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Abstract 

PART I: 

A weakly nonlinear Hamiltonian model for two dimensional frrotational waves 

on water of finite depth is developed. The truncated model is used to study families 

of periodic travelling waves of permanent form. It is shown that nonsymmetric 

periodic waves exist, which appear via spontaneous symmetry breaking bifurcations 

from symmetric waves. 

In order to check these results with the full water wave equations, two different 

methods are used to calculate nonsymmetric gravity waves on deep water. It is 

found that they exist and the structure of the bifurcation tree is the same as the one 

found for waves on water of finite depth using the weakly nonlinear Hamiltonian 

model. One of the methods is based on the quadratic relations between the Stokes 

coefficients discovered by Longuet-Higgins {1978a). The other method is a new one 

based on the Hamiltonian structure of the water wave problem. 

Another weakly nonlinear model is developed from the Hamiltonian formulation 

of water waves to study the bifurcation structure of gravity-capillary waves on water 

of finite depth. It is found that, besides a very rich structure of symmetric solutions, 

nonsymmetric Wilton ripples exist. They appear via spontaneous symmetry breaking 

bifurcation from symmetric solutions. The bifurcation tree is similar to that for 

gravity waves. The solitary wave with surf ace tension is studied w£th the same 

model close to a critical depth. It is found that the solution is not unique, and 

further nonsymmetric solitary waves are possible. The bifurcation tree has the same 

structure as for the case of periodic waves. The possibility of checking these results 
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in low gravity experiments is discussed. 

PART II: 

Saffman's {1985} theory of the superharmonic stability of two-dimensional frro­

tational waves on fluid of infinite depth has been generalized to solitary and periodic 

waves of permanent form on fluid of finite uni/ orm depth. The frame of reference 

for the calculation of the Hamiltonian for periodic waves of finite depth is found to 

be the frame in which the mean horizontal velocity is zero. 

Also, a simple analytical model has been constructed to demonstrate Saffman's 

{1985} theory. The model shows the change of geometrical and algebraic multiplicity 

of the eigenvalues and eigenvectors of the stability equation at the critical height. It 

confirms the existence of Hamiltonian systems with limit points at which there is no 

change of stability. 
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Introduction 

Since early last century one of the problems of fluid mechanics that has attracted 

a lot of attention in the scientific community is the study of waves propagating on 

the surface of water. Besides the direct engineering application, this special interest 

is due to the fact that the equations are highly nonlinear, and possess a rich variety 

of solutions representing very different physical situations. 

Among the great variety of problems related to surface wave propagation on 

water, a big effort has been devoted to the study of permanent form travelling 

waves. These waves are basically equilibrium solutions for the water wave problem 

because the motion is steady in a frame of reference moving with the speed of 

propagation of the wave. 

The present work is devoted to the study of new families of permanent form 

travelling waves and some stability considerations of these equilibrium solutions in 

a two dimensional situation. Throughout the entire work the fluid is considered 

inviscid and the fl.ow irrotational. Under these assumptions a great deal of work 

has been done since the problem was first considered by Stokes in 1848. However, 

almost always, the problem has been approached by studying the partial differential 

equations which follow from the classical water wave formulation. 

Here a new tool is introduced to attack the problem. This new tool is the Hamil­

tonian formulation of the water wave problem, which was introduced by Zakharov 
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in 1968. Zakharov showed that the classical evolution equations for water waves 

can be written as evolution equations of a continuous Hamiltonian system. 

Discrete Hamiltonian systems of few degrees of freedom have been extensively 

studied in the field of classical mechanics. Currently, we can say that many aspects 

of the dynamics of Hamiltonian systems are quite well understood. Thinking about 

the water wave problem as a Hamiltonian system allows us to apply many of these 

known results to our problem to answer important questions which have remained 

open for long time. 

The present study has been split into two different parts. The first part deals 

with the existence of nonsymmetric waves on water. This has been an open question 

for a very long time. fu the first chapter a weakly nonlinear Hamiltonian model for 

gravity waves on finite depth water is constructed to show that symmetry breaking 

of water waves is possible. In Chapter 2 the results of Chapter 1 are extended to the 

full water wave problem in the case of gravity waves on deep water. Finally, Chapter 

3 deals with the case of gravity-capillary waves on finite depth water. Again, using 

a model, the existence of nonsymmetric periodic and solitary waves is shown. 

In the second part of the work we deal with the study of superharmonic instabil­

ities of travelling waves. In the first chapter, using the Hamiltonian formulation for 

waves on water of finite depth, we show how some changes of stability of travelling 

waves are related to stationary points of the total energy of the waves. This work is 

an extension to finite depth of results found by Saffman for the case of deep water. 

In the second chapter, a simple Hamiltonian model is constructed to show examples 

of the behavior found both in the previous chapter and by Saffman. 
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PART I: 

Symmetry breaking of water waves 
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CHAPTER 1 

Weakly nonlinear nonsymmetric 
gravity waves on water of finite depth 

1.1 Introduction 

Frequently in physics the equations that describe a phenomenon are invariant 

under the action of some symmetry group. In general the solutions have the same 

symmetry group. In some cases, however, it has been observed that bifurcations 

can lead to solutions that have a smaller symmetry group. These are examples of 

spontaneous symmetry breaking. The symmetry group of the equations remains 

unchanged, but solutions spontaneously break symmetry in the absence of any 

external perturbation. 

A very clear example of this situation is Hopf bifurcation where temporal sym-

metry is broken. Another physical example of symmetry breaking is the appearance 

of hexagonal convection cells in Benard convection. 

Symmetry breaking plays an important role in several physical disciplines, in-
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cl uding pattern formation in reaction diffusion problems, convective flows in geo­

physical phenomena, neurobiology, statistical physics, physical chemistry. For a 

good analysis of bifurcations in the presence of symmetries using group representa­

tion theory the reader is referred to Sattinger(1980,1983). 

Since Stokes(1849) discussed the problem of two dimensional progressive sym­

metric gravity waves, a great deal of work has been done to study all properties 

of travelling waves of permanent form on water of finite and infinite depth. But 

to date all the families of waves that have been found correspond to symmetric 

waves. To define what symmetry means, consider a travelling wave of permanent 

form that is given by a function f(x), which describes the shape. A wave is said to 

be symmetric if the origin of the wave can be chosen such that f(x) = f(-x). This 

relation defines a symmetry group. 

Several attempts have been carried out trying to find nonsymmetric water 

waves. For example in the case of deep water Chen & Saffman(1980) found that 

gravity waves of finite amplitude are not unique. They found bifurcations to families 

of waves in which all crests are not equal. They did in fact find bifurcations into 

apparently nonsymmetric solutions, but these solutions proved to be just shifted 

symmetric waves. They searched for symmetry breaking bifurcations in the regular 

Stokes family and in two families that bifurcate from this one, that they called 

Class-2 and Class-3 irregular waves. They were not able to find any genuine sym­

metry breaking bifurcation. Irregular waves of Class-2 on water of finite depth have 

been computed by Vanden-Broeck(1983). 

Recently Longuet-Higgins (1985) carried out calculations using a method based 

on a Fourier expansion of the shape of the wave in the potential plane. He did 

not find any bifurcation to nonsymmetric waves from the regular branch. Later 



-6-

using the same method we looked for symmetry breaking bifurcations in the Class-

3 waves. Some were found, but in regions where the convergence of the method was 

bad, and the bifurcations moved or disappeared as the number of modes used in 

the expansion was varied. 

During the last decade a lot of work has been done trying to understand the local 

asymptotic expansion near the crest for the Stokes limiting wave of 120° (Norman 

1974, Grant 1973,Longuet-Higgins & Fox 1977,1978, Olfe & Rottman 1980). Again 

all the work has considered only symmetric expansions. Work in progress shows that 

even though the crests are always symmetric in first approximation, nonsymmetric 

solutions are possible when the influence of neighboring crests is considered. 

During the last year the Hamiltonian theory of water waves has proved to be very 

successful in answering some important questions about the stability of travelling 

waves of permanent form. Saffman(l985), using Zakaharov's(1968) Hamiltonian 

formulation, proved analytically (thereby verifying Tanaka's(l985 a) computations) 

that an exchange of stability occurs in finite amplitude water waves of permanent 

form on deep water for a superharmonic disturbance to every wave whose total 

energy is stationary. In Chapter 6 we extend this result, using Hamiltonian the­

ory again, to periodic waves of finite depth and the solitary wave (again verifying 

Tanaka's(1985 b) results for this case). Also MacKay & Saffman(1985) determined 

under which conditions the crossing of eigenvalues for the linearized problem about 

a wave of permanent form leads to loss of stability. 

In the present paper a weakly nonlinear Hamiltonian model is developed for 

water waves on finite depth by a direct truncation of the complete Hamiltonian 

for water waves. With this model all the subharmonic bifurcations found by Chen 

& Saffman(1980) and Saffman(1980) on deep water and Vanden-Broeck (1983) on 
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finite depth water are reproduced. The model shows also the possibility of more 

general bifurcations. 

Based on some similarities with area preserving maps that were suggested to us 

by Dr. Robert MacKay, the bifurcation tree for the Stokes family is studied in more 

detail, and a symmetry breaking bifurcation is found that leads to nonsymmetric 

waves. 

1.2 Weakly nonlinear Hamiltonian theory 

Consider two dimensional irrotational water waves in a laterally unbounded do-

main of constant depth. Miles(1977), extending Zakharov's(1968) and Broer's(1974) 

work, proved that this system has the following Hamiltonian structure 

a,,, 
at 

a1fJ 

6H 
61/J' 
6H 

at - 6ry' 

(1.1) 

where H is the total energy of the waves and 6 represents a functional derivative 

( see Goldstein 1980). The canonical variables ry(x, t) and 1/J(x, t) are the surface 

shape and the velocity potential evaluated at the surface. 

1/J(x, t) = cp(x, ry(x, t), t), (1.2) 

where cp(x, y, t) is the velocity potential. 

His given by 

H = J H(ry, 1/J)dx, (1.3) 
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where the integral extends over one period in the case of periodic waves. The energy 

density H is given by 

11" 1 H = - (Y'cp)2dy + -g172. 
2 -h 2 

(1.4) 

g is the acceleration of the gravity and h the distance from the origin to the bottom. 

To make this formulation useful we have to express the energy density in terms of 

the canonical variables. This transformation leads to very complicated expressions 

involving integral operators. Considering small amplitude and long waves, a simple 

expansion for H can be obtained. In the present case of finite depth, this expansion 

contains only spatial derivatives of the canonical variables. 

In order to obtain this expansion consider the following dimensionless variables, 

1 

' x t' = t [f_h ' x = ~, Vh, 
, 132 H 

H = -2 h2' a g 

' y 
y = h' ' hep 

cp = >i.ay/gh' 

' 17 YJ = -a' 
' ht/J 

t/J = >i.aylgh' 

(1.5) 

where a represents a measure of the amplitude of the waves and A the typical wave 

length for the considered waves (see figure 1). a and f3 are two parameters defined 

as follows 

a 
a= h' 

a measures the amplitude of the wave and /3 the dispersion (Whitham 1974). 

If the motion is studied in the frame of reference in which the mean horizontal 

velocity is zero then the dimensionless variables are all of order unity. This change of 
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y __ L __ a 

Figure 1.1- Some notation for periodic travelling waves of perma­
nent form on water of finite depth 

variable can be also considered as a canonical transformation (Radder & Dingemans 

1985). Dropping the primes the new energy density will be 

(1.6) 

If we assume a and /3 are small, it is possible to obtain an expansion of <pz and 

<py in terms of t/J,TJ and their spatial derivatives. 

Taking the Fourier transform, it is clear that 

1 

( t) - Joo cosh[k/3"1 (1 + y)] A (k t) ikxdk <p x, y, - 1 <p , e , 
-oo cosh[k/3:&] 

(1.7) 

where cp(k, t) is the Fourier transform of the value of rp(x, y, t) at y = 0. 

Then t/J(x, t) is given by 
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1 ·'·( ) _ ( ( ) ) _Joo cosh[k,B~ (1 + a71 )] A (k ) ikxdk 
'f' x, t - cp x, 7J x, t , t - 1 cp , t e . 

-oo cosh[k,82] 
(1.8) 

Expanding the kernel of the integral in powers of a and inverting the operator 

it follows 

(1.9) 

where fJ and .ef; are the Fourier transforms of 7J and 1jJ respectively, and 

A 1 1 
M(k) = ,82 k tanh(k,82) (1.10) 

Assuming ,B ~ 1 equation (1. 7) can be expanded in Taylor series giving 

(1.11) 

From equation (1.9) the previous relation can be rewritten as 

(1.12) 
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where M.'lj; is defined as follows 

M.'lj; = J_: kf3~ tanh(kf3~) ;p(k, t)eikzdk 

1 2 ( 3 = -f31/Jxx - 3f3 1/Jxxxx + 0 f3 ). 
(1.13) 

Finally introducing expressions (1.12) and (1.13) into equation (1.6) the follow-

ing Hamiltonian density is obtained 

1 172 { 1/J; f3 2 
{3~ H = 2 + 2 + 6[1/Jxx + 21/Jx1/Jxxx]+ 

~: [1/J;zx + ~(1/Jxx1/Jxxxx + 1/Jx1/Jxxxxx)] + 0((33
)} 

+a { 
17~i + ~ [17(1/J;x + 21/JxtPxxx) + 21/JxtPxx11x]+ 

(32 2 
3[11(1/Jxxx + 1/Jxx1/Jxxxx + 1/JxtPxxxxx) + 11x(1/JxtPxxxx + 1/JxxtPxxx)] 

(32 3 } + 2[(1/Jxx11)xxx1/Jx + (1/Jxx17)xx1/Jxx] + 0((3 ) 

+ 0(0:2). 

(1.14) 

This expansion is accurate up to terms of order af32 • The evolution equa-

tions that can be obtained from this energy density agree with those obtained by 

Miles(1977) following a similar expansion, and also with the equations obtained 

by Hunter & Vanden-Broeck(1983) using a direct expansion of the classical water 

waves equations for a and f3 small. 

Keeping only first order terms in a and f3 in the expansion of H, the famous 

Boussinesq approximation is reproduced. Dropping all terms in a the linear water 

wave equations are obtained. 

In the present analysis the following truncation of energy density will be con­

sidered 
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(1.15) 

This energy density contains one more term 0(,82) in the expansion of the 

dispersion than the Boussinesq approximation in the theory of weakly nonlinear 

water waves. 

1.3 Stokes waves model 

The dimensionless variables considered in the previous section are good choices 

for showing the relative magnitude of the different terms that appear in the equa­

tions. In order to write the energy density in a form that is independent of the 

length scale of the waves, it is convenient instead to use the dimensionless variables 

I X 

x = h' 

·'·' t/J '+' = hygh' 
I H 

H = gh2· 

With these new variables expression (1.15) can be written as follows 

t/J; T/2 1 2 
H = 2(1 + TJ) + 2 + 6[tPxx + 2t/JxtPxxx] 

1 2 5 
15[1/Jxxx + ?,(tPxxtPxxxx + tPxtPxxxxx)], 

where the primes have been dropped. 

(1.16) 

(1.17) 

The evolution equations corresponding to the energy density given by equation 

(1.17) are 
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(1.18) 

Travelling waves of permanent form of this system are solutions of the form 

11(x,t) = 17(x'), 

t/J(x, t) = t/J(x'), x1 = x - ct, 

where c is the phase speed of the train of waves. 

(1.19) 

Using relations (1.19) and dropping the primes, the evolution equations (1.18) 

can be rewritten as 

(1.20) 

The first equation can be integrated once with respect to x giving 

(1.21) 

The vertical position of the origin of the frame of reference for the waves can 

always be chosen such that C = 0. Thus in the following we will assume C = 0 

without loss of generality. 

With the change u = t/Jx and using the second of equations (1.20), the problem 

can be reduced to the single equation 

1 2 [ 2 u -Uxx + -Uxxxx = u (c - 1) - -(3c - u)]. 
3 15 2 

(1.22) 
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This fourth order equation can be rewritten as the following dynamical system 

of four first order equations 

where 

du1 
-=u2, 
dx 
du2 
-=u3, 
dx 
du3 
-=u4, 
dx 
du4 15 2 U1 15 
- = -ui[(c - 1) - -(3c - u1)] - -u3 
dx 2 2 6 ' 

Equation (1.22) has an energy integral that is 

2 1 2 1 u; u 2 
2 u 

E = -(u u - -u ) + -- + -[(c - 1) - u(c - -)] 15 z zzz 2 zz 3 2 2 4 . 

Introducing the change of variables 

Ql = u, 
2 1 

Pl = -{-Uzzz + -Uz), 
15 3 

the system (1.23) can be written in the following form 

{1.23) 

{1.24) 

{1.25) 

(1.26) 

where Q = (p1,P2,Q1,q2) and DQE is the gradient of E with respect to Q. J is the 

following symplectic linear operator(Arnold 1978) 



-15-

-1 
0 
0 
0 

~1) 0 . 
0 

(1.27) 

Therefore the system is Hamiltonian with a parameter c. The Hamiltonian is 

the energy 

(1.28) 

Notice that we started with a continuous Hamiltonian system evolving in time. 

Looking for travelling waves of that system we reduced the equations to a fourth 

order discrete system evolving in x, and we have found that this new system is 

also Hamiltonian. Benjamin (1984) has shown that this is a general property for 

travelling waves of continuous Hamiltonian systems for which Hamiltonian densities 

can be expressed in terms of finite order derivatives of the canonical variables, as 

happens in our model. 

Our aim is to study periodic orbits of the system (1.23). These periodic orbits 

correspond to periodic travelling waves of permanent form. The system has three 

fixed points for all values of the parameter c. These fixed points are 

0 

U1 = { (3c + Jc2 + 8)/2 U2 = U3 = U4 = 0. (1.29) 

(3c - Jc2 + 8)/2 

Studying the eigenvalues of the linearized systems around the fixed points, it 

is possible to see that there are several families of periodic orbits around the fixed 

points. We are interested in the Stokes waves, and these waves correspond to 
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periodic orbits around the fixed point u1 = u2 = u3 = u4 = 0 for c > 1. This family 

exists in the present model. 

