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ABSTRACT

Part |: The dynamic response of an elastic half space to
an explosion in a buried spherical cavity is investigated
by two methods. The first is implicit, and the final
expressions for the displacements at the free surface are
given as a series of spherical wave functions whose
coefficients are solutions of an infinite set of linear
equations. The second method is based on Schwarz's technique
to solve boundary value problems, and leads to an iterative
solution, starting with the known expression for the point
source in a half space as first term. The iterative series
is transformed into a system of two integral equations, and
into an equivalent set of linear equations. 1In this way, a
dual interpretation of the physical phenomena is achieved.
The systems are treated numerically and the Rayleigh wave
part of the displacements is given in the frequency domain.
Several comparisons with simpler cases are analyzed to
show the effect of the cavity radius-depth ratio on the

spectra of the displacements.

PART [1l: A high speed, large capacity, hypocenter location
program has been written for an IBM 7094 computer. Important
modifications to the standard method of least squares have
been incorporated in it. Among them are a new way to
obtain the depth of shocks from the normal equations, and

the computation of variable travel times for the local
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shocks in order to account automatically for crustal
variations. The multiregional travel times, largely based
upon the investigations ¢of the United States Geological
Survey, are confronted with actual traverses to test their
validity.

It is shown that several crustal phases provide control
enough to obtain good solutions in depth for nuclear
explosions, though not all the recording stations are in the
region where crustal corrections are considered. The use
of the European travel times, to locate the French nuclear
explosion of May 1962 in the Sahara, proved to be more
adequate than previous work.

A simpler program, with manual crustal corrections, is
used to process the Kern County series of aftershocks, and
a clearer picture of tectonic mechanism of the White Wolf
fault is obtained.

Shocks in the California region are processed
automatically and statistical frequency-depth and energy-
depth curves are discussed in relation to the tectonics

of the area.
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PART |
THE RADIATION OF ELASTIC WAVES FROM
A SPHERICAL CAVITY IN A HALF SPACE
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| NTRODUCT | ON

Problems of seismic wave propagation from a point-
source in a half-space or from a pressurized cavity in an
infinite elastic medium were studied long ago and their
solutions are well known, (Ewing et al., 1957). However,
it is extremely more complex to achieve results in the
field of wave propagation in media with mixed boundaries.
A problem of this kind has recently arisen in connection
with the use of large cavities to reduce seismic signals
from underground nuclear explosions, (Latter et al., 1961).
One is faced here with the problem of obtaining the
transient displacements over the free surface, caused by
an explosion in a pre-existing cavity. An explosion in
a smaller cavity can also be represented by the same
theory, assuming the size of the serce to be given by
the boundary of the non-elastic zone. Although cylindrical
symmetry exists in the mathematical model, conventional
methods cannot be applied because the Helmholtz wave
equation does not separate in the bispherical coordinate
system, which is natural to the boundaries. Some progress
has recently been made with regard to non-separable
coordinate systems (Weston, 1957), but we could not find
ways to apply these-techniques to our case.

To bypass the inherent difficulty of the problem we

use two systems with a common origin: The cylindrical and
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the spherical systems fit the plane surface and the walls
of the cavity respectively. Moreover, the vector wave
equation separates in both of them. It is only necessary
to transform the wave-functions from one coordinate

system to the other so as to be able to specify the
complete field on both boundaries. Along these lines we
describe two different methods:

The first one, introduced by Grinberg (1948), was
used by D'Yakonov (1959) to treat the equivalent electro-
magnetic problem in which he studied the diffraction of
electromagnetic waves by a spherical inclusion within a
conducting sphere. Here the field is completely specified
at once. The half-space is obtained as that case in
which the radius of the conducting sphere is increased to
infinity. Our analysis becomes simpler due to the direct
transformation of spherical waves to cylindrical waves;
thus the limiting process is avoided. Nevertheless,
numerical computations were not possible.

The second approach is based on a technique introduced
by Schwarz (Kantorovich and Krylov, 1958) to solve
boundary value problems for regions that are the union or
the intersection of simpler ones. |t consists in the
modification of an initial trial solution in order to
satisfy alternatively the different boundary conditions,
and is a generalization of the known iterative procedures

to solve integral equations. This method has been used



= 8
with success by Kane (1962) and by Kane and Spence (1963),
to solve some elastodynamic problems with mixed boundaries.
We will show how to apply this general criterionto obtain
a solution to the problem of radiation of waves from a
spherical cavity in an elastic half-space.

With this method the computations are possible
because a fast convergence is expected in the case in which
the introduction of an additional boundary (the sphere)
perturbs the wave functions only slightly. Kane and
Spence (1963, in press) obtained a good fit to experimental
data after only one approximatibn. In our problem, if
the spherical cavity is small in comparison with the
wave length, it would be enough to consider only the first
order terms. Otherwise, the complexity of the expressions
involved makes it impossible to handle the exact solution
numerically.

Cavities that are not spheres can be studied in the

same way.

THE FI1ELD POTENTIALS
Consider an homogeneous, isotropic elastic half-space
with a spherical cavity of radius "a", at depth "h" below
the free surface (Figure 1-1). It is convenient to assume
Poisson's hypothesis o’=-$— . We choose the center of
the cavity as the origin of a spherical and a cylindrical

coordinate system. The #Z - axis points downwards.
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A point P, inside the half space has coordinates (r.¢,z)
in the cylindrical system and (R,?,8) in the spherical
system. These frames of reference are tied by the
relations r=Rsin® , Z=RcosO . The medium is excited
by the application of a spherically symmetric pressure
impulse upon the surface of the cavity: P(tl=F Hct) 3
where [{(t) is the step function. A more general time
function can be considered. Because of the source symmetry
the field will be independent of the angle ¢ . VThe
expressions we wi 1] consider are in the
frequency domain. The time domain quantities can be
obtained from them by a Fourier synthesis. From now on,
the factor & will be suppressed.

It is well known that the displacement vector Z is
complietely determined by a scalar potential {? , and a
vector potential B

=

U =9V - 7xVxE (1-1)

The choice of the vector B usually depends on the
geometry of the problem. Here we must take E;=4ﬁs£ (é
is a unit vector in the positive 2 - direction) to secure
the separability of the boundary conditions over both
the half-space and the spherical cavity. The functions
@ and /\ satisfy the scalar Helmholtz equations
ViP +kiP -0 y NEPL K;A =0 , for compres-

sional and shear waves respectively. The qguantities
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wave numbers.
Now we can proceed io give a representation of the
field in spherical coordinates. We make use of the

spherical eigenfunctions:

C_ﬁ = Té [A,,ﬁ:)(kg.?) +Bnﬁiﬂ(r<g}?)] P, (cos 6) (1-2)
AN 2 [ Cots Ci,R) + Do 42 0,R) ] B Cees) (1-3)
Here, z%f (€,R) F, Cces 0) , the product of the

spherical Hankel function of the first kind by the

Legendre polynomial, represents an outgoing elementary

wave of order m . On the other hand, the term with

the spherical Hankel function of ihe second kind represents
an elementary incoming wave of order mn . Together they
form a complete system of eigenfunctions for the wave
equation with the boundary conditions of the theory of
elasticity, and a source function that can be expressed

as a uniformly convergent series of Legendre polynomials
over the surface of the sphere. The coefficients An,

B, , Cg and D, measure the strength of the different
elementary waves.

We will now show that the vector C&E; can

be separated in both system of coordinates. In the
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cylindrical system we obtain V{§=— %ﬁ?—ép , and the

separability is obvious, because if A s

the product of a function of 2 and a function of r ,

2\

= is also . In spherical coordinates we write
2 : 2 cos@ 7
the operator 2= in the form BRG g o T and make

use of some results in the theory of spherical Bessel

functions and the Legendre polynomials to obtain

(Appendix |-1): )
?A = ?P(ca.sﬁ)
+ A, AR T
sr - 2 [Dhee tn)] > (1-4)
. (S C,,_, "Dper Doy
with Fn ="'$g (2,”3 ) A (2n+3 2n-/ )

Thus %ﬁ} can be expressed as a sum of products of

functions of R and & , and therefore it is separable.
The separability condition implies a mode conversion
at the surface of the cavity, where each mode is tied up
with its two adjacent modes, as stated by equation (I-%).
This phenomenm of mode conversion will be present at
each stage of this theory. |t is due to the fact that
the geometry of one wave representation doesn't fit all
of the boundaries. The wave equations have a separation
variable m in spherical coordinates, and a separation
variable k in cylindrical coordinates; they provide a
dual representation of the events, and the normal modes
of vibration of the system. They are going to be split
when an elementary wave incides upon a boundary that is

not natural to its geometry.
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The relations for the coefficients in equation (I-4),
can be treated as difference equations, and solved for Cn

under the assumption C,—o as n —» oo « |t results:

CTL = — 2ntl fé(")ﬂ[:w:lhu

Ka
which will be useful further on in the derivation of the

integral equations (1-73), (1-74).

TRANSFORMATION TO CYLINDRICAL COORDINATES

Up to now we have constructed the field potential &
and /\ in terms of spherical wave functions. Keeping in
mind the invariance of the physical field under a trans-
formation of the coordinate system, we shall next search
for a suitable way to express our field potentials in
cylindrical coordinates so as to be able to satisfy the
boundary conditions on the free surface. To this purpose
we need the operational representation of the spherical
wave functions as given by Van der Pol (1936) and Erdelyi
(1937).

R (kaR) P, Ceos0) = "B (52— ) B, tkur) (1-5)

The argument of the Legendre Polynomial on the right side
of equation (1-5) is the operational derivative with
respect to the argument (k.Z

The beauty of the relationship (1-5) lies in the
fact that the spherical wave function of order zero

%:Q},E) can be expressed by the Sommerfeld integral
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representation in terms of cylindrical wave functions:

oa

' - VIZI
b o) e [ € ke v (1-6)

The application of formula (I-5) to the relation

(1-6) implies the use of the operator F%CE%EE) under

the integral sign. The operator acts upon the exponential

term only, modifying the integrand by a factor ?%(ﬂi )
Therefore the result is an absolutely convergent Integral,

and we have

o

ﬁ (kR) R (cos6) = e J B2 )Eﬁwz’f(zr)ﬁ& (1-7)

Ko

A similar expression can be constructed for the
Hankel functions of the second kind by taking the complex
conjugate of (1-7). In this way we obtain the higher
order wave functions in cylindrical coordinates as we
sought.

The field potentials can be rewritten in the form:

—U!i.‘f ]z;

& = f[“[’)) —/5(”) 1 T xr) xeix {1-=8)
-—U.’a
\ = f[b"(i))——~o"(u) /]J:(f:r)/cdk (1-9)

where y= klﬂgf , ¥ and V' are complex conjugate of

L2 A, B () (1-10)

n=o

Y and V' and
(V)= -
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with similar expressions for ge¢d) , §(v) and d4¢9’)
To obtain the surface displacements we write
equation (1-1) explicitly for the radial and vertical

components:

2
2P A . v =22 /3 ,.;TA (1-11)

“r=or or iz Z£ 5 P& roor

Performing the necessary operations we have:

vz e—ﬁz i L
s [[or(u)-i = A(3) =+ ¥B)E = 8P)E T ]I tr) e (1-12)

gy d/kapde Jﬁﬁdﬁ 3 Vﬁdﬁ-—— —ShdtgL,JU%bﬁm# ¢ T==l3)

We next derive the normal and tangential stresses

at the free surface; starting from the relations

— = - y = 0 = \/. —— T—]‘q’
~~ Cgr‘ 2z ar R Via +2 7= ( )

we obtain after replacing # = i

2 K
o /uﬁ;,@}”_'f_’ e /{ j?——f—’ € 12¢ 24098~ z/e e j\fdr)to’z (1-15)
_ - L TS
Tt ﬂf[z@c W sl vy ki g L $15) B & Tt (1-16)

The application of the boundary conditions over the
spherical cavity is straightforward. The normal and

tangential stress are derived from the formulas:
2
(35}— ‘1"_-) f.ﬂ”ﬁ ?gél”ﬂ ﬁj (I-]T)

;] e P /
Gy =2 oer + (50-7)% (1-18)
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Substitution of the expressions for the displacements yields:

Ueg = pi Z-:, EL,[AM:)(K,R}&B” (A‘,(R)]:fﬂ(mﬂ- [T 4 a;,f)m S ;;&’)]j]f@"’i 1-19)

Tee =ﬁ§a{/_2[Azﬁ;/)(ig*)fﬁnﬁnmﬁcﬁ)]f‘!.g [Fﬁ (5,«’) +4,%, (W)]fgp(““) (1-20)

L], Le, and L3 are linear differential operators:
et st - 4 A

sz-;(que_é) (1-21)
Lot) = BRI 2 gt 2 2y 4ty

These operators have been simplified by the elimina-
tion of the second derivatives through the use of Bessel's

differential equation.

BOUNDARY CONDITIONS
The use of the boundary conditions gives the necessary
equations to determine the amplitudes of the spherical
wave fields. The boundary conditions on the plane surface
give Jaz=vz,=0 . From (I1-15) and (1-16) we see
that stresses on the plane surface depend only upon B4
via the Bessel functions. |f we expand Bessel functions

in Taylor series around the origin, the stresses will be

given in power series of r . After replacing
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2p

20 kr 2/1
Ia(‘t")ié('/)ﬂ_%))a_ 3 j("‘f)" = Z()/L (l Cpti)!

in the equation for the stresses (1-15) and 1-16) and
reversing the order of summation and integration and
finally equating each coefficient of the powers of r to

zero, we have:

f ede L2at)s L sp)E +——£ “Yi)- M,é—e cf(V)]=0 (1=22]

m= /)2’3

a0
2 _uf 2 ~ i O N
[t [ e - 25 5 e 26 ) e (1-23)

Tl

The factor «% can be generated by taking the second
derivative of the exponentials within the integral sign.
This fact leads to the introduction of the operators

42
szwZF;+@f 5 Ly ggf-fgf . The application of these

operators together with the already known results:

—vh d .» a)
Jﬂf’( )& EE k™A e k) , and the Tike, to

(1-22) and 1-23) yields

of
B Ly i +Aﬁm(zz7$—g;)AE:o i M= 2,5, (1-24)
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L: (2 Lo "'E/f) @ -2 Lﬁm’j} AE:'O 5 PECL2,3 (!‘25)

m "
where L  means that the operator L s repeated
m times. & and /\ . are the field potentials,

evaluated at the epicenter E.

g.gE = né;[/\ﬂﬁ:)[xdﬁj'fﬁw gf?&({)? (1-26)
Ne = 2 [Co 82 6H) +2.82050)]

The transformed input pressure on the walls of the

cavity is E? , and the conditions that determine
27 ¢
the problem completely are O}Rzziﬁg%zr— 5 Ugp=o0

at R = a. We then use equations (1-19) and (1-20),
observing that the terms that involve a & - dependence

should vanish.

L, [ A4 Ccca)+B, 450 a)]- _R (1-27)

Zfr/uiw

L, [Anh06.0)+ B, 4E0k0)]# n6ow) Ly [T b Gt 20 hylia)] =0 (1-28)

ot

L Pn f (ect) e B B it + 4.5 LT, ﬂ,,m(f;sﬂ) +4 ﬁf)fzﬂa)=o (1=29]

B LT By v i
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We rewrite the conditions (1-24), (1-25) in a more

explicit way

—-f(ﬁ?"f) & LA 6et) +8, 4%, 0) + (1-30)

Jee

2 - ;
+ (2 1e) e s *f—;f)é LA, Coat) + 240t ] =0

W= B B wonin e
42"“%/)/2&/42'_K)Z [/1‘ }f (A’g#)%ﬁj (2) 4)_7‘ (1-31)
- &£ aqz ‘ﬂ/ ag Zz Zl? ' ﬁf{)%ﬁb?ﬂaé%{i7-—o

iz 0,0,2,3, .....

Equations (1-27) to (1-31) form a set of linear
equations with unknowns An, Bn, Cn, Dn. |f we can solve
exactly this infinite system, we can obtain the whole
field at once. We will discuss the numerical properties

of

it at the end of the paragraph, but before we will
give the surface displacemenis in a more suitable way.
To this effect it is convenient to go back to eguations
(1-15) and (1-16), and note that an alternative way to
write the boundary conditions at the plane surface, can
be obtained by equating to zero the factors in front of
the Bessel functions, since the stresses should vanish

independently of r . We thus write:

2 2 itk 2 _"A ! _Ij.’ﬁ _
RES Y B s, f%fi e H/MD)% 2K Mffu%zzze fro)=0  (1-32)
L
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_J-—’l% ——-{ _ 5 2 —
2 a0) ~ 267 o) + ESHE - 25 0.0 (1-33)

This system can be solved for @) and y(v) in
terms of p(9) and J'¢P) . Substituting occ(v) and ¥(»)
back into equations (1-12) and 1-13), and collecting terms
we obtain an expression for the displacements at the

surface in a more familiar form:

o

ar = p J.(;:?L;dk [ZKZJJ (f- ""—)f ﬁ(’u) (2‘( Kz)[/— )ff J/‘J/]

(1-3%)

e R Lop et 0036 Berastots 2]

This is a solution of the problem if the functions
/@(D) and d¢5') are known. They are determined as
functions of the coefficients Bn and Dn, which are to be
determined by the use of the boundary conditions.
However, for our purpose, there are critical difficulties

that force us to change the procedure. Any attempt to
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solve the system by approximants, runs into very delicate
problems due to very large round-off errors. The Hankel
functions give very large values for small arguments,
which is the case here, if we examine a long wavelength
approximation. Furthermore,analytic cancellation
of the leading terms helps in the loss of the significant
figures. Despite the theoretical interest of the method,
we believe it is unsuitable to extract a numerical
solution from it, with the methods accessible to us at

this time.

THE METHOD OF H. A. SCHWARZ

In this second approach to the problem, we keep the
same geometry and general equations of the previous
paragraphs. We change only the form of the wave functions
and the technique to arrive at the solution.

A few words about the steps to be followed will help
to clarify the procedure: We begin with a cavity of
radius "a" in an infinite space. The solution to the
elastic problem when a pressure P is applied to the walls
of the cavity, and kept in time, was given by Jeffreys
(1932), Sharpe (1942), Blake (1952) and others. Next,
the introduction of a plane boundary at a distance "h"
from the center of the cavity, results in nothing more

than Lamb's problem. The only difference is a source

function equal to the ratio of the spectra of the
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displacements from a cavity and from a point source in
the infinite space. This term, which depends upon the
radius of the cavity, multiplies Lamb's integrals which
in turn depend only upon the depth. At this stage the
depth and the radius of the cavity act independently of
each other. This problem was analyzed by Byatt and

De Vault (1961).

The following steps are no longer simple. The
modification of the solution to satisfy the boundary
conditions at the surface of the cavity is rather involved,
but it gives the spatial dependence on the source.

Further steps can still be carried out formally to satisfy
again the condition of vanishing normal and tangential
stresses at the free surface, and at the surface of the
sphere.

The scalar potentials are expanded in series in order

to account for the different steps to be followed.

