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ABSTRACT 

Dynamic fracture initiation and propagation in ductile and brittle materials was studied 
experimentally using the optical method of caustics in conjunction with high speed 

photography. The drop weight impact test, previously used only for studies of fracture 
initiation, was adapted to study both dynamic fracture initiation and dynamic fracture 

propagation. 

The results show that for a relatively brittle, quenched and tempered, high strength 4340 

steel the dynamic fracture propagation toughness depends on crack tip velocity through a 
relation that is a material property. In addition, the effect of stress waves on the dynamic 

response of different specimen geometries is discussed and the micromechanisms of failure for 

this heat treatment of 4340 steel are investigated. 

Extension of the optical method of caustics to applications in elastic-plastic fracture was 

studied with the goal of learning how to measure dynamic fracture initiation toughness in tough, 

ductile materials. Static experiments were performed on different specimen geometries of a 

ductile 4340 steel and 1018 cold rolled steel, and were compared to small scale yielding, plane 
stress, finite element results. Issues studied that are related to the applicability of caustics are 

the extent of the dominance of the plane stress HRR field, the effect of plasticity on the 
accuracy of caustics from the elastic region outside the plastic zone, and the extent of the crack 

tip region of three dimensionality. 

The above approach to caustics in ductile materials was based on the assumption of validity 

of the HRR field. A novel approach to the use of caustics with ductile materials was taken that 
eliminates the concerns over the region of dominance of the HRR field, etc. In this approach a 

calibration experiment was performed relating the caustic diameter to the J integral for a 
particular specimen geometry under conditions of large scale yielding. This approach was 

successfully applied to optically measure for the first time the J integral under dynamic loading. 

Measurement of the J integral by means of strain gages was developed and applied to obtain J 

simultaneously with the caustics measurement. 

At the same time (and on the same specimens) additional measurements were made 
including, load, load-point displacement, strains near the crack tip and out of plane 

displacements (measured with interferometry). These results are compared with excellent 
agreement to a three dimensional finite element simulation of the specimen. 
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Chapter I 

INTRODUCTION 

Dynamic fracture mechanics is concerned with problems involving cracks in 

bodies when inertial or strain rate effects are important. This includes bodies with 

stationary cracks subjected to dynamic loading due to impact or explosions. and 

bodies containing rapidly propagating cracks subjected to static or dynamic load­

ing. A rapidly propagating crack can be defined as one for which the propagation 

speed is greater than some fraction of the wave speed. Interest in dynamic fracture 

mechanics seems to be steadily increasing. Several recent journal issues and 

conferences were devoted exclusively to dynamic fracture [1,2,3]. 

For practical purposes the study of dynamic fracture is concerned with investi­

gating fracture criteria, or critical fracture toughness values. There are questions 

regarding which criteria are applicable, and once a criterion is chosen, what are the 

critical values and how are they measured or computed. Toughness parameters of 

interest are criteria for predicting fracture initiation, fracture propagation and frac­

ture arrest. On the road to determining these failure criteria many issues must be 

investigated such as experimental techniques, numerical models, crack tip stress 

and strain fields, stress-strain behavior of materials under high loading rates, 

material failure mechanisms and others. 

One of the premises of fracture mechanics is that under the proper conditions, 

toughness results obtained from one structure or test specimen will apply to other 

structures to predict fracture behavior. Thus fracture toughness tests are usually 

performed on conveniently sized test specimens and the results are applied to 

larger structures. This is the approach taken here; all of the experiments used 

laboratory sized test specimens. 
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The experiments reported here were performed at room temperature with test 

specimens cut from flat plates. Various heat treatments of 4340 steel and a cold 

rolled 1018 steel were used. The optical method of caustics was used as the princi­

pal experimental tool. Caustics were applied to both static experiments and to 

dynamic experiments in conjunction with high speed photography. Additional tech­

niques including interferometry and strain gages were also used. Some of this 

research was carried in parallel to a numerical study by Narasimhan [4]. Where 

applicable numerical results are included here and compared to experimental 

results. 

In the first part of this thesis dynamic fracture propagation criteria are investi­

gated by using established experimental techniques. In the second part new experi­

mental techniques to measure fracture initiation criteria for dynamically loaded 

cracks are investigated. 

The organization of this thesis is as follows: In Chapter 2 the method of caustics 

is reviewed up to the current state of the art. Only applications relevant to this 

thesis are discussed. 

In Chapter 3 dynamic fracture initiation and propagation in an elastic material is 

investigated. The drop weight impact test was adapted for this purpose and is pro­

posed as a new testing configuration for dynamic fracture propagation experiments. 

Also investigated were static approaches to dynamic fracture, fracture initiation and 

growth starting from a fatigue crack, study of the effect of stress waves generated 

by crack growth and a study of the micromechanisms of failure. 

Chapter 4 investigates the application of caustics for measuring the intensity of 

the crack tip strains, the J integral [5], for plastically deforming materials. The 

motivation for this study was to learn when caustics can be accurately applied for 

this measurement. When this was known it was planned to apply caustics to meas­

ure J for dynamically loaded cracks. Related issues that were studied are the region 

of validity of the asymptotic stress and strain fields (the HRR field [6,7]) and the 
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effect of three dimensionality of the crack tip deformation field on the accuracy of 

the J measurement. The investigation was both experimental and numerical; where 

appropriate, results from both approaches are compared. 

It was found that the original approach to caustics in ductile materials (Chapter 

4) was not very useful for measuring the J integral, and thus in Chapter 5 a new 

approach was used with success. In this chapter both numerical and experimental 

results are presented for a statically loaded crack. Some additional experimental 

techniques and results using interferometry and strain gages are also presented. 

In Chapter 6 the method of caustics as discussed in Chapter 5 is applied to 

measure tile J integral under dynamic loading. Comparison is made to a technique 

based on strain gages. The limitations of this application of caustics are discussed 

by looking at results from some "unsuccesful" experiments. 

Each chapter has a brief introduction and Chapters 2, 3, and 4 contain a review 

of papers and results that are relevant to these chapters. Portions of Chapters 3 

and 4 are published elsewhere [8,9,1 O]. 
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Chapter 2 

THE OPTICAL METHOD OF CAUSTICS 

A number of optical methods are available for the study of stress and strain 

fields in planar, deformable bodies. The most well known of these methods is pho­

toelasticity. One of the least known is the method of caustics. Techniques such as 

photoelasticity yield information over any area of interest. The wealth of informa­

tion such techniques produce tends to complicate the determination of parameters 

such as the stress intensity factor. The method of caustics, on the other hand, is 

usually specialized to investigating the fields near a crack tip and typically the 

determination of stress intensity factors or other strain concentration factors 

requires that only one measurement be made from the recorded optical patterns. 

For static experiments caustics has few advantages over traditional techniques, but 

for dynamic experiments caustics has many advantages. Thus caustics have mostly 

been applied to dynamic fracture mechanics. 

Caustics were initially introduced by Schardin (11) and Manogg [12) and in recent 

years have been applied to a number of interesting fracture mechanics problems by 

a variety of investigators [ 13-17). Manogg, who was the first to apply the technique 

quantitatively, used caustics in a transmission arrangement. He was able to record 

changes in the optical path of rays traveling through transparent material at the 

vicinity of a crack tip, where the elastic stress field introduces changes in the 

refractive index as well as changes of thickness. The resulting difference in optical 

path produces a caustic pattern on a screen placed behind the specimen. He 

showed that the geometrical characteristics of the caustic depend on the nature and 

intensity of the crack tip singularity and was able to measure the intensity of the 

near-tip, elastic stress field. 
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The method of caustics can be used in either a reflection or a transmission 

arrangement and thus can be applied to the investigation of both opaque and tran­

sparent materials. Manogg's result was later applied to the study of reflected caus­

tics. His analysis, obtained on the basis of a transmission arrangement, was 

assumed to describe both transmission and reflection caustics. The adaptation of 

Manogg's equation for the reflection problem involved a number of simplifying 

assumptions (13,14] that are discussed in detail in (18]. 

In the following, attention is focused on the study of caustics obtained by 

reflection of parallel light rays from the mirrored surface of a solid, however the 

general concepts and analysis hold true for transmitted caustics as well. 

2 .1. General Principles. 

Consider a initially planar body lying in the x 1,x 2 plane at x 3=0. The deformed 

configuration of the body is such that it causes a non-uniform change in the optical 

path of light transmitted through it, or reflected from its surface. For a transparent 

material the change in optical path is due to non-uniform changes in thickness of 

the body and also due to to gradients in the index of refraction of the material. For 

an opaque material the change in optical path is due to a non-uniform surface 

elevation of the body. 

Consider further light travelling in the -x 3 direction normally incident on the 

body at x 3=0, as illustrated in Figure 2.1. This is equivalent to a family of plane 

waves incident on the body. A light ray is parallel to the vector normal to a surface 

representing wave fronts of light. If S(x 1,x 2,x 3) represents the optical path of the 

light ray, then the wave front is given by S(x 1,x 2,x 3) = Const. The vector I S(x 1,x 2,x 3), 

where I: is the gradient operator, is then normal to S and thus parallel to the light 

ray passing through S at point (x i.x 2,x 3). For a transparent material, the plane 

waves travel through the material and are distorted due to the introduced varia­

tions in optical path. This causes light rays passing through the body to be 

deflected. (Equivalently, waves reflected from the surface of an opaque solid are 
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distorted due to nonuniform surface elevation.) If a screen is placed at a distance z 0 

behind the medium, then the light ray intersecting the body at the point 21 = (x 1,x 2) 

will be mapped to a point ~ = (X 1,X2) on the screen. The (X 1,X2) coordinate system 

is identical to the (x 1,x 2) system, except that the origin cif the former has been 

translated by x 3 = -z0 • Assuming that the body is of infinitesimal thickness, and 

using the geometry of Figure 2.2, the mapping is given by 

(2.1) 

where .e 3 is the unit vector along the x 3 axis, and (IS . .e 3) denotes the scalar product 

of vectors IS and .e 3• 

2.1.1. Caustics by Reflection. It can be shown that for the specific case of light 

reflected from a body whose surface is specified by x 3 = - f(x 1,x 2) the optical map-

ping is [18] 

~ = 21 - 2(z
0 

- f) · '\ f 
l-ls=_fl 2 

(2.2) 

The above expression describes the optical mapping of points (x 1,x 2) of the 

reflector on to points (X 1,X2) of the "screen". The choice of the sign of z0 depends 

on whether the image is real or virtual. The use of a virtual image (positive z0 ) and 

a reflection arrangement, is used in experiments on opaque solids. 

When z 0>> f as is usually the case in fracture mechanics experiments, the above 

mapping simplifies to [18] 

(2 .3) 

It is this simplified mapping that will be used for the rest of the analysis. 
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2 .2. Application to Fracture Mechanics. 

In fracture mechanics the principal application of the method of caustics is to 

the measurement of stress intensity factors in cracked, elastic bodies. Mode I and 

Mode II stress intensity factors may be measured for stationary or for propagating 

cracks under both static and dynamic loading conditions. A newer application of 

caustics is to the measurement of the J integral in elastic-plastic bodies. Measure-

ment of the J integral is not a well established technique; much of this thesis is 

devoted to exploring this application of caustics. 

To relate the observed caustic patterns to the crack tip stresses and strains the 

near crack tip fields must be known to within a scalar amplitude factor. For elasti-

cally deforming materials under Mode I loading this is done by assuming that the 

asymptotic, stress intensity factor field [ 19] (or K1 field): 

is valid over some finite region near the crack tip, where au are components of the 

stress tensor, rand 0 are polar coordinates centered at the crack tip (see Figure 2.3) 

and fu is a dimensionless function of 0. The scalar amplitude factor in this case is 

the stress intensity factor K1• 

For monotonically loaded, stationary cracks in elastic-plastic materials it is 

assumed that the asymptotic, HRR field [6,7] 

is valid, where a0 is the yield stress in tension, In is a dimensionless numerical fac-

tor, and ~iJ is a dimensionless function of strain hardening exponent, n, and 11. 111 

this case the J integral is the amplitude factor of the near crack tip field. The 
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assumption of dominance of the HRR field turns out to be too restrictive for many 

situations, thus in this thesis an analysis based on a full field elastic-plastic solution 

will be presented. In addition, for both elastic and elastic-plastic cases plane stress 

conditions are assumed to prevail. The restrictions associated with this assumption 

are also explored. 

Consider again a set of parallel light rays normally incident on a planar, 

reflective specimen as illustrated in Figure 2.3. The specimen surface was initially 

optically flat but it is deformed due to the tensile crack tip loading. The deformed 

shape of the specimen surface is such that the virtual extension of the reflected 

light rays forms an envelope in space as illustrated in Figure 2.4. This surface, 

called the "caustic surface" is the locus of points of maximum luminosity. Its inter-

section with a plane located a distance z 0 behind the specimen is called the "caustic 

curve". This curve bounds a dark region, called the "shadow spot". By placing a 

camera in front of the specimen to collect the reflected light rays and by focusing 

the camera behind the specimen the caustic can be photographed. As discussed in 

[18] a caustic curve will exist if and only if the Jacobian determinant J of the map-

ping vanishes, 

(2.4) 

The locus of points on the specimen satisfying J = 0 is called the "initial curve". 

All points on the initial curve map onto the caustic curve. In addition all points 

inside and outside the initial curve map outside the caustic. Since the light that 

forms the caustic curve is reflected from the initial curve, essential information con-

veyed by the caustic comes from this curve only. Equation (2.4), defining the initial 

curve depends on z 0 • Thus by varying z 0 the initial curve position may be varied. 

If z0 is large then the initial curve will be located far away from the crack tip. If z0 

is small then the initial curve will be close to the crack tip. 
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2.2.1. Elastic-Static FractuYe. When a thin, cracked plate deforms in a purely 

elastic manner or when small scale yielding conditions are satisfied and the initial 

curve is well outside the crack tip plastic zone the analysis of caustics based on the 

linear elastic K1 field may be used. In such cases the Mode-I, plane stress, out of 

plane displacement field is given by [19] 

(2.5) 

where E is the elastic modulus, tJ is Poisson's ratio, and h is the specimen thickness. 

By substituting equation (2.5) into equations (2.3) and (2.4) it is found that the caus-

tic is an epicycloid and that K1 is related to the caustic diameter D (width of the 

caustic in the direction perpendicular to the crack line, see Figure 2.5) by [ 12, 13] 

The initial curve is circular and its radius Y0 is 

[ 
3h1JK1z0 lz;s 

Y0 = 0.3 160 = \/'?: 
2 21i£ 

(2 .6) 

(2.7) 

In Figure 2.5 both theoretical and experimental examples of caustics for elastic 

materials are shown. 

Plane stress is a key assumption in the analysis of caustics. It is known [20] that 

due to the three-dimensional nature of the near crack tip field, the initial curve 

radius Y0 must satisfy Y 0 >0.5 h, where h is the specimen thickness, for the plane-

stress analysis of caustics to be accurate. Figure 2.6 shows the error in K1 for sta-

tionary cracks as measured with reflected caustics, due to three-dimensional effects 

when y
0
<0.5h. The curve of Figure 2.6 was used as a correction for calculating K1 
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when r 0 <0.5 h. 

2.2.2. Static Elastic-Plastic Fracture. When the initial curve is within a region 

of dominance of the plane stress HRR field an alternate analysis of caustics must be 

used. For a material with a stress strain curve that may be described by the 

Ramberg-Osgood model 

(2.8) 

where a0 and £ 0 are the yield stress and yield strain in tension, the asymptotic, out 

of plane displacement is given by [6,7] 

naoh 
u ---

3 - 2E (2.9) 

where Err and EliH are dimensionless functions of fJ and n. Substitution of the above 

equation into equations (2.3) and (2.4) yields [21) 

E 
(2.1 Oa) 

11a~ 

where Sn is a numerical factor dependent on n and given in Table 2.1. For a non-

hardening material [22] 

(2.lOb) 

The caustic for a hardening exponent of n=9 is shown in Figure 2.7. Figure 2.7a 

shows the predicted caustic and Figure 2.7b shows the caustic observed in an 

experiment. The plastic zone can be seen surrounding the caustic of Figure 2.7b 
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demonstrating that the caustic came from light reflected from within the plastic 

zone. 

Unlike the elastic case the initial curve, sketched in Figur~ 2.8, is no longer circu-

lar; it depends on the hardening level of the material. The point on the initial curve 

that maps to the maximum value of X2 on the caustic curve is located at an angle 

Omax from the x 1 axis. Let the distance to this point from the crack tip be called r0 , 

the initial curve size. It is important to know the location of this point since it is 

mapped to the maximum diameter of the caustic, which is used in the interpretation 

of the results. It was shown in (23] that ()max varies from 72° to 56° as n varies from 

1 to co. For a power law hardening material (23] 

Ya= 10.3850 

0.400 11=50 
(2.11) 

Note that equations (2.5)-(2.11) are based on the assumption of the validity of 

particular asymptotic fields. In Chapter 4 an attempt is made to eliminate this res-

triction by constructing caustics based on a full field numerical solution. 

