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Do not burn yourselves out. Be as I am-a reluctant enthusiast , a 

part-time crusader, a half-hearted fanatic. Save the other half of yourselves 

for pleasure and adventure. It is not enough to fight for the environment: 

it is important to enjoy it. While you can. While it's still here. 

So get out there and hunt and fish and mess around with your . 
friends, ramble out yonder and explore the rorests, climb the mountains, 

bag the peaks, run the rivers, breathe deep of that yet sweet and lucid air, 

sit quietly for a while and contemplate the precious stillness, that lovely, 

mysterious and awesome space. 

Enjoy yourselves, keep your brain in your head and your head firmly 

attached to your body, the body active and alive, and I promise you one sweet 

victory over our enemies, over those desk bound men with their hearts in a 

safe deposit box and their eyes hypnotized by desk calculators. I promise 

you this: You will outlive the bastards. 

Edward Abbey 
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Abstract 

The photochemically induced reductive elimination of cyclopropanes 

from bisC11 5-cyclopentadienyl)titanacyclobutanes has been examined. 

Stereochemical labelling studies indicate that the cyclopropane is initially 

formed in a 6±1 :1, ratio favoring retention of stereochemistry. The starting 

titanacyclobutane is isomerized during the course of the reaction. The 

isomerization of the starting material results from metal-carbon bond 

homolysis to yield a 1 ,4-biradical, which can either close to give the starting 

material or generate cyclopropane. The 1 ,4-biradical can be observed 

through a cyclopropyl carbinyl rearrangement employing 2-bis(11 5 _ 

cyclopentadienyl)titana-5,5-dimethylbicyclo[2.1.0]pentane, to give the 

titanium alkylidene, 1-bis(115-cyclopentadienyl)titana-3,3-dimethyl-1 ,4-

pentadiene, which can be observed directly by NMR at low temperature. 

The oxidation of titanacyclobutanes by chemical and electrochemical 

methods also yields cyclopropanes. Reduction of the metal center does not 

yield cyclopropanes. Depending on the oxidant, stereochemically labelled 

titanacyclobutanes yield cyclopropanes that are between 7:1 and 100:1 

retention:isomerization. The fragmentation reaction resembles the 

photochemically induced reductive elimination. Both result from formal 

oxidation of a metal-carbon bond, which then results in very rapid 

formation of cyclopropane. 

The titanocene generated photochemically reacts with a variety of 

substrates even at low temperature. Titanocene can be generated in a glass 

at 77 K. The titanocene can be trapped in noncoordinating solvents in high 

yield with bulky internal acetylenes to give monoacetylene adducts of 
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titanocene. Less bulky acetylenes give the titanacyclopentadienes. The 

titanocene can be trapped with olefins to give less stable adducts, which 

appear by NMR analysis to be intermediate in structure between a 

titanacyclopropane and an Tl2 olefin adduct of titanocene. Reaction of 

titanocene with butadiene gives a stable product, which appears to be the s­

trans butadiene adduct of titanocene. It does not isomerize on heating. 

Titanocene reacts with epoxides to give titanocene-J..L-oxo polymer and olefin. 

Stereochemically labelled epoxides and episulfides yield isomerized olefin 

upon deoxygenation by titanocene. The observations are rationalized as a 

result of a 1 ,4-biradical formed by stepwise insertion of titanocene into a 

carbon-oxygen bond. 



Acknowledgements 
Abstract 
Table of Contents 
Table of Figures 

Chapter 1 

VI 

Table of Contents: 

111 

lV 

Vl 

Vll 

1 

Mechanism of the Photochemically Induced Reductive Elimination 
of Cyclopropanes from Bis(TJ5-cyclopentadienyl)titanacyclobutanes. 

Chapter 2 

Introduction 
Results and Discussion 
Experimental Section 
References 

2 
13 
53 
61. 

ffi 

Reaction of Photochemically Genera.ted Titalwcene with Acetylenes, 
Olefins, and Dienes. 

Chapter 3 

Introduction 
Results and Discussion 
Experimental Section 
References 
Appendix 

Investigations of Possible Photochemical Routes to a­
Oxatitanacyclobutanes. 

Chapter 4 

Introduction 
Results and Discussion 
Experimental Section 
References 

ffi 
74 
101 
108 
111 

128 
134 
153 
100 

127 

164 

Oxidation Chemistry of Bis(TJ5-cyclopentadienyl)titanacyclobutanes. 

Introduction 
Results and Discussion 
Experimental Section 
References 

165 
173 
100 
194 



Vll 

Table of Figures 

Chapterl 1 

Mechanism of the Photochemically Induced Reductive Elimination of 
Cyclopropanes from Bis(Tl5-cyclopentadienyl)titanacyclobutanes. 

Figure 1 Thermal chemistry of titanacyclobutanes. 3 

Figure 2 Review of acyclic early metal alkyl photochemistry. 6 

Figure 3 Simplified MO diagram of Cp2Ti(X)2. 9 

Figure 4 Simplified MO diagram of Cp2Ti(X)2. 11 

Figure 5 Stereochemical effects of concerted and stepwise 14 
reductive elimination. 

Figure 6 Branching mechanism with and without a secondary 17 
kinetic isotope effect. 

Figure 7 Mechanism to measure secondary kinetic isotope effect. 19 

Figure 8 Exhaustive metathesis route to an a,a,a,l3- a) 

tetradeuterated titanacyclobutane. 

Figure 9 Efficient synthesis of the a,a,a,l3-tetradeuterated 22 
titanacyclobutane. 

Figure 10 Data from typical stereochemical experiments. 24 

Figure 11 NMR spectra from steroechemical experiments ~ 
used to determine the extent of concertedness via 
examination of the early portion of the reaction. 

Figure 12a Trapping of the titanium alkylidene by 34 
diphenylacetylene. 

Figure 12b Radical trapping of the 1 ,4-biradical and subsequent 
self-trapping. 

Figure 13 Ring strain does not affect reductive elimination. 38 

Figure 14 An unsuccessful attempt at radical trapping. 41 

Figure 15 Alternative attempts at radical clocks. 42 



viii 

Figure 15a Attempted synthesis of spirometallacycle using 44 
steric bulk to control substituent stereochemistry. 

Figure 16 Intermolecular trapping of a radical pair. 45 

Figure 17 Comparison of organic and inorganic 1 ,4-biradicals 49 

Figure 18 Photochemical inertness of titanacyclobutenes 51 
is still consistent with a 1 ,4-biradical. 

Chapter2 

Reaction of Photochemically Generated Titanocene 
with Acetylenes, Olefins, and Dienes. 

65 

Figure 1 Some of the many routes to "titanocene." ffi 

Figure 2 Mechanism of titanium hydride formation in 70 
titanocene preparations. 

Figure 3 Photochemical Reductive elimination is irrreversible. 74 

Figure 4 Very high yields are possible using photochemically 75 
generated titanocene. 

Figure Sa Reaction of photochemically generated titanocene 76 
with diphenylacetylene. 

Figure 5b Titanocene can be efficiently trapped with a 77 
stoichiometric amount of diphenylacetylene. 

Figure 6 Reaction of titanocene and 2-butyne. 77 

Figure 7 Two modes of bonding in the monoacetylene 79 
adducts of titanocene. 

Figure 8 NMR data of the monoacetylene adducts of titanocene. ffi 

Figure 9 112-diphenylacetylenebis(TtS-cyclopentadienyl)titanium 83 
inserts acetophenone. 

Figure 10 Alkylidene transfer from phosphorus ylides to 84 
titanocene monoacetylene adducts. 

Figure 11 Attempts at alkylidene transfer from phosphorus to 85 
titanocene were unsuccessful. 



ix 

Figure 12 Reaction of phosphorus ylides with titanocene. 

Figure 13 Reaction of titanocene with neohexyne. 

Figure 14 ORTEP of IJ.-(1-311:2-411-trans,trans-1 ,4-di-tert-Butyl-
1,3-butadiene)-bis(bis(115-cyclopentadienyl)titanium). 

Figure 15 Possible applications of the olefin adducts of titanocene. 

Figure 16 Origin of steroelectronic effects that destabilized 
monoolefin adducts of titanocene. 

Figure 17 Possible probes of titanocene olefin interaction. 

Figure 18 NMR data for olefin adducts of titanocene. 

Figure 19 NMR data for diene adducts of titanocene. 

Figure 20 NMR spectrum of the ~-tert-butyltitanacyclobutane 
and 1 ,3-butadiene prior to photolysis. 

Figure 21 NMR spectrum of titanocene(114-butadiene). 

ChapterS 

Investigations of Possible Photochemical Routes to a­
Oxatitanacyclobutanes. 

Figure 1 

Figure 2 

Figure 3 

Figure 4 

Figure 5 

Figure 6 

Figure 7 

Figure 8 

Possible reaction between titanocerm and aJ!I! epoxide. 

Examples of early metal a-oxametallacyclobutanes. 

An example of an a-oxairidacyclobutane and an a­
azairidacyclo butane. 

Epoxide deoxygenation by titanocene. 

Dimethylsulfoxide deoxygenation. 

Titanocene and norbornene oxide reaction. 

Possible mechanisms for stereochemistry retention. 

Stereochemical studies on epoxide deoxygenation. 

86 

f57 

89 

91 

92 

ffi 

94 

00 

93 

1Z7 

12B 

132 

135 

136 

137 

138 

139 



X 

Figure 9 Closure to a-oxatitanacyclobutane may 141 
or may not occur. 

Figure 10 Explanation of observed stereochemical results. 142 

Figure 11 Stereochemistry of epoxide deoxygenation 143 
by zirconocene. 

Figure 12 Reaction of titanocene and episulfides. 145 

Figure 13 Stereochemistry of the reaction of titanocene and 146 
episulfides. 

Figure 14 Aziridenes did not react with titanocene. 147 

Figure 15 Alkylidene transfer failed to provide evidence for 148 
an a-oxatitanacyclobutane at low temperature. 

Figure 16 Attempted radical trapping. 151 

Cbapter4 164 

Oxidation Chemistry of Bis(115-cyclopentadienyl)titanacyclobutanes . 
. -""';':.~· ':· ,-;· . jt., 

Figure 1 

Figure 2 

Figure 3 

Figure 4 

Figure 5 

Figure 6 

Figure 7 

Figure 8 

Figure 9 

Oxidative elimination of cyclopropane by 2;3,4~5-
tetrakis(trifluoromethyl)-2,4-cyclopentad.iene-4...-on.e-_ 

General oxidation of titanacyclobutanes_ · 

Identification of the organometallic product 
of the 2,3,4,5-tetrakis(trifluoromethyl)-2,4-
cyclopentadiene-1-one oxidation. 

Oxidation of early d0 transition metal complexes. 

Cyclic voltammogram of titanacyclobutane oxidation. 

Mechanism of kinetic data. 

Linear correlation between rate of electron transfer 
and redox potential. 

Concerted vs. stepwise reaction mechanism. 

Stereochemical results. 

165 

166 

167 

168 

1ffi 

170 

171 

174 

175 



XI 

Figure 10 Possible oxidation mechanisms. 177 

Figure 11 Radical clock oxidation. 179 

Figure 12 Unsuccessful oxidations. 181 

Figure 13 Oxidation of bicyclic metallacycles. 182 

Figure 14 Preliminary oxidations of titanacyclopentane. 184 

Figure 15 Comparison of photochemistry and oxidation 186 
chemistry for a series of zirconocenes and 
titanacyclobutanes. 

Figure 16 Similarity of the formal oxidation of a metal carbon 188 
by both photolysis and oxidation. 



1 

CHAPTER 1 

Mechanism of the Photochemically Induced, Reductive Elimination of 

Cyclopropanes from Bis(T15 -cyclopen tadieny l)titanacyclobutanes 
'<I 

, . ., 
' . -..... . .... . 

' ·a~ i' 

.· . 
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Introduction: 

This chapter will attempt to detail the photochemistry of bis(Tl5_ 

cyclopentadienyl)titanacyclobutanes. In contrast to the well-investigated 

thermal chemistry!, the photochemistry has been relatively unexplored. 

Thermally, bis(Tl5-cyclopentadienyl)titanacyclobutanes, also known as 

titanacyclobutanes, undergo a retro 2+2 cleavage to generate an olefin and a 

titanocene methylidene. The titanocene methylidene is very reactive and 

can be trapped in a number of ways. For example, they react via a Lewis 

acid/Lewis base interaction with phosphines to give a phosphine titanocene 

methylidene adduct. The titanocene methylidene can undergo 2+2 

additions with a variety of substrates. It reacts with olefins to regenerate a 

ti tanacyclo butane. It reacts with acetylenes to generate a 

titanacyclobutene. The titanocene methylidene also reacts with carbonyls 

in a 2+2 reaction to give a transient a-oxatitanacyclobutane, which then 

cleaves to yield a methylenated carbonyl and titanocene-J.l.-oxo. This is a 

Wittig-like reaction. Perhaps the most important reaction that 

titanacyclobutanes are known for is ring-opening metathesis 

polymerization or ROMP. In addition to their thermally induced 2+2 

cleavage, titanacycobutanes react directly with a variety of substrates. They 

react with proton sources to yield alkanes, with bromine to yield the 

corresponding bromides, and with iodine to yield cyclopropanes, and with 

acid chlorides to yield titanium enolates. All of these reactions proceed in 

high yield. Representative examples of the numerous reactions that 

titanacyclobutanes undergo are shown in Figure 1. 
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Figure 1. Thermal chemistry of titanacyclobutanes. 
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This chapter will examine the photochemistry of bis(Tl 5-

cyclopentadienyl)titanacyclobutanes. The photochemistry of 

titanacyclobutanes is of interest for many reasons. Photochemistry is often 

an excellent low-temperature route to extremely reactive intermediates, 

and it is capable of providing interesting and useful transformations. 

Additionally, photochemistry often provides clues about the underlying 

electronic structure of the starting material. While organometallic 

photochemistry is not as well investigated as organic photochemistry, it is a 

clearly expanding area, and there are increasing numbers of examples of 

each of these various reactivities. 

Historically, there have been few investigations of metallacycle 

photochemistry. However, the investigations that have been undertaken 

have hinted at interesting and potentially useful chemistry. A series of 

platinacyclobutanes has been investigated by Puddephatt and coworkers.2 

Depending on the solvent, the primary organic products were cyclopropane 

and propene. In low dielectric solvents the initial.-pbotureartion was 

determined to be P-elimination followed by reductive elimination to propene. 

In dimethylsulfoxide, cyclopropane yield increased when the photolysis 

was performed in the presence of a trans-labilizing ligand. The reaction 

mechanism presumably involved photoinduced heterolytic disassociation of 

a halide, followed by coordination of the trans-labilizing ligand which then 

facilitated the reductive elimination. 

The photochemistry of a number of tungstacyclobutanes was 

investigated by Green and coworkers. 3- The organic products of the 

reactions were very complicated. They included propenes, cyclopropanes 

and ethylene, as well as traces of other products. The organometallic 

products were not determined, and primary photoprocesses were not 
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separated from secondary photochemistry and thermal chemistry. 

Nonetheless, the organic products hint at exciting chemistry. The ethylene 

produced suggests that cyclobutane undergoes a retro 2+2 cleavage to give a 

tungsten methylidene. The propenes in the product mixture indicate that 

photochemical f3-elimination, followed by thermal reductive elimination is 

likely to have occurred. The cyclopropanes could be formed by reductive 

elimination. Reductive elimination implies that tungstocene was likely an 

intermediate. These results are in contrast to the chemistry of dimethyl 

tungstocene, which upon photolysis yielded products indicative of loss of 

methyl radicals.4 Photochemical routes to tungstocene would allow the 

chemistry of this reactive material to be examined at low temperature. 

Photochemical 2+2 reactions could provide -routes ·to' ~~ew-olefin metathesis 

catalysts that could be controlled photochemically. 

While there have been no studies of early metal metallacyclobutane 

photochemistry besides Green and coworkers', the photochemistry of the 

related early metal alkyls has been extensively explored. The results are 

quite controversial, but a general consensus is slowly being reached. A 

review of the photochemistry of titanium alkyls is presented in Figure 2. 

Photolysis of tetraneopentyltitanium and tetranorbornyltitanium is best 

characterized by metal carbon homolysis in a solvent cage.s However, 

photolysis of tetraneopentyltitanium and tetranorbornyltitanium yielded 

traces of coupling products 2,2,5,5-tetramethylhexane and binorbornyl , 

respectively, in addition to the expected neohexane and norbornane. This 

observation cannot be accounted for by a simple solvent cage model. 
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Replacement of two of the alkyl ligands of the tetraalkyltitanium 

species with two cyclopentadienyl ligands complicates the photochemistry 

further since there are now two different types of ligands on the titanium 

metal center. Despite this added complication, it is illustrative to review the 

photochemistry of the bis(cyclopentadienyl)titanium, compounds since they 

are more closely related to the bis(cyclopentadienyl)titanacyclobutanes. 

While it is expected that the photochemistry of titanacyclobutanes will be 

significantly different from that of the dialkyls, the titanocene dialkyl 

photochemistry provides a basis to understand the photochemistry of the 

analogous cyclic material. 

Photolysis of dimethyltitanocene in aliphatic solvents. yields .methane 
~ ... 

• • i ,f, 
and traces (<1 %) of ethane and ethylene. The--·organo.nietallic product 

reacts as one would expect titanocene to, but is likely~ oligomeric with 

bridging 111 , 115-cyclopentadienyl ligands. Labelling studies -indicate that 

the hydrogen incorporated into the methane comes predominantly from the 

cyclopentadienyl ring. This result was also observed in toluene, suggesting 

that methyl radicals are not formed, since they would be expected to 

abstract hydrogen atoms from the solvent to form benzyl radicals. 6 

However, photolysis of dimethyltitanocene in the presence of the radical 

traps 5,5-dimethyl-1-pyrroline-N-oxide and nitrosodurene provided ESR 

signals indicative of methyl radicals. 7 Additional evidence for extremely 

short-lived methyl radicals was gained by the observation of CIDNP signals 

when bis(methylcyclopentadienyl)dimethyltitanocene was irradiated in the 

presence of traces of oxygen.s Work by Van Leeuwen and coworkers 

indicated that the geminate radical pair was extremely short-lived, on the 

order of diffusion control. This observation of an extremely short-lived 

radical pair reconciles the earlier results, which seemed to indicate that 
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methyl radicals were not formed. A summation of the photochemistry is 

shown in Figure 2. 

Photolysis of diphenyltitanocene in perdeuterobenzene gives an equal 

yield of do-biphenyl and d5-biphenyl. This indicates that both phenyl metal 

bond homolysis and reductive elimination are occurring simultaneously.9 

Erker has demonstrated that biphenyl is the only product observed from the 

photolysis of diphenylzirconocene. Diphenylzirconocene is isoelectronic 

with diphenyltitanocene. This result suggests that for diphenylzirconocene 

the reductive elimination is concerted. Diphenylzirconocene is often used 

as a photochemical source of zirconocene. 
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Metal X 

- ····························--

Figure 3. Simplified molecular orbital diagram of Cp2Ti(X)2. 

In order to understand the photochemistry of the titanocene dialkyls 

and dihalides, one must understand the electronic structure of Cp2Ti(X)2 . 

The electronic spectrum of a series of titanocene derivatives has been 

assigned.lO The assignment is based on both calculation a nd 

experimentation. The HOMO for Cp2Ti(X)2 when X is equal to halide wa s 

calculated to be predominantly cyclopentadienyl and titanium in characte r . 

The LUMO was calculated to be primarily an empty d orbital on tita nium. 
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Significantly, the cyclopentadienyl-metal orbitals and halide-metal orbitals 

become closer in energy as X changes from fluoride to methyl. The energy 

differences decrease in the following order: F > Cl > Br > I > methyl. It was 

suggested that these orbitals may even exchange places; this exchange 

would change the HOMO from the Cp-metal orbital to the halide-metal 

orbita1.11 Experimental evidence supports this exchange. Photolysis of 

Cp2TiF2 and Cp2TiCl2 results in loss of a cyclopentadienyl ring, probably 

initially as cyclopentadienyl radical.12 Photolysis would excite a ligand to 

metal charge transfer (a ligand to metal charge transfer was calculated to 

be the lowest energy transition), which would weaken the metal-Cp bond. 

The LUMO is predominantly nonbonding. Changing X from fluoride, 

chloride or bromide to iodide or methyl results in a transposition of the 

orbitals, and now the HOMO is metal-X in character and the photolysis 

causes metal-X bond homolysis. This orbital picture, while admittedly 

simple, helps explain some basic observations of the pl).qtochemistry. These 

simplified molecular orbital diagrams are showq j:IJ. !Pign.re.3 and-Figure 4. 
- ."1 .. " ~:·,. .. -

. . -
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Figure 4. Simplified molecular orbital diagram for Cp2TiX2. 

An investigation of the photochemistry of the bis (Tl 5-

cyclopentadienyl)titanacyclobutanes was undertaken to define more fully 

their electronic structures. This knowledge would then prove useful for 

understanding current and developing new, olefin metathesis catalysts. 
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Besides gaining a greater fundamental understanding of early metal 

metallocene photochemistry, there are numerous other reasons to examine 

the photochemistry of bis('T15-cyclopentadienyl)titanacycles. First, the 

bis(ll 5-cyclopentadienyl)titanacycles encompass a diverse range of 

compounds, many of which are important synthetic and catalytic 

materials. Second, the thermal chemistry of titanacyclobutanes is very 

well understood, the chances of separating thermal chemistry from 

primary photochemistry will be greater. Third, an increased 

understanding of the intrinsic nature of titanacyclobutanes may provide 

opportunities to better exploit their chemistry. Perhaps new compounds 

and new transformations will be discovered thro~gh an exploration of the 

photochemistry. Fourth, since bis(115-cyclopentadlenyl)titanacyclobutanes 

are tetravalent, they are formally dO. This simple electronic structure 

means that unlike the late metal systems, only simple excited states are 

present. For example, in the absence of a large spin-orbit coupling, one 

may expect to observe only singlet and triplet excited states. Fifth, dialkyl 

titanocene photochemistry has been fairly well investigated. Therefore, the 

effect of the cyclic nature of the starting metallacycle on the photochemistry 

can be directly addressed. As in organic photochemistry, there are 

dramatic differences between cyclic and acyclic materials. Lastly, the 

synthesis of titanacyclobutanes readily allows one to introduce deuterium 

labels. This means that mechanistic investigations are fairly 

straightforward. While not all of the above scenarios were realized, many 

interesting observations were made during the course of examining the 

photochemistry of the titanacyclobutanes, and these observations will be 

detailed in the subsequent section. 
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Results and Discussion: 

Early examination of the chemistry of titanacyclobutanes by Kevin 

Ott of our research group revealed that photolysis of bis(115-

cyclopentadienyl)titanacyclobutanes generates cyclopropanes.13 After this 

initial observation, a more thorough investigation was undertaken. In 

order to determine the reaction mechanism a series of photochemical 

experiments were undertaken. These experiments included labelling 

studies, an examination of the secondary deuterium isotope effects, an 

extended study of solvent effects on the photochemical products and 

stereochemical product distribution, low-temperature matrix photolysis, 

low conversion experiments, qualitative quantum yields, examination of 

additional titanacycles, and trapping studies. 
... .. 

~ :: .. .... . : •' . 
""'-r t .• 

After initial observation that titanacylobutanes cieanly- and in high 

yield reductively eliminated cyclopropanes upon photolysis, studies were 

initiated to determine the mechanism of the reductive elimination. 

Deuterium labelling studies provided an elegant means of doing this. 

Incorporation of stereospecifically deuterated olefins into the titanacycles is 

a relatively straightforward task. Photolysis of these labelled metallacycles 

generated cyclopropanes with partial retention of the initial 

stereochemistry. A concerted mechanism would be expected to generate a 

cyclopropane that would mirror the stereochemistry of the s tarting 

metallacycle. A stepwise mechanism would be expected to generate 

cyclopropanes with a scrambled stereolabel. Both of these mechanisms are 

shown in Figure 5. 
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Figure 5. Stereochemical effects of concerted and stepwise reductive 
elimination. 

The initial product upon photolysis of a stereolabelled 

titanacyclobutane is cyclopropane with a stereocheniical ratio of 5.5±1.0:1 

retention of stereochemistry:isomerized stereochemistry. Significantly, the 

stereochemistry of the starting metallacycle was slowly lost during the 

course of the photolysis. The final stereolabel distribution in the 

cyclopropanes was 3:1. Since neither total retention nor total scrambling of 

the stereolabels was observed, the mechanism of the reductive elimination 

could not be just stepwise or concerted. 

Had photolysis generated any titanocene methylidene, it would h ave 

been intercepted by diphenylacetylene (one of the many traps used). The 

would-be product, bis(ll5-cyclopentadienyl)titanacyclobutene has been 

investigated independently and has been shown to be photochemically inert 

under the reaction conditions. Additional control experiments 

demonstrated that the stereochemical results were not a function of 

starting material. A range of differently substituted and differently labelled 

titanacycles were synthesized and found to behave in an identical fashion . 

Titanacycles with 13-tert-butyl and 13-isopropyl substituents were synthesized 
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with stereolabels.14 Compounds with deuterium both cis and trans to the 13 

substituent were synthesized for both of the different 13 substituents. 

Additionally, a series of compounds with the remaining 13 position 

deuterated was also synthesized. The stereochemistry was also unaffected 

by starting material concentration or trap concentration or the nature of the 

trap.15 Traps that were investigated for their effect in stereochemical 

experiments included trimethyl phosphine, diphenylacetylene, and 

dimethylacetylene. Concentration effects were found to be nonexistent. The 

reaction was performed with a range of 1 to 10 equivalents of trap without 

affecting the stereochemical outcome. Additionally, Lewis acid catalyzed 

isomerizations (titanocene is Lewis acidic) were not involved. A labelled 

metallacycle in the absence of a trap was . photolyzed to 50% conversion. 

After 24 hours at -20 oc in the dark, no changes in the stereochemistry of 

the metallacycle or the cyclopropane were observed. This observation 

implies that the reaction conditions cannot be responsible for any 

isomerization of the metallacycle or cyclopropane. 

The isomerization of the starting metallacycle was e-xplained by 

reversible metal-carbon bond homolysis. The absence of solvent effects 

(toluene, tetrahydrofuran, acetonitrile, and carbon disulfide) on the 

stereochemistry of the product or the rate of isomerization of the starting 

material suggests that charge-separated species are not involved. 