B=B+B+rB it (1-35)

A=\, # D2 F e (1-36)

The odd order terms are introduced to satisfy the
boundary conditions at the free surface, and the even

ones to satisfy the conditions at the surface of the cavity
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We begin with a source potential which already

satisfies the cavity conditions:

- Qﬂ(u)—é’--e:'k.ﬂ?___ ) fgfxp)e‘”/z’ﬁ;ﬂi {137

where
Pre) o Ml (1-38)
F )= — M 4 -4ika-3K4"

Here P(w) is the spectrun of the source function;
Pa 3
Pﬁg:‘?ﬂﬁﬁj_ in case of a step function.
In order to satisfy the conditions at the surface
of the earth, we introduce scalar potentials in cylindrical

coordinates in the way shown by Ewing et al. (1957)

& = Hew) afﬁ(x) I(Kr)é-uzfjﬁ (1-39)
A\, = ) ‘/.ka)j;ér)(f—plz % (1-40)

The contour of integration is shown in Figure 1-2,
it passes above the branch points &k, |, ﬁk , the Rayleigh
pole and gives Cauchy's principal value of the integral.
B&) and (&) are chosen to satisfy the boundary

conditions at the free surface 2 = h. They are:
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B(fc) — (Zﬂg—f;)z-,‘-é‘kzuu’ _ 2k (I—)-H)
— FCk)
Cl) - 2V (oead) (el
F (k) it
where FOO:(?K£7;F_4k%“f is the Rayleigh denominator.

To continue with the process we add new potentials
& and L\, , such that &, +&, , and 2N, + L\,
satisfy the boundary conditions at the cavity. We should
remember here that éi was already constructed to satisfy
them. 1t is natural to select these new potentials in

spherical coordinates in terms of outgoing waves:

éz = N () Z_ 7":,,,&:1)(1:,(2) B, ¢ eos5) (1-43)
DNy= B Z Cotn (4R) P, cont) (1-4%)

To transform éﬁ and aﬁl,into spherical coordinates,

we make use of the relationship, (Stratton, 1941):

T kr) e = Z L7 (2nt) B(%)/,,fm)e,rw) (1-45)

1

and a similar one, changing » by p' , and K by As.
This series development is uniformly convergent in any

bounded region of the w-plane. (Appendix |-2)
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Changing the order of summation and integration we
obtain the expressions in spherical coordinates: (For

justification of this step, see Appendix [-2)

oo

@, = ﬁ(w)z—a";m(kdﬁ)afwa) (|"46)
and
oo
AN, = Fiw) ; cn};{kfﬁ) R, Ccos®) (1-47)
where G, = (znv) i" [ 5% BG) Py (i2) (1-48)
and en = (2o 07 [ 555 CO) B () (1-49)

Once we know a, and e, s We may proceed as in
Section 4, to write the conditions at the surface of the

cavity:
Aw Ly b ) + 0 (04) T, Ly Chad) = —an L £, 0ka)= w05 Lof, (6s) (1-50)

Nl 158, B e

An Lok heo) + To L3 5.0 G4g0) =~ On Lo 4, (aut) 85 Ls f, (4a)  (1751)

n=1,,2, B, ree s

Ly, Lp, and L3 are defined as in paragraph IV.
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CIH-I Cn-,- 2 . Conti ip i
m:_gﬂ(2n+3 = ) b 5= —5’(2“3 o 26;-/ ) (1-52)

T e

The system (1-50), (1-51), permits us to compute A,
and [, once we know the integrals for a., and e,

The computation of these integrals is the more
interesting feature of this theory, because of the role
they play in the interpretation of the interaction of the
fields between the free surface and the walls of the
cavity. The analysis and their numerical evaluation is
given in Appendix [-3.

The solution of the system (1-50), (I1-51), involves
the evaluation of five 2 x 2 determinants. Appendix |-4
shows a way to avoid loss of significant figures in their
calculation. |t is also shown there that the coefficients
A, and I} are of the order O[(a)"'] for small values
of ka and nx2 . Ao , A, , and [, are of the
order O[fﬁ(,‘a)j_].

Once [, is known, it is possible to find C, by

means of (1-52) rewritten in the more convenient way

SAPETREE Y. . L AN (1-53)

k-}.a 2n+3



o

I f f; has been computed for lenem s, then
we take C,=C,.,=0 as initial values, and proceed
backwards down to C, . The coefficient O is of
the order of T, , that is to say C, = Oltxga)""] z

but C, and C, are of the order Of(r.a)']
Once A, and C, are known, it is easy to compute
P, and /\, from equations (1-43) and (1-4%).

A last step directed to obtain a solution with zero
stresses at the free surface, requiresadditional potentials
<i% and £A>3 . By the use of the Van der Pol — Erdelyi

transformation, é?; and [Xz‘ can be expressed in the

cylindrical system.

P, = N(w) fmu) Tl " L (1-54)
A\, = Q) [ ) e 2 (1-55)
where ot i = “fc Z.o C"An B (L) | ete. ;  then:
£ =0 i (|—56)
— L2
P, = B(w) I.Bsft)lfxr)e kel
A\, = Be) JCot0) Zane™ ke (1-57)

where B;&) and (&) are functions to be determined.
Since @,+<@ and 4L\, already satisfy the boundary
conditions at the surface, we have to impose them only on

42-*4% and ZSQ‘*ng . After some algebra we finally
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arrive at:
_sth
B, CK)-—‘ =
Fee)

—_

[- Fe )@ g k2o ceesd) vope* 7 (1-58)

— ’ . <l ! _
C, Cx) =§_(K) [4#[2!&-!72)0((:.{)6‘ L Ew) rpet ] (1-59)

Here ol s Cﬂr?—g;)z-f.;z/(zyy’

We are now in condition to write down the displace-
ment at the free surface due to the potentials =§2+€fg
and A2 +Z\; . They are obtained through eguations
(1—11):

K w) [

Z}kaﬂdhve —2§f&k**)¥m)£ _]Jag (1-60)

oo
L ke —uh 3}
ui + 1l = Bw) ;f F-(:) [_2552(?:’(2—552)6((“)@‘:L‘?"’éfl-’!ﬂ $0)e Vﬁj;&r) (1-61)

The main contribution to the field comes from the
potentials @ +& , and /\, . The displacements due

to these functions are:

oo 5 ok
thy ¥y = By B) ”75% €™ 7 0er) (1-62)
ug +up < ~268 A6) f‘;‘j‘”) (22 58)E" 7y cer) (1-63)

The combination of these two seis of displacements
gives a spectrun of the field which is accurate for small
values of k., a

o2
e

_wh "
U= Hf) ) — 5 f"r’}%z}f[h‘*d(”)]f’ y—z?f(zsz;’)mpcu?ﬂgd (1-64)
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uz=Aew) | e -2t oeta)a)]E "l 45tk bund " L6y (1-65)

3

THE EXACT FORMAL SOLUTION

The repeated application of this iterative procedure
leads to the exact solution of the problem as an infinite
series of terms in the form given in (1-35) and 1-36).
The formalism developed in the previous paragraph is
enough to show us what the complete series should be.
It is sufficient to look at equations (1-58), (1-59),
(1-50), (1-51), and (1-48), (1-49) to write the final
form of the displacements in a formula that generalizes
(1-6%), (1-65):

Kl

a 1 Jo ¢ = ‘ oy (¥ —Q,A P
Uy = w) ,f ) {45521) [1+ o ol :/2,;’-@(2_ ,%Z)Er’f(ijf FIan (1-66)

oo

oo i - " = " -—u[b
Uz = Hw) :f%i) {-2732(2&/:/‘1)[;1-%&({)9)36‘;)—4»75,»:2953’"(();196 Frcer) (1-67)

where o«“zwp) 3 FE0)= 00 and (1-68)
i) { = n (i) 3]
x“ )= 72 A, B(E) (1-69)
(i )] (c)
Aﬂ):—-—i——[&.,an +A2 X-'n (]-70}
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oo

() Y ¢
Ay = (2n+) L !‘E‘gf: P,,(?;)B!)CK) ([-7])
) = c’“uﬁ i (=) wh 2 2 ryuC-) | —n'A
B*ce) = = [-Fo"chye s 4 eu et es) v hya ] (1-72)

and similarly for the other expressions.

The term cz%Q) already involves a double integration
that corresponds to a repeated Legendre transformation
of the reflection coefficients. This integration cannot
be carried out analytically, and furthermore the numerical
techniques involve larger errors than in the case where a
single integration is performed. We will not use the
iterative procedure for computations, but to further
develop the theory.

The iterative set of steps suggests the known method
to solve functional equations. Since we are dealing with
integral operators, it is possible to reduce the iterative
scheme to an integral equation, in fact to a system of
two linear integral equations.

The quantities to be found are ,XCU)=2§¢Xﬂbﬂ
and Y(v')=nﬁ§¥%b‘) . The definition of ‘X'U(pj makes
ggXﬁ?uj di%ension]ess (see under equation (1-55).
These two terms can be considered to be the magnitude of

the corrections to the expressions for the point source,
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to allow for the presence of the cavity; the word
"magnitude" should be interpreted in the sense of
equations (1-66) and (1-67). Summation over the index
"i", in equations (1-69) to (1-7T2) and elimination of
ZAY ) ZdY 2 B%9 , and the like, will render
the following system of integral equations with unknowns

X0  and Y ()

Xw)=- f*g—é[K Z'rm.) - P(“’)P(—a‘*—)]gr Fe)[1+Xql€ i (1-73)

A * n
FoE gt *)Wf‘)ef‘} £ oS et ]

' = o g WA e-ﬂa

Y(»)= f%[ %Z@mf)a("g"')grznﬁﬁs ﬁa-nﬂm i 2 (1-74)

ne2j 41
4

You) A } g
F[g)

2
E n’é 2ntdj+3  Aa penivs ) /).
+ [uc Z (20*’)P( )Z (wzJ+g(J;fzJ,£z) A ;- E+:J+; (:Z}f“}]

nt2y |+

{4ﬁf2g—z")[/+X(ﬂ)]e —F(é-) Y("u) Pﬁfl F(;)



B

where k= VE-kZ |, peVE-iZ

The algebra of this system is very complex, but
after a careful inspection of the integrands we can find
out two of its properties. First: the kernels are
products of two terms, one depending only upon the radius
of the cavity, and the other only upon the depth. The
intensity of the "correction terms" X(») and Y() , are
given as integrals, each of them being the sum of three
terms, one depending upon the point source (relative
intensity 1) and the other two upon X(u) and Y(w)
respectively. The kernels act as composite reflection
coefficients because they consist of two factors, one
being the known reflection coefficient of cylindrical
waves at the plane surface, and the other can be regarded
as reflection coefficient for cylindrical waves at the
spherical surface. The way they intervene in the gener-
ation of the fields will be understood more clearly
farther on when we decompose the integral equations into
a set of linear equations. Second: by Inspection we
can realize that the unknowns can be expanded into series

of orthogonal functions in the following way:

) (1-75)

X(») = E:Xn Pn(

(Y
n=o Kot

YY) = So Yo Pn (i,;—') (1-76)
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This very simple property enables us to replace the
system of integral equations by a convenient set of linear
equations and proceed-to solve them by the numerical
methods available in linear algebra.
Before doing the decomposition in orthogonal functions
it is useful to render the system dimensionless, by the

substitution K=k« w inside the integrals. We obtain:

o0

udy = T
X(u)u! 5 T @ P, o3} acr){ FeaL +X@)e” "+

=a

A 2 ; ok uzdu. at 2 )
+v"—? u.zd'CZM-'é) YCU-)C_ 'E-?') + ;[‘ Z’n('nﬁ]g P[K‘d)P

Hac@E [+ x ] ™ Féf) Yr)E % (1-77)

o

Y)= ) J‘ «_ Z(znr)}?;( )Z(Zn'r‘;jfj)éjﬂ*zj” Prtejn (@) -

g_E( £}+X )]e—rd e 20__ 2 )Y - é—cr‘b(
U.) (g +V:_.~u (2%—3 (G")e Tu)

H.oik. i + i
P S L F R Sat gt pY e (1)

so(ﬂ+2J+,)('.’1f.zJ1Lz) nizjt) ‘m+2j+ T

et ' -l
x| o ot

Fu)
Vel Y e =

. {M'(zu’iz) # 1 +x(a—)]e—”’°‘ﬂ

Here 55

TR =) ET

Now we use formu]ae (i—75) and (1-76) together with the
equivalent ones: X(«)= é)(m B, (¢7) , Y) :% Ym P’n(%
Their substitution in (1-77) and (1-78), the

interchange of summations and integration, plus the
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identification of the coefficients of the Legendre

Polynomials of equal degree on both sides, leads to the

linear system:

o= dad @y +3 Koo Qo S Vor b 162 3 K s 65 Yoo 1-79)

Y = 2'n+l Z {J’ﬂh?_)-f'f [a, negjts +ZX Do nra) 41 '/'Z

”7 nkzj+) ] L

J’ﬂ-{-z_}.*! [en nE2j 4} +ZX Com. Y ‘;‘LZ a/m ﬂfﬂJﬂ']j ( I "80)

Before the system can be solved, we should know the

numerical value of the following integrals:

F&d

a'rn‘n = — (2n+1)( f P (.ro") (LU‘) F(}

(1-81)

- — fuazuPar)P( T e (-

4
NG R €

9 {r) 2 —(r+T)
Cmm =4 222 f o BUGEIR () 222 &% (1-83)

Loy =l 2021 [uchcp
V3 none) 8

() B () ,“_ff‘j e (1-84)

They are discussed in detail, including the numerical

technique to evaluate them, in Appendix [|-3.
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The system (1-79), (1-80) expresses conditions in
the n -space, which is associated with the representation
of the field in spherical waves. There is duality
between this discrete representation and the continuous
representation In the k-space, which is associated with
the cylindrical coordinates. The system of linear
equations (1-79), (1-80) is the dual of the integral
equations (1-73), (1-T4); n is the dual of the wave
number kj; the reflection coefficient for spherical waves
on the sphere &; are dual of the quantities
K,(u,}u_,a).—. ; (2n+)dn B (%) B, (£
and the like, which can be interpreted as reflection

coefficients for cylindrical waves impinging on the sphere;
f::(K) —ZV;I.

= and the other reflection coefficients for
(x)

and
cylindrical waves incident on the plane surface are the

dual of the @mn, * the reflection

s 3 By Do s
coefficients of sphericé] waves hitting the plane; and
finally the intensities of the spherical waves X, and
Y. are dual of the correction terms X (») and Y)
The different reflection coefficients come in

groups of four each. They correspond to incident com-
pressional or shear wave fields that are reflected as
compressional or shear fields.

The physical interpretations of the system of linear

equations (1-79), (1-80), can be given in terms of the
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quantities X, and Y, , which represent the intensities
of a multipole radiation of order "n", such as 4, (xR)-
-B,ce08) s that goes away from the walls of the cavity.
They are related through the reflection coefficients
5; ,(i=1,4) | and ampn , by, » etc., for spherical waves
incident upon the sphere and the plane surface respectively
It is convenient to observe here, that while é; depends
only upon n ,@mn and the like depend upon two indices
to account for the fact that a spherical wave hitting
the plane surface, which doesn't have the same geometry,
suffers mode conversion. We will separate the field into
a "primary field", the one originated by the explosion,
and a "secondary field" due to later reflectians from the
surface of the cavity. The linear equations express
an equilibrium condition. The ﬂﬂtcomponent of the
secondary radiation is in equilibrium not only with the
primary field reflected at the plane surface, a,, ande,, »
but also with all the reflected secondary fields such
as X, Qmn and the like. The summation over the index
J in the equations for Y , is due to the more complex
mode conversion of the shear potentials (see equation
(I1-4). From the discussion above we can conclude that
the linear equations express a condition at the cavity,
due to the fields that come reflected from the plane
surface.

By duality we can say that the integral equations
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(1-73), (1-74) express a condition at the plane surface
due to the fields that come reflected from the surface
of the sphere. To state more precisely the sense of
this interpretation we recall the reflection coefficients
at the sphere for cylindrical waves. We define

K, (oope.a) = T ane) & BiC ) By (i22) ;
and similar functions are introduced to denote the other
three sums within the integral sign in the integral
equations. The quantities é%g-édyﬂ and the other three
alike, are the known generalized reflection coefficients
for cylindrical waves incident upon the plane surface.
The wave number "k" is related to the angular parameter
for oblique incidence upon the free surface. Integration
over k accountis for all the possible directions of
approach of the cylindrical waves. The intensity X(w)
of the component of the secondary compressional field in
the direction determined by 1J:V;EEE- (real or complex),
is given in equation (1-73) in function of the components
in all directions of the primary and secondary fields
that are reflected from the cavity in the direction
given by ¥

A schematic representation of these dual processes,
is given in figure |-3.

There is another feature to be noticed. The system

of integral equations (1-73), (I1-74) is exact, not being
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sub jected to previous approximations. |t contains all

the physical evehts, in particular the long and short

wave fields. Thus it should contain the high frequency

approximation of surface waves as given in the geometric

optics theory developed by Keller (1960). The denominator
A

denominator F(k), and it is connected with surface waves

» » 9iven in Appendix 1-3, is the dual of the Rayleigh
existing at the surface of the cavity, as shown by
Yanovskaya (1958) in the work on surface waves in a sphere.
The term coming from the complex rays creeping around the
sphere in Keller's theory, can be found by isolating the
contribution of the pole in jf_' when solving the integral
equations (1-73), (1-74) for )ZQQ and Y(v) .

Finally, we come back to the system of integral
equations (1-73), (1-7%) torstate some of its matnematical

properties. |t is a system of Frednolm integral equations

of the second kind, not self-adjoint. But the kernels
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happen to be "polar", and it is possible to use the
Hi lbert-Schmidt theory to develop the solutions in terms
of orthogonal functions. This is a property enjoyed by
symmetric and polar kernels. (Courant and Hilbert, 1953).
The integral equations are sfngular, both due to the
infinite range of integration and to the singularities

in the kernels.

THE SURFACE DISPLACEMENTS
To obtain the Rayleigh wave part of the spectra of
the displacements in the expressions (1-6%) and (1-65) we
follow Ewing, et al, (1957) and replace 2Jp(kr) by
H;&ﬂ+H§(kr) and integrate in the complex plane deforming
the contours, as shown in Figure |-4, to obtain convergent
integrals. The surface wave displacements are due to the

residue at the Rayleigh pole.

2

~ LA ~&% 0
U, =-7i H(w) [45:%’ [1+acy)]E = zé{zriggz)b’f%)eﬁfﬁf}m (1-85)

Kk
Flee)

E _u'f
Uz=-Tc A () ey {"ZK/_? (Zkz"’ﬁsz)ﬁf'd(‘%)]@ *id l?.v!-t‘z.% 5’[’“,@')5 %j/'/,(gcr) (1-86)

F'tx)
where W, =Yr*-kZ Ué:Wcz-zﬁ‘ and X is the Rayleigh

pole.

We should note here that the leading terms in a0f)
and ¥0,) are small as Ka-»o . When Ka—>o , the
solution converges to the one for the buried point source

in the half-space.
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To facilitate the numerical evaluation of the
expressions above, it is convenient to transform them to
a dimensionless form. We use the fact that the Rayleigh
pole x=4ks , where ¥=L\[3+/5 = 1087664 .

