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Abstract

Electronic structures and dynamics are the key to linking the material composition and structure

to functionality and performance.

An essential issue in developing semiconductor devices for photovoltaics is to design materials

with optimal band gaps and relative positioning of band levels. Approximate DFT methods have

been justified to predict band gaps from KS/GKS eigenvalues, but the accuracy is decisively de-

pendent on the choice of XC functionals. We show here for CuInSe2 and CuGaSe2, the parent

compounds of the promising CIGS solar cells, conventional LDA and GGA obtain gaps of 0.0–0.01

and 0.02–0.24 eV (versus experimental values of 1.04 and 1.67 eV), while the historically first global

hybrid functional, B3PW91, is surprisingly the best, with band gaps of 1.07 and 1.58 eV. Further-

more, we show that for 27 related binary and ternary semiconductors, B3PW91 predicts gaps with

a MAD of only 0.09 eV, which is substantially better than all modern hybrid functionals, including

B3LYP (MAD of 0.19 eV) and screened hybrid functional HSE06 (MAD of 0.18 eV).

The laboratory performance of CIGS solar cells (> 20% efficiency) makes them promising can-

didate photovoltaic devices. However, there remains little understanding of how defects at the

CIGS/CdS interface affect the band offsets and interfacial energies, and hence the performance of

manufactured devices. To determine these relationships, we use the B3PW91 hybrid functional of

DFT with the AEP method that we validate to provide very accurate descriptions of both band gaps

and band offsets. This confirms the weak dependence of band offsets on surface orientation observed

experimentally. We predict that the CBO of perfect CuInSe2/CdS interface is large, 0.79 eV, which

would dramatically degrade performance. Moreover we show that band gap widening induced by

Ga adjusts only the VBO, and we find that Cd impurities do not significantly affect the CBO. Thus

we show that Cu vacancies at the interface play the key role in enabling the tunability of CBO. We

predict that Na further improves the CBO through electrostatically elevating the valence levels to

decrease the CBO, explaining the observed essential role of Na for high performance. Moreover we

find that K leads to a dramatic decrease in the CBO to 0.05 eV, much better than Na. We suggest

that the efficiency of CIGS devices might be improved substantially by tuning the ratio of Na to K,

with the improved phase stability of Na balancing phase instability from K. All these defects reduce

interfacial stability slightly, but not significantly.
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A number of exotic structures have been formed through high pressure chemistry, but applications

have been hindered by difficulties in recovering the high pressure phase to ambient conditions (i.e.,

one atmosphere and room temperature). Here we use dispersion-corrected DFT (PBE-ulg flavor) to

predict that above 60 GPa the most stable form of N2O (the laughing gas in its molecular form) is a

1D polymer with an all-nitrogen backbone analogous to cis-polyacetylene in which alternate N are

bonded (ionic covalent) to O. The analogous trans-polymer is only 0.03–0.10 eV/molecular unit less

stable. Upon relaxation to ambient conditions both polymers relax below 14 GPa to the same stable

non-planar trans-polymer, accompanied by possible electronic structure transitions. The predicted

phonon spectrum and dissociation kinetics validate the stability of this trans-poly-NNO at ambient

conditions, which has potential applications as a new type of conducting polymer with all-nitrogen

chains and as a high-energy oxidizer for rocket propulsion. This work illustrates in silico materials

discovery particularly in the realm of extreme conditions.

Modeling non-adiabatic electron dynamics has been a long-standing challenge for computational

chemistry and materials science, and the eFF method presents a cost-efficient alternative. However,

due to the deficiency of FSG representation, eFF is limited to low-Z elements with electrons of

predominant s-character. To overcome this, we introduce a formal set of ECP extensions that

enable accurate description of p-block elements. The extensions consist of a model representing the

core electrons with the nucleus as a single pseudo particle represented by FSG, interacting with

valence electrons through ECPs. We demonstrate and validate the ECP extensions for complex

bonding structures, geometries, and energetics of systems with p-block character (C, O, Al, Si) and

apply them to study materials under extreme mechanical loading conditions.

Despite its success, the eFF framework has some limitations, originated from both the design of

Pauli potentials and the FSG representation. To overcome these, we develop a new framework of two-

level hierarchy that is a more rigorous and accurate successor to the eFF method. The fundamental

level, GHA-QM, is based on a new set of Pauli potentials that renders exact QM level of accuracy for

any FSG represented electron systems. To achieve this, we start with using exactly derived energy

expressions for the same spin electron pair, and fitting a simple functional form, inspired by DFT,

against open singlet electron pair curves (H2 systems). Symmetric and asymmetric scaling factors

are then introduced at this level to recover the QM total energies of multiple electron pair systems

from the sum of local interactions. To complement the imperfect FSG representation, the AMPERE

extension is implemented, and aims at embedding the interactions associated with both the cusp

condition and explicit nodal structures. The whole GHA-QM+AMPERE framework is tested on H

element, and the preliminary results are promising.
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Chapter 1

Introduction

There is no doubt that MO and VB theory play a pivotal role in shaping chemists’ understanding

of chemistry, and elegant models and concepts have been derived, such as resonance, hybridization,

VSEPR theory, Walsh diagram, ligand field theory, and frontier MO theory, to name but a few.

Electronic structure, as a more generalized term, naturally covers the concepts ranging from orbital

and bonding of finite molecules to bands and DOS of extended phases, and thus provides a bridging

concept between chemistry and material science. Such crossing has lead to insightful perspective

and delicate understanding (see, e.g., [1] and [2]). Modern computational modeling techniques have

enabled accurate quantitative description of electronic structures, which is the key to unveiling the

relationship between chemical composition and material functionality. The first half of this thesis

(Ch. 2–Ch. 4) is devoted to such research, in which predictions were made for the dependence of de-

vice performance on underlying material composition and the formation of novel functional material,

through understanding the electronic structures by using DFT methods. As a preliminary, Ch. 2

discusses the physical significance of HOMO (VBM) and LUMO (CBM) from approximate DFT,

and then elaborates on our choices of methodology based on benchmark calculations. Subsequently,

Ch. 3 presents our appreciation of CIGS solar cell performance via modeling of band offsets across

the CIGS/CdS interfaces, and Ch. 4 proposes a novel N2O polymer, with alternating single and

double bonds along the all-nitrogen backbone, which is formed under high pressures and stabilized

by conformational relaxation at ambient conditions, and its electronic structure transition associated

with structural change is discussed in details.

Accurate first principles methods such as DFT are currently capable of handling up to thousands

of atoms, but for practical consideration, very large scale and long term simulations, inevitable under

many scenarios such as amorphous and liquid phases, biomolecules, and phase transitions etc., are

mostly employing empirical force field methods. Among these methods, ReaxFF[3] in particular is

termed as first principles based, in the sense that its underlying functional forms are inspired by

QM ideas and its parameters are fitted against database constructed with first principles methods.

However, electronic structures are just implicitly and partly accounted for by parameterization
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in terms like bond order and coordination, and the absence of explicit electron densities leads to

problems (though solvable with extra effort) in phenomena like lone pairs, polarization, and charge

variation. Besides, under certain circumstances such as high velocity shock and extreme conditions

(high temperatures in particular), the electronic dynamics (propagation) is significantly involved

and should be taken into account. The eFF method[4], originally developed in our group, provides

the suitable first principles based framework to address the above issues, and the second half of

this thesis (Ch. 5–Ch. 6) is then devoted to our effort to improve it. Ch. 5 describes our very

early work in extending the application of eFF method to high-Z elements by developing an ECP

extension for it, while more importantly, Ch. 6 presents our very recent development of the new

GHA-QM+AMPERE framework that is a more rigorous and accurate successor of the eFF method.

The above-mentioned two parts on modeling of electronic structures and dynamics complete

this thesis, and the variation in levels of theory involved, from hybrid XC functionals and dispersion

correction of DFT to eFF and GHA-QM+AMPERE methods, endows it with a multiparadigm char-

acter. Therefore, this thesis is ultimately titled as “First principles based multiparadigm modeling

of electronic structures and dynamics”.
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Chapter 2

Accurate description of electronic
structures for semiconductors from
DFT

The contents presented in this chapter are based on H. Xiao, J. Tahir-Kheli and W. A. God-

dard, III, “Accurate Band Gaps for Semiconductors from Density Functional Theory”,

J. Phys. Chem. Lett. 2011, 2, 212-217.

An essential issue in developing semiconductor devices for photovoltaics is to design materials with

desirable characters of electronic structures, ranging from such simple properties as appropriate

band gaps and proper positioning of band levels relative to other participating members (dopants

and interfacing materials, etc.), to convoluted aspects like good-natured band curvatures and wave-

functions for efficient transport of photo-excited species (excitons and charge carriers). Accurate

theoretical modeling of electronic structures for semiconductors stands as a powerful tool for unveil-

ing the correlation of relevant features and functionalities to the underlying material compositions

and structures, and thus plays an indispensable role in both improving the performance of current

devices and conceiving novel photovoltaic materials.

DFT[1–3] proves an extremely valuable theoretical framework as elegant compromise between

computational efficiency and accuracy, and various levels of approximate XC functionals have demon-

strated extensively predictive power for energetics, structures, and dynamics of systems, ranging from

0D finite molecules to 3D periodic solids. However, the XC functionals at LDA and GGA levels,

traditionally and exclusively used in the solid state physics community, suffer from serious underes-

timation of band gaps for semiconductors and insulators, and even qualitatively wrong prediction

of metallic states for some small band gap (< ∼1 eV) systems, while the hybrid functionals, being

the superior standard choice in the quantum chemistry community from early on, have recently

gained popularity in modeling of periodic systems, largely owing to growing evidence that shows

their ability to predict band gaps accurately for semiconductors.
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This chapter describes our work[4] on benchmarking the performance of DFT methods on band

gaps of semiconductors relevant to photovoltaic applications. The theoretical background for using

the KS/GKS orbital energy gap as a prediction of fundamental band gap is outlined in Sec. 2.1.

Sec. 2.2 discusses the choice of basis sets and ECP and describes the computational details for

our periodic calculations. Sec. 2.3 determines the best XC functionals by comparing performance

of various levels of XC functionals on CuInSe2 and CuGaSe2, and Sec. 2.4 benchmarks B3PW91,

B3LYP, and HSE06 over a set of 27 binary and ternary semiconductors.

2.1 Fundamental band gap from KS/GKS scheme in DFT

Although orbitals and associated eigenvalues (orbital energies) in the KS/GKS scheme have been

widely discussed for their interpretative power within qualitative MO theories and approximation

to such physical observables as IP[5–10], strictly speaking, KS/GKS orbitals are by construct so-

lutions to the one-electron equations for artificial non-interacting system used to approximate the

exact ground state, and thus have no rigorous physical significance in general[11]. However, simi-

lar to Koopmans’ theorem[12] in HF theory, which relates the eigenvalue of HOMO εHF
HOMO as an

approximation to the first IP I, i.e., εHF
HOMO ≈ −I, it has been proven[13, 14] that in DFT, the

HOMO eigenvalue from exact KS theory (exact XC functional) is precisely the negative of IP, i.e.,

εKS
HOMO = −I, provided that the KS effective local potential vanishes at infinity. Furthermore, it

was shown recently[15, 16] that the LUMO with its eigenvalue in KS/GKS scheme carries as much

information on electron addition (associated energy as EA) as the HOMO does on electron removal.

Such relations set up the theoretical background of DFT’s ability to predict an important figure,

the difference between IP and EA, which defines the chemical hardness η with a prefactor of 1/2 for

finite species[17], or the fundamental band gap Eg for periodic systems, as

Eg = I −A = [E (N − 1)− E (N)]− [E (N)− E (N + 1)] =
∂E

∂N

∣∣∣∣
N+δ

− ∂E

∂N

∣∣∣∣
N−δ

(2.1)

where E and N are the total energy and number of electrons, respectively. The last step in (2.1)

is valid, provided that E is a series of straight lines interpolating values at integer N ’s, and such

character is shown to be possessed by the exact energy functional[13, 18], and also ostensibly by the

approximate XC functionals (including the nonlocal HF exchange functional in GKS scheme) for

periodic systems imposed by the translational symmetry[19]. According to the conventional density

functional analysis[20, 21], (2.1) can be further evaluated as

Eg = εKS
LUMO − εKS

HOMO + ∆XC (2.2)
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where ∆XC = v
(+)
XC − v

(−)
XC ≡

δEXC[ρ]

δρ

∣∣∣∣
N+δ

− δEXC[ρ]

δρ

∣∣∣∣
N−δ

is the functional derivative discontinuity

of XC energy with respect to the density (this term is non-vanishing for the exact case), which

apparently prevents direct prediction of Eg using the KS orbital energy gap in DFT. While a

more recent perspective, analyzing E as a functional of one-electron potential vs and N (the so-

called potential functional formalism)[22, 23], elaborates (2.1) in various types of approximate XC

functionals[15, 16], and for the two cases we are interested in,

Case A KS scheme where EXC is an explicit and differentiable functional of ρ only (e.g., LDA and

GGA)

Case C GKS scheme where EXC is an explicit and differentiable functional of the first order non-

interacting density matrix, and the noninteracting reference system has a nonlocal GKS

potential (e.g., HF calculations)

both simplify (2.1) into, with the orbitals {φi} as the only minimizer,

Eg = ε
KS/GKS
LUMO − εKS/GKS

HOMO (2.3)

which is still consistent with (2.2) from the conventional density functional analysis, because for Case

A, the approximate XC functionals render a vanishing ∆XC (in contrast to the unknown exact XC

functional), and for Case C, the discontinuity of
∂ρ

∂N
distributes contribution of ∆XC to eigenvalues

of the minimizer {φi}. (2.3) justifies rigorously the use of KS/GKS orbital energy gap as a direct

prediction of the fundamental band gap for commonly used XC functionals (LDA, GGA, and hybrid

functionals), with the accuracy dictated by the levels of approximations employed, although it must

be borne in mind that (2.3) does not hold for the exact XC functional, if ever known.

Now the question is what level of approximation should be chosen for practical use in prediction

of fundamental band gaps with sufficient accuracy for certain materials, and recent analysis of total

energy for fractional charges[15, 19, 24] offers some theoretical insights: conventional DFT XC

functionals such as LDA and GGA result in convex curves (lower energies) for fractional charges

in-between integer numbers of electrons, in contrast to the straight lines given by the exact case,

while the HF theory renders concave curves (higher energies); such incorrect features originate from

the tendency of underlying approximations to delocalize/localize electrons, which is thus termed as

delocalization/localization error; the convex/concave curves are forced into straight lines in periodic

systems by the imposed translational symmetry, which follow the initial slopes of the original curves,

leading to underestimated/overestimated fundamental band gaps. This analysis constitutes the

theoretical foundation for the superiority of hybrid functionals, which include both GGA and HF

components, and thus the delocalization and localization errors cancel out, to a certain extent, but

the mixed percentage of HF exchange is in principle dependent on the system under study.
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Indeed, it has been demonstrated by benchmark calculations on quite a range of materials[4, 25–

29] that including some exact HF exchange in the global and screened hybrid functional schemes leads

to dramatically improved prediction of band gaps, and among these efforts our work[4] was originally

motivated by the study of properties of the CIGS class of solar cells, pioneered by the National

Renewable Energy Laboratory (NREL), with efficiencies as high as 20.3%[30]. The heterojunction

in these devices is between n-type CdSe and a p-type alloy of CuGaSe2 and CuInSe2 (with atomic

ratios, Cu/(In+Ga) = 0.80-0.92 and Ga/(In+Ga) = 0.30-0.35). The important issues here are the

magnitude of the direct band gap and the offsets in the band states at the interfaces as a function

of composition. We were disappointed to find that the PBE and PW91 of GGA level lead to a band

gap for CuInSe2 of Eg = 0.01 eV (LDA leads to zero band gap) compared to the experimental value

of Eg = 1.04 eV. Moreover, the popular B3LYP hybrid functional (which obtains the correct band

gap of 2.0 eV for La2CuO4[27]) leads to Eg = 0.95 eV, which is too small by 9%. This led us to

explore the performance of other DFT methods, and further show that the historically first hybrid

density functional, B3PW91, leads to substantially better prediction of band gaps for the binary

and ternary semiconductor compounds that are of interest in photovoltaics.

2.2 Choice of basis sets and ECPs for periodic calculations

Conceptually, plane wave basis sets are the best choice for periodic calculations, in a few respects:

orthogonality (free of linear dependency), completeness (straightforward to improve the quality),

no dependence of nuclear positions (no associated Pulay forces[31]), and infinite periodicity (PBC

in nature and no BSSE), among others. In practice, however, plane wave basis sets demand extra

efforts: one is the necessity of pseudopotentials for the atomic core region (even for light elements

like H), due to the formidable number of plane waves required to sufficiently approximate the sharp

electron density in the vicinity of nuclei; another is the complexity for evaluating HF exchange due

to its nonlocal nature, and the computation is 102-103 times slower than with the localized atom-

centered Gaussian type basis sets, making the modeling of even medium-sized systems (∼102 atoms)

extremely expensive. Therefore, for hunting the best among XC functionals, including hybrid ones,

for practical use (see Ref. [32] and Ch. 3), all calculations were performed using the CRYSTAL

package[33], which employs atomic Gaussian type basis sets for periodic systems.

For heavy elements, angular-momentum-projected nonlocal ECPs[34–37] were used to replace

the core electrons, for both reducing the computational cost and, more importantly, incorporating

implicitly scalar relativistic effects. SOC was not explicitly treated, which can be important in

determining band gaps for certain heavy systems[38, 39], and thus here band gaps are averaged over

the spin-orbit levels through ECPs. The specific choice of ECPs and basis sets are summarized

below:
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• for Cu, Ag, Zn, Cd, Ga, and In we used the shape-consistent[40, 41] fully relativistic SBKJC

small core ECPs with double zeta basis sets[42]

• for As and Sb we used the energy-consistent[43] fully relativistic Stuttgart small core ECPs[44]

with cc-pVDZ basis sets[45]

• for Se and Te we used the SBKJC large core ECPs with double zeta basis sets[42] augmented

by one d polarization function[46]

• for Al, P, and S we used the all-electron 6-31G(d) basis sets[47]

The difference between small and large core ECPs is whether electrons in the second outmost main

shell are explicitly treated, e.g., for Ga, 21 electrons (3s23p63d104s24p1) are explicitly included in

the calculations, with the small core ECP representing the Ne(1s22s22p6) core, while Se is described

with only 6 electrons (4s24p4), with the large core ECP representing the 1s22s22p63s23p63d10 core.

All basis sets were modified slightly by setting any exponents more diffuse than 0.10 to this value

(see Appendix for detailed modification in basis sets). This pruning procedure is necessary in order

to minimize linear dependency and improve numerical instability for crystalline calculations using

molecular basis sets[29]. Ideally, exponents and coefficients in these molecular basis sets should be re-

optimized in crystalline calculations. Table 2.1 lists the comparison of performance with pruned basis

sets as described above, to with basis sets optimized for crystalline calculations (see Ch. 3 Appendix

and Ref. [32]), and both structures, including lattice parameters and internal degree of freedom

u(Se), and band gaps improve only marginally. The main advantage for using crystal-optimized

basis sets is to speed up the calculations, due to more contracted exponents, and this becomes more

appreciable for larger systems, while the pruned basis sets provide a quick and reliable choice for

extensive benchmark purpose.

Table 2.1. Comparison of the performance of pruned and optimized basis sets on structures and
band gaps of CuInSe2, CuGaSe2, and CdS.

CuInSe2 CuGaSe2 CdS

basis sets a/Å c/Å u(Se) Eg/eV a/Å c/Å u(Se) Eg/eV a/Å Eg/eV

pruned 5.909 11.899 0.229 1.07 5.729 11.234 0.255 1.58 5.933 2.55

optimized 5.879 11.809 0.226 1.04 5.693 11.192 0.252 1.54 5.930 2.56

Exptl. 5.781 11.642 0.226 1.04a 5.614 11.022 0.259 1.67b 5.811 2.58c

a Ref. [48]. b Ref. [49]. c Ref. [50].

For optimizing bulk structures, the reciprocal space was sampled by Γ-centered Monkhorst-Pack

scheme[51], with an 8 × 8 × 8 grid. To compute the band structure and DOS a finer 16 × 16 × 16

grid was used on the optimized structure.
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2.3 Key ingredients in XC functionals for performance

In order to determine whether any of the common methods for DFT could provide sufficient accuracy,

we considered a series of XC functionals for band calculations on the CuInSe2 and CuGaSe2 chal-

copyrite crystals. This included, at various levels of approximations climbing “Jacob’s ladder”[52]:

• LDA: SVWN[53, 54]

• GGA: BLYP[55, 56], PW91[57], PBE[58]

• meta-GGA: M06-L[59]

• global hybrid GGA: B3PW91[60], B3LYP[61], PBE0[62], BHLYP[63], and screened hybrid

GGA: HSE06[64–66]

• global hybrid meta-GGA: M06[67]

Tables 2.2 and 2.3 show that the original hybrid scheme of Becke, B3PW91[60], leads to the low-

est errors in the band gaps, with values that are 0.03 eV larger for CuInSe2 and 0.09 eV smaller for

CuGaSe2. The B3PW91 calculated band structures and DOS are shown in Fig. 2.1 and 2.2, predict-

ing correctly the direct band gap type for both CuInSe2 and CuGaSe2. In contrast, LDA(SVWN)

leads to a zero band gap for CuInSe2, while the GGA methods (PW91, PBE, and BLYP) lead to

a gap of only 0.01 eV (99 to 100% error!), though the non-hybrid meta-GGA (M06-L) improves

slightly with a value of 0.13 eV. Both the global hybrid B3LYP and screened hybrid HSE06 lead

to too low a gap by 0.09 and 0.10 eV for CuInSe2 and 0.27 and 0.20 eV for CuGaSe2, while PBE0

leads to gaps that are too large (by 0.42 eV for CuInSe2 and 0.35 eV for CuGaSe2).

From Tables 2.2 and 2.3 we see that:

(1) The calculated band gaps increase with the percentage of HF exchange, as pointed out by Yang

et al [19]. Including exact exchange brings in increased localization of the electronic states,

which neutralizes the delocalization error of accompanying conventional XC functionals, and

is clearly the key ingredient in obtaining accurate band gaps. The higher tier of “Jacob’s

ladder”, meta-GGA, indeed improves over GGA on band gaps, yet slightly, and the derived

hybrid meta-GGA, M06, does not perform better than hybrid GGAs, most likely because the

percentage of HF exchange is not optimal here.

(2) B3PW91 is better than the most popular hybrid functional B3LYP for both lattice parameters

and band gaps. Kresse et al. observed this also on metals[69]. The explanation may be that

B3LYP underestimates the correlation energy of the uniform electron gas by about 30%, while

B3PW91 was designed to be exact for this limit. This suggests that the periodic valence-

electron density in a bulk solid is similar to a uniform electron gas.
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Table 2.2. Predicted band gap and lattice parameters for CuInSe2 chalcopyrite crystal
from various levels of XC functionals. Here η = c/2a is the tetragonal distortion,
and u(Se) is the internal degree of freedom. HF% is the percentage of mixed HF
exchange. ∆Eg and ∆V% are the absolute and relative errors in band gap and volume,
respectively, compared to experiment.

XC HF% Eg/eV ∆Eg/eV a/Å c/Å η = c/2a u(Se) ∆V%

Exptl. – 1.04a – 5.781 11.642 1.007 0.226 –

SVWN 0% 0.00 1.04 5.787 11.676 1.009 0.216 0.50%

BLYP 0% 0.01 1.03 6.057 12.196 1.007 0.224 15.00%

PW91 0% 0.01 1.03 5.929 11.953 1.008 0.221 8.00%

PW91b 0% 0.04 1.00 5.836 11.657 0.999 0.221 2.04%

PBE 0% 0.01 1.03 5.935 11.965 1.008 0.222 8.32%

M06-L 0% 0.13 0.91 5.941 12.029 1.012 0.226 9.12%

B3PW91 20% 1.07 0.03 5.911 11.895 1.006 0.229 6.82%

B3LYP 20% 0.95 0.09 5.998 12.046 1.004 0.232 11.38%

PBE0 25% 1.46 0.42 5.892 11.857 1.006 0.230 5.80%

BHLYP 50% 3.37 2.33 5.982 11.945 0.998 0.240 9.86%

HSE06 25%* 0.94 0.10 5.895 11.878 1.007 0.229 6.10%

M06 27% 1.39 0.35 5.887 11.909 1.011 0.226 6.08%

a Ref. [48]. b results from Ref. [68], using plane wave basis sets with USPP.
* screened HF exchange.

Figure 2.1. The band structure and DOS of CuInSe2 calculated with B3PW91.
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Table 2.3. Predicted band gap and lattice parameters for CuGaSe2 chalcopyrite crystal
from various levels of XC functionals. Here η = c/2a is the tetragonal distortion,
and u(Se) is the internal degree of freedom. HF% is the percentage of mixed HF
exchange. ∆Eg and ∆V% are the absolute and relative errors in band gap and volume,
respectively, compared to experiment.