Additionally, it is known that photolysis of early metal alkyls produces 

radicals. Reversible metal-carbon bond homolysis implies the existence of a 

metal-centered 1 ,4-biradical intermediate.16 However, this titanium­

centered 1 ,4-biradical does not necessarily lie on the pathway to the 

cyclopropane. While it was relatively straightforward to explain the 

isomerization of the starting metallacycle, explanation of the 
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stereochemistry of the cyclopropane produced was more difficult. 

Additional photochemical experiments were undertaken to probe this 

question. 

In a typical experiment, at 10% conversion of the starting material to 

cyclopropane, the cyclopropane stereochemistry was 5.5±1 :1 retention to 

isomerization. At 10% conversion the stereochemistry of the starting 

metallacycle was 30:1 retention of initial stereochemistry to isomerized 

stereochemistry, down from >50:1 prior to photolysis. In order to explain 

the stereochemistry of the cyclopropane, the mechanism in Figure 6 was 

proposed and examined. In this mechanism a differentiation of metal 

carbon bonds is realized through a secondary kinetic isotope effect. The 

isotope effect favors cleavage of titanium-CH2 bond over the titanium CHD 

bond. The methods of introducing stereochemical labels into 

titanacyclobutanes provide only unsymmetrically labelled starting 

materials. The secondary isotope effect was used to explain the abnormally 

large amount of retention observed. Figure 6 also shows how an isotope 

effect would change the 3:1 branching ratio to the 5.5:1 observed ratio. One 

pathway leads to all retention, the other to a 1:1 ratio of retention to 

isomerization. The isomerization pathway requires that bond rotation of 

the bond bearing the stereolabel be fast relative to closure of the biradical. 

Although most SH2 reactions proceed with inversion, backside attack to 

give inversion is not observed here.l 7 If this mode of attack were taking 

place, it would require numerous carbon-carbon bond rotations to achieve a 

position where the carbon-centered radical could backside attack the a -

carbon. The time required for so many carbon-carbon bond rotations would 

result in total scrambling of the stereochemistry. This backside mode of 

attack is not compatible with the branching mechanism shown in Figure 6. 
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krot refers to the rate of stereolabel Overall, 
isomerization via bond rotations. -~~- , -W 10 2° KIE 
kcleave refers to the rate of cyclopropane · _;:, ''.{~ t · · 

formation from the biradical. !t-;.~· '· 

3:1 

-4.4:0 

1:1 

Overall, -5.4 : 1 
with 2° KIE 

Figure 6. Branching mechanism with and without a secondary kinetic 
isotope effect. 
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The nature of the secondary isotope18 effect shown in Figure 6 stems 

from the fact that the a carbons bonded to the deuterium prefer to remain 

sp3 hybridized, not sp2 hybridized as they would be in the postulated 1 ,4-

biradical. This means that the metal-carbon bond without the stereolabel is 

the one most likely to be broken. This translates into an increase in 

retention in the isomer ratio of the cyclopropanes. Typical values for 

secondary isotope effects for reactions in which deuterated carbon atoms 

undergo hybridization changes can be as large as -1.4. The large isotope 

effect invoked in the mechanism in Figure 6 could result from the low 

temperature at which the reaction is performed and/or from a transition 

state that is very late on the reaction pathway. 

Measurement of the secondary isotope effect was critical to the 

validation of the postulated mechanism. In order to mea~ ·the secondary 

isotope effect, it was decided to synthesize a titanacyclobutane in which a 

proton carried the stereochemical label, that is to say, a titanacyclobutane 

that was dideuterated on the alpha carbon without the stereochemical label. 

The target titanacyclobutane is shown in Figure 7. It should be noted that 

the f3 position of the titanacyclobutane was also deuterated. This additional 

label ensures no interference between the NMR resonance of the starting 

titanacyclobutane and the cyclopropanes formed.19 This material would 

provide a very sensitive probe of the secondary isotope effect, since the 

isotope effect would be expected to yield more isomerized material than the 

3:1 ratio that Figure 6 depicts. An isotope effect of 2.2 as postulated in 

Figure 6 would result in an initial ratio of cyclopropane stereochemistry 

retention:isomerization to be -1.9:1.0, a large change from 5.5 to 1. The 

mechanism of this isomerization from an initial 5.5:1 to -1.9:1 .0 is shown 

in Figure 7. 
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4.2:2.2 ==> (1 .9 : 1) 

Figure 7. Method to measure secondary kinetic isotope effect. Since the 
stereolabel is now on the less deuterated a carbon, it should cleave 
preferentially due to the secondary kinetic isot.ope effect. More 
isomerization should be observed from cleavage of this carbon. . 

·-. .... :· ·' .. . 
Two different synthetic routes were purS.ued .tO :obtain the desired 

tetradeuterotitanacyclobutane. The first and the simplest synthesis was to 

wash deuterium into the alpha positions of a metallacycle via exhaustive 

olefin metathesis as shown in Figure 8. This method was partially 

successful since it did provide a small amount of the perdeuterated 13 ,13-

dimethyltitanacyclobutane. This compound was successfully converted to 

the final target molecule shown in Figure 7. This exhaustive metathesis 

route resulted in low yield because of side reactions such as the irreversible 

dimerization of the titanocene methylidene to 1 ,3-dititanacyclobutane. 

Additionally, the large isotope effect, which favors protons on the titanium 

methylidene, required large amounts of deuterated olefin. 
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ti tanacyclobutane. 
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In order to overcome these problems as well as others, a more direct 

synthesis was undertaken. The reactions employed are shown in Figure 9. 

The step in which the stereospecifically labelled olefin is introduced into the 

perdeutero-metallacycle is particularly difficult, since dimethyl aluminum 

chloride catalytically scrambles the stereolabels. This meant that 

extremely careful recrystallization of the thermally sensitive decadeutero 

13,13-dimethyltitanacyclobutane was required. In the final product the 

isotope enrichment was 25:1 . While this is somewhat low as compared 

with the other stereolabelled metallacycles, it reflects the large isotope effect 

disfavoring deutero methylidenes that one encounters throughout the 

synthesis. Nonetheless, the level of enrichment was more than adequate to 

address numerous questions associated with this material. 
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Figure 9. Efficient synthesis of the a,a,a,~ tetradeuterated 

titanacyclobutane. 
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The first series of experiments with this compound was aimed at 

measuring the secondary kinetic isotope effect. Surprisingly, photolysis of 

the tetradeuterotitanacyclobutane in both THF and toluene with a variety of 

different traps, (2-butyne, diphenylacetylene, and trimethylphosphine, and 

without traps) yielded the exact same stereochemical results as were 

obtained with the monodeuterated titanacyclobutanes within the error bars 

associated with the integration of NMR signals. This result invalidated the 

mechanism shown in Figures 5, 6, and 7. There was clearly no large 

change in the stereochemical ratio of the cyclopropanes upon changing 

from the a-deutero to the a,a,a-trideutero titanacyclobutanes. There may 

actually be a small amount of extra retention in the cyclopropanes formed 

from the a,a,a,~-tetradeutero-~-isopropyltitanacyclobutane. This would be 

indicative of an inverse secondary kinetic isotope effect. The data from a 

series of stereochemical experiments are shown in Figure 10. 
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Figure lOa. Data from typical stereochemical experiments. 
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The error in the integrations are fairly large despite the standard 

precaution of using small tip angles, long acquisition times, and long pulse 

delays. The errors are especially great early and late in the reaction when 

large signals are compared to small signals in order to determine the 

extent of reaction. The extent of reaction was calculated from the ratio of 

the isopropyl signals for the starting titanacycle against the signals for the 

isopropyl group of the cyclopropane. Additionally, it was calculated from 

the ratio of cyclopropane resonances and metallacycle alpha proton 

resonances against an internal standard. Loss of mass during the course 

of the experiment was not observed. Additional problems associated with 

the integration arise from the monodeuterated titanacyclobutanes. To 

examine this material by proton NMR requires one to measure 

stereochemical ratios in the following manner. A 2:1 ratio of cis a protons 

to trans a protons indicates 100% pure stereoisomer. A 1 :1 ratio of cis a 

protons to trans a protons indicates a 50/50 mixture of stereoisomers. 

Therefore, an integration change of only 33% spans the entire range of 

stereoisomer ratios that are encountered. The same is true of the 

integration of the cyclopropane resonances. Deuterium NMR avoids this 

problem, bv.t it suffers from low sensitivity and broad lines (especially 

difficult in this situation, since the chemical shift differences are so small 

between the different stereoisomers of both the starting materials and the 

product, cyclopropanes) and suffers from the inability to shim or lock the 

sample. The inability to shim causes broad lines, while the inability to lock 

the sample means that the length of time that one can acquire the spectrum 

is limited to the quotient of the natural line width of the signal and the rate 

of frequency drift of the magnet (typically, 1 Hz/(1 Hz/hr)=1 hr maximum 



28 

accumulation time). Despite these problems, the combination of deuterium 

and proton NMR sets error limits on what the actual values were. 

The absence of the secondary kinetic isotope effect meant that the 

branching mechanism in Figure 6 could not be solely responsible for the 

product distribution observed. It must be emphasized that the absence of a 

secondary kinetic isotope effect does not rule out this branching 

mechanism, it merely indicates that something else must also be taking 

place to generate as much retention as is observed. The most plausible and 

simplest way to rationalize the additional retention is to invoke a competing 

concerted reaction that gives all retention in the product. The stepwise 

portion of the reaction could give either the 3:1 retention as in Figure 6 or 

give the 1:1 ratio shown in Figure 5. Isomerization of the starting material 

via the 1 ,4-biradical further complicates the reaction. The basic question 

still remains. Is the presumed metal-centered 1 ,4-biradical on the path to 

the cyclopropanes and if so, is it an intermediate or a transition state, and 

how long does it exist with respect to bond rotation? 

In order to ascertain absolutely what the branching ratio was at the 

start of the reaction, the stereochemistry of the starting material and 

product were very carefully examined during the first five percent of the 

reaction. The tetradeuterometallacylce was chosen for this series of 

experiments because of its simple proton spectra and the sensitivity of 

proton NMR spectroscopy. Each spectrum was acquired over a 90 minute 

period. Despite the long accumulation time, sensitivity was not adequate 

for determination of the stereochemical ratio of the cyclopropane formed in 

the first 1%-3% of the reaction. In order to improve the signal-to-noise 

ratio, difference spectra were employed. Four spectra were acquired. The 

first spectrum was acquired prior to any photolysis. The first spectrum 
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was then subtracted from each subsequent spectrum, and a drift correction 

of the baseline was applied. This dramatically improved the quality of the 

spectra. The subtraction process removed instrumental artifacts as well as 

extraneous signals. The spectra and the data from the spectra are shown 

in Figure 11. These data indicate that the contribution from a concerted 

reaction must be fairly small, since the cyclopropane formed early in the 

reaction is still only approximately 6:1 in favor of retention. Examination of 

the early portion of the reaction allows one only to neglect the isomerization 

of the starting material, provided that it does not isomerize too greatly. If 

there had been a large element of a concerted reaction, then one would have 

expected to observe a greater than 6:1 level of retention in the early stages of 

the reaction. 
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In order to explain the -6:1 stereoisomer ratio observed early in all of 

the photochemical reactions, the possibility of two different simultaneous 

reaction mechanisms was considered. A competing concerted reaction is 

needed to explain the extra retention observed in the cyclopropane. The 

fundamental question concerning this hypothesis is the degree to which 

this competing reaction is present. The -6:1 stereoisomer ratio indicates 

that if the 3:1 branching ratio shown in Figure 6 is in operation in addition 

to the competing concerted reaction, then the fraction of the molecules 

undergoing the concerted reaction must be on the order of 50% in order to 

observe the 6:1 initial branching ratio. If the 1:1 branching ratio for the 

stepwise reaction were occurring, then the concerted reaction would have 

to be responsible for >80% of the reaction. Both of these mechanisms, the 

50% concerted and 3:1 branched or the 80% concerted and the 1:1 branched, 

give a fair approximation of the final isomer ratio (3:1) when they are 

extrapolated to the end of the reaction. However, if such large elements of a 

concerted reaction were occurring, then the results of the radical clock 

experiments would be anomalous. The radical clock results are addressed 

in the following paragraphs. 

An elegant method to determine the likelihood of a competing 

concerted reaction was devised. After the initial observation of the 

photochemical reductive elimination of cyclopropanes from 13-substituted 

titanacyclobutanes, bicyclic titanacyclobutanes were investigated. One of 

the first bicyclic metallacycles to be investigated was the one derived from 

titanocene methylidene and 3,3-dimethylcyclopropene. Photolysis of this 

metallacycle in the presence of diphenylacetylene gave the trisubstituted 

metallacyclobutene shown in Figure 12a. This product was presumed to be 
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a result of the trapping of the titanium alkylidene by a 2+2 addition reaction 

with the acetylene. 

toluene, hv, -40°C 

diphenylacetylene 

Ph 

Figure 12a. Trapping of the titanium alkylidene by diphenylacetylene. 

The alkylidene could be observed directly either as the trimethyl 

phosphine adduct by photolysis in the presence of trimethyl phosphine, or 

as a THF adduct by photolysis of the titanacycle at -78 °C in THF. Many 

synthetically useful applications of this reaction have been found. The 

mechanism of the formation of the alkylidene was rationalized to be the 

result of cyclopropyl carbinyl rearrangement.20 The rearrangement is 

shown in Figure 12b. The rearrangement is likely to be much faster than a 

typical cyclopropyl carbinyl rearrangement, since the final product can be 

drawn in closed-shell form. The exclusive cleavage of the unsubstituted 

bond is believed to result since this bond is weaker than the other bond and 

since unsubstiuted carbon forms a stabilized radical.21 Also it is important 

to note the complete absence of any product associated with reductive 

elimination. Neither bicyclobutane nor 4-methyl-1,3-pentadiene (some 

transition metals are known to rearrange bicyclobutanes to butadienes) 

was observed. Reductive elimination followed by edge attack on the 2,2-
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dimethylbicyclobutane cannot be ruled out. However, at temperatures as 

low as -78 °C, the only product observed is the titanocene alkylidene. 

Figure 12 also shows how the titanium alkylidene can trap itself in a 

2+2 reaction to regenerate the starting bicyclic metallacycle in 95% yield. 

The kinetics of this self-trapping reaction was investigated in THF by 

following both the rate of appearance of the 13 proton in the titanacycle and 

by following the rate of disappearance of the alkylidene proton at 12.5 ppm. 

The reaction was unimolecular. The alkylidene phosphine adduct did not 

undergo this self-trapping reaction. The kinetic parameters of the closure 

as derived from an Eyring plot are ~H:I:=17.6±0.7 kcallmole and ~8:1:=4.1±0.5 

eu at 230.15 K. Repeating the photolysis at -78 °C in either toluene or diethyl 

ether resulted in decomposition of the alkylidene. ~. !>reliminary NMR .· ... . 
evidence suggests that the alkylidene can be stabilized By olefins such as 

isobutylene without forming a metallacycle. This observation could have 

implications for understanding the mechansim of metallacycle formation, 

since it seems to imply that an olefin alkylidene adduct lies on the reaction 

pathway to metallacycle formation. 
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Figure 12b. Radical trapping of 1 ,4-biradical and subsequent self-trappng. 

In order to determine whether or not the absence of any bicyclobutane 

from the photolysis of the dimethylcyclopropene metallacycle was a result of 

a genuine cyclopropyl carbinyl rearrangement, a series of bicyclic 

titanacyclobutanes was synthesized and investigated. The first two 

metallacycles studied were derived from cyclopentene and from 
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norbornene. Upon photolysis both metallacycles underwent reductive 

elimination, yielding [3.1.0]tricyclohexane and cyclopropylnorbornene 

respectively.22 However, along with each of these products was another 

product. The exact yields were not determined because of the inefficiency of 

the photolysis and the low yield of the side products. The other product was 

1-methylcyclopentene and 2-methylnorbornene, respectively. The exact 

origin of these products is unclear at this time . The bicyclic 

titanacyclobutanes, with the exception of the one derived from 3 ,3-

dimethylcyclopropene, have quantum yields much lower than those of the 

parent ~-substituted titanacycles. This low quantum yield translates into 

longer photolysis. Long photolysis generates radicals from secondary 

photochemistry of the primary photoproducts. 23 Labelling studies from 

gem-a,a-dideutero cyclopentene-derived titanacycle (synthesized from 

cyclopentene and source of deuterated titanocene methylidene) show that 

>90% of the deuterium ends up in the methyl group of the 1-

methylcyclopen tene. Collectively, these results indicated that 

photochemical reductive elimination is possible from bicyclic 

titanacyclobutanes, but it does not address the effect of ring strain on the 

reaction sh~wn in Figure 12. Bicyclobutanes are strained relative to the 

starting material. The bicyclic metallacycles investigated are illustrated in 

Figure 13. 
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Figure 13. Ring strain does not affect reductive elimination. 



The effect of ring strain on the reaction shown in Figure 12 was 

addressed through the investigation of highly strained metallacycles. The 

metallacycle derived from benzvalene and titanocene methylidene was 

synthesized and photolyzed. It was found to undergo reductive elimination 

to only one product which from literature spectra, 13c NMR, 1 H NMR, and 

1 H-1 H correlated spectroscopy (COSY), was identified as 

cyclopropylbenzvalene.24 Literature values give the difference in strain 

energy between cyclopropane and bicyclobutane as -37 kcallmole.25 

Calculations by MM2 show that benzvalane (hydrogenated benzvalene) has 

a strain energy of -74 kcallmole, and the cyclopropanated benzvalene 

product has a strain energy of 124.4 kcallmole. The difference is -50 

kcal/mole. This energy change is much greater than the change that 

would be associated with the generation of gem dimethylbicyclobutane from 

the cyclopropene-derived metallacycle. Therefore, strain energy cannot be 

the reason that this metallacycle fails to undergo reductive elimination. 

These results are summarized in Figure 13. The-)rield of the reaction 

generating cyclopropylbenzvalene was not optimized as the material had a 

tendency to decompose spontaneously. In some of the reactions, traces of 

methylbenzvalene may have been observed. 26 The lack of an effect of ring 

strain on the reductive elimination implies that the rearrangement of the 

dimethylcyclopropene-derived titanacycle illustrated in Figure 12 is a 

genuine cyclopropyl-carbinyl rearrangement. 

If the element of concerted reaction is as great as indicated by the 

labelling studies, on the order of 50% or 80%, significant amounts of 

bicyclobutanes should have been observed. Even in glass solvents at 77 K 

bicyclobutane was not observed. 27 An additional observation concerning 

the photochemistry of the cyclopropene-derived metallacycle concerns 
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quantum yield. The cyclopropene-derived metallacycle has a quantum 

yield that is qualitatively between 2 and 10 times that of the 13-tert-butyl 

metallacycle. This observation is consistent with rapid trapping of the 1,4-

biradical. The recombination of the 1 ,4-biradical is less likely since rapid 

rearrangement is possible. The exact measurement of the quantum yield is 

complicated by the thermochromic nature of the two different titanacycles 

and by the fact that each generates a different, intensely colored 

photoproduct. However, side-by-side photolysis of the cyclopropene 

titanacycle and the 13-tert-butyltitanacyclobutane shows that in the early 

stages of the reaction, there is at least twice as great a quantum yield for the 

cyclopropene metallacycle. The yields seem to be a function of the nature of 

the efficiency of the trap. 

After the initial success of the cyclopropene-derived radical trap, 

attempts were undertaken to synthesize other radical traps that would 

confirm the results of the cyclopropene metallacycle. Two· different radical 

traps were envisioned. The first was based on a 5-exo-tfig·cyclization. The 

starting titanacyclobutane and the envisioned rearrangement are shown in 

Figure 14. While the synthetic route to this molecule was conceptually 

straightforward, the product proved to be unstable. Reaction of the 

metallacycle derived from isobutylene and 1 ,5-hexadiene 1n 

perdeuterobenzene revealed that at least 3 major products were formed 

none of which were thermally stable. It is believed that B-elimination from 

the presumed product was the major problem. No attempts were made to 

remedy this problem by additional substitutions in the beta position. 
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Figure 14. An unsuccessful attempt at radical trapping. 
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Figure 15. Altemative attempts at radical clocks. 

The next attempted radical clock was extremely attractive since it 

would provide a symmetrical starting material. The proposed starting 

material and its possible rearrangements are shown in Figure 15. 
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Reaction of methylenecyclopropane with a titanium methylidene source 

such as f3,f3-dimethyltitanacyclobutane resulted in two major products. 

They were tentatively identified as the a and f3 spiro metallacycles shown at 

the top of Figure 15. The material proved to be surprisingly thermally 

sensitive, decomposing above -0 °C. In order to circumvent the mixture of 

products the bulkier trans-2,3-dimethylmethylenecyclopropane was 

synthesized, Figure 15a, and was allowed to react with the isobutylene 

metallacycle. Surprisingly, it failed to prevent formation of the a 

spirometallacycle and gave additional undetermined products. The 

extreme thermal instability of the product combined with the inefficiency of 

the reaction made isolation of pure material from a scaled-up reaction 

unattractive. Additional attempts along this line were not pursued. 
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Figure 15a. Attempted synthesis of spirometallacycle using steric bulk to 

control substituent stereochemistry. 

Trapping studies were undertaken to more learn more about the 1 ,4-

biradical that presumably is generated from the photolysis of 

titanacyclobutanes. It has been observed that for other titanocene alkyls, 
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Figure 16. Intermolecular trapping of a radical pair. 

photolysis in the presence of the appropriate trap can yield products derived 

from interception of the geminate radical pair that is formed.28 An 

example is shown in Figure 16. This trapping is relatively difficult since 

the geminate radical pairs are extremely short-lived.29 Photolysis of the 13-

tert-butyltitanacyclobutane in neat carbon disulfide, acetonitrile and 2-

butyne were performed. Neither reaction provided products that could be 

ascribed to interception of a 1 ,4-biradical. The nonvolatile organometallic 

fraction of each reaction was NMR-inactive and presumably paramagnetic. 

The results of the reactions were inconclusive. The a, 13-

diphenyltitanacyclobutene was photolyzed in neat carbon disulfide in order 

to trap the potential biradical. Again, only paramagnetic products were 

produced, precluding further examinations along these lines. Photolysis of 

a THF glass containing 2-butyne and a metallacycle produced, upon 

photolysis at 77 K and subsequent annealing, only the expected 

tetramethyltitanocenecyclopentadiene in 90% yield. Products that could be 

ascribed to interception of the 1 ,4-biradical could not be observed. Failure to 
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trap the biradical was not altogether unexpected. If the biradical lifetime is 

only on the order of a bond rotation as indicated by labelling studies, then 

intermolecular reaction is unlikely. For dimethyl titanocene only the most 

efficient of radical traps were found to intercept the geminate radical 

pair. 30 Presumably, the change from a titanocene dialkyl to a 

titanacyclobutane changes the geminate radical pair to a 1 ,4-biradical that 

is even shorter lived. The metal-centered 1 ,4-biradical can then be thought 

of as an extremely efficient self-trapping agent. This is consistent with the 

results of the stereochemical labelling studies. 

As was alluded to earlier, the stereochemistry was examined in a 

variety of solvents. Besides investigations in THF and toluene , the 

stereochemistry was examined in carbon disulfide and acetonitrile. The 

dielectric constant of acetonitrile is very different from that of THF and 

toluene, which are fairly similar.31 The results in carbon disulfide were 

complicated since the reaction mixture became paramagnetic upon 

photolysis. The volatiles were removed from the reaction and examined. 

The volatiles revealed that the ratio of cyclopropane with retention of 

stereochemistry to that with isomerized stereochemistry was 7:1. 

Unfortunately, it was impossible to determine the extent of reaction. If the 

photolysis were stopped early in the reaction, then this result would be 

consistent. If it were stopped late in the reaction, then the amount of 

retention would be very high, compared to the 3:1 observed previously in 

other solvents at the end of the photolysis. This high retention ratio might 

imply interception of some of the 1 ,4 biradical prior to isomerization. The 

intractibilty of the reaction precluded further investigation. The 

stereochemical studies in acetonitrile were more successful. Photolysis of 

titanacyclobutanes in acetonitrile produced a black paramagnetic 
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precipitate independent of the nature of the trap. However, it did not 

interfere with the examination of the reaction by NMR. The initial 

cyclopropane was formed with slightly more retention, 7.9:1 than that in 

toluene or THF. However, this number was close to the error bounds for the 

integration of the stereochemical studies in THF and toluene. The final 

stereochemical ratio was 3:1, identical with other results. This result 

argues against zwitterionic or charge-separated species on the reaction 

pathway. It would be expected that changing the solvent polarity so much 

would affect the stereochemical results if charge-separated species were 

present. 

The stereochemistry was also investigated in glass solvents. The 

reactions were complicated by the fact that typical glass solvents are not 

commerically available as their perdeuterated analogues. Again, 

deuterium NMR was employed jointly with proton NMR. The tetradeutero 

metallacycle in 2-methyl-THF was photolyzed at 77 K. Integration of the 

cyclopentadienyl resonances of the starting stereolabelled titanacyclobutane 

and titanacyclopentadiene (diphenylacetylene was included in the reaction 

mixture for the purpose of providing a tractable product) after warming 

indicated that the extent of reaction was 81%. The cyclopropane formed 

indicated 6.5:1 retention to isomerization. This is approximately twice the 

ratio that would be expected if the reaction were carried out at -20 °C. The 

volatiles were removed from the reaction mixture and reanalyzed by NMR. 

The stereochemistry of the cyclopropanes in this volatile fraction indicated 

a 7.8:1 retention:isomerization stereo-ratio. This number was within the 

error bounds of the earlier number. Photolysis in a glass was repeated in 

the same manner in perdeutero toluene. Toluene forms a cracked glass at 

77 K. Examination of the reaction after warming indicated the extent of 
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reaction to be 16%. The cyclopropane stereochemistry was found to be 8.9:1. 

Again, more retention was found when the photolysis was carried out at 77 

K than when the photolysis was carried out at -20 °C. In order to confirm 

these results, the reaction was repeated in 2-methyltetrahydofuran, and the 

stereochemistry was determined by deuterium NMR. The results were not 

unequivocal due to the difficulties in deuterium NMR with these 

compounds; small resonances are easily lost in the noise or swamped out 

by larger signals, but more retention was evident than if the reaction had 

been performed at -20 °C. These results could be rationalized by a number 

of factors. For example, at 77 K in a glass, bond rotation could be hindered 

by the matrix and temperature. There could be a low-temperature 

differentiation of a singlet and triplet pathway. Attempts were undertaken 

to address the temperature effects by photolyzing a labelled metallacycle in 

benzene at -78 °C. The solvent did not allow much light to penetrate the 

sample. This translated into overphotolyzing the surface of the reaction 

mixture (overphotolysis seems to result in metal-cyclopentadiene bond 

homolysis) and complicated the subsequent NMR analysis. While the 

stereochemical results of the glass photolysis did not clarify the reaction 

mechanism, they did indicate that the reaction does not involve a large 

degree of rearrangement. The matrix studies also demonstrate that the 

reaction is probably unimolecular. 