It is important to notice that in the case of deep water Stokes waves form a one 

parameter family of waves. In the finite depth case there is an additional parameter 

that is the depth of the fluid. As we have normalized the depth to 1, the additional 

parameter in our formulation is the period L of the considered periodic wave. We 

are interested in studying the properties of the Stokes waves as the phase speed c is 

changed, therefore we will fix the period and will consider the solutions depending 

only on one parameter. A change of the phase speed c corresponds to a change of 

the wave amplitude. 

1.4 Computations and results 

To perform the continuation in c along the family of periodic orbits we have 

used the program AUTO developed by Doedel & Kernevez(1985). This program 

can locate Hopf bifurcation points in dynamical systems, and continue the periodic 

orbits that appear at those bifurcation points in two parameters using a collocation 

method. 

The code AUTO continues periodic orbits of dynamical systems by writing the 

problem as a boundary value problem for the set of ordinary differential equations 

that describe the system and imposing periodic boundary conditions on all the vari­

ables. The interval of computation is scaled to (0, 1) by introducing the period L of 

the orbit as a new parameter. To solve the boundary value problem numerically the 

differential equations are approximated by the method of collocation at m Gauss 

points with piecewise Lagrange polynomials that belong to the class C[O, 1]. This 
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approach is equivalent to an implicit Runge-Kutta method. With this discretiza­

tion a pseudo-arclength continuation is used for the computations of the solution 

branches. Even though the code allows nonuniform meshes, in the present compu­

tations the mesh for the collocation was chosen to be regular with m = 4. Up to a 

maximum of 80 mesh points were used to assure the convergence in the region of 

interest. 

Hamiltonian systems are degenerate dynamical systems, in the sense that they 

have families of periodic orbits for fixed values of the parameters (Abraham & 

Marsden 1978). For example our system has infinitely many periodic orbits for a 

given value of the parameter c. These periodic orbits are not isolated. They form 

a continuous family depending on the period L. In a generic dynamical system the 

periodic orbits are isolated, and for given values of the parameters the orbit and the 

period are determined. Because of this degeneracy in computing periodic solutions 

of Hamiltonian systems singular Jacobians arise. To avoid this condition it is better 

to perturb the system for numerical proposes. For the computations we consider 

the following perturbed system 

du1 
dx = u2 - Eu1, 

du2 
-- = u3, 
dx 
du3 

(1.30) 
-- = U4, 
dx 
du4 15 2 U1 15 
- = -ui[(c - 1) - -(3c - u1)] - -u3. 
dx 2 2 6 

This is a two parameter (c, E) nondegenerate dynamical system. For E = 0 we 

reproduce our original system. 

We want to continue a travelling wave of fixed period L in the parameter c. 

The additional constraint of fixing the period L imposes a relation between the two 
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parameters c and € (a codimension one situation). In our case for a given c and a 

period L, the periodic wave and also € are determined. Actually we should find that 

€ = 0 for all solutions because these are in fact solutions of the Hamiltonian system. 

The value obtained for € will serve as a check of the accuracy of the computations. 

Looking at the eigenvalues of the linearization of the system (1.30) around the 

fixed points, it is possible to see that fixed points of our Hamiltonian system (1.23) 

are Hopf bifurcations in the perturbed system (1.30) when € = 0. The bifurcations 

are in fact vertical Hopf bifurcations (Guckenheimer & Holmes 1983). 

To generate a starting orbit for the continuation process, consider the fixed 

point u1 = u2 = u3 = u4 = 0 of the perturbed system (1.30). For a fixed value 

of c there is a Hopf bifurcation at € = 0. We take the branch of periodic orbits 

that is created at this bifurcation point, and we continue it with € as parameter 

without fixing the period. Notice that the continuation can be done with only one 

parameter, keeping the other fixed, because the period is not fixed. We find that 

the branch is vertical, in the sense that € - 0 in all the branch as we expected. Any 

point of this branch can be a starting orbit to be continued in c and €. The family 

of orbits corresponding to this branch are shown in Figure 1.2 . 

In all our computations € was less then 10-10 • In the following we will say that 

we do the continuation in only one parameter c, but actually we continue inc and 

€, and find that € - 0 for all the solutions. 

The program also computes the Floquet multipliers of the orbits. The multi­

pliers give information about the possible bifurcation points and the stability of 

the orbits. An orbit is said to be stable if all the Floquet multipliers lie inside the 

unit circle, and unstable if at least one multiplier lies outside the unit circle. If all 

Floquet multipliers lie on the unit circle the system is said to be marginally stable, 
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Figure 1.2- Periodic orbit for c = 1.05 demonstrating degeneracy 
of Hamiltonian systems. Numbers denote wavelength 

and to determine the stability it it necessary to go to a nonlinear analysis. 

It is important to notice that the concept of stability related to the periodic 

orbits of the dynamical system (1.23) is not the same as the stability of the trav­

elling waves, which is determined by the time dependent analysis of the evolution 

equations (1.18). The multipliers can be thought of, however, as the magnification 

of a perturbation in one period. 

A periodic orbit always has a multiplier + 1 corresponding to sliding a little 

along the orbit. For Hamiltonian systems Eis conserved so there is always another 

multiplier + 1. Also we know that the product of the four multipliers has to be + 1 
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because the system is Hamiltonian. Together with the reality of E, the two other 

multipliers will be conjugate points u ,a on the unit circle or reciprocal points u ,1/ u 

on the real axis (Green et al. 1981). So our system actually will have two Floquet 

multipliers not equal to + 1. For proofs of these results the reader is refered to 

Abraham & Marsden(1978). 

A discrete Hamiltonian system of two degrees of freedom ( q1 , q2), via surface 

section (Arnold & Avez 1968) can be reduced to a two dimensional area preserving 

map. Green at al. (1980), carrying out numerical experiments, found some universal 

behavior in families of area preserving maps with symmetries. In particular they 

were able to locate symmetry breaking bifurcations in the bifurcation tree of a 

universal one parameter map. Because of the analogy with the problem of travelling 

water waves of permanent form, we expect a similar behavior to occur in the water 

waves problem. So we study the bifurcation tree of our system with c as a parameter. 

The way in which the starting point was generated fixed the period to be L = 

3.8. With this value of the period we compute the Stokes waves for different values 

of c. This branch will be referred to as a period-1 branch (P-1). In this branch for 

small values of c the two Floquet multipliers are real and positive. As c is increased 

the multipliers go through + 1 and lie on the unit circle for a range of values of c. 

They then go through - 1 and lie again on the real axis, being now negative (see 

figure 1.3). 

When the two multipliers lie on the unit circle, we have possible bifurcation 

points to new orbits. For example if u = e2rrim/n, at that point there is a possible 

bifurcation to a period-n wave.* The bifurcations correspond to the subharmonic 

* The possibilities of these bifurcations are limited by the conservation of the 

Poincare index (Finn 1974) 
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Figure 1.3.- Maximum of ui(x) versus the phase speed for the 
period L branch (P-1). Dashed line denotes u real and negative, 
dotted line u real and positive, and solid line u on the unit circle. 

bifurcations that Saffman(l980) found for finite amplitude Stokes waves on deep 

water. In particular if m = 1 and n = 2 then u = -1 and we have a period 

doubling bifurcation. The new bifurcated branch corresponds to the Class-2 waves 

that Chen & Saffman(1980) and Vanden-Broeck (1983) computed. 

As our model is qualitatively correct, in the sense that it has the same symme-

tries and Hamiltonian structure as the original water wave problem, the qualitative 

agreement with the results given by Saffman (1980), Chen & Saffman(1980) and 

Vanden-Broeck (1983) is very good. Our results show the same structure in the 
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sequence of different crests. However, there are quantitative differences, expected 

because the model is only an approximation. We find from the results given by 

Vanden-Broeck (1983) and Cokelet (1977), for the value of the period considered 

in our computations, the period doubling bifurcation in the full equations occurs 

at an amplitude a/ A ~ 0.122, whereas the value obtained in our computations is 

a/.A ~ 0.095. 

It is important to say at this point that the Boussinesq approximation (one term 

less in the expansion of the dispersion) can be reduced to a one degree of freedom 

Hamiltonian system. In that case there are only two Floquet multipliers and as we 

stated above thay have to stay at + 1 for all values of the parameter c. So the 

Boussinesq model does not have enough structure to show all this behavior. 

Consider now the case u = e27ri/3 corresponding to a period tripling bifurca­

tion (point A figure 1.4). We computed the new branch of period 3L. This new 

branch (P-3) corresponds to the Chen & Saffman Class-3 waves. The waves are still 

symmetric, but the crests and troughs have unequal levels. A characteristic of this 

branch is that it exists for smaller and larger values of the phase speed than the 

value of c at the period tripling bifurcation point. 

Computing the P-3 branch with the new period 3L we found that at the bifur­

cation point the Floquet multipliers are at + 1, because for this branch the period 

tripling bifurcation is a bifurcation point from a wave with the three equal crests to 

a wave with unequal crests. We found that following the P-3 branch in direction of 

increasing c the Floquet multipiers are real positive, and one of them increases(a) 

as the the other goes to zero (1 /a). If the branch is continued in the other direc­

tion (decreasing c) first the behavior is the same, but u reaches a maximum and 

decreases going again through + 1 (point B figure 1.4). Then the multipliers move 
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Figure 1.4.- Bifurcation diagram for the family of travelling waves. 
Insert shows the variation of P-3 branch for larger variation of c. 

1.168 

along the unit circle, and later leave the unit circle through - 1 becoming real and 

negative. When a= -1, we have another period doubling bifurcation (point C fig­

ure 1.4) This is a bifurcation from a P-3 wave to a P-6 wave. This new bifurcation 

corresponds to what Chen & Saffman called a secondary bifurcation. Figure 1.5 

shows the P-3 wave at point C. 

The two branches that are created at the period doubling correspond to the 

same wave just shifted. Computing with the new period 6L along P-6 we find again 

that a = + 1 at the bifurcation point corresponding to a bifurcation in the P-6 

branch. As c is changed the Floquet multipliers move along the unit circle and go 
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Figure 1.5.- Symmetric travelling wave of period 3L corresponding 
to point C in figure 1.4 . 

through - 1 giving a new period doubling bifurcation to a period 12L wave (point 

D figure 1.4). Beyond this period doubling on the P-6 branch, the multipliers are 

real negative. As c increases a increases in absolute value up to a point where a 

reaches a maximum and starts decreasing again. The multipliers go again to the 

unit circle through - 1. So we have a restabilization through an inverse period 

doubling (point E figure 1.4). 

If we keep going on the P-6 branch we find that a goes again through + 1 giving 

a new bifurcation in which all multipliers are at + 1 ( point F figure 1.4). This kind 

of bifurcation was studied by Rimmer(1978). The bifurcation can be of two types: 
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Figure 1.6.- Symmetric travelling wave of period 6L corresponding 
to point F in figure 1.4 . 

a saddle node or a symmetry breaking bifurcation. To determine whether we are in 

one case or in the other, it is necessary to perform a nonlinear stability analysis of 

the periodic orbit. A saddle node bifurcation is not actually a bifurcation point in 

the sense that two families of orbits cross at the bifurcation point, but it indicates 

an exchange of stability. A saddle node corresponds to a fold on the bifurcation 

diagram when this is plotted using an appropiated characteristic parameter that 

the problem has. In general this parameter is the energy of the orbit, and the fold 

corresponds to an extremum of the energy. 

An example of a saddle node bifurcation was found by Tanaka (1985 a) at 
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Figure 1.7.- Nonsymmetric travelling wave of period 6L for c = 
1.1646. 

the point of maximum energy for periodic travelling waves of permanent form on 

deep water ( however Tanaka's concept of stability is different from the one used 

here). He found that a change of superharmonic stability happens for the wave 

of maximum energy, and at this point there is no nontrivial bifurcation since the 

eigenvector, corresponding to the zero eigenvalue, is the eigenvalue corresponding 

to the horizontal displacement allowed by Galilean invariance. This result was later 

proved analytically by Saffman (1985) using the Hamiltonian formulation for water 

waves. 

The two previous cases in which we found that all the Floquet multipliers were at 
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+ 1 (branches P-3 (point B figure 1.4) and P-1) are actually saddle node bifurcation 

points. In the present case (point F figure 1.4) we have found a symmetry breaking 

bifurcation. The new branch that bifurcates from this point (P-6A) corresponds 

to period 6L waves, but these are not symmetric any more. Figure 1.6 shows the 

travelling wave at point F. 

In the P-3 branch the sequence of crests was XXY, in the P-6 branch it was 

XXYZZY. These two sequences are symmetric. In the nonsymmetric branch the 

sequence is XXYZWY which is not symmetric. 

Figure 1. 7 shows a wave on the nonsymmetric P-6A branch. 

The present study is evidence that the behavior of continuous systems can in 

some cases be described by a discrete dynamical system of only a few degrees of 

freedom. 

The discovery of nonsymmetric water waves in the truncated model leads us to 

postulate the existence of nonsymmetric solutions in the full equations for water 

waves. In particular the existence of these waves on deep water is the subject of the 

following chapter. 
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CHAPTER 2 

Nonsymmetric gravity waves on water of infinite depth 

2.1 Introduction 

The problem of two-dimensional irrotational water waves of permanent form 

was first considered by Stokes (1849). He found, by using successive approximation 

methods, periodic travelling wave solutions. Stokes results were limited to small 

amplitude waves. Another important contribution of Stokes in this field is his argu­

ment that if a sharp crest is attained by these waves as the amplitude is increased, 

the sharp crest must have an angle of 120°. During the last decade, with the use 

of the computers, Stokes's solutions have been extended to finite amplitude waves. 

It has also been proved that Stokes argument concerning the 120° singular crest is 

true (Amick et al. 1982). 

For the case of finite depth, where shallow water approximations have made 

it possible to introduce simplified models accessible to analytical tools, not only 

periodic families have been found for finite depth ( cnoidal waves), but also solitary 
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wave solutions have been found (Boussinesq 1871, Rayleigh 1876, Korteweg et al 

1895). 

If x is taken to be the horizontal coordinate, the equations for travelling waves 

are invariant under the change x--+ -x. This relation defines a symmetry group. A 

large class of solutions of the equations are invariant under the action of the same 

symmetry group. These solutions are called symmetric. In other words, a wave is 

said to be symmetric when, if f(x) represents the shape of the wave, the origin of 

the x-axis can be chosen such that f ( x) = f ( -x). Up to date all the travelling wave 

solutions that are known correspond to symmetric waves. 

It is very well known in physics that bifurcations can lead to solutions that are 

no longer invariant under the action of the symmetry group. Two typical examples 

are the Hopf bifurcation and Benard convection. In a Hopf bifurcation the temporal 

symmetry is broken, and in Benard convection the spatial symmetry is broken with 

the appearance of hexagonal convection cells. Bifurcation in the presence of sym­

metries has been extensively studied by different authors using group representation 

theory (Sattinger 1980, 1983). 

The possibility of finding nonsymmetric solutions for the problem of water waves 

has been until now an open question. Another open question is, given that these 

solutions exist, do they appear via a spontaneous symmetry breaking bifurcation 

from a symmetric family or as isolated branches of solutions? 

The rapidly increasing power of numerical methods to study finite amplitude 

waves has encouraged some authors to search for these kinds of solutions in finite 

amplitude waves. Chen & Saffman (1980) studied finite amplitude gravity waves 

on deep water by numerical methods. They found that gravity waves of finite 

amplitude are not unique. Bifurcations to families of waves in which all crests 
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are not equal were found. They computed two new families which they called 

irregular class-2 and class-3 waves. These waves are still symmetric. They did find 

symmetry breaking bifurcations of the equations but the new solutions proved to be 

just shifted symmetric waves. In later work, Saffman (1980), using a method based 

on the quadratic relations between the Stokes coefficients discovered by Longuet­

Higgins (1978a), demonstrated that an infinite set of bifurcations to new families 

exists for the Stokes family, but all the new branches correspond to symmetric 

waves. Also Longuet-Higgins (1985), using the same method, showed that there 

are no bifurcations into nonsymmetric waves from the regular Stokes family, over a 

certain range. 

In Chapter 1, using a weakly nonlinear Hamiltonian model based on small ampli­

tude and dispersion approximations, we found that for water of finite depth families 

of nonsymmetric waves are possible. These waves appear via spontaneous symme­

try breaking bifurcations from families of symmetric waves. His results follow from 

some universal behaviour found by Green et al. (1981) on the bifurcation proper­

ties of fixed points of two-dimensional area preserving maps in the presence of one 

symmetry. In particular Green et al. (1981) were able to locate some symmetry 

breaking bifurcations. The Hamiltonian developed in Chapter 1 could be reduced 

to a 2 degrees of freedom discrete Hamiltonian system, and thus via surface section, 

can be reduced to an area preserving map (Arnold & Avez, 1968). 

The results found in Chapter 1 raise several questions. The first one is whether 

these results can be generalized to the full equations or are just properties of the 

approximation. Another question is whether or not these results hold for deep water 

waves, where assumptions of small amplitude-depth ratio and low dispersion are no 

longer valid. 



-34-

In this paper, motivated by these questions, we compute finite amplitude waves 

on deep water. We show that the same bifurcation scenario occurs. Therefore 

nonsymmetric permanent form travelling waves on deep water exist, and they ap­

pear via symmetry breaking bifurcations. To confirm our results we have done the 

computations using two different methods, and we have found the same results. 

The first method that we consider is the one used by Longuet-Higgins (1985) 

and Saffman (1980). It consists of an expansion of the shape of the wave in the 

potential plane, is based on the Longuet-Higgins's (1978a) quadratic relations. This 

is a very simple method, gives the most accurate results, and can be very easily 

implemented. 

The second method is based in the Hamiltonian structure of the water waves 

problem. Because the results found on finite depth are related to the Hamiltonian 

structure of the problem, we thought that it would be interesting to develop a 

numerical method that kept the Hamiltonian structure of the original formulation. 