XC HF% Eg/eV ∆Eg/eV a/Å c/Å η = c/2a u(Se) ∆V%

Exptl. – 1.67a – 5.614 11.022 0.982 0.259 –

SVWN 0% 0.24 1.43 5.589 11.135 0.996 0.243 0.13%

BLYP 0% 0.02 1.65 5.852 11.589 0.990 0.250 14.25%

PW91 0% 0.10 1.57 5.729 11.358 0.991 0.248 7.31%

PW91b 0% 0.14 1.53 5.609 11.147 0.994 0.244 0.95%

PBE 0% 0.10 1.57 5.735 11.366 0.991 0.248 7.61%

M06-L 0% 0.62 1.05 5.769 11.277 0.977 0.254 8.04%

B3PW91 20% 1.58 0.09 5.729 11.234 0.981 0.255 6.14%

B3LYP 20% 1.40 0.27 5.812 11.371 0.978 0.257 10.57%

PBE0 25% 2.02 0.35 5.714 11.184 0.979 0.255 5.12%

BHLYP 50% 3.96 2.29 5.810 11.206 0.964 0.265 8.89%

HSE06 25%* 1.47 0.20 5.718 11.192 0.979 0.255 5.33%

M06 27% 1.91 0.24 5.728 11.204 0.978 0.255 5.81%

a Ref. [49]. b results from Ref. [68], using plane wave basis sets with USPP.
* screened HF exchange.

Figure 2.2. The band structure and DOS of CuGaSe2 calculated with B3PW91.
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(3) The correlation plays a role in predicting structures. LYP renders the worst results, and PW91

is the best among GGA correlation.

(4) Our PW91 results are comparable to those using plane wave basis sets with USPP, validating

the accuracy of the Gaussian basis sets used here.

2.4 Benchmark on a set of 27 binary and ternary semicon-

ductors

To further evaluate the accuracy of B3PW91 for band gaps of semiconductors, we considered a test

set of 27 semiconductors comprising ternary compounds with chalcopyrite structure (currently of

great interest for photovoltaic applications) and binary semiconductors with the zinc-blende struc-

ture (such as CdS) that are also important solar cell materials. Note our test set considers only

direct band gap semiconductors. The results are shown in Table 2.4. We see that B3PW91 yields a

MAD = 0.09 eV for band gaps. Moreover, Tables 2.5 and 2.6 show that B3PW91 leads to accurate

lattice parameters, with MRD = 2.2%. Generally, B3PW91 is better than B3LYP, which gives MAD

= 0.19 eV for band gaps, and MRD = 3.4% for lattice parameters (Tables 2.7, 2.8, and 2.9).

Prior calculations[25–29] have shown that the incorporation of (global or screened) HF exchange

can improve the accuracy of DFT band gaps, and the most prominent success is from the screened

hybrid functional family of Heyd-Scuseria-Ernzerhof (HSE)[64–66] that is derived from the global

hybrid functional PBE0 (which includes 25% HF exchange). To validate HSE, Scuseria et al.[29]

proposed the SC/40 test set of unary and binary compounds. They showed that the older HSE03

functional gives MAD = 0.26 eV over the SC/40 set. They rationalized this increased accuracy

by comparison with results from TDDFT calculations[70]. Among the SC/40 set are 9 binary

semiconductors that are also in our test set. Comparing HSE03 (Table 2.10) and B3PW91 (Table

2.4) for this common set, we find that B3PW91 leads to MAD = 0.08 eV, which is significantly

better than MAD = 0.27 eV from HSE03. Furthermore, we performed the benchmark calculations

over our 27-semiconductor set with the newer HSE06, which leads to MAD = 0.18 eV (Table 2.10),

twice that of B3PW91, although the lattice parameters are slightly better with MRD = 2.0% (Tables

2.11 and 2.12). It appears that the HSE screening of long-range HF exchange reduces the 25% HF in

PBE0 to something approaching the hybrid level of 20% HF in B3PW91, which probably provides

a better mixing ratio for semiconductors of ∼1–4 eV band gaps. A complication with HSE is that

the screening parameter is generally system dependent[70]. Thus in HSE, additional effort must

be made to hunt for the optimum choice for each specific system. With B3PW91, no such system

dependent parameters are used.
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Table 2.4. Predicted band gaps (eV) for 27 semiconductors with B3PW91 (MAD = 0.09 eV).

Species Exptl. B3PW91 Species Exptl. B3PW91 Species Exptl. B3PW91
InP 1.42a 1.68 CuAlS2 3.46b 3.47 AgAlSe2 2.55c 2.60
InAs 0.41a 0.41 CuGaS2 2.50d 2.47 AgGaSe2 1.82b 1.65
InSb 0.23a 0.30 CuInS2 1.55b 1.60 AgInSe2 1.24e 1.24
ZnS 3.84a 3.75 CuAlSe2 2.65f 2.55 CuAlTe2 2.06g 2.25
ZnSe 2.83a 2.73 CuGaSe2 1.67f 1.58 CuGaTe2 1.25g 1.34
ZnTe 2.39a 2.28 CuInSe2 1.04e 1.07 CuInTe2 1.00h 1.14
CdS 2.58a 2.55 AgAlS2 3.60i 3.50 AgAlTe2 2.35j 2.12
CdSe 1.85a 1.84 AgGaS2 2.70k 2.60 AgGaTe2 1.36j 1.21
CdTe 1.61a 1.67 AgInS2 1.87b 1.87 AgInTe2 1.04j 1.09

a Ref. [50]. b Ref. [71]. c Ref. [72]. d Ref. [73]. e Ref. [48]. f Ref. [49]. g Ref. [74].
h Ref. [75]. i Ref. [76]. j Ref. [77]. k Ref. [78].

Table 2.5. Predicted lattice parameters (a/Å) for 9 binary semiconductors with B3PW91 (MRD =
1.9%).

Species Exptl. B3PW91 Species Exptl. B3PW91 Species Exptl. B3PW91
InP 5.869 5.944 ZnS 5.345 5.458 CdS 5.811 5.933
InAs 6.058 6.159 ZnSe 5.669 5.754 CdSe 6.077 6.217
InSb 6.479 6.584 ZnTe 6.103 6.212 CdTe 6.483 6.643

Table 2.6. Predicted lattice parameters for 18 ternary semiconductors with B3PW91 (MRD = 2.2%).
X = S, Se, Te in u(X).

Exptl. B3PW91
Species a/Å c/Å η = c/2a u(X) a/Å c/Å η = c/2a u(X) ∆V%
CuAlS2 5.334 10.444 0.979 0.268 5.388 10.545 0.979 0.264 3.02%
CuGaS2 5.347 10.474 0.979 0.254 5.412 10.602 0.979 0.258 3.70%
CuInS2 5.523 11.133 1.008 0.229 5.600 11.304 1.009 0.230 4.39%
CuAlSe2 5.606 10.901 0.972 0.257 5.711 11.162 0.977 0.260 6.27%
CuGaSe2 5.614 11.022 0.982 0.259 5.729 11.234 0.981 0.255 6.14%
CuInSe2 5.781 11.642 1.007 0.226 5.909 11.899 1.007 0.229 6.78%
AgAlS2 5.695 10.260 0.901 0.300 5.819 10.400 0.894 0.299 5.83%
AgGaS2 5.757 10.304 0.895 0.291 5.839 10.511 0.900 0.294 4.94%
AgInS2 5.876 11.201 0.953 0.264 5.983 11.452 0.957 0.267 6.00%
AgAlSe2 5.956 10.750 0.902 0.270 6.105 11.059 0.906 0.291 8.09%
AgGaSe2 5.992 10.883 0.908 0.288 6.121 11.141 0.910 0.286 6.83%
AgInSe2 6.104 11.712 0.959 0.258 6.263 12.036 0.961 0.262 8.19%
CuAlTe2 5.976 11.804 0.988 0.250 6.158 12.172 0.988 0.247 9.49%
CuGaTe2 6.023 11.940 0.991 0.256 6.150 12.197 0.992 0.245 6.51%
CuInTe2 6.194 12.416 1.002 0.222 6.340 12.714 1.003 0.223 7.28%
AgAlTe2 6.296 11.830 0.939 0.260 6.475 12.257 0.947 0.273 9.58%
AgGaTe2 6.288 11.940 0.949 0.260 6.469 12.284 0.950 0.271 8.89%
AgInTe2 6.467 12.633 0.977 0.262 6.623 12.988 0.981 0.250 7.83%
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Table 2.7. Predicted band gaps (eV) for 27 semiconductors with B3LYP (MAD = 0.19 eV).

Species Exptl. B3LYP Species Exptl. B3LYP Species Exptl. B3LYP

InP 1.42a 1.32 CuAlS2 3.46b 3.37 AgAlSe2 2.55c 2.52

InAs 0.41a 0.00 CuGaS2 2.50d 2.26 AgGaSe2 1.82b 1.50

InSb 0.23a 0.00 CuInS2 1.55b 1.47 AgInSe2 1.24e 1.15

ZnS 3.84a 3.53 CuAlSe2 2.65f 2.47 CuAlTe2 2.06g 2.09

ZnSe 2.83a 2.52 CuGaSe2 1.67f 1.40 CuGaTe2 1.25g 1.12

ZnTe 2.39a 2.01 CuInSe2 1.04e 0.95 CuInTe2 1.00h 0.99

CdS 2.58a 2.36 AgAlS2 3.60i 3.40 AgAlTe2 2.35j 1.98

CdSe 1.85a 1.68 AgGaS2 2.70k 2.43 AgGaTe2 1.36j 1.02

CdTe 1.61a 1.47 AgInS2 1.87b 1.76 AgInTe2 1.04j 0.94

a Ref. [50]. b Ref. [71]. c Ref. [72]. d Ref. [73]. e Ref. [48]. f Ref. [49]. g Ref. [74].
h Ref. [75]. i Ref. [76]. j Ref. [77]. k Ref. [78].

Table 2.8. Predicted lattice parameters (a/Å) for 9 binary semiconductors with B3LYP (MRD =
3.1%).

Species Exptl. B3LYP Species Exptl. B3LYP Species Exptl. B3LYP

InP 5.869 6.015 ZnS 5.345 5.520 CdS 5.811 6.004

InAs 6.058 6.245 ZnSe 5.669 5.820 CdSe 6.077 6.289

InSb 6.479 6.681 ZnTe 6.103 6.290 CdTe 6.483 6.726

Table 2.9. Predicted lattice parameters for 18 ternary semiconductors with B3LYP (MRD = 3.6%).
X = S, Se, Te in u(X).

Exptl. B3LYP

Species a/Å c/Å η = c/2a u(X) a/Å c/Å η = c/2a u(X) ∆V%

CuAlS2 5.334 10.444 0.979 0.268 5.462 10.628 0.973 0.268 6.74%

CuGaS2 5.347 10.474 0.979 0.254 5.494 10.731 0.977 0.260 8.13%

CuInS2 5.523 11.133 1.008 0.229 5.686 11.453 1.007 0.234 9.03%

CuAlSe2 5.606 10.901 0.972 0.257 5.785 11.258 0.973 0.264 9.99%

CuGaSe2 5.614 11.022 0.982 0.259 5.812 11.371 0.978 0.257 10.56%

CuInSe2 5.781 11.642 1.007 0.226 5.998 12.046 1.004 0.232 11.40%

AgAlS2 5.695 10.260 0.901 0.300 5.893 10.499 0.891 0.304 9.58%

AgGaS2 5.757 10.304 0.895 0.291 5.922 10.648 0.899 0.296 9.35%

AgInS2 5.876 11.201 0.953 0.264 6.077 11.590 0.954 0.270 10.67%

AgAlSe2 5.956 10.750 0.902 0.270 6.182 11.166 0.903 0.295 11.90%

AgGaSe2 5.992 10.883 0.908 0.288 6.206 11.299 0.910 0.288 11.36%

AgInSe2 6.104 11.712 0.959 0.258 6.357 12.181 0.958 0.264 12.81%

CuAlTe2 5.976 11.804 0.988 0.250 6.239 12.299 0.986 0.251 13.57%

CuGaTe2 6.023 11.940 0.991 0.256 6.241 12.359 0.990 0.247 11.13%

CuInTe2 6.194 12.416 1.002 0.222 6.433 12.897 1.002 0.226 12.02%

AgAlTe2 6.296 11.830 0.939 0.260 6.568 12.367 0.942 0.277 13.75%

AgGaTe2 6.288 11.940 0.949 0.260 6.570 12.442 0.947 0.274 13.75%

AgInTe2 6.467 12.633 0.977 0.262 6.726 13.155 0.978 0.253 12.64%
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Table 2.10. Predicted band gaps (eV) for 27 semiconductors with HSE06 (MAD = 0.18 eV).
Previous results using HSE03[29] are also shown where available which leads to MAD = 0.27 eV.

Species Exptl. HSE06 HSE03* Species Exptl. HSE06 Species Exptl. HSE06

InP 1.42a 1.59 1.64 CuAlS2 3.46b 3.29 AgAlSe2 2.55c 2.41

InAs 0.41a 0.41 0.39 CuGaS2 2.50d 2.32 AgGaSe2 1.82b 1.50

InSb 0.23a 0.34 0.29 CuInS2 1.55b 1.45 AgInSe2 1.24e 1.08

ZnS 3.84a 3.55 3.42 CuAlSe2 2.65f 2.38 CuAlTe2 2.06g 2.07

ZnSe 2.83a 2.56 2.32 CuGaSe2 1.67f 1.47 CuGaTe2 1.25g 1.23

ZnTe 2.39a 2.12 2.19 CuInSe2 1.04e 0.94 CuInTe2 1.00h 1.01

CdS 2.58a 2.32 2.14 AgAlS2 3.60i 3.31 AgAlTe2 2.35j 1.93

CdSe 1.85a 1.66 1.39 AgGaS2 2.70k 2.42 AgGaTe2 1.36j 1.08

CdTe 1.61a 1.51 1.52 AgInS2 1.87b 1.68 AgInTe2 1.04j 0.94

* results from Ref. [29]. a Ref. [50]. b Ref. [71]. c Ref. [72]. d Ref. [73]. e Ref. [48].
f Ref. [49]. g Ref. [74]. h Ref. [75]. i Ref. [76]. j Ref. [77]. k Ref. [78].

Table 2.11. Predicted lattice parameters (a/Å) for 9 binary semiconductors with HSE06 (MRD = 1.6%). Pre-
vious results using HSE03[29] lead to MRD = 1.1%.

Species Exptl. HSE06 HSE03* Species Exptl. HSE06 HSE03* Species Exptl. HSE06 HSE03*

InP 5.869 5.928 5.909 ZnS 5.345 5.446 5.432 CdS 5.811 5.919 5.896

InAs 6.058 6.141 6.120 ZnSe 5.669 5.745 5.707 CdSe 6.077 6.204 6.152

InSb 6.479 6.566 6.535 ZnTe 6.103 6.205 6.150 CdTe 6.483 6.630 6.568

* results from Ref. [29].

Table 2.12. Predicted lattice parameters for 18 ternary semiconductors with HSE06 (MRD = 2.0%).
X = S, Se, Te in u(X).

Exptl. HSE06

Species a/Å c/Å η = c/2a u(X) a/Å c/Å η = c/2a u(X) ∆V%

CuAlS2 5.334 10.444 0.979 0.268 5.377 10.516 0.978 0.264 2.32%

CuGaS2 5.347 10.474 0.979 0.254 5.403 10.582 0.979 0.258 3.14%

CuInS2 5.523 11.133 1.008 0.229 5.585 11.292 1.011 0.231 3.70%

CuAlSe2 5.606 10.901 0.972 0.257 5.702 11.125 0.976 0.260 5.58%

CuGaSe2 5.614 11.022 0.982 0.259 5.717 11.197 0.979 0.255 5.35%

CuInSe2 5.781 11.642 1.007 0.226 5.896 11.878 1.007 0.230 6.11%

AgAlS2 5.695 10.260 0.901 0.300 5.798 10.362 0.893 0.299 4.70%

AgGaS2 5.757 10.304 0.895 0.291 5.821 10.457 0.898 0.293 3.77%

AgInS2 5.876 11.201 0.953 0.264 5.959 11.424 0.959 0.267 4.88%

AgAlSe2 5.956 10.750 0.902 0.270 6.098 10.981 0.900 0.291 7.08%

AgGaSe2 5.992 10.883 0.908 0.288 6.112 11.085 0.907 0.286 5.97%

AgInSe2 6.104 11.712 0.959 0.258 6.246 12.003 0.961 0.262 7.31%

CuAlTe2 5.976 11.804 0.988 0.250 6.149 12.139 0.987 0.248 8.86%

CuGaTe2 6.023 11.940 0.991 0.256 6.140 12.169 0.991 0.245 5.91%

CuInTe2 6.194 12.416 1.002 0.222 6.325 12.698 1.004 0.223 6.63%

AgAlTe2 6.296 11.830 0.939 0.260 6.466 12.182 0.942 0.274 8.59%

AgGaTe2 6.288 11.940 0.949 0.260 6.457 12.239 0.948 0.271 8.08%

AgInTe2 6.467 12.633 0.977 0.262 6.609 12.950 0.980 0.250 7.06%
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2.5 Concluding remarks

In summary, we show that the B3PW91 hybrid functional provides accurate band gap predictions

for semiconductors of ∼1–4 eV band gaps (MAD = 0.09 eV) while also leading to accurate lattice

parameters. Thus we recommend B3PW91 combined with standard molecular Gaussian type basis

sets as a practical choice for investigating electronic structures in semiconductor devices. This

should provide the basis for more accurate predictions of band offsets at semiconductor interfaces

and more accurate positioning of impurity levels in the band gaps for the design of photovoltaic,

thermoelectric, and other new semiconductor systems.

Appendix

This appendix lists, with the CRYSTAL14 input format, all ECP and pruned basis sets (see discus-

sions in Sec. 2.2) used for periodic calculations in this chapter.

Al
13 5
0 0 6 2.0 1.0

13983.1000000 0.00194267
2098.7500000 0.0148599
477.7050000 0.0728494
134.3600000 0.2468300
42.8709000 0.4872580
14.5189000 0.3234960

0 1 6 8.0 1.0
239.6680000 -0.00292619 0.00460285
57.4419000 -0.0374080 0.0331990
18.2859000 -0.1144870 0.1362820
6.5991400 0.1156350 0.3304760
2.4904900 0.6125950 0.4491460
0.9445400 0.3937990 0.2657040

0 1 3 3.0 1.0
1.2779000 -0.2276060 -0.0175130
0.3975900 0.00144583 0.2445330
0.1600950 1.0927900 0.8049340

0 1 1 0.0 1.0
0.1000000 1.0000000 1.0000000

0 3 1 0.0 1.0
0.3250000 1.0000000

P
15 5
0 0 6 2.0 1.0

19413.3000000 0.0018516
2909.4200000 0.0142062
661.3640000 0.0699995
185.7590000 0.2400790
59.1943000 0.4847620
20.0310000 0.3352000

0 1 6 8.0 1.0
339.4780000 -0.00278217 0.00456462
81.0101000 -0.0360499 0.03369360
25.8780000 -0.1166310 0.13975500
9.4522100 0.0968328 0.33936200
3.6656600 0.6144180 0.45092100
1.4674600 0.4037980 0.23858600

0 1 3 5.0 1.0
2.1562300 -0.2529230 -0.01776530
0.7489970 0.0328517 0.27405800
0.2831450 1.0812500 0.78542100

0 1 1 0.0 1.0
0.1000000 1.0000000 1.00000000

0 3 1 0.0 1.0
0.5500000 1.0000000



16

S
16 5
0 0 6 2.0 1.0

21917.1000000 0.0018690
3301.4900000 0.0142300
754.1460000 0.0696960
212.7110000 0.2384870
67.9896000 0.4833070
23.0515000 0.3380740

0 1 6 8.0 1.0
423.7350000 -0.0023767 0.0040610
100.7100000 -0.0316930 0.0306810
32.1599000 -0.1133170 0.1304520
11.8079000 0.0560900 0.3272050
4.6311000 0.5922550 0.4528510
1.8702500 0.4550060 0.2560420

0 1 3 6.0 1.0
2.6158400 -0.2503740 -0.0145110
0.9221670 0.0669570 0.3102630
0.3412870 1.0545100 0.7544830

0 1 1 0.0 1.0
0.1171670 1.0000000 1.0000000

0 3 1 0.0 1.0
0.6500000 1.0000000

Cu
229 7
INPUT
19.0 1 3 2 0 0 0

23.2906000 -4.0027600 -1
2.6205900 3.3246500 -2
7.8108200 224.3233000 0
6.6332400 -180.3047000 0

51.1573400 3.4213000 -2
14.7340600 105.7012600 0

0 1 4 8.0 1.0
83.4200000 -0.0048290 -0.0082840
7.9700000 -0.6447990 -0.3218950
5.6000000 0.2652400 0.6181330
1.9320000 1.1897910 0.7221840

0 1 2 1.0 1.0
2.8660000 -0.0747740 -0.0005410
0.1319000 1.0170370 1.0000580

0 1 1 0.0 1.0
0.6874000 1.0000000 1.0000000

0 1 1 0.0 1.0
0.1000000 1.0000000 1.0000000

0 3 4 10.0 1.0
65.8000000 0.0255970
18.8200000 0.1486090
6.5380000 0.4117860
2.3480000 0.6055070

0 3 1 0.0 1.0
0.7691000 1.0000000

0 3 1 0.0 1.0
0.2065000 1.0000000

Zn
230 7
INPUT
20.0 1 3 2 0 0 0

24.8870500 -3.9164800 -1
2.7915900 3.4308200 -2
8.3267600 244.3163400 0
7.0965100 -199.4271100 0

75.7060300 4.1147300 -2
16.0762700 118.2993600 0

0 1 4 8.0 1.0
113.5000000 -0.0042800 -0.0074290

8.3080000 -0.8202320 -0.4326050
6.3320000 0.4250060 0.7234510
2.1460000 1.1980770 0.7272170

0 1 2 2.0 1.0
2.9060000 -0.0823560 -0.0230010
0.1623000 1.0215740 1.0028240

0 1 1 0.0 1.0
0.8116000 1.0000000 1.0000000
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0 1 1 0.0 1.0
0.1000000 1.0000000 1.0000000

0 3 4 10.0 1.0
65.9900000 0.0276530
19.8100000 0.1587940
6.9450000 0.4209710
2.5430000 0.5852770

0 3 1 0.0 1.0
0.9165000 1.0000000

0 3 1 0.0 1.0
0.3264000 1.0000000

Ga
231 7
INPUT
21.0 1 3 2 0 0 0

26.7430200 -3.8736300 -1
3.4653000 4.1247200 -2
9.1113000 260.7326300 0
7.8932900 -223.9600300 0

79.9935300 4.2003300 -2
17.3911400 127.9913900 0

0 1 4 8.0 1.0
113.9000000 -0.0017110 -0.0080460

9.1550000 -0.8230360 -0.3574320
6.6330000 0.4586180 0.6637940
2.2780000 1.1618170 0.7136190

0 1 2 3.0 1.0
2.1230000 -0.1455060 -0.0962610
0.1939000 1.0511470 1.0175730

0 1 1 0.0 1.0
0.8818000 1.0000000 1.0000000

0 1 1 0.0 1.0
0.1000000 1.0000000 1.0000000

0 3 4 10.0 1.0
70.4300000 0.0288770
21.0500000 0.1662530
7.4010000 0.4277760
2.7520000 0.5704100

0 3 1 0.0 1.0
1.0260000 1.0000000

0 3 1 0.0 1.0
0.3907000 1.0000000

As
233 9
INPUT
23. 0 2 4 6 2 0
28.725122 370.114025 0

6.7676810 9.3492960 0
45.3310640 99.1421030 0
44.7674150 198.3078800 0
19.5390900 28.3830730 0
18.9734710 56.8714640 0
51.0571520 -18.4851450 0
50.1513400 -28.1135300 0
16.1089360 -1.2238950 0
14.6722230 -1.3457650 0
3.8519270 0.1017570 0
3.8135020 0.1703380 0

11.9405840 -0.7752300 0
17.7611600 -2.1572590 0

0 0 6 2.0 1.0
2542.8100000 0.0011370
381.1690000 0.0060550
40.2342000 0.0841250
16.1217000 -0.4052850
3.2018900 0.7129260
1.4209600 0.4733760

0 0 6 2.0 1.0
2542.8100000 -0.0003900
381.1690000 -0.0021900
40.2342000 -0.0268530
16.1217000 0.1368780
3.2018900 -0.3204570
1.4209600 -0.3373910

0 0 1 0.0 1.0
0.3214430 1.0000000
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0 0 1 0.0 1.0
0.1167350 1.0000000

0 2 6 6.0 1.0
99.5349000 0.0038570
24.1195000 -0.0851010
5.8419600 0.4047620
2.5601000 0.5314780
1.0930800 0.1840120
0.3184240 0.0057640

0 2 6 3.0 1.0
99.5349000 -0.0007720
24.1195000 0.0199410
5.8419600 -0.1072100
2.5601000 -0.1722590
1.0930800 0.0087610
0.3184240 0.5697440

0 2 1 0.0 1.0
0.1009720 1.0000000

0 3 6 10.0 1.0
113.5090000 0.0119800
36.8872000 0.0795440
13.6893000 0.2367550
5.3896400 0.4015340
2.0804600 0.4066860
0.7375680 0.1731620