Then =k fEf 5 vo=g V5 ;}f0ﬁ=—£?5§

The dimensionless form of the displacements is given

by:

/7 S

L« g
U, = rLE?(w)kz a"f— {Zﬁz——!'[h‘"a((ﬂkﬂe =« _(2¥-f)k HCA )6’ j (1-87)

c2)
“H i3 «F)

Ll -‘fd’!g
Uy =g H (‘J)L’f—"—{@f /)[’7‘“("’.@)_7@ . i-—za"%mk ér’(’yj?)f f (1-88)

cHE(rvFa F)

[t should be remembered here that the quantity kaX?%j
is dimensionless. The term ®¢w) is defined in (1-38)
and is the spectrum of the source function. The quantities
ur/ﬁﬂﬁﬁgi) and uzA%e)k;) are dimensionless.

For long ranges it is possible to use the asymptotic

expressions for the Hankel functions (Ryshik and Gradstein,

1957):

icz-A7.7)
HQ)() =3 [HOC,H)] zi>p (1-89)
The body wave part of the displacements can be
obtained by evaluation of the branch line integrals over

the Sommerfeld contours L, and Lﬁ’ as described by Ewing,
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et al (1957). This computation can be done also by steepest
descent or stationary phase techniques (Ewing,.gi_gl, 1957) .
In any case, since our interest is confined to studying the
effect of the cavity on the more prominent parts of the
field, we will not consider the several pulses that do not
exhibit a sharp character. We assume the recorder located
at the free surface, and therefore, the only pulse of
interest is the direct P-arrival. Evaluation of the branch

line contribution over L ~and retention of the part that

o 2

is dominant in the far field, leads to

e
— Ky f"":;'é‘)

A ~ ik _Cofh
4 - e PP ) (1-90)

é[z-’T-

. 2 ' cah
NPT SRt By
r2

e Ve -gs (1-91)

r2

Several comparisons may be tried to examine the effect of
the geometry of the medium on the propagation of waves.

In the first place, we can follow the procedure
introduced by Latter, et al (1961), in relation to the
decoupling theory of underground explosions. |In essence,
this theory shows that a tamped explosion will produce
larger displacements than a similar one placed within a
cavity large enough to avoid nonelastic effects (decoupled
explosion). Latter, et al (1961), used a cavity in an
infinite elastic medium, as a theoretical model for under-

ground explosions. From near field measurements, they
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obtained the pressure and radius of an equivalent cavity
to represent the tamped explosion, and with these values
they were able to compare it to the decoupled one in the .
far field. The introduction of a free surface changes
radically the wave picture; the seismic energy is not any
more confined to the P waves as in the case of the
infinite space, but it separates between body and surface
waves, the latter being the main feature at large distances.
We find then, that it is necessary to study two
decoupling factors, one for surface and the other for body
waves. The difficulty lies in the fact that we cannot use
our theory to obtain the parameters of the source, from
the near surface displacements. |t is possible though, to
estimate these values, by using the simple theory (Latter,
et al, 1961), and proceed with the aid of (1-87) and (1-88)
to compute the decoupling factor for surface waves, and
from (1-90), (1-91) to obtain the one for body waves. The
decoupling factor for surface waves, contains two factors,
one depending upon the pressure and the other upon the
frequency. |t is independent of the distance. This factor
is the same for horizontal and vertical displacements as

shown at the end of this section. It is given by:

201 CfFTE +72=7 )etV3
w _ P 1+ &0R)= 2 /707 “A W“p)é?
G "R T mon) St e ST (1-92)

A second type of comparison that helps to understand

the effect of the free surface, is given by the normal-
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ization with respect to the displacements from a cavity in
an infinite space. This can be done for both, the P and
Rayleigh waves. Since the spectra of the displacements

of the body waves in the infinite solid are given by:

~ Ky R

- _Pwja’ 1 k),
& P R2 R) 4- 4ikeQ -3K2a% (1-93)

W = 2 2 — P o i -
where R [r= + he and P(w) s (see equation (1-38)),

we find that for Rayleigh waves the normalized displacements

are.:

- AT %3 I‘F“r
=3 TR T om0l Cartappe” | g

4 " N Znric
*Z— \/—'i/ ZK; {(23’_..')[#0((»’2)]6’ . f—zaﬁ/f’- ﬁu,,)eﬁ)—} (|_95)

A third way to compare the effect of an explosion
within a cavity with the point source solution which
requires the same amount of energy, is to normalize the
displacements, dividing the ones from a cavity in a half
space by the corresponding ones from the point source in
a half space. The latter can be obtained from the
expressions above by letting a—=o while keeping P(w)ad

constant. The normalized values are:

(Lir)sphere _ i/3 oy 2.y (ﬁ F)“r 5
(“r')fmint B [~ iA— 0.75/3 {/4—0((;_)) QJF-T ﬂr(p) } ( !—90)
(ai)s,bhere e'ﬁ 3'2\/3"1 7 {/Fi?’—m)dﬁ

(edg) i = I~ ip-0754t {/ 3 D((l{e)— - X?’JP')E Jz (1-97)
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Here B = k a ; o= Kk, h.

They do not depend either on the source function in
time, or on the distance of the receiver. The only para-
meters in these expressions are k,a and k,h. The first
factor, the only one hitherto considered in calculation of

explosions, depends upon k,a. The second one is found by

this theory and depends upon both, k,a and k_h.

o

Since (2¢%i)_4¢® 77 7L =0 , we find
2 : -
that —2X=L  _ 22V¥%5  and,therefore, the second

gyrzp —  afty
members in equations (1-96) and (1-97) are identical. The

ratio of horizontal to vertical displacements is kept
invariant when we pass from the point source to a spherical

source, and the particles will move on an ellipse.
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NUMER | CAL RESULTS

The inversion of the system of equations (1-79),
(1-80), was performed on the IBM 7090 computer at the Com-
puting Center of the California Institute of Technology.
Computations were carried on for several values of the cav-
ity radius-depth ratio a/h. We chose 0.32a/h<0.7 , at in-
tervals of 0.1 ; an additional value, a/h=0.65 , was includ-
ed to provide more information. For each value of a/h, we
could invert the system (1-79),(1-80), within a frequency
interval that was limited by two considerations. First, the
fast growth of the terms a,,, ,b,, etc. ,at low frequencies,
produced large round-0ff errors in the inversion process.
Second, the slow convergence of the exponential series for
a,, etc. at high frequencies, called for an increase in the
number of terms of the series, beyond the capacity of the
computer.

We concerned ourselves with the Rayleigh wave part
of the displacements. The body wave computations are in
progress, and they will be the subject of a future paper.
The very low frequency Rayleigh wave displacements will
also be investigated by a technique similar to Born's ap-
proximation, starting from the static displacements as in-
itial trial.

To study the effects produced by the coupling of
the cavity aﬁd the free surface upon the generation of

surface waves, we made the comparisons described in the
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last section.

The decoupling factor studied by Latter,gi_il
(1961), is modified according to formula (1-92). There, fol-
lowing Latter's notation we labeled with an index h the
terms related to the hole (the decoupled explosion), keeping
unlabeled the ones refemring to the tamped explosion. In or-
der to apply this theory to the Rainier explosion, we take
Latter's estimates: a/h=0.3 and P/Ph = 50 . Thus,the de-
coupling for a cavity radius-depth ratio of 0.3 is 50. For
other ratios, we have frequency dependent decoupling factors
as shown in Figure |-6. A decoupling factor larger than 50
is better than the one predicted by Latter, and it is due
to destructive interference of the waves. But we notice
also that for a/h ratios larger than 0.6, the decoupling
Tactor is reduced to 25 for certain frequencies, and there
is a tendency towards even smaller values. For the time
being we can predict a significant reduction of the decou-
pling factor for these cases, but we must wait for a com-
plete picture of the behaviour at very low frequencies to
give the exact amount of this effect.

The normalization with respect to a sphere in an
infinite space is described by equations (1-9%),(1-95).
Since the ratic of the horizontal to the vertical component
of the displacements of Raleigh waves is constant, and equal
to _ifﬁEEZ: , it is possible to consider only one of them.

212y
This normalization has the property of excluding the effect
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due to the cavity alone,and therefore shows more clearly
the phenomena connected to its interaction with the free
surface. Unfortunately, due to the partition of seismic en-
ergy between body and surface waves that we mentioned in
the previous section, the normalization becomes dependent
upon the distance. From equétion (1-94) we observe that it
is sufficient to divide the displacements ratio by ¢§E
to obtain a term that is independent of the distance. This
term we present in Figure |-7. To see how much influence
we may expect from the spectrum of the displacements from
a cavity in an infinite space, we give it in Figure |-5;
the factor containing the distance to the source is not in-
cluded there. Since the spectrum is very smooth and nearly
constant, we expect little influence upon the results. The
normalized values in Figure |-7, show a marked dependence
on the frequency, with holes that correspond to the large
decoupling factors, and peaks that tend to increase the
coupling.

Finally, it is interesting to examine the normal-
ization of the surface wave displacements to the equivalent
ones for the point source in a half space. Figures (1-8),
(1-9) and (1-12) give the amplitude ratios, and (I1-10),(I-
11) give the phase differences. In this case the normaliz-
ation is independent of the distance, and furthermore the
passage to the limit when a/h—=0 1is simple. For instance,

a small size cavity (a/h = 0.3), doesn't differ very much
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from the point source, except at high frequencies (see Fig-
ure 1-8). The changes begin to be noticed at a/h=0.%4.

Since by this normalization we are eliminating the
effect caused by the plane surface alone, after observing
the similarity of Figures |-7 and |-9, we can say that the
prominent features observed in the spectral ratios are due
to the interaction of the two boundaries, and not to either
of them separately.

In Figures {(1-8),(1-9), we have used two dimension-
less frequencies, in order to observe if some of the peaks
or holes in the spectral ratios were mainly dependent upon
egither the cavity radius or the depth. What we obtained
with this change of representation in the horizontal scale,
was a better picture of the transition from one value of
a/h to the nextT hus, the peaks near kaa=0.68 ,in Figure
|-9, are shifted orderly with increasing a/h values, while
in Figure |-8 this doesn't happen.

The phase is represented in degrees in Figures [-10
and I-11. It can be seen that when a/h—-0 , the phase dif-
ference between the point source and the spherical source
goes to zero. The maxima and minima in the amplitude spec-
tra correspond to the inflection points in the phase spec-
tra.

In Figure I-12 we attempt to show the way the ampli-
tude spectrum behaves for a constant frequency, when the

ratio a/h is changed. The significant fact is that for
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small values of a/h , the curves are almost flat and show
that the spectral ratio is almost insensitive to variations

in a/h , particularly for the lower frequencies.
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CONCLUSIONS

By using the relationships to transform wave func-
tions between cylindrical and spherical coordinates, in con-
junction with Schwarz's technique fo solve boundary value
problems, we have been able to obtain a solution for an
elastodynamic system with mixed boundaries, that is connec-
ted to the theory of underground explosions.

The analysis of the problem in the wave number
space, leads to a dual mathematical formalism in terms of
elementary waves in both systems of coordinates. These
elementary waves are in dynamic equilibrium with similar
ones. The equilibrium conditions are expressed either by
a system of two integral equations (I1-73), (1-T4), or by
an infinite set of linear equations, (1-79),(1-80).

Application of the results to decoupling theory,
shows that for a large cavity radius-depth ratio, the decou-
pling factor may be significantly reduced for some frequen-
cies.

The transition to the limiting cases is simple
only in the case of the point source in a half space. This
limit is obtained by letting the radius of the cavity go
to zero independently of the other parameters. When the
frequency is very small, the limiting case is the static

fileld of displacements. This limit is not obvious.
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PART Il
PRECISION DETERMINATION OF FOCAL
DEPTHS AND EPICENTERS OF EARTHQUAKES
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INTRODUCT | ON

The problem of precision location of the hypocenter of
earthquakes is becoming increasingly important. It is
greatly simplified by the use of electronic computers,
which make it possible to undertake rapid computation of
large amounts of data, and repeat the computation for
different values of the parameters involved.

Some resujts which may be obtained with computer
techniques are;

a) Accurate determination of epicenter and depth of
earthquakes, and elimination of some earthquakes from
suspicion as explosions, by using focal depths as criteria.

b) More insight intothe study of the earthguake
mechanism by providing the distribution of the aftershocks
in three dimensions.

c) Construction of accurate travel time curves for
regions with uniform crust, when sufficient direct arrival
data are available to determine precise hypocenters. This
requires several stations (possibly temporary ones) within
150 km of the epicenter, as indicated in Figure || - 1.

d) Investigation of crustal structure in rugged regions,
by interpretation of systematic deviations of travel time
data.

We present an initial study of these problems
specially for local shocks in California. Both the intro-

duction of variable travel times and the use of several
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crustal phases contribute to greater accuracy in depth
determination in a program written for an [BM 7094 computer.

ON THE METHOD OF LEAST SQUARES

For a long time the method of least squares, as
described by Jeffreys (1959), has been used to determine a
"best" solution for the hypocenter of earthquakes. An
initial trial for the focus is changed in such a way as to
minimize the deviations of the actual time to the stations
from the ones given in the tables. The deviations are
called "residuals".

The changes can be obtained after forming the usual
set of normal equations. The solution of the normal

equation can be written in matrix notation (Bolt, 1960):

[AAT] A} A2 —== Aq] ot ]
AP | _|B, By --- B Bty -
Ah C, Cy ——- C,
_At°_ _Dl Ug == DnJ ‘
oty

where AA , AP , Ah, Ato, are the changes in longitude,
latitude, depth and origin time, to be made in the guess.
Tne large matrix is a function of the slopes of the travel
time curves at the several distances between the epicenter
and each of the stations, and ot. is the residual at the ("
station.

From equation (1) we see that if the travel-times

are linear, one iteration is sufficient, since the matrix
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depends on the slopes, which are constants. ne travel
times do not deviate much from linearity except near the
origin, and we can expect a fast convergence if the data
are consistent, that is, if there exists a solution for
which all the residuals vanish or become very small. This
occurs when the travel times are very close to the true ones,
and one can read accurately the arrival times of the phases.
This ideal situation is not the case in practice because of
errors in reading times due to the time corrections in the
records, low signal to noise ratio, misidentification of
the pnases, etc. Thus, the case of an exact solution is
unlikely and seismologists look for a minimization of the
sum of the squares of the residuals. |In applying the
criteria of least squares we should be careful to avoid
wrong "best" solutions due to systematic deviation of the
true travel times from the ones that are used. For example,
a thicker crust to the west of an epicenter, if not
accounted for in the travel times, may result in a shift of
the solution toward the east. To decrease the influence of
systematic errors of this kind it is advisable to weight
the stations not only on account of the quality of their
instrumentation, but also according to the accuracy of that
portion of the travel time curves corresponding to them.
Thus, in local shocks the heaviest weights should be
assigned to the stations observing the direct arrival,

which is not affected by crustal thicknesses.
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We noticed that in doing the weighting, the convergence
to a solution is accompanied by a considerable decrease in
the residuals of the stations with larger weights, together
with a slower rate of decrease of the other residuals.

Once the former ones decrease beyond a certain limit, the
subsequent changes are determined by the latter; this
effect leads to instability in a few cases.

It follows from equation (I-1) that if we want to
obtain the probability distribution of the four unknowns
on the left-hand side, it is necessary to know the distri-
bution of each of the residuals and also the uncertainties
in the travel times, or more precisely, in their slopes which
enter into the elements of the large matrix. The problems
involved in the estimation of these uncertainties will be
discussed in a later paragraph.

The solution(li-1) of the system of normal equations
assumes that the unknowns are normally distributed around
means equal to the values the solution takes. This
supposition is plausible for the coordinates of the epi-
center and the origin time, but not for the depth. The
reason for this s that a normal distribution for the
depth will always give a finite probability for the focus
being above the free surface. |In fact, on repeated
occasions researchers have found that the application of
the least squares method gave them negative depths. We

know "a priori" that the probability of a shock being
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above the surface is zero. The sample space is the positive
real axis and the frequency distribution should be skew
symmetric. In order to continue using the least squares
technique, we need to introduce instead of the depth "h",

a new variable "

Iz "“to be determined from the normal
equations and such that: (a) h = ﬁ(y-)} 0, when -—e<p@ ;
(b) the transformation h = h(y-} be one-one; (c) the distri-

bution of M be normal. The simplest way to achieve the

three conditions above is to use the transformation h = eﬁ .
The depth "h" then has a lognormal distribution. |Its
properties can be found in most texts in statistics. |If F

and d; are the mean and standard deviation of p , then

” P N ol .
Ro=gh 2 and J:=h-(e‘”-|) . The changes to be

made in the normal equations are few and simple: the quantity

2t
2h

for a new iteration is equal to current depth times A 4

is to be replaced by h_%%— everywhere, and the depth

where Ap is the correction to B Just computed. The
computation of depth thus becomes more rational without
losing in simplicity. When O;<<P- the Jognormal distri-
bution approaches the normal. Other attempts to attack the
problem by the techniques of linear programing are consider-
aély more involved and arbitrary.

The accuracy and stabi1ity of the solutions are very
difficult to study theoretically. However, it is rather
easy to check some specific examples. This we did in

three ways: (a) By direct confrontation with the data of
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explosions. The discrepancies in depth for the Corona and
Victorville explosions (Press, 1960) were 1 km and 3 km
respectively. The corresponding errors in epicenters were
1.5 km and 2.7 km. (b) By selecting well recorded earth-
quakes {(with seven or more stations within the range of the
direct wave) and comparing the very accurate hypocenters
thus determined with the ones obtained by using a uniform
crustal model and raw data from distant stations only. This
error in estimate is due to crustal variations and shows
how important it is to correct for these variations, if
accurate focal depths are desired. Some examples of this
effect are shown in table No. lI-1. (c) By studying the
change in focus, when a unit change was made in the arrival
time of each of the stations, in such a sense (plus or minus)
as to produce the maximum deviation in the corrections ARA,
AP , Ah, or Ato. For the main Kern County earthquake, with
"a net of twelve stations, a variation of .1 sec at each
produced the following results: dn = 1.28 km, dA = 2.7 km
and d¢ = 1.1 km.

The geometry of the distribution of the stations around
the epicenter also plays an important role in the confidence
we may have in a given determination (Flynn, 196%). It is
obvious that the best epicentral location will be that in
which the stations are evenly distributed in azimuth. We
can also have a good control with sufficient near stations,

even if the distribution is not optimal.



-52-
As Nordquist (1962) pointed out, the precision in

depth will depend on the type of wave recorded. For
instance, if we have only P2 arrivals there is no centrol
upon depth, because a variation in depth will be compen-
sated by a shift in origin time. |If P2 and Pn are present,
there is some control, but very little. The depth can be
tied down with more certainty only when the direct wave is
present. In any case, due to the properties of the rays,
the uncertainty is not complete. The P2 arrivals are first
within a range which depends upon the depth (see Figure Il -
1). For a fixed distance, an increase in the focal depth

will allow the direct wave to arrive first. Similar con-

siderations hold for Pn and P}.

