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ABSTRACT

A hydromechani'cal theory is developed for cycloidal propel-
lers for two limiting mé)des of operation wherein U » 2R and
U « QR, with U the rectilinear propeller speed (speed of advance)
and 2R the rotational blade speed, A first order theory is developed
from the basic principles of the kinematics and dynamics of fluid
motion and proceeds from the point of view of unsteady hydrofoil
theory,

Explicit expressions for the instantaneous forces and moments
produced by blade motions are presented, On the basis of these
results an optimization procedure is carried out which minimizes
the energy loss under- the constraint of specified mean thrust. Under
optimal conditions the propeller is found to possess high Froude ef-.
ficiencies in both the high and low speed modes of propulsion, This
efficiency is defined as the ratio of the average useful work obtained
during one cycle of propeller operation to the average power input

required to sustain the motion of the propeller during the cycle.
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I. INTRODUCTION

A cycloidal propeller is a propulsive device that consists of a
number of high-aspect-ratio blades of uniform cross section which
revolve in a circular orbit about a central axis while the axis moves in
a transverse direction in forward motion. The blades are placed at
regular intervals along a disc of radius R and are permitted to pitch
about a spanwise blade axis, These blades are typically of airfoil
shape, usually without camber, They may terminate at one or both
sPanwise' ends by an end plate perpendicular to the propeller axis,

See Fig. 1.

Owing.to the features that the blades have a high-aspect-ratio
and constant cross sections and particularly in the case when the end
plates are present, a two dimensional analysis in the plane transverse
to the 'c-ehtral ;'axis is .expected to provide a good appi-oxima.tion to the
guantitative results. The simplest case of a single bladed cycloidal
propeller is considered but the results may be extrapolated to raulti-
bladed systems provided the number of blades is limited to the extent
that the mutual interference between the blacies is small and can be
neglected, This lirriiting case corresponds to the situation when the
chord of the blades is small compared to the gap between consecutive
blades, or more specifically, when Nc« 2wR, where N is the number
of blades, each having chord c.

Cycloidal propellers are lift orieﬁted propulsiv‘e devices which
derive their versatility from judicious selections of blade attitude

relative to their trajectory. They are not to be confused with the



Fig., 1 Schematic representation of a cycloidal propeller. When
the central axis experiences an angular velocity Q2 then each blade
will respond with a speed 2R relative to the axis, -



inefficient drag oriented propellers which fall into the paddle wheel
category,

The purpose of this study is to present a consistent and unified
hydromechanical theory for a general class of cycloidal propeller. A
uniformly valid first order theory is developed from the basic prin-
ciples of the kinematics and dynamics of fluid motion. The investiga-
tion proceeds from the point of view of unsteady hydrofoil theory and
adopts many of the ideas exemplrified in T. Y. Wu's current treatise
on the hydromechanics of éwimming propulsion[1 ],

When the instantaneous forces and moments produced by blade
motions are known, it becomes possible to optimize blade attitude on
the basis of a number of desirable isoperimetric conditions, An
optimization is carried fhrough which minimizes tﬁe energy loss under,
the constraint of_ specified thrust.

For purposes of t’he present investigation the blade speed is
assumed to be small enoﬁgh to treat the fluid as incompressible, The
characteristic Reynolds number, based on the blade speed and the
chord length, however, will be assumed to be large. The presence of
& boundary layer along the blade surface is confined to a narrow regiorf
and further manifests itself in a thin wake region down stream of the
trailing edge. The boundary layer proper is neglected and a free
vortex sheet is taken to represent the effects of viscosity in the wake,
The problem thus is one of a potential flow,

Previously the propeller based on this principle, or with fur-
ther variations, has been employed in a low speed propulsion mode,

primarily on marine vehicles operatinginrestricted waters., Due to
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the propeller's wide range of thrust orientation, namely, over a
complete 360° phase, ship maneuverability can be greatly enhanced.
This feature may render the conventional rudder obsolete, thus pro-
viding sixﬁplifications in stern design,

This paper deals with both the high and low speed modes of
propeller oiaeration and presents the optimal blade motions which are
~associated with maximum Froude efficiencies quite near unity. A
more detailed theory which accounts for three dimensionality, the
mutual interaction between blades, and the effect experienced by a
blade passing through a vortex sheet (shed by a preceding blade) would
yield more accurate results, 7

The wake crossing phenomenon is pertinent to the low speed
mode of propulsion where presumably a gust situation would be en-
countered. Admittedly we neglect the wake crossing effect but we do
so advisedly since the blade otherwise perceives a uniformly quiescent
field. A rnr.are crucial situation involves the distribution of vorticity

at the trailing edge of the blade and its effect on the thrust producing
| capabilities of the propeller. This vorticity is always present in the
- immediate vicinity of the blade (except when the blade motion is such °
that the circulation about if remains constant) and the subsequent
theory takes this aspect into account.

Some previous investigations (e.g. [ 4 ], [5 ]) of the cycloidal
propeller have taken a quasi-static approch to this hydrodynamical
problem. Such a theory regards the forces and moments to be thp_s;:

obtained as if the propeller travels in a steady state at the appropriate



instantaneous relative velocity, This approach altogether misses the
unsteady contributions associated with the "virtual mass' and the
"virtual moments of inertia' of the fluid, and, even more severely,

the unsteady component of the singular leading-edge suction which may
vary with the reduced frequency of the motion, and may become greater,
by several orders of magnitude than its steady wvalue.

Other investigators (e.g. [ 6 1,[ 7 ]) have tried to extract the
details of the blade motion from what amounts to afar fieldrepresenta-
tion of the flow. Here the main idea is to vary a ''bound vorticity
function" in such a manner that the energy loss is as small as possib.‘le
under the constraint of specified mean thrust. Once the so-called
optimum bound vorticify function' is known,the blade attitudes are
obtained by relating this function to the kinematic boundary condition
on the blade. The proposition suffers the same fate as a quasi-static
approach since the picture is blurred in the immediate vicinity of the

lade. It is here where the iﬁteresting physics associated with the
acceleration of fluid about the blade's leading edge, the fluid accelera-
tions accompanying transverse blade motions and the distribution of
vorticity at the trailing edge occurs. The literature on the subject is
extensive. References [ 4 ] through [10] seem to be representative |

of the more recent work.



II. KINEMATICS OF THE MOTION

1. Coordinate systems and qualitative description of the flight path,.

A blade will traverse a cycloidal path relative to a frame of
reference (£,n) which is fixed with respect to the undisturbed fluid
and is itself an inertial le'ame. We also define a '"blade coordinate
system' (§',n') with thev origin fixed at the central axis of the propel-
ler and with the n'-axis passing through the pitching-axis of a certain
blade inquestién, Consequently in this translating and rotating frame
of reference, the coordinates (f',n') will describe the pitching motion
of a blade relative to the £'-axis., The pitching axis of the blade is
along the positive n-axis at a fixed distance R from the origin. Final-
ly we introduce another frame of reference termed the '"body coordinate
system'" (x,y) with the origin at the tlade pitching axis and with the
x-axis containing the blade chord (or the mean position of the blade
chord)., We denote the unit base vectors associated with the three co-
ordinate systems, £, £', and x by jéli’ Ei’ and e (i=1,2) respect-
ively, See Fig, 2,

The cycloidal path is achieved if one observes from the inertial
frame the blade's motion due to the combined action of a constant
angular velocity £ and a steady rectilinear speed U of the central
axis, However, the cycloidal path assumes quite different appear-
ances depending upon the relative sizes of the two characteristic
propeller velocities U and QR. For example, if the rectilinear
velocity U is large compared with the rotational velocity 2R then

the blade trajectory is very nearly sinusoidal, resembling the



Fig. 2 (Illustration of the inertial coordinate system (§,n), blade

coordinate system (£',m') and body coordinate system (x,y) where

the central axis is assumed to have a constant angular velocity & and

a constant translational speed U in the negative £ -direction. The
time dependence of A\ and w are specified in §2),
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oscillatory path traversed by a fish tail when the creature progresses
in straight line flight. Formally, the curve is a curtate cycloid, " In
the opposite case of 2R > U the blade path circulates about in an over-

lapping path called a prolate cycloid, " When U = &R, the curve gen-

erated is called a common cycloid.

2, Definition of the '""mean angular position'',

Since the flight path is completely established upon fixing the
rectilinear and rotational velocities, the motion of the propeller is
completely described when further given the angular orientation of a .
blade relative toits trajectory. The angular orientations of the other
blades are then determined by the periodicity with respect to the refer-
ence blade. The angular velocity of the reference blade about its pitch-
ing axis is specified in accordance with the following requirement,

' First, a particular reference_‘ state of operation is defined as one in
which each blade follows its trajectory so that its chord is always
tangential to the flight path at its mid-chord, We shall refer a propel-
ler to such a state by saying that it occupies a ''mean angular position"
along its path, We can then prescribe the angular displacement, A,

of theblade and its angular velocity, w, both referred to the ""mean

angular position'',

-s5in @
B = oz EETTY ¢ (1)
weh HE | (2)

“cf. Mathematics Dictionary edited by G. James and R. James, Van
Nostrand Company, Inc.
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where 0 = 2t and the dot over )\ indicates differentiation with respect
to the time t.