0 3 1 0.0 1.0
0.3078000 1.0000000

Se
234 3
INPUT
6.0 1 2 2 2 0 0

2.0935600 -5.5849800 -1
20.5564400 13.2808100 -2
3.1549000 51.0001100 0
2.5849500 1.7964000 -2
2.5852600 30.4378700 0
1.3829000 2.4000100 -2
1.4267100 6.5994800 0

0 1 4 6.0 1.0
3.711000000 0.05574400 -0.00601400
1.586000000 -0.51052000 -0.12144700
0.533900000 0.48075500 0.45260700
0.208500000 0.81029200 0.66975100

0 1 1 0.0 1.0
0.100000000 1.00000000 1.00000000

0 3 2 0.0 1.0
1.709860600 0.99541800
0.552825300 1.00000000

Ag
247 7
INPUT
19.0 1 3 3 2 0 0

9.0169600 -8.4466900 -1
1.5174000 6.2063400 -2
3.2308800 -56.8262400 0
4.8274700 92.4017300 0
1.2169900 3.7563700 -2
3.1861500 -80.9533500 0
4.0534900 118.8680100 0

22.9402000 3.4089500 -2
6.2662700 57.1051300 0

0 1 4 8.0 1.0
63.5600000 -0.0007310 -0.0042340
6.3900000 1.3927360 0.0612760
5.0220000 -2.8731020 -0.3387460
1.7890000 2.0173610 1.1908320

0 1 2 1.0 1.0
2.4510000 -0.0725390 -0.0498300
0.1561000 1.0213580 1.0065160

0 1 1 0.0 1.0
0.6871000 1.0000000 1.0000000

0 1 1 0.0 1.0
0.1000000 1.0000000 1.0000000

0 3 3 10.0 1.0
14.6400000 0.0136280
2.6930000 0.3726950
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1.2330000 0.6812940
0 3 1 0.0 1.0

0.5057000 1.0000000
0 3 1 0.0 1.0

0.1900000 1.0000000

Cd
248 7
INPUT
20.0 1 3 3 2 0 0

9.8132500 -8.6986400 -1
1.6047600 6.5693400 -2
3.3772700 -59.3639500 0
5.0887600 93.5961000 0
1.2517100 3.6786300 -2
3.4259200 -104.5069400 0
4.2141500 145.6731600 0

22.3533700 3.3309400 -2
6.7540800 62.0661600 0

0 1 4 8.0 1.0
63.3800000 -0.0004640 -0.0048740
6.7140000 2.2928770 0.1896300
5.6020000 -3.9028840 -0.4918720
1.9710000 2.0846040 1.2135010

0 1 2 2.0 1.0
2.6960000 -0.0648660 -0.0533380
0.1758000 1.0196610 1.0071020

0 1 1 0.0 1.0
0.7689000 1.0000000 1.0000000

0 1 1 0.0 1.0
0.1000000 1.0000000 1.0000000

0 3 3 10.0 1.0
15.5100000 0.0120650
2.9410000 0.3701680
1.3790000 0.6807600

0 3 1 0.0 1.0
0.5782000 1.0000000

0 3 1 0.0 1.0
0.2300000 1.0000000

In
249 7
INPUT
21.0 1 3 3 2 0 0

10.5898700 -8.8403100 -1
1.7388300 6.9012400 -2
3.6280600 -68.4831900 0
5.3027000 101.7727200 0
1.4304500 3.9855400 -2
3.7444700 -129.7859400 0
4.4767900 171.9048700 0

29.1607200 3.4924400 -2
7.2656600 68.2781600 0

0 1 4 8.0 1.0
71.7600000 0.0007330 -0.0045130
7.6540000 1.0897810 0.0316150
5.6160000 -2.7310890 -0.3380060
2.1040000 2.1128440 1.2134640

0 1 2 3.0 1.0
2.6100000 -0.0996900 -0.1103170
0.1901000 1.0312300 1.0139000

0 1 1 0.0 1.0
0.8410000 1.0000000 1.0000000

0 1 1 0.0 1.0
0.1000000 1.0000000 1.0000000

0 3 3 10.0 1.0
17.1600000 0.0148930
3.1270000 0.3881350
1.4750000 0.6626390

0 3 1 0.0 1.0
0.6452000 1.0000000

0 3 1 0.0 1.0
0.2754000 1.0000000

Sb
251 9
INPUT
23. 0 2 4 4 2 0
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16.3308650 281.0715810 0
8.5565420 61.7166040 0

14.4703370 67.4573800 0
13.8161940 134.9335030 0
8.4249240 14.7163440 0
8.0927280 29.5185120 0

14.8863310 35.4478150 0
15.1463190 53.1434660 0
5.9082670 9.1792230 0
5.5943220 13.2402530 0

14.4449780 -15.3668010 0
14.4492950 -20.2961380 0

0 0 6 2.0 1.0
371.5840000 0.0015910
26.5392000 -0.0416840
16.6213000 0.2733430
7.7355100 -0.7676850
1.8923400 0.8994960
0.9104310 0.4313870

0 0 6 2.0 1.0
371.5840000 0.0006540
26.5392000 -0.0109620
16.6213000 0.0938330
7.7355100 -0.3040090
1.8923400 0.5084090
0.9104310 0.3392390

0 0 1 0.0 1.0
0.2442310 1.0000000

0 0 1 0.0 1.0
0.1000000 1.0000000

0 2 5 6.0 1.0
16.0509000 0.0921570
10.2621000 -0.2755590
2.4283200 0.6586400
1.0336000 0.4668920
0.2594400 0.0285110

0 2 5 3.0 1.0
16.0509000 -0.0253130
10.2621000 0.0797960
2.4283200 -0.2420940
1.0336000 -0.1486050
0.2594400 0.5489440

0 2 1 0.0 1.0
0.1000000 1.0000000

0 3 5 10.0 1.0
45.4785000 0.0032590
18.5114000 -0.0054970
3.9160000 0.2799530
1.7148200 0.5127510
0.6973190 0.3328720

0 3 1 0.0 1.0
0.2304000 1.0000000

Te
252 3
INPUT
6.0 2 3 3 2 0 0

0.9484700 -3.9598400 -1
3.9468200 -13.4287100 -1
3.4940000 12.9566500 -2
1.2147700 -47.4588200 0
1.3353000 72.7751400 0
1.3739400 8.4792100 -2
1.2776100 -39.4068400 0
1.2842500 51.9367300 0
3.6661800 11.5466300 -2
0.9318900 11.2377600 0

0 1 4 6.0 1.0
2.364000000 0.08717900 -0.00398200
0.976900000 -0.77682600 -0.23690000
0.464700000 0.56325000 0.40146700
0.177100000 0.92605300 0.79317900

0 1 1 0.0 1.0
0.100000000 1.00000000 1.00000000

0 3 2 0.0 1.0
0.497790100 0.95590600
0.200978300 1.00000000
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Chapter 3

Predicted roles of defects in band
offsets and energetics at CIGS
Solar Cell interfaces and
implications for improving
performance

The contents presented in this chapter are based on H. Xiao and W. A. Goddard, III,

“Predicted roles of defects on band offsets and energetics at CIGS (Cu(In,Ga)Se2/CdS)

solar cell interfaces and implications for improving performance”, J. Chem. Phys. 2014,

141, 094701.

Harvesting solar energy through direct transformation into electrical power by photovoltaic devices

is a most promising approach to renewable energy alternatives, and indeed the global operating

capacity for solar photovoltaics is increasing steadily[1]. Currently, crystalline silicon technology

dominates industrial solar cell production[2], but thin film technology for solar cells would provide

flexibility in both production and implementation[3]. Among all thin film absorber materials, CIGS

has reached the highest conversion efficiency, exceeding 20% on rigid substrates in laboratory-scale[4],

with efficiency on flexible substrates increasing rapidly[5, 6], but that the efficiency of manufactured

modules and panels lags behind considerably, raising the quest for identifying key factors in quality

control of composition and structure. A significant characteristic of CIGS absorbers is the universal

presence of such structural defects as Cu vacancies and Na impurities, which correlate strongly with

device performance. We expect that understanding these correlations would help improve CIGS

solar cell manufacturing processes to achieve high performance and might point the way toward

designing novel absorber materials.

Experimentally, it is well established that Cu deficiencies near the CIGS/CdS interface is an

essential characteristic of highest efficiency CIGS solar cells[7–9]. It has been suggested that this may
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be because of reduced recombination[10], but others consider that is not likely the major responsible

for the effect of Cu vacancies on performance[11]. Additionally, incorporation of Na[9, 10, 12] is

widely accepted as a key ingredient in building the best performance devices, but the origin of

this effect remains debated, with suggestions that it may affect film growth (grain sizes and crystal

orientation)[13–17] and p-type conductivity[16, 18, 19]. None of these speculations has yet been

confirmed as crucial for the boost in performance. Indeed, K has recently been proposed[6] to

provide a beneficial alternative. In addition, it is generally observed that Cd dopants are introduced

by diffusion into CIGS absorbers close to the interface with CdS buffer layers[20–22], resulting in

the formation of a buried homojunction[23], but this is suggested to have limited influence on cell

efficiency[24].

Despite numerous experimental studies, an atomistic understanding of the roles of such defects

on device performance is hindered by difficulties in decoupling and probing directly the effects

from various factors. Consequently, we carried out QM studies to provide an understanding of

these phenomena. DFT methods of QM are widely used to investigate the relationship between

chemistry and functionality of materials (see Ch. 2 and references therein), and some DFT efforts

have previously been applied toward such aspects of CIGS solar cells as defect formation[19, 25–30]

and levels[31–33]. The most important aspect of CIGS solar cells is the CIGS/CdS interface, where

the essential physics of photovoltaics takes place. It is here that the defects mentioned above have

their highest concentrations and their greatest impact. Therefore, the aim of our studies is to provide

a theoretical basis for understanding of roles of defects in the CIGS/CdS interface.

This chapter describes our recent work[34], in which we first establish the accuracy of the B3PW91

flavor of DFT methodology for predicting band offsets through benchmarks studies on (110) and

(112) CuInSe2/CdS interfaces. Then we determine the effects of Cu vacancies, and doping with Ga,

Na, K, and Cd on both band offsets and interfacial energies. To do this we constructed interfaces

between CdS and CIGS with various defects. These results are used to recommend changes to

optimize solar cell performance.

3.1 Methodology for calculating band offsets from interface

modeling

It is generally understood that the LDA or GGA (PW91 or PBE) flavors of DFT lead to band gaps

that are 1 to 2 eV too small (see Ch. 2 and references therein). For these methods it is popular to add

in a Hubbard self-interaction correction (U) to improve the band gap[35] or to include perturbative

many-body approximation (G0W0)[36]. Our approach is instead to use hybrid DFT functionals

that we have shown provide accurate band gaps for semiconductors and insulators (see Ch. 2 and

references therein). In particular we showed that the hybrid functional B3PW91 gives accurate band
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gaps (within 0.1 eV) for the semiconductors considered in this study.

All calculations were performed with the CRYSTAL09 package[37], which uses local atomic

Gaussian-type basis sets rather than plane waves. This enables fast evaluation of the HF exchange

terms required for hybrid DFT method (the evaluation of exact exchange for plane wave basis sets

is very expensive). We used all-electron basis sets of triple-ζ quality for Na, S, and K[38, 39], but for

Cu, Ga, Se, Cd, and In we used the SBKJC Relativistic effective core potentials (based on angular

momentum projection operators[40–43]) and the associated basis sets[44]. Thus we treat explicitly

just the outer 19 electrons for Cu, 21 for Ga, 6 for Se, 20 for Cd, and 21 for In. We optimized

the valence and polarization Gaussian exponents of all basis sets for ideal crystal structures (see

Appendix for details) to reduce linear dependency. Note that we neglected SOC, because all the

systems considered here are closed-shell and the lowest conduction bands are dominant by s-type

atomic orbitals, there is only second-order SOC, which is small. For example, the contribution of

SOC to band gaps in CdS and InP are calculated to be only 0.03 and 0.08 eV[45]. An extra-large

grid, consisting of 75 radial points and 974 angular points, was used for accurate integration, and

the reciprocal space was sampled by Γ-centered Monkhorst-Pack scheme[46] with a fine resolution

of around 2π × 1/40 Å−1.

We employed the AEP method[47], rather than the core level method as discussed later, to

provide reference levels necessary for connecting the macroscopic band energy levels for the bulk

systems and the interfaces[48]. The electrostatic potential was evaluated at each point by the range

separation and multipolar expansion scheme[49, 50] implemented in CRYSTAL09, setting ITOL =

15 and IDIPO = 6 for accuracy. In order to converge the integrals of electrostatic potentials to

within 0.01 eV, we adopted grids with resolution of 0.01 Å.

Figure 3.1 illustrates the procedure of aligning band energies of our interface calculations with

those of the bulk system.

• First, we constructed the interface based on the bulk structures.

• Then we optimized fully both the atomic positions and the supercell lattice parameters, while

applying symmetry constraints to maintain a perfect matching at the interface (all coordinates

and symmetry constraints are provided in the supplemental material of our paper[34]).

• Then we averaged the electrostatic potential within the xy plane as a function of the interface

direction, z to obtain V (z). Here the middle layer of each material, uniquely defined between

minima of V (z), was further averaged and compared to the V (z) from bulk calculations to

deduce the shift in the reference levels.

• Finally, the VBM and CBM in each bulk system were aligned to obtain the VBO and CBO.

Note that, for theoretical consistency, all values, including band gaps and lattice parameters of
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bulks, are from calculations of the same B3PW91 level, without use of any experimental results.

In constructing interface models, lattice matching of two sides is an inevitable issue, but all cases

throughout this study have lattice mismatch within 0.7%, which we found to give at most 0.06 eV

error in relative electronic levels.

Figure 3.1. Illustration of the computation of band offsets for the CuInSe2/CdS (110) interface: (a)
supercell structure with 5 layers for each material where the vertical axis is the [001] or z axis, (b)
electrostatic potential averaged over the xy plane plotted along the z direction. At the middle layer
of each side, we compare to results from bulk calculations (dotted lines). This is used to obtain the
potential shift ∆V for each material and (c) the final band alignment. Note that all potential shifts
are exaggerated for clarity.

A critical problem in modeling interfaces with 3D PBC is the artificial interaction introduced

between the interface and its image. However, if local charge neutrality holds at the interface, such

dipole-dipole interactions decay as r−3, so that it is of negligible influence for modest distances

between the interfaces. Consequently we first performed benchmark calculations to find an optimal

interface spacing that is large enough to exclude significant interface-interface interaction but rea-

sonably small for affordable computation cost. Table 3.1 summarizes this validation, which shows

clearly that convergence is achieved with ∼ 10 Å distance between interfaces for the AEP method.

This leads to convergence of interfacial energies within 0.004 J/m2 and band offsets within 0.01 eV.

Most importantly the predicted VBO = 0.73 eV agrees with the experimental results of VBO = 0.8

± 0.1 eV[51]. This error of only 0.07 eV is within the MAD of 0.09 eV for predicting band gaps from

B3PW91 (see Ch. 2 and references therein). This demonstrates both the stability and reliability of

our methodology.

A popular alternative to AEP is to determine band offsets by using core levels as a reference[52].

As shown in Table 3.2, we find that use of the core levels from different elements leads to some

fluctuations, with changes in the predicted CBO of up to 0.07 eV (as observed previously[52]). We
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found that the combination with the most stable convergence is: In (4s) for CuInSe2 side and Cd

(4s) for CdS side. (Due to the use of ECP, the deepest available core levels are S (1s), In (4s), Cu

(3s), and Cd (4s), in ascending energy order.) The results are shown in Table 3.1. At a large distance

of ∼ 19 Å between interfaces, an oscillation of 0.03 eV still remains in the calculated VBO, leading

to a result 0.3 eV larger than the experimental value. In principle, with semi-local XC functionals,

core levels and AEP have equivalent convergence and shift. However, the global hybrid functional

B3PW91 used here includes non-local HF exchange, which makes XC potential orbital-dependent,

so the KS orbitals and eigenvalues are more coupled and thus tricky to converge with respect to the

interface-interface distance, i.e., they are sensitive to the presence of interface. In contrast, AEP

is directly derived from electron density, which is subject to variational principle and thus steady

convergence.

Table 3.1. Convergence of interface thickness (d), interfacial energy (σ), VBO (∆Ev), and CBO
(∆Ec) with respect to number of layers of each side (L) and the interface-interface distance (D)
for CuInSe2/CdS interfaces parallel to (110) and (112). Here the interfacial energy is defined as
σ = (Einterface −

∑
iEbulk,i) /A, where both Ebulk,i are scaled proportionally to match numbers

of units in the supercell, and A is the interface area. The superscript CL indicates band offsets
calculated with core level method.

nonpolar (110)

L 3 5 7 9 Exptl.

D (Å) 6.27 10.47 14.68 18.89

0.8 ± 0.1a

d (Å) 2.08 2.07 2.08 2.08

σ (J/m2) 0.051 0.048 0.052 0.052

∆Ev (eV) 0.67 0.73 0.72 0.72

∆Ec (eV) 0.85 0.79 0.80 0.80

(∆Ev)CL (eV) 1.00 1.11 1.13 1.10

polar (112)

L 3 6

D (Å) 10.30 20.61

d (Å) 2.56 2.56

σ (J/m2) 0.042 0.040

∆Ev (eV) 0.69 0.67

∆Ec (eV) 0.83 0.85

a Ref. [51].

3.2 Band offsets at pristine CIGS/CdS interfaces

Table 3.1 includes results for both the (110) nonpolar interface and the polar (112) interface com-

monly observed in CIGS solar cells[53]. Although the polar nature of this orientation raises problems

in surface calculations due to charge separation, local neutrality still holds in each layer of the perfect
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Table 3.2. Fluctuations in calculated CBO values from using core levels of different elements,
illustrated by the CuInSe2/CdS (110) case with 5 layers for each side.

CuInSe2 side CdS side CBO (eV)

In (4s) Cd (4s) 1.11

Cu (3s) Cd (4s) 1.11

In (4s) S (1s) 1.18

Cu (3s) S (1s) 1.18

matching interface models, as shown in Figure 3.2. Thus the argument for convergence mentioned

above is valid here. Indeed, Table 3.1 shows convergence at about 10 Å in polar cases, similar to

the nonpolar ones.

The calculated VBO value of 0.69 eV in (112) is only 0.04 eV smaller than for (110), indicat-

ing weak dependence of band offsets on surface orientation, which is consistent with experimental

observation[54]. This indicates that the potential shift of each semiconductor side in the interface

is insensitive to the detailed local structure or dipole of the interface, whether it is nonpolar or

polar. Rather it is determined by the intrinsic nature of the atoms at both sides. Indeed, the

average electrostatic potential we use demonstrates such character, validating that it provides the

proper theoretical reference linking microscopic interface modelling with macroscopic screening in

semiconductor interfaces.

Figure 3.2. The CuInSe2/CdS (112) polar interface model and the calculated band alignment. This
CBO and VBO are within 0.04 eV of the (110) case in Figure 3.1.

Strikingly, our calculations show that for the perfect interface the CBO = 0.83 eV, which is far

from optimal, where 0 to 0.4 eV is thought to be best[55]. Such a high CBO would provide a barrier

preventing transport of photo-generated electrons from absorber to buffer layer. This result would
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appear to contradict the excellent performance of CIGS/CdS based solar cells. Consequently we

carried out investigations to resolve the inconsistency.

We expected that the CBO is strongly affected by the distribution of vacancies and defects, so

we replaced with Ga one out of the four symmetric In atoms in the conventional cell of CuInSe2,

leading to CuIn0.75Ga0.25Se2, which mimics the Ga concentration of ∼ 0.3 in the best performance

solar cells and which has a lattice mismatch within 0.7% (one additional Ga substitution in our cell

would give > 1% mismatch, while the limiting case CuGaSe2 has more than 5% lattice mismatch

with CdS).

Figure 3.3 shows the supercell of the CuIn0.75Ga0.25Se2/CdS(110) interface. We were surprised

to find that the increase of 0.13 eV in the absorber band gap goes entirely to decreasing VBO to 0.56

eV, while the CBO stays at 0.83 eV. This implies that the valence region of this absorber is more

sensitive to such changes in the chemical environment addressed by band gap engineering, indicating

that the CBO is not easily tuned. Indeed we find that for Cu-rich CIGS, the top of the valence band

is dominated by the Cu 3d orbitals, as shown in Figure 3.4, suggesting that Cu vacancy could have

a large effect.

Figure 3.3. The interface models and calculated band alignments of CuIn0.75Ga0.25Se2/CdS, where
we see that the band gap increase of 0.10 eV goes entirely to decreasing the VBO.

3.3 Bulk structures of defect CIGS

Experimentally, the structure of the commonly observed Cu deficient phase CuIn3Se5 has been

interpreted in terms of several quite different structural models, with no consensus[26]. However,

some theoretical models have been proposed to investigate this phase[25–27]. Following previous
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Figure 3.4. DOS of Cu-rich CuInSe2 shows the dominance of Cu 3d in the valence region. The VBM
is shifted to the origin.

work, we used a pristine
√

2×
√

2×1 supercell containing Cu8In8Se16 to derive two Cu-poor structures

having distinctly different Cu vacancy concentrations, i.e.,

• Cu5In9Se16 with 2 Cu vacancies or 12.5 at% and 1 In at a Cu site

• Cu2In10Se16 (CuIn5Se8), with 4 Cu vacancies or 25 at% and 2 In at Cu sites

For Cu5In9Se16 we examined all possible configurations and adopted the one with the lowest energy,

while for CuIn5Se8 low energy configurations proposed by previous LDA and GGA studies[26, 27]

were calculated with the hybrid functional B3PW91. Tables 3.3 and 3.4 list the relative energies of

configurations for Cu5In9Se16 and CuIn5Se8, respectively. Table 3.4 also includes PBE results using

both atomic Gaussian basis sets in this work and plane wave basis sets calculated with the VASP

package[56–59], and the two sets of results agree very well on such subtle energy differences, which

validates the use of atomic Gaussian basis sets here. Figure 3.5 illustrates the lowest energy struc-

tures for Cu5In9Se16 and CuIn5Se8 (see Appendix for their coordinates and the rest configurations

considered can be found in the supplemental material of our paper[34]). We find that just as for Ga

alloying, the Cu vacancies increase the band gap. Here the B3PW91 predicted band gap of 1.30 eV

for CuIn5Se8 phase is in excellent agreement with the experimental value of 1.27 eV[60].

Since a Cu deficient phase is universally present at the CIGS interface, the other dopants were

modeled based on the Cu5In9Se16 structure proposed above. Previous calculations showed the

preferred sites to be substitutional NaCu and CdCu[19, 29], so we formed the bulk structures based

on replacing two Cu atoms by two Na, two K, or one Cd. That is, we considered Na2Cu3In9Se16,
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Table 3.3. Relative energies (∆E) in meV/atom of all possible configurations within a
√

2 ×√
2× 1 supercell for Cu5In9Se16 phase calculated with B3PW91. Note that CH and CA stand

for configurations derived from chalcopyrite and CuAl-like structures, respectively.

Config. Space group ∆E Config. Space group ∆E Config. Space group ∆E

CH-1 P 4̄ 23.6 CH-2 P2 11.2 CH-3 P2 11.6

CH-4 P1 10.5 CH-5 P1 18.1 CH-6 P1 6.6

CA-1 P 4̄m2 21.3 CA-2 P 4̄m2 21.4 CA-3 P 4̄m2 0.0

CA-4 P 4̄m2 15.5 CA-5 Pmm2 5.1 CA-6 Pmm2 12.3

CA-7 Pmm2 8.1 CA-8 P 4̄m2 8.8 CA-9 Pmm2 5.1

Table 3.4. Relative energies (∆E) in meV/atom of low energy configurations for CuIn5Se8 phase
calculated with B3PW91 and PBE. Note the configuration notations conform to Ref. [26, 27].

Config. Space group B3PW91 PBE PBE* Config. Space group B3PW91 PBE PBE*

Type-A P 4̄m2 4.0 3.7 4.0 Type-B P 4̄m2 3.9 3.5 4.9

Type-C C222 2.6 3.5 4.1 Type-D P2 0.0 0.0 0.0

Type-E P 4̄ 10.5 8.3 8.4 Type-F P222 10.1 8.7 10.0

New-1 P 4̄ 1.4 1.5 1.1 New-2 Pmm2 1.8 2.6 2.2

* using plane wave basis sets with the PAW method.

Figure 3.5. The lowest energy model crystal structures for Cu5In9Se16 and CuIn5Se8. (a) Cu5In9Se16
with CA-3 configuration in Table 3.3; (b) CuIn5Se8 with Type-D configuration in Table 3.4. Se atoms
are not shown for clarity.

K2Cu3In9Se16, and CdCu3In9Se16. Again we calculated all possible configurations and chose the

ones with the lowest total energy (details can be found in the supplemental material of our paper[34]).