DESCRIPTION OF THE COMPUTER PROGRAMS

In the Caltech Seismological Laboratory at Pasadena
there are several programs with different degrees of
sophistication, which provide determinations of hypocenters.
One, written by Mr. John M. Nordquist for the Bendix G-15
computer, is designed specifically for local shocks
(Nordquist, 1962). |t has been extended by Mr. John K.
Gardner to an IBM 7094 computer (Gardner, 1964%). Another,
written by Mr. Saul Shragowitz for teleseisms, has been
adapted by the author to compute local shocks as well. The
latter, also written for the Bendix G-15 computer, has

been taken as basis for a more complete IBM 7094 program.
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In the Bendix G-15 program we included accurate
direction cosines for the local network of stations, and
travel time tables were calculated from Press' model for
the California-Nevada region (Press, 1960). This model
is composed of a two 1ayér crust with compressional veloci-
ties 6.11 km/sec and 7.66 km/sec, and 8.11 km/sec for the
mantle. The thicknesses are 25 and 26 km respectively.
The input to the program consists of code numbers that
identify the stations, the arrival times for each station,
and an initial guess for the hypocenter.

Data for each station is printed out in the following
pattern after each iteration:

CODE, Ai(km), (t, )i, Pi - Ai/8.11, (Residual)i
Here Ai is the distance epicenter-station, (to}i the
origin time as seen from each station, and Pi the arrival
time. Following this, the machine types out the standard
deviation in time, g = (—%— ZZ(Residua]s)g)%, and then
it prints the next trial:

Longitude (degrees), Latitude (degrees), Depth (km), to(sec)

The iterations continue until the computer is stopped
manually. |f fifteen stations are processed, the time per
iteration is 7.5 minutes. The program gives focal depths
smaller than 56 km only, which is sufficient for all the
cases known in California.

The program for the IBM T094 computer is essentially
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different because of the introduction of multiregional travel

times for local shocks, and has considerably more capacity,

speed and fTlexibility. It is designed to treat teleseisms
and local shocks automatically in any order. A generalized
Tlow diagram of the program is given in Figure |} - 2.

A1l data that are to be used permanently are stored on
magnetic tape and read into the memory at execution time.
Thus, we have on tape a catalog with the names and locations
of the seismological stations in the world that are more
frequently used, a similar catalog for the local net of
stations, the P and S travel times for teleseisms, the
pP-P and sS5-S tables, and the crustal structure in the
California-Nevada region. The content of the tape can be
modified and extended periodically by means of an auxiliary
program.

Several options contribute to the flexibility of the
program. Weights can be assigned to each station in the
input cards. We consider it more flexible to weight the
stations according to the user's decisions than to follow
Bolt's automatic weighting method (Bolt, 1960). The
shocks are processed automatically, and for each shock the
jterations coniinue until the variation in origin time is
smaller than one tenth of a second, or until the number of

iterations exceeds an upper bound given at input time. To
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prevent gross errors,a tolerance test is made on the
residuals to eliminate those which are evidently wrong. At
input time it is possible to give an initial tolerance
limit, its rate of decrease per iteration, and a lower
bound; thus we can control the way we reject some stations,
which proves to be helpful in obtaining a good solution.

|f the depth is known or it is convenient to hold it fixed,
there is an option to do so. Also, the printing of inter-
mediate iterations can be skipped, but it proved useful to
have them for comparison purposes. The phases that corre-
spond to each reading are identified and their names typed
out.

For local shocks we have provided muliiregional travel
times that take into account the variations in the properties
of the crust and the upper mantle. The times are computed
internally from formulas, instead of from tables. Three
P-phases and three S-phases are allowed; they are either
the direct arrival, the wave refracted at the Conrad dis-
continuity, or the one refracted at the Moho. |n order to
minimize the number of data cards to be handled, the input
times for the several shocks to be processed can be read
with a variable format to be given at execution time. This
allows us to have four stations per card when only first ar-
rivals are reporied, two stations per card when more than
one P-reading is present, and one station per card if

there are P and S readings.
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Special features for the processing of teleseisms are
P and S travel times stored in the memory of the computer
as two dimensional arrays. At present we have Jeffreys'
European travel times (Jeffreys, 1964), but the user can
replace them by more suitable ones at execution time if
desired. |If a pP-P or sS-S reading is included in the
input card of any station, the depth of the focus will be
computed according to these readings and held fixed. To
this effect the corresponding Jeffreys-Bullen tables are
used. |f several stations have these readings, each one
is used and an average of the resulting depths is taken.
As in the case of the local shocks, a variable format is
also given to decrease the number of cards. |f only P
phases exist, it is possible to enter four stations per
card. |f S phases are present also, a maximum of two
stations per card is allowed. Since the problem of mapping
the differences in structure in the whole world is much more
complex than for a small region, and still unsolved, we
have provided a single correction for crustal effects. To-
gether with the time of each station it is possible to give
the thickness of the crust under it, the standard being 33 km.
A contrast in velocities from 6 to 8 km/sec is assumed at
the base of the crust in correcting travel times for
crustal thickness.

In Appendix |l - 1, we give the instructions to be

followed to process shocks with this program. Appendix

|| -2 contains the names and functions of the subroutines



.-
which were used.
ON THE TRAVEL TIMES FOR LOCAL SHOCKS

The program for location of local shocks is designed
for use in the California-Nevada region, 32° - 420N, 1140 _
1249 . This region is divided by a grid with a spacing of
%O in latitude and longitude. Thicknesses of the two
crustal layers, the velocities of compressional and shear
waves in each layer and in the underlying mantle and a time
correction for thickness of the sedimentary layer at the
surface are assigned at each grid point, to produce a mathe-
matical model representing approximately the true structure
of the region.

To obtain the structure between an epicenter and a
station, the path joining them is divided into segments of
25 km and the crustal values at the division points are
computed by bilinear interpo]atioh among the values at the
four corners of the corresponding grid cell. |In Table || -
2, we give some of the crustal values between Tinemaha and
Pasadena as an example.

Precise formulas allowing for variations in the
velocities and thicknesses of the model in computing the
arrival times of the different phases become very involved
and require continuous integration along the path (Bullen,
1963), together with an extremely complex use of Fermat's
principle. To simplify the computation, integration along

the path was replaced by summation on segments in which
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velocities and thicknesses of the layers were considered
constant.

The head waves and direct waves coming from below the
first discontinuity are refracfed at the interfaces between
layers; each one of them corresponds to a least-time ray
chosen among a family of rays with similar geometry. We
found it easier and faster to determine directly the least-
time path in a vertical section by choosing it among
several possible ones, instead of using Snell's law. We
compared the times of the rays obtained by shifting the
points of refraction along the interfaces in steps of 12.5
km until a true minimum was obtained. We began with the
points of refraction under the station, and moved them
toward the epicenter to maintain convexity of the rays and
minimize computing time.

Finally, we could profit from the fact that horizontal
variations are small and slowly varying, and aveid the
exact treatment of lateral refraction within a layer by
using instead the theory of small perturbations. [If V s
the average velocity and v the deviation from it at a point
of the path, the travel time between two points A and B is

given by:
B

t=£ S (11 - 2)

where ds is the distance element along the path. We make

use of the relationships:

sin B
—\,";;;—=K (1 - 3)
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dv = | grad v |-ds - cos® (rr = %)
where © is the angle between the direction of the path
and the gradient of the velocity. After elimination of 6

and ds in equations (Il - 2), (Il - 3) and (11 - %),

we obtain

B
¥ = g v
A

lgrad V‘-(I-KR(V*‘-’Y)VZ(V*'“) ( Il - 5)

To the first order in v, this expression is equal to:

A { ™
L= N N S;\ (*“tszs)‘ud-é ({1 -~ 6)

where the angle 6 has been reintroduced, and ds now is
the distance element a]ong the line connecting A and B, and
A is the total distance. In equation (Il - 6) the term
with a factor 1 is the correction for the change in
velocity, and the one with a factor t§9 is the correction
for the deflection of the path from a straight line. |If 6
is close to 909, v is very small keeping the product
bounded.

Two additional corrections of a general character were
included in the program. The curvature of the earth is not
negligible for distances between 300 and 1000 km. The
difference between horizontal distances measured at the
surface of the earth and at the Mohorovicic discontinuity

is A—d::ki%, where H is the thickness of the crust and
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R the radius of the earth. For A = 1000 km and H = 40 km.
A-A = 7 km,which corresponds to a time error of 0.8 sec in
a Pn arrival. Since this amount is large the necessity
for the correction is obvious. But the effect of ellipti-
city is too small to be considered in any case. We used the
radius of the mean sphere to compare distances along great
circles. To estimate the error so produced we may consider
that the distance along a meridian is given by
A=xall-esn®*®]ae 5 the first order in the ellipti-
city e. Here a is the radius at the equator and 9 the
the latitude. The distance computed by the program is
A=a(l -2¢e)dP. |If we take the end points at 32° and 420,
the difference between the two calculations is A-A = .12 km.
The subroutines used for the computation of the local

travel times are listed in Appendix |] - 2.

A SURVEY OF CRUSTAL DATA
IN THE CALIFORNIA-NEVADA REGION

The California-Nevada region is a complex one with a
diversity of structural features; at the same time it is
rich in problems and difficult to study. |In Figure Il - 3
a sketch of the Geologic Provinces is given according to
Oakeshott (1955).

Much work was done in the past with different geo-
physical techniques, but specially relevant to the
computation of theoretical arrival times is the large

scale program of refraction seismology launched by the
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U.S.G.S. in recent years. A resume of this work is given
by Pakiser (1963). We have used the information given by
the U.S.G.S. as the basis for the model described in
section No.l|-4,complementing it with the results of the
work of other authors using explosions, earthquakes, surface
wave dispersion and gravimetry.

It is necessary to remark that in spite of the large
amount of information gathered, a complete and accurate
crustal model has not yet been developed, the information
being concentrated along certain lines which are not dense
enough throughout the area. Qur aim was to construct a
crustal model using and not contradicting the known data,
simple enough to be usable by a.computer, and easy to
modify in the light of new information.

As the data for the S phases is scanty, we assumed a
Poisson's ratio of 0.25 and obtained the velocities from
the corresponding P-phases. From the U.S.G.S. we obtained
the time delay due to surface sediments, the P velocities
in the first two layers and the depth of the first layer.
We followed Press (1960) in assigning a thickness of 26 km
for the second layer and 8.11 km/sec for the deepest
compressional velocity. The criterion used to continue the
model to points where no direct information was available
was to keep the velocities within the same geologic
province, and to reflect the topography for the depth of

the first layer. A correlation by least squares between
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topography and depth (where the latter was known independently)
gave a trend H = 24.5 + 2.98 h, wnere h is given in km
above sea level. The scatter shown in Figure Il - 4 is
considerable, and it is obvious that topography is not the
only parameter affecting the thickness of the crust.

The Mohave desert and the Basin and Range Provinces
are the more uniform features in the region. More accurate
data are available here. We took a Pn velocity close to
7.8 km/sec in the Mohave desert and 7.9 km/sec for the
Basin and Range Province (Pakiser and Hill, 1963). For the
Mohave desert we followed Press (1960),Roller and Healy
(1963), Diment, Stewart and Roller (1963). The depths of
the first layer ranged from 25 to more than 30 km, increasing
to the north.

In the Great Valley we took the curve given by Eaton
(1963) to estimate the time delay due to the sediments.
Wherever the sediments are thick, the variation of the
surface time delay is rapid, and we believe that the spacing
of our grid, which otherwise is satisfactory, becomes too
gross and causes an exaggerated spread of local effects.
This becomes evident in the San Francisco area, where on
crossing the San Andreas fault to the east, the low-velocity
Franciscan Formation delays the times of the direct
arrivals (Hamilton, Ryall and Berg, 1964), (Tocher, 1962).
In using our grid spacing we were not able to account for the

totality of the effect without perturbing the other travel
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times.

Very little information was available for the
Peninsular Ranges, except for surface wave data from Press
(1956) and Alexander (1963). In the Pacific there is a
profile by Shor (1958) complemented by dispersion data from
Alexander. An 8.11 Pn velocity and a decrease in crustal
thickness down to 11 km are the more important facts.

In the Imperial Valley delay times were computed from
seismic data by Kovach et al.(1962).

Tables Il - 3 to Il - & show the values assigned to
the crust at the nodal points of the grid.

The three compressional velocities increase with
depth. Recently Press and Biehler (1964, in press) showed
a velocity reversal in the Sierra Nevada. Such a structure
will require a revision of our computational procedures
for travel times.

To test the model we computed the travel times along
some of the traverses of the U.S5.G.S. For the line along
the coast of California (Healy, 1963) there is some apparent
disagreement. The profile San Francisco to Camp Roberts
fits well within 0.3 sec for the P2 arrival, but the direct
wave is about 1 sec late with respect to the theoretical
times. We believe this is due to the fact that the shot
point was placed offshore from San Francisco, and thus the
direct wave was transmitted partly in sediment. This is

reasonable, since the line lies on the west side of the
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San Andreas fault and therefore Pg has a normal velocity;
moreover for the Natividad quarry explosions (Hamilton,
Ryall and Berg, 1964) the agreement is very good. Something
simi lar happens when the shot point is in Santa Monica, the
delay being of the same order. The profile Santa Monica-
Lake Mead (Roller and Healy, 1963) has a delay of about
1 sec for Pg and P2. The reverse fits well the direct
arrival within 0.3 sec but the refracted P2 arrival is
consistently 0.6 sec early. No correction for this delay
has been attempted along the structure because the Corona
and Victorville quarry blasts and the nuclear explosions
showed excellent agreement with the model. Also the
profile from the Nevada Test Site to Kingman (Diment et al,
1961), when corrected for the difference in the location of
the explosions, gave a fit within 0.3 sec.

A test of the correction for the root of the Sierra
Nevada was obtained from the observation at Tinemaha of the
Corona explosion (Press, 1960). The difference with the

observed travel time was 0.1 sec.

LOCATION OF EXPLOSIONS
To test the advantage of the variable travel times, we
redetermined the location of some chemical and atomic
explosions which were well recorded within the California-
Nevada region. The Corona explosions gave an excellent

fit, with very small residuals. We tested the normality of
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the residuals by the Kolmogorov-Smirnov test (Hoel, 1962).
This test is more adequate to our purpose than the X2-test,
because there is no need to group the observations in
numbers greater than five. We will refer to it as the KS-
test. We obtained X = 0.0% sec, ¢ = 0.424 sec, Dn = 0.10,
with n = 25. As D; = 0.27 for = 0.05, the hypothesis of
normality is accepted at the 5% level.

No change in location from the initial (exact) trial
location was found and the residuals were small for the
combined Blanca and Logan nuclear explosions. The
Victorville explosion, with a small set of residuals, gave
a depth oscillating between 4.9 and 5.1 km.

A different experiment was performed for the nuclear
explosions Hardhat, Haymaker, and Sedan. We used the Vela-
Uniform set of stations up to a distance of 1000 km. The
times were not corrected for crustal structure, except for
the stations within the California-Nevada region, but we
had very accurate readings of later phases.

In processing the Hardhat explosion, an initially
assigned depth of 15.0 km was reduced to 12.1 in two
iterations. When resubmitted, an initial depth of 7.0 km
was corrected to 1.3 km in 3 iterations. After the third
iteration the process became unstable, in the form
explained in section No. 1.

Tne location of the Sedan explosion was not well

controlled. All the readings were first arrivals, and no
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direct wave was available. The final depth became stable
at 7.0 km with some residuals over 1 sec.

The Haymaker explosion had the best set of readings.
Two different trials gave depths of 0.2 and 0.4 km. We
attribute the goodness of the solutions to the control
given by the direct wave, in spite of the absence of close
stations. Several P and S phases were available at each
station.

Nordquist (1962) studied the computer location of the
French atomic explosion in the Sahara of May 1962. With
the teleseism part of our program, we repeated the deter-
mination. We are confident that our location was done
under better conditions for two reasons. First, we use the
European travel times which are more adequate to the region
than the standard Jeffreys-Bullen tables. Second, we used
the probability distribution for depth as given in section 2.
In our solution, we tried to circle the point of explosion
with stations in the four quadrants, and in two different
trials we obtained solutions in depth of a fraction of a

ki lometer.

THE KERN COUNTY SERIES OF AFTERSHOCKS
The original Bendix program, with uniform travel times,
proved useful in providing accurate locations for a series
of shocks under special conditions. These conditions were

present in the Kern County series of aftershocks (starting



i
July 21, 1952). They occurred in a limited area, and the
ray paths to the several stations could be considered almost
constant. Moreover, the number of portable stations
installed in the epicentral region was enough to locate a
set of some 25 aftershocks of magnitude over 4%, using data
from the direct waves only.

The great majority of the aftershocks were located
close to the ends of the White Wolf fault. We classified
them in three groups according to their location. Group A
includes those on the SW end of the fault, Group C those
on the NE corner and Group B those in between.

With accurate origin times of aftershocks based on
data from near stations, and the arrival times to the
distant stations, we were able to determine the actual travel
times for each path. The differences from the travel times
for our assumed model were interpreted as being due to
variations in crustal structure. These differences were
also used as corrections to the arrival times of the
corresponding stations for other shocks which were not so
widely recorded. By applying such corrections we succeeded
in getting precision depths for most of the aftershocks
where at least one station received the direct wave.

Figure Il - 6 shows the distribution of the aftershocks in
a horizontal plane with the sense of motion according to
Bgth and Richter (1958), and Figure Il - 7 shows our depth

distributions of the aftershocks in a projection over a
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plane perpendicular to the strike of the White Wolf fault.

OLiservations of Figure |l = 7 shows that the tectonic
activity was mostly confined to the northwestern side of
the Wnite Wolf fault. We call this region the "active
block". Almost all of the aftershocks in Figure || - &
that are on the southeastern side of the fault trace give
computed hypocenters the assumed plane of the fault. The
general trend of the motion of the "active block" is upward
and toward the SW, as indicated by the sequence of after-
shocks worked out by Bgth and Richter (1958), on the basis
of first motion of P waves. |In Figure |l - 6 there are 29
shocks having a left-hand strike-slip motion, against 9
with a right-hand motion.

Geodetic measurements (Whitten, 1955) of relative dis-
placements agree with this indicated trend in the horizontal
component, but not in the vertical. Moreover, the main shock
had the characteristic of an overthrust motion (Gutenberg,
1955} . It is not clear how to reconcile the overthrust
dip-slip motion of the main shock to the mechanism of the
strike-slip and normal dip-slip aftershocks. A theory
based on a rebound effect would explain only the difference
in vertical motion.

In contrast with the dominant left-hand strike-slip
motion, shocks 19%, 141 and adjacent ones in Figure |l - ©

0
have right-hand strike-slip motion. Bath and Richter
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conclude that they correspond to a secondary release of
energy far from the main fault, and they wonder why it is
not present on the southern side too. It is clear now that
we should not expect this, since our new hypocenters indicate
that this showed little seismic activity.

The distribution of the aftershocks within the active
block is such that in the projection shown in Figure Il =7
it is easy to observe linear trends. This suggests the
possibility of several major breaks rather than one. Tenta-
tive locations for the breaks are indicated in Figure I}l = 7
by dashed lines.

A list of the residuals at the several stations for
shocks of type A and C are given in Table |I - 8.

Assuming that velocities do not change horizontally,
we can interpret the residuals at Tinemaha and Haiwee in
terms of a deepening of the first discontinuity by some 5
km under the Sierra Nevada. This increase should be associ-
ated with the offset point where the ray begins to emerge.