Other attempts to delineate the reaction more clearly failed. For 

example, no new ESR signals were observed when a sample of a 

metallacycle in a 2-methyltetrahydrofuran glass was irradiated in the 

cavity of an ESR spectrometer at both 8 K and 77 K. Only a weak broad line 

was observed, both prior to and during photolysis. The signal was 

attributed to trace titanium(III) impurities. 
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The thermal chemistry of titanacyclobutanes is characterized by an 

allowed 2+2 addition. Organic n2s + n2s reactions are orbitally forbidden. 

It is fairly clear that photolysis of titanacyclobutanes yields a 1 ,4-biradical. 

Organic 1,4-biradicals are a well-known species. They can be generated 

from diazo compounds and from photochemical 2+2 cycloadditions. 

Organic 1 ,4-biradicals do not generate cyclopropane and carbene. The 

photochemistry of titanacyclobutanes does not yield olefin and titanium 

methylidene (the expected products of retro 2+2 cleavage). Instead, 

photolysis induces reductive elimination of cyclopropane. This is very 

surprising since it is uphill thermodynamically from both the starting 

material and the 2+2 products. A summation of the chemistry is shown in 

Figure 17. 

+ 

c: 
v +~C: 

==TiCp2 
+ 

- v + Cp2Ti: 



Figure 17. Comparison of organic and inorganic 1 ,4-biradicals. 

While the mechanism of the photochemical reductive elimination is 

not entirely understood and many of the conclusions rest on admittedly 

tenuous ground, a working hypothesis of the reaction has emerged. The 

metallacycle undergoes photolysis to generate a metal-centered 1,4-

biradical. The lifetime of this biradical is on the order of a bond rotation. 

This biradical either recombines or reductively eliminates cyclopropanes. 

Evidence suggests that there is no competing, concerted reaction. The 

likelihood of reforming is approximately the same as for reductive 

elimination. The time required for the bond rotation in the wedge of the 

metallacycle may be longer than that of a free carbon-carbon bond. 

Additionally, the remaining orbital on the titanocene fragment may 

somehow stabilize the carbon-centered radical and thus slow carbon-carbon 

bond rotation. This "stabilization" may also direct the attack of the radical 

towards the other metal carbon bond. 
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One of the measures of the quality of a hypothesis is its utility in 

predicting other results. The short-lived 1 ,4-biradical is useful for 

explaining the lack of photochemical reactivity of bis(Tl5-

cyclopentadienyl)titanacyclobutenes. The titanacyclobutenes are extremely 

photochemically inert, remaining unchanged after 24 hours of photolysis. 

If a 1 ,4-biradical were formed, possibly it could be expected to rearrange 

rapidly to the vinyl titanium alkylidene shown in Figure 18. The failure to 

rearrange results from stereoelectronic factors. In order to rearrange a s 

shown in Figure 18, the titanium carbon bond must rotate 90° to overlap the 

1t bond and the metal orbitals. This rotation is prevented by the 

cyclopentadiene rings, which form a sandwhich over the metal orbitals . 

The compatability of the above hypothesis with other results is particularly 

rewarding. 
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Experimental Section: 

General Procedures. All work involving air- and/or moisture­

sensitive compounds was performed using standard high-vacuum or 

Schlenk-line techniques under argon purified by passage through columns 

of BASF RS-11 (Chemalog) and Linde 4A molecular sieves. Work involving 

manipulation of air-sensitive compounds was performed inside a drybox 

under nitrogen in a Vacuum Atmospheres dry box equipped with a -40 °C 

refrigerator and a dry-cool recirculator. Proton, deuterium, and carbon 

NMR spectra were recorded on a JEOL FX-90Q (89.9 MHz 1 H, 22.5 MHz, 

13C), and a JEOL GX-400 (399.65 MHz 1H, 61.35 MHz 2H, 100.67 MHz 13C), 

on a Varian EM-390 (90 MHz 1H), and on a Varian XL-200 (200 MHz 1H). 

Proton chemical shifts are referenced to internal residual protiosolvents. 

Carbon chemical shifts are referenced to the carbon signal of the deuterated 

solvents. Deuterium chemical shifts are referenced to natural abundance 

deuterium in the solvent. UV-vis spectroscopy was performed with a 

Hewlett-Packard 8154A diode array spectrophotometer. Gas 

chromatography analyses (VPC) were performed on a Shimadzu GC-Mini-

2 flame-ionization instrument with a 50 meter capillary column and a 

Hewlett-Packard model 339A integrator. Preparative VPC was performed 

on a Varian 920 Aerograph with a thermal conductivity detector equipped 

with a Hewlett Packard 7127A strip recorder (columns: 6ft by 114 in, SE-30 

or 4 ft by 1/2in, silver nitrate). Thin-layer chromatography (TLC) was 

performed on precoated TLC plates (silica gel 60 F-254, EM Reagents). 

Flash chromatography was by the method of Still et aJ.32, using silica gel 60 

(230-400 mesh ATMk, EM Reagents). Elem ental analysis was performed a t 

the analytical facilities of the California Institute of Technology or a t 
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Galbraith Labs. Photolysis was performed with a 450 watt high pressure 

mercury Hanovia lamp. Temperatures were maintained with clear pyrex 

dewars filled with isopropanol at the desired temperature. Temperatures 

cited reflect the final temperature the bath reached at the end of photolysis; 

typically a change of only 10 degrees was observed. All photolyses were 

Pyrex-filtered unless otherwise stated. 

Materials. The solvents were purified as follows: Toluene, benzene, 

tetrahydrofuran, and diethyl ether were distilled under vacuum from 

sodium benzophenone ketyl into solvent flasks equipped with Teflon screw­

type valves. Methylene chloride, acetonitrile, chloroform, and pyridine 

were distilled from calcium hydride at atmospheric pressure and 

subsequently freeze-pump-thaw degassed. Dimethylsulfoxide was distilled 

from calcium hydride at reduced pressure. Carbon disulfide was distilled 

from phosphorus pentoxide. Diphenylacetylene was recrystallized from 

toluene. All volatile acetylenes were distilled and degassed prior to use. 

Solvents used in photochemical reactions (typically, THF, benzene, toluene, 

and 2-methyltetrahydrofuran) were vacuum-distilled directly into the 

reaction vessels (after predrying over sodium) from sodium-potassium alloy 

and were thoroughly degassed prior to use. Titanacyclobutanes derived 

from isobutylene,33 neohexene34, norbornene35 2,2-dimethylcyclopropene36 

were synthesized according to literature procedures. Methylene 

cyclopropane, 2,2-dimethylcyclopropene and 2,2,3,3-tetramethylcyclobutene 

were received as gifts from Scott Virgil. The metallacyclobutane derived 

from titanium methylidene and benvalene was supplied by Tim Swager. 

Literature procedures were used to synthesize trans-2,3-

dimethylmethylenecyclopropane. 37 ~-dimethylsilyl-ti tanacyclo butane and 
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~-dimethylsilylzirconacyclobutane were synthesized from adaptations of the 

literature procedures.38 

Perdeuterodimethylmercury: A 300 mL three-necked flask was 

equipped with a condenser, addition funnel, and septum. The apparatus 

was charged with 6.44 g of magnesium metal turnings (0.265 moles) and 

subsequently flame-dried under vacuum, and back-filled with argon. 

Approximately 1 mg of iodine was added and heated to sublimation under 

an argon purge and swept out of the flask. The addition funnel was 

charged with 34.91 grams of perdeuteroiodomethane (0.241 moles 

previously distilled from phosphorus pentoxide and stored over copper 

wire). Onto the magnesium was cannulated 15 mLs of diethyl ether. 

Approximately 5 mLs of the halide was added quickly to the 

ether/magnesium. After the reaction initiated, as evidenced by an 

exotherm, the remainder of the halide was added at such a rate as to 

maintain gentle reflux. The reaction mixture was stirred 8 hrs. Under an 

argon purge, 32.69 g of mercuric chloride (0.120 moles) was slowly and 

carefully added down the condenser. The reaction mixture was then 

refluxed for 24 hours. The reaction mixture was allowed to cool and was 

then quenched with water and filtered. Aqueous workup followed by 

distillation of the solvent and finally the product, 86-93 °C, afforded 13 .5 g 

(CD3)2Hg (57 mmole, 24%). 

Perdeuterotrimethylaluminum: A heavy-walled glass ampoule 

equipped with a Kontes-type valve was equipped with a stir bar and then 

charged in a drybox with 4.62 g of aluminum powder (0.171 moles). Into the 

flask was cannulated 13.5 g of perdeuterodimethylmercury (57 mmole). 

The reaction mixture was freeze-pump-thaw-degassed and then heated to 
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90 °C for 20 hours. The Al(CD3)3 was vacuum-distilled from the mercury 

metal into a sealable U trap to provide 3.00 g of product (37 mmole, 97%). 

Tebbe Reagent-dg: In a drybox a small Schlenk flask was charged 

with 4.10 g of titanocene dichloride (16.46 mmole). To the titanocene 

dichloride was added 2.95 g of perdeuterotrimethylaluminum (36.4 mmole), 

followed by 15 mLs of freshly distilled and degassed toluene. The reaction 

mixture was heated to 55 oc for 39 hours on a Schlenk line. After cooling, 

10 mLs of pentane was layered on top, and the mixture was slowly cooled to 

-20 °C; over the course of 48 hours crystals formed. The crystals were 

isolated and washed with additional pentane and dried under vacuum at -

20 °C. A second crop of crystals was obtained by cooling the mother liquors 

to -50 oc and isolating them in a similar manner. A third crop of crystals 

was obtained by removing the solvent from the mother liquors, dissolving 

them in 10 mLs of toluene and 10 mLs of pentane and slowly cooling the 

resulting solution to -20 °C. The first crop yielded 1.75 g; the second, 1.21 g, 

and the third, 1.79 g (4.75 g total, 16.9 mmole, 103%). 

lsobutylene-dg: In -150 mLs of THF was dissolved 40.0 g of 

triphenylphosphine (0.152 moles). To this solution was then added 25.0 g of 

trideuteroiodomethane (0.172 moles). After 2 hours at room temperature, 

the resulting precipitate (59.6 g, 0.143 moles, 96%) was collected by filtration 

and dried under vacuum. A large Schlenk flask was charged with 25.13 g 

ofthe above phosphonium salt (61.7 mmoles) and then taken into the drybox 

where it was additionally charged with 3.00 g of sodium hydride (0.125 

moles). On a Schlenk line approximately 150 mLs of THF was added, after 

which the reaction mixture was refluxed for 12 hours. The reaction 

mixture was then filtered through dry celite and then concentrated under 

vacuum. The phosporane was suspended in 100 mLs of toluene and cooled 
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to 0 °C. To the cooled suspension was added 3.50 mLs of dry 

perdeuteroacetone (3.05 g, 4 7 mmole) by syringe. The reaction mixture was 

stirred for 3 hours at 0 °C and then for 30 minutes at ambient temperature. 

The volatiles were vacuum-transferred to a Schlenk flask equipped with a 

Kontes valve. The isobutylene was distilled from the reaction mixture 

through a Vigreaux column cooled to 0 °C. The product (2.544 g, 39.7 

mmole, 84%) was vacuum-transferred onto 10 mLs of dry, degassed 

methylene chloride for storage. 

a,a,a',a'-tetradeutero-~.~-dimethyl-titanacyclobutane: The second 

and third crops (3.00 g, 10.27 mmole) of the Tebbe reagent-d8 from above and 

1.50 g of N,N-dimethylaminopyridine (12.30 mmole) were loaded into a 

small Schlenk flask in a drybox. The solids were cooled to -30 °C outside the 

box on a Schlenk line. The isobutylene-dg/methylene chloride solution from 

above was cooled to -30 oc and subsequently cannulated onto the solids. 

This solution was stirred for 30 minutes, during which time it was allowed 

to warm to -5 °C. This solution was then cannulated into 110 mLs of well­

stirred -35 oc pentane. The resulting suspension was quickly filtered and 

the filtrate was taken to dryness under vacuum at -30 °C. Final drying was 

achieved by allowing the temperature to rise to 0 °C during the final five 

minutes of drying. This solid was then recrystallized from toluene at -50 °C 

to afford 0.652 g (2.52 mmole, 25%) of product. The mother liquors were 

taken to dryness to afford another 564 mgs of impure product. 

1,2-cis-dideutero-3-methyl-1-butene: A large Schlenk was charged 

with 20 .0 g of zirconocene dichloride (68.4 mmole). The zirconocene 

dichloride was suspended in 200 mLs of THF and into the suspension was 

cannulated a THF suspension of 0.72 g of lithium aluminum deuteride (1 7.2 

mmole). A white precipitate formed. The suspension was stirred for 24 



58 

hours while protected from light. The zirconocene chloride deuteride (10.5 

g, 40.5 mmole, 60%) was allowed to settle and was then washed five times 

with 25 mLs of THF and then with 50 mLs of diethyl ether. The solid was 

dried under vacuum and then taken into the dry box. A 500 mL Schlenk 

flask was charged with 10.1 g of powder zirconocene chloride deuteride 

(39.0 mmole). Onto this solid was cannulated 100 mLs of toluene and 4.2 

mLs of 4-methyl-1-butyne (2.8 g, 41.0 mmole). The suspension was stirred 

in the dark for four hours, during which time all of the solid dissolved to 

give a green solution. The volatiles were removed under vacuum to afford a 

green oil. To this was cannulated 50 mLs of cold pentane. The resulting 

green solids were dried under vacuum to give a bright-yellow solid, which 

was broken up with a spatula under a purge of argon. This solid was then 

suspended in 15 mLs of toluene at 0 °C. Into this 0 °C suspension was 

syringed 0.800 mLs of deuterium oxide (44.0 moles); the reaction mixture 

was then stirred for 12 hrs at ambient temperature. The volatiles were 

vacuum-transferred off the white precipitate onto 4A molecular sieves. 

Distillation of the reaction mixture through a jacketed Vigreaux column 

cooled to 20 °C provided 2.152 g of the olefin (29.84 mmole, 77%). 

E-1-deutero-4-methyl-1-butene This material was synthesized in a 

fashion similar to the 1 ,2-cis-dideutero-3-methyl-1-butene from above, 

except that zirconocene chloride hydride was used instead of zirconocene 

chloride deuteride. 

a' ,a' -dideutero-cis-a,~dideutero-~isopropyl-bis(T\5. 

cyclopentadienyl)titanacyclobutane: A small Schlenk flask was loaded in a 

drybox with 0.510 g a ,a ,a' ,a'-tetradeutero-13.13-dimethyl-titanacyclobutane 

(1.977 mmole). Outside the drybox it was cooled to -35 °C. Into a small 

Schlenk flask was vacuum transferred 10 mLs of dry, degassed diethyl 
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ether and 0.3926 g of1,2-cis-dideutero-3-methyl-1-butene (5.44 mmole). This 

solution was cooled to -35 °C and was then cannulated onto the 

metallacycle. The cooling bath was removed and the solution was stirred at 

room temperature for exactly 30 minutes. The volume of the solution was 

reduced by half under vacuum. Slow cooling of the solution to -50 °C 

afforded, after washing and drying, 267 mg of long, red needles of the 

desired product (1.003 mmole, 51%). NMR examination (toluene-dB) of the 

product indicated that the ratio of the a protons trans to the ~ isopropyl 

group (8: 2.67 ppm) to the a protons cis to the~ isopropyl group (8: 1.95 ppm) 

was 23±1 to 1. 

Trans-a-deutero-~-isopropyl-bis(Tl5. 

cyclopentadienyl)titanacyclobutane: This metallacyle was synthesized in a 

manner similar to that reported above. A small Schlenk flask was charged 

with 0.722 g of ~.~-dimethyltitanacyclobutane (derived from titanocene 

methylidene and isobutylene) (2.91 mmole). To this was added 15 mLs of 

diethyl ether and 0.5398 g ofE-1-deutero-4-methyl-1-butene (7.46 mmole) at-

78 °C. The reaction mixture was warmed to room temperature and stirred 

for 30 minutes, after which time the volume of the solution was reduced by 

half under vacuum. Slow cooling of the reaction mixture to -50 oc provided, 

after washing and drying, 0.455 g of product (1.73 mmole, 60%). 

Trans-cx.,~dideutero-~isopropyl-bis(Tl5. 

cyclopentadienyl)titanacyclobutane: This material was synthesized as 

above from 1 ,2-cis-dideutero-3-methyl-1-butene and ~ , f3 -

dimethyltitanacyclobutane in 56% yield on a 2 mmole scale. 

Additional titanacycles derived from acenaphthylene, benzvalene, 

and 1,1-dimethylallene were synthesized from the reaction ofl equivalent of 
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the appropriate olefin and the B,B-dimethyltitanacyclobutane followed by 

recrystallization from diethyl ether. 

Titanacyclobutenes: The appropriate acetylene was allowed to react 

with one equivalent of the B,B-dimethyltitanacyclobutane in diethyl ether 

followed by recrystallization. 

Typical NMR experiment. In a drybox the appropriate metallacycle 

was placed in a sealable, tared NMR tube. Additional solid reagents were 

introduced at this time. On a high vacuum line the NMR tube was 

evacuated and the deuterated solvent was condensed into the tube at 77 K. 

Any volatile reagents were then also condensed into the tube from 

previously tared, evacuated, dried vessels. The tube was sealed under 

dynamic vacuum with a torch. Dissolution of the materials was achieved 

at low temperature. NMR spectra were recorded at low temperature, 

typically -20 °C, before photolysis and at intervals during photolysis. 

Control experiments were undertaken to ensure the separation of thermal 

and photochemical reactions for each metallacycle employed. Addtionally, 

the volatile components of each reaction were removed and examined by 

NMR. 
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CHAPTER 2 

Reaction of Photochemically Generated Titanocene 

with Acetylenes, Olefins, and Dienes 



Introduction: 

Since the discovery of ferrocene in 1951, almost all of the first-row, 

transition-metal metallocenes have been synthesized and characterized. 

One of the few compounds that has not been isolated as a simple 

metallocene is titanocene, Cp2Ti. This failure is not due to lack of effort. 

Rather, it is believed that the extreme reactivity of the complex has 

precluded its isolation. Titanocene is highly coordinatively unsaturated in 

addition to having two unpaired electrons in its calculated ground state. In 

fact, it has been described as an organometallic analogue of organic 

carbene, :CH2. 

The attention that titanocene has received over the past 20 years has 

not been merely due to the novelty of synthesizing a missing compound in a 

series. Rather, titanocene, or at least the products resulting from attempts 

to synthesize titanocene, have been shown to have a rich and varied 

chemistry. Additionally, titanocene has been invoked 1n many 

stoichiometric and catalytic reaction mechanisms involving 

bis(cyclopentadienyl)titanium-containing species. Notably, these reactions 

include hydrogenations, dinitrogen reduction, and olefin polymerizations . 

Many routes have been undertaken to synthesize titanocene, each of 

which has met with differing results . In fact, the great diversity of 

synthetic routes and the corresponding great variation in products has 

contributed to the controversy associated with the determination of the 

intrinsic properties of titanocene. 

The first attempt to synthesize titanocene was undertaken shortly 

after, and closely paralleled, the synthesis of ferrocene . Reaction of two 

equivalents of sodium cyclopentadienide with Ti(Il)Cl2 provided a green 



air-sensitive diamagnetic solid, which was not well characterized.! This 

material was presumed to be "titanocene." This type of result and inability 

to characterize the resultant materials typified many but not all subsequent 

attempts to synthesize titanocene. Some of the many routes to titanocene 

that have been investigated include the following: reductive dehalogenation 

of bis(T)5-cyclopentadienyl)titanium dichloride by both chemical and 

electrochemical means; hydrogenation of dimethyltitanocene; thermolysis 

and/or photolysis of either dimethyltitanocene or diphenyltitanocene. These 

routes to titanocene have been extensively reviewed.2 A brief synopsis of 

theses routes is shown in Figure 1. The presumed mechanism for one of 

the reductions is shown in Figure 2. Titanium hydrides are often 

encountered in the attempted syntheses of titanocene. The mechanism in 

Figure 2 shows how these hydrides and shifted cyclopentadienyl rings are 

generated. 



Cp2Ti(Me)2 

Cp2TiCl2 

Cp2TiCl2 

Cp2TiClz 

Na or Na/Hg or 

H2 solid 

state 

THF 

K+ [8r 
Mg0

, PMe3 

almost any reductant 

co 

h v 

electrochemical 

reduction 

~Ti_H_T~ 
~ ---.....H--\ }§J 

() 

Cp2Ti(PMe)2 

Cp2Ti(C0)2 

"titanocene" + CH4 

Multiple nonreversible reduction waves 
that are probably due to ring slippage. 
Ansi-CpzSiMe2 TiCl2 shows only one wa ve. 

Figure 1. Some of the many routes to "titanocene." 



The first discrete compound to be isolated from these many different 

routes to titanocene was IJ.-(115 :115-ful valene)-1J.-dihydrido(bis(115-

cyclopentadienyltitanium)) isolated from the chemical reduction of 

titanocene dichloride by either sodium, sodium amalgam, or sodium 

naphthalide. The reaction and postulated mechanism and structure are 

shown in Figure 2.3 

This compound does not react with nitrogen, and consequently, is 

probably not the same "titanocene" responsible for the nitrogen-reduction 

chemistry that characterizes some of the other routes to titanocene. A route 

to titanocene that does furnish a material capable of reducing nitrogen is 

the hydrogenolysis of solid dimethyltitanocene to yield what is believed to be 

a [Cp2TiH]2 dimer shown in Figure 1. Solution hydrogenolysis gave the 

fulvalene product isolated by Brintzinger and Bercaw. Almost all routes to 

titanocene have provided different materials. The only other "titanocene" to 

be structurally characterized was generated by the reaction of titanocene 

dichloride with potassium napthalide in THF.4 The compound is shown in 

Figure 1. One unifying observation is that all of the routes to titanocene, in 

the absence of Lewis bases, generate materials in which the 

cyclopentadienyl ligands are not innocent ligands. That is to say, they 

participate in the chemistry and do not remain unchanged during the 

course of the reaction. 
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Na or Na/Hg or ~i Cp2TiC12 

Na· [8r ® 

Or 

r§(Ti~'H"'"· ·T~ 
ccb:> H~:J 

Figure 2. Mechanism of titanium hydride formation in titanocene 

preparations. 

In order to circumvent some of the problems inherent in the 

titanocene chemistry, alternative sources of titanocene have been sought. 

Two of the most commonly used "titanocenes " ar e 

bis(trimethylphosphine)bis(fl5-cyclopentadienyl)titanium(II) and bis(T\5 _ 

cyclopentadienyl)dicarbonyltitanium(II). 5 These compounds are mere ly 

Lewis base adducts of the parent titanocene. The materials are typica lly 

synthesized by the previously mentioned techniques in the presence of the 

appropriate Lewis base. Presumably, the Lewis base intercepts the 
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transitorily stable titanocene before it has a chance to activate 

cyclopentadienyl rings. The acid/base pair is then stabilized or deactivated 

with regard to ring activation. One of the attractive features of the these 

titanocene synthons comes from their tractability. That is to say, the 

compounds are easily isolated and purified. A problem with the 

compounds, however, is the presence of the Lewis base during reaction. 

These ligands tend to deactivate the titanocene. Additionally, only one 

carbonyl and only one of the phosphines are photochemically labile. This 

means also that the parent titanocene cannot be generated photochemically 

at low temperature. Nonetheless, these compounds have been responsible 

for many interesting materials and reactions. Two examples are the 

isolation of olefin adducts of monocarbonyltitanocene,6 and the very recent 

application of the titanocenebis(trimethylphosphine) to generate vinyl 

titanium carbenes. Titanocenebis(trimethylphosphine) reacts with 3,3-

diphenylcyclopropene to generate a vinylcarbene trimethylphosphine 

complex of titanocene.7 These materials may have applications to olefin 

metathesis. 

In the first chapter, the mechanism of the photochemical generation 

of cyclopropane from bis(115-cyclopentadienyl)titanacyclobutanes was 

examined. Significantly, however, another product of this reaction is a 

species that behaves as monomeric titanocene. In chapter one, little was 

said about the organometallic products associated with this photochemical 

reductive elimination. By mass balance, the organometallic product of the 

reaction is titanocene, a.k.a. bis(115-cyclopentadienyl)titanium. This is 

borne out by trapping reactions. As was mentioned, a wide variety of traps 

intercept the titanocene and provide products associated with titanocene. 

Most notably, photolysis in the presence of trimethylphosphine yields 
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bis(trimethylphosphine)bis(T)5-cyclopentadienyl)titanium(II) in quantitative 

yield. Since the titanocene can be generated photochemically, a whole new 

temperature regime is available to titanocene chemistry. Generating 

titanocene at low temperature means that the titanocene should undergo 

the typical ring-insertion reactions more slowly and thereby not only allow 

more chemistry with a wider range of materials, but also mean higher 

yields in all reactions, since the competing reactions are slower. 

Isoelectronic with titanocene is zirconocene. Zirconocene has 

received a great deal of attention recently. This is due in part to the 

discovery that zirconocene is synthetically useful for numerous reductive 

coupling reactions and transmetallation reactions.s Titanocene has not 

found use in as many synthetically useful transformations despite the fact 

that it is felt that titanocene is more stable than zirconocene with respect to 

forming metal hydride bonds. 9 One of the goals of the research was to gain 

a fundamental understanding of titanocene in order to exploit its synthetic 

chemistry fully. It is doubtful that photochemical routes to titanocene will 

be synthetically useful in stoichiometric reactions because of the number of 

steps needed to synthesize a titanacyclobutane. However, it is felt that the 

knowledge gained from understanding this very clean, controllable route to 

titanocene will allow other more economical routes to titanocene to be better 

and more fully employed. An additional goal of the research was to exploit 

the reactivity of the uncomplexed (Lewis base-free) titanocene. The 

extremely clean nature and high yield of the photochemical generation of 

titanocene from the photolysis of titanacyclobutanes makes it ideal for 

generating titanocene at low temperatures. Low temperatures are not 

feasible with the other titanocene sources, since fairly high temperatures 

are needed to allow the reaction that generates the titanocene to proceed. 
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These higher temperatures result then 1n faster decomposition of the 

titanocene generated. 
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Results and Discussion: 

The chemistry of titanocene has been extensively studied over the 

past 20 years. Therefore, it was decided to investigate the chemistry of 

photochemically generated titanocene in order to take advantage of low 

temperature generation and to take advantage of the fact that the titanocene 

is generated in the absence of ancillary ligands. While it is believed that the 

photochemical route to titanocene is extremely clean and efficient, this does 

not preclude the typical degradation reactions that titanocene is prone to 

undergo in the absence of traps. 

