ~~' ]-~'a~,] +Po[~- v,J[ ~,v0 - ~,(v + v'J- v',] = 0. 

and 

where 

These BC can be linearized with the approximations: 

p ~ P+P', 

av 1 

5 = -p6vJ-1 
aP I Hugoniot 

(31) 

(32) 

(33) 

is a dimensionless measure of the compressibility on the Hugoniot, evaluated at the nominal shock 

pressure. Let all perturbations have the form eikoY, i.e., suppose that the perturbations vary 

sinusoidally in the y direction, and collect terms of equal wavenumber. Note that ~. P', v'u and v'y 

are all perturbations of wavenumber ko. Terms of wavenumber 0 (i.e., no perturbations) are 

or 

PoVo = pv' 

Us 
P = Po Us-Up 

(34) 

(35) 
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from Eqn. 26, and 

P = P0 + po(v0 - v)v0 , (36) 

or 

P = Po + PoUpUs (37) 

from Eqn. 28. Equation 30 gives no information with wavenumber 0. Those terms that are first-

order in perturbations, i.e., with wavenumber ko. are: 

v' + P'o _ [ cr-1] ~ = 0 • 
x pv cr (38) 

P' [ cr-1]· 2v [ av'x av'y] 1e [ av'x av'y] v'x+-+ -- ~ =- 2---- +- -+--
pv cr 3v ax ay pv ax ay • 

(39) 

v [ av'x av'y] v' - v(cr-1~ = - -- + - . y y vay ax (40) 

Writing ikov' X for av' .,;ay, making similar substitutions for ()y' .;ay and ~Y' and taking the Laplace 

transform, the BC are then given by: 

(cr-1)(1+0) (~-~) _ 2vo [2 avx -ikov] _ KO [ avx +ikov] 
cr(l-0) 3v(l-0) ax y Jv(l-o) ax y 

-kov(cr-1~ + iv [ikov + avy [41) 
v x ax 

2(cr-1) _£ 2v [ avx. ~] 1C [avx. ~] 
[ 

Yx ] 
iVy = 

P/(pv) x=O 

cr(1-0) (~-~) + 3v(1-0) 2 ax -ikovy + pv(l-0) ax +ikovy x=O 

where f(s) denotes the Laplace transform of f(t}, v = 11/P is the kinematic shear viscosity, and 

cr = 

is a measure of the strength of the shock. 

_£_ = vo 
Po v 

> 1 (42) 

In the limit of no viscosity, these BC reduce to those of Zaidel' [1967] (his Eqn. 1.9) and 

D'yakov [1954]. When the viscous terms are retained, Eqn. 40 is the same as Zaidel's Eqn. 2.4a 

[1967], but the other two viscous BC differ. His BC may be written: 
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2 [ ir ] (a- 1)(1~) (!;o-s;)- 2v13 2--.2-ikov 
0'(1~) 3v(1-[3~ ax y 

,e iv [ avy] -k:ov(a-1"" + - ikov + -v x ax 

[ av ] 2(0'-1) 2v 2 X • A 

0'(1~) (!;o-s;) + 3v(l-[3~ ax -ikovy 

(43) 

x=O 

The bulk viscosity, 1C, is neglected in the Zaidel' analysis. The shear viscosity terms originating in 

the 'tnn component of the stress tensor differ from those of Eqn. 41 by a factors of ~
2

(1 ~ for v x.x=O 
3(1--P-J 

and ( 1-a~ for Px=O- For water at 15 GPa these factors are 1.03 and 1.01 respectively, thus the 
(1-~-J 

numerical consequences of these discrepancies are small in this case. 

The jump conditions (Eqns. 25, 27, and 29) strictly apply only when the shock front has no 

structure, i.e., the shock front is an abrupt discontinuity with no width. Lord Rayleigh [1910] 

demonstrated that a shock in a viscous material will necessarily have finite structure, thereby bring-

ing into question the applicability of the jump relations. If the shock is planar, a steady, unchanging 

shock with finite width obeys the jump relations [Swan et al., 1973] where the upstream (v+, p+) and 

downstream (v-, p-) properties are evaluated in the asymptotic limits x ~ ±oo. Similarly, if the 

width of the shock front is sufficiently narrow compared to the radius of curvature of the shock 

(r = 4rfko2l;), then the jump conditions may be employed. This condition is readily satisfied in 

practice since the shock width is generally on the order of tens of nanometers in thickness [e.g., 

Harris and Presles, 1981], decreasing with increasing shock pressure. A method for expressing the 

BC given an approximation of the shock front structure is described by lstrakov and Librovich 

[1966]. 
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3. Initial Conditions 

The experiments of Sakharov et al. [1965] were designed to generate a perturbed shock wave 

while producing the least possible disturbance behind the shock front Sakharov et al. [1965] state 

that the uniformity of the flow behind the shock is disturbed at distances of order ~o. the initial 

shock perturbation amplitude. To the extent that this was true, the approximate IC, 

v'1 (x,t=O) = v'y(x,t=O) = P'(x,t=O) = 0 , (44) 

are applicable everywhere except in the immediate vicinity of the shock front These IC, used by 

Zaidel' [1967], assume that the flow field is initially uniform behind the perturbed shock front. 

These IC are meant to be compatible with both the differential equations (derived below) and 

the boundary conditions. In fact, these IC are not compatible with the BC, as can be seen by substi

tuting Eqn. 44 into Eqn. 41. In the inviscid case ivy= -kov(cr-1);, thus a finite shock front pertur

bation, ~ :F 0, is inconsistent with vy = 0 at the shock front x = 0. Zaidel' [1967] suggests that for 

the purpose of a stability analysis the IC can be neglected. While this may be true, it remains to be 

shown that the IC are unimportant for the purpose of modeling actual experiments. 

In §5, §6, and §7, where we follow the derivation of Zaidel' [1967], the IC will be neglected 

(i.e., we use Eqn. 44). In §9 and §10 the IC will be reexamined and it will be shown that these IC 

do have a strong influence over the resulting perturbation development. 

4. Equations of Motion and Continuity 

The differential equations governing the compressible flow in the shocked sample are the stan

dard equations of motion and continuity. For completeness, these equations will be presented and 

cast into the form used by Zaidel' [1967]. 
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Noting that there is no z variation in any quantity, the equations of motion can be written as: 

av .. + v av .. + v av .. = _!_[at .... + Otyx] 
at x()x Yay pOx ay 

(45a) 

avy avy Ovy 1 [ Otxy Otyyl at + Vx ax + Vy 0y = p --ax- + ay • (45b) 

Next, we substitute the Newtonian viscosity form of the stress tensor (Eqns. 17, 18, and 19) and 

linearize the equations. This linearization is accomplished by writing the velocities and pressure in 

terms of their nominal values plus a perturbation. Only those terms that are first order in the pertur-

bations are retained. The perturbation quantities are denoted by primes: 

p ~ P+P'. 

The resulting equations of motion are: 

(46) 

(47) 

(48) 

av'x av'.. 1 aP' 
--+v--+--

at ax pax [ 
4 a1v'.. a1v'x 1 a1v'y] 1C [ a1v'.. a

2
v'yl 

= v 3 ax2 + ayZ + 3 axay + p ax2 + axay ' (49a) 

[ 
1 av.. a1v'y 4 avyl 1C [ a1v'.. a

2
v'y] 

v 3 axay + ax2 + 3 ay2 + p axay + ay2 . <49b) 
av'y ()v'y 1 aP' 
--+v--+-- = 

at ax p ay 

The equation of continuity is: 

(50) 

This equation is linearized with the adiabatic approximation: 

resulting in the equation 

1 
p 

1 
p 

(51) 
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aP' aP' 2[ av'x av'y] at+vax +pc Tx+ay = 0. (52) 

The complete differential equations (Eqns. 49a. 49b, and 52) are solvable in principle. The 

algebraic complexity of the system is formidable, however, so a perturbation method is adopted. 

First the equations are solved in the inviscid limit The role of viscosity is then examined by con-

sidering viscous effects to be the result of small perturbations on the inviscid solution. The com-

plete equations will be readdressed in § 11. 

Dropping the primes on the perturbed quantities in the linearized equations of motion and con-

tinuity, taking their Laplace transform, and letting all perturbed quantities depend on y as eikoY, these 

equations can be expressed in matrix form: 

where 

A -

and 

dit 
= AU+l, ax 

u = [p:~J ' 
~ltcoz -ko -~2koz 

1-~2 1-~2 1-~2 

0 -koz ko 
-koz ko ~ltcoz 
1-~2 1-~2 1-~2 

(53a) 

(53b) 

(53c) 



The factor eikoY has been omitted for clarity. 
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v 
~ =c 

(53d) 

(54) 

is the Mach number of the shocked sample with respect to the high pressure sound speed c, and 

z = s 
kov 

is a dimensionless form of the Laplace transform variable s. 

Supposing the inviscid solution of Eqn. 53 has the form: 

(55) 

(56) 

leads to a characteristic equation for the eigenvalues A.. From the characteristic equation we get 3 

eigenvalues and 3 corresponding left eigenvectors ('lfA = A'lf): 

(57) 

(58) 

where 
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(59) 

It is convenient to decompose the matrix of Eqn. 53 into the form 

(60) 

where S is the matrix whose rows are the left eigenvectors, and A is the diagonal matrix of eigen-

values: 

p~ -ko ~~ 1 ooz+ 1 ooz-1 

zl-1 2Cil(z2-1) 2Cil(z2-1) -lko 0 
1~2 1~2 1~2 ko<Plz-<0 > 

0 -koz ko 
z co+-z orz 

0 
zl-1 2Cil(zl-1) 2Cil(z2-1) 1~2 

-koz ko p~ 1 -1 
1~2 1~2 1~2 

0 
2m 2m 0 0 

The differential equations Eqn. 53 can then be solved as: 

.1..rr = s-t Astt + l ax 
a ax (Sit) = A(Sit) + (sg') 

(Sil) = ··+Sll)..- + 1·-•x<sroax] 

u = ,,.,...[ <Sil) ... + 1·-·"<sroax] 

0 

0 

ko<P2z+(J)) 

1~2 

when the viscous terms in "l and Ux=O are considered as small perturbations. 

S. Solution in the Inviscid Limit 

r-1 . -IJ z -1 (J) • (61) 
z -1 -(I) 

(62) 

(63) 

(64) 

(65) 

Note that there are 3 BC that determine the solution lt for an arbitrary forcing function ;. 

Since we are interested in determining this function, we require an additional constraint The 

approach that Zaidel' [1967] adopted was to consider the long-time behavior of the solution. 

Requiring all quantities to be bounded, A. must be negative for some real positive s. ~ violates this 

constraint The solution is therefore given by setting the third component of the vector Sit, the 



- 163 -

coefficient of ~. equal to zero. In a real experiment, there may be some boundary at a finite dis-

tance from the shock front where perturbations must go to zero. Such a boundary could be a driver 

plate - sample interface, for example. A finite boundary condition of this type would allow all three 

eigenvectors to participate in the solution, although the contribution of the third would have to 

approach zero as the boundary moves farther from the shock front. 

Adopting this approximation we can write 

- (cr-1) ~v~(cr-1)z~0] 
(J 

(SU)x=O = ~~j) [ kov~[(1+0)z2-2roz+a(l--0)] - ~o[(1+0)z-2w]J 
~~j) [ kov~[(l+O)z2+2roz+a(l--0)] - ~[(1+<5)z+2w]J 

(66) 

by multiplying the vector of BC, Ux=O (Eqn. 41) in the inviscid limit, by the matrix S given in Eqn. 

61. The IC contribution to Eqn. 65 is given by: 

(67) 

In the limit x--+oo we require all perturbations to vanish, and the solution is therefore deter-

mined by setting the sum of the third components of the vectors given by Eqns. 66 and 67 to zero. 

The dimensionless amplitude of the shock front corrugation, ell = ~~. can then be written as: 



- 164-

~ = 1_ = 1 (1 -Hi)z + 2ro 
~ kov (1-Hi)z2 + 2roz + cr(1-0) 

(68a) 

f()xe-~[~2(z+ro)[ P(O)] - (~2z+ro)vx(O)- i(l-~1vy(O)l 
1 cr(l-0) b pv j 

- kov ~cr-1)v(1-~2) (1-Hi)z2 + 2roz + cr(1-0) 
(68b) 

Zaidel' [1967] noted that the second tenn containing the IC will always be finite. He 

reasoned that it is therefore sufficient, for the purpose of a stability analysis, to neglect this tenn 

(i.e., use the IC of Eqn. 44). This is reasonable, but may be insufficient for the modeling of real 

experiments. For the purpose of reproducing his results, we will accept this approximation for now. 

The IC will be reexamined in §9. 

To invert Eqn. 68a, it is convenient to transfonn variables according to: 

to give the result: 

- 1-~2 
e = ~2 

~ = -IE 

T = ~t = koct~ = kov~t 

z = i[w-~J 

ro = llf[w+~] 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

_ 5._ 1 J tnT(W-~) [ 1 ] W2(1-Hi+2 ) - (1+0--2 ) cp = ~ = -
2
-. e dW W+-w ----.:..:......:~:..:.=Jt:L_~.:....::._~.----- . 

1tl W'(IM+2~) + W2 4cr (1-0)-2(1-Hi) + (1+0--2~) 
e 

This expression is similar to Zaidel's [1967] Eqns. 1.16 and 1.17 (he is missing the tenn W+ ~, 

probably a typographic error). 
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With this transformation, the branch +"1'~222 + 1 - ~2 in the complex z plane is mapped onto 

the right half of the complex W plane (Re[W] > 0). On this half-plane, Re[z] will be negative when 

I WI < 1, and positive when I WI > 1. If the poles of Eqn. 74 lie outside the unit circle, I WI = 1, 

then a pole in the z plane will exist with Re[z] > 0, and the solution will consequently be 

unbounded as t--+oo. It is easily shown that all singularities of the integrand lie within the unit circle 

IWI=1 when: 

cr-e 
--<5<1. 
cr+e 

(75) 

When these inequalities are satisfied the solution will be bounded and the shock will be stable. 

These inequalities are identical to Kontorovich's [1957] requirements for the stability of a shock 

wave (correcting D'yakov's [1954] earlier work). The inequality 5 < 1 is satisfied when the shock 

velocity increases with increasing particle velocity, i.e., oUsfoUp > 0. The second inequality, 

5 > (cr-e)/(cr+e), is satisfied when the high pressure isentropic bulk modulus, Ks. is greater than both 

(P-P0)/(cr-1) and (P-P0)(1+y), assuming y, the thermodynamic Griineisen parameter, is less than 

21( cr-1 ). A discussion of the relationship between these stability criteria and the conditions for 

shock splitting is given by Fowles and Houwing [1984]. 

Assuming the singularities lie within the unit circle, we can let the contour of integration be a 

counterclockwise unit circle: 

W = e2ltiy (76) 

Multipling through by the complex conjugate of the denominator, making another change of vari-

abies, 
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X = sin(2ny) (78) 

and using symmetry to eliminate tenns gives: 

q, - 4j3£cr(1~) f cos(TX)~ ax (79) 

- 1t 6 e2X"[ (1~)2-4~2] + 2ex2[ 2(1-~2)--<J(1~~J + cr2( 1~)2 
This is the final expression for the amplitude of the shock front perturbation in the inviscid 

limit when the IC are neglected (Fig. 4). Note that the initial time derivative of Eqn. 79, ~0, is zero 

(~ is a function of sin(TX), which is zero at T=O). This result is similar to Zaidel's [1967] Eqns. 

1.20 and 1.21, but he is missing the 4~2 tenn in the denominator (probably a typographic error). 

By substituting the solution, Eqn. 68a, into the BC, Eqn. 41, we can solve Eqn. 65 for the 

inviscid velocity and pressure perturbations: 

vx = 

ivy = 

;o(cr-1) [(1~)z2+2roz+(l~)]e~x- 2(1+roz)e'-zx 

1-z2 (1~)z2 + 2roz + cr(1~) 

~(cr-1) z[(1~)z2+2roz+(l~)]e~x- 2(ro+z)e~x 
1-z2 (l~)z2 + 2roz + cr(1~) 

P eAr 
- = ~o(cr-1)--,..------
pv (l~)z2 + 2roz + cr(l~) 

(80a) 

(80b) 

(80c) 

D'yakov [1954] found that a perturbed shock front generates two types of motion. The first 

type, in which entropy changes while pressure remains constant, he calls entropy-vortex waves. 

This motion is related to the eigenvalue A.1• The second type of motion, in which entropy is con-

stant while pressure changes, is sound waves. The eigenvalues ~ and A.:3 are related to these waves. 

The existence of the two wave types suggests competing roles for the bulk and shear viscos-

ity. Incompressible flow, entropy-vortex waves in this case, is independent of the bulk viscosity. 

Sound waves, in which compression does occur, are dependent on both the shear and bulk viscosi-

ties [e.g., Landau and Lifshitz, 1959, pp. 298-302]. 
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Figure 4: Development of corrugated shock pertw'bations in an inviscid fluid. Calculated with Eqn. 

79 with the parameters listed in Table III. 
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For future reference, note that when the transformations (Eqns. 69-73, 76, and 78), are appli-

cable, a single transformation can be employed: 

6. Viscous Perturbations 

(81a) 

(81b) 

The essence of the perturbation treatment is to evaluate the viscous stresses given the inviscid 

solution. The method of solution follows from Eqns. 62-65, but now the viscous terms in the BC, 

U1..o, and the vector l are evaluated from the inviscid solution, Eqn. 80. Now, as before, we require 

the solution to be finite for all values of x. Since the third eigenvalue leads to exponential growth 

of the perturbations, the part of the solution (Eqn. 64) that is weighted by this eigenvalue must be 

identically zero. This constraint gives the result: 

kov~ = (l~)z + 2ro + 
(1 ~)z2 + 2roz + o'(l-0) 

+ _cr -=z2....!:.[(.:...:1..:...~=.t..)_,2+4.....-l=-2..:!..] ..:...+...,..4-=ro~z(.::..l ~....:::..£..) _+....!;.[ 4..;...:(.:::..2---F.rzr-~(1_~~)....:!...2] 
R. ( 1 ~)z2 + 2roz + cr(l-0) 

2cr (z-ro)(~z+ro) 

ER.b [ (1~)z2 + 2roz + cr(1-0)J 
2 

cr(1-0) z2(1~) + 2roz + (1-0) 

R. [ (1~z2 + 2roz + cr(l-O)J 
2 

+ 
cr(l-0) (z-ro){ro2+ 1) 

eRb ro[ (l~)z2 + 2roz + cr(1-0)J 
2 

' 

where the shear Reynolds number is defined as 

v R. =
kov 

(82a) 

(82b) 

(82c) 

(82d) 

(82e) 

(83) 
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and, by analogy, the bulk Reynolds number is defined as 

(84) 

The first term (Eqn. 82a) is the Laplace transform of the inviscid solution, and the remaining 

terms are the viscous perturbations. Equations 82b and 82c arise from the surface (i.e., the BC), and 

Eqns. 82d and 82e arise from the volume of the shocked fluid. 

Since the poles of Eqns. 82b, 82c, and 82d are identical to those of the inviscid solution, Eqn. 

82a. the transformations of Eqn. 81 can be applied in the inverse Laplace transformation of these 

terms. The ro in the denominator of Eqn. 82e introduces a singularity at the branch point W = ±i, 

thus the transformation, Eqn. 81, alone is not applicable for the inversion of this term. To invert 

this term we use the convolution theorem: 

(85) 

where J0(f) is the zero-order Bessel function of the first kind. 

The complete viscous solution may then be written as: 

(86a) 

(86b) 

(86c) 



- 171 -

(86d) 

I 
- 2aJ31lO-a> fax x..Jt-xlsin(I'X) £2Jc4[(1-HI)2+4 2cz+a)J-2£X,2(3+2a}--2 ~z-ra~ct-axt+Ot 2)J+ao-a>rs- 2+a(l-a)J 

7t~ 0 £2}(4[(l-HI)2--4jl2] + 2£X2[2(1-j3~(l-a~] + a2(1-a)2 

(86e) 

(86t) 

where 

T 

2c(T,X) = !au cos(uX)J0(T-u) . (87) 

Equation 86a is the inviscid solution, Eqns. 86b and 86c are viscous terms that arise from the BC, 

and Eqns. 86d, 86e, and 86f are viscous terms that arise from the volume (Fig. 5). Those terms 

containing Rb have their origin in sound waves, while those viscous terms independent of Rb ori-

ginate from the entropy-vortex waves. 

This result differs significantly from that given by Zaidel's [1967] Eqn. 2.8. This is not 

surprising, however, considering that our BC differ. Using his BC, however, we also arrive at a 

different result than he presents. The solution obtained from his BC is presented in the following 

section. 

The initial slopes of the viscous perturbations can be determined from: 

0 2 A 2kovcr(~ + o) J.covcr(l-~)[~(1+0) + 2o] (
88

) 
limcp = hm (kovz) cp = - ---------:--
t-Ml 0>-+jh, z-- R. (1+0+2~) Rb£ (1+0+2~)2 

where we use the fact that the initial value of the viscous perturbations is zero. For all well-

behaved systems, i.e., o>O, that part of the solution dependent on shear viscosity has a positive ini-
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Figure 5: Viscous perturbations. (a) Shear and bulk viscous perturbations from surface and volume 

sources (Eqn. 86), and (b) shock corrugations amplitude for R. = 4.23 and K = 11 calculated 

with perturbation method (Eqn. 86) compared to inviscid solution (Eqn. 79) for parameters 

listed in Table III. 
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tial slope. Conversely, the bulk viscosity contribution is initially negative. This limit predicts, 

therefore, that shear viscosity will initially amplify the shock perturbations rather than dampen them. 

That this is contrary to the behavior reported by Sakharov et al., [1965] may indicate the importance 

of the bulk viscosity in their experiments. 

7. Viscous Perturbation with the BC of Zaidel' [1967] 

For the purpose of comparison with Zaidel' [1967], we will derive the viscous perturbation 

term from the BC that he proposes. His BC (his Eqn. 2.4) are given by Eqn. 43, and neglect the 

bulk viscosity. Using these BC, and solving for the shock perturbation amplitude as before, we 

obtain the solution: 

+ a(l~) 
3R.(l-p~ 

kov~ = 
( 1-M)z + 2ro 

(1-M)z2 + 2roz + a(l ~) 
(89a) 

(89b) 

(89c) 

again breaking up into the inviscid component, Eqn. 89a. and viscous perturbations, Eqns. 89b and 

89c. Equation 89b arises from the BC, and Eqn. 89c arises from the volume. The inverse Laplace 

transforms are obtained as described previously: 

(90a) 



where 
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A = 2[ 3(1+8)3 +8~4(3+8)- 4~2(1-5)(5+2o)] 

B = 3(1+50~~2(1--5)-9~20(1+8)-54~2(1-~2)+ 16~4o 

-<J(1-5) [ 3(1+8)2-4~2(2-&-4~~] 

c = -2cr(l-5)[ 8~4+12(1-~~(3+o)-<J(1-5)[ 3(1+8)+4~2]] 

(90b) 

(90c) 

(91a) 

(91b) 

(91c) 

In Zaidel' s Eqn. 2.8 [ 1967], the viscous perturbation has the form of Eqn. 90b but with 

different coefficients, and no term with the fonn of Eqn. 90c. 