A similar calculation for the residuals at Berkeley,

San Francisco. and Mount Hamilton suggests that the crust
is some 8 km thinner at these points. |In the arrivals to
Barrett a residual of -.6 sec is interpreted in terms of a
4 km thinner crust. These results have been incorporated
into the crustal model for the |IBM 7094 program. The
correction to the model in the San Francisco area has been

distributed between depth and velocity variations.
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For shocks in the C location the residuals at
Santa Barbara are high; this effect could be due to the
presence of the upper Tertiary and Quaternary sediments in
the region (Reed and Hollister, 1936). We confirmed this
result in the next section.

We obtained the previous results by the introduction
of a crustal correction At. to the travel time of the j th
station. The new hypocenters gave a set of residuals that
were very small, but still not zero. A further step was
taken to improve the correction At;, adding to it a second
order parameter ; ; in such a way as to minimize the sum of
the squares of the residuals for all the processed shocks.
|t was found that the second order corrections ;i were
given by the average sum of the residuals of all the shocks
at the itM station.

The numerical values of ;i were small, the largest
being of the order of .1 sec. Our confidence in the analy-
sis was thus confirmed, and we therefore concluded that no

further changes in the station corrections were necessary.

SHOCKS IN THE CALIFORN|IA-NEVADA REGION
In order to obtain a frequency-depth distribution of
shocks in California, and prove that the introduction of
variable travel times is helpful in obtaining a better set
of solutions, we selected five regions where the number of
near stations was sufficient to guarantee good solutions.

In doing this selection we also restricted ourselves to
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the period 1950-63 when the number of stations and the
quality of the time signals were far superior than before.
The regions are shown in Figure Il - 5. To be certain of
the intensity of the signals and to favor the statistical
significance of the results, we selected shocks with
magnitudes between 4 and 5, plus a few with magnitudes
between 5 and 5.6. After selecting and processing all the
earthquakes we were left with 116 which gave solutions on
which we could rely. A good check on the goodness of the
solutions is given by the fact that each shock was run at
least three times with different initial guesses for the
depth, and the best result selected.

A resume containing the residuals, magnitudes and
depths in these regions is given in Tables |l - 14 to Il -18.
At the bottom of the column foo each station we give the
mean and standard deviation of the set of its residuals for
all of the shocks in the region. The normality of the
distribution of residuals is tested by the KS test. The
observed parameter Dn is smaller than the critical value
DnO'5 in all cases, and considerably smaller for most of
them, and we can accept the hypothesis of normality. The
means are smaller than 0.2 sec except in a few cases such
as Santa Barbara for earthquakes in region 1. The
occurrence of these large deviations from the travel times
indicates that improvements in the assumed structure must

be made. The paths concerned are not near enough to
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regions where crustal structure has been investigated. The
effect of these significant deviations was minimized by
placing heavy weights on stations near the epicenters.

The frequency distribution of the Kern County after-
shocks with depth is given in Figure 11-8. Frequency values
refer to the number of shocks with depth within intervals
of 1 km. [t is interesting to notice the decrease in
activity at about 9 to 10 km, and the presence of a maximum
near the surface and another near 14 to 15 km. No shocks
are observed at depths greater than 20 km. The same phe-
nomena can be observed for the distribution of the combined
regions as shown in Figure |1-9. Apparently the frequency
distribution shows appreciable scattering, but after intro-
ducing the uncertainties in each depth determination, we end
with the smoother and more representative values shown in
Figure |1-10. As the probability distribution for each
shock is lognormal, in introducing the uncertainties the
shallower shocks spread mainly downwards but the deeper ones
spread in both directions.

We performed this process numerically by running aver-
ages with triangular filters that approximate the lognormal
distribution. The smoothed frequency values are given by
Gm ==§: am{h where fn are the original values. We chose

m
4-~|m

m=04. for n=0;a_.:= TR ik

Som
mn 15 2

filter coefficients a

for n=1; and Qpp=32" m._22. for n>1. The cumulative
7

distribution is not affected greatly by this smoothing.

We see that 80°4 of the shocks happen at
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depths shallower than 6 to 7 km. Since the range of
magnitudes is not sufficiently narrow, it is convenient
also to investigate the distribution of energy with depth.
We transformed magnitude to energies by the formula

109%0= 12 + 1.8 M (Richter, 1958). The result is shown in
Figure Il - 11, and the smoothing by the consideration of
the uncertainties in depth is given in Figure Il - 12.
Clearly, the energy approach stresses even more the seismic
importance of the upper 7 km of the crust over the deeper
regions.

It is interesting to relate these results to previous
inQestigations on the vertical extent of faulting. Byerly
and De Noyer (1958), from energy considerations and assuming
a constant static displacement with depth after the
faulting, find a depth of 10 km for the fault break in the
San Francisco earthquake of 1906. Knopoff (1958), by
applying the methods of static elasticity to the study of
the energy difference before and after faulting, obtained
a static displacement that decreases to zero at the bottom
of the fault plane, and a fault depth of 3.2 km for the
San Francisco earthquake. Chinnery (1961), using dis-
location theory and a rigid body displacement along the
fault plane, computed a vertical extent of faulting of less
than 6 km for the San Francisco earthquake. They all
assumed infinite extent of the fault in the horizontal

direction.
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We have noticed that in the White Wolf fault, most of
the Kern County aftershocks fall near the ends of the fault
trace (see Figure Il - 6). This accumulation of seismic
activily may be due either to concentration of stresses
around these places, or to a decrease in the yielding point
of the material. |n any case, it is reasonable {(but by no
means certain} to expect a similar behavior at the lower
edge of the fault plane, and an increase of seismic activity
there. The frequency-depth and energy depth distributions
give maximum concentration of seismicity at about 5 to & km.
We remark here that the main Kern County shock had good control
for epicenter but not for depth, due to lack of near stations.
| ¥ in accordance with the fact that aftershocks in the first
two days lie on the fault plane, we project the main epicenter
vertically on the fault plane, we find a probable depth
less tnan 8 km (Figure |l - 7) which would tend to agree with
Chinnery's computation, assuming that the San Francisco
earthquake represents typical behavior of the San Andreas
fault.

Chinnery's assumption of constant static displacement
with depth appears less plausible than Knopoff's result, but
it is difficult to compare the two approaches since they are
essentially different. The reasoning followed above would
reject Byerly and De Noyer's result in favor of the other

two.
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Nevertheless, a significant amount of shocks do occur
at lower depths, and evidently they are related in some way
to the surface faulting. They may represent an extension of
the faults to depths of the order of 17 km, with a slower
rate of stress accumu1ation, or a different system of breaks
which are triggered by the activity above.

In Figure Il - 13, we compare the normalized cumulative
distributions for the five regions selected. The large
deviations in some are due to the fact that when taken
alone, there are an insufficient number of data points to

make good statistics.
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CONCLUSIONS

The determination of epicenters and depths of local
shocks in regions as rugged as California can be made with
an accuracy of 2 to 3-ki10meters by carefully correcting
the travel times to account for major sources of errors.
One of the most important corrections is for variations in
crustal structure. This correction can be done automatically
by computing variable travel times from a suitable crustal
model. The model described in section 4, part |i, fits the
observed travel times accurately except in isolated basins
in which the thickness of sediments is large.

Nuclear explosions in the Nevada Test Site can be
accurately located by using several crustal phases. For
the French nuclear explosion of May 1, 1962, we obtained a
better solution than previous investigations, because we
used the European travel times in the teleseism part of the
program. They represent that region better than the
standard Jeffreys-Bullen tables.

The Kern County series of aftershocks of 1952 occurred
mostly in one active block, and the depth distribution we
computed shows a maximum of seismic activity at depths
smaller than five kilometers.

A study of the distribution of the California shocks
with depth shows that 809 of them occur at depths

shallower than 6 to 7 km. This result is further confirmed
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wﬁen we analyze the distribution of energies. When this
result is related to the theories about extent of faulting,
we are inclined to give preference to the arguments in

favor of shallow penetration of fault planes in California.
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TABLE CAPTIONS - Part |1
An example of the errors involved when no
crustal corrections are applied and the
direct wave is not included. V(See section
2, part 11).
Values of crustal parameters between
Tinemaha and Pasadena. The distance is
measured from Tinemaha. A time correction
for surface sediments, the velocities of
compressional waves in the first two layers,
and the thickness of the first layer are
given.
California-Nevada Region. P velocities in
the first layer at the crossing points of
the grid. The longitude and latitude are
given in degrees. The velocities are in
km/sec.
California-Nevada Region. P velocities in
the second layer at the crossing points of
the grid. The longitude and latitude are
given in degrees. The velocities are in
km/sec.
California-Nevada Region. Thickness of the
first layer in km, measured from a datum at
1 km above sea level. The values are given

at the crossing points of the grid. The
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10.

11.

12.

13,
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longitude and latitude are given in degrees.
California-Nevada Region. Time delay due
to near surface sediments, in seconds. The
values are given at the crossing points of
the grid. The longitude and latitude are
given in degrees.
Local shocks. Station code numbers and
names; A, B and C are the geocentric direction
cosines; D is the height with respect to the
mean sphere. The elevation is given in km,
above a datum at 1 km above sea level.
Time deviations from the model with hori-
zontal layering, due to crustal variations,
for shocks in the Kern County area. Regions
A and C refer to Figure |l - 6.

Shocks in region 1 (Figure 11 5), with the

trial hypocenters.

Shocks in region 2 (Figure Il - 5), with the
trial hypocenters.

Shocks in region 3 (Figure Il - 5), with the
trial hypocenters.

Shocks in region 4 (Figure Il - 5), with the
trial hypocenters.

Shocks in region 6 (Figure Il - 5), with the

trial hypocenters.
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14.

16.

17

18.
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Resume of the residuals for the shocks in
region 1 (Figure Il - 5). The residuals are
in seconds and the depths in km below datum.
The five rows at the bottom give the total
number of residuals, the mean residual X,
the standard deviation ¢, the critical value

of the K-S test D:, and the actual maximum

deviation Dn'

Same as Table || 14 for the shocks in
region 2.

Same as Table || 14 for the shocks in

region 3.

Same as Table |} 14 for the shocks in

region 4.

Same as Table || 14 for the shocks in

region 6.
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TABLE NO. 11 - 1

No. of shocks according

to Richter (1955) Mag. AX (km) AP (km) Ah (km)
285 5.1 - =8 34
155 5.8 ~6.T -8.5 68

276 5.9 5,77 =114 ol
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TABLE 1] - 2

PROFILE OF CRUSTAL MODEL BETWEEN TINEMAHA AND PASADENA

CORRECTION

DISTANCE  SEDIMENTS VPI VP2 H
km sec km/sec km/sec km
0 0.50 6.01 7.88 29.6
25 0.46 6.00 7.87 32.2
50 0.41 6.00 7.85 35.2
75 0.40 6.00 7.85 34.8
100 0.39 5.99 7.86 33.2
125 0.41 6.01 7.86 31.3
150 0.43 6.06 7.85 29.5
175 0.4k 6.10 7.85 28.6
200 0.40 6.13 7.85 28.7
225 0.36 6.17 7.84 28.6
250 0.37 6.14 13 275
275 0.37 6.11 7.62 26.6
300 0.36 6.14 11T 211
325 0.35 6.20 7.96 27.9
350 0.38 6.23 8.06 274
373.6 0.45 6.2k 8.10 27.1
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_CO__NA A B
DE

ME

1 PAS =.39154 -,73109

2 MWC -+38972 -.73122
3 DLT -+38682 -.73336

4 RVR =438203 -,73780

5 BBC =e37500 =-«73873
6 PVR =439569 =«73315

.10 _WDY

7 SBC =+40967 —o71779
8 FTC -e39730 —-471986
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_CALIFORNTA-NEVADA REGIONs DIRECTION COSINES OF THE LOCAL

€O NA A 5
DE ME
33 PRS =42035 -,68946
34 REN =e38447 —.67095
25 FER =e42893 -,62958
36 ARC =e42486 —462810
37 SHS =e40729 ~464208
38 MIN =440027 -e65105
39 UKI =e42606 —+65068
40 EUR -433904 -469545
41 NEL =.34192 -,73851
42 BCN -«34064 —-+73609
51 CHP =¢39908 =.71961
52 HAY =338950 ~s71688
53 KNO =+38978 —.717073
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55 BDI =39017 -,72125
56 WOl =439201 -472149
57 WWI =439261 —.71816
58 SMI =+38913 -,71480
59 WDI =-.38959 -,71803
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STATION
Pasadena
Mt. Wilson
Dalton
Riverside
Big Bear
Sta. Barbara
China Lake
Haiwee
Tinemaha
Fresno
Palomar
Barrett
Berkeley

Mt. Hamilton

—94-

TABLE Il - 8

RESIDUALS DUE TO CRUSTAL VARIATIONS

Residual

FROM

REGION A

Sec.

.01
.03
%
.29
522
.02
.76
.59
.67
30
.29
.63
L7
.75

Standard Dev.
Sec.

«2:1

FROM
REGION C
Residual Standard Dev.

Sec. Sec.
-.07 s 11
b .26
- .02 =30
- .02 .36
.02 L2k
Y53 .18
- .15 .16
27 A7
1.76 Rd
- .h3 28
- .47 22



TABLE 11-9
______ SHOCKS _IN REGION 1e TINEMAHA
_ et . T £ LONG | LAT __ ( ORIGe TIME I -
DEG PEG H M SEC
SFP 28 1950 ~1184493 376322 11 03 2440
o JUN 16 1951 ___=118.660 37000 05 52 560
JUN 25 1951 ~1174950 354782 19 45 4140
- __JUN 26 1951 -1174950 354812 01 26 39«0
FEB 9 1952 ~1174720 354667 08 43 3040
) JAN 21 1955 -1184333 37,150 12 20 5940
FER 13 1955 ~1184733 364949 00 22 030
_________ JUN_10 1955 -1184682 37,500 18 26 370
NOV 8 1955 -1184800 374500 02 40 5240
B JUL 11 1956 =117.932 35766 19 22 0%.7
MAR 8 1957 ~117e500 354716 13 24 5780
- JAN 5 1959 =118,N50 36,150 12 26 N2.2
JAN 16 1959 ~117.982 364132 00 10 0640
R ___JAN 19 1959 ~1174966 364183 21 46 00.0
JUN 6 1959 ~1184631 376323 16 20 4640
el AUG __ 4 1959 __..=118.650 37350 07 40 318
AUG &4 1959 ~118.550 37350 07 36 5940
AUG 4 1959 ~1184650 374466 19 12 3542
NDCT 24 1959 ~118,000 35,731 15 25 1542
o JUN 5 1960 =118.600 374500 07 47 N8eN
SEP 8 1960 =118.700 37.500 18 41 3640
o JAN 28 1961 -1184050 35,767 08 12 4545 -
FEB 2 1961 =118.500 37.450 00 04 155
FFB 2 1961 ~1184500 374450 00 07 4340
OCT 19 1961 —1174760 354830 05 00 4346
- SFP 16 19672 -118,044 354755 05 36 1640
NOV & 1962 ~119,000 374500 11 87 160




______________ - . _hfﬂm______:'_35:'___________,,,u_...____m_______mw,____A____-_______._.
L _ _ U TABLE 1I1-10
_________ - __SHOCKS_ 1IN REGION 2. STA BARBARA ..
D ATE LONG LAT ORIGe TIME
DEG DEG H M SFC
FEB 26 1950 ~119.083 344617 00 06 2245
__________ —APR 15 1950 -1194617 35750 11 56 320
AUG 22 1950 =119.350 344150 22 47 5840
) DEC 14 1950 -119.167 354050 13 56 2340
OCT 21 1953 ~119,750 344316 16 02 38.0
_____ _ NOV_17 1954 -1194117 344500 23 03 51.0
MAY 29 1955 =119.083 34,017 16 43 34.8
- MAR 3 1956 -119,233 35,083 06 24 12.0
MAR 23 1956 ~119.050 35,083 21 23 2640
i JUN &4 1956 -119,133 25,167 08 33 19.0
) MAR 18 1957 ~1194167 344,100 18 56 2745 ) -
o - AUG 9 1956 -119.,800 344366 00 N8B 49.0 o
JAN 11 1958 -1194266 34,900 23 N8B 45,5
__________ -JUL 14 1958 —119.482 344349 05 25 55.0
NOV 16 1958 =119.831 34,500 09 34 0440
JUL 1 1959 -119.050 35200 23 49 2340
SEP 16 1962 ~119.689 34,488 18 12 35.5
___________ ___JAN 9 1963 .=119.103 344921 06 04 03.9




_________ =97 S -
L _ TABLE  T1=11
o _SHOCKS IN_REGION 3. PASADENA
DATE LONG LAT _ ORIG. TIME
DEG DEG H M SEC
JAN 11 1950 1184200 33,950 21 41 35.0
R SEP 22 1951 -117.33%3 34,113 08 22 39.0
FFR 17 1952 1174234 34,016 12 36 5840
AUG 23 1952 1184216 344500 10 09 07.0
0CT 26 1954 =117e466 334731 16 22 2640
- MAY 15 1955 -117.466 34,083 17 03 260
JAN 3 1956 -117.500 33,750 00 25 4940
o OCT & __ 1961 -117.751 334853 02 21 31«6
0CT 20 1961 1174991 334653 19 49 505
0CT 20 1961 -117.979 33,660 20 07 1445
OCT 20 1961 =117.979 33,664 21 42 40e7
- 0CT_20 1961 =118.012 33,671 22 35 34,2 -
NOV 20 1961 117.991 33,679 08 53 34,7
. APR 27 1962 -117.187 33,738 09 12 32,1




-99.
_______ - - _ R i i e
R — - ..__SHOCKS IN REGION 4. SAN BERNARDINO R
DATE LONG LAT ORI1G. TIME
DFG NEG H M SFC
JAN 13 1950 —116.482 34,017 05 07 19.2 B i
- - AUG_12_1950 -1164800 344316 02 17 167
AUG 28 1950 =116.782 344300 19 45 2640
B SFP 5 1950 -1164749 334650 19 19 5640
OCT 16 1951 =116.981 34,167 12 42 05.0
,,,,,,,,,,, _JAN 8 1952 -116.466 33,981 06 34 280
SEP 11 1953 =1154632 34,050 20 50 4640
___________ B APR 30 1954 -1164767 344033 00 36 2340 S
OCT 30 1954 —115.550 34,033 02 02 43.0
) JUL 2 1955 -1164633 344416 16 29 39.0
MAR 16 1956 ~116.750 344250 20 29 3440 -
S— MAR_16 1956 ..=116e750 344267 20 33 440
MAR 16 1956 ~1164750 344250 20 36 1440
S - MAR_16 1956 _ -1164750 344250 23 34 57.0
MAR 18 1956 =116¢750 344250 02 42 18.0
MAY 11 1956 ~1164750 344266 16 30 5040
SEP 1 1956 -115,982 33,767 05 57 53.0 a
R o SER 2 1956 _=116.,000 33,750 02 46 37.0
SEP 23 1956 —=1164550 334533 11 24 4240
,,,,,,, APR 2 1957 ~115,931 33,700 04 22 47.0
DFEC 4 1957 —1164350 34,123 02 51 43,0
DFC 12 1957 ~1164167 344267 08 00 0640
APR 17 1959 ~1164333 33,917 16 18 5740 -
_ B JUN 12 1959 -1164767 33,500 11 03 13.0
JUN 27 1959 ~1164850 34,017 16 22 11.0 -
DS AUG_& 1959 . =115.676 33,950 18 25 2240 .
AUG 26 1959 =1164550 34,050 05 32 5046
MAY 28 1961 =1164150 33,860 12 59 46.1
OCT 29 1962 ~116e862 344325 02 42 53.9
________ - NOV_30 1962 e =1160909 344335 23 51 058 =
DEC 1 1962 ~116.886 34,325 00 35 48,8
_____ ___DEC 2 1962 =1164875 344325 00 41 38.6
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TABLE II1-13