Some of the best and most used Ziegler-Natta olefin polymerization 

catalysts are based on titanium. Therefore, it was felt that olefin, 

acetylenes, and dienes would not only be a good series of compounds to 

explore the chemistry of photochemically generated titanocene, but would 

also provide a series of compounds to elucidate the fundamental 

interactions between Lewis acidic metals and unsaturated substrates. 

isopropyl 

Cp2 Tio--1-Butyl 1 hv 

X ... 

This indicates that 

o--

hv 

Cp2 Ti t-Butyl ,. X 

t-Butyl 

[Cp,Til + f 
Figure 3. The reductive elimination is irreversible. 
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Prior to the examination of the interaction of acetylenes with 

photochemically generated titanocene, a series of control experiments were 

undertaken to determine the inertness of the cogenerated cyclopropane and 

the yields with which the titanocene could be trapped. Photolysis of the ~-

tert-butyltitanacyclobutane in the presence of -20 equivalents 

isopropylcyclopropane to 50% conversion followed by NMR examination 

revealed no incorporation of the isopropylcyclopropane in a metallacycle. 

That is to say, the photochemical extrusion of cyclopropane is irreversible. 

This reaction is shown in Figure 3. 

Photolysis of the neohexene metallacycle in the presence of methyl 

disulfide (3 eq.) in toluene at -40 oc resulted in formation of the knownlO 

Cp2Ti(SMe)2 in quantitative yield. This result indicated that at reasonably 

high temperatures it was possible to trap the titanocene in high yield 

without resorting to very high excesses of trap. Figure 4 illustrates this 

reaction. 

Cp2TiA__t-Butyl + MeSSMe v- 3eq's 

hv 

-40 oc 
... 

100% 

Figure 4. Very high yields are possible using photochemically generated 
titanocene. 

Photolysis at -78 °C of the neohexene metallacycle in the presence of 

the diphenylacetylene results in quantitative yield of the monoacetylene 

adduct as determined by NMR. This material, upon warming to 

temperatures greater than -40 °C, inserts a second diphenylacetylene to 
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give the known bis(ll5-cyclopentadienyl)tetraphenyltitanacylopentadiene. 

This reaction is illustraed in Figure 5a. 

hv 

-40 oc 

R=t-Butyl 
Ph 

Ph 

(Ph) 

Cr2Ti ~ Ill 
(Ph) 

observable in NMR 
can be trapped chemically 

100% based on cyclopropane 
Ph produced 

Figure 5a. Reaction of photochemically generated titanocene with 
di phenylacetylene. 

Both the monoacetylene adduct of titanocene and the 

titanacyclopentadiene seemed to be photochemically inert as evidenced by 

the repeated failure to observe any secondary photochemical products. 

However, for either compound a degenerate photochemically induced loss 

of the acetylene (or less likely, tetraphenylcyclobutadiene), followed by r apid 

reinsertion, cannot be ruled out. The reaction could be repeated in equally 

high yield with one equivalent of diphenylacetylene. The reaction proceeded 

equally well in THF or toluene, Figure 5b. 
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l+ 
(Ph) 

Cp2Tio-R 
hv 

c 

+ (Ph) C(Ph) ... Cp
2
Ti...,. Ill -40 oc 

1 equivalent 
R=t-Butyl (Ph) 

High Yield 

Figure 5b. Titanocene can be efficiently trapped with a stoichiometric 
amount of diphenylacetylene. 

Attempts to repeat the reaction with 2-butyne resulted in formation of 

the bis(115-cyclopentadienyl)tetramethyl ti tanacyclopentadiene at 

temperatures as low as -78 °C, Figure 6. Attempts to trap the presumed 

monoacetylene adduct with such reagents as phosphorus ylides failed. The 

monoacetylene adduct evidently rapidly inserts a second acetylene even at 

low temperatures. The chemistry of the monoacetylene adducts of 

titanocene will be discussed in greater detail later in the chapter. 

Cp2Tio-R 

R=t-Butyl 

hv 
+ MeC CMe _78 oc 

excess 

c 
Me 

presumed intennediate 
not observed in NMR 

cannot be trapped chemically 

Figure 6. The Reaction of titanocene with 2-butyne. 

Me 

Me 

Me 

yields variable 
80-90% 
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Acetylenes with large substituents were then investigated so that the 

rate of addition of the second acetylene would be slower. This change 

provided additional stability to titanocene acetylene adducts. Acetylenes 

that were investigated include bis(trimethylsilyl)acetylene , 

(phenylethynyl)trimethylsilane, di-tert-butylacetylene, 1-trimethylsilyl-2-

phenyldimethylsilylacetylene. Goals of the investigation were to determine 

the nature of the interaction between the metal and the acetylene and to 

develop the chemistry of the adducts. These adducts are particularly 

interesting, since unlike other acetylene adducts of the early metallocenes, 

there are no other ancillary ligands such as phosphines and ethers to 

stabilize the metal complex. This not only maked for more reactive 

complexes, but was felt to mimic more closely the nature of the interaction 

between unsaturated substrates and heterogeneous Ziegler-Natta catalysts, 

which are well known to be passivated by exposure to Lewis bases such as 

phosphines and ethers. 
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0 0 
c 

Cp2Ti ~ Ill .. .. Cp2Ti 
c 
0 0 

Lewis acid/base pair Ti tanacycl propene 

, .. ........ ..... , . . .. G .. / " \ c '· -..; (fjjTi-161 ... 
,--------, . . :G. .. . . . . 

i .... ~ \ @Ti 

Figure 7. Two modes of bonding in the monoacetylene adducts of 
titanocene. 

One of the first questions addressed was the nature of bonding in t he 

monoacetylene titanocene adduct. The major question to answer was 

whether the adduct was best described as a Lewis acid/base pair or a 

titanacyclopropene. These differences are shown in Figure 1. The ideal 

solution to understanding this question would be through single-crysta l x­

ray structure determination. Unfortunately, the di-tert-butylacety len e 

adduct of titanocene could not be recrystallized. Excellent crystals of the 
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00 

Cp2Ti(RCCR') 

1HNMR(8) 13CNMR(8) 

Cp, 6.17, s, 10H 195.0, q, Q0 

0, 7.5 m 142.3, q, ipso 0 
0, 7.0 m 115.8, d, JcH=1 72.5Hz, Cp 

0, 6.5 m 
Comments: Solvent (deutero toluene) and free diphenyl acetylene 

obscured the remaining phenyl resonances. In deutero THF the missing 
phenyl resonances were 143.45, q, ipso of 0 ; 128.6; 127.7; 125.84; 115.6 Cp . 
Yield of the reaction 80%, Temperature in probe -50 °C. 13CNMR of free 
diphenyl acetlylene: 132.27, 129.15, 129.02, 124.28, 90.22 (acetylenic). 

TMS TMS Cp, 6.34, s, 1 OH 244.7, q, acetylenic 

TMS, -0.26, s, 18H 117.8, d, Cp 
0.60, s, -Si(QH3)3 

Comments: 1HNMR was recorded in deutero toluene at -65 °C . 
13CNMR was recorded in deutero benzene at ambient. The yield of the 
reaction was >90 % at 100% conversion. 13CNMR of free 
bis(trimethylsilyl)acetylene: 113.86, acetylenic; -0.02, -Si(QH3)3. 

Si0(Me)2 TMS 0 , 7.18, m, 5H 

Cp, 6.34, s, 10H 
Si0(Me)2, s, -0.10, 6H 

SiMe3, s, -0.36, 9H 

246.3, q, acetylenic 

240.2, q, acetylenic 
140.13, q, ipso ofphenyl 

133.6, phenyl; 117.7, Cp 

0.51, TMS; -0.71, Si0~2 
Comments: 1HNMR and 13CNMR were recorded in deutero benzene 

at ambient temperature. 

%utyl %utyl Cp, 6.28, s, 10H 
%utyl, 0.57, s , 18H 

199.8, q, acetylenic 
115.2, d , JcH=171.3Hz, Cp 

39.85, q, ipso of tbutyl 
31.34, qrt, J c H=125 .0Hz, methyl 

Comments: Yield 90%. Spectra recorded in deutero toluene at -30 °C. 
1HNMR of free ditbutylacetylene, 1.20 s. 13CNMR of free ditbutylacetylen e, 
87.1, acetylenic; 31.61, methyl; 27 .36, ipso. 

Figure 8. ~data ofmonoacetylene adducts oftitanocene. 
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bis(trimethylsilyl)acetylene adduct were grown, and the material was 

found to be thermally stable to 80 °C in solution, but decomposed at 80 oc 
during a vacuum sublimation. However, these crystals were very thin 

yellow plates, which were not suitable for x-ray diffraction. Different 

solvents and different recrystallization conditions did not change the 

situation. The (phenylethynyl)trimethylsilane adduct was successfully 

recrystallized, but none of the crystals was found to diffract well. The 

major question to answer regarding the mode of bonding was whether the 

adduct was best described as Lewis acid/base pair or a titanacyclopropene. 

These differences are shown in Figure 7. 

Examination of the 13c NMR spectra of the acetylene adducts could 

not provide information about the degree of hybridization of the acetylene, 

since the carbons involved were quaternary carbons. However, 13c NMR 

did reveal some interesting features about the interaction. The NMR data 

are summarized in Figure 8. Most interesting is the extreme downfield 

shift of the acetylenic carbon of the bound acetylene. Typically, values 

representing this large of a degree of deshielding mean that the acetylene 

was behaving as a four-electron donor to the metal.ll Because of the 

stereoelectronic configuration of the metal center this is unlikely. The 

three metal orbitals all lie in a plane between the cyclopentadienyl ligands, 

and in order for the acetylene to donate four electrons, not just two, the 

acetylene would have to bond perpendicularly to this plane. This creates a 

sterically crowded environment inside the cyclopentadienyl wedge . 

However, it is possible that the acetylene lies somewhere between in the 

plane and perpendicular to the plane. To address this question, the 

asymmetrically substituted acetylene adducts of titanocene were examined . 

If the acetylene were not lying in the plane, then the cyclopentadienyl rings 
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of the metallocene would become distereotopic and therefore should have 

anisochronis chemical shifts. This is not observed for the two 

asymmetrical acetylenes studied. This observation, however, does not rule 

out fluxional behavior. 

Additionally, the highly deshielded acetylenic resonances suggest 

that the carbons are very electrophilic. Despite the fact that titanocene is 

formally d2, it is still very electrophilic and a strong Lewis acid. In support 

of this statement, an adduct of titanocene with hexafluoro-2-butyne could 

not be generated. Presumably, the hexafluoro-2-butyne was too electron­

deficient to form a stable adduct of titanocene. The only products of the 

reaction that were observed were polymer and exploded NMR tubes. 

Attempts to characterize the monoacetylene adducts of titanocene by 

methods besides NMR met with failure. Samples of the monoacetylene 

adducts of titanocene examined by mass spectroscopy failed to show a 

parent ion. Only free acetylene was observed. Additionally, elemental 

analysis never provided satisfactory data confirming the stoichiometry. 

The chemistry of these acetylene adducts of titanium was briefly 

investigated. Acetylene adducts of the early metals have received attention 

recently because of the large number of synthetic transformations that have 

been realized.12 It was decided not to investigate the synthetic applications 

of the photochemically generated titanocene and titanocene-acetylene 

adducts, since it is typically used in stoichiometric amounts, and there are 

synthetically more direct ways to generate titanocene than from the 

photolysis of metallacycles, although there may be some low-temperature 

applications that could be uncovered. The bulkier acetylene adducts of 

titanocene did not insert ketones cleanly. This may be due to the extreme 

sterics associated with the trimethylsilyl groups. In fact, the 
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bis(trimethylsilyl)acetylene adduct of titanocene did not even insert ethylene 

to give the titanacyclopentene. The diphenylacetylene adduct of titanocene, 

on the other hand, cleanly added acetophenone in 80% yield as expected 

from similar work by Vol'pin in Ref 12(h). This insertion is shown in 

Figure 9. 

Cp2 Ti R + (Ph)C C(Ph) _ ___,.,~ <>-- hv 

R=t-Butyl 

(Ph) 
0 c 

Ill 
-50 °C-RT 

Cp2Ti/ Cp2Ti~ ... 
0 ---:::::: 

c 

Me).( Ph 
(Ph) 

Ph 

(Ph) 
c 

CP2Ti ~ill 

Me 
Ph 

-80% by NMR 

c 
(Ph) 

Figure 9. 112-diphenylacetylenebis(115-cyclopentadienyl)titanium inserts 
acetophenone. 

One of the continuing goals of the research was to develop routes to 

mono- and tri-substituted titanacyclobutenes in order to examine further 

their photochemistry. One route to this class of compounds would be from 

methylene transfer to monoacetylene adducts of titanocene. This was 

realized in the reaction of the bis(trimethylsilyl)acetylene and the diphenyl 

acetylene adducts of titanocene. Reaction of one equivalent of the 

his( trimethyl silyl )acetylene adduct of ti tanocene with 

triphenylmethylenephosphorane yielded the titanocene cyclobutene in 100% 

yield after 15 hours at room temperature, Figure 10. Similarly, reaction of 
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the diphenylacetylene adduct of ti tanocene with 

triphenylmethylenephosphorane initially provided a species that at 0 oc 
went on slowly to the titanacyclobutene, Figure 10. The intermediate is 

probably a Lewis acid/base pair, since ylides are very basic and since the 

acetylene adduct is coordinatively unsaturated. Examples of ylide transfer 

to metals are relatively rare.13 While it would be useful to extend the scope 

of the reaction, this was not realized. 

Si(Me)3 
c 

CP2Ti~ Ill 
c 

Si(Me)
3 

(PhbP==CH2 

RT, 2.5 eqs 

0 
c 

Ill 
(PhbP==CH2 

2.5 eq's 
c 
0 

Cp 6.26 ppm 

(Ph) 
c 

Cp2Ti~ Ill 
c 

(Ph) 

Et3P==CHMe 

2.5 eq's 

Cp2 Ti6--SiMe3 

I 100% after 24 hrs RT 

SiMe3 

Only Cp at 6.02 
vanishing and going 
on to 5.66 ppm. Seems to 
be exchanging ylides 

No stable products 

100% after warming to RT 

Cp=5.66 ppm 

Figure 10. Alkylidene transfer from phosphorus ylides to titanocene 
monoacetylene adducts. 

Reaction of the triethylethylidenephosphorane with the 

diphenylacetylene adduct failed to yield any tractable products, Figure 10. 
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This could be due to the the increased basicity of the trialkylphosphoranes. 

Reaction of trimethylmethylenephosphorane with the di-tert-butylacetylene 

adduct of titanocene also failed to yield any tractable products. 

Additionally, the desired trisubstituted product will likely be fairly unstable, 

because of steric interactions from the a position of the metallacycle. 

Attempts to transfer the alkylidene moiety of the ylide directly to 

titanocene also failed with both the trimethylmethylenephosphorane and 

the triphenylmethylenephosphorane ylide. The reaction was also 

unsuccessful when the photochemical titanocene was replaced with 

bis(cyclopentadienyl)titanium(II)bis(trimethylphosphine), photochemically 

generated from a titanacyclobutane and excess phospine. These two 

reactions are shown in Figure 11. 

R=t-Butyl 

Cp2Tio--R 

Cp2Tio--R + PMil! 
h v 

hv 
X 

Cp2 Ti(PMe;Y2 

100% 

Figure 11. Attempts at alkylidene transfer from phosphorus to titanocene 

were unsuccessful. 

Interestingly, the reaction of titanocene a nd 

methylenetriphenylphosphorane yielded only the ethylene adduct of 

titanocene, Figure 12. This could have resulted from either trapping of 

photochemically produced ethylene (methylenetriphenylphosphorane 
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slowly produces ethylene under the photochemical conditions) or from a 

different mechanism. The ylide could have transferred the methylene, and 

then the resulting titanium methylidene could have dimerized to the 1,3-

dititanacyclobutane, which is known to cleave photochemically to the 

titanocene ethylene adduct and titanocene.14 The reaction and two 

plausible mechanisms are shown in Figure 12. Attempts to intercept the 

dimethylacetylene adduct of titanocene with an ylide prior to addition of a 

second acetylene also failed. 

Cp2Tio--R 

R=t-Butyl 

Two mechanisms: 

hv 

Cp2Tio--R 

R=t-Butyl 

Alternative! 

Cp2Tio--R 

R=t-Butyl 

0.]' + 

hv !+ 

h v 

hv 
Cp2 Ti(ethylene) 

low yield 

ethylene 

Cp2 Ti(ethylene) 

Cp2Ti: 

h v 

C~ Ti(ethylene)+ Cp2Ti : known reaction 

Figure 12. Reaction of phosphorus ylides with titanocene. 



R=t-Butyl 

Cp2Tio-R 

R=t-Butyl 

+ HC C-t-Butyl 

+ HC C-t-Butyl 

/t-Butyl 
c 

0 
/c 

Cp2Ti"-. 
H 

t-Butyl 
I 
c 

Cp2Ti~ Ill 
CH 

hv, THF 

-78 octo RT 

hv, THF 

-78 oc 

t-Butyl 

t-Butyl 
yield variable 

from 70% to 90% 

A purple intermediate 
that has Cp at 5.90 which 
vanishes and becomes 
product at 5.44 ppm. 

Two possible structures for the 
intermediate at low temperature. 
The acetylide hydride is favored since 
traces of neohexene are observed in the 
volatiles, and it is well known that 
titanocene hydrides are active 
hydrogenation catalysts. 

Figure 13. Reaction oftitanocene with neohexyne. 

Terminal acetylenes were reacted with titanocene at -80 °C. It was 

hoped that at this temperature a simple acetylene adduct could be formed 

prior to any thermal chemistry. Only intractable reaction mixtures were 

obtained from the reaction of phenylacetylene and trimethylsilylacetylen e 

with photochemically generated titanocene. However, at -90 oc a purple 
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product was formed in -80% yield from the reaction of excess 3,3-dimethyl-

1-butyne with titanocene. This product was not further characterized since 

even at this temperature it was slowly isomerizing to another green 

material. The initial material formed is likely to be either an acetylene 

adduct of titanocene or more likely an acetylide hydride. Traces of 3,3-

dimethyl-1-butene were observed in the volatiles of the reaction. The final 

green product was identified as dimetallabicyclic material shown in Figure 

13. The structure of the material was verified by x-ray structure 

determination. No hydrogens were found on the alpha carbons in the final 

electron difference map. Additionally, 13c NMR indicated that all of the 

carbons in the cyclic skeleton were quaternary. Structurally similar 

materials have been synthesized previously by two methods.15 The first is 

by reaction of a 1 ,3-diacetylene with two equivalents of a titanocene source. 

The second method is by reaction of the terminal lithium or sodium 

acetylide with (Cp2Ti(III)Cl)2. Interestingly, a purple intermediate is also 

observed in the reaction of the acetylide with Cp2TiCl. The structure of the 

product is quite similar to that of the titanacyclobutenes synthesized by 

Tebbe and coworkers16 and to the ((MeCp)2Ti)2(0-CCCC-0) material 

synthesized by Stucky and coworkers. The structure is shown in Figure 14. 

Supplementary x-ray data is included in an appendix in the experimental 

section. The product is remarkably inert. It fails to insert CO even at 

elevated pressures and temperatures, unlike the simple 

titanacyclobutenes . 1 7 Reaction of phenylacetylene and 

trimethylsilylacetylene with titanocene yielded product mixtures that were 

complicated; consequently, the products were not identified. This coupling 

reaction was not pursued further. 
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Figure 14. Crystal structure data for ~J.-(1-311:2-411-trans, trans-1,4-di-tert­
Bu tyl-1 ,3-butadiene)-bis(bis( 115-cyclopen tadienyl)ti tani um) from the reaction 

of neohexyne with titanocene. 
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In addition to acetylenes, the reactivity of olefins with 

photochemically generated titanocene was investigated. The goal of this 

chemistry was to develop compounds that could be manipulated to new 

interesting polymerization catalysts. Specifically, it was hoped that the 

olefin adducts of titanocene would react with alkylating agents and 

noncoordinating counter ion acids to give titanium alkyl cations that would 

likely be very effective olefin-polymerization catalysts.18 Additionally, it was 

hoped that trisubstituted metallacycles could be synthesized from the 

reaction of substituted ylides with internal olefins. Trisubstituted 

metallacycles would cleave in a 2+2 manner to give a substituted titanium 

alkylidene. These are very desirable olefin metathesis catalysts. These 

possible reactivity pathways are shown in Figure 15. 



R=t-Butyl 

91 

+ HRC==CHR' 
excess 

+ 

If R=H, then this 
compound may be an 
olefin polymerization 
catalyst. 

R + 

Alky/: l _alkyl 
Cp2Ti/ y 

R' 

R" 

03PCHR II Cp2 Ti ... 
R' 

Potentally interesting 
R ring opening 

metathesis catalyst. 

Figure 15. Possible applications of olefin adducts of titanocene. 

Unlike the acetylenes, increasing the steric bulk of the olefins 

destablized the olefin titanocene adducts. This was not altogether an 

unexpected result, given the different electronic configuration of olefins and 

acetylenes. Substituents on the side-bound olefin would point directly into 

the cyclopentadienyl rings, Figure 16. The only disubstituted olefin adduct 

to be stable enough for NMR analysis was derived from stilbene. Olefin 
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Nature of steric effects that 
destabilized olefin adducts of 
titanocene. No chemistry of 
the olefin adducts could be 
explored because of their instability. 

Figure 16. Origin of stereoelectronic effects that destabilized monoolefin 
adducts of titanocene. 

adducts could not be synthesized from titanocene and 3,3-dimethyl-1 -

butene, allene, and isobutylene. Adducts were successfully synthesized 

from trans-stilbene, ethylene, propene, and 3-methyl-1-butene. None of 

these adducts were stable at room temperature. Therefore, none of them 

could be isolated and characterized by any methods besides NMR. 

Zirconocene adducts of stilbene have been employed in synthetic 

chemistry.l9 The ethylene adduct seems to be exchanging ethylenes at low 

temperature. However, on warming, the yield of titanacyclopentane is 85%. 



Cp2Tio-R 

R=t-Butyl 

Possible mode of reaction 

ffi 

hv, THF i 
-78"C ... D + 

C Ti. ___ II strongest b~d C Ti • • 
p, · D formed first P2 "t cyclopropt 

carbinyl 
rearrangement 

exo-methylene titanacyclo­
butanes are known species 

Neither the olefin adduct of titanocene nor the rearranged product 
is observed upon reaction of methylenecylcopropane and titanocene. 

Figure 17. Possible probes oftitanocene olefin interaction. 

The attempt to synthesize the methylenecyclopropane adduct of 

titanocene was undertaken to learn more about the electronic structure of 

titanocene. A possible rearrangement is shown in Figure 17. Neither this 

rearrangement nor the simple olefin adduct was observed. This olefin 

adduct may be unstable under the conditions used in this experiment. 
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Cp2Ti( olefin) 

~O~le;;:fi~n~===~1H~N=MR~(o~====13C NMR(o2 
trans-Stilbene 6.06, s, 10H, Cp 

4.52, br s 2H, CH0 

107, d, JcH=143.8 Hz, .QH0 

119.2, d, JcH=173.7 Hz, Cp 

151.6, q; 160.3; 123.0; 126.8 0's 
Comments: Deutero toluene, -30 °C. Yield 100%. Free trans-stilbene 

in chloroform, 136.9, q; 128.4, d, 160Hz; 127.3, d, 161.4 Hz; 126.22, d, 158Hz. 

Propene 6.29, s, 5H, Cp, 

6.27, s, 5H, Cp 

3.88, br mult, 1H 

2.40, d, 1H, J=8.8Hz 

1.80, d, 1H, J=10.74 

0.80, s, 3H, 

117.3, d, JcH=177.5 Hz, Cp. 

116.8, d, JcH=177.5 Hz, Cp. 

116.3, d, JcH=144.5 Hz, CH. 

101.6, t, JcH=145.6 Hz, CH2. 

25.88, qr, JcH=120.3 Hz, CH3. 

Comments: Deutero toluene at -78 °C. Methyl of propene overlapped 
the tert-butyl group of the cyclopropane. Free propene 13CNMR: 115.6, 
CH2; 133.6, CH2; 19.7, methyl. 

3-Methyl-

1-Butene 

6.69, s, 5H, Cp. 

6.66, s, 5H, Cp. 

6.00, 1H 

3.75, 1H 

2.87.1H 

1.83, 1H 

0.47, 3H 
Comments: The adduct was tentatively assigned. It was unstable 

even in THF at -80 °C. Free ligand, 1HNMR: 5.77, m; 4.94, d, J=17.4 Hz; 
4.84, d, J=lO.O Hz; 2.25, b, isopropyl; 0.97, d, 6H, J=6.1 Hz. 

Ethylene 6.24, s, 1 OH, Cp 13CNMR: can't 

(toluene) 5 .29, s, broad, free ethylene be unambiguously 
1 .62, s, bound ethylene assigned. 

Comments:Ethylenes seemed to be exchanging at -78 °C in both THF 
and Toluene. Yield low, but on warming, 83% titanacyclopentane observed. 

Figure 18. NMR data for olefin adducts of titanocene. 



g) 

No other materials (cyclobutane) were observed after extended photolysis. 

The NMR data for the olefin adducts are presented in Figure 18. The most 

interesting feature of the table is the coupling constants for the olefin 

adducts. The hybridization is intermediate between that of an sp2 and an 

sp3 carbon. This indicates that the structure is intermediate between the 

two limiting structural isomers, the olefin adduct of a metal, and a 

metallacyclpropane. This is similar to what has been observed in other 

systems.20 The instability of the olefin adducts of titanocene precluded a 

detailed examination of their chemistry. Attempts to alkylate olefin 

adducts at -78 °C with Me30+BF4- resulted only in paramagnetic products. 

Despite the lack of subsequent chemistry, the observed olefin adducts 

represent a new class of compounds previously unknown. 