That method would contain all the symmetries of the problem, and the bifurcation 

scenario would perhaps be better obtained. 

The Hamiltonian method of computation is more complicated and time consum­

ing, but it offers some other advantages. The first one is that the superharmonic 

stability of the wave solutions can be computed directly without the need to write 

a more complicated code, as happens in other formulations. This is true because 

the Jacobian of the set of equations is the stability matrix, as we will see below. 

A second one is that a few number of modes suffice to reproduce the bifurcation 

behavior of the problem, whereas in the Stokes expansion method it is found ( 

Saffman private communication) that a minimum number of around 50 modes in a 

class-1 wave are needed to reproduce the bifurcation structure of the problem. 
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Another motivation to try this numerical approach came from the successful 

results obtained by several authors during the last few years on the stability of 

travelling waves using the Hamiltonian formulation for the water waves problem. 

Some examples are Saffman (1985), MacKay & Saffman (1986). 

2.2 Stokes Expansion 

2.2.a. General Formulation 

Consider two-dimensional irrotational surfaces waves of permanent form travel-

ling with speed c in the x-direction on water of infinite depth. In a frame of reference 

moving with the wave, following Stokes (1880) and taking the basic wavelength to 

be 27r, the x and y coordinates of the fl.ow can be expressed in the following form 

(Longuet-Higgins 1985) 

(2.1) 

where ~ and iIT are the velocity potential and the stream function respectively. 

For a general wave the coefficients ak are complex, except for a0 that can always 

be taken to be real. In the case of symmetric waves the origin of the frame of 

reference can be always chosen such that all the coefficients ak are real. This 

happens when the origin of the reference frame lies on one of the axes of symmetry 

of the wave train. 

If the horizontal level of the frame of reference is chosen such that the mean 

surface level is y = -c2 /2g, Longuet-Higgins (1978,1985) has shown that the dy-
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namical boundary condition of constant pressure at the free surface ('Ill 0) is 

equivalent to the set of equations 

12'1TC "k"' { ye-' ~(dx + idy) = 
~=0 

where g = 1 has been taken. 

- 7rC2 

0 
k =0, 
k = 1,2, ... , 

(2.2) 

Introducing expression (2.1) into equations (2.2) we obtain the following set of 

quadratic equations for the coefficients 

00 

ao + L: kakat = -c2 m = o, 
k=l 

(2.3) m-1 oo 

(1 + mao)am + L kakam-k + L (k + m)ak+mak = 0 m > 0, 
k=l k=l 

where the star denotes complex conjugate. The first equation is real and the rest 

are complex. For computational proposes and for the following discussion it is 

convenient to split the complex equations into real and imaginary parts. Taking 

ak =Pk+ iqk, we have 

m-1 oo 

Pm(l + mao) + L k(PkPm-k - QkQm-k) + L (k + m)(Pk+mPk + QkQk+m) = o, 
k=l k=l 
m-1 oo 

Qm(l + mao) + L k(PkQm-k + QkPm-k) - L (k + m)(Pk+mQk - PkQk+m) = 0. 
k=l k=l 

(2.4) 

H we truncate the expansion (2.1) at the term an and take ak = 0 for k > n, 

the first equation of (2.3) together with the set of equations (2.4) form a system of 

2n + 1 nonlinear algebraic equations with 2n + 1 unknowns (ao,Pk,Qk), c being the 

only parameter of the problem. 
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This scheme, simplified for symmetric waves, has been used by several authors. 

For the family of Stokes waves, which we will call regular waves because all the 

crests and troughs are equal, the phase speed c does not behave monotonically 

through the full range of steepness. This has made several authors introduce other 

parameters that behave monotonically for range full of steepness. Longuet-Higgins 

(1985) introduced the parameter Qc defined as follows 

(2.5) 

where Vcrest is the velocity at the crest of the wave. This parameter ranges from 

1/2 to 1. Qc = 1/2 corresponds to the flat surface, and Qc = 1 corresponds to the 

120° Stokes limiting wave. 

Chen & Saffman (1980) used another parameter that they called b. This pa­

rameter b is defined and related to Q c through 

2 I 2 2(1 - Qc) 
b = 1 - Vcrest C = 1- 2 • 

c 
(2.6) 

We introduce the parameter Q as 

1 n 
Q = 1+Yo=1 + 2ao + L Pk, 

k=l 

(2.7) 

where Yo is the height of the wave at the origin of the x axis. When the origin is 

chosen on the crest, Q=Qc. 

Equation (2.7) can be used to complete system (2.4) instead of using the equa-

tion for c, and then the Stokes family can be studied taking Q as parameter. 
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As we will see below, some of the bifurcations that we find break the symmetry 

with respect to the crests, but not with respect to the troughs. Therefore, it is 

convenient to take the origin of x on a trough. In our computations we took the 

origin on a trough and used equation (2.7) to complete the system. 

A property of equations (2.3) is that if a set of coefficients { ak} represents a 

wave, the set { af} where 

a~= ao/N, 

a%k = ak/N, 

af = 0 otherwise, 

(2.8) 

is also a solution that describes the same wave but of a different scale. The set 

{ ak} represents a wave of wavelength 271", and the set { af} represents the same 

wave with wave length 27r/N. This waves are called class-N waves (Saffman, 1980) 

because there are N crests in the window of x between 0 and 27!". 

Another property of the system defined by equations (2.3) is that the system 

is degenerate in the sense that solutions are not isolated. Due to the Galilean 

invariance, if a set of coefficients { ak} satisfies equations (2.3) then the set { akeikE} 

is also a solution of (2.3) for all €. So for a given value of Q equations (2.3) do 

not uniquely determine a solution. To remove this degeneracy we thus need to 

fix the phase. As we will see below, this degeneracy disappears when considering 

symmetric waves. To avoid this problem for nonsymmetric waves we will have to 

introduce some modifications into the system of equations. 

Because in Chapter 1 we found the symmetry breaking from a class-6 wave, we 

will start computing with a regular wave of class-6. Therefore the coefficient a6 will 

be the dominant coefficient in a solution set {ak}· To avoid the Galilean invariance 
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degeneracy, we will force a6 to be real (q6 = 0) in our computations. This was 

actually implemented modifying the equation corresponding to a6 in (2.3) in the 

following form 

5 00 

q6 + a6(1 + 6ao) + L kaka6-k + L (6 + k)a6+kak = 0. (2.9) 
k=l k=i 

The modified system has the same solutions as the original system if q6 = O, 

and the new system is not degenerate anymore. This simple modification has been 

found to work very well during our computations. 

As we are going to study bifurcations, it is important to examine the Jacobian 

of the system defined by equations (2.4). This Jacobian has the following form 

( ) (
Ai (p) 

J p,q = B(qf (2.10) 

where p ={Pk} and q = {qk}· This Jacobian is always singular, and the eigenvector 

associated to the zero eigenvalue is the shift. As Ai and A2 are symmetric J is 

symmetric when q = 0. This symmetry will simplify some of the computations. 

Some properties of the waves, such as the kinetic and potential energies, can be 

expressed in terms of the set of coefficients { ak}. For example the kinetic energy 

per one wavelength in the frame of reference in which the fluid is at rest at the 

bottom (y - -oo) is 

n 
T = ~c2 L kakak = - 71" c2 (ao + c2

) 
2 k=l 2 

(2.11) 

where the first of equations (2.3) has been used. 
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The potential energy taking the mean horizontal level of the surface as reference 

level can be written as 

(2.12) 

A similar expression for V was obtained by Longuet-Higgins (1984) for the case 

of symmetric waves. 

2.2.b. Symmetric waves 

All actual calculations that give waves have assumed symmetric waves due to the 

inability to find nonsymmetric solutions. When symmetric waves are considered, 

large simplifications can be introduced in the formulation of the problem. The first 

one is that the shift can be chosen such that qk = 0 for all k, and the truncated 

system of equations defined by (2.4) and (2.7) reduces to 

m-1 n 

Pm(l + mao) + L kPkPm-k + L (m + k)Pm+kPk = 0 m>O, 
k=l k=l 

a n 
; + LPk = Q-1. 

k==l 

(2.13) 

The degeneracy related to the Galilean invariance disappears because the shift 

is fixed by the condition q = 0. As we have already pointed out in the general 

formulation, a wave appears as a continuous set of solutions by varying the shift E, 

but when the wave is symmetric only a discrete and isolated set of those solutions 
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satisfies the condition q = 0. For example, for a regular wave, if we take the origin 

of the x-axis at a trough or a crest we find q = 0. Where the origin is taken is 

determined by the starting point for the calculations. 

If q = 0, the Jacobian defined by relation (2.10) is 

J(p,O)=(A1
0
(p) 0 ) 

A2(p) (2.14) 

because B(O) = 0. Notice that A1(p) is the Jacobian that appears in the symmetric 

formulation given by (2.13). As Galilean invariance is not allowed in the symmetric 

formulation Ai(p) will not be singular in general. As J(p, q) is always singular 

A 2 (p) has to be always singular, and the null eigenvector will be the shift. If we 

now consider the modification introduced by equation (2.9), then Ai(P) does not 

change, but A2(P) does. Let us call the new matrix A~(p) and the new Jacobian 

J 1(p, 0). These matrices will not be singular in general. 

A bifurcation from a family of symmetric waves to a different family corresponds 

to a zero eigenvalue of J 1
• This zero eigenvalue can appear in two ways. One way 

is via a zero eigenvalue of A1 that corresponds to a new family of waves that are 

symmetric again with respect to x = 0. The second way is a zero eigenvalue of the 

matrix A~. This point corresponds to a bifurcation to a family of waves that are no 

longer symmetric with respect to x = 0. This does not mean that the new branch 

corresponds necessarily to non-symmetric waves. As Chen & Saffman found, these 

branches can correspond to symmetric waves for which the origin of x does not lie 

on one of the axes of symmetry of the wave. But if nonsymmetric waves exists and 

they appear through symmetry breaking bifurcations from symmetric waves, the 

symmetry breaking bifurcation has to correspond to a zero eigenvalue of A~. 

For a given set of coefficients {ak}, whether the set represents a symmetric or 
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nonsymmetric wave can be determined by computing tha ratios ak/ak+I· If the 

wave is symmetric we find that arg(ak/ak+1) = const. for all k. 

2.2.c Numerical results 

We started by computing the family of regular Stokes waves. Because of the 

type of structure that we expect in the bifurcation diagram, we start with a regular 

class-6 wave (6 equal crests in the interval (0, 27r)). The starting point was generated 

using Schwartz's (1974) expansion for low amplitude regular waves. 

This branch is symmetric and therefore the system defined by (2.13) was used 

in the computations. The origin of the x-axis was chosen in a trough. A simple 

arc-length (Keller 1977) continuation method was used with Q as the parameter 

along the branches. The algorithm converged very rapidly in all regions, reaching 

an error less than 10-12 for the quadratic norm of the residues of the equations in 

3 or 4 iterations for the step used. 

Because in our computations we are going to deal with families of waves for 

which the 6 crests are not equal, it is convenient to introduce a parameter to measure 

the amplitude of each of the 6 crests. As a generalization of (2. 7) we define 

i = 1, 2, 3, 4, 5, 6, (2.15) 

where Yj is the height of the different crests (figure 2.1). Notice that if Qj = 1 for 

some i, this means that the lh crest reaches the limiting 120° Stokes crest. This is 

because y = 0 corresponds to zero velocity from Bernouilli's equation. 

To make the difference among the families of waves that we are going to study 
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Figure 2.1.- Periodic travelling wave of class-6. 

clearer, we introduce the following notation. We associate with each of the 6 crests 

one of the following letters Z, Y, X, W, V, U depending on the relative amplitude of 

the crests. We take Z > Y > X > W > V > U. A regular wave of class-6 will be 

denoted by 6 equal letters. 

Computations have been performed using n=256, 512, 768 and in some cases up 

to n=l024. We have found that for most of the branches in which we are interested 

n=512 gives good convergence results. 

Because the bifurcations that we found are not simple, bifurcation points were 

detected during the computations by monitoring the determinant and the last 3 
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p ivots of the Gaussian elimination for the matrices A1 and A~. In some cases to un­

derstand the bifurcations better we also computed the eigenvalues and eigenvectors 

of A2· 

To switch branches a code based on Keller's(1977) method was written. But in 

most of the cases it was found that to switch branches it was enough to perturb the 

solution at the bifurcation point with the null vector, and impose that the first few 

Newton iterations of the continuation process be normal to the null vector. This 

method was found to converge to the new branch in 3 or 4 iterations.· 

Longuet-Higgins {1985) showed that period doubling and period tripling bifur­

cations from the regular family appear in very truncated models ( n=2 and n=3) 

of equations {2.13). We have found that this is true, but these bifurcations disap­

pear when the number of modes reaches 8, and they do not appear again until the 

number of modes is around 200 for a class-6 wave. 

Starting at low amplitude we computed the regular branch, that we will call 

the P-1 branch. For this branch the period of the wave is L, where L = 27r /6. As 

the amplitude was increased the determinant of A1 was found to vanish at 3 points, 

these points corresponding to period six, period three and period two bifurcations. 

We will refer to these points as P5,Pa and P2 respectively. The point Pa is shown in 

figure 2.2 . These bifurcations correspond to the ones that Chen & Saffman{1980) 

and Saffman {1980) found. A~ was singular at the two points P6 and Pa. But no 

non-symmetric families are created at these points. These branches represent just 

shifted symmetric waves. 

The new family of waves that is created at the period tripling bifurcation has 

the form Y ZYY ZY (see figure 2.3) and has wavelength 7r. The branches that 

appear as nonsymmetric waves with respect to x = 0 have the form ZYY ZYY and 
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Figure 2.2.- Bifurcation diagram for solution branches showing 
wave height versus wave speed for travelling waves of permanent 
form on deep water. 

YY ZYY Z, but are the same waves as Y ZYY ZY. This P-1 branch was computed 

using n =256, 512 and 768. Values of some parameters of the wave at the bifurcation 

point P3 are given in table 1. We can see that the agreement with the results of other 

authors and methods is good. The values obtained for the period six and period 

doubling bifurcations agree with those given by Saffman (1980) to four figures. In 

this table, ak denotes the steepness of the wave which is defined as one half of the 

waveheight times the wavenumber for the regular class-1 wave. 

With n = 512, computations were carried out up to steeper waves without being 
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a) P-1 

b) P-3 

c) P-6 

d) P-60 

Figure 2.3.- Schematic representation showing the relative am­
plitude of the crests of the travelling waves corresponding to different 
branches of the bifurcation diagram given in figure 2.2. (a): Wave 
on branch P-1. (b): Wave on branch P-3. (c): Wave on branch P-6. 
(d): Wave on branch P-6A. Vertical lines show symmetry axes. 

able to find the first maximum in the energy. To obtain convergence in the strongly 

nonlinear region, it is necessary to increase the number of modes up to around 300 

for a class-1 wave (Longuet-Higgins, 1985) that is equivalent to 1800 modes for a 

class-6 wave. 

At the period tripling bifurcation point (P3 ), we switched from the P-1 branch 

to the P-3 branch (period 3L). Taking the P-3 branch in the direction of decreasing 

c from P3 , we found a point for which Ai becomes singular, point P3,6 in figure 
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2.2 . The bifurcation here corresponds to a period doubling bifurcation. The new 

branch corresponds to a family of waves of the form X ZYY Z X. Notice now the 

importance of taking the origin of the x-axis in a trough. If we had taken the origin 

in a crest, these waves would have appeared as a spurious nonsymmetric branch. 

This is because the period doubling bifurcation breaks the symmetry with respect 

to the crests, but not with respect to the troughs. With the origin in a crest, instead 

of finding A1 to be singular , we would have found A~ to be singular at P3,6· Thus 

the new branch could not be computed using system (2.13). The new family of 

waves is not symmetric with respect to any crest, in contrast to the P-1 and P-3 

branches where the waves were symmetric with respect to some crest (see figure 

2.3). 

On this new branch of period 6L, which we will call the P-6 branch, compu-

tations were carried out in both directions from the bifurcation point. We found 

that the two sides correspond to the same wave, the difference being a shift of 7r in 

the origin (see figure 3.2, curves b and c). The matrix Ai was nonsingular on the 

whole computed region of the branch, except at the point P3 6 • It was also found 
' 

that A~ vanishes at one point of this branch (point Psb in figure 2.2). This means 

that at this point there is bifurcation to a family of waves that are not symmetric 

with respect to the trough at which we took the origin of x. 

The new branch was examined with a nonsymmetric code based on the system 

formed by equations (2.4) and (2.7). This time we found that the waves were not 

just shifted symmetric waves as we found in the other cases in which A~ vanished. 

This new branch corresponds to a family of nonsymmetric waves. At the beginning 

of the branch the waves have the form described by the sequence W ZY XZW (see 

figure 2.3), but if we go further along the branch we find that all the crests have 

different height. The difference among the heights of the crests is very small and 
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cannot easily be seen by eye. Figure 2.4 shows the relative height of all the crests 

with respect to the fifth crest for all the branches that we have computed. We 

actually plot (Qj-Qs) versus Qs for all the crests. In figure 2.5 we show the actual 

shape of a nonsymmetric wave. 

0 

-.0004 

y 

-.0008 

-.0012 

P-1 P-3 

5 

-.oo 16 '-----+-. 9-'8'-8_2 ____ +-9-'8-84+----_-9 ..... 88_6 ___ _._~..._--::_ 9~890 

I I 05 

P3,6 Pse 

Figure 2.4.- Relative amplitudes of the crests of the travelling 
waves along the path P-1, P-3, P-6 an P-6A. Number denote the 
crests of figure 2.1 . 

The P-6 branch was computed using 256, 512, 768 and 1024 to determine with 

high accuracy the position of the symmetry breaking bifurcation. We found that 

with 1024 modes very good convergence is achieved. Along this branch the energy 

increases monotonically, as does the phase speed. 