- DATE LONG LAT  ORIGe TIME

| DEG DEG H M SEC

- APR 25 1954 =121.682 364931 20 33 2840

_________ o JUL 29 1954 =1214200 37,416 08 51 3640
DEC 17 1954 «122.130 37718 07 08 5840

o MAR 2 1955 -120.931 364000 15 59 0le0

| MAY 7 1955 ~122.866 38,916 11 50 3940

I SEP 5 1955  =1214776 374456 02 01 1840 -
0CT 24 1955 =1224050 374966 04 10 4440

________ NOV_2 1955 =1204916 26,000 19 40 0640
FFB 18 1956 ~121.526 366508 23 88 27.7

o JUL 23 1956 -1214300 364300 08 03 4840
NOV 22 1656 =1214300 36300 16 43 55.1

______________ MAR_22 1957 _ =122,483 37668 19 44 2140
MAR 22 1957 «1224450 374650 23 14 3540

ﬁﬁﬁﬁﬁﬁﬁﬁﬁ . MAR_23 1957 _ e =1224484 37650 00 26 550 .
MAR 23 1957 ~122.516 37,700 08 13 4640
0CT_31 1957 =122.216 374350 19 47 0640
SEP 28 1957 —121.234 364600 21 04 3940

e MAY_ 311958 =122.000 374966 22 07 10e8
JUL 9 1958 ~1214667 376250 05 23 4040

p— SEP_ 211958 -121.118 364350 07 24 5540
OCT 31 1958 =121.782 37482 00 26 1440

i DEC 11 1958 -1224567 37,700 09 52 2740 o
JAN 26 1959 =121+567 376135 16 41 230

_____ i MAR_2_ 1959 _.=121.600 364986 23 27 17.0
MAR 3 1959 =121, 717 365972 ©OF 23 4be0

o MAR 3 1959 121,750 364941 18 32 1340 S
MAY 26 1959 “171.618 36718 15 GB Ole0
DEC 29 1959 =121.484 364900 02 37 53.0
JAN 20 1960 171434 364782 03 25 58«0

_______ - JAN 4 1961 =121.667 36867 00 20 170 I
APR 9 1961 —121.300 36.683 07 23 16.0

R - APR_28 1961 e =121.366 36,600 01 02 5260




REGION 1. TINEMAHA

PAS MWC RIV PLM SBC HAI TIN cLe 88C BAR WDY DLT I1SA FreC KGR PVR MAG  DEPTH

June 25, 51 0.20 -0.19 0.34 0.38 0.59 0.26 =-0.02 -0.25 -0.46 4.6 1.6
June 26, 51 -0.55 =0.50 0.20 0.37 0.71 -0.14 0,06 -0,03 0,03 4.4 13,5
Feb. 9, 52 -0.35 -0,12 -0,49 0,62 3.35 0.00 0,00 0.00 -0.53 b, 1 1.8
Jan 21, 55 0.10 0.15 0.65 0.89 -0.18 0.42 0.47 0.80 0.33 -0.49 k.o 0.0
Feb, 13, 55 2,41 0.77 0.91 2,30 -0.03 -0.16 2,92 -0,23 -0.61 1,39 1.34 L1 3.0
June 10, 55 1.44 0.11  -0,07 -0,21 1.16 0.30 2.00 4,0 3.0
Nov. 8, 55 -0.79 0.33 -0.10 0.35 2,74 0.01 -0.26 -0,18 -0.38 0,32 1,2k -0.55 b,2 Fad
July 11, 56 =-0,77 ~-1.02 -0,58 -0,63 ~-1,06 0.27 -0,31 0.01 1,25 ~0.07 ~0.74 0.11 0,49 -0,01 0.17 li,2 5.6
Mar, 8, 57 -0.52 ~-1.12 -0.91 -1,65 1.52 -0.05 0.14 1.14  -0.72 -0.65 ~1.17 0.49 0.46 0.07 L,0 3.7
Jan. 5, 59 0.24 -0.03 -0,24 0.36 2.48 0.03 -0.05 ~0.16 0.12 -0.03 1,00 -0.90 L,7 0.8
Jan, 16, 59 ~-0.04 -0.59 0.12 1.96 0,05 -0.14 -0,02 -0.04 -0.16 0.04 0.88 4.3 0.0
Jan. 19, 59 1.0l 1.4k 0.71 1.12 -0.14 0.05 0.12 1.17  -0.18 3.1 0.14 1.44 i1 5.3
June 6, 59 0.36 0,05 0.20 -0.04 -1.64 0.07 0.04 -0,27 2.53 L0 0.1
Aug. 4, 59 -0.52 =~1.09 ~0.06 0.95 0.47 -0.09 -0.82 0.26 =0.74 -0,38 0,49  -0.17 0.34 5,2 5.1
Aug. b4, 59 0.22 0.18 0.12 =0,19 1.51 -0.09 0,02 0.63 b, 2 5.6
Oct. 24, 59 0.65 0,26 0.59 2.13 0.23 0.14 0.89 0.27 0,30 =-0.,27 0.9k 2.07 4,2 6.6
June 5, 60 -0.01 0,01 0.04 0.04 -0.03 0.15 ~0,65 0,26 -0.37 -0.07 -0.93 0.41 5,1 0.6
Jan. 28, 61 -0.37 -0.46 =-0,29 0,52 0.29 -0.24 0,28 -0.40 0.14 -0.13 0.13 0.31 0.5] 5.3 3.0
Feb, 2, 61 -0,2) 1.09 1.46 -0.32 0.07 =0,30 0.27 -0.91 1,20 =-0.60 =1,61 5.0 3.0
Feb. 2, 61 -1.27 -0.84 1.86 -0,07 0.13 =-0.31 -0.28 -0.62 -0,32 -1,00 5,2 0.3
Oct. 19, 61 =-0,13 -0.03 -0.2k 0.45 0,09 -0.34 0.21 -0.20 -0,10 0.18 -0.53 0.58 1.18 5.2 3.0
Sept.16, 62 0,07 -0.03 ~-0.50 1.32 0,00 -0,06 0.30 0.32 -0.46 0.06 0.96 L9 4.7
Nov. 6, 62  =0.06 -0,6L 1.70 0.71 0.23 ~1.70 -0.63 ~0.16 =0.31 L5 0.79 b 5.1

N 20 15 21 18 17 18 22 18 6 16 19 7 17 15 15 10

x 0.03 =-0,163 -0.069 0.298 1.396 0,103 -0.053 -0,211 0,308 0.276 -0.142 0.367 -0.051 0,613 0,445 0,179

6 0,702 0,625 0,616 0,698 1,087 0.230 0,153 0,692 0.703 0.835 0.383 1,316 0.317 0.982 0.631 1,053

On 0.29 0.34 0.29 0.31 0.32 0.31 0,28 0.31 0.53 0.33 0.30 0.50  0.32 0.34 0.34 0.41

Dn 0.19 0.15 0.09 0,04 0,09 0.4 0.08 0.19 0.19 0,24 0.08 0.22 0.11 0.15  0.10  0.15

TABLE 11 - 14

=001~



REGION 2. SANTA BARBARA

PAS MWC RVR PLM SBC HAI TIN 15A cLe DLT FTC KRG BAR WDY BBC  MAG DEPTH

Feb. 26, 50 -0.09 -0.03 =-0.31 -0.39 =-0.09 0.36 0.15 -0,13 h,7 5.0
Apr. 15, 50  0.37 0,30 -0.50 -0,52 0.27 0.31 =0.31 0.36 4,6 0,1
Aug. 22, 50 0.04 0.44 1.05 1.28  -0,42 -0.35 1.39 0.01 4,2 9.8
Dec, 14, 50 -0,17 0.10 -0,63 -0.45 0.00 =~1.54 -2,21 -1,93 0,02 b.L 15,0
Oct. 21, 53 1.34 0.39 -0.81 1.91 -0.22 -0.39 Lo 1.4
Nov. 17, 54 0.10 0.26 -0.84 0.10 0,04 0.21 ~0.84 -1,66 =-0.11 L.L 0.5
May 29, 55 -0,17 0.23 -0.02 -0,92 0.02 0.07 -0.44  -0,03 0.29 -0.66 -0,5| 0.79 4.1 5.0
Mar. 3, 56 0.01 -0.05 0.02 0.67 -0,32 0.03 -0,68 0,38 0.08 -1.32 4.2 0.2
Mar. 23, 56 -0.19 -0.4 -0.29 0.04 -0.20 0.97 0.79 -0.23 0.45 0.29 0,06 -0.45 4,3 3.8
June 4, 56 0.08 -0.04 -0.38 0.23 =0.03 0.08 0.04 0.07 0.38 0.07 0.07 =-0.31 -0.08 -0.57 4,0 0.8
Aug. 9, 56 -0,28 0.47 0,15 0.38 0.04 0.24 -0.62 -1.35 0.4 0,00 0.02 0.08 0.06 4,0 5.0
Mar, 18, 57 -0.36 -0,03 0.03 ~0.17 -0.56 =0.61 -0.08 -0.2) 0.46 0.41 -0.12 -1.66 0.50 4.7 0.5
Jan, 11, 58 -0.39 -0.07 0.07 0.20 1.20 2.63 =0.30 0.51 =~0.07 =-0.27 =0.10 0.23 ~1.20 4,0 12,5
July 14, 58 -0.34 0,37 -0.05 -0.4  0.05 -0.98 0.19 -0.12 4.7 3.3
July 1, 59 0.05 =-0.02 -0.47 =~0.25 =-0.13 0.37 -0.59 -0.50 0.13 -0.54 0.01 L7 0.1
Sept.16, 62 0,03 -0.07 -1.L40 -0.46 -0.39 0.01 -0.06 -0.26 0.84 4.0 13.0
Jan. 9, 63 0.24 -p.21 0,44 1.34 1.79  2.21  -0.03 0.53 0.31 -0.05 0.10 -0.08 Lo 9,0
N 17 15 16 1l 4 B 11 9 12 9 13 8 1" 9 6

X 0.016 0.076 -0.199 0.0B4 -0.045 0.267 0.344 -0.340 -0.307 0.279 0.07%6 0.057 -0.216 -0.L76 -0.193

s 0.390 0.245 0.533 o0.642 0.223 0.840 1.307 0.330 0.743 0.645 0.198 0.234 0.328 0.810 0.699

D: 0.32 0.34 0.33 0.35 0.35 0.39 0.39 0.43 0.38 0.43 0.37 0.48 0.39 0.43 0.5k

Dn 0.24 0.19 0.13 0.13 0,12 0.18 0.17 0.13 0,13 0.28 0.11 0.10 0.11 0.15 0. 14

TABLE Il - 15
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REGION 3. PASADENA

PAS MWC RVR PLM SBC HAI TIN cLe BBC BAR Wby 15A FTC MAG  DEPTH

Jan 11, 50 =0.01 -0.05 -0.14 0.04 0.67 1.75 =-0,37 -0.92 4 5.0
Sept.22, 51 -0.39 0.11 0.00 -0.19 -0.24 -0,23 -2.06 =-0.01 4.3 5.0
Feb. 17, 52 =-0.36 0.51 0.00 -0.10 0.25 -0.32 -0.12 =-0.73 -0,02 L.5 15,0
Aug, 23, 52 -0.07 0.23 -0.12 1,36 0,52 0.28 0.35 0.15 1.14 1.45 5.0 15.0
Oct. 26, 54 0,04 0.20 =-0.39 0.47 -0.67 0.07 0.19 -0.48 -0.09 b 5.6
May 15, 55 =0.10 0.02 0.08 -0.08 -0.13 =-0.77 -0, 04 0.32 -0.85 -0.70 -0.36 4,0 5.0
Jan, 3, 56 0.05 0.02 -0.30 =-0,05 0.62 1.25 1.23 0,28 0.11 0.31 0.82 1.6 4.7 14.9
Oct. 4, 61 -0.23 =-0.13 =0.12 0.59 -0.21 0.38 0.43 -0.03 -0.27 =0.06 0.32 4.1 4,3
Oct, 20, 61 0.06 -0.16 0.45 -0.42 -0.05 -0.45 -0.17 0.27 -0,01 -0.52 -0.40 -0.01 4.3 4.6
Oct. 20, 61 -0.54 0.36 -0.12 =-0,5i 2.16 1.83 0.34 0.36 -0.68 -0.26 0.1 4,0 6.1
Oct. 20, 61 -0.12 0.47 0,07 0.07 0.66 2,90 0.42 0.75 0.18 -0.50 0.05 4,0 7.2
Oct. 20, 61 =-0,06 =-0,29 =-0.30 -0.L0 0.55 2.53 0.54 0.29 -0.20 0.20 0,05 4,1 5.6
Nov. 20, 61 =-0,21 =-0,22 -0,38 -0,38 -0.78 -0,25 =0.31 0.27 =~0.18 =0.37 4.0 4,3
Apr. 27, 62 0.30 -0.37 0,02 -0.19 1.63 1.84 1,17 1.42 0.18 0.41 1.69 4.1 14,5

N 14 4 14 12 12 12 12 11 5 12 10 8 8

X -0.117 0,050 -0.089 -0.080 0.365 0.665 0.564 -0.065 LW 0,220 -0.014 -0.162 0.414

& 0.209 0,267 0.214 0.328 0.661 1.140 0,974 0.877 0.121 0.410 0.627 0.449 0,695

d: 0.35 0.35 0.35 0.38 0.38 0.38 0.38 Lo 0.56 0.38 0.41 0,48 0.48

Dn 0.13 0.12 0.14 0.16 0.16 0.20 0.22 0.16 0.25 0.20 0.15 0,21 0.30

TABLE 11 - 16
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Jan.
Aug.
Aug.
Sept.
Oct,
Jan,
Sept.
Apr.
Oct.
July
Mar.
Mar.
Mar,
Mar.
Mar.
May 1
Sept.
Sept.
Sept.
Apr.
Dec,
Dec.
Apr.
June
June
Aug.
Aug.

13, 50
12, 50
28, 50
5, 50
16, 51
8, 52
. 53
20, 54
31, 54
2, 55
16, 56
16, 56
16, 56
16, 56
18, 56
1, 56
1, 56
2, 56
23, 56
2, 57
4, 57
12, 57
17, 59
12, 59
27y 59
L, 59
26, 59

May 28, 61

Oct.
Nov.
Dec.
Dec.
N
X
6

D
Dp

29, 62
30, 62
1, 62
2, 62

PAS
=0.10
-0.30

0.10

0.13

0.39

0.27

1.62
-0.43

-0.09
=0.31
-0.09
-0.01
~0.06
-0.07
-0.35
0.78
2.39
=1.13
1.30
-0.47
0.84
0.92
-0.86
-0.04
0.27
=0.23
-1.10
-0.13
0.17
-0.01
=0,12
31

0.106
0.724

0.24
0.19

MWC
=0.07
-0.08
0.41
0.48
0.53
0.78
-0.82
0.16

-0.07
0.36
-0.0!
0.07
-0.00
-0.33
-0.07
0.16
1.26

0.12
1.36
0.77
0.85
.32
0.44
0.27

24

0.329
0.519

0.27
0.13

RVR
0.18
-0.06
0.33
-0.29
0.42
-0.01
-0.62
0.09
0.12
-0.13
-0.06
0.29
0.25
-0.2h
0.36
0.11
-0.30
0.34
-0.51
-0.16
-0.13
-0,02

0.00
~0.01
-0.29
-0.06

-0.29

-0.10
0.03
0.11
30

-0.022
0.250

0.2k
0.07

PLM
0,07

0,08
=0.17
0.21
-0.07

0.21
=0.47
-0.07

0.05
~0,28

SBC
2.72
-0.08
1583
0.75
1.24

0.45
1.89
0.7k
0.82
-0.51
-0.L6

-1.39

=1.79
1.63

-0.41

HAL
-2.57
-0.19
-0.57

0.60

1.68
0.53
1.55
-0.27

1.62
=~1.35

0.67

REGION &,

TIN
0.00

-0,68
-0,87

0,06
=1.31
-0.43

0.46

1.39
=1.12
-1.38

2,49
0.75
1.28

0.73
-0.83
1.53

=0.52
-1.61
-1.09

CLC
0.10

0.36
0.66

-0.66

-1.72

0.84
-0.27
-1.12
-0.80

1.b47

0.46

-2.00
=15}

0.44
-0.40
-0.06

16

-0.263
0.953

0.33
0.09

TABLE 11 - 17

SAN BERNARDINO

DLT

0.47
-0.38
-0.76

0.70

0.83

0.12
-0.14
0.01
0.17
0.00
0.17
0.12
0.02

-1.18

0.50
-0.50
-0.14

-0.11
-0.33

19

-0.023
0.473

0.30
0.13

BBC

-0.35

16

-0, 142
0.263

0.33
0.11

BA

=0.
=0,

0
]
0
0
0
0

=0,
=0.
=0,
0.
-0.
=-0.
-1,
0.
-0,
=0,
-0,
=0.
=0,
=0.
0.
0.
A
1.
26

0.025
0.524

0.
0.

R

02
24

.31
.02
w12
.27
.35
.10

30
24
36
06
36
30
10
82
68
33
14
02
61
10
62
L
32
06

26
12

wDY

-1.27
-0.33
-0.45
-0,97

0.17
-0,28

0.20

=0.65
0.99

0.22

-0,54
-0.32
-1.52
-2.26
-2.23
-0.41
-0.74
-0.63

18

-0.612
0.803

0.31
0.12

KGR

=0,29
1.88
=0.24

0.11
1.09

-1.76
-1.25
=0.70
-0.5h
=0.16

10

-0.186
1.000

0.41
0.19

FTC

=0.
-0,

=0,
-0,
=2,
=1,

=0,

=0.
-0.

52
09

.02

80
69
02
17

36

24
Lg

~0.h7

0.
14

-0. 144
1,078

0,
0.

51

35
20

15A

=0,

0.

-0.
=0,

=1.
=1,
-0.
=0.
=B

13

=0.452
0.792

0
0.

70

34
83

62
83

88
55

.37

1
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Apr.
July
Dec.

25, 5k
29, 54
17, 54

May 7, 55

Sept
Oct.
Nov.
Feb.
July
Nov.
Mar.
Mar.
Mar.
Mar,

Sept,

Oct.

+5, 55
2h, 55
2, 55
18, 56
23, 56
22, 56
22, 57
22, 57
23, 57
23, 57
28, 57
3, 57

May 31, 58

July

Sept.

Oct.
Dec.
Jan.
Mar.
Mar.

Jan.
Jan.
Apr.
Apr.