8. Summary or Approximations 

The approximations used in the previous sections, and in the Zaidel' [1967] development, are: 

• Initial conditions. The initial conditions, Eqn. 44, are clearly inexact, although they may 

suffice for the case ~ < 1. They call for a well-established smooth shock to be instantane-

ously perturbed without affecting the flow field behind the shock. In any real experiment the 

creation of a perturbed shock front will necessarily generate perturbations behind the front. 

This approximation is appropriate for the purposes of a stability analysis, but is inappropriate 

for the modeling of any real experiment. 
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• Small amplitude perturbations. This approximation manifests itself in two ways. First, the 

boundary condition at the shock front applies at x~ and not x=O. We have used the latter, 

and have therefore implicitly required I; to be small. Second, we have assumed that long 

wavelength perturbations greatly exceed shorter wavelength perturbations. When kol;o is large, 

these shorter wavelength perturbation terms cannot be ignored. This assumption is not restric

tive since we can solve for other, shorter wavelength, Fourier components of the solution. 

• Far-field boundary conditions. To determine the function I; as a function of time, an additional 

boundary condition is required. Zaidel' [1967] imagines a boundary infinitely far behind the 

shock front, and requires that all perturbations vanish at this point In a real experiment there 

may be such a boundary at a finite distance behind the front, e.g., at the interface between the 

sample and the explosive, or the sample and the projectile in a gun experiment. The influence 

of the position of this boundary must be determined to assess the applicability of his approach. 

A test of this assumption can be made by comparing the results calculated above with the 

results for a corrugated shock generated by the motion of a corrugated piston against a fluid 

sample. Freeman [1955] and Zaidel' [1958] considered the latter problem and derived solu

tions for an inviscid fluid. 

• Negligible viscosity. By treating viscosity as a perturbation to an inviscid solution, we restrict 

the form of the solution to linear combinations of the inviscid eigenvectors. It is not immedi

ately apparent that these eigenvectors adequately describe the flow field in the viscous case. 

If the inviscid eigenvectors are demonstrably appropriate, then successively higher-order 

viscous perturbations could be used to get increasingly more accurate estimates of the full 

viscous solution. 

• Bulk viscosity. The bulk viscosity of water is greater than its shear viscosity at 1 bar [Lieber-
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mann, 1949]. In Zaidel's [1967] analysis the bulk viscosity was neglected. According to the 

theory of absorption of sound [Landau and Lifshitz, 1959, pp. 298-302], the bulk viscosity and 

shear viscosity have approximately equal importance. If at high pressure the bulk and shear 

viscosities are similar in magnitude, this neglect could lead to factor of 2 errors, but not the 

several order of magnitude discrepancies described previously. 

• Narrow shock width. As discussed in §2, the jump conditions employed in formulating the BC 

are exact only in the limit of a strictly discontinuous shock. The application of these condi

tions to viscous materials requires that the shock front width be very small compared to the 

radius of curvature of the shock. This condition is readily satisfied in practice. 

• Linearizations. Linearizing approximations include the adiabatic p' -P' relationship, and the 

Newtonian viscosity approximations. These approximations are probably adequate when the 

strain rates and pressure perturbations are small, i.e., ko1; < 1. 

Qualitatively, the solutions obtained thus far are inconsistent with the published experimental 

data [Sakharov eta/., 1965; Mineev and Savinov, 1967]. In particular, the initial slope («!>0) is nega

tive in the experiments but positive, or slightly negative if x: > 'fl, in the theory. The reason for this 

discrepancy will be shown to be a consequence of the initial conditions in §9 and § 10. 

Whether the viscosities calculated by the viscous perturbation method are reasonable depends 

in part on the validity of the viscous perturbation method for small but finite viscosity. This ques

tion is examined in § 11. 

9. Effect or Finite Perturbation Amplitude and Initial Conditions 

Finite amplitude and initial conditions are intimately related since as amplitude increases the 

initial perturbations must also increase. Finite amplitude and initial conditions are coupled in a 
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second way as well. The solution, Eqn. 65, can be written: 

(92) 

where we now specify the boundary conditions at the surface x~. the true shock interface, rather 

than the approximation x=O. As before, we require that the perturbations vanish as x-+oo, so the 

third component of the bracketed vector must vanish. When the initial conditions and viscosity are 

neglected, this reduces to the case where the third component of Sifx~ is zero, as before. When 

these terms are included, however, the integral expression in Eqn. 92 gives a second finite amplitude 

contribution. 

The initial conditions are increasingly important as the product ~ becomes nonnegligible 

(i.e., when the amplitude~ is comparable to or greater than the perturbation wavelength ~ ). An 

indication of the importance of these initial conditions can be gained by estimating an initial condi-

tion that is compatible with the boundary conditions. A simple family of solutions will be derived 

that is characterized by two adjustable parameters. The quantity a indicates how rapidly the initial 

perturbations decay away from the shock front, and the quantity S is the initial time decay of the 

shock front. A dimensional derivation of these quantities is presented in the next section. 

Suppose that the initial flow parameters are of the form: 

;Lv 0 ldiy-«x) 
Vx(t=(),x) = fx(X)e -u.r = fx e -u-· 

• ;~o-_v ,..o 1.-(iy-ax) 
tvy(t=O,x) = fy(x)e-u- = Iye-u 

P(t=O,x) _ f ( )eikoY _ fo koCiy-ax) 
- P x - Pe • 

pv 

From the inviscid boundary conditions, Eqn. 41, it can be shown that: 

fo = (cr-1)(1+a) ~ 
x cr(l~) 

~ = -kov(cr-1~o 

(93a) 

(93b) 

(93c) 

(94a) 

(94b) 
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f
o _ -2(cr-1) !!. 
P - cr(l~) -,a . (94c) 

Defining the quantity 

s = (95) 

the IC contribution, Eqn. 68b, becomes: 

... ;._ _ ~2(3~)Sz + (1*2~~Sro - cr(1~)(1-~~ 
"'v'I''IC -

[~2z + ro + a(1-~~][(1~)z2 + 2roz + cr(1~)] ' 
(96) 

which can be inverted via the transformation Eqn. 81 into: 

(97) 

~ t ax ..J1-X2 [ [ A1e2~ + B1eX2 + C1] cosTX- JJ.X[ D1eX2 + E1] sinTX] 

ci>Ic = 1t I (p4elx4 - 2P"r.x2[1-a~l+PZ)J + [l-cx~l~2)]2] [ £ZX4[(1+8)2-4P21 + 2£X2[2(1~2}-1l(l--OZ)] + a~l--Of] ' 

where: 

(98a) 

(98b) 

B1 = sa[ (1~)2 + 4~2(&+-2~~ + ~2cr(1~)(1+0-2~~- a2(1-~2)[(1~i-4~2] + cr(1~)(1*2~~J 
- a2cr(1~)(1-~2)(1+0-2~~ + ~2cr2(1~)2 

C1 = -o(1~)[1-a2(1-~2)][ Sa{l*2~2) + cr(l~)J (98c) 

D1 = 2~2 [ S{l*2~~- S~2cr(1~) + Sa2[(1~i-4~2] + acr(1~)(2*~2)] (98d) 

E1 = -2[ s[ (1*2~2)- a2(1~)- a~2(1-&-2~2)- ~2cr(l~) + a~2cr(1~)(2*~2)) (98e) 

+ acr(l~)[ (1-~~ + ~2cr(l~)- a2(1-~~2) J . 

The transformation Eqn. 81 is valid, i.e., the poles of Eqn. % lie within the unit circle I WI < 1, 

when Eqn. 75 is satisfied and 

I ~JJ.al < 1 . (99) 

If this condition is violated, i.e., if initial perturbations are attenuated more rapidly than 
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exp[-(J31J.t1kox], an instability will develop. 

Now Eqn. 79 together with Eqn. 97 gives an estimate of the shock front perturbation in the 

inviscid limit subject to the initial conditions of Eqn. 93. The finite amplitude of the shock front 

has not yet been considered. To account for the finite amplitude as a perturbation to the linear 

result we use Eqn. 92. Requiring the solution to be finite as x~ , we discover that ~ is given by 

the sum of Eqn. 79 and the product exp(-a.lcJ;) times Eqn. 97, where the sum of Eqns. 79 and 97 is 

used in the exponential multiplier ~': 

+ <72(1~)2 

2f3£exp(-koa,;') I ax .Jl-X2 [ (At£2X4 + Bt£X2 + Ct)coSTX- IJ.X(Dt£X2 + Et)SinTXJ 

1t I [~4£2Jc4- ~~1t-a2(l+j32)) + [1-a~l~~l2] [ ~4[(1-ta)2-41!:z:J + 2£X12(1~2)--o(l~2)] + a2(1~)2J 
This correction, and the effect of the approximate initial conditions, is shown in Figure 6. 

A viscous perturbation to this solution can be obtained by using this result to estimate the 

shear stresses in the inviscid case. Using these estimates, a new viscous perturbation can be derived 

that takes account of the finite initial conditions. 

The viscous perturbation that arises from these initial conditions is: 

s 4 
L,.Aizi + roLIJizi 

2 i=O i=O 

R.(l~) [J32z+ro+a(l-J3~] 3[ (l~)z2+2roz+G(l~)J 2 (lOla) 

s 4 

:LCizi + ro LOizi 
1 i=O i=O 

+ 2Rb(l~) [J32z+ro+a(l-J32)J 
3
[ (l~)z2+2roz+G(l~)J 2 (lOlb) 

(1-J32) Eo + zEI 

- 2Rb ro[J32z+ro+a(l-J32)J 
3
[ (l~)z2+2roz+G(l~)J 2 (lOlc) 

where the coefficients A;, B;, C;, D;, and E; are given in Table I. For simplicity, both the surface 
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Figure 6: Effect of approximate initial conditions (Eqn. 97) on the inviscid solution, with and 

without finite amplitude correction (Eqn. 100), compared to inviscid solution without initial 

conditions (Eqn. 79). Evaluated with parameters listed in Table III. 



21 

~ 
P' 

e 

lnviscid Solution, Initial Conditions and Finite Amplitude 

,/ Inviscid Solution 

0.5 

01 \ '\ I .....------- 's =-- <: 0-1 \ s 7 :;,;;;"" s: > 

... with Initial Conditions 

-0.5 

0 2 4 6 8 10 
k

0
vt 

I .... 
00 
w 

I 



- 184-

and volume contributions have been combined. The initial slope due to viscous tenns, ~vise• is 

detennined to be: 

2kovcr(~ + 8) 
!~~vitc = R. (1~2~) (102) 

~kov sa[ (1+8X1~2+8~2) + 2~(1+38)(3+8)] + cr(l~)[ (1~2) + 2~[3(1+8)+2~1] 
- 2Rb (1+~)(1~)(1~2~)2 

When S<O, a>O, and 0<:5<1, the initial slope will be positive. The influence of viscosity is again to 

initially amplify the shock front perturbation relative to the inviscid case. 

Defining 

and similar even and odd polynomials for the coefficients Bit~. and Di> the integrals become: 

1 

"'. = -
4

13£ fax vt-x2 x 
IOC 7tR.(l-a)(t~2~ 0 

cos(TX)[ A_,G--AoddGodd+B-F--BaciJ'odd] - sin(TX)[ A_G<Jddf"AoddG....,..+B._Fodd+Boo.fnen] 

[ elx"£<t~>2-4P4+2£X12C1~2)-o(l-a~Jw(l-a)2] 2[~"£2x"-2132rx1t-a2(t~2)J+[t-a~t~2)J2] 3 

1 

- PE fax -lt-x2 x 
1tR.b(t-a)(t~2~ 0 

cos(TX)[ C._G_-CoddG~D-F--DJodd] - sin(TX)[ c_G~oddG._.+D_,F~DJ....,..] 

[ elx"[(1~2-4jl2J+2£X2[2(1 ~2)--o(l-a~)~I-a)l] 2[ ~\:2Jc"-2j32r.xl[t-a~l ~2)]+[1-a~l ~2)]2] 3 

(103a) 

(103b) 

(104a) 

(104b) 
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Table I 

A1 = -(1-132>[ 2Sa(l-132X1-02X1+*2ji2)-a(1-0)[ (2+3&-a~ZC7-3a-:ui2~4+2Sa(1-P2>( 8(1+<1)+4P~1+<i)+2P4) 

+a2(1-132>( (4+9&-a2}+P~1-2BX5+<i)-6P4)] +<J~1-0)~1-132>[ B+2P2+a2B(1-132>]] 

A2 = -(1-132)[ SP~1-02)[ (5+4P2+3li)+a~1-P2)(3+B)] -o(1-0)[ sp2( (1+3BX2+<1)+P~11+7li)+2ji4] +a[ 3B{1+<i) 

+P2(23-8BX1+<i)-p4(11+18B+a2~6J +Sa2p~1-PZ)U+4MB2+2jiZJ+a3(1-i32)2[B(l+<i)+2jiZ]] 

+2aPY{1-0)~1-132X1+<i)] 

A3 = -132[ 2Sa(1-PZX1-02)[1+<i+P~5+<i))-o(1-B)[ (3+9B+:ui2)+2ji2(~3B2)-134(13+9a)-2j36+2Sa(1-j32)( 8(1+<i)+j3~4+7B+<IZ) 

+213•) +3a~l-132)2[1+4B+li2+21i2J] ~(1-0)2(1-132>[ l\+P2(2+<i)]J 

B1 = -(1-13Z)[ S(l-OZ)[l+a~1-132)](1+2P2+<i)-a(1-0)[ s( B(1+<1)+5j3~1+<1)+4134) +a( (5-0X1+2B)+P~l-0)(13+4B)-12134) 

+Sa2(t-PZX1+<~X3P2+<i)+a3(t-i32)~1+3B>J +2aa~t-O)~t-13ZX!32+<~>] 

B2 = -4Saj32(1-i32X1-0Z)(2+<i+P1)+<J(l-O)[ 8(1+<1)+2j3~5+4a-:ui1)-134B(9+<1~6+2Saj3~1-13Z)[ (l+SM2B~~5+3B)] 

+3a2(1-i32)~l+<IX3P1+<i)] -132a2<1-0)~l-131X1+2B+i31) 
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Co = ~2o(1~)(1-~~[ 4Sa(1~2)-211[3+a~1~2)][2&-~2(1+a}]+Sa2( ~4+a~2(l+a)(11+a)+:zji4(l+a}) 

+ao(l~}[~~J+a)J] 

c1 = ~2[ 2Sa(1-~~( 65{3~'\7+14*315'l)-:zji4(1~)-2a2(1~2}(3+a~2~J -<J(l~[ 2~2 ( (1+51i)-3~~1+a}) -sa( 215(7+a} 

~2(H)(l~)-~4(3+a)(5+a}+4j36(l+a)) +4a~2(1~2)~2+a}+2Sa3(1~2)(J+a~2~)J ~(1~)2[ ~~1-ra~"(J+a) 

-2a~1-~~2~}J] 

Cz = ~2[ S ( 2( 215(3+a}+~~5+215-ra~4(3+a)2-2~6(1--15)) +a~1~2)( 4a(3+15)(4+a)-~~19+1915+9152+a3)-4j34(5+31i))) 

+O(l~}[ ~2( +2(1+315}+~2(1-715~4(l+a}) +a(l-~~( ~6+a~2(15+24S+Ii2)-2~4(5-ra)) +Sa~2( (7+245+5152} 

~2(21+1&a+a2}+2~4(1+a}) +2a3(1-~~2[2&-~~l+a}]J +~lol(1~)2[ (3+515~2(7+a)] J 

~ = ~2[ sa( 215(1+a)(3+a~2(31+87li+25152+a3)-~4(37+8315+23152+a3)-4~6(3+a)-2a~l ~ZX3+a~2~Xl +15+2~~) 

+0(1 ~} [ 215(3+a~2(7+ 1215-ra'l)-~4(17+2215-ra'l)-4j36+S~2( (1+14S+Ii~~~13+101i-ra2)-4~4(1+a}) +2a2(1-P~ ( 15(3+a) 

~2(1+a)-2~4(2+a)]] ~2~1~)2[1~~5+a})] 

c4 = ~·[ s( 2( (1+6&t-15~2(3+a)(5+a}+2P4C1~}J +a2( (7+5lli+33152+51i3)-~~23+271i+13152+a3)-4~4(5+31i}J) 

+0(1~}[ ~11+~2(1+a}]+a( (9+3015+5152~2(11+201i-razr-2~4(5+a})]] 
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D0 = Sa(l-P2)(1-a)[ (1-a2)+8P2] -o(1-a)[ (1-a~p~1~~2P4(1~)+Sap2( (1+120+382~~9+14a+a~2p4(1+38)) 

-2az(1._pzy( (1-a}+3pz(l~)J -2Sa3pzo._pzX3~XPz-a)J +PY(1-ay[ (1-38}+P~1~)+2a~1-PzXPz-a)J 

n1 = s[ 2P2[ 0~382>+P~1~X3+8)+2P40-a>) +a20-P2>[ o-ax1~)2-4f3~1+88+38~P4<2~X3~>J) -ao-a>[ 2S132[ 28 

+P~3-a~4(1+38)) -a(l-P2>[ (1-a~2(1-a)+-2P4(7+58)) +Salp2[ (1+160+-382~2(3+68-azr_2p4(S~)J 

+2a3p~1-P~2(1-a)] -ap2ol(l-a)2[ (1+38~2(1--a)-4134] 

o2 = ._pz[ sa[ (1+418+1982+383)+P2(1-a)(17+60+-8~4(3~)2-2a~1-PZX3~)~4)) -o(l-a)[ (1-1~38~ 

+P~S+1o&+-az)+4p•(2~}-2Sapz( (5+14a+a~pz8) -2az(l._pz)[ (1+8~2}-2pz(2+38))] +2P2ol(l-a)z[2~zl] 

D3 = ._p2[ s[ a 2[ (1~)(1+120+38~2(7+8)(1+60f.gl}-4p4(11+118+28~) +4P2[ (4+7~2)+P2(S-a))) 

+a(l-a)[ 4SP2[8+p2(1+28)]+a [ (1+128+382)+P2(1~)(11~}-8P4(3+28))]] 

E1 = s[ 2P2(1+8+2P2)+a2(1-P~((1~)~~J -o(1-a)[ 2SP4-a[ (1~)+P~3-a)+2P4) +Salp~1+8+213~2a3p2(1-P2)] 

-ap2ol(l-ay 
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Table ll 

-2E.X2a(l~2>[ 1- a2(1~2>] [ z[ 3+a2(1~2>] (1~~[ 1-a~1~2>] \oo-ax1~2)[ 1-a2(1~2>] [ 3(1+0+8132) 

- 2a2(1-j3~(1+&-12P~- a4(1~2)~1+a)] +613lal(1-a)2[ (l+j32)- a~1-3P~1~2)]] 

+£2X4a[ (1~2)2[ 1- a2(1-P~] [ 3( (l+a)2+413~9-+4a)+ 1613•] - a~1~2)[ 5(l+a)2+68P2-144P4] +a4(1-13~2[ (l+a)2 

- 413~11+1Ui)] +a6(1~2~[ (l+a)2+4132]] +8Plo(1-aX1~~[ 3[ (l+a)+P~9+a)-2P4] -2a~1-P~[ 3(l+a)+ 3132(2-a) 

-14134] +3a"(l-P~2( (l+a)-13:Z0+3S)-2P4] +6a613~1~2~] +6134o~1-ai[ (3~2-5134)-4a~1~2X1-2132-134) 

+ a•(1 ~2)~1-6P2+P4>] J 

-4£Jx6aj32[ (1~2)[ 3 ( (1+a)2+ 13~27+1~2)+4134(3-a)-10P6] -2a~1~2)( 3(1+a)2+ 3132(13+4S-a~-4134(16+7S)-12136] 

+3a4(1-13~2( (l+a)2-P~5+14S+3S~-4134(7+a)+2P6] + 12a~~1~~(l+a)] +132o(1-a)[ 3( 3(1+a)+613~5+a)-134(17+5o) 

- 4136] -4a~1~~( 3(l+a)+ 313~1-:u>)-134(31+3o)+3136] +3a4(1~2>2( (l+a)-134(3-a)-213~5+3o)J] 

+ 134~1-a)2[ 3(1 +4132~4)- 2a~l +P~l-4132+P4>]] 

+£4X8aj34[ 2( 3 [ 3(1+a)2+2P2(37+303+-3S2)+ p4(19-34S-502)-4136(17+20) + 8138] -4a2(1~2)[ 3(l+a)2+ zp2(14+3&-3S2) 

-134(5+3SX19+a)- 6136(3-a)+ 4138] + 3a"(l-P~2 [ (l+a)2-2j32(5+100+3o~-134(31+6&-02)+ 4136]] 

+8132a(l-a)[ 3[ (1M)+4P~3M)+ p4(1-a)-2P6] -2a2[ (l+a)-3132S-134(17+30)+ 136(4+0)]] +3p4a2(1-a)~1~2+P4)] 

- 2£SX10aj36 [ 2( 3[ (1M)2+ 132(25+240+40~+ 134(fHiX4+0)- p6(13+40)- p8] -2a2[ (l+a)2+ 132(7-3S2)-134(43+34S+3o2) 

-136(5-8&-02)+4138]] +3132a(l-a)[ (l+a)+2P:Z0+3o)+l34(9+a)]] 
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-2!J£X3[ 2(1~2)2 [ 1-a~1~~J 2[ (1+*3P~+2a~1~2)(1-+&-9P2)-3a4(1-P~2(1*"-P~] +P2<J(l-a)(1-P2>[ 1-a~1~2)] x 

[ (13+3ll)+a2(1-P~[5(5+311)+72Plj-a4(1~~2(41+153-24P~+3a6(1~2Y(l-a)] +2P4al(1-a)2[ (3-2P~+3a2(1~2)(3+2P~ 

_ 3a4(5-2P2)(1~2)2+ a6(3-2P2)(1 ~2)3]] 

+P~2Jc5 [ (1~~[ (1+11)(23+38)+60P2-32P4 + 12a~1~~( (1+11Y+4PZ(7+38)+8P") -6a4(1~2f( (1+11)(17+5a) 

+4P~19+4a)-16fl4) +4a60-P¥( (1+11)(19+311)+ 12P~1-a)-sp4) -3a8(1~2t( (3-a)(1+11)-4P2)] + sp2a(1-a)[ (8+311) 

-2P~1+8)-3P4 +3a~1-P~[ 3(1+11)+2P~10+a)-4P4) -3a4(1~2f[ (8+58)+2PZ(3-a>-5P4
) 

+a6(1~2y( (7+311)-2P2(4+11))] +6P4~1-a)2[ (~~+2aZ(3+4p2-3P4)-n4(1~2)~5+P~]] 

- 4P4J.LE3X7 [ (1 +11)(13+311) + 2P2(14-28-a~- 2P4(19+38) + 6fl6 + 3a~1 ~2>[ 3(1+11)2+ 2P2(31 +2o&+a2)+ sp4(2-a}- 12P6] 