The nonsymmetric branch P-6A was computed using only 256 and 512 modes 
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Figure 2.5.- Nonsymmetric gravity wave for c = 0.442497. (a): 
Actual form of the wave. (b): Detail of the relative amplitude of the 
crests. 

in the nonsymmetric code.This is equivalent to use 512 and 1024 modes in the 

symmetric code from the computational point of view. We can observe that the 

energy and the phase speed decay very rapidly along the nonsymmetric family. 

Properties of the waves along branches P-6 and P-6A are given in tables 4 and 

5. Table 6 shows the first 20 coefficients for the nonsymmetric wave given in figure 

2.5 . 
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2.3 Hamiltonian Method 

2.3.a General formulation 

Consider two-dimensional irrotational periodic surface waves on water of infinite 

depth. Zakharov (1968) and Broer (1974) have proved that this system has the 

following Hamiltonian structure 

817 oH 
-= 

61/;' at 
81/; oH (2.16) 

--at o17 ' 
where H is the total energy per period of the waves, and o represents a functional 

derivative (see Goldstein, 1980). The canonical variables ry(x, t) and 1/;(x, t) are 

the surface shape and the velocity potential evaluated at the surface t/;(x, t) = 

q,(x,71(x,t),t). 

The length scale can always be chosen such that the period of the waves is 271". 

With this choice 71(x, t) and 'l/;(x, t) are 27r-periodic functions, and H is given by 

{21r 
H = lo H(17, 'l/;)dx, (2.17) 

where H is the energy density. In the case of gravity waves H is given by 

(2.18) 

where g is the acceleration of the gravity, which is taken equal to 1 in the following. 

As 17(x, t) and 'l/;(x, t) are periodic functions of x, they can be expressed in the 

following form 
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00 

11(x, t) = L TJk(t)eik:i:, 
-00 

(2.19) 
00 

t/J(x, t) = L tPk(t)eikz, 
-00 

where T/k = 11*_k and tPk = t!;*_k because 1J and t/J are real. The transformation defined 

by (2.19) can be considered as a canonical transformation from a continuous system 

with canonical variables 11(x, t) and t/J(x, t) into an infinite dimensional discrete 

system with the infinite sets { TJk} and { tPk} as canonical variables (Goldstein 1980). 

To write the system in a more compact form, Zakharov (1968) introduced the 

following transformation 

1 lkll/2 * 
T/k(t) = 2J'i wlf2(k) [ak(t) + a_k(t)], 

i w112 (k) * 
tPk(t) = - 2J'i lkll/2 [ak(t) - a_k(t)], 

(2.20) 

where w(k) is the linear dispersion relation for deep water waves, which is given by 

w(k) = Jikl. (2.21) 

When the horizontal level of the frame of reference is chosen at the mean hori-

zontal level of the surface, a0 = 0. 

Using transformations (2.19) and (2.20) the Hamiltonian system (2.16) becomes 

the single equation 

(2.22) 

where now 
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(21T 
H =lo H(TJ, 1/;)dx = H(a, a*), (2.23) 

and a= {ak}· Notice that the functional derivative has become a partial derivative 

because we now have a discrete system. 

As we are interested in the study of permanent form travelling waves, it is 

convenient to write the system (2.22) in a coordinate system moving with the phase 

speed c. Doing this we have 

Bak .oH . k -a = -i-a * +ic ak. 
t ak 

(2.24) 

Travelling waves of permanent form are equilibrium solutions (fixed points) of 

this system. For symmetric wave solutions, the origin of the reference frame can be 

always chosen such that ak = ak. An important property of His that His invariant 

under the change ak -+ ak. 

Instead of considering only equation (2.24), it is convenient to consider equation 

(2.24) together with its complex conjugate and the coefficients { ak} and { ak} as 

different independent variables. With these considerations the system is analytic, 

and the stability analysis becomes clearer. 

The stability of these equilibrium solutions of system (2.24) under superhar­

monic perturbations ( ex eiut) is determined by the eigenvalues of the matrix 

(Saffman 1985) 

S(a, a*) = ( _ ~* _ ~), (2.25) 

where 

M = 8 2Hj oa8a* - ck, 
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When all the eigenvalues are real the system is said to be stable. Stability is lost 

when some of the eigenvalues leave the real axis. This can occur only by collision 

of two eigenvalues of different signature (MacKay 1985, MacKay & Saffman 1986). 

Some important properties of the matrix S called "Hamiltonian" (Arnold 1978) 

are that if a is an eigenvalue of S, so is - a, and so are the complex conjugates a* 

and - a*. The matrix S has always one eigenvalue that is zero due to the Galilean 

invariance. Because the system is even dimensional a = 0 has to be at least a 

double eigenvalue. Saffman (1985) proved that at points where the wave energy is 

an extremum a = 0 is an eigenvalue of algebraic multiplicity four and geometric 

multiplicity one. This analytical result was checked by our computations as we will 

see below. 

As happened in the Stokes formulation, it is important to notice that if a set 

of coefficients { ak} represents an equilibrium solution of (2.24) then the set { afj} 

where 

(2.26) 
otherwise, 

is also an equilibrium solution of (2.24), and represents a class-N wave. 

2. 9. b Weakly non-linear form 

Before going into the details of the numerical algorithm, it is worthwhile to work 

out some linear results that will help us to generate starting points and check the 

computations. 

For linear waves the Hamiltonian H is given by 
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00 

H = L w(k)akak. (2.27) 
-oo 

Using (2.24) the equations for travelling waves are 

( Jikl - ck)ak = 0 - 00 < k < 00. (2.28) 

We have an eigenvalue problem. For c =I- 1//fkl there is an unique solution 

ak = 0 for all k, that corresponds to the flat surface. For c = 1//fkl we have a 

bifurcation point to a regular class-k wave ( aj = 0 for j =I- k and ak arbitrary). 

The eigenvalues for the superharmonic stability of the solutions at the bifurca-

tion points are 

uj = ±[v'fil + . h:il· 
ylkl 

(2.29) 

These values will serve as a first check of the stability code. Each eigenvalue is named 

by giving the two numbers j/k. The eigenvector associated to the eigenvalue j/k 

is an oscillation with Iii crests on a class-k wave. Negative values of j correspond 

to perturbations travelling in the same sense as the unperturbed wave. Positive 

values of j correspond to perturbations travelling in the the opposite sense to the 

unperturbed wave. 

As we are interested in the branch corresponding to class-6 waves, in order to 

generate a starting point for the computations, we calculated the expansion of the 

energy for small amplitude to second order obtaining 

(2.30). 
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With this Hamiltonian, we find that the beginning of the class-6 branch is given 

by 

* J67r[ ~ l a5a6 ~ -- v 6c - 1 . 
162 

(2.31) 

2. 3. c Numerical algorithm 

We are interested in computing travelling waves of permanent form. In a frame 

moving with the wave, these waves are solutions of the following steady state equa-

tions 

8H 
aak - ck ak = 0} 

-oo < k < oo, 
8H * - -ck ak =0 
aak 

(2.32) 

where the equations are complex. 

We now truncate the system (2.32) by taking ak = 0 for lkl > n. Thus we are 

going to consider only 2n complex coefficients to describe the wave. Then we have 

to solve an algebraic system of 4n equations in 4n unknowns. 

To make this formulation useful, we first need to compute the gradient of the 

energy H in terms of the set of coefficients {ak}· In other words, we have to 

evaluate expression (2.18) and its derivatives in terms of the coefficients. The part 

corresponding to the potential energy is straight forward. The most difficult part 

is to compute the kinetic energy. Notice that as we need to compute the gradient 

of the energy we have to compute the energy of a general wave which in general 

will not correspond to a permanent travelling wave. Hence simple expressions for 
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the energy similar to the ones shown in equations (2.11) and (2.12), which are valid 

only for steady waves, cannot be used for the present purpose. Here we describe a 

way of doing this computation. 

Knowing the set of coefficients {ak}, we can directly compute the sets {7Jk} 

and { tlik} using (2.20). To evalute the kinetic energy we need to know the velocity 

potential <I> in the fluid region. Using Fourier analysis and assuming that <I> is 

analytic below the line of mean horizontal height, we can write 

00 

;r.. ( ) """' ;r..k elklyeikz' 'J! x, y = L...J 'J! (2.33) 
k=-oo 

where the set { <I>k} is the coefficients of the Fourier expansion of the velocity po­

tential on the line y = 0. 

Introducing relation (2.33) into equation (2.18) and performing the integral, we 

obtain the following expression for the total energy 

00 00 kJ. 00 

H = 47r E L ~<I>k<I>-jCj-k,k+j + 27r L 7Jk7J-k, 
k=l j=l + J k=l 

(2.34) 

where the coefficients ck,m are defined by 

(2.35) 

These coefficients depend only on the set {77k}, and can be computed in the 

following way. Using an inverse Fast Fourier Transform FFT we can compute 77(x) 

evaluated on equidistant nodes from the set {77k}. For every value of m we take the 

exponential, and via a forward FFT we obtain the coefficients Ck,m directly. An 

alternative way of computing these coefficients consists of expanding the exponential 
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function in Taylor series, and after doing the algebra among the different modes we 

can obtain Ck m· For small amplitude waves the last procedure is faster because 
' 

we only need to take a few terms in the Taylor expansion of exp(lml11(x)). For the 

range of amplitudes in which we are interested, we found that the expansion has 

to be carried out up to order 30 to get convergence. Hence for our purposes the 

algorithm based on the FFT was found to be faster. 

To compute the coefficients ~k we write equations (2.33) on the surface of the 

wave in the following form 

00 

2: (2.36) 
k=-n j=-oo 

Introducing the coefficients Ck m and equating the same harmonics, equation 
' 

(2.36) can be rewritten as follows 

00 

t/Jj = 2: ~kcj-k,k - 00 < j < oo, (2.37) 
k=-oo 

where t/J; = 0 for j > n. 

It is important to notice that the series in equations (2.36) and (2.37) will be 

uniformly convergent if and only if the analytic continuation of ~(x, y) above the 

surface does not have any singularity below the highest crest of the wave. For the 

waves that we are going to consider this was found to be true. 

Now we have to truncate the set { ~k}, and take ~k = 0 for !kl > na. Thus we 

have two parameters in the algorithm, n and na. How the algorithm converges as 

na is increased serves as a measure of the validity of the statement of the previous 

paragraph. 
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To compute the set {IP k} we need to solve the linear system of equations defined 

by (2.37). This part of the algorithm has a complexity of n~ operations and is the 

time consuming part of the method. 

Until now we have only computed the energy H, but for equations (2.32) we 

actually need to compute the gradient of the energy. This can be done without 

increasing the complexity of the algorithm as follows. 

Taking the derivative of (2.34) with respect to ai we have 

an ~ ~ ki [ac:pk ac:p_;
1 

ac;-k,k+i} -a * = 47r ~ ~ -k . { -a * c:p_; + IPk-a * C;-k,k+i + c:pkc:p-; a * 
a, k=lj=l + J az az al 

+ J1f 1z11/477l· 
2 

(2.38) 

The derivative of the coefficients Ck m can be directly obtained by differentiation 
' 

of equation (2.35) giving 

ack,m - ack,m \k\1!4 - lk\514 c 
Bai - 8ry_z 2-Ji - 2-Ji k+l,m· (2.39) 

To obtain the derivatives of the coefficients cp k we take the derivative of equation 

(2.37) with respect to ai. We have 

ot/J; _ ~ ,/..k ac
8
;-*k,k = ~ ac:pk 

oa* ~ <tJ ~ C;-k,k oa* . 
l k=-na al k=-na l 

(2.40) 

Therefore to compute the derivatives of IP k we have to solve 2n linear systems 

of equations. But notice that we only need to make one back substitution because 

the matrix of the system is the same as the one that we had before in order to 
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compute the set {<Pk}· Thus to compute the set of derivatives B<Pj/ Ba[, we need 

2n back substitutions. The total complexity of this part is nn~. 

Notice that using this algorithm, the expansion that we are actually obtaining 

for the function H(a, a*) is not a Taylor polynomial expansion as happens in the 

weakly nonlinear expansion given by Zakharov (1968). Due to the properties of the 

linear system that we are solving, the expansion has the form of the ratio of two 

polynomials. The structure is similar to the one that is obtained when using Pade 

approximants to represent a function. 

Once we can compute the gradient of the energy in terms of the coefficients ak, 

we can solve equations (2.32) by using arc-length continuation (Keller, 1977) in the 

parameter c. As happened in the Stokes expansion method, the system defined by 

(2.32) is degenerate due to the Galilean invariance. As can be very easily checked, 

if a set of coefficients {ak} represents a solution of (2.32) the set {akeike} is also 

solution of (2.32) for all e. Therefore, as we have already seen, the Jacobian of 

equations (2.32) (matrix S) is singular. 

To be able to do the continuation with this degeneracy, we modified the contin­

uation algorithm by imposing that the increments in the solution as the parameter 

is changed be normal to the null vector of the Jacobian. The null vector of the Ja­

cobian is given by the set {ik ak}· This is equivalent to performing the continuation 

in a subspace that is the projection of the whole space onto the direction normal to 

the null vector. Physically this is equivalent to keeping the origin fixed. 

Equation (2.32) represents a set of 4n complex equations for the coefficients ak 

and ak. Using linear combinations among the equations and taking ak =Pk+ iqki 

the system can be reduced to 4n real equations for the coefficients Pk and Qk· 
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For the continuation process the Jacobian was computed numerically using in­

crements. Even though we used double precision in our calculations, this was the 

main source of inaccuracy in the computations of the eigenvalues for the stability. 

The whole algorithm can be simplified when considering symmetric waves. For 

symmetrical solutions the coefficients can be taken to be real, with ak = ai. Then 

the original system (2.32) can be reduced to only the first set of 2n real equations. 

The Jacobian of this real system is just the matrix M - N, where Mand N were 

already defined in equation (2.25). 

2.4.d Numerical results 

In order to check our code we first computed the regular branch using a class-1 

wave. Taking n = 12, na was increased until convergence was obtained for the 

solution in the range from zero amplitude up to the amplitude at which the energy 

of the wave reaches the first maximum. We found that na = 2n = 24 is sufficient 

to get convergence in this range. 

All the eigenvalues of the matrix S were computed along this branch. We found 

that an exchange of stability occurs at the point of maximum energy. This result 

was first found by Tanaka (1983) who studied the superharmonic stability of regular 

Stokes waves using a numerical method based on conformal mapping techniques. 

Later Saffman (1985) proved the result analytically using the Hamiltonian formula­

tion of the water wave problem. He found that this is a property of the Hamiltonian 

structure of the problem. Because the code keeps the Hamiltonian structure, the 

coincidence of the critical amplitude for the superharmonic stability and the am­

plitude of the maximum energy is a property of the structure of the code, and is 
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independent of the number of modes, even though the location of the actual point 

is inaccurate unless the number of modes is sufficiently large. On the other hand, 

other methods like the Stokes expansion used by Longuet-Higgins (1978b) and the 

methods used by Tanaka (1983,1985) are inaccurate in both respects unless the 

number of modes is sufficiently large, i.e., when a few number of modes are used in 

the computations both points do not coincide and their location is not accurate. We 

also found that the results for the eigenvalues of the the first modes are in very good 

agreement with computations of Longuet-Higgins (1978b) in the range of steepness 

within which his results are valid. 

With n = 12 we found good numerical convergence in the region of amplitudes 

where bifurcations to other families are expected to happen. Actually in this region 

we found that n = na gives convergence for a given n, and it is not necessary to go 

up to na = 2n. 

In the region of strong nonlinearity where the extrema of the energy and phase 

speed appear, with n = 12 and na = 24 we were able to reproduce the first maximum 

of the energy and the phase speed. Numerical values were within a 7% of the real 

ones for the phase speed and 2.5% for the energy and the amplitude. 

Once the code was checked, we tried to reproduce the results about symmetry 

breaking that we obtained by the Stokes expansion. Using (2.31) we generated a 

starting point for the regular class-6 family. We increased the amplitude up to the 

point where bifurcations appear. As the eigenvalues were computed the bifurcations 

were checked by looking at where eigenvalues become zero. Eigenvalues along this 

branch are plotted in figure 2.6 . 

Because of the complexity of the algorithm computations could be carried out 

only for up to n=72. This is equivalent to n=12 in a class-1 wave. To switch 
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Figure 2.6.- Eigenvalues of the superharmonic stability of the 
class-6 regular family showing the bifurcation points. Dashed lines 
denotes u complex. 

branches we used the same procedure as in the previous method, and agam we 

found that the method converges to the new branches in 3 or 4 iterations. 

Figure 2.6 shows eigenvalues for disturbances to class-6 waves. We can see 

that there are three bifurcation points. These bifurcations are the same as the 

ones obtained by the Stokes formulation. Notice that only the period doubling 

bifurcation leads to a change of stability in the regular family. At the other two 

points, eigenvalues pass through zero, but they do not give a change of stability. 

From the behavior of the eigenvalues, it is probable that more bifurcations exist 
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fo r higher amplitudes. However in that region we do not get convergence with 

the number of modes that we are using. These higher-amplitude bifurcations were 

computed by Vanden-Broek (1983) using conformal mapping techniques for finite 

depth water waves. Values of the phase speed and total energy for the period 

tripling bifurcation (P3 ) are given in table 1. 

At the period tripling bifurcation, we switched to the new branch (P-3). This 

branch was computed in the direction of decreasing phase speed. We found that 

the there is always at least one unstable eigenvalue on this branch. In figure 2.7 we 

show the two smallest eigenvalues, besides the one due to the shift (a = 0). The 

eigenvalue that leads to the P3 bifurcation is the one that is always unstable. This 

was expected because on the P - 1 branch there is no change of stability at the 

P3 bifurcation point, as it can be seen in figure 2.6 . We can see that the other 

eigenvalue also goes through zero giving a new bifurcation. This bifurcation is a 

period doubling bifurcation. Actually, this is the point P3
1
5 in figure 2.2 . 