The reaction of photochemically generated titanocene with butadiene 

generated an adduct that was much more stable than than the monoolefin 

adducts. The product could be taken to dryness under vacuum at room 

temperature without decomposition. The NMR data are tabulated in 

Figure 19. Typical NMR spectra associated with the synthesis of the 1,3-

butadiene adduct of titanocene are shown in Figures 20 and 21. They serve 

to demonstrate how clean and efficient the reaction is. The coupling 

constants indicate that the material is a butadiene adduct of titanocene and 

not a titanacyclopentene. Additionally, there appears to be no fluxional 

behavior. No changes in NMR spectra were observed on warming from -78 

°C to ambient. This is in contrast to the zirconocene diene adducts, which 

exhibit isomerization between the s-cis and s-trans forms.21 The butadiene 

adduct of titanocene can not be in the s-cis form, since this would place the 

two cyclopentadienyl ligands in different environments, and only 



Diene 

1 ,3-butadiene 

Cp2Ti(diene) 

1HNMR(8) 

4.95, s, 1 OH, Cp 

3.32-3.19, m, 4H 
1.31, m, 2H 

13CNMR(82 

99.5 d, JcH=172.4 Hz, Cp. 

97.8, d, JcH=157±2.5 Hz, .QH. 

68,9, t, JcH=155.2 Hz, .QH2. 

Comments: Deuterated THF at 0 °C, yield 98%. Free butadiene: 
13CNMR, 138.7, JcH=162.9 Hz, .QH; 118.0, JcH=157.4 Hz, QH2. The THF in 

the 13CNMR spectra was broad indicating exchange. The bound butadiene 

protons exhibited second-order coupling constants. 

1 ,3-butadiene 4.63, s, 1 OH, Cp 
3.17, br s, 4H 
1.28, d, 2H, J=11.2 Hz 

99.04, d, JcH=172.4 Hz, Cp 
97.6, d, JcH=157.0 Hz, .QH 
69.3, t, JcH=155.9 Hz,.C.H2 

Comments: Spectra were acquired in deutero benzene at ambient. 

From isolated material from preparation in THF. No THF present in NMR. 

Slow decomposition at room temperature. 

1 ,3-pentadiene 4.96, s, 5H, Cp 

4.97, s, 5H, Cp 

3,30, t, 1H, J=13 Hz 

2.97, d, 1H, J=7.3 Hz 
2.80, m, 1H 

1.94, m, 4H, (overlapping 
methyl and mult.) 

1.10, d, 1H, J=15.8 Hz 

Comments: NMR was taken at -78 °C in THF. The material was not 

stable above -40 °C. No carbon data were acquired because of the instability 

of the material. 

Figure 19. NMR data for diene adducts oftitanocene. 
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a single cyclopentadiene resonance is observed in the NMR spectrum. The 

remainder of the spectrum was second order and could not be completely 

assigned. Reaction of trans-1 ,3-pentadiene with titanocene generated a 

product with less thermal stability than that formed from butadiene. The 

product was characterized only by proton NMR, and the data are shown in 

Figure 19. Attempts were undertaken to generate adducts of titanocene 

with isoprene and 1 ,3-cyclohexadiene, and trans,trans-1 ,4-diphenyl-1 ,3-

butadiene, and 1,4-pentadiene. None of these materials gave titanocene 

diene adducts. The volatile organic products from the cyclohexadiene 

reaction included benzene and cyclohexene. The volatiles from the reaction 

of 1 ,4-pentadiene with titanocene were predominantly 1 ,3-pentadienes. The 

fact that hydrogen transfer occurred is not surprising, given that 

titanocene is a very active hydrogenation catalyst. The lack of reactivity of 

titanocene with isoprene and trans,trans-1 ,4-diphenyl-1 ,3-butadiene was 

surprising in that the isoelectronic zirconocene complexes are known. The 

result was rationalized in terms of the smaller size of titanium. The sterics 

associated with the bent metallocenes are too great to allow adduct 

formation in the case of titanocene. No x-ray quality crystals of the 

butadiene titanocene complex could be grown. 

The simple oxidative insertion chemistry of titanocene was 

investigated. As mentioned, titanocene inserts into disulfides to give, in 

excellent yield, the titanocene dithiolates. Titanocene did not react with 

trimethylsilane, chlorotrimethylsilane, and trimethylsilyl azide. 

Titanocene reacted with carbon disulfide, and acetonitrile to give 

paramagnetic products, which were not characterized. 
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In conclusion, a series of olefin and acetylene adducts have been 

synthesized without the benefit of ancillary ligands on the metal. It was 

found that increasing the steric bulk of the acetylenes led to complexes that 

were increasingly stable. However, the olefin adducts were invariably 

unstable. The chemistry of the acetylene adducts is very much what one 

would expect for a sterically demanding environment around the metal. 

Some of the acetylene adducts were found to insert unsubstituted ylides. 

The olefin adducts were too unstable to exploit their chemistry. However, 

the low temperature photochemical route to titanocene led to a series of 

olefin and diene adducts of titanocene. It is unlikely that these compounds 

could have been accessible via other titanocene chemistry. 
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Experimental Section: 

General Procedures. All work involving a1r- and/or moisture­

sensitive compounds was performed using standard high-vacuum or 

Schlenk-line techniques under argon purified by passage through columns 

of BASF RS-11 (Chemalog) and Linde 4A molecular sieves. Work involving 

manipulation inside of a drybox was performed under nitrogen in a 

Vacuum Atmospheres drybox equipped with a -40 °C refrigerator and a 

dry-cool recirculator. Proton and carbon NMR spectra were recorded on a 

JEOL FX-90Q (89.9 MHz 1H, 84.72 MHz 19F, 36.98 MHz 31p, 22.5 MHz, 13C), 

and a JEOL GX-400 (399.65 MHz 1H, 61.35 MHz 2H, 100.67 MHz 13C), and 

on a Varian EM-390 (90 MHz 1H) and on a Varian XL-200 (200 MHz, 1H). 

Proton chemical shifts are referenced to internal residual protiosolvents. 

Carbon chemical shifts are referenced to the carbon signal of the deuterated 

solvents. Deuterium chemical shifts are referenced to natural abundance 

deuterium in the solvent. 

phosphoric acid standard. 

Hewlett-Packard 8154A 

Phosphorus was referenced to an external 

UV -vis spectroscopy was performed with a 

diode array spectrophotometer. Gas 

chromatography analyses (VPC) were performed on a Shimadzu GC-Mini 

2 flame ionization instrument with a 50 meter capillary column and 

equipped with a Hewlett-Packard model 339A integrator. Preparative VPC 

was performed on a Varian 920 Aerograph with a thermal conductivity 

detector equipped with a Hewlett Packard 7127A strip recorder (columns: 6 

ft by 114, SE-30 or a 4 ft. by 112 , silver nitrate). Thin layer chromatography 

(TLC) was performed on precoated TLC plates ( silica gel 60 F-254, EM 

Reagants). Elemental analysis was performed at the analytical facilities of 

the California Institute of Technology or at Gailbraith Labs. Photolyses 
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were performed with a 450 watt high-pressure, mercury Hanovia Lamp. 

Temperatures were maintained with clear pyrex dewars filled with 

isopropanol at the desired temperature. Temperatures cited reflect the 

final temperature that the bath obtained at the end of photolysis; typically, a 

change of only 10 degrees was observed. All photolyses were obtained in 

pyrex glass unless otherwise stated. 

Materials. The solvents were purified as follows: toluene, benzene, 

tetrahydrofuran, and diethyl ether were distilled under vacuum from 

sodium benzophenone ketyl into solvent flasks equipped with Teflon screw­

type valves, methylene chloride, acetonitrile, chloroform, pyridine were 

distilled from calcium hydride at atmospheric pressure and subsequently 

freeze-pump-thaw degassed. Dimethylsulfoxide was distilled from calcium 

hydride at reduced pressure. Diphenylacetylene, stilbene, and 1,4-

diphenyl-1 ,3-butadiene were recrystallized prior to use. All volatile 

acetylenes were distilled and degassed prior to use. Solvents used 1n 

photochemical reactions (typically, THF, benzene, toluene, and 2-

methyltetrahydrofuran) were vacuum-distilled directly into the reaction 

vessels from sodium-potassium alloy and were thoroughly degassed prior 

to use. Bis(cyclopentadienyl)-13-tert-butyltitanacyclobutane (neohexene 

titanacyclobutane) was synthesized from adaptations of literature 

procedures22, and carefully recrystallized from diethyl ether prior to use 

and stored at -30 oc in a freezer in a drybox. The following gases were used 

as received after freeze-pump-thaw degassing on a high-vacuum line: 

ethylene, propene, trimethylsilane, allene, isobutylene, butadiene, 

1,1 ,1 ,3,3,3-hexafluoro-2-butyne, 3-methyl-1-butene. The following 

compounds were distilled with careful attention to appropriate drying prior 

to use: iodomethane, methyl disulfide, isopropylcyclopropane, acetonitrile, 
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methylene chloride, trimethylsilyl azide, chlorotrimethylsilane, 3,3-

dimethyl-1-butene, acetophenone, styrene, methylene cyclopropane, 

trimethylphosphine, isoprene (2-methyl-1 ,3-butadiene), 1 ,4-pentadiene, 1,3-

cyclohexadiene, bis(trimethylsilyl)acetylene. di-tert-butylacetylene was 

synthesized from the literature procedure23 and was purified by preparative 

gas chromatography. 1-Trimethylsilyl-2-(dimethylphenylsilyl)acetylene 

was prepared from lithium trimethylsilylacetylide and 

chlorodimethylphenylsilane, and was purified by distillation. 

General preparative Scale Photolysis: Tl2..bis(trimethylsilyl)acetylene 

bis('fl5·cyclopentadienyl)titanium: A large glass ampoule equipped with an 

integral teflon Kontes valve and stir bar was flame-dried under vacuum. 

In a drybox, 125.0 mgs of the neohexene titanacyclobutane were added. On 

a vacuum line, -15 mLs of toluene were vacuum-transferred from NaK. 

The bis(trimethylsilyl)acetylene, 500.0 mgs (2.94 mmole, 6.5 eq) was 

vacuum transferred. The entire reaction mixture was freeze-pump-thaw (0 

°C) degassed three times. The mixture was photolyzed with stirring at -40 

°C for 3 hours, after which time the solution was yellow. The solvent and 

excess acetylene were removed under vacuum. Pentane (5 mLs) was 

vacuum-transferred into the flask. In a drybox, this solution was filtered 

through a glass pipet filled with glass wool into a Schlenk flask. Slow 

cooling to -78 oc yielded clear, thin, yellow plates. Attempts to cannulate 

solutions of the acetylene adducts of titanium resulted in decomposition of 

the titanocene adduct. This same procedure was used to prepare 

preparative amounts of the Tl2-di-tert-butylacetylenebis (Tl5_ 

cyclopentadienyl)titanium, which could not be recrystallized, and to 

prepare the 112-trimethylsilyl(phenyldimethylsilyl)acetylene bisC11 5-

cyclopentadienyl)titanium. 
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General NMR Synthesis of olefin adducts of Titanocene: The 

following procedure is typical for all NMR experiments aimed at producing 

olefin adducts of titanocene. A flame sealable NMR tube was charged in a 

drybox with 7.0 mg of the neohexene titanacyclobutane (25 IJ.mole). On a 

vacuum line, 450 ~J,L of d8 toluene were vacuum-transferred from NaK into 

the NMR tube. A gas-measuring bulb was filled with freeze pump thaw 

degassed propene. The propene (96.4 IJ.mole) was then condensed into the 

NMR tube. The NMR spectrum of the reaction mixture was recorded at -60 

oc in the NMR probe prior to photolysis. Photolysis was carried at -78 °C. 

NMR spectra were taken periodically throughout the photolysis. Typically, 

depending on the optical density of the product, 1 hour of photolysis per 10 

mgs of titanacyclobutane were required. The conversion was measured by 

integrating the remaining starting material vs the tert-butylcyclopropane 

formed. The yield of the reaction was calculated by integrating the tert­

butylcyclopropane formed vs the product. Mass loss was calculated by 

integrating the residual solvent signal and using it as an internal 

standard. Mass loss was typically negligible. Spectral data and yields for 

the olefin adducts successfully synthesized are presented in the text. 

Tl2·(Diphenylacetylene)titanocene: A septum-capped NMR tube was 

charged in a drybox with 10.0mg of the neohexene titanacyclobutane (36 

~J.mole), and 12 mg of diphenylacetylene (67 ~J.mole) and 450 ~J,L of d8 toluene. 

The NMR tube was then quickly removed from the drybox and placed in a -

78 °C dewar. The photolysis, approximately 1 hour, was carried out at -50 

°C or colder. Above this temperature a second diphenylacetylene inserted 

into the red Tl2-diphenylacetylenetitanocene to give the green 

photochemically inert titanacyclopentadiene. Additional reagents were 

then added through the septum by syringe. The reaction was successful 



105 

even with a 1:1 equivalence of the titanacyclobutane and the 

diphenylacetylene. Extended photolysis does not seem to be a consideration 

in the generation of the acetylene adduct as no additional products are 

observed even when the photolysis is continued briefly past the point of total 

consumption of starting material. 

J.l·(l-3T1:2-4T1·trans,trans-1,4-di-tert-Butyl-1,3-butadiene)-bis(bis(T15. 

cyclopentadienyl)titanium From the Reaction of Neohexyne and 

Titanocene, Preparative Scale: A glass ampoule with an integral Kontes 

valve was charged with 155 mgs of the neohexene metallacycle (561 J.lmole). 

On a vacuum line, 20 mLs of THF was vacuum-transferred onto the 

metallacycle. Into the reaction mixture was next transferred, 263.7 mgs of 

3,3-dimethyl-1-butyne (3.20 mmole, 5.7 eq). The reaction mixture was 

warmed to -78 oc and irradiated at -78 °C for 8 hours with stirring. Upon 

warming to room temperature the dark purple brown solution became 

turquoise. The reaction mixture was pumped to dryness, and the resulting 

solid was washed twice with 5 mLs of pentane. The solid was then 

recrystallized from diethyl ether and THF to provide analytically pure 

crystals, which were used for single-crystal, x-ray structure determination. 

lH NMR, C7D8: 8 5.32, s, lOR; 1.22 s 9H. 13CNMR, d8 dioxane: 8 234.2 q; 

125.1 q; 106.7, d, JCH=170.8Hz, Cp; 42.65, d, JcH=125.7Hz, tert-buty l 

methyls; 32.7, q, tert-butyl ipso. X-ray crystallography data are shown in 

the appendix. 

Methylenetrimethylphosphorane: A 1000 mL round-bottomed flask 

fitted with a septum and a stir bar was charged with 200 mLs of diethyl 

ether. After cooling to -78 °C, a solution of20 g of methyl bromide in 50 mLs 

of 0 °C ether was added by cannula. To this solution was then cannulated 

-4.0 mL (0.05 mmole) of PMe3 in 10 mLs of ether. A white precipitate was 
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formed. The reaction mixture was stirred 12 hours, after which time it was 

filtered. The tetramethylphosphonium bromide was washed with 20 mLs of 

ether and then dried under vacuum to yield 5.4 g (31.6 mmole) of product. 

In a drybox a Schlenk flask was charged with the phosphonium salt and 

0.80 g of sodium hydride (33.0 mmole). Outside the box, 70 mLs of THF was 

added by cannula. The reaction mixture was refluxed for 12 hours. The 

solids were removed by centrifuging. The THF was removed by distillation. 

The product was distilled at 120 °C (1.0 g, 11.0 mmole, 34%). 1HNMR, 

CsJ)s: 8 0.92 d JPH=12.5, 9H; 0.04 d JPH=7.08, 2H. 

Ethylidenetriethylphosphorane: A Schlenk flask was charged with 

100 mLs ofTHF and 25 mLs of ethyl bromide (0.33 moles, 8 eq). To this was 

cannulated approximately 5 mLs of triethylphospine (42 mmole). After 24 

hours the white precipitate was isolated, washed and dried under vacuum. 

In the drybox, a Schlenk was charged with 11.7 g of tetraethylphosphonium 

bromide (51.5 mmole) and 2.0 g of sodium hydride (83.3 mmole, 1.6 eq). To 

this was cannulated 100 mLs of THF. The reaction mixture was refl uxed 

for 48 hours. The solids were removed by centrifugation. Distillation. (35 

°C, 0.01 Torr.) yielded a clear mobile oil whose 31 P NMR was consistent 

with literatJ.tre values. 

Methylenetriphenylphosphorane: This phosphorane was 

synthesized from perprotio materials as described in Chapter 1. The final 

product was recrystallized from toluene/pentane twice to provide 

analytically pure, yellow crystals. 

Typical NMR experiment. In the drybox the metallacycle was placed 

in a sealable tared NMR tube. Additional reagents, if solid, were also then 

introduced at this time. On a high-vacuum line the NMR tube was 

evacuated, and the the deuterated solvent was condensed into the tube at 77 
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K. Any volatile reagents were then additionally condensed into the tube 

from previously tared, evacuated, dried vessels. The tube was sealed under 

dynamic vacuum with a torch. Dissolution of the materials was achieved 

at low temperature. NMR spectra were recorded at low temperature, 

typically -20 °C, before, and at intervals during photolysis. Additionally, the 

volatile components of each reaction were removed and examined by NMR. 

Typical NMR experiment with in situ generated 

(acetylene)titanocene: In a drybox, the metallacycle and deuterated solvent 

and acetylene were loaded into a septum-capped NMR tube. The 

stoichiometries were matched as closely as possible. The tube was quickly 

removed from the drybox and sealed with parafilm™ and placed in a -78 oc 
dry ice/acetone bath. NMR examination of the reaction mixture prior to 

photolysis revealed that thermal reactions were not occurring. The NMR 

tube was photolyzed at -78 °C until no starting metallacycle was observable 

by NMR. This was typically 1 hour per 10 mgs of neohexene metallacycle. 

The next reagent, typically a phosphorus ylide (if solid, it was dissolved in a 

minimum of deuterated solvent), or a ketone, was added by syringe. The 

reaction was then followed by variable temperature NMR. 
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Appendix: 

Crystal structure data for J.l.-(1-3rt:2-411-trans, trans-1 ,4-di-tert-Butyl-1 ,3-
butadiene)-bis(bis(115-cyclopentadienyl)titanium) from the reaction of 

neohexyne with titanocene. 

Crystal Color: green 

Habit: prisms 

Temperature 21 °C 

Crystal Size: 0.29x0.25x0.26 mm 

CAD-4 

9-29 scan (w scan) 

Number of reflections measured: 4941 

Formula Weight: 518.46 

Formula: Ti2C32H38 

MoK a with graphite 
mono chroma tor 

Absences: hOI, h+l odd: OkO, k odd 

J.l.=6.52 cm-1 (J.l.rmax=0.15) 

Octants collected: ±h,±k,l 

Number ofindependent reflections: 2292 

Number with F 0 2>o: 2055 

Number with F 0 2>3cr(F0 2): 1336 

Goodness of fit for merging data 0.955 

Final R index 0.0785 

Final goodness of fit: 1.55 

Crystal System: monoclinic 

a: 8.984(1) 

b: 15.007(2) 

c: 10.676(1) 

volume 1309.0(3)A3 

a: 90° 

f3: 114.57(1)0 

y. 90° 

z: 2 

Space Group: P21/n # 14n 

Transmission factors varied from 0.299 to 0.197 

The secondary extinction parameter refined to 0. 21(11 )x1 o-6 

Structure solved by William P. Schaefer 
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Heavy atom parameters for ~-t·(l·31l:2-41l·trans,trans-1,4-di-tert-Butyl-1,3-

butadiene)-bis(bis(ll5-cyclopentadienyl)titanium). 

x,y,z and Ueqa X 104 

Atom X y 

515 .4) 
-375 2 

z 

Ti 
C1 
C2 
C3 
C4 
C5 
C6 
Cll 
C12 
C13 
C14 
C15 
C16 
C17 
C18 
C19 
C20 
C4A 
C5A 
C6A 

761 .7) 
-510 3 
-765 4 

-1777 5 
-3561 9 
-1339 13) 
-1587 13) 
-1034 9 
-1856 5 
-1043 8 

283 7 
272 7 

3228 8 
3678 5 
3314 6 
2619 6 
2544 7 

3255 22l 
663 23 

2345 25 

-574 2 
-1311 2 
-1077 6 
-1462 6 
-2188 4 

1197 3 
1210 3 
1746 4 
2080 3 
1757 4 

657 5 
619 5 

-202 5 
-666 3 
-124 6 

1553 12l 
2098 13 

937 14 

2003 .6) 

77 3l 1180 3 
1420 4 

742 12) 
2919 8) 

814 13) 
2862 7 
1464 7 
944 5 

2028 9 
3198 6 
4057 7 
3010 7 
2438 5 
3136 8 
4140 6 

-85 17l 
-2021 22 
-2572 22 

a Ueq = k E .. L;[U.-;(a:a;)(a.-. a;)] 
•Isotropic displacement parameter, B 

Ueq or B 

339 1l 296 8 
334 8 
447 9 

1346 36 
1183 31 
1294 35 

883 17 
768 17 
773 16 
860 20 
876 18 

1042 24 
882 20 
787 18 
855 21 

1035 23 

3.8 5l• 
4.8 5 • 
5.0 5 • 
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Assigned Hydrogen Parameters. 

x , y and z x 104 

Atom X y z B 

Hll - 1341 869 3473 6.9 
H12 - 2845 890 936 5.8 
H13 - 1356 1870 - 1 6.1 
H14 1077 2479 1975 6.5 
H15 1039 1904 4111 6.8 
H16 3368 1146 4659 7.7 
H17 4162 1078 2694 6.5 
H18 3508 - 416 1685 6.2 
H19 2243 - 1267 2974 6.6 
H20 2065 - 267 4764 8.1 
H4A 3710 770 - 10 7.4 
H4B 3630 680 - 1470 7.4 
H4C 4070 1590 - 730 7.4 
H5A 2360 1390 -3010 7.4 
H5B 700 930 - 3370 7.4 
H5C 800 1970 - 3180 7.4 
H6A 2380 2560 - 950 7.4 
H6B 550 2370 - 1330 7.4 
H6C 1830 2080 100 7.4 
H4AA 2940 1690 590 7.4 
H4AB 3960 1010 130 7.4 
H4AC 3830 2010 - 260 7.4 
H5AA 120 2320 - 1520 7.4 
H5AB 1050 2540 - 2460 7.4 
H5AC - 370 1830 - 2900 7.4 
H6AA 3240 460 - 1930 7.4 
H6AB 1740 780 - 3220 7.4 
H6AC 3200 1450 - 2520 7.4 
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Bond Distances and Angles 

Distance( A) Distance( A) 

Ti -C1 
Ti -C2 
Ti -CP1 
Ti -CP2 
Ti -C1 
C1 -C2 
C1 -Cl 
C2 -C3 
C3 -C4 
C3 -C5 
C3 -C6 
C3 -C4A 
C3 -C5A 
C3 -C6A 
C4 -H4A 
C4 -H4B 
C4 -H4C 
C5 -H5A 
C5 -H5B 
C5 -H5C 
C6 -H6A 
C6 -H6B 
C6 -H6C 
C11 -C12 
C11 -C15 
C11 -H11 
C12 -C13 
C12 -H12 
C13 -C14 
C13 -H13 
C14 -C15 
C14 -H14 
C15 -H15 
C16 -C17 
C16 -C20 
C16 -H16 
C17 -Cl8 
C17 -H17 
C18 -C19 
C18 -H18 
C19 -C20 
C19 -Hl9 
C20 -H20 
C4A -H4AA 
C4A -H4AB 
C4A -H4AC 
C5A -H5AA 

2.316 3 
2.079 3 
2.104 1 
2.094 1 
2.147 3 
1.324 4 
1.502 4 
1.519 5 

1.501 11l 
1.497 11 
1.508 11 

1.53 2l 
1.51 2 
1.62 2 

0.868 10 
1.002 10 
0.892 10 
0.968 10 
0.985 10 
0.883 10 
0.962 11 
0.905 11 
0.922 11 
1.362 9) 
1.364 9) 
0.946 7 
1.352 8 
0.960 6 
1.365 9 
0.946 6 
1.344 9 
0.951 7 
0.956 6 
1.339 9 
1.343 10) 
0.949 7 
1.354 9 
0.948 6 
1.348 8 
0.947 6 
1.370 9 
0.953 6 
0.956 7 

0.90 2 
1.00 2 
0.92 2 
0.92 2 

C5A -H5AB 
C5A -H5AC 
C6A -H6AA 
C6A - H6AB 
C6A -H6AC 

0.96(2) 
1.09(2) 

1.08~2l 0.72 2 
1.07 2 
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Bond Distances and Angles 

CPI -Ti -CP2 
CI -Ti - C2 
CI -Ti - C1 
C1 -C1 - C2 
C3 - C2 -C1 
C4 -C3 -C2 
CS -C3 -C2 
C6 -C3 - C2 
C4A -C3 - C2 
CSA - C3 -C2 
C6A -C3 - C2 
CS - C3 -C4 
C6 -C3 - C4 
C6 -C3 - CS 
CSA -C3 -C4A 
C6A -C3 -C4A 
C6A -C3 - CSA 
CIS - Cll -CI2 
Hll -Cll - CI2 
Hll -Cll -CIS 
C13 -CI2 -Cll 
HI2 -CI2 -Cll 
HI2 -CI2 -CI3 
CI4 -CI3 -CI2 
HI3 -CI3 - CI2 
HI3 -CI3 -CI4 
CIS -CI4 -CI3 
HI4 -CI4 -CI3 
HI4 -CI4 -CIS 
Cl4 -ClS -Cll 
HIS -CIS -Cll 
H1S - CIS -CI4 
C20 - C16 - CI7 
HI6 - CI6 -CI7 
Hl6 -CI6 -C20 
CIS -C17 -C16 
H17 -C17 -Cl6 
H17 -C17 -C1S 
C19 -C1S -C17 
HIS -CIS -C17 
H1S -CIS -C19 
C20 -CI9 -C1S 
H19 -C19 -C1S 
Hl9 -C19 - C20 
CI9 -C20 -CI6 
H20 -C20 - CI6 
H20 -C20 -Cl9 

132.4(0) 
34.S(1) 

39 . 1 {) 
127.3 3 
130.7 3 
110.1 s 
112.4 s 
112.4 s 
111.3 7 
107.7 s 
106.1 8 
107.7 6 
106.6 6 
107.4 6 

112.0 Ill 
111.4 11 
10S.2 11 
107.2 6 
I2S.6 7 
127.2 7 
10S.6 s 
I2S.7 6 
12S.7 6 
107.S s 
12S.7 6 
126.9 6 
10S.4 6 
126.3 6 
I2S.3 7 
10S.4 6 
12S.9 6 
12S.7 6 
10S.9 6 
126.6 7 
124.S 7 
10S.4 6 
127.6 7 
124.1 6 
I07.S s 
126.6 6 
12S.S 6 
108.I 6 
I26.S 6 
I2S.I 6 
107.I 6 
126.3 7 
I26.S 7 

ATOM 

TI 
TI 
TI 
C1 
C1 

ATOM 

C2 
C1 
C1 
TI 
C2 
C1 
C2 
C1 
C1 
C1 

ATOM 

Ci 
C2 
C1 
C2 
C1 

ATOM 

TI 
TI 
TI 
C1 
C1 
C1 
C1 
C1 
C1 
C2 

DISTANCE 

2. 3162 
2 . <>795 
2 . 1474 
1 . 324{) 
1 . 5<>21 

ATOM ANGLE 

C1 34.5 3 
Ci 39 . 1 {) 
C2 73 . 63 
TI 14<> . 9<> 
TI 62 . 91 
TI 64 .37 
TI 156 .1 9 
TI 76 . 53 
C2 127 . 28 
TI 82.57 
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Observed and Calculated Structure factors for j..L·(1·311:2-4n-tram, tran.t-1,4-

di-tert-Butyl-1,3-butadiene)-bis(bis(n5-cyclopentadienyl)titanium). 