- 3a4(1~2>2( (1+11)(11+511) + 2P~22~~-2p4(13+5a)-2P6) + a6(1~2>3 ( (1+11)(11+311) -2P~1+88+11~-sp4) 

+ Plao-a>( (19+911) + pZ(?-311)- 8P4 +6a2( 3(1+11) + 2P~11+211>- P401+38) -2P6) -3a"(1~2)2[7+5II+P~11+11)1) 

+ 3P4<J2(1-a)2[1+a~1 +3P2>1] 

+ P6J.LE"x'[ 2( (1+11)(29+911) + p~n+143-311~- 4P4(13+411) + 6a2[ 3(1+11)2+ 4P~14+ 1111+11~ + P4(5-223-38~- 4P6(7+11)] 

-3n40-P~2( (1+11)(9+511)+ p2(41+2211+112)+4P")] +4P2<J(l-a>( (11~+ H~2-3P4+6a2( (1+11)+3PZ(3+11)+2P")] 

+ p4~1-a)~3+P2>] 

- 2P8J.L£5Xu [ 2( (8+38+P~[ (1+11)+3P2 - P"] + 3a2[ (1+11)2+4P4(4+11)+P2(19+1811+311~]] +P2<J(1-a)[5+3()+PZ(?+II)l] 

+ p1~~~3[ <1+11)(7+311) + p~25+1411+112)+ 4P"] 

a_(X) = -~1-a~1~2)[ 1 +3a2(1-P~] [ 1-a~1~2f 

+2£X2[ 2(1-Plf[ 1 +3a~1-P~] [ 1-a2(1~2>] 3 +<J(l-a)(1~2>[ 1-a~1~2>] 
2

[ (1+11~2 +2a2(1-P~(1+*18P~ 

- 3a4(1~~~1 *"-2P2>] + 2PlalO-a>2
[ 1-a2(1-P~] [ 1 + a~1 +9P~O-P~- a 4(2-3P2X1 ~2)2]] 
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-ezx•[ (1-13~[ 1-a.~1--P~] [ (1+8)2+4132(8+3a)+ !1~1--P~[ (1+8}2+ 2QP~4+30) + 144134) - a4(1-13~2 [ 5(1+8)2+ 4P2(28+15o) 

- 48134) + 3a6(1--P2)3[ (1 +8)2--4aj32J] + Sl32o(1-a) [ (1 +0+~~3-2P~J + 3alp~1--P~!3(3+8)+41321 

-3a•(1-13~2( 0+8>+ ~2(6+8)- 4P•) +a6(1--P2r( 2(1+8}+ 313~1-a}- 4P•) J +6P•alo-a)2[ O+P2>+4alp2(3--P2> 

- a4(1--P2)~1 +5132>] ] 

+4£3X6132[ (1+8)2 +213~11+6a)- 8134(1+8)-6P6 +3alp~1--P~( 3(1+8)(5+8)+4P2(11+20)- 8134) - 3a4(1--P2>2[ (1+8)2 

+ 2132(14+12.0+02)+ 8134(1-a) -10136) + a6(1--P2Y[ 2(1+8)2+13~17~30~-4134(5+20)) + 3132a(1-a)[ (1+8}+ 132(7+8) 

-2134+4alp2( 3(2+8}+13~3-a)-3134) - a-4(1-13~2( (1+8}+2P4+513~3+8))] +134~1-a)2[ 1 +2132+3alp2(3+P2>]] 

-e4X~4 [ 2( 3(1+8)2 +132(59+420+3o~+4134(2-3o)-16P6+ 12alp2( 3(1+8)(3+8)+ 132(25+60-0~-2134(7+30)-2136) 

- 3a4(1-13~2( (1+8)2 + 13~29+ 300+5o~ + 4134(6+8))) + Sl32o(1-a) [ (1 +8) + 2P~ 4+8) + 3alp2( (5+ 30) + 132(7-+a>) ] 

+13.~1-a)~1+3132>] 

+2£'x1op6[ 2[ (1+8~+13~19+160+202)+ 10j34 -3136+3alp2( (1+8)(7+3o)+ 13~25+140+02)+4134)) 

+ 132a(1-a) [ (1+8)+ 3132(3+0) + 2Ji4]] 

-13se~l2[ (1-+a)2+13~19+180+3o~+413.<4+8>] 

Godd(X) = -4f.LX!10'(1-a)(1--P2>[ 1-a~1--P2>] 
2

[[3+a~1--P~] (1--P~[ 1-a2(1-13~] +3132a(1-a}[ 1+a~1--P2>]] 

+ 4j.I£X3a[ O--P2i{ 1-a~1--P2>] 2( 3(1+8+4132)-2a2(1-13ZX1....&-6P~-a4(1--P~2(1+8)) +6jila(l-a)(1--P~[ 1- a2(1-13~] x 

( (3+0+2Ji2)-2a~1-3132)(1--P2)- a4(1--P2)~1+8)) +134~1-a)2( 3(3-13~-2a2(1--P2)(3-713~-3a4(1--P2)~1+13~)] 

-4J.&£ZX5p2a[ (1-13~[ 3[ (1+8}(5+0) +4132(5+8)-4P4
) - a~1--P2>[ 3(1+0}(9+0)+ 12132(1-2o)- 56P4) + 3a4(1--P2>2[ (3-a)(1+8) 

-4P~5+3o)-4P4) +3a6(1--P2Y[ o+a~+4P2)) +2P2o<1-a>[ 3[ 3(2+8)+13~5-a)-5134) -211~1--P~[ 3(3+0)-132(19+7o) 

- 6P4
) - 3a4(1--P~2[ 0 + 13za+a) -134

)] + 134a~1-a)2[ 3(3+P2)- a2(3-14P2+ 3134>] ] 
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+411£Jx7~4 [ 3[ 3(1-HiX3~ + ~2(35+-lo&-a~-~4(11+5a)-~6J -2a~1~~[ 3(1-HiXS-Hi)- ~~13+3s&t7a2)-4~4(17+3a) 

+61J6) +3a.4(t~2>2( o-a~-~2(17+t4a+a2>-~"o-a>) +~lao-a>[ 3( (5+3a)+~~CJ+a>-2~") - a.2( (7+3a)-2~2(t3+7a) 

- 3~4(3-a)+~6J] +3~"a2(1-a)2(1+~~J 

-4~~£4X'~6[ 3[ (1-HiX7+3a} + ~2(33+tsa-Hi~-4~4a-~6) - a.2[ O-HiXtt+Ja>- 2~2(13+263+-7a2>- ~4(77+IS&--3a2)+ ~6<S+W>) 

+3~1a(t-a)[ (3+2a)+2~2(~+~"]] 
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(104c) 

I 

+ f.L ~2 Jax -Jt-x2 x 
1tRb(l-~ 0 

Sc(TX)[ FoCJ • ...,;U11X Godd] - E5(f,X)[ FoCJCJ114iiLF1XoddG.....,J 

where 

T 

Ss(T,X) = lihl sin(uX) J0(T -u) (105) 

by analogy to the function Sc(T.X) defined by Eqn. 87, and the polynomials Feven(X), Foc~d(X), 

Geven(X), and Goc~d(X) are given in Table II. This viscous perturbation is shown in Figure 7. 

10. Dimensional Analysis or the Quantities a and S 

A simple dimensional argument can be made for the semiquantitative estimation of the param-

eters a and S that we hypothesize to characterize the initial shock perturbation structure. First recall 

the specific experimental geometry of Sakharov et al. [1965] (Figs. 1, 3 and 4). A section of sample 

material has a set of sinusoidal grooves cut in its upper surface. The planar surface of a wedge of 

identical sample material is then placed over these sinusoidal grooves. For fluid samples, thin metal 

or plastic containers were used to reproduce this geometry [Mineev and Zaidel', 1968]. The con-

tainers themselves are assumed to have negligible impact on the perturbation development. A shock 

is initiated in the first, grooved, sample. When the shock front reaches the grooves, the shocked 

specimen will begin to release adiabatically to ambient pressure. 180° out of phase with these 

releasing regions, the shock will continue unperturbed to approach the upper sample wedge (Fig. 

4b). In the limit ko---+0 the "normal" regions 1800 out of phase with the releasing regions will be 

unaffected by this release process. 
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Figure 7: Viscous perturbation calculation (Eqns. 100 and 104) compared to inviscid calculation 

(Eqn. 100), both with approximate initial conditions and finite amplitude correction. 

Evaluated with parameters listed in Table III, R. = 4.32, and x: = 1'1· 
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Figure 8: Schematic of the development of perturbations in the shock front When the shock first 

reaches the grooves in the sample disc (a), the sample will begin to release to ambient pres

sure. A release wave propagates backward into the shocked material as the shock wave 

progresses forward where the shock has not intersected the grooves (b). When the grooves 

are closed a sinusoidally perturbed shock front will have been generated (c), and a per

turbed region will exist behind this shock front. 
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In the regions where release commences, the free surface will travel with velocity =2Up. In 

the "normal" region, the shock travels at a velocity Us. In the weak shock limit, a<2, Us > 2Up and 

the shock will reach the wedged sample before the released surface does. In this case, l;o will be 

positive where the grooves were cut, and negative where the sample material is continuous. l;o will 

have the opposite phase if the shock is strong, a>2. 

If the initial depth of the grooves is 2xo. i.e., the groove depth varies as Xo[ 1 - cos(koy)], then 

the initially released material will reach the wedge at a time 

Xo 
f.:Iooe = Up ' (106) 

the time necessary to close the sinusoidal void. In this same time, the shock wave will have trav-

eled a distance 

or a distance 

Xo(Us-2Up) 

Up 

into the wedge (Fig. 4c). This is twice the initial amplitude of the shock wave perturbation: 

Xo(Us - 2Up) Xo I 2--0'1 
~ = = . 

2Up 2(a-l) 

(107) 

(108) 

(109) 

The initial amplitude ~ is taken to be positive, so we use the absolute value 12--0'1. The sign of 

(2--0') determines the phase of~ with respect to the grooves. 

While the free surface is closing the void, a release wave is traveling in the opposite direction 

into the shocked material. This release wave travels at a velocity (c-Up), and will travel a dis-

tance 

Xo(C- Up) 

Up 
(110) 
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away from the point of initial release, or a distance of 

Xo(C +Up) 

Up 
(111) 

relative to the first surface of the wedge at time t,10K. The characteristic length scale of this initial 

disturbance is thus 

or 

1 

~ 
:::: 

X{)(c +Up) 

Up = 
2[1 + ~(cr-1)1~o 

~I 2--<JI 

(l :::: 
~ 12--<JI 

2~[1 + ~(cr-1)] 

(112) 

(113) 

Sakharov et al. [1965] suggest that the length scale for the initial velocity perturbations will be on 

the order of ~ According to this approximate analysis, the length scale will be approximately 

1/(koa):::: 20x~0 for water at 15 GPa. 

When the void first closes a velocity perturbation will exist. Where a void had existed 

material will have a velocity of 2 Up, and where no void had existed material will have a velocity of 

Up. In the coordinate frame of Zaidel' [1967], the initial velocity perturbation will be 

2v'x = -Up = -v(cr-1) . 

From Eqns. 94a and 95 we then have: 

cr(1-{;) 
s = - 2(1~)kol;o 

The initial time derivative of ~ will therefore be negative for all stable shocks B < 1. 

(114) 

(115) 

At the level of approximation considered here, both a and S are functions of the product ~. 

The impact of these "nonlinear" parameters may be experimentally assessed, independently of 

viscous effects, by using different values of ~ and, independently, ko or ~ [Sakharov et al., 

1965]. 
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This approximate analysis gives approximate values of a and S that qualitatively reproduce 

the observed short-time behavior of the shock front oscillations. It would be useful to derive more 

exact expressions for the initial shock and flow structure. 

11. Complete Viscous Solution 

We noted in §8 that the perturbation approach may be overly restrictive in that only the invis-

cid eigenmodes of the system are considered. In going from the inviscid solution to a viscous solu-

tion, the governing differential equations change from first- to second-order, and the solution 

becomes correspondingly more complex. In the case of viscous flow, it is commonly observed that 

instabilities occur for certain critical Reynolds numbers. These so-called Tollmien-Schlichting insta-

bilities [Schlichting, 1979] are most commonly associated with viscous boundary layers, since it is 

in this context that viscosity is most commonly encountered, but the phenomena may be relevant to 

the issue of shock stability as well. 

The complete second-order differential equations that govern this problem may be solved to 

give a Laplace transform solution for the shock front corrugation amplitude. This solution will be 

presented below. The solution, ~. is algebraically complex, however, and is not as easy to interpret 

as was the inviscid solution. Because of this complexity, we resort to numerical solution methods. 

By way of some numerical examples, it will be shown that the complete second order equations do 

indeed exhibit instabilities. 

The second-order equations may be written as a set of five first-order equations by introducing 

the variables: 

1 avx 
q=~coax· (116) 



and 
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1 dVy 
r =- --ko ax . (117) 

Using these new variables, the Laplace transformed equations of motion and continuity can be writ-

ten as: 

(118) 

v" 0 0 0 0 v" 0 
ivy 

0 0 0 0 ivy 0 
a p 

=leo 0 -(1+£) -(1+£) 0 
p p 

ax - -z - + 
pv 

~ (Rb-RJ 
pv 

[ ~ ··] q 
R. (l+R.z) -Rb(l+£) -R~ -R.,e q 

if R. if ~---

R. (R.-R~ 
pvl v 

0 R. - iR_vy Rb (1+~) -R. 
~ v 

t=O 

For simplicity, we will neglect the initial conditions in the following development. 

As before, we seek an eigenvalue expansion for this matrix equation. The characteristic equa-

tion obtained from this expansion factors into two parts. The first is dependent only upon the pure 

shear viscosity: 

(119) 

giving eigenvalues: 

(120a) 

and 

(120b) 

The first eigenvalue, A.1, leads to decay of the perturbations for any real positive z, whereas the 

second solution will lead to exponential growth. In the inviscid limit, this part of the characteristic 

equation gave the single root A.1 of Eqn. 57. 
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The second factor of the characteristic equation is dependent solely on the viscosity accom-

panying compression without shear: 

The roots of this cubic equation are algebraically complex: 

where 

b -

and 

A.3 e 
- = -2 ...Ji cos(-)-

CR!,e+z) 

ko 3 3 

~ -
ko 
As -
ko 

...Ji 9+21t (R~+z) 
= -2 a cos(--) -

3 3 

...Ji 9+41t (R~+z) 
= -2 a cos(--) -

3 3 

a = (Rbe+z)2 + 3(1+2R~) 
9 

2(R~+z)3 + 9(R~+z)(1+2R~)- 27[Rb(l+e+z~ + z] 

54 

b e = Arccos ~ 

(121) 

(122a) 

(122b) 

(122c) 

(123a) 

(123b) 

(123c) 

The root ~ is positive for real positive values of z, and will therefore lead to instability. Both A.3 

and As are negative for real positive z, and might therefore be acceptable solutions. For complex z, 

however, the phase of ~ indicates that it corresponds to waves incident upon the shock whereas As 

corresponds to waves emitted by the shock. ~ might therefore be excluded on the grounds that it is 

unphysical. In the inviscid limit, the two eigenvalues associated with these acoustic modes were ~ 

and ~ of Eqn. 57. 

The complete boundary conditions at the shock front may be written as: 
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~(a--1)(1-H5)R.,R/ + ~v(a--l)R.[~(l~(2Rb-R.)J- R. 'uaq + 00(2Rb-R,.)ii 

a [ Rt,R. ~I ....a) + 3(2~ -R.> J 
;o(a--1)(1-H5)R.,R.- ~v(a--l)Rt,R.[z(l-H5)+R.CJ(l-a)] + R.o&i + o(t-a)R.,R.ir 

(124) 

a[ Rt,R. ~I ....a)+ 3(2~-R.>] 
-{o(a--1)[2Rb(l-R.~R.l + ~v(a--l)[z(2Rb(l-R. ~R.)+oR,(2~-R.>l +oR. 2q- o(2Rb-R,.)ii 

a[ ~~t-a) + 3(2~-R.>] 
q 
ii x=O 

Recall that the boundary conditions in the inviscid case are underspecified, i.e., Yx,x=O• vy,x=Ot 

and Px=O are not uniquely defined, but are functions of ~. By omitting one eigenmode from the 

solution, we acquired an additional constraint, and it became possible to determine ~. In the present 

case, our boundary conditions are underspecified to a greater extent: we have the three boundary 

values ~. Qx=O, and rx=O that are undetermined. By omitting three of the five eigenmodes from the 

solution, we satisfy the necessary constraints. Applying the methodology described previously, we 

may determine the behavior of the shock front by simultaneously solving: 

~2·ux=0 = 0 

~3'Ux=0 = 0 

~4·ux=0 = 0 

for the three unknowns Qx=O• rx=O• and~. where ''l'n is the left eigenvector corresponding to An· 

(125a) 

(125b) 

(125c) 

An alternative formulation of the solution is to expand the velocity and pressure perturbations 

in terms of the right eigenvectors: 

u = C{'f', + Cs''lfs , (126) 

where r'l'n is the right eigenvector corresponding to eigenvalue A.n. This alternative approach, for-

mally identical to the earlier method, is somewhat less awkward in this case. 

We begin by taking appropriate linear combinations of the boundary conditions to obtain: 

(127a) 
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izi = R.(cr-1)1;0 + (R.cr+z)vx + R.zivy + R.crol__ 
pv 

(12Th) 

(127c) 

at x=O. The last two conditions, in conjunction with Eqn. 126, may be used to determine the 

coefficients C1 and Cs. Defining: 

we write: 

2RbR. 
2Rb-R. 

~I = ~(1+0) 
-R. 

0 

and ~= 

R.cr+z 
R.z 

R.cro 
0 
-z 

(128) 

(129a) 

(129b) 

to determine the coefficients C1 and Cs. These coefficients, together with Eqn. 126, serve to deter-

mine vx and P/(pv), which may be used to solve for ; with Eqn. 127a 

The right eigenvectors are: 

1 -A.' s(A.' s+z) 
-A.' I (A.' s+z) 

r'l'l = 0 and r'l's = -(1 +E)(l-A,' f} 
A.' I -A.'?(A.' s+z) 
A.'2 A.' s(A.' s+z) - I 

leading to the solution: 

kov~ = 
Rb[ (A.'s+z)[ 4(l+R.z-I..',A.'t) + 2R,(A.'t-R.+z) + R.~2Xz-1..'5)) - R.S<l+EX1-I..'f><R.z+2)] 

det(M) 

(130) 

(131) 
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where 

det(M) = -Rb[ R.0(1+e)(l-1..'f>[ R.(<J-z2
)- 2(A.'1cr+z)J (132) 

+ (A.'s+z)[ 2(1+R.z-A.'sA.'1)(R.<J+2z) + 2R.z(A.'1-R.+z) + R.(z-A.'5)(R,z2-2z-R.cr)JJ , 

and A.'i is ~fko. 

In the inviscid limit, R, --+ oo and Rb --+ oo, the eigenvalues correspond to those derived in the 

previous section (i.e., Eqn. 57). The solution, ~. is also identical to the inviscid solution, Eqn. 68a, 

obtained in the previous sections. The D'yakov-Kontorovich stability criteria are therefore applica-

ble in this case. 

If we seek a approximate solutions for A.1 and~ in the form of power series expansions, e.g., 

(133a) 

and 

ko(~2z - ro) ko~4(z - ro)3 
_ 

~ = (1-~2) + 2Rb(l-~13ro + O<Rb 1 ' 
(133b) 

and write a Taylor series expansion for ~: 

(134) 

then we arrive at the same solution, Eqn. 82, obtained by the perturbation method of Zaidel' [1967]. 

valid in the limit of negligible viscosity. 

The limit of infinite viscosity may also be obtained from Eqn. 131. In the limit R,--+0, the 

characteristic equation, Eqn. 119, gives the two solutions: 

A.= ±leo. (135) 

where the negative solution is the stable one. When ~-+<>. the acoustic characteristic equation, 

Eqn. 121, gives the three solutions: 
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A. = -koz, ± ko . (136) 

The two negative roots are unconditionally stable, however only the root A.= -koz gives an eigen-

vector that is linearly independent of the entropy waves. 

The shock front perturbation in this limit is 

lim ~r_vl = 1 
R.-oO, R,--o "0 'I' Z 

(137) 

thus the shock front perturbation amplitude is a unit step function: 

(138) 

the amplitude will neither grow nor diminish with time, and is therefore unconditionally stable. 

This limiting behavior is very different from that indicated by the linearized perturbation method, 

and indicates the limitations of that method for large but finite viscosity. 

To study the solution for finite viscosity requires that the inverse Laplace transform of Eqn. 

131 be found. Because of the complexity of this equation, we employ the Legendre polynomial 

quadrature method of Bellman et al. [1966] to numerically invert Eqn. 131. This inversion is shown 

in Figure 9 for several values of R.. with Rb determined by specifying x: = 11· When R, is large, i.e., 

128 or larger, the solution approaches the inviscid solution (without initial conditions or finite ampli-

tude corrections). When R. is 4, the solution is approximately critically damped: the oscillations of 

cp about zero are greatly reduced. Smaller shear Reynolds numbers lead to qualitatively different 

behavior. As R. approaches zero (not shown), the amplitude tends to remain constant at cp = 1, but 

ultimately become unstable as for the case R. = 1 shown in Figure 9. All of the numerical experi-

ments conducted so far with 0 < R. < 4 ultimately exhibit instabilities. 

Viscosity can usually be considered as a stabilizing factor, as in the case of flow through a 

pipe. When the Reynolds number is larger than some critical value, or, equivalently, the viscosity is 

too small, turbulence develops. Small Reynolds numbers, or large viscosities, give laminar flow. 
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Figure 9: Numerical inversion of second-order equation (Eqn. 131) forK= 11. and R.=1, 2, 4, 8, 16, 

32, 64, and 128, with parameters listed in Table III. The squares represent the points calcu

lated by the twentieth-order shifted Lagrange polynomial quadrature method [Bellman et 

a/., 1966], and the curves are fit to the points with cubic splines. Shear Reynolds numbers 

smaller than 4 appear to give unstable solutions. Large shear Reynolds number solutions 

approach the inviscid solution given by Eqn. 79, Figure 4. 
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The opposite behavior is exhibited in this corrugated shock problem. One interpretation of this 

behavior comes from the analysis of Freeman [1955] of a related problem: that of a shock driven by 

a corrugated piston in an inviscid fluid. He identified the mechanism of shock perturbation decay as 

the interference of pressure (sound) waves at the shock front If these pressure waves were strongly 

attenuated, as in a highly viscous fluid, then the damping mechanism would be ineffective. 

These instabilities are kinetic in origin, and as such are fundamentally different from those 

that arise from violation of the Kontorovich-D'yakov criteria. The latter, which are thermodynamic 

in origin, lead to shock-splitting. We infer, by analogy to Tollmein-Schlichting instability theory, 

that these low Reynolds number instabilities lead to turbulence at the shock front Since there is a 

wavelength for any viscous material such that R. will be less than 4, these calculations predict that 

turbulence may occur commonly in shock experiments. Whether such turbulence is detectable 

would depend on the wavelength of the perturbation and the magnitude of the viscosity, in addition 

to the thermodynamic parameters that characterize the system. The possible existence of such tur

bulence at the shock front offers a new interpretation for the rapid dynamic mixing that is observed 

in shock-induced chemical reactions [e.g., Boslough, 1989, 1990]. 