=

o x|

l=)
;’: R

9, 58
21, 58
31, 58
11, 58
29, 59
2, 59
3. 89

20, 60
L, 61
9: 6‘
28, 61

30

-0.050
0.292

0.24
0.11

MHC

0.01
0.14
0.0k
-0.03
0.02
-0.13
0.10
0.01
-0.10
-0.02
-0.09
-0.17
-0.16
-0.04
0.02
-0.08
0.31
-0.04
0.08
0.28
-0.25
-0.01
0.09
0.13
0.00
0.01
-0.08
-0.42
-0.02
0.02
0.32

31

-0.002
0.149

0.24
0.15

PAC

-1.96
-0.38
.02
.16
.04
A7
.28
11
08
.28
.05
.03
.12
.06
.26
02

[
oo

o000 O00OO0O0OO00
. W n

.02
.35
22
21
02
.29
.10
.15
.07
11
.30
L
29
-0.15

00000000000
P

1
o

30

-0.029
0.402

0.24
0.18

SFB

0.073
0.482

0.27
0.13

- 104-

MIN

-0.30

-0.26
-0.63
0.00
2,20
2.06
1.71
1.80
-1.07
-0.76
-0.39
-0.55

-0.08
1.06

-1.36
0.84
1.07
1.18

2.96
1.26
-0.81
2.40
0.39
0.27

24

0.541
1.193

0.27
0.13

REGION 6.
FRE REN SHS
0.08 0.62 -0.06
0.76 2.60
-1.15 -2.19
0.19 1.77 0.25
-0.99 0.13  -1.47
0.02 2,00 0,38
0.01 1.23 0.51
0.29 1.94
-1.82
-0.26 1.33
-0.16 0.64 -2.35
-0.45 1.97 -2.05
1.31 3.21  -0.01
0.90 2.64  2.21
0.02 1.68 1.50
0.52 2.50
-0.11 1.83 0.07
-1.10 3.20 -0,01
0.01
-1.02 2.55
-0.23 =-0.08 -2,17
-2.51 2.19
-0.78 1.81
-0.24 2.60
-0.20
0.27
-0.01
0.2h 0.42 -0.07
1.15
-0.06 0.11  1.k40
-0,15 &
30 19 22
-0.208 1.53%9 0.4
0.782 1.030 1.611
0.24  0.30 0.28
0.17 0. 14 0.12

TABLE 11 - 18
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APPENDIX 1-1

to transform - iﬁ} to spherical
m

coordinates. We denote by /Z\ the first term in the
oo

sum (1-2), so A ,,Z G 7‘; (L’R) P, (cos8)

It is necessary

We have:

R 206

_g; (Si'nﬁa% cos 8 ?)C ﬁ()(7R)P {E;asﬁ) (|._‘|a)

This expression can be changed by the introduction of

the known relations (Morse and Feshbach, 1953):

(2n+) $ind Py (cos8) = 2 [ R, (zot8) = B, (css8)] (1-1b)

(an,)we%&@’i) 9[naﬂfwaﬂ(m;)}?,_,(cam)] [1=1g]

(2#/)4‘" 4 0:/?)— 2 _,(7&’) /n,n)f,,,,,@e) (1-1d)

/2,4,;/)_‘%1%‘19) - ;{:f k) + 4, (5R) (1-1e)

They remain true even in the case n = o, if we
&) ()
remember that 7?.,&3):,5[5) , and ’f—; (z)=e;f (z)

After replacing in (l-la) and making the convenient

simp]ifications we arrive to:

(1) 5
24 Z S [ﬁ:, (EsR) R, ceoss)+ f,,_,&%ﬁ)ﬁr (com)] (
3A(z)

°r n=p ?’h‘
and a similar result is obtained for 5
r

f)
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Noticing that for n = o only the first term in the

sum contributes, and after rearranging terms, one finally

has:
= ) /2) "
—?f} =£[Gﬂnfgaﬁ)+él,,’éﬂ (gpﬁ)]%—@ (1-1g)
where
Covr s
]—7’1 Z—K/"[Qmﬂs T 2n-) 7
(1-1h)
s DnH Dn-l
4, = — % [2n+3 e Ra ]
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APPENDIX | - 2
To prove the uniform convergence of the development

(1-45) in bounded regions of the » -plane, we note that:

I T
_uzZ lereol f—-vz ke, Red &
e Tler)e 1 i i =
R _Ffef ol M_Ffe /b (1-2a)
where
Cos ¥ = codol L4968 L Fim ot imb Laogh (1-2b)
=
and et = —— (1-2¢)
The development
Lk Rowd &

- Z [”(2’7*d;;7 (z(ﬁ)a(myj (1-2d)

is uniformly convergent in the finite »-plane, because it

can be derived from the substitution of the Neumann series

3 (n+2+20) (01 d+1)
for (32)M2 = ; z nl j?-n‘z"vbf/ﬁ &

in the development of ez . Both developments are uniformly
and absolutely convergent in bounded regions; therefore,

it is permissible to reorder the terms, obtaining (1-2d).
Since (1-2d) is uniformly convergent, term by term,
integration is permitted inside the region of convergence.

It is easy to show that:

— ‘Ffarogr)d¢=afma)a(;f) (1-2¢)
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and combining (1-2a) and (1-2d) with this result, we
conclude that equation (1-45) is uniformly convergent

in the finite ¥ -plane.
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APPENDIX -3
To find the response of the cavity to the field
reflected from the free surface, it is necessary to

evaluate the integrals:

F(u)

Q,ppy (@) = = (2ns1) i [:;'_/ B, (VuZi) R, ﬂ./u_),_—[u) d (1-3a)

47&7:("() —T-@ﬁﬂ)g fa olec 3 ﬁ/rjp(/— 2423 ““W“*/F-a‘)( | -3b)

F(}

o) = #2220 [ a6/ B (/) 2es & P 30)

() 3

2ntl ud’u ) 3 F('u) ‘Ig'a
L ) =~ 222 [ £ RSP () ES €™ (1-30)

The integrals (1-3c) and (I1-3d) can be expressed in
a simpler way, to avoid the associated Legendre functions

of order 1. This is done with the help of the relation-

ship:
) xS 77  fat L Jat
« P G152 =222 [, (-2, (452)]  (1-3¢)
Then we find that e, x)= 4:/3"(&?,, s = c:, ,,-,) 3

x
and Emn &= dm -l d:, n+/ s where
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- 3,
VED)p, (/) 21 31

o @)= fu_cl«. F,

63 e 2ayu®E3
Ay ) = fm (/) B, (f52) £2 &° (1-39)

The quantities (1-3a), (1-3b), (1-3f), (1-3g), are
generalized Legendre transforms of the four non-analytic
reflection coefficients for cylindrical compressional or
shear waves that are reflecied at the plane surface as
compressional or shear waves.

Since x=kk is not going to be a large number,
the exponentials in the integrands are going to be smooth,
non oscillating functions of «, in the range of integration.
This condition is equivalent to say that we will consider
large wavelength only.

The integrals which we consider, have the Rayleigh
pole as the only singularity. The values «=/ and «=3
in (1-3a) and (1-3g) are removable singularities, which
can be eliminated by j%f;; = ol f& , and ;gfi ofu¥3 , and
the use of Stieltjes' method of integration.

The contribution near the Rayleigh pole was evaluated
by expansion of the integrands in Laurent series around

te= and direct integration, using Cauchy's principal



-111-
value. The integration was symmetric with respect to
the pole to avoid numerical errors. |f G&) stands for

any of the integrands:

G’(a_) = AMR 1B 'r'-C(dd—df)-/-é—fﬂ[‘4‘“@)21‘0[(4{—64,9)3:]

“_
then

Uet&E

Gla)otu = —Fi A +2Bg +4 Ded+Ore®)
Up-&E 7

To the right of the Rayleigh pole, the integrands
are either real or pure imaginary according to the order
of the Legendre polynomials. They have a maximum near
wu=nrmtz , for small values of « . The main contri-
bution comes from this region.

The integrals should be computed for arbitrary values
of e« . We use a modification of the saddle point method,
that was formulated by Kane (unpublished) to deal with
integrals of this kind when the value of the parameter
is small. The integrands consists of two factors; an
exponential and an algebraic term. The interval of
integration is divided into two parts by a point at the
right of all the singularities of the algebraic term.

We chose the dividing point to be «=2 for the first
three integrals and «=23 for c(;; . In the first portion

of the interval the exponential term is developed in
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Taylor series around the origin; and in the second
portion the exponential factor is retained for
convergence's sake, but the algebraic term is expanded

in Laurent series. For the first portion we have:

2 ~ 20 K o
[ ot ) By 7 ) By £ D) IR = 55y e a (1-3h)

f“.Boz“P(“/“—)P (dﬂ-—— Zu—jz‘(a()[ 1";/1__) 252””?: (|—3|)

Fre )

f B B, (i) 23 5 LT3 5 ST mea” (1-31)

Flu) A7

23
[“K/E) (c/52) B, (cyS2) C Z”“’r_) ZS#W % (1-3K)

The integrals S/mp. » etc. are computed by means

of the trapezoidad rule. The number of divisions was
increased with the order of the Legendre polynomials, to
account for the oscillations. The programing is discussed
in Appendix |1-5.

For the second portion of the interval, after the
algebraic part is developed in Laurent series, term by

term integration is possible, and the integrals can be
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evaluated exactly in terms of the incomplete exponential

integral £, (x) = [e;j“- We put
P
~ olee =~ R ,/uz-
Q_,Zn,, = o[’/%;— & é}/u‘~/)%(c'raz—/§-€ il ’ , and

similarly for the other integrals. The series expansion

we arrive to, is as follows:

~ g _ men i 2 -n-m=-3 ey o "

g = § /‘z)—;m"mﬁ (2x) Ez/’_i”{:) (1=31)

g"z _ [ Zﬁl" P2 2h—n-m- 4 [_— C 7z q) (!—Bm)
mn = (‘/3—)7)7 []_;a bmf" % 2/1--'17-?7-3 .

~Z - 2 = 2k —n-m-2 /3 | - n)

C‘WT) - [l/s_)w ﬁZ:; ’Q‘jnmﬂ X Egﬂ—m(j:_? 0() ( 3

a0 i \T*n 2 e
dr:n x(“/}'_-‘) /é R4””’ﬁ- 0(27l 3 £ (24{-/_5/3275‘) (1-30)

z/-rm—n-z

The quantities P/mﬂﬁ , and the others, are real
and can be computed directly. They are put in magnetic

tape together with the Ss to be used for the computations.
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APPENDIX | -4
The system of equations (1-50), (1-51) can be solved
after the evaluation of five 2 x 2 determinants. |[|f we
place ,4=L,#W@a) ,.B—n&woLzhmfﬁg) H C:Lzﬁf%ag)
D:Luﬁfq?@; a=ReA ; #=ReB ete.

ihe determinants are:

‘A B a B B
4, = c Dl Ain=le D 5 A= D ;
(1-b4a)
A a A
A3”= € e 5 A4n= ¢ d

All of this determinants will be modified to avoid
numerical errors due to the loss of the first order terms,
that cancel identically. The determinants ﬁ&n and 154 are
formally simpler, and after some straightforward

computation we have

: Lnint)-2] 2K;
Asn = L[4 a;;) ][nn (’(.xa)a’q } (xxd) 01 [Kid)dq nn(Kaa)]

(1-4b)
& [4rnpne)-2]  2ef
k0% a3 T a

=

[
L)
3

W

net)— 2K8 . "
oL - 2B [ ()2 -4 nis)]-

— _ nln#)c [4fﬂ(hﬂ) 27 255] (1-4%c)

/-’a’-
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£

where we have use the properties of the Wronskian to
simplify the expressions.
The evaluation of é%is more involved. The operators
Ly » Ly ete. Thnclude terms 1ike _ﬁig?ﬂ.and fgﬂngm)

We transform these terms by the relationships:

0) { ‘) I"'}'l‘d
(2n+1) ”e“—‘:‘;i) = ﬂﬂ_), (k.2) + v‘if.,,, (ksa) ( )

and

(2 m‘dddza— {:)(rdéy: n fa,(i,)(#da)—(x-ﬂ) {::, (k.a) (1-4e)

After the transformation is done, the determinant

can be evaluated directly and yields:

A Ak
n =
(2n-J)fanty) (2ns3)

] )
[ #7000 0r42) B, Ce.0)Rh,,,, lega) + 4 () (nt1)-(rt2)

AL ) 4, (is58) - 2 (n-1)Cre) (5 n18) ha enn) R 05a0)
(1-41)
(] /] ' &
— 2 9(nt2) (ans) Ao Ceg0) Ry (50) # 29 () Fomea ecthn b1

— 2(m+))(nr2) ;{fiz iy, 4?{7’34} +5(2n+) fn@t‘l&éy {,,W(y,a)]

The determinant A, can be obtained by the same
) ; "
formula, replacing {hﬁQa) by J”aqq) 3 Ayp replacing
) .
Then
f4‘n :""Z_n{— [An: Qn '{'ﬂen‘ﬁ)] (]_l{-g)
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M == [4ma, +4,, 6] (1-%h)

For small values of = , it is known that

n) (2n-1)1! . zn .
Aotz b and é,rﬁ{a)mm . Since a, and &,
depend only upon g, 4 , we can see that for small values

of Lia >, Aw and [, are of the order O[(xdd)”"]

2

because A, ~ O[{z,(a)_(’”“)] and A, Dy, Dy v A~
~QOlteqa)™®] . But for p=; we have A, ~By A, ~Ay, ~

~ O Lle«a)3] , Ay~ Olka)é] . Then A, and

I"  are of the order O [(xa)’]
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APPENDIX [-5

The problem of the numerical analysis of the system
(1-79), (1-80), together with the evaluation of the
integrals a2,,, , 4,, » etc. that are used in it, presents
several delicate points that are discussed together with
the programing for the IBM 7090 digital computer at
the California Institute of Technology Computing Center.

In the first place, it was shown in Appendix |-3
how to decompose each of the integrals a,, , etc., into
two series: a power series in o , with complex
coefficients S/mne » etc., and a Laurent series in « ,
but with coefficients that are products of real constants
RS wmnk , etc., and incomplete exponential integrals.
These developments are valid for any positive « ,
because the integrands do not cross singularities for
o<x<eco . The only restriction we thus have is given by
the rate of convergence. Since it is impossible to put
all the coefficients of the series inside the memory of
the computer, we are bound to count the developments
at certain points that are convenient for the range of
values of o« we are interested in.. We decided to take
15 terms for the power series, and 25 for the Laurent
series. With this limitation, we find empirically that

we have to restrict o« to the interval (0.25, 1.0).
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The computation of the coefficients S/mne , etc.,
is done by the trapezoidal rule and using Stieltjes!
method of integration to avoid the singularities at the
branch points. The integration was done numerically
because of the complexity of the integrands. The program
entitled "Program to compyte the integrals of the Rayleigh
functions" performs these integrations in two parts. The
first is the evaluation of the part due to Cauchy's
principal value, and it is seen in the flow chart under
the heading "Residue at the Rayleigh pole". The second
is the use of the trapezoidal rule for the integration
in the remaining part of the interval. After the compu-
tation is finished, the values of the 4 three-dimensional

complex matrices S/ etc., are written in magnetic

mnk 2
tape. The real matrices R/mne 5 €tc., are read from
cards into the body of the computer and then written into
the same tape that is then ready to be used in the main
program.

The numerical integration described above was done
with different interval sizes, to decrease the errors.
The interval (0,2) in the real w-axis, was divided into
8 parts each 6ne subdivided in egual segments. The

number of divisions was increased near the branch points

W=/ and «=Y3 , to account for the steepness of the



1 P
functions. The accuracy of the integration was verified
by increasing by a factor of 2 the number of intervals
in the computation. The test cases gave a precision
of 4 to 6 significant figures, depending upon the order
of the Legendre polynomials.

The main program consist of three different
computational blocks. (a} Computation of the reflection
coefficients d:than . (b) Calculation of the integrals
[ [ etc., the reflection coefficients of spherical
waves at a plane surface, from the value «=£4 , and
the matrices Slowme » Klmne , etc., and (c) Formation
of the linear equations (1-79), (1-80), and inversion of

the system by Jordan's method to obtain the coefficients

X'n and Yfﬂ
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Appendix No. 1{ = 1

INSTRUCTIONS FOR USING THE HYPOCENTER LOCATION
PROGRAM FOR LOCAL SHOCKS AND TELESEI[SMS

The Program is contained in the deck labeled HYPO a,
for FORTRAN version ||, and HYPO b, for FORTRAN version V.

Several options are possible. We can process a tele-
seism or a local shock. [If it is a teleseism, the Program
accepts only P phases, or P and S phases. If it is a local
shock we can have first arrivals only, more than one P phase,
or P and S phases together. The depth can be held fixed.
Also, we can skip part of the printing in intermediate
iterations. |f a new station is not in the catalog, we can
enter it as an "extra station". For each shock these should
be introduced after the other stations. Each shock begins
with an initial card containing general information. Then
come the others with the station codes and the times of the
phases. At the end of all the shocks there must be a card
with a zero in columns 50 and 51, to end the computation.

The first six cards after the * DATA card are
common to all the shocks. The content of these cards is
shown in Figure 1. They can be changed if the user wants
to alter some of the input formats, or some parameters of

the computation. | any such change is made, it must be

reported here.



Card Col.
No.
1
1-12
13-24
2
1-6
T-9
10-15
16-18
3
1-30
31-60
i
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EXPLANATION OF DATA CARDS
(See Figures 1 and 2)

Explanation

Contains the headings of the output sheets
LOCAL SHOCK (2A6)

TELESEISM (2A6)

Contains the names of the phases that are used
for the solution.

PIP2PN (3A2) the P phases for local shocks.

OFF (A3) if some phase is rejected by the
Program.

S1S2SN (3A2) S phases for local shocks.

PS (2A1) P and S phases for teleseisms.
Contains the two formats for the read in of

the station codes and travel times of local
shocks.

(2(13,F 2,2, 5FS.0F10.0)); read with the format
(5A6) for local shocks with more than one P
phase.

(13, F2. 2, 12F5.0); read with the format (5A6)
for local shocks where P and S phases are
available.

Contains two formats for the read in of station
data, codes and travel times of teleseisms, and
local shocks where only the first arrival is

avai lable.



Card
No.

Col.

1-30

31-60

=

5-6

710D
11-14
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Explanation

(4(13,F2.2,2F5.0,F3.1,F2.0)); read with the
format (5A6) for teleseisms and local shocks
where only the first arrival is available.
(2(13,F2.2,4F5.0,3F5.0)); read with format
(5A6) for teleseisms where P and S readings
exists.

(A6, 14,F4.1,13,F4.1,F3.1,F2.2,6(F2.0,F%.0),
2F5.0,F5.0) read with format (9A6); for "extra
stations", that is, stations that are not in
the catalog.

Contains the initial tolerance limit for the
size of the residuals, the maximum permissible
number of iterations, the final tolerance limit,
and the factor by which the tolerance limit is
decreased. The tolerance limit is multiplied
by that factor after each iteration and is
kept at least equal to the final tolerance
limit.

10.0 (F4.1) tolerance limit (initial).

03 (12) maximum number of iterations

2.0 (F4.1) tolerance limit.

F4.1 Factor.

First card of the first shock processed.

Contains general information concerning the

shock.



Card
No.

Col.