2.2.3. Elasto-Oynamic Fracture. For a dynamically propagating crack in an 

elastic material under plane-stress conditions the asymptotic crack tip u 3 displace-

ment field is given by (24] 

( 2 .12) 

where Kf, the dynamic stress intensity factor, is the amplitude factor of the near tip 

fields, 
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12 221
112 

r1 = l X I H\ I X 2 j , 

4ClfC\ 5 -( 1 +o~) 2 

F(a)=----­
O+n})(nr-nD ' 

O/.s = 1 - (_E.__)z , [ 
. ]1/2 

C1.s 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

x 1,x 2 move with the crack tip, a is the crack propagation speed, and C1 and C, are 

the longitudinal and shear wave speeds. By substituting the above into equations 

(2.3) and (2.4) one can determine the shape of the caustic and can relate K/1 to the 

caustic diameter D. The relation is given by [ 17] 

where 

£05/2 . 
Kf = lO 

7 
h ·F(a)·C(n1) , 

. Z 0 /J 

(6.8+ l 4.4n 1-2.60 r) 
C(11 I) = --------

18.6 

(2.1 7) 

(2 .18) 

The initial curve is very nearly circular and its radius is closely approximated by 

[ 13] 

ystat 
0 (2.19) 
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where r~tat is the radius of the initial curve for stationary cracks given by equation 

(2.7). As a-+0 equations (2.17) and (2.19) reduce to the caustics equations for sta­

tionary cracks. A set of caustics recorded during a dynamic crack propagation 

experiment is shown in Figure 2.9. 
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Table 2.1 Sn Values, Equation (2.9), from [21] 

n Sn 

1 .0277 

2 .0513 

3 .0611 

4 .0660 

5 .0687 

6 .0701 

7 .0710 

8 .0715 

9 .0718 

10 .0719 

15 .0719 

20 .0717 

25 .0714 
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Chapter 3 

DYNAMIC FRACTURE INITIATION AND PROPAGATION 

To predict the history of fracture propagation and arrest in a structure some 

fracture criterion must be postulated and a means of determining whether this cri-

terion is met must be available. For dynamic crack propagation under mode I small 

scale yielding conditions this can be done by equating the amplitude Kf of the 

crack tip stress field to a critical value Kfc, which is usually assumed to be a 

material property. The quantity Kfc represents the resistance of the material to 

crack growth and its magnitude is expected to depend on crack speed and on pro-

perties of the material. 

The fracture criterion is thus assumed to be 

(3.1) 

where a(t) is is the crack length, a(t) is the crack tip speed, and P(t) is a dynamic 

generalized load. The above hypothesis states that if the instantaneous value of 

the stress intensity factor Kf is set equal to the dynamic fracture toughness K/~(a), 

then the resulting differential equation is an equation of motion for the crack tip 

[25]. Fracture arrest is also covered by equation (3.1) since if at any time 

Kf(t) < K;JMIN!, where K;JMIN) is the minimum value of Kfc(a), then the crack will no 

longer propagate. 

The stress intensity factor Kf is in principle calculable through a purely elasto-

dynamic analysis. However, the dynamic fracture toughness cannot be determined 

purely by analysis and thus it must be determined by experiment or by 

micromechanical modelling of the fracture process (26]. Thus the goal of many 

dynamic fracture experiments is to measure Kfc in order to investigate the validity 
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of the criterion (3.1) and to determine the nature of the relation Kfc(a) if one exists. 

In typical laboratory test specimens Kf cannot be determined from analytical 

solutions; thus direct measurements of Kf or dynamic numerical analyses are 

needed in order to interpret dynamic fracture experiments. Direct measurements 

of Kf can be made using optical techniques such as photoelasticity, or caustics, 

combined with high speed photography. Both techniques have been proven to be 

reliable and through their application important results have been obtained. These 

optical methods do not depend on the specimen boundary conditions which are in 

general time dependent in a complicated manner. 

The available experimental results for dynamic crack propagation in metals are 

very limited. Several investigators [27-29] have used combined experimental and 

numerical techniques in which the boundary conditions applied to the specimen are 

measured (or assumed) and the crack length versus time is measured. These meas­

urements are used in conjunction with a dynamic numerical model to calculate 

Kf(t). Direct optical measurements using caustics or photoelasticity, combined with 

high speed photography, have been used extensively for investigating crack growth 

in transparent materials [ 13,30,31 ]. However, few direct optical measurements have 

been performed on metallic fracture specimens. Photoelastic coatings [32] and the 

method of reflected caustics [ 17) have been used to study crack growth in double 

cantilever beam (DCB) specimens of 4340 steel. In both cases high dynamic effects 

due to reflected stress waves were present. Such effects are more pronounced in 

metallic specimens [33] and complicate the interpretation of experimental results. 

Thus no definitive statements regarding the existence of a unique K{ vs. a relation 

have yet been made for metals. 

In this chapter dynamic fracture initiation and propagation experiments using 

the method of caustics are described. A new configuration for crack propagation 

experiments is used. This configuration, consisting of a three point bend specimen 

loaded in a drop weight tower, was found to produce repeatable and reliable results 
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without the problems caused by the strong dynamic effects present when testing 

wedge loaded double cantilever beam (DCB) specimens. A review of relevant 

results and issues is presented first and then the experiments are presented and 

discussed. 

3.1. Review of Kfc vs_ a Relationship and Data .. 

A student of fracture mechanics would be well justified in asking why should 

there be a relationship between the crack tip speed and the stress intensity factor. 

In the most simplistic terms one might say that if the stresses at the crack tip are 

high.er then the crack should advance more rapidly. However this simple approach 

does not explain much. Many effects combine to determine the dynamic fracture 

behavior of a material. Some of the effects are the interaction of crack tip plasticity 

and inertia, strain rate sensitivity, and local heating at the crack tip. 

For crack propagation in elastic-plastic solids under conditions of small scale 

yielding some theoretical speculations can be made about the nature of the depen­

dence of the dynamic fracture toughness on crack tip speed. It can be argued from 

a purely intuitive point of view that in the fracture of rate independent elastic­

plastic materials the plastic zone surrounding the crack tip will give rise to greater 

inertial forces as the speed of crack propagation increases and also that the effect 

will be much larger than in purely elastic materials. Approaching the problem from 

both an analytical and numerical point of view, Freund and Douglas [34] were able 

to study the steady state motion of antiplane shear cracks, (mode-III) propagating 

dynamically in an elastic, perfectly-plastic solid. 

The results were concerned both with the full deformation field, which was 

determined by means of the finite element method, and with the deformation on 

the crack line within the active plastic zone, which was determined analytically. 

Although the full field numerical analysis was conducted under the asumption of 

small scale yielding, the analytical result did not depend on this restriction. The 

main observation on the strain distribution was that the level of plastic strain is 
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significantly reduced from its corresponding slow crack growth levels due to 

material inertia. If this result is combined with the requirement of a fixed level of 

plastic strain at a critical distance in front of the crack tip it can be expected that 

for crack growth to occur, the far field stress intensity factor would necessarily 

increase with increasing crack speed. To quantify this idea the remotely applied 

stress intensity factor was related to the plastic zone strain distribution through 

the full-field numerical solution. The result, displayed here in Figure 3.1, demon­

strates the variation of K~ic with crack tip velocity. The parameters appearing in 

Figure 3.1 are the elastic shear wave speed C5 , the critical plastic strain 1 f• and the 

level of applied stress intensity K111c required to satisfy the same fracture criterion 

for crack initiation in the same material. 

With a similar view toward developing a theoretical relation between K~ and 

crack tip speed, Lam and Freund (26] analyzed the elastic-plastic, plane strain, 

Mode-I problem. In their work the stress intensity factor was related to the near tip 

crack opening displacement through a full field numerical solution. A critical crack 

tip opening angle growth criterion was imposed. As in the Mode Ill problem, the 

approach was based on the requirement that the same growth criterion can be 

applied to both initiation and to crack propagation in the same material. The 

results are presented here in Figure 3.2. The figure shows the variation of K~ / K1c 

with normalized crack speed for different values of the ratio<\/ rm where be is the 

critical value of the crack opening displacement at a characteristic distance rm 

measured from the crack tip along the crack faces. Figures 3.1 and 3.2 demonstrate 

K~(a) relationships that are very similar to experimental results. 

The strain rates at the tip of a dynamically propagating crack are very high, 

perhaps 106 or 107/sec. (35). Thus one expects strain rate sensitivity to affect 

dynamic fracture toughness. In an extension of the work of (34]. Freund and Doug­

las (36] studied antiplane shear cracks in a rate sensitive material. It was found that 

"the influence of strain rate sensitivity is greatest at the lower crack speeds, where 

the influence of inertia is least." At higher crack speeds the toughness continues to 
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increase but not as rapidly as for the rate independent material. 

Using a rate sensitive constitutive model of a different type than [36]. Freund and 

Hutchinson [35] investigated dynamic propagation of a tensile crack. For the 

material model used it was shown that the elastic strain rates dominate near the 

crack tip. Thus the near crack tip field has the same r- 112 singularity as an elastic 

material, but with a different amplitude factor, denoted in [35] by Ktip· The fracture 

toughness, expressed in terms of energy release rate, has a minimum value at some 

crack speed greater than zero. This is very different from the corresponding rate 

insensitive results. At higher crack speeds the toughness increases sharply with 

increasing crack speed, similar to the rate independent materials. Again it is seen 

that the strain rate effects are most important at low crack speeds. 

A third potentially important effect on dynamic fracture toughness is local heat­

ing at the crack tip due to the high rate of plastic work occuring there. Although 

there exist no good measurements of the temperature rise some analytical esti­

mates place the maximum rise at 400°C [3 7] to 1000°C [38] for dynamically pro­

pagating cracks under small scale yielding conditions. Materials are generally 

tougher at higher temperatures, thus the crack tip heating may contribute to 

increasing the toughness with increasing crack speed. 

Since cracks do not always propagate under steady state conditions, other iner­

tial effects not taken into account in the analyses of [26,34-36] might be important. 

A set of experiments were recently performed by Brickstad [27] to investigate 

whether Kfc depends on the crack tip acceleration, a as well as a. By using a 

stretching screw on the side of the specimen away from the machined precrack, an 

initially increasing and subsequently decreasing K field was obtained. This pro­

duced both acceleration and deceleration phases of crack growth and allowed the 

study of the sensitivity of the dependence of the fracture toughness on a. Results 

from a single specimen are presented in Figure 3.3 where both K~ and a are given 

as functions of crack length. As is obvious from this figure, the crack tip velocity 
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and Kf vary in phase both in the acceleration and deceleration regimes of the crack 

growth history, clearly indicating a relation between the two quantities. To demon-

strate this more clearly, the collective data from many specimens are presented in 

Figure 3.4 where a clear relation between K~ and a is indicated while no depen-

dence on acceleration is observed. 

Additional confidence in the existence of a unique K~ vs. a relation in steel is 

obtained by Kanazawa et al. [28]. They performed experiments using both DCB and 

large single edge notched (SEN) specimens subjected to uniform tension. The crack 

tip position was recorded by the use of gages spaced 3 cm apart. This information 

produced an average velocity record that was used in conjunction with a dynamic 

finite difference code. By computing the energy variation, the dynamic energy 

release rate was obtained by a global energy balance in the specimen. Of particular 

interest are results corresponding to SEN specimens tested with a linear tempera-

ture gradient varying from - l00°C on one side to +50°C on the other, the tempera-

ture increasing with crack length. As the crack propagated into the higher tempera­

ture region it decelerated and eventually stopped. The family of K~ vs. a relations 

presented in Figure 3.5a, corresponding to different temperatures, can explain the 

observed deceleration behavior of the cracks. 
J . 

The fracture toughness K1c(a) 

increases with temperature (and hence crack length in these tests), however the 

stress intensity factor Kf available was nearly constant, thus to satisfy equation 

(3.1) the crack must slow down until K~(a) = Kf. Cumulative results for -40°C are 

given in Figure 3.5b. Although the results of Figure 3.5 may seem convincing, a 

close examination of Figure 3.5a reveals a very imaginative use of lines to "connect" 

the experimental data. 

Behavior very similar to the above was also reported by Bilek (29] who per-

formed tests with DCB specimens of 4340 steel. Despite the large scatter due to 

the many different tests being presented, the variation of Kf with crack tip speed, 

illustrated here in Figure 3.6 follows the same trend as in [17] and [27] and com­

pares well with the superimposed results of Hahn et al. (39] and Angelino [40]. 



- 21 -

Kobayashi et al. recently performed some experiments on small specimens of 

4340 steel (41). In their paper Kfc(a) results are reported that are very similar to 

those in Figures 3.5 and 3.6. 

Birefringent coatings were first used in the study of the dynamic fracture of steel 

by T. Kobayashi and Dally (30). As discussed in their work, the use of a single coat­

ing covering the surface of the metal specimen raises questions concerning the rela­

tive position of the crack tip in the plastic coating and in the metal specimen. How­

ever, they overcame this problem by cementing a pair of coatings to the surface of 

the grooved 4340 steel specimen, one on either side of the groove. As the crack 

advanced, using a Cardin high-speed framing camera, they recorded the iso­

chromatic patterns, from which they calculated the stress intensity as a function of 

time. They were also able to determine crack length and hence the crack velocity at 

each position. The results indicate large oscillations in the value of K1 correspond­

ing to abrupt changes in the crack tip velocity. As discussed in detail in (33]. the 

oscillations in K1 and in crack speed are in phase and are caused by the interaction 

of reflected stress waves with the propagating crack tip. Results from three 

different specimens are presented in Figure 3.7 where the variation of K~ with a is 

illustrated. The results follow the same qualitative trend of those reported by Bilek 

for a similar heat treatment of the 4340 steel. The specimen labeled 375 gave 

anomalous results, which were attributed by the authors to a different heat treat­

ment. 

The method of caustics was first applied to the study of the arrest process in 

high-strength steels, by Beine rt and Kalthoff [ 13). but a relation between K~ and a 
was not reported. More recently Rosakis, Duffy, and Freund [ 17) used reflected 

caustics to study the dynamic behavior of cracks propagating rapidly in double can­

tilever beam specimens of 4340 steel. The caustic patterns formed during the 

course of the experiments were recorded by means of a high speed camera of the 

Cranz-Schardin type. The instantaneous value of the dynamic stress intensity fac­

tor and the crack tip position were thus recorded. The results of the experiments 
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indicate that the dynamic fracture toughness is an increasing function of crack tip 

speed. 

Despite the results, both experimental and analytical that support a Kj~(a) 

material property there is still much debate and doubt about this issue. The experi­

ments are difficult to perform and analyze and many of the results may be ques­

tioned for one or more reasons. Indeed some recent papers [42,43] investigating 

crack growth in steel would lead one to say that there is no Kfc(a) relation. But 

these results can also be questioned due to the choice of specimen configuration as 

well as measurement and analysis techniques. 

The question of Kfc(a) relations is of more than academic interest. Attempts are 

currently being made to apply dynamic fracture mechanics to the prediction of 

crack growth and arrest in critical applications such as nuclear power plants [44]. 

For the very ductile materials used in power plant piping Kfc(a) is not likely to be 

an applicable criterion. However, if a single parameter criterion such as Kfc(a) can­

not be used sucessfully in linear elastic fracture mechanics, it is unlikely that a 

similar simple criterion will be useful for more complicated cases. 

In this chapter an experiment is presented where many of the complications of 

previous experiments are eliminated. Thus the results have a high degree of relia­

bility. The data presented here do support a Kfc(a) relationship, however since they 

were obtained for a particular specimen geometry one can question whether these 

results are enough to demonstrate a unique Kfc(a). 

3.2. Description of Experiments. 

The experimental apparatus, consisting of a drop weight tower, digital recording 

oscilloscope, pulsed laser, and high speed camera is sketched in Figure 3.8. 

The specimen size was 30.4 x 12.8 x 0.95 cm with an initial crack length of 3.73 

cm. The crack tip notch diameter was 0.3 mm for specimens 36. 3 7, and 39, ancl 1.4 

mm for specimens 33. 34. and 38. One surface of the specimen was ground, lap peel, 
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polished to a mirror finish, and vacuum coated with aluminum. The aluminum coat­

ing is an optional step but it increases the reflectivity by 50%. The material compo­

sition and properties are given in Table 3.1. The uniaxial tension stress-strain 

curves for the heat treatment of 4340 steel used in this chapter and for other heat 

treatment used in this thesis are given in Figure 3.9. This heat treatment of 4340 

steel fractures in a relatively brittle manner, but not without some plastic deforma­

tion prior to fracture. Thus it represents a model material for investigation of 

dynamic crack growth under small scale yielding conditions. 

The test specimens were dynamically loaded in 3-point bending by a Dynatup 

8100A drop weight tester. The drop weight is variable, from 1910 N to 4220 N (430 

lb-950 lb) and the maximum impact velocity is 10 mis (32 ftls). In the present 

experiments the weight was 1910 N and the velocity was 5.0 mis. The tup (impact 

hammer) is instrumented allowing the dynamic impact force to be recorded on a 

Nicolet 2090 digital oscilloscope. 