12. Review of Experiments on Water 

As an example, we will examine the experimental results for water shocked to 15 GPa, the 

maximum shock pressure achieved in the viscosity measurement experiments of Mineev and Zaidel' 

[1968]. The Hugoniot is given by p0 = 0.998 [glee], c0 = 2.393 [km/s], and s = 1.333 

(Us= c0 +sUp) [Mitchell and Nellis, 1982], valid in the range 1.5 <Up< 7.1 [km/s]. At a peak 

shock pressure of 15 GPa, the linear Us-Up relation gives Us = 5.383 [km/s] and Up = 2.243 [km/s]. 

v is then 3.140, and v0 is 5.383. 
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The Hugoniot bulk modulus can be determined from the Us-Up shock equation of state: 

-V oP I Us [ Us+ UpUs'] 
KH = av IHugmiot = Yo (Us-Up) Us- UpUs' , (139) 

where Us' is oUsfoUp, or s for a linear (i.e., Us = c0 + sUp) material. This relationship allows S, 

Eqn. 33, to be calculated from: 

Us- UpUs' 
B = 

Us+ UpUs' 

from which we calculate B = 0.287 at 15 GPa. 

= a- s(a-1) 
a+ s(a-1) ' 

The high pressure isentropic bulk modulus is calculated from the thermodynamic identity: 

(140) 

(141) 

where y is the thermodynamic Griineisen parameter. From Eqn. 141 the parameter ~. Eqn. 54, is 

found to be: 

~ = ~ 1- Yl"r(a-1)(1~) · 
(142) 

Using the experimental value of y = 1.5 [Mitchell and Nellis, 1982] at high pressure obtained from a 

Mie-Griineisen model, Eqn. 142 gives~= 0.682. Bakanova et al. [1976] measured the sound speed 

of shock compressed water, and a value of 5.8 km/s is given by their results at 15 GPa. Using this 

experimentally constrained sound speed, ~ is found to be 0.541. Since water is not well described 

by the Mie-Griineisen equation of state, we will use the value ~ = 0.541. 

The initial amplitude of the perturbations is reported to be in the range ~ = 0.19 to 1.13. 

From Eqn. 113 we then estimate a to be in the range 0.34 to 0.06, and from Eqn. 115 S is in the 

range -2.50 to -0.42. 

Mineev and Zaidel' [1968] calculate a viscosity of 2.2xHf poise with perturbation 

wavelengths of 1 and 2 em. The shear Reynolds number (RJ that characterizes this problem, Eqn. 



- 210-

83, is then 4.23 {21tlko = 1 em) or 8.46 (21t/ko = 2 em). Note that the viscous perturbation method 

is valid in the limit R..Rb -+ oo. 

The conditions, Eqns. 75 and 99, for the transformation contours are satisfied. 

Viscosities were obtained from the Sakharov et al. [1965] type experiments by conducting two 

experiments with different Reynolds numbers, and measuring the difference in normalized time of 

the first zero crossing of cj). Doubling the Reynolds number for water at 15 GPa shifted the zero 

crossing by by kov.£\t = 0.59 (Mineev and Zaidel' [1968] report ko;~t = 0.16). Figure 10 shows 

the calculated shift in zero crossing times for a doubling of the Reynolds number as a function of 

R,-1. When initial conditions are neglected, the perturbation theory predicts R.-1 = 0.078 (Fig. lOa), 

assuming K = 1'\. from which 1'\ is found to be 6700 poise (ko = 27t). With these same assumptions, 

the second-order analysis predicts 1'\ = 5800 poise (Fig. IOd). The perturbation method gives essen

tially the same result, within an order of magnitude, as the more exact second-order equations. The 

effect of the approximate initial conditions is to predict somewhat larger viscosities; 19000 poise 

without the finite amplitude correction (Fig. lOb), and 20000 poise with the finite amplitude correc

tion (Fig. IOc). These results are summarized in Table N. For all model calculations, increasing 

KIT\ predicts a slight decrease in 1'\· 

These large calculated values of viscosity appears to be robust in the sense that different lev

els of approximation give similar values to within an order of magnitude. While the addition of an 

IC model reconciles the shape of cj)(T) with the experimental data (assumed to be qualitatively simi

lar to the published results for aluminum [Sakharov et al., 1965; Mineev and Savinov, 1967]), its 

impact on the resulting viscosity calculation is unimportant in this case. 

The good agreement between our calculations and the results of Mineev and Zaidel' [1968] 

demonstrates that the differences between our formulae and Zaidel's [1967] are minor, yet the 
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Table III: Water parameters at 15 GPa to model Mineev and Zaidel' [1968] 

Parameter Eqn. Value 

Vo 5.383 km/s 

v 3.140 km/s 

c 5.8 km/s 

(J 42 1.714 

~ 54 0.541 

0 140 0.287 

£ 69 1.153 

Jl 70 1.074 

ko 21t cm-1 

~ 1 

a 113 0.056 

s 115 -0.47 
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Table IV: Calculated shear viscosities for water at 15 GPa 

Method Shear Viscosity [poise] 

Mineev and Zaidel' [1968] 22000 

with viscous perturbation method of Zaidel' [1967] 

Viscous perturbation (Eqn. 86, Fig. lOa) 6700a 

Viscous perturbation with approximate initial 19000a 

conditions (Eqns. 97 and 104, Fig. lOb) 

Viscous perturbation with initial conditions 20000a 

and finite amplitude correction (Eqns. 100 and 104, Fig. lOc) 

Second-order solution without initial conditions 5800a 

(Eqn. 131, Fig. lOd) 

a K = 11 is assumed. 
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Figure 10: Shift in time of first zero crossing for a doubling of the shear Reynolds number as a 

function of IIR. for x: = 0, ll. 2ll, 3ll, and 4ll, for (a) viscous perturbation method without 

initial conditions, (b) perturbation method with approximate initial conditions, (c) perturba

tion method with approximate initial conditions and finite amplitude correction, and (d) 

second-order equation without initial conditions. Curves are calculated for water at 15 

GPa, with ~ = 1, ko = 21t cm-1, and parameters listed in Table III. Large arrows illus

trate the calculation of shear Reynolds number from a set of experiments. Doubling the 

Reynolds number by doubling the perturbation wavelength shifts the first zero crossing of cp 

in dimensionless time (kovt). For water at 15 GPa, this shift is 0.59. Assuming x: = ll. the 

shear Reynolds number is 12.8 (Fig. lOa), corresponding to a shear viscosity of 6700 poise 

(with parameters of Table III). 
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calculated viscosities are substantially higher than other measurements and calculations (Fig. 2). 

One possible explanation for this many order of magnitude discrepancy is that some other dissipa-

tive mechanism may act on the shock front [Hamann and Linton, 1969]. One such mechanism is 

thermal conduction. Zaidel' [1967] noted that the combined equations of motion and continuity that 

govern this problem also, together with an equation of energy, describe the classical dissipation of 

sound [Landau and Lifshitz, 1959, pp. 298-302] by viscosity and thermal conductivity. This 

analysis predicts that the absorption coefficient f<r sound is proportional to 

(143) 

where x: is the bulk viscosity, ap is the thermal expansivity at constant pressure, y is the thermo-

dynamic Griineisen parameter, x is the thermal diffusivity, and T is the shock temperature. Indeed, 

we have found the term ( 3-V+~) to be the relevant viscosity for that part of the induced fluid motion 

associated with sound waves. We might suppose that this association of parameters, including ther-

mal conductivity, might effect the damping of the perturbed shock front In this case, for the ther-

mal diffusivity to be important <XpYXT would need to have magnitude O(v) to have a significant 

impact on the viscosity measurement 

In the weak shock limit, the width of the shock front is proportional to Eqn. 143 [Landau and 

Lifshitz, 1959, pp. 337-341]. The effective viscosity calculated from shock front profiles therefore 

includes both bulk viscosity and thermal diffusivity contributions. This grouping of terms describes 

only part of the viscous damping of shock perturbations: that part associated with sound waves. 

That part of the damping associated with entropy-vortex waves is dependent only on the shear 

viscosity (cf. Eqn. 81). Viscosities calculated from shock profiles should be comparable to those 

calculated from shock perturbation damping to the extent that the acoustic damping mechanism 

dominates and the entropy-vortex damping mechanism has negligible influence. Harris and Presles 
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[1981] estimate the viscosity of water at 0.58 GPa to be S 0.6 poise by the shock profile method. If 

this is typical of stronger shocks as well, then thermal diffusivity cannot be responsible for the 

anomalously large viscosity estimates. 

Mineev and Zaidel' [ 1968] attribute the large viscosity measured under these conditions to the 

high frequency of the perturbations relative to the relaxation time of the sample, i.e., they propose 

t ~ lie where e is the strain rate. They estimate this strain rate to be: 

(144) 

which they calculate to be on the order of 0.1 MHz, corresponding to a characteristic time of 10 IJ.S. 

Another measure of the characteristic frequency of perturbations comes from the acoustic frequency: 

(145) 

evaluated at the poles of Eqn. 68. These poles are readily determined from the denominator of Eqn. 

74 with the transformation Eqn. 72, and give a characteristic acoustic frequency of 4.8 MHz and 

time scale 0.22 1J.S with the parameters in Table III. If water has an anelastic absorption mode near 

4.8 MHz, than sound waves will be attenuated as if by viscosity. The effective viscosity calculated 

by the method described above will therefore greatly overestimate the bulk and shear viscosities. 

Harris and Presles [1981] suggested that the Sakharov et al. [1965] experiments appear to 

measure shock front related viscosity. Indeed, our analysis does suggest that the viscosity at the 

shock boundary does have a greater influence over the damping than does the viscosity in the bulk 

of the shocked fluid. Figure Sa shows the shock front contributions (Eqns. 86b, 86c) and volume 

contributions (Eqns. 86d, 86e, 86t) to the viscous perturbation {IC neglected). Clearly the magni

tude of the BC term is comparable to that of the bulk, and more importantly it is of opposite sign. 

This calculation suggests that a viscosity at the surface of magnitude 1if poise, and a viscosity in 

the volume of magnitude 10-2 poise would explain the experimental results while allowing for the 
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possibility that the shear viscosity could be as small as w-z poise. 

If the material properties of the sample near the shock front were different than in the bulk, 

however, the surface viscosity might be much greater than the viscosity in the volume. Rice and 

Walsh [1957] recognized that the Hugoniot for water passes through (or very near) the field of ice 

VII stability (Fig. 11). More recent experiments by Al'tshuler et al. [1958] and analyses by 

Schroeder and McMaster [1973] suggest that water does actually freeze to ice VII on the Hugoniot, 

and melts at higher shock pressure. If this is true, then crystalline or partially crystalline water in 

(or near) the shock front could easily have a higher viscosity than the crystal-free liquid away from 

the front This effect might influence the shock viscosity at higher pressure than the point at which 

ice VII melts on the water Hugoniot: ice VII formed on the Rayleigh path through the shock front 

might exist even if the final shock state were outside the field of ice VII stability. The existence of 

a phase transformation on the Rayleigh path would also have an adverse effect on the estimation of 

viscosity from the shock front profile. 

Mineev and Savinov [1976] discussed the shock viscosity of water in relation to its phase 

diagram. They noted that the measured viscosity of water decreases by about a factor of 5 in the 

range 12-25 GPa, but remains on the order of Hf poise. This large viscosity was attributed to the 

existence of ice VII. They suggested that melting did not occur abruptly on the Hugoniot, but 

occurred gradually with increasing pressure. While it is possible that water remains in the two

phase region over an extended pressure interval, this interpretation is inconsistent with the experi

mental results of Al'tshuler et al. [1958] and the calculations of Schroeder and McMaster [1973] 

that indicate complete melting by 13 GPa. Our suggestion that the material properties near the 

shock front may dominate reconciles Mineev and Savinov's [1976] interpretation with the phase 

relations. 
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Figme 11: Phase diagram for water [Liu and Bassett, 1986; Pistorius et al., 1963], and calculated 

Hugoniot temperatme for water [Rice and Walsh, 1957]. More recent calculations by 

Schroeder and McMaster [ 1972] indicate that ice VII melts on the 20°C initial temperature 

Hugoniot at 13 GPa. The -10°C initial temperatme Hugoniot is calculated to melt at 23.4 

GPa. The shock temperature measurements of Koerner [1968] and Lyzenga et al. [1982] 

support the high melting temperature calculation of Schroeder and McMaster. 
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If water were partially crystallized near 15 GPa on the Hugoniot, then indirect viscosity meas

urements, e.g., the electrical conductivity experiments [Hamann and Linton, 1969], might well 

predict a substantially lower viscosity than the oscillatory damping method. Even if ice VII existed 

at equilibrium with water behind the shock front, the existence of a fully interconnected melt net

work would give essentially the same conductivity measurement as a completely liquid system. Par

tially crystalline water behind the shock front would have an adverse effect on the viscous drag 

experiments [Al'tshuler et al., 1977, 1986; Kim, 1984] as well, although these experiments should 

be insensitive to the material properties near the shock front itself. 

13. Conclusions 

We have expanded upon the analysis of Zaidel' [1967] for the damping of perturbations on a 

shock front We have also clarified the assumptions implicit in the analysis, and explored the 

ramifications of these assumptions on the application of the method to analyzing experiments. We 

considered in detail (1) the effect of initial conditions, (2) finite shock amplitude, and (3) the vali

dity of the viscous perturbation approach. 

The controversial experiments on shocked water [Mineev and Zaidel', 1968] were reviewed. 

To the extent that we can analyze these experiments from the published descriptions, we conclude 

that the dissipative forces in the system are compatible with the viscosities calculated from the 

Zaidel' [1967] formulae. That this calculated viscosity may be apparent rather than real is sug

gested by the sensitivity of the calculation to the material properties in and near the shock front, and 

the prediction that water may be at least partially crystalline (ice VII) on the Rayleigh path. This 

explanation reconciles the Mineev and Zaidel' [1968] experiments with the viscosity estimates 

obtained from electrical conductivity measurements of dilute salt solutions. 
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If water has an anelastic absorption mode near 4.8 MHz, this too would lead to a gross 

overestimation of the viscosity. The importance of anelasticity might be tested experimentally by 

conducting these experiments with longer wavelength perturbations that give lower frequency 

compressional wave frequencies. 

It important to note that the complete experimental measurements for cj)(T) have not been pub

lished for any fluid, including water. Only the results for aluminum have been shown by Sakharov 

et al., [1965] and Mineev and Savinov [1967]. In the case of aluminum, decreasing the Reynolds 

number shifts the first zero of <1> to shorter times. This is qualitatively opposite to our calculations 

for water. Since only the magnitude, and not the sign, of this phase shift for water has been 

reported, it remains to be shown whether or not the analytic description of the experiment even 

qualitatively models the data. Until such a comparison can be made to demonstrate good agreement 

between the theory and experiment, these calculated viscosities must be regarded as provisional. 

The oscillatory damping experiments were originally suggested as a method for determining 

shear viscosity at high pressure. We have shown that the bulk viscosity (and by inference, thermal 

conductivity) influence the damping as well. These viscosities are coupled, and cannot be decoupled 

experimentally by independent adjustment of either the perturbation wavenumber, ko. or amplitude, 

!;o. The shear and bulk contributions have different phases, however, so precise measurement of cl>(t) 

could, at least in principle, be analyzed for both shear and bulk viscosities. Such an analysis would 

be quite sensitive to the IC, however, and the approximations considered here may prove inadequate 

for this purpose. 

Preliminary calculations with the full second-order Navier-Stokes equations for viscous 

compressible flow indicate that shock instabilities may occur even when the Kontorovich-D'yakov 

thermodynamic stability criteria are satisfied. These rheological instabilities may manifest them-
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selves as turbulence behind the shock front. and might be responsible for the rapid dynamic mixing 

that is observed in shock-mediated chemical reactions. 

We are grateful to D.W. Schwendeman for his invaluable assistance with the mathematical 

analysis in §5, and R.F. Svendsen, Jr., for very helpful discussions regarding the formulation of 

boundary conditions. We also thank Professors D.J. Stevenson and W.I. Newman (UCLA) for their 

thoughtful comments and suggestions. 
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Chapter 3: The Equation or State or Molybdenum at 1400°C t 

f Published in Journal of Applied Physics, 63, 4469-4475, 1988. 
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Shock compression data to 96 GPa for pure molybdenum, initially heated to 1400°C, are 

presented. Finite strain analysis of the data gives a bulk modulus at 1400°C, Kos. of 244±2 GPa and 

its pressure derivative, ~. of 4. A fit of shock velocity to particle velocity gives the coefficients of 

Us=eo+sUp to be co=4.77±0.06 km/s and s:=1.43±0.05. From the zero pressure sound speed, c0, a 

bulk modulus of 232±6 GPa is calculated that is consistent with extrapolation of ultrasonic elasticity 

measurements. The temperature derivative of the bulk modulus at zero pressure, oKos/oTI p, is 

approximately -0.012 GPa/K. A thermodynamic model is used to show that the thermodynamic 

Griineisen parameter is proportional to the density and independent of temperature. The Mie

Griineisen equation of state adequately describes the high temperature behavior of molybdenum 

under the present range of shock loading conditions. 

1. Introduction 

The equation of state (EOS) of molybdenum (Mo) at high pressures is being used as a calibra

tion standard to relate absolute pressure-density data to diamond anvil compression data [Mao et al., 

1978]. Both shock and particle velocity have been measured for Mo shocked with a nuclear explo

sive [Regan et a/., 1977] to obtain Hugoniot data to 2.0 TPa. Mo is thus well calibrated along the 

room temperature (or "principal") Hugoniot, yet theoretical arguments are necessary to extend the 

shock EOS to neighboring regions of P-V-T space. The present study is the first study of the abso

lute EOS of any metal at significantly high initial temperatures. A l400°C Mo Hugoniot has been 

measured that calibrates models for this P-V-T extrapolation. 

One of the research efforts of the experimental geophysics group at Caltech is the study of 

molten silicates under shock loading conditions. These experiments, developed by Rigden et a/. 

[1984; 1988], employ a Mo sample assembly that both contains the sample at temperatures in excess 
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of 1400°C, and acts as a furnace by coupling to a radio frequency power source. A flyer plate, pro

pelled by a gun, impacts the first surface of the heated Mo container, and the subsequent shock 

wave traverses the Mo driver plate, then the silicate sample, and finally the Mo cover. The transit 

time of the shock wave through the sample and cover combination is recorded with a rotating prism 

streak camera. A direct impedance match solution [Ahrens, 1987] for this composite sample assem

bly requires knowledge of the shock behavior of either the molten sample or the heated Mo. Since 

the former is the objective of these experiments, the latter must either be calculated or experimen

tally determined. Rigden et a/. [1984; 1988] calculated the high temperature shock behavior of Mo 

from its known principal Hugoniot with a Mie-Griineisen extension of the Birch-Mumaghan EOS 

[Birch, 1952]. 

In order to verify these calculations, we undertook an experimental study of the dynamic load

ing properties of Mo at 1400°C, the temperature to which Rigden et a/. heated their molten 

anorthite-diopside eutectic composition. In addition to their direct relevance to our shock wave stu

dies of molten silicates, our new results on hot Mo give more general insights into the high tempera

ture and pressure equations of state of metals. 

2. Experimental Procedure 

Dynamic shock compression of hot Mo was achieved using the Caltech 40 mm powder gun 

[Ahrens, 1987]. The experimental procedure is similar the that used by Rigden et a/. [1984; 1988] 

for the shock measurement of the EOS of molten silicates. 

Molybdenum of 99.95% purity, specification ABL-2 from Amac Specialty Metals, Cleveland, 

was used. The samples were machined from this polycrystalline stock into a single piece driver 

plate-sample combination as shown in Figure 1. A 2 mm thick, 45 mm diameter disk of Mo acts as 
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the driver plate, and a 3.6 mm thick, 13.5 mm diameter disk of Mo, coaxial to the driver plate, is 

the sample. 

The Mo samples were supported by a 6.4 mm thick plate of fibrous AI2o3 ceramic at a dis

tance of approximately 1 mm from a three-tum water-cooled copper coil. This coil, attached to a 

10 kW radio frequency source, acted as an induction heater. Temperatures in excess of 1800°C 

could be achieved with this configuration. At 1400°C, the temperature can be stabilized to within 

one-half degree. A 100%Pt-90%Pt 10%Rh thermocouple was pressed into a well in the sample to 

record its preheating temperature. Light reflected from the free surface of the sample and driver 

was turned by a mirror in the tank to a port at the side of the tank. This reflected light was subse

quently focused onto the slit of a continuous writing streak camera. This streak record was used to 

record the shock transit time within the sample. A xenon flash lamp operating at 10-15 kV was 

used to illwninate the sample during the experiment. 

The flyer plates were 2.4 mm thick, 32 mm diameter disks of either tungsten or 2024 alumi

num mounted in a Lexan projectile. The velocity of the projectile was recorded with a double expo

sure X-ray shadowgraph. The X-ray exposure occurred immediately prior to impact. As a backup 

device, the time taken for the projectile to cross the known distances between three lasers that cross 

the flight path is measured. Projectile velocities were between 1.5 and 2.5 km/s. 

The measured quantities in our experiment are the sample and flyer plate density, initial sam

ple temperature, the shock transit time in the sample, and the velocity of impact. 

3. Results and Discussion 

The shock pressure, PH, and sample density, PHS• were calculated from the Rankine-Hugoniot 

equations for stress and mass conservation across the flyer plate-driver/sample interface. Sample 



- 234-

Figure 1: Schematic cross section of the experimental setup. A molybdenum driver plate (a) and 

sample (b) are machined as a single piece. The sample is suspended in a fibrous AI2o3 

ceramic plate (c) adjacent to a copper induction coil (d). Preheat temperatures are recorded 

by the 100%Pt-90%Pt 10%Rh thermocouple (e) that is pressed into the sample. A tungsten 

or 2024 aluminum flyer plate (f) is pressed into a Lexan projectile (g) with 0-rings (h) to 

help retain the muzzle gasses. 
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thickness and initial density are not directly measured, but calculated from their measured room 

temperature values, the sample preheat temperature, and the linear thermal expansion data in Table 

I. The shock states with their estimated RMS errors are given in Table II. 

Our analysis of these results is presented in parts. First, we demonstrate that our final shock 

states are solid and not liquid. Second, we determine the isentropic bulk modulus and its pressure 

derivative for Moat 14000C with both a finite strain model and the shock EOS. Third. we compare 

our shock data with the theoretical predictions of the Mie-Griineisen EOS and show that the 

Griineisen parameter varies in proportion to density. Fourth and finally, we compare our data with 

elasticity measurements to discriminate between three possible interpretations of our data. 