At the point P3
1
5 we switched to the new branch (P-6). The eigenvalues along 

the new branch are given in figure 2.8 . Again we plot the two smallest eigenvalues 

finding that another bifurcation appears on this branch. This bifurcation corre­

sponds to the symmetry breaking. In figure 2.8 we can also see that the eigenvalue 

that gives the P3
1
5 bifurcation is unstable along the P-6 branch. Notice that, as P3,6 

is period doubling bifurcation, the new branch P - 6 starts at the bifurcation point 

and does not exist for values of the phase speed below the value corresponding to 

the bifurcation point. Values of the phase speed and energy at the point P3
1
5 for 

n = 60 and 72 are given in table 3. 

Therefore we find the same bifurcation structure using this completely different 

numerical approach to the problem. This is strong evidence for the validity of our 
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Figure 2. 7 .- Behavior of the eigenvalues along branch P-3, 
associated with the bifurcations at P3 and P3,6· 

2.4 Conclusions 

We have shown that nonsymmetric gravity waves exist on deep water. They 

appear from a spontaneous symmetry breaking bifurcation of symmetric waves. To 

find one of these bifurcations we go from the regular family of waves to a irregular 

family of class-3, which was found by Chen & Saffman (1980). In this class-3 famlily 

there is a period doubling bifurcation to a family of waves that have 6 crests per 
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Figure 2.8.- Behavior of the eigenvalues along branch P-6, 
associated with the bifurcations at P3,6 and P8 b. 

basic wavelength. This class-6 wave can bifurcate to a nonsymmetric family with 

also 6 crests per period. 

Hence we find that results found by in Chapter 1 using a weakly nonlinear 

Hamiltonian model for finite depth water waves can be completely generalized to 

the full system and to the deep water case. Chapter 1 results follow from properties 

of 2 degrees of freedom Hamiltonian systems. This means that in this case results for 

a finite dimensional Hamiltonian system appear to apply for a continuous system. 

This raises again the open question of whether or not travelling water waves of 

permanent form are actually a Hamiltonian system of two degrees of freedom. 
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In this way Hamiltonian methods have served to answer one more question in 

the problem of water waves. 

In the present paper we have computed only one family of nonsymmetric waves. 

This does not mean that this family is unique. For area preserving maps many 

more symmetry breaking bifurcations have been found, but this one is the easiest 

to compute in the case of water waves. The others bifurcations appear considering 

waves of higher class. Class-6 is the minimum class to have symmetry breaking. 

To confirm all these results we have performed computations using two different 

methods. The first is based on the Stokes expansion and is shown to be very easy to 

implement and fast. Therefore many modes can be used in the computations and 

the method gives the most accurate results .. But we have found that the structure 

of the equations is poor in the sense that the number of modes needed to reproduce 

the physical behavior and to find convergence is large. 

The new numerical method based on the Hamiltonian formulation of the water 

waves problem has been found to be much more expensive from the computational 

point of view because of the complexity of the algorithm to compute the energy. 

We have been able to run only up to 72 modes. But the bifurcation structure was 

reproduced using as few as 12 modes. 

Also the algorithm gives the stability of the wave solutions without much addi­

tional work. The method can be very easily generalized to other cases. For example 

to consider gravity-capillary waves we only need to add to the total energy the en­

ergy due to the surface tension without changing the main part of the code. Also 

the same code can be used for studying unsteady problems in water waves, and 

keeping the Hamiltonian structure of the problem. For example, in initial value 

problems properties that have to be conserved such as energy are directly checked. 
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We think that more work has to be done to try to speed up the way of computing 

the kinetic energy, so that the computations can be made more efficient. Also 

generalization to three dimensional waves is straightforward. 
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Table 2. 

n c E=T+V Q2 
256 .442988 .0125027 .988756 

Stokes 512 .442515 .0123836 .988367 
Expansion 768 .442510 .0123825 .988372 

1024 .442510 .0123825 .988373 
Hamiltonian 60 .442918 .0124842 

Method 72 .442590 .0124018 

Values obtanied for some parameters of the wave at the bifurcation point P3,6· 

Table 3. 

n c E=T+V Q2 
256 .443014 .0125082 .988823 

Stokes 512 .442533 .0123874 .988429 
Expansion 768 .442528 .0123863 .988434 

1024 .442529 .0123866 .988440 
Hamiltonian 60 .442938 .0124886 

Method 72 .442606 .0124052 

Values obtained for some parameters of the wave at the bifurcation point Psb· 
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Table 6. 

J Pj(x10-3 ) qj(x10-3 ) 

0 -216.795000 0.0 
1 -0.092495 0.042022 
2 0.190116 0.099751 
3 0.003196 0.161178 
4 -0.375653 . 0.194799 
5 0.444870 0.204610 
6 -49.456600 0.0 
7 -0.353888 0.158902 
8 0.197979 0.105166 
9 0.001469 0.025249 

10 0.102077 -0.052641 
11 -0.228032 -0.106101 
12 16.506100 -0.000028 
13 0.280234 -0.124306 
14 -0.186820 -0.100413 
15 -0.004249 -0.043752 
16 -0.423778 0.021337 
17 0.154760 0.072821 
18 -8.425180 0.000057 
19 -0.231066 0.101246 
20 0.164546 0.089484 

Values of the first coefficients for the nonsymmetric wave shown in figure 5 ( c=.442497). 
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CHAPTER3 

Symmetry breaking in periodic and solitary 
gravity-capillary waves 
on water of finite depth 

3.1 Introduction 

Since early in this century it was known that the problem of permanent form 

gravity-capillary waves travelling on water has a very rich structure of solutions. 

Wilton (1915) discovered that even for very low amplitude waves solutions are not 

unique, i.e. given the shortest period and height of the wave there may be more 

than one solution. In particular, he studied the case of waves on deep water, and 

predicted two different wave profiles of 2.44 cm wavelength. These waves are today 

called Wilton's ripples. Further, he actually found a set of critical wavelengths 

where his perturbation solution was not valid. 

In the case of gravity waves, it has been shown that for sufficiently low amplitude 

the solutions are unique. This is because, at low amplitude, resonances are not 

possible. Two waves are said to be resonant when they travel with the same phase 
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speed. In general, resonances lead to bifurcations into different families of waves 

and, therefore, to a lack of uniqueness in the solutions. When capillarity is taken 

into account, the new parameter allows resonances at low amplitude. These can be 

observed even with linear theory. 

Wilton's results were later extended to higher order by works of Sekerzh-Zenkovich 

(1956) and Pierson & Fife (1961) using classical perturbation techniques, and by 

Nayfeh (1970b) using the method of multiple scales. Schooley (1960) photographed 

short-length wind generated water waves showing that profiles with two dimples 

predicted by Wilton (1915) exist. He also showed that, under proper conditions, 

waves of 3,4,5, or more dimples are observed. 

Chen & Saffman (1979,1980) reconsidered the problem of gravity-capillary waves 

on deep water. They performed perturbation expansions for weakly nonlinear waves 

and computed finite amplitude waves using the full water wave equations. They 

reinterpreted Wilton's (1915) results as a bifurcation phenomenon and showed that 

higher order resonances exist and produce bifurcations to new families of solutions 

with larger wavelengths and more crests per period. Toland & Jones (1985) and 

Jones & Toland (1986) gave rigorous mathematical account of the existence theory 

of the weakly nonlinear waves found by Chen & Saffman (1980). 

Nayfeh (1970a) considered the problem of periodic gravity-capillary waves on 

water of finite depth. He obtained third order expansions for the solution using the 

method of multiple scales. He found that his expansions broke down for two wave 

numbers if the depth of the fluid was larger than some critical value (his condition 

on the depth of the fluid is equivalent in our notation to the condition r < 1/3, 

where r is defined in equation (5)). In the limit of deep water Nayfeh's expansion 

matches Wilton's. The two points where the expansion breaks down correspond to 
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the first two critical wavelengths found by Wilton. Recently Jones (1986), using a 

functional analysis approach based on the Lyapunov-Schmidt reduction procedure, 

has studied rigorously the existence and multiplicity of small amplitude solutions of 

the periodic gravity waves-capillary wave problem of finite depth. But, as we will 

describe below, his work is limited to the study of some particular cases of waves 

whose shapes are even periodic functions of the horizontal distance (i.e., symmetric 

waves). 

In considering a fluid of finite depth the possibility of solitary wave solutions 

is added to the problem. Solitary waves in the presence of surface tension were 

first considered by Korteweg & De Vries (1895). They found that for sufficiently 

large values of the surface tension a depression solitary wave is possible. Recently, 

Benjamin (1982) and Vanden-Broeck & Shen (1983) considered the problem again 

confirming Korteweg & De Vries results. Recently Amick & Kirchgassner (1986) 

have given a rigorous proof of the existence of the solitary wave of depression when 

r > 1/3. Also Hunter & Vanden-Broeck (1982) performed numerical computations 

for the depression solitary wave using the full water wave equations. They studied 

the effect of the capillary parameter, and found that, as surface tension was de­

creased below a critical value (r = 1/3), inflexion points appeared in the solitary 

wave profile and numerical convergence became very difficult. 

Even though there are still many open questions about the problem of Wilton 

ripples and solitary waves on finite depth, relatively little work has been done. For 

gravity-capillary water waves on the surface of the earth, resonances and all the 

interesting behavior appear at depths of approximately 4.8mm. At this scale the 

waves are strongly affected by viscosity, so that the irrotational model is not realistic 

and experimental checks are difficult. Benjamin (1982) tried some experiments with 

water 3 to 4 mm deep, finding that depression solitary waves are realizable, but they 
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are damped very rapidily. 

With the increasing possibility of performing experiments in outer space, where 

gravity can be reduced several orders of magnitude, and the model becomes quite 

realistic, such experiments are more feasible and make the problem more attractive. 

In the present work we shall consider one of the open theoretical questions. 

Namely the existence of nonsymmetric gravity-capillary waves. All solutions of 

permanent form gravity-capillary waves travelling on water known to date describe 

symmetric waves. A wave is said to be symmetric when, if f(x) represents the shape 

of the wave, the origin of the horizontal axis can be chosen such that f ( x) = f ( -x). 

In Chapters 1 and 2 we showed that nonsymmetric gravity waves are possible. 

They appear via a spontaneous symmetry breaking bifurcation from symmetric 

waves. We first found these waves using a weakly nonlinear model for finite depth 

water. Later we extended the results to deep water by numerical computations 

using the full water wave equations. It is our belief that a great part of the success 

in extending the results from the model to the full equations comes from using a 

Hamiltonian formulation of the problem, which keeps the symmetries of the water 

wave problem. We found that most of the physical behavior of the system is related 

to the Hamiltonian structure and its symmetries. 

Motivated by these results, in the present work we develop a weakly nonlinear 

model for gravity-capillary waves on shallow water. The model is obtained from 

the Hamiltonian formulation of the water wave problem introduced by Zakharov 

(1968). With this model we try to increase the understanding of the Wilton's 

ripples phenomenon by using dynamical systems theory. In particular we show that 

nonsymmetric waves exist, and they appear via spontaneous symmetry breaking 

from symmetric waves, as happens for gravity waves. 
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We start by developing the model, which leads for steady waves to a Hamiltonian 

system of two degrees of freedom. A local analysis of the solutions around the fixed 

points of the system is carried out, followed by a numerical global analysis of the 

model. 

In the last part of the work we consider solitary wave solutions. We give nu-

merical evidence that when the depth of the fluid is close to the resonance value 

(r = 1/3), the solitary wave is not unique and nonsymmetric solitary waves are 

possible. 

3.2 Weakly nonlinear model 

Consider two-dimensional irrotational water waves in a laterally unbounded 

domain of constant depth h. Taking as variables to describe the state of a wave the 

shape of the wave 17(x, t) and the velocity potential evaluated at the surface of the 

wave t/J(x, t) = <f>(x, 17(x, t), t), the evolution equations for the system can be written 

with the following Hamiltonian structure (Zakharov 1968, Broer 1974, Miles 1977) 

a11 6H 
-= 

61/J' at 
atjJ 6H 

(3.1) 
--

at 677 ' 

where H is the total energy of the waves and 6 represents a functional derivative 

(see Goldstein 1980). 

The total energy is defined as 

H = J H(17, t/J)dx, (3.2) 
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where the integral extends over one period in the case of periodic waves. In the 

present study we consider gravity-capillary waves. The energy density H is 

11" 1 T V H = -
2 

(''V</>) 2dy + -grJ 2 + -{1+17~ - 1}, 
-h 2 p 

(3.3) 

where g is the acceleration due to gravity, p the density and T the surface tension. 

We consider weakly nonlinear shallow water waves, 

a 
a= h ~ 1, (3.4) 

where a represents a measure of the amplitude and .A of the wavelength (order of 

magnitude of the distance between crests) of the considered wave (see Figure 3.1). 

The two dimensionless parameters a and /3 measure the amplitude and dispersion 

of the waves respectively (Whitham 1974). 

y L-----i1 

h 

!7777777777777777777777// 

Figure 3.1.- Periodic travelling wave on water of finite depth. 

In order to deal with variables of order unity and determine the relative im-
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portance of the different terms in the equations, it is convenient to introduce the 

following dimensionless variables 

x 
x = .x' 
- y 
y = h' 
- T/ 
T/ = -, 

a 

- [i 
t = ty h' 
- h<P 
</> = .X ay'gh' 
- h¢ 
¢ = .Xay'gfi," 

- 131/2 H 
H= -2- h2' 

0: g 
T 

r-
- pgh2' 

(3.5) 

For gravity waves, the nonlinearity is of the same order as the dispersion when 

the waves are such that o: ~ {3. The same is true for gravity-capillary waves except 

when we look at the minimum of the dispersion. In the region of minimum disper­

sion, the nonlinearity and dispersion are of the same order when o: ~ {32
• Hunter & 

Vander-Broeck's(1982) results showed that this region is where all the interesting 

resonances and bifurcations occur. Therefore in the following we will use E instead 

of o: and {3, where E is taken as 

0: = €2' 

(3.6) 
/3 = €. 

In Chapter 1 we showed that using the variables introduced in equations (3.4) 

the energy density can be expanded for f. ~ 1 as 

(3.7) 

Using the energy density defined by equation (3.7) and neglecting terms of order 

E
3

, we obtain the following evolution equations for the water wave system 
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(3.8) 

We are looking for permanent form travelling waves of these equations, i.e. 

solutions of the form 

r; = ij ( x, t) = ij ( x - ct) = ij ( x), 

iii= tii(x, t) = tii(x - ct) = tii(x), 
where c is the phase speed of the wave train. 

Introducing relation (3.9) into equations (3.8), we have 

(3.9) 

(3.10) 

Notice that the linear dispersion relation associated with equations (3.10) is 

2 1 2 2 r 4 c = 1 + (r - -)k + (- - -)k 
3 15 3 ' 

(3.11) 

where k = 27rh/ .A is the wave number. This dispersion relation agrees up to (but not 

including) terms of order k6 with the classical dispersion relation for linear water 

waves, which is 

2 tanhk ( k2) 
c = k I+r . (3.12) 

From (3.11) it follows that system (3.10) has wave trains that travel in both 

directions with phase speeds c ~ ±1 respectively. To find solutions we will concen­

trate our study on waves that travel to the right ( c ~ 1). 
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In the present case of gravity-capillary waves on shallow water resonances appear 

when r is close to 1/3 (Nayfeh 1970, Hunter & Vander-Broeck 1982). For r = 1/3 the 

coefficient of the second term of the dispersion relation (11) vanishes, and the term 

in k4 becomes important; hence the balance between nonlinearity and dispersion 

leads to waves such that k4 ~(a/Ji.), i.e. a~ {3 2 • 

Considering waves that travel to the right with r ~ 1/3, a travelling wave 

solution can be expanded in the following way 

i/J = i/Jo + t:.1/11 + t:.
2

1/12 + 0 ( t:.
3
), 

t; = t;o + t:.ij1 + t:.2712 + O(t:.
3
), 

c = 1 + t:.c1 + t:.2c2 + O(t:.
3
), 

r = 1/3 + t:.f1 + t:.
2r2 + O(t:.

3
). 

(3.13) 

Substituting these relations into equation (3.10), we end up, after some algebra, 

with 

c1 = 0, 
(3.14) 

i/Joz = t;o, 

and the following equation for rjo 

(3.15) 

This equation can be integrated once with respect to x giving 

(3.16) 

The first three terms of the equation represent the KdV approximation. 
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The origin of y can be chosen such that C = 0. Thus in the following we assume 

C = 0 without any loss of generality, i.e. YJ = 0 is a solution. Equation (3.16) can 

be also directly obtained from the classical water wave equations performing the 

formal expansion for f ~ 1 (Hunter & Vanden-Broeck 1982). 

The dimensionless variables introduced by equation (3.5) are useful to determine 

which terms of the equations are important in the range of waves of interest and to 

derive the model equation. However, for computational purposes and understanding 

the nature of the solutions it is more convenient to scale directly in term of h 

and obtain the equation 

I 1] 2-
YJ = h = f ,,,, 

x' = ~ = f1/2x,, 
h 

r 1 = r - 1/3 = ff1, 

1 2-c2 = c - = f c2. 

where we have dropped the primes. 

(3.17) 

(3.18) 

In this equation the small parameter f has disappeared and each term has its 

own magnitude (i.e., may be large or small depending on the magnitude of the 

physical wave). 

Since /3 ~ 1, a/ax~ 1 and the last term in equation (3.18) can be neglected 

when r1 is of order unity, and we recover the KdV approximation. But when r1 is 

sufficiently small the fourth term of the equation becomes important. 

Equation (3.18) can be rewritten as the following system of four first order 
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differential equations 

where 

Note that this system is Hamiltonian, with Hamiltonian function 

q2 = u2, 

U3 
P2 = 45. 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

Notice that we started with a continuous Hamiltonian system evolving in time. 

Looking for travelling waves of that continuous system we finish with a discrete 

Hamiltonian system that evolves in x. The same phenomenon was found in Chapter 

1 for gravity waves. Benjamin (1984) has shown that this is a general property 

for travelling waves of continuous Hamiltonian systems for which the Hamiltonian 

density can be expressed in terms of finite order derivatives, as happens in our 

model. Hence, the problem of finding travelling waves of permanent form has been 
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reduced to the study of the properties of a Hamiltonian system of two degrees of 

freedom with two parameters, c2 and r1. 