Two LED-Photodiode switches mounted on the drop weight tower provide 

trigger signals for the camera and oscilloscope. A flag mounted on the falling 

weight interrupts the light going from the LED to the photodiode causing a trigger 

pulse. One switch is positioned so that it triggers when the tup hits the specimen. 

This signal triggers the oscilloscope and the pulsing of the laser. The camera's 

mechanical capping shutter must be open before the impact, thus a second switch is 

mounted higher on the tower to provide a trigger for the shutter 20 ms before 

impact. 

The rotating mirror high speed camera can record 200 frames at up to 200,000 

frames per second. Although it operates with an open shutter as a streak camera. 

discreet frames are obtained by pulsing the laser light source. Due to the short 

pulse width of the laser the exposure time of each frame is very short (15 ns), 

resulting in sharp photographs. 
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To photograph the caustics the camera is placed in front of the specimen to col-

lect the reflected light and then focused at a distance z 0 behind the specimen, i.e., 

focused on the reference plane of Figure 2.4. In all of these tests z 0 :::::2.5 m was 

used. Photographs of the caustics as they appear directly on the film are shown in 

Figure 3.10. The sequence covers the entire test from the moment of impact, frac-

ture initiation and fracture propagation. Selected photographs obtained from a sin-

gle test are shown in Figure 3.11. The area covered by each frame is approximately 

3 cm x 9 cm. The bright curve surrounding each shadow spot is the caustic curve. 

Taking the moment of impact as 0 ;1s, it is seen that from 42 ;1s to 252 ;1s the sha-

dow spot grew indicating that K1 was increasing. At 259 ;1s the crack began to pro-

pagate. The shadow spot moves with the crack tip, thus by measuring the location 

of the shadow spot the crack length may be determined. As the crack propagates it 

leaves behind a wake of plastic deformation causing the tail-like shadow patterns 

seen in the figure. 

3.3. Dynamic Crack Initiation. 

Instrumented drop weight testing can be used to determine the energy absorbed 

by a material prior to fracture or to determine the dynamic fracture initiation 

toughness K~. 

The records of two impact tests are shown in Figure 3.12. Specimen 34 had a 

crack tip diameter of 1.4 mm and specimen 36 had a diameter of 0.3 mm. The true 

stress intensity factors, measured from caustics are presented along with the stress 

intensity factors calculated by using the dynamic tup load P(t) in a statically derived 

formula [45] 

3s 
K1(t) = P(t)-

3
-
1 

f(a/w), 
2w 2 

where f(0.3) = 0.95, (3.2) 

s = distance between supports, w = height of specimen, and a = crack length. In 

these tests a/w=0.3 and s/w=2.4. The caustics results are only given up to the time 
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of fracture initiation. Thus from the figure it is seen that the specimen with a 

blunted crack fractured at t=640;1s and that the sharper specimen fractured at 

t=24011s. Up to the time of initiation for specimen 36, the Kf(t) records for both 

tests are nearly identical demonstrating the repeatability of the test. It is seen from 

the caustics records that the crack tip does not begin to be loaded until 40 11s after 

impact, approximately the minimum time it takes for stress waves generated by the 

impact to reflect from the specimen boundaries to the crack tip. This point is also 

demonstrated in Figure 3.11 where it is seen that at 42 11s a caustic is just starting 

to appear indicating that the crack is being loaded. 

It was proposed in [46) that if the time to fracture, tr, is large enough, tr>3r, 

where r is the natural period of oscillation of the specimen, then Kf(t) may be calcu­

lated from equation (4.2). The critical initiation value of K~ is then assumed to be 

the value corresponding to the maximum load. The period r can be calulated 

approximately by using the empirical formula [47) 

T= 
l .68(swhC£) 112 

Co 
(3.3) 

where s is the support span, w is the specimen width, h is the thickness, C is the 

specimen compliance, and C0 is the bar wave speed, 5000 mis for steel. For these 

specimens the period r was approximately 180;1s, or 3r=540;1s. Figure 3.12 shows 

that throughout the tests, even for t > 3r, Kf from caustics and from the tup load 

do not agree. Equivalent results were reported by Kalthoff et al., [48,49), who made 

more extensive tests with metals and polymers. Note that Kf(t) from caustics has 

oscillations that have a period near .the calculated period of the specimen, showing 

that the oscillations are due in part to vibrations of the specimen. 

Figure 3.12 also shows that fracture initiation occurs about 60;1s prior to the 

time of peak load. By studying the crack propagation record it was found that the 

load began to drop rapidly at the time when the crack had propagated almost 
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completely through the specimen. Thus the peak load is .associated not with frac­

ture initation but with fracture completion. 

The energy absorbed by the specimen prior to fracture can be calculated by 

integrating the load-displacement record up to the time of peak load. In the experi­

ments presented here the energy of the falling weight was large enough so that the 

weight moved with very nearly constant velocity during impact. As a result, the 

load-time record, P(t), also corresponds to a load-displacement record. Integration 

of the record for specimen 36 shows that the energy absorbed by the time of peak 

load (30011s) is 25% greater than the energy absorbed at the actual time of fracture 

(240ps). For the blunted specimen 34, the relative difference between tr (64011s) 

and the time of peak load (70011s) is smaller, but the absorbed energy is still 

overestimated by 10%. 

As is clear from the above, calculation of fracture toughness by means of impact 

load measurements and static analyses results in serious errors. Alternatives to 

optical techniques require complete determination of the boundary conditions 

(including supports) and the use of a fully elastodynamic analysis. 
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3.4. Dynamic Crack Propagation. 

3.4.1. Results. The crack length a(t), crack tip speed a(t), and Kf(t) records for 

a typical test (specimen 34) are given in Figures 3.13 and 3.14. The crack length 

record is differentiated using the incremental polynomial fit method described in 

the ASTM Test for Constant-Load-Amplitude Fatigue Crack Growth Rates above l0-8 

ml cycle (E647-8 l). To find the velocity at data point a(t;), a curve a=C 1+C2 t + C3 t2 

is least squares fit to points {a(ti-m), ... a(U . ... a(ti+m)} where m is usually 1,2, or 3. 

The crack tip velocity is then a(t;)=C2+2C3 ti. It is clear that this method cannot be 

usect on the first and last data points; thus a graphical method was used for those 

points. 

If a(t) is such that different differentiation techniques produce widely different 

a(t) records then the results are subject to interpretation. In Figure 3.14 a(t) for 5 

point (m=2) and 3 point (m= 1) fits are compared. It is seen that fitting more points 

results in more smoothing but the two a(t) records differ by less than 5% indicating 

that in this example a(t) is relatively insensitive to differentiation technique. 

The smooth velocity record gives confidence in these results because it shows 

that such records are not as subject to interpretation as are similar results for DCB 

specimens. As discussed in [50] and in section 3.4.3 changes in a in DCB specimens 

may occur on time scales smaller than the measurement interval causing the 

interpretation of the data to be rather subjective. 

Note that the Kf(t) and a(t) records vary in phase in Figure 3.14 demonstrating a 

strong relation between Kf and a. Cross plotting of the results of Figure 3.14 pro­

duces the relation between K~ and a shown in Figure 3.15 The error bars in the 

figure indicate the uncertainty in the experimental data. See Appendix A for details 

of the uncertainty analysis. 

The consistency of the present tests is illustrated in Figure 3.16 where a(t) and 
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Kf(t) are showr. for specimens 33 and 34, identical blunted crack tip specimens. 

Due to a small difference in the initial crack tip conditions the cracks initiated at 

slightly different times (time difference= 45 11s) and slightly different levels of Kf. 

Even so, the results of the two tests generally agree, demonstrating the reproduci­

bility and reliability of these tests. As before, a(t) and Kf(t) vary in phase. 

The effect of the crack tip bluntness on stress intensity factor and velocity his­

tory is demonstrated in Figures 3.12, 3.13, and 3.17 where the results for specimens 

34 and 36 are compared. The initial crack tip diameter was 1.4 mm for specimen 34 

and 0.3 mm for specimen 36. Figure 3.13 demonstrates that by increasing the crack 

bluntness the average crack velocity is increased. Similarly Figure 3.17 demon­

strates that higher levels of Kf may be obtained by blunting the crack. Generally 

the specimens containing sharp initial crack tips fractured with velocities in the 

range of 600-800 mis. To cover a higher velocity range the blunted specimens were 

tested, fracturing with velocities of 800-1200 mis. 

3.4.2. Kfc versus a Relation. The relation between Kt and a for a single exper­

iment (specimen 34) is shown in Figure 3.15. Figure 3.15 suggests a clear depen­

dence of Kt on crack tip velocity. The repeatability of such a result for different 

load and velocity histories is necessary for assuming that the dynamic fracture 

toughness depends on velocity through a relation which is purely a material pro­

perty as is usually assumed for the right hand side of equation (3.1). 

Repeatability is indeed demonstrated in the results of Figure 3.18. This figure 

displays the collective results from the present experiments. These results, which 

correspond to a variety of velocity histories, follow a definite trend. Superimposed 

are the results from [17) obtained from experiments performed on DCB specimens 

of the same material and heat treatment. The data point corresponding to specimen 

32 (a=O) is the value of steady state crack propagation toughness obtained from a 

quasistatic test. 
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Although this heat treatment of 4340 steel fractures under nominally elastic con­

ditions, a plastic zone of 1-2 mm propagates with the crack tip and the fracture 

mechanism is a mix of ductile hole growth and cleavage fracture. (See sec. 3.7 for a 

discussion of the micromechanisms of the fracture.) Conditions of ductile fracture 

were simulated by the analysis of dynamic crack growth given in [26] where the 

existence of a Kfc VS. a relationship is demonstrated. Note that experiments per­

formed on double cantiliever beam specimens of a similar 4340 steel [29,32) pro­

duced Kfc versus a relations qualitatively similar to the results obtained here. This 

agreement of results from different sources and specimen configurations provides 

strong evidence for the existence of a unique Kfc(a) relationship for this steel. 

However, for materials that fracture in a truly brittle manner where the 

micromechanism of fracture is pure cleavage, the results of [26] do not necessarily 

apply and the existence of a Kfc(a) relationship has been questioned [31]. 

3.4.3. Comparison with DCB Tests. Most of the previous dynamic crack propa­

gation tests in metals were performed with compact tension or double cantilever 

beam (DCB) specimens [17,29,32,51,52]. The DCB specimen was often chosen for its 

relative ease of analysis by means of a dynamic beam model. However the small 

size of most DCB specimens results in undesirable dynamic effects. Due to the 

closeness of the specimen boundaries to the crack tip, stress waves released when 

the crack begins to propagate reflect back to the crack tip causing abrupt changes in 

a(t) and Kf(t). Visual evidence of such reflected waves is seen in Figure 3.19. When 

the crack is initiated from a blunted notch the initial stress waves that are emitted 

are very strong. In the DCB specimen the initial surface waves reflect back to the 

crack tip distorting the caustic. The surface wave patterns suggest that body waves, 

which will affect Kf but cannot be detected by photography, are also present. 

In preliminary experiments performed at Caltech on DCB specimens the dynamic 

effects and wave reflections were found to cause many difficulties in the interpreta-
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tion of the results [50]. The problems were so great that DCB experiments were 

abandoned in favor of drop weight testing. Results from the DCB experiments are 

shown in Figure 3.20. In these tests the specimen size was 23 cm x 7.6 cm x 1 cm 

thick and the specimens were made of the same heat treatment of 4340 steel that 

the drop weight specimens were made of. The specimen had a blunted initial crack 

and was wedge loaded. 

If the interval of measurement is not small enough, then large errors may result 

due to variations of crack tip speed on time scales smaller than the measuring inter­

val. This can be expected to cause problems in small specimens where reflections 

of stress waves from the boundaries may cause abrupt changes in crack tip posi­

tion. Consider the a(t) records in Figure 3.20. For this record data were obtained 

every 7 ps. In Figure 3.20a a smooth curve is drawn through the points producing 

one a(t) record. In Figure 3.20b kinks are allowed in the a(t) record at times where 

the first reflected stress waves arrive at the crack tip. This was done by fitting 

smooth curves to the left and right of the wave arrival time and then matching the 

curves at the wave arrival, allowing a discontinuity in slope. As can be seen the 

second interpretation produces a much different a(t) record. To resolve these 

differences the measuring intervals would need to be reduced to 1 or 2 11s, which is 

much faster than the capability of any existing high speed cameras that are suitable 

for caustics. 

In contrast, the drop weight specimen has fewer undesired dynamic effects. The 

set of photographs from a drop weight test shown in Figure 3.11 shows only outgo­

ing surface waves. Due to the longer lateral dimensions of the 3-point bend speci­

men, no strong reflected stress waves are seen interacting with the crack tip. In 

addition the results of Figures 3.13, 3.14, 3.16, and 3.17 show smoothly varying a(t) 

and Kf(t) records making the interpretation of these results straightforward. 
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Another advantage of drop weight testing combined with high speed photogra­

phy is that the time of fracture initiation can be found within 5 11s (time between 

frames = 5 11s). In DCB testing the data recording is triggered by the breaking of a 

trip wire glued on the specimen ahead of the crack. Thus data for the first part of 

propagation and for the initiation are lost. As is seen from Figure 3.11. the drop 

weight experiments combine the crack loading, initiation and propagation in a sin­

gle test. Thus unlike the DCB specimen no data on crack initiation and on the 

beginning stages of crack growth are lost. 

3.5. Initiation and Propagation from a Fatigue Crack. 

In the previous sections tests were described of specimens with machined crack 

tips with diameters of 0.3 mm and 1.4 mm. These machined cracks were used to 

delay the onset of crack propagation until a time when the crack tip stresses had 

built up to a high enough level to cause the initially blunted crack to propagate 

very fast when it did initiate. In many situations of engineering importance a 

dynamically propagating crack is likely to start from a pre-existing flaw, surface 

crack, or fatigue crack. Since fracture propagation from sharp cracks is so impor­

tant in practice a few tests were made to study dynamic fracture initiation and 

growth starting from a fatigued crack. 

Two tests were made, using specimens 54 and 63. Due to some difficulties with 

the optical arrangement only partial results were obtained for specimen 54, thus the 

discussion here will concentrate on specimen 63. The dimensions of specimen 63 

are the same as the previous specimens. The heat treatment and the fatiguing con­

ditions are given in Table 3.2. Unfortunately when the series of experiments 

described in secs. 3.2-3.4 was completed all of the original hot rolled 4340 steel was 

used up. Thus a new order of 4340 steel was used in the tests described in this 

section. The new steel came in a cold-rolled condition and has important material 

property differences that make direct comparison of the results from specimens 54 



- 32 -

and 63 to results from specimens 32-39 impossible. 

The experiments were carried out under the same conditions as the tests 

described previously. The only differences were some improvements to the camera 

optics and a change in the specimen supports. The new specimen supports, which 

are instrumented with semiconductor strain gages to allow for measuremement of 

the support loads, are more compliant than the previous ones causing some slight 

changes in the loading history. 

Some of the features of the crack tip loading may be deduced by examining 

results from different tests. In Figure 3.21 Kf(t) is shown for three tests: specimen 

34 (blunted specimen, old supports), specimen 60 (blunted specimen, new sup­

ports), and specimen 63 (fatigued specimen, new supports). The dimensions of 

each specimen were the same and all were tested with the same weight and impact 

speed. It was found that the Kj1(t) record for tests made with the more compliant 

supports deviated from the record for tests made with the old supports only after 

approximately 110 11s. In separate tests it was found that the support load is zero 

until approximately 110 11s. This shows that the initial response of the specimen 

does not depend on the supports, but once the supports start to exert a force on 

the specimen the response is affected; Kf(t) increases more slowly when the more 

compliant supports are used. Further examination of Figure 3.21 shows that at 125 

ps the fatigue crack results (specimen 63) begin to deviate from the blunted crack 

results. The crack length history, graphed in Figure 3.22, reveals the reason for this 

difference. The crack begins to propagate very slowly at 100 11s. As the crack 

length increases the compliance of the specimen increases. By 125 11s the crack has 

grown to .19 cm, enough to start to significantly decrease the specimen compliance, 

resulting in a lower rate of loading of K1(t). 

The K1(t) record and the crack tip speed history are graphed as functions of 

crack length in Figures 3.23 and 3.24. Unlike cracks initiating from blunted notches 
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the crack initially propagates quasi-statically while the stress intensity factor 

increases to levels high enough to cause dynamic crack growth. It is seen that when 

K1 does reach high values, approximately 125 MPa Ym at a = 2 cm, the crack tip did 

not immediately begin to propagate rapidly, but accelerated from 100 mis to 750 

mis during the interval from 2 cm to 4 cm. During this time K1 was nearly constant. 

This result is consistant with the horizontal portion of the Kfc(a) relationship 

shown in Figure 3.18, where it is seen that a can increase up to approximately 800 

mis without a significant increase in Kf. 