These configurations are consistent with each other and lead to a ratio of Cu:In:Se that is close to

1:3:5. We should point out that the optimal experimental atomic concentration of Na doping is

∼ 0.1%, but that Na accumulates on surfaces up to ∼ 1 at%[61]. Our model bulk Na2Cu3In9Se16

has 6.7 at% Na. Nevertheless we consider that this model is reasonable to probe the physics.
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3.4 Roles of defects in band offsets and energetics at CIGS/CdS

interfaces

Figure 3.6 shows the interface models of Cu5In9Se16/CdS and CuIn5Se8/CdS. For the Cu5In9Se16

case we find that the 12.5% concentration of Cu vacancy increases the band gap by 0.03 eV but

does not change the CBO at all. However, the CuIn5Se8 case with 25% depletion of Cu constituents

increases the band gap by 0.26 eV while raising the VBM due to the reduction in the number of

chemical bonds. This tunes the CBO to 0.46 eV, very close to the optimal value. These results

corroborate the speculation that Cu 3d electrons dominate the VBM region, so that the VBO

depends on the electronic structure engineering, while sufficient concentration of Cu vacancies makes

the VBM region dominated by the more rigid Se 4p, as shown in Figure 3.7, and VBO less variable,

and thus enables tunability of the CBO. We suggest that this underlies the high efficiency of CIGS

solar cells, which correlate with the presence of Cu deficient phases at the interface.

Figure 3.6. The interface models and calculated band alignments of (a) Cu5In9Se16/CdS and (b)
CuIn5Se8/CdS, which increases the band gap by 0.26 eV while decreasing the CBO by 0.33 eV.

We also examined the interfacial energies, finding that Ga alloying slightly decreases the interface

stability, increasing from 0.048 to 0.056 J/m2 for the CuIn0.75Ga0.25Se2/CdS case while Cu vacancies

dramatically decrease interfacial stability with σ = 0.129 J/m2 for Cu5In9Se16/CdS and 0.107 J/m2

for CuIn5Se8/CdS. This decrease in interfacial stability is the consequence of weaker bonding at the

interface. Partly this results from stretching the Ga–S bonds from their preferred length of 2.32 (in

CuGaS2 bulk) to 2.36 Å at the interface and partly it is because of fewer chemical bonds due to Cu

vacancies. However, these interfacial energies are all rather small, so that the interfacial stability

effects are far less important than the band offsets.

Figure 3.8a,b show the interfacial models of Na2Cu3In9Se16/CdS and K2Cu3In9Se16/CdS. In-

deed, we find that Na tunes the CBO from 0.83 eV to 0.45 eV while K tunes it to 0.05 eV. Thus

both alkalis move toward the optimal values while changing the overall band gap by 0.27 eV for
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Figure 3.7. DOS of Cu-poor CuIn5Se8 shows the dominance of Se 4p in the valence region. The
VBM is shifted to the origin.

Na and 0.20 eV for K. That a different mechanism is responsible is clearest for the K case, where

the reduction of CBO by 0.78 eV to 0.05 eV is mostly due to raising the VBM by 0.58 eV. Thus

the presence of these very positively charged alkali elements attracts electrons in the valence region

(from either Cu 3d or Se 4p), pushing up the energy. Therefore, it is the electrostatics that gives

Na and K a better capability for optimizing the CBO. However, both Na and K possess larger ionic

sizes than Cu, leading to increased interfacial energies to 0.138 J/m2 for Na and 0.151 J/m2 for K.

Such small changes are far from detrimental, as discussed above.

Indeed, the dramatic benefit of K to CBO is consistent with recent experiment, in which se-

quential post-deposition treatment with NaF and KF results in better performance[6]. However, K

possesses much larger ionic size, and might introduce structural instability. This can be estimated

by considering a simple decomposition energy ∆Ed, defined as

∆Ed ≡ E (A2Se) +
3

2
[E (CuInSe2) + E (CuIn5Se8)]− E (A2Cu3In9Se2) (3.1)

where A is an alkali element. For Na, ∆Ed = 4.7 kcal/mol, implies spontaneous formation of doped

structure. For K, on the other hand, ∆Ed = −16.7 kcal/mol, shows a relatively strong tendency of

the doped structure to decompose. Therefore, we suggest that the performance can be optimized

by tuning the ratio of Na to K to be optimal, with K improving the CBO and Na stabilizing the

doping.

The remaining interface model, CdCu3In9Se16/CdS, shown in Figure 3.8c, uncovers the effects
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of intermixing at the interface. The CBO is compliantly tuned by the increase in the band gap,

very likely due to the Cu vacancy, while the Cd impurity does not seem to play a significant role.

Similarly, the interfacial energy increases further to 0.225 J/m2, which again is not a substantial

effect.

Figure 3.8. The interface models and calculated band alignments of (a) Na2Cu3In9Se16/CdS, which
increases the band bap by 0.27 eV while decreasing the CBO by 0.38 eV, (b) K2Cu3In9Se16/CdS,
which increases the band bap by 0.20 eV while decreasing the CBO by 0.78 eV and (c)
CdCu3In9Se16/CdS, which increases the band bap by 0.22 eV while decreasing the CBO by 0.35 eV.

3.5 Concluding remarks

To elucidate the effects of defects on band offsets at CIGS/CdS interfaces, we applied the B3PW91

hybrid functional and used average electrostatic potentials for reference levels to obtain the offsets.

We first validated our methodology with benchmark calculations on pristine CuInSe2/CdS inter-

faces for both nonpolar (110) and polar (112) cases. We found that an interface-interface distance

of around 10 Å is sufficient for good convergence of interface geometry, interfacial energy, and band

offsets. We validated that these results (VBO = 0.73 eV) lead to excellent agreement with experi-

ment, VBO = 0.8 ± 0.1 eV. We also evaluated the core level method for predicting band offsets, but

we found both poor convergence and accuracy, suggesting that core levels provide poor reference

levels for predicting band offsets with hybrid functionals.

Our studies show that band offsets depend only weakly on the surface orientation (increasing

by 0.04 eV for the polar (112) vs nonpolar (220)), which is consistent with experimental observa-

tions. We then built optimized models of bulk CIGS structures having various defect or dopant

compositions and carried out calculations for the interface to CdS. Here we investigate the effects

on both band offsets and interfacial energies. We find that band gap widening (by 0.13 eV) by

Ga alloying (with Cu-rich phases) results only in modifying the VBO, with the CBO staying near

0.83 eV, which is far too large for an efficient solar cell. However, we find that introducing at the
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interface Cu vacancy concentrations close to experiment leads to a dramatic decrease in the CBO to

0.46 eV, a nearly satisfactory value (best performance is expected for < 0.4 eV). We find that the

Cu vacancies eliminate the dominance of the Cu 3d levels on the VBM. This removes the sensitivity

of the VBM to band gap engineering, enabling tunability of the CBO. This shows that Cu vacancies

play a critical importance on performance.

Furthermore, we show that addition of alkali elements Na and K improves the CBO, but via

a different mechanism. Here they elevate the VBM and thus CBM (band gap region) through

electrostatics. The effect of Na is to decrease CBO slightly to 0.45 eV, which may explain the

improved performance with Na. We predict that K has a much stronger effect on CBO than Na,

reducing CBO to 0.05 eV. However, we find that K tends to destabilize the defect phase, whereas

Na stabilizes it. Thus we propose that the performance of CIGS devices may be further optimized

through tuning the ratio of Na to K. On the other hand, Cd dopants lead to a slight increase in CBO

to 0.58 eV, indicating possible deleterious effects. Finally, all defects and dopants tend to decrease

the interfacial stability, but the magnitude seems small enough (0.01 to 0.18 J/m2) to be only a

minor issue.

Appendix

All ECP and optimized basis sets used in this chapter, with the CRYSTAL09 input format.

Na basis set optimized in fictitious chalcopyrite NaInSe2 crystal structure,
with CuInSe2 experimental crystal structure
11 6
0 0 8 2.0 1.0

56700.0000000 0.0002250
8060.0000000 0.0019100
1704.0000000 0.0105000
443.6000000 0.0500600
133.1000000 0.1691000
45.8000000 0.3658000
17.7500000 0.3998000
7.3800000 0.1494000

0 1 5 8.0 1.0
119.0000000 -0.0067300 0.0080300
25.3300000 -0.0798000 0.0639000
7.8000000 -0.0793000 0.2074000
3.0000000 0.3056000 0.3398000
1.2890000 0.5639000 0.3726000

0 1 1 1.0 1.0
1.5294700 1.0000000 1.0000000

0 1 1 0.0 1.0
0.5028040 1.0000000 1.0000000

0 1 1 0.0 1.0
0.0901240 1.0000000 1.0000000

0 3 1 0.0 1.0
0.3199450 1.0000000

S basis set optimized in experimental CdS crystal structure
16 6
0 0 8 2.0 1.0
109211.0000000 0.0002520
16235.2060000 0.0019934
3573.0286000 0.0111177
943.2381100 0.0498945
287.2617900 0.1661455
99.9142260 0.3627018
38.6021370 0.4108787
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15.5312240 0.1457875
0 1 6 8.0 1.0

281.2217100 -0.0057780 0.0081427
67.1065750 -0.0665855 0.0565570
21.7941350 -0.1203552 0.2039582
8.2097646 0.2741310 0.3973328
3.4178289 0.6463829 0.3946313
1.5452225 0.2925792 0.1544345

0 1 3 6.0 1.0
7.3626800 -0.0856710 -0.0368270
2.3028000 -0.8614760 0.0363180
0.8397090 0.5051340 0.9986630

0 1 1 0.0 1.0
0.3125210 1.0000000 1.0000000

0 1 1 0.0 1.0
0.1176550 1.0000000 1.0000000

0 3 1 0.0 1.0
0.4603150 1.0000000

K basis set optimized in fictitious chalcopyrite KInSe2 crystal structure,
with CuInSe2 experimental crystal structure
19 7
0 0 8 2.0 1.0
172500.0000000 0.0002200
24320.0000000 0.0019200
5140.0000000 0.0110900
1343.9000000 0.0499200
404.5000000 0.1702000
139.4000000 0.3679000
54.3900000 0.4036000
22.7100000 0.1459000

0 1 6 8.0 1.0
402.0000000 -0.0060300 0.0084100
93.5000000 -0.0805000 0.0602000
30.7500000 -0.1094000 0.2117000
11.9100000 0.2580000 0.3726000
5.1670000 0.6840000 0.4022000
1.5820000 0.3990000 0.1860000

0 1 4 8.0 1.0
17.3500000 -0.0074000 -0.0321000
7.5500000 -0.1290000 -0.0620000
2.9390000 -0.6834000 0.1691000
1.1900000 1.0800000 1.5000000

0 1 1 1.0 1.0
1.1296700 1.0000000 1.0000000

0 1 1 0.0 1.0
0.4514560 1.0000000 1.0000000

0 1 1 0.0 1.0
0.1579380 1.0000000 1.0000000

0 3 1 0.0 1.0
0.2961560 1.0000000

Cu basis set optimized in CuInSe2 experimental crystal structure
229 8
INPUT
19.0 1 3 2 0 0 0

23.2906000 -4.0027600 -1
2.6205900 3.3246500 -2
7.8108200 224.3233000 0
6.6332400 -180.3047000 0

51.1573400 3.4213000 -2
14.7340600 105.7012600 0

0 1 4 8.0 1.0
83.4200000 -0.0048290 -0.0082840
7.9700000 -0.6447990 -0.3218950
5.6000000 0.2652400 0.6181330
1.9320000 1.1897910 0.7221840

0 1 1 1.0 1.0
2.3598900 1.0000000 1.0000000

0 1 1 0.0 1.0
0.6953090 1.0000000 1.0000000

0 1 1 0.0 1.0
0.3178440 1.0000000 1.0000000

0 1 1 0.0 1.0
0.1072360 1.0000000 1.0000000

0 3 4 10.0 1.0
65.8000000 0.0255970
18.8200000 0.1486090



41

6.5380000 0.4117860
2.3480000 0.6055070

0 3 1 0.0 1.0
0.7696750 1.0000000

0 3 1 0.0 1.0
0.2329060 1.0000000

Ga basis set optimized in CuGaSe2 experimental crystal structure
231 8
INPUT
21.0 1 3 2 0 0 0

26.7430200 -3.8736300 -1
3.4653000 4.1247200 -2
9.1113000 260.7326300 0
7.8932900 -223.9600300 0

79.9935300 4.2003300 -2
17.3911400 127.9913900 0

0 1 4 8.0 1.0
113.9000000 -0.0017110 -0.0080460

9.1550000 -0.8230360 -0.3574320
6.6330000 0.4586180 0.6637940
2.2780000 1.1618170 0.7136190

0 1 1 3.0 1.0
3.8605400 1.0000000 1.0000000

0 1 1 0.0 1.0
0.8549090 1.0000000 1.0000000

0 1 1 0.0 1.0
0.3091850 1.0000000 1.0000000

0 1 1 0.0 1.0
0.1192010 1.0000000 1.0000000

0 3 4 10.0 1.0
70.4300000 0.0288770
21.0500000 0.1662530
7.4010000 0.4277760
2.7520000 0.5704100

0 3 1 0.0 1.0
0.9741730 1.0000000

0 3 1 0.0 1.0
0.3306270 1.0000000

Se basis set optimized in CdSe experimental crystal structure
234 4
INPUT
6.0 1 2 2 2 0 0

2.0935600 -5.5849800 -1
20.5564400 13.2808100 -2
3.1549000 51.0001100 0
2.5849500 1.7964000 -2
2.5852600 30.4378700 0
1.3829000 2.4000100 -2
1.4267100 6.5994800 0

0 1 3 6.0 1.0
2.6357000 0.3984680 0.1574060
1.9124800 -0.9303030 -0.6222610
0.7563100 0.2078380 0.7633640

0 1 1 0.0 1.0
0.2865600 1.0000000 1.0000000

0 1 1 0.0 1.0
0.1136360 1.0000000 1.0000000

0 3 1 0.0 1.0
0.3166550 1.0000000

Cd basis set optimized in CdS experimental crystal structure
248 8
INPUT
20.0 1 3 3 2 0 0

9.8132500 -8.6986400 -1
1.6047600 6.5693400 -2
3.3772700 -59.3639500 0
5.0887600 93.5961000 0
1.2517100 3.6786300 -2
3.4259200 -104.5069400 0
4.2141500 145.6731600 0

22.3533700 3.3309400 -2
6.7540800 62.0661600 0

0 1 4 8.0 1.0
63.3800000 -0.0004640 -0.0048740
6.7140000 2.2928770 0.1896300
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5.6020000 -3.9028840 -0.4918720
1.9710000 2.0846040 1.2135010

0 1 1 2.0 1.0
2.6058700 1.0000000 1.0000000

0 1 1 0.0 1.0
0.7850690 1.0000000 1.0000000

0 1 1 0.0 1.0
0.2887310 1.0000000 1.0000000

0 1 1 0.0 1.0
0.1133660 1.0000000 1.0000000

0 3 3 10.0 1.0
15.5100000 0.0120650
2.9410000 0.3701680
1.3790000 0.6807600

0 3 1 0.0 1.0
0.5775670 1.0000000

0 3 1 0.0 1.0
0.2227450 1.0000000

In basis set optimized in CuInSe2 experimental crystal structure
249 8
INPUT
21.0 1 3 3 2 0 0

10.5898700 -8.8403100 -1
1.7388300 6.9012400 -2
3.6280600 -68.4831900 0
5.3027000 101.7727200 0
1.4304500 3.9855400 -2
3.7444700 -129.7859400 0
4.4767900 171.9048700 0

29.1607200 3.4924400 -2
7.2656600 68.2781600 0

0 1 4 8.0 1.0
71.7600000 0.0007330 -0.0045130
7.6540000 1.0897810 0.0316150
5.6160000 -2.7310890 -0.3380060
2.1040000 2.1128440 1.2134640

0 1 1 3.0 1.0
2.7577000 1.0000000 1.0000000

0 1 1 0.0 1.0
0.8351740 1.0000000 1.0000000

0 1 1 0.0 1.0
0.2459350 1.0000000 1.0000000

0 1 1 0.0 1.0
0.1093360 1.0000000 1.0000000

0 3 3 10.0 1.0
17.1600000 0.0148930
3.1270000 0.3881350
1.4750000 0.6626390

0 3 1 0.0 1.0
0.6383770 1.0000000

0 3 1 0.0 1.0
0.2564740 1.0000000

The lowest energy model crystal structure for Cu5In9Se16 predicted with B3PW91:

Space group: P 4̄m2
Lattice parameters: a = 8.327435 Å, c = 11.743536 Å
Fractional coordinates:
Cu 0.500000 0.500000 0.000000
Cu 0.500000 0.500000 0.500000
Cu 0.500000 0.000000 -0.498358
Cu 0.000000 0.500000 0.498358
Cu 0.000000 0.000000 0.500000
In -0.250239 0.261367 0.249797
In 0.250239 -0.261367 0.249797
In -0.261367 0.250239 -0.249797
In 0.261367 -0.250239 -0.249797
In 0.250239 0.261367 0.249797
In -0.250239 -0.261367 0.249797
In -0.261367 -0.250239 -0.249797
In 0.261367 0.250239 -0.249797
In 0.000000 0.000000 0.000000
Se -0.269995 0.000000 0.116544
Se 0.269995 0.000000 0.116544
Se 0.000000 0.269995 -0.116544
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Se 0.000000 -0.269995 -0.116544
Se -0.249364 0.000000 -0.386869
Se 0.249364 0.000000 -0.386869
Se 0.000000 0.249364 0.386869
Se 0.000000 -0.249364 0.386869
Se 0.242897 0.500000 0.108132
Se -0.242897 0.500000 0.108132
Se 0.500000 -0.242897 -0.108132
Se 0.500000 0.242897 -0.108132
Se 0.248753 0.500000 -0.387034
Se -0.248753 0.500000 -0.387034
Se 0.500000 -0.248753 0.387034
Se 0.500000 0.248753 0.387034

The lowest energy model crystal structure for CuIn5Se8 predicted with B3PW91:

Space group: P2
Lattice parameters: a = 8.309972 Å, b = 11.776104 Å, c = 8.313099 Å, β = 90.104095°
Fractional coordinates:
Cu 0.500000 -0.001138 0.500000
Cu 0.500000 0.498865 0.000000
In 0.000000 0.000656 0.000000
In 0.000000 -0.009829 0.500000
In 0.000000 0.490173 0.000000
In 0.000000 -0.499344 0.500000
In 0.260693 -0.249401 0.262047
In -0.260693 -0.249401 -0.262047
In 0.500000 0.010273 0.000000
In 0.500000 -0.489729 0.500000
In -0.260687 0.250597 0.237937
In 0.260687 0.250597 -0.237937
Se 0.018385 0.135373 0.252103
Se -0.018385 0.135373 -0.252103
Se 0.018379 -0.364625 -0.247898
Se -0.018379 -0.364625 0.247898
Se 0.251618 0.364813 0.482787
Se -0.251618 0.364813 -0.482787
Se 0.262334 -0.127917 -0.478605
Se -0.262334 -0.127917 0.478605
Se 0.251621 -0.135186 -0.017228
Se -0.251621 -0.135186 0.017228
Se 0.482268 0.127150 0.263523
Se -0.482268 0.127150 -0.263523
Se -0.482263 -0.372851 0.236477
Se 0.482263 -0.372851 -0.236477
Se -0.262334 0.372084 -0.021406
Se 0.262334 0.372084 0.021406
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Chapter 4

Formation of the –N(NO)N(NO)–
polymer at high pressure and
stabilization at ambient conditions

The contents presented in this chapter are based on H. Xiao, Q. An, W. A. Goddard, III,

W.-G. Liu and S. V. Zybin, “Formation of the –N(NO)N(NO)– polymer at high pressure and

stabilization at ambient conditions”, Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 5321-5325.

With strong interplay between experiment and theory, such molecular crystals as N2[1, 2], CO2[3, 4],

CO[5, 6], NH3[7, 8], and benzene[9, 10], have been transformed into extended solids (covalent and

ionic bonded networks) under high pressures. These studies have enhanced our understanding of

chemical bonds under compression and provide opportunities to seek additional novel materials;

however, it has been difficult to retain these remarkable structures at the ambient conditions needed

for most applications[11]. For CO2, a 3D covalent network was synthesized[3] at high pressure (40

GPa) and temperature (1,800 K) that is isomorphic to the β-cristobalite phase of SiO2[12], with each

carbon atom bonded tetrahedrally to four oxygen atoms. This phase of CO2 was proposed to have

potential applications as superhard (initial experiments estimated a bulk modulus of 365 GPa[13],

but theory and experiment later found it to be 136 GPa[12, 14]), nonlinear optical, and high energy

density material, so efforts were made to quench this phase down to 1 atm and 300 K[3]; however,

it reverts back to the molecular phase at pressures lower than 1 GPa.

Since it is isoelectronic to CO2 but polar, attempts were made to form an extended solid from

N2O using compression (above 20 GPa) and laser heating (above 1,000 K) in a diamond anvil[15].

However, instead it decomposed into a mixture of an ionic crystal NO+NO−3 and compressed N2

molecules. No covalent extended framework similar to the polymeric CO2 phase was found. Indeed,

since the nitrogen atom forms one less covalent bond than carbon atom, it is not obvious that it

would be possible to construct a dense extended solid phase of N2O other than the ionic form. Even

so, we decided to use first principle method to explore a large number of space groups and bonding
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patterns at high pressures.

This chapter describes our work[16], in which we predict a one-dimensional all-nitrogen backbone

polymer phase with two planar conformations for N2O at high pressures, and determine the transition

pressure of 60 GPa, above which the polymer phases are the most stable form. Furthermore, we

find that upon relaxation to ambient conditions, both planar polymers relax to the same non-planar

trans-polymer, and the predicted phonon spectrum and dissociation kinetics validate its stability.

4.1 Search for extended solid phases of N2O under high pres-

sures

Since we start with molecular crystals of NNO in which London dispersion attraction (van der Waals

attraction) is dominant, we employed the PBE-ulg flavor of DFT (DFT-ulg) in which corrections

accounting for London dispersion attractions are included[17]. PBE-ulg calculations were performed

using VASP package[18–20], modified to describe PBE-ulg and using the PAW method[21] to account

for core-valence interactions. The kinetic energy cutoff for plane wave expansions was set to 500

eV, and the reciprocal space was sampled by Γ-centered Monkhorst-Pack scheme[22] with a fine

resolution of 2π × 1/60 Å−1. The convergence criteria were set to 10−6 eV energy difference for

solving for the electronic wavefunction, and 10−3 eV/Å force for geometry optimization.

We searched for high pressures structures with two independent strategies:

(1) In the first, we started with 41 known AB2-type crystal structures, replaced A with O and B

with N, and used DFT to determine the optimum atom positions and packings using a fixed

density of 3.915 g/cm3 (a relative compression of 0.384 and the same as polymeric CO2 at

41 GPa[12]). Then we took the new configurations from the lowest energy structures, built

appropriate extended cells, and refined further with DFT to obtain the optimum stacking.

(2) In the second approach, we used the USPEX code[23–25] based on an evolutionary algorithm

developed by Romanov, Glass, and Lyakhov[23] and featuring local optimization, real-space

representation, and flexible physically motivated variation operators. Here we considered a

12-atom unit cell at 40, 60, and 80 GPa. Note that in the search of structures using USPEX,

the kinetic energy cutoff was lowered to 400 eV, with reciprocal grids of 2π × 0.06 Å−1. After

locating the global minima, the above-mentioned finer computational settings were applied

again to confirm the structures and energetics.

Both methods led to the same two final high pressure structures: both corresponding to a 1D

N2O polymer but with either cis- (Figure 4.1a) and trans- (Figure 4.1b) conformations (the cis-case

is lower), predicted to be the most stable species above 60 GPa. The valence bond descriptions of

these structures has an alternating N and N+ backbone polyacetylene-like zigzag chain with each N+
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forming a covalent bond to O−. The valence bond description would suggest alternating single and

double bonds (1.448 Å and 1.309 Å), which we find for the cis-case; however, for the trans-case we

find all NN bonds to have the same bonding distances (1.390 Å at 1 atm), indicating full resonance

along the chain.

Figure 4.1. Illustration of crystal structures and chemical formulations of a single chain for (a)
planar cis-polymer and (b) planar trans-polymer.

4.2 Transitions between molecular, ionic, and polymer phases

of N2O

Figure 4.2 shows the enthalpies of various relevant phases of N2O as a function of pressure, taking the

ground state molecular crystal with space group Pa3̄ (α-nitrogen structure) as the reference. For the

two molecular phases, Pa3̄ and Cmca, experiments find head-to-tail orientation disorder[26], so we

considered all possible conformations in the unit cell to determine the lowest energy. The calculated

dependence of crystal volume on pressure is comparable with experiment (Figure 4.3), leading to a

calculated transition pressure between the two molecular phases of 5.8 GPa at 0 K, compared to

the experimental value of 4.8 GPa at room temperature[26]. Note that the deviation of 1 GPa is

equivalent to an energy density of only 0.14 kcal/mol/Å3, and such small error is well within the

accuracy limit of DFT methods.