The velocity of the origin of the body system relative to the
fixed inertial system can be expressed as V = -Vg_l, where e is the
unit vector tangential to the flight path and V in fact becomes the

rectilinear speed of the blade in its '"mean angular position,"

[ T

V=[U®*+(QR}+2UQR cos 6] (3)

Motions of a bladefollowing the prescription given by Egs. (1),
{2) lead to far reaching implications, since intuitively, when a blade .
exercises a '"'small'" deviation (compared with the half chord length)
away from its "1"nean angular pc-asition” it generates only ''small" per-
turbations in the surrounding fluid provided the curvature of the tra-
jectory is sufficiently mild, This notion is rigorized in §5 and upon it
rests the validity of a linearized approach to the hydrodynamical

considerations,

3. Trajectory equations,

In this section a parametric representation of the trajectory is
obtained,

We let the position vector s(t) follow the progress of the blade
{more precisely, its mid~chord) in the fixed inertial system as a
function of time, If the propeller is assumed to be at rest for t< 0
and for t> 0 to have a velocity V= (U +Q2XR), then attime t the

location of the blade is given by
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5 t)dt'+eR . - (4)
o]
t),

Vector x (t' defined as the difference between the position

vector s attimes t' and t, reads

!

t
x (t'st =5 V(t')at' . (5)
t

The interpretation of X, 1is obvious from Fig. 3,
Resolving X, into the body system components yields the

desired parametric representation of the trajectory

tl
x = x_(t't) = 'J V(t')cos [v(t';t)]dt* , (6)
t
tl
y =y (tht) = -5‘ V(t')sin [v(t';t)]dt* | (7)
t
where
! ;
v(t'st) =S' w{t')dt' . | (8)
t

The curvature K of the flight path is easily calculated from
(6), (7), and (8). Interestingly it takes the form of a ratio of the two
velocities which characterize the blade motion in the '""mean angular

position'

K(tl) = :;-(tt'r) . (9)



wif Ji=

_19(1",?)

Fig. 3 fo(t';t) = s(t!) - s(t) traces a trajectory (prolate cycloid) of

the blade axis in the body system with t' as parameter,
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4, Boundary condition on the blade.

-

The boundary condition on the blade relates the fluid velocity at
the blade surface with the blade's transverse motions, The specific
connection is conveniently developed using the body system as refer-
ence, The velocity due to the relative motion between the inertial and
body systems is

c=V+wuXx (10)

where x (position vector in the body system) gives the location of the
point whose velocity is desired. The absolute velocity of a fluid par-=
ticle is expressed in terms of the velocity as seen in the body system,

w, and the relative velocity c as
Gg=W+e . (11)

For engineering purposes it is sufficient to represent the blade
motion by the transverse displacement of its mean chord line y=h(x,t)
with x and t ranging in intervals to be specified later. Here, we
shall neglect the secondary effects of blade thickness. To avoid a
point of confusion the body frame is now being used as a reference to
describe deviations of the blade away from its '""mean angular position,'

Suppose that y = h(x,t) is known, Then the blade's normal

. - g h(x,t)
velocity (relative to the body frame)is givenby - and this
|V (a-y)|
must be equal to the normal velocity of the fluid (as seen in the body
V(h-y)
frame), ws n. Here n = ———— is the unit vector normal to
|V(h-y)|

y = h(x,t). The equivalence of the two normal velocities gives a
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statement of the kinematic boundary condition which may be written

3 (hey) = 32+ (weV)(h-y) = 0 on y =hx,t) . (12)

The equation y = h(x,t) can also be given parametrically.

With t' as parameter, (12) assumes the form
(x, - Wy, = (y - Wik, =0 (on  x=x(thit), y=y(tt)) (12)

with w = (wl, WZ) given in (11).

5. The nature of the fluid disturbance,

Consider the motion of a flexible body of negligible thickness
which executes transverse motions along an arbitrary flight path. If
the flexible body for all times coincides with the flight path at all points
along its entire body length then the body will in no way disturb the in-
viscid fluid, Since in potential flow there is no mechanism by which |
to transmit a shear stress, such a body essentially slips along its
trajectory. The proof that no disturbance prevails follows from the
boundary condition on the flexible body, the state of the fluid motion at
infinity together with the inviscid irrotational nature of the flow.

Instead of an arbitrary flight path we specialize for the mo-
ment to the trajectory of Eqs. (6), (7). For t' ranging in some in-
terval, we think of (6), (7) as describing the motion of a flexible body.

Substituting in the kinematic condition (12') yields

viu = tg(v) {on X = xo(t';t) g W = Yo(t';t) ) (13)

where u, v are the x, y components of the absolute velocity g and
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v is given by (8), Equation (13) implies that the flow is everywhere
tangential to the flexible body surface, a fact which manifests itself
in the linear dependence of the absolute velocity components.

The unit vector normal to the trajectory is

n=sinye -cosve ; (14)
- —4 =3

Along the surface that defines the trajectory we have

35 = 4B = un1 + vnz and use of (13) and (14) gives

8¢ _ o (fon  x =x_(thit), y=y_(tt))

where ¢ is the velocity potential such that g = Vo.
Initially the fluid is quiescent. Any subsequent disturbance is
assumed to decay at infinity so that on a surface at infinity which joins

the beginning of the trajectory with the end, we have

¢
-ﬁ =0 on Sm

The field eti;uation is the Laplacian VZ?¢ = 0, wvalid in a domain defined
by boundaries upon which the normal derivative of ¢ wvanishes. This
-is the classical Neumann boundary value problem and by the unigue-
ness theorem associated with it,¢ is at most a constant throughout
the domain, Therefore g =V ¢ = 0 everywhere in the fluid and the
proof is complete.

Suppose instead of a flexible body we again consider y=h(x,t)
as describing the unstea-dy motions of a rigid blade relative to its |

trajectory. If we confine our attention to only those trajectories



i =15~

whose maximum curvature is small compared with the blade's half-
chord length 2, then small departures from the ""mean angular posi-
tion'' will impart only small disturbances to the fluid. In the present
investigation the propeller geometry is normalized with respect to the
half-chord. The radius R (a measure of the separation between the
central axis and blade) is taken to be much greater than unity, a
situation whichis of practical interest, On this normalized basis, R » 1
is representative of the particular propeller we have in mind. The
foregoing geometric C(Sndition has important consequences and we

state it explicitly,

P 3 R»1 (15)

Condition (15) implies that the blade in its '"'mean angular position'"
closely approximates the appropriate segment of the trajectory along

all of its chord length provided the curvature K of the path is not too

large.

6. Limiting cases for a small-perturbation theory.

The subéequent analysis is valid only for small disturbances
and consequently we must confine the blade motions accordingly. Two
limiting cases of the trajectory are considered wherein U » QR (Case
I) and Q2R » U (Case II). We exclude in the present investigation the
case of U= QR because there exist in this case isolated regions of
large trajectory curvature, Apparently large scale disturbances are
unavoidable at such places even when the rigid blade pursues its '""mean
angular position'', However, over a major portion of a common

cycloidal {(or nearly common cycloidal) trajectory the analysis is
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applicable. For Cases I, II (by (9), (1), (2), (3), (15) ) the curvature
of the flight path is everywhere small (i,e. g « 1),
Secondly we restrict the blade variations to y = h(x,t) K 1, As

a consequence, products of the velocity components (u,v) will be

small coinpared wiln those occurring linearly. In the hydrodynamical
deveIOpmen't the former may be neglected in comparison with the lat-
ter and the absolute velocity g is expected to be a small perturbation,
Thus the investigation naturally centers around the consequences of
small blade deviations away from its "'mean position.'" A further
consequence of restricting the blade motions as we have done will be~
come clear in the sequel. The situations of low hydromechanical ef-
ficiencies associated with separated flow (and characteristic of stall)
are also bypassed. Stall is usually attributed to an excessive angle of
attack relative to the incident flow, but as M.J. Lighthill points out,
this phenomena may equally well find its origin in an exces sivelly large
leading edge suction force. In unsteady thin airfoil theory the leading
edge suction can become so large that the accelerated flow finds it
impossible to negotiate the corner and subsequently separates. Lead-
ing edge suction has an interesting role in the ensuing development and
in this inviscid flow theory its magnitude is determined and examined.,
Apparently nowhere does it exert an overbearing influence and we
concluded that the degreé of interplay between blade pitching and the

blade path alone is insufficient to lead to a crucial situation concerning

>=‘S&e Ref. 3 §5 - - specifically pp. 298 - 299.
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this singular force, since the suction force also depends on the reduced
frequency of the motion.