Observation of the fracture surface showed that the shear lips were relatively 

large during the period of slow crack growth. The shear lips were measured to 

determine their extent quantitatively. The fraction of the specimen surface covered 

by shear lips is shown in Figure 3.25. Comparison of Figures 3.23, 3.24, and 3.25 

. K1 
suggests that there may be a correlation between the shear lips, a and -. Indeed a 

ao 

significant correlation was found between the shear lip fraction and the quantity 

(Correlation coefficient = .53 for 17 samples, indicates less than 1 in 50 

chance of random relationship.) Experience with cracks initiated at high speeds 

from blunted notches of the same 4340 steel shows that the shear lips are smaller 

for fast crack growth. Since the size of the shear lips is roughly related to the due-

tility of the specimen, it seems that dynamic crack growth serves to restrict the 

amount of plasticity at the crack tip. 

3.6. Stress Waves Emitted during Dynamic Crack Growth. 

When a dynamically propagating crack is initiated from a blunt notch, strong 

stress waves are released into the body. In addition to the body waves emitted, 

Rayleigh-like surface waves are emitted. If the crack propagated under steady state 

conditions no further stress waves will be emitted. However, fracture propagation 

in polycrystalline metals is never truly steady state, at least on the microstructural 
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scale. Thus in practice one may expect continuous stress wave emission as the 

crack propagates. In Figures 3.11, 3.12, and 3.19 many surface waves are visible 

during dynamic crack propagation. The surface waves are visible because the 

sharpness of the Rayleigh wavefronts produces large out of plane displacement gra­

dients on the specimen surface causing the reflection of light from the waves to 

form caustics. 

To be sure that the observed surface waves were Rayleigh waves the wavespeed 

and wavelength were measured. The measured surface wave speed was between 

2800 mis and 3100 mis and the wavelength was .\:::::0.20 cm. Note that the Rayleigh 

wave speed for steel is 2980 mis and the shear wave speed is 3220 mis. The 

wavelength .\ was approximately 115 of the specimen thickness, small enough so 

that the surface wave speed is unchanged by the finite specimen thickness. 

In dynamic fracture tests of transparent materials longitudinal waves as well as 

surface waves can be detected with the method of caustics. In experiments per­

formed by Theocaris and Georgiadis [53] on PMMA, longitudinal waves were 

observed to be emitted only at the time of initiation of the crack from a notch. 

However, Rayleigh waves were emitted continously. The presence of Rayleigh 

waves suggests that body waves are present even though they were not observed 

in the PMMA experiments. The reason for this opinion is that the longitudinal 

wavefront is diffuse and thus if the stress wave is weak it is much harder to detect 

with caustics that are the sharp-fronted Rayleigh waves. 

It is evident from the wave patterns seen in Figures 3.11 and 3.12 that the waves 

emitted after crack initiation are much weaker than the wave emitted at crack initia­

tion. As discussed previously, in small specimens such as DCB specimens, stress 

waves reflected from the specimen boundaries interact with the crack causing 

difficulties in the experiments. Examination of Figure 3.19 shows that the reflection 

of the strong initiation stress wave is the one that gives the most problems. After 
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initiation, stress waves are emitted but they are weak enough so that their 

reflections are of less consequence in the interpretation of caustics. 

3. 7. Micromechanisms of Fracture. 

In discussing dynamic fracture toughness results it is important to know some 

details of the mechanisms of fracture. As was suggested in [SO]. unique Kfc(a) rela­

tionships may exist for materials that fracture in a small scale yielding, ductile 

manner but not for materials that are truly brittle. Thus, in this section the micros­

tructure of the material and the failure mechanisms are investigated. Rate effects 

and the differences in toughness between two different heats of 4340 steel are also 

studied. Both scanning electron microscope (SEM) photographs of the fracture sur­

face and optical micrographs of the material were examined. 

The orientation of the samples cut from the test specimens is shown in Figure 

3.26. Due to the high hardness of the material and the large test specimen size, 

difficulties were encountered in cutting the specimens into samples small enough to 

be examined. These difficulties were overcome by mounting a metallographic, 

abrasive cutoff wheel on a surface grinder in place of the grinding wheel. This 

allows cuts to be made over long lengths. 

3. 7.1. Microstructure. The samples used for the optical micrographs were 

mounted, polished to a 1/4 11m finish, and then etched in 5% Nitol. Two of the 

micro graphs are shown in Figure 3.2 7. It is seen that the microstructure of this heat 

treatment of 4340 steel is martensitic. Comparing the micrographs from specimens 

34 and 63 to each other it is seen that the microstructures of the two steels differ 

very little. 

Although it is impossible to discern the grain boundaries from the photographs, 

the SEM photographs indicate that the grain diameters are 5-10 ;1m. Thus it was 

observed that the martensite plate lengths are of a subgrain size scale. 
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In several samples internal cracks perpendicular to the thickness direction of the 

plates ( x3 direction in Figure 3.26) were found. One of these cracks is shown in 

Figure 3.28. Since the plates were rolled, the planes parallel to the plate surface are 

weakened. In the interior of the plate, near the crack, tip the a 33 stress component 

is tensile and is approximately 1/3 the magnitude of the opening stress a 22 [54]. 

The combination of tensile stress in the thickness direction and of planes weakened 

by rolling allows the internal cracks to form. 

3. 7.2. Scanning Electron Microscopy. SEM photographs of the fracture surface 

were taken in order to investigate the micromechanisms of fracture for this particu­

lar steel. The photographs were examined to discern what are the differences 

between the two steels tested and whether there are any changes in the fracture 

surface due to differences in crack propagation speed. 

Two of the SEM photographs are reproduced here in Figure 3.29. All of the pho­

tographs are from the flat fracture region. The shear lips look completely different; 

the failure there is ductile shearing. 

For the tempered 4340 steel of Figure 3.29 the fracture is a mixture of cleavage 

and dimpled rupture. The areas of cleavage are the dark regions and the ductile 

areas are the light regions in the figure. Note that this is not pure cleavage, but is 

cleavage in the presence of and initiated by plastic deformation. It appears that the 

cleaved regions are linked by regions of ductile fracture; and that the cleaved 

regions are both transgranular and intergranular. Thus there is a mix of ductile and 

brittle mechanisms. This mix has been investigated extensively by previous authors 

[55-57]. In Figure 3.30 a chart is reproduced from [55] (original source is [56]) 

showing the percentage of fracture modes for 4340 steel. For the tempering tem­

perature of 3 l 5°C (600°F) the room temperature fracture is described as 15% 

cleavage, 40% intergranular and 45% ductile. Note also that there is a decrease in 

the Charpy impact energy for tempering temperatures between 500°F and 700°F., 
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showing that the steel tested here is in the temper embrittlement range. Although a 

quantitative analysis of the SEM photographs was not performed it appears that the 

percentage of dimpled rupture on specimen 34 (Figure 3.29a) is much less than 

45%. However on specimen 63 (Figure 3.29b) the percentage of dimpled rupture 

may very well be close to 45%. 

It appears that the micromechanisms of fracture are the same for the different 

4340 steels of specimens 34 and 63. However the mix of ductile versus cleavage 

fracture is greater for the steel of specimen 63. The different mix of fracture modes 

is c9nsistent with results that show that the steel of specimen 63 is as much as 50% 

tougher than the steel of specimen 34. The reasons for the diference in fracture 

modes between the two steels have not been established. However, surely the 

differences are not just random, but are related to the different chemical composi­

tions and processing. 

Note also that since much of the fracture is intergranular some individual grains 

may be discerned from the SEM photographs. In this way it was found the the grain 

diameters are on the order of 5-10 pm. 

To determine if there are any rate effects on the fracture modes SEM photo­

graphs of surfaces that fractured with different crack speeds were examined. The 

speeds ranged from 0 to 1200 mis. No significant differences were found between 

slow crack growth and fast crack growth surfaces even though the macroscopic 

fracture surface was always rougher for the fast crack growth regions. 

3.8. Conclusions. 

Dynamic fracture initiation and propagation in a high strength 4340 steel were 

investigated. The drop weight test, previously used only for fracture initiation stu­

dies, was adapted to study dynamic crack growth. This test produces reliable 

results and has many advantages over the commonly used DCB configuration. The 

results presented here support the existence of a unique K/~(a) relationship for 
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high strength steels. Unstable crack growth from a fatigue crack was found to start 

with slow ( < 100 mis) growth, then the crack accelerates to high speed (approx. 

700 mis). This is in contrast to cracks initiated from blunted notches that pro­

pagate very fast (> 1000 mis) from the start. The micromechanism of fracture for 

this heat treatment of 4340 steel is a mixture of cleavage (mostly intergranular) and 

ductile modes. The ratio of the mix varied between two different batches of 4340 

steel. The steel showing the higher mix of ductile fracture modes had a higher 

toughness. 
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Table 3.1. Material Properties 4340 Steel, 

Aircraft Quality, Vacuum Degassed, Hot Rolled Annealed, 

(Specimens 32-39) 

Chemical Composition,% 

C Mn P S Si Ni Cr Mo Cu Fe 

.39 .72 .015 .011 .21 1.87 .83 .25 .12 balance 

Heat Treatment : 843°C 1 1/2 hour, oil quench 

3 l 5°C 1 hour, oil cool. 

Material Properties : Hardness = 50 HRC 

Tensile Strength = 1490 MPa 

Fracture Initiation Toughness, K1c = 47 MPa\/; 

Quasi-Static Propagation Toughness, K1 = 62 MPa \/; 

Stress-strain behavior is rate insensitive 
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Table 3.2. Specimen 63 Material Properties, 

4340 Steel, Aircraft Quality, Vacuum Deoxidized, Cold Drawn 

Chemical Composition,% 

C Mn P S Si Ni Cr Mo Cu Sn Al Fe 

.42 .71 .007 .013 .23 1.78 .83 .25 .12 .005 .033 balance 

Heat Treatment : 843°C 1 1/2 hour, oil quench 

Fatiguing 

Hardness 

315°C 1 hour, air cool. 

: Kmax = 28 MpaVm 

Kmin = 2.8 MpaVm 

24 000 cycles 

3 mm crack extension 

: 49 HRC 
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Chapter 4 

MEASUREMENT OF THE J INTEGRAL WITH CAUSTICS: SMALL SCALE YIELDING 

In recent years the optical method of caustics has been developed into a very 

successful experimental tool for studying linear elastic fracture mechanics prob­

lems. The past success of caustics has led to efforts to extend the method to appli­

cations in elastic plastic fracture to measure the J integral, which characterizes the 

amplitude of the crack tip stress and strain fields and thus can be used as a fracture 

criterion. 

Some preliminary work [21,22]. based on the assumption of the validity of the 

plane stress, HRR, asymptotic crack tip field [6,7]. demonstrated that the value of 

the J integral can be directly measured with caustics. Unfortunately the region of 

dominance of the plane stress HRR field has not been accurately established. Thus 

the conditions under which the analytical results reported in [21.22] and presented 

here in Chapter 2 are valid are uncertain. Experimental results given in [9,22,23,58] 

indicate that the method is promising and is worthy of further investigation. 

Consider idealized small scale yielding conditions as depicted in Figure 4.1. Well 

outside the plastic zone, the elastic, singular stress field dominates. Inside the plas­

tic zone, very near the crack tip, the HRR field dominates. In the transition region 

between these two fields no analytical solution is known. Thus no analysis of the 

method of caustics exists for initial curves originating from this region. This places 

certain limitations on the applicability of caustics. To quantify the limitations, the 

extent of dominance of the plane stress HRR field is studied numerically. In addi­

tion caustics based on the numerical results are introduced. These caustics are not 

limited by the assumption of a particular asymptotic field. 

For caustics obtained from the elastic region surrounding the crack tip plastic 

zone, an analysis based on the linear elastic K1 field may be used. However crack 
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tip plasticity often affects caustics, causing errors in the measurement of K1• The 

resulting errors are investigated here experimentally. 

The analysis of the method of caustics applies to cracked, planar bodies that are 

thin enough so that the state of deformation is one of plane stress. However, there 

is a region near the crack tip where the deformation fields are three dimensional. 

Experiments were performed to investigate the extent of the region of three dimen-

sional fields for plastically deforming materials, and to determine the effect of three 

dimensionality on the accuracy of the method of caustics as based on plane stress 

fields. 

4.1. Numerical Calculations. 

In numerical calculations performed by Narasimhan [4], [10] a semi-infinite crack 

under Mode-I, plane stress, small scale yielding conditions was modelled. The in 

plane displacements from the singular, elastic crack tip field 

were specified on a circle of radius of approximately 3400 times the the smallest 

element length. The maximum extent of the plastic zone was contained within 1/30 

of this radius. An incremental h plasticity theory was used. The material obeyed 

the Von Mises yield criterion and followed a piecewise power hardening law in 

uniaxial tension of the form 

a 
O'o 

a:S; a0 
t 

( 4.1) --
( 0 

[ :0 r a> O'o 

with hardening exponent n=9 and a 0 =830 MPa. These values were chosen to match 
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the 4340 steel used in the experiments. 

4.1. l. Results. The calculated and experimentally observed plane stress, crack 

tip plastic zones are shown in Figure 4.2. A point was plotted for every element 

that had yielded, thus defining the calculated plastic zone in Figure 4.2a. Note that 

the density of points reflects only the density of the mesh near the crack tip. Fig­

ure 4.2b shows visual evidence of plastic deformation observed on the surface of a 

thin, compact tension specimen of 4340 steel with a hardening exponent of n=8.7. It 

is seen that the calculated and observed plastic zones agree in shape. Both calcula­

tions and experiment show that the extent of the plastic zone ahead of the crack tip 

is Yp=0.25(K1/cr0 )
2• 

The stress distribution cr22 /r0 ahead of the crack is shown in Figure 4.3. The 

non-dimensionalization of x 1 by (Kif cr,,)2 is used because the plastic zone scales 

with this parameter. The computed stress agrees with the stresses of the plane 

stress HRR field to within 1 % when x 1 ~0.08(Kifa0 ) 2 , i.e. x 1<0.3rP. In Figure 4.4 the 

plastic strain distributions tf2/c 0 and cf3/c 0 are compared to the strains predicted 

by the HRR solution. Again it is seen that the numerical results agree with the HRR 

field up to x 1 ~0.3rr. Of particular interest is the result for tf3/t 0 since this is 

related to the out of plane displacement, which is important to the method of caus­

tics. 

The stresses ahead of the crack are compared to the linear elastic K1 field in fig­

ure 4.5. At the boundary of the plastic zone (x 1=0.25(Kifa0 )
2) a 22 begins to 

decrease rapidly, making a transition to the linear elastic solution as x 1 increases. It 

is seen that the linear elastic field agrees with the actual stress field when 

XI :2: 1.5 Yp. 

4.1.2. Caustics Generated with Numerical Solution. To provide a means to 

analyze caustics that is not dependent on the assumption of dominance of the HRR 

or K1 fields, caustics were generated using the results of the FEM analysis. The out 

of plane surface displacements were smoothed using a least squares scheme and 



- 44 -

caustics were generated by mapping light rays point by point using equation (2.2) 

for different values of z 0 • The caustics are shown in Figure 4.6 for values of r0 /rp 

from 0.19 to 1.3. It is seen that for r0 /rp=0.19 the numerically simulated caustic 

agrees in shape with the caustic predicted using the the HRR field, Figure 2.7. When 

r0 /rp=l.3 the numerically simulated caustic, Figure 4.6f, agrees with the caustic 

predicted using the elastic, K1 field. In the region between r0 /rp=. l 9 and 1.3 there is 

a transition from the "HRR like" caustic to the "elastic caustic". It is seen that for 

r0 /rp as small as 0.30 (Figure 4.6b) the caustic shape deviates from the HRR shape. 

4.2. Description of Experiments. 

To experimentally determine the range of validity of the caustics measurements, 

the j integral Ucaus) or the stress intensity factor (Kcaus) was measured with caustics 

using different initial curves. These quantities were simultaneously measured from 

the boundary conditions and are denoted by J8c and Ksc· The values were then 

compared for different conditions. 

The caustics were photographed using the apparatus illustrated in Figure 4.7. 

The system consisting of the lens and screen forms a telephoto camera that is 

focused on a virtual image plane at a distance z 0 behind the specimen. Light 

reflected from the specimen forms a caustic on the screen which is then photo­

graphed with a 35 mm camera. Graph paper on the screen allows the magnification 

from the screen to the film to be determined and the thin lens equation is used to 

calculate the magnification from the virtual image plane to the screen. By varying 

the distance from the lens to the screen and by using different focal length lenses, 

the system can be focused at different distances z0 behind the specimen. Varying 

z0 varies the initial curve, allowing data to be obtained from different distances 

from the crack tip. 

Note that to have large z0 one must make the distance from the lens to the 

screen small. In order to maintain a good magnification, a long focal length lens 

should be used when z 0 is large. 
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The initial curve was calculated from the caustic diameter using equation (2.7) 

for r0 >rp and equation (2.11) for r0 <rp. In transition regions where neither the HRR 

or the elastic field dominates, or in three-dimensional regions, these equations are 

approximate. However, r0 should always be bounded by the two values, 0.3160 and 

0.400, (equations (2.7) and (2.11)) and thus any calculated value of r 0 using these 

equations is approximately correct even in the transition regions. 