In the range of 10 to 55 GPa and 1,000 to 3,400 K, the diamond anvil experiments on NNO
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Figure 4.2. Ground state enthalpy as a function of pressure predicted for various phases of N2O.

observed a mixture of the ionic NO+NO−3 phase in equilibrium with an N2 molecule phase, formed

from the dissociation of N2O at high pressure and temperature[15, 29, 30]. We also calculated these

phases at the pressures considered here. However, the structure of NO+NO−3 is not well-established

experimentally: experiments reported the formation of monoclinic P21/m phase ionic salt from the

high-pressure (2 GPa) reaction of an N2 and O2 mixture[31], while the original experiments on dis-

sociation of N2O under laser heating in a diamond anvil found an orthorhombic phase related to the

aragonite to form after cooling[15, 32]. Therefore, for the DFT study we constructed the NO+NO−3

crystal by cell relaxation starting with the aragonite structure. This led to a new orthorhombic

Pna21 phase (see Figure 4.4), which we found to be 0.03 eV per formula more stable than the mon-

oclinic phase. We carried out DFT calculations of N2 molecular crystals, starting with the known

phases (α, γ, ε, ζ) at low temperature[33], and at each pressure the energy calculated to be most

stable was used in the enthalpy calculations. Surprisingly, this combination of NO+NO−3 and N2

is more stable than the NNO molecular phases for all pressures down to 0 GPa. This is plausible,

since the heat of formation of N2O molecule is 82 kJ/mol above N2 and O2, which were shown to
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Figure 4.3. Comparison between PBE-ulg calculated (green filled symbols) and experimental ((a)
Ref. [27]; (b) Ref. [26]) (black open symbols) EOSs for molecular phases of N2O. Error bars are
shown for all experimental data, and the agreement is excellent for high pressures (> 2 GPa),
with the largest deviation of 1.8% for volume (0.6% for length dimension), which is most likely the
limitation of parent PBE functional[28]. However, at low pressure of 1 atm (0.001 GPa), PBE-ulg
gives overestimation of 6.6% for volume (2.2% for length dimension), which may be again originated
from PBEs description of molecular bonding: for N2O molecule, PBE gives N–N and N–O bond
lengths of 1.143 Å and 1.198 Å, overestimated by 1.3% and 1.2% with respect to experimental data of
1.128 Å and 1.184 Å. This error gets amplified through dipole in evaluating volume of the molecular
crystal. At high pressure, molecular crystals resemble more as extended solids, for which PBE is
better from theoretical construction. Indeed, as shown in this figure, PBE-ulg calculated volume
agrees better and better when pressure is increased.

form NO+NO−3 at 2 GPa using 10.2 keV synchrotron X-ray radiation[31].

Figure 4.2 shows that the cis- and trans- 1D polymeric phases remain energetically close (the

cis-case more stable by 0.03 – 0.10 eV/molecular unit) and become more stable than both the

molecular and the mixed ionic phases at pressures above 60 GPa. Including ZPE and entropy from

phonons has marginal effect(see Figure 4.5):

• including ZPE to obtain the 0 K Gibbs free energies, we find that the critical pressure for the

transition from the mixed ionic phase to the cis-polymer increases from 58.5 GPa to 61 GPa;

• while introducing both entropy and enthalpy corrections to 300 K leads to a further increase

to 62 GPa at 300 K (64 GPa at 500 K).

Here, ZPE and thermal corrections were calculated with phonon DOS as implemented in the Phonopy

code[34].
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Figure 4.4. Illustration of the orthorhombic crystal structure of ionic NO+NO−3 with space group
Pna21. The structure was derived from aragonite, with lower energy than the monoclinic P21/m
phase reported[31], and crystal structure coordinates can be found in the supplemental material of
our paper[16].

The dominant factor in determining the enthalpy at high pressure is the compressibility. For the

mixed phase the ionic NO+NO−3 component is a dense solid, but the global compressibility of the

mixed phase is dominated by the molecular phase of N2 (see Figure 4.A1), which polymerizes only

above 110 GPa[2]. In contrast, the two new NNO polymeric phases each forms a pure extended solid

with mixed covalent and ionic frameworks. Thus these phases dominate at high pressures (where the

PV term in the enthalpy becomes dominant) over all the other phases of N2O containing molecular

forms.

The major difference between these cis- and trans- forms is that the planar cis-NNO polymer

possesses alternating single and double bonds, as in polyenes (polyacetylene) with an even number of

carbons, while the planar trans-conformation of NNO has equal NN bond lengths (strong resonance)

along the chain, perhaps due to strong electrostatic repulsion between adjacent negatively-charged

oxygen atoms.

4.3 Relaxation of polymer phases to ambient conditions

We further investigated the stability of the two NNO polymers by phonon analysis. Here, to obtain

the phonon spectra, very tight convergence criteria were used, with 10−8 eV energy difference and

10−6 eV/Å force thresholds. To calculate force constants, we used the supercell approach with fi-

nite displacements, as implemented in the Phonopy code[34]. Indeed, for both crystals we find no
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Figure 4.5. The effect of quantum ZPE and temperature (entropy) on the transition pressure to
polymer phase Pc. (a) shows relative enthalpy ∆H (without ZPE) curves, which predict Pc = 58.5
GPa; (b) shows relative Gibbs free energy ∆G (at 0 K, i.e., no entropy contribution, but ZPE
is included) curves, rendering Pc = 61 GPa; (c) shows relative Gibbs free energy ∆G (at 300 K)
curves, increasing Pc to 62 GPa; (D) shows relative Gibbs free energy ∆G (at 500 K) curves, further
boosting Pc to 64 GPa. Since including both ZPE and entropy at 300 K increases Pc by only 3.5
GPa, we consider that high temperature is not essential for these systems.

imaginary phonon modes under high pressures, as shown in the phonon spectra in Figure 4.6 (at 80

GPa), which confirms their existence as stable species (local minima). However, as the pressure is

released, both crystals develop imaginary phonon modes at ∼ 14 GPa, and both relax to one sin-

gle non-planar trans-conformation (see Figure 4.7) at zero pressure, with a phonon spectrum that

attests its stability. Under high pressures, the planar conformations with their higher compress-

ibilities (see Figure 4.A1) are more stable but they lead to larger electrostatic repulsion between

negatively-charged oxygen atom and lone-pair on nitrogen in the cis-case, and between adjacent

negatively-charged oxygen atoms in the trans-case. It is the competition between compressibility

and electrostatics which leads to the transition to the non-planar polymer at low pressure.

Besides accommodating electrostatics, the transition between planar and non-planar trans- con-

formations is also accompanied by an abrupt change from uniform bonding to alternating single and
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Figure 4.6. Phonon spectra for polymer phases of N2O predicted at 80 and 0 GPa. Both planar cis-
and trans-polymer phases develop imaginary phonon modes, due to electrostatic repulsions and/or
second-order Peierls distortion, and transform into the same non-planar trans-polymer phase (see
Figure 4.7), the phonon spectrum of which at 0 GPa shows no imaginary modes.
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Figure 4.7. Illustration of crystal structure and chemical formulation of a single chain for non-planar
trans-polymer.

double bonds, as shown in Figure 4.8, implying synergistic Peierls distortion, which is relevant to

the electronic properties. Therefore, we calculated band gaps of all polymeric structures (optimized

with PBE-ulg flavor of DFT) and plotted against pressures in Figure 4.8. Interestingly, PBE-ulg

predicts that both planar NNO polymers are 1D metals, with transitions to insulators below 72 GPa

for cis-polymer and 25 GPa for trans-polymer, the latter with simultaneous conformation transition

from planar to non-planar. Figure 4.8 also shows the bond length differences between neighboring

N–N bonds for the various phases. We find a trend from uniform bonding (exact for trans-polymer,

quasi-uniform for cis-polymer with 0.03 Å difference) at high pressures to alternating single and

double bonds when pressure is released. Combining this with the trend in band gaps indicates a

first-order Peierls distortion, as in polyacetylene.

However, it is well documented (see Ch. 2 and references therein) that density functionals, such

as PBE that are based only on LDA and GGA, significantly underestimate band gaps for insulators,

due to intrinsic delocalization error from including the self-interaction in the Coulomb energy. To

verify the metallic properties of these polymers under high pressures, we re-investigated all electronic

structures with the hybrid functional B3PW91, which we showed to predict accurate band gaps for

a wide range of semiconductors (see Ch. 2 and references therein). Here, B3PW91 calculations were

conducted employing the CRYSTAL09 package[35], and 6-311G(d) triple-zeta quality basis sets for

both nitrogen and oxygen[36]. Similar k-space grids and convergence criteria, as in fine calculations

with VASP, were set for consistency. In contrast to PBE, B3PW91 predicts insulating states for

all three polymers throughout the whole range of pressures considered, as shown in Figure 4.8.

Here the DOS (Figure 4.9) shows that both planar cis- and trans-polymers at high pressures with

(quasi-) uniform bonding are charge-transfer insulators, with the VBM dominated by 2p orbitals

of the negatively charged oxygen and bridging nitrogen atoms, while the CBM dominated by 2p
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Figure 4.8. Band gap and neighboring N–N bond length difference predicted as functions of pressure
for all three polymer phases of N2O at ground states. The dashed lines with arrows indicate where
the transition from planar to non-planar conformation happens.

Figure 4.9. Total and partial electronic DOSs calculated with B3PW91 for planar cis-polymer (a)
and planar trans-polymer (b) at 80 GPa. The different colors indicate atoms on which the total
DOS is projected. The VBM is set as the zero energy reference.

orbitals of the positively charged nitrogen atom. Accordingly, B3PW91 results infer the transition

to be second-order Peierls distortion, as in polyacene. At this point we cannot be sure whether to

trust the B3PW91 or the PBE description, so it would be most valuable to carry out experiments
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on the conductivity or electronic spectra of these new phases.

4.4 Kinetic stability of the non-planar N2O polymer at am-

bient conditions

To further evaluate the stability of non-planar trans-polymer, we investigated the dissociation ki-

netics of the polymer, using DFT for a finite model oligomer containing 8 N2O units and terminated

with methyl groups at both ends. For finite model calculations, the geometry optimization, Hessian

calculation, and TS search were carried out at UB3LYP/6-311G(p,d) level using Jaguar[37]. The

Hessian was used to provide the vibrational frequencies for ZPE and thermo-corrections to enthalpy.

The TS was shown to have exactly one imaginary vibrational mode by following the minimum energy

path scan to connect reactant and product. Enthalpies are reported at 298.15 K and 1 atm.

Figure 4.10. Reaction path calculated for dissociation of the model oligomer. The oligomer contains
8 N2O units and is terminated with methyl groups at both ends.

We stretched this finite chain until it fractured, locating the TS shown in Figure 4.10. This

leads to an activation energy of 20.6 kcal/mol. At the TS, the partially dissociated N2O has N–N

distances of 2.062 and 1.830 Å to its two neighbors, much longer than corresponding equilibrium
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distances of 1.465 and 1.447 Å. This indicates that a large free space is required to activate the

dissociation process, making the dissociation less favorable in the solid. This high activation barrier

of 20.6 kcal/mol from the finite model corresponds to a surface energy of 1.56 × 103 erg/cm2,

considering the packing in the crystal. To rule out the effects of finite size and termination group,

we also did a TS search with an isolated periodic infinite chain of the non-planar polymer using the

CRYSTAL09 package (UB3LYP/6-311G(d)), and a barrier of 26.2 kcal/mol was found (see Figure

4.A2). Compared to the finite model, the slight overestimation might well reflect the constrained

space and flexibility in conformation due to PBC. This thus confirms the validity of using a finite

model previously, and we consider that it is likely that the non-planar trans-polymer of N2O will be

stable at 1 atm pressure and room temperature.

After passing the TS, the oligomer would start releasing N2O one by one from each end, ac-

companied with significant heat release of 40.6 kcal/mol per N2O molecule, which might lead to

catastrophic decomposition. Thus the non-planar trans-NNO polymer is a high energy content

structural material. Indeed, we calculated (PBE-ulg) the non-planar N2O trans-polymer to provide

an internal energy release of 3.5 kJ/g when dissociated into N2 and O2, which is comparable to the

energy release of TNT (4.2 kJ/g). Thus non-planar trans-NNO is a potential high-energy oxidizer

for new explosive composites and rocket propellants. Since the N2O polymer chain is composed

of alternating single and double bonds, similar to polyacetylene, albeit with an all nitrogen back-

bone, it might form the basis for a new type of conducting polymers, through appropriate doping or

structure modification. Similarly we expect that it might have strong nonlinear polarizabilities for

nonlinear optical applications.

4.5 Concluding remarks

Summarizing, we used DFT to predict that the NNO molecular crystal can be transformed into novel

polymeric phases at high pressures (beyond decomposition into mixture phase of ionic compound

NO+NO−3 and N2 gas previously observed in experiments). The two most stable 1D N2O polymers

with planar cis- and trans-conformations were identified to be energetically favorable at pressures

above 60 GPa. More importantly, when the pressure is released, these polymers transform into

the same non-planar trans-conformation, stable at ambient pressure and temperature. This was

substantiated by analysis of the phonon spectrum and by calculating the dissociation kinetics. This

new poly-NNO material might be an excellent high-energy oxidizer for a polymer composite in which

nonpolar NNO forms the matrix.

The PBE calculations suggest metallic property in the high pressure polymer resulting from the

strong resonance in these systems, which seems to disappear in the low pressure non-planar polymer

due to changes in bonding, leading to Peierls distortion, together with electrostatic repulsions. Thus
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with doping these NNO polymers, such as iodine, which works successfully in polyacetylene, may

give rise to a new type of conducting polymer based on all-nitrogen chains. This whole work serves to

illustrate the new in silico process of discovering new materials by theoretical modeling, particularly

under extreme conditions.

Appendix

Figure 4.A1. EOSs for various phases of N2O at ground states. The vertical axis is the compression
ratio V/V0, where V is volume per N2O formula, and V0 is the molecular volume for the N2O
molecular crystal with space group Pa3̄ at 0 GPa.

Figure 4.A2. TS calculated for dissociation of an isolated periodic infinite chain of the non-planar
polymer. The unit cell contains 8 N2O units.
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The crystal structure for planar cis-NNO-polymer at 80 GPa predicted with PBE-ulg :

Space group: Pnma
Lattice parameters: a = 3.864407 Å, b = 4.033027 Å, c = 4.600315 Å

Fractional coordinates:

O 0.589619 0.750000 0.391888

O 0.410381 0.250000 0.608112

O 0.910381 0.250000 0.891888

O 0.089619 0.750000 0.108112

N 0.719392 0.750000 0.632071

N 0.280608 0.250000 0.367928

N 0.780608 0.250000 0.132072

N 0.219392 0.750000 0.867929

N 0.441423 0.250000 0.123597

N 0.558577 0.750000 0.876403

N 0.058577 0.750000 0.623597

N 0.941423 0.250000 0.376403

The crystal structure for planar trans-NNO-polymer at 80 GPa predicted with PBE-ulg :

Space group: Pmmn
Lattice parameters: a = 4.094183 Å, b = 2.144710 Å, c = 4.067528 Å

Fractional coordinates:

O 0.000000 0.500000 0.414855

O 0.500000 0.000000 0.585145

N 0.000000 0.000000 0.897919

N 0.500000 0.500000 0.102081

N 0.000000 0.500000 0.714772

N 0.500000 0.000000 0.285228

The crystal structure for non-planar trans-NNO-polymer at 0 GPa predicted with PBE-ulg :

Space group: P21/c
Lattice parameters: a = 7.585837 Å, b = 4.914450 Å, c = 4.170160 Å, β = 93.748215°
Fractional coordinates:

O 0.655520 0.501835 0.264942

O 0.344479 0.498165 0.735058

O 0.344480 0.001835 0.235058

O 0.655520 0.998165 0.764942

N 0.772618 0.665839 0.336789

N 0.227382 0.334161 0.663211

N 0.227382 0.165839 0.163211

N 0.772618 0.834161 0.836789

N 0.146663 0.160657 0.832386

N 0.853337 0.839343 0.167614

N 0.853337 0.660657 0.667614

N 0.146663 0.339343 0.332386

The more stable orthorhombic crystal structure of ionic NO+NO−3 at 0 GPa predicted with PBE-ulg :

Space group: Pna21

Lattice parameters: a = 6.360302 Å, b = 8.019972 Å, c = 6.956295 Å

Fractional coordinates:

N 0.813720 0.518406 0.712900

N 0.813720 0.981594 0.212900

N 0.239097 0.765869 0.051196

N 0.239097 0.734131 0.551196

N 0.739097 0.234131 0.948804

N 0.739097 0.265869 0.448804
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N 0.313720 0.481594 0.287100

N 0.313720 0.018406 0.787100

O 0.184014 0.578418 0.537912

O 0.184014 0.921582 0.037912

O 0.747319 0.852605 0.233251

O 0.747319 0.647395 0.733251

O 0.247319 0.147395 0.766749

O 0.247319 0.352605 0.266749

O 0.684014 0.421582 0.462088

O 0.684014 0.078418 0.962088

O 0.608756 0.171732 0.362572

O 0.608756 0.328268 0.862572

O 0.407093 0.784885 0.484298

O 0.407093 0.715115 0.984298

O 0.907094 0.215115 0.515702

O 0.907094 0.284885 0.015702

O 0.108757 0.828268 0.637428

O 0.108757 0.671732 0.137428
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Chapter 5

Development of ECP for eFF to
extend application to high-Z
elements

The contents presented in this chapter are based on H. Xiao1, A. Jaramillo-Botero1, P. L. The-

ofanis and W. A. Goddard, III, submitted, 2014.

The BO approximation, which decouples the nuclear and electronic motions, constitutes one of

the fundamental assumptions for most atomistic modeling techniques, ranging from first principle

electronic structure methods, such as HF and DFT for accurate description of PESs, to force field

methods that enable MD simulations of large scale systems through classical approximations of

PES. However, the BO approximation breaks down for systems in extreme conditions where the

electronic portion of the wavefunction contains contributions from many stationary states[1], such as

those found at extremes of temperature, shock, and radiation etc., which cause irreversible material

transformations, fatigue, embrittlement, and ultimately failure.

Several methods have been developed to describe the coupling of nuclear and electronic motions,

including surface hopping schemes[2] which rely on PES generated by high level ab initio methods,

Ehrenfest dynamics with TDHF/TDDFT engines[3, 4], and fermionic dynamics[5, 6] approaches.

All these techniques are computationally expensive and impractical for performing long time scale

dynamics of large scale non-adiabatic materials phenomena.

The eFF method[7] was developed to overcome this limitation (see Figure 5.1) and recent im-

provements to it[1] confirm its scalability and applicability to challenging problems including, but

not limited to: explaining electronic phenomena during brittle fracture of silicon[8], understanding

the mechanisms of Auger induced chemical decomposition[9], characterizing hydrostatic and dy-

namic shock Hugoniots for different materials[1, 7, 10, 11], and tracking the dynamics of Coulomb

explosion in silicon and diamond nanoparticles[12], among others[13].

1These authors contributed equally to this work.
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Figure 5.1. eFF aims at long term and large scale non-adiabatic MD simulations in which the
electronic wavefunction positions and sizes vary dynamically.

Here, we present a formal extension to support high-Z elements in eFF using ECPs, and their

validation on C, O, Si, and Al based systems (energetics and geometries) using QM.

In the framework of eFF, nuclei are classical point charges and the total electronic wavefunction

is represented by a Hartree product of one-electron FSG wave packets, (5.1), whose positions, ~xi,

and sizes, si, are both dynamic variables.

Ψ(~ri) ∝
∏
i

exp

[
−
(

1

s2i
− 2psi

si

i

~

)
(~ri − ~xi)2

]
exp

[
i

~
~p~xi
· ~ri
]

(5.1)

This representation leads to a rather simple electronic energy expression, 〈Ψ|Ĥ|Ψ〉, consisting of the

sum of single-particle kinetic energies and pairwise Coulomb energies. Additionally, pairwise spin-

dependent Pauli corrections are introduced to locally compensate for the lack of explicit wavefunction

anti-symmetrization. As a result, the electronic contribution to the total energy is evaluated as

in classical force field methods. Furthermore, semi-classical EOM for propagating the electronic

wavefunction, as shown in Figure 5.1, are derived from the time dependent Schrödinger equation

with a local harmonic potential approximation. The combination of force-field-like energy evaluation

and semi-classical EOM in eFF enables long term and large scale non-adiabatic MD simulations of

low-Z systems, as demonstrated in previous work[1].

However, an intrinsic limitation of the all-electron FSG-based eFF described above emanates

from the spherical symmetry of the underlying basis functions. For atoms with valence electrons

of higher angular momenta, such as p-block elements, the FSG representation misses part of the

interaction between the core and valence electrons, due to the absence of explicit nodal structures.
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In this chapter, we present in Sec. 5.1 one approach to mitigate this problem, in the form of

ECP. This model form of ECP replaces the interaction between the core and the valence electrons

with a potential energy given by their overlap. The corresponding parameters that define the ECP

are obtained from first-principles QM. In Sec. 5.2, we show that the resulting ECP formulation

appropriately captures part of the missing p-character of FSG valence electrons, which leads to a

correct description of complex bonding structures (e.g., multiple bonds and lone pairs) for systems

containing p-block elements of the second and third row of the periodic table. In particular, we

demonstrate parameters for silicon, aluminum, carbon, oxygen, and binary combination SiC, and

example applications using the open source implementation[1] available in the parallel molecular

dynamics simulator LAMMPS[14].

5.1 Formulation of ECP models in eFF

The full eFF Hamiltonian, shown in (5.2), has a standard description for electrostatic interactions

between a set of 0D points and Gaussian charges which include, nucleus-nucleus (ENN ), electron-

electron (Eee), and nucleus-electron (ENe). In addition to the electrostatics, eFF introduces quan-

tum effects through an electron kinetic energy from the Gaussian (EKE) and a spin-dependent

Pauli repulsion potential term (EPR) between Gaussians (further details can be found in previous

work[1, 7]).

U (R, r, s, σ) = ENN (RNN ) + ENe (RNe, s) + Eee (ree, s) + EKE (s) + EPR (σ, s) (5.2)

where RNN , RNe, and ree correspond to the inter-nucleus, nucleus-electron, and inter-electron dis-

tances, respectively, s to the electron radius, and σ to the electron spin.

The eFF-ECP scheme presented here requires reformulating and parameterizing the Pauli energy

term, EPR, for pseudo particles with Gaussian charge replacing the core electrons and the nucleus,

and adjusting the classical electrostatic energies between the pseudo-core and valence electrons

(core-elec), nuclei (core-nuc), and other pseudo-core (core-core) particles as,

Ecore-elec =
∑
i,j

ZiZj
Rij

Erf

 √
2Rij√

s2core,i + s2elec,j

 ,

Ecore-nuc =
∑
i,j

ZiZj
Rij

Erf

 √2Rij√
s2core,j

 ,

Ecore-core =
∑
i<j

ZiZj
Rij

Erf

 √
2Rij√

s2core,i + s2core,j

 (5.3)
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where Z is the particle charge.

The new Pauli potentials in this model ECP representation are designed, according to the relation

EPR ∝ S2, where S is the overlap between two Gaussians, one representing the core and the other

an interacting valence electron. By choice, two different types of overlaps are defined in this ECP

representation as:

1. an s-s overlap, for an s-type valence electron, and

2. an s-p overlap, for an p-type valence electron.

The corresponding functional forms are derived as,

EPRs-s
= a exp

(
− br2

c + s2

)
(5.4)

EPRs-p
= a

(
2

b/s+ s/b

)5

(r − cs)2 exp

(
−d(r − cs)2

e + s2

)
(5.5)

where r in (5.4) is the distance between the s-type pseudo-core and an interacting s-type valence

electron, and in (5.5) it corresponds to the distance between the s-type pseudo-core and the s-type

Gaussian representing one of the lobes of a p-type valence electron (see Figure 5.2). s is the size of

the corresponding valence electron, a corresponds to the pseudo-core wave function amplitude, b in

(5.4) and d in (5.5) to the pseudo-core wavefunction decay factor, c in (5.4) and e in (5.5) to the

square of effective pseudo-core particle size (not to be confused with the core size used in Coulomb

energies, in (5.3), which is also a parameter). For the s-p case c corresponds to an off-center measure

and b to a second effective size that adjusts the overlap amplitude.

Figure 5.2. Illustration of distances used in the two functional types of ECP, where blue circles
represent core electrons and red valence electrons. Note that the center of real p-type Gaussian is
the nodal point.

(5.4) and (5.5) are derived from the square of the overlap between spherical Gaussians used in
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eFF,

φi (~r) =

( √
2√
πsi

)3/2

exp

[
− (~r − ~ri)2

s2i

]
(5.6)

neglecting phase factors associated with dynamics (one Gaussian representing a valence electron

and the other an atom’s core set of electrons), with index i = 1, 2 for core and valence electrons,

respectively.