We conclude the section by quoting a form of the kinematical
boundary condition on the blade which will be most convenient for later
use, However, before doing so, we list the essential steps'employed
in its derivation,

(i) Start with the kinematic condition (12).

(ii) Use the velocity éxpressions (10), (11)in (12).

(iii) y = h(x,t) €« 1. The boundary condition may be applied on

v = & lxl = 1.

(iv) Neglect products of small quantities.

The resulting expression for the component of the perturbation velocity

normal to the blade is

wix, .t} = '891:_ + V(t) % h(x,t) + w(t)x (on y = Ot, x| <1, £t>0)

(16)

g% is the normal velocity of the blade which results from the motion

when the blade exercises a local time variation away from its '"mean
angular position.' The partial derivative % appearing in this term
represents a time variation measured in the body frame and not in the
inertial frame, Suppcse the blade assumes an attitude other than the
""mean angular position' as it glides along the trajectory with speed V.
Fluid is then pushed laterally by the blade at a rate equal to V(t) g)—}} s

As a consequence of a curved flight path together with the rigidity of

the bia.de, the blade communicates a disturbance even when it flies at
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the '""mean angular position', This effect produces a normal velocity

given by the w(t)x term of (16).
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III. ASMALL PERTURBATION FOR CYCLOIDAL PROPELLERS

1. Development of the equation of motion,

In an incompressible flow field devoid of external forces and
internal viscosity, the principle of conservation of momentum leads to
Euler's equation wherein the pressure gradient is balanced by the fluid

acceleration,

Vp . (17)

O |+

B, =

The equation is valid in any inertial frame. a, the absolute accelera-
tion, measures the rate of change of g following a particle. Becauge
of the incompressibility, the hydrodynamic pressure plays only a

hydromechanical role. Finally, the del-operator Y appearing is 3 -

In the non-inertial body system the acceleration can be written
as

=

3
_atg-_.

| &

(geq) - V(gec) 'Zz ai ; (18)

B -t
|

The term % q measures the instantaneous time variation of g with
respect to the body system. The term l/ZZ(q_-g) = (9_-2)3_ is a con-
vective acceleration which arises due to spatial changes of q. The

last term of {18), z ((_1_.5_), can be decomposed into the sum of two

acceleratioms, one of which is a convective acceleratioﬁ (convected at

the relative velocity c¢) and the other a Coriolis acceleration (g X w),
Since the spatial derivatives of scalar quantities remain in-

variant under the transformation from the inertial to body system, the

balance of pr'essure gradient with the fluid acceleration takes the
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following form in the non-inertial body system

1

0
5t—g_+2?g_z-q_og = - YP ; (19)

o~

Again, to emphasize, all derivatives are performed in the body frame.
Equation (19) and the continuity equation divg = 0 provide the equations
of motion,

Expressing the absolute velocity as the gradient of a scalar
potential ¢, it becomes possible to obtain a first integral of (19).
Upon absorbing an unessential arbitrary function of time into the
velocity potential and neglecting the quadratic perturbation velocity

term, (see Chapter II, §6) the result of the integration reads

8 3 5
W-i-Vé;)cp-'rw(y&—-xqu:@ (20)

where @, Prandtl's acceleration potential, measures the variation

of pressure from the hydrostatic level
T LA, | (21)

Equation (20) indicates that the momentum imparted to the
fluid arises from three sources, namely,

(i) time varying blade motions relative to the "mean poéition"

(ii) rectilinear blade motions

(iii) angular blade motions,
That pressure variations arise from three such mechanisms seems
eminently reasonable,

Operating on the linearized equation (20) with the Laplacian
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operator VZand using curl g = 0 and divg = 0 yields

Vi - ‘I’xx + ‘I)YY = 0. Therefore a function conjugate to the acceleration
potential exists (call it ‘\If) such that the Cauchy-Riemann equations

@X: ‘Ify, @Y = -‘IfX are satisfied:. Since bofh the velocity and acceleration
potentials are analytic functions, we expect the complex-variable theor;}
to prove very useful in the following development. However, before
pursuing a solution to the equations of motion, we pause to establish
some ideas concerning the shedding of vorticity into the field and to

develop some further properties of the acceleration potential.

2. Vorticity in the field,

As we have already mentioned, the wake behind the blade is
represented by a free vortex sheet, Mathematically, such a sheet is
characterized by a surface across which the tangential velocity is dis-
continuous whereas all other physical quantities remain continuous.
Specifically,a free vortex sheet can not support a pressure difference
and should one be imposed, the sheet would repoéition itself so as to
eliminate t}llat difference.

It is well known that vortex elements interact establishing a
secondary flow phenomenon which acts to convect the vorticity from
where it was originally located. In this work the blade speed is
always much greater than any subsequent vorticity displacement rate.
Consequently we neglect the convection of vorticity. In addition, we
take the vorticity to lie along that part of the trajectory which has been
traversed by the projection of the blade's trailing edge. Hence, inso-

far as the distribution of vorticity is concerned, we are neglecting the
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small wavy motions of the blade which are superposed on the flight
path.

The strength of the vortex sheet is tied in with the communica-
tion of angular momentum to the fluid as a result of non-uniformities
in blade motion, Commensurate with the addition of angular momen-
tum due to blade unsteadiness is the appearance of vortex shedding at
the trailing edge. The production of vorticity represents a supply of
angular momentum in the sense opposite to that which the fluid
experiences as a result of non-uniform blade motion, This in turn
becomes the necessary ingredient for the conservation of angular

momentum,

3, Continuity of F = @+ i¥ across a free vortex sheet,

Of particular interest to us is the behavior of the function con-
jugate to the acceleration potential across the free vortex sheet., In
fact the successful application of the technique employed in solving
the equation of motion hinges on the continuity of ¥ in the flow field.
For this reason the following demonstration of its continuity is pre-
sented.

By physical requirement the éressure is continuous across a
free vortex sheet, Consequently, @ is unaware of the presence of
free vorticity. (For this reason there is a definite advantage to work-
ing with @ as opposed to the velocity potential which experiences a
discontinuity across a vortex sheet),

Since @ is an analytic function it is not only continuous every-

where in the flow field but further it is continuously differentiable
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everywhere except across the blade, Furthermore, since the conjugate
function ¥ is likewise an analytic function in the same domain as @,
it too will remain continuous across a free vortex sheet. We define

the complex acceleration potential by

F(z,t) = ®x,y,t) + i¥x,y,t) (22)

i .
where i = (-1)* is the imaginary unit and z = x + iy. We know that

the function F remains continuous for all values of z =x + iy pro-

vided the region occupied by the blade is excluded,

4, Integration of the Euler Equation.

The linearized version of the equation of motion (19) may be

cast into the following complex-variable form

% F(z,t) =(8_?:_ + V(t)‘w - iw(t) B?E (zw) (23)

where w =u -~ iv is the complex-variable representation of the absolute
velocity, g. No confusion should arise with the vector w which has
been used previously for a different purpose,

Of the two velocities which directly characterize blade motion,
V(t), w(t), the rectilinear speed V dominates the rotational blade
speed wx;(|x| < 1). Were this not the case, the curvature of the
flight path would no longer remain small. (Refer back to Chapter II, §
6). Itis convenient to fashion (23) to reflect the relative roles of the
characteristic blade velocities. We do so by introducing a new meas-
ure of time, Let T be a new 'time' variable (or more precisely the

arc length traversed along the flight path in time t) such that
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t
g =it} = S‘V(t')dt‘ ) (24)
o

Since V is assumed to be positive semi-definite, (24) provides a one to
one mapping between t and T whose inverse t = t(7) exists and is a
well behaved monotonically iﬁcreasing function, Regarding w and F
as functions of z and the new variable 7, we obtain from (23) upon

multiplying with 1/V(t) another form of the equation of motion,

a 3] 0 : 5]
5z £2.7) = 5= + 55| Wz, T) - W(T) 53 (2w) (23")
where £f(z;T) = %yt_) has been introduced and k(T) = _\";_((%;H_ is the

curvature function (see (9) ). Note that by normalizing the equation of
motion on the bases of the rectilinear blade speed the term pertinent to
the curvilinear motion is multiplied by a small coefficient which in fact
is the curvature of the blade path.

We solve (23') for w in terms of f by the method of character-
istics. The characteristic curve to this equation is obtained upon in-
tegrating

j_j = Blz,7) =1 - ik(T)z . (25)

With some manipulation the result of this integration may be expres-

sed as

z' = 2"{7';2,7) = [z - zo(’r';T)]e_iv(THT) | (26)

where (z',7') is an arbitrary point of the =z, T space and
Y P
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T
2 (TiT') = x_(T'7) + iy (747 :S T g
! !
is the equation of the trajectory (6), (7) expressed as a complex-
function, v (7';7) is the same angle given in (8) but here expressed
in the new time variables 7,7'. For convenience we will re-write it
T

v(T';T):\S‘ K(t')dt' (8")

T
A derivation of (26) is presented in Appendix I.