For these tests, loading beyond relatively small scale yielding conditions was not 

applied. Thus only the applied load needed to be measured to determine J. Values 

of K8c (and hence Jsc) were calculated using formulas given in [59] of the form 

(4.2a) 

where P is the load applied to the specimen. A correction to the crack length to 

account for the plastic zone in calculating K1 was used. The correction, discussed in 

[60] is given by 

(4.2b) 

where a is the crack length, 

r = _l_ n-l (!.!__) 2 

Y 2iT n+l a 0 

(4.2c) 

and 

1 .i= -----
[l-(P/Po)2] 

(4.2d) 

Equations for the limit load, P 0 , are given in [60]. 
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The specimen dimensions and geometries are given in Figure 4.8. Both three 

point bend and compact tension specimens were tested. The specimens were 

lapped optically flat and polished to a mirror finish. The pre-crack was cut with a 

wire electric discharge machine, producing a crack tip· diameter of 0.3 mm. 

Annealed 4340 steel and cold-rolled 1018 steel were used. The heat treatment of 

the 4340 steel was: 843°C for 1.5 hours, oil quench, then anneal at 649°C for 1 hour 

and air cool. The material properties were: yield stress a 0 = 830 MPa, hardening 

exponent n=8.7, and n = 3.3 for a best fit of the uniaxial tension properties to the 

Ramberg-Osgood material model. The uniaxial tension stress-strain curve is shown 

in Figure 3.9. Also shown in the figure are stress-strain curves for other heat treat­

ment of 4340 steel. The 1018 steel was used as received. Its uniaxial tension curve 

is shown in Figure 4.9. The 1018 steel had a 0 = 560 MPa with no hardening. 

The tests proceeded by loading the specimen to some level and then maintaining 

that level while caustics were photographed for different values of z 0 • The load was 

then increased a step and the process repeated. 

4.3. Experimental Results and Discussion. 

4.3.1. Sequence of Caustics. A sequence of photographs of caustics is shown in 

Figure 4.10. These photographs are from specimen 28, (compact tension) loaded 

such that yP:::::3.4mm. Only the distance z 0 was varied, thus varying the initial curve 

size Y0. The parameter Y0/ YP in the figure is the ratio of the initial curve size to 

plastic zone size. The plastic zone size YP was estimated by measuring the extent 

of the visual evidence of plastic deformation seen in the photographs. The initial 

curve size Yo was estimated using equation (2.11) when Yo/ rp< 1 and equation (2.7) 

when Yo/ rp> 1. It is seen from Figure 4.10 that for r 0/ rP::;;0.35 the caustics agree in 

shape with the caustic predicted from the plane stress HRR field (Figure 2.7a). For 

r 0/rp=l.4 (Figure 4.lOf) the caustic has the shape predicted using the singular elas­

tic field. 
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Comparing the experimentally observed caustics with the numerically generated 

ones of Figure 4.6 it is seen that in both cases there is a transition from an "HRR 

caustic" to an "elastic caustic" as Yo/ Yp goes from 0.19 to 1.4. The transition away 

from the HRR caustic occurs at Yo/ yP:::::0.35 for the experimental results and at 

Yo/ yP:::::0.30 for the numerical results. Thus it appears that the transition from the 

HRR caustic to the elastic caustic occurs sooner in the numerical model than in the 

experiments. However, the general trend is similar in each case. 

By comparing the shapes of the experimentally observed caustics to the 

predicted caustic shape (Figure 2.7a) further information on the region of domi­

nance of the HRR field can be obtained. If the caustic is not shaped similar to the 

predicted caustic then the displacement fields near the initial curve cannot 

correspond to that of the HRR field. The caustics of Figure 4.10 deviate from the 

predicted shape for Yo/ Yp;?:0.35 indicating that under small scale yielding an upper 

bound for the dominance of the HRR field is y:::::0.35Yp· 

4.3.2. Effect of Plasticity on Elastic Caustics. Under conditions of plane stress, 

small scale yielding the elastic singular field dominates at some distance outside 

the plastic zone. Thus when the initial curve radius Yo satisfies Yo>>Yp and Yo<<a 

where a is the crack length or some other relevant in plane specimen dimension, K1 

may be measured with caustics by applying equation (2.6). 

The numerical results shown in Figure 4.5 show that the elastic singular field 

does not agree with the actual stress field when Y< 1.5 YP. Thus values of K1 meas­

ured with caustics are expected to be affected by the plastic zone when Yo< 1.5 Yr. 

To quantify the effect of plasticity on caustics from outside the plastic zone. 

experiments were performed measuring K1 from caustics, Kcaus• at different dis­

tances from the crack tip and comparing Kcaus to K1 measured from the boundary 

conditions, Ksc· 
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The results are presented in Figure 4.11 where Kcausl K8c is plotted vs. r0 / YP. The 

initial curve radius Yo is calculated using equation (2.7). For all of the tests YP was 

calculated using the numerical results 

[ 
K1 

]

2 

Yp = 0.25 O"o (4.3a) 

for the 4340 steel (n=8.7) and using the estimation 

(4.3b) 

for the 1018 steel (n-+x.). 

According to [20]. for elastic solids plane stress conditions prevail for Y>0.5h, 

where h is the specimen thickness. Therefore only caustics satisfying Yo>0.5h were 

plotted, ensuring plane stress conditions. The parameter Yp/b in the figure is the 

ratio of plastic zone size to uncracked ligament size, b. This parameter indicates 

the extent of yielding that has occured. No data were obtained for rp/ b>.046 

because beyond that level of yielding it was not possible to observe a caustic that 

was shaped like the predicted caustic since small scale yielding conditions were no 

longer satisfied. Some data points are given for 0.7<Y0/ YP< 1.0. It was observed 

that for Yo/ Yp as small as 0.7 the caustic curve remained close to the elastic shape. 

Thus it is appropriate to present data for Y0/yp-::::o0.7 along with data for Yo>Yp· 

The results of Figure 4.11 show that away from the plastic zone equation (2.6) is 

valid. However, for Y0 :S; 1.5 YP, Kcausl K8c deviates from 1.0 indicating that serious 

errors will occur if equation (2.6) is applied for the evaluation of caustics in this 

range. This limit does not appear to depend on hardening for n"?_9 since the 4340 

steel and the 1018 steel data are consistent with each other. 
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As stated above the caustics retain the shape predicted by the elastic analysis 

even for Yo/ rP as small as 1.0. Thus the effect of the plastic zone on the caustic can­

not be judged by observation of the caustic shape. The invariance of the shape of 

the caustic is explained by the numerical results. It was found that the sum a 11 +a22 

generally follows the singular elastic field even for r0 / rP as small as 1.2. This result 

is important because it is the out of plane displacement u 3 = - ~~ (a 11 +a22 ) that is 

relevant to caustics, and because the shape of the caustics is mainly determined by 

the angular distribution of u 3. Since the angular distribution of u 3 is in good agree­

ment with the singular elastic field, the caustic shapes do not deviate much from 

the predicted shape as Yo-+Yp. 

4.3.3. Three Dimensional Effects. It has been demonstrated above that the 

plane stress, HRR field dominates for r-5:0.30YP. Thus the application of equation 

(2.9) for analyzing caustics is restricted to r0 / rp<0.30 if plane stress conditions are 

satisfied. However, due to the finite thickness of an actual test specimen there is a 

region near the crack tip in which the deformation field is three dimensional. It was 

shown in [20] that for elastic materials this region extends for distances from the 

crack less than one half of the specimen thickness. Here the three dimensional 

effects in elastic-plastic materials are investigated. 

Experiments were performed measuring Jcaus using caustics at different distances 

from the crack tip and then comparing Jcaus to J8c. measured from the boundary 

conditions. The specimens used for these tests' are the same specimens that were 

used for investigating the caustics from outside the plastic zone. The only 

difference is that here the initial curve was placed well inside the plastic zone, and 

the plastic zone size was generally larger. 

The collective results are presented in Figure 4.12 where lea us! ) 8c is plotted vs. 

r 0 / h. The initial curve size, Y0, was calculated using equation (2.11). Only data 

points corresponding to caustics for which the aspect ratio Dy/ Dx was in good 

agreement with the value predicted by the HRR field were plotted. Here Dy and D, 



- 50 -

are the sizes of the caustic in the x2 and x 1 directions. This was done to insure that 

only the three dimensional effects were being investigated. Other effects, such as 

the variation of caustic shape as r 0/ rP increases, are thus minimized. The maximum 

ratio of initial curve to plastic zone size was r0 /rp::; 0.45. 

No results are given in Figure 4.12 for r0 /h > 0.6. The reason for this is that in a 

given test (h. rP constant), as r 0 / h is increased, r 0/ rP is also increased. When r 0 / rP 

becomes large the caustic shape is no longer similar to the HRR shape and thus a 

calculation of J using the analysis of caustics based on the HRR field is meaningless 

in such cases. It was found that rP could not be increased indefinitely for two rea­

sons. First, the thin specimens used here are prone to out of plane bending and 

buckling at the high loads needed to make rP large. Second, extensive plastic defor­

mation reduces the reflectivity of the specimens reducing the definition of the 

resulting caustic. 

The results show that for r 0/h::; 0.6, Icaus!hc is less than one, indicating that 

three dimensional effects are important in that region. The extent of the region of 

three dimensionality seems to be larger than the extent for elastic materials. The 

plane stress crack tip solution, equation (2.9) predicts that Ur-+.x> as r--+0. However, 

since this is impossible, the actual u 3 is less than predicted. Thus so are the values 

of Icaui!Isc since the size of the caustic increases with increasing u 3 and iJu 3/Llxa. 

The results do not seem to depend on specimen configuration or on the particu­

lar steel. The reason for this consistency is that the tests were all carried out under 

nominally small scale yielding conditions, thus the only in plane distance that is 

important is the plastic zone size. Also note that the 4340 steel has a relatively low 

hardening making it nearly elastic-perfectly plastic like the 1018 steel. 
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4.4. Conclusions. 

Application of the method of caustics for the measurement of the J integral in 

plastically deforming materials was investigated. It was found that under small 

scale yielding conditions the plane stress, HRR field dominates for r<0.3rP. Thus 

the application of caustics as based on the HRR field is restricted to initial curves 

satisfying r 0<0.3rP. For caustics obtained from the elastic region the presence of a 

plastic zone introduces errors in the measurement of the elastic stress intensity 

factor when r0<1.5rP. In an actual test specimen there is a region near the crack tip 

where the deformation field is not one of plane stress but is three dimensional. It 

was found that the extent of this region for plastically deforming materials extends 

to at least r<0.6h, where h is the specimen thickness. 

In summary, to use caustics to measure fracture toughness the following restric­

tions must be observed. (1) For initial curves outside the plastic zone: r0/r,. > 1.5, 

r 0/h > 0.5, r0 /a << 1. This implies rp/a << 1 (small plastic zones). (2) For initial 

curves within the plastic zone: r0/rp < 0.3, r0/h > 0.6, r0 /b < .06, where b is the 

uncracked ligament and a is the crack length. 

For less ductile materials the conditions (1) can be satisfied at fracture initiation. 

For more ductile materials (1) cannot be satisfied and one must try to put the initial 

curve within the plastic zone. However, the conditions (2) are so restrictive and 

conflicting that they can rarely be met. Thus to make caustics useful for studying 

the toughness of ductile materials a different approach must be taken. This 

approach is discussed in the next chapter. 
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Chapter 5 

MEASUREMENT OF THE J INTEGRAL WITH CAUSTICS: LARGE SCALE YIELDING 

As discussed in Chapter 4 the interpretation of caustics based on two dimen­

sional. analytical solutions that do not take into account the finite specimen 

geometry results in a procedure that is too restrictive for practical applications to 

elastic-plastic fracture mechanics. In this chapter an approach is taken that will 

allow the initation value of the J integral (assumed here to be a fracture criterion) 

to be measured under both static and dynamic loading conditions (Chapter 6). 

Since methods for determining J are well established for static loading there is 

no point on applying caustics to static problems. However, under dynamic loading 

this application of caustics can replace expensive finite element calculations that 

would be necessary to interpret a dynamic test and to determine the time history of 

J. Furthermore, as discussed in Chapter 3 standard instrumented impact tests do 

not generally provide enough information to determine the fracture initation time, a 

quantity that is needed for calculations of the critical initation value of J. or Jc. 

In brief, the approach taken here is to make a static calibration of J versus the 

caustic diameter for . a particular material and specimen geometry. Such an 

approach is similar in principle to that taken by Loss [61). where strain gages were 

applied tothe specimen, near the crack tip. In Loss's technique a low load calibra­

tion of strain vs. K1 was made and then extrapolated linearly for measuring K1c in a 

drop weight test. As one might think, this approach will be good only for the par­

ticular specimen tested; a new calibration is required for each new specimen 

geometry or material. 

In addition to caustics strain gages were also used in the current experiments. 

Strains measured near the crack tip were related to the J integral through a static, 

nonlinear calibration. This relation will serve as a secondary measurement of J 
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during the drop weight experiments. 

Although the principal goal of Chapters 4 and 5 is to examine the application of 

caustics to ductile materials two issues keep appearing. These are the extent to 

which the near crack tip fields are three dimensional and the extent of dominance 

of the asymptotic solutions. These issues are being examined in further detail in a 

companion study by Narasimhan and Rosakis [62). In this study, the specimen 

upon which the experiments in this chapter were performed is being analyzed in a 

three dimensional, elastic-plastic, finite element calculation. In order to provide a 

direct comparison between the calculations and the actual specimen a second 

experiment was performed simultaneously with the caustics experiment. Using 

Twyman-Green interferometry, the out of plane displacement was measured for 

load levels up to fracture initiation. These displacements are compared directly to 

the numerical results. In addition the load, load point displacement and strains 

measured near the crack tip are compared to the numerical results. This cross 

checking of results from two techniques is very helpful in establishing confidence 

in and accuracy of both the numerical calculations and the experiments. 

5 .1. Description of Experiments. 

These experiments used three point bend specimens (numbers 67 and 69) with a 

4: 1 length to width ratio. The specimen dimensions are given in Figure 5.1. As 

before 4340 steel was used but with a higher yield stress heat treatment. The heat 

treatment was: 843°( for 1.5 hours. oil quench, then anneal for 1 hour at 538°(. 

The material properties were yield stress a 0 = 1030 MPa, and hardening exponent n 

= 22.5 for a fit to the piecewise power hardening law, equation (4.1). An alternative 

description of the stress strain behavior is obtained by a fit to the Ramberg-Osgood 

model, equation (2.8). In this case n=2 and n= 15.7. The uniaxial stress-strain curve 

is given in Figure 3.9. As with the previous experiments the specimens were lapped 

optically flat and polished to a mirror finish. For these experiments both sides of 

the specimen were polished to allow for simultaneous caustics and interferometry 

measurements. 
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Four measurements were performed on each specimen: Caustics, interferometry, 

load, load point displacement, and strain gages. The strain gage locations are 

shown in Figure 5.1. A photograph of the specimen, the loading fixtures, strain 

gages and extensometer (for measuring load point displacement) is shown in Figure 

5.2. 

The experiments proceeded by loading the specimen in small steps. During the 

loading the strain gages, load cell and extensometer signals were recorded. When 

loading was stopped at a particular step caustics photographs and interferometric 

photographs (interferograms) were recorded. This process was repeated until the 

point of fracture initiation. A summary of the experiments giving the values of J 

and the plastic zone sizes is given in Table 5.1. 

S.1.1. Load and Load Point Displacement. The load and load point displace­

ment were recorded with a 100 000 lb. capacity load cell and a strain gage exten­

someter. The signals were recorded during loading by a digital oscilloscope. There 

exists some extraneous displacement due to compliance of the loading fixtures, and 

denting of the specimen at the contacts with the rollers. This extraneous displace­

ment was subtracted using the procedure of Robinson [63]. In this procedure the 

support rollers are placed together, and an uncracked specimen is inserted between 

the support rollers and the loading roller. The entire system is then compressed 

and the load-load point displacement was measured. It was found that the extrane­

ous displacement was approximately linear with load. 

5.1.2. Strain Gages. The strain gages measured the ( 22 strain component along 

a line roughly perpendicular to the crack line. The choice of gage location was 

designed to place the gage in a region where the strains would be high but not out 

of the elastic range. The gages were connected to a single arm bridge and recorded 

unamplified on the digital oscilloscope. 
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5 .1.3. Caustics. The caustics were photographed with a setup exactly the same 

as discussed previously (see Figure 4.7). In drop wei_ght testing only one value of z 0 

can be used during a test thus in these tests z 0 was held constant. A preliminary 

experiment was performed to choose a suitable z 0 . In this experiment caustics 

were obtained for various z 0 values and load levels. At low loads the caustics were 

all very clear for all z 0 's. But as the load increased the caustics for small z 0 's 

become blurred and ill defined. This is caused partially by a loss of reflectivity due 

to plastic deformation. On this basis it was decided to use z 0 = 100 cm. This 

choice allows caustics to be recorded without loss of definition up to the fracture 

initiation load. 

5.1.4. Interferometry. A version of the Twyman-Green interferometer [64] was 

used to measure the out of plane displacement, u 3 . A sketch of the optical arrange­

ment is shown in Figure 5.3. Due to the high sensitivity of interferometry minimi­

zation of vibration of the specimen and optics is important. Thus the entire 

apparatus including the loading frame is mounted on an isolated optical table. A 

photograph of the specimen and interferometer optics is shown in Figure 5.4. The 

loading frame pivots in a yoke that is rigidly mounted to the optical table, allowing 

for a tilting adjustment of the specimen. 