The square of overlap between s-type core and s-type valence is given by

S2 =

(
2

s1/s2 + s2/s1

)3

exp

[
− 2r212
s21 + s22

]
(5.7)

For a p-type Gaussian representing the valence electron,

φ2 (~r) =

( √
2√
πsi

)3/2
2

s2
(~r − ~r2) exp

[
− (~r − ~r2)

2

s22

]
(5.8)

the square of overlap between s-type core and p-type valence is given by

S2 =

(
2

s1/s2 + s2/s1

)5
r212
s21

exp

[
− 2r212
s21 + s22

]
(5.9)

In order to preserve the simple form of the semi-classical EOM in eFF, a spherical Gaussian is used

to represent one of the two lobes of the p-type valence electron. Therefore, the center of an s-type

valence electron is that of the spherical Gaussian, while that of a p-type valence electron, which is

the nodal point, and its offset is determined by s2/
√

2, with the reasonable assumption that the

center of spherical Gaussian is at exactly the cusp of the lobe. So, (5.9) is recast into

S2 =

(
2

s1/s2 + s2/s1

)5 (r12 − s2/√2
)2

s21
exp

[
−

2
(
r12 − s2/

√
2
)2

s21 + s22

]
(5.10)

Following the design of EPR ∝ S2, two types of ECP formulation can be constructed:

EPRs-s = a

(
2

s1/s2 + s2/s1

)3

exp

[
− 2r212
s21 + s22

]
(5.11)

EPRs-p
= a

(
2

s1/s2 + s2/s1

)5 (r12 − s2/√2
)2

s21
exp

[
−

2
(
r12 − s2/

√
2
)2

s21 + s22

]
(5.12)

(5.4) and (5.5) are directly obtained from (5.11) and (5.12), respectively, by defining and replacing

with the corresponding parameter variables.

In Sec. 5.2, we present optimized eFF-ECP parameters for aluminum (s-s), silicon (s-s), carbon

(s-p), and oxygen (s-p) and validate them on example applications. All parameters were optimized
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against diverse training sets of geometries and energetics obtained from QM calculations of small

representative molecules. A two-step parameter optimization scheme was used, consisting of:

(1) a GA based search to determine the most probable global basin, and

(2) a local conjugate gradient based optimization within the local search space of the GA-determined

basin in order to remove any randomness in the solution.

The GA was configured with tournament selection and uniform mutation over the predefined range

for each parameter and evaluation was done via a fitness function of geometric and energetic RMSDs

from the QM reference set. Further details on the parameter optimization framework can be found

in Ref. [15].

5.2 Performance of optimized eFF-ECP parameters

Table 5.1 summarizes the eFF-ECP parameters for Al, Si, C, and O. Al and Si can be accurately

described using the s-s ECP form in (5.4), i.e., EPRs-s
, while C and O require the higher-order s-p

form in (5.5), i.e., EPRs-p , due to their more complex and dominant p-type interactions, including

multiple bonds and lone pairs.

The core radii were initially estimated by calculating the sizes of corresponding all-electron ions

(i.e., Al3+, Si4+, C4+, and O6+) with the all-electron eFF, and then optimized to fit the correct

electrostatics in the ECP description. In total, 4 parameters were optimized for the corresponding

s-s ECP cases, and 6 for the corresponding s-p cases.

Table 5.1. eFF-ECP parameters optimized for a few 2nd and 3rd row p-block elements.

Element a b c d e score (Bohr)

s-s (Eq. (5.4))

Al 0.486000 1.049000 0.207000 1.660000

Si 0.320852 2.283269 0.814857 1.691398

s-p (Eq. (5.5))

C 22.721015 0.728733 1.103199 17.695345 6.693621 0.621427

O 25.080199 0.331574 1.276183 12.910142 3.189333 0.167813

Hybrid (binary, tertiary, etc.) systems may be modeled using the parameters above, nonetheless,

increased accuracy may be achieved by re-optimizing these parameters with QM cases that include

all expected interactions. This will be exemplified here for silicon carbide.
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5.2.1 Al and Si with s-s ECP

The effective core in Al is defined as a pseudo particle with wave-like properties, consisting of

a nucleus and ten fixed electrons corresponding to the 1s22s22p6 configuration. This effective core

plus three explicit valence electrons (3s23p1) completes the 4-particle eFF-ECP model representation

of Al.

ECP parameters for Al were determined from ground state fcc bulk Al, lattice parameters and

bulk modulus experimental values (aexp = 4.05 Å and Bexp = 76 GPa), and finite aluminum hydride

molecules, including those compared in Table 5.2. The resulting eFF-ECP lattice parameters and

bulk modulus are aeFF-ECP = 4.05 Å and BeFF-ECP = 108 GPa, in contrast to the all-electron eFF

values of aeFF = 4.23 Å and BeFF = 44 GPa. Emergent properties validated for Al include the

aluminum hydride cluster bond energies as a function of cluster size as shown in Figure 5.3.

Table 5.2. Comparison of eFF-ECP, all electron eFF and DFT calculations on aluminum hydrides.
The bond lengths d are in pm, bond angles θ in degree, bond energy E in kcal/mol.

Feature
Al2H6 AlH3

B3LYP/M06 eFF-ECP eFF B3LYP/M06 eFF-ECP eFF

dAl-Al 258.3/261.382 267.142 220.0

dAl-H 157.7/157.3 148.241 159.7 158.4/158.1 151.932 160.4

dAl-Hbridge
174.5,170.9/174.4,174.2 178.306 161.6

θAl-Al-Hbridge
42.105,41.051/41.386,41.441 41.486 47.111

θH-Al-H 127.493/128.168 128.647 116.71 120.0 120.0 120.0

θH-Al-Hbridge
109.3/109.042 108.94 110.858

EAl2H6→2AlH3
32.74698/34.72389 33.3571 133.8163

The effective core in Si has the same composition as the pseudo-core particle for Al, yet with

four explicit valence electrons corresponding to the 3s23p2 orbitals complete its 5-particle eFF-ECP

model representation. The ECP parameters for Si were determined from first principle calculations

on small silicon hydride motifs, including SiH3–H and H3Si–SiH3 energies, Si–H and Si–Si bond

lengths, bulk lattice constant, and bond dissociation energies for several silicon and silicon hydride

compounds (as described in Ref. [8]).

The Si eFF-ECP parameters were validated on emergent material properties, such as IP, Si2H6 ro-

tational barriers, bulk modulus, and yield strength, and used to describe the non-adiabatic quantum

dynamics during brittle fracture in silicon crystal in previous work[8]. The Si eFF-ECP simulations
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Figure 5.3. Comparison of cluster bond energies for different AlnH3n clusters. QM data from Ref.
[16]

reproduce the correct response of the crack tip velocity to the threshold critical energy release rate

(see Figure 5.4), a feat that is inaccessible to QM methods or conventional force-field-based MD, and

describe the crack induced voltages, current bursts, and charge carrier production observed experi-

mentally during fracture. This led to an explanation of how strain-induced surface rearrangements

and local heating cause ionization of electrons at the fracture surfaces.

Our simulations reveal both local field-induced ionization and thermal ionization as a direct

result of fracture, which leads to crack induced voltages across the fractured surfaces. We find that

electron ionization is precipitated by the passing of the crack front (Figure 5.5a). Ionized electrons

are excited by 5 eV, making them sufficiently energetic to escape the Si-surface barrier (Figure 5.5b).

The initial excitation promotes the electrons to unbound states, but they subsequently relax to 4.1

eV above the ground state, well into the Si conduction band. An increase in potential energy causes

ionization, primarily via heterolytic bond cleavage across the crack. In rare instances a heterolytic

cleavage creates an anion on one crack face and a cation on the other crack face. As dangling bonds

form 2×1 surface dimers, the excess electron causes Pauli exclusion clashes with adjacent surface

pairs (Figure 5.5c) and the ionized electron’s radius decreases to reduce its overlap with nearby

same-spin electrons (Figure 5.5d). The spin clashing forces the electron further from the surface and

the electron delocalizes (Figure 5.5e). Ultimately it relaxes and settles into the conduction band.

80±10% of ionized electrons are ionized because of local field effects.
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Figure 5.4. Crack tip velocity versus reduced load (normalized by the Griffith critical load value) for
{111} fracture from eFF-ECP, compared to experimental, ReaxFF+Tersoff simulations, and DCET
and EDIP data. The grey line is a visual guide. From Ref. [8].

5.2.2 C with s-p ECP

The all-electron eFF formulation performs well in describing saturated hydrocarbons[11], yet it is

inaccurate for unsaturated systems and fails at describing complex bonding structures, including

multiple bonds and lone pairs, among others. Here we demonstrate the use of the EPRs-p
eFF-ECP

(5.5) to overcome these issues, for the most part caused by increasingly non-spherical character in

electrons.

In preparing the carbon eFF-ECP parameters, we set out to retain the all-electron eFF per-

formance for saturated hydrocarbons, improve the bonding energy of C–C, and enable complex

bonding descriptions. To this end, the prepared ECP training set includes geometries for CH4,

C2H6, CH2(CH3)2, CH(CH3)3, C2H4, C2H2, and C(CH3)4, as well as the bonding energy of C–C in

C2H6. Table 5.3 includes the comparison of optimized results from eFF-ECP with the all-electron

eFF representation and experiments.

In general, eFF-ECP improves the dependence of C–C and C–H bond lengths on the size of

saturated hydrocarbons. The all-electron eFF predicts a large increase in both bond lengths as

the hydrocarbon size increases, while eFF-ECP captures the correct trend. The ∼10% reduction in

the C-C bond length for bulk diamond is one example that confirms this (i.e., it is not part of the

training set). On the other hand, the overestimation of C–C bonding energy in ethane is corrected,
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Figure 5.5. Mechanism of local field-induced ionization. (a) High strain rate cracking of Si leads
to (b) surface electron ionization, (c) spin exchange, (d) increased electronic wavefunction kinetic
energy for neighboring same-spin electrons, (e) and spin-clashing of surface electrons during 2×1
surface dimer reconstruction, which leads to the electron emissions observed experimentally.

from 163.5 kcal/mol in the all-electron eFF to an experimentally accurate value of 89.7 kcal/mol in

eFF-ECP.

Table 5.3. Comparison of eFF-ECP and eFF on geometries of carbon-containing molecular and bulk
systems.

Species
dCC (pm) dCH (pm) Θ (degree)

exact eFF-ECP eFF exact eFF-ECP eFF exact eFF-ECP eFF

CH4 109.4 105.6 114.3 109.5 109.5 109.5

C2H6 153.6 152.0 150.1 109.1 106.5 117.3 110.9 111.3 110.8

CH2(CH3)2 152.6 152.6 151.3 109.6 107.6 122.9 109.5 110.6 107.9

CH(CH3)3 152.5 153.0 152.9 110.8 108.7 142.4 109.4 109.9 101.8

C(CH3)4 153.4 153.2 157.3 111.4 106.7 117.8

H2C=CH2 133.9 137.7 151.7 108.6 97.2 108.9

HC≡CH 120.3 115.4 138.3 106.3 91.8 105.2

Diamond 154.5 155.1 168.1

eFF-ECP now describes both single and multiple hydrocarbon bonds in a consistent manner,
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i.e., the bond length decreases as the bond order increases. eFF-ECP also improves the stability

of multiple bonds. For example, the hydrogenation energy of a double bond in ethene (not in

the training set) is predicted to be exactly the same as the experimental value of 38.2 kcal/mol,

while the all-electron eFF value results in 141.6 kcal/mol. Furthermore, rather than the non-planar

diradical conformation given by all-electron eFF, eFF-ECP predicts the correct planar conformation

for benzene molecule, although with alternating single and double bonds, which is inevitable from

the localized nature of eFF framework.

Figure 5.6 shows a few molecules with conjugate double bonds, all of which are described with

correct conformation by eFF-ECP. A more challenging system is the graphite bulk structure, which

involves capturing the correct London dispersion energies. eFF-ECP predicts surprisingly good

lattice parameters, with a = 2.550 Å and c = 6.943 Å (vs. the experimental value of a = 2.461

Å and c = 6.708 Å). An interesting side effect is that the subtle London dispersion energies that

stabilize graphite layers along the c axis is reasonably well captured with the eFF-ECP framework,

while conventional DFT fails to capture this (without explicit dispersion corrections), as shown in

Figure 5.7.

Figure 5.6. Gallery of molecules with conjugate double bonds. eFF-ECP is able to predict correct
conformations for all of them. The red/blue colors stand for electronic spin up or down, respectively.

To test the non-adiabatic dynamics modeling capabilities of the C ECP, we applied it to study

and understand the effect of induced energy excitations on the valence electrons of C–H bonds of a

passivation layer in a diamond film and in the presence of atomic hydrogen gas, the idea being that

surface selective chemistry may be achieved via excitation energy transfer from external sources, for

example, an electron beam from an electron stimulated desorption (ESD) apparatus, onto resonant
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Figure 5.7. Comparison of various methods, including quantum Monte Carlo (QMC)[17] and
dispersion-corrected PBE-lg[18], on the binding curve along the dispersion c axis of graphite.

modes on the material surface (in the case reported here, the valence electrons that participate in the

C–H surface bonds). A 2×1 dimerized and H-capped diamond surface model slab was prepared and

equilibrated to a temperature of 373 K, and subsequently combined with an atomic H gas equilibrated

to 15,000 K in a single non-equilibrium NVE ensemble run (constant number of particles, volume

and energy). Two separate systems were run concurrently, one in which the surface electrons were

manually excited by a step-function of 5eV at t = 0 (i.e., the electron radii were reduced from

1.65 to 1.43 Bohr, which is equivalent to an electronic wavefunction kinetic energy input slightly

below diamond’s bandgap energy) and one in which no manual excitation was introduced on the

surface bonds. For the system that was manually excited, etching events were observed within 80

femtoseconds, while the un-excited systems ran for more than 1 picosecond without any hydrogen

etching events. The enhanced hydrogen abstraction mechanism involves insertion and mobility of

surface hydrogen between neighboring dimers, and subsequent recombination into an H2 molecule

(shown graphically in Figure 5.8.)

5.2.3 Oxygen with s-p ECP

One of the prominent features characterizing the chemistry of oxygen is the presence of lone pairs

on it while bonding. These have a predominant p-character, and all-electron eFF fails in describing

such systems, qualitatively and quantitatively. For example, the all-electron eFF predicts the water

molecule to be linear, instead of bent. With the s-p ECP type, eFF-ECP is shown to handle lone

pairs smoothly. Interestingly, the lone pair is represented by an open shell like configuration, i.e.,
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Figure 5.8. (left) Valence bond electrons (marked within a red box) in C–H surface excited with a
step function of 5 eV, and (right) Femtosecond electronic excitation-induced desorption of hydrogen
from a passivated diamond slab; a hydrogen molecule is ejected after 80 femtoseconds from surface
dimer site (top-right side of surface). Electrons are shown as pink transparent spheres of different
sizes (including ionized electrons in large spheres).

the size of electron with one spin being larger than that of electron with the other spin, as show in

Figure 5.9, illustrated with water molecule.

Figure 5.9. Open shell like representation of lone pairs in eFF-ECP, taking water molecule as an
illustration.

The training set for O ECP includes Li2O, Si2H6O, Si3H8O2, Si3H6O2, SiH3OH, and H2O, cov-

ering a variety of bonding characters, reflected by the various oxygen-centered angles (see Table 5.4).

This is because, in addition to describing lone pairs, we wanted eFF-ECP to describe the subtle cou-

pling between interacting lone pairs and bonding character. We validate that when oxygen atoms

form purely ionic bonds, such as in Li2O, the electrostatic repulsion between two cations domi-

nates, leading to a linear molecular conformation; while as the degree of covalent bonding increases,

the repulsion between lone pairs and bonding electrons becomes more dominant, leading to more

bent molecular conformations, such as H2O. Table 5.4 lists the comparison of optimized geometries
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Table 5.4. Performance of eFF-ECP on geometries of various molecules with oxygen atom(s).

bond length (pm) Li2O Si2H6O Si3H8O2 Si3H6O2 SiH3OH H2O

bond type Li-O Si-O Si-O Si-O Si-O H-O

Exptl. 161.0 163.7 164.4/153.5 165.9 165.9 96.1

eFF-ECP 163.2 165.4 165.0/165.2 171.6 167.3 127.4

from eFF-ECP and experiments, demonstrating the ability of eFF-ECP to describe correctly the

trending of oxygen-centered angles and thus the subtle response of lone pairs to varying chemical

environments.

5.2.4 Silicon carbide with combined s-s and s-p eFF-ECP

We used GARFfield[15] to develop the eFF-ECP force field for SiC tabulated in Table 5.5. These

were obtained by optimizing the parameters for a p-type carbon ECP expression (5.5) along with our

previously published s-type silicon parameters[8]. In this eFF-ECP scheme, both silicon and carbon

atoms are represented by a core effective potential and four valence electrons. Since the electrons

are represented by spherical Gaussians with a position, size and spin, the parameter optimization

for geometries with complex bonding structures is more challenging than that of a conventional

force field. We used lower and upper parameter range values between 0.5-3 for the ECP-radius, and

0-100.0 for a, b, c, d, e.

Table 5.5. Carbon s-p functional form parameters in the SiC-ECP force field and Silicon s-s param-
eters from Ref. [8].

Atom ECP-radius a b c d e
Si 1.691 0.320852 2.283269 0.814857
C 0.630348 21.344508 0.715963 0.954384 14.261287 5.314525

We find that the eFF-ECP force field accurately captures the proper lattice constant for 3C-SiC

zinc blende, 4.3496 Å at 0 K and 4.3551 Å at 297 K. The latter was computed from the radial

distribution function (RDF) between nuclear pairs and the corresponding coordination number. A
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4096 atom 3C-SiC fully periodic cubic unit cell was minimized to a 10−8 a.u. energy difference using

conjugate gradient minimization. 100 fs of equilibrated NVT MD at 297 K (controlled by Nose-

Hoover thermostat) was run in LAMMPS with the eff/cut pair style [1] to determine the average

RDF and coordination number. Experimental results report a value of 4.3596 Å at 297 K[19]).

The results for the Si-C bond, and Si-Si-C, Si-C-C, H-C-H, H-Si-H, C-C-Si, C-Si-C, C-Si-Si,

Si-C-Si, Si-C-H, and C-Si-H angles from the different conformers in the training set are tabulated

in Table 5.6.

Table 5.6. Silicon Carbide training set and optimization results using the s-p form ECP for Carbon.
All bond lengths in Bohr and angles in degrees.

Structure Feature QM (BY3LYP) eFF-ECP % Error
SiH3CH3 Si-C bond 3.5527 3.8177 7.4594
SiH2CH2 Si-C bond 3.2314 4.0231 24.5002
2SiH22CH2 Si-C bond 3.6417 3.5643 2.1241
2(SiH2CH2) Si-Si-C angle 78.500 80.1411 2.0906
2(SiH2CH2) Si-C-C angle 101.5000 99.8589 1.6168
2(SiH2CH2) H-C-H angle 106.5000 118.1523 10.9411
2(SiH2CH2) H-Si-H angle 107.6000 113.7215 5.6891
C2H5SiH3 C-C-Si angle 114.1000 114.8811 0.6846
2(CH3)SiH2 C-Si-C angle 112.1000 116.4574 3.8871
Si2H5CH3 C-Si-Si angle 112.0000 112.298 0.2662
2(SiH3)CH2 Si-C-Si angle 115.7000 111.8900 3.2930
SiCH Si-C-H angle 111.3000 116.6054 4.7667
CSiH C-Si-H angle 109.3000 101.8441 6.8215

In our previous work[20] we applied the SiC eFF-ECP force field to study the hypervelocity

impact (HVI) effects of a nano-diamond cluster on a silicon carbide surface. We found that two

distinct heat dissipation domains characterize the thermal transport in SiC during HVI: a stopping

domain and the shock wave propagation domain. We bracketed the stopping domain between the

time of impact and the reversal of momentum. On the other hand, the shock wave propagation

domain is the time the impact shock wave traverses the cell. Energy is dissipated throughout the

cell by onto phonon modes that couple with the shock wave. A greater number of electrons are

ionized in the stopping phase, and energy is dissipated more effectively by thermal excitation of

electrons than by phonon excitation and scattering.

5.3 Conclusions

We have developed an ECP representation in the framework of eFF that overcomes important

problems associated with the spherical Gaussian basis set used, and enables the study of dynamic

phenomena in materials exposed to extreme loading conditions (including mechanical, thermal,

radiation, and other). The ECP enhancements to eFF enable:
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• accurate simulation of high-Z elements, up to p-block (e.g., C, Si, O, SiC),

• substantial improvements in the description of multiple bonds (e.g., C),

• accurate description of lone pairs (e.g., O),

• accurate description of complex binaries (e.g., SiC).

In addition to enabling the simulation of systems with increasingly non-spherical electrons, the eFF-

ECP representation leads to a significant reduction in the total number of degrees of freedom and

filters out high frequency modes from core electrons. This results in larger integration time steps

when solving EOM (up to an order of magnitude larger than the all-electron eFF) and enables longer

simulation timescales. The eFF-ECP together with a fixed-core representation, which freezes the

core electrons for elements Z > 2, are available along with the all-electron representation in the

open source parallel code of eFF in LAMMPS. All the example cases presented here were calculated

using this implementation[1].
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Chapter 6

Gaussian Hartree approximated
QM with angular momentum
projected effective core
pseudopotential

The contents presented in this chapter are based on H. Xiao, W. A. Goddard, III, A. Jaramillo-

Botero and S. S. Dong, in preparation, 2015.

eFF presents a promising framework to explicitly include electrons for modeling of large scale sys-

tems, and thus it not only can smoothly circumvent difficulties that traditional force field methods

have associated with electrons (or electron densities) in, e.g., lone pairs (dipole moment of water

molecule), polarizability, and charge variations (distinguishing between atoms and ions), but also it

can enable propagation of electrons for non-adiabatic dynamics. The framework is based on the eFF

concept, as stated in its name, that is evaluating QM energies of the total electronic wavefunction in

a force field manner, by the sum of local (pairwise, 3- and/or 4-body) interactions. To realize this,

two key approximations were introduced: the FSG representation of electrons and Pauli potentials

accounting for the antisymmetry of electronic wavefunction.

Although eFF has demonstrated successful applications in several challenging systems (see Ch.

5 and reference therein), it is subject to limitations originated from approximations adopted in

the framework. An essential one is the semi-empirical design of the kernel of eFF, i.e., the Pauli

potentials: it is constructed with solely the kinetic energy penalty upon antisymmetrization, based on

the fact that kinetic energy penalty is the dominant contribution, while the rest is partly accounted

for by the parameters introduced and fitted against a set of molecules[1, 2]; however, we found

later that the electron-electron Coulomb part contributes non-negligible stabilization of same-spin

electron pairs (the so-called exchange energy), and the nucleus-electron Coulomb part is crucial to

preventing unphysical coalescence of same-spin electron pairs; besides, the extra parameterization
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diverts the Pauli potentials from rigorous description of Gaussian electron pairs. An associated

concern is that whether the QM total energy can be evaluated as direct sum of pairwise energies

is not explicitly justified. Another limitation is from the deficiency of single FSG representation

of each electron, which is missing the cusp condition[3] and explicit nodal structures; the former

results in weaker binding energies between nuclei and electrons, e.g., the IP of H is predicted to be

only 11.5 eV by eFF (versus the exact value of 13.6 eV), and the latter leads to poor description

of systems involving strong higher angular momentum characters, e.g., multiple bonds (unsaturated

hydrocarbons) and lone pairs (water molecule) in compounds of p-block elements.

To overcome these, very recently we developed a new framework of two-level hierarchy that

is more rigorous and accurate. The fundamental level is based on a new set of Pauli potentials

that renders an exact QM level of accuracy for any FSG represented electron systems. To achieve

this, we started with reproducing the exact QM energies of same and opposite spin FSG electron

pairs, and then symmetric and asymmetric scaling factors were designed to recover the correct QM

total energy from direct sum of local energies for systems with more than two electrons. Since the

Hartree product formalism of total wavefunction is kept in the new framework, we termed this level

as Gaussian Hartree approximated QM (GHA-QM), to distinguish from the original eFF method.

With GHA-QM describing FSG electrons accurately, the remaining error comes entirely from the

deficiency of basis set, and the second level is introducing the angular momentum projected effective

core pseudopotential (AMPERE) to compensate for the missing cusp condition and nodal structures.

It is worth emphasizing here that the AMPERE is not only to replace core electrons for reducing

computational cost, but also more importantly to complement the FSG basis set, similar to the

role of pseudopotentials for plane wave basis sets. Therefore, even for H, in which there is no core

electron and the traditional ECP concept makes no sense, the AMPERE was introduced to improve

the description. This chapter presents the framework of GHA-QM plus AMPERE in detail.