3.3 Local analysis 

The aim of the present study is to understand the structure of the families of 

periodic orbits of the dynamical system defined by equations (3.19). These periodic 

orbits correspond to travelling waves of permanent form in the physical plane. 

We start our analysis by examining the fixed points of the dynamical system 

and the local structure of the phase flow around them. The two-degrees-of-freedom 

Hamiltonian system defined by equations (3.19) has two fixed points for all values 

of the parameters c2 and r1 • These fixed points are 

F Pl : u1 = u2 = u3 = u4 = 0, 
(3.23) 

FP2: u1 = 4c2/3,u2 = u3 = u4 = 0. 

Both fixed points represent flat surfaces. F Pl is the origin of the phase space 

and corresponds to the actual surface of the fluid at rest. The other fixed point 

represents a flat surface also but with a different location of the horizontal axis. The 

two fixed points represent states of the system that are conjugate (see Benjamin 

1984). 

Notice that equations (3.19) have two parameters, but the location of the fixed 

points depends only on one of the parameters, c2. 

Linearizing the system in the neigborhood of the fixed points, we find the fol­

lowing eigenvalues for the stability of the fixed points 
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(3.24) 

For each fixed point we have four eigenvalues, which determine the structure of 

the fixed point. Depending on the values of the parameters, we can have real, pure 

imaginary or complex eigenvalues. According to the nature of the eigenvalues the 

( r1, c2) plane can be divided in four different regions for each fixed point, see figure 

2 (a) and (b). For example, looking at FPl, we find that for c2 > 0 two of the 

eigenvalues are real and two pure imaginary. For c2 < 0 there are three different 

possibilities. If r1 < -J-8c2/ 45 there are two pairs of pure imaginary eigenvalues 

(-\1,2 = ±iw1, ,\3,4 = ±iw2). For Tf < -8c2/45 the four eigenvalues are complex. 

And finally , when r1 > J-sc2 / 45 all the eigenvalues are real. The situation for 

F P2 is similar just by changing c2 to - c2. 

According to the previous paragraph and figures 3.2 (a-b), there are six different 

regions in the (ri,c2) plane. But we find that equation (3.18) is invariant under the 

transformation 

4c2 (3.25) 
U1 --7 U1 - -. 

3 
This means that the region corresponding to c2 > 0 is equivalent to the region 

c2 < 0 just interchanging the roles of the two fixed points. Due to this symmetry 

we only need to study three of these regions. Therefore, in the following, we reduce 

the study to the region c2 < 0 (see figure 3.2 (c)). 

Now consider a local analysis of the three different regions. 

- Region I (c2 < O,r1 < -J-8c2/45): 
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Figure 3.2.- (a) Eigenvalues for the stability of the fixed point 
FP2. (b) Eigenvalues for the stability of the fixed point FP2. (c) 
The three different regions of the ( r1 , c2) plane where the study is 
concentrated. ( d) Lines where bifurcations occur at zero amplitude 
in the (r1, c2) plane. P2 denotes period doubling, P3 period tripling 
and so on. 

In this region F Pl is a center. It has two pairs of pure imaginary eigenvalues 

P•1,2 = ±iw1, .A3,4 = ±iw2). According to the Liapunov theorem for fixed points 

of Hamiltonian systems (Abraham & Marsden 1978), for fixed values of the two 

parameters c2 and r1 the phase space has two 2-dimensional manifolds containing 
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F Pl. Each of these manifolds contains a one-parameter family of periodic orbits 

whose period approachs 27r /w1 or 27r /w2 respectively as the amplitude goes to zero 

and the orbit approachs the fixed point. This is actually only true when there are 

no resonance relations between the two frequencies. We say that two frequencies 

are resonant when there exist two integers m and n such that mw1 + nw2 = 0. In 
. ~. -

resonant cases linear stability is not enough to determine the local structure of the 

phase flow around the fixed points. 

Note that the Liapunov theorem for Hamiltonian systems is equivalent to the 

Hopf theorem for generic dynamical systems. 

In region I, F P2 has two pure imaginary and two real eigenvalues ().1,2 = 

±iw, A3
1
4 = ±a:). Hence according to the Liapunov theorem there is a single two­

dimensional manifold containing F P2 and a one-parameter family of periodic orbits 

whose period approach 27r /w as the amplitude goes to zero. 

Due to the fact that there are two families of periodic orbits centered on F Pl, 

this region is very rich from the bifurcation point of view, as we will see below. 

-Region II (c2 < O,r{ < -8c2/45): 

Inside the parabola (figure 3.2 (c)) FPl has four complex eigenvalues (>.1,2 = 

±(0:1 + iw1), A3
1
4 = ±(0:2 + iw2)). FPl has two-dimensional stable and unstable 

manifolds. On each of the manifolds the flow has a spiral structure. In this case, 

from the local analysis of FPl we can conclude nothing about possible families of 

periodic orbits. We can only say that locally there are no families of periodic orbits 

that end at the fixed point. 

There exists the possibility of a homoclinic connection for F Pl. If this homo-

clinic connection exists, it will correspond to a solitary wave with oscillatory tails. 
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We will present later numerical evidence that this kind of connection exists. 

For F P2 we find the same situation as the previous case. As there is a pair 

of pure imaginary eigenvalues, we have a one-parameter family of periodic orbits 

centered on F P2. 

-Region III ( c2 < 0, r1 > J-Bc2 / 45): 

FPl has four real eigenvalues (.A1,2 = ±a1,.A2 = ±a2). No familes of periodic 

orbits coming from F Pl are possible in this region. On the other hand, F P2 has 

two real and two pure imaginary eigenvalues. Hence, a one-parameter familily of 

periodic orbits comes from F P2. 

Korteweg & De-Vries (1895) showed that solitary waves of depression exist for 

sufficiently large values of the surface tension. Actually the KdV equation shows 

that depression solitary waves exist for r > 1/3. The derivation was formalized 

by Vanden-Broeck & Shen (1983) using a systematic perturbation calculation. In 

the KdV limit, the phase space is two-dimensional and the two fixed point F Pl 

and F P2 still exist. For r > 1/3 there is a one-parameter family of periodic orbits 

centered on F P2. F Pl is a saddle (two real eigenvalues). 

We expect our results to match with these previous results when the wave length 

is increased and r > 1/3. In particular we expect that if the period is increased 

in the family of periodic orbits that is created at F P2, the family ends up with an 

orbit that is homoclinic to F Pl. 

With all these local considerations in mind, we can start the global analysis of 

the system. 
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3.4 Symmetric waves 

When considering periodic waves of our system for fixed r1 and a given value 

of c2, the periodic orbits appear as one-parameter families, having the physical 

period L (shortest distance over which solution repeats exactly) as parameter. This 

degeneracy of the system, owing to the Hamiltonian structure of the system, makes 

it necessary to give three parameters (c2,r1 , L) to determine a periodic orbit. Note 

that in the analysis performed below, when r1 or c2 are changed the phase space 

is changed. But when Lis changed the phase space remains the same and we just 

move along one of the one-parameter families of periodic orbits that exist in phase 

space. 

We start the global analysis by studying region I. As discussed above, in phase 

space there are two one-parameter families of periodic orbits centered on F Pl. 

These families start at F Pl with periods 27r / w1 and 27r / w2 respectively. If we take 

w1 > w2 then the family corresponding to w1 has a shorter physical plane period 

than the other family. We call these families, the long-wave family and short-wave 

family, with respective periods Li = 27r /w2 and Ls = 27r /w1, where (Li > Ls)· Ls 

and Li can be regarded as the periods of the infinitesimal waves for fixed r1 and a 

given value of c2. 

The phase speed c2 determines the location of the fixed points and gives a 

measure of the amplitude of the waves. The capillarity parameter r1 determines for 

a given fluid and given gravity the depth of the fluid layer. 

In the present analysis we fix the phase speed c2 , and we study the structure of 

the phase space varying only the capillarity parameter r1 and the physical period 

L. Using these two parameters, the fixed points F Pl and F P2 are represented in 
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the ( r1, L) plane by two lines C1 and C2 as can be seen in figure 3.3 . These lines 

represent, for a given value of c2, the initial period of the families of periodic orbits 

versus r1, i.e. L = L(r1; c2). We can see that in region I for a given value of r1, C1 

gives two periods corresponding to the two families that come out of F Pl. We can 

also see that the periods are ordered such that Lz > Le > L8 , where 

(3.26) 

For large period L the two lines C1 and C2 match asymptotically with the equivalent 

lines obtained using the KdV approximation, which is valid for very large wave 

lengths and away from the resonance region. 

To study the possible bifurcations of the familes of periodic orbits we need to 

compute the Floquet multipliers of the orbits. The multipiers are the eigenvalues of 

the linearized Poincare map of the fl.ow around a periodic orbit. These eigenvalues 

can be thought as the magnification of a perturbation in one period (Hartman 1964). 

The necessary and sufficient condition for a bifurcation is that a multiplier crosses 

the unit circle. 

A periodic orbit always has a multiplier + 1 corresponding to sliding a little 

along the orbit. For Hamiltonian systems, the Hamiltonian is conserved so there is 

another multiplier at + 1. Also in a Hamiltonian system the fl.ow preserves volume 

in phase space, thus the product of the all four multipliers is + 1. It follows, from 

the reality of the Hamiltonian, that the two other multipliers will be conjugate 

points a, a* on the unit circle or reciprocal points u, 1/ u on the real axis (Green 

et al. 1981). When the two multipliers are on the unit circle, we have possible 

bifurcation to new orbits. For example if a = e21rim/n, at that point there is a 

possible bifurcation to a period-n wave. When arg( a) /27r is an irrational number we 
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Figure 3.3.- (r1,L) plane. Lines C1 and C2 show the period of 
the infinitesimal waves at the fixed points versus r1 (c2 = -0.01). 

can still talk about bifurcations but the new branch corresponds to a quasiperiodic 

permanent form travelling wave. Notice that from this point of view bifurcations 

appear within continuous intervals of the parameter values. When approaches which 

allow only periodic waves, like the ones used by Chen & Saffman (1980), Toland 

& Jones (1985), Jones & Toland (1986) and Jones (1986), are considered, only the 

bifurcations which lead to periodic waves can be detected and they appear in a 

discrete way. The works by Chen & Saffman (1980) and Jones & Toland (1985) 

cover the cases where a= e27rin/m for deep water waves. While Jones (1986) covers 

the bifurcations of the type u = e27rn/(n+l) for finite depth water. 
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Performing a local analysis of the system around F Pl, we can compute analyti­

cally the Floquet multipliers for the beginning of the families of periodic orbits. We 

find that for the short-wave family the multipliers at F Pl (zero amplitude wave) 

are 

u1,2 = +l, 

U _ e27riw2/w1 
3,4 - • 

(3.27) 

Hence the multipliers are on the unit circle, and F Pl is a bifurcation point 

in this region. This means that we can have bifurcation at zero amplitude. We 

already knew this because at F Pl two different families of periodic orbits cross. 

When studying gravity waves in Chapter 1 we found that the multipliers go onto 

the unit circle only for high amplitude waves. Here we have one parameter more, 

and we can bring the bifurcations to zero amplitude. For example if r1 and c2 

are chosen such that w2/w1 = 1/2 then ua,4 = -1, and we have a period doubling 

bifurcation at zero amplitude. In general w2/w1 = m/n corresponds to a bifurcation 

from a family of period L 8 to a family of period nL8 • Notice that this relation is 

equivalent to a resonance relation. In figure 3.2 ( d) we show lines where bifurcations 

occur at zero amplitude. 

To understand the global structure of the phase space, we continued numerically 

the families of periodic orbits by using the program AUTO developed by Doedel 

& Kernevez (1986). This program performs continuation along families of periodic 

orbits for dynamical systems by using a collocation method. 

In the present analysis, we kept the value of the phase speed fixed at c2 = -0.01. 

We started at the fixed point F Pl by taking r1 = -0.06. These values correspond to 

region I. Starting from a fixed point there are basically two ways for performing the 

continuation. One is to continue in the period L keeping the capillarity parameter 
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r1 constant (vertical lines in figure 3.3). The other possibility is to continue in the 

capillarity parameter keeping the period constant (horizontal lines in figure 3.3). In 

the present section we consider the latter case. 
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Figure 5.- Amplitude of short-wave and long-wave branches of 
periodic orbits with constant period versus r1 • Solid line denotes a 
on the unit circle, dashed line a negative and dotted line a positive. 
Shape of the wave is sketched next to curve. 

We began continuing along the short-wave family coming out from F Pl (point 

A figures 3.3 and 3.4). Following the branch with the period L constant, we found 

that r1 increases monotonically and the family ends in the fixed point F P2 (point 

B figure 3.3 and 3.4). Hence the unique family coming out from FP2 is connected 

to the short-wave family that starts at F Pl. Along the whole branch the wave is 

basically sinusoidal with only one crest per period. The wave length of this family 

is always less than Le. This branch is represented in figure 3.3 by the A-B line. 

The long-wave family (Lz) was found to finish in a period half bifurcation. It 

starts with a sinusoidal wave form with only one crest per period (point A' figures 

3.3 and 3.4), but as we go along the branch another crest appears. The branch ends 
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when the two crests are equal which corresponds to a period half bifurcation (point 

C figures 3.3 and 3.4). This point corresponds to a period doubling bifurcation on 

the short-wave family of period Ls = Lz/2 (point C' figures 3.3 and 3.4). Notice 

that this is true only if Lz/2 < Le. If this relation does not hold, the structure is 

much more complicated and will not be considered further here. The three branches 

of periods Ls, Lz and Lz/2 are shown in figure 3.4. 

As can be seen in figure 3.4, along these branches the Floquet multipliers of 

the orbits go onto the unit circle several times. When the multipliers are on the 

unit circle, bifurcations to families with larger period are possible. In the following 

chapter we study some of these larger period families. 

3.5 Nonsymmetric waves 

All the gravity-capillary waves that we have studied in the previous section, as 

well as all the ones studied by other authors (Wilton 1915, Nayfeh 1970, Chen & 

Saffman 1980, Vanden-Broeck 1982) are symmetric. 

In Chapters 1 and 2 we found that for gravity waves on shallow and deep water, 

the symmetry can be broken via a spontaneous symmetry breaking bifurcation. 

We found that the sequence of bifurcations that need to be followed to find the 

symmetry breaking are the same as the ones found by Green et al.(1981) for breaking 

the symmetry of fixed points of area preserving maps with symmetries. We want 

to determine if nonsymmetric gravity-capillary waves are possible and if the same 

bifurcation tree is repeated here. 

We started again at F Pl and took the short-wave branch. Keeping the period 

constant we continued in the capillarity parameter r1 as before. At the beginning of 
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the branch the Floquet multipliers are on the unit circle, and as r1 is increased they 

leave the unit circle through - 1 (see figure 3.4). The point where the multipliers 

are at - 1 corresponds to a period doubling bifurcation to a long-wave family of 

period Lz = 2L8 • When the multipliers are at 120° we have a period tripling (point 

P3 in figures 3.3, 3.4 and 3.5). 
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Figure 3.5.a.- P - 3 branch arising from the period tripling 
P3 on branch A-B shown in figure 3.4. 

We took the new branch of period 3L8 , that we call P-3 branch. Keeping the 

period constant, we continued in r1 finding that this new branch is just the long-

wave branch coming out from F Pl for Lz = 3L8 • Following the branch in one 

direction we found that the branch ends in F Pl (point A"' figures 3.3 and 3.5), and 

going in the other direction the branch ends in a period half bifurcation (point D 
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Figure 3.5.b.- Shape of the wave at different points along the 
branch P - 3. The location of the points is shown in part (a) of the 
figure. Vertical lines show symmetry axes. 

figures 3.3 and 3.5). The whole branch is plotted in figure 3.5 (a). The cusp that 

appears in the figure is due to the fact that we are plotting the maximum of the 

amplitude rJ. Even though the height of each crest changes smoothly with r1, the 

maximum does not change smoothly at the points where a crest becomes higher 

than other. For example looking at the wave 4, 5 and 6 of figure 3.5-(b), we can see 

that on wave 4 the third crest is the higher. Wave 5 corresponds to the point P3 

where the three crests are equal. And for wave 6 the first two crests are the higher. 

Hence, the transition through P3 is not is not smooth for maximum of rJ. As we can 

see in the figure the branch is not single valued in r1. This means that the solution 
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is not unique for a given value of the period and the parameters. 

At the begining of the branch, close to F Pl, the wave is sinusoidal and there is 

only one crest per period. In the region of the nonuniqueness, there are three crests 

per period. The branch finishes with two equal crests at the half period bifurcation. 

On this P-3 branch, at P3 the four multipliers are at + 1 as we expected because 

along this branch P3 is a normal bifurcation point. Along the branch there are four 

regions where the Floquet multipliers lie on the unit circle. Every time that the 

multiplers leave the unit circle through - 1, we have a period doubling bifurcation 

into a family of waves of period 6L 8 • Following our results of Chapter 1 we took the 

new branch of period 6L8 (P-6 branch) that starts at the period doubling bifurcation 

closer to P3 , which corresponds to the point P3,6 in figure 3.5. 

Following figure 3.6-(a), starting at P3,6 and continuing along the new P-6 

branch we found that the branch finishes in a half period bifurcation, which corre­

sponds to another period doubling (point P~ 6 in figures 3.5 and 3.6) of the P - 3 
' 

branch. The whole branch and the behavior of the Floquet multipliers along the 

branch are shown in figure 3.6. We can see in the figure that the behavior found for 

gravity waves appears here again. At P3,a on the P - 6 branch the four multipliers 

are at + 1. As we go along the branch, they move along the unit circle and leave 

the unit circle through - 1. At this point we have another period doubling bifurca­

tion to a period 12L8 wave. If we keep going along the P-6 branch the multipliers 

become negative and u increases in absolute value up to a maximum and starts 

decreasing again. The multipliers go back onto the unit circle through - 1 giving 

an inverse period doubling. Continuing on the P-6 branch, we find a point where 

the four Floquet multipliers are at + 1. This kind of bifurcation was studied by 

Rimmer (1978). In the present case we found that the bifurcation is a symmetry 
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Figure 3.6.a.- P - 6 and P - 6A branches arising from the 
period doubling bifrcations of P- 3 branch shown in figure 3.5.a and 
from symmetry breaking bifurcations of P - 6 respectively. Maxi­
mum amplitude of the wave versus r1 along the branches. 

breaking bifurcation. 

Starting at P~ 6 and following the P-6 branch, we find the same structure again. 
' 

At P~ 6 the four multipliers are at + 1. As we go along the branch they leave the 
' 

unit circle through - 1, going back to the unit circle later to give a new symmetry 

breaking bifurcation at P;b. Thus, we find two symmetry breaking bifurcations, 

point Psb and P;b. 

Switching to the nonsymmetric branch, that we call P-6A branch, we found that 
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Figure 3.6. b.- Plots of the shape of the wave at different points 
along the P - 6 branch. 

the branch starts at Psb and finishes at P;b. So the nonsymmetric branch connects 

the two symmetry breaking bifurcations. 

In figure 3.6-( c), we show nonsymmetric waves at several points along the 

branch. We found that, in the present case of gravity-capillary waves, nonsym-

metric waves of less than six crests are possible. In Chapter 1 we found that for 

gravity waves six is the minimum number of crests that is needed to have non-

symmetric waves. When capillarity is introduced, crests can appear and disappear 

along the branches as the capillarity is changed. In the present case, we can even 

have nonsymmetric waves with only two crests. 
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Figure 3.6.c.- Plots of the shape of the wave along the non­
symmetric P - 6A branch. 

Keeping r1 constant we tried to continue in the period with the idea of de-

termining whether solutions with very large period were possible. We found that 

the period cannot be increased arbitrarily because the branch ends on a symmetry 

breaking bifurcation similar to P3,6. This suggest that nonsymmetric solitary waves 

are not possible in region I, and nonsymmetric solutions exist only in a bounded 

domain on the (r1,L)-plane. 
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3.6 Solitary wave solutions 

The problem of solitary waves travelling on finite depth water with surface 

tension was first considered by Korteweg & De Vries (1895). They showed that 

solitary waves exist for sufficiently large values of the surface tension. The waves 

that they obtained are actually depression waves. Recently, these results have been 

rederived by Vanden-Broeck & Shen (1983) and Benjamin (1982), using a systematic 

perturbation expansion. These results left open the question of what happens to 

the solitary wave as the capillarity is decreased. Hunter & Vanden-Broeck (1982) 

performed computations for the solitary wave with surface tension using the full 

water wave equations. They found that as r tends to 1/3 from above the solitary 

wave develops a large number of inflexion points, and the computations become 

very difficult. They were not able to compute solutions for r < .21 with c = 0.954 

because too many points were required for convergence. 

Another apparent result that follows from the studies described above is that 

for a given value of the capillarity parameter and phase speed or amplitude, there 

exists a unique solitary wave. 

In the present section we use our model to give evidence that the solitary wave is 

not unique, and different solutions are possible for the same values of the parameters 

close to the resonance point, i.e., r ~ 1/3. We also analyze the influence of the 

capillarity on the solitary wave and the possiblity of nonsymmetric solutions. 

Consider the F P2 point. As already seen in the previous section, for all values 

of r1, there is a one-parameter family of periodic orbits coming out from the fixed 

point. We found that for wave lengths L such that L < Le, as capillarity is changed 

keeping the period fixed, the family connects the two fixed points. Let us now 
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analyze what happens when larger wave lengths are considered. 

We fixed the value of the capillarity parameter at r1 = 0.05 and the phase speed 

at c2 = -0.01, which corresponds to a point in region I I I. Starting at F P2 (point 

B" figure 3.3), we continued along the one-parameter family in the period, i.e., 

following a vertical path in figure 3.3 . We found that the family ends up in an 

orbit that is homoclinic to the origin F Pl. This homoclinic orbit corresponds to 

the depression solitary wave observed by the other authors. In our computations we 

were able to increase the period of the orbits up to values of order 106. We found 

that orbit already converged to the homoclinic one for periods of order 102
• Hence, 

we considered this as good evidence that the orbit being computed corresponds to 

the homoclinic one. 

Several orbits of the family are shown in figure 3.7 . We can see how the 

homoclinic connection appears as the limiting wave for the family as the period is 

increased. 

In order to find out the effect of the capillarity on this family, we took an orbit 

of the family, that corresponded to a wave length L = 17. 7 (point G figures 3.3 

and 3.8), and we continued it in the capillarity parameters r1, keeping the period 

constant. In figure 3.8 we plot the norm of the solution versus r1• The norm that 

has been used is defined as 

1 {L 
1Jull2 

= L lo (ui + u~ + u~ + u~)dx. (3.28) 

In the direction of increasing capillarity we found, as we already knew, that the 

family ends in the fixed point F P2 (point B"' figures 3.3 and 3.8). Decreasing r1, 

we first found a fold, a minimum in r1 (point E figures 3.3 and 3.8), and after the 

branch finishes in a half period bifurcation (point F figures 3.3 and 3.8). Hence for 
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Figure 3. 7.- Family of periodic orbits coming from F P2 for 
r1 = 0.05 and c2 = -0.01 with the period as parameter. 

this wave length, for a given value of r1 and c1 , the solution is not unique. This 

suggests that the solitary wave might not be unique (see figure 3.8). Therefore we 

fixed the value of r1, and we continued in the period for the two different solutions 

(points a and b in figure 3.8). We found that both solutions converged to solitary 

waves, and they were different. Hence depression solitary waves are not unique. In 

figure 3.9 we show the two solitary waves that we obtained. Computations were 

again carried out up to periods of order 106 , finding again convergence for periods 

of order 102 • 

Notice that the two homoclinic connections lie in region I I, where the origin 
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F Pl has four complex eigenvalues. Therefore we find oscillations at the beginning 

of the tails of the solitary waves. The number of crests is finite because the real part 

of the eigenvalues kills the crests and causes the exponentially decaying behavior. 

The number of crests increases as the capillarity decreases. 

Notice also that the minimum of r1 along the branch is located exactly at the 

separation point between region I and II, this being true for whole range of values of 

c2 and L. At this minimum, the real part of the eigenvalues of the origin is zero and 

the solitary wave has an infinite number of crests. These oscillations explain Hunter 
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Figure 3.9.- Approximate solitary waves corresponding to 
points a and bin figure 3.8 (L = 100). 

& Vanden-Broeck (1982) numerical results, and their problems of convergence as 

capillarity was decreased below r = 1/3. 

Going back to the period L = 17. 7 branch and looking at the Floquet multipli-

ers, we found that at F P2 the multipliers are real and positive. As r1 is decreased 

we find a point where the four multipliers are at + 1, and after they become real and 

positive again. This is the same behavior as we found on the branch P - 3 of the 

previous section. Examining the solution at this point, we found that the wave has 

three equal crests per period. Thus it corresponds to a period tripling on a branch 

of period L/3 = 5.9. The period L/3 branch is a short-wave branch. Recall that in 
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our computations of section 3.5 we found that on a short wave branch there is only 

one period tripling bifurcation, and this bifurcation gives a wave corresponding to a 

long-wave branch coming out from F Pl. But those computations were performed 

using a period of L 8 = 4.138. When the period is larger, on the short wave branch 

another region where the Floquet multipliers are on the unit circle appears, and 

therefore there are two period tripling bifurcations. The new one is the one that we 

have found in the branch coming out from F P2. 

Going along the branch beyond the period tripling point, we found that the 

multipliers went onto the unit circle. Again we found the same behavior as on 

the branch P-3. This suggests the possibility of existence of nonsymmetric solitary 

waves. On this branch where the multipliers leave the unit circle through - 1, 

we have a period doubling. We took the new branch that corresponds to a wave 

of period 2£ = 35.5. Computing along this new branch with the period constant, 

we again found the same behavior as along the branch P-6 and correspondingly a 

symmetry breaking bifurcation. The bifurcation diagram is shown in figure 3.10 . 

We took the new branch and computed some points on it. For one of these points, 

we fixed the capillarity and continued in the period, and we found that the orbit 

converges to a nonsymmetric orbit homoclinic to the origin. This orbit corresponds 

to a nonsymmetric solitary wave. In figure 3.11 we show this approximation to a 

solitary wave for a period of 100. 

The nonsymmetric branch was found to finish on another symmetry breaking 

bifurcation, as it happened in the case studied in the previous section. 
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3. 7 Conclusions 

In the present work, we have developed a weakly nonlinear model to describe 

low amplitude and small dispersion gravity-capillary waves on water of finite depth. 

The model has been obtained from the Hamiltonian formulation of the water wave 

problem. We have found that the analysis of permanent form travelling waves using 

this model reduces to the study of the properties of a discrete Hamiltonian system 
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Using the dynamical systems theory for Hamiltonian systems, we have studied 

the bifurcation structure of our model. We have been able to reproduce results 

about the nonuniqueness of solutions in addition to showing that nonsymmetric 

Wilton's ripples are possible. They appear, as happened in the case of gravity 

waves, via a spontaneous symmetry breaking bifurcation. We have found again the 

same bifurcation tree as the one found In Chapter 1 for finite depth gravity waves, in 

Chapter 2 for infinite depth gravity waves and Green et al. (1981) for fixed point of 

area-preserving maps in the presence of symmetries. This gives one more example 

of the universality of this structure in Hamiltonian systems. We have also seen 

that the symmetric solutions that were known previously are just a subset of the 

solutions coming from the complex bifurcation structure of Hamiltonian systems. 

Numerical evidence is presented showing that solitary waves with sufficiently 
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large surface tension exist. For r > 1/3 the solitary wave is a depression wave. When 

the surface tension parameter r is decreased below 1/3, inflexion points appear in 

the profile of the wave. The tails of the solitary wave start having oscillations, 

the number of crests being finite. It seems from our results that the solitary wave 

does not exist in regi~n I, i.e., r < 1/3 - -J-s(c -1)/45. For this value of r, 

we found a fold in the branch of solutions. This means that the solitary wave 

is not unique. Actually, we have computed two different solitary waves for the 

same value of the parameters. Both solitary waves travel with the same speed but 

have a different crest structure. We have also seen that this is just the beginning 

of a more complicated structure of solutions. In particular, we have found that 

a symmetry breaking bifurcation is possible for the solitary wave solution. We 

have computed solitary waves starting from periodic nonsymmetric solutions, by 

increasing the period up to very large values (L ~ 106). We have found that the 

solution converges very fast to a nonsymmetric solitary wave. 

Once again we have found that the bifurcation properties of water waves are 

related to the Hamiltonian structure of the problem and its symmetries, and that 

the Hamiltonian formulation seems to be a powerful tool to analyze this kind of 

problem. 

The stability of all these solutions is an interesting open problem. We leave this 

question as subject of a future study. 

Let us consider the possibility of an experimental check of all these solutions. All 

these phenomena appear close to the resonance point r = 1/3, which corresponds 

to a depth 

(3.29) 
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The typical phase speed c of the waves for this depth is given by 

(3.30) 

From Bernoulli's equation it follows that for waves of amplitude a and wavelength 

,\, the characteristic velocity Ve in the fl.ow is 

(3.31) 

Given the above definitions, the Reynolds number of the fl.ow can be defined as 

follows 

Re= Inertialforces = v;/,\ = 1!._'!:_j;h, 
V iscousf orces vvc/ h2 v ,\ 

(3.32) 

where v in the kinematic viscosity. Using equation (3.29) the Reynolds number Re 

can be rewritten as 

(3.33) 

Assuming a~ {3 2 we find that the characteristic frequency in the fl.ow, which is 

important in order to generate the waves, can be written as 

(3.34) 

Another parameter which gives a good idea of the validity of the irrotational 

hypothesis and the possibility of performing experiments is the damping coefficient 

"{ ( Landau & Lifshitz, 1978, p.100). This coefficient measures the exponential 

dissipation of the mechanical energy of the wave with time (E oc e-2'Yt). For the 

present case this coefficient is 
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(35) 

In table 7 we show the values of these parameters for four different fluids taking 

a/).. = 10-2 and two values of the acceleration of the gravity. For an experiment us­

ing water on the surface of the earth we have that h = 4. 76mm and c = 21.6cm /sec. 

The Reynolds number is Re = 10. Evidently, the Reynolds number is too low to 

neglect viscosity in the model and assume potential fl.ow. As was experimentally 

checked by Benjamin (1982), the waves are damped too rapidly for an unequivocal 

investigation of results of an inviscid theory. We can also see that for liquid helium 

III the situation is a little bit better, but still not satisfactory. 

The possibility of performing experiments in a weightless environment in space 

has changed completely the problem. In a spacecraft the gravity can be reduced 

several orders of magnitude, in which case the potential flow hypothesis is better. 

For example if g = 10-2m/ sec2 , we find that the typical depth is h = 14.9cm and 

the phase speed of the waves c = 3.86cm/ sec. For this case the Reynolds number 

is Re = 58. As the gravity is decreased, the Reynolds number increases, and the 

model is better. The typical length of the problem also increases as the gravity 

decreases. We find that for liquid helium III the Reynolds number is Re = 186 

and the typical depth h = 2. 75cm. It seems from the results shown in table 7 that 

liquid helium is the best candidate for an experiment among the fluids that have 

been considered. It seems to be possible to find a compromise solution in the scales, 

that could make an experiment in space possible. 
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PART II: 

The superharmonic instability 

of surface water waves 
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CHAPTER 1 

The superharmonic instability 
of finite amplitude surface waves 

on water of finite depth 

1.1 Introduction 

During the last seven years, great progress has been achieved in understand­

ing the stability of irrotational water waves of permanent form to infinitesimal 

disturbances. The problem was first studied by Longuet-Higgins (1978 a,b), who 

considered the stability of two-dimensional periodic gravity waves to subharmonic 

and superharmonic two-dimensional disturbances. In the superharmonic case he 

suggested that a change of stability occurs as the height is increased when the 

phase speed c becomes a maximum. 

Since c maximum is a limit point solution of the family of permanent waves, 

Longuet-Higgins's suggestion agreed with the fact that Chen & Saffman (1980) 

were not able to find superharmonic bifurcation for gravity waves, as implied by 

Garabedian's (1965) uniqueness proof. 
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Using a different numerical method, Tanaka (1983) again computed the super­

harmonic stability and found that there is an exchange of stability for the wave 

whose energy is a maximum. As this result appeared to conflict with the previ­

ous results and the theoretical undestanding, Tanaka(1985 a) and Longuet-Higgins 

(private communication) repeated the calculations. The new results confirmed that 

an exchange of stability to superharmonic disturbances occurs when the energy is 

stationary. Tanaka also computed the eigenvector associated with the critical eigen­

value. He found that this eigenvector is identical to the eigenvector corresponding 

to horizontal displacement, allowed by Galilean invariance, so that there is no con­

flict with the Garabedian and Chen & Saffman conclusion of no superharmonic 

bifurcation. 

Tanaka's and Longuet-Higgins' results were obtained by large scale computa­

tions. Because of the slow convergence for steep waves, the calculations used har­

monic expansions of up to 600 modes for the shape of the wave. Recently, Saffman 

(1985) proved analytically that an exchange of stability occurs for superharmonic 

disturbances for every wave whose total energy is stationary. Longuet-Higgins & 

Fox (1978) showed that there are infinitely many such waves as the wave of greatest 

height is approached. The argument used the Hamiltonian formulation for water 

waves (Zakharov 1968). Another demonstration of the usefulness of the Hamilto­

nian approach is the recent work by Mackay & Saffman (1985) determining under 

which conditions the crossing of the eigenvalues for the linearized problem about 

the permanent form wave leads to loss of stability. 

Saffman's theory was done only for periodic two-dimensional deep water waves. 

Recently ,using an integrodifferential method, Tanaka (1985 b) has computed the 

stabillity of finite amplitude, two-dimensional solitary waves of permanent form on 

water of uniform depth to two-dimensional infinitesimal disturbances. He has found 
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that an exchange of stability occurs again at a stationary point of the energy. 

These results lead to two open questions about Saffman's approach. The first 

one is whether the proof can be generalized to include solitary and periodic waves 

on finite depth. The second one is if the proof can be generalized to the finite depth 

case, then in which frame of reference should the energy be calculated. Notice that 

for the cases of deep water periodic waves and solitary waves, there is a special 

frame of reference that is the frame in which the fluid is at rest at infinity. This 

frame does not exist in the case of periodic waves on finite depth. 

In the present paper we generalize Saffman's argument to include these two 

cases. We also find that the frame of reference, in which the motion has to be 

studied , is the frame in which the mean horizontal velocity is zero. 

1.2 The Hamiltonian formulation and canonical variables 

Consider two-dimensional irrotational water waves in an unbounded domain of 

constant depth. Let cp(x, y, t) and 77(x, t) be the velocity potential and the sur­

face shape respectively. The most general representation for a traveling wave of 

permanent form is (Whitham 1974) 

cp(x, y, t) = (Jx - it+ <I>(O, y), 
(1.1) 

11(x,t) = N(O), 0 = x - ct, 

where (3 is the mean horizontal velocity of the waves in the frame of reference in 

which the motion is studied, and c is the phase speed in that frame. <I> and N are 

periodic functions of (), and / is related to the mean height of the wave fj. Actually 

there are three constants that are related to each other. These constants are /, fj 

and the constant K of the Bernoulli's equation 
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(1.2) 

Two of these constants can be chosen arbitrarily, and the third one is determined 

by the other two. We will take K = / = 0. With this choice we have 

cp(x, y, t) = {3x + q>(O, y), 

11(x, t) = N(O). 
(1.3) 

Miles (1977), extending Zakharov's (1968) work, proved that irrotational waves 

on water of finite depth have the following Hamiltonian structure 

8TJ oH 
at= 61/J' 
81/J oH (1.4) 

8t - OTJ' 

where o represents a functional derivative ( see Goldstein 1950). 1/J is the velocity 

potential at the surface t/J(x, t) = cp(x, TJ(x, t), t). His the total energy of the waves 

in the considered frame, given by 

H = J H(TJ, t/J)dx, (1.5) 

where the integral is over a period in the case of periodic waves and all the real axis 

in the case of solitary waves. The energy density is given by 

(1.6) 

where d is the distance from the origin to the bottom. 

Consider now the following transformation 
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t/J(x, t) = {3x + f(O, t), 

ry(x,t) = g(O,t). 
(1.7) 

This transformation can be considered as a canonical tranformation from the 

variables TJ and t/J to the variables g and f. This change is equivalent to writing the 

equations in a coordinate system moving with speed c. With this transformation 

equations (1.4) become 

8g hH 8g 
at = 6 f + c ao ' 
8/ hH Bf 
at = - hg + c ao · 

(1.8) 

Permanent travelling waves are the equilibrium solutions of this system. 

For stability considerations it is convenient to introduce the canonical transfor-

mation to the complex coefficients a(k, t) and a*(k, t) proposed by Zakharov (1968). 

a(k,t) and a*(k,t) are linear combinations of the Fourier transforms of g(O,t) and 

f ( (), t). The transformation is given by 

00 1 

g(O t) = _1_ J lkl2 [a(k t)eik9 + a*(k t)e-ik9]dk 
' 27rv'2 _

00 
w!(k) ' ' ' 

f(O,t) = -
2 

i 12" 1 w!(~) [a(k,t)eik9 -- a*(k,t)e-ik9]dk, 
7ry "'-00 [kl2 

where w(k) is the linear dispersion relation given by 

w(k) = Jgk tanh(kd). 

With this transformation equations (1.8) become the single equation 

(1.9) 

(1.10) 
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8a(k,t) _ .6H . k (k ) 
- -i~ + ic a ,t . at ua* 

(1.11) 

Now the energy is 

H = J_: H({J, a, a*)dk. (1.12) 

In the case of periodic waves there is only a discrete set of modes, and a(k, t) 

has the following form 

00 

a(k, t) = L an(t) 6(k - nko), (1.13) 
n=-oo 

where i~ is the wavelength. 

It is important to notice that now 

6H 8H 
oa = aa. (1.14) 

As we will see below, this represents a very important simplification for studying 

stability. 

In this formulation periodic travelling waves are the solutions of the following 

equation 

. 8H . k (k) 
-ioA*(k)+ic A =O. (1.15) 

For symmetric wave solutions the origin can always be chosen such that A(k) = 

A* ( k). An important property of H is that H is invariant under the change a -+ a*. 



-126-

It is useful to regard c as the independent variable and the properties of steady waves 

as function of c. 

1.3 Stability analysis 

Consider a time dependent perturbation of the steady wave of the form 

a(k, t) = A(k) + Eb+(k)eiut, 

a*(k,t) = A*(k) + Eb-(k)eicrt. 
(1.16) 

u and (b+, b-) will be the eigenvalue and eigenfunction respectively of the following 

eigenvalue problem 

(1.17) 

a2 H * a2H where M = BABA* - ck and N = BA2 

Because of Galilean invariance CT = 0 is always an eigenvalue of this problem. 

The corresponding eigenfunction is the shift, that in this case is 

... = ( ikA(k) ) 
o: - ikA* (k) . (1.18) 

Following Saffman's (1985) arguments, in order to have an exchange of stability 

the eigenvalue CT = 0 has to have algebraic multiplicity at least four. Taking the 

derivative of equation (1.15) with respect to c we obtain 

L ( ~~ ) = ii - ( :/3 (%ft)) d{J. 
dA'" .JL(BH) de 
de of3 oA 

(1.19) 
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Let us focus our attention on the last term of this equation. /3 can not be 

determined by the problem. The mean horizontal velocity is determined when we 

specify the frame of reference to which we refer the motion. As we change c, if the 

waves are referred to a frame of reference in which /3 changes, then d/3 /de will not 

be zero. On the other hand, if all the waves are referred to to a frame in which 

f3 is the same for all c, then the additional term will disappear. A particular case 

is the frame in which f3 = O; this is the frame that we shall consider. Notice that 

the frame in which the motion is steady is not valid because the mean horizontal 

velocity relative to this frame changes as c changes. If d/3 /de = 0 then 

1= ( ~) (1.20) 

is a generalized eigenfunction of O' = O, and O' = 0 has therefore algebraic multiplicity 

of at least two. 

To continue the proof, consider the following equation 

LiJ = 1. (1.21) 

If this equation has a solution, then O' = 0 is an eigenvalue with algebraic 

multiplicity of at least three. The necessary and sufficient condition for (1.21) to 

have a solution is for i to be orthogonal to the eigenfunction of the adjoint problem 

corresponding to O' = 0 (Fredholm's alternative). 

To define the adjoint operator we have to introduce an inner product. We will 

consider the following inner product 

00 

< p, if>= I (Pi Ql + p;q2)dk, (1.22) 
-00 
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where p = (p1 (k),p2 (k)) and q = (q1(k),q2(k)). Once we have the inner product 

the adjoint operator L+ is defined by 

__, L_, L+- __, < p, q >=< p, q > . (1.23) 

With this inner product the adjoint operator L+ is 

L+ = (
M* 

N* 
-N) (M 
-M* - N* 

-N) 
-M. (1.24) 

We can directly see that 

~ = ( ikA(k)) 
a ikA*(k) 

(1.25) 

is the eigenfunction of u = 0 for the adjoint operator. This result agrees with the 

general property of discrete Hamiltonian system that if (p, p*) is a right eigenvector 

of the linearized flow in the neigborhood of an equilibrum point, then (p, -p*) is 

a left eigenvector of the linearized flow ( Mackay 1985). So the system (1.21) will 

have a solution if and only if 

< a_+,;y >= -i 1 (A*(k) ~~ + A(k) d!* )kdk = 0. (1.26) 
-oo 

It is easy to show that this condition is equivalent to the condition of having 

a maximum in the energy when the motion is studied in the frame of reference in 

which (J = 0, for taking the derivative with respect to c of equation (1.12) we have 

(1.27) 
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As A(k) is an equilibrium solution of (1.21) it follows that 

dH 

de 
(1.28) 

If the frame of reference is such that f3 = 0, stationarity of energy is equivalent 

to (1.26). In this case, the eigenvalue u = 0 will have algebraic multiplicity at least 

three. 

To complete the proof we have to look at the following equation 

Lx = iJ. (1.29) 

If this equation has a solution, u = 0 will have algebraic multiplicity of at least 

four, and the proof will be finished. 

From the symmetries of equation (1.21) it is always possible to choose the 

solution such that iJ = (v1 , -vi). The Fredholm alternative in this case becomes 

00 J (A*v1 - Avnkdk = o. (1.30) 
-oo 

If the problem is restricted to symmetric waves A(k) = A*(k), and equation 

(1.21) becomes 

( ) ( ) ( 
dA) M N V1 Tc 

- N - M - vi - ~~ . (1.31) 

From this equation it follows that v1 = vi, and condition (1.27) is satisfied. So, 

for symmetric waves, at a point in which the energy is stationary the eigenvalue 
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(j = 0 has algebraic multiplicity at least four. That point corresponds to an exchange 

of stability. 



-131-

References 

[1] Chen, B. and Saffman, P.G.(1980). "Numerical evidence for the existence of new 

types of gravity waves of permanent form on deep water." Stud. App. Math. 62, 

1-21. 

[2] Garabedian, P.R.(1965). "Surface waves of finite depth." J. D'Analyse Math. 14, 

161-169. 

[3] Goldstein, H.(1980). "Classical Mechanics." 2nd ed. Addison Wesley, Reading, 

MA. 

[4] Longuet-Higgins, M.S.(1978 a). "The instabilities of gravity waves of finite am­

plitude in deep water.I-Superharmonics." Proc. Roy. Soc. A 360, 471-488. 

[5] Longuet-Higgins, M.S.(1978 b). "The instabilities of gravity waves of finite am­

plitude in deep water.II-Subharmonics." Proc. Roy. Soc. A 360, 489-505. 

[6] Longuet-Higgins, M.S. and Fox, M.J.M.(1978). "Theory of the almost-highest 

wave.Part 2. Matching and analytic extension." J. Fluid. Mech. 85, 769-786. 

(7] Mackay, R.S.(1985). "Stability of equilibria of Hamiltonian systems." Proc. RSRE' 

Seminar on Dynamical Systems. (to appear). 

[8] Mackay, R.S. and Saffman P.G.(1985). "Stability of water waves." Proc. Roy. 

Soc. (submited). 

[9] Miles, J.W .(1977). "On Hamilton's principle for surface waves." J. Fluid Mech. 

83, 153-158. 

[10] Saffman, P.G.(1985). "The superharmonic instability of finite amplitude water 

waves." J. Fluid Mech.(to appear). 



-132-

[ll] Tanaka, M.(1983). "The stability of steep gravity waves." J. Phys. Soc. Japan 

52, 3047-3055. 

[12] Tanaka, M.(1985 a). "The stability of steep gravity waves." J. Fluid Mech. 156, 

281-289. 

[13] Tanaka, M.(1985 b). "The stability of solitary waves." Phys. Fluids.( to appear). 

[14] Whitham, G.B.(1974). "Linear and Nonlinear waves." Wiley-Interscience, New 

York. 

[15] Zakharov, V.E.(1968). "Stability of periodic waves of finite amplitude on the 

surface of deep fluid." J. App. Mech. Tech. Phys. 2, 190-194. 



-133-

CHAPTER 2 

An example of stability exchange in a Hamiltonian 
wave system 

2.1 Introduction 

In a study of the stability of super harmonic disturbances on finite amplitude two 

dimensional deep water gravity waves of permanent form, calculations by Longuet-

Higgins (1978) suggested that a change of stability occurs as the wave height is 

increased when the wave speed c becomes a maximum. This result agreed with the 

general belief that changes of stability occur at limit points. In the water wave case, 

an extremum value of c signifies a limit point because it implies the existence of 

two neighboring solutions moving with the same speed, whose difference is a null 

stationary eigenvector in the frame moving with the wave. 

Tanaka's (1983) calculations showed, however, that this is not true. He found 

that a change of super harmonic stability happens first for the wave of maximum en-

ergy, which is a less steep wave with smaller wave speed. Tanaka's results, however, 

were questioned because of the conflict with the belief about stability changes at 

limit points, and also because they appear to imply superharmonic bifurcation into 
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a new family of waves with crests and troughs of the same height. These accord­

ing to Garabedian's (1965) uniqueness proof and the Chen and Saffman's (1980) 

computations do not exist. With improved accuracy, Tanaka (1985) repeated the 

calculations and confirmed his results. He also explained why there is no non-trivial 

bifurcation at the wave of maximum energy since the eigenvector, corresponding to 

the zero eigenvalue, is linearly dependent on the eigenvector corresponding to the 

horizontal displacement (shift) allowed by Galilean invariance. It was also shown by 

Longuet-Higgins (1984) that the existence of a zero eigenvalue implied that either 

the wave speed is an extremum, or the associated eigenvector is the shift. All these 

results (except Garabedian's) depend on extensive computations for steep waves. 

Using Zakharov's (1968) Hamiltonian formulation of water waves, Saffman 

(1985) proved analytically without any computations that the change of stabil­

ity occurs at the point of maximum energy and is not associated with a non-trivial 

bifurcation. He also showed that a change of stability need not occur at the limit 

points. Saffman's arguments are general and can be applied to any Hamiltonian 

system which possesses the necessary symmetries. 

In view of the subtle misconceptions which hindered the acceptance of Tanaka's 

results, it was felt desirable to contruct a simple Hamiltonian model maintaining all 

the symmetries, which demonstrates explicitly the behavior of the eigenvalues and 

eigenvectors at points of maximum energy and speed. 

2.2 Statement of the problem 

In Zakharov's Hamiltonian formulation of water waves, the canonical variables 

are complex quantities an and a~ (-oo < n < oo), which are linear combinations 

of the Fourier components of the wave shape 77(x, t) and the velocity potential 
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ip(x, 17(x, t), t) evaluated at the surface. The total energy of the wave is E(an, a~). 

The evolution equations in a coordinate system moving with speed c can be 

written as (Saffman 1985) 

aa .aE . 
1 

_ 
-a = -ia_ +ic na 

t a* 

aa* 
at 

.aE . I~ 
i aa - ic na 

(2.1) 

where In is a diagonal matrix with non then-th row and n-th column. The equi-

librium solutions for steady waves are given by 

aE -
~-clnA=O 
8A* 

(2.2) 
8E ""'* 
---=+' - clnA = 0 
8A 

where A, A* are the equilibrium values. As the energy is real, the phases can be 

chosen so that A and A* are real, (A= A*). 

This Hamiltonian system has the following properties: 

E(a, ii*) is invariant under the change an~ a~ .(Reality) 

E(a, ii*) is invariant under the change an~ a_n.(Time reversal) 

If A= {An} is a solution, then .Ae = {Aneine}is also a solution. (Galilean invariance) 

We have constructed a model that satisfies these properties. We take jnj S:: 2, 

and write a= (a2,a1,a-i,a-2). The Hamiltonian has the form 
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where 

(2.3) 

The coefficients are chosen so that the values of the solutions at the critical 

points are small integers. 

Equations (2.2) give the equilibrium solutions as a function of the wave speed 

c. This is appropriate for theoretical discussion, but awkward for algebraic manip-

ulation when there is a limit point in c. In this case, it is convenient to take one of 

the canonical variables as the independent parameter. For the present example we 

Only solutions with A-i = A_2 = A~i = A~2 = 0 have been considered. These 

correspond to propagating waves. This Hamiltonian (2.3) possesses equilibrium so­

lutions with Ai = A2 =1, c=2, for which the energy is a maximum, and with Ai =2, 

A2=0, c=2 which is a limit point. See figure 2.1 . 

2.3 Stability 

In order to study the stability of the equilibrium waves, we consider solutions 

of the form 

(2.4) 
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Figure 2.1.- Variation of the energy E and speed c with 

amplitude of fundamental mode for non-linear propagating waves 
by the Hamiltonian of equation (2.3). 

Substituting these expressions into equations (2.1) we obtain the following eigen­

value problem for a,b+, "b-

N ) (£+) = o. a-M b- (2.5) 

a2 E * a2 E where M = BABA* - cln and N = BABA. 

Because of the symmetry and Galilean invariance, a=O is always an eigenvalue 

with algebraic multiplicity at least two and eigenvector ii= (InA, -InA). This is 

called the shift, and corresponds to the trivial bifurcation due to Galilean invariance. 

a) Wave of Maximum Energy 

Saffman (1985) proved that for this wave a=O is an eigenvalue with algebraic 
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multiplicity four, and geometric multiplicity one. The corresponding eigenvector is 

the shift, which at this point is 

(2.6) 

For a general wave u=O is a double eigenvalue, with only one eigenvector. For 

the wave of maximum energy, another two eigenvalues becomes zero, giving a change 

of stability. As the geometric multiplicity does not change, there is no nontrivial 

bifurcation and there is no new family of waves. 

We have solved exactly the eigenvalue problem for our Hamiltonian, and the 

results are given in table 1. We can see that the results confirm Saffman's proof. 

b) Wave of Maximum Speed. 

The results of eigenvalue calculation for this wave are shown in table 2. In this 

case, u =0 is a double eigenvalue, but it has two independent eigenvectors. This 

is the unique wave for which the algebraic and geometric multiplicities of the zero 

eigenvalue are equal. We can determine the reason for this result from examination 

of the equilibrium equation. If we take the derivative of equations (2.2) with respect 

to c, we have 

(2.7) 

From this relation it follows that away from the limit point ( ~1, ~1) is a gener­

alized eigenvector of J(O). At the limit point this vector becomes an eigenvector of 

J(O). If we take, for example, a1 as parameter we can rewrite equation (2.7) as 
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(2.8) 

As we approach the limit point d~c1 --)- 0, so ( ~~, ~~) is a new eigenvector for 

a=O. To check all this behavior, we have expanded the solution in powers of (A1 -2) 

around this point. Keeping the two first terms of the expansion we have solved equa-

tion (2.8). In the limit a1--)- 2, it is found that a solution is (1,-1,0,0,1,-1,0,0) 

which corresponds to the new eigenvector for a=O seen in table 2. For this wave the 

shift eigenvector is (O,l,0,0,0,-1,0,0). 
12 

10 

8 

6 
CT2 

4 

2 

0 

-2 1.8 2.0 2.2 2.4 2.6 2.8 3.0 
. c . 

Figure 2.2.- Plot of the square of eigenfrequency u2 versus 
wavespeed c for the fundamental mode. Note exchange of stability 
at extrema of the energy. 

Figure 2.2 shows a plot of a 2 versus c for the fundamental oscillation, i.e. dis-

turbances for which the n = ±1 components are dominant and which exchange 

stability at extrema of the energy 
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TABLE 1 

(7 
-;tUJU :w:m ·1705 p::s5 0 ?77 ?.77 ~iA -~AA 

order of root 1 1 1 1 4 
a2 0 0 0 0 1 
il1 0 0 0 0 1 

2 _, 
0 0 0 1 0 a-1 _, 
0 1 0 0 0 a-2 

<i2 0 0 0 0 -1 

iii 0 0 0 0 -1 
2 

ii! -1 0 0 1 0 0 
""'* a_2 1 0 0 0 0 

Eigenvalues and eigenvectors for the maximum energy wave. 

TABLE 2 

(7 0 
order of root 1 1 1 1 1 1 2 

a2 0 0 0 0 1 0 0 1 
al 0 0 0 0 1 1 1 -1 2 

a_1 0 0 0 1 0 0 0 0 
a_2 0 1 0 0 0 0 0 0 
ai 0 0 0 0 0 -2 0 1 
a* 0 0 0 0 -1 -1 -1 1 1 2 

a* 0 0 1 0 0 0 0 0 -1 
a* -2 1 0 0 0 0 0 0 0 

Eigenvalues and eigenvectors for the maximum speed wave. 
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