For interferometry a 50 mm diameter collimated laser beam is split into two with 

a beamsplitter. The reference beam reflects from the flat mirror back through the 

beamsplitter and into the camera, see Figure 5.3. The object beam reflects from the 

specimen, through the beamsplitter and into the camera. When the two beams are 

adjusted to fall on top of each other any nonuniform differences in optical path 

length between the two beams results in light and dark fringes. The laser used pro­

duces coherent, monochromatic light with a wavelength of 632.8x 10-3 mm. The 

fringe patterns were photographed with a 35 mm camera using a 200 mm f4 (50 mm 

diameter) telephoto lens. The camera was located such that 50 mm of the specimen 

just filled up the 35 mm film frame. Kodak Technical Pan 2415 film shot at ASA 100 

and developed in Kodak D-19 was used in order to achieve high contrast and high 
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resolution. 

For complete interference between the reference and object beams the intensity 

of light from each beam must be matched. Polished steel has a reflectivity of 50%, 

thus to match the reference beam to the object beam a 50% reflectance mirror was 

used. 

Destructive interference between two waves occurs when the waves are out of 

phase by 'A/2, 3Aj2, · · · where 'A is the wavelength. The phase shift between the 

reference and object beams is equal to the difference in optical path length, thus 

the change in optical path length bS represented by adjacent dark fringes is bS = 'A. 

For small deformations S = 2u 3, thus adjacent dark fringes represent a change in u 3 

of OU3 = Aj2. 

It is important to focus the camera on the surface of the specimen so that a large 

caustic will not be formed, obscuring the crack tip. By minimizing the caustic, 

fringes can be resolved to within approximately one crack tip diameter. 

Due to the angular deflection of the reflected light rays, as seen in Figure 2.4, the 

relation S = 2u 3 is not completely accurate; the actual optical path is slightly larger. 

In addition the angular deflection will change the location of the fringes. It is 

demonstrated in Appendix B that for these experiments the maximum error in 

fringe location is less than l'A and in the u 3 values the error is less that .on. 

The interferograms were analyzed by making SOX enlargements and digitizing 

the fringes by hand on a computer digitizing pad. The center of each dark fringe 

was estimated by eye and its position was digitized. 

5.2. Numerical Calculations. 

The numerical calculations modelled in three dimensions one quarter of the 

three point specimen shown in Figure 5.1, using six layers of elements for half the 

thickness. An incremental 1z plasticity theory was used. The material obeyed the 

von Mises yield criterion and followed the piecewise power hardening law of 
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equation (4.1), with n=22.5. Loads were applied to the specimen incrementally in 

140 steps, going from 0 to 80000 N. The J integral was calculated using a numerical 

domain integral representation as given in (65]. This value of J coincides with the 

value of J calculated as an integral over a cylindrical surface surrounding the crack 

front divided by the specimen thickness. 

5.3. Results: Comparison between Experiments and Calculations. 

5 .3.1. Load, Displacement, and] Integral. The specimen geometry was chosen 

to take advantage of the load-displacement methods for estimating the J integral. 

For the 3-point bend specimen J may be estimated by (66,67] 

(5 .1) 

where P is the load applied to the specimen, o is the load point displacement, h is 

the specimen thickness and b is the uncracked ligament length. The accuracy of the 

equation has been confirmed experimentally by several authors [68,69] and the con-

sensus is that equation (5.1) is accurate for s/w > 4.0 and 0.4 < a/w < 0.7. In the 

present experiments s/w = 4.0 and .a/w = 0.4. However, as will be discussed it was 

found that the above is not accurate for our specimen. 

The load-displacement (P-b) curves for specimens 67 and 69 are shown in Figure 

5.5. For each specimen the curve is shown only up to the point of fracture initia-

tion. Also shown is the P-o curve calculated from the numerical model. Good agree-

ment is obtained between the experiments and the calculations. It is seen that the 

P-b curves flatten out at around 75000 N but the numerical curve increases to nearly 

80000 N for the same b. The difference is due to crack initiation occurring in this 

range. 

The resulting J integral given as a function of load, P, is shown in Figure 5.6. 

Shown in the figure are J calculated from equation (5.1) using the experimental 
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results and the numerical results. Also shown are J calculated as a domain integral 

from the numerical results and J calculated using the EPRI approach [60]. introduced 

by Shih and Hutchinson. In the EPRI approach J is calculated by using the elastic-

plastic estimation formula: 

(5.2a) 

where 

(5.2b) 

and 

2 
[ p ln+l JP(a,n) = C\ ~ bh 1(a/w,n) Po . (5.2c) 

The values of h 1(a/w, n) were calculated by using the finite element method and are 

given in tabular form in [60]. K1 is calculated as if the specimen were elastic as in 

equation (4.2a). An expression for ae is given in equation (4.2b). The parameters n 

and n corresponding to a fit of the stress-strain data to the Ramberg-Osgood model 

were used for this calculation. For plane stress h 1 (0.4,16)~0.16, and the limit load 

P0 is 

CJobz 
P0 = 0.536-

2
- = 75900N 

s/ 

The numerical domain integral result is considered here to be the most accurate 

evaluation of J since this method of calculation is a direct consequence of the sur-

face integral integral definition of J. This will be called the "true J value". It is seen 

that the experimental and numerical values of J calculated from the P-(~ method, 
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equation (5.1), are the same but both are too large by approximately 20%. Although 

equation (5.1) is an approximation, in light of previous results [68,69] better agree-

~ 

ment was expected between the approximate and the true J. Note that JP db 
. 0 

represents the energy input to the specimen. An alternate expression of the energy 

H 

is JM dfJ where M is the moment across the uncracked ligament and () is the work 
0 

II 

conjugate rotation. Thus J may be estimated by substituting J MdfJ for J Pdb in equa-
o () 

lion (5.1) [66,67]. It was found in the numerical calculations that by taking ()as the 

crack mouth opening displacement divided by the distance from the crack mouth to 

a fixed "hinge point", J could be accurately evaluated for the higher loads. Thus in 

future experiments it is recommended that the Md() version of equation (5.1) be 

used. The EPRI approach agrees with the true J up to 60000 N, that is it agrees 

under small scale yielding where r dominates equation (5.2). The EPRI approach is 

not expected to be very accurate for low hardening since for large n h 1 is a very 

sensitive function of a/w, thus making interpolation of h 1 values somewhat inaccu-

[ 
p ln+l 

rate. Also for large n, the term Pa is very small until P>P0 . 

5.3.2. Strains. The strain gages placed on the specimen measure f 22 on the 

specimen surface averaged over the area of the gage. The strains for the two gages 

are plotted versus the applied load in Figure 5.7. Also shown are the strains calcu-

lated numerically at the same locations. The agreement between the experimental 

and numerical results is best for strain gage # 1. the gage nearest the crack tip, 

where the finite element mesh is finest. At the location of strain gage #2 strains 

from several elements were averaged to obtain the numerical results shown. 

Note that the measured strain for gage # 1 begins to decrease even before frac-

ture intiation, but the numerical strain does not. This unloading and difference with 

the numerical results indicates that tunneling, or crack extension in the interior of 

the plate, is occurring prior to visible crack intiation on the surface of the plate. 
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Thus it seems that crack initiation occurs over a range of loads, starting at 67600 N 

and finishing at 74700 N, corresponding to J values from 270 kN/m to 420 kN/m. A 

more detailed version 6f this experiment could use compliance techniques to deter­

mine a J resisitance curve rather than only an initiation value as is done here. 

In Figure 5.8 the strains for gage # 1 and the corresponding values of J are plot­

ted. The solid line is a fit to the experimental data. The values of J that were used 

are the values calcuated from the numerical results with the domain integral. The 

fit to the experimental data was used to determine J from strains measured in drop 

weig_ht experiments. Clearly there are a few problems with the measurement of J 

from this technique. It is seen that j(E) is not a unique function due to the decrease 

in strain caused by crack tunneling. Thus a choice must be made concerning which 

part of the J(t) curve is relevant. Near the peak strain J(E) is very sensitive thus a 

small change in E, caused perhaps by electrical noise, produces a large change in]. 

5.4. Results: Caustics. 

Caustics were recorded for specimens 67 and 69 using the fixed value z 0 = 100 

cm. The sequence of caustics for increasing loads for specimen 69 is shown in Fig­

ure 5.9. Although the caustics are nearly circular the equation for elastic caustics, 

equation (2.6) cannot be used to evaluate them. The experimental results are 

presented in Figure 5.10 as non-dimensionalized caustic diameter versus non­

dimensionalized J integral. Examination of equations (2.6) and (2.10) shows that the 

relation between J and D may be non-dimensionalized as in the figure. Also shown 

in Figure 5.10 are the relations for the elastic case, equation (2.6), and for the HRR 

field case, equation (2.10). The calibration of D versus J is valid only for the speci­

men tested here and only for z 0 = 100 cm. This curve is used as a master curve for 

interpreting drop weight experiments of the same material and specimen, and with 

the same z 0 . 

The main reason for normalizing the experimental data is to compare it to the 

analytical results and to be sure that the results are at least similar in form ancl in 
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magnitude. From Figure 5.9 it is seen that for the entire loading range the caustic is 

nearly circular, thus the issues discussed in sec. 4.3.2 are relevent here. At low 

loads D is small, thus the initial curve size, Y 0, is small; it is within the region near 

the crack tip of three dimensional deformations where the caustic diameter is 

smaller than predicted analytically. As the specimen is loaded, Yo increases and the 

plastic zone size Yp also increases. The initial curve is now outside of the region of 

three-dimensionality but __CQ_< 1.5 thus causing D to be larger than that predicted by 
YP 

the elastic analysis. 

S.S. Interferometry and u3 Comparison. 

Interferograms were recorded for load levels from 6000 N up to fracture initia-

tion, 74700 N. At the highest load levels the quality of the interferograms 

deteriorates. This is due to the combination of roughening of the surface due to 

plastic deformation near the crack and the high fringe density near the crack tip 

due to steep deformation gradients there. The highest load for which fringes near 

the crack tip could be resolved was 5 7300 N. 

The level of initial flatness of the specimens is demonstrated by Figure 5.11 

where it is seen that over 5 cm the surface elevation of the unloaded specimen does 

not vary by more than D... (Recall that each dark fringe represents a change in u 3 of 

A/2 from the adjacent dark fringe.) 

Typical interferograms are presented in Figures 5.12 and 5.13. Both photographs 

are for a load of 35000 N, but the photograph in Figure 5.13 is greatly enlarged (and 

the contrast is reversed.) Although the fringes at the crack tip are not resolvable in 

Figure 5.12 they are resolvable when magnified enough as in Figure 5.13. Here it is 

seen that fringes can be resolved almost all the way to the crack tip, except for that 

part obscured by a very small caustic. 

The interferograms actually represent the u 3 displacement of the specimen with 

respect to some inclined plane, the plane of the reference mirror. During the 
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experiment the mirror is aligned to be as close to perpendicular to the specimen as 

possible. However it will usually be off a little thus some additional information is 

needed to analyze the interferograms. What is needed is to know a priori the dis­

placements at three noncolinear points on the specimen, then any inclination of the 

mirror can be corrected for. The u 3 results from the interferograms are matched up 

with the known displacements at those points to get the true displacement field. In 

these tests the displacements at known points were provided by the finite element 

calculation. It was found that u 3 was zero (or very nearly zero) at x 1 = -1.5 cm, x2 = 

0 and zero at x 1 = 2.1 cm, x 2 = 0 and u 3= -5.72x10-3 mm at r=l.0 cm on the line fl= 

40°C. Actually the location of the zero displacement point ahead of the crack tip 

changes slightly as the specimen is loaded, and although this was accounted for, 

using a fixed zero point would have caused little error. Even a simple two dimen­

sional, elastic model could have been used almost as well. Using a coarse mesh 

with a two dimensional, elastic finite element model the zero point was calculated 

to be at 2.0 cm. Thus even simple finite element calculations are very valuable in 

interpreting interferograms. 

The u 3 displacement along the line fJ=O is shown in Figure 5.14 for three load 

levels. Data are shown only as close to, the crack tip as fringes could be resolved. 

Generally fringes could be measured to approximately 0.3 mm ahead of the crack 

tip and to approximately 0.5 mm behind the crack tip. Away from the crack tip u 3 

is linear with x 1 as it should be for a beam. The displacement crosses zero at x 1::::: 

2.1 cm and is positive for greater x 1 values since this part of the specimen is in 

compression. The displacement gradients are much larger behind the crack tip than 

ahead of the crack tip. The plastic zone does not spread much behind the crack tip, 

and since most of the displacement occurs within the plastic zone, this displace­

ment must occur over a small distance, causing the steep displacement gradients. 

In Figures 5.15-5.17 u 3 is presented on 0=0 for three loads, nondimensionalized 

by J/a0 . Also shown in these figures are the numerical results for the same load lev­

els. For reference the extent of the plastic zone on 0=0 and x 1 corresponding to 
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one half the specimen thickness are also shown in the Figures. In Figure 5.15, 

where the plastic zone is very small, u 3 from the linear elastic K field, equation (2.5), 

is given. In Figure 5.17, where the plastic zone is larger, u 3 from the HRR field, 

equation (2.9) is given. 

The first observation is the excellent agreement between the experimental and 

numerical results at all load levels. The agreement of the calculated u 3 displace-

ments as well as the agreement of the other measured quantities with the experi-

ment leaves no question that the numerical calculations are accurate and sufficiently 

detailed to model well this specimen. To show that the angular variation in dis-

placement of the numerical results is also accurate, the numerical and experimental 

u 3 along the line 8=40° is given in Figure 5.18 for a load of 52300 N. Again the 

agreement of numerical and experimental results is excellent. 

For all load levels it was found that there is no region where the plane stress 

HRR field adequately described u 3 on the specimen surface. This is consistent with 

results of Chapter 4 where it was found that caustics based on the HRR fields could 

not be used to accurately measure J. The asymptotic HRR field does not agree with 

the actual field because of three dimensionality of the near crack tip fields and due 

to the finite specimen dimensions that cause higher order terms to become impor-

tant away from the crack tip. At low loads Figure 5.15 shows that the K1 field does 

not predict u 3 well even for r/h > 0.5, due again to the finite specimen dimensions 

and the importance of higher order terms. However the method of caustics as 

based on the K1 field could probably be used for these specimens at low loads since 

from the figure it appears that the experimentally obtained slope is about the same 

iJu 3 
as that predicted by the K1 field. Recall that caustics depend on not on the 

(}Xi 

absolute value of u 3 . 

To help visualize what the u 3 field looks like near the crack tip, the experimen­

tally obtained u 3 is plotted three dimensionally in Figures 5.19a and 5.19b for two 

different views. 
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Recent experiments [70] on very thin, ductile specimens showed that the HRR 

field does predict u 3 and u 2 for r/h > 1. In those experiments the ratio of specimen 

width to thickness was 30: 1. Jn the present experiments the ratio is 7: 1. The 

results indicate that if one can make measurements in a region far enough away 

from the crack tip so that three dimensional effects are negligible, but close to the 

crack compared to in plane specimen dimensions, then the asymptotic fields will 

accurately describe the true fields in some region. How close to the crack compared 

to in plane specimen dimensions will depend on specimen geometry, and if the 

material is non-linear on the applied load level. One puzzling result of [70] is that 

-u 3 is maximum not at the crack tip but at r/h:::::0.5. This result is contradicted by 

both the present results and those in [71) that show that -u 3 is maximum at the 

crack tip. Perhaps the difference has to do with the differences in specimen 

geometries between the different experiments. 
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Table 5.1 Summary of Results, Specimens 67 and 69 

Load, kN J, kN/m rP, mm rp/h rP/b 

21 19.8 1.2 .12 .03 

35 54.7 3.3 .33 .07 

52 130. 7.8 .78 .17 

75 420. 25 2.5 .54 
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Chapter 6 

DYNAMIC MEASUREMENT OF THE j INTEGRAL 

Many issues relating to the fracture mechanics of ductile materials were dis-

cussed in Chapters 4 and 5. Although all of the experiments and calculations were 

performed statically they were done keeping in mind the goal of measuring J under 

dynamic loading. In this chapter experiments are described where the J integral 

was measured dynamically in a ductile steel using the method of caustics. This is 

the first time that such a measurement has been successfully performed. In addi-

lion, J is measured using strain gages as described in Chapter 5. Some limitations 

to the use of caustics for this measurement will be explored by looking at the 

results of some "unsuccessful" experiments. 

Certain questions can be raised concerning the meaning of the J integral under 

dynamic loading, its applicability as a fracture initiation criterion. and our ability to 

measure it. Let us first discuss these issues, and then the experiments and results 

will be discussed. 