Shock State: Solid versus Liquid 

The calculated melting temperature for Mo is at least 1000 K higher than the calculated shock 

temperatures of our experiments at a given shock pressure. Our final shock states therefore 

represent solid Mo in all cases. 

The Rankine-Hugoniot equations can be used to determine the pressure (P), volume per unit 

mass (V), and internal energy per unit mass (E) along the Hugoniot. A constitutive relationship is 

necessary to relate these state variables to the temperature (1). The Mie-Griineisen equation is a 

useful constitutive relationship for this purpose and has a strong theoretical foundation [Eliezer et 

al., 1986]. 

The thermodynamic Griineisen parameter, y= --0 In Tf() In VI s. relates internal energy and pres

sure according to the Mie-Griineisen equation, fJP/fJEI v=y/V. The Griineisen parameter is assumed 

to be a function of volume according to: 



w 
2024 AI 

Mo 

- 237-

Table I. Parameters used in data reduction 

co (krnls) 

4.029. 
5.328. 
5.14 b 

s 
1.237. 
1.338. 
1.22 b 

19.224. 
2.785. 

10.2201 c 

M.IL0 = 4.697x1<r (f- 293) + 9.756x1()10 (f- 293)2 + 9.403x1()14 (f- 293)3 

for Mo from 293 to 1545 K, ±4%, and 
MJLo = 7.60x10-3 + 7.583x1<r (f -1545) + 1.329x10-9 (f -1545)2 + 1.149x10-12(f -1545)3 

for Mo from 1545 to 2800 K, ±5% d 

'Yo,Mo =1.52 c 

Cp=34.139-4.4926x10-Jr+3.7012x10~2- 1.57~x1o2 J mol-1 K-1 

a b McQueen, 1969. 
Marsh, 1980. 

~ Straumanis and Shodhan, 1968. 
Touloukian et al., 1970. 

e f McQueen et al., 1970. 
Robie et al., 1978. 

for Mo from 298 to 1800 K r 
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Table IT. Experimental Results 

Shot No. Hyer P298K To v~ Us Up PH PH THa 

(Mglm3) (K) (km/s) (km/s) (km/s) (GPa) (Mglm3) (K) 

1(}] w 10.206±0.002 1667 1.456±0.007 5.960.±0.119 0.883:±.{).008 52.3±1.1 11.68:±.{).05 1887±532 

716 w 10.206±0.002 1673 1.527:±.{).006 6.115:±.{).047 0.919:±.{).004 55.9:±.{).5 11. 70:±.{).02 2602±222 

725 w 10.210:±.{).002 1671 2.030:±.{).010 6.516±0.049 1.219:±.{).009 79.0:±.{).8 12.24:±.{).03 3101±367 

736 2024 AI 10.2{}]:±.{).002 1674 1. 995:±.{).008 5.525:±.{).041 0.538:±.{).004 29.5:±.{).3 11.02:±.{).02 1864±174 

741 w 10.212:±.{). 002 1674 2.368:±.{).008 6.788:±.{).021 1.414:±.{).006 95.6±0.5 12.57:±.{).02 3721±253 

a Temperatures calwlated with q = 1. 
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dlny -
dlnY = q, (1) 

where q is asswned to be constant, and it is further assumed that the temperature dependence of y 

lies solely in the temperature dependence of the volwne. 

Recognizing that oEJoTI v=Cv. the heat capacity at constant volume, temperature and pres-

sure are related by a Tlo PI v= Y/(yCv). Integration of this equation along a path of constant 

volwne requires a reference P-T point at the volume of interest. It is convenient to use the principal 

isentrope as a reference curve since pressure and temperature are readily calculated for any specified 

volume. The principal isentrope is a path of constant entropy that. like the principal Hugoniot, 

passes through the 1 bar, 20°C point. 

Along an isentrope, the temperature is readily calculated [Ahrens, 1979] from the definition of 

y: 

(2a) 

[ 
y ] Yo 

Ts =To yo q=O, (2b) 

where the subscript S denotes the isentropic state, and Yo. T0, and Yo are the volume, temperature, 

and Griineisen parameter at zero pressure, 25°C, respectively. 

Pressure along an isentrope may be calculated from the third-order Birch-Mumaghan equation: 

(3) 
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where Kos is the isentropic bulk modulus at zero pressure and~ is its pressure derivative. 

Using the isentrope as a reference curve, the temperature of a point on the Hugoniot, TH, may 

be calculated from: 

(4) 

where the subscript H denotes a point on the Hugoniot It has been assumed for simplicity 

(justification follows) that the heat capacity may be taken as a constant. The isentrope temperature, 

T s. and pressure, Ps, and the Griineisen parameter, y, in Eqn. 4 are calculated at the Hugoniot 

volume, VH. 

The shock temperatures achieved in our experiments were calculated with Eqns. 1, 2, 3, and 4 

using values of V H and PH (Table II) calculated from the Rankine-Hugoniot equations. Specifically, 

the Griineisen parameter is calculated at VH with Eqn. 1, and the isentrope pressure, Ps. and tern-

perature, Ts. are calculated using Eqns. 2 and 3 with V = VH. The Hugoniot pressure, PH, and 

volume, V H• are used with these isentrope points in Eqn. 4 to calculate the Hugoniot temperature, 

A general temperature-pressure relationship for the Hugoniot can be calculated in the same 

manner by using an appropriate constitutive relationship for PH as a function of VH. The Mie-

Griineisen formulation for this relationship is developed is a subsequent section of the discussion. 

The melting point of Mo at high pressures may be estimated by Lindemann's rule, given by 

Gilvarry [1956] as: 

a tnT l = 2 [.!. _ J 
()InV IM 3 'Yo ' 

(5) 
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where the subscript M designates melting. Yo is the Debye model for the Griineisen parameter, 

Yo=-dln 8Ifd V, where 8n is the Debye temperature. We evaluate Eqn. 5 with the approximation 

that the Debye model Griineisen parameter is equal to the thermodynamic Griineisen parameter, 

which assumes that the Debye model is valid for Mo and that T > 9n. The Debye temperature for 

Mo is 380 K [Hoch, 1975], and the melting temperature at zero pressure is 2893 K [Hultgren et a/., 

1963], thus the latter assumption is valid. Because we are principally concerned with temperatures 

in excess of the Debye temperature, we make the additional assumption that Cv= 3R, where R is the 

gas constant. Combining Eqns. 1 and 5 with the assumption y="fD and integrating, we get the 

result: 

[ 
VM] 

213 

[ 2y0(V8M- VA)] TM =ToM -V exp 
OM qVO 

[ 

VM ] z[ t-ro] 
TM=ToM -v 

OM 
q=O, 

(6a} 

(6b) 

where V M and T M are the temperature and corresponding volume of the solid along the melting 

curve. V M =YoM and T M= ToM at the zero pressure melting point. V 0 is the volume at which y= y0• 

The pressure, PM, at which melting occurs for a particular T M and V M may again be calculated 

with the aid of the Mie-Griineisen equation. Rearranging Eqn. 4 and changing subscripts (M for H): 

(7) 

To evaluate Eqn. 7, the isentrope points Ps and Ts and the Griineisen parameter yare calculated at 

V=VM. 
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A check of the internal consistency of these calculations can be made by computing the melt

ing temperature at zero pressure by simultaneous solution of Eqns. 1, 2, 3, 6, and 7. The calculated 

temperature exceeds the known value by about 200 K when q=l. 

The shock temperatures, calculated with q=1, are shown with the calculated melting curve for 

Mo in Figure 2. The calculated melting curve for Mo exceeds the calculated experimental shock 

temperatures by over 1000 K in all cases. It is evident that our experimental points are well within 

the field of solid stability as judged by the Lindemann's rule calculation. The Lindemann's rule 

melting curve (L in Fig. 2) is in good agreement with the 34±4 K/GPa slope of the fusion (SGM) 

determined by Shaner eta/. [1977]. The Lindemann's rule curve differs sizably, however, from the 

experimental measurements (VF) of Vereshchagin and Fateeva [1977] to 8 GPa. Although these 

calculations are sensitive to q, the conclusion that our shock states are all within the field of solid 

stability is firm for q as high as 3. 

Further evidence that our samples remained solid is provided by the measurement of the bulk 

modulus from the shock data. As shown in the next section, the isentropic bulk modulus of 1400°C 

Mo is between 225 and 244 GPa. This is similar to the room temperature value of 261 GPa for 

solid Mo that we calculate from the principal Hugoniot data [Marsh, 1980]. If the samples melted, 

the bulk modulus would be expected to drop by as much as a factor of two [Kamb, 1968]. The 

small drop in bulk modulus suggests that the samples remained solid 

Equation of State 

The shock wave data for hot Mo, tabulated in Table I, were analyzed with a Eulerian finite 

strain expansion model [Birch, 1978] adapted for Hugoniot data analysis [Jeanloz and Ahrens, 1980; 

Heinz and Jeanloz, 1984; Ahrens and Jeanloz, 1987]. With this model, P-V data along a Hugoniot 
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Figure 2: Mo phase diagram. Calculations based on our data are represented by diamond symbols 

with 1-cr error bars. The curves are: (L) Lindemann's rule melting curve calculation, (VF) 

experimental melting curve to 8 GPa of Vereshchagin and Fateeva [1977], (SGM) 

Clausius-Clapeyron melting slope measured by Shaner et a/. [1977], (PH) calculated curve 

for the principal Hugoniot, and (H1) calculation for the 1400°C Hugoniot These curves 

were calculated with q=l. 
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is mapped into a strain (f)- nonnalized isentropic pressure (F) plane, wherein the finite strain expan-

sion for pressure may be linearized. This method of analysis is equivalent to fitting the P-V data 

(corrected to an isenttope) to the Birch-Murnaghan EOS. This ttansfonnation is accomplished by: 

[ V 1Y'V] 
713

- I 
f=~-~--

2 
(8) 

and 

1 - O.Sy[R(1+2f)u - 1] 
FHs = 15 PH, 

3f(1+2f) · [1+(2-l.Sy)f] 
(9) 

where R=VcxiVo. and V00 is the actual initial volume of the sample including any porosity. The 

subscript HS designates that the Hugoniot state has been ttansfonned into an isenttope by means of 

Eqn. 9. The thennodynamic Griineisen parameter is assumed to be a function of volume alone 

according to Eqn. 1. In the absence of phase changes, F and f are related by 

FHS = Kos(l - ~f3H + 4l;sf]H + ... ), (10) 

where 

f3H= 
f[1+(2-y)fJ 

(11) 
1+(2-l.Sy)f' 

f2 - fl[1+(2-Q.75y)f] 
4H- 1+(2-l.Sy)f ' 

(12) 

3 ' 
~s = 4(4-Kos), (13) 

and, 

3 [ . . . 143] l;s = 8 KosKos + Kos<Kos-7) + 9 . (14) 
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Kos. ~.and~ are the zero pressure isentropic bulk modulus, and its first and second derivatives 

with respect to pressure at constant entropy. The subscript 0 designates the initial zero-pressure 

state. The bulk modulus and its derivatives are calculated by multiple linear regression [Press et al., 

1986] with Eqn. 10. The independent variables are f3H and fk:, and the dependent variable is FHS. 

The experimental data are presented in the f-F plane in Figure 3. The error and scatter of the 

data are exaggerated in the f-F projection, as noted by Birch [1978]. These data were calculated 

with the assumption that q=l, for reasons that will be explained later. Another common assumption 

for q is that q=O, orr-constant [Bassett et al., 1968; Anderson, 1987]. These calculations are, how-

ever, insensitive to our assumed value of q; values from 0.0 to 10.0 do not change the results. Fol-

lowing Heinz and Jeanloz [1984], the least squares fitting of the data to Eqn. 10 uses weighting 

according to the 1-<J RMS experimental errors on the assumption that these errors are normally dis-

tributed, consequently the data point for shot #707, which has the greatest error, carries little weight 

in the fit. 

A zero-order fit, or simple average (shown as the horizontal dashed line in Fig. 3), gives 

' • -1 
Kos=244±2 GPa, and Kos=4 and Kos=-0.016 GPa from Eqns. 13 and 14 respectively. A first-order 

fit (shown as the dotted line in Fig. 3) gives Kos=225±8 GPa and ~=4.76±0.33. ~ is -0.023 

GPa·1 from Eqn. 14. Although the data are strongly suggestive of a linear relationship with positive 

slope, such a linear fit to our data is not statistically justifiable at a reasonable confidence level 

(>90%). In addition, it will be shown below that such a fit is not reconcilable with the 1 bar elasti-

city data on Mo. 

An alternative method for calculating Kos is to fit the data in the particle velocity (Up) - shock 

velocity (Us). plane [Ahrens, 1987]. Particle and shock velocity are related by: 

Us= c0 +sUp, (15) 
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Figure 3: Finite strain representation of the experimental data with 1-0' errors. The f and F values 

were calculated with q=l. Zero-order (dashed line) and first-order (dotted line) fits in the 

f-F plane are plotted with the fit from the Up-Us plane (solid line; see Fig. 4.). 
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where 

c~ (16) 

and 

S= ![1+~). (17) 

The best fit to Eqn. 15 is shown as the solid line in Figure 4, and the values of Kos and ~ deter

mined from this fit are used in calculating the solid curve in Figure 3. This fit gives co=4.77±.06 

km/s and s=1.43±0.5, from which Kos=232±6 GPa and ~=4.7±.2 are calculated. 

These two calculations, although related [Jeanloz and Grover, 1988], are not interchangeable. 

A linear UrUs relationship is identical to a first-order f-F fit only when 18sy0 = 162s2 -360s+215 

[Jeanloz and Grover, 1988]; a condition that Mo fails to obey both on the principal Hugoniot and on 

the 1400°C Hugoniot. The UrUs fit is consistently offset from the f-F data in Figure 3. For the 

purpose of calculating an impedance match the Up-Us fit is preferred. On the other hand, in calcu

lating a Birch-Murnaghan isentrope, the f-F fit is preferred. These fits overlap within their 2-a 

errors. 

These bulk modulus calculations may be compared with their cold counterparts computed 

from principal Hugoniot data [Marsh, 1980]. These principal Hugoniot data are shown in the 

Up-Us and f-F projections in Figures 4 and 5 respectively. Since no experimental errors are reported 

in Marsh [1980], these data were fit without statistical weighting; i.e., with the assumption that all 

points have equal error. n Figure 5 the UrUs best fit parameters are used in calculating the solid 

curves, and the zero- and first-order fits of the f-F data are plotted as the dashed and dotted curves, 

respectively. We calculate Kos = 261 GPa and ~=4 from the zero-order f-F fit and Kos=272 GPa 

and ~=3.71 from the first-order f-F fit. The Up-Us fit gives eo=5.14 km/s and s=1.22 or Kos=270 

GPa and ~=3.88. As with our data, only the zero-order fit of these data is statistically justifiable. 
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Figure 4: Particle velocity versus shock velocity for Mo at l400°C (large diamond symbols), and 

25°C (small hexagonal symbols). The lines are least squares best fits. 
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Figure 5: Finite strain expansion representation of principal Hugoniot data in Marsh [1980]. Zero

order (dashed line) and first-order (dotted line) fits in the f-F plane are plotted with the fit 

from the Up-Us plane (solid line; see Fig. 4). 
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From a comparison of these data sets, we conclude that Mo is somewhat more compressible at 

higher temperatures. No firm conclusions may be drawn concerning its pressure derivative; how-

ever, the first-order fits would suggest that Mo becomes less compressible more rapidly at higher 

temperatures. This is consistent with our expectations since the two Hugoniot curves should be 

asymptotic at very high shock pressures. 

These calculated moduli are independent of our assumptions regarding y; that is, if we let q=O, 

or y=constant, the resulting fit parameters do not vary within their error bars. Similarly, by neglect-

ing the data of shot #707, which has anomalously high errors, the results are unchanged within the 

calculated errors. 

Mie-Griineisen Equation of State 

The experimental data may be compared with a thermodynamic model by computing the 

Hugoniot for a heated sample. The cold or principal Hugoniot, designated by subscript C, and the 

high temperature Hugoniot, designated by subscript T, are related by the Mie-Griineisen EOS at a 

constant shock volume, V9 by: 

Puc[ v"';v"- ~· ]-L Cp!T 

PIIT = ------------
VarVH VH 

(18) 

2 

The initial volume of the preheated sample is calculated from its cold volume and the preheat tern-

perature from the linear expansion data. Shock and particle velocities of the preheated samples may 

be calculated from: 
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(19) 

and 

(20) 

The cold Hugoniot P-V-Up relationships are given by the shock EOS [Ahrens, 1987]: 

(21) 

and 

c0+(s-1)Up v - v 
HC- co+sUp OC• 

(22) 

where co. the zero-pressure sound speed, is given by Eqn. 16, and sis given by Eqn. 17. 

The 1400°C Hugoniot for Mo, calculated from Eqns. 16 through 22, is plotted in the V -P and 

Up-P planes in Figures 6 and 7 respectively. The calculated 1400°C Hugoniot is also shown in the 

temperature-pressure plane in Figure 2. For comparison, the principal Hugoniot is also plotted in 

Figures 6 and 7. In these figures, the best-fit 1400°C Hugoniot is plotted as a thin solid curve, and 

the 1400°C theoretical Mie-Griineisen curve, with ytV constant (q=1) is plotted as a dashed line. 

The scatter of the data is significantly smaller in these projections than in the f-F projection. It is 

evident from these figures that the Mie-Griineisen EOS models the experimental data quite well. 

The data refinement procedures of Rigden et al. [1984; 1988], which used this model to describe Mo 

at high T and P, are supported by our experiments. 

Since Eqn. 19 is sensitive to q, q may be used as a fit parameter to minimize the difference 

between the Mie-Griineisen calculation and our experimental data. A value of q=1 yields the best 

fit We suggest therefore, that q=1, and consequently that the Griineisen parameter varies approxi-

mately in proportion to density. This agrees with the experimental determination [Boehler, 1983] of 
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Figure 6: 1400°C Mo experimental data in the V-P plane. The curve labeled "fit" is calculated 

with the best-fit Up-Us parameters. The "M-G" curve is calculated with the Mie-Griineisen 

equation with q=l. "PH" is the principal Hugoniot for comparison. 
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Figure 7: 1400°C Mo experimental data in the Up-P plane. Labels correspond to Figure 6. 
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q:::1 for Li, Na, and K. 

Extrapolation of Ultrasonic Elasticity Measurements 

With q constrained to be :::1, we may now employ a thermodynamic model of q to discrim-

inate between our three model calculations of Kos and ~- Bassett et al. [1968] derived the follow-

ing thermodynamic expression for the parameter q: 

= 1 _ (l+ycxT) oKs: 
q cxKs oT lp 

(23) 

This expression does not assume that 'Y is a function of volume alone, i.e., q is not required to be 

constant, but rather allows for a temperature dependence as well. More common formulations for 'Y 

assume 'Y to be a function of volume alone [Anderson, 1%7; 1987]. By way of the approximation 

(24) 

the isentropic bulk modulus may be calculated as a function of temperature for an assumed constant 

value of q. V and ex are both temperature dependent quantities, thus Eqn. 24 must be numerically 

integrated. Volume is calculated directly from the thermal expansion data in Table I, and the 

volumetric coefficient of thermal expansion, cx=oln V/dTI P• is calculated from the linear expansion 

relationships by 

(25) 
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~ is not known as a function of temperature, however the zero-order f-F fits of both the principal 

and 1400°C Hugoniot data suggest that ~::::4, and is therefore independent of temperature. 

Although not statistically significant, the first-order f-F fits (dotted lines of Figs. 3 and 5) suggest 

that ~s(25°C)<4 and ~(1400°C)>4, thus by approximating ~=4 Eqn. 24 may overestimate Kos 

at a given temperature. For simplicity we use the approximation ~=4 in Eqn. 24. 

Figure 8 shows a compilation of elasticity data for Kos to 973°C. Our three candidate values 

of Kos at 1673 K are also included. The diamond symbols represent the values of Kos calculated 

from the U..-Us best fit and the zero- and first-order f-F fits of our data. The data of Featherston 

and Neighbours [1963], triangles in Figure 8, are believed to be erroneous because of impurities in 

their samples [Berg et al., 1985]. The more recent data of Dickinson and Armstrong [1967] are 

favored over the earlier data of Bolef and de Klerk [1962] for our calculations. The principal 

Hugoniot data reported by Marsh [1980], the hexagonal symbol, is in accord with the elasticity data 

of Dickinson and Armstrong. This value was calculated from the zero-order fit of the principal 

Hugoniot data in the f-F projection. 

Eqn. 24 provides a functional form upon which to extrapolate the elasticity data to 14000C. 

Integration of Eqn. 24 requires a single reference datum. We use the Kos point derived from the 

principal Hugoniot data because it is in good agreement with the elasticity data, and because it was 

computed in the same manner as our data. 

Curves of constant q, calculated with Eqn. 24, are plotted in Figure 8. Within reported errors, 

q values from 1 to 5 satisfy the elasticity measurements of Dickinson and Armstrong. Because 

curves of constant q satisfy the data within their reported errors, no temperature dependence in the 

Griineisen parameter is indicated except through the temperature dependence of V. A curve of 

q=1.5 fits the elasticity data within their reported errors and agrees with our zero-order f-F fit 
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Figure 8: Ultrasonic bulk modulus measurements and high temperature shock moduli. Triangles, 

squares, and circles denote the elasticity values of Featherston and Neighbours [1963], Dic

kinson and Armstrong [1967], and Bolef and de Klerk [1962] respectively. The hexagonal 

symbol is calculated from the principal Hugoniot data in Marsh [ 1980] as the average F 

value in Figure 5. The diamond symbols designate the various interpretations of the 

1400°C shock data. The solid curves are calculated with Eqn. 24 for constant values of q 

from 1 to 4 using the value based on the principal Hugoniot data as a reference point. 



0 
00 
N 

Figure 8. 

-263-

0 V) 0 0 

0 - ~-.:i 
II 
0"' 

I 

~ 

1-; ';:Jp.. C!) 
"0 
1-; 

0 

0 

I 

~ 

1-; 
C!) 

"0 
1-; 

0 

.... 
c;l.l -

0 
0 
V) -

0 
0 
0 -

0 
0 
V) 

0 

........., 
~ ......... 

~ 
::s ...... 
~ 
1-; 
C!) 
0. 
8 
C!) 

f:-4 



- 264-

datum. The q=4.0 curve also falls within the errors of the elasticity data and agrees with the first

order datum. Our Up-Us determination falls near q=3.0. 

Since we suggested earlier that q:::::l, we conclude based on Figure 8 that only the zero-order 

fit of Figure 3 can lead to an internally consistent view of the behavior of Mo initially heated to 

1400°C. The other fits presented in Figure 3 would, in order to be consistent with the ultrasonic and 

principal Hugoniot data, require much higher values of q, which would lead to significant deviations 

between the calculated experimental temperatures and calculated Hugoniot temperature in the P-T 

plane (Fig. 2). Our best choices for Kos and ~ are thus 244±2 GPa and 4. We note that although 

Mo becomes more compressible at higher temperatures, it is less compressible than would have been 

predicted on the basis of linear extrapolation of the ultrasonic elasticity measurements alone. 