The columns contain, in order, k, lOFob•• lOFcalc and 

10 ( F:•;;{•
3

,.
1
') . A minus sign preceeding Fob• indicates 

obo 

that F;b• is negative. 
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IJ.-(1-3rr2-411-trans ,trans-! ,4-di-tert-Butyl-1,3-butadiene)-

bis(bis(ll 5-cyclopentadienyi)ti tani urn) P&ge 

5 - 15 12 -2 -8 k 5 
-10 k 1 69 65 2 6 14 82 -6 

2 85 70 11 7 57 52 2 1 235 228 11 
95 95 0 3 72 97 -22 2 62 63 0 

4 178 157 31 -9 k 9 3 155 162 -10 
-10 k 2 5 37 H 1 4 46 60 -8 

6 109 99 10 0 86 68 10 5 - 36 17 -9 
0 62 22 12 7 -14 8 - 1 1 9 33 -5 6 52 73 - 14 
1 -19 17 -3 8 -U 41 - 18 2 55 55 0 7 127 131 -4 
2 53 54 0 3 116 117 0 8 69 62 s 
3 91 88 2 -9 k 3 4 - 17 15 - 2 9 161 165 - s 
4 58 40 9 5 108 94 u 10 12 6 0 

0 169 162 7 6 -2 7 38 -10 11 92 91 0 
-10 k 3 1 32 21 3 

2 89 100 - 10 -9 k 10 -8 k 6 
1 -32 43 -15 3 75 82 - s 
2 60 69 -6 4 -40 21 -11 1 49 so 8 0 290 284 9 s -49 18 -14 s 73 69 3 2 84 64 15 1 39 55 -8 
4 114 104 10 6 -48 27 - 16 3 91 82 7 2 218 209 15 s 33 27 1 7 - 1 s 36 -8 4 147 150 -2 3 183 182 1 

8 65 61 2 4 -H 28 -8 
-10 k 4 9 - 16 15 -2 -8 k 5 127 132 -7 

6 50 60 -6 
0 71 so 9 -9 k 4 1 260 270 - 18 7 82 68 12 
1 24 4 3 2 57 47 6 8 97 94 3 
2 87 75 9 1 147 149 - 1 3 156 158 -2 9 39 37 0 
3 -31 22 -7 2 -23 H -14 4 78 85 -6 10 124 124 0 
4 60 Sl u 3 48 61 -7 5 36 11 7 11 27 27 0 
5 H 32 s 4 56 72 -10 6 85 78 5 
6 49 H 1 s 31 24 2 7 118 41 17 -8 k 7 

6 51 Ill -e 8 211 20 1 
-10 k 5 7 61 61 0 9 118 116 2 1 18 0 2 

8 u 23 7 10 H 3 7 2 1113 158 7 
1 so 48 -8 9 136 131 5 s - :17 u -19 
2 66 es 2 -8 k 2 4 218 223 -8 s - SO 15 -e -9 k 5 s 68 72 -3 
4 106 108 -2 0 25 so - 1 e 115 100 16 
5 -55 10 - 16 0 179 1115 14 1 32 25 2 7 41 211 e 
6 111 97 1:1 1 66 u 14 2 14 17 0 8 110 118 -9 

2 88 88 0 3 169 169 0 9 -24 0 -3 
-10 k 6 3 111 108 3 4 -51 10 -111 10 -35 26 -10 

4 - 18 23 -4 5 211 208 s 
0 us 158 -12 5 126 120 7 6 51 32 9 -8 k 8 
1 47 3 11 6 -25 3:1 -9 7 108 101 8 
2 122 124 -2 7 102 78 22 8 25 25 0 0 58 59 0 
s -H H -12 8 -45 20 -U 9 -6 1 1:1 - 21 1 -29 17 -7 
4 20 19 0 9 40 5 8 10 -H 18 - U 2 106 91 16 
s -47 49 -22 11 40 48 -3 s - H 12 - 6 
6 72 27 24 _g k e 4 es 58 3 

-8 k s 5 - 118 1 -25 
-10 k 7 1 301 302 - 2 e 87 116 17 

2 -29 :17 -12 1 331 Sst - 1 7 -23 27 -7 
1 126 129 -3 s 124 116 10 2 19 10 1 8 H 85 -9 
2 5:1 40 e 4 27 25 0 s 129 uo -2 9 u 1:1 0 
3 68 117 - 41 5 4:1 54 - s 4 - 2 Ill - 21 10 59 59 0 
4 es 67 -2 e -59 4 - 19 5 54 78 -18 
s 2~ 20 0 7 90 118 17 6 58 38 11 - 8 k 9 

8 H :IS 4 7 108 101 7 
-10 k 8 9 155 1511 0 8 611 19 24 1 -:17 32 -14 

9 159 149 1:1 2 121 1:18 -22 
0 54 54 0 - 9 k 7 10 27 27 0 3 H 14 10 
1 -:IS 10 -e 11 1211 107 22 4 2011 195 18 
2 45 211 7 0 94 93 0 5 29 39 - s 
3 114 43 11 1 40 :17 1 -8 k 4 e 112 11:1 0 
4 70 so 21 2 89 97 -7 7 -15 51 - 15 

s 128 12:1 e 0 lH 151 -e 8 87 87 0 
-9 k 4 46 21 9 1 H 59 12 

5 134 118 20 2 58 51 4 -8 k 10 
0 91 112 - 15 e u 17 9 s 158 159 - 1 
1 :12 3 e 7 99 109 -10 4 128 lH 5 0 109 97 9 
2 ue 1311 0 8 58 17 111 5 147 148 - 1 1 - :19 27 -1:1 
3 51 7 14 e 70 55 10 2 112 105 8 
4 se se 0 -9 k 8 7 128 1:18 - 1:1 s 11:1 110 s 
5 -:18 211 -11 8 40 29 4 4 85 so 25 
e so u -5 1 132 lH 10 9 - H 211 -14 s 81 107 -24 
7 35 20 4 2 23 5 2 10 -19 55 -18 e -47 :11 -16 

3 58 78 - 1 s 11 52 70 - 12 7 119 eg 0 
-9 k 2 4 52 u s 
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J..L-{1-3T):2-4T)-trans ,trans-1 ,4-di-tert-Butyl-1,3-butadiene)-

bis(bis(T)5-cyclopentadienyl)titanium) Pace 2 

-8 k 11 4 170 182 u 7 51 75 - 15 8 122 103 28 
5 90 68 25 8 58 14 17 7 183 175 14 

1 85 74 9 6 43 39 2 8 51 35 8 
2 26 38 - 3 7 68 63 3 -7 k 11 9 - U 7 - 1 
3 96 108 - 11 8 194 193 0 10 95 81 15 
4 -H 50 -20 9 48 35 5 0 98 49 29 11 214 228 -2 1 

10 188 189 0 1 35 40 -2 12 122 151 -39 
-7 k 11 48 14 12 2 77 77 0 u 88 83 - 12 

12 54 88 -8 3 87 94 -8 14 -42 4 - 10 
0 238 241 - 4 u 56 21 15 4 70 47 15 
1 101 82 21 5 103 90 13 -8 k 5 
2 198 202 - 8 -7 k 8 8 34 12 5 
3 185 178 18 1 2!8 249 -29 
4 -24 19 -5 1 108 117 -11 - 7 k 12 2 43 45 - 1 
5 190 191 - 1 2 147 148 1 3 237 234 5 
8 113 100 15 3 90 97 -8 1 111 107 4 4 72 eo 10 
7 167 182 -25 4 285 290 -9 2 58 38 9 5 21 44 -9 
8 75 69 5 5 27 2 4 8 180 171 . 18 
9 78 7! 2 6 232 239 -15 - 8 It 7 130 129 0 

10 135 128 8 7 92 86 e 8 eo 70 -7 
11 so 43 4 8 126 141 -20 1 -21 u • 4 9 193 183 16 
12 119 108 13 9 119 122 - 3 2 2te 208 te 10 80 101 -21 

10 23 22 0 3 107 105 3 11 1e3 158 e 
- 7 k 2 11 73 ee 5 4 285 272 27 12 e7 38 19 

12 98 83 14 5 3e ee -19 u 54 59 -3 
1 159 teo - 1 e 252 259 -1e 14 33 35 0 
2 78 76 1 -7 k 7 7 91 87 4 
3 217 216 1 8 232 237 ·8 .e It e 
4 179 17S 11 0 26 72 - 19 9 48 81 -24 
5 84 86 - 1 1 66 71 - 3 10 91 91 0 0 25 10 2 
6 177 181 -6 2 57 5e 0 11 25 8 3 1 82 85 -2 
7 148 147 0 3 27e 288 -24 12 54 55 0 2 ee 49 13 
8 170 167 4 4 40 29 4 13 29 30 0 3 2e2 2e5 -4 
9 154 145 u 5 191 t9e -8 14 131 133 - 1 4 e5 54 8 

10 -51 33 -20 e 1e 1 1 5 422 418 8 
11 43 36 3 7 70 82 -10 -e k 2 e 26 35 - 3 
12 51 17 13 8 45 se -e 7 28e 280 11 
13 54 11 15 9 63 7e -9 0 te4 176 -17 8 37 39 0 

10 -36 46 - 17 1 70 55 13 9 40 49 -· -7 It 11 79 et 14 2 154 t5e -2 10 -52 21 -19 
12 54 51 1 3 161 145 31 11 118 128 -12 

0 174 164 12 • 74 87 -U 12 -40 8 -9 
1 36 33 1 -7 k 8 5 eo 51 e 13 150 139 14 
2 182 187 -5 e 134 122 18 
3 130 124 9 1 58 e3 -. 7 73 85 -10 -e It 7 • -20 36 -11 2 -27 25 -9 8 239 235 8 
5 108 110 -2 3 85 e5 17 9 eo 49 7 1 218 225 -13 
e 147 153 -9 • 56 82 -4 10 224 218 11 2 87 67 20 
7 71 75 -4 5 e2 e1 1 11 ·45 43 -23 3 82 ee 1e 
8 254 247 13 8 120 123 -· 12 70 72 - 1 4 242 243 - 1 
9 e7 35 20 7 128 120 10 u -25 14 ·4 5 52 52 0 

10 178 189 -17 8 -65 e -23 14 19 1e 0 6 86 86 0 
11 41 59 -9 9 105 99 e 7 119 119 0 
12 25 17 1 10 22 5 2 -e k 3 8 5 48 - 14 
13 99 97 1 11 75 e9 4 9 195 199 - e 

1 29 19 3 10 • 7 9 0 
• 7 k 4 -7 k 9 2 78 80 - 2 11 147 143 4 

3 148 15e -14 12 43 74 -19 
1 - 48 15 - 17 0 140 122 19 4 279 272 14 u e8 56 7 
2 192 185 u 1 8e e9 15 5 40 35 2 
3 99 103 • 4 2 -13 12 • 2 e 197 201 -8 - e k 8 
4 254 258 -7 3 19e 197 -2 7 141 147 -9 
5 104 87 19 4 57 l7 11 8 156 161 -7 0 102 127 -25 
e 162 15e 9 5 192 201 -17 9 He 2l7 17 1 43 49 . 3 
7 30 35 • 1 6 -47 5 -13 10 -22 13 -4 2 121 122 0 
8 129 132 -5 7 76 77 0 11 es 43 16 3 91 81 10 
9 55 18 1e 8 48 27 8 12 141 154 - 17 4 e 2 0 

10 u 49 -3 9 -31 44 - 15 13 -49 43 -24 5 189 189 I 
11 74 76 - 1 10 52 58 -3 14 111 114 - 3 6 22 19 0 
12 88 ee 18 7 134 136 - 2 
u - 27 e -4 - 7 k 10 -6 k 4 8 l7 27 4 

9 50 57 - 3 
- 7 k 5 1 214 221 - 12 0 109 99 10 10 88 81 e 

2 31 12 5 1 -43 13 -15 11 35 34 0 
0 1e4 145 22 3 92 93 0 2 75 84 -10 12 18 38 - 6 
1 51 29 11 4 ·18 l7 -9 3 225 230 ·10 
2 1e5 1715 ·19 5 35 19 4 4 ·22 38 ·13 . e k 9 
3 58 58 0 e 26 10 3 5 201 195 11 
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~-t-(l-3T] :2-4T]-trans ,trans-1,4-di -tert-Bu tyl-1,3-butadiene )-

bis(bis(T]5-cyclopentadienyl)titanium) 
Page 3 

1 197 207 - 18 15 34 23 1 98 93 8 5 -25 28 -7 
2 70 79 -7 2 263 280 6 
3 58 60 - 1 -5 lr. 3 3 51 4 19 -4 lr. 
4 166 159 11 4 40 51 -7 
5 30 10 5 0 117 103 18 5 111 111 0 1 441 439 3 
6 98 89 9 1 107 88 29 6 103 105 - 1 2 337 315 53 
7 98 103 -5 2 171 172 -2 7 29 32 - 1 3 218 223 -20 
8 55 3 18 3 40 8 402 12 8 193 194 - 1 4 655 858 0 
9 109 117 -9 4 184 166 36 9 45 17 11 5 40 49 -8 

10 -24 7 -3 5 40 2 398 8 10 176 180 -7 6 242 234 18 
11 126 118 9 6 62 45 13 11 61 45 10 7 192 195 -7 

7 13 77 - 3 12 121 121 0 8 182 160 • -6 k 10 8 31 36 -2 13 -32 11 -6 9 144 144 0 
9 62 54 6 14 22 29 - 1 10 26 23 0 

0 321 332 - 15 10 28 66 -22 11 211 211 0 
1 23 9 2 11 134 147 - 18 -5 lr. 8 12 119 121 -2 2 200 204 -6 12 43 58 -9 u 135 129 8 
3 18 26 - 2 13 245 244 1 1 57 80 - 2 14 U3 140 -8 
4 35 32 1 14 -45 0 - 11 2 87 84 -15 15 84 44 13 
5 71 47 18 15 120 131 - 14 3 12 12 0 18 118 127 -10 
6 -46 37 -21 4 111 92 23 
7 67 51 11 -5 k 4 5 68 61 4 -4 k 2 
8 105 92 13 6 200 196 7 
9 -31 14 -6 1 377 381 -10 7 104 81 28 0 427 408 33 

2 22 34 -8 8 88 88 -2 1 241 247 - 15 
-6 It 11 3 202 210 - 18 9 -33 39 -15 2 408 415 - 15 

4 215 212 7 10 88 81 -11 3 178 186 -28 
1 28 12 3 5 -48 31 -23 11 -8 H -7 4 28 37 -7 
2 92 96 -3 6 88 102 - 17 12 52 80 -4 5 397 394 7 
3 29 9 4 7 - 37 28 - 15 13 38 5 7 8 -28 21 -11 
4 144 130 18 8 155 187 -20 7 42 32 6 
5 19 6 1 9 158 141 27 -5 It 9 8 77 73 4 
6 108 88 21 10 124 145 -32 9 185 175 - 18 
7 -33 2 - 6 11 239 235 7 0 :t19 321 - 3 10 240 230 21 

12 197 199 -4 1 -37 8 -9 11 -39 20 - 12 
-6 k 12 13 140 126 20 2 254 248 15 12 233 233 - 1 

14 59 70 -8 3 61 83 - 1 13 174 168 9 
0 155 153 1 15 27 39 -4 4 152 153 - 1 14 41 14 9 
1 42 11 9 5 82 70 10 15 54 58 0 
2 98 96 2 -5 k 5 8 88 54 9 18 -10 41 -9 
3 58 28 15 7 so 15 14 
4 37 2 7 0 298 287 19 8 186 174 20 -4 lr. 3 

1 222 225 - 8 9 3 28 -3 
-5 lr. 2 293 300 - 17 10 139 131 11 1 221 208 34 

3 280 271 19 11 - 15 35 -8 2 388 373 31 
0 310 317 - 13 4 95 77 22 12 98 97 0 3 159 155 10 
1 92 99 - 10 5 311 307 9 4 848 848 0 
2 -24 27 - 11 8 81 35 17 -5 lr. 10 5 32 54 - 17 
3 410 406 8 7 184 159 8 8 287 273 32 
4 116 124 - 13 8 122 129 - 10 1 214 212 3 7 168 184 7 
5 395 399 -8 9 80 32 17 2 89 47 18 8 88 59 30 
6 70 48 19 10 185 195 - 19 3 31 39 - 3 9 40 54 -8 
7 263 256 18 11 32 11 5 4 130 108 30 10 -40 22 -14 
8 41 20 8 12 88 100 - 12 5 58 51 4 11 -34 30 -14 
9 102 108 -7 13 134 144 - 14 8 130 126 5 12 209 214 -9 

10 58 36 13 14 84 5 24 7 98 87 9 13 52 73 - 14 
11 77 84 -7 15 88 85 0 8 83 89 - 4 14 214 220 - 10 
12 140 148 - 8 9 107 120 -14 15 -28 1 - 4 
13 136 139 -3 -5 k 8 10 22 22 0 18 133 125 8 
14 25 21 1 
15 148 149 0 1 258 255 3 -5 k 11 -4 k 4 

2 183 182 0 
-5 k 2 3 88 91 - 8 0 32 2 4 0 848 892 -95 

4 358 351 11 1 54 53 0 1 75 47 H 
1 380 380 0 5 37 24 5 2 24 85 -20 2 520 523 -6 
2 58 51 8 8 408 418 -2 0 3 182 157 7 3 71 48 27 
3 124 128 -3 7 114 124 - 14 4 12 60 -19 4 35 65 -27 
4 45 21 13 8 134 140 -8 5 139 136 4 5 47 2 21 
5 146 1!13 23 9 149 136 19 6 61 32 16 6 93 94 - 1 
6 -14 48 - 20 10 - 10 48 -15 7 86 82 3 7 82 78 4 
7 153 151 2 11 95 91 3 8 52 44 4 8 136 142 -11 
8 125 133 -12 12 139 118 32 9 -40 14 - 12 
9 185 164 37 13 54 68 -8 -5 k 12 10 280 264 31 

10 68 81 - 11 14 123 124 - 1 11 42 69 -20 
11 247 246 0 1 137 119 23 12 201 208 - 12 
12 -42 27 - 15 -5 k 7 2 31 5 5 13 27 18 2 
13 88 64 20 3 68 77 -7 14 - 37 54 - 24 
14 -16 34 -8 0 371 389 2 4 -54 29 -21 15 33 9 6 
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J.L-(l-3TJ:2-4TJ-trans,trans-1 ,4-di-tert-Butyl-1 ,3-butadiene)-

bis(bis( 11 5-cyclopen tadienyl )ti tani urn) Page • 
18 H 85 - 10 • -&2 17 10 12 195 19-& 2 11 213 2H - 1 

5 o&8 !IS 7 13 96 85 12 12 -H 17 - 12 -· k 5 6 58 41 10 14 199 192 IS 13 16 38 -7 
7 228 223 9 15 -45 7 -IS 14 -&9 36 6 

1 H 24 17 8 - 17 25 - 5 16 77 47 22 15 - 18 I - 1 2 452 H2 22 9 220 223 -0 17 -22 22 -5 
3 60 62 4 10 43 40 1 -3 k 7 • 33-& HI - 10 11 143 120 30 -3 k 3 
5 170 172 -4 12 3 1 0 0 209 214 -8 
6 3H 351 - 14 0 H8 470 2 1 H7 141 11 
7 28 22 2 -4 k 10 1 97 79 H 2 202 199 5 l 8 192 18 3 18 2 383 371 29 3 202 215 - so 
9 92 68 25 0 102 91 8 3 217 22!1 -17 • 209 212 -5 

10 51 52 0 1 43 70 - 19 4 525 490 5o& 5 177 177 0 
11 o&O 35 2 2 5o& 50 3 5 H3 H6 -e e 7S 06 7 
12 128 109 25 3 182 183 - 2 6 ISO 121 17 7 137 ISO 2 
13 -16 38 -10 4 29 9 5 7 78 68 12 8 298 297 1 
14 IH 162 - 10 5 253 247 10 8 392 377 Sl 9 42 45 - 1 15 22 29 -2 6 47 68 - U 9 -10 51 -20 10 U6 155 - 15 

7 166 167 -2 10 13-& 138 - 7 11 -&2 H 4 
-4 k 6 8 79 91 - 11 11 -20 32 -12 12 -&8 10 u 

9 59 58 0 12 107 108 0 1!1 129 110 17 
0 439 ... -9 10 93 80 12 13 177 178 - 1 u 68 !I !I 20 
1 106 126 - 36 u 32 9 e 
2 225 220 12 -4 k 11 15 98 95 !I -!I k 8 
3 153 159 - 12 10 45 20 8 
4 141 IH - 4 1 -3 43 - 11 1 235 222 27 
5 231 247 - 36 2 90 80 10 -3 k 4 2 ISO ISO 0 
6 94 107 -I 7 3 H 85 -9 !I 79 77 2 
7 248 259 - 2 5 4 118 119 - I 1 seo 372 -Sl 4 141 119 H 
8 3!19 317 45 5 51 27 11 2 84 97 -25 5 -Sl 20 -9 
9 79 64 13 e 76 70 4 !I 84 91 -11 e 118 104 19 

10 20!1 197 11 7 66 82 -1!1 4 14!1 150 -15 7 58 59 0 
11 !1!1 H - 5 8 82 70 9 5 22!1 212 27 8 !12 !18 -!I 
12 71 81 -9 6 225 228 -7 9 112 108 5 
1!1 40 37 1 -4 k 12 7 !16!1 !107 -7 10 4!1 eo& - U u 28 4!1 -6 8 150 151 - 1 11 120 121 - 1 
15 82 72 8 0 10 0 85 10 9 !120 32!1 -7 12 82 89 -6 

1 26 12 !I 10 eo& o&O 17 13 ee 55 7 
-4 k 7 2 108 102 7 11 IS. 148 9 

3 47 66 -11 12 28 7 5 -!I k 9 
1 253 258 - 12 • 27 !18 -. 13 45 H - 1 
2 167 165 4 5 110 12!1 - 15 14 89 82 7 0 102 100 1 
!I 186 190 - 8 IS -60 IS -2!1 1 67 79 -11 • H 18 13 -3 k 16 21 H -8 2 171 lOS 9 
5 53 20 15 !I 105 108 -5 
e ·U 7 12 0 185 174 2!1 -!I k 5 4 97 102 -0 
7 217 210 13 1 189 19!1 - 12 5 218 220 -!I 
8 67 01 5 2 424 4!12 - 18 0 208 252 !12 e 131 143 - 18 
9 211 197 24 !I !157 !1!19 40 I 271 264 19 7 135 1!10 e 

10 47 20 12 4 !10!1 28-& so 2 H ee -U 8 212 205 12 
11 81 71 8 5 !1!17 !121 o&O !I 3-&9 3-&7 4 9 28 20 0 
12 18 37 -0 e 171 164 18 4 5o& 01 -7 10 167 150 17 
13 u 66 - 13 7 4!1 42 0 5 262 259 e 11 u 17 9 
u 71 02 e II 290 299 - 8 e 53 !18 11 12 108 89 20 

9 uo 137 4 7 324 301 50 
-4 k 8 10 218 21!1 10 8 64 59 • -3 k 10 

11 27 25 1 9 185 180 11 
0 8-& 8-& 0 12 213 212 2 10 70 9!1 -2!1 1 o&O 14 10 
1 88 84 • 13 u 5 12 11 50 2!1 13 2 Ul 13!1 12 
2 45 73 - 21 u 8-& 91 -0 12 85 91 -5 !I 04 70 -. !I 129 12!1 10 15 85 80 0 13 125 111 19 • 207 205 !I • lU 108 7 10 -&9 2 H 14 50 50 0 5 10 31 -4 
5 135 1 !1!1 3 17 es 02 0 15 15-& 139 21 e 24!1 247 -9 
e 40 45 0 10 47 20 8 7 -23 8 -3 
1 158 1tl4 - 10 -' k 2 8 89 99 - 10 
II OS 04 - 1 -3 k e 9 -42 5 -10 
9 39 15 8 1 354 351 1 10 !10 H 4 

10 09 48 14 2 9!1 Ill -39 1 427 us -40 
11 80 77 2 !I 192 193 0 2 211 205 13 -!I k 11 
12 10 12 0 4 115 129 -H 3 92 lOS -20 
u 117 82 !18 5 <&52 -&28 50 4 ee 0!1 3 0 1!10 117 19 

e 551 559 -15 5 53 49 !I 1 51 10 15 
-4 k 9 7 130 112 H e 52 08 -U 2 129 124 e 

8 02 54 7 7 202 267 -12 3 57 21 17 
1 217 210 12 9 _,. 10 -10 8 125 117 11 4 H o&8 -!I 
2 40 39 !I 10 29 45 -8 9 358 see -10 5 4!1 28 e 
!I 215 214 2 11 104 173 -18 10 -40 10 -10 6 52 40 e 
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l..l-0-3TJ:2-4TJ-trans,trans-l ,4-di-tert-Butyl-1 ,3-butadiene)-

bis(bis(TJ5-cyclopentadienyl)titanium) Page 5 

7 -46 7 - 12 4 74 99 - 46 7 38 18 7 
8 114 61 36 5 459 474 -33 8 98 10 2 -5 1 1152 1169 - 17 

6 90 110 -H 9 -29 26 -9 2 290 281 27 
- 3 k 12 7 355 358 - 7 10 162 159 5 3 508 5 00 16 

8 317 322 - 12 11 -48 u -14 4 289 317 - 85 
1 66 66 0 9 100 73 31 12 135 us 0 5 197 198 -2 
2 70 52 12 10 228 233 -9 u 60 28 15 6 372 389 -4 3 
3 2S H -7 11 35 10 7 7 207 209 -5 
4 131 115 19 12 -24 10 -4 -2 k 9 8 150 160 -H 
5 -46 10 -12 13 79 90 - 11 9 H 85 - 1 

14 26 27 0 1 88 98 -11 10 112 117 -7 
-2 k 15 101 81 18 2 169 170 - 1 11 144 148 -7 

16 -21 42 -12 3 113 109 4 12 118 121 -4 
1 158 143 53 4 270 262 14 13 10 45 - 12 
2 527 516 22 -2 k 5 5 -33 19 -9 14 165 152 22 
3 945 909 42 6 251 242 16 15 122 113 12 
4 327 321 16 1 261 269 - 22 7 51 34 9 16 113 91 24 
5 307 286 55 2 288 293 -U 8 111 90 24 17 70 85 - 11 
6 36 15 13 3 39 37 2 9 59 34 14 
7 521 489 60 4 302 30 4 -3 10 46 1 13 - 1 k 3 
8 101 101 0 5 192 191 2 11 67 75 - 5 
9 Hl H5 -10 6 299 304 -13 12 64 60 2 0 926 956 -3l 

10 62 65 -3 7 202 188 31 1 143 132 32 
11 2U 204 17 8 207 220 -28 -2 k 10 2 304 300 11 
12 42 36 3 9 116 107 12 3 U6 142 - 18 u 112 130 -25 10 30 1 6 0 160 157 3 4 168 171 - 10 
14 45 39 3 11 250 243 15 1 -27 28 - 10 5 241 238 7 
15 54 20 17 12 76 77 - 1 2 53 55 - 1 6 385 378 15 
16 35 1 7 u 82 90 -7 3 160 146 21 7 87 87 0 
17 29 41 -4 14 lH U8 8 4 - 17 7 - 2 8 400 398 5 

15 -21 51 -17 5 238 234 8 g -17 28 - 8 
- 2 k 2 16 112 116 - 4 6 29 10 4 10 330 S27 5 

7 126 114 14 11 49 52 -2 
0 198 207 -24 -2 k 6 8 64 70 -4 12 241 240 1 
1 373 372 3 9 56 31 13 13 60 49 9 
2 698 672 40 0 900 905 -5 10 76 53 16 14 66 73 -5 
3 148 166 -53 1 53 55 - 1 15 62 30 19 
4 109 120 -26 2 443 uo 7 -2 k 11 16 118 120 -2 
5 346 372 -72 3 26 29 - 1 17 -26 40 - 12 
6 33l 324 18 4 88 88 0 1 183 176 11 
7 383 395 -27 5 214 224 -25 2 41 H - 1 - 1 k 4 
8 -42 2 - 16 6 48 63 - 13 3 141 125 22 
9 56 31 18 7 61 66 -4 4 37 6 7 1 340 343 - 7 

10 57 38 u 8 222 230 -18 5 33 9 6 2 239 259 -62 
11 97 89 10 9 16 15 0 6 -33 12 -7 3 59 47 14 
12 38 54 -9 10 328 325 5 7 66 50 10 4 488 513 -54 
13 201 199 2 11 31 23 2 8 -21 21 - 5 5 122 119 7 
14 31 39 -3 12 202 198 7 6 534 540 -12 
15 105 105 0 13 78 81 -2 -2 k 12 7 64 H - 12 
16 26 25 0 14 - 17 29 -6 8 187 191 -8 
17 79 72 5 15 50 11 14 0 50 26 8 9 64 57 6 

1 48 47 0 10 -26 13 -6 
-2 k 3 - 2 k 7 2 -4 20 -2 11 37 45 - 4 

3 93 95 - 1 12 168 171 - 5 
1 408 407 2 1 27 42 - 8 4 42 36 2 13 55 40 8 
2 57 43 17 2 249 241 19 14 187 178 16 

. 3 256 263 -19 3 48 61 - 11 - 1 k 15 28 22 2 
4 102 104 -4 4 321 330 - 19 16 124 118 6 
5 lH 125 48 5 H 62 12 0 1001 1019 - 18 
6 42 51 -8 6 297 288 19 1 283 289 -24 - 1 k 5 
7 643 633 16 7 53 70 - 14 2 1096 1089 6 
8 -28 7 -7 8 59 61 - 1 3 224 218 22 0 479 492 - 22 
9 us uo 6 9 93 94 - 1 4 965 947 21 1 88 98 - 19 

10 -40 4 - 12 10 66 68 - 1 5 39 59 -23 2 574 567 16 
11 275 276 -3 11 - 45 0 - 12 6 249 229 56 3 145 170 - 04 
12 114 99 19 12 105 170 -0 7 326 331 -14 4 299 305 - 15 
13 -u 11 -7 13 55 10 19 8 043 OST 9 5 154 159 - 10 
14 69 65 2 14 156 165 -U 9 70 57 14 6 138 lH - 12 
15 100 104 -5 10 375 368 16 7 163 172 -18 
16 - 27 23 -7 -2 k 8 11 22 8 2 8 156 160 - 8 
17 101 99 1 12 164 170 -11 9 -27 0 -5 

0 371 365 8 13 25 58 -17 10 234 228 12 
-2 k 4 1 24 23 0 14 16 7 1 11 62 76 - 12 

2 185 181 8 15 145 142 3 12 251 261 - 21 
0 438 434 8 3 23 8 3 16 25 H - 8 13 -3 53 - 17 
1 -14 22 -8 4 27 55 -15 17 71 62 6 14 31 34 - 1. 
2 130 139 - 22 5 49 5 16 15 58 59 0 
3 217 217 1 6 64 83 - 18 - 1 k 2 16 48 23 10 
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J.L-{1-311 :2-411-trans ,trans-1 ,4-di-tert -Butyl-1,3-butadiene)-

bis(bis(115-cyclopentadienyl)titanium) Page II 

9 141 1211 18 12 140 121 29 12 1111 73 - 5 
- 1 k II 13 84 98 -15 13 19 11 1 

- 1 k 11 14 182 1811 -1 14 85 18 II 
1 530 522 15 15 70 81 -10 
2 199 196 7 0 77 101 - Ill Ill 78 89 -9 0 k 8 
3 115 108 11 1 21 42 - 7 17 93 94 0 
4 387 393 -13 2 99 87 13 0 163 150 14 
5 41 47 0 3 58 Ill -2 0 k 4 1 94 92 2 
II 281 277 9 4 53 16 15 2 102 81 25 
1 57 51 5 5 16 49 19 0 76 10 1 3 96 109 - 16 8 u 41 - 3 6 60 68 -6 1 214 226 -39 4 42 46 - 2 
9 114 162 20 1 8 37 -7 2 200 209 -26 5 64 119 -4 

10 110 44 11 3 4U 448 -12 6 19 51 -14 11 215 220 -8 0 k 0 4 239 217 58 1 152 150 3 
12 181 189 -13 5 605 1100 8 8 142 144 -4 
13 113 108 6 2 1130 1144 - 12 6 53 411 5 9 112 72 - 7 14 140 150 -14 4 164 162 5 7 23! 221 28 10 99 86 13 15 36 12 6 6 267 270 -7 8 64 114 0 11 51 29 10 

8 553 5111 -15 9 35 46 -1 12 50 35 1 
- 1 k 1 10 436 442 - 12 10 56 43 8 

12 384 393 -18 11 96 86 11 0 k 9 
0 84 72 10 14 -22 9 -3 12 91 90 0 
1 14 86 -13 16 90 111 -22 13 242 238 8 1 150 130 31 
2 117 129 - 19 14 119 118 0 2 213 209 1 
3 216 207 18 0 k 15 122 123 - 1 3 811 69 16 
4 139 125 23 Ill 21 59 -111 4 213 214 -2 
5 282 289 - Ill 1 487 4811 1 5 411 113 -11 
II H 12 7 2 542 535 15 0 k 5 II 213 213 0 
1 128 112 22 3 310 309 1 1 10 45 -11 
8 89 85 5 4 213 269 12 1 359 3113 -9 8 130 1211 5 
9 0 17 -2 5 76 112 23 2 - 10 14 -3 9 lOll 113 -1 

10 411 54 - 5 II 443 453 -22 3 540 538 4 10 -311 23 -10 
11 81 73 7 7 116 134 -41 4 54 70 - 17 11 52 59 - 3 
12 41 25 9 8 100 107 -11 5 140 135 9 
13 138 131 9 9 85 98 -20 II 41 24 14 0 k 10 
14 -1111 1 -24 10 89 79 11 1 227 231 -8 

11 219 215 9 8 -8 15 -2 0 259 2114 - II 
- 1 k 8 12 102 82 24 9 204 208 -1 1 -20 13 -3 

13 104 113 -11 10 55 3 21 2 114 160 21 
1 201 202 -2 14 219 229 -18 11 249 238 22 3 12 39 - 8 
2 108 10-4 6 15 57 17 18 12 -42 53 -6 4 -40 69 - 18 
3 32 16 5 16 153 154 - 1 13 122 126 -4 5 10 26 -3 .. 39 -40 0 17 12 21 - 1 H 311 59 -13 II 81 63 14 
5 -49 27 11 15 -32 24 -9 1 -40 2 -9 
6 70 33 27 0 k 2 16 -39 II -8 8 180 194 -23 
1 52 55 -2 
8 73 H 0 0 1148 1166 -15 0 k 6 0 k 11 
9 126 101 33 1 107 106 5 

10 33 27 2 2 391 398 -19 0 83 105 -23 1 51 14 H 
11 135 117 22 3 52 -40 14 1 132 144 -24 2 76 10 4 
12 -8 H -7 .. 83 811 -· 2 - 18 19 -II 3 52 H H 
13 79 Ill H 5 132 137 - 11 3 345 345 - 1 4 110 104 6 

6 248 2111 -38 4 115 80 - 15 5 52 0 Ill 
- 1 k 9 7 257 247 27 5 371 364 15 

8 2811 284 5 II 52 113 -8 k 0 
0 -29 19 -5 9 -20 31 - 11 1 183 179 8 
1 93 119 - 32 10 201 202 - 1 8 70 H - s 1 11119 1152 17 
2 21 Sll -5 11 20 21 0 9 -58 S5 -29 2 572 561 21 s 227 217 21 12 1811 1711 17 10 125 124 1 s 377 362 45 
4 ST 36 0 13 70 59 9 11 HO 156 -24 4 245 242 9 
5 245 23S 2S 14 3S 34 0 12 87 911 -9 5 S45 341 10 
6 54 37 9 15 102 85 17 IS 1811 19S -11 II 332 S14 57 
7 201 195 9 111 lOS 110 -8 14 39 20 II 1 S59 354 17 
8 54 48 s 17 18 59 - 17 15 107 102 5 8 S5 S8 -2 
9 27 liS -19 9 Sll9 313 - 12 

10 -311 8 -7 0 k 3 0 k 1 10 -211 4 - 7 
11 liS Sll 15 11 3115 S7l - 15 

1 205 201 11 1 H 31 1 12 170 182 -30 
- 1 k 10 2 2SS 227 19 2 135 134 1 13 198 203 -14 

s 283 288 -14 3 129 117 18 14 123 1211 -6 
1 2U 233 18 4 395 38S 28 4 220 215 10 15 -11 29 -9 
2 10 15 -4 5 -5 4 0 5 70 40 24 Ill 51 48 2 
3 135 125 14 II 318 331 -33 II 177 187 -18 17 105 85 28 
4 lllll 159 10 1 189 196 - 18 7 170 170 0 
5 118 liT 0 8 -25 31 - 17 8 95 88 8 k 
II 123 121 2 9 91 100 -13 9 15ll 15S 4 
7 89 91 -2 10 95 95 0 10 34 1 7 0 438 4S7 1 
8 - 1 34 -II 11 243 2U 0 11 51 53 - 1 2 451 452 - 1 
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~-t-(1-3rt:2-411·trans ,trans-1,4-di -tert-Butyl-1,3-butadiene )-

bis(bis(l15-cyclopentadienyl)titanium) P&ge 7 

3 373 379 -HI 1 107 lUI - 17 7 103 93 14 • 331 352 - 61 2 243 249 - 15 1 154 156 -3 8 112 121 - 14 
5 485 500 - 32 3 213 221 - 19 2 58 H 13 9 65 67 - 1 
6 17 2 3 4 200 192 17 3 58 71 -8 10 36 54 - 11 
7 393 407 -H 5 179 183 - 9 • 51 54 - 2 11 22 39 -7 
8 169 176 - 17 6 230 229 3 5 28 10 3 12 243 243 0 
9 106 103 3 7 93 10 4 -13 6 66 65 0 u 16 52 - 15 

10 62 8 30 8 2H 288 14 7 92 99 -6 14 216 218 -3 
11 37 19 8 9 41 1 11 15 H 35 0 
12 124 123 1 10 192 194 -4 2 k 0 16 105 03 12 
13 219 221 -4 11 63 64 0 
14 36 36 0 12 147 145 3 0 40 50 -14 2 k 4 
15 171 171 0 13 99 91 8 1 159 157 7 
16 -47 15 -16 14 21 42 -7 2 223 215 35 0 601 619 -26 
17 112 105 7 15 82 H 7 3 37 8 23 1 68 63 6 

4 314 310 12 2 364 366 - 4 
k 2 k 6 5 7U 691 36 3 38 31 4 

6 38 42 -5 4 95 95 0 
1 211 196 46 1 - 37 24 - 15 7 472 470 5 5 114 96 29 
2 251 246 16 2 250 260 -22 8 399 403 - 11 6 120 U6 -1 2 
3 95 71 46 3 86 75 13 9 170 168 6 7 -H 5 -15 
4 251 252 0 4 321 325 - 10 10 207 198 26 8 265 260 11 
5 22 25 -2 5 67 72 -5 11 71 76 - 7 9 61 69 -7 
6 93 103 - 14 6 30 5 298 15 12 162 167 -10 10 284 284 0 
7 192 197 - 12 7 23 8 3 13 250 255 -14 11 19 17 0 
8 17 26 - 3 8 215 222 - 15 14 51 78 -29 12 201 206 -9 
9 218 215 1 9 -31 22 - 10 15 125 115 18 u 89 105 - 16 

10 -22 19 -6 10 -51 7 -17 16 25 0 5 14 38 H 1 
11 172 177 -9 11 -29 23 -9 17 101 80 16 15 - 33 so - 11 
12 57 33 14 12 1eO 151 u 
13 93 101 - 9 u -4e e -U 2 k 2 k 5 
14 36 12 1 14 147 133 18 
15 e 35 -1 1 702 en H 1 184 184 0 
16 36 12 7 k 1 2 648 eu 8 2 176 183 - 15 
17 60 56 2 3 171 151 55 3 203 204 - 1 

0 221 224 -4 4 690 en 25 4 270 272 - 3 
k 3 1 10 80 - 10 5 31 0 11 5 60 36 16 

2 146 134 21 6 681 666 so 6 240 248 2 
0 82 78 4 3 111 115 -4 7 61 84 -32 1 U6 124 19 
1 177 184 -21 4 55 H 1 8 164 te8 -10 8 102 94 9 
2 229 227 6 5 26 67 -24 9 126 115 19 9 129 121 12 
3 493 481 25 6 118 122 - 6 10 32 64 -22 10 so 20 3 
4 88 97 - 17 7 85 82 3 11 58 H 15 11 128 125 4 
5 678 691 -20 8 254 254 0 12 197 199 - 4 12 61 32 16 
6 230 224 17 9 -29 24 -9 13 46 32 7 u 68 49 12 
7 253 261 -21 10 18e 180 9 14 206 216 -19 14 98 114 - 17 
8 122 119 4 11 79 76 2 15 - U 0 - 1 
9 83 81 2 12 58 so 4 16 85 63 17 2 k 6 

10 14 77 -3 u 60 66 -4 17 18 19 0 
11 86 90 -4 0 222 221 1 
12 79 75 4 k 8 2 k 2 1 112 97 19 
13 280 278 3 2 86 82 3 
14 57 53 2 1 90 H 17 0 409 452 -90 s 211 216 - 10 
15 lH 154 -15 2 169 146 38 1 264 262 6 4 106 110 -5 
16 52 55 - 2 3 - 26 39 - 14 2 300 303 - 10 5 254 252 4 

4 166 1n -12 3 238 229 26 6 117 117 0 
k 4 5 51 54 -2 4 te8 172 -0 7 207 216 - 17 

6 220 219 0 5 84 81 6 8 120 115 5 
1 382 386 -11 7 78 72 6 6 179 199 -53 9 eo 72 -10 
2 148 146 4 8 us 141 - 7 7 223 221 5 10 165 163 3 
3 258 260 - 20 9 85 72 11 8 319 324 - 11 11 n 60 10 
4 484 495 -21 10 -32 7 -6 9 2e 51 -14 12 96 10 6 -11 
5 128 111 S2 11 10 18 - 1 10 tn 175 -3 u 108 107 1 
6 338 Hl - 7 11 102 114 - 15 
7 124 124 0 k 9 12 112 123 -te 2 k 7 
8 -25 32 - 12 13 41 39 1 
9 150 146 7 0 286 289 -3 14 37 21 5 1 326 336 -2 1 

10 -26 11 - 5 1 87 70 16 15 65 52 8 2 40 0 11 
11 152 154 -3 2 197 188 15 16 5 38 -8 s 110 lOS 9 
12 179 168 18 3 80 98 -111 4 91 94 -3 
u 111 11S - s 4 41 45 -2 2 k s 5 -37 2 -9 
14 120 us -20 5 93 90 3 8 87 78 9 
15 5S 48 4 8 55 83 -5 1 57 52 5 7 95 101 -6 
16 84 46 11 7 89 89 0 2 571 582 - 19 8 - 40 19 - 12 

8 153 151 2 3 lH U2 28 9 184 te4 32 
k 5 9 e5 2 25 4 640 es9 - 17 10 u 47 - 3 

5 41 45 - 3 11 liS 104 10 
0 118 122 - 8 k 10 8 us 423 0 12 31 te • 
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jl-(1-311 :2-411-trans ,trans-1 ,4-di -tert-Butyl-1 ,3-butadiene)-

bis(bis(115-cyclopentadienyl)titanium) Page 8 

4 364 358 12 10 13 H -IO 0 23 11 2 
2 It 8 5 12I 127 -11 1I 137 127 13 I 38 69 -29 

6 357 355 4 12 41 32 6 2 I37 I43 - 11 
0 95 55 26 7 I69 I6I I5 3 115 41 - 12 
1 75 66 8 8 I36 138 -3 3 k 7 4 I 52 154 -2 
2 95 I02 -7 9 110 I25 - 20 5 89 91 -2 
3 I32 I09 33 10 187 182 10 0 195 194 0 6 43 7 13 
4 -20 19 -5 11 ue 137 - 1 I 49 21 13 7 205 192 25 
5 150 140 15 12 128 133 - 1 2 106 88 21 8 52 41 3 
6 38 48 ·5 u 50 32 9 3 102 105 • 4 9 25 41 -7 
7 115 114 2 14 103 107 ... 4 37 12 8 10 -11 15 • 2 
8 26 6 3 15 52 61 -6 5 uo 122 10 11 84 93 . 10 
9 . 5 11 • 1 16 95 87 7 6 52 31 11 12 84 66 15 

10 48 H 2 7 46 23 9 13 107 82 26 
3 k 3 8 77 70 6 14 31 21 3 

2 k 9 9 - 28 3 - 4 15 125 124 2 
0 652 650 3 10 81 76 4 

1 225 227 -3 1 99 112 . 16 4 It 3 
2 ·H 2 . 11 2 330 341 . 19 3 It 8 
3 113 113 0 3 138 151 - 26 1 363 380 - 37 
4 -48 20 -16 4 -35 26 . 16 1 113 115 • 1 2 78 eo 17 
5 -21 5 . 3 5 165 172 - 15 2 54 59 • 3 3 237 245 -18 
6 30 24 1 6 -57 6 -25 3 124 129 -5 4 100 90 12 
7 108 88 20 7 122 122 0 4 84 69 u 5 78 66 12 
8 -37 17 -9 8 180 190 - 21 5 52 22 u 6 173 166 13 

9 . 19 30 -8 6 83 80 3 7 207 190 32 
2 k 10 10 198 198 0 7 40 18 7 8 52 153 • 7 

11 60 73 - 9 8 ..... 15 - 12 9 270 282 -24 
0 156 1H 11 12 69 78 -6 10 H 12 12 
1 52 26 11 13 176 157 30 3 It 9 11 142 132 15 
2 115 103 11 14 41 50 -4 12 76 59 12 
3 91 65 23 15 127 123 4 0 167 165 2 u 98 81 16 
4 58 45 7 1 -6 3 IO ·22 u 14 77 ·2 

3 It 4 2 137 130 9 
3 k 0 3 36 33 1 4 It 4 

1 500 SOl • 2 4 39 50 -5 
I 465 451 32 2 28 27 0 5 18 15 0 0 339 338 2 
2 720 696 41 3 122 123 . 3 1 4 33 . 7 
3 403 393 25 4 25 23 0 4 It 0 2 210 214 -8 
4 880 849 41 5 -32 24 -11 3 20 10 2 
5 220 204 55 6 80 80 0 0 356 357 . 3 4 48 1 16 
6 771 771 0 7 115 110 5 1 294 308 -46 5 56 51 3 
7 263 260 11 8 58 56 0 2 130 128 4 6 111 114 . 2 
8 238 226 37 9 245 238 15 3 522 512 22 7 134 132 2 
9 1815 189 ·9 10 33 u 6 4 140 1315 11 8 152 166 -23 

10 24 37 -8 11 254 256 . 3 5 575 579 • 8 9 87 80 15 
11 42 5 17 I2 -11 24 ·• 6 93 87 10 10 169 157 20 
12 251 248 8 13 122 114 9 7 3150 3151 . 3 11 49 14 13 
u -20 26 - 10 14 46 8 12 8 43 51 - 7 12 117 112 5 
14 221 223 -5 9 - 27 36 -20 13 53 39 7 
15 36 I5 9 3 It 5 IO 141 137 8 
115 I33 140 - 12 11 122 114 15 4 It 5 

0 I60 152 IO 12 28 31 • 1 
3 It 1 54 72 • IS u 172 I74 - 5 I 65 42 17 

2 65 56 7 14 · 33 8 . 10 2 I83 185 • 3 
0 432 431 1 3 167 168 - 2 15 161 1157 ·14 3 116 117 0 
1 253 227 73 4 36 2 9 16 41 45 . 2 4 277 215S 18 
2 187 1S8 - 2 5 269 276 -14 5 40 19 8 
3 2715 271 9 6 64 6I 2 4 It 15 2H 246 • 2 
4 -I6 26 -9 7 I98 I99 - 2 7 I02 I06 . 4 
5 323 309 34 8 27 56 . I5 I 739 748 · 12 8 116 I06 12 
15 I24 125 . 2 9 8S 14 14 2 70 72 - 2 9 6I 82 . 17 
7 140 150 -14 IO -42 26 . 15 3 178 I80 . 4 10 32 IS 4 
s 23S 218 H 11 34 12 6 4 100 112 - 20 11 23 13 2 
9 38 53 -10 12 33 34 0 5 -25 20 · S 12 91 73 IS 

10 206 202 8 13 117 95 2S 6 15 18 0 
11 31 45 -6 7 IU 136 12 4 It 6 
12 140 147 ·11 3 It 15 s 78 79 . 1 
u I89 I86 5 9 243 249 -12 0 164 1SO - lS 
14 46 0 14 I 311 307 s 10 96 I06 -11 1 215 24 0 
IS 36 58 -11 2 93 IOO -8 11 222 2I2 18 2 I92 203 -20 
115 79 65 11 3 I72 ISS - 20 12 9 2 0 s -27 I -4 

4 127 I25 s 13 S7 69 115 4 IOl 8S I5 
3 It 2 5 43 45 - 1 14 17 3 1 5 62 2 25 

6 130 124 7 15 14 41 -S 6 115 I09 7 
1 S79 389 -24 7 146 us 11 7 31 27 I 
2 471 46S 6 s 17 27 -2 4 It 2 8 160 ISS 10 
3 S22 310 2S 9 us 142 0 9 -54 4 - I7 
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J..L-(1-3TJ:2-411-trans,trans-l ,4-di-tert-Butyl-1,3-butadiene)-

bis(bis(TJ5-cyclopentadienyl)titanium) 
Page 9 

10 122 125 -2 0 235 221 20 12 113 94 28 1 -10 ze -4 
11 26 H -1 1 88 91 -4 u 68 43 19 2 91 100 -9 

2 194 191 3 14 H 4e -1 3 85 94 -8 
4 k 7 3 115 103 15 4 -28 H -14 

4 103 100 3 e k 5 91 101 - 9 
1 -25 16 -5 5 113 103 IS 
2 73 H 0 6 167 157 18 1 160 148 21 7 k 0 
3 - 33 25 -10 7 55 61 -4 2 8 37 -8 
4 143 149 - 7 8 324 325 -2 3 89 105 - 18 1 362 387 - 13 
5 24 35 - 3 9 35 H - 4 4 us 109 36 2 53 53 0 
6 75 83 -7 10 200 200 0 5 61 53 10 3 190 189 3 
7 84 64 16 11 72 50 15 8 104 76 31 4 73 88 7 
8 25 16 2 12 94 89 5 7 177 169 H 5 49 H 11 

13 -SO 32 - 10 8 68 72 -3 6 -H 2 - 18 
4 k 8 9 198 198 1 7 168 177 -21 

5 k 4 10 24 17 1 8 22 4 4 
0 73 62 5 11 78 51 20 9 170 179 - 19 
1 - 19 H -7 1 113 106 9 12 70 55 10 10 12 3 1 
2 87 88 0 2 187 203 - 29 u 18 38 -6 11 us 142 4 
3 78 60 14 3 127 132 -7 12 53 22 17 
4 -45 48 -24 4 308 308 4 8 k 2 
5 81 73 6 5 37 28 3 7 k 

6 273 273 0 0 178 184 - 11 
5 k 0 7 114 100 18 1 128 us -11 0 82 93 - 7 

8 135 138 -4 2 98 85 15 1 57 82 -3 
1 HS Hl • 9 84 93 -8 3 212 218 -8 2 -42 55 -7 
2 101 103 -5 10 -49 11 -H • 68 70 -3 s 223 224 0 
3 276 273 10 11 48 49 0 5 209 203 11 4 !IS 80 -14 
4 158 164 - 16 12 52 74 - H 6 127 135 -12 5 241 230 21 
5 45 40 4 7 1S9 140 0 6 -4S so - 16 
6 333 327 17 5 k 5 8 113 115 -2 7 120 98 28 
7 199 198 2 9 21 25 - 1 8 H 86 -17 
8 184 177 17 0 127 120 6 10 105 103 1 9 24 e 3 
9 297 301 - 11 1 35 41 -2 11 51 68 -11 10 27 u 3 

10 45 41 3 2 117 Ill 7 12 35 71 -20 11 90 85 4 
11 127 125 4 3 U8 125 18 
12 27 11 5 4 48 38 5 8 k 3 7 k 2 
13 33 29 2 5 169 167 2 
14 111 106 8 6 92 88 2S 1 220 222 -S 1 187 189 -3 
15 - 18 3 -2 7 103 101 2 2 137 IU 5 2 21 18 0 

8 90 101 -11 3 us U8 10 3 70 51 14 
k 9 60 48 7 4 217 225 -14 4 35 45 -4 

10 86 92 -6 5 62 23 21 5 27 41 -5 
0 3H 335 16 8 164 160 8 6 54 17 16 
1 -51 10 -21 5 k 8 1 148 us 15 7 52 48 2 
2 138 lH -14 8 89 102 -12 8 33 27 1 
3 18 9 1 1 88 75 12 9 151 159 - 12 9 88 72 - 3 
4 -40 17 -14 2 84 72 11 10 18 16 0 10 -33 13 -7 
5 90 80 10 3 90 109 - 20 11 Ill 102 9 
8 31 H -6 4 103 118 - 17 7 k 3 
7 57 85 - s s -30 8 - s 6 k 4 
8 232 237 -9 6 60 63 -2 0 142 149 -7 
9 21 11 2 7 117 107 10 0 -72 47 - 32 1 87 84 2 

10 214 210 9 8 59 13 19 1 62 83 - 17 2 102 101 0 
11 -38 11 -9 2 - 24 31 -10 3 203 211 -14 
12 81 87 -5 5 k 7 3 219 228 - 12 ' 60 48 7 u 60 27 17 ' 88 93 -5 5 200 207 -12 
14 -21 27 -6 0 -H 10 - 8 5 249 254 - 10 e 53 10 16 

1 60 38 12 6 -9 28 _, 7 138 141 -4 
s k 2 2 40 11 8 7 163 164 -2 8 55 24 13 

3 liS 118 - 3 8 -14 16 -2 9 ' 36 - 6 
1 58 63 _, 

' - 12 12 - 1 9 52 48 2 
2 184 171 -U 5 116 127 - 12 10 40 ' 9 7 k ' 3 169 170 - 1 

' 113 92 25 6 k 0 8 k s 1 61 67 -3 
s 77 H 3 2 75 54 16 
6 195 191 8 0 267 272 - 9 1 140 124 22 s -35 27 - 11 
1 S8 56 -10 1 150 157 - 15 2 20 29 - 2 4 95 91 s 
8 94 96 - 1 2 297 291 16 s 73 78 - 3 5 14 45 -9 
9 78 71 6 s 171 178 -16 ' - 21 ' -2 6 102 78 21 

10 - S5 37 -16 4 164 170 - 15 5 71 7 so 
11 -13 21 -4 s 166 170 - 10 6 -50 6 -14 1 k 5 
12 70 47 14 8 136 142 - 11 7 54 28 12 
13 -H 24 -10 7 1H 150 -14 8 H 18 9 0 17S 176 - s 
14 95 94 1 8 306 312 -15 1 -40 2 -8 

9 -H 6 -18 6 k 6 2 119 121 - 1 
5 k 3 10 217 214 1 3 63 9 21 

11 -28 2 -7 0 72 82 -5 
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J..L-(1-311 :2-411-trans ,trans-1 ,4-di -tert-Butyl-1 ,3-butadiene)-

bis(bis(115-cyclopentadienyl)titanium) Pt.ge 10 

8 k 0 1 48 20 11 5 H 75 0 4 140 145 -9 
2 63 79 - 11 6 18 9 1 5 -40 5 - 12 

0 210 214 -7 3 41 35 2 7 23 46 -8 6 127 119 13 
1 49 29 13 4 125 129 -5 
2 U8 U8 1 5 52 6 16 8 k 3 9 k 
3 146 149 -6 6 85 83 1 
4 -32 33 -17 7 -30 2 -5 1 48 52 - 1 0 47 24 6 
5 144 U9 10 8 41 29 5 2 71 69 1 1 -HI 18 -8 
6 39 28 6 3 -47 29 -16 2 20 26 - 1 
7 u 30 7 8 k 2 4 111 106 4 3 52 66 -8 
8 91 76 18 4 -62 S4 -26 
9 -23 28 -10 0 116 109 5 9 k 0 

10 127 129 -2 1 20 15 1 k 
2 93 82 10 1 94 101 -9 

8 k s 83 60 18 2 61 68 -6 15 eoe 
4 H 38 2 3 23 45 -11 
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CHAPTER 3 

Investigations of Possible Photochemical Routes to 

a-Oxa titanacyclobutanes 
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Introduction: 

During the course of our investigations into the reactivity of 

titanocene, we investigated the reaction of titanocene with epoxides and 

episulfides. This investigation was undertaken for a number of reasons. 

First, it was noticed that the stoichiometry of a molecule of an epoxide and a 

molecule of titanocene was identical to that of an a-

oxabis(cyclopentadienyl)titanacyclobutane, also termed 1,2-

metallaoxetanes. 

0 u + Cp2Ti: 

Figure 1. Possible reaction between titanocene and an epoxide. 

If reaction of titanocene and an epoxide furnished a route to 

oxatitanacyclobutanes, Figure 1, then many questions about the nature of 

these important intermediates could be addressed. Second, the 

photochemical generation of titanocene lends itself to the investigation of 

reactive intermediates, since titanocene can be generated cleanly at low 

temperatures. It was felt (and later successfully realized) that this 

investigation could provide information about the nature of photochemically 

generated titanocene. Unfortunately, the characterization of 

oxatitanacyclobutanes was not achieved. Third, epoxides are of 

considerable synthetic utility, and an understanding of their reactivity with 

transitions metals is important to developing new reactions and organic 
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transformations. Epoxides are capable of reacting with transition-metal 

complexes to afford interesting and useful synthetic transformations.1 

Oxametallacyclobutanes often have been postulated as intermediates 

in many organic reactions such as olefin oxidations, organic 

deoxygenations, and alkylidene transfer reactions.2 However, they have 

rarely been observed in the systems in which they are invoked. This paucity 

of examples has cast doubt on their intermediacy in these reactions. 

Recently, there has been a resurgence in the number of investigations into 

oxametallacyclobutanes, and the number of isolated a-

oxametallacyclobutanes has increased markedly.3 Notably, there are still 

very few examples of early metal oxatitanacyclobutanes, yet many of the 

transformations that may involve the intermediacy of a-

oxametallacyclobutanes are reactions involving early metals. 



Cp2Ti0<---~ 
RR'C==C==O 

Figure 2. Examples of early metal a-oxametalacyclobutanes. 

Early metal containing oxametallacyclobutanes4 and 

oxametallacyclobutenes5 are shown in Figure 2, along with the reactions 

that provide them. These materials are stabilized in some manner so that 

they cannot easily eliminate olefin and form a second metal-oxygen bond. 

In the titanium example retro 2+2 would generate an allene, and in the 

zirconium example retro 2+2 would generate an acetylene in a small ring, 
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both of which are energetically unfavorable. An example of a planned 

synthetic strategy to an oxametallacyclobutane containing a late metal is 

also shown in Figure 3. Interestingly, a-oxametallcycles are known for 

other ring sizes. For example, there are many examples of a­

oxametallacyclopentanes and a-oxametallacyclopentenes for the oxophilic 

metals such as titanium, zirconium and hafnium.6 It has been postulated 

that the reactivity and instability of a-oxametallacyclobutanes come from 

the nature of the four-membered ring.7 Four-membered rings allow 

extrusion of simple energetically favorable species such as olefins and 

acetylenes. The larger rings do not. For example, extrusion of titanium 

and oxygen from a a-oxatitanacyclopentane would lead to formation of a 

1 ,3-biradical or cyclopropane, which is energetically unfavorable. 



hv 

t-BuX 

X=OH,NH2 

X=O,NH 

OR 

Figure 3. An example of an a-oxairidacyclobutane and an a­

azairidacyclobutane. 

+ 

cr 

During the course of our investigation of photochemically generated 

titanocene with epoxides, the reaction of chemically generated titanocene 

with epoxides was published.s The titanocene used by Schobert was 

generated from the reaction of titanocene dichloride with one equivalent of 

magnesium metal in tetrahydrofuran at room temperature. The results of 

their investigations are qualitatively similar to ours. Schobert found that 

the titanocene deoxygenated the epoxide in high yield to give the olefin. Our 

investigations provided the same result but also indicated that the 

deoxygenation proceeded without any stereochemical retention. Schobert 
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observed strict retention of stereochemistry with trans epoxides and high 

retention with cis epoxides.9 Additionally, he suggests that radicals are 

formed when titanocene reacts with a,~-unsaturated aldehydes. We have 

also found evidence for radicals. A discussion of the similarities and 

differences of our results and Schobert's results is found in the following 

section. 
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Results and Discussion: 

The reaction of photochemically generated titanocene with epoxides 

proceeds cleanly to give titanocene-IJ.-oxo polymer and the olefin derived 

from epoxide deoxygenation. The unreacted epoxide remains unchanged 

during the reaction. The reaction of titanocene with 2.8 equivalents of 

neohexene oxide (1 ,2-epoxy-3,3-dimethylbutane) gives neohexene in a 78% 

yield based on the amount of cyclopropane formed. It has already been 

demonstrated that the reductive elimination of cyclopropane from the 

starting metallacycle is quantitative. The yield of this deoxygenation 

reaction could be improved slightly by using more equivalents of neohexene 

oxide. This is believed to be a result of more efficient trapping of the 

intermediate titanocene. Failure to trap titanocene rapidly allows the 

titanocene to react with itself or the solvent. No intermediates were 

observed in the reaction. The reaction is shown below in Figure 4. 
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Net Reaction: 

A___ 0 toluene d8 

Cp2Ti~t-Butyl + ~ -20'C,h v 

t-Butyl 

Mechanism: 

-80% yield 
as based on 
cyclopropane 
formed . 

-20 °C, h v 

t-Butyl .. L + [cp,n,] toluene d8 

~ + [cr,n] 
t-Butyl 

t-Butyl 

d 

Figure 4. Epoxide deoxygenation by titanocene. 

A series of different mechanisms were envisioned to account for the 

observed reactivity. The first mechanism was a concerted deoxygenation of 

the epoxide by titanocene to give the olefin and titanocene-~J.-oxo. The 

titanocene-~J.-oxo oligomerizes to an uncharacterizable material. Similar to 

this mechanism is the observation that titanocene (photochemically 

generated from the neohexene metallacycle) deoxygenates 

dimethylsulfoxide in an 85-95% yieldlO as shown in Figure 5. 
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-20 °C, hv 

t-Butyl L + [cp2Ti:] Cp2 Tio---1-Butyl 
toluene d8 

[cp2Ti:] 
toluene d8 

-20 °C, hv 
(Cp2 TiO)x + Me2S 95% yield 

Figure 5. Dimethyl sulfoxide deoxygenation. 

Alternative to this concerted reaction would be a stepwise reaction, 

involving a transient a-oxatitanacyclobutane, a 1 ,2-metallaoxetane. 

Metallaoxetanes are also invoked as intermediates in the Wittig chemistry 

that titanocene alkylidenes undergo. Low-temperature NMR studies were 

undertaken in order to determine if oxatitanacyclobutanes are formed 

transitorily in the reaction of titanocene with epoxides. No intermediates 

were observed in the reaction of 1 ,1-diphenylethylene oxide with titanocene 

at -65 °C. At -65 °C only 1 ,1-diphenylethylene was observed in a 91% yield. 

Based on the thermal stability of the aliphatic metallacycles, 

oxametallacycles, which could be expected to be most stable with respect to 

2+2 cleav~ge to olefin and titanocene-j.l·oxo, would be the ones derived from 

norbornene oxide and neohexene oxide. The ~-tert-butyltitanacyclobutane 

is stable to approximately 20 oc.n It is well known that the norbomene 

metallacycle is thermally stable to -60 °C.I2 This most likely arises from 

the additional ring strain induced in the retro 2+2 cleavage of the 

metallacycle to the olefin and titanocene alkylidene. Figure 6 shows these 

relationships. It is important to note that this assumes that the 

oxametallacyclobutane has the same geometry as the metallacycle. If the 

oxametallacyclobutane is puckered so as to allow the lone pair on the 
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oxygen to donate electron density to the metal, then unfavorable steric 

interactions would be generated. This could mean an inherent instability 

for the oxametallacyclobutanes. 

+ o<h toluene ~ + (Cp2Ti0), 
-20 °C, h v 

61 % yield 

Cp2~~ 
Very stable Not observed 

Figure 6. Titanocene and norbornene oxide reaction. 

Norbornene oxide was deoxygenated in a 45-61% yield in deuterated 

toluene at -20 °C. No intermediates were observed during the reaction. 

However, extreme low temperatures were not employed. Rather than 

investigate other epoxides at lower temperatures, it was felt that more could 

be learned from labeling studies that would differentiate between a 

concerted reaction and a stepwise reaction. It should be noted that 

observation of retention does not necessarily imply a concerted reaction, but 

observation of scrambling does imply a stepwise reaction. Retention of 

stereochemistry has been observed in 1 ,4-biradicals generated from highly 

substituted cyclobutanes . Retention could result from stereospecific 

insertion of titanocene into an epoxide carbon-oxygen bond followed by rapid 

cleavage of the metallacycle. Retention could also result from generation of 

a 1 ,4-biradical provided that rotation is much slower than cleavage. T he 

concept of the 1 ,4-biradical is discussed later. These different concerted 

types of mechanism are shown in Figure 7. 
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Cp2 Tio--t-Butyl 

loss of 
-20°C, h v 
toluene d 8 [>---t-Butyl 

[ Cp2Ti:] 

0 0 
!\ __ _ 

Dr- .,"'t-Butyl 
p ... 

D '',t-Butyl 

,,t-Butyl 
•' 

CpzTi'-0~ 

j 

D 

,,,,t-Butyl 

Cp Ti·----- o······l···· 
2- ---... 

D 

and/or 

I 
_/t-Butyl 

D/-' 
+ (Cp2Ti0)x 

Figure 7: Possible mechanisms for stereochemistry retention. 
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Reaction of trans-styrene oxide-d1 with titanocene, photochemically 

generated from the 13-tert-butyltitanacyclobutane in toluene d3 generated 

equal amounts of both trans deuterostyrene and cis deuterostyrene. 

Additionally, reaction of titanocene with trans-1-deutero-3,3-dimethyl-1 ,2-

epoxybutane (trans deutero neohexene oxide) yielded equal amounts of both 

cis and trans 1-deutero-2,2-dimethyl-1-butene. The results of this reaction 

are shown in Figure 8. This result is somewhat different from that found 

in Schobert's investigations.13 We rationalize the difference in results as 

stemming from the different method used to generate the titanocene and 

the difference in epoxides used. 

Cp2 Tio--t-Butyl + 
0 

P tolu~ned8 
\. -20 C, hv 

' D "t-Butyl 

... 

D D 

( + I( + (Cp2TiO\ + l:utyl 

t-Butyl t-Butyl 

-80% yield 
as based on 
cyclopropane 
formed. 

1:1 

Figure 8. Stereochemical studies on epoxide deoxygenation. 

In Schobert's studies, exclusive retention of stereochemistry with 

trans epoxides is not surprising for a number of reasons. First, trans 

olefins are the thermodynamically more stable in the cases examined. 

Second, using large groups on the epoxide as indicators of stereochemistry 
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is somewhat misleading in that the larger the group, the less likely it is to 

isomerize. In the study of organic 1 ,4-biradicals it was found that when 

large substitutes are present in stereochemically labelled materials, more 

retention was observed than in identical materials containing smaller 

groups. These large groups require more time to isomerize than smaller 

groups.14 This is also evidenced by the difference in rotational barriers in 

substiututed and unsubstituted ethanes. This barrier to isomerization may 

be exacerbated by the cyclopentadienyl rings, which may slow rotation of 

bonds in the wedge. Third, it is not known what role the magnesium 

chloride formed may play in the reaction. Magnesium and magnesium 

chloride are oxophilic and may play a noninnocent role in the 

deoxygenation. The magnesium chloride may coordinate to the titanocene 

somehow changing its intrinsic reactivity. 

A series of control experiments were undertaken to determine that 

the isomerization was not a result of the reaction conditions. First, at no 

time were any products associated with carbene generation observed. It is 

known that epoxides generate oxygen-substituted carbenes upon photolysis 

with short wavelength light. The photolysis was also pyrex-filtered to 

attenuate the shorter wavelengths. Second, a photolysis of a metallacycle 

and epoxide in toluene was carried out in the presence of excess, pure 

trans-1 -deutero-2,2-dimethyl-1-butene. Isomerization of the added olefin 

was not observed during the course of the reaction. This implies that 

neither the products, the starting materials, nor the photolysis were 

responsible for the isomerized olefin produced. Third, stopping the 

photolysis at low conversion indicated that the stereochemistry of the 

resulting olefin was constant throughout the reaction, that is to say, a 50:50 

mixture of isomers at all times. Fourth, it is important to note that excess 
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trans-1-deutero-3,3-dimethyl-1 ,2-epoxybutane was not isomerized during 

the course of the reaction. The observation that excess starting material is 

not isomerized during the reaction indicates that the reaction is 

irreversible. 

The isomerized olefin produced was rationalized as resulting from a 

stepwise insertion of titanocene into the epoxide to give a 1 ,4-biradical. 

Similar intermediates have been invoked in the deoxygenation of organic 

substrates by the reagent formed from TiCl3/LiAlH4.l 5 This intermedate 

1 ,4-biradical could either generate an a-oxatitanacyclobutane through 

0 
+ D 

Figure 9. Closure to a-oxatitanacyclobutane may or may not occur. 

closure or directly decompose to olefin and titanocene-J..L-oxo. These two 

possibilities are shown in Figure 9. The full mechanism is illustrated in 

Figure 10. The 1,4-biradical is attractive for a number of reasons. First, it 

is the simplest way to explain the observed isomerization. Second, it is 

conceptually similar to the 1 ,4-biradical invoked in Chapter 1 to account for 

the isomerization of stereolabelled metallacycles. Third, a stepwise 

insertion into a carbon oxygen bond is what would be expected for triplet 

titanocene. Titanocene has been calculated to be triplet.16 However, 

rationalizing the results as being due to the spin state of titanocene is not 
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without problems. A large spin-orbit coupling may make the spin state 

meaningless. 

Cp2Tio--t-butyl + 

-20 oc, h v [>-t-Butyl 
toluene d 8 ! 

loss of 

,,t-Butyl ,, 

Cp2Ti,-0~ 
0 

/~ 
t-Butyl 

Cp2~i-o{ 
0 

t-Butyl 

or Cp2 ~i-0;( 
0 

insertion on less sterically 
demanding position 

more stable 
radical formed 

not observed)(t-Butyl 

kcleav>>krot 

0 

~fast bond rotation ~fast bond rotation 

0 

Cp2Tiyt-Butyl 

0 

more stable metallacycle 

0 

Cp2Tiy-D 

t-Butyl 

Sterically encumbered, 
a t-Butyl group points 

into Cp rings. 

0~ 
retro 2+2 ~t-Butyl 

~ 0 t-Butyl 

Figure 10. Explanation of observed stereochemical results. 
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Insertion of a titanocene into an epoxide to give an a-

oxatitanacyclobutane with retention followed by photochemical 

isomerization can be discounted. While photochemical isomerization of 

stereolabelled metallacycles is documented in Chapter 1, it is unlikely in 

this reaction since the reaction can be carried out at a temperature (-20 °C), 

above which the oxatitanacyclobutane is expected to be stable. Reaction of a 

titanium methylidene source with pivaldehyde results in facile methylene 

transfer at -20 °C. The presumed intermediate of this methylene transfer 

reaction, an a-oxa-~-tert-butyltitanacyclobutane, is believed to result from 

2+2 addition of the titanium methylidene and the carbonyl.17 This is the 

same intermediate that would be generated from insertion of titanocene 

into a carbon-oxygen bond of neohexene oxide. This intermediate is not 

observed at low temperature in this Wittig-like reaction; hence, it is 

unlikely that the isomerization results from secondary photolysis of this 

species. Photochemical isomerization of the stereolabelled metallacycles is 

fairly slow under the typical photochemical conditions. 

Toluene d8 

hv, -30 oc 

0 
Cp2Zr: + p 

'\'-
D ~t-Butyl 

biphenyl + "CpZr:" 

4.2 1 Low Yield -25% 

Figure 11. Stereochemistry of epoxide deoxygenation by zirconocene. 
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For comparative purposes the reaction of photochemically generated 

zirconocene18 and labelled epoxides was investigated, and the results are 

shown in Figure 11. Irradiation of diphenylzirconocene in toluene d3 at -25 

°C in the presence of 3,3-dimethyl-1,2-epoxybutane gave a low yield (ca 28%) 

of 3,3-dimethylbutene. The reaction was not as clean as with the 

photochemically generated titanocene; consequently, the volatiles were 

used to measure the yield. Repetition of the experiment using trans-1-

deutero-3,3-dimethyl-1 ,2-epoxybutane provided 21% yield of a 4 .2 ratio of 

trans-1-deutero-3,3-dimethyl-1-butene and cis-1-deutero-3,3-dimethyl-1-

butene. This was extremely surprising since the large difference in sizes of 

zirconium and oxygen would lead one to believe that the driving force to 

generate the 1t bond would be less. This presumed lesser driving force 

would be expected to lower the rate of cleavege relative to the rate of bond 

rotation in the 1 ,4-biradical. If the intermediate was a 1 ,4-biradical, then 

one would expect total isomerization if the intermediate were truly longer 

lived. However, it is possible that zirconocene and titanocene react with 

epoxides in two entirely different manners. In simple diatomic molecules 

zirconium oxygen bond is given as 181.6 kcal/mole, and titanium oxygen 

bond is given as 158.2±3.7 kcal/mole.19 Perhaps the greater driving force of 

the reaction to generate a second zirconium oxygen bond means that the 

zirconium-centered 1 ,4-biradical cleaves even faster than the titanium 

centered 1 ,4-biradical. If this rate acceleration were enough to place the 

rate of cleavage on the order of a bond rotation, then retention would be the 

expected product. Again, this reasoning does not take into account the 

differences associated with sigma and pi bonds of the metal to oxygen. 

The reaction of titanocene with episulfides was investigated . 

Titanocene reacts with propene episulfide (3 equivalents) in toluene at -20 
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°C to give titanocene-Jl-sulfide20 and propene in a 67% yield. This reaction 

is shown in Figure 12. 

Cp2Tio--t-Butyl 

~ + [cp2Ti] 
Me 

toluene d 8 

-20 °C, hv 

Me 
===.! 

-70% yield 
as based on 
cyclopropane 
formed. 

Figure 12. Reaction of titanocene and episulfides. 

The stereochemistry of this reaction was investigated and is 

illustrated in Figure 13. Reaction of titanocene with trans-styrene 

episulfide d1 in toluene at -78 oc followed by examination of the volatiles 

revealed t~at a 50:50 mixture of cis and trans styrene d1 was generated. 

This result was surprising. Episulfides can be thought of as a sulfur 

datively bound to an olefin. This is one way of explaining why the sulfur is 

more weakly bonded to olefins in episulfides than is the oxygen in epoxides. 

The observation that the stereochemistry of the olefins resulting from 

stereolabelled episulfides is scrambled after desulfurization by titanocene 

gives added strength to the 1 ,4-biradical intermediate. This weaker 

bonding would be expected to result in retention of stereochemistry if a 

mechanism other than the 1 ,4-biradical were operating. 
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Cp2 Tio---1-Butyl 
s +p \.~ 

D ~0 

toluene d 8 ... 
-20 °C, hv 

1:1 

Figure 13. Stereochemistry of the reaction of titanocene and episulfides. 

The reaction of titanocene with aziridenes was also investigated, 

Figure 14. Insertion of transition metals into aziridenes has been 

previously observed; a-azametallacyclobutanes were postulated as 

intermediates in one of the possible mechanisms of the carbonylation of 

aziridenes to ~-lactams.21 It was hoped that changing an oxygen in the 

epoxide for a nitrogen would make it possible to observe intermediates 

during the course of the reaction. This was not realized. Titanocene 

reacted with both 2-phenylaziridene and N-methyl-2-phenylaziridene to give 

complicated product mixtures. There are indications that the reaction of 

titanocene with N-methylphenylaziridene yielded a trace of a species that 

could be rationalized as N-methyl-a-aza-~-phenyltitanacyclobutane. The 

low yield of the reaction precluded isolation of the product or further 

characterization. In both reactions, no styrene was observed. These 

results were rationalized in that the N-methyl-2-phenylaziridene is 
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sterically more crowded than either epoxides or episulfides. The 2-

phenylaziridene contains an acidic proton, which can complicate reactions 

with very air- and moisture-sensitive materials. The reaction of titanocene 

with aziridenes was not further investigated. 

Cp2 Tio---1-Butyl + 
toluene d8 ... l:utyl + [ cp,n] 
-20 °C, h v 

R=Methyl, H 

~ 
~+ [cp2Ti] 

0 

X ... + 

Figure 14. Aziridenes did not react with titanocene. 

These collective results suggest that the metal-centered 1 ,4-biradical 

does not close to form an a-oxatitanacyclobutane. It would be 

thermodynamically more favorable to immediately generate an olefin and a 

metal oxygen double bond. Closing the ring to a cyclobutane would likely be 

uphill. Organic 1 ,4-biradicals often undergo cleavage of the center bond. 

The extra driving force of generating a titanium oxygen bond may preclude 

formation of this intermediate. While it is difficult if not impossible to prove 



148 

that the 1 ,4-biradical intermediate closes, it was possible to find another 

possible entry to the oxatitanacyclbutane reaction surface. a-

Oxatitanacyclobutanes are intermediates in the Wittig-like chