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Abstract

A computation is an operation that can be performed by a physical machine. We are familiar
with digital computers: Machines based on a simple logic function (the binary NOR) and opti-
mized for manipulating numeric variables with high precision. Other computing machines exist:
The neurocomputer, the analog computer, the quantum computer, and the DNA computer all are
known. Neurocomputers—adefined colloquially as computing machines comprising nervous tis-
sue—exist; that they are computers also is certain. Nervous tissue solves ill-posed problems in
real time. The principles underlying neural computation, however, remain for now a mystery.

I believe that there are fundamental principles of computation that we can learn by studying
neurobiology. If we can understand how biological information-processing systems operate, then
we can learn how to build circuits and systems that deal naturally with real-world data. My goal
is to investigate the organizational and adaptive principles on which neural systems operate, and
to build silicon integrated circuits that compute using these principles. I call my approach silicon
neuroscience. the development of neurally inspired silicon-learning systems.

I have developed, in a standard CMOS process, a family of single-transistor devices that 1
call synapse transistors. Like neural synapses, synapse transistors provide nonvolatile analog
memory, compute the product of this stored memory and the applied input, allow bidirectional
memory updates, and simultaneously perform an analog computation and determine locally their
own memory updates. I have fabricated a synaptic array that affords a high synapse-transistor
density, mimics the low power consumption of nervous tissue, and performs both fast, parallel
computation and slow, local adaptation. Like nervous tissue, my array simultaneously and in par-
allel performs an analog computation and updates the nonvolatile analog memory.

Although I do not believe that a single transistor can model the complex behavior of a neural
synapse completely, my synapse transistors do implement a local learning function. I consider

their development to be a first step toward achieving my goal of a silicon learning system.
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Preface: From Neurobiology to Silicon

My goal is to build electronic systems that employ the computational and organizational
principles used in the nervous systems of living organisms. Nervous systems solve, in real time,
ill-posed problems in image and speech processing, motor control, and learning; they do so in
ways that we, as scientists and engineers, do not understand. There are fundamental principles
that we can learn from neurobiology about a different and—on poorly conditioned data—vastly
more efficient form of computation.

I'believe that there is nothing that is done in the nervous system that we cannot emulate with
electronics, once we understand the principles of neural information processing. Although nerv-
ous tissue solves problems that we do not know how to solve, it does so using an underlying de-
vice physics that we know and understand. A similar device physics underlies the semiconductor
electronics that we employ to build our digital computers.

In both integrated circuits and nervous tissue, information is manipulated principally on the
basis of charge conservation. In semiconductor electronics, electrons are in thermal equilibrium
with their surroundings; their energies are Boltzmann distributed. In nerve tissue, ions are in
thermal equilibrium with their surroundings; their energies also are Boltzmann distributed. In
semiconductor electronics, we erect energy barriers to contain the electronic charge, by using the
work-function difference between silicon and silicon dioxide, or the energy barrier in a pn junc-
tion. The nervous system erects similar energy barriers to contain its electronic charge, by using
lipid membranes in an aqueous solution. In both systems, when the height of the energy barrier is
modulated, the resulting current flow is an exponential function of the applied voltage. Both
systems use this principle to produce devices that exhibit signal gain. Transistors use populations
of electrons to change their channel conductance, in much the same way that neurons use popu-
lations of ionic channels to change their membrane conductance.

I believe that the disparity between the computations that can be done by a digital computer
and those that can be done by the nervous system is a consequence of the way that the underlying

physics is used to effect the computation. The state variables in both electronic and nervous sys-
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tems are analog. They are represented in electronic systems by electric charge, and in nervous
systems by electric charge or by chemical concentrations. The mechanisms by which each system
manipulates its state variables to do computation, however, are vastly different. In a digital com-
puter, we ignore most of the available states in favor of the two binary-valued endpoints: We
achieve noise immunity at the expense of dynamic range. The nervous system retains the analog
dynamic range, achieving noise immunity by adjusting the signal-detection threshold adaptively.
Digital machines quantize their analog inputs, and use restoring logic at every computational
step. Nervous systems perform primarily analog computations, and quantize the computed result.

Unfortunately, we do not know what computational primitives neural systems use, how they
represent information, or what their organizing principles are. However, because semiconductor
electronics allows us to apply, at a high level of integration, a device physics similar to that used
by neural tissue, I conclude that we should be able to build electronic circuits that mimic the
computational primitives of nervous systems, and that we should be able to use these circuits to
explore the organizational principles employed by neurobiology. I call my approach silicon neu-
roscience: the development of neurally inspired silicon learning systems.

My predecessors began these investigations by modeling two of the sensory organs available
to neural systems: the retina and the cochlea [1, 2, 3]. The silicon retina and cochlea are now
well developed, and mimic a portion of the sensory preprocessing performed by living organ-
isms. Other researchers have made substantial progress in modeling the motor-control systems
employed by living organisms [4, 5]. My colleagues Paul Hasler, Bradley Minch, and I are now
beginning to model what is perhaps the most remarkable aspect of living organisms: their abili-
ties to adapt and to learn [6~9].

The nervous system has mechanisms for long-term memory and for learning, including syn-
aptic plasticity and neuronal growth [10]. Semiconductor electronics also has mechanisms for
long-term memory—in particular, the nonvolatile EEPROM devices. I have adapted the floating-
gate technology used in digital EEPROM devices to allow nonvolatile analog storage and to per-
form a local learning function, and I have done so using a standard CMOS process. I have devel-
oped a family of single-transistor devices that I call synapse transistors [11-14]; these devices,
like neural synapses, implement long-term nonvolatile analog memory, allow bidirectional mem-
ory updates, and can learn from an input signal without interrupting the ongoing computation.
My synapse transistors also compute the product of their stored analog memory and the applied
input. Although I do not believe that a single device can model the complex behavior of a neural

synapse completely, my synapse transistors do implement a local learning function.
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Neurons are the nervous system’s primary computing elements. A typical neuron is markedly
unlike a typical logic gate: It possesses on average 10,000 synaptic inputs, and a similar number
of outputs. Its stored memory is contained in the pattern and strength of the analog synapses that
connect it to other neurons. Nervous systems use vast numbers of synapses to effect their com-
putations: In neocortical tissue, the synapse density is roughly 3x10® synapses per cubic milli-
meter [15].

I will use vast numbers of silicon synapses to model nervous tissue: Synapse-transistor ar-
rays, fabricated in a standard CMOS process, afford a high device density, mimic the low power
consumption of neural synapses, and perform both parallel computation and local adaptation.
Like neural tissue, arrays of silicon synapse transistors simultaneously perform an analog com-
putation and update their nonvolatile analog weight values.

I believe that, if we can understand the principles on which biological information-
processing systems operate, we can build circuits and systems that deal naturally with real-world
data. My goal, therefore, is to consider the computational principles on which neural systems
operate, and to model and understand those principles in the silicon medium. I consider the de-

velopment of synapse transistors to be a first step toward achieving my goal.
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Chapter 1

Neurobiology, Neural Networks, and
Synapse Transistors

1.1 Neurobiology

The term synapse celebrates its centennial birthday this year: Sherrington first introduced the
term in 1897 to designate a functional junction between nerve cells [1]. Over the past 100 years,
there has emerged an increasing appreciation of the subtlety of form and function of these minute
Junctions: Synapses now are believed to be central to nervous function [2]. In the past decade, an
avalanche of new information about synaptic junctions has been revealed by myriad electronic,
chemical, and pharmacological tools; this information leads us to believe that significant infor-
mation processing arises at or near synaptic interfaces.

A synapse is an anatomically distinct junction between two cells, at least one of which is a
neuron [3]. The morphology of neuronal synapses is reasonably well known [4]. The presynaptic
and postsynaptic membranes are separated by a synaptic cleft roughly 200A wide. Communica-
tion between the cell membranes typically is chemically mediated, is unidirectional, can be ex-
citatory or inhibitory, and can be locally sustained or reversed by repetitive stimuli. Action po-
tentials (binary-valued voltage spikes) arriving at a presynaptic terminal cause, in most cases, the
release of a chemical neurotransmitter; this neurotransmitter diffuses across the synaptic cleft to
cause a potential change in the postsynaptic membrane. This postsynaptic potential is graded,
differing from the binary-valued action-potential input. Changes in the postsynaptic membrane’s
potential and conductance are the variables that underlie synaptic communication.

The synaptic density and connectivity of mammalian nervous tissue is astounding. Neocorti-

cal tissue comprises roughly 3x10% synapses per mm’ [5]. A typical neocortical pyramidal neuron
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may communicate with 10,000 other neurons, usually at a single synaptic junction [5]. Neuronal
signaling is parallel and asynchronous; consequently, postsynaptic potentials are responsible for
the communication and transformation of immense quantities of information.

Synaptic facilitation is defined as an increase in a synapse’s postsynaptic response as a result
of prior stimulation. Usage-dependent synaptic facilitation is well known in nervous tissue; it
arises usually as a result of presynaptic stimulation that is coincident with postsynaptic depolari-
zation [6, 7, 8]. Post-tetanic potentiation (PTP), defined as a short-term increase in postsynaptic
response, typically lasts for minutes. Long-term potentiation (LTP), defined as a long-term in-
crease in postsynaptic response, can last for days or for weeks. Finally, long-term depression
(LTD), defined as a long-term decrease in synaptic efficacy, has recently been observed in nerv-
ous tissue [9]. These effects are nonlinear with presynaptic activity, and the temporal order of the
presynaptic and postsynaptic stimuli has been shown to be critical. If the presynaptic input pre-
cedes the postsynaptic depolarization, then the synapse undergoes LTP; if the timing is reversed,
then the synapse undergoes LTD [10].

The diversity of synaptic and neuronal morphologies and the narrow boundaries of our pres-
ent knowledge warn against excessive generalization about nervous tissue. The range of synaptic
properties includes, at a minimum, polarized and nonpolarized transmission (both chemical and
electrical), excitation, inhibition, graded potentials, variable membrane conductances, delay,
summation, facilitation, and thresholding; most of these parameters are nonlinear and time vari-
able [3, 4]. This mixture is discouragingly complicated—but this neurophysiology is the one

with which we live, and this computational medium is the one that we hope to understand.

1.2 The Neural-Network Revolutions

The study of neurally inspired networks rests on the insights of the neuroanatomist Santiago
Ramoén y Cajal, who in 1911 inferred that the brain could store information and make associa-
tions by modifying connections between nerve cells [11], and the psychologist Donald Hebb,
who in 1949 suggested that such modifications should take place if, and only if, the connected
cells were active simultaneously [12]. The principle that networks can form internal representa-
tions by means of associations—by forming, strengthening, or pruning synaptic connections on
the basis of mutual information-—remains common to nearly all present-day neural-network
models.

The neural-networks field began in the 1940s, and has been marked by three cycles of enthu-
siasm and subsequent skepticism. The first, a result of McCulloch and Pitts” discovery of emer-

gent behavior from a distributed arrangement of simple neuronlike elements [13], was followed
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by a second in the 1960s with Rosenblatt’s perceptron [14]. The third occurred in the 1980s,
when Hopfield used energy surfaces to describe network convergence [15], and Rumelhart and
associates developed the backpropagation method for training multilayer networks [16]. As the
term neural network implies, a primary goal is modeling the computational attributes of real neu-
ronal networks. Unfortunately, it is precisely this goal that has led to the observed cycles: Each
advance yields not the desired result—a computing machine modeled after the brain—but rather
further insights into the enormity of the problem. Mead proposed that we apply our most ad-
vanced technology—silicon VLSI—as a tool to engineer neurally inspired systems; the term
neuromorphic engineering derives from this proposal [17].

Neural-network researchers construct models—mathematical, software, or hardware—that
exhibit computational similarities to nervous tissue. Throughout the history of neural-network
modeling, the locus of interest has been on synaptic weights. McCulloch and Pitts employed neu-
rons with fixed synaptic weights. Although their neurons were simple, they showed that networks
of such neurons could perform many of the logic functions used in digital computers.

Rosenblatt’s perceptron was the first viable neuron model with locally computed weight up-
dates [14]; the perceptron learning rule owed its origins to the Hebb rule. Unfortunately, percep-
tron weights converge only for linearly separable problems, as noted by Minsky and Papert in
their denouement of perceptrons in 1969 [18]. Although the problem of linear inseparability
could be tackled by the addition of a hidden layer to the network, at that time there was no
method for computing the weight values for the internal nodes.

The discovery of a backpropagation-of-errors learning rule for determining the synaptic
weights of hidden units locally [16], using a variant of Hebb’s rule, renewed interest in neural
networks in the 1980s. Hopfield contributed to the excitement by introducing energy surfaces
and free-energy minimization to the neural-network field; he showed how changing the synaptic
weights changed a network’s energy-surface profile, causing the network to converge to different
solutions for a given input [15].

Throughout a half-century of neural-networks research, the dominant viewpoint within the
neural-networks community remained that memory is stored in the synaptic weights. The first
physiological evidence for synaptic modification in real neurons was published in 1973, when
researchers modified synaptic strengths in the hippocampus [6]. There is now a great deal of evi-
dence linking hippocampal LTP to memory formation; for this reason, the dominant viewpoint
within the neuroscience community is that synaptic plasticity is the most plausible model for
memory formation in the brain [19]. Because neural-network and neurophysiological research

both indicate that synaptic plasticity offers the best model for the formation of associations,
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memories, and complex representations in neural-computing networks, 1 have chosen to begin

my research at the level of the synaptic junction.

1.3 Synapse Transistors

A neural network is a collection of interacting elements that operate locally and in parallel,
and that as a whole exhibit emergent properties. Emergent systems represent a new paradigm in
the engineering world: The systems are so complex that detailed engineering is neither possible
nor desirable. We do not yet have the ability to fabricate computing networks in the medium used
by neurobiology —hydrocarbons and aqueous solutions-—but we can investigate such computing
networks using the physics of silicon and metal. Following Mead’s vision, I believe that neurobi-
ology and silicon VLSI afford us an opportunity to learn how to build systems that design them-
selves.

There are essentially two complementary schools of thought in the development of neurally
inspired hardware and systems. In the first, the intent is to reproduce physiological phenomena to
increase our understanding of the nervous system [20]. In the second, the intent is to use a man-
ageable subset of neural properties to investigate emergent behavior in networks of neuronlike
elements [21]. My research falls into the second category: My goal is to build neurally inspired
computing machines in silicon.

Researchers in this second category make the tacit assumption that reproducing many neuro-
physiological details is secondary to understanding the collective behavior of nervous tissue.
Although this assumption may eventually prove erroneous, for now our impoverished tools and
technology (relative to those of biology) make it necessary. Consequently, my work relates to
neuroscience not at the level of neuroanatomical realism, but rather as a representation: 1 believe
that if I can mimic, in silicon, a sufficient subset of the fundamental properties of nervous tissue,
then I will be able to build neurally inspired computing machines that exhibit behavior analogous
to that of nervous systems.

Silicon integrated-circuit processing allows us to make large numbers of nominally identical
circuit elements on a single integrated chip. The synaptic density of nervous tissue, however, is
enormous, even when compared with our most advanced silicon technology. To maximize the
synaptic density in silicon-learning systems, I believe that I must incorporate the computational,
memory-storage, and learning features of neural synapses within a single transistor. To ensure
manageable system-level power consumption, I must make the power consumed by these tran-
sistors similar to that consumed by neural synapses. In addition, the output from these transistors

should be a graded, analog signal, consistent with the postsynaptic response of neural synapses. I
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cannot use digital logic to achieve these goals, but must instead use innate analog state variables
available from the silicon-MOS physics. The nine properties that I have chosen to incorporate
into my silicon-synapse model are: '
Synapses possess nonvolatile analog memory.

When a synapse is not learning, the memory is nonvolatile.

When a synapse is learning, the memory updates can be bidirectional.

The synaptic output is the product of the input signal and the stored memory value.
Synaptic communication and memory updates can occur simultaneously.

Memory updates can vary with both the input signal and the stored memory value.
Synapses are small, and can be densely packed.

Synapses operates off a single-polarity supply.

R S A O i a e

Synaptic power consumption is small.

My hope is that systems fabricated from artificial silicon synapses will exhibit features and

behavior similar to those exhibited by nervous tissue.

1.3.1 Existing Synapse Devices

Many researchers have built synapselike devices in silicon. The range of approaches is ex-
tensive, including complex, mixed analog—digital circuits [22]; devices or circuits that employ
capacitive memory storage [23]; UV-writeable floating-gate devices [24]; electrically writeable
floating-gate devices [25, 26]; and many others. The synapse-weight updates may be computed
locally, using a variant of Hebb’s rule [27], or they may be computed off-chip, and written seri-
ally to the local storage element [25].

The advantages of using floating-gate devices for memory storage are well known [28, 29].
The memory is nonvolatile, the charge storage is inherently analog, and the devices are compact.
Other researchers have fabricated floating-gate silicon synapses [30, 31], both using electrically
erasable, programmable, read-only memory (EEPROM) technology, and using conventional
CMOS technology. EEPROM processing is highly specialized, and the devices are optimized for
binary-valued (digital) storage [32]; consequently, EEPROM devices have not demonstrated the
entirety of analog functions that I desire in a silicon synapse—in particular, they have not dem-
onstrated locally computed weight updates. Floating-gate devices fabricated in conventional
CMOS processes have likewise failed to demonstrate the analog functions that I desire in a sili-
con synapse, primarily because writing the memory requires high voltages and specialized device
layouts. Consequently, there have been no single-transistor floating-gate circuit elements that

combine analog storage, low power consumption, and locally computed weight updates.
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1.3.2 Electrically Writeable Floating-Gate MOS Technology

The earliest experiments involving charge storage on the insulated gate of a field-effect tran-
sistor took place in the 1960s [33, 34, 35]. The goal at that time was to find a replacement for
magnetic (core) memories. Digital EEPROM chips realized commercial success roughly a dec-
ade later. In the 1980s, Alspector and Allen suggested that the memory function in a neural net-
work could be realized by using the analog charge on a floating gate to alter a transistor’s thresh-
old voltage [28]. Many researchers have subsequently investigated synapse devices employing
electrically writeable floating-gate technology [36, 37].

The programming characteristics of floating-gate devices are quite variable, even for nomi-
nally identical transistors on the same chip [38]. For digital memories, these device variations
can be compensated by applying excess charge in the write or erase processes. For analog memo-
ries, these device variations necessitate the use of feedback to ensure accurate memory writes.
Various feedback mechanisms have been tried: Most employ either multi-step, iterative writes
[38]; or single-step, open-loop writes with frequent calibration to compensate device mismatch
and oxide degradation [25]. Neither approach supports locally computed, parallel weight updates
in arrays of floating-gate devices.

I have developed four floating-gate MOS devices (two pFETs and two nFETSs), in a standard
CMOS process, that permit simultaneous memory reading and writing. In all four devices, the
source and oxide currents are simultaneous, analog, and continuously valued. Consequently, I
can use continuous analog feedback to write the charge on the floating gate carefully(see Section
3.2.5), and I can use continuous feedback to implement either a weight-update rule or a weight
constraint in a silicon-learning system (see Section 4.2).

My devices comprise a single transistor, possess nonvolatile analog weight storage, permit
simultaneous source and oxide currents, compute locally the product of their stored weight and
the applied input, and decide locally their own weight updates. I store the weight as charge on the
floating gate (see Figure 1.1). To mimic the power consumption of neural synapses, I operate the
transistors in the subthreshold regime [39]. I modify the floating-gate charge bidirectionally by
using Fowler—Nordheim (FN) tunneling [40] to remove electrons from the floating gate, and by
using hot-electron injection [41] to add electrons to the floating gate.

In the FN-tunneling process (see Figure 1.2), a potential difference between the tunneling
implant and the floating gate reduces the effective thickness of the gate-oxide barrier, facilitating
electron tunneling from the floating gate, through the SiO, barrier, into the oxide conduction

band. These electrons then are swept over to the tunneling implant by the tunneling-implant—to—
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Figure 1.1 A floating-gate MOSFET stores a weight. I define the weight, W, in terms of the floating-gate
charge, Oy, by W=exp(Qs,/Qr) (see Section 1.3.2.1). I employ both n-type and p-type floating-gate MOS-
FETs in my synapse transistors. I show an n-type MOSFET here; the p-type device is functionally similar. I
apply signal inputs to the poly2 control gate, which couples capacitively to the polyl floating gate. I can
choose source current, drain current, or channel conductance as the output; because these quantities all are
related [39], I use only source current in my subsequent analysis. I typically use subthreshold source cur-
rents, for reasons that I discuss in Section 1.3.2.1. From the control gate's perspective, changing Q, shifts

the transistor’s threshold voltage (bidirectionally).
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Figure 1.2 Electron tunneling increases the weight. I tunnel electrons from the floating gate, through the
gate oxide, to the n" tunneling implant. All my devices require large tunneling voltages, because the gate-
oxide thickness in the 2pum process that I use ranges from 350-450 A. Consequently, I must surround the n*
tunneling implant with an n” well, to prevent breakdown of the reverse-biased pn junction from the n-type
tunneling implant to the p-type substrate. More modern processes have thinner oxides and therefore lower
tunneling voltages; consequently, in future devices I anticipate replacing the n~ well with a graded junction

[42].
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floating-gate oxide electric field. In the hot-electron injection process (see Figure 1.3), electrons
accelerate to high energies in the transistor’s drain-to-channel electric field. A fraction of these
electrons scatter upward into the gate oxide, and inject over the Si-SiO, work-function barrier
into the oxide conduction band. These electrons then are swept over to the floating gate by the
floating-gate—to—drain oxide electric field.

I fabricate all my devices in a standard 2um n-well CMOS process (with NPN option) avail-
able from MOSIS (the 2pm Orbit process). Unlike digital EEPROMs, my devices require no
special process-fabrication steps; I simply modify the implant and gate locations and geometries,
within the standard process, to allow simultaneous channel and oxide currents. In addition, be-
cause I use a standard process, my devices can be integrated with conventional digital or analog

MOS circuits elements.
1.3.2.1 Floating-Gate Transistors Store a Weight

I choose source current as the transistor output. I apply signal inputs to the poly2 control
gate, which in turn couples capacitively to the poly1 floating gate. By operating the transistor in
the subthreshold regime, I obtain three benefits. First, subthreshold channel currents ensure low
power consumption—typically less than 100nW per device. Second, because the source current
in a subthreshold MOSFET is an exponential function of the gate voltage, small changes to the
floating-gate charge shift the transistor’s threshold voltage measurably. Third, the output is the

product of a stored weight and the applied input:

KV K(Qrg+CinVin) O KV
L=Te' =Ie ™ =pe%e" (1.1
K'Vin
=Wle ' (1.2)

where /; is the source current, I, is the pre-exponential current, x is the coupling coefficient from
the floating gate to the channel, Qy, is the floating-gate charge, Cr is the total capacitance seen by
the floating gate, U, is the thermal voltage kT/q, C;, is the input (polyl to poly2) coupling ca-
pacitance, Vj, is the control-gate voltage, Q=C1U,/x, k' =xC,y/Cr, W=exp(Qg/Qr), and, for
simplicity, the source potential is assumed to be ground (V,=0). The weight W is the learned

quantity: Its value derives from the floating-gate charge, which can change with synapse use.

1.3.2.2 Floating-Gate Transistors Multiply

The transistor output is the product of W and the source current of an idealized MOSFET that
has a control-gate input V;, and a coupling coefficient x” from the control gate to the channel (see

Eqn. (1.2)). Consequently, subthreshold floating-gate MOSFETs multiply.
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Figure 1.3 Electron injection decreases the weight. I inject electrons from the drain-to-channel depletion

region of a subthreshold MOSFET to the floating gate. The nFET transistor shown here differs from a con-

ventional n-type MOSFET in its use of a moderately doped channel implant. This implant facilitates hot-

electron injection, for reasons that I discuss in Section 2.1.2. The floating-gate pFET devices, by contrast,

induce a hot-electron gate current without any special channel implant; they generate electrons for oxide

injection by means of hole-impact ionization in the drain-to-channel depletion region of a subthreshold p-

type MOSFET (see Section 3.1.2).

1.3.2.3 Weight Updates Are Bidirectional

I effect bidirectional weight updates by using FN tunneling to remove electrons from the

floating gate, and by using hot-electron injection to add electrons to the floating gate. The tun-
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neling and injection oxide currents vary with the transistor’s terminal voltages and source cur-
rent; consequently, the weight-update rate dW/or varies with the terminal voltages, which are
imposed on the device, and with the source current, which is the present output. As a result, the

synapse learns: Its future weight value depends on the applied input and the present weight value.

1.3.2.4 Floating-Gate Storage Is Nonvolatile

Thermally accelerated leakage experiments on floating-gate MOS devices fabricated in the
2um Orbit process indicate that the weight will decrease by less than an e-fold in magnitude over

a 25-year period at 55°C {36].

1.3.3 Floating-Gate MOS Synapse Transistors

I have named my devices synapse transistors. In Chapter 2, I describe and characterize a pair
of n-type synapse transistors; these devices integrate FN tunneling and hot-electron injection
within an n-type floating-gate MOSFET. In Chapter 3, I describe and characterize a pair of p-
type synapse transistors; these devices integrate FN tunneling and hot-electron injection within a
p-type floating-gate MOSFET. All four devices are compact, consume little power, and operate
off a single-polarity supply.

Although a single transistor cannot model the complex behavior of a neural synapse com-
pletely, my synapse transistors do possess the nine attributes that I enumerated in Section 1.3,
and they can learn from an input signal without interrupting the ongoing computation: Their fu-
ture output depends on both the applied input and the present output. Because synapse transistors
permit both local computation and local weight updates, I can use them to build autonomous
learning arrays in which both the system outputs, and the memory updates, are computed locally

and in parallel (see Chapter 4).
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Chapter 2

The n-Type Synapse Transistors

In this chapter, I describe the layout, characteristics, and weight-update behavior of my nFET
synapse transistors. I describe first a four-terminal synapse, and from this device I then develop a

three-terminal synapse. I describe my p-type synapse transistors in Chapter 3.

2.1 A Four-Terminal nFET Synapse

The four-terminal nFET synapse, shown in Figure 2.1, is an n-type MOSFET with a polyl
floating gate, a poly2 control gate, a moderately doped channel, and a fourth terminal used for
gate-oxide tunneling. I use FN tunneling to remove electrons from the floating gate, and use
channel hot-electron injection (CHEI) to add electrons to the floating gate. This nFET synapse

has the following features:

® Electrons tunnel from the floating gate to an n" tunneling implant through gate oxide. High
voltages applied to the tunneling implant provide the oxide electric field required for tun-
neling. To prevent breakdown of the reverse-biased pn junction from the substrate to the tun-
neling implant, I surround the n* tunneling implant with a lightly doped (~5x10”cm™) n~

well. Tunneling removes electrons from the floating gate, increasing the synapse weight W.

® Electron tunneling is enhanced where the polyl floating gate overlaps the heavily doped
(~1x10%cm™) n* tunneling implant, for two reasons. First, the gate cannot deplete the n”,
whereas it does deplete the n~ well. Thus, the oxide electric field is higher over the n*. Sec-

ond, enhancement at the gate edge further augments the oxide field.

® Electrons inject from the drain-to-channel space-charge region to the floating gate. To fa-

cilitate CHEI, I apply a bulk p-type implant (a ~1x 10" cm™ NPN BJT base implant) to the
p p
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three diagrams are aligned vertically. Diagrams A and C are drawn to scale; for clarity, I have exaggerated
the vertical scale in diagram B. In the 2pum Orbit process, the synapse length is 48 um, and the width is
17um. All voltages in the conduction-band diagram are referenced to the source potential, and I have as-
sumed subthreshold source currents (/;<100nA). Although the gate-oxide band diagram actually projects
into the plane of the page, for clarity I have rotated it by 90° and have drawn it in the channel direction.
When compared with a conventional nFET, the p-type substrate implant quadruples the MOS gate-to-
channel capacitance. With a 501F interpoly capacitor as shown, the coupling coefficient between the poly2
control gate and the poly1 floating gate is only 0.2. To facilitate testing, I enlarged the interpoly capacitor to
1pF, thereby increasing the coupling to 0.8. This device, like all my synapse transistors, requires large tun-
neling voltages, because the gate-oxide thickness in the 2pm process ranges from 350-450A. Conse-
quently, I surround the n* tunneling implant with an n~ well, to prevent breakdown of the reverse-biased pn

junction from the n-type tunneling implant to the p-type substrate.

MOS-transistor channel. This implant serves two functions. First, it increases the peak drain-
to-channel electric field, thereby increasing the hot-electron population in the drain-to-
channel depletion region. Second, it allows the MOSFET to operate with both high floating-
gate voltages and subthreshold source currents; if the floating-gate voltage exceeds the drain
voltage, the drain-to-gate oxide electric field transports injected electrons to the floating gate.

CHEI adds electrons to the floating gate, decreasing the synapse weight W,

® Oxide uniformity and purity determine the initial matching between synapses, as well as the
learning-rate degradations due to oxide trapping. I therefore use the thermally grown gate

oxide for all SiO, carrier transport.

I intend to build silicon-learning systems using synapse transistors with subthreshold channel
currents (note that I equate channel current with source current). The learning behavior of my
systems will derive in part from the tunneling and injection processes that alter the stored
weights; consequently, I have investigated these processes over the subthreshold channel-current

range.

2.1.1 Electron Tunneling Increases the Weight

I increase the synapse weight W by tunneling electrons off the floating gate [1]. The tunnel-
ing process is shown in the energy-band diagram [2] of Figure 2.1. A potential difference be-
tween the tunneling implant and the floating gate reduces the effective oxide thickness, facilitat-

ing electron tunneling from the floating gate, through the SiO, barrier, into the oxide conduction
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Figure 2.2 Tunneling gate current versus reciprocal oxide voltage. I measured the tunneling gate current /,
versus the oxide voltage V., where I define V,, to be the potential difference between the n* tunneling im-
plant and the floating gate, and I plotted I, versus —~1/V,,. I fit the data using a conventional Fowler—
Nordheim expression [1, 3]. I normalized /, to the tunneling-junction gate-to-n* edge length, in lineal mi-
crons, because the floating gate induces a depletion region in the lightly doped n~ well, reducing the effec-
tive oxide voltage and with it the tunneling current. Because the gate cannot deplete the n* well contact ap-
preciably, the oxide electric field is higher where the self-aligned floating gate overlaps the n*. Because /,
increases exponentially with V,, gate-oxide tunneling in the synapse transistors is primarily an edge phe-

nomenon.

band. These electrons are then swept over to the tunneling implant by the oxide electric field. I
apply positive high voltages to the tunneling implant to promote electron tunneling.
In Figure 2.2, I show the tunneling gate current (the oxide current) versus the reciprocal of

the voltage across the tunneling oxide. I fit these data with an FN fit [1, 3]:

ly=Tge ™ @2.1)

where I, is the gate current; V,, is the oxide voltage; Vy=984V is consistent with a recent survey

[4] of SiO, tunneling, given the synapse transistor's 400 A gate oxide; and I, is a pre-exponential

current.
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2.1.2 Electron Injection Decreases the Weight

I decrease the synapse weight W by injecting electrons onto the floating gate. CHEI in con-
ventional MOSFETs is well known [5]. It occurs in short-channel devices with continuous chan-
nel currents, when a high gate voltage is combined with a large potential drop across the short
channel. It also occurs in switching transistors, when both the drain and gate voltages are tran-
siently high. In neither case is the CHEI suitable for use in a learning system. The short-channel
CHEI requires large channel currents, consuming too much power; the switching-induced CHEI
is a poorly controlled transient phenomenon. Instead, I use the drain-to-channel electric field in a
subthreshold MOSFET to accelerate channel electrons to high energies; I show the process in the
energy-band diagram of Figure 2.1.

Electrons inject from the transistor channel, over the 3.2V Si-SiO, work-function barrier,
into the oxide conduction band. These electrons then are swept over to the floating gate by the
oxide electric field. For electrons to be collected at the floating gate, the following three condi-
tions must be satisfied: (1) the electrons must possess the 3.2eV required to surmount the Si—
Si0; work-function barrier, (2) the electrons must scatter upward into the gate oxide, and (3) the
oxide electric field must be oriented in the proper direction to transport the injected electrons to
the floating gate.

In a conventional n-type MOSFET, requirements 1 and 2 are readily satisfied: I merely oper-
ate the transistor in its subthreshold regime, with a drain-to-source voltage greater than about 3V.
Because the subthreshold channel-conduction band is flat, the drain-to-channel transition is
steep, and the drain-to-channel electric field is large. Channel electrons are accelerated rapidly in
this field; a fraction of them acquire the 3.2eV required for hot-electron injection. A fraction of
these 3.2eV electrons naturally scatter, by means of collisions with the semiconductor lattice,
upward into the gate oxide.

It is principally requirement 3 that prevents a gate current in a conventional subthreshold
nFET. Subthreshold operation typically implies gate-to-source voltages less than 0.8 V. With the
drain at 3V, and the gate at 0.8V, the drain-to-gate electric field opposes the transport of the in-
jected electrons to the floating gate. The electrons are instead returned to the drain.

In the synapse transistor, I promote the transport of injected electrons to the floating gate by
adding a bulk p-type implant to the channel region. This implant serves two functions. First, it
increases the peak drain-to-channel electric field, thereby increasing the hot-electron population
in the drain-to-channel depletion region. Second, it increases the channel surface-acceptor con-
centration, raising the transistor’s threshold voltage V; from 0.8V to 6 V. This increase ensures

that, for typical floating-gate and drain voltages of about 5.5V and 3V, respectively, the channel
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Figure 2.3 Four-terminal nFET-synapse CHEI surface plot. I measured the CHEI gate current I, versus
both the gate-to-channel potential, V., and the drain-to-channel potential, V., for a fixed source current
L=1nA. I plotted the gate current /, divided by the source current I;. In the subthreshold regime, I, in-
creases linearly with /s (see Figure 2.5); consequently, these data show the CHEI efficiency for the entire
subthreshold source-current range. Where Vi,>Vy (Vi, and Vy are the floating-gate and drain voltages, re-
spectively), the CHEI efficiency is only weakly dependent on V. Where Vy>Vy,, the drain-to-gate oxide
electric field returns injected electrons to the drain, rather than transporting them to the floating gate, and
the CHEI efficiency drops. I anticipate that, for most learning applications, V,. will vary by at most a few
hundred millivolts, and Vi, always will exceed V during CHEIL Consequently, in fit Eqn. (2.2), T assume
that the CHEI efficiency depends only on V.

current still 1s subthreshold, but now the drain-to-gate oxide electric field transports injected
electrons over to the floating gate, rather than returning them to the drain.

From the perspective of the control gate, raising the MOSFET’s threshold voltage is incon-
sequential, because the control and floating gates are isolated capacitively. I can, therefore, use
control-gate inputs in the conventional OV to 5V range, regardless of the floating-gate transis-
tor’s threshold voltage.

In Figure 2.3, I show the four-terminal nFET synapse’s CHEI efficiency (gate current /, di-
vided by source current /) versus both the drain-to-channel and the gate-to-channel potentials. I
plot the data as efficiency because the gate current increases linearly with the source current over

the entire subthreshold range (see Figure 2.5). I reference the drain to the channel potential be-
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Figure 2.4 Four-terminal nFET-synapse CHEI efficiency versus drain-to-channel voltage. I fixed the gate-
to-channel voltage at V=6.1V and the source current at I;=10nA, and I measured the gate current I, ver-
sus the drain-to-channel voltage V.. I anticipate that most learning systems will employ small gate currents;
consequently, the simple exponential fit models the data accurately for the range of drain voltages that I

expect to use in my learning systems.

cause the hot-electron population derives from the drain-to-channel electric field; I reference the
floating gate to the channel potential because the direction of electron transport within the oxide
derives from the direction of the gate-to-channel electric field. I can re-reference my results to
the source potential by using the relationship between source and channel potential in a sub-
threshold MOSFET [6, 7].

In Figure 2.4, I plot both the measured CHEI efficiency, and an empirical fit to these data,
versus the drain-to-channel potential, V., for a typical value of gate-to-channel potential. When
Ve is less than 2V, the CHEI gate current is exceedingly small, and the weight W remains non-
volatile. When V. exceeds 2.5V, the CHEI gate current causes measurable changes in the syn-
apse weight W. I expect my silicon-learning systems to use slow adaptation; consequently, I an-
ticipate using very small oxide currents. Because the four-terminal nFET synapse’s CHEI effi-
ciency is high, I anticipate that Vg typically will be less than 3V, and always will be less than

3.5V. Consequently, I can fit the data of Figure 2.4 using a simple exponential:
Ve

Vinj

1, =Ble

. (22)
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gate current (A)

source current (A)

Figure 2.5 Four-terminal nFET-synapse gate current versus source current. I held the drain-to-bulk and
gate-to-bulk voltages fixed at Vg, =5V and Vg,=7V, respectively, and measured the gate current /, versus
the source current /,. These data show that the four-terminal nFET synapse’s CHEI efficiency is independ-

ent of source current over the subthreshold source-current range.

where /, is the gate current; [, is the source current; V. is the drain-to-channel potential; and B,
Vi, are fit constants.

As a consequence of this synapse transistor’s 6V threshold, the floating-gate voltage usually
exceeds 5V; if V4. <3.5V, then the drain-to-gate oxide electric field strongly favors the transport
of injected electrons to the floating gate. The CHEI efficiency therefore is, to first order, inde-

pendent of the gate-to-channel potential, and I model the CHEI process using only Eqn. (2.2).

2.1.3 The Gate-Current Equation

Because the tunneling and CHEI gate currents flow in opposite directions, I obtain the four-
terminal nFET synapse’s gate-current equation by subtracting Eqn. (2.2) from Eqn. (2.1):

Ve e
VOX v
I, =1e —Ble

inj

(2.3)

This equation describes the gate current accurately over my anticipated synapse-operating range.
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Figure 2.6 A 2x2 array of four-terminal nFET synapses. The arrow at each synapse’s floating gate denotes
a tunneling junction; the curved line in the transistor symbol denotes a pbase channel implant. The row syn-
apses share common tunneling and drain wires; consequently, tunneling or injection at one row synapse can

cause undesired tunneling or injection at other row synapses.

2.1.4 Isolation and Weight Updates in a Synaptic Array

A synaptic array, with a synapse transistor at each node, can form the basis of a silicon
learning system. I fabricated a simplified 2x2 array of four-terminal nFET synapses to investi-
gate isolation during tunneling and injection, and to measure the synapse weight-update rates.
Because this 2x2 array uses the same row—column addressing that I will employ in larger arrays,
it allows me to characterize the synapse isolation and weight-update rules completely.

I show the array in Figure 2.6. I chose, from among the many possible ways of using the ar-
ray, to select source current as the synapse output, and to turn off the synapses during tunneling. I
applied the voltages shown in Table 2.1 to read, tunnel, or inject synapse {1,1} selectively, while

ideally leaving the other synapses unchanged.

2.1.4.1 Synapse Isolation

The tunneling and drain terminals of the array synapse transistors connect within rows, but
not within columns. Consequently, the tunneling and CHEI crosstalk between column synapses is

negligible. A synapse’s tunneling gate current increases exponentially with its oxide voltage V.,
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Table 2.1 Four-terminal nFET-synapse array terminal voltages. I applied these voltages to the array of

Figure 2.6, to obtain the data in Figure 2.7.

column column column column row 1 row 2 row 1 row 2
{ gate 2 gate 1 source 2 source drain drain tunnel tunnel
read +5 A 0 | 0 ‘ 0 ' +1 | 0 ‘ 0 Y 0
mnnel ............... 0+5 .................... () .................... () ..................... () ..................... 0 .................. +31 .................. O __________
..... lnject+5()oo315000

(Vox, 1n turn, decreases linearly with Vi), and its CHEI gate current increases linearly with its
channel current [, (I, in turn, increases exponentially with Vi,). Consequently, the tunneling and
CHEI crosstalk between row synapses decrease exponentially with the voltage differential be-
tween the row synapses’ floating gates. By using 5V control-gate inputs, I achieve about a 4V
differential between the floating gates of the selected and deselected synapses; the resulting cros-
stalk between row synapses is <0.01 % for all operations.

I show synapse-isolation data in Figure 2.7. To obtain the data in part A, I first initialized all
four synapses to [;=100pA. I then tunneled the {1,1} synapse up to 100nA, and injected it back
down to 100pA, while I measured the source currents of the other three synapses. As I expected,
the row 2 synapses were unaffected by either the tunneling or the injection. Coupling to the {1,2}
synapse also was small.

To obtain the data in part B of Figure 2.7, I first initialized all four synapses to /,=100nA. I
then injected the {1,1} synapse down to 100pA, and tunneled it back up to 100nA. As in the ex-

periment of part A, crosstalk to the other synapses was negligible.
2.1.4.2 Synapse Weight Updates

A synapse’s weight updates derive from the tunneling and CHEI oxide currents that alter the
floating-gate charge. Because these oxide currents vary with the synapse’s terminal voltages and
source current, the weight-update rate dW/dr varies with the terminal voltages, which are im-
posed on the device, and with the source current, which is the synapse output. Consequently, the
synapse learns: Its future output depends on both the applied input and the present output.

I repeated the experiment of Figure 2.7 (A), for several tunneling and injection voltages; in
Figure 2.8, I plot the magnitude of the temporal derivative of the source current versus the source

current, for a synapse transistor with (part A) a set of fixed tunneling voltages, and (part B) a set
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Figure 2.7 Isolation in a 2x2 array of four-terminal nFET synapses. The terminal voltages for both ex-
periments are shown in Table 2.1 (see pg. 24). (A) I first tunneled the {1,1} synapse up to 100nA, then I
injected it back down to 100pA, while I measured the source currents of the other three synapses. Crosstalk
to the {1,2} synapse, defined as the fractional change in the {1.2} synapse’s source current divided by the
fractional change in the {1,1} synapse’s source current, was 0.006% during tunneling, and was 0.002%
during injection. (B) I first injected the {1,1} synapse down to 100pA, then I tunneled it back up to 100nA.

Crosstalk to the {1,2} synapse was 0.001 % during injection, and was 0.002 % during tunneling.
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of fixed drain voltages. In both experiments, I held the control-gate input V;, fixed; consequently,
these data show the synapse weight updates dW/dt, as can be seen by differentiating Eqn. (1.2). 1

now derive a weight-update rule that fits these data.

2.1.4.2.1 The Tunneling Weight-Increment Rule

I first show that tunneling-induced weight increments follow a power law. I begin by taking
the temporal derivative of the synapse weight W, where W=exp(Q/Q1):
W _ w9 W

5= 6; — = G.[g 2.4)
I substitute Eqn. (2.1) for the gate current /,:
I W -7
W ol Vox @.5)

ot Qr
I substitute Vox=Vua—Vi, (where V, and Vj, are the tunneling-node and floating-gate volt-

ages, respectively), assume that V,>> Vi, expand the exponent using (1-x)™' =1 +x, and solve:
_ vy ViV
oW ItoW Viun ng
—é-i— = QT 4 (26)
I substitute Vi, =U, Qg /xQr, and solve for the tunneling weight-increment rule:

W _ 1, 0-0)

ST @7
V.U
where c=—L > (2.8)
KV[un
Vi
and Ty = %T—evmn (2.9)
to

The parameters ¢ and T, vary with the tunneling-node voltage V.
2.1.4.2.2 The CHEI Weight-Decrement Rule

[ now show that the CHEI-induced weight decrements also follow a power law. I begin by
defining a synapse transistor’s drain-to-channel potential, V., in terms of Vg and /. In a sub-
threshold floating-gate MOSFET, the source current is related to the floating-gate and source

voltages [8] by

KVfg-VS
8]
I =1¢e '

s 8]

(2.10)

and the channel-surface potential, ¥, is related to the floating-gate voltage, Vi, [6, 7] by
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Figure 2.8 Four-terminal nFET-synapse (A) tunneling and (B) CHEI weight updates. In both experiments,

I measured the synapse’s source current /; versus time, and plotted 19/,/9rl versus I;. I fixed the synapse’s

terminal voltages; consequently, the change in [ is a result of changes in the synapse’s weight W. In part A,

I applied V;,=0V, V=0V, V=2V, and stepped V,,, from 29V to 35V in 1V increments; in part B, I ap-

phied Vi, =5V, V=0V, V,,,=20V, and stepped V from 2.9V to 3.5V in 0.1V increments. I turned off the

tunneling and CHEI at regular intervals, to measure /;. Because, for a fixed Vy,, the synapse weight updates

oW/ot are proportional to 9l,/0t (see Eqn. (1.2)), these data show that the weight updates follow a power

law. The mean values of ¢ and g4, are 0.17 and 0.24, respectively.
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W=V, + W, 2.11)
where K is the coupling coefficient from the floating gate to the channel, and ¥, derives from the

MOS process parameters.

Using Eqns. (2.10) and (2.11), I solve for the surface potential ¥ in terms of /; and V:

/TN
Y=V, +¥, +UtlnLT‘S—J (2.12)
[s]
I now solve for Vy.:
I
Vie =V =¥ =V, -, “UIIH(I_S) (2.13)
[0

The CHEI gate current [, is given by Eqn. (2.2). I add a minus sign to /,, because CHEI de-

creases the floating-gate charge, and substitute for V4. using Eqn. (2.13):

Vas—¥o~ Ugn{Js /1) U V=Y 1 Uy
Vinj Vi~ Vigj " Vi
I, =-Ble =-BI, "e I (2.14)
I substitute for /; using Eqn. (1.2), and solve:
K’Vin Vs "K,Vin -y 1 U,
U, Vinj " Vinj
I, =-Bl e %4 (2.15)
[ substitute Eqn. (2.15) into dW/at from Eqn. (2.4),
K'Vin " Vs =K Vin—¥o 5 Ut \
ow _ BI, Ui Vinj © Vinj ) \
—-a—t——- - QT e W (‘.16)
to get the final weight-decrement rule:
oW 1 (2-€4n)
—= w 2.17
ot Tinj_éln ( )
U
where €4 = V.‘ (2.18)

Y Vin;
and Tinj_an = BQIl e ! (2.19)
o

The parameter €4, is fixed; the parameter Tin_an varies with Vy; and with V.

2.1.4.2.3 The Synapse Weight-Update Rule

I obtain the complete weight-update rule, for the four-terminal nFET synapse, by adding
Eqns. (2.7) and (2.17):

oW _ 1 im0 1)

o 2.20
ot Ttun Tinj_étkn ( )
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Figure 2.9 Four-terminal nFET-synapse impact ionization versus drain-to-channel voltage. I fixed the gate-
to-channel voltage at V,=6.1V and the source current at [;=10nA, and measured the drain current I3 ver-
sus the drain-to-channel voltage V.. By plotting the data as efficiency (drain current I, divided by source
current I, minus one), I show the impact-ionization probability as a function of the drain-to-channel volt-
age. Although I can fit these data over the entire drain-voltage range by using a modified lucky-electron
model (see, for example, Figure 2.19), my chosen exponential fit is simpler, and models the data accurately
over the drain-voltage range that I anticipate using in my learning systems (I use the same fit range for the

CHEI efficiency data in Figure 2.4).

2.1.5 Impact Ionization Increases the Drain Current

In silicon, the barrier energy opposing electron injection into the gate oxide is larger than the
activation energy for electron impact ionization; consequently, a drain-to-channel electric field
that generates electrons for oxide injection also liberates additional electron-hole pairs [9, 10],
causing /4 to increase exponentially with V.. I show electron impact-ionization data from the
four-terminal nFET synapse in Figure 2.9. For simplicity, I chose to fit these data using an expo-
nential fit, rather than using the conventional (but more complicated) lucky-electron fit; the ex-
ponential fit models the data accurately over the drain-voltage range that I anticipate using in my
learning systems. If T choose drain current, rather than source current, as the synapse output, I

can rewrite the gate-current equation by replacing /3 with /; according to my fit equation:



Chapter 2 30

55 T T J T H
hot-electron injection
50

45
40

35
electron tunneling

30

oxide current (fA)

25

T

201

13 ]

0 05 1 1.5 2 2.5 3

15 ] i

transported oxide charge (nC)

Figure 2.10 Oxide trapping in the four-terminal nFET synapse. In the tunneling experiment, I fixed the
tunneling-oxide voltage at V,,=31V. In the injection experiment, I fixed the source current at I,=50nA, the
drain-to-channel voltage at V4.=3.5V, and the floating-gate—to—channel voltage at V,,=6.0V. I measured
the tunneling and CHEI oxide currents versus the total (accumulated) charge transported through the oxide.
The decrease in oxide current with oxide charge is a consequence of electron trapping. These data show
that, to equalize the degradation rates, I should construct future synapses with larger tunneling junctions.
Unfortunately, larger tunneling junctions have larger capacitive coupling from the tunneling implant to the
floating gate (see the discussion of parasitic coupling in Section 2.3.3). Because the synapse’s weight W
increases exponentially with the floating-gate charge Oy, (see Eqn. (1.2)), adding even 0.1nC of charge to
the floating gate causes an enormous weight increase; consequently, oxide trapping in the present tunneling

junction can be ignored safely.

NMie
Iy =1 1+ve "™ (2.21)

where y and Vi, are measurable fit constants.

2.1.6 Oxide Trapping Is Small

Si0, trapping is a well-known issue in floating-gate transistor reliability [11]. In digital
EEPROMs, it ultimately limits the transistor life. In the synapse, oxide trapping decreases the
weight-update rate. However, because a synapse transistor’s weight W is exponential in the

floating-gate charge Qg (see Eqn. (1.2)), the synapses in a subthreshold-MOS learning system
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will transport only small quantities of total oxide charge over the system lifetime. In Figure 2.10,
I plot tunneling and CHEI gate currents versus the total (accumulated) charge transported
through the oxide. These data show that the CHEI-oxide trapping is small, but that the tunneling-
oxide trapping can decrease the tunneling-gate current substantially. To equalize the degradation,
I can use larger tunneling junctions. However, I believe that, even without enlarging the junction,
the tunneling-oxide trapping can be ignored safely, because synapses require such small quanti-

ties of charge for their weight updates.

2.2 A Three-Terminal nFET Synapse

The four-terminal nFET synapse employs an n* doped drain, and an »n* doped tunneling im-
plant that is surrounded with n~ to prevent pn junction breakdown. I now combine these terminals
to yield a more compact device. My three-terminal nFET synapse integrates the tunneling func-
tion within the drain, eliminating the separate tunneling terminal.

The three-terminal nFET synapse, shown in Figure 2.11, is an n-type MOSFET with a polyl
floating gate, a poly2 control gate, a moderately doped channel, and a lightly doped drain. Like
the four-terminal nFET synapse, this three-terminal device uses FN tunneling to remove elec-

trons from the floating gate, and CHEI to add them. This synapse’s principal features are:

® FElectrons tunnel from the floating gate to the drain through gate oxide. High voltages applied
to the drain provide the oxide electric field required for tunneling. To prevent breakdown of
the reverse-biased pn junction from substrate to drain, I use a lightly doped (~5x 10" cm™) 1~
well as the drain (a well-drain). Tunneling removes electrons from the floating gate, in-

creasing the synapse weight W.

® Electron tunneling is enhanced where the polyl floating gate overlaps the heavily doped
(~1x10®cm™) n* well-drain contact, for the same two reasons that it is enhanced in the
four-terminal nFET synapse: (1) the oxide electric field is higher over the n*, and (2) en-

hancement at the gate edge further augments the field.

® Electrons inject from the drain-to-channel space-charge region to the floating gate. As I did
in the four-terminal nFET synapse, I apply a bulk p-type (~1x10""c¢m™ NPN BJT base) im-
plant to the three-terminal nFET synapse’s channel region. This implant serves the same two
functions that it does in the four-terminal nFET synapse: (1) it increases the peak drain-to-
channel electric field, and (2) it allows the MOSFET to operate with much higher floating-
gate voltages while retaining subthreshold source currents. Injection adds electrons to the

floating gate, decreasing the synapse weight W.
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Figure 2.11 The three-terminal nFET synapse, showing the electron tunneling and injection locations. The
diagrams are aligned vertically. Diagram A is drawn to scale; for clarity, I have exaggerated the vertical
scale in diagram B. In the 2um Orbit process, the synapse length is 38um, and the width is 16um. When
compared with a conventional nFET, the p-type substrate implant quadruples the MOS gate-to-channel ca-
pacitance. With a S0fF interpoly capacitor as shown, the coupling coefficient between the poly2 control
gate and the poly1 floating gate is only 0.2. To facilitate testing, I enlarged the interpoly capacitor to 1pF,

thereby increasing the coupling to 0.8.
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® Because the channel doping exceeds the drain doping, the drain-to-channel space-charge re-
gion appears primarily on the drain side of the channel-drain junction. As a result, the hot-
electron population also appears primarily on the drain side of the junction. I greatly facili-
tate CHEI by extending the MOS gate oxide 2pum beyond the channel—drain edge, over this
space-charge region, thereby causing the injected electrons to encounter gate oxide rather

than a field-oxide channel stop.

® ] use the thermally grown gate oxide for all SiO, carrier transport.

I operate the three-terminal nFET synapse in or near the subthreshold regime, and I select
source current as the output. Because the drain comprises n~ doped rather than n* doped silicon,
the drain resistance is much higher than in the four-terminal nFET synapse. Fortunately, because
the channel currents that I use rarely exceed a few microamps; the potential drop within the drain

is small; the additional resistance does not affect the transistor operation significantly.

2.2.1 Electron Tunneling Increases the Weight

The tunneling junction in the three-terminal nFET synapse is functionally identical to the
tunneling junction in the four-terminal nFET synapse; consequently, electron tunneling increases

the weight W in an identical fashion to that described in Section 2.1.1.

2.2.2 Electron Injection Decreases the Weight

I decrease the three-terminal nFET synapse’s weight W by injecting electrons onto the float-
ing gate. I show the CHEI process in the energy-band diagram of Figure 2.12 (part A). Like in the
four-terminal nFET, electrons inject from the transistor channel, over the 3.2V Si-SiO, work-
function barrier, into the oxide conduction band. These electrons then are swept over to the
floating gate by the oxide electric field. For electrons to be collected at the floating gate, the
three conditions I enumerated in Section 2.1.2 must again be satisfied: (1) the electrons must
possess the 3.2eV required to surmount the Si-SiO, work-function barrier, (2) the electrons must
scatter upward into the gate oxide, and (3) the oxide electric field must be oriented in the proper
direction to transport the injected electrons to the floating gate.

I accelerate channel electrons to 3.2eV in the three-terminal synapse’s drain-to-channel
electric field. However, a 3.2eV electron population is not, by itself, sufficient for CHEL As I
show in part B of Figure 2.12, a conventional well-drain MOSFET can experience a drain-to-
channel electric field greater than 10V/um, thereby inducing a large 3.2eV electron population.

Still, when operating in the subthreshold regime, this device experiences little or no CHEIL Under
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Figure 2.12 The three-terminal nFET synapse compared to a well-drain MOSFET. I show, both for the
three-terminal nFET synapse and for a well-drain MOSFET, the electron conduction-band potential and the
corresponding electric field, calculated from implant impurity concentrations {2]. T assume that the well—
drain MOSFET is identical to the synapse transistor of Figure 2.11, with the exception of its channel-
impurity concentration, which in the synapse transistor is ~1x10""cm™, and in the well-drain MOSFET is
~5%10"cm™. For both transistors, I assume step-doping profiles and subthreshold source currents
(1,<100nA). For the synapse transistor, both the impact-ionization data of Figure 2.19, and an observed
70V drain-avalanche onset, are consistent with my step-junction assumption. I reference all voltages to the
channel potential; I measure all positions from the channel edge of the drain-to-channel space-charge layer.
Although the gate-oxide band diagrams actually project into the plane of the page, for clarity I have rotated
them by 90° and have drawn them in the channel direction. Because, for both devices, the conduction-band
edge provides the reference potential for the oxide barrier's leading edge, the barrier shape varies with posi-
tion z along the channel. For clarity, I have drawn the oxide barriers for only a single channel position, z,.
At z=7/, the oxide voltage is zero; for z>7/, the oxide electric field opposes the transport of injected elec-

trons to the floating gate.

similar conditions, the three-terminal nFET synapse’s CHEI efficiency can exceed 1x 10, This
improvement is a consequence of the synapse transistor’s additional p-type channel doping, for
two reasons.

First, as a result of the higher channel-impurity concentration, the three terminal nFET syn-

apse’s drain-to-channel depletion region is one-sided: 95% of the space-charge layer appears on
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the drain side of the junction. When Vy.=30V, peak field occurs 0.14 pm into this space-charge
layer. A hot-electron population therefore is available near the channel edge of the space-charge
layer. By contrast, in the conventionally doped well—drain transistor, the drain-to-channel deple-
tion region is symmetric rather than one-sided; peak field does not occur until 2um into the
space-charge layer.

Second, the higher surface-acceptor concentration raises the synapse transistor's threshold
voltage V; from about 0.8V to about 6 V. It is evident from Figure 2.12 that electron transport
within the SiO; depends on the direction of the oxide electric field. Where the floating-gate volt-
age exceeds the surface potential, the oxide electric field sweeps injected electrons across the
Si0; to the floating gate; where the surface potential exceeds the floating-gate voltage, injected
electrons tend to return to the silicon surface. When V4. =30V, the synapse transistor’s conduc-
tion-band potential is 3.2V at z=0.22um, whereas the surface potential does not exceed the
floating-gate voltage until z=0.37um. The gate current arises primarily in the intervening region
(0.22<z<0.37um). By contrast, in the conventional well-drain transistor with V4, =30V, the
conduction-band potential does not reach 3.2V until 0.9 pm into the space-charge layer. Here the
surface potential exceeds the gate voltage by 6.5V, preventing a gate current.

To measure the CHEI, I fabricated the synapse of Figure 2.11 without a tunneling junction. I
show a CHEI efficiency plot in Figure 2.13. I plot the data as efficiency because the gate current
increases linearly with the source current over the subthreshold and perithreshold source-current
ranges (see Figure 2.15), where I define perithreshold as that regime where the dependency of the
MOS channel current on the floating-gate voltage transitions from exponential to square-law be-
havior. In Figure 2.14, I empirically fit the measured CHEI efficiency versus (part A) the drain-
to-channel potential and (part B) the gate-to-channel potential; my colleague Paul Hasler is in-
vestigating the relevant high-field transport physics to derive equivalent analytic results [12]. As
I did for the four-terminal nFET synapse, I reference the drain to the channel potential because
the hot-electron population derives from the drain-to-channel electric field, and I reference the
floating gate to the channel potential because the direction of electron transport within the oxide
derives from the direction of the gate-to-channel electric field.

In the three-terminal nFET synapse, the drain-to-channel electric field increases with the
drain voltage; consequently, the gate current also increases with the drain voltage. Part A of

Figure 2.14 shows the CHEI efficiency versus the drain-to-channel potential. These data are fit

by
(% Y
VdC+Vn

I, =Ple (2.22)
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Figure 2.13 Three-terminal nFET-synapse CHEI surface plot. I measured the CHEI gate current J, versus
both the gate-to-channel potential V,. and the drain-to-channel potential V., for a fixed source current
I;=2pA. I plotted the gate current /, divided by the source current I;. In both the subthreshold and the
perithreshold regimes, /, increases linearly with I (see Figure 2.15); consequently, these data show the

CHEI efficiency for both regimes. The RMS deviation between these data and Eqn. (2.24) is 1.2x 107, with

1=3.63, and the other fit parameters as shown in Figure 2.14.

where I, is the gate current; /; is the source current; V. is the drain-to-channel potential; and B,
Vg, and V,, are fit constants.

In Figure 2.12, I define z”to be that location where the oxide electric field is zero. Because z”
increases with the floating-gate voltage, the gate current also increases with the floating-gate
voltage. Part B of Figure 2.14 shows the CHEI efficiency versus the gate-to-channel potential.
These data are fit by

I,=cle * (2.23)
where V. is the floating-gate—to—channel potential, and o and V, are fit constants.
[ incorporate the drain-voltage and gate-voltage dependencies of Eqns. (2.22) and (2.23), re-
spectively, into a final CHEI equation:
Voo |\ Vae+Vn

g ::n]se (224)
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A. CHEI Efficiency Versus Drain-to-Channel Voltage
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Figure 2.14 Three-terminal nFET-synapse CHEI dependencies. (A) I fixed the gate-to-channel voltage at

Ve=6.7V and the source current at I;=2pA, and plotted the CHEI efficiency versus the drain-to-channel

voltage V.. (B) I fixed the drain-to-channel voltage at V4.=20V and the source current at I,=2pA, and

plotted the CHEI efficiency versus the gate-to-channel voltage V..
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Figure 2.15 Three-terminal nFET-synapse gate current versus source current. I held the drain-to-bulk and
gate-to-bulk voltages fixed at V4,=35V and V=7V, respectively, and measured the gate current /, versus
the source current /. These data show that the three-terminal nFET synapse’s CHEI efficiency is independ-

ent of source current over both the subthreshold and perithreshold source-current ranges.

where n is a fit constant; and V,, V3, and V, remain unchanged from Eqns. (2.22) and (2.23).
CHEI in the three-terminal nFET synapse is about 10” times less efficient than it is in the four-
terminal nFET synapse (compare Figure 2.3 and Figure 2.13); this difference is a consequence of
the three-terminal synapse’s lower drain doping (compare part C of Figure 2.1 with part A of
Figure 2.12),

2.2.3 The Gate-Current Equation

Because the tunneling and CHEI gate currents flow in opposite directions, I obtain a final

gate-current equation by subtracting Eqn. (2.24) from Eqn. (2.1):

2
Vf _ VO( -, vﬁ
Vgc Vdc +VT\

I=I,e " —nle

g to

(2.25)

This equation describes the three-terminal nFET synapse’s gate current over the subthreshold
and perithreshold source-current ranges. This synapse exhibits four operating regions, depending

on the drain-to-channel voltage:

1. V4<10V: The tunneling and CHEI gate currents both are small; the weight W is nonvolatile.
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Figure 2.16 A 2x2 array of three-terminal nFET synapses. The box on the transistors drain terminal de-
notes a well-drain; the curved line in the transistor symbol denotes a pbase channel implant. The row syn-
apses share common drain wires; consequently, tunneling or injection at one row synapse can cause unde-

sired tunneling or injection at other row synapses.

2. 10V<V4<30V: The tunneling gate current is small, but the CHEI gate current is not small;

electrons are added to the floating gate, decreasing the weight W.

3. 30V<V4<40V: Neither the tunneling nor the CHEI gate currents are small; the floating-gate

asymptotes to a voltage where the gate current of Eqn. (2.25) is zero.

4. V4>40V: The tunneling gate current is larger than the CHEI gate current; electrons are re-
moved from the floating gate, increasing the weight W. Although drain voltages that tran-
siently exceed 40V are useful for learning, drain voltages that continuously exceed 40V can

lead to excessive power dissipation, damaging the synapse.

2.2.4 Isolation and Weight Updates in a Synaptic Array

As [ did for the four-terminal nFET synapses, I fabricated a simplified 2x2 array of three-
terminal nFET synapses to investigate isolation during tunneling and injection, and to measure

the synapse weight-update rates. Because this 2x2 array uses the same row—column addressing
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Table 2.2 Three-terminal nFET-synapse array terminal voltages. I applied these voltages to the array of

Figure 2.16, to obtain the data in Figure 2.17.

column 1 column 2 row 1 row 2 row | row 2
gate gate drain drain source source
read +5 : 0 ‘ +5 ‘ 0 0 ‘ 0
....... tunne] 0+45+350+20
........ mject +50+25000

that I will employ in larger arrays, it allows me to characterize the synapse isolation and weight-
update rules completely.

I show the array in Figure 2.16. I chose, from among the many possible ways of using the ar-
ray, to select source current as the synapse output, and to turn off the synapses during tunneling. I
applied the voltages shown in Table 2.2 to read, tunnel, or inject synapse {1,1} selectively, while

ideally leaving the other synapses unchanged.

2.2.4.1 Synapse Isolation

A three-terminal nFET synapse both tunnels and injects from its drain terminal; because the
drains of the array-synapse transistors connect within rows, but not within columns, the tunneling
and injection crosstalk between column synapses is negligible. The crosstalk between row syn-
apses should decrease exponentially with the voltage differential between the floating gates of
the selected and deselected synapses, just like in the four-terminal nFET array. Unfortunately,
when the three-terminal nFET synapse’s drain exceeds about 35V, self-limiting avalanche (pn)
breakdown occurs at the n” tunneling implant. I describe this breakdown process in Section 2.2.6.
If the floating-gate voltage is high, then hot electrons generated by this avalanche-breakdown
process can inject onto the floating gate, causing a gate current not included in Eqn. (2.24).

When I inject a row synapse, I use 5V control-gate inputs; the voltage differential between
the floating gates of the selected and deselected synapses is about 4V, and the crosstalk between
the row synapses is <0.01%. When I tunnel a row synapse, however, I can cause both tunneling
and avalanche injection at the other row synapse. If I tunnel the {1,1} synapse, and the floating-
gate voltage of the {1,2} synapse is high, then electrons inject onto the {1,2} synapse’s floating
gate by means of avalanche injection. If, on the other hand, the floating-gate voltage of the {1,2}

synapse is low, then electrons tunnel off the {1,2} synapse’s floating gate.
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I show three-terminal nFET-synapse-isolation data in Figure 2.17. To obtain the data in part
A, Tfirst initialized all four synapses to /;=30nA. I then tunneled the {1,1} synapse up to 2uA,
and injected it back down to 30nA, while I measured the source currents of the other three syn-
apses. As I expected, the row 2 synapses were unaffected by either the tunneling or the injection.
The {1,2} synapse was similarly unaffected by the injection, but during tunneling experienced
both avalanche injection and parasitic tunneling. A 4.7V signal on the column 2 gate input ex-
actly balanced these parasitic effects; unfortunately, this optimum gate voltage varied with the
{1,2} synapse’s weight value. I used a 4.5V control-gate input, so parasitic tunneling slightly
exceeded avalanche injection at the {1,2} synapse.

To obtain the data in part B of Figure 2.17, I first initialized all four synapses to [,=2uA. I
injected the {1,1} synapse down to 30nA, and then tunneled it back up to 2uA. As in the ex-
periment of part A, when the {1,1} synapse tunneled, the {1,2} synapse experienced both ava-
lanche injection and parasitic tunneling. A 4.3V control-gate input exactly balanced these para-
sitic effects. With my chosen 4.5V control-gate signal, avalanche injection slightly exceeded
parasitic tunneling at the {1,2} synapse.

The measured crosstalk between the row synapses was ~0.5% during tunneling, and <0.01%
during CHEI As I describe in Section 2.3, I anticipate that I can achieve <0.01% crosstalk for

both operations when I fabricate my synapses in a more modern process.

2.2.4.2 Synapse Weight Updates

The source currents that I used for the synapse-isolation measurements (see Figure 2.17) ex-
tended into the perithreshold regime. I chose perithreshold source currents to speed the CHEI
process, because CHEI in the three-terminal nFET synapse is about 10° times less efficient than
it is in the four-terminal nFET synapse. This change affects the weight-update rule significantly,
as I now describe.

I repeated the experiment of Figure 2.17 (part A), for several tunneling and injection drain
voltages; in Figure 2.18, I plot the magnitude of the temporal derivative of the source current ver-
sus the source current, for a synapse transistor with (part A) a set of fixed tunneling voltages, and

with (part B) a set of fixed drain voltages. I now derive a weight-update rule to fit these data.
2.2.4.2.1 The Tunneling Weight-Increment Rule

Tunneling in the three-terminal nFET synapse is functionally identical to tunneling in the

four-terminal nFET synapse; consequently, the subthreshold weight-increment rule is the same:
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Figure 2.17 Isolation in a 2x2 array of three-terminal nFET synapses. The terminal voltages for both ex-
periments are shown in Table 2.2 (see pg. 40). (A) I first tunneled the {1,1} synapse up to 2pA, then I in-
jected it back down to 30nA, while I measured the source currents of the other three synapses. Crosstalk to
the {1,2} synapse, defined as the fractional change in the {1.2} synapse’s source current divided by the
fractional change in the {1,1} synapse’s source current, was 0.52 % during tunneling, and was 0.023% dur-
ing injection. (B) I first injected the {1,1} synapse down to 30nA, then I tunneled it back up to 2pA. Cros-

stalk to the {1,2} synapse was 0.001% during injection, and was 0.43 % during tunneling.
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where the parameters ¢ and 7y, remain as defined in Eqns. (2.8) and (2.9), respectively. During
tunneling, a three-terminal nFET synapse also experiences an avalanche-induced CHEI gate cur-
rent that is not present in the four-terminal device. In most cases, this gate current is small when
compared with the tunneling gate current, and can be ignored safely.

For subthreshold source currents, Eqn. (2.7) models the three-terminal nFET-synapse weight-
increment data accurately; for perithreshold source currents, however, the fit is poor. In
perithreshold, a synapse’s source current no longer increases exponentially with the floating-gate
charge Qr,; rather, the source current increases more slowly, as the MOSFET transitions to a
square-law device. Consequently, the synapse’s behavior no longer follows Eqn. (1.2). Although
the synapse’s output still is a graded, analog signal, the synapse no longer performs a multiply.
Although this may limit potential applications, in practice I expect that most learning systems
will use binary-valued (action-potential) control-gate inputs; for these applications, the graded
output is of primary importance, whereas the multiply is inconsequential.

Rather than redefining W for perithreshold operation, I instead assume that W still increases
exponentially with Oy (recall that W=exp(Qg/Qr)). Consequently, the synapse’s weight-
increment rate decreases for perithreshold source currents, not because the tunneling process has
changed, but rather because the synapse’s source current increases more slowly with Q. This
effect is clearly evident in part A of Figure 2.18. To model the effect, I extend Eqn. (2.7) empiri-

cally, with the following approximation:

W 1 AW X A

. (2.26)
w9

ot Ttunjn W

corner

I find the maximum weight change AW,,,,, the saturation weight value W.,mer, and the time

constant Ty, 3, by empirical measurement; these parameters all vary with the tunneling voltage
Vun. Equation (2.26) fits the three-terminal nFET-synapse tunneling weight-increment data accu-
rately, for both subthreshold and perithreshold source currents.

The weight-increment rate saturation that I observed in the three-terminal nFET synapse also
occurs in the four-terminal nFET synapse, when I operate the four-terminal synapse with peri-
threshold source currents. This observation is consistent with the previous discussion, because
both the tunneling process and the weight equation (Eqn. (1.2)) are functionally identical in the
three-terminal and four-terminal #nFET synapses. Interestingly, repeated induction of LTP in neu-
ral synapses also causes saturation: The synaptic strength rises to a maximum level, beyond

which it cannot be increased experimentally [13].
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Figure 2.18 Three-terminal nFET-synapse (A) tunneling and (B) CHEI weight updates. In both experi-
ments, I measured the synapse’s source current /s versus time, and plotted 187,/9t! versus I,. I fixed the syn-
apse’s terminal voltages; consequently, the change in I; is a result of changes in the synapse’s weight W. In
part A, I applied V;,=0V, V=0V, and stepped Vy; from 32V to 36V in 1V increments; in part B, I applied
V=5V, V=0V, and stepped Vy, from 23V t0 33V in 2V increments. I turned off the tunneling and CHEI
at regular intervals, to measure /. The tunneling weight updates are described by Eqn. (2.26); the CHEI
weight updates are described by Eqgn. (2.29).
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2.2.4.2.2 The CHEI Weight-Decrement Rule

CHEI in the four-terminal nFET synapse is different from CHEI in the three-terminal nFET
synapse, for the three reasons. First, the dependency of the gate current on the floating-gate—to—
channel voltage is small in the four-terminal synapse, but is not small in the three-terminal syn-
apse (compare Figure 2.3, at small drain-to-channel voltages, with Figure 2.13). Second, I oper-
ate the four-terminal synapse with subthreshold source currents, whereas I operate the three-
terminal synapse with both subthreshold and perithreshold source currents. Third, in the four-
terminal synapse I can approximate the dependency of the gate current on the drain-to-channel
voltage by a simple exponential; in the three-terminal synapse, the drain-voltage range is much
larger, and the dependency of the gate current on the drain-to-channel voltage is more compli-
cated (compare Eqns. (2.2) and (2.22)).

I have been unable to derive a closed-form CHEI weight-decrement expression for the three-
terminal nFET synapse. Although the derivation generally follows that for the four-terminal
nFET synapse (see Section 2.1.4.2.2), the analysis, unfortunately, does not yield a simple result.
However, I can describe the result qualitatively. I begin with the three-terminal nFET synapse’s
CHEI gate-current equation, Eqn. (2.24):

Vo V8

2
_—V;c—"(vdc*vnj

I, =nle = (Ve Ve ) (2.27)

T also use the CHEI weight-decrement expression from the four-terminal nFET synapse:
dW 1 W(z—s)

(2.28)

™

For a three-terminal nFET synapse with fixed terminal voltages, V,. increases as W increases,
whereas V. decreases as W increases; f, which depends on both, will increase as W increases. If |
consider this effect alone, then I expect the form of the CHEI weight-decrement rule in Eqgn.
(2.17) to change from W®™® to W*¥, where x is a positive-valued correction term. However,
because I operate the three-terminal nFET synapse with perithreshold source currents, the
weight-decrement rate decreases with W, not because the CHEI process has changed (any small
potential drop along the channel is inconsequential when compared with the large drain-to-
channel and gate-to-channel potentials), but rather because the source current decreases more
slowly with Qy, than it does in the subthreshold regime. This second effect causes x to decrease.
Although I cannot predict a value for x analytically, the data of Figure 2.18 show empirically that

the two effects that I have described cancel almost exactly, yielding x=0. Consequently, the

CHEI weight-decrement rule for the three-terminal nFET synapse is given approximately by
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W (2.29)

where I find Ti,_3, by empirical measurement.
2.2.4.2.3 The Synapse Weight-Update Rule

I obtain the complete weight-update rule, for the three-terminal nFET synapse, by adding

Eqgns. (2.26) and (2.29):

(1-o)
oW 1 AW x W 1 2
e —— W (2.30)
+W

ot Ttunjn W

corner

inj_3n

2.2.5 Impact Ionization

As it does in the four-terminal #nFET synapse, in the three-terminal nFET synapse the drain-
to-channel electric field that generates electrons for oxide injection also liberates additional
electron—hole pairs, causing /4 to increase exponentially with V.. I show impact-ionization data
from the three-terminal nFET synapse in Figure 2.19. Because the drain-voltage range is large, [
cannot fit these data accurately using a simple exponential; I instead use a lucky-electron model
f9, 10]. To improve the fit, [ modify the conventional lucky-electron formulation by subtracting
an offset potential, V., from the drain-to-channel voltage:

’ Vm
V. - Vy

Iy=1]1+ye' ™ J

2.31)

where /j is the drain current; and vy, Vy,, and V, are empirical constants. Eqn. (2.31) is simpler
than, but still 1s generally consistent with, my colleague Paul Hasler’s recent derivation of an im-

proved model for the impact-ionization process [12].

2.2.6 Drain Leakage Current and Avalanche Injection

In the three-terminal #FET synapse (see Figure 2.11), a 2pm wide floating-gate extension
traverses from the channel-drain edge, over the n~ well—drain, to the n* tunneling implant (the n*
well-drain contact). I placed a field-oxide channel stop beneath this gate extension, ostensibly to
prevent the channel-surface depletion layer from reaching the n*. Unfortunately, in the 2um Or-
bit process that I use, the threshold voltage for a field-oxide transistor is V,=18V. In the three-
terminal synapse, when Vy,>15V, a parasitic p-type MOS channel forms in the n~ well, beneath
the channel stop. When V4,>30V, pn breakdown occurs where the induced p-type channel meets

the n" well contact [2]. I show three-terminal nFET-synapse drain-leakage data in Figure 2.20.
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Figure 2.19 Three-terminal nFET synapse impact ionization versus drain-to-channel voltage. I fixed the
gate-to-channel voltage at V,.=6.15V and the source current at [;=100nA, and I measured the drain current
Iy versus the drain-to-channel voltage V.. Because this synapse both tunnels and injects from the drain ter-
minal, the drain-voltage range that I anticipate using in my learning systems is large. Consequently, I fit
these data over the entire drain-voltage range using a modified lucky-electron model, rather than over a sub-

set of the range using an exponential fit (compare with Figure 2.9).

For drain voltages greater than about 35V, pn breakdown at the n” well contact generates free
carriers, and the MOS channel beneath the field-oxide channel stop provides a leakage path from
the drain contact to the substrate. The field-oxide channel conductance restricts this leakage cur-
rent; consequently, the breakdown process is self-limiting. Unfortunately, junction breakdown
generates hot electrons, thereby inducing a poorly controlled, parasitic hot-electron gate current.
The tunneling implant in the four-terminal nFET synapse experiences a leakage phenomenon
similar to that observed in the three-terminal nFET synapse: When V,,, exceeds about 35V, a
leakage current flows from the »" tunneling implant to the substrate. I show tunneling-junction
leakage data in Figure 2.21. Interestingly, in the four-terminal nFET synapse, the avalanche-
breakdown process does not induce a parasitic hot-electron gate current, suggesting that, in the
three-terminal nFET synapse, the avalanche injection occurs near the channel-drain edge, rather
than at the tunneling junction. I do not yet understand either the junction breakdown or the para-

sitic injection completely; I hope simply to eliminate them in future synapses (see Section 2.3.2).
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Figure 2.20 Three-terminal nFET-synapse drain current versus drain voltage. I held the source at ground,
the floating gate at the voltages indicated, and measured the drain current I as I swept the drain from OV to
50V. For V4,>15V, a parasitic p-type MOS channel forms in the n~ well-drain, beneath the channel stop.
For V4 >30V, pn breakdown occurs where the induced p-type channel meets the n* well contact. Junction
breakdown generates free carriers, causing a leakage current to flow from the n* well contact to the p-type
substrate. The field-oxide channel conductance restricts this leakage current; consequently, the breakdown
process is self-limiting. Although all n-well tunneling junctions fabricated in the 2pm Orbit process exhibit
this leakage current (see Figure 2.21), the effect is less important for the four-terminal nFET synapse than it
is for the three-terminal nFET synapse, because the leakage path in the four-terminal synapse is from the
tunneling junction to ground, whereas the leakage path in the three-terminal synapse is from the drain to
ground. In addition, in the three-terminal synapse, the avalanche-breakdown process causes undesired elec-

tron injection onto the floating gate (see Sections 2.2.4.1 and 2.2.6).

2.3 Further Development

My nFET synapses already possess those attributes that I believe are essential for building a
silicon learning system. They allow nonvolatile analog weight storage, permit simultaneous
memory reading and writing, and allow bidirectional weight updates that are a function of both
the applied terminal voltages and the present synaptic output. However, further development will
improve the devices substantially. I discuss four areas for improvement; in all cases, more mod-

ern processing will readily allow these improvements.
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Figure 2.21 Tunneling-implant leakage current versus implant-to-substrate voltage. I held the substrate at
ground and the floating gate at 5V, and measured the leakage current from the n* tunneling implant to the
substrate, as I swept the tunneling implant from 0V to 45V. For V,,,> 15V, a parasitic p-type MOS channel
forms in the n~ well, beneath the channel stop. For V,,,>30V, pn breakdown occurs where the induced p-
type channel meets the n* well contact. Junction breakdown generates free carriers, causing a leakage cur-
rent to flow from the n” tunneling implant to the p-type substrate. These data suggest strongly that the field-
oxide transistor’s channel conductance restricts this leakage current. The n~ well is a backgate for the field-
oxide transistor; as I increase the well voltage, the field-oxide transistor’s channel conductance increases,
and the leakage current increases. The subthreshold leakage-current range extends to about 50nA. Above
this 50nA threshold, the field-oxide transistor’s channel current no longer increases exponentially with the

tunneling-implant voltage V,,,.

2.3.1 Reduced Tunneling Voltages

All my synapse transistors (nFET and pFET) require large tunneling voltages, because the
gate-oxide thickness in the 2um Orbit process ranges from 350-450A. More modern processes
have thinner oxides and therefore lower tunneling voltages; if 1 fabricate my synapses in a mod-
ern process with 100A gate oxides, they will tunnel at 12V, instead of at the 35V that I presently

require.
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2.3.2 Reduced Tunneling-Junction Leakage

I believe that I can eliminate the tunneling-junction leakage, in both the three-terminal and
four-terminal synapses, either by using a MOS process with a thicker channel stop, or by using a
more modern process with lower tunneling voltages. I expect the three-terminal array synapses to
achieve <0.01% tunneling crosstalk, which the four-terminal array synapses already achieve,

once I eliminate the leakage pathway and, with it, the avalanche-induced gate current.

2.3.3 Reduced Overlap Capacitances

In a four-terminal nFET synapse, the overlap capacitance between the n™ tunneling well and
the floating gate is about 5fF. Because the tunneling implant undergoes large voltage swings, the
coupling from the n~ well to the floating gate alters the synapse’s channel current significantly.
Similarly, in the three-terminal nFET synapse, the overlap capacitance between the drain and the
floating gate is about 5fF. Because V; ranges from ground to about 45V, drain-to-gate coupling
alters this synapse’s channel current significantly. In both devices, I minimize the effect by using
oversize (1pF) gate capacitors. In future synapses with smaller tunneling junctions (see Section
2.3.4), these overlap capacitances will decrease, and the sensitivity of a synapse’s channel cur-

rent to the tunneling voltage will likewise decrease.

2.3.4 Smaller Synapse Size

Both my four-terminal and my three-terminal nFET synapses are large, for two reasons: (1)
the n~ tunneling wells are large, and (2) I employ oversize gate capacitors. If I fabricate future
synapses in a modern EEPROM process, two improvements are possible. First, EEPROM proc-
esses often employ graded [14] tunneling junctions; if I replace my n~ wells with graded junc-
tions, the synapses get smaller, and the overlap capacitances decrease. Second, EEPROM proc-
esses have much thinner gate oxides, and, consequently, much lower tunneling voltages. With
lower tunneling voltages, the required voltage differential between the floating gates of selected
and deselected array synapses can be smaller. Reduced overlap capacitances and reduced float-
ing-gate voltage swings together will allow me to use smaller gate capacitors. For both synapses,
these improvements will reduce the synapse size, and speed the weight-update rates. In addition,

for the three-terminal synapse, these changes will improve the array isolation.
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Chapter 3

The p-Type Synapse Transistors

In this chapter, I describe the layout, characteristics, and weight-update behavior of my pFET
synapse transistors. I describe first a four-terminal pFET synapse; from this device, I then de-

velop a more compact guarded-pFET synapse.

3.1 A Four-Terminal pFET Synapse

The four-terminal pFET synapse, shown in Figure 3.1, is a p-type MOSFET with a poly!
floating gate, a poly2 control gate, and a fourth terminal used for gate-oxide tunneling. Because
the 2um process that I use is n-well, I fabricate the transistor within an n-type well in the p-type
substrate. In the four-terminal pFET synapse, the transistor’s n-well and the tunneling n-well are
separate. In the guarded-pFET synapse (see Section 3.2), I combine these wells to obtain a more
compact layout. I use FN tunneling to remove electrons from the floating gate, and use hot-
electron injection to add electrons to the floating gate. The four-terminal pFET synapse has the

following features:

® Electrons tunnel from the floating gate to the tunneling implant through the 400A gate oxide.
The tunneling implant is identical to that used in the four-terminal nFET synapse (see Sec-
tion 2.1.1). As in the nFET synapse, tunneling removes electrons from the floating gate.
However, because the pFET and nFET synapses are complementary, tunneling has the oppo-

site effect on the pFET synapse: It decreases, rather than increases, the synapse weight W.

® Electrons inject from the drain-to-channel space-charge region to the floating gate. I generate
the electrons for oxide injection by means of hole impact ionization in the drain-to-channel
depletion region of a subthreshold MOSFET. Channel holes, accelerated in the drain-to-

channel electric field, collide with the semiconductor lattice to produce additional electron—
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well contact is not shown. As I did in Figure 2.1, I have aligned the three diagrams vertically, drawn dia-
grams A and C to scale, exaggerated the vertical scale in diagram B, referenced the voltages in the band
diagram to the source potential, drawn the gate-oxide band diagram in the channel direction, and assumed
subthreshold source currents (/;<100nA). In the 2pum Orbit process, the synapse length is 56um, and the
width is 16um. With a 501F interpoly capacitor as shown, the coupling coefficient between the poly2 con-
trol gate and the polyl floating gate 1s only 0.25. I enlarged the interpoly capacitor to 1pF in the test device,
thereby increasing the coupling to 0.8. Whereas the tunneling process is identical to that used in the nFET
synapses (see Section 2.1.1), the injection process is different. I generate electrons for oxide injection by
means of hole-impact ionization in the transistor’s drain-to-channel depletion region (see Section 3.1.2 for a

description of the injection process).

hole pairs. The liberated electrons, promoted to their conduction band by the collision, are
expelled rapidly from the drain region by this same drain-to-channel electric field. Electrons
expelled with more than 3.2eV of kinetic energy can, if scattered upward into the gate oxide,
inject onto the floating gate. As in the nFET synapse (see Section 2.1.2), injection adds elec-
trons to the floating gate. Because the transistor is a pFET, however, injection increases,

rather than decreases, the synapse weight W.

e ] ike the nFET synapse, the pFET synapse uses the thermally grown gate oxide for all SiO,

carrier transport.

3.1.1 Electron Tunneling Decreases the Weight

I show the tunneling junction in parts A and B of Figure 3.1, and the energy-band diagram
for the tunneling process in part C of Figure 3.1. The layout and band diagram are identical to
those for the four-terminal nFET synapse (compare Figure 3.1 with Figure 2.1). For both the
nFET and the pFET synapses, I apply positive high voltages to the tunneling implant to remove
electrons from the floating gate, thereby increasing the floating-gate voltage. In the nFET, in-
creasing the floating-gate voltage increases the channel current and the synapse weight W. In the

pFET, tunneling has the opposite effect: It decreases both the channel current and the weight W.

3.1.2 Electron Injection Increases the Weight

I increase the synapse weight W by injecting electrons onto the floating gate. Because a
pFET’s channel current comprises holes, pFET injection is different from nFET injection. I show

the injection process in the energy-band diagram of Figure 3.1. I accelerate channel holes in the
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drain-to-channel electric field of a subthreshold pFET. A fraction of these holes collide with the
semiconductor lattice at energies sufficient to liberate additional electron~hole pairs. The ionized
electrons, promoted to their conduction band by the collision, are expelled from the drain by this
same drain-to-channel electric field. If the electrons are expelled with more than 3.2eV of kinetic
energy, they can inject over the 3.2V Si-SiO, work-function barrier, into the oxide conduction
band. These electrons then are swept over to the floating gate by the oxide electric field. I call the
process impact-ionized hot-electron injection (ITHEI). My colleagues and I are the first research-
ers to describe ITHEI as a means for writing a floating-gate MOS memory [1].

As I described in Sections 2.1.2 and 2.2.2, electron injection, in the nFET synapses, is suc-
cessful only when three conditions are satisfied: (1) the electrons must possess the 3.2eV re-
quired to surmount the Si-SiO, work-function barrier, (2) the electrons must scatter upward into
the gate oxide, and (3) the oxide electric field must be oriented in the proper direction to trans-
port the injected electrons to the floating gate. These same conditions apply to a pFET synapse.

A pFET, like an nFET, readily satisfies requirements 1 and 2. I merely operate the transistor
in the subthreshold regime, with a sufficient drain-to-channel voltage. In the pFET synapse, this
minimum drain-to-channel voltage is about 6.5V, to achieve an ITHEI efficiency of 107", In the
four-terminal nFET synapse, this minimum drain-to-channel voltage is about 2.5V, to achieve a
CHEI efficiency of 107'°. The pFET synapse's higher drain-voltage requirement, when compared
with the nFET, arises for three reasons. First, for any given drain-to-channel voltage, the nFET
experiences a higher drain-to-channel electric field than does the pFET, as a result of the bulk p-
type implant that I add to the nFET synapse's channel region. Second, the phonon loss mecha-
nisms in silicon are naturally more efficient for holes (the pFET charge carriers) than they are for
electrons (the nFET charge carriers). Consequently, the pFET synapse requires a higher drain-to-
channel electric field than does the nFET, to achieve the same hot-carrier population. Third, the
PFET synapse's two-step injection process requires more energy.

A subthreshold pFET, unlike a subthreshold nFET, satisfies requirement 3 without an addi-
tional channel implant. In a subthreshold pFET, the gate-to-source voltage typically is less than
1'V. During IIHEI, the drain-to-source voltage exceeds 6 V. Consequently, the floating gate is at
least 5V higher than the drain, and the oxide electric field transports the injected electrons to the
floating gate. Unlike conventional nFET transistors, conventional pFET transistors inject elec-
trons onto their floating gates naturally (at sufficient drain-to-source voltages); they do not need
special channel implants to facilitate injection.

In Figure 3.2, I show the four-terminal pFET synapse’s IIHEI efficiency (gate current /, di-

vided by source current ;) versus both the drain-to-channel and the gate-to-channel potentials. I
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Figure 3.2 Four-terminal pFET-synapse IIHEI surface plot. I measured the IIHEI gate current J, versus
both the gate-to-channel potential, V,, and the drain-to-channel potential, Vg, for a fixed source current
L;=10nA. I plotted the gate current /, divided by the source current I;. In the subthreshold regime, I, in-
creases linearly with I; (see Figure 3.4); consequently, these data show the IIHEI efficiency for the entire
subthreshold source-current range. The ITHEI efficiency increases with both the drain-to-channel and gate-
to-channel voliages, for reasons that I discuss in Section 3.1.2. In Figure 3.3, I fit the ITHEI efficiency ver-
sus V.. [ anticipate that, for most learning applications, V. will vary by less than 100mV. Because the II-
HEI efficiency depends only weakly on Vi, in fit Eqn. (3.1) I assume that the ITHEI efficiency depends

only on V.

plot the data as efficiency because the ITHEI gate current increases linearly with the transistor’s
source current (see Figure 3.4); predictably, because the gate current derives from the impact-
ionized electron population, and this electron population increases linearly with the source cur-
rent. I reference the drain to the channel potential because the hot-electron population derives
from the drain-to-channel electric field. I reference the floating gate to the channel potential be-
cause the oxide-barrier shape varies with the relative potentials of the channel and the floating
gate.

The reference potential for the channel side of the oxide barrier is the electron conduction-
band edge; the reference potential for the gate side of the oxide barrier is the floating-gate volt-
age. As in the three-terminal nFET synapse, in the pFET synapse electrons inject onto the float-

ing gate over only a restricted range of channel positions z (compare part C of Figure 3.1 with
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Figure 3.3 Floating-gate pFET IIHEI efficiency versus drain-to-channel voltage. I show data from floating-
gate pFETs fabricated in 2pm and 0.8 pm processes, to illustrate that (1) the ITHEI mechanism is invariant
with process linewidth, and (2) the V required for ITHEI decreases with process linewidth. During both
experiments, I held the gate-to-channel voltages V,. and the source currents I; fixed, and I measured the
gate current [, versus the drain-to-channel voltage V.. For the 2um pFET, V,.=1.95V and I,=10nA; for
the 0.8um pFET, V=09V and I;=100nA. My empirical fit holds for the entire subthreshold source-

current range.

part A of Figure 2.12). Where the floating-gate voltage exceeds the surface potential, the oxide
electric field sweeps injected electrons across the SiO, to the floating gate; where the surface
potential exceeds the floating-gate voltage, injected electrons return to the silicon surface. Fortu-
nately, because the four-terminal pFET synapse’s floating-gate voltage is high, the dependency
of the gate current on the gate-to-channel potential is small. Consequently, I ignore this gate-to-
channel dependency in my IIHEI weight-increment rule derivation (see Section 3.1.4.2.2).

In Figure 3.3, I plot the measured IIHEI efficiency, with empirical fits, both for a synapse
transistor fabricated in the 2pum process, and for a p-type floating-gate MOSFET fabricated in a
more modern 0.8 pm process. These data show clearly that the results that I derive from the 2um
process scale directly to more modern processes. For the 2um synapse, when V. is less than 5V,
the IIHEI gate current is exceedingly small, and the weight W remains nonvolatile. When V. ex-
ceeds 6V, the ITHEI gate current causes measurable changes in the synapse weight W. I anticipate

using a larger drain-voltage range in my pFET-based learning systems than in my four-terminal
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Figure 3.4 Four-terminal pFET-synapse gate current versus source current. I held the drain-to-well and
gate-to-well voltages fixed at Vg,,=9.5V and Vg, =1V, respectively, and measured the gate current J, versus
the source current ;. For I;<40pA, the measured /, exceeds the fit, as a result of background (thermally
generated) electrons that accelerate in the drain-to-channel electric field and inject onto the floating gate.
Background injection is not apparent in the data of Figure 2.5 and Figure 2.15, because the minimum gate
current in both these figures exceeds 1x 1077 A—well above the background injection rate. Background
injection occurs in all the synapse transistors, and can be eliminated only by reduction of the drain-to-

channel voltage.

nFET-based systems, because the pFET synapse’s gate current increases more slowly with drain-
to-channel voltage than does the nFET synapse’s gate current. Consequently, I fit the pFET ITHEI
data over the entire drain-voltage range, rather than over only a subset of the range as I did for
the nFET synapse (compare Figure 3.3 with Figure 2.4).

My empirical fit to the [THEI data of Figure 3.3 is

*(VCIC\;LVHF 3D

where /, is the gate current; / is the source current; V. is the drain-to-channel potential; and B,

I, =Ble
Vg, and V, are fit constants. Both this pFET synapse and the three-terminal nFET synapse inject
electrons from the lightly doped side of their respective drain-to-channel junctions; interestingly,
the drain-to-channel voltage dependency of the electron injection process is identical for both

devices (compare Eqns. (3.1) and (2.22)).



Chapter 3 59

column 1 column 1l column?2 column 2
source gate source gate
N A v AV

row 1 tunneling > j J
(L1 l b4 p-*

row 1 drain > . _———

row 2 tunneling > j (J _———
e [y -

row 2 drain > ————

Figure 3.5 A 2x2 array of four-terminal pFET synapses. The arrow at each synapse’s floating gate denotes
a tunneling junction. The well connections are not shown. The row synapses share common tunneling and
drain wires; consequently, tunneling or injection at one row synapse can cause undesired tunneling or injec-

tion at other row synapses.

3.1.3 The Gate-Current Equation

Because the tunneling and IIHEI gate currents flow in opposite directions, I obtain a final
gate-current equation by subtracting Eqn. (3.1) from Eqgn. (2.1):

2
Vi (VB
vV Ve + VT\

I, =T,e ™ ~Ble

(3.2)

This equation describes the four-terminal pFET synapse’s gate current over the entire drain-

voltage and subthreshold channel-current ranges.

3.1.4 Isolation and Weight Updates in a Synaptic Array

For this pFET synapse, like for the nFET devices, a synaptic array can form the basis of a
silicon-learning system. 1 fabricated a simplified 2x2 array of four-terminal pFET synapses to
investigate isolation during tunneling and injection, and to measure the synapse weight-update
rates. I show the array in Figure 3.5. I grounded the p-type substrate, applied +12V to the n-type

well, and referenced all terminal voltages to the well potential. I chose source current as the
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Table 3.1 Four-terminal pFET-synapse array terminal voltages. I applied these voltages to the array of

Figure 3.5, to obtain the data in Figure 3.6.

column column column column row 1 row 2 row 1 row 2
1 gate 2 gate 1 source 2 source drain drain tunnel tunnel
read -5 | 0 ‘ 0 | 0 | =5 ‘ 0 | 0 ) 0
mnnel .............. —5 .................... () ..................... () ..................... 0 .................... _5 .................... O .................. +28 .................. o ..........
..... mJeCt ~5_400_93000

synapse output. I left the pFET synapses turned on during tunneling, rather than turning them off
like I did for the nFET-array experiments (see Table 2.1 and Table 2.2). I applied the voltages
shown in Table 3.1 to read, tunnel, or inject synapse {1,1} selectively, while ideally leaving the

other synapses unchanged.
3.1.4.1 Synapse Isolation

In the four-terminal pFET array, as in the four-terminal nFET array (see Section 2.1.4), the
tunneling and drain terminals of the synapse transistors connect within rows, but not within col-
umns. Consequently, the tunneling and IIHEI crosstalk between row synapses decreases expo-
nentially with the voltage differential between the row synapses’ floating gates, and the crosstalk
between column synapses is negligible. I used 5V control-gate inputs, thereby achieving about a
4V differential between the floating gates of the selected and deselected row synapses; the re-
sulting crosstalk between row synapses was <0.01 % for all operations.

I show synapse-isolation data in Figure 3.6. To obtain the data in part A, I first initialized all
four synapses to I,=100pA. I injected the {1,1} synapse up to 100nA, and then tunneled it back
down to 100pA, while I measured the source currents of the other three synapses. As I expected,
the row 2 synapses were unaffected by either the tunneling or the injection. Coupling to the {1,2}
synapse also was small.

To obtain the data in part B of Figure 3.6, I first initialized all four synapses to /;=100nA. I
injected the {1,1} synapse down to 100pA, and then tunneled it back up to 100nA. As in the ex-
periment of part A, crosstalk to the other synapses was negligible.

When I injected the {1,1} synapse, I applied -4V, rather than OV, to the {1,2} synapse’s
control gate. I did so because hot-electron injection can occur in a p-type MOSFET by a mecha-

nism different from that described in Section 3.1.2. If the floating-gate voltage exceeds the well
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Figure 3.6 Isolation in a 2x2 array of four-terminal pFET synapses. The terminal voltages for both ex-
periments are shown in Table 3.1 (see pg. 60). (A) I first injected the {1,1} synapse up to 100nA, then I
tunneled it back down to 100pA, while I measured the source currents of the other three synapses. Crosstalk
to the {1,2} synapse, defined as the fractional change in the {1.2} synapse’s source current divided by the
fractional change in the {1,1} synapse’s source current, was 0.016% during injection, and was 0.007 %
during tunneling. (B) I first tunneled the {1,1} synapse down to 100pA, then I injected it back up to 100nA.
Crosstalk to the {1,2} synapse was 0.004 % during tunneling, and was 0.005 % during injection.



Chapter 3 62

voltage, and the drain-to-channel potential is large, electrons can inject onto the floating gate by
means of a nondestructive avalanche-breakdown phenomenon at the MOS surface. I discuss this

process in more detail in Section 3.1.6.

3.1.4.2 Synapse Weight Updates

A pFET synapse’s weight updates derive from the tunneling and ITHEI oxide currents that
alter the floating-gate charge. The weight-update rate, 0W/or, varies with the synapse’s terminal
voltages, which are imposed on the device, and with the source current, which is the synapse
output. I repeated the experiment of Figure 3.6 (A), for several tunneling and injection voltages;
in Figure 3.7, I plot the magnitude of the temporal derivative of the source current versus the
source current, for a synapse transistor with (part A) a set of fixed tunneling voltages, and (part
B) a set of fixed drain voltages. In both experiments, I held the control-gate input V;, fixed; con-
sequently, these data show the synapse weight updates dW/dr, as can be seen by differentiating

Eqgn. (1.2). I now derive a weight-update rule that fits these data.

3.1.4.2.1 The Tunneling Weight-Decrement Rule

Tunneling weight updates in the four-terminal pFET synapse are functionally identical to
tunneling weight updates in the nFET synapses, but with a sign inversion, because tunneling de-
creases, rather than increases, the synapse weight W. Consequently, the subthreshold weight-

decrement rule is

oW 1 (1-0)

S W (3.3)
U
where o= Vi 5 (2.8)
K\/vtun
.
and Toun = (IQ—T—e Vo (2.9)

to

In the nFET synapses, the floating-gate—to—channel coupling coefficient, x, is about 0.2. In
the pFET synapse, x is about 0.7. The difference is a consequence of the nFET synapses’ addi-
tional channel doping. As a result, ¢ is smaller for a pFET synapse than it is for an nFET syn-

apse.
3.1.4.2.2 The ITHEI Weight-Increment Rule

I now show that the IIHEI-induced weight increments follow a power law. I begin with the

ITHEI gate current /:
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Figure 3.7 Four-terminal pFET-synapse (A) tunneling and (B) ITHEI weight updates. In both experiments,
I measured the synapse’s source current /; versus time, and plotted 10/,/9t| versus /. I fixed the synapse’s
well-referenced terminal voltages; consequently, the change in I, is a result of changes in the synapse’s
weight W. In (A) I applied Vi,=-5V, V=0V, V4 =-4V, and stepped V,,, from 26V to 32V in 1V incre-
ments; in (B) I applied Vi,=—5V, V=0V, V,=8V, and stepped Vy, from -8V to —11V in —0.5V incre-
ments. I turned off the tunneling and CHEI at regular intervals, to measure /;. Because, for a fixed V,,, the
synapse weight updates oW/ot are proportional to o/,/dt (see Eqn. (1.2)), these data show that the weight

updates follow a power law. The mean values of ¢ and &4, are 0.01 and 0.11, respectively.
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‘(T/%P\“/qu 3.1

Eqgn. (2.13) describes, for a subthreshold MOSFET, the drain-to-channel potential, V., in

I, =Ble

terms of V4 and /;:
[S
o]

I substitute Vg, into Eqn.(3.1):

2
- Ve s
T; \/ 2
Vis Vi~ Uln(—l—) - L R 1(15)
Vds+\/n—\}’0 Vdg+V \P o

I, =Ble =Ble 3.4)
I expand the exponent using (1-x)>=1+2x, substitute for I using Eqgn. (1.2), and solve:
(1 &4 )K’Viﬂ Vp 2
U (Vdswn—‘*‘oj (1-4)
I, =Bl.e w 3.5
2U,Vy
where €y = 3 (3.6)
(Vas + Vi =¥,
I substitute Eqn. (3.5) into oW/t from Eqn. (2.4),
r(l‘eﬁ«p)K’Vm Zﬁi
1 [ Uy \ Vds+\/' =¥, J 2_¢
Ww_ Ply L yle=ee) (3.7)
ot QT
Now I define
(e JZ (1= €4 ) < Vi
Q Vs +Vin— P, U,
ij 4p = BIT (38)
Finally, I substitute Tiy;_4, back into Eqn. (3.7), to get the IITHEI weight-increment rule:
aW 1 (2—84]))
== %4 39
ot Tinjﬁ4p ( )

The parameter g4, varies with Vy; the parameter Ty 4, varies with Vy and with Vi, .

3.1.4.2.3 The Synapse Weight-Update Rule

I obtain the complete weight-update rule, for the four-terminal pFET synapse, by adding
Eqgns. (3.3) and (3.9):

2-€ -
oW 1l 4p)_T1 (1= (3.10)

tun
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Figure 3.8 Four-terminal pFET-synapse impact ionization versus drain-to-channel voltage. I fixed the gate-
to-channel voltage at V. =1.05V and the source current at I;=10nA, and measured the drain current I; ver-
sus the drain-to-channel voltage V.. By plotting the data as efficiency (drain current I, divided by source
current I, minus one), I show the impact-ionization probability as a function of the drain-to-channel volt-
age. Although I can fit these data more carefully by using a modified lucky-electron model, the exponential
fit is simpler, and models the data reasonably well over the entire drain-voltage range. Impact ionization in
the four-terminal pFET synapse is markedly less efficient than it is in the four-terminal nFET synapse (see
Figure 2.9), for two reasons. First, as a consequence of the bulk p-type implant that I add to the nFET tran-
sistor’s channel region, the nFET synapse experiences a higher drain-to-channel electric field than does the
PFET, thereby increasing the ionization likelihood. Second, the imipact-ionization process is naturally more

efficient for electrons (the nFET charge carriers) than it is for holes (the pFET charge carriers).

3.1.5 Impact Ionization Increases the Drain Current

I generate the electrons for oxide injection by means of hole-impact ionization in the four-
terminal pFET synapse’s drain-to-channel depletion region. As a result, the drain current exceeds
the source current during IIHEI I show hole impact-ionization data in Figure 3.8. Like I did for
the four-terminal nFET synapse (see Section 2.1.5), I use a simple exponential fit, rather than a
lucky-electron fit, to model these data. If I choose drain current, rather than source current, as the
synapse output, I can rewrite the gate-current equation by replacing /4 with [, according to my fit

equation:
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Vie
Iy = IS[H ye ™ } (G.1hH
where y and Vi,,, are measurable fit constants.

3.1.6 An Alternate Injection Mechanism

Electrons can inject in a floating-gate pFET by means of a surface-induced avalanche-
injection mechanism different from the IIHEI process described in Section 3.1.2. Frohman-
Bentchkowsky used this alternate injection mechanism to write the first floating-gate MOS
memory device [2]. In the 2pum n-well process that I use, the injection occurs as follows: If 1
raise the floating-gate voltage above the well voltage, then the n-type MOS surface accumulates
electrons, and the depletion region separating the n-type surface from the p-type drain narrows. If
I simultaneously apply a large negative drain voltage, then avalanche breakdown at the drain—
surface pn junction liberates electron—hole pairs. The electrons are expelled from the drain by the
drain-to-surface field, and can inject onto the floating gate. The avalanche-breakdown process is
self limiting: The liberated electrons reduce the surface potential, decreasing the field and inhib-
iting further carrier generation.

When I turn off a pFET synapse, if I raise the control-gate voltage high enough to cause the
floating gate to accumulate the MOS surface, and 1 simultaneously apply a large negative drain
voltage, then electrons will inject ontc the floating gate. Unfortunately, because the electron
source is avalanche breakdown, I cannot control the magnitude of the injected charge accurately.
Consequently, this injection mechanism probably is not useful for learning. In a learning array,
however, avalanche injection can reduce the isolation between synapses. In Figure 3.9, I show
the change in source current, versus time, for a pFET synapse transistor with five different con-
trol-gate (off) voltages. The larger the control-gate voltage I use to turn off the synapse, the
greater the magnitude of this undesired gate current. To eliminate the effect, I use 1V control-

gate signals to turn off the synapses in my pFET arrays (see Section 3.1.4.1).

3.2 A Guarded-pFET Synapse

The four-terminal pFET synapse’s layout is large, because the transistor and the tunneling
implant occupy separate wells. I now describe how I combine these two wells to obtain a more
compact layout. I have named the new device a guarded-pFET synapse. A guarded-pFET synapse
still is a four-terminal pFET synapse, and it still uses FN tunneling and ITHEI to modify the
floating-gate charge. Consequently, I do not show the weight-update and array behavior for this

synapse, because the data are nearly identical to those from Section 3.1. Instead, after I describe
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Figure 3.9 Four-terminal pFET-synapse avalanche injection versus control-gate voltage. For each of five
experiments, I initialized the synapse’s source current to I;=100nA; fixed the well-referenced source volt-
age at V,=0V; turned off the synapse by raising the control-gate input, V;,, by the amount indicated; and
increased the drain-to-source voltage, Vys, from 4V to 10V. At five-second intervals, I lowered V,,, de-
creased Vg, back to 4V, and measured the synapse’s source current. I plotted the source current versus the
amount of time the synapse was turned off, for each of the five control-gate voltages. When AV, >1V, the
synapse underwent avalanche injection as follows: When the floating-gate voltage was more positive than
the well voltage, the n-type MOS channel accumulated electrons. When I increased Vg, pn breakdown oc-
curred at the junction between the accumulated n-type channel and the heavily doped p* drain. Electrons
liberated by the breakdown process were expelled from the drain-to-channel depletion region at high ener-
gies, and injected onto the floating gate. I confirmed experimentally that the avalanche gate current in-
creased exponentially with Vg, consistent with my analysis of the injection process. To avoid this ava-
lanche-induced gate current, I used 1V control-gate pulses to turn off the pFET synapses in the array ex-

periments (see Section 3.1.4.1).

the synapse’s layout and operating concept, [ describe how to use a guarded-pFET synapse as an
analog EEPROM-type memory element.

I assume, for the moment, that to make the four-terminal pFET synapse smaller, I can simply
merge the wells containing the tunneling implant and the floating-gate pFET. The tunneling im-
plant comprises n* doped silicon, and an n-well comprises n~ doped silicon; consequently, a tun-
neling implant is a well contact. To induce electron tunneling, I must apply about 30V across the

gate oxide separating the floating gate and the well contact. I can do so by lowering the floating
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gate by 30V; unfortunately, if the well potential is +12V, lowering V;, by 30V requires using a
large negative supply voltage on chip, and precludes reading the source current during tunneling.
Alternately, I can raise the well potential by 30V, but doing so will cause pn breakdown at the
reverse-biased drain-to-well and source-to-well pn junctions. To prevent this pn breakdown, I can
raise the drain, source, and well potentials by 30V during tunneling, but then I cannot read the
synapse’s source current during tunneling. I employ a technique called junction guarding to solve
this problem.

In a planar IC-fabrication technology, the implant-impurity concentrations usually are much
higher near the semiconductor surface than they are in the bulk. Consequently, the electric field
across a pn junction is highest at the surface, and reverse-bias junction breakdown usually occurs
near the surface [3]. Junction guarding is a well-known technique for reducing the surface elec-
tric field. By surrounding an implant with a MOS guard ring, and applying the high voltage to
both the implant and the ring, I widen the depletion region at the semiconductor surface, thereby
decreasing the peak electric field and increasing the junction’s breakdown voltage [3]. In Figure
3.10, I show pn-breakdown voltage, versus guard-ring voltage, for a heavily doped n* implant (in
p-type substrate) surrounded by a polysilicon-gate guard ring. For junction voltages in the 30V
range, the pn-breakdown voltage increases nearly one to one with the guard-ring voltage.

I show the guarded-pFET synapse in Figure 3.11. This synapse has three notable features: (1)
the layout contains a single n-type well, (2) the floating gate abuts the n* well contact, and (3) the
floating gate surrounds the p-type drain and source implants. I apply positive high voltages to the
n~ well, tunnel electrons from the floating gate to the n” well contact, and use the floating gate to
guard the drain and source implants against pn breakdown. From the well’s perspective, the drain
and source implants are at large negative voltages (although the voltages still are positive with
respect to the substrate); consequently, for guarding, the floating gate must also be at a large
negative voltage. In a subthreshold pFET, the floating-gate voltage will always be near the source
voltage; consequently, the floating gate is naturally at the proper potential for guarding. Simply
by surrounding the drain and source implants with the floating gate, I guard these junctions
against pn breakdown during tunneling.

A guarded pFET remains a fully functional p-type MOSFET. The only differences between a
guarded pFET and a conventional pFET are the larger well-voltage range, and larger drain-to-
gate and source-to-gate overlap capacitances. Consequently, in a guarded-pFET synapse I can
simultaneously (1) raise the well voltage, causing electron tunneling from the floating gate to the
n* well contact; (2) adjust the floating gate and source voltages to effect subthreshold source cur-

rents; and (3) lower the drain voltage, causing ITHEL
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Figure 3.10 Junction-diode breakdown voltage versus guard-ring voltage. I fabricated an isolated n* im-
plant, in the p~ substrate, and surrounded the n* implant with a polysilicon-gate guard ring (see Figure 3.11
for an example). I stepped the guard-ring voltage from OV to 20V in 0.5V increments; for each guard-ring
voltage, 1 ramped the n* voltage upward, starting from the substrate potential (ground), and ending when the
leakage current from the n* implant to the p~ substrate just exceeded 10nA. I plotted the maximum voltage
that I applied to the n” implant, Vy, max, versus the guard-ring voltage. These data show clearly that guard
rings extend the reverse-bias breakdown voltage of implanted pr junctions. Although I measured these data

from an n” implant within substrate, a guarded p* implant within an n~ well behaves similarly.

3.2.1 Electron Tunneling Decreases the Weight

I show the tunneling-junction layout, and an energy-band diagram for the tunneling process,
in parts A and C of Figure 3.11, respectively. The layout and band diagram are identical to those
for the four-terminal pFET synapse (compare Figure 3.11 with Figure 3.1). T apply positive high
voltages to the n” well contact to cause electron tunneling, thereby decreasing the synapse weight
w.

The guarded-pFET synapse’s floating gate extends from the MOSFET, over the n~ well, to
the n* well contact. As I did for the three-terminal nFET synapse (see Figure 2.11), I placed a
field-oxide channel stop beneath the floating-gate extension, ostensibly to prevent the channel-
surface depletion layer from reaching the n* well contact. Unfortunately, as I have already de-

scribed for the three-terminal nFET synapse (see Section 2.2.6), when the well voltage exceeds
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Figure 3.11 The guarded-pFET synapse, showing the electron tunneling and injection locations. As I did in
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Figure 3.1, I have aligned the three diagrams vertically, drawn diagrams A and C to scale, exaggerated the
vertical scale in diagram B, referenced the voltages in the band diagram to the source potential, drawn the
gate-oxide band diagram in the channel direction, and assumed subthreshold source currents (/;<100nA). In
the 2 um process, the synapse length is 48 um, and the width is 18um. In a learning array, [ can place multi-
ple synapses within a single n-type well; consequently, the effective synapse dimensions are smaller (about
38umx14pum, depending on the layout). The floating-gate surrounds the p* drain and source implants,
guarding these junctions against pn breakdown during well tunneling. T draw the active mask around the p*
implants, thereby ensuring that the floating-gate guard rings subtend gate oxide, rather than field oxide, near
the p*. I orient the transistor so that the drain implant is farther from the well contact than is the source im-
plant, because the well-contact—to—drain voltages are larger than the well-contact—to—-source voltages. The
field-oxide channel stop was intended to prevent the channel-surface depletion layer from reaching the tun-
neling junction. Unfortunately, during tunneling, a leakage current flows from the n* well contact to the p-
type channel (see the discussion of tunneling-junction leakage in Section 2.2.6). To eliminate this leakage
path in the test device, I routed the floating gate from the channel region to the well contact in metal, rather
than in polysilicon. T expect this leakage problem to disappear when I use a more modern process with
lower tunneling voltages. With a 115fF interpoly capacitor as shown, the coupling coefficient between the
poly2 control gate and the poly!1 floating gate is about 0.35. I enlarged the interpoly capacitor to 1pF in the
test device, thereby increasing the coupling coefficient to 0.8. I decrease the synapse weight W by tunneling

electrons to the well contact; I increase the weight by means of IIHEI in the channel-to-drain depletion re-

the floating-gate voltage by about 30V, avalanche breakdown occurs at the n* tunneling implant.
In the guarded-pFET synapse, a leakage current flows during tunneling from the n* well contact,
beneath the channel stop, to the p-type source and drain.

In Section 3.2.4, I describe an alternate guarded-pFET synapse that does not exhibit junction
leakage during tunneling. For the synapse of Figure 3.11, in the 2um process, I modify the layout
by routing the floating-gate extension in metal, rather than in polysilicon, thereby eliminating the

leakage current entirely (but also, unfortunately, enlarging the layout).

3.2.2 Electron Injection Increases the Weight

I increase the synapse weight W by injecting electrons onto the floating gate. The IIHEI
process in the guarded-pFET synapse is identical to the IIHEI process in the four-terminal pFET
synapse (compare Figure 3.11 with Figure 3.1). In Figure 3.12, I show the guarded-pFET syn-
apse’s IIHEI efficiency (gate current [, divided by source current /i) versus both the drain-to-

channel and the well-contact—to—channel potentials. As I did for the four-terminal pFET synapse
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Figure 3.12° Guarded-pFET synapse IIHEI surface plot. I measured the ITHEI gate current /, versus both
the well-contact-to—channel potential, V., and the drain-to-channel potential, V., for a fixed source cur-
rent I;=10nA and a fixed floating-gate voltage V=2V (relative to substrate). I plotted the gate current /,
divided by the source current I;. In the subthreshold regime, /, increases linearly with I; consequently,
these data show the IIHEI efficiency for the entire subthreshold source-current range. I used Vg, =2V, rather
than the more typical V=10V, to avoid field-oxide electron injection where the floating gate exits the
high-voltage well (I route the floating gate from the well to measurement circuitry in substrate). In most
learning applications, the floating gate will not exit the well. The dependency of the ITHEI efficiency on Vq,
is similar to that for the four-terminal pFET synapse (see Figure 3.2). The dependency of the ITHEI effi-
ciency on V. is different from that for the four-terminal pFET synapse, because the well pinches off at
roughly V,,.=18V. I therefore plot these data versus V.., rather than versus Vye, because, for Vi .>18V,
changes in the well-contact voltage do not cause commensurate changes in V,.. The data of Figure 3.13
show the effect more clearly. If I maintain V,,.>18V, then the guarded-pFET synapse’s ITHEI efficiency

becomes, for all practical purposes, independent of the well-contact voltage.

(see Figure 3.2), I plot the data as efficiency because the gate current increases linearly with the
source current over the subthreshold source-current range, and I reference the drain potential to
the channel potential because the hot-electron population derives from the drain-to-channel elec-
tric field. However, unlike in Figure 3.2, I plot the guarded-pFET efficiency data versus the well-
contact—to—channel potential, rather than versus the gate-to-channel potential, to illustrate an in-
teresting phenomenon: The IIHEI efficiency does not increase monotonically with the well-

contact voltage. The data of Figure 3.13 show the effect clearly.
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Figure 3.13 Guarded-pFET synapse IIHEI efficiency versus well-contact voltage. I replotted a subset of
the data from Figure 3.12, for a single fixed drain-to-channel voltage V4.=12.25V. For V<10V, the II-
HEI efficiency increased with V., for the following reason: When I increased V., I simultaneously in-
creased V., to maintain a fixed source current (see the discussion in Section 3.2.2). Consequently, these
data are consistent with the data in Figure 3.2. For 10V<V,, <18V, the IIHEI efficiency decreased with
increasing V., because the drain guard ring widened the drain-to-channel depletion region, decreasing the
drain-to-channel electric field and with it the hot-electron population. For V,,.>18V, the ITHEI efficiency
became independent of V., as a result of well pinchoff (see Figure 3.14 and Figure 3.15). I estimated the
well-pinchoff voltage to be about 18V not so much from these data, but rather from the data in part B of

Figure 3.15 (with a source voltage V,=12V).

For well-contact-to—channel voltages less than about 10V, the ITHEI efficiency increases
with the well-contact voltage. I can view these data another way: As I raise the well-contact volt-
age, I must simultaneously lower the floating-gate voltage (increase the magnitude of the float-
ing-gate voltage relative to the source), to maintain a fixed channel potential and thereby a fixed
channel current. These data therefore show that a guarded pFET’s IIHEI efficiency increases
with gate-to-channel voltage, just like in the four-terminal pFET synapse (see Figure 3.2).

For well-contact-to—channel voltages greater than about 10V, but less than about 18V, the
ITHEI efficiency decreases with increasing well-contact voltage. I believe that this decrease hap-
pens for the same reason that the floating-gate guard rings inhibit drain-to-well junction break-
down: The potential difference between the well and the guard ring widens the surface depletion

region near the p* drain implant, decreasing the peak electric field. Guard rings also widen the
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Figure 3.14 Well-resistor pinchoff. I fabricated, in substrate, a 1900umx 10um strip of n~ well (a well
resistor) with n* contacts at each end, and a polysilicon cap (poly1 over field oxide) over most of the length.
I grounded the substrate, the polyl cap, and one of the n* contacts, and I swept the other n* contact from 0V
to 50V while measuring the well-resistor current. For low voltages, the well looked like a 1 MQ resistor. As
I increased the voltage, the well-to-substrate and well-to-channel depletion regions widened, decreasing the
amount of undepleted n™ available for current flow and thereby increasing the resistance. At about 20V, the
depletion regions met, pinching off the well in a manner analogous to JFET channel pinchoff [3], causing
the resistance—>oo. For a well resistor without the polyl cap, the well pinches off at 40V to 50V, rather

than at 20V, because the well-to-substrate depletion region must widen all the way to the silicon surface.

drain-to-channel depletion region, decreasing both the electric field and the IIHEI efficiency.

For well-contact—to—channel voltages greater than about 18V, the HHHEI efficiency is inde-
pendent of the well-contact voltage. This effect is intrigning—indirect evidence, in particular the
well-resistor data that I show in Figure 3.14, point to well pinchoff as the likely cause. As I in-
crease the well-contact voltage, the well-to-substrate and the well-to-channel depletion regions
widen: When the well-contact—to—channel voltage reaches 18V, the depletion regions meet,
pinching off the well in a manner analogous to JFET channel pinchoff [3]. For all practical pur-
poses, the well region beneath the pFET becomes semi-insulating; further increases in the well-
contact potential do not affect the channel potential. If this hypothesis is correct, then well pin-
choff may also be implicated in the tunneling-junction leakage problem (see Section 2.2.6), in

ways that I do not yet understand.
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3.2.3 Well Pinchoff Isolates the Tunneling Implant

Well pinchoff isolates the well-contact tunneling implant from the p-type MOSFET, thereby
allowing separate and independent control of the gate-oxide tunneling and the MOS transistor
operation. As I show in Figure 3.15, when the well-contact—to—source-voltage is equal to about
18V, both the floating-gate~to—channel coupling coefficient, x, and the transistor’s threshold
voltage, V., become constant. By the data of Figure 3.13, further increases in the well-contact
voltage do not affect the IIHEI efficiency; by the data of Figure 3.15, further increases do not
affect the transistor’s channel current. Consequently, well pinchoff decouples the tunneling im-
plant from the p-type MOSFET, and the guarded-pFET synapse looks, for all practical purposes,
just like the four-terminal pFET synapse. Of course, K is higher, and as a result the parameter o
in the tunneling weight-update rule, Eqn. (3.3), is smaller, but these improvements are secondary.
The primary result is that the guarded-pFET synapse operates in a fashion similar to the four-
terminal pFET synapse, but with a more compact layout,

A typical operating condition for this synapse is V=12V, V=30V (both voltages are ref-
erenced to the substrate), and /,;=10nA. For these conditions, the floating-gate voltage is roughly
9V (the large gate-to-source voltage is a consequence of the threshold voltage increase—see part
B of Figure 3.15), and the tunneling-oxide voltage is 21 V. The well is pinched off, but the tun-
neling-oxide voltage is too small to cause measurable electron tunneling. If V;>7V, then there is
no measurable IIHEL and the synapse’s weight remains nonvolatile. If 1 raise the well-contact
voltage to 40V, the well remains pinched off, and I do not alter either the transistor’s source cur-
rent or its I[IHEI gate current directly (there is parasitic capacitive coupling from the tunneling
implant to the floating gate, but this coupling is common to all the synapses). I do, however,
cause measurable electron tunneling, decreasing the synapse’s weight W. Alternately, if I lower
the drain voltage to ground, then I induce ITHEI increasing the synapse’s weight W. Because
well pinchoff decouples the tunneling implant from the pFET, electron tunneling and IIHEI can

occur simultaneously.

3.2.4 An Alternate Tunneling Junction

During tunneling, field-oxide—induced junction breakdown at the n* well contact causes a
leakage current to flow from the well contact to the pFET’s drain and source. I therefore investi-
gated alternate tunneling junctions where the floating gate does not abut the n*. I first built a
guarded-pFET synapse without a floating-gate extension to the n* well contact, in the hopes of
inducing FN tunneling through the gate oxide that subtends the channel. Unfortunately, the

pFET’s source potential pins the MOS-channel potential; consequently, the channel is at or near
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Figure 3.15 Guarded-pFET synapse kappa and threshold voltage versus well-contact voltage. For the syn-

apse of Figure 3.11, I swept the well-contact voltage from the source voltage, V,, to 55V (substrate refer-

enced), in 1V steps. At each step, I measured (A) the gate-to-channel coupling coefficient, k, and (B) the

transistor’s threshold voltage, V;, and I plotted these data versus the well-contact—to—source voltage, V..

When V., exceeded about 18V, well pinchoff depleted the n” silicon beneath the transistor, causing the well
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to become effectively semi-insulating. The data in (A) show that, when V> 18V, the transistor’s backgate
was eliminated, and k became constant. I do not yet understand what caused the discontinuity in the data at
Vws=18V, and why « did not reach unity. In (B), I measured V, for seven values of V; ranging from V,=5V
to V,=12V (substrate referenced) in 1V steps. The higher the source voltage, the higher the well-contact
voltage, and the wider the initial well-to-substrate depletion region. Consequently, the well-contact—to-

source voltage at which the well pinched off decreased as V; increased.

the source voltage, rather than near the well-contact voltage, and the resulting oxide voltage is
insufficient for tunneling. (Note: MOSFETs with 40 A or thinner gate oxides can tunnel electrons
directly from the floating gate to the channel—see the discussion of direct tunneling in Section
5.1.) To isolate the tunneling region from the pFET’s source, I fabricated the guarded-pFET syn-
apse shown in Figure 3.16. In this device, electrons tunnel from the floating gate to the n~ well
through what I call a bowl-shaped tunneling junction.

I extend the pFET’s floating gate over a region of field oxide, and T place an isolated,
4umx4um square bowl of gate oxide within this field oxide. The gate-oxide bowl has n” silicon
beneath it, the polysilicon floating gate above it, and field oxide on all four sides. I apply a high
voltage to the n~ well, causing electrons to tunnel from the floating gate, through the gate-oxide
bowl, to the n™. The floating gate depletes the n~ silicon immediately beneath the bowl, causing a
potential drop from the bulk #™ to the MOS surface. Consequently, bow! tunneling requires well
voltages roughly 5V higher than those required to tunnel at an n” well contact. However, because
I tunnel through a gate-oxide surface, rather than at an edge, oxide trapping is reduced.

Bowl-shaped tunneling junctions do not exhibit the leakage currents that I observed at n*
well-contact tunneling junctions (see Section 2.2.6), consistent with my analysis that, at an 1~
tunneling implant, pn breakdown occurs where the induced p-type surface abuts the n* well con-
tact. Unfortunately, electron tunneling in a bowl-shaped junction also presents inconsistencies
with my prior analysis. A parasitic channel should form beneath the floating-gate extension that
separates the bowl-shaped tunneling junction from the pFET, causing the pFET’s channel poten-
tial to pin the surface potential beneath the bowl, preventing tunneling. However, the bowl-
shaped junctions do tunnel, indicating that I do not yet fully understand the formation and char-
acteristics of parasitic field-oxide channels.

Although the bowl-shaped tunneling junction does eliminate the pn-breakdown problem, its
turn-on delay (the delay between the application of a high well voltage and the onset of electron
tunneling) is long. In Figure 3.17, I show the amount of charge tunneled through a bowl-shaped

oxide, versus the amount of time the well voltage was pulsed high, for three different well-pulse
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A. Top View
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Figure 3.16 A guarded-pFET synapse without tunneling-junction leakage. I have aligned the two diagrams
vertically, and I have exaggerated the vertical scale in diagram B. The only difference between this synapse
and the one shown in Figure 3.11 is the tunneling-junction layout. In this synapse, I form a bowl-shaped
tunneling junction using an isolated active mask, separated from both the transistor and the well contact.
This synapse tunnels electrons from the floating gate to the n~ well; the synapse in Figure 3.11 tunnels elec-
trons from the floating gate to the n” well contact. The band diagrams for the tunneling and ITHEI processes
are identical for both devices; consequently, I do not redraw the band diagram here. Because the floating
gate in this synapse does not abut the n* well contact, the channel-surface depletion layer does not reach the
n*, eliminating the leakage current shown in Figure 2.21 completely. In the 2pum Orbit process, the synapse
length is 54um, and the width is 18 um. Because I anticipate using multiple synapses within a single n-type

well, the effective synapse dimensions are smaller (about 49 umx 14 pm, depending on the layout).



Chapter 3 79

1 T T T T T

b
W
T

+ pulse amplitude=10V; turn-on delay=5.5s
x pulse amplitude=15V; turn-on delay =10.4 s

g
o

- o pulse amplitude=20V; turn-on delay=14.7 s

o —
) n

transported oxide charge (pC)
<
O

40
pulse duration (s)

60

Figure 3.17 Bowl-shaped tunneling junction turn-on delay. For the synapse of Figure 3.16, I fixed the
floating-gate, drain, and source voltages at 11V (substrate referenced), and [ set the resting well voltage to
37V (+),32V (%), and 27V (0) . I pulsed the well to 47V for the time indicated, and I measured the amount
of charge tunneled through the oxide versus the tunneling pulsewidth. The turn-on delay (the delay between
the start of the tunneling pulse and the onset of electron tunneling) always exceeded several seconds, and
increased with the well-pulse amplitude. The reason for the turn-on delay is as follows: The well voltage
exceeded the floating-gate voltage, so the silicon surface beneath the bowl was depleted. The depletion-
region depth increased with the voltage differential between the floating gate and the well. When I pulsed
the well high, holes diffused to the silicon surface to deplete more of the n~ well, raising the surface poten-
tial. Unfortunately, the only source for these holes was thermal generation. As a result, the surface potential
increased only gradually. Because electron tunneling increases exponentially with the tunneling-oxide volt-
age, no appreciable oxide current flowed until the surface was fully depleted. I can use this bowl-shaped
tunneling junction in systems for which the tunneling voltage is a slowly varying analog quantity, but, be-

cause of the long turn-on delay, I cannot use it in systems in which I pulse~tunnel a synapse.

voltage amplitudes. The turn-on delay can exceed 10 seconds—an impracticably long time for a
pulse-based learning system. The cause is the depletion region at the silicon surface beneath the
bowl. As a result of the voltage differential between the floating gate and the n~ well, the surface
region beneath the gate oxide is depleted, and the depletion-region depth varies with the voltage
differential between the floating gate and the well. If I pulse the well high, I must provide holes
to the silicon surface to widen this depletion region. Unfortunately, the only hole source is ther-

mal-carrier generation. Consequently, the depletion region takes many seconds to widen. Al-
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though I can use bowl-shaped tunneling junctions in systems for which the well-tunneling volt-
age is a slowly varying analog quantity, I cannot use them in systems in which I pulse-tunnel a

synapse.

3.2.5 An Analog EEPROM with Self-Convergent Writes

I'now describe how I use my guarded-pFET synapse as an analog-EEPROM transistor. There
is a need for nonvolatile analog storage in standard CMOS processes [4, 5], to store bias voltages
or currents, to record continuously valued analog signals [6], to store analog weights in silicon
neural networks, and to permit multilevel digital memories. This need has not been satisfied ade-
quately by commercial nFET EEPROMSs, primarily because conventional EEPROM transistors
do not permit simultaneous memory reading and writing. Most analog EEPROM implementa-
tions require iterative writes: The memory first is written, then is read; the written and read val-
ues then are compared, and the error is used to write a correction. This cycle is repeated until the
error is within prescribed bounds.

Unlike conventional EEPROM transistors, my guarded-pFET synapse allows simultaneous
memory reading and writing. Consequently, I can apply continuous negative feedback during the
write process, to store an analog memory value in a single-step write. This process is called self-
convergent writing: An intrinsic, self-limiting feedback path within the transistor itself ensures

that the analog memory value is stored accurately.

3.2.5.1 Writing the Memory

I fabricated a prototype analog EEPROM, to investigate the array write and erase procedures,
and the memory-write accuracy. Each memory cell comprised a single guarded-pFET synapse. |
show the write process in part A of Figure 3.18, and the array in part B of Figure 3.18. [ always
erased a cell before writing. I describe the erase process in Section 3.2.5.2.

I chose to read and write drain-current values. To write a cell, I applied a low voltage to the
row control-gate input, and a programming sink current to the column-drain wire. I generated the
cell’s programming sink current from a current source, as shown in part A of Figure 3.18. As
long as this programming current exceeded the cell’s drain current, the drain voltage remained
low, and electrons injected onto the cell’s floating gate. Electron injection caused the floating-
gate—to—source voltage to increase, thereby increasing the cell’s drain current. As soon as the
drain current exceeded the programming current, the drain voltage rose, turning off the injection.
ITHEI closed a negative-feedback loop around the inverting amplifier formed from the guarded-
pFET synapse and the programming current source [7]. This loop adapted the cell’s floating-gate

charge to equalize the programming and pFET-drain currents.
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A. The Self-Convergent Write Process
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Figure 3.18 Self-convergent writes in a guarded-pFET array. The transistor symbol is a guarded-pFET
synapse: The arrow on the well-contact wire denotes a tunneling junction, and the extensions to the floating-
gate symbol denote guard rings. I use the circuit in (A) to write an analog drain-current value. As I describe
in Section 3.2.5.1, I merely sink the programming current from the synapse transistor’s drain. An intrinsic
feedback loop, comprising the current source and the synapse transistor, adjusts the floating-gate charge to
equalize the programming and pFET-drain currents. I fabricated the 2x2 array in (B) to measure the cros-
stalk between synapses during memory writes. The column synapses share a drain wire; consequently, when
the current source pulls the {1,1} synapse’s drain low to effect [IHEI, thermally generated carriers can in-
Ject onto the {2,1} synapse’s floating gate. The write crosstalk, defined as the percentage change in the

{2,1} synapse’s drain-current value following a full-scale write of the {1,1} synapse, is about 0.025%
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Figure 3.19 Maximizing a guarded-pFET synapse’s write rate. For the synapse of Figure 3.11, I show the
gate current and the impact-ionization efficiency, versus the source current, for a fixed drain-to-source volt-
age Vg=12V. In an analog EEPROM, I avoid source currents smaller than about 20nA, because the ITHEI
gate current, and therefore the write rate, are small. The pFET’s transconductance changes rapidly near
threshold; consequently, I further avoid source currents smaller than about 200nA, to minimize the read—
write gain and nonlinearity errors described in Section 3.2.5.1 and shown in Figure 3.21. At high source
currents, the potential at the drain end of the channel drops, thereby decreasing the drain-to-channel electric
field and with it the impact-ionization probability. Above I;=200uA, there are no impact-generated elec-
trons, so there is no gate current. I employ drain-current values in the 200nA to 20uA range, thereby mini-

mizing the read—write errors and maximizing the EEPROM write rate.

In an analog EEPROM, a primary concern is memory-write speed and accuracy. The silicon-
MOS physics does not restrict synapse transistors to subthreshold source currents; in fact, all my
synapse transistors exhibit large hot-electron gate currents for a wide range of above-threshold
source currents. I use above-threshold source currents in the analog EEPROM, to speed the write
process. In Figure 3.19, I show gate current versus source current for a guarded-pFET synapse
with source currents ranging from 20nA to 200uA. These data show that I can maximize the
memory-write speed by using source currents in the 2pA to 20pA range.

I wrote 64 logarithmically spaced drain-current values to a memory cell, using a 100msec
write pulsewidth, and I measured the write error for each write. In Figure 3.20, I show the read—

write transfer function, and the write error, versus the write current. I repeated the experiment of
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Figure 3.20 Read-write transfer function and write error, for a 100ms write pulsewidth. I wrote 64 loga-
rithmically spaced drain-current values to the {1,1} synapse in Figure 3.18 (B). I chose log-scale values to
illustrate the memory cell’s dynamic range. I reset the drain current to 100nA prior to each write. I calcu-
lated a best-fit transfer-function line to the data, and plotted both the best-fit line and the fractional devia-
tion between the fit line and the data. During cell erasure, if excessive tunneling occurred, the drain current
became small; when I later wrote the cell, the gate current was small, and the write process was slow. I
therefore initialize the cell after tunneling by (1) applying a 100nA programming current, (2) lowering the
control-gate voltage until the drain current was equal to this programming current, and (3) using the self-
convergent feedback mechanism, described in Section 3.2.5.1, to maintain this drain-current value as I
ramped the control gate back up to its resting voltage. I can initialize an entire array by sinking 100nA from

every column, and successively ramping the control-gate inputs for each row.

Figure 3.20, for write pulsewidths ranging from 68msec to 10sec; in Figure 3.21, T show the
read—write gain and nonlinearity errors, versus the write pulsewidth. To prevent writing a cell
during memory reads, I used lower drain voltages for reading than I did for writing. As a result of
the synapse’s parasitic floating-gate—~to—drain overlap capacitance, this drain-voltage differential
coupled to the floating gate, causing an offset between the write current and the read current. Be-
cause the pFET’s transconductance is nonlinear, this offset varied with the memory-write value.
Also, the shorter the programming pulsewidth, the further the drain voltage was from its settled
value when I removed the programming current, and the larger the errors. To reduce these write

errors in future arrays, I can sense the drain voltage during writing, and can always disable the
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Figure 3.21 Memory-cell write errors versus write pulsewidth. I repeated the experiment of Figure 3.20,
using write pulsewidths ranging from 68 msec to 10sec. I plotted the offset error (the maximum deviation
between any stored drain-current value and the respective programming current), the linearity error (the
maximum deviation between any stored drain-current value and the best-fit transfer-function line), the gain
error (the deviation of the best-fit transfer-function line from unity slope), and the random error (the RMS
write error after removing the nonlinearity) versus the write pulsewidth. Because I employed oversized
(1pF) gate capacitors, and used an off-chip current source to write the memory, the settling times were long.
The shorter the programming pulsewidth, the further the drain voltage was from its settled value when I

removed the programming current, and the larger the errors.

write when the drain reaches a fixed voltage. This change will ensure consistent write errors that

can be compensated by circuitry at the array boundary.

3.2.5.2 Erasing the Memory

A guarded-pFET EEPROM permits either flash or single-cell erasure, depending on the chip
layout. If I fabricate an entire array within a single n-type well, I can flash erase the rows. I select
a row for erasure by applying a high tunneling voltage to the nwell, and a low voltage to the con-
trol-gate input of the selected row. If I instead fabricate each column of the array within its own
n-type well, I can erase cells individually. I erase an individual cell by applying a high tunneling
voltage to the column nwell, and a low voltage to the row control-gate input. Regardless of the

nwell layout, the array permits single-cell writes.
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3.2.5.3 Fabricating the EEPROM in Standard CMOS Processes

Guarding the source and drain junctions of n-type MOSFETSs is impractical, because the
floating-gate voltage would need to be near the tunneling voltage. Instead, EEPROM vendors
employ special implants and processing steps to permit high-voltage tunneling in unguarded n-
type MOSFETs. This requirement for specialized processing has prevented the wide use of
floating-gate devices in conventional MOS design. However, guarding the source and drain
junctions of p-type MOSFETs is trivial, as I have already shown, and p-type MOSFETs exhibit
the further benefit of self-convergent memory writes. Guard rings and floating-gate transistors
can be fabricated in any MOS process (although a double-poly process simplifies the layout).
Consequently, my guarded-pFET synapse can be made a standard element in CMOS integrated
circuit design, thereby allowing the integration of nonvolatile-analog or multilevel-digital storage

in standard CMOS processes.

3.3 Further Development

My pFET synapses already possess those attributes that I believe are essential for building a
silicon-learning system. In addition, the guarded-pFET synapse can be used as a nonvolatile
analog-storage element in conventional CMOS design. However, further development, especially
in the four areas that I have discussed for the #FET synapses (see Section 2.3), will improve my
pFET synapses substantially. These key areas remain (1) reduced tunneling voltages, (2) reduced
tunneling-junction leakage, (3) reduced overlap capacitances, and (4) smaller synapse size. Like

for the nFET synapses, more modern processing will readily allow these improvements.
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Chapter 4

A Floating-Gate MOS Learning Array
with Locally Computed Weight
Updates

Hebb’s postulate—that synapse growth occurs as a result of coincident presynaptic and post-
synaptic activity—ocan form the basis for local learning in an array of silicon synapse transistors.
I show a block diagram of a candidate array in Figure 4.1. This array computes the inner product
of an input vector X and the stored analog weight matrix. The computation and synapse-weight
modification occur locally and in parallel: Column inputs (the presynaptic signals) that are coin-
cident with row-learn signals (the postsynaptic activity) cause weight increases at selected syn-
apses. To prevent unbounded weight values, I constrain the synapse weights using a fed-back
row-error signal.

[ have fabricated a 4x4 array of four-terminal nFET synapse transistors based on the archi-
tecture of Figure 4.1. I chose the input vector X and the row-learn vector Y to comprise 10us
digital pulses. To simplify the testing and subsequent analysis, I chose each row-learn signal Y; to
match one of the column inputs X; identically; consequently, the learning is not Hebbian. In fu-
ture testing, however, I can derive each row-learn signal Y; from the ith row output, thereby im-
plementing a true Hebbian learning rule. I chose a simple constraint to bound the weight values:
The time-averaged sum of the synapse weights, in each row of the array, is held constant. This

constraint forces row synapses to compete for floating-gate charge, stabilizing the learning.



Chapter 4 88

, :
—_——— { error signal

- ~ -9 : —— < learn signal
synapse  y synapse y y

0——»()?4—— Wy, 1»—»@4— Wy,
&

_— @ >0utput=zW2ij
J

-  error signal

- e < learn signal
synapse y y synapse y y
S Wi ! Wi,

%

—— ® + >output=ZleXj
A\ A /
X, inputvectorX X,

Figure 4.1 The learning-array block diagram. For clarity, I show only a 2x2 block of the 4x4 array. Each
synapse multiplies its column input with its stored analog weight, and outputs a current to the row output
wire; the row wire sums the synapse-output currents along the row. The stored weights are nonvolatile; col-
umn inputs that are coincident with row-learn signals cause weight increases at selected synapses. The error
signal constrains the time-averaged sum of the row-synapse weights to be a constant, bounding the row

weights by forcing the synapses to compete for weight value.

4.1 The Learning Array

In Figure 4.2, [ show one row of the learning array, comprising a synapse transistor at each
array node and a normalization circuit at the row boundary. The column inputs X; and the row-
learn signals Y; are 10us digital pulses. Each synapse multiplies its binary-valued input X; with
its stored weight Wj;, and outputs a source current /;; whose magnitude is given by Eqn. (1.2).
The total row current I, is the sum of the source currents from all the synapses in the row. Syn-
apses ordinarily are on; low—true gate inputs X; turn off selected synapses, decreasing the current
I,y transiently. This decrease in /., In response to an input vector X, is the row computation.

Synapse-weight increases occurs only when both the row and column inputs, ¥; and X;, are
true. To see why, I first consider the case when the row learn signal Y; is false (V,,, is low). Be-
cause Vo =Vy—Vi, when Vi, is low, V. is small for every synapse in the row. When V,, is

small, the tunneling currents are small, and there is no weight increase at any row synapse.
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Figure 4.2 One row of the learning array. The column input vector X comprises low—true, 5V, 10us digital
pulses; the row input vector Y comprises high-true, 12V, 10ps digital pulses. Because the 2um CMOS
process that I use has 400A gate oxides, the tunneling voltages are high; to cause measurable tunneling, I
superimpose the row inputs onto a 25V DC bias. The voltage coupling between a synapse’s control and
floating gates is about 0.8. Consequently, a 5V (low—true) input on column wire X causes a 4V decrease in
synl’s floating-gate voltage; this decrease, in turn, causes a 4V increase in synl’s tunneling-oxide voltage.
A column input X; that is coincident with a row learn pulse Y; causes a 16V increase in the tunneling-oxide
voltage at synl, but causes only a 12V increase at the other synapses. Because electron tunneling increases
exponentially with the tunneling-oxide voltage (see Figure 2.2), synl’s floating gate receives about 100
times more charge than do the other synapses’ floating gates; because W increases exponentially with the
floating-gate charge (see Eqn. (1.2)), synl’s weight increases much more than do the other synapses’
weights. The weight increase causes I, to rise, which, in turn, causes the normalization circuit to raise V.
Because the CHEI efficiency increases with V4 (see Figure 2.4), a higher V4 causes CHEI in all the syn-
apses, decreasing all the weights. The array eventually settles back to equilibrium, with Zy,, equal to 1, but
synl now takes a larger share of the total row current, and the other synapses each take a smaller share. The
inverting amplifier in the weight-normalization circuit enhances loop stability, for reasons that 1 discuss in

Section 4.3.3.

Now I consider the case when Y; is true (Vi is high). V., increases with as Vi, decreases, and
Vi, follows X;. If a low—true column input X; is true, then Vi, is low; V,, is large, and electron
tunneling causes a weight increase at the selected synapse. If, on the other hand, a low—true col-
umn input X; is false, then Vj is high; Vi is too small to cause appreciable tunneling, and there is

little change in the synapse’s weight.
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Tunneling increases the weight value of a row—column selected synapse. Because this weight
update is single quadrant, tunneling allows unbounded weight increases. To constrain the array-
weight values, I renormalize the weights in each row of the array. My array affords unsupervised
learning [1], with the following constraint: The sum of the row-synapse weights, averaged over
time, is a constant. The array error metric is a weight normalization; I use CHEI feedback along

each row of the array to enforce the constraint.

4.2 Weight Normalization

The weight-normalization circuit (see Figure 4.2) compares /g, the sum of the synapse drain
currents in the row, with I, the bias current in transistor M1; if /n>1,, then the circuit uses
CHETI to renormalize the weights. To explain the renormalization, I begin by defining row equi-
librium: A row is in equilibrium when lyn=/. In equilibrium, the drain voltage V; typically
causes little or no CHEI in the row synapses.

The normalization circuit constrains I, as follows: Assume that the row initially is in equi-
librium, and that tunneling then increases the weight values of selected synapses, increasing .
The excess drain current (/gm—1Iy) is mirrored by M2 and M3 into capacitor Cy,, causing V, to
rise; Q1 forces Vjy to follow V.. When Vj rises, all the row synapses undergo CHEI, decreasing all
the weights, causing /n to fall. As Iy falls, Vy also falls, and the row returns to equilibrium.
The drain-current constraint requires that, over time, I,n=1,. The normalization circuit creates a

negative resistance at the synapses’ common drain node, causing Vj to rise when I, increases.

4.2.1 The Drain-Current Constraint Renormalizes the Weights

I now show how the drain-current constraint renormalizes the row-synapse weights. I begin

with the constraint
St =1y =lyn =1, @.1)
i i

In Section 4.4, I show that the renormalization time constant T, exceeds 10s; this value is 10°
times longer than the 10us input pulses X; (where Vi,=X;). Consequently, for renormalization, I

replace V;, in Eqn. (1.2) with its temporal average V,,, and I assume that V,_ both is time invari-

ant and has the same value for all the row synapses. I then substitute Eqn. (1.2) into Eqn. (4.1):
X' Vig K Vin

SWile " =Le " Y w =1, 4.2)
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1
= 2 W, = b, = W, = constant 4.3)
7

The drain-current and weight-value constraints are equivalent; consequently, row feedback
renormalizes the synapse weights.

Renormalization forces the row synapses to compete for floating-gate charge; when one syn-
apse’s weight value increases, the sum of the weight values of its row neighbors must decrease
by the same amount. However, when a selected synapse tunnels, increasing its weight, renor-
malization forces all the row synapses to undergo CHEI, decreasing a/l the row-synapse weights.
The selected synapse undergoes both tunneling and CHEI; because the exponent in the CHEI
weight-decrement rule is larger than that in the tunneling weight-increment rule (see Eqns. (2.17)
and (2.7), respectively), renormalization constrains a synapse’s weight-update rate, in addition to

its weight value.

4.2.2 The Array Learning Rule

Tunneling and CHEI effectively redistribute a fixed quantity of floating-gate charge among
the row-synapse transistors. I now derive the array learning rule, for coincident (x, y) pulse inputs
to synapse j. I consider the row-synapse weights at discrete time intervals r=nT, where n is the
step number and T is the timestep, and derive the row-learning rule for a single coincident (x,y)
input to a single row synapse. I begin with the equilibrium condition for the row-weight normali-

zation:

N Wi(n) = W, (4.4)

I assume that the normalization time constant T, is fixed, for the following reason. Coinci-
dent (x,y) input pulses cause a weight increase at a synapse; the normalization circuit responds
by establishing a drain voltage V, for which the total weight decay, summed over all the row syn-
apses, balances the weight increase at the single synapse. If I assume that the mean density of the
coincident input pulses is time invariant, then V;’s mean value, \7;, 1s constant, and therefore the
low-frequency loop time constant T, also is constant.