6.1. Theoretical Concerns. 

For elastic materials or for materials modeled by the deformation theory of plas-

ticity, the line integral J is path independent for static loading. For two dimensional 

problems J is defined as [5] 

] = J (Wn 1-0'n;Jn ,3Ucr.1)df' , 
r 

where the strain energy density Wis given by 

!;_ 

W = J O'r, J(f.)d<n l , 
0 

(6.1) 

(6.2) 
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r is a path enclosing the crack tip, and n is the outward unit normal to r. For elas-

tic materials J equals the energy release rate, G. Although J is not equal to G for 

plastically deforming materials, J is the amplitude factor of the crack tip stress and 

strain fields, and under monotonic loading, where the deformation is nearly propor-

tional, J is very nearly path independent. Thus J may be used as a fracture tough-

ness parameter. 

Under static loading there is a one to one relation between J and the crack tip 

displacement field. By making a calibration of caustic diameter or strain versus J. 

use is made of this one to one relation. 

The J integral is not path independent for a stationary crack subject to dynamic 

loading. However, for a linear or nonlinear elastic material if J is defined only in 

the limit as I'-+0, then calling this )J to distinguish it from the definition of equa-

ti on (6.1 ). 

(6.3) 

Alternately )J for this situation may be calculated by path-area type integrals [72,73] 

or by domain integral type expressions [65]. 

As in the static case, for plastically deforming materials, )J ¥- G . Thus we 

should ask what is the usefullness of J in dynamic loading situations? If it can be 

argued that )J still has the meaning of the amplitude of the crack tip stress and 

strain fields, then )J has meaning for dynamic loading and may be useful as a frac-

ture initiation criterion. 

The questions to be resolved are (i) does )J characterize the crack tip stress and 

strain fields? (ii) Is the relation between J and .ilstatic the same as the relation 

between )J and LlJynamic? (iii) What does one really measure with caustics under 

dynamic loading? 
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Some analytical estimates are available that indicate that the crack tip fields are 

the same statically and dynamically. The plane strain deformation of a rigid plastic 

half space subjected to dynamic indentation by a flat rigid punch was solved by 

Spencer [74]. It was found that near the punch the slip line field was the same stati­

cally and dynamically. Away from the punch the slip line field deviates from the 

static solution by an amount that depends on the loading rate and on the distance 

away from the punch. The punch indentation problem produces the same slip line 

field as the tensile crack problem, thus these results are evidence that the near 

crack tip fields are the same statically and dynamically. 

An estimate of the deviation of the fields from the static solution can be 

obtained for a dynamically loaded antiplane shear crack in an elastic-perfectly plas­

tic material, see Appendix C [75]. From this analysis it is seen that the dynamic 

effects vanish at the crack tip and that for loading rates in the range of drop weight 

testing the dynamic effects are negligible for distances from the crack tip of less 

than 5-10 cm. 

A consequence of the results that show that the near crack tip fields are the 

same statically and dynamically is that there must be a region near the crack tip 

where J as defined by equation (6.1) is path independent even for dynamic loading. 

Thus it can be argued that the near crack tip fields are characterized by J and furth­

ermore that J as defined by equations (6.1) and (6.3) are the same within the crack 

tip region. 

Although there certainly is no proof, there are some results that support the 

assumption that )d characterizes ll.dynamic in the same manner as J characterizes 

ll.static- In dynamic, notched bar, tensile fracture experiments [76] J was measured 

dynamically by measuring the local crack opening displacement and the stress 

transmitted across the uncracked ligament. The value of J was then determined 

from a statically derived equation similar in form to equation (5.1 ). Subsequent 

numerical analysis [73] showed that this approach is accurate when the measured J 
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values are interpreted as ld values. This result implies that in a region sufficiently 

close to the crack tip the deformation and stress fields are of the same nature stati­

cally and dynamically. Caustics are generated by the crack tip u 3 displacement 

fields. Thus although the correspondence between J and the tup load will not be 

the same statically and dynamically, if the correspondence between J and u 3 is the 

same statically and dynamically then so will be the caustic diameter versus J rela­

tionship since the caustics depend on u 3 . Similarly, strains measured near the crack 

tip should have the same relation to J statically as dynamically. 

Strain rate effects should also be considered. If it is assumed that the crack tip 

fields are those of the HRR fields, then [77) 

(6.5) 

In the experiments to be described the average) was ):;::.5x 108 N/(ms), or)/];:;::. 1250/s 

at fracture initiation. Thus for a large strain level, let us say 1:;::.0.10, (:;::.125/s, or at 

the elastic-plastic boundary, where E=Eo. E:;::.6/s. In the heat treatment used here 

4340 steel is relatively rate insensitive. Data in the literature [78) indicate that the 

yield stress increases by less than 30% over its static value for a strain rate of 

2000/s. Thus for the moderate strain rates of this experiment the effect of strain 

rate sensitivty will be small. In addition, recent calculations [77) modelling a sta­

tionary crack in a highly strain rate sensitive, ductile material under dynamic load­

ing, showed that for the same values of J the strain distribution was nearly the 

same statically and dynamically. However this was not true for the stress distribu­

tion. Since what is measured in the current experiments are strains and displace­

ments, the above result implies that strain rate effects on caustics will be negligible 

even in highly strain rate sensitive materials. 
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6.2. Description of Experiments. 

The experiments were essentially the same as those described in Chapter 3. 

Three point bend specimens (numbers 70 and 71) of the same dimensions and heat 

treatment as those in Chapter 5 (see Figure 5.1) were tested in the drop weight 

tower. The drop weight was 1910 N and the impact speed was 5 m/s. Caustics 

were photographed with the high speed camera at a rate of 100 000 frames per 

second. The tup load, support load and the two strain gage signals were recorded 

on a high speed, digitial oscilloscope. In these experiments interest was confined to 

recording the J integral up to the time of fracture initiation. 

6.3. Results and Discussion. 

The tup load record for specimen 71 is given in Figure 6.1. The load record is 

highly dynamic and it is clear that determination of J from the static, load versus J 

results of Figure 5.6 is hopeless for short times. At later times (>400 11s) the load 

varies more slowly and it may be possible to approximate J from the tup load. The 

peak load achieved was approximately 80000 N, corresponding statically to J ::::: 600 

kN/m. From caustics the fracture initiation time was 700 f1S; it is seen that the tup 

load gives no indication of the time of fracture. 

The strains recorded during the experiment are presented for specimen 71 in 

Figure 6.2. The strains at each location vary in phase and as in the static experi­

ments the strain at gage # 1 begins to decrease while the strain at gage #2 continues 

to increase, indicating that crack tunneling is occurring prior to fracture initiation. 

As with the tup load the strain gages give no indication of the time of fracture ini­

tiation. 

Selected caustics photographs from specimen 71 are shown in Figure 6.3. These 

caustics correspond in size and shape to those recorded statically, Figure 5.9. The 

size and shape of the static and dynamic caustics agree except for the last recorded 

dynamic caustic, which is elongated, indicating crack tunneling. 
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Fracture in these thin, ductile specimens occurs in a shearing manner (there is no 

flat fracture region) thus when the crack initiates the caustic becomes asymmetric 

due to the shearing type of fracture. This asymmetry results in the caustic not clos­

ing back on itself behind the crack tip. When this first occurs fracture initiation has 

occurred. The time to fracture was 700 11s for specimen 70 and 780 ps for specimen 

71. 

Using the static caustics calibration of Figure 5.10. and the caustics photo­

graphed with the high speed camera, J(t) was determined for each specimen and is 

presented in Figure 6.4. Also shown in the Figure is the J(t) record determined from 

strain gage # 1. Overall there is a very close correspondence between J(t) as deter­

mined from caustics and J(t) from the strain gage. There is however a substantial 

disagreement during the time from 300 11s to 400 11s. This corresponds to the por­

tion of the J(t) curve, Figure 5.8, where the strain decreases while J is increasing 

causing the J(t) relation to be non-unique. At some time a jump is made from one 

branch of the curve to another, thus the large jump in J(t) at 300 11s. 

The reason for performing a fracture initiation experiment under dynamic load­

ing is that the toughness may increase or decrease compared to the static values. 

Thus accurate predictions of dynamic fracture initiation require dynamic fracture 

toughness experiments. Although the current experiments were not true fracture 

toughness measurements since they were performed not with a fatigued crack tip 

but with a crack of diameter 0.3 mm, it is useful to compare the fracture initiation 

values, Jc, from the static and dynamic experiments. Statically le-:::, 420 kN/m. 

Dynamically Jc::::: 350 kN/m using the caustics results or Jc-::::.400 kN/m using the 

strain gage results. The value of Jc as determined solely from the tup load is Jc-:::::.600 

kN/m, somewhat higher than than the other values. Since caustics are the most 

local of all three measurements it is felt that the caustics are the most reliable of 

the three. 
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6.4. Limitations of Caustics. 

Some early experiments performed on thinner and more ductile specimens 

pointed out some limitations to the applicability of caustics for measuring J. Three 

point bend specimens of 4340 steel with dimensions of 30.5 cm x 10.2 cm x 0.6 cm 

thick were tested in the drop weight tower. The tempering temperature for these 

specimens was 649°C, (a0=830 MPa, the same as the experiments in Chapter 4) pro­

ducing a very ductile steel. 

Extensive plastic deformation occurred in these specimens prior to fracture ini­

tiation. The caustics photographed from one of these experiments are shown in 

Figure 6.5. At later times, where the plastic zone is large, the caustic is very dis­

torted and poorly defined. It is impossible to interpret such caustics even if a cali­

bration was available. 

6.5. Conclusions. 

For the first time the J integral has been measured dynamically for a ductile 

material using an optical technique. Although there exist other procedures for 

measuring J in drop weight testing [79,80] these techniques are most useful for 

experiments where the time to fracture is somewhat long. The specimen tested 

here has a fracture initiation time of 700 11s, which is just borderline on being long 

enough to apply the other techniques. The method of caustics is not restricted to 

long fracture initiation times, and thus it complements existing techniques by pro­

viding a measurement that can be used for very high loading rates. 

The drawback of caustics is that it cannot be applied to ductile materials when 

the plasticity is not too great. A rule of thumb for when caustics can be used would 

be that the plasticity is "contained" before fracture initiation. That is the plastic 

zone does not spread to the specimen boundaries. Specimens that fracture in such 

a state (fully yielded state) will have significantly longer facture initiation times 

than those that fracture with less plasticity. Thus for fully yielded specimens tech­

niques other than caustics will be the most useful. 
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Chapter 7 

SUMMARY AND CONCLUSIONS 

The mechanics of dynamic fracture initiation and propagation in structural 

materials were investigated experimentally. In the first part of this thesis dynamic 

fracture propagation criteria are investigated by using an established application of 

the optical method of caustics. In the second part new experimental techniques to 

measure fracture initiation criteria for dynamically loaded cracks in ductile materi­

als are investigated. 

Throughout this research the optical method of caustics was used as the princi­

pal experimental tool. The method of caustics provides a nonintrusive, instantane­

ous measurement of the crack tip strain intensities. Application of caustics frees 

the experimenter from having to measure the complicated, time dependent boun­

dary conditions (loads or displacements) applied to the test specimen, and from 

then inferring crack tip parameters from these measurements. Both static and 

dynamic experiments were performed. The static experiments were done to gain 

experience and to calibrate the method of caustics for application to dynamic, 

elastic-plastic fracture mechanics. The dynamic experiments used Caltech's rotating 

mirror high speed camera to record caustics at rates of up to 200,000 frames per 

second. 

In the first set of experiments dynamic fracture propagation in a high strength 

4340 steel was investigated. This steel serves here as a model material for dynamic 

crack growth under conditions of small scale yielding. The drop weight impact test, 

previously used only for fracture initiation studies, was adapted to study dynamic 

crack growth and initiation. This experiment produces reliable results and has 

many advantages over other commonly used test configurations. The results of 

these experiments support the existence of a monotonically increasing dynamic 
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fracture toughness crack propagation speed relationship, in qualitative agreement 

with analytical results. Unstable crack growth starting from a fatigue crack was 

investigated. The crack initially propagates slowly(< 100 mis) and then accelerates 

to high speeds, approximately 700 mis. This is in contrast to cracks initiated from 

supercritically loaded blunted notches that propagate very fast (> 1000 mis) from 

the start. To complete this study the emission of stress waves during dynamic 

crack growth and the micromechanisms of fracture were investigated. 

Application of the method of caustics for the measurement of the J integral in 

plastically deforming materials was subsequently investigated. The J integral 

characterizes the amplitude of the asymptotic crack tip stress and strain fields and 

thus it serves as a fracture initiation criterion for ductile materials where concepts 

of linear elastic fracture mechanics are not applicable. The results of these static 

experiments are compared directly to results from a finite element calculation 

modelling a crack under plane stress. small scale yielding conditions in an elastic­

plastic material. It was found that under small scale yielding conditions the asymp­

totic fields, the HRR fields [6,7]. dominate for distances from the crack tip of less 

than one third of the crack tip plastic zone size (r < 0.3rp)· Thus the application of 

caustics when based on the assumption of the validity of the two-dimensional, 

plane stress HRR fields is restricted to points of observation (initial curve) within 

one third of the plastic zone (r 0 < 0.3rp). For caustics obtained from the elastic 

region the presence of a plastic zone introduces errors in the measurement of the 

elastic stress intensity factor when r 0 < 1.5 rP: There is a region near the crack tip 

where the deformation field is not one of plane stress but is three dimensional. It 

was found that the extent of this region for plastically deforming materials extends 

to at least r < 0.6h, where h is the specimen thickness. Thus to use caustics as 

based on the asymptotic fields to measure fracture toughness certain restrictions 

must be observed. These conditions are so restrictive and conflicting that they can 

rarely be met. Thus to make caustics useful for studying the toughness of ductile 

materials a different approach was taken. 
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In this approach problems of the region of dominance of the HRR fields, the 

extent of the crack tip region of three dimensionality and the effects of specimen 

geometry are all automatically accounted for. A static calibration of caustic diame­

ter versus the J integral was made for a three point bend specimen. The relation 

was then used to measure the time history of J, J(t), dynamically in a drop weight 

experiment. This is the first time that an optical measurement of J has been made 

for dynamic loadings. A method based on strain gages for measuring J was also 

explored. The dynamic J record from strain gages agreed with the J record from 

caustics throughout most of the experiment. However there is a significant 

disagreement for one portion of the experiment indicating that the strain gage tech­

nique has some problems. This application of caustics will allow the fracture 

toughness of ductile materials to be measured under arbitrarily high loading rates. 

At the same time (and on the same test specimens) that the caustic diameter 

versus J integral calibration was being measured, other measurements were per­

formed. The load, load point displacement and strains near the crack tip were 

measured as the specimen was loaded. The out of plane displacements near the 

crack tip was also measured, using optical interferometry. These results were com­

pared to finite element results that modelled in three dimensions the specimen 

being tested. Excellent agreement of all the measured quantities was obtained 

between the experimental and numerical results. For the numerical analyst the 

agreement with the experimental results leaves no doubt that the numerical calcula­

tions are accurate and sufficiently detailed to model this specimen well. It was 

found that for all load levels there is no region on the specimen where the plane 

stress HRR field accurately described the out of plane displacement field. This is 

consistent with the caustics results that show that caustics based on the HRR fields 

cannot be used to accurately measure J. 
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Plastic Zone 

Figure 2.8 Initial curve and plastic zone geometries for an initial 
curve within the HRR dominant region. 
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Figure 3.5 Dynamic fracture toughness as a function of crack tip 
speed. 100 kg mm-312 = 31 MNm-312. (a) For different 
temperatures. (b) for -40° C. (from Kanazawa et al. [28].) 
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Optical Micrographs 

SEM 

Figure 3.26 Orientation of samples for optical microscopy and SEM 
photographs. 
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Figure 3.28 Crack perpendicular to the thickness direction. 200X. 
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25/ 

100%D 
Test T"' trace amount< 15% T(l) 
temperature .0 
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try= 233 ks1 try= 264 ks1 try= 222 ks1 try= 200 kSI 

Figure 3.30 Estimated percentage of fracture modes, 4340 steel. 
(From Tetelman and McEvily [55].) 
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PLASTIC ZONE 

HRR FIELD 

Figure 4.1 Small scale yielding idealization. Plastic zone lies within 

K dominated zone. HRR dominated field lies within plas­
tic zone. 
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Asymptotic, HRR 

Xt 

Figure 4.3 Normal stress distribution ahead of the crack tip. 10 is 
the yield stress in shear. 
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Figure 4.4 Plastic strain distribution ahead of the crack tip. 
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Figure 4.5 Normal stress distribution ahead of the crack tip com­
pared to stresses from the linear elastic K1 field. 
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4340 STEEL 

p 

lt't6.4(b) 
<E- --'.L_ 

it 2 3.8(a) 

p 

---30.4 ----..:wP/2 

P/2 
( s ) 

3- POINT BEND 
SPEC. 3, h = 0.52 

p 

COMPACT TENSION 
SPEC. 28,h =0.52 
SPEC. 29, 30,30A,h= 0.23 

1018 COLD ROLLED STEEL 

~--- 30.5 ( L) --- P/ 2 
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Figure 4.8 Specimen dimensions and geometries. All dimensions in 
cm. 
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SPECIMEN r P /b 
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Figure 4.11 
Kea us Yo 
-- vs. -. Deviation from 1.0 indicates error caused 
Ksc rP 

by plasticity. 