The shape of the characteristic curve (26) may easily be en- )
visioned in the following way. Suppose z, T to be specified. Then by
permitting 7' to range from T to To W€ trace the subsequent path of
z'., The curve will originate at the point z. Furthermore, it attempts
to imitate the pattern established by the trajectory but suffers a
modulation given by the e_iv term, Figure 4 provides a sketch of one
possible characteristic,

Performiné the integration of the equation of motion along the
mathematical characteristics provides an expression for the velocity

in terms of the pressure (more precisely the complex acceleration

potential), The integration is developed in Appendix I and from there
2
d
B(z,7)w(z,7) = £(z,7) + | g f(z', 74T where

¥ (27)
z' = z'(T%z,7) and z = O(1)

The result has a physical interpretation. The perturbation velocity of

a field point at a particular instant of time is related to the
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Ay' z'— plane

=1

\J

Fig.4 Characteristic curve emanating from z = 0, The curve is
representative for propellers having a rotational speed, 2R greater
than the rectilinear speed U,
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instantaneous pressure existing at that point plus the summation of all
the retarded pressures relevant to a particular curve which emanates
from the point, In this sense the fluid may be said to possess a
memory. In unsteady problems it is intuitively obvious that previous
states of the pressure field must have some bearing on the pres.ent
state of the‘ velocity field because of the continuous vortex shedding.
Equation (27) provides a quantitative staterment of the influence.

In finding a solution to the equation of motion we will have need
for a different form of integral to {23') wherein f is expressed in

terms of w, This may be obtained by directly integrating the equa-"

tion (23') with respect to z from 2z = - w, The resultis

Blz, T)wlz, T) = £(z,T) 5 -% —— (28)
=0

In arriving at this reslult we have tacitly assumed that in the far field
{lz| »w):
(i) the pressure maintains the hydrostatic level (f = 0),
(ii) the perturbation velocity decays sufficiently fast. If the
flow contains no net source or vorticity then, at most,
w =O{1/|z|?) in the far field. Consequently,
B(z,'T)w(z,‘T)A tends to zero there,
The two integrals (27), (28) which we have obtained to the
equation of the motion mark some progress toward a full solution,
What is lacking. in the ultimate pursuit, of course, is a knowledge of

the pressure field throughout the flow and for all time, A similar
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knowledge of the velocity field would serve equally well via (28).

The determination of the complex acceleration potential forms
the subject of the next section wherein a particular function of time
arises, From the identity apparent on comparing (27) and (28) we

define this function of time by

iA(T) :S T (z,7)dz, 5 Th -1, T),rhdrt . (29)
O

Note that the last integral is evaluated along the characteristic which
emanates from the leading edge. The significance of A(T) will be-"

come clear when we investigate the leading edge suction.

5, The Riemann-Hilbert boundary value problem for f,

We call the domain D+ the field of flow and define it to be the
region bounded by the blade C and the contour at infinity Cco_ When
C or Coo is traversed in the positive direction DY will always be on
the left hand side. We seek a sectionally holomorphic function £(z)
of finite degree at infinity. This function satisfies the following

boundary condition on C and Goo

£7(z,7) = Glz)f (z,T) + glz,T) (30)

where z is an element of C or Coo. G(z) and g(z,T) are given,
y (f7) refers to the value of f as z approaches the boundary from
above (below) in the case of C. The plus-minus notation is not used

here on the contour at infinity. See Fig. 5,
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The index of the Riemann-Hilbert problem is defined as

1
27l

1

k = -
2mi

[log G(z)] - +
[+ o]

[1og G(z)] - | (31)

where the brackets signify the increment of the function inside as a
result of one complete traversal of the indicated contour in the positive
direction. For vanishing index there exists only one solution vanishing
at infinity. (See e.g. Chapter V of reference [11]). This solution takes

the form

H(z) (" g(€, 7)d
f(z,T) = 53 (32)
e § H(£)(E -2) :

where H(z) is a homogeneous solution satisfying

+
G(é):w on C . (33)

H(£)

In the past few sections we have explicitly developed or made
feasible certain properties of the complex acceleration potential,
Among these are:

(1) f is an analytic function of z = x + iy for all time.

(ii) £ has a discontinuity across the blade, (Take for C the

set z =xe[-1,1]).

(iv) £ tends to zero at infinity,

‘For the present purpose we have need for two more conditions on the .
complex acceleration potentiél. One is associated with the Kutta-
Zhukovwskii condition that the flow finds it impossible to negotiate the
corner at a sharp trailing edge. We translate this into a condition on

£.
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(v) f remains bounded at the trailing edge.
The final necessary proposiﬁon regarding f concerns its character
at the leading edge. In the neighborhood of the leading edge the as-
sumption of small perturbations breaks down since here a stagnation
point occurs. Hence, the perturbation velocity is of the order of the
:mcident flow, Using the Bernoulli equation with the non-linear terms
present, T. Y. Wu has demonstrated [2 ] that in the neighborhood of
the leading edge f exhibits the same singular behavior as the per-
turbation velocity, This will also be apparent from §8. It is well
known that w has there a square root singularity, Thus:

(vi) £ tends to infinity as [1/(z+1)]%near the leading edge.

The function g(x,T) of (32) serves as an intermediary which
carries the 'blade input' to the fluid domain., It is defined here as
g, T) = f+(z,7) +f (z,7) with Ix] <1 and the plus (minus) signify-
ing the approachof z from above (below) the blade. From (29), (30)

we obtain

glx, 7) = 2i[A(T) + £ (x,7)]  (|x| <1) (34)
¢

£ (x,T) = -B(x, T)v(x, 0,T) y Ba: v(xi0, T)dx' | (35)
) -1

Notice that except for a constant {more strictly a function of time) the
‘"input function'' is explicitly known. Later, a close look at the leading
edge will determine the input which arises from this area.
Consideration of the homogeneous function H(z) is next in
line. By (34) il +f = g which implies that G(z) = -1, Correspond-

ingly, H+(x) = -H (x) for |x| <1. Keeping in mind conditions (v)
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and (vi) we choose as a candidate for the homogeneous solution

(SIS

z-1

: H(z) = (;1—-) (36)

This choice for H is defined with a branch cut from the blade's lead-
ing edge to its trailing edge and tends to unity at infinity. It provides
the proper singular behavior required of f at the leading edge. In
addition, the boundedness condition of Kutta-Zhukovskii is suitably

satisfied. Since G is a constant the index to the Riemann-Hilbert

problem is zero. Hence (32) supplies the solution

f(z, T} = = z+l]S‘ {—E)[A(T)+f(§‘, 7)] _E—_) ’ (37)

For later use, it is convenient to write the solution in a form which
isolates the singularity contribution of the leading edge. By a simple

manipulation we can accomplish this

1
; é f{E,T)
. 1 !
B, ¥ = AR 721 (5] ;5:( 2) A (37)
where
1 .
£ (,7)
a('T) 1
- A(m) ﬂj; lg)wdg . (38)

6. A simple path of integration,

In this section we are guided by physical intuition to make a
simplification which renders the subsequent analysis more tractable,
We propose to approximate the path of integration of (27) so that the

resulting velocity field remains accurate to leading order,
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Suppose the motion occurs over a long time interval, The blade
projects an influence to the field in the form of pressure waves which
travel at the speed of sound (taken here to be infinite). Equation (27)
implies that the prevailing velocity at a point is determined by the
instantaneo;ls pressure at the point together with certain retarded
pressures, However the most influential retarded pressures must be
those which occur in the immediate past history. Those further
removed should occupy a greatly reduced status effecting a negligibly
small change in the instantaneous state of the fluid, Certainly, if this
were not so, the problem would appear very difficult indeed, Additional
support to this line of reasoning is provided by Karman and Sears
work [13] on an airfoil i)ursuing unsteady motion along a straight line
trajectory, There they have calculated the induced vorticity distribu-
tion along a thin airfoil due to isolafed points of wake vorticity placed
at various distance s behind the trailing-edge. The strength of the
induced vorticity is quite large when the wake vortex is very near the
trailing -edge but it diminishes in strength rapidly (except near the
leading-edge where it is infinite). In fact, the strength of the induced
vorticity relevant to a point vortex placed at one chord length behind
the trailing-edge is already an order of magnitude smaller than the
corresponding strength when the point vortex is at (1/40) of the
chord length behind the trailing-edge. It is useful to recall that it
is just this trailing vorticity which connects the ""past events' of the
flow field with the present state of the fluid,

Mathematically this idea suggests that we may to good
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approximation evaluate

P2
. a i 1 i
5 é? f(Z + T )dT
T

along a simplified path given by

. Tr
z' = z+(T'—T)+iZ5 k(T )dar +i5§ k(7 )dT dT
 § i 2 2 1

A T

1
(27')

z' = 2'(m2,7) = [2H(7-7)] [1+O(ik (7' -7) )]
Equation (27') very accurately represents (26) near the point (z,T) up
to distances of the order of the chord length. For distances of O(R)
{(27") affords a fair répresentation. For distances greater than O(R)
(27') rapidly diverges from the true characteristic.