29=-5

36-41

Bh2_Lh
15-49
50-51
52-53

54-55

56-57
58
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Explanation

(4A5) contains the date of the shock and some
other identification, such as the region, etc.
(F8.0) Guess in longitude (in degrees), GLAM,
it is positive to the east of Greenwich and
negative to the west.

(F7.0) Guess in latitude (in degrees), GPHI,
positive to the north of the equator, negative
to the south.

(F6.0) Guess in depth (in km), GDEPTH, datum
is sea level for teleseisms, and +1 km for
local shocks.

(F3.0) Guess origin time (minutes), GORIG,
(F5.0) Guess origin time (seconds), GORI|GS.
(12) The number of stations, N.

(12) The number of these stations that are in

the catalog, NEX. If all of the stations are

in the catalog, this number is equal to the
previous one.

(12) Reference time (hours), 101. The travel
times and origin times are counted with this
as zero.

(12) Reference time (minutes), 102.

(11) Test for typing intermediate iterations,

JIAPE
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Card Col. Explanation
No.

59 (11) Test for keeping a constant depth. JFIX.
|f JFIX=0: don't fix the depth of the shock.
|f JFI1X=1: keep the depth fixed at the value
of the guess.

60 (11) Test for teleseisms, NTELE. |f NTELE=0:
the shock is local. |f NTELE=1, the shock is

a teleseism.

61 (11) Test for the phases available. NPHASE.
| f NPHASE | LOCAL TELESE I SM
0 only one P phase | one P phase
] more than one P P and S phases
phase
2 P and S phases | ——=—-—-eeeeee--

8 and following
Contain codes and travel times of the shock

according to thefformats in cards 3, 4, or 5.
At the end of all the shocks, there must be a card
simi lar to card No. 7, with a zero in the place of the
number of stations (two zeros in columns 50 and 51).
The reference time is the zero to which all the times
are referred to. It should be an exact minute.
Next we explain the formats for the different options.
Cols. Format Explanation
TELESEISMS

a) First Arrival Only,



Co ]

1=3

3-5

6-10
11-15
16-18
19-20

21-40
41-60
61-80

1-3
4-5
6-10
11-15
16-20
21-25
26-30
3135
36-40
41-80

Format

(13)

(F2.2)
(F5.0)
(F5.0)
(F3.1)
(F2.0)

(13)

(F2.2)
(F5.0)
(F5.0)
(F5.0)
(F5.0)
{F5.0)
(F5.0)
(F5.0)
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Explanation

It is possible to put four stations per card.
Code No. of the station in the catalog, INDEX.
Weight assigned to each station, W. O=<sW <]
Arrival time (minutes), PM.

Arrival time (seconds), PS.

pP-P time (in seconds), PPMP.

Crustal thickness at the station (in km), CD.
Usually 33 km.

Same thing for next station.

b) If P and S Phases Are Present.

Two stations per card are possible.
Station code.

Weight.

P time (minutes).

P time (seconds).

S time (minutes), SM.

S time (seconds), SS.

pP-P time (seconds).

sS-S time (seconds), SSMS.

Crustal thickness (km). Usually 33 km.
Same format for the next station.

LOCAL SHOCKS

c) If Only the First Arrival is Known.



Col.

1-3
4-5
6-10

11=15

16-20

21-25

26-30

31-40

41-80

-3
4-5
6-10

11-15

16-20

21-25

26-30

Format

d)

(13)
(E2.2)
(F5.0)
(F5.0)
(F5.0)
(F5.0)
(F5.0)
(F10.0)

(13)

(F2.2)
(F5.0)
(F5.0)
(F5.0)
(F5.0)
(F5.0)
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Explanation

The listing is the same as in case a) for

teleseisms.

The places for PPMP and CD are left in blank.

d) |If More Than One P Phase Is Available.

Up to three P phases can be used. Two
stations can be put on one card.
Station code.
Weight.
First P time (minutes), PM.
First P time (seconds), PS.
Second P time (minutes), PM2.
Second P time (seconds), PS2.
Third P time (minutes), PM3.
Third P time (seconds), PS3.
Same format for next station.

e) |If P and S phases are present.

Three P and three S phases can be used.

one station per card is possible.
Station code.

Weight.

First P time (minutes), PM.

First P time (seconds), PS.
Second P time (minutes), PM2.
Second P time (seconds), PS2.

Third P time (minutes), PM3.

Only



Col.

31=35
36-40
41-45
46-50
51-55
56-60
61-65

1-6
7=10
11-14

15-17
18-21

22-24
25-26
27-28
29-32

Format
(F5.0)
(F5.0)
(F5.0)
(F5.0)
(F5.0)
(F5.0)
(F5.0)

(A6)
(1%)
(F4.1)

(13)
{F3.1]

(F3.1)
(F2.2)
(F2.0)
(F&.0)
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Explanation
Third P time (seconds), PS3.
First S time (minutes), SM.
First S time (seconds), SS.
Second S time (minutes), SM2.
Second S time (seconds), SS2.
Third S time (minutes), SM3.
Third S time (seconds), SS3.
f) Extra Stations.
If a station is not in the catalog, it can
be entered as an "extra station". The cards
for the extra stations go after all the

cards of stations that are in the catalog,

for a given shock. 1t is possible to enter

one station per card.

Name of the station.

Longitude of the station (degrees).
Longitude of the station (minutes), without
the sign.

Latitude of the station (degrees).

Latitude of the station (minutes), without
the sign.

Elevation of the station (km), above datum.
Weight. O0=<W<I].

First P time (minutes, PM.

First P time (seconds), PS.
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Col. Format Explanation

33-34 (F2.0) First S time (minutes), SM.
35-38 (F4.0) First S time (seconds), SS.
39-40 (F2.0) Second P time (minutes), PM2.
Li1-44% (FL4.0) Second P time (seconds), PS2.
45-46 (F2.0) Second S time (minutes), SM2.
47-50 (F4.0)} Second S time (seconds), SS2.
51-52 (F2.0) Third P time (minutes), PM3.
53-56 (F4.0) Third P time (seconds), PS3.
57-58 (F2.0) Third S time (minutes), SM3.
59-62 (F4.0) Third S time (seconds), SS3.
63-67 (F5.0) pP-P time (seconds), PPMP.
68-72 (F5.0) sS-S time (éeconds), SSMS.
73-77 (F5.0) Crustal thickness (km), CD.

Some examples of the way to punch the data cards are
shown in Figure 2. An example of the input for a Teleseism
is shown in Figure 3. The explanation of the quantities is
given in the text. The geographic latitude and longitude
are denoted by PHI and LAMBDA respectively. The horizontal
distance is called DELTA. The errors are the standard
deviations of the solutions of the normal equations and
they do not involve the data which is rejected by the

Program.
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APPENDIX 11-2
SUBROUTINES FOR HYPOCENTER LO-
CATION PROGRAM

Is SUBROUT INE PPP(DEPTH,Z,S,K)

Computes the depth of a teleseism from pP-P and sS-S
readings. The Jeffreys-Bullen tables are used, and the

depths are obtained by linear interpolation.

Input: In COMMON:
DELTA :distance epicenter-station (Km.).
K sfor pP=-P K=0; for 53-8 K=]:

PPTIME(1,J):pP-P time tables.
SSTIME(1,J):sS5-S time tables.
PPDEL(I) :distance intervals in pP-P tables.(degree)
SSDEL(I) :distance intervals in sS-S tables.(degree)

In the arguments of the subroutine:

S :pP-P or sS-S times (sec).
Output:

Z snumber of pP-P or sS-S readings.

DEPTH :calculated average depth (Km).

2 SUBROUT INE PTIME(DEPTH,D1,DE,PT,DD,DH,ELEV,K)

Computes the times of P and S pnases for teleseisms
from the Jeffreys-Bullen tables.The times are corrected for
ellipticity.

Input: In COMMON:

DELTA :distance epicenter-station (Km).



K

TIMEP(1,J)
TIMES( !
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:for P phases K=0, for S phases K=1.
:Jeffreys-Bullen P tables.

:Jeffreys-Bullen S tables.

In the arguments of the subroutine:

ELEV

DEPTH

D1

D2

Qutput:
DD

DH

PT

:elevation of the station (Km).
:depth of the focus (Km).

:elevation of the mean sphere at the

station (Km).

:elevation of the mean sphere at the

epicenter (Km).

:5t/0A,variation of the travel time with

distance (sec/Km).

:5t/Bh,variation of the travel time with

the depth of the focus (sec/Km).

:travel time of the P or S phase (sec).

e SUBROUTINE VECTOR(AM,PH!I,A,B,C,D)

| nput:
AM
PHI
Qutput:
A,B,C

: longitude (radians).

:latitude (radians).

:geocentiric direction cosines.

televation of the mean sphere (Km).

L, SUBROUTINE DISTAN(AT1,B1,C1,A2,B2,C2,DELTA,DDDLAM,
1)

DDDPH
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Computes the distance epicenter-station and the par-
tial derivatives with respect to the longitude and latitude

of the epicenter.

fnput:
&l:Bl010, :direction cosines of the station.
A2,B2;C2 :direction cosines of the epicenter.
Qutput:
DELTA :distance epicenter-station (Km).
DDDLAM :6A/6A (Km/radian).
DDDPH I :5A/69 (Km/radian).

o SUBROUTINE AZIMTH(A1,A2,A3,B1,B2,B3,AZ!,DELTA)

Input:
Al,A2,A3 :direction cosines of the stations.
B1,B2,B3 :direction cosines of the epicenter.
DELTA :distance epicenter-station (Km).
Qutput:
AZ| tazimuth of the line epicenter-station

at the epicenter (radians).

6. SUBROUT INE CHOOSE(XLAM,PHI,A,B,C,DELTA,L,DUMMY)

Selects the crustal values for Local shocks, at var-
ious points between the epicenter and the station.
Input: In COMMON:

CRUST(I,J,K) :crustal values at the grid crossings

in the California=Nevada region.
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In the arguments of the subroutine:

XLAM :longitude of the epicenter (degrees).
PHI :latitude of the epicenter (degrees).
AsB,C :direction cosines of the station.
DELTA :distance epicenter-station (Km).

Qutput: In COMMON:
VPATH(1,J) :crustal values at the L+2 points that
divide the distance DELTA. DELTA is
divided into L segments of 25 Km. and

a last segment, called DUMMY, smaller

than 25 Km.
In the arguments of the subroutine:
DELTA
L :the largest integer contained in T
DUMMY :DELTA-25.L (Km).

1. SUBROUT INE MTP1(ELEV,DTP1DD,DTP1DH,VP1,VP2,VP3,DUMMY,
L)

Computes the travel time of the direct arrival in an
irregular crust, and the derivatives with respect to the
distance and the depth.

Input: in COMMON:

VPATH(I,J) :crustal values along the path.

DELTA :distance epicenter-station. (Km).
H t:depth of the focus, below the datum (Km)
K :for P phases K=1, for S phases K=4.

In the arguments of the subroutine:
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ELEV :elevation of the station (Km).

VP1,VP2,VP3 :mean velocities (P or S) in the layers

(Km/sec).
DUMMY :DELTA-25.L (Km).
L :largest integer contained in DELTA/25.
Qutput:
TP1 :travel time of the direct wave (sec).
(in COMMON).
DTP1DD :5t/BA at the epicenter (sec/Km).
DTP 1DH :5t/86h at the epicenter (sec/Km).
8. SUBROUT INE MTP2(ELEV,TP2,DTP2DD,DTP2DH,VP 1,VP2,DUMMY,

al

L)

Computes the travel time of the first refracted arriw

in an irregular crust.

Input: In COMMON:

VPATH(1,J) :crustal values along the path.

DELTA :distance epicenter-station.(Km).
H :depth of the focus below the datum (Km).
K :for P phases K=1, for Sphases K=.4.

In the arguments of the subroutine:

ELEV :elevation of the station (Km).

VP1,VP2 :mean velocities (P or S) in the layers
(Km/sec).

DUMMY :DELTA-25.L (Km).

L :largest integer contained in DELTA/25.
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Qutput:
TP2 :travel time of the first refracted
arrival (sec).
DTP2DD :5t/6A at the epicenter (sec/Km).
DTP2DH :6t/6h at the epicenter (sec/Km).

9. SUBROUT INE MTPN(ELEV,TPN,DTPNDD,DTPNDH,VP1,VP2,VPN,
DUMMY , L)

Computes the arrival time of the second refracted
arrival in an irregular crust.
Input: In COMMON:

VPATH(1,J) :crustal values along the path.

DELTA :distance epicenter-station (Km).
H :depth of the focus (Km).
K :for P phases K=1, for S phases K=4.

In the arguments of the subroutine:
ELEV :elevation of the station (Km).

VP1,VP2,VPN :mean velocities (P or S) in the layers

(Km/sec).
DUMMY :DELTA-25.L (Km).
L : largest integer contained in DELTA/25.
Qutput:
TPN :travel time of the second refracted
arrival (sec).
DTPNDD :6t/BA at the epicenter (sec/Km).

DTPNDH :6t/5h at the epicenter (sec/Km).
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10. {SUBROUTINE DETERM(A,B,C,D,E,F,G,H,T,U,P,0,R,S,X,Y,Z,V)

Solves the equation:

— - - - - -

A B c D] [x] [p
8 E F &l |v| |o
c F H T| |z| |[R

o 6 T u) |v] |s]

by Gauss elimination technique.

OQutput:
X :correction in latitude, AP {radians).
Y :correction in longitude,AX (radians).
F :correction in depth, Ah  (Km).
v :correction in origin time, At, (sec).

11. |[SUBROUTINE SNOREQ(DTDPHI ,DTDLAM,DTDH,RES,W,A,B,C,D,E,
F,G,H,T,U,P,Q,R,S,WC,WN)

Forms the normal equations.

Input:
DTDPH | (6t/89); at the ith station (sec/radian).
DTDLAM :(6t/61)iat the ith station (sec/radian).
DTDH (ﬁt/ﬁhk at the ith station (sec/Km).
RES (residual); at the ith station (sec).
Qutput:

A=Y (at/a?)?m,? ; B=Y (6t/a<r).(6t/67\).wi2 :
=¥ (ﬁt/ﬁ‘?’)i(ﬁt/@h)iw]? ; D=5 (6t/69). w? ;
E=Y (6t/az)?m? ; F=3 (8t/81) I(ﬁt/éh)iwie ;
6= (



-136-
't 2 = 2
T= 3 (8t/6h);0f ; U= w; ; P=3% (6t/6%) Res;f ;
2
0= > (6t/51)iResicui 5 R=5 (6t/6h)iResim? :
S=> Resim? ; We= 3 (Res;)gm? 5 WN= > 1

12. |SUBROUTINE STANDR(A,B,C,D,E,F,G,H,T,U,DX,DY,DZ,DV)

Computes the values DX,DY,DZ,DV, that are used to
estimate the standard deviations of the solution of the

normal equations.

| f (A B C D]
B E F G
g} =
C F H T
D G T UJ
~1 -1 -1 —1
then DX= (& }yq » DY= (g pp » DZ= (8 )33 , Dv= (8§ Dy
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FIGURE CAPTIONS - Part |

Geometry of the problem.

Contour of integration for the integral
representations of the field. Branch

points and branch cuts are not shown.

The indentation is at the Rayleigh pole k.
Schematic representation of the waves that
must be in equilibrium according to the
linear equations (1-79), (1-80); and the
integral equations (1-73), (I-T4). Only

one of the reflected waves is shown. (a)
Spherical coordinates n-space. (b) Cylindri-
cal coordinates, k-space. Equilibrium is
achieved through the reflection coefficients
SA in case (a), and through (F(k)/F(k))-

e 2N in case (b).
Paths of integration in the complex k-plane,
to compute the surface wave contribution
from the branch line integrals.
Behavior of the body waves from a spherical
cavity in an infinite solid.
Decoupling factor for Rayleigh waves. The
numbers in the figure indicate the ratio of

the cavity radius to its depth.



Figure 1 - 7.
Figure | - 8.
Figure | = 9.
Figure | - 10.
Figure | - 11.
Figure | - 12.
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Normalization of Rayleigh waves to a sphere
in an infinite space. The numbers in the
figure indicate the ratio of the cavity
radius to its depth.
Rayleigh waves from a cavity in a half space,
normalized to the Rayleigh waves from a
point source in a half space. The numbers
in the figure indicate the ratio of the
radius of the cavity to its depth.
Same as Figure [-8, but the independent
variable is k ,a instead of k_h.
Phase of the Rayleigh wave displacements
from a cavity in a half space, minus the
phase of the Rayleigh wave displacements
from the point source is a half space. The
phase is given in degrees. The numbers in
the figure indicate the ratio of the radius
of the cavity to the depth.
Same as Figure | - 10, but the independent
variable is k,a instead of k_h.
Amplitude of the displacements normalized
to the point source in a half space. The
independent variable is a/h the ratio of
the cavity radius to its depth. The
numbers in the figure indicate the values of

the dimensionless frequency k,h-
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Contours utilized for numerical evaluation
of the integrals AOn and Con'

Values of (—1)“A0n(a)c(”+3. Only the real
part is given.

Values of (-T)n‘]CO () & "3, 0nly the

n
real part is given.
Flow diagram for the program io compute
the integrals given in equations (1-81) to
(1-84).

Flow diagram for the program to solve the

system of linear equations (1-79), (1-80).
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FIGURE CAPTIONS - Part ||

Figure 1] - 1. First arrival as a function of distance and
depth of the focus, for a simple crustal
model with parallel plane boundaries
(Press, 1960).

Figure Il - 2. Simplified flow diagram for the |BM 7094
hypocenter location program.

Figure |] - 3. California-Nevada region, as used in the
computation of local shocks. The different
geologic provinces are limited by dotted
lines. The grid lines are 3° apart.

Figure Il - 4. Correlation between topography and thickness
of the crust. The negative elevations
correspond to points below sea level. ATl
values are given in km.

Regions in which shocks were selected for

U

Figure Il -
the period 1950 on, to study statistical
frequency-depth relationships. Well
located shocks in region 5 were few and they
were not included in the results.

Figure |l -= 6. Horizontal distribution of the epicenters
of the Kern County aftershocks. The sense
of motion is taken from BSth and Richter
(1955), the lower ones are slanted and give

the depths in km.
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Vertical cross section showing the distri-
bution of the aftershocks in depth. The
dashed lines indicate possible breaks north
of the main fault. The depth of the main
shock is uncertain, and it could well be
shallower than 8 km.
Frequency and cumulative distribution of
the Kern County shocks with depth. For
the frequency distribution divide the
vertical scale by 10.
Frequency and cumulative distribution for
the combined regions of Figure |l - 5. For
the frequency distribution, divide the

vertical scale by 5.

. Frequency and cumulative distribution for

the combined regions of Figure || - 5, when
the uncertainties in depth are taken into
account by smoothing the histograms of
Figure |l - 9, according to section

Part |1. Divide the vertical scale by 5,
for the frequency distribution.

Frequency and cumulative distribution for
the energy of the combined regions of

Figure |l - 5.
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Frequency and cumulative distribution for
the energy of the combined regions of
Figure |l - 5.
Normalized cumulative distributions for
the several regions in Figure |l - 5. They
refer to the total number of shocks in each

region.
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VZ

Figure -1
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(a)

Figure 1-3

(b)

X (v)
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H(l) k-plane

Figure |-4
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