We note, however, that this discrimination by q values is ambiguous when 2-cr errors are 

allowed, that is all of the three candidate Kos and ~ values overlap with 2-cr error bars. This 

worst case uncertainty amounts to only about 5% uncertainty in Kos. and 10% uncertainty in~. 

Although the UrUs best fit determination is not consistent with q=l (i.e., as shown in Fig. 8, 

if Kos(1400°C) = 232 GPa, then q:::::3), it is nevertheless best for the purpose of calculating an 

impedance match. 

4. Conclusions 

1) New data on the dynamic compression of preheated molybdenum is presented. A zero

order fit to the finite strain model indicates a bulk modulus, Kos. of 244±2 GPa, and its pressure 

derivative, ~. of 4 at 1400°C. Higher order fits give values of~ greater than 4, and are con

sistent with the finite strain expansion analysis, but are not statistically significant and are incon

sistent with extrapolation of the ultrasonic data. The temperature derivative of Kos at zero pressure 
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is thus approximately -0.012 GPa/K. The Hugoniot parameters for Moat 1400°C are eo=4.77±0.06 

km/s and s=l.43±0.05. 

2) The Mie-Griineisen EOS has been demonstrated to be a good model for the shock 

behavior of Mo at high temperatures. 

3) Our data suggest that the Griineisen parameter is proportional to density, and no evidence 

is found for a temperature dependence in y. If this suggestion is correct. the zero-order fit to the 

finite strain model is favored. 
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Appendix 1: Error Propagation 
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The analysis of an individual molten silicate shock experiment requires that a set of 9 alge

braic formulae (Eqns. 1-9, Chapter 1) be solved simultaneously. This solution is only approximate, 

however, since results from a series of experiments are needed to find the eo. and s. parameters 

required for the sample-cover impedance matche. A complete reduction of the experimental data 

for a series of N individual experiments therefore requires the simultaneous solution of 9N+2 equa

tions: Eqns. 1-9, Chapter I, for each experiment, and 2 regression equations to determine co. and s,.. 

Rather than solving 110 simultaneous equations for our 12 experiments, we used an iterative 

approach. Beginning with assumed values for co. and s,., we could analyze each experiment with 9 

equations. The second step of this iterative procedure was to calculate new updated values of co. 

and s,.. 

This iterative approach cannot be used in the calculation of propagated errors. lf we com

puted errors in Uu and Upc including error contributions from co. and s.. and then used these quanti

ties in a weighted least squares fit to recalculate both co. and s. and their formal errors, then the 

errors would increase without bound with successive iterations. To properly calculate the pro

pagated errors, a minimum of 6N+2 (Eqns. 1-6, below, and two additional equations for co. and s,.) 

linear equations must be solved simultaneously to determine the uncertainties in c0 and s together 

with N uncertainties in Uu, Upc, P., and p •. Although this approach would be rigorous, it is not par

ticularly instructive because the relative importance of various measurements cannot readily be 

determined. Because the contributions of eo. and s. to the uncertainty in each individual experiment 

are small, we can decouple the 6N+2 simultaneous equations into N sets of 6 simultaneous equa

tions, 6 equations per experiment. 

In the following error analysis we will consider the contribution of the error in our measure

ments, and in the uncertainty in the calculated value p01, to the error in U51, Upc, P1, and Ps· Indivi

dual experiments will be analyzed separately by ignoring the contribution of co. and s.. 
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The minimum six equations which must be solved simultaneously to detennine u ••• Ups, P., 

and p. are: the flyer-driver impedance match (Eqn. 2, Chapter 1) 

POdUpd(cOd + sN~ = Pot<¥ imp- U~(cor + St{Vimp- Upd)) , 

the driver-sample impedance match (Eqn. 5, Chapter 1) 

Po.UpsUu = POd(2Upd - Ups)(cOd + sd(2Upd - Ups)) , 

the sample-cover impedance match (Eqn. 7, Chapter 1) 

POcUpc(Coc + s.,Upc) = Po.(2Ups - Upc)(co. + s.(2Ups - Upc)) , 

the equation for the total shock wave transit time (Eqn. 1 with Eqns. 3 and 8, Chapter 1) 

X. xd X.: 
tt = -+ +----

u.. CQd + sdupd c0c + s,Upc 

and the equations of stress and mass conservation for the sample (Eqns. 5 and 6, Chapter I) 

P, = Po.UuUps , 

u .. 
p, = Po.u - u • 

" ps 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

In these equations, the dependent variables are Upd, Upc, Ups, u ... P,, and p,. We will consider 

V imp• tt, xd, x., Xc, and Po. to be independent variables that contribute error to the detennination of 

the dependent variables. The remaining parameters are considered as exact constants. 

The sensitivity of the dependent variables to changes in the independent variables is deter-

mined by the partial derivative. Because these equations are coupled, however, the partial deriva-

tives cannot be immediately detennined. The differential fonns of Eqns. 1-6 are linear, however, 

and can be decoupled with a simple matrix equation: 

dU .. dVimp 
dUps dtt 
dP, 

Ex 
d~ 

dp, = dx, (7) 

dUpd dx.: 
dUpe dpo,. 



- 272-

where E is a 6x6 matrix of partial derivatives. The matrix E is given by: 

0 

Pa.Upo 

0 

X. 

u~ 
-pa.Upo 

Pa.Upo 

(U .. -Upo)2 

0 0 0 POcl(co.r+-2sciUpci)+Pot<Cot+2sf(\' imp -Upc~)) 

p01U .. +p~co.r+-2sJ2UpcrUpo)) 0 0 -2pOd(co.r+"2sci(2UpcrUpo)) 

-2p01(~+2s.(2Upo-Upo)) 0 0 0 

0 0 0 
·~cl 

u~ 

-pa.U. 1 0 0 

Pa.U .. 
0 1 0 

(U.-Upo)z 

pot( <:ot+2sf(V imp -U pel)) 0 0 0 0 0 

0 0 0 0 0 
-P. 

Po. 

0 0 0 0 0 
Pc 

Po. 
X 1 1 1 

0 -1 
u. Uac~ u .. 

0 

0 0 0 0 0 
P. 

Po. 

0 0 0 0 0 
P. 

Po. 

(8) 

0 

0 

POc(Coc+2scUpo)+pa.(~+2s1(2Upo-Upc:)) 

Sc;Xc 

• E. 

u~ 
0 

0 

The rows of E correspond to the differential forms of Eqns. 1-6, in order. The partial deriva-

tive of any dependent variable with respect to any independent variable can be found from the 

appropriate element of the matrix E. If errors are assumed to be normally distributed (Gaussian), 

then the variance in a dependent variable, ~. is related to the variance of the independent variables, 

Xi• according to: 

[ ]

2 
2 a~ 2 2 2 

<JX; = L -;-:- <Jx. = I:[~ l <Jx. • 
j a XJ 1 j ~ 1 

(9) 

If we form a new matrix E2 such that E\i =~f. then the variances in the dependent vari-

abies can be readily calculated from: 

-I 
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a2 2 u. <Jy~ 
a2 (Jt~ u"" 
a2 a2 

p• 
E2 x 

xd 
(10) a2 = a2 

Po x. 
a2 upd (J2 

x. 

a2 2 
u"" <Jpo. 

The relative magnitude of the E2 matrix elements shows their relative importance in the 

experiments. This matrix is presented for shot #755, which is near the median of the shock pressure 

range of our experiments: 

(II) 

a2 l.lOxlo-2 48.3 1.34 1.94 1.46 8.88x10-4 2 u .. <Jyimp 
a2 0.586 0.119 3.31x10-3 4.81xlo-3 3.61x10-3 7.88xio-3 a; u"" 
a2 102. 399. 11.0 16.1 12.1 26.3 a2 

p• xd 

a2 = 0.636 4.68 0.130 0.189 0.141 1.61 X a2 
Po x. 

a2 0.221 0. 0. 0. 0. 0. a2 upd 
7.33xlo-3 2.03x1Q-4 2.95x1Q-4 2.2lx10-4 7.14xlo-3 

x. 
(J2 0.105 a2 

u"" 755 Po. 

where all velocities are in units of Km/s or mm/JlS, time is measured in JlS, distances in mm, and 

densities in glee. 

This equation was used in the evaluation of errors for shot #755, and analogous equations 

(calculated from Eqn. 8) were used for the other experiments. These errors are reported in Table 

III, Chapter 1. 

To illuminate the relative importance of the various error terms, it is necessary to scale Eqn. 

11. Defining Ex. = <Jx/X;., a scaled uncertainty, Eqn. 11 can be rewritten: 
I I 
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(12) 

£2 2.30x1o-s 1.33 8.12x10-4 0.995 3.39x10-2 6.80x10-s 2 u .. Ev~ 
£2 1.13 4.68x10-2 2.86xHr5 3.50x1<J2 1.19x10-3 3.46x1o-2 eJ u.,. 
£2 1.10 0.878 5.36x1~ 0.657 2.24x1o-2 0.649 £2 

P. xd 

£2 = 
0.105 0.169 1.04x10-4 0.127 4.32x1o-3 0.896 

X £2 
Pa x. 

£2 1.10 0. 0. 0. 0. 0. £2 
upd 

2.08xl<J2 1.27x1<J5 5.32x10-4 
XC 

£2 0.959 1.56x1<J2 0.172 2 
upc 

7SS 
Epa. 

A 10% error in the transit time, tt, therefore contributes 4% error top, ( .,to.169x(O.l0)~.04) and 

contributes nothing to the error in Upc1 as expected. The relative importance of the measured values 

is different for each dependent variable. The transit time is the most important term for u •• and the 

second most important for Ups. The flyer plate velocity is the most important term for Ups, but this 

term is unimportant for u ... Neither Ups nor u .. rely heavily on p01, thus the bulk sound speed and 

K' os are not strongly dependent on the initial density calculation. The bulk modulus, Kos=Pos~. 

however, is strongly dependent on this calculated value. 
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Appendix 2: Thermodynamic Description of Shock Waves 
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In this Appendix I present an outline of the thermodynamics that describe the shock Hugoniot. 

Elucidation of thermodynamic properties from shock experiments requires that the locus of shock 

states be thermodynamically defined. From such a definition one may obtain thermodynamic data 

from the shock equation of state, e.g., Us= c0 +sUp. In the absence of elastic effects, the intercept 

c0 is interpreted as the low pressure sound speed. and the slope s is related to the isentropic pressure 

derivative of the isentropic bulk modulus by K' s = 4s-1. That this interpretation has a rigorous 

thermodynamic basis is implicit in the literature, but I am aware of no derivations of these equations 

that are free of model assumptions, e.g., specific parameterizations such as the Birch-Murnaghan 

equation of state, and assumptions regarding the pressure and temperature dependence of the 

Griineisen parameter. No such model assumptions are used in the following derivations, however 

chemical equilibrium will be assumed in the discussion of multiphase systems. 

The approach used here is to write a system of differential equations that, taken together, 

describe the thermodynamic state of the system along the locus of shock states. Before considering 

the Hugoniot states, the temperature and pressure partial derivatives of Ks and K's are derived. I 

then derive the equations for the Hugoniot of a single-phase system. The extention of this deriva

tion to an equilibrium two-phase single-component system is also presented. 

1. Partial Derivatives or Ks and K' s 

Temperature and pressure vary simultaneously along the Hugoniot. In order to determine, for 

example, the derivative of the bulk modulus taken along the Hugoniot, it is convient to determine 

expressions for the temperature and pressure partial derivatives of the bulk modulus. The derivative 

of the bulk modulus along the Hugoniot is then readily determined from these quantities and the 

simultaneous changes in pressure and temperature on the Hugoniot. Accordingly, I will begin by 
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deriving expressions for the temperature and pressure partial derivative of Ks and K's (aKg~aPI 8). 

The isentropic bulk modulus is defined by: 

aP I 
Ks = -v-1 

avIs' 

and its temperature partial derivative can be determined from the ratio of Jacobian determinants: 

I 
aKsl = 
aT lp 

The terms in this expression are: 

aKsl = 
avIs 

and 

where q is defined by: 

l<aKg~aV)s (aKg~as)vl 
1 (aPtaV)s (aPtaS)v I 

l<ortaV)s (aTtas)vl 

1 (aPtaV)s (aPtas)v 1 

aP I Ks 
-I = --y· avIs 

aP I 1!... -I = 
as lv v· 

or' = _1!... -I 
avIs v· 

aT I T -I = - • as lv Cv 

I a I KsK's aP I Ks 1 = ---
avIs aP Is 

q = atnr 1 

atnV Is. 

v 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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Substituting these tenns into the detenninant expression, and reducing the expression with 

.,Cp = aVKs and Cp = Cv(l + a"{{), gives the result: 

aK I 
aTs IP = -aKs(K's + q- "(- 1). 

To get the pressure derivative, aKsfoPI T• use 

a I [ ~!L a I 
= -1 +TI[-1 ()pIs ~ aT lp 

aT p 

a I yr a I 
= -1 ---1 

aP Is Ks oT lp 

K's(l+a"{{) - a"{f(y + 1 - q) . 

(10) 

(11) 

(12) 

The derivatives of K' s are evaluated in the same manner. First detennine the partial deriva-

tives: 

aK' I __ sl 
as lv 

aK's : = _ KsK"s 
av Is V 

= ~I [-.::!._ aKs I ] = -~ aKs I aKs i _ y_ _l_ i aKs i 
as lv Ks av Is Kj as lv av Is Ks avIs as lv. 

Eqn. 14 is solved by noting that: 

a 1 T a 1 yra 1 
-1 = --1 +--1 
as lv Cv aT lp v aP IT . 

Substituting the results from Eqns. 10 and 12 into Eqn. 15 one obtains: 

aKs I = yrv ("( + 1 - q) ' 
as lv 

and substituting this result into Eqn. 14 gives 

aK' I [ J 
ass iv = ~: K's(y+1-q) + (q-1)(1+y}-q'V 

(13) 

(14) 

(15) 

(16) 

(17) 
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q' = lq_l 
:::~ I . 
aVIs 

(18) 

Substituting Eqns. 13 and 17 into a Jacobian detenninant expression for ()K' sf{)TI p analogous to 

Eqn. 2 one obtains: 

d~s !P = -a[ KsK"s- "R + Vq'- (K's-1)(1+y-q)] • 

and ()K'sf{)PI Tis readily detennined from Eqn. 11: 

()K' I [ ] __ s I = K"s(l+<r{f)- a:{f -rq- Vq' + (K's-l){l+y-q) 
()p IT Ks 

2. Single-Phase Hugoniot 

(19) 

(20) 

The thennodynarnic properties of a shocked single-phase system are found by writing the total 

derivatives of volume and internal energy: 

dV = - Vf3.rdP + V adT 

dE = V(P~ - aT)dP + (Cp-aVP)dT , 

and the Rankine-Hugoniot relationship for internal energy in a Hugoniot state: 

E = Eo + 'h(P+Po)(V o-V) 

2dE = (V0-V)dP- (P+Po)dV. 

(21) 

(22) 

(23) 

(24) 

Eqns. 21, 22, and 24 are three equations in four unknowns (dE, dT, dP, and dV). Selecting dP as an 

independent parameter and dividing these equations by dP, one arrives at a set of three coupled 

equations in three unknowns. In matrix fonn, these equations are: 
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0 1 
1 0 
2 (P+P0) 

-aV 
(aVP-cp) X 

0 

dE/dP 
dV/dP = 
dT/dP 

The solution to this matrix equation is given by the following three equations: 

dT 
dP 

= 
(VrrV) + 2VaT- (P-P0)Vf>r 

2Cp - (P-Po)aV 

= 
2)CpT- V(P-Po)(1+<r{f) + Ks(VrrV) 

Cp[2Ks - ')(P-Po)J 

dV 
dP 

= 
v[ (Vo-V)a + 2Va1'- 2f>rCp] 

2Cp - (P-P0)aV 

'Y(V0-V)- 2V 
= 2Ks- ')(P-Po) 

dE Cp(VrrV) + (P+Po)V[f>rCp- a1'J- PV(VrrV)a 
= dP 2Cp - (P-P0)aV 

V(P+Po) + (VrrV)<Ks + -yP) 
= 

2Ks - ')(P-P o) 

From Eqn. 27 one can write an expression for the Hugoniot bulk modulus: 

V[2Ks- ')(P-Po)] 

2V- 'Y(VrrV) 

In the limit of zero compression, one obtains from this the result: 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

thus the Hugoniot bulk modulus and the isentropic bulk modulus are identical in the limit of zero 

compression. The total pressure derivative of the Hugoniot bulk modulus is: 
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, dKH 
KH = -- = 

dP 

v[ 2KsK's<I+«"(')(2V--"J(V0-V)J + Ks<Vo-VX2Ks¥~ + 2Kscr(I'(V(2q-2-'f)t"t(V0-VX2+'H)l- (P-Po>v0-AI+<r'(f)- Ks<P-Po>Vrp] 

Ks( 2V- "t(V o-V)) 2 

+ v[ 2Ksa(2V--"J(V0-V))(I-q-K's>- 2Ks<Yo-VX<l"f(I+r>-'frl + 2KsYar+ (P-Po>v0uyl- 2(P-Po>v'fr] or 

( 2V- "t(Vo-V)) 2 cl' 

(31) 

where q is given by Eqn. 9, and "(p and "fr are the pressure and temperature partial derivatives of y. 

The derivative dT/dP is given by Eqn. 26. The limit of K'8 is: 

(32) 

thus the pressure derivative of the Hugoniot bulk modulus is identical to the isentropic pressure 

derivative of the isentropic bulk modulus in the limit of zero compression. 

Now in terms of shock velocity, Us. and particle velocity, Up, pressure and volume can be 

written as: 

UpUs 
p =Po+-

Vo 

v = +- ~:] 
From these relationships, the Hugoniot bulk modulus and its pressure derivative can be written: 

where U' s is dUs/dUp and U" s is d2Us/dU~. The limits of these quantities are: 

cJ 
= Ks = Yo , 

(33) 

(34) 

(35) 

(36) 

(37) 
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and 

lim K'H = K's = 4s-1 . 
Up-+0. Us~ U' s-

(38) 

From these limits one can identify the terms in the power series 

Us = c0 + sUp + · · · (39) 

with isentropic properties: c0 is the sound speed, and s is (K' s+ 1)/4. This correspondence between 

the Us-Up coefficients and the isentropic properties has long been known [Ruoff, 1967], but I are 

aware of no derivations of these equations that are independent of model assumptions. Ruoff 

[1967], for example, assumed a specific form (Birch-Mumaghan) for the isentropic compression 

curve, and made further assumptions regarding the P and T depencence of y. That such assumptions 

are not required is important since it emphasizes the rigorous thermodynamic foundation of the 

shock wave method. 

3. Shock Equation of State Centered on a Principal Hugoniot State 

When a shocked sample impacts a second higher impedance material, the sample experiences 

a second shock. The cHP and sHP parameters for the reshock equation of state, Us = cHP + sHPop, 

can be obtained from expressions derived above. 

cHP is the sound speed of the sample at its principal Hugoniot state. This quantity is related to 

the high pressure bulk modulus, Ks = (c~2/V, which can be written in terms of the Hugoniot bulk 

modulus, KH, with Eqn. 29. Writing KH in terms of the principal Hugoniot equation of state param-

eters with Eqn. 35, and assuming a linear principal Hugoniot shock equation of state for simplicity, 

the high pressure sound speed, cHP, is given by Eqn. 13, Chapter 1. 

The quantity sHP is (K's+l)/4 evaluated at the principal Hugoniot state. Writing K's in terms 
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of K' H and Ks with Eqn. 31, writing this expression in terms of principal Hugoniot parameters with 

Eqns. 35 and 36, and assuming a linear principal Hugoniot shock equation of state, one obtains Eqn. 

14, Chapter 1. 

4. Two-Phase One-Component Hugoniot 

Assume volume additivity for the two phases, i.e., that the phases will mix mechanically. The 

specific volume of the system, vs, can then be written in terms of the specific volumes of the com-

ponent phases, V1 and vn, and the mass fraction of phase II, X~: 

ys = {l-X~)V1 + X~Vn, 

{l-X~)dV1 + X~dVn + {Vn-V1)dX~- dVs = 0. 

The volumes of the individual phases change as: 

and 

anvndT - vn~dP - dVn = 0 , 

where J3t is 1/Kf, the inverse of the isothermal bulk modulus for phase i. 

The entropies of the individual phases change as: 

and 

cF __ n n n 
-dT - u:-V dP - dS = 0 T ' 

and the internal energy of the component phases, E1 and En, change as: 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 
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and 

With the assumption of simple mechanical mixing, the internal energy of the mixture is: 

Es = (1-X~)E1 + X~Err 

(1-X~)dE1 + X~dEU + (Err-E1)<1X~- dES = 0. 

(47) 

(48) 

(49) 

Chemical equilibrium between phases I and II can be represented with the Gibbs-Duhem 

equation, which, for this simple one-component system, is given by the Clausius-Clapeyron equa-

tion. 

(50) 

All states on the Hugoniot can be characterized by the Rankine-Hugoniot relationship for 

internal energy. 

Es - EJ = lh.(P + Po)CV9 - Vs) 

2dEs + (P+Po)dVs- (V~-Vs)dP = 0 

(51) 

(52) 

I have written 10 independent equations in 11 unknowns. Let us select pressure as the 

independent variable. Dividing all differential equations by dP then gives 10 equations in 10 unk-

nowns. This system of equations can be expressed in matrix form: 



- 285-

c/fr 0 0 0 0 0 -1 0 

C:rr 0 0 0 0 0 0 0 

alv1 0 0 0 0 -1 0 0 

allv11 0 0 0 0 0 0 0 

(~-Puivi> 0 0 0 -1 0 0 0 

<C:-Pullvll) 0 0 0 0 0 0 -1 
0 0 -1 <VII-vi> 0 (t-X:> 0 0 

0 -1 0 (Bn-BI) (1-X~) 0 0 xs 
n 

csll-si> 0 0 0 0 0 0 0 
0 2 (P+Po> 0 0 0 0 0 

The solutions to this set of coupled equations are given below. 

4.1. Temperature 

dT 
dP 

= 

(53) 

0 0 ciT lei' alv1 

0 -1 dEs lei' aiJvll 

0 0 dV5JdP viii{. 

-1 0 dX1~dP viiJI{.I 

0 0 X c£1/dP vlo-ai_PJ\{.> 

0 0 dV11dP viicra0-PII{h 
xs n 0 dS11dP 0 

0 0 c£0JdP 0 

0 0 dV0Jcl' cvll-vi> 

0 0 dS0JdP <V~-vs> 

(54) 

The temperature change throughout the two-phase region is equal to the Clausius-Clapeyron slope of 

the reaction boundary. Entropy-dominated transitions (e.g., solid-liquid phase transitions) will there-

fore experience modest temperature changes in the two-phase region. In contrast, temperature will 

change very rapidly in volume-dominated transitions (e.g., solid-solid phase boundaries). Tempera-

ture measurement in a shock experiment will be useful in identifying volume-dominated reaction 

boundaries, but will be less useful in identifying entropy-dominated reactions. 