Consider the retarded pressures appropriate to a character-
istic originating at an arbitrary field point. The question is raised to
which field point will a characteristic emanate yielding the largest
retarded pressures? Equation (37') elects the point z = -1 since no-
where else is f so large. If we can show that the velocity is accurate-

ly obtained to leading order at z = -1 from evaluating

2

\S % f(z',T)dT"' of (27) along (27') then the straight line path of in-
=+

tegration should provide an even better approximation at other field
2
points, When ‘S % f(z',7)dT' is evaluated along the linear approxi-

T

mation to the characteristic, (z' =z + 7 - 7'), and then along a path
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which provides a better approximation (e.g. along Eq. (27')), then the
difference of the two results will be O(k) times the lowest order result.
Hence, since we confine attention only to those trajectories whose maxi-
mum curvature is at most O(1/R) then the correction will be of higher
order in our attempt to establish a uniformly valid first order solution,
Consequently, when the path of integration is along a characteristic we

can use (27') instead, to a good approximation,

7. Evaluation of a(T7).

In §5 the complex acceleration potential was explicitly deter- -
mined except for the term a(7T). The present section removes this
shortcoming.

Define the Laplace transform by
~ -sT
a(s) :S e a(r)dr , (Res>0) . (3'%)

Substitution of {37") into (29) provides an integral equation for
a(7). Taking the Laplace transform of the resulting equation and

evaluating the known transforms [12] gives

1
ae) = 2\ YE0.8) e h4)f(e)]at (40)
mJ g2l
-1
K (s)

o _ 1 : : fx : z
where H(s) = m, (Ko’Ki are modified Bessel functions of
1

the second kind),
The inverse transform provides the solution to the integral

equation,



-36-

5 ﬁvg 0,7) S‘ (1+§ v(E, 0, 7" )H(T-7")dT'dE
T e (1-£2) .

(40")
N\ '+ico

I STH(s)ds , (»'>0)

A\ '-ioo
Notice that A(T) is known from (38) and (40'), Furthermore, both
a(T) and A(T) depend on the past history of the motion via the con-~
volution integral term: The physical significance of a(T) is develop-

ed in the following section,

8. Leading edge suction,

The singular force can be obtained by applying the Blasius
Theorem with a contour surrounding an e€- neighborhood of the lead-
ing edge. The asymptotic form of f as z = -1 is obtained from (37').

Substituting it into (27) gives

wiz,7) = —2T L o[(z+12] , (z—-1) . (42)

In arriving at (42) an O(1l/R) contributionin B (-1,7) has been neglect-

ed, Applying the result to XS—iYS_ = —1%5 w”dz vyields the components
' L. E.

of the singular force directed along the body axis

p G [a(r) + a7 (T)]? g =0 (43)

s

Notice that X is always negative indicating that the singular force

is in fact a local thrust, The asterisk denotes the complex conjugate
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(with respect to j, the imaginary unit of the time plane). The lead-
ing edge suction is seen to depend on the past history of the motion

through a(T7).
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1IV. FORCES, POWER AND ENERGY BALANCE

1. Forces and moments,

The resultant force R = X + Y developed by the blade is easily

calculated inthe body system. Here X =Xe

g, and Y = YSZ and both

X and Y are positive when R resides in the first quadrant. When
the blade departs from its ''mean position'' an x-directed force arises
from the pressure difference Ap=p - p+ across the blade. We

designate this contribution by XP where
1 :
oh
xp:-S‘ (Ap) 3 dx . (44)
-1

When Ap and %}xi are positively correlated then XP is negative and
corresponds to a local thrust, The total x-component of force is the
sum of Xp and the singular force Xs.

The normal force on the blade and the moment about the mid-

chord are

1
Y =5 (Ap)dx | (45)
-1
"1
M :‘S x{Ap)dx (46)
e

M is positive in the ''nose-down'' sense, Resolving the resultant
force into components along the inertial axes provides the thrust and
lift forces

T = -X cosp + Y sinp (47)



S0

Li=Xsinl+Y cosfh . (48)

When T is positive the force is directed along the negative £ -axis and

is properly termed a thrust, [ is the angle between the x and §

axes (=2 +8),

The acceleration potential is an odd function across the blade

and consequently Ap can be expressed as
Ap = 2p®"(x,0,1) (Ix] < 1) (49)

and from (37') and (35):

¥, 0,1) = ] 7 Va(r) (2 ]%+ L

_T

(50)

5 9
Fi€,t) =5 +V gg'] ‘Sﬂl v, 0, thdx, = VBIE(E, T)

For purposes of obtaining more explicit expressions of the

force and moment we expand h(x,t) in a Fourier cosine series

0

Z (Bn(t)cos ny (x = cosg)

hix,t) =

(51)

v
() = %‘5 e Hevsnp dp B 2 BLE . . o)
(8]
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We also introduce another Fourier cosine series related to

(51) by way of the boundary condition on the blade.

0
[ v{x, 0, t)- wt)x] = %bo (t) + 2 1bn(‘l:) cosn®;(x = cos )
n=
T (52)
bn(t) = %i [v(x, 0,t)-wx] cosn® dp n=0,1,2,...)
To put the force and moment expressions we seek in the

desired form,use of the following theorem proved by T. Y. Wu [1 ]

is very helpful..

Theorem: If the arbitrary functions £(x), g(x) and their derivatives .

f’(x), g'(x) are continuous in -1 € x <1, then

1 1 P * 1 1 5
i 1-x 2 U(”}dg _ r 1-X2 2 f(g)dg
£! (x)dx ( gBME _ € ot ixax ( ) ,

-Sl _SI 1-£7 (€-x) _Sl 5_1 1-g2 (& -x)

This theorem can be readily proved by successive integrations by

parts and by observing the identity

1 E 1 RE
2,2 &8 (1-x°)2 2.2 3 (1-8%)2
{1-E%) '5; S = - (1-x7) é-z' '“‘“g—_;{"—"

g -x

The contributions from the Cauchy principal limits § = x-€ and

€ =x+¢€ cancel outas e — Q.

After a number of straightforward (but cumbersome) calcula-

tions we obtain
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X=- -g{(awb -B)axb P )+B P 0B -2Vep + g Zﬁn Pt P

(53)
Y = mpV(a-b -w) - I .a_g. (b,-b ) (54)
M= -2 [V(a-f-bz) + 4- dt (b -b +w)] ' (55)

If complex notation is used for the Fourier coefficients then the real

part of each coefficient must be taken. The dot again signifies % 2

2. Energy.
Designate by E the rate at which energy is imparted to the

fluid in a unit of time.

el

£_ 4

= T Q)+ (56)

I‘""

(t)

The integration is over the entire fluid region., Using the Euler equa-
tion (17) and gea = V(a®) which follows from it and the divergence
free nature of g, we convert the volume integral into the following

surface integral.

B - S‘ p@gends . (56a)

n is the unit outward normal to the fluid, The surface S in this
integral must encompass all of the fluid. Specifically we take the path

prescribed in Fig. 5. Observing the following properties of the
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integrand of (56a) provides another representation of E
(i) gen is continuous across all surfaces.
(ii) & is (.:ontinuous everywhere except across the blade.

(iii) ¢ and g are éingular at the leading edge and we therefore
expect a contribution to arise from the integration about
that point.

(iv) @ (q.n)ds ~O(1/|z|?) in the far field.

(v) Consider the direction of the normal. |

The result we seek is
1
E = = S v(x, 0,t) (Ap)dx + X _V (56b)’
-1
Equations (16), (44), (46) can now be used to express (56b) in still
another form.
1
E = XV-Mo- S h, (Ap)dx (56¢)
‘ -1
Thus, the rate at which énergy is communicated to fluid in unit of
‘time arises from:
(i) the time rate of working of the resultant forces -R.V = XV
(ii) the time rate of working of the moment -M . This is
the power required so that the blade can pursue its tra-
jectory in the "'meanangular position."
(iii) the power necessary to deviia.te away from the "mean

position' is supplied by - S ht(ﬂ.p)dx. Hence, it is the

-1
rate of working of the blade against the hydrodynamic

reaction opposing lateral blade motions.
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Finally we express E in terms of Fourier coefficients (with the

understanding that the real part is implied in the case of complex

coefficients)

. d : 21
E = “7_2 V [(a+by ) (b, -a+ w)] + 188 a?[w(b1 -bs )+—“2-f- +n2=1 = (bn_1+bn+1)2:|

(57)

3. Power Input

To find the total power we must reflect upon the energy inputs
supplied to the propeller to sustain its motion. The rotational
velocity imparted to the propeller is generated by the application
of a moment M, about the central axis. Another moment is applied
at the pitching axis of thebladeand acts to maintain the '"mean position'
along the flight path. If, in addition, the blade departs from the
""mean position,' energy must be added to the blade to overcome
the resulting hydrodynamic reaction. Hence, the total power input

becomes '
1

P = Mlﬂ-Mw-Sht(Ap)dx (58)
A

The applied moment at the central axis is equal to the resultant force
on the blade projected along the E; axis times the distance through

which it acts. Therefore
M, = R(X cos\ - Y sin}) (59)

and is positive in the counter-clockwise sense. Combining (56c),

(58), (59), (47) and some geometric relationships gives
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P = UT + E (58")

As expected the total power input is consumed in two ways,
some in generating useful work U T, while the rest is wasted to the

fluid.

4, Longtimé approximation of a(T1) .

In this d.evelopment we are not so concerned with the initial
motion of the propeller. What is of interest are the circumstances
which prevail after thé propeller has pursued its periodic course for
a long time. Since a(T) is the only function appearing in the force,
moment, energy, and power expressions which depends on the past
history of the motion, we devote this section to finding its long
time periodic behavior.

Suppose the motion is prescribed by

h(x, t) = Re[h (X)eiaT]
v(x, 0,t)- w(t)x = Re [wn1 (x)eia rr] # (60)
w(t) = Re[ wo + Wy eia rr] (Wp, W1 constants)

Combining (40), (60), (52) gives

~

- (botby +wy ) sl (61)

by

a(s) = @ls) + g

H(s) has a logarithmic branch point and in the s-plane we place the cut

along the negative real axis. The inverse transform gives:
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-00

ﬁ(iaf}- -z-_}?l— j (H+(5)-H-(s) Jexp T(s-ia) s
o

S=1la

a(T)=w(t)+b *¥T-(b_+b +w e "
1 o i 1

(61')
Notice that (61') is still exact. Take 6 = aT. Using a Tauberian
theorem (s — o corresponds with T 2 ) and applying Watson's
lemma to approximate the integral provides the longtime periodic

form
alt) = w(t)thy (£)- @ (a) [bo (t)+by(t)+ wi(t)] (1 + O(1/72)); (T~ ) (61)

where @) = € (@) +i08(2) = H (ie) is the Theodorsen function

whose asymptotic expansion for small a appears next.

8, (@) ~1 - -TE-i-oza(-Tf——lo 3—2—)+0(a310 2a)
g 2 4 g'}/ o g ,
(62)

@5 (@) M-Q(l—wa)log}%— + O(a® log®a); (y = 1.781...)

5. Limiting cases of the motion; Time averaged results

We denote by Case I the high speed made of propulsion where-
in U>> 0 R and by Case II the opposite extreme of (! R >> U. Table
I presents a collection of some limiting forms assumed by certain

geometrical and dynamical quantities belonging to these cases.
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TABLE I
Case I (€ = Q—UP: «<1) ~—  Casell (§ = & <<1)
T = Ut T = DRt
e = /U << 1/R Y 148 %]
Vit) = U+0QR cos 8 ) Vi) & R + U cos ¥
— R 6 wt) = Q- 1) cos 6

wit) = 5 cos R
W = 0 Wwe = Q

PR _ U
wl = U wl = = ﬁ

= 1 25
K () = % cos 0 K(t) = & - 5 cos 8
Aft) = -6+¢€sinb A(t) = - & sinf
ut) = € sin B pit) = 6 - 6 sin 6
L = (ZF)Xsin8+Y | L = Xsin0+Y cos 8
T = -X+’(%—)Ysin8 T = -Xcosb+Ysinb

Q,m . 2 i 1,w .. 2R '

a(t) = -b0+-ﬁ(§+1 logﬁ)(bo +by +w) a(t) = Q-by +R—(-2—+119g7)(b0+b1+w1)

An important part of the investigation centers around the
steady components of the thrust, energy, and power. In the remainder
of this section we present these steady components for Cases I, II.

Consider first the functions b(x, t), c(x,t) which we assume

have expansions of the form
_ jw_t . _ jwnt
b(x,t) = Re(X b_(x)e’ "n) - c(x,t) = Re(IE1 c_ (x)e )

The time average of the product bc is
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T

bc = Limit -ff Sb(ﬁ,t)c(i,t)dt — Re-;—(;zl by(x)c_(x)) (63)

T— w0
Ke)

Notice that the steady components pertaining to different frequencies
are not coupled. Applying the averaging formula to the expressions
for thrust and energy and consulting table I for the appropriate

limiting expressions yields for Case I

Tl ; ek % k. %k, % ”
T = 33‘:9“ Re {\a+bo-[30)(a. -by +B1 )+Bof1 - WPz -2UP w

+2 QRi(a-w-bl ) = Q.Lf-{ 1(50 -Bg)} (64-)
E = %ﬁ U Re[(ai—bo_)(bl*—a*+w*)j (65)-7

while the average thrust and energy for Case II are

i %ﬁ Re {Q [-2QR B, 48, =by +bo -o+2(a-N ] + 2i QR (a-w-b, ) +

: . (66)
-i(bg - bg)}

- ¥ % %
E = -ERQR Re{(a-ﬁ'f'bo)(bl -a tw )"'g(bl 'a+°9)1 Ll

P is readily obtained from (58°) .
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V. OPTIMIZATION

1. Specification of the blade motion.

For engineering purposes it is sufficient to restrict the blade
motion to that of pitching oscillations about the mid-chord. Hence
we set y = B (t)x. The propeller motion is periodic and consequently

we take B (t) to be

B1(t) = Relm exp j(6+n)] (68)

where the real constants m, n specify the amplitude and phase of the
pitching relative to the ''mean posifion” and are the parameters at
our discretion to effect an ''optimal’ blade motion. Note that the
pitching period 2w/{l is the same as the trajectory period.

Fromr (68) and the kinematic boundary condition on the blade

we obtain |

bo (t) 2V Re[p, (£)]

I

by (t) Re[[§1 (t)]

while all other bn coefficients identically vanish. The thrust and

energy expressions (64)-(67) simplify to

T = "2 Re{[20R(@-2b; }i]+[(atbo)a™-b, w*1} (64 )
= = lr%‘ﬁ | bo +by + w, ]B[l + O(%loga g-)] 65")
7o ZR R {[2O0R(a-01-2b, )i] + [2(a-0)0Q]} (66
E = ﬁgﬁ-n— []bo+b1+w1 ]E+-2?riJRe(bo +bl+w1}} [H{)(If—{long)} (67"
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The first term in square brackets in (64’) and (66" is the Y-force
contribution. Notice that they are essentially identical in form. In
(66 ') the X-force contribution (appearing in the second brackets) is
due solely to the singular force whereas in (64") both the suction
force and the pressure component in the x-direction appear. Observe
that if Ibo + by +wy | vanishes, then so does E Another notable
feature of the equations (64" -(6?') is that only the time harmonic
components associated with Py (t) and w(t) (i.e. bg, b1, w; ) survive

the averaging process. This fact enables us to interpret the blade

motion as an "effective' heaving and pitching.

2. The effective harmonic blade motion.

We know that by and b; depend directly on B; (the precise
dependence issuing from the kinematic expression ht +V hx). Suppose
we consider the harmonic part of w(t) as having a similar origin. We
seek the harmonic blade motion y = Iy (%, t) which will generate the
normal velocity wj (t) x. Hence, bh; (x,t) must be the particular solu-

tion of
) ) _
(B + Vax) b 0 ) = ()

The particular solution we obtain is unique upon ruling out the solutions
which satisfy the homogeneous equation. The total harmonic blade

motion hp (x,t) = h(x, t) + h; (x,t) becomes
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where €, E;, B2 are real constants given by

2V w, ¢ 2R Case I
By = w2 (70a)
_ 21
-Tl— Case II
€¢ = mcosn (70b)

sinn-¢ Case ]
Udy -

= 51 - —— =
£, = msinn o

; (70c¢)

{ msinnt+ & Case II

Equation (69) is an interesting representation of the harmonic motion
of the blade for it demonstrates that an effective heaving motion
prevails with a constant amplitude of £ 8 together with an effective
pitching about x = 0, The pitching amplitude |€, +j 2| is variable
via m and n as is the pitching phase angle tg ‘l(gg /81 ).

3. Non-trivial blade motion with vanishing E, T and P

We now consider the quantity (bo + by + w; ) which has some
importance in the optimization. It is convenient to express it in

terms of &4, 8y, €2, namely.

bo+by +w; = Q[(r & -E2)+i(r Es+Ep+E; )] (71)
where 2V Z %—U Case I
r= 20 . (72)

2R Case II

When bo+b; +w; = 0 then we term &, =£, and gz = %3 critical

values where
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g, SR (Case I)
By = — = " (73a)
(14+r7) R (Case II)
. -r &y - € (Case I)
s — = ; (73b)
(1+r~) & (Case II)
Define new quantities (p, (3, Cz by
Co = Eo/(l41®) ' (74a)
Gt = & -8, C = 8 -8 (74b)

Since the effective heaving is fixed (o is a constant whereas  (Cz)

measures the departure of §; (§5) from the critical value %1 (Ea ).