6.1 Exact QM energies of same spin FSG electron pair

The normalized one-electron wavefunction under FSG representation is, neglecting phase factors

associated with dynamics,

φi (~r) =

( √
2√
πsi

)3/2

exp

[
− 1

s2i

(
~r − ~Ri

)2]

where ~Ri and si are electron position and size, respectively. Following the eFF derivation[1, 2],

consider the Slater and Hartree forms for the same spin FSG electron pair:

ΨSlater =
1√

2− 2S2
[φ1 (~r1)φ2 (~r2)− φ2 (~r1)φ1 (~r2)]
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ΨHartree = φ1 (~r1)φ2 (~r2)

where the overlap

S = 〈1|2〉 =

∫
φ1 (~r)φ2 (~r) d~r =

(
2s1s2
s21 + s22

)3/2

exp

(
− R2

12

s21 + s22

)
(6.1)

Then the energy difference upon antisymmetrization is evaluated as

∆H =
〈

ΨSlater

∣∣∣ Ĥ ∣∣∣ΨSlater

〉
−
〈

ΨHartree

∣∣∣ Ĥ ∣∣∣ΨHartree

〉
(6.2)

In the eFF framework, only the kinetic energy penalty is included:

∆T =

〈
ΨSlater

∣∣∣∣−1

2
∇2

1 −
1

2
∇2

2

∣∣∣∣ΨSlater

〉
−
〈

ΨHartree

∣∣∣∣−1

2
∇2

1 −
1

2
∇2

2

∣∣∣∣ΨHartree

〉
=

S2

1− S2
(t11 + t22 − 2t12/S) (6.3)

where

t11 =

〈
1

∣∣∣∣−1

2
∇2

∣∣∣∣ 1〉 =
3

2

1

s21
, t22 =

〈
2

∣∣∣∣−1

2
∇2

∣∣∣∣ 2〉 =
3

2

1

s22

t12 =

〈
1

∣∣∣∣−1

2
∇2

∣∣∣∣ 2〉 =
1

s21 + s22

(
3− 2R2

12

s21 + s22

)
· S

While the full Hamiltonian here is Ĥ = −1

2
∇2

1−
1

2
∇2

2+
1

r12
+
∑
n

(
−Zn
r1n
− Zn
r2n

)
, where the last term

is summing over all nuclei, and we further evaluated other contributions. For the electron-electron

(e-e) Coulomb repulsion, the energy gain is

∆Cee =

〈
ΨSlater

∣∣∣∣ 1

r12

∣∣∣∣ΨSlater

〉
−
〈

ΨHartree

∣∣∣∣ 1

r12

∣∣∣∣ΨHartree

〉
=

S2

1− S2

(
J −K/S2

)
(6.4)

where

J =

〈
12

∣∣∣∣ 1

r12

∣∣∣∣ 12

〉
=

1

R12
Erf

( √
2R12√
s21 + s22

)

K =

〈
12

∣∣∣∣ 1

r12

∣∣∣∣ 21

〉
=

√
2

π

√
s21 + s22
s1s2

· S2
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the latter is traditionally termed as exchange energy. For the nucleus-electron (n-e) Coulomb

attraction, the energy penalty is

∆Cne =

〈
ΨSlater

∣∣∣∣−Znr1n − Zn
r2n

∣∣∣∣ΨSlater

〉
−
〈

ΨHartree

∣∣∣∣−Znr1n − Zn
r2n

∣∣∣∣ΨHartree

〉
=

S2

1− S2
(j11 + j22 − 2j12/S) (6.5)

where

j11 =

〈
1

∣∣∣∣−Znr1n
∣∣∣∣ 1〉 = −Zn

Erf

(√
2

s1
Rn1

)
Rn1

, j22 =

〈
2

∣∣∣∣−Znr1n
∣∣∣∣ 2〉 = −Zn

Erf

(√
2

s2
Rn2

)
Rn2

j12 =

〈
1

∣∣∣∣−Znr1n
∣∣∣∣ 2〉 = −Zn

√
s21 + s22
s1s2

Erf

(√
R2
n1

s21
+
R2
n2

s22
− R2

12

s21 + s22

)
√
R2
n1

s21
+
R2
n2

s22
− R2

12

s21 + s22

· S

Figure 6.1. Comparison of different energy contributions upon antisymmetrization for total energies
of triplet H2 system. Note that the UHF results are exact here.

To understand the roles of these contributions, we calculated the energies of triplet H2 system,
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as shown in Figure 6.1. Indeed, the curve with only kinetic energy penalty (6.3) resembles the exact

one (UHF) well, and based on it the eFF parameterization works reasonably to compensate for the

left contributions and approach the exact curve. However, the e-e Coulomb part (6.4) contributes

significant stabilization energy and has different dependence of e-e distance from the kinetic energy

change, leading to its maximum effect at intermediate distances. Adding further the n-e Coulomb

penalty, which is effectively shielding of nuclear charges, balances the exchange stabilization and

restores the exact results. In fact, this term plays a crucial role, which is shown more clearly in

Figure 6.2, where electron wavefunctions are relaxed, that the n-e Coulomb penalty prevents the

unphysical coalescence of same spin FSG electrons (associated with sudden collapse in energies),

while eFF and solely kinetic energy penalty both predict such violation of Pauli exclusion principle

at a H–H distance of 1.6 Bohr.

Figure 6.2. Comparison of different energy contributions upon antisymmetrization for optimizing
electron wavefunctions of triplet H2 system. Note that the coalescence of same spin FSG electrons
violates the Pauli exclusion principle.

Therefore, in the GHA-QM framework, all three contributions are included to form the foundation

of same spin Pauli potential:

Ebase
Pauli (↑↑) = ∆T + ∆Cee + ∆Cne (6.6)
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and upon it we next considered the scaling factors for recovering the QM total energy from direct

sum of Pauli potentials. Note that (6.3)–(6.5) all introduce numerical instability when S → 1, so we

used series expansions of them (see Appendix A) when 1−S2 6 0.001 in the practical implementation

in LAMMPS[4].

6.2 Symmetric and asymmetric scaling factors for QM ener-

gies of multiple pairs of same spin FSG electrons

The core eFF concept is that the QM total energy can be approximated with the sum over pairs of

electrons, while this was not throughly justified in the eFF development. Here we first considered two

symmetric cases, as shown in Figure 6.3: D3h quartet H3 and Td quintet H4, in which the overlaps

between every pair of electrons are identical. It is clear that both eFF and directly summing of (6.6)

over pairs of electrons significantly overestimate (10−1 − 100 a.u. larger) the QM total energies,

except at large distances where H atoms are essentially isolated from each other (vanishing overlaps

and pairwise interactions). This overestimation can be partly understood with the fact that the

kinetic and n-e Coulomb energies are by nature one-body properties of electrons, and thus should

scale as the number of electrons N , but the sum of pairwise primitive Pauli potentials makes them

scale as N2. Therefore, we designed the second tier of GHA-QM, i.e., scaling factors, upon the basis

(6.6).

Figure 6.3. Benchmark of eFF, GHA-QM with and without scaling on (a) D3h quartet H3 and (b)
Td quintet H4. Note that the UHF results are exact here.

The scaling factors for pairwise Pauli potentials should be dependent of the environment of each
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pair of electrons, and two basic quantities were chosen to characterize the environment of each (i, j)

pair:

∑
S ≡ 1

2

(∑
k

Sik +
∑
k′

Sjk′

)
(6.7)

∑
S2 ≡ 1

2

(∑
k

S2
ik +

∑
k′

S2
jk′

)
(6.8)

which can be computed pairwisely before evaluating the Pauli potentials, so they don’t burden

the computational scaling (except for the force evaluation, in which three- and four-body terms are

introduced by them in theory, but are easily tailored into linear scaling by applying the tapered cutoff

function). We found that the scaling factors for both kinetic and n-e Coulomb energy penalties can

be derived, for the two symmetric cases in Figure 6.3, as exact formulas,

Fij,sym (∆T,∆Cne) =
1 + Sij

1 +
∑
S

(6.9)

which reproduce the exact QM results, as shown in Figure 6.4. While the scaling factor function for

∆Cee was fitted against the exact QM results, using the form,

Fij,sym (∆Cee) = f

(
a+ Sij
a+

∑
S

+

∑
S − Sij

aSij +
∑
S

)b
+ (1− f)

(
c+ S2

ij

c+
∑
S2

+

∑
S2 − S2

ij

cS2
ij +

∑
S2

)d
(6.10)

with the parameters, a = 116.9718391437184124, b = 5.5068443857879181, c = 0.4615515285274991,

d = 4.5458219639195647, f = 0.9763884223181994, giving excellent performance as in Figure 6.3.

However, with (6.9) and (6.10) aiming at fully symmetric cases (with identical overlaps), it is

expected that for asymmetric transitions, as shown in Figure 6.5, the total energies deviate slightly

from the exact values. Therefore, for both eliminating these small errors and the completeness of

framework, asymmetric scaling factor functions were designed with the form,

Fij,asym (∆T,∆Cee,∆Cne) = 1 + a
(
Sij
∑

S −
∑

S2
)

+b
(
Sij
∑

S −
∑

S2
)2

+ c
(
Sij
∑

S −
∑

S2
)3

(6.11)

and the fitted parameters are listed in Table 6.1.

Table 6.1. Fitted parameters for asymmetric scaling factor functions (6.11).

Type a b c

∆T 7.0275135953301424 -1.3235214678707308 -207.9886055974747308

∆Cee -2.4227129678577675 18.2962351504751588 13.4791835822684352

∆Cne 2.3795506051854529 27.6722999507131213 -51.7840176813005328
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Figure 6.4. Performance of symmetric scaling factor functions for (a) ∆T , ∆Cne and (b) ∆Cee on
D3h quartet H3 and Td quintet H4. Note that the UHF results are exact here.

Figure 6.5. Performance of asymmetric scaling factor functions on (a) quartet H3 transition from
D3h to C2v and (b) quintet H4 transition from Td to C3v. Note that the UHF results are exact here.

Summarizing, the same spin Pauli potential in the GHA-QM framework is evaluated as

EPauli (↑↑) = Fasym (∆T )Fsym (∆T ) ∆T + Fasym (∆Cee)Fsym (∆Cee) ∆Cee

+Fasym (∆Cne)Fsym (∆Cne) ∆Cne (6.12)
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This ultimate expression renders accurate description of FSG represented electrons with same spins,

as shown in Figures 6.3 and 6.5, with deviations of order of magnitude of only 10−3 a.u. from

exact QM results. Note that all scaling factor functions (6.9)–(6.11) equal exactly to 1 at the limit

Sij =
∑
S, i.e., when the system has only one pair of same spin electrons, as in the case of triplet

H2, and (6.12) goes back to (6.6), which is exact for two same spin electron systems as shown in

Figure 6.1.

6.3 Design of opposite spin Pauli potential

For a pair of opposite spin electrons, its spin eigenfunction (singlet state)
1√
2

(|↑↓〉 − |↓↑〉) already

assumes the antisymmetry, so there are multiple choices for the spatial wavefunction as long as it is

symmetric, and three typical candidates are HF, VB, and GVB[5] descriptions as below,

ΨHF =
1

2 + 2S
[φ1 (~r1)φ2 (~r2) + φ2 (~r1)φ1 (~r2) + φ1 (~r1)φ1 (~r2) + φ2 (~r1)φ2 (~r2)]

ΨVB =
1√

2 + 2S2
[φ1 (~r1)φ2 (~r2) + φ2 (~r1)φ1 (~r2)]

ΨGVB =
1√

2(1 + g2)(1 + S2) + 8gS
{φ1 (~r1)φ2 (~r2) + φ2 (~r1)φ1 (~r2)

+g [φ1 (~r1)φ1 (~r2) + φ2 (~r1)φ2 (~r2)]}

among those, VB was the choice of eFF framework. However, all these wavefunction-based ap-

proaches under single FSG representation suffer from a problem, that is, when two opposite spin

electrons coalesce (e.g., in He atom), the FSG basis functions are completely linear dependent, and

thus any wavefunction forms converge to the Hartree product and lead to zero energy gains (no

correlation). This problem causes difficulty in properly describing such systems as He and H−. Ad-

ditional effort borrowing ideas from DFT is necessary to address the correlation. A hybrid scheme,

in which a wavefunction-based approach is used to cover the UHF level and a DFT-like functional

for the remaining correlation, was originally adopted (see Appendix B), but led to complicated pa-

rameterization and scaling considerations. Therefore, we later designed a simpler formula, inspired

by the Wigner correlation functional[6],

Ebase
Pauli (↑↓) = − p0S

p1 + p2S
p3 s̄p4

1 + p5Sp6 + p7Sp8 s̄p9
(6.13)

where s̄ ≡ s1s2√
s21 + s22

. The parameters were fitted against B3LYP results of open singlet H2 cases

with varying both H–H distances and electron sizes, as shown in Figure 6.6. The resulting parameters

are listed in Table 6.2. Figure 6.7 illustrates the performance of GHA-QM on two-electron systems,

with the open singlet and triplet H2 cases. It is clearly shown that GHA-QM reproduces accurately



94

the QM results under single FSG representation, with errors less than 2 kcal/mol for opposite spin

cases (GHA-QM is exact for same spin cases under single FSG representation). However, similar

to the development of same spin Pauli potential, scaling factors are also necessary for opposite spin

Pauli potential to recover the QM total energies of systems with multiple pairs of opposite spin

electrons.

Table 6.2. Fitted parameters for (6.13).

p0 p1 p2 p3 p4

0.7991062973926818 3.0784366182756111 0.6166511924591953 1.1405494582541387 -3.1346281136377732

p5 p6 p7 p8 p9

6.6953936536408047 2.8848038115685481 16.0190065556333749 12.8490416580987876 0.0396897141066533

Figure 6.6. Fitting of opposite spin Pauli potential against open singlet H2 at B3LYP level. Each
curve has fixed electron sizes of a value from 1.4 to 2.0 Bohr, and H–H distances are varied to cover
the whole range of overlap. ∆EPauli here is the difference between the QM bonding energy and
classical contribution, so it includes the correlation energy.

Following the same strategy as the same spin case, the symmetric scaling factor was first designed,

aiming at two classical cases, linear D∞h doublet H3 and square D4h singlet H4 TSs. Note that

the D4h H4 TS with triplet state is lower in energy, but here it is more focused on examining the

dissociation into two H2 molecules, and spin flip would complicate the design of scaling factors. We
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Figure 6.7. Performance of GHA-QM on the open singlet and triplet H2 systems. Note that all
electron sizes are fixed at 1.7 Bohr.

adopted a simple functional form for symmetric scaling factor,

Fij,sym (↑↓) = f

(
1 + aSij

1 + a
∑
S

)b
+ (1− f)

(
1 + cS2

ij

1 + c
∑
S2

)d
(6.14)

where the parameters f = 1.2185048809195764, a = 0.7733298802023484, b = 6.0665565953273131,

c = 6.2137768045322064, and d = 40.1429807287959051 were fitted against the symmetric stretching

modes in D∞h doublet H3 and D4h singlet H4 TSs. The performance is shown in Figure 6.8, and

there is excellent agreement between GHA-QM and B3LYP on the D∞h doublet H3 symmetric

stretching curve, but GHA-QM gives considerable overestimation of the D4h singlet H4 case. This

is most likely due to the fact that the GHA-QM description is a pure singlet state with alternating

spins on the square, while the open singlet state from single-determinant DFT method is a mixed

state, contaminated by the triplet state with lower energy. Bearing this in mind, we put less focus

on the D4h singlet H4 case, and the overestimation at short distances is neglected.

The asymmetric scaling was next introduced naturally to account for the dissociation of D∞h

doublet H3 TS into H2 molecule and H atom, and of D4h open singlet H4 TS into two H2 molecules.
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Figure 6.8. Performance of GHA-QM on symmetric stretching modes in D∞h doublet H3 and D4h

open singlet H4 TSs.

Figure 6.9. Performance of GHA-QM on asymmetric stretching modes in (a) D∞h doublet H3 and
(b) D4h open singlet H4 TSs, those result in dissociation into the reference H2 molecule(s) and H
atom.
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The functional form is

Fij,asym (↑↓) = 1 + a

(
Sij
∑
S −

∑
S2

Sij
∑
S +

∑
S2

)
+b

(
Sij
∑
S −

∑
S2

Sij
∑
S +

∑
S2

)2

+ c

(
Sij
∑
S −

∑
S2

Sij
∑
S +

∑
S2

)3

(6.15)

where the parameters a = 0.2083861613347705, b = 1.5231359602535302, c = −3.0614893533656828

were fitted against the two dissociation processes, with much more weight on the H3 case. The

performance is shown in Figure 6.9. The small deviations (less than 2 kcal/mol) for the H3 case

originate from the reference energy of H2 molecule (see discussions of the fitting of (6.13)), while

the big overestimation for the H4 case is just inherited from the symmetric scaling part, as discussed

above.

Summarizing, the opposite spin Pauli potential in the GHA-QM framework is evaluated as

EPauli (↑↓) = Fasym (↑↓)Fsym (↑↓)Ebase
Pauli (↑↓) (6.16)

This final equation captures the essence of correlation and gives accurate description of FSG rep-

resented electron pair with opposite spins, as in H2 molecule, and accommodates reasonably well

the description of H3 and H4 TSs. This rational design of EPauli (↑↓) stands as one of the great

improvements over the eFF method, where the correlation is essentially missing.

6.4 The AMPERE extension

GHA-QM constitutes the foundation of our new method that approximates accurately QM under

FSG representation, and AMPERE is the key natural extension to minimize the only remaining

errors arising from the deficiency of underlying basis set. One intrinsic flaw of single FSG basis

set is the absence of cusp condition of electron density on top of nucleus, and the traditional so-

lution in quantum chemistry is using multiple Gaussian functions to approximate the Slater type

orbital (e−ζr)[7–9], which resembles much more the real AOs, but such scheme complicates much the

framework on both energy evaluation and EOM (size variation especially). Plane wave type basis

set faces the same problem, due to the formidable effort required to approximate electron density

in the vicinity of nuclei, leading to exorbitant computational cost for practical applications, and

thus pseudopotentials were introduced to embed the interactions associated with the sharp electron

density in a predefined core region (see, e.g., Ref. [10]), and the corresponding pseudo eigen orbitals

are much smoother in the core region and easily expanded in terms of plane waves. Therefore, in

order to retain the simplicity of our framework, we resort to this solution, and introduced AMPERE,

even for H element (no core electrons), to embed the cusp condition.
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The other efficacy of AMPERE is to embed implicitly the interactions arising from the missing

explicit nodal structures, and this can be conveniently achieved with the design of our framework.

The FSG one-electron wavefunction, centered off from the nucleus or core (normally the case for

valence electrons), can be expressed as a linear combination of angular momentum projections

centered at the core, as illustrated in Figure 6.10. This implies that the floating nature of FSG

provides the flexibility to describe orbitals with higher angular momenta.

Figure 6.10. Decomposition of valence FSG wavefunction into core-centered orbitals with various
angular momenta.

Correspondingly, AMPERE is based on an angular momentum projected construction, borrowed

from quantum chemistry[11, 12]. Consider a valence-only one-electron Hamiltonian:

ĥv = −1

2
∇2 − Zc

|~r − ~Rc|
+ V (~r − ~Rc) (6.17)

where V (~r− ~Rc) is the local pseudopotential centered at the core, and can be expanded as an infinite

series of angular momentum projection operators:

V (~r − ~Rc) =
∑
l,m

Vl(|~r − ~Rc|) |lm〉 〈lm|

Since it has been found[11] that in practice, there is an L such that Vl(|~r − ~Rc|) ∼= VL(|~r − ~Rc|) for

l > L, using the closure property, the expansion is approximated by a finite series:

V (~r − ~Rc) ∼= VL(|~r − ~Rc|) +

L−1∑
l=0

∑
m

(
Vl(|~r − ~Rc|)− VL(|~r − ~Rc|)

)
|lm〉 〈lm|

≡ VL(|~r − ~Rc|) +

L−1∑
l=0

∑
m

Vl−L(|~r − ~Rc|) |lm〉 〈lm| (6.18)

For ease in evaluation of integrals, the effective pseudopotentials Vi (i = L, l−L) are conventionally

fitted to an analytical expansion of the Gaussian form:

Vi(|~r − ~Rc|) =
∑
k

Cik|~r − ~Rc|nik exp
(
−ζik|~r − ~Rc|2

)
(6.19)
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where nik = −2, −1, 0 are common choices. The core-valence interaction is then evaluated as, in

our framework,

Ecv =

〈
φv

∣∣∣∣∣− Zc

| ~r − ~Rc |
+ V (~r − ~Rc)

∣∣∣∣∣φv
〉

= − Zc
Rcv

Erf

(√
2Rcv
sv

)
+
〈
φv

∣∣∣V (~r − ~Rc)
∣∣∣φv〉 (6.20)

Note that the first term implies that a point charge model is used for the core, and no corrections

such as core polarization potential[13–15] and core-core repulsion correction with a Born-Mayer type

ansatz[16, 17] are currently introduced, which might be necessary when large cores are considered.

The last term in (6.20) is further decomposed into

〈
φv

∣∣∣V (~r − ~Rc)
∣∣∣φv〉 =

〈
φv

∣∣∣VL(| ~r − ~Rc | )
∣∣∣φv〉+

L−1∑
l=0

∑
m

〈φv|Vl−L(|~r− ~Rc|) |lm〉 〈lm |φv〉 (6.21)

in which each term corresponds to the local interaction within one particular angular momentum

projection, and is evaluated as a finite series according to (6.19). Explicitly, φv is expanded about

the core center ~Rc[18], with assigning the z axis along ~Rcv, as,

φv =

( √
2√
πsv

) 3
2

exp

[
−R

2
cv

s2v

]
exp

−
∣∣∣~r − ~Rc

∣∣∣2
s2v


·
∞∑
l=0

[4π(2l + 1)]
1
2 Ml

(
2Rcv
s2v

∣∣∣~r − ~Rc

∣∣∣)Y m=0
l (θc, φc)

≡
∞∑
l=0

|l0〉 〈l0 |φv〉 (6.22)

where Ml(z) is the modified spherical Bessel function of the first kind, and Y ml (θ, φ) is the spherical

harmonics (|lm〉). So φv has nonzero expansion coefficients 〈lm |φv〉 only for m = 0, and (6.21) is

simplified as

〈
φv

∣∣∣V (~r − ~Rc)
∣∣∣φv〉 =

〈
φv

∣∣∣VL(| ~r − ~Rc | )
∣∣∣φv〉+

L−1∑
l=0

〈φv|Vl−L(|~r − ~Rc|) |l0〉 〈l0 |φv〉 (6.23)

For each l (and L), every nik in (6.19) contributes an AMPERE energy term with two parameters

(one linear coefficient and one exponent), and for brevity, we denote these terms as l(nlk + 2),

e.g., L1, s0, and p2. Note that +2 comes from the volume element in integration under spherical

coordinate system. All integrals emerging from here are evaluated in Appendix C, and the numerical

implementation in LAMMPS by me (pair_eff_ecp.h) is described in Appendix D.

The very first case we tested the GHA-QM+AMPERE framework on is the H element, for it

is an obvious touchstone of the cusp condition. To construct the AMPERE, currently we picked
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6 terms, L0, L1, L2, s0, s1, and s2, while a refinement of the choice might be necessary in the

future. We fitted the parameters (12 in total) against a small dataset, comprising H IP, H2 bonding

length and energy, which should be augmented with other important species such as H3 linear

transition state in the future work. The current best parameters are L0: (0.759292, 2.272014), L1:

(0.390743, 0.082136), L2: (0.700182, 0.542541), s0: (-0.632059, 1.092219), s1: (-0.135945, 0.093336),

s2: (-1.051977, 1.420820), which result in H IP of 13.8 eV versus the exact value of 13.6 eV, a great

improvement over 11.5 eV from both eFF and GHA-QM. Figure 6.11 shows the performance of GHA-

QM+AMPERE on the potential energy curve of H2 molecule, and both predicted bonding length

of 0.741 Å and bonding energy of 111.8 kcal/mol agree excellently with the exact values of 0.741

Å and 109.5 kcal/mol. Note that only the equilibrium point of the curve is included in the dataset

for AMPERE fitting, but the rest part of curve is described very well by GHA-QM+AMPERE,

which most likely benefits from the well-designed underlying GHA-QM level. Without AMPERE

covering for the cusp condition, GHA-QM alone overestimates the bonding because the binding

between electrons and protons is weaker, and electrons move more towards the bonding center. eFF

performs poorly due to the lack of both correlation and cusp condition.

Figure 6.11. Comparison of performance of GHA-QM+AMPERE, GHA-QM and eFF on the disso-
ciation curve of H2 molecule. The exact curve is taken from Ref. [19].
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6.5 Concluding remarks and future work

To conclude, we have built the new GHA-QM+AMPERE framework that is more rigorous and

accurate than its predecessor, the eFF method. The GHA-QM forms the foundation and was

designed to first describe FSG represented same- or opposite-spin electron pair systems with QM

accuracy. This was achieved by using exactly derived energy expressions for same spin case, and

fitting a simple functional form, inpired by DFT, against open singlet electron pair curves (H2

systems). Symmetric and asymmetric scaling factors were then introduced at this level to recover

the QM total energies of multiple electron pair systems from the sum of local interactions. To

complement the imperfect FSG representation, the AMPERE extension was implemented, and aims

at embedding the interactions associated with the cusp condition and explicit nodal structures. The

whole GHA-QM+AMPERE framework was tested on H element, and the preliminary results are

promising.

It is expected that we will explore widely the applications of GHA-QM+AMPERE, and one

particular kind is the p-block elements such as C and O, since we have not well benchmarked the

performance of GHA-QM+AMPERE on systems with strong p-character, like multiple bonds and

lone pairs, and this will be a key demonstration of how well the AMPERE method embeds the

interactions associated with explicit nodal structures.