I further assume that 1,<<T. The synapse-weight values can violate Eqn. (4.4) for times
1<<1,<<T, but I require that they satisfy Eqn. (4.4) at my measurement time intervals t=nT. I
permit array inputs at times (t+5t)=(n+8)T, immediately after I measure the synapse-weight
values at t=nT. The array inputs comprise a pulsed column vector X(n+§), where
X;€[0,1]=[5V,0V], and a pulsed row vector Y(n+8), where ¥;€[0,1]=[0V,12V]. Without loss

of generality, I assume that, at time t=nT, the circuit is in equilibrium, and that, at time
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t+8t + tow )=(n+8,, )T, coincident row and column inputs, of duration t,,,, have caused synapse
p P p ynap

J’s weight to increase:

oW,
W48, ) = W, (n)+ St(") - @.5)
= Wy )+ 22 W, (1)) (4.6)

tun

where in Eqn. (4.5) T have made the first-order approximation that dW/or is constant over #,,, and
in Eqn. (4.6) I have substituted for dW/dt using Eqn. (2.7). Because #,,<<T,, at time (n+8,,) the
circuit no longer is in equilibrium,

> Wi(n+8,,) > Woum 4.7
i

and the synapse weights inject down to reestablish equilibrium.
I wish to find the synapse weights at (n+1), when the row again satisfies Eqn. (4.4). Using

Eqns. (2.17) and (4.6), I write weight-decrement expressions for the row synapses,

T -
A‘/Vi,i$j (n+1):-— m— W/i,iij (n)(z €4n) (48)
t (2“8411)
pw (1-0)
AW (n+1) =~ — W.(n)+ W.(n) 4.9
/ inj_4n J Ttun J

where, because the row drain voltage V, settles during renormalization, T;, 4, may vary over T
(recall that T>>1,>>¢,,). For reasonable values of Vy,, and #,,,, the weight increment from a sin-

gle coincident (x,y) input is small; consequently, I can simplify Eqn. (4.9) using (14x)"=1+nx,

AW, (n+1) = — m(n)<2"€4n>(1+(2—e4n) %‘3& Wj(n)“"J (4.10)
tun

inj_4n
Because Ty, 4, varies over T, I now re-express T/Tiy_sn in terms of quantities that I know at n.
I'equate the weight increment at synapse j (see Eqn. (4.6)) to the sum of the weight decrements at

synapses i,i#j (Eqn. (4.8)) and j (Egn. (4.10)):

Tow - T (2-&4p) T 2— fpw -
p (1-0) _ 4n (2-€4y) p o
W.(n = E W, (n) + W.(n i 1+(2-¢ W.(n 4.11
Tun J( ) Tinj_4n [i#] ( Tinjvém j( ) ( ( 4n) Tiun j( ) ]< )

Then, I solve for T/Tinj an:

i‘l.wj(n)(l—ﬁ)
r - Cuun (4.12)

. t
inj_4n (2“E4H)TI:W %(n)(2—84n~6)+Zvvi(n)(2—84n)
un i

T

[ define fieam=T/Tinj_an, substitute fierm into Eqn. (4.8), and use Eqn. (4.4) to solve for the row-

learning rule:
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Wi iwj(n+ D =W, i (n) = ficam W, ()~ 840 (4.13)
W, (n+1) =W, (n)+ ficam Zm(n)<2“€4n> (4.14)
ii#j

Egns. (4.13) and (4.14) describe the row weight-update rule for a single coincident (x,y)
pulse input to synapse j. In Figure 4.3 and Figure 4.4, I show unsupervised learning in one row of
my 4x4 array; these data highlight both the synapse weight and the update-rate constraints. I fit
these data by applying Eqns. (4.13) and (4.14), recursively; the only inputs to the fit equations

are the synapse weights at n=0 and the fit constants Ty, ., 0, and €4,.

4.3 Normalization-Circuit Stability

The normalization circuit creates a negative resistance at the synapses’ common drain node:
When [, increases, V4 rises. The loop output is Vg, and the loop feedback comprises CHEI ox-
ide currents: When V; rises, CHEI decreases the synapse weights, causing [, to fall. Because
the CHEI oxide currents increase exponentially with V4, the loop dynamics are highly nonlinear.
I therefore describe qualitative, rather than quantitative, loop-stability criteria.

The normalization circuit employs positive feedback; to ensure stability, I must make the
loop gain less than unity for all frequencies. This requirement implies that the small-signal im-
pedance z4, looking into the synapse drain terminals, must be greater than the total impedance z.,
at capacitor Ciy. To see why, I assume instead that z.>z,4. A rising V; induces a small-signal cur-
rent igym=Vq/Z4; ium 15 mirrored by M2 and M3 into Ci,, causing V. to rise by an amount
Ve =laum Ze=(2c/za)va. If zc>zq, then v >vy; because Vy follows Vo, igm will increase rapidly, caus-
ing V. to rise toward V.

The impedance z4 is limited by interconnect capacitances, and by synapse-transistor channel-
length modulation, floating-gate—to—drain overlap capacitance, and drain-current impact ioniza-

tion. I consider each of these limitations in turn.

4.3.1 Interconnect Capacitance

Interconnect capacitance at the synapses’ common drain node causes z4 to decrease with fre-
quency. I chose Cj, to be much larger than this parasitic capacitance, so the reactive impedance

ratio, z./z4, favors loop stability for all frequencies.

4.3.2 Channel-Length Modulation

Channel-length modulation reduces a synapse transistor’s drain impedance, limiting z4. For-

tunately, the four-terminal nFET synapse’s Early voltage exceeds 100V, as a result of both the
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Figure 4.3 Array learning behavior, with fits. I initialized all four synapses to the same source-current

value prior to starting the experiment. I first applied a train of coincident (x,y) 10us pulses to synapse 1,

causing synapse 1’s weight value and source current to increase. Renormalization caused the weight values

and source currents of the other synapses to decrease. Once synapse 1 had acquired 90% of the total row

current Iy, I removed the pulse-train stimulus and applied it instead to synapse 2, and then, in turn, to syn-

apses 3 and 4. I measured the synapse source currents after every 107 input pulses. In the lower half of the

figure, I highlight the first 1600 data points, and fit these data by applying Eqns. (4.13) and (4.14), recur-

sively. The inputs to the fit equations are the initial synapse source-current values (at n=0); the pulsewidth

fow=10ps; and the empirical constants T,=10ms, 6=0.14, and €,,=0.21. These data show that I can ad-

dress individual synapses with good selectivity, and can achieve wide separation in the weight values of

selected versus deselected synapses.
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Figure 4.4 Logarithmic plot of the array learning behavior, with fits. I replotted the lower half of Figure
4.3, this time on a logarithmic, rather than on a linear, scale. This plot highlights both the synapse weight
and growth-rate constraints, and shows that the weight values of deselected synapses do not saturate, but

instead follow a power-law decay as predicted by Eqns. (2.17) and (4.13).

10um channel length and the p-type channel implant; consequently, the channel-length modula-

tion is small.

4.3.3 Floating-Gate—to—Drain Overlap Capacitance

The drain voltage V, couples to a synapse transistor’s floating gate, by means of the floating-
gate~to—drain overlap capacitance Cg4y. The coupling coefficient is Cq4,/C, where Cr is the total
floating-gate capacitance. Because /; increases exponentially with Vi, Cy, causes Iym to increase
exponentially with Vy, limiting z3. To minimize this effect, I use a large interpoly capacitor
(Cr=1pF); I also apply inverting feedback from V; to the floating gate, increasing z4 (see Figure
4.2). I use an off-chip amplifier to generate this inverting feedback; in future arrays, I will use

instead an on-chip adaptive floating-gate amplifier [2].

4.3.4 Drain-Current Impact Ionization

Channel electrons that possess sufficient energy for CHEI also possess sufficient energy for
impact ionization (see Section 2.1.5); consequently, a drain-to-channel electric field that induces

weight renormalization also creates additional electron-hole pairs, causing I, to increase expo-
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nentially with V.. As a result, [un increases exponentially with Vg, limiting z4. If V4 becomes
greater than about 4V, the rate of the ionization-induced drain-current increase causes loop in-
stability, and Vj rises rapidly. As V; rises, CHEI decreases all the synapse-transistor weights; as
Vq saturates near Vqq, CHEI causes /n, to fall below I, causing Vj to fall, and the loop to return
to a stable operating regime. Loop instability causes V4 to undergo a single brief (~10us) voltage
spike, and reduces all the synapse weights substantially. Fortunately, because the four-terminal
nFET-synapse CHEI efficiency is high, weight renormalization rarely causes V; to exceed 3.5V;

consequently, the loop is stable.

4.4 Normalization-Circuit Response

In Figure 4.5, I show the normalization circuit’s impedance magnitude versus frequency; in
Figure 4.6, I show the circuit’s impulse response. The impedance-versus-frequency plot shows
that the low-frequency time constant 7T, (the adaptation time constant) typically exceeds 10s. The
impulse-response plot shows that, for short timescales, the total drain current I, can exceed 1y,
violating the normalization constraint. For long timescales, lyym=15.

The parasitic coupling between a synapse’s tunneling junction and its floating gate is about
SfF. With Cy=1pF, a 12V row-learn pulse Y; transiently increases the floating-gate voltage of
every row synapse by about 60mV. This coupling does not affect the row computation signifi-
cantly, for two reasons. First, 5V low—true column inputs X; always turn off selected synapses,
regardless of ¥;. Second, because a row-learn pulse ¥; increases the floating-gate voltage of every
deselected synapse by a fixed 60mV, I can calculate the corresponding source-current increase

using Eqn. (1.1), and I can adjust 7, accordingly.

4.5 Further Development

I have demonstrated a silicon integrated circuit in which computation and weight modifica-
tion occur locally and in parallel. The array achieves my goals of fast, single-transistor analog
computation and of slow, locally computed weight adaptation: The inner product computes in
10us, whereas the weight normalization takes minutes to hours.

I claim that, by deriving the row-learn signal from the row output /., I will, in future ex-
periments, be able to demonstrate a true Hebbian learning rule in a silicon integrated circuit.
Furthermore, although my array affords unsupervised learning, it uses a feedback error signal to
constrain the weight values. Feedback error signals typically are used in supervised neural net-

works, to adjust the array weights according to the network learning rule. In future floating-gate
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Figure 4.5 Normalization-circuit impedance magnitude versus frequency. I applied a small-signal sinusoi-
dal current §, to the synapses’ row-drain node (see Figure 4.2), measured the resulting small-signal voltage
vq, and plotted z4=v4/i;,. Because the loop feedback comprises CHEI oxide currents, which increase expo-
nentially with Vy, the low-frequency corner increases with V4. To hold this corner at a single frequency, I
applied a constant Vy,,=37V to all the row-synapse transistors, causing continuous tunneling. The normali-
zation loop re-established equilibrium by setting Vy~3.3V, inducing continuous CHEI to compensate the
continuous tunneling. For these (artificial) operating conditions, the low-frequency corner comprised a sin-
gle pole at about 0.03Hz. The high-frequency rolloff comprised two poles: The first was the normalization-
loop response, set by Ci,; the second was a consequence of interconnect capacitance at the synapses’ com-

mon drain node, attenuating the injected signal ;.

arrays, rather than using unsupervised learning, I intend to use CHEI to adjust the synapse
weights in a supervised fashion, using either pulsed, or continuously valued analog [2], inputs

and row-error signals.
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Figure 4.6 Normalization-circuit impulse response. At time t=10min, I applied 2x10° coincident (x,»)
10ps pulses, over a 10s period, to synapse 1. I plotted (A) the synapse source currents, and (B) the drain
voltage Vy, for a period of about 5 hours following the stimulus. During CHEI, 9W/at varies roughly as W?;
consequently, the source-current settling approximates a 1/¢ characteristic. (Note: because 3W/dr also varies
with Vy, the settling differs somewhat from 1/1.) After 2 weeks, V,4 was about 2.4 V. At time =0, V, initially

was decaying, because I had just finished resetting the synapse source currents to identical values.
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Chapter 5

Future Directions

5.1 Silicon Synapse Transistors

I have demonstrated single-transistor silicon synapses that store a nonvolatile analog weight,
multiply an applied input by the stored weight, and allow locally computed weight updates. I
have also demonstrated local, autonomous learning in a synaptic array. My colleagues and [ have
developed other synapse-transistor applications, not described here, including an analog memory
cell that employs the four-terminal nFET synapse [1], and an autozeroing amplifier that employs
the four-terminal pFET synapse [2].

I can build silicon neural networks using my synapse transistors. Unfortunately, despite my
assertion that the inspiration for the neural-networks field derives from neuroscience, at present
the field is better described by the term nerwork computation than it is by neural computation.
The dominant neural-network learning algorithm is back-propagation of errors, but there is scant
neurophysiological evidence for back-propagating errors in neuronal memory formation [3], and
many of the alternative neural-network learning algorithms are equally implausible biologically.
Consequently, the neural-networks field emphasizes weights, rather than synapses, because the
interconnections between node elements comprise primarily weight values. Although my silicon
devices store a weight, I intentionally use the term synapse to describe them, because I have en-
deavored to embed in them some of the attributes of real neural synapses. I hope that, because of
my work, the dividing line between network computation and neural computation, and between
weights and neural synapses, will become blurred.

My goal, espoused in Section 1.3, is to build silicon circuits that exhibit behavior analogous
to that of nervous tissue. I believe that my synapse transistors afford an essential building block

toward achieving this goal. In Figure 5.1, I show post-tetanic potentiation (PTP) and long-term
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Figure 5.1 Post-tetanic potentiation (PTP) and long-term potentiation (LTP) in neurobiological and silicon
synapses. (A) Measured mossy-fiber excitatory postsynaptic currents, before and after the induction of LTP,
at a synaptic input to a CA3 pyramidal neuron of the disinhibited rat hippocampal slice. The data comprise
average current-clamp recordings both before and after the application of a tetanic stimulus at the time indi-

cated. Source: Adapted from G. Barrionuevo, S. R. Kelso, D. Johnston, and T. H. Brown, “Conductance
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mechanism responsible for long-term potentiation in monosynaptic and isolated excitatory synaptic inputs
to hippocampus,” J. of Neurophysiology, vol. 55, no. 3, pp. 540-550, 1986, © American Physiological So-
ciety, used with permission. (B) Measured silicon-synapse source currents, before and after I applied a
tetanic stimulus to synapse 1 in the learning array of Figure 4.2. The stimulus comprised 2x10° coincident
(x,y) 10us pulses over a 10s period. Synapse | exhibited behavior similar to that demonstrated by the neu-
ral synapse, with similar output-current values and a similar adaptation timescale. The depressive behavior
of synapses 2 through 4 derives from the array learning rule (see Section 4.2.2); in the absence of equivalent

neurobiological data, this depressive response is plausible but unsupported.

potentiation (LTP) in neurobiological and silicon synapses. These data show that silicon syn-
apses can exhibit behavior similar to that demonstrated by neural synapses, with similar output-
current values and a similar adaptation timescale. Although synapse transistors possess only a
subset of the attributes of neural synapses, they can mimic some of the known behavior of neural
synapses—most notably, the long-term autonomous learning.

Synapse transistors will make possible silicon learning systems modeled after neurobiology.
In Figure 5.2, I show spike train recordings from neurobiological and silicon circuits. The neuro-
biological data were recorded from the somatosensory cortex of an anaesthetized cat. The silicon
data were recorded from a simple oscillator that, although not neurally inspired, employs synap-
tic devices and positive feedback just like neurobiology, and exhibits behavior strikingly similar
to the neurobiology. I do not mean to imply that the silicon circuit actually models the neurobiol-
ogy—the action-potential train in part B of Figure 5.2 has meaning to the cat, whereas the oscil-
lator output in part C is merely an interesting waveform. However, when I used neurally inspired
components (Synapse transistors) and neurally inspired circuit connections (positive feedback) in
a silicon system, I obtained behavior that looked like neurobiology. These data are consistent
with my belief that, if I can mimic, in silicon, a sufficient subset of the fundamental properties of
nervous tissue, then I will be able to build computing machines that exhibit behavior analogous
to that of nervous systems.

Although my synapse transistors already possess those attributes that I believe are essential
for building silicon learning systems, further development will improve the devices. I have al-
ready discussed four areas for improvement (see Section 2.3), including reduced tunneling volt-
ages, reduced tunneling-junction leakage, reduced overlap capacitances, and smaller synapse
size. In all cases, more modern processing will readily allow these improvements. In addition, as
silicon integrated-circuit technology advances, and gate-oxide thickness’ scale below 40A, T will

be able to use direct tunneling [4], rather than FN tunneling, to modify the floating-gate charge.



Chapter 5 103

This improvement will allow me to eliminate the tunneling junction entirely, and both to tunnel

and to inject electrons directly from the MOS channel to the floating gate.

5.2 Long-Term Learning in Distributed Systems

In a synaptic array, the stored memories are distributed among the node synapses in a fashion
prescribed by the array learning rule. In my four-terminal nFET array (see Chapter 4), [ used an
L1 normalization constraint—1I held the sum of the row-synapse weight values constant—to
prevent unbounded synapse-weight growth. This constraint defined a learning rule, and likewise
defines memory storage in the array: Given an input data set and the learning rule, I can describe
the memory representation in the array.

I have fabricated, but have not yet tested, other arrays, including a guarded-pFET array that
uses an L1 constraint, and a four-terminal nFET array that uses my colleague Brad Minch’s
floating-gate MOS translinear-circuit methodology [5] to enforce an L2 constraint (the sum of
the squared synapse weights is held constant). These arrays will embody learning rules that are
different from that derived in Section 4.2.2, and likewise will distribute their memories across the
synaptic elements in a different fashion.

I can implement yet other constraints in synaptic learning arrays. Each array and constraint is
likely to give rise to a different learning rule, and to a different distributed-memory representa-
tion. The investigation of these rules and representations is a study of neural-network learning in
synapse-based silicon systems. Although the rules and representations that I derive may be unlike
existing neural-network algorithms, because they derive naturally from the silicon-MOS physics,
and from synaptic devices modeled after neurobiology, they offer the potential for building pow-

erful computing systems modeled after neurobiology.

5.3 Neural Computation and Time

Recent neurophysiological evidence [6] suggests that synapses adapt to their presynaptic in-
put continually, signaling relative changes in the input spike rate, rather than communicating the
absolute rate. Consequently, neurophysiologists have begun to consider synapses as dynamic
structures that adapt to both amplitude and temporal representations in the presynaptic input, and
that process information in both the spatial and temporal domains [7]. Likewise, neural-network
researchers have begun to incorporate explicit temporal representations into their models [8, 9,
10], to enable these networks to learn temporal associations and sequences, and to predict events.

The study of dendritic function and dendritic signal processing began with the pioneering

work of Ramén y Cajal [11], but remained in the background until the late 1950s, when cable
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A. Spiking Oscillator Circuit
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Figure 5.2 Spiking oscillations in neural and silicon synaptic systems. (A) I modified the circuit in Figure

4.2 to induce positive-feedback instability, by removing the integration capacitor from the V, node and by
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adding a destabilizing capacitor C,. I applied a fixed, high tunneling voltage to the synapse transistor,
thereby inducing a small, constant gate current. This gate current caused the synapse transistor’s weight to
increase gradually; when the weight exceeded a threshold (set by the dynamics of the normalization circuit),
the loop became unstable. Instability caused output voltage spikes: V,,, rose rapidly toward Vu; after a de-
lay T,w, the rising V,,, increased the bias transistor’s drain current, causing V,,, to fall rapidly. The width of
the output voltage spike was set by the delay 1,,,. A rising Vo also induced CHEI in the synapse transistor,
thereby causing the synapse’s weight value to decrease. When the weight value fell below the oscillation
threshold, V,,, remained low until the synapse’s weight charged back up. In the absence of external stimuli,
the circuit generated voltage spikes at about a 1 Hz rate. I was able to adjust the spike rate over many dec-
ades in frequency by changing the tunneling voltage. (B) Intracellular recordings from a cell in the primary
somatosensory cortex of the anesthetized cat. The slow oscillations (0.8Hz to 0.9Hz) were punctuated by
fast, bursting oscillations at a 25Hz to 40Hz rate. Source: M. Steriade, “Neuromodulatory systems of the
thalamus and neocortex,” Seminars in the Neurosciences, vol. 7, no. 5, pp. 361-370, 1995, © Academic
Press Limited, used with permission. (C) I applied a periodic square-wave stimulus to V,,, causing large,
rapid changes in the synapse’s floating-gate voltage. To remove the applied charge, the circuit generated
spike bursts coincident with the rising edge of the input voltage pulse Vi,. I do not imply that my simple
silicon circuit actually models the neural system; the waveform in (B) has meaning to the cat’s brain,
whereas the waveform in (C) is merely the output from a bursting oscillator. However, these data show that

floating-gate MOS circuits can exhibit waveforms similar to those seen in neurobiology.

theory and intracellular recording enabled passive dendrite models [12]. Even at that time, how-
ever, evidence existed for active properties in dendrites [13]. More recent research (for a review
see [14]), indicates that dendrites are active structures whose function can be modulated by ac-
tivity-dependent mechanisms. More speculative proposals, grounded in neurophysiology, hint at
spatiotemporal correlations and spatiotemporal signal processing in dendritic structures (again,
see [14]). If correct, these theories and models implicate dendritic wire as a primary computing
element in the brain. Dendritic wiring may serve not merely to communicate action-potential in-
puts to the soma, but also to correlate, in space and in time, inputs from vast numbers of neurons,
transmitted to the dendrite by time-sensitive and amplitude-sensitive synapses.

The conjecture that the brain is a dynamical system that encodes spatiotemporal information
using synaptic weights and dendritic wiring, and that performs massively parallel spatiotemporal
correlations using enormous populations of neurons, is both daunting and exciting. Although we
cannot yet build integrated circuits that approach the computational density of nervous tissue,
with our present silicon technology we can build integrated circuits to investigate the spatiotem-

poral signal processing that may underlie neuronal computation.



Chapter 5 106

5.4 Closing Remarks

John von Neumann, in 1945 [15], introduced the computational paradigm that forms the ba-
sis for nearly all machine computation to date. Contemporary digital computers are amazingly
powerful machines, and far outperform the brain on tasks that can be described mathematically.
However, when confronted with an ill-posed problem, such as identifying a tree in a visual field,
these same digital computers fail miserably. By contrast, the brain excels at quickly finding good
solutions to ill-posed problems. Neurobiology demonstrates—by means of working examples—
an alternative computational paradigm to the von Neumann machine. The notion that alternative
computing paradigms not only exist, but also can form computing machines optimized for solv-
ing different kinds of problems, is my real motivation for studying neural computation.

Neural computation presents us with a wealth of unknowns. The mechanisms of neuronal
signaling, communication, development, and learning are unknown. The general anatomical loci
of thoughts, concepts, memories, and emotions is unknown. From the point of view of synaptic
plasticity, even the microstructure of representations remains unknown. Because of the brain’s
large size (in information-theoretic terms), and the current paucity of theories describing com-
plex dynamical systems, we cannot hope to understand neural computation by observation or by
experiment alone. Instead, we must construct experiments that interact with theory, to produce
testable hypothesis’ and predictions [3]. By developing neurally inspired learning systems, in our
advanced silicon technology, I hope to shed light on the computational paradigm that neurobiol-

ogy uses to solve real-world problems.
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