4.2. Reaction Coordinate 

dX~ 
dP 

sdT ) SAS s s[2 (P dT] 2Cp dP + (P-P0 V 1-'T - a V T + -P0) dP 

= 

(S1-Sn)[ 2T- (P-Po) ::!] (55) 



where 

and 
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c: = (1-X~)C~ + x~cF-, 

ysf3.¥ = (l-X~)V1~ + X~VIIJW , 

Eqn. 55 may also be written as: 

One can also write 

or 

= 
a 1 [ s s s~ -s 2E - (P+P0)(V0-V) 

axu lp 

dT = dT I + dX~ dT ', 
dP dP dP S' 

= 

lx~ dXrr lp 

dT _ dTI 
dP dP IX~ 

dT I 
-I 
dX~ lp 

where dT/dP is given by Eqn. 54, and dT/dPI x is given by Eqn. 26, and dT/dX~ I p is given by 

dT I [dE'] [dE'] UH-(P-Po).t\V --s I = --s I I -I = s s s · 
dXrr lp dXrr lp dT lp 2Cp - (P-P0)a V 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

The rate, in terms of pressure, at which the two-phase region is traversed is proportional to the 

difference in PT slope between the single-phase Hugoniot and the Clausius-Clapeyron reaction 

boundary. In general, one can consider the single-phase Hugoniot to have a relatively shallow PT 

slope. Porous samples may be quite steep, however. Solid-solid reactions, characterized by steep 

Clapeyron slopes, will be traversed rapidly by the Hugoniot. Solid-liquid reactions, having 
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shallower Clapeyron slopes, will be crossed more slowly by the Hugoniot. Temperature measure-

ments in the two-phase region may be used to determine the Clapeyron slope of a congruently melt-

ing solid since the two-phase region will be largest in this case. 

4.3. Us-Ur Relation 

The Us-Up relationships can be determined from the identity 

dUs 

dUp 

s dP Yo (P-Po) 
= Yo dE - 2 (ES-FJ) 

This expression can be written as: 

dUs 

dUp 
= 

[ 
I dXs] S ss s oE III II Y0(P+P0)(Y0-Y ) - Yo(P-Po) ::~p I 5 + (E -E) dP 

a IXn 

I dXS s s aE 
1 

rr I rr (P+PoXVo-Y) - + (E -E)-oP lx1l dP 

where the terms containing dX~/dP represent the perturbation to the single-phase solution. 

Reference 

(63) 

(64) 

Ruoff, A.L., Linear shock-velocity -particle-velocity relationship, J. Appl. Phys., 38, 4967-4980, 

1967. 
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Appendix 3: The Natural Occurrence of Hydroxide in Olivine 
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The Natural Occurrence of Hydroxide in Olivine 
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Abstract. Polarized infrared (IR) spectra of olivine single 
crystals from 17 different localities show a tremendous vari
ability in both mode and abundance of hydroxide (OH) 
incorporation. Kimberlitic olivines contain the most total 
OH at an estimated concentration level of 976 H/106Si, 
whereas olivines from basalts contain the least at 3 H;106Si. 
Olivines of metamorphic and hydrothermal origin have 
widely varying concentration levels intermediate between 
those of basalts and k.imberlites. Over 30 distinct OH ab
sorption bands have been identified. Most of these bands 
are not unique to individual localities but may be found 
in samples from several different localities. Pleochroism is 
consistent among localities. but relative band intensities 
vary. No evidence is found for molecular H 2 in olivine. 

Hydrous minerals have been identified in olivine by their 
characteristic OH absorption bands. Serpentine is com
monly found and is clearly distinguishable from intrinsic 
OH. Talc is present in one sample. Prominent OH bands 
at 3572 and 3525 em - 1 are attributed to humite group 
minerals. 

San Carlos, Arizona, olivines annealed in the presence 
of H 20 develop absorption bands which are found in natu
ral samples, however the OH absorption spectra of these 
annealed olivines are not identical to those of any single 
natural crystal. Sharp-band OH abundances in annealed 
samples are an order of magnitude lower than the maximum 
measured in natural specimens. The mechanical properties 
determined from these annealed olivines may not be directly 
applicable to mantle olivine because both the OH sites and 
concentrations are different. 

llltroduc:doa 

The occurrence of hydroxide (OH) in olivine, a nominally 
anhydrous silicate, has received a great deal of attention 
in recent geochemical and geophysical literature because 
of (1) the effect of OH on mineral deformation and its 
impact on mantle rheology (Justice and Graham 1982, 
Kirby 1983, Chopra and Paterson 1984, Macltwell et al. 
1985, Karato et al. 1986, and Kohlstedt 1986), (2) the well 
known role of volatiles on the evolution of isneous rocks, 
and (3) the crystal chemical interest in the specific modes 
of incorporation of hydrogen bearing defects in anhydrous 
minerals (Beran and Putn.is 1983, Freund and Oberheuser 
1986). Despite the great ammount of work on OH in oliv-

• Contribution number 4362 

ine, there are a number of fundamental questions which 
remain to be answered. These include: 
1. How much OH occurs in natural olivines? What is the 
range of concentrations, and how do concentrations relate 
to the geologic conditions of the olivine's formation and 
subsequent history? 
2. How is OH incorporated into olivine? How many distinct 
sites are there, and how do they val)' with geologic occur
rence? 
3. Do the annealed olivines used in deformational studies 
contain OH in the same sites as natural olivines. and are 
the concentration levels achieved by annealing comparable 
to those found in natural samples? 

A survey of a broad range of large crystals of natural 
olivine (peridot) as well as annealed San Carlos, Arizona. 
olivine was conducted to address these questions. Infrared 
(IR) spectroscopy was used to detect the presence of OH 
by its characteristic absorption bands near 3700 em- 1• and 
to detect molecular water by its characteristic bending plus 
stretching combination mode at 5240 em- 1

. 

Experimeatal Procedure 

Thirty four olivine crystals from seventeen localities were 
studied. The localities, geologic occurrence. and available 
references for the samples are summarized in Table 1. Be
cause of the low OH concentrations encountered in natural 
specimens a minimum thickness of 1 mm was required for 
most samples. Only inclusion and fracture free ponions 
of the samples, as judged by optical microscopy, were used 
for spectroscopy where possible. Sample dimensions and 
observations of fractures and inclusions are summarized 
in Table 2. 

Samples 7, 8, 9, and 22 were oriented by morphology, 
and orientations were verified with polarized IR reflectance 
spectra in the range of 1200 em- 1 to 400 an- 1

• Other 
specimens were oriented by X-ray diffraction using either 
Laue or precession methods, and faces normal to crystallo
ITIPhic axes were cut and polished. 

Spectra were obtained with a Nicolet 60SX Fourier 
transform IR spectrophotometer. The 60SX uses a Michel
son interferometer calibrated with a He-Ne laser. The optic 
bench and sample compartment of the 60S X is continuously 
purged with H 20- and C02-free air. Spectra were collected 
with either a silicon carbide source, KBr beamsplitter,liqwd 
nitrogen cooled HgCdTe detector, and AgBr polarizer; or 
a tungsten source, CaF2 beamsplitter, liquid nitrogen 
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Ta!M I. Localities and geologic occurrences of olivines surveyed 

Sample number Locality 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 
14 

15 

16 
17 

18 

19 

20 

21 

23 
24 
25 
26 
27 
28 
29 
30 
31 
n 
33 
34 

Norway' 
Norway 
Norway 
Unknown, East Africa 
Zabargad lsi. Egypt• 
Zabargad lsi, Egypt 
Zabargad lsi, Egypt 
Zabargad lsi.. Egypt 
Monastery Farm, Winburg, South Africa• 

Emali. Kenya• 
Emali. Kenya 
Angola 
Angola 
Toowoomba Range. Queensland. Australia 

Vesuvius. Italy 

Morales. Mexico 
Kingtti. Tanzania 

Sri Lanka 

Nosy Mitsio. Madagascar' 

Cheviot Hills. Hughenden. Queensland. Australia 

Hebei Pr .. China' 

Unknown. Sn Lanka 

San Carlos. Arizona' 
San Carlos, Anzona 
San Carlos. Arizona 
San Carlos. Arizona 
San Carlos. Arizona 
San Carlos. Arizona 
San Carlos. Anzona 
San Carlos, Arizona 
San Carlos, Arizona 
San Carlos. Arizona 
San Carlos. Arizona 
Kimberley, South Africa 

AMNH =American Museum of Natural History 
BMNH =British Museum of Natural History 
BGS = British Geological Survey 
CIT~ California Institute of Technology 
HVD =Harvard Mineralogic Museum 
MNHN =Museum National d'Histoire Naturelle (Paris) 

cooled lnSb detector, and Lil03 polarizer. The former con
figuration is optimized for the range 2000-400 em- 1

, and 
the latter for 7000-2000 em- 1• Spectra were collected with 
either 1, 2, or 4 em- 1 resolution. Typically I 024 scans were 
averaged for each spectrum. Spectra were obtained for each 
sample with [100] (Ella, 4.76 A), [010] (EIIb. 10.23 A), and 
[001] (Ell c. 5.99 A) polarizations (space group Pbnm). 

OH concentration was estimated using the molar ab
sorptivity correlation of Paterson (1982) based on the molar 
absorptivity of OH in glasses and quartz. Total OH concen
trations were determined by summing the concentrations 
determined from three onhogonal polarizations using an 

Occurencc. comments 

metamorphic 
metamorphic 
metamorphic 
nft basalt xenolith 
hydrothermal 
hydrothermal 
hydrothermal 
hydrothermal 
kimberlite xenolith 

rift basalt xenolith, brown 
rift basalt xenolith, green 

basalt xenolith 

1776 eruption leucitite basalt 

basalt 
basalt 

basalt 

basalt xenolith 

basalt 

Reference number 

GRR #")49 
CIT #15089a 
CIT #15089b 
GRR #1000 
GRR tf)99a 
GRR tf)99b 
CIT #12012 
GRR #889 
GRR #1006, 
BMNH #84361 
GRR #1004 
GRR #1005 
GRR #1002 
GRR #1003 
GRR #1008, 
BMNH #1913,93 
GRR #1007, 
BNMH #1934.74 
GRR #1001-1 
GRR #1348. 
AMNH #98601-2 
GRR #1346, 
AMNH #(;98660 
GRR 111353. 
MNHN #11950-2 
GRR :~~1355. 
BGS #36015 
GRR #1349. 
AMNH #98152 
GRR #914, 
HVD #107027 

basalt xenolith GRR #998a 
basalt xenolith GRR #997 
basalt xenolith GRR #998b 
basalt xenolith GRR #1022a 
basalt xenolith GRR #1022b 
basalt xenolith GRR ;itl022c 
basalt xenolith GRR ::I022d 
basalt xenolith GRR tl022e 
annealed 1073 K. 8.9 kbar. 4 x 10' s GRR #932 
not annealed, same crvstal as 31 GRR #933 
annealed 1273 K. 3.5 kbar. 104 s GRR ;:1283 
Kimberlite xenolith GRR ;;920, 

HVD tl2531 

' Brueckner 1977 
• Clocchiatti et al. 1981, Wilson 1976 
• Whitelock 1973 
• Suwa et al. 1975, Bank and Saul 1972 
' Lacroix 1922 
' Keller and Fuquan 1986 
1 Koivula 1981, Frey and Prinz 1978 

orientation factor, y. of 1 for each polarization. This enables 
the total OH concentration to be determined with greater 
precision than would be possible if a single spectrum were 
resolved into component bands, and an orientation factor 
assigned to each component. 

Cryogenic spectra were obtained using an evacuated liq
uid nitrogen cryostat with Alz03 (0001) wmdows. 

The spectra presented in this paper were collected at 
room temperature unless noted otherwise. 

Annealed San Carlos olivine crystals were examined to 
compare natural and anificial OH defects. Sample 31 was 
prepared by Andreas Kronenberg at the USGS, Menlo 
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Table 2. Microscopic features 

Sample .. Thickness (mm) Spectal features 

8.39' (010) lilly pad fractures. veils of umdentified maten•l 
[001] 12.10 (010) lilly pad fractures. veils of umdentified material 

2 [100] 7.56 healed fractures. veils of umdentified material 
[001] 9.02 clear 
[100] 7.36 veils of unidentified material 
[001) 10.88 clear 

4 [100) 2409 clear 
[010) 7.97 clear 
[100) 3 49 fev. unidentified dark inclusions 
[010) 4.80 several unidentified dark inclustons 

6 [100) 3.57 clear 
[001) 7.78 cluster of (010) fractures 

7 (100) 3.7 etch pits on surface 
[010) 8.0 etch pitS on surface 

8 [100] 4.7 etch pits on surface 
[010) 2.3 etch plls on surface 

9 [010] 3 98 fev. mclusions elongated on [001) 
[001) 4.96 fev. inclusiOns elongated on [001) 

10 (010) 3.79 clear. dark color 
[001) 5.56 clear. dark color 

11 [100) 6.41 clear 
[010) 4.13 clear 

12 (100) 5.87 clear 
[010) 7.37 clear 

13 [100) 6 98 clear 
[001) 607 clear 

14 [100) 4.71 clear 
[010) 2.76 clear 

15 [100) 4.59 dark color. fev. mclustons elongated subparallel [100) 
[010) 2 65 dark color, fev. inclusions elongated subparallel [100) 

16 [100) 2.29 clear 
[010) 3.58 clear 

17 [100) 5.59 clear 
[001) 5.75 clear 

18 [100] 8.79 clear 
[001) 2.30 clear 

19 [100) 5.21 clear. dark color 
[010] 3.31 clear, dark. color 

20 [100) 6.52 (010) lilly pad fractures 
[010) 281 clear 

21 [100] 7.99 man) healed fractures. negative crystals 
[010] 9.27 many healed fractures, negative crystals 

22 [100] 7.45 surface etch pits 
[010] 10.14 surface etch pits 

23 (010] 8.04 clear 
(001] 18.49 fractures and (010) lilly pad fractures 

24 [100] 25.06 clear, dark color 
(010] 9.53 dark color, (010) fractures with veils of unidentilied material 

25 (010] 2.71 clear 
(001] 4.24 clear 

26 (010] 2.96 clear 
27 (010] 2.96 clear 
28 (010] 2.96 clear 
29 (010] 2.96 clear 
30 (010] 2.96 clear 
31 (100] 4.07 unfilled fractures, primarily (01 0) 

(010) 2.96 unfilled fractures, primarily (01 0) 
32 [tOO] 4.07 clear 

(010) 2.97 clear 
33 [010) 3.25 clear 

[001) 3.30 clear 
34 (100] 8.14 turbid. submicroscopic inclusions• 

[010) 5.02 turbid, submicroscopic inclusions • 

• lr. is 29• illclined from [010) in (001) 



-292-

Parle The sample was packed in a mixture of brucite, peric
lase. and water, and sealed in a gold foil capsule. The cap
sule was annealed at soo· c. 8.9 kbar water pressure, for 
4 x 10~ s (::::: 5 days). The e)(perimental technique is identical 
to that reported in Kronenberg et al. (1986), with the e)(cep
tion that a Si02 disc was not used. 

Sample 33 was prepared by Steve Mackwell at Cornell. 
The sample was annealed at 1000• C at 3.5 kbar for 10'' s 
(::::: 3 h) in the presence of water (Mack well, pers. comm.). 
The O)(ygen fugacity was regulated by a magnetite(wustite 
butTer. 

Results aod Discussion 

The two halves of Figure I form a composite of seventeen 
normalized OH spectra in [100) polarization which demon
strates a number of features. First, there is a wide range 
in OH speciation as shown by the diversity and multiplicity 
of bands. Second, OH abundances, as estimated from nor
malized absorbance (see Table 3) vary greatly. Olivines 
range from essentially "dry", e.g., Angola and San Carlos 
(Fig. lq and lp), to comparatively "wet", e.g., Kimberley 
(Fig. Ia). Third, spectral complexity tends to increase with 
total OH content. Fourth, each locality has a characteristic 
OH spectrum which is readily distinguishable from other 
localities. These spectra are reproducible; the spectra for 
olivine from San Carlos, and Zabargad Island, Egypt are 
consistent with the published spectra of other workers (e.g., 
Mackwell et al. 1985, Beran and Putnis 1983, and Freund 
and Oberheuser 1986) with the exception of a band at 
4200 em- 1 discussed later in this section. 

The variability observed within a single locality is small 
\loith respect to the variability among different localities. 
Figure 2 is a composite of four Zabargad [100) spectra 
which shows the variability observed within a single locali
ty. In general, the same bands are always seen in samples 
from a single locality, though their absolute and relative 
amplitudes may vary by as much as a factor of 4 in e)(treme 
cases (San Carlos). Total OH abundances vary by over a 
factor of 3 for dry localities (San Carlos, and Angola), wet
ter crystals (Zabargad, Kenya, and Norway) show much 
less variability at about 20%. In spite of the difference in 
OH abundance, San Carlos samples demonstrate similar 
variability to the Zabargad samples. 

Sample 34 from the Kimberley kimberlite is unusual 
in that the broad underlying absorption (Figure Ia) is due 
to liquid water. Liquid water is characterized by a broad 
absorption at 3420 em- 1 and a bending plus stretching 
combination mode at 5240 em- 1 (Fig. 3) which is absent 
in dry samples. Upon cooling the crystal to 77 K, no ice 
band was observed (3200 em- 1 ). When molecular water do
mains are sufficiently small, e.g., a few molecules, ice may 
not form even at 77 K. The molecular water in Kimberley 
olivines may be present in these small domains, thereby 
precluding the formation of ice. This water probably exists 
in submicroscopic fluid inclusions. 

The broad absorption extending from 3700 to 3200 em- 1 

in the spectrum of the Hebei Province, olivine (Fig. ld) 
is also due to fluid inclusions. The water combination mode 
was observed at 5240 em- 1

. This sample is full of healed 
fractures which form arrays of small fluid bubbles. No in
clusion-free path was available in the sample. Beam paths 
which pass through inclusion rich regions show more mo
lecular water absorption than do paths in inclusion poor 

~ .. 
"' OLIVINE ., 

(100) em, 

0 

"' 

"' "' .... 

•0 I ~"' .,., 

f"' 0 

0 b 

"' c 

d 

0 

e 

h 

Fla· l. Representative OH absorption spectra for the localities in 
Table I. All the spectra are polarized [100]. and thicknesses are 
normalized to 1 em. Localities and sample numbers are: (a) Kim
berley, 34; (b) Win burg, 9; (c) Norway, 3; (d) China. 21; (e) Kenya. 
11; (f) Mellico, 16; (g) Vesuvuius, 15; (h) Tanzania, 17; (i) Sri 
Lanka, 18; (j) Madagascar. 19; (lr.) E. Africa, 4; (I) Sri Lanka, 
22; (m) Zabargad, 5; (n) Cheviot Hills, Australia, 20; (o) Too
woomba Range, Australia, 14; (p) San Carlos, 23; (q) Angola, 12 

regions, supporting the idea that the detected molecular 
water resides along healed fractures. A fracture-free olivine 
from Hebei, China, (not included in Table I) was run unor
iented and unpolarized. This sample had no measurable 
OH absorption. 

A broad underlying absorption from molecular water 
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Table 3. Estimated hydrogen abundances 

Sample Locauon H abundance Occurence 

H 1o•s, b} 10e1ght 

34 
I 

Kimberley. South Afnca. mcluding molecular water 
Non••a\· 

976 
344 

6 64 ppm 
2.34 

K1mberhte 
Metamorphic 
K1mberhte 
Kimberlite 
Metamorphic 
Metamorphic 
Basalt 

34 
9 
2 
3 

17 
21 
15 
II 
18 
16 
10 
19 
22 
33 
4 
5 

31 
20 
23 
14 
12 
24 

K1mbe~le). South Africa. no molecular water 
Monas tel), South Afnca 
Norwa) 
Norv.·a) 
Kingiti. Tanzania 
Hebe1 Pr.. China 
Vesuvius, hal) 
Emali. Kema 
Sri Lanka · 
Morales. Mexico 
Emali. Kenya (alterred) 
Madagascar 
Sri Lanka 
Annealed San Carlos 
East Africa 
Zabargad. Egyp1 
Annealed San Carlos 
Cheviot Hills. Australia 
San Carlos. Arizona 
Toowoomba. Australia 
Angola 
San Carlos. Arizona 

~ ~-----r-----r----~----~r-----~--~ 

~ j 

"" u z a:,. 
CD. 
!5 
Ill 
C[l 
a: 

"' 

ZABARGAD 
I em, (100] 

a 

b 

c 

d 

Fie· 2. Zabargad (100] spectra demonstrate the variability observed 
for individual localities. Thicknesses nonnalized to I an. Samples: 
(a) 5, (b) 6, (c) 7, (d) 8 

may also be present in Figures 2d and Jq; however no 
combination mode was observed due to the low concentra
tions present in the samples and the intrinsically low ab
sorptivity of the combination mode. 

263 
261 
220 
204 
195 
134 
127 
98.0 
69.8 
62.5 
54.8 
52.4 
41.4 
37.8 
30.0 
273 
19.4 
11.2 
9.40 
8.29 
5.94 
2.83 

Cl 
(") 

Cl 

1!1 
N 
Cl 

Cl 
N 
Cl 

w 
u 
Z1J1 cr:_ 
!Do cr:. 
Cl 
1!1 
!D 
<I:Cl 

Cl 

lfl 
Cl 
Cl 

I 79 
178 
1.50 
1.39 
1.33 

912 ppb 
864 
667 
475 
425 
373 
356 
282 
257 
204 
186 
132 

76.2 
63 9 
564 
404 
19.3 

Basalt 
Basalt 
Basalt 

Basalt 
Basalt 
Basalt 
Metamorphic 
Annealed 
Basalt 
H ydrotherrnal 
Annealed 
Basalt 
Basalt 
Basalt 
Basalt 
Basalt 

WATER j 
em, [100] j 

j 
j 
j 

a 

b 

Fie· 3. Molecular water bending plus stretching combination mode 
at 5240 an- 1 for (a) Kimberley sample 34, and basehne (b) for 
Kingiti, Tanzania, sample 17. Both spectra have [100] polariz.aoon 
and have been normalized to I an thickness 

Freund and Oberheuser (1986) repon an absorption 
band near 4200 em- 1 which they attribute to molecular 
hydrogen in association with an oxygen-oxygen bond. Fig
ure 4 shows an unpolarized (100) transmission spectrum 
of an olivine from Zabargad, Egypt, from 4400 to 4000 
em- 1 with a reproduction of Freund and Oberheuser's re-
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Fig. 4. Unpolarized (100) transmission spectra of Zabargad. Egypt, 
olivine Sample thicknesses are 5 mm. (a) Sample 5 run in this 
laboratory and normalized to 5 mm thickness. The periodic oscilla
tions are interference fringes. No bands near 4200 em· 1 are ob
served. (b) Reproduced from Freund and Oberheuser (1986) They 
attribute the band at 4200 em· 1 to molecular hydrogen in a non
a:ntrosymmetric lattice site 

poned molecular hydrogen band. Our sample has been nor
malized to Freund and Oberheuser's 5 mm thickness. The 
periodic oscillations in our data are due to inference fringes. 
We have observed no bands near 4200 em- 1 in spectra 
of the four Zabargad crystals in Table 1, nor have any such 
bands been found for any of the crystals examined in this 
study. 