1.2 

1.0 

.4 

. 2 

-130-

SPECIMEN rp/b SPECIMEN rp/b 

0 

• 
~ 

.. 
6 
'V 

+ 

• 0 
x 

Figure 4.12 

,04 
3 .07 

.10 

.03 
28 .05 

.07 

30A .04 

.03 
42 .04 

.05 

• 
<> 

w 

* a 

• 

<> 0 y 
6 

x 
+6 
• 

+ 

44 

45 

46 

'V 

+ 

.02 

.04 

.03 

.01 

.03 

.06 

lcaus vs. ~- Deviation from 1.0 indicates error due to 
he h 

three dimensionality for ~ < 0.6. 



-131-

11
5
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Thickness, h= 1.0 

Figure 5.1 Specimen dimensions and geometry for specimens 67-71. 
All dimensions are in cm. 
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Figure 5.11 Interferogram showing initial flatness of test specimen. 
Area covered is 5 cm diameter. 
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Figure 5.12 Interferogram corresponding to load of 35000 N. 
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Figure 5.13 Enlargement of crack tip region, 35000 N. Contrast is 
reverse of Figures 5.11 and 5.12. 
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(a) 

Figure 5.19 Experimental u 3 displacement for 52300 N. (a) and (b) 
are alternate views. 
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Appendix A 

UNCERTAINTY IN CRACK TIP SPEED 

An estimate of the precision of a is important in judging Kfc vs. a results. There 

are two factors that affect the uncertainty of the a results. One is related to the 

fitting used to differentiate the data and the other is related to the accuracy of the 

crack length measurements. 

Suppose that the crack length vs. time record was measured exactly (an impossi­

bility) at a finite number of points. One does not know for certain the crack length 

history between these points. Thus in order to differentiate the record a certain 

functional form to the a(t) record is assumed. Typical choices might be that a(t) is 

linear between any two points, or that it is quadratic for any three points, etc. .. The 

assumed form would then be fit to the data and differentiated to determine a(t). 

One way to estimate the uncerrtainty involved in choosing the form of the fit is to 

compare the a(t) results calculated from the same data but in different ways. This 

was done for the data from specimen 34. The results are displayed in Figure A. l 

where a(t) for linear and quadratic fits are given. Also shown are uncertainty bars 

discussed in the following paragraphs. It is seen that in this case the choice of the 

fit is not critical. 

Unfortunately the situation is not as simple as just choosing the proper fit. 

There is an uncertainty in the measured values of a and t that results in an uncer­

tainty in a(t) no matter what fit is used. The incremental polynomial fit method 

used in this thesis recognizes the uncertainty in the measured data by allowing for 

least squares rather exact fits, causing a smoothing of the data which reduces oscil­

lations in a due to erroneous data. Of course this procedure may also smooth out 

real oscillations in a in the process. 
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An analysis is presented here for determining the uncertainty in crack tip speed 

based on the uncertainty in the measured crack lengths and corresponding times. 

Using the analysis the uncertainty in a is calculated for two specific tests. Such 

estimates of the precision in a are important in judging Kfc vs. a results. At this 

time the author has never seen an estimate of the uncertainty in a given in any 

papers on dynamic fracture propagation. 

The analysis uses the standard formulas for propagation of errors. Suppose it is 

required to determine the quantity g based on experimental measurements of 

parameters x 1,x 2, • • • . If 

g=g(x 1,xz, · · · ) 

where g is some known function, then the uncertainty in g is related to the uncer-

tainties in the measured values of x 1,x 2, • • • by 

l ( lz [ ]2 iJg iJ 
bg = l---bx 1 + -:--11---0x 2 + · · · 

iJX I iJXz 
(A. l) 

1/2 

where bg is the uncertainty in g, and bx 1,ox 2, • • • are the uncertainties in x 1,x 2, • • • . 

In this thesis a was determined by using the incremental polynomial fit method. 

To determine a at a data point a(t;) a curve a=C 1+C2 t+C3 t 2 is least squares fit to 

points ( a(t;-m), ... ,a(t;), ... ,a(ti+m) ) where m is usually 1,2 or 3. The crack tip 

speed is then a(t;)=C 2+2C3 t;. When m= 1 the fit becomes exact. The algebra 

involved for the exact fit is far simpler that for a least squares fit, thus the uncer-

tainty was analyzed for the simpler three point fit (m= 1) case. 

Let a 0 , a 1, a 2 be the crack lengths at times t0 ,t 1,t2. To fit the data to the assumed 

quadratic form the following equations must be satisfied: 
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to tc1 C1 

t 1 tf C2 (A.2) 

Only C2 and C3 are needed to determine a. From equation (A.2) it can be seen that 

thus 

Let 

Then 

where 

X1=ao 

Xz=Q l 

X3=Qz 

X4=to 

X5=t l 

X5=t2 

[ 

. 2 l/2 
6 CJa oa = ~ [-. bx J) . 

J=l dx1 

(A.4) 

(A.5) 
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It is useful to examine some specific cases of equation (A.4). Let ..:O.t be the time 

interval between measurements, and let ..:O.a be the increment in crack length during 

that time. For a constant a, 

and C3 = 0. 

In this case 

b~ = 1 [[~]2+[1.!_]2 l/2 
a \72 ..:0. a ..:0. t 

(A.6) 

This relationship indicates the relative accuracy with which a and t must be meas-

ured in order to achieve a certain accuracy in a. 

Using equation (A.4) some specific results were analyzed. For test specimen 34 

the crack length could be measured to an accuracy of between ±.02 mm and 

±.06mm. The details of the data are given in Table A. l. For this test M was taken 

as zero since the time intervals of measurement were fixed and known to an accu-

racy of better than 1 in 200. The uncertainty ba is not constant since there are 

differences in the clarity of the caustics photographs from frame to frame. The 

resulting a and the uncertainty ha are given in Figure A.l. The uncertainty in a is 

relatively large; within the experimental accuracy the crack tip speed can be con-

sidered constant for the first 4011s. 

Techniques other than optical ones are available for recording crack length. In a 

series of tests performed at Caltech in cooperation with Southwest Research Insti-

tute wedge loaded DCB specimens were tested. Using techniques and materials 

developed by Southwest Research Institute crack length was measured by recording 

the breaking of conductive strips on the specimen surface. Twelve strips, each 

approximately 0.4 mm wide with a spacing of 5 mm were used as shown in Figme 
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A.2. 

The uncertainty in a is taken as one-half the width of a strip (0.2 mm). The 

uncertainty in the time of breaking of each strip ranges from ± .OS11s to ± .4011s. 

The complete data are given in Table A.2. The resulting a and oa are given in Figure 

A.3. In this case oa is relatively small. These results show that careful use of con­

ductive strips can produce data with approximately twice the precision of optical 

measurements using caustics. It is suggested that conductive strips be used in con­

junction with optical caustics measurements in order to improve the precision of 

the results. 
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Table A.1 Specimen 34 Data 

time a oa a oa 
µs cm cm m/s m/s 

650 .39 .03 1020 
655 .89 .02 980 42 
660 1.37 .03 1020 53 
665 1.91 .05 1060 67 
675 2.93 0.6 953 82 
680 3.39 .04 949 78 
685 3.88 .05 990 64 
690 4.38 .05 990 70 
695 4.87 .05 860 70 
700 5.24 .05 739 70 
705 5.61 .05 740 70 
710 5.98 .05 740 
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Table A.2 Specimen 52 Data 

Time 8t a oa a oa 
µs µs cm cm m/s m/s 

7.5 .20 1.00 .02 1220 

11.6 .15 1.50 1000 46 

17.4 .10 2.00 799 29 

24.3 .20 2.50 848 32 

29.6 .10 3.00 870 33 

36.0 .05 3.50 808 24 

42.0 .05 4.00 744 28 

50.0 .10 4.50 753 30 

55.9 .15 5.00 791 30 

62.8 .4 5.50 656 28 

71.6 .25 6.00 474 30 

88.7 .2 6.50 .02 110 
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Figure A.2 Conductive strips used for testing specimen 52. 
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Appendix B 

ANALYSIS OF ERROR FOR INTERFEROMETRY 

Due to the angular deflection of the reflected light rays, as seen in Figure B. l, 

there exists some error in interferometry when using the relation S=2 u 3, where S is 

the optical path length and u 3 is the out of plane displacement. Additional error 

occurs because the angular deflection changes the location of the fringes. 

The camera that photographs the interference pattern is focused on a reference 

plane located a distance z 0 behind the undeformed specimen surface, as sketched 

in Figure B. l. The mapping of light rays from the specimen surface (x 1,x 2 coordi­

nates) to the reference plane (X 1,X2 coordinates) was given in equation (2.2) as 

2i = 2(-2(zo- f) · \ f 
l-1Ifl 2 ' 

where x 3 = - f(x 1,x 2) = u 3(x 1,x 2) describes the deformed specimen surface. The 

error in fringe location is equal to the deflection of the light ray, that is if we call b2i 

the "error vector" then 

b2i = -2(z0- f) · \ f 
l-1Ifl 2 

(B. l) 

The difference between the true optical path and the approximate optical path is 

the difference in magnitude of the vectors 

r( f)Z . 2 X'l
1
/
2 

\ f ~true= l Zo- +bX1+b Zj · II fl 

and 
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Thus the error in optical path bS is 

(B.2) 

Since in the analysis of the interferograms it was assumed that 5= f=u 3, the error in 

S, bS represents the absolute error in the measured values of u 3. 

Equation (B. l) shows that to minimize the error, th.e product (z0 - ()- \ f 
1-1~(1 2 

must be minimized. This was done by focusing the camera on the crack tip so that 

(z 0- f)=O at the crack tip, where~ f is largest. 

A quantitative estimate of the error can be obtained by putting the measured u 3 

values into equation (B.l). This was done for the results corresponding to specimen 

67 at a load of 52 300 N. Only data along the line x 2 = 0 were analyzed. In this 

iJU3 
case -_ - = 0 due to symmetry, thus bX 2 = 0. The error is zero at the crack tip and 

1)Xz 

is nearly constant but small for x 1 > 1 cm. The maximum error in fringe location is 

only ::::;0.7>- and the maximum error in u 3 is only ::::;.Ol\. This represents an error in 

u 3 of approx. 0.02% and an error in x 1 of approx. 0.02%. With increasing deforma-

tion the errors will increase. However so will the fringe density, and when the 

fringe density surpasses the recording resolution no data can be obtained; so there 

is little point in worrying about the accuracy for very large deformations. 

The main source of error is the uncertainty in the location of the crack tip and 

the accuracy limitations in digitizing the interferograms. As seen in the interfer-

ence photographs, Figures 5.12 and 5.13, the crack tip is obscured by a small caus-

tic, limiting how close to the crack tip fringes may be resloved. Enlargements (50 X) 

of the interferograms were digitized by hand using a computer digitizing pad. The 
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center of each dark fringe was estimated by eye. Clearly this can introduce an error 

much larger than the 0.7.\ theoretical error. More accurate (and less tedious) com­

puterized image processing could reduce even this error to almost zero. 
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1---Zo ----,-. ·llllil~~ 
.. , 

Incident 
Light Ray 

Reference 
Plane Specimen Surface 

Xa Xa 

figure B. l Geometry of light reflection from deformed surface. 
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Appendix C 

AN ESTIMATE OF THE INERTIAL EFFECTS FOR AN ANTIPLANE SHEAR CRACK 

An estimate of the inertial effects for a dynamically loaded antiplane shear crack 

in an elastic-perfectly plastic material is obtained here. It will be shown that for 

elastic or elastic-plastic materials the asymptotic fields are unchanged by dynamic 

loading. This estimate is based on an analysis by L.B. Freund [75]. 

-
A dynamically loaded antiplane shear crack in an elastic material has the same 

asymptotic field statically and dynamically, except the stress intensity factor is a 

function of time for dynamic loading [81]. i.e, 

where K~ 1 (t) is the mode III stress intensity factor, 11 is the elastic shear modulus 

and (r-,0) are polar coordinates centered at the crack tip. The higher order terms are 

time dependent and depend on the loading. For a step, plane stress wave loaded 

crack K~1 ;::: vt. 

Consider an antiplane shear (Mode III) crack in an elastic perfectly plastic 

material. For small scale yielding conditions, and quasi-static loading, using the 

geometry of Figure C.l, the solution is given by [82] 

To 
u 3(x,y) = 2R-sin0 , 

I I 

Tx = ~r0sin0 
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where R is the plastic zone size, 

R = _l [~]
2 

, 
2 7r To 

K111 is the mode III stress intensity factor, Tx and Ty are antiplane shear stresses, 10 is 

the yield stress in shear and pis the elastic shear modulus. 

In rate form the solution is 

. ,.., To . 1 K11Jk1J1 . 
v == u 3 = 21{-smfJ = smO == V(t)sinO , (C.2) 

/I 7r To/I 

where K111 is considered a function of time. The time variation of Kiil represents the 

time variation of the loads applied to the body. If kill is sufficiently large then the 

inertial effects must be considered. 

Consider now the antiplane shear crack subjected to dynamic loading. The field 

equations that must be satisfied are (i) the equation of motion 

iJrx i)Ty .. . 
-.-+-.- = /!U3 = pv 

rJ X rJ y 

where 11 is the density of the material, (ii) the van Mises yield condition 

and (iii) the constitutive law 

(C.3a) 

(C.3b) 
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. T x . 
~ix= -+Alx , 

f 1 

. av . av 
where ~1 x=-. - and ~1 y=-. - Equation (C.3c) may be rearranged as 

r)X Cly 

i)V Ix iJv Ty 

i:JX l I iJy l' 
Ix Ty 

Defining 6 as in Figure C.2, the yield condition (C.3b) can be written as 

1, = -10sin6 

Ty = 10 cosO . 

(C.3c) 

(C.4) 

(C.5) 

Note that 6 = o(x, y, t). Using equation (C.5) the equation of motion (C.3a) can be 

written as 

36 ' iJ6 ov cos6-+sm6-+L...:__ = 0 
i}x iJy 10 

(C.6) 

Similarly equation (C.4) can be written as 

1 i)V . iJV lo ·1 coso-+sino-+-o = 0. 
i)X iJ Y f 1 

(C.7) 
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Equations (C.6) and (C.7) along with the boundary conditions ly=O on O=±IT, are a 

pair of differential equations for <!>(x, y, t) and v(x. y, t). 

The quantities o and v can be written as 

6(x,y,t) = 0+.."o.6(x,y,t) 

v(x,y,t) = V(t)sinO+.."o.v(x,y,t) , 

that is, <b and v are written as the static solutions, equations (C.l) and (C.2) plus 

dynamic terms. The time derivatives of 6 and v are 

v = V(t)sinO+.."o. v ~ VsinO . 

Expanding the terms cos6 and sin6 we can write 

.."o.62 
coso ~ cosO(l--

2
-) - sinO(.."o.6) 

sino ~ sinO(l- .."o.;
2

) + cosO(.."o.c1) 

Substitution of the above into equation (C.6) produces an equation for .."o.6, 

.."o.6 [ . .."o.02 ] - + .."o.6 x cosO-.."o.(;sinO---cosfl + 
y . 2 

l . . .."o.c/ . l pVsinO _:,o.y sinB+_:,c)cosO---sinfJ = --'--_--
2 I() 

(C.8) 
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Assuming ::,6 << 1, the ::,62 and ::,<) terms are neglected in the brackets multiplying 

::,<!J.x and ::,6 y• leaving the equation 

cosO::,¢x+sin0::,6y = -pV sinO - ::,6 
· · To r 

This has the solution 

(C.9) 

Using equation (C.7) and the same approximations, the equation for::, v is 

To . VVpsinlJcoslJ 
cos fl::, v ,+sinlJ __:,. v Y = --6 + -~-~---

. fl 2To 

where o = __:,.() = -11\irsin0/210 . The above equation has the solution 

rpVV . fJ. o fl 20 · IJ ::,v= s1ncos1+-
2 

rvstn 
2To fl 

(C.10) 

Let Us estl·mate the te1-m rpV F [82] th k · d. 1 t ' · ram e crac opening 1sp acemen , ts 
2To 

related to the plastic zone size, R. by 

Assuming that Rat fracture initiation is 2 cm, and ~10 = .005, bat fracture initiation is 

0.4 mm. Assuming constant acceleration, the estimate V :::o 105 m/s 2 is obtained. 

For steel 10/p = ; 011/11 = ~, 0 c,2 :::o O.Sxl0 5 m 2/s 2. Consistent with the assumption of 

constant acceleration, the term ii will be negligible. Thus 
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....).v r11V. Y 
- = --sinOcosO :::: --

V 210 50cm 

Thus ....). v <-1- if r < 1 cm. Similarly ....).o < 
5
1
0 

if r < 1 cm. v 50 

For a plastic zone of 2 cm this analysis shows that the inertial effects are small 

throughout the plastic zone. 
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y 

Crack line 
x 

Plastic zone 

Figure C.1 Antiplane shear crack 1n elastic-perfectly 
plastic material. 

Figure C.2 Yield surface for antiplane shear loading. 