Substituting (74) into (71) yields
botby + wn = QL(rCy (o )4i(rCa+C1)] (71%)

and note that with the change of variable (, does not appear. In

fact (74) was designed to accomplish this feature. It is instructive

to express (64') -(67) in terms of { = (Co, C1, C2)

. ‘
T = 22 58 )Lt +160 G 1140 (L logn))] (64
E - %EQQV(H-rE)[% (gf+g§)}[1+0(%10g3r)] (65"
—= -1 Qa Vi
T = 2T 14:%) (S +0o G| [ 1401 10g™ )] (66")
_ C
E = %Qavuﬂa)[%(gﬁrgfw el -Qecl]

[ 1+O(%10g‘°’r)] (67")
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We see that when (; =(z = 0 (that is, e.g. n = % and m = w; /Q)
then the mean energy loss identically vanishes as does the average
thrust (64”). The mean thrust for Case II (when {; = (z = 0) is seen
to be negative since T ~ - QOB which implies that energy is extracted
from the fluid. However, since (o << 1l we may essentially treat P
as a vanishingly small quantity. Thus when £, £, assume critical
values (él : Ez) we observe that the mean energy loss, thrust and
power all vanish corresponding to no vortex shedding at the trailing
edge. Ther instantaneous values of E':, T, p are then due solely tovir-
tual mass contributions. This property has been observed ea.rlier_

by Wu [ 2 1.

4. The optimal problem.

The average useful work UT, rate of energy loss E and
power input P is conveniently expressed in coefficient form by

dividing each quantity by —£ 0°V(1+r®)4. From (64")-(65") for
g Y ¥ 7

Case I
Cg= T(CP+#) = T [m®+2m (o (cos n + 1 sinn)-(14°) ¢& ] (75)
CT 2= (Pols +£fp Ea)=m Co(cosn + rsinn) (76)

From (66)"-(67)" for Case II

| Cola of o '

Cp = -}[(g12+c:)+ f 'C0C1]=;[me+rmgo(51nn-%COSD)"(H'I'S)CC?}
(77)

Co. = -l r+CZ)=-rm{, sinn (78)

T
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whereas the power input coefficient is obtained from the conservation
of energy expression CP = CE : 3 CT.

From (76) we observe that the maximum C,. is approximately

T
(r Qom) corresponding fo n = w/2. This result indicates that a large
m is desirable but not so large that the linearization requirement
m << 1 is violated. CT vanishes for n in the second quadrant near
7 and subsequently becomes negative for larger phase angles.
Similar remarks apply to (78). The presence of the multiplicative
factor w/r in (75), (77) ren&ers the energy loss a small quantity
for all phase angles provided m <<l is not violated, which appears
eminently reasonable.

The optimization problem is stated as follows., We seek the
pitching motion Withinl the class of functions (68) which will minimize

the energy loss Cp under the side condition of specified useful work

(or thrust), savy,

= >
CT C>0

while holding U, Q, R, £ fixed.

We introduce a function C, and the Lagrange multiplier A by
= G) (79)

and perform the optimization procedure on C;. The three unknowns

m, n, % can be obtained from the equations
— C; =0 (80a)

e iy =0 (80b)
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Cop=C>0 (80c)

Equations (75), (76), (79), and (80) provide for Case I the following

optimal values of m, n:

m= Gle ¥4 1 (G > ¢®) (81)
n:(:g_-z%). (82)

In (81) C = ¢® is incompatible with the singular situation pointed out
in sections 1, 3 and consequently we avoid it by specifying C > €%,

5 3 .
For C= 3 € say, then Tmax = O(UGR)>> 1.

The minimum C. for fixed CT obtainable under the con-

E

strained optimization for this case is

min CE=

=

(92— + zc) . (83)
€

Similarly equations (77), (78), (79), and (80) provide the fol-

lowing optimal values for Case II,

m= $<<1 (C > 6?) (84)
n=n/2 (85)
mincE=-(g--c >0 ol B o (86)
| Cr=C . : (87)

Again the thrust can be quite large since Tm = O{Q"Rz | B

ax

The optimal results presented above for the two cases displays

a remarkable resemblance, The reason for this is that the useful
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work developed in both the high and low speed propulsion modes re-

sults primarily from the local lift force on the blade.

5. Development of thrust,

The optimal blade motion is given by y = -x(m sinf) from
which it is possible to trace the blade attitude in time. See figures
(6a,b).

The ratio of the steady X to Y force contributions in the thrust
expression (64') (under optimal conditions) is % while the corre-

-log(2R/Y)

These ratios, being
R? )

both negative, imply that the steady X contribution is an inertial drag.

sponding ratio of terms of (66') is

The smallness of the ratios clearly indicates that the principle thrust
contribution is derived; from projecting the local lift force along the
¢ -axis.
To leading order the optimal instantaneous Y force (from (54) )

is

Y = 27p VPm sin 6 (88)
and is positive for 0< 6 < ¢ and negative for w < 6 < 27w, The direction
of this force is displayed in figures (6a and b) where it is observed to

act in a thrust producing capacity.

6. Efficiency.

The hydromechanic efficiency is defined as the ratio of the

average useful work to the average total power input

5 nemsin (89)
E
UT

1+
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™y

Fig. (6.a) Schematic representation of blade attitude and local lift
' force in the high speed propulsion mode.

~

Fig. (6.b) Schematic representation of blade attitude and local lift
- force in the low speed propulsion mode, ‘ | '
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We comment again that the energy loss always remains a small
quantity because the amplitude of blade motion is restricted to small
values. Hence the efficiency ié largely governed by how we utilize
the local lift force. Under optimum conditions the maximum effi-
ciency is nearly unity for both Cases I and II. From equations (82),

(83), (86), (87), and (89) we obtain:

: =1 .1 (C 2
(Case I): ul 1 SR (e + 2¢) {e > C>4%) (90)
. =1 .7 . C _ 2

If we '"push'' the theory by permitting C = € (equivalent to m f{inite)

we see that Nmax for Case I is still near unity whereas C = é for

_I'TT) . Here we observe a substantial loss in

Case II gives Mnax -

L
Ll Y

efficiency when §2 and U are of the same order, Consequently for

Case II high efficiencies seem improbable for C = 6 (unless U >> Q).

7. Multiple Blades.

" The performance features of a cycloidal propeller can be im-
proved by increasing the number of blades. In figures (6a,b) we note
that the instantaneous thrust force is greatly diminished at certain
points of the flight path (e.g. at the peaks and troughs of figure (6a))
compared with its magnitude near the points where the £ -axis inter-
sects the trajectory. This situation leads to a surging motion and
indicates that a single -1:;1aded cycloidal propeller is unbalanced. A

further manifestation of the imbalance of a single-bladed propeller is
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the yawing motion which arises since the local lift force changes its
direction during every half cycle of operation. The yawing motion can
be substantially reduced by incorporating an additional blade 180° out
of phase from the reference blade but such a blade arrangement would
amplify the surging tendency. Clearly both surging and yawing motioﬁs
can be considerably reduced by a four-bladed configura.ltion each one

90° out of phase from the preceding blade.
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VI.. SUMMARY AND DISCUSSION

In this work we have developea a hydromechanical theory for
cycloidal propellers. Two limiting cases éf propeller operation have
been considered, namely, the high speed propulsion mode of Case I.
wherein U » QR and the low speed propulsion mode where QR » U,
The high and low speed designations refer to the speed of advance of
the propeller U, and do not necessarily imply that the blade speed
V is greater in one case than in the other. It is assumed, however,
that the characteristic Reynolds number based on the blade speed and
the chord length is always large. This assumption excludes from -
consideration the case when the flight path is a common cycloid (or
trajectories which are slight variations away from the common
cycloid) since at certain stretches along such trajectories the blade
speed can become very small indeed, |

The investigation centers around the unsteady motions of a
single thin blade which executes ''small departu.res'rr from its ""mean
angular position', A blade occupies such a position when its chord is
tangential fo the flight i)ath at its spanwise blade axis. The ''small
departures'' we refer to may strictly be any blade motions wherein a
linearized theory remains valid but specifically we consider only
i)itching motion about the mid-chord.

As we have mentioned earlier in the text, rthe quantitative
results can be extrapolated to multi-bladed propellers provided the
number of blades is limited to the extent that the rm.ltual interference

between the blades is not large., The interference nature of additional
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blades may not always be adverse [15] and the investigation of this
phenomenon using some of the ideas presented herein would provide
a useful extension of this work, Such work would have particular
releva_nr;e to the cycloidal propeller pursuing a prolate cycloidal
flight path since there, each blade can operate in close proximity
to a vorte;c sheet shed by another blade.