Despite the differences among localities, there are strik
ing similarities and consistencies. Most bands can be identi
fied in spectra from several localities, and some are present 
in all of the spectra examined (e.g., Figure 1: 3572 em, - 1). 

None of the readily recognizeable OH absorption bands 
intrinsic to olivine are unique to any single sample or locali
ty. Detailed examination of the spectra, particularly of the 
77 K spectra, reveals some minor bands which are either 
unique or indistinguishable in other specimens because of 
band overlaps or very low absorptivities. These bands may 
be members of complex multiplets which contain the more 
common bands, and are seen only when the trace and minor 
element chemistries vary in such a way as to make them 
more prominent. 

The pleochroism of the bands (e.g., Table 4 and Fig. 9) 
is the same in all crystals. Olivine thus seems to have a 
discrete set of OH defect sites. Differences arise because 

total OH and relative site occupancy are variable among 
localities, as observed by Beran and Putnis (1983). 

Macroscopic and Microscopic Obsen•ations 

The samples in Table 1 were examined both macroscopi
cally and microscopically to determine the extent of internal 
fracturing and surface etching, to identify included minerals 
and fluid inclusions, and to identify any other unique prop
erties of the crystals which may have bearing on their spec
troscopy. These features are described in Table 2. Only fea
tures which might have impact on theIR spectra are shown. 
No mention is made of fractured samples, for example. 
which had clear fracture-free windows for spectroscopy. 
Submicroscopic features (<I 11m) such as microfractures 
and inclusions, if present, were not in sufficient quantity 
to cause discernible scattering (except for Kimberly sample 
34). 

Samples 1, 2, 3, 5, 6, 9, 15, 20, 21, 23, 24, and 31 have 
fractures and/or inclusions which interfere with the IR 
beam in one or more propagation directions. k. The effect 
of these features on the IR spectra in the regions of interest 
can be determined, in some cases, by using a single polariza
tion with two propagation directions. Sample 3, for exam
ple, has a clear beam path when kilt but the beam passes 
through veils of an unidentified material when klla. The 
Ellb polarization can be used with either propagation vec
tor. If the Eiib klla and Ellb kllc spectra (after normaliza
tion to a common thickness) are different, then the unidenti
fied veils are considered responsible for the differences. 
Conversely. if the spectra are identical. then the unidentified 
veils had no measurable effect on the IR spectra. When 
only subtle differences are observed. sample misorientation 
may be responsible for the differences rather than the inclu
sions. 

When a clear path is not available in the crystal. a quali
tative estimate of the impact of the incluswns may still 
be possible by comparing relatively inclusion-rich and inclu
sion-poor paths. This technique was used for samples I. 
5, 9, I 5, 21, and 31 for which there were no inclusion-free 
paths. 

A multiplet of bands at 3709. 3685. and 3645 em- 1 in 
samples I, 2. and 3 is correlated with the fractured regions 
of the samples. These bands are attributed to serpentine, 
as discussed in the following section. The broad absorption 
centered at 3420 em- 1 in sample 21 is attributed to molecu
lar water. The strength of the molecular water absorption 
in this crystal is strongly correlated to fracture density. Sam
ples 5, 6, 9, I 5, 20, 23, 24, and 31 have no bands which 
appear to be correlated with fractures or inclusions. 

The effect of surface etch pits (e.g .. samples 7, 8. and 
22) can be assessed in a similar manner. Again we use a 
common polarization with two different propagation vec
tors, and we require that the thickness of the sample in 
the two propagation directions is different. The two beams 
traverse the same thickness of surface layer, but different 
thicknesses of bulk sample. After normalization to a com
mon thickness, the bulk sample thicknesses are identical 
and the surface layer thicknesses are different. The spectra 
will differ only if the surface layer had a measurable absorp
tion. Spectra of samples 7, 8, and 22 had no contribution 
from surface etch pits. 

Three saples have unusual color. Pleochroism for the 
three principal directions (~=EIIb, 1=Eiic, and 7=Eiia) 



-295-

are presented in Munsell notation (Munsell Book of Color, 
1976) and named in accordance with the Nauonal Bureau 
of Standards Circular 440 (Judd and Kelly 1976). Emali, 
Kenya (#10) •= 5YR 6/12 (strong orange). ft= 1 Y 8.5!10 
(light orange brown), and y= 5YR 7/12 (strong orange); 
Vesuvius, Italy (#15) 11=2.5Y 7/10 (strong yellow), 
ft= 10YR 8,'8 (light orange brown). and 1= 7.5Y 9,'5 (pale 
greenish yellow); and Nosy Mitsio. Madagascar (#19) 
•= 10YR 7/10 (strong orange yellow). ft= 7.5YR 5/10 
(strong yellowish brown), and 7= 10YR 6/7 (dark orange 
yellow). 

Each of these unusually colored samples has unique OH 
spectra, as do all of the samples in Table 1. The colored 
samples have neither abundances nor speciation peculiari
ties which set them apan from the other samples. We con
clude that the factors responsible for the unusual colors 
have no apparent common influence on OH. 

Included Hydrous Minerals 

In addition to intrinsic OH defects and fluid inclusions, 
OH may become incorporated into olivine as an included 
hydrous phase. There is sufficient complexity in the OH 
spectra of olivine such that no single hydrous mineral. nor 
even any simple assemblage of hydrous minerals can ac
count for the variety of absorption bands which we see. 
While there is little doubt that serpentine, for instance, 
could account for some of the narrow band absorption 
near 3700 em- 1, serpentine alone cannot account for the 
bulk of the OH absorption. The majority of the absorption 
bands from 3200 em- 1 to 4000 em- 1 do not have both 
positions and half-widths which are consistent with com
mon hydrous minerals likely to be associated with olivine. 
If. on the one hand, a large hydrous mineral crystal were 
included in olivine it would cause an OH absorption band 
indistinguishable from that of the isolated hydrous mineral. 
If, on the other hand, only a few unit cells of the hydrous 
phase were present in the olivine crystal, then the OH ab
sorption of the hydrous phase might be shifted in position, 
and its width changed by the crystal field of the olivine 
host. In this latter limiting case, OH spectra alone may 
not be able to distinguish between OH intrinsic to olivine 
and OH in unit cell sized domains of hydrous phase inclu
sions. The OH spectra of hydrous phases are generally char
acteristic, so coincidence of olivine OH bands and hydrous 
mineral bands should be interpreted as evidence of inclusion 
of the hydrous phase in the olivine. Conversely, if no com
mon associated hydrous phase corresponds to an OH band, 
that band is considered intrinsic to olivine as a modification 
of its structure. 

Included hydrous phases could be primary igneous 
phlogopite or alteration products such as serpentine. 
Figure Sa shows the characteristic absorption of serpentine, 
which can be seen in several olivines as well (e.g., Figs. Sb, 
and ta, c, d, I) at 3709, 3685, and 3645 em- 1• Figure 6a 
shows the absorption of talc, which is similar to that of 
otber trioctahedral magnesian layered silicates. The same 
bands were found in the brown olivine from Emali, Kenya 
(Fig. 6b) at 3678 and 3662 em -•. No other bands observed 
in the olivine spectra unambiguously correspond with com
mon hydrous mineral spectra, however a strong case may 
be made for the humite group minerals. 

It has been suggested that the humite group minerals, 
being structurally similar to olivine as well as being by-
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upon (b) OH band in brown sample from Emali. Kenya (#10). 
This band is not present in the green sample (#II, see Fig. !e) 
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Fig. 7. Humite group minerals: (a) oorbergite. (b) chondrodite, 
(c) humne. (d) clinohumite, and (e) titanian chnohumite. Samples 
were run as KBr pellets. The absorption bands near 3700 em -• 
are due to serpenuoe (s) 

drous. may account for many of the OH bands. Spectra 
of the humite minerals norbergite. chondrodite, humite, 
clinohumite. and titanian clinohumite are shown in Fig
ure 7. These spectra were obtained from KBr pellets con
taining the powdered humites. The samples contain some 
serpentine which gives rise to the absorption bands near 
3700 em- 1

. KBr powder spectra are broader than single 
crystal spectra, so the humite band widths measured in Fig
ure 7 are upper bounds for the single crystal band widths. 

The OH vectors of the magnesian humites are subparal
lel to [tOO] (Yamamoto 1977, Fujino and Takeuchi 1978), 
as are many of the olivine OH vectors (we use the olivine
based orientation for the humite minerals, see Ribbe, 1982, 
p. 241 ). The OH doublet is centered at 3580, 3559, 3558, 
and 3568 em- 1 for norbergite, chondrodite, humite, and 
clinohumite respectively. The doublet is split and shifted 
variably with minor element variations as clearly demon
strated by addition ofTi (Fig. 7e). The bands at 3391 em - 1 

are most prominent in the titanian clinohumite spectra, but 
are found in the other humite spectra as well. No precise 
( ± I em- 1

) correspondence is found between the humite 
spectra and the olivine spectra, however the prominent Ella 
bands at approximately 3572 and 3525 em- 1 are likely can
didates for humite bands. These bands fall within the range 
of absorption wavenumbers covered by the humites, and 
exhibit the expected orientation. These bands are seen in 
most of the olivines in this survey, as can be readily seen 
in Figure I. Additionally, the Zabargad olivines and the 
Monastery kimberlite olivine (samples S through 8, and 
9) show an absorption at 3412 em- 1

, which roughly corre
sponds with the 3391 em- 1 titanian clinohumite band. 

Figure 8 shows the [IOO)IR spectra of Zabargad olivine 
sample 8, normalized to I em thickness, with a spectrum 
of titanian clinohumite from Moses Rock, Utah, normal-

ZASARGAD OLIVINE AND 
Lt1 TIT ANI AN CLIN0t1U~ITE 
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Fig. 8. Spectra of (a) 1 em thick Zabargad olivine (sample 8) in 
[100] polarization supenmposed upon (b) 5 !Jm th1ck utaruan clmo
humne run unpolarized 10 optic a>.1s orientation 

ized to 5 lim and run in optic axis orientation. Note the 
close correspondence of the 3572, 3525, and 3412 em- 1 

bands. We find this compelling evidence that either utanian 
clinohumite is present in this sample, or that an OH defect 
environment exists in this sample which is chemically simi
lar to that of titanian clinohumite. 

The humite group minerals can be represented as 
nMg2 SiO. · Mg(OH,Fh. where n =I, 2. 3, and 4 for norber
gite, chondrodite, humite, and clinohumite respectively. 
Taylor and West (1928) and Bragg and Claringbull (1965) 
hypothesized that higher members of the series (n > 4) rrught 
occur. While these higher members have not been found 
as natural crystals, faults in natural humites consisting of 
even-n (n"" 6, 8, 10. and higher) lamellae have been observed 
by White and Hyde (1982) in natural magnesian humites. 

Although no regular unit cell sized lamellae of hurrute 
group minerals have been observed in natural olivine (n =:c). 
larger (several micron sized) intergrowths of titanian clmo
humite and olivine were observed by McGetchin et al. 
(1970) in kimberlite at the Moses Rock dike. Utah. Kita
mura et al. (1987) have found humite group layers in olivme 
from Buell Park, Arizona. Other occurrences of humites 
in association with olivine are cited in Ribbe (1982). An 
OH abundance of 147 Hti06 Si or I ppm H would corre
spond to an approximate n"" 14200 composition or one 
norbergite unit for each 14199 olivine units. Rare humite 
lamellae faults in olivine could account for the OH abun
dance in natural olivine near 3570 em- 1, and the pleochro
ism of OH in olivine at this wavenumber is consistent with 
this possibility. 

If a humite mineral is responsible for the 3572 and 
3525 em- 1 OH absorptions in olivine. then the wave
number differences between these bands in olivine and the 
similarly positioned bands in humites may be due to the 
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T•~ 4. Pleochroism and calculated OH dipole orientation; from ~ ,..---r--........ -----.---,....-----, 
77 K spectra of monaster) kimberlite olivme (sample 9) 1\1 

Band =-· 
3637 
3623 
3615 
3607 
3602 
3600 
3594 
3576 
3582 
3565 
3559 
3554 
3550 
3542 
3529 
3499 
3483 
3473 
3462 
3455 
3433 
3414 
3404 
3390 
3377 
3364 
3346 
3319 
3287 
3263 
3236 
3225 

6 
4 
5 
7 
8 

28 
6 

11 
5 
8 
7 

19 
6 

32 
10 
11 
12 
10 
10 
II 
10 
10 
35 
12 
14 
12 
20 
23 
31 
40 
10 
42 

Pleochroism OH angle with 

(100] 

a> >b=c oo 
a> >b=c 0 
a>b> >c 12 
a>b> >c 16 
a>c>b 30 
a> >b=c 0 
a>c>b 26 
a>c>b 30 
b> >a=c 90 
a>c>b 46 
b> >a=c 90 
b=c> >a 90 
b> >a=c 90 
a>c> >b 30 
a>c>b 37 
a>c>b 40 
a>b=c 35 
c> >a=b 90 
c> >a=b 90 
a >c> b 38 
a>c>b 36 
a> >b=c 0 
a>c>b 44 
c>b>a 90 
a>c> b 45 
b> >a=c 90 
a>c>b 46 
a>c>b 37 
a>c>b 37 
c> >a=b 90 
a> >b=c 0 
c>b> >a 90 

(010] 

900 

90 
78 
74 
90 
90 
90 
73 
0 

64 
0 

45 
0 

90 
74 
73 
66 
90 
90 
66 
77 
90 
73 
73 
78 
0 

75 
82 
68 
90 
90 
56 

(001] 

900 

90 
90 
90 
60 
90 
64 
66 
90 
55 
90 
45 
90 
60 
58 
55 
66 
0 
0 

63 
58 
90 
51 
17 
47 
90 
48 
55 
62 
0 

90 
34 

olivine dominated crystal field energy around the humite, 
or simply different minor element chemistry. Alternatively, 
there may exist OH sites in olivine which are chemically 
similar to those of humites. 

OH Crystallographic Sites 

OH dipole orientations may be calculated from the [100], 
[010], and [001] polarized spectra alone. These calculations 
are subject to the combined errors of crystal orientation, 
polarizer orientation, and subgrain alignment. Table 4 
shows these calculated angles for a number of the OH bands 
which were resolved in the 77 K spectra of Figure 9. Note 
that the majority of the bands are inclined toward (100]. 

Accurate measurement of the pleochroism of the bands 
requires deconvolution of the spectra into spectral compo
nents. While the theoretical band shape of an individual 
absorber is Lorentzian, the anharmonicity of the OH poten
tial, coupled molecular motions, and the chemical inhomo
geneity of the sample c:ause line broadening (Aines 1984). 
We found that a Gaussian band shape adequately described 
the sharp-band OH absorptions in olivine. Room tempera
ture OH bands tend to be broader than those measured 
at 77 K, and what often appears to be a lingle band at 
room temperature may become resolvable as several closely 
spaced bands at 77 K. Spectrum fitting was thereby facili
tated by using cryogenic spectra to improve resolution by 
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Fla. 9. Pleochroism of the OH absorption for Monastery kimberlite 
sample at 298 K and 77 K. Thicknesses have been nonnaliz.cd to 
I em 

narrowing the bands and by shifting them differentially. 
Even with this improved resolution many bands overlap 
and are distinguishable only as shoulders and asymmetries 
in other bands. 

Note the trend towards increased full width at half 
height with decreasing wavenumber. Exceptions to this 
trend may be due to unresolvable overlapping bands. 

In ideal olivine, and in other orthorhombic minerals, 
any IR spectrum will be a linear combination of the Ell•. 
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Ellb. and Ellc spectra. It is imposible, therefore, for an ab
sorption maximum to occur other than in one of the princi
pal optic directions when the propagation direction is along 
a principal optic direction if the absorber shares the orthor
hombic symmetry of its crystal host. This has been de
scribed mathematically by Strens eta!. (1982), and shown 
experimentally in the absorption figures of Beran and Put
nis (1983) for OH in Zabargad oliVIne. Freund and Ober
heuser (1986) report that, in a (100) spectrum of Zabargad 
olivine, the intensity of the bands at 3614, 3591, and 
3567 em· 1 showed a maximum at 35" off the [010) axis. 
This suggests that the OH absorbers responsible for these 
bands do not conform to the orthorhombic symmetry of 
olivine, and must therefore be due to mechanical inclusions 
which fortuitously share a common alignment. In accord 
with the measurements of Beran and Putnis we have found 
absorption maxima only in principal directions (when light 
is propagated along a principal direction), which implies 
that these OH absorbers are in sites controlled by the sym
metry of olivine. Accurate determination of the OH dipole 
orientation is critical for determining the OH crystallo
graphic sites. Site determination is in turn important for 
understanding the influence of OH upon the mechanical 
and rheological properties of oliVIne. 

The details of H incorporation in olivine are not known. 
Beran and Putnis (1983) attempted to determine the atomic 
site of H in the olivine lattice using OH absorption figures. 
While their models quantitatively fit the direction of the 
OH dipole with good accuracy, the absorption wave
numbers which we calculated using the model of Nakamoto 
et aL (1955) do not agree with their site assignments. It 
is important to recognize that the structural positions of 
the major (stoichiometric) atoms will likely differ from their 
X-ray determined values in the environment of a point de
fect. This fact introduces uncertainty in the absorption fig
ure models of Beran and Putnis and makes application of 
Nakamoto's model difficult. 

Perhaps the most likely factors which regulate the 
number and types of OH absorbers in olivine are the trace 
elements. Kats' (1962) work on quartz showed that a tre
mendous variety of OH absorptions correlate with Al3 • 

substituted for Si4+, and with alkali cation defects. Since 
OH is present at ppb to ppm concentrations in olivine, 
miniscule impurity levels (often below modem X-ray fluo
rescence and microprobe detection limits) may be responsi
ble for controlling OH speciation. 

Source of Hydroxid£ and Geologic Occurrence 

OH in olivine is probably affected both by the conditions 
of crystallization and by later annealing, transport, and al
teration. In order to relate the OH concentrations measured 
here with the OH concentrations in mantle and lower crus
tal olivines, it is necessary to assess the effects that meta
morphic and alteration processes may have upon the crys
tal. These late stage processes may be very effective in 
changing primary OH concentration levels and speciation. 
The high diffusivity of hydrogen bearing species in olivine 
at magmatic temperatures (a conservative lower limit of 
to- 6 em 2/s at t too• C has been estimated by Mackwell 
et al. 1985) means that dramatic diffusive transport of hy
drogen may occur even over the timescale of magmatic 
transport. Aines and Rossman (1985) have shown that OH 
in topaz and feldspar undergo site changes upon heating. 

Thus in addition to changing overall concentration, the 
thermal history will affect the site distribution, further obs
curing the primary OH signature. 

If magma transporting olivine xenocrysts was undersa
turated in OH, then the oliVIne may have lost most of It 
original OH during it's residence in the magma. Olivines 
from xenoliths in basalts, like San Carlos, may have had 
one or two orders of magnitude greater OH abundance 
prior to being stoped off into the basaltic magma. Alterna
tively, the olivines transported in the vapor-rich k.imberlites 
may have even gained OH from the magma, and certainly 
should have lost less of their original OH content than 
would the olivines from basalt. Thus the abundance of OH 
in olivines in the mantle may be quite different from the 
abundances which we can measure in olivines of mantle 
origin. The measured abundances in crystals from volumi
nous basaltic flows are almost certainly a lower limit for 
mantle olivine. The measured values for olivines in kimber
lites would give a lower limit which is two orders of magni
tude greater than that calculated from the basaltic olivines. 
Also, since the tectonic and geologic regimes for k.imberlillc 
eruptions and basalt flows are different, the limits inferred 
from one may not be applicable to the other. Concentration 
profiles across large xenocrysts may be able to resolve the 
role of diffusive OH loss (or gain) during magmatic trans
port. This information is necessary to constrain the abun
dance of OH in olivines in the mantle prior to magmatic 
interaction. 

The molecular water observed in the Kimberley sample 
may represent former OH, of the type normally found in 
olivine, which has subsequently exolved to form submicro
scopic fluid inclusions. If this is the case, then a lower limit 
of 976 H/106 Si can be inferred for such mantle denved 
olivines. This is over an order of magnitude greater than 
the abundances of hydroxide which have been achieved in 
annealing experiments. The rheologic properties of the 
mantle, particularly where kimberlite diapirs form, may 
consequently be quite different than current experimenta
tion indicates. 

Annealed 0/it'ine 

The effect of OH on the rheologic properties of olivine 
is commonly studied by introducing OH into the olivme 
by annealing it in the presence of water. We have examined 
two crystals from San Carlos which were annealed for this 
purpose. Comparison of annealed with natural San Carlos 
olivine (Fig. 10) shows that new OH bands are created, 
and existing bands are enhanced. New bands detected at 
298 K are at 3702, 3657, 3637, 3623, 3612, 3541, and 
3524 em- 1

• A band at 3702 em- 1 (not shown in Fig. 9) 
is probably due to incipient serpentinization. The annealed 
olivine prepared by Mackwell was similar to that prepared 
by Kronenberg. 

Note that the 3572 and 3524 em- 1 humite-like OH 
bands are the strongest features of the annealed olivine 
spectra. 

The annealed samples had OH abundances ofl9.4 (sam
ple 31) and 37.8 H/106 Si (sample 33). Mackwell eta!. (1985) 
report a maximum of 60 H;t06 Si as sharp bands and I IS 
H/106Si as broad bands in their annealed olivines. Justice 
and Graham (1982) report a maximum of 329 Hii06 Si pres
ent as serpentine in their annealed olivines. These abun
dances are quite low compared with the maximum abun
dance observed in natural olivines of nearly 1000 H;I06Si. 
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Annealed San Carlos olivine differs from natural olivine 
in both OH abundance and speciation. While the OH bands 
of the annealed crystals are found in many of the natural 
crystals. many of the common natural bands (e.g, Fig. I : 
3356 and 3328 em- 1

) are not found in the annealed crystals. 
Since the effect of OH on the rheologic behavior of olivine 
is likely to depend upon both abundance and speciation, 
these annealed samples may not be representative of mantle 
olivine. 

Conclusion 

It is obvious that there is much work to be done to constrain 
the various effects of provenance and process on OH con
centration and speciation in olivine. However, even with 
these limitations it is obvious that there is a greater range 
than previously measured. Kimberlitic and some metamor
phic olivines show the greatest OH abundance whereas oliv
ines from basalt xenoliths show the lowest. 

Included hydrous minerals are distinguishable from ol
ivine's intrinsic OH. Serpentine is commonly found and 
talc is found in one sample. Humite group minerals may 
be present as sparse until cell sized defects in olivine. Tbe 
OH absorption bands at 3572 and 3525 em -I have both 
position and orientation consistent with bwnites. 

Annealed San Carlos olivine bas 6 OH bands not found 
in natural San Carlos olivine. These bands are observed 
in other natural olivines, but no single natural crystal bas 
the same OH spectrum as the annealed samples. Tbe sharp
band OH abundance in the annealed samples is low in com
parison with the range of natural olivine OH abundances. 
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