Appendix

A. Series expansions of ∆T , ∆Cee, and ∆Cne

As S → 1, s1 → s2 and R12 → 0 (in our implementation, the practical condition is 1− S2 6 0.001),

(6.3)–(6.5) are computed with the series expansions,

∆T =
1

s1s2
− R2

12

2s21s
2
2

+
R4

12

12s31s
3
2

+O

(
R8

12

s51s
5
2

)
(6.A1)

∆Cee =
2√
π
A

(
−1

3
+

4

15
A2R2

12 −
32

315
A4R4

12 +
47

1890
A6R6

12

)
+O

(
A9R8

12

)
(6.A2)

∆Cne =
Zn√
π

√
s21 + s22
s1s2

·
{
A1(R) +

[
A2(R)

2
−A1(R)

]
x+

[
A3(R)

6
− A2(R)

2
+
A1(R)

3

]
x2

+

[
A4(R)

24
− A3(R)

6
+
A2(R)

6

]
x3 +O

(
x4
)}

(6.A3)

where

A ≡
√

2√
s21 + s22

x ≡ R2
12

s21 + s22
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R ≡ R2
n1

s21
+
R2
n2

s22

A1(R) ≡ R−3/2
∫ R

0

t1/2e−tdt =

1

2

√
πErf(R1/2)−R1/2e−R

R3/2

A2(R) ≡ R−5/2
∫ R

0

t3/2e−tdt =

3

4

√
πErf(R1/2)− 1

2
R1/2(3 + 2R)e−R

R5/2

A3(R) ≡ R−7/2
∫ R

0

t5/2e−tdt =

15

8

√
πErf(R1/2)− 1

4
R1/2(15 + 10R+ 4R2)e−R

R7/2

A4(R) ≡ R−9/2
∫ R

0

t7/2e−tdt =

105

16

√
πErf(R1/2)− 1

8
R1/2(105 + 70R+ 28R2 + 8R3)e−R

R9/2

and when R→ 0,

A1(R) =
2

3
− 2

5
R+

1

7
R2 − 1

27
R3 +

1

132
R4 +O

(
R4
)

A2(R) =
2

5
− 2

7
R+

1

9
R2 − 1

33
R3 +

1

156
R4 +O

(
R4
)

A3(R) =
2

7
− 2

9
R+

1

11
R2 − 1

39
R3 +

1

180
R4 +O

(
R4
)

A4(R) =
2

9
− 2

11
R+

1

13
R2 − 1

45
R3 +

1

204
R4 +O

(
R4
)

In (6.5), there is another particular source of numerical instability, i.e., the j12/S term, when

x3 ≡

√
R2
n1

s21
+
R2
n2

s22
− R2

12

s21 + s22
→ 0 (in our implementation, the practical condition is x23 6 0.01), it

is computed with the series expansion,

j12/S = −Zn
√
s21 + s22
s1s2

· 2√
π

[
1− x23

3
+
x43
10
− x63

42
+

x83
216
− x103

1320
+O

(
x123
)]

(6.A4)

B. A hybrid scheme to construct opposite spin Pauli potential

Observing that the HF, VB, and GVB representations of opposite spin electron pair lead to kinetic

energy stabilization bearing similar forms,

∆THF = − S

1 + S
(t11 + t22 − 2t12/S)

∆TVB = − S2

1 + S2
(t11 + t22 − 2t12/S)

∆TGVB = − (1 + g2)S2 + 2gS

(1 + g2)(1 + S2) + 4gS
(t11 + t22 − 2t12/S)
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we designed the base opposite spin Pauli potential for UHF level as,

Ebase,UHF
Pauli (↑↓) = O (T ) (t11 + t22 − 2t12/S) +O (Cee)

(
J −K/S2

)
+O (Cne) (j11 + j22 − 2j12/S) (6.B1)

where the prefactors have the form,

O (T,Cee, Cne) = −

6∑
i=1

piS
i

1 +
6∑
i=1

qiSi
(6.B2)

which is in fact a Padé approximant of order of 6. The parameter sets are subject to constraints,

6∑
i=1

(p, q)i = 1 for O (T,Cne)

6∑
i=1

(p, q)i = 3 for O (Cee) (6.B3)

and fitted against UHF results of open singlet H2 cases. The fitting performance is shown in Figure

6.B1, and the resulting parameters are listed in Table 6.B1.

Figure 6.B1. Performance of fitting of prefactors in (6.B1) on open singlet H2 at UHF level.
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Table 6.B1. Fitted parameters for (6.B2) at UHF level.

i 2 3 4 5 6

O (T,Cne)
pi 0.323933519549 263.657907116213 -1638.970416101778 3321.931428051212 -1946.189711223903

qi -682.166181317656 1541.546562405113 -2664.652178554171 4522.235374741135 -2833.366958883348

O (Cee)
pi -2.051090853035 4.348307977954 -2.873915950474 -3.557953214220 6.800067465817

qi 40.676410634018 -90.009542854955 111.790239323678 -76.039966816661 26.422925814258

The i = 1 parameters can be derived from the constraints (6.B3).

Figure 6.B2. Performance of the hybrid scheme on open singlet H2 at UHF and B3LYP levels.

The extra correlation beyond UHF level was taken into account by the Wigner correlation func-

tional[6],

εc(ρ) = − α

1 + rs/β
(6.B4)

where rs ≡
(

3

4πρ

)1/3

, and α and β are parameters. Here we approximated rs with the “overlap

density” φ1φ2 (which is also Gaussian) size so =
s1s2√
s21 + s22

, scaled by the number of electrons in the

overlap No = 2S,

rs =
so
S1/3

=

√
s1s2

2
exp

[
R2

12

3(s21 + s22)

]
(6.B5)
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Assuming further that the overlap density is uniform, the correlation energy is simple evaluated as

EC = Noεc(ρ) = −2S
α

1 + rs/β
(6.B6)

The parameters α = 0.0248887589748153 and 1/β = 0.1994033829664270 were fitted against the

Hooke’s atom series, the ground state densities of which are Gaussian. The performance of this

hybrid scheme is shown in Figure 6.B2, for both UHF and B3LYP levels of open singlet H2 cases.

C. Integrals involved in energy evaluation with AMPERE

Algorithm for evaluation of integrals emergent in ab initio calculations with angular momentum

projected pseudopotentials[11] has been proposed and implemented as a standard procedure[20–23].

Here, following the ab initio counterpart, we derived such algorithm for calculations of integrals

arising from the AMPERE method.

In the derivation, four kinds of special functions are involved, including

Error function : Erf(x) =
2√
π

∫ x

0

e−t
2

dt

Dawson function : F (x) = e−x
2

∫ x

0

et
2

dt =

√
π

2
e−x

2

Erfi(x)

Hybrid Dawson-error function : H(x) = e−x
2

∫ x

0

et
2

Erf(t)dt

where Erfi(x) = −iErf(ix) =
2√
π

∫ x

0

et
2

dt is the imaginary error function. The fourth one is the

modified spherical Bessel function of the first kind Ml(x), whose form is dependent of l, as listed

below for the first two,

l Notation Ml(x)

0 s
sinhx

x

1 p
x coshx− sinhx

x2

Type 1 integral

Type 1 integral arises from the term 〈φv |VL(rc) |φv〉, where

φv = N exp

(
−r

2
v

s2v

)
with N ≡

( √
2√
πsv

) 3
2
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and rc ≡ |~r− ~Rc|, rv ≡ |~r− ~Rv| for brevity. Together with (6.19), the term gives rise to integrals of

the form

χLn ≡ CLn
∫
d~r φvr

n−2
c exp

(
−ζr2c

)
φv ≡ CLn

∫
d~r φvr

n−2
c exp

(
−r

2
c

s2

)
φv (6.C1)

where s can be roughly considered as the pseudopotential “size (or range)”. Follow Ref. [21], and

define

D ≡ 4πN2 exp

(
−2R2

cv

s2v

)
=

8
√

2√
πs3v

exp

(
−2R2

cv

s2v

)

~k ≡ −
4
(
~Rv − ~Rc

)
s2v

= −4~Rcv
s2v

; k =
4Rcv
s2v

α ≡ 2

s2v
+

1

s2
=

1

s2v

(
2 +

s2v
s2

)

and a couple more,

x ≡ k

2
√
α

=
2Rcv

s2v

√
1
s2v

(
2 +

s2v
s2

) =
2sRcv

sv
√

2s2 + s2v

X ≡ D ·
√
π

4α3/2
exp

(
x2
)

=
8
√

2√
πs3v

exp

(
−2R2

cv

s2v

)
·
√
π

4α3/2
exp

(
4s2R2

cv

s2v (2s2 + s2v)

)
=

(
2

s2vα

)3/2

exp

(
− 2R2

cv

2s2 + s2v

)

χLn is simplified to

χLn = CLn
D

4π

∫
d~r rn−2c exp

(
−αr2c

)
exp

(
~k · ~rc

)
Here we don’t follow the expansion used in Ref. [21] (Eq. (13)), but use the coordinate system with

origin at ~Rc, and z-axis along ~Rcv,

χLn = CLn
D

4π

∫
d~r rn−2 exp

(
−αr2

)
exp (−kr cos θ)

= CLn
D

4π

∫ ∞
r=0

r2dr rn−2 exp
(
−αr2

) ∫ π

θ=0

sin θdθ exp (−kr cos θ)

∫ 2π

ψ=0

dψ

= CLnD

∫ ∞
r=0

dr rn exp
(
−αr2

)
· sinh (kr)

kr
= CLnD

∫ ∞
r=0

dr rn exp
(
−αr2

)
Ml=0(kr)

≡ CLnD Qnl=0(k, α)
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the last step uses the notation from Ref. [21]. Qnl=0’s are further evaluated as,

Qn=0
l=0 (k, α) =

√
π

2
√
α

exp
(
x2
) F (x)

x

Qn=1
l=0 (k, α) =

√
π

4α
exp

(
x2
) Erf (x)

x

Qn=2
l=0 (k, α) =

√
π

4α3/2
exp

(
x2
)

Therefore,

χL0 = CL0D Qn=0
l=0 (k, α) = CL0D

√
π

2
√
α

exp
(
x2
) F (x)

x
= CL0X · 2α

F (x)

x
(6.C2)

χL1 = CL1D Qn=1
l=0 (k, α) = CL1D

√
π

4α
exp

(
x2
) Erf (x)

x
= CL1X ·

√
α

Erf (x)

x
(6.C3)

χL2 = CL2D Qn=2
l=0 (k, α) = CL2D

√
π

4α3/2
exp

(
x2
)

= CL2X (6.C4)

Type 2 integral

Type 2 integral arises from the terms
L−1∑
l=0

〈φv|Vl−L(rc), which together with (6.19) gives rise to

integrals of the form

γln ≡ Cln

∫ ∞
0

r2dr 〈φv | l0〉 rn−2 exp
(
−ζr2

)
〈l0 |φv〉

≡ Cln

∫ ∞
0

dr 〈φv | l0〉 rn exp

(
−r

2

s2

)
〈l0 |φv〉 (6.C5)

Note that the solid angle part is already integrated out with Y 0
l (θ, φ), and the coordinate system is

changed to with origin at ~Rc, and z-axis along ~Rcv. From (6.22),

〈l0 |φv〉 = N exp

[
−R

2
cv

s2v

]
exp

[
−r

2
c

s2v

]
[4π(2l + 1)]

1
2 Ml

(
2Rcv
s2v

rc

)
(6.C6)

Similarly, define

D ≡ 4πN2 exp

(
−2R2

cv

s2v

)
=

8
√

2√
πs3v

exp

(
−2R2

cv

s2v

)
k ≡ 4Rcv

s2v

α ≡ 2

s2v
+

1

s2
=

1

s2v

(
2 +

s2v
s2

)
x ≡ k

2
√
α

=
2sRcv

sv
√

2s2 + s2v
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X ≡ D ·
√
π

4α3/2
exp

(
x2
)

=

(
2

s2vα

)3/2

exp

(
− 2R2

cv

2s2 + s2v

)

and γln is simplified to

γln = ClnD(2l + 1)

∫ ∞
0

dr rn exp
(
−αr2

) [
Ml

(
k

2
r

)]2
By following the method proposed in Ref. [22] and [23], all relevant cases are evaluated as,

γs0 = Cs0X · 2α

[
2
F (x)

x
− 1− e−x2

x2

]
(6.C7)

γs1 = Cs1X · 2
√
α
H(x)

x2
(6.C8)

γs2 = Cs2X ·
1− e−x2

x2
(6.C9)

γp0 = Cp0X · 4α

−F (x)

x
+

3

2
· 1− e−x2

x2
−

1− 1−e−x2

x2

x2

 (6.C10)

γp1 = Cp1X · 6
√
α

[
−H(x)

x2
− 1√

π

e−x
2

x2
+

Erf(x)

x3
− H(x)

x4

]
(6.C11)

γp2 = Cp2X · 3

2 ·
1− 1−e−x2

x2

x2
− 1− e−x2

x2

 (6.C12)

D. Numerical implementation of AMPERE (pair eff ecp.h) in LAMMPS

Due to their recurrence and numerical instability near the origin, these formulas are implemented

as individual functions in pair_eff_ecp.h:

inline double erfoverx(double x, int d_order) :
Erf(x)

x

inline double dawsonoverx(double x, int d_order) :
F (x)

x

inline double hybridoverx2(double x, int d_order) :
H(x)

x2

inline double expoverx2(double x, int d_order) :
1− e−x2

x2

inline double expoverx4(double x, int d_order) :
1− 1−e−x2

x2

x2

inline double l1n1terms(double x, int d_order) :
Erf(x)

x3
− 1√

π

e−x
2

x2
− H(x)

x4

The last entry only occurs in the p1 term, but gets separated out due to numerical instability concern.

All functions have a second argument int d_order, which instructs the order of derivative to return.
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Currently, only the original formulas (d_order = 0) and their first order derivatives (d_order = 1) are

implemented.

After the above block, projection integrals are implemented as individual function for each case

in Appendix C, and at last a wrap-up function is defined to parse a string char ∗ECP_TYPE, which

dictates what projection terms are included in the AMPERE. Such set-up benefits both current

development stage (for debug purpose) and future extensibility.

Please refer to pair_eff_ecp.h in LAMMPS for the detailed coding, and here some annotations

are presented for better comprehension.

6.D.1 inline double erfoverx(double x, int d_order)

This piece of code is mostly based on the FORTRAN code of error function written by Cody, which

uses algorithm in his 1969 paper[24]. The major changes are:

1. modified to evaluate
Erf(x)

x
instead of Erf(x);

2. the first order derivative is evaluated as
d
[
Erf(x)
x

]
dx

=
2√
π

e−x
2

x
− Erf(x)

x2
, except for the first

interval |x| ≤ 0.46875, where
Erf(x)

x
is approximated as

A(x)

B(x)
, so the first order derivative is

evaluated as
A1(x)B(x)−A(x)B1(x)

B2(x)
, where A1(x) and B1(x) are first order derivatives of

A(x) and B(x), respectively.

6.D.2 inline double dawsonoverx(double x, int d_order)

This piece of code is based on the FORTRAN code of Dawson’s integral also written by Cody, which

uses algorithm in his 1970 paper[25]. The major changes are:

1. modified to evaluate
F (x)

x
instead of F (x);

2. the first order derivative is evaluated as

[
F (x)

x

]′
=

F ′(x)x− F (x)

x2
=

[1− 2xF (x)]x− F (x)

x2
=

1

x
− F (x)

x2
(
1 + 2x2

)

except for the first interval |x| < 2.5, where
F (x)

x
is approximated as

P1(x)

Q1(x)
=

P9 + P8x
2 + · · ·+ P0x

18

Q9 +Q8x2 + · · ·+Q0x18

so the first order derivative is evaluated as

[
F (x)

x

]′
=

1− F (x)
x

x
− 2F (x) =

1− P1(x)
Q1(x)

x
− 2x

P1(x)

Q1(x)
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=
Q9 − P9 + (Q8 − P8)x2 + · · ·+ (Q0 − P0)x18

x (Q9 +Q8x2 + · · ·+Q0x18)
− 2x

P1(x)

Q1(x)

∵ Q9 = P9 ∴ =
(Q8 − P8)x+ · · ·+ (Q0 − P0)x17

Q9 +Q8x2 + · · ·+Q0x18
− 2x

P1(x)

Q1(x)

6.D.3 inline double hybridoverx2(double x, int d_order)

This piece of code evaluates the target formula in several intervals,

• when |x| < 1, series expansion is used

H(x) = e−x
2

∫ x

0

et
2

Erf(t)dt

= e−x
2

∫ x

0

et
2

(
2√
π
e−t

2
∞∑
n=0

2n

(2n+ 1)!!
t2n+1

)
dt see (7.1.6) of [18]

= e−x
2
∞∑
n=0

2√
π

2n

(2n+ 1)!!

∫ x

0

t2n+1dt

= e−x
2
∞∑
n=0

1√
π

2n

(2n+ 1)!!(n+ 1)
x2n+2

∴
H(x)

x2
= e−x

2
∞∑
n=0

1√
π

2n

(2n+ 1)!!(n+ 1)
x2n ≡ e−x

2
∞∑
n=0

Cnx
2n

and the series is truncated at n = 17, where Cn < 10−16. The first order derivative is evaluated

as

[
H(x)

x2

]′
= −2xe−x

2
∞∑
n=0

1√
π

2n

(2n+ 1)!!(n+ 1)
x2n + e−x

2
∞∑
n=1

1√
π

2n · 2n
(2n+ 1)!!(n+ 1)

x2n−1

≡ −2xe−x
2
∞∑
n=0

Cnx
2n + e−x

2
∞∑
n=1

C1nx
2n−1

• when 1 ≤ |x| < 10, minimax rational approximation is used for each interval size of 1.0.

Generally,
H(x)

x2
is approximated as

H(x)

x2
=

P (x)

Q(x)
, and the orders of polynomials P (x)

and Q(x) sufficient for accurate fitting are dependent of the target interval. In this range

1 ≤ |x| < 10, R(8,8) to R(4,4) are used to achieve accuracy of 10−16. The first order derivative

is evaluated as

[
H(x)

x2

]′
=

P ′(x)Q(x)− P (x)Q′(x)

Q2(x)

• when 10 ≤ |x|, the asymptotic expansion from (77) of [20] is used,

H(x)

x2
=

1

x2
· 1

x

∞∑
n=0

(2n− 1)!!

2n+1

1

x2n
≡ 1

x3

∞∑
n=0

An
1

x2n
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and the series is truncated at n = 12. The first oder derivative is evaluated as

[
H(x)

x2

]′
=

1

x4

∞∑
n=0

(2n− 1)!![−(2n+ 3)]

2n+1

1

x2n
≡ 1

x4

∞∑
n=0

A1n
1

x2n

6.D.4 inline double expoverx2(double x, int d_order)

This piece of code uses Taylor expansion for |x| < 1,

1− e−x2

x2
= e−x

2

· e
x2 − 1

x2
= e−x

2
∞∑
n=0

x2n

(n+ 1)!
≡ e−x

2
∞∑
n=0

C0nx
2n

and the series is truncated at n = 18. The first order derivative is evaluated as(
1− e−x2

x2

)′
= −2xe−x

2
∞∑
n=0

x2n

(n+ 1)!
+ e−x

2
∞∑
n=1

2nx2n−1

(n+ 1)!

≡ e−x
2

[
−2x

∞∑
n=0

C0nx
2n +

∞∑
n=1

C1nx
2n−1

]

For |x| ≥ 1, the original formula is evaluated, and the first order derivative is

(
1− e−x2

x2

)′
=

2
[(
x2 + 1

)
e−x

2 − 1
]

x3

6.D.5 inline double expoverx4(double x, int d_order)

This piece of code uses Taylor expansion for |x| < 1,

1− 1−e−x2

x2

x2
= e−x

2

ex2 − ex
2
−1
x2

x2

 = e−x
2
∞∑
n=0

n+ 1

(n+ 2)!
x2n ≡ e−x

2
∞∑
n=0

C0nx
2n

and the series is truncated at n = 18. The first order derivative is evaluated as1− 1−e−x2

x2

x2

′ = −2xe−x
2
∞∑
n=0

n+ 1

(n+ 2)!
x2n + e−x

2
∞∑
n=1

(n+ 1) · 2n
(n+ 2)!

x2n−1

≡ e−x
2

[
−2x

∞∑
n=0

C0nx
2n +

∞∑
n=1

C1nx
2n−1

]

For |x| ≥ 1, the original formula is evaluated, and the first order derivative is

1− 1−e−x2

x2

x2

′ = −
2
[(
x2 + 2

)
e−x

2

+ x2 − 2
]

x5
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6.D.6 inline double l1n1terms(double x, int d_order)

This piece of code uses Taylor expansion for |x| < 1,

Erf(x)

x3
− 1√

π

e−x
2

x2
− H(x)

x4
=

1

x2

[
Erf(x)

x
− 1√

π
e−x

2

− H(x)

x2

]
=

1

x2

[
2√
π
e−x

2
∞∑
n=0

2n

(2n+ 1)!!
x2n − 1√

π
e−x

2

− 1√
π
e−x

2
∞∑
n=0

2n

(2n+ 1)!!(n+ 1)
x2n

]

=
1√
π
e−x

2

· 1

x2

[
2 +

∞∑
n=1

2n+1

(2n+ 1)!!
x2n − 1−

(
1 +

∞∑
n=1

2n

(2n+ 1)!!(n+ 1)
x2n

)]

=
1√
π
e−x

2

· 1

x2

∞∑
n=1

2n(2n+ 1)

(2n+ 1)!!(n+ 1)
x2n

= e−x
2
∞∑
n=0

1√
π

2n+1

(2n+ 1)!!(n+ 2)
x2n ≡ e−x

2
∞∑
n=0

Cnx
2n

and the series is truncated at n = 18. The first order derivative is evaluated as(
Erf(x)

x3
− 1√

π

e−x
2

x2
− H(x)

x4

)′

= −2xe−x
2
∞∑
n=0

1√
π

2n+1

(2n+ 1)!!(n+ 2)
x2n + e−x

2
∞∑
n=1

1√
π

2n+1 · 2n
(2n+ 1)!!(n+ 2)

x2n−1

≡ e−x
2

[
−2x

∞∑
n=0

Cnx
2n +

∞∑
n=1

C1nx
2n−1

]

For |x| ≥ 1, the formula is evaluated as
1

x2

[
Erf(x)

x
− 1√

π
e−x

2

− H(x)

x2

]
, in order to utilize functions

defined in 6.D.1 and 6.D.3, and the first order derivative is

(
1

x2

[
Erf(x)

x
− 1√

π
e−x

2

− H(x)

x2

])′

=

[(
Erf(x)
x

)′
− 1√

π
(−2x)e−x

2 −
(
H(x)
x2

)′]
x2 −

[
Erf(x)
x − 1√

π
e−x

2 − H(x)
x2

]
· 2x

x4

=

[(
Erf(x)
x

)′
+ 2√

π
xe−x

2 −
(
H(x)
x2

)′]
x− 2

[
Erf(x)
x − 1√

π
e−x

2 − H(x)
x2

]
x3

6.D.7 projection terms

For each term, exactly the same variables are introduced as below for coding convenience,

α ≡ 2

s2v
+

1

s2
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dα

dsv
= − 4

s3v
∂x

∂rcv
≡ 2

s2v
√
α

(this is defined before x as an implementation trick)

x ≡ ∂x

∂rcv
rcv =

2srcv

sv
√

2s2 + s2v
∂x

∂sv
= −x

(
1

sv
+

sv
2s2 + s2v

)
X ≡

(
2

s2vα

)3/2

exp

(
− 2r2cv

2s2 + s2v

)
∂X

∂rcv
= X

(
− 4rcv

2s2 + s2v

)
∂X

∂sv
=

X

2s2 + s2v

[
−3sv +

4svr
2
cv

2s2 + s2v

]

and then the implementation is just as straightforward as formulated in Appendix C, with calling

functions described above (6.D.1 – 6.D.6) on demand. Currently implemented are projection terms

listed below,

inline void L0(double C, double s, double rcv, double sv, double ∗eecp, double ∗frcv, double ∗fsv)

L0 term (6.C2)

inline void L1(double C, double s, double rcv, double sv, double ∗eecp, double ∗frcv, double ∗fsv)

L1 term (6.C3)

inline void L2(double C, double s, double rcv, double sv, double ∗eecp, double ∗frcv, double ∗fsv)

L2 term (6.C4)

inline void s0(double C, double s, double rcv, double sv, double ∗eecp, double ∗frcv, double ∗fsv)

s0 term (6.C7)

inline void s1(double C, double s, double rcv, double sv, double ∗eecp, double ∗frcv, double ∗fsv)

s1 term (6.C8)

inline void s2(double C, double s, double rcv, double sv, double ∗eecp, double ∗frcv, double ∗fsv)

s2 term (6.C9)

inline void p0(double C, double s, double rcv, double sv, double ∗eecp, double ∗frcv, double ∗fsv)

p0 term (6.C10)

inline void p1(double C, double s, double rcv, double sv, double ∗eecp, double ∗frcv, double ∗fsv)

p1 term (6.C11)

inline void p2(double C, double s, double rcv, double sv, double ∗eecp, double ∗frcv, double ∗fsv)

p2 term (6.C12)
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6.D.8 wrap-up function

inline void ECPwrapup(char ∗ECP_TYPE, double ∗ECP_PARAMS, double rcv, double sv, double ∗eecp,

double ∗frcv, double ∗fsv)

This final function simply scans the string char ∗ECP_TYPE, and calls all projection terms indicated,

together with reading in corresponding parameters stored in double ∗ECP_PARAMS. With the flexible

content of the string, arbitrary combinations can be made and tested in order to hunt the best

AMPERE form.
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