Three coordinate systems have been introduced in the study
of this problem, namely, the fixed inertial system, the blade system
{with its origin fixed to the central axis of the propeller), and the
body system (with its origin fixed to the spanwise blade axis and with
the x-axis tangential to the flight path). We use each of these systems
at various stages of the development. The body system as we have
defineditis paiticular ly useful when dealing with hydromechanical prob-
lems involving small perturbations coupled with large amplitude motion,

Another formulation of the problem at hand might employ a
coordinate system which has one axis fixed to the blade for all time.
The analysis would be more complicated in such a frame of refer-
ence and when the blade executes only small perturbations its use is
really not warranted. However, it is a natural vehicle for investiga-
ting larger depa;rtures from the "mean angular position' than are
considered in this paper and there is much ;nferest in this important
problem.  Clearly With‘such a coordinate system the situation in-
volving the issuing of vorticity at the trailing-edge could be accounted
for more accﬁrately since it would then be unnecessary to neglect the

small wavy motion of the approach whichin fact is superposed on the
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trajectory.

The hydrodynamical aspects of the problem commence with
the momentum equation (Euler's equation) written in terms of the
absolute velocity and pressure and with the variation of these dynam-
ical quantities measured in the body frame of reference, This equa-
tion wherein fluid accelerations are balanced with pressure gradients
is integrated along the mathematical characteristics to provide an
explicit relationship for the complex absolute velocity w(z,7) in
terms of the complex acceleration potential f(z,7). The result is
derived and then simplified in Appendix Itoyield é representation which
is valid in the heighborhood of the blade, z = O(l). The simplified
form is used only to define the function of time, A(T), of Eq. (29)
which characterizes the time dependence of the leading-edge suction
force., An approximation of a different nature is introduced to obtain
an explicit relationship for A(T), and the function a(T), related to it
through Eq. (38). This approximation concerns the replacement of
the true characteristic by a curve which accurately represents it
only over its initial stretch for distances of O(l). Thereafter the
two curves diverge. (We are essentially altering the path of in-
tégration in the integral equation for the determination of a(T) ). -
However, the divergence of the curves occurs in a region where the
effects of the past motion are small compared with the effects
pertinent to the initial segment of the curve. Hence, the leading
order term of a(T) should be accurate_' Physi'ca.ll'y this approxima-

tion appears to be reasonable since the prime influence on the
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velocity at a point must be strongly dependent on those retarded
pressures occurring in the immediate neighborhood of the point
while those which are further removed in time and space must con-
tribute iln a diminished capacity. The idea is nicely demonstrated
mathematically by von Karman and Sears [13]. In developing a
higher order theory or particularly in those cases when the curvature
of the trajectory is not so small, this approximation will not be
adequate,

If the velocity field is desired it can be calculated (once the
complex acceleration potential is known) from Eq. (9.A ). The
determination of the complex acceleration potential involves solving
a straightforward Riemann-Hilbert boundary valﬁe problem,

Explicit eﬁpreséions for the force and moment are obtained
in Fourier coefficient form. These expressions become quite com-
pact when the time averaging formula is applied to them, especially
in the case when the bl;ade motion is restricted to pitching only. In
this latter form only the Fourier coefficients [31, bo’bi and the
angular velocity term w survive the averaging process,

Analytical expressions are developed for the total power in-
put by considering the energy requirements necessary to sustain the
propeller fnotion. Energy is supplied at the‘ éentral axis in the form
of a torque Ml which imparts a rotational velocity to the blades.
Additional energy is given to the blades at their spanwise pitching
axis and this energy provides the power Ifor the blades to pursue the

flight path in the ""mean angular position'' and further; to execute the
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small perturbations which are superposed on the '"mean angular
position'' The torque at the central axis _“L\/Il is of course related
to the hydrodynamic forces produced by the motion of the blades.

. Using this information together with some geometrical identities
enables us to write the total power input in the form of an energy
balance equation P = UT + E and this equation expresses that in this
inviscid model, part of the power input goes into producing useful
work UT while 1Vthe remainder represents a lost component which
goes into maintaining the system of vortices in the wake,

In the optimal problem the energy loés is to be rna-,de as small
as possible under the constraint of specified mean thrust, ‘CT > 0,
Effective heaving and pitc:,hing motion variables are introduced into
the thrust and energy coe:ffiéients and in terms of these variables a
singular situation is eé,sily recognized which corresponds to a non-
trivial blade motion having zero mean power input, thrust and energy
loss, This situation implies that the circulation about the blade re-
mains consiant and hence, non-zero instantaneous forces and moments
are attributed to virtual mass contributions alone,

The solutio.n to the optimal problem provides the pitching
motion of the blade associated with the least energy loss while main-
taining a specified mean thrust. The blade optimally operates at
angles of attack where the local lift component lies inclined so as to
always contribute to the useful work devgloped by the propeller.

The hydromechanical efficiency, defined as the ratio of use-

ful work to total power input, can be impressively high for the
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cycloidal propeller under optimum conditions, However, the high
efficiencies found in the present theory are overly optimistic and
lower values would be otainea in a theory which accounts for three
. dimensionality, blade interaction and the wake-crossing effect,
In Fig. 7 Mueller [14] displays‘ some efficiency versus load co-
efficient curves which supply an indication of the potential of the
cycloidal propeller as compared with a conventional screw propel-
ler, The sinusoidal blade motion appears in an unfavorable light in
this figure but apparently this is due to blade stalling, a situation
\x;hich is avoided in the optimum blade settiﬁg. |
We have mentioned earlier tha£ the singlg bladed cycloidal

propeller suffers an imba-.lance in the sense that surging and pitch-
ing motions are produ’céa even though the blade delivers a specified
mean thrust over one period of operation. The imbalance can be
greatly reduced.by a four-bladed configuration with each blade 90°
~out of phase from the preceding one but this is not t6 imply that a

different blade configuratiOn would have less merit,
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APPENDIX I

" 1. Integration of the Characteristic Equation

The Euler equation can be written as

B(z,rr)g%" +-§%" -i K(T)w = g—i (1. A)
where
B(z,T) = 1 -1iK(T)z (2.A)
The mathematical characteristics of (1. A) are obtained upon
integrating
dz = B(z, T) (3..A)
dT

and this equation is amenable to integration when it is rewritten in the

form

% [zei\)(T;O)] - eiv(T;O) (3.A")

where y |
v(r;r?) = v{r;0) - v(t’;0) = S K(T)dT (4. A)

T'

Performing the integration of (3.A') between the limits T and T’

yields

dar (5. A)

T
% !
. V(T;T
, iv(t;T’) —S SHRTHT)
b = Zeé ;

;

- If we write the trajectory equation as a complex function

z = zo(Tﬂ;T) = xo(’r “ty+i ('T’;‘T) where (6) and (7) are expressed in

terms of the variables T, T ', then

1 .
z_(157) = S AVITST) g o (6. A)

i

P
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‘Substituting (6. A) into (5. A) yields the following convenient form for

the characteristics,

/

. Z!(T’;Z T) = ei\)(‘T;T ) [Z‘ZO(T,;T)] (7. A)

2

2. Integration of the Euler equation along the characteristics.

Along the characteristics (1. A) can be written as

dw : _ |
= " ik(T)w = 32 _ . (8. A)

and this equation possessés an integrating factor which enables us

to rewrite it as

d [ e W™y | e V(3T (df of )
= £

L (8. A"
B(z, T) dT = oT

dt T or

we integrate (8. A along the characteristics from T to 'r’, we have

Note that the operator identity ( < 4 ) = Bga; has been used. If

(upon integrating the first term on thé right hand side by parts and
assuming zero initial conditions):

' : PR I
Bz, Thwis, T)=f(z, 7) = 1 B, 1) § 2B2T 0 )z e
| 2 BE,T)

-

-iv(t iT)

dar’ =

s

. -iv(T;7)

.B(z,T)S—af"(zl,T')————-—‘3 e darT
) aT B(z,T7)

/

(9.4)

where z'is given in (7. A). When { is known evérywhe‘re in the field
of flow then (9. A) should be employed to give the corresponding

velocity field. However, for purposes of calculating the instantaneous
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forces on Jthe blade we need not use the elaborate expression (9.A)
-which is valid everywhere. Instead, we use a simplified form which
is uniformly' valid when z = O(1) (i.e. in the neighborhood of the
blac‘le).- The desired form is most easily found by going back to the

differential edua.tion (1. A). Note that along a characteristic

d - dw . Kz 1
a7 (Bw) = B{dw bk [ 4 & K(l1-iKz) ] g ® ik 28)
, Kz OR
o = E = — <<
For z =0O(1) then the term Takz) = O(e/R? for Ca.sa? i 16 5 1)
Kz :
1-iKz) -

and O(6/R) for Case II (5 = G%‘ <<1). In either case

negligible compared with unity and (1. A) when integrated along the

characteristics gives

B(z, Yw(z,T) - £f(z,T) = - S j_f_(_g_%'_r_) d'r} _ 7 (11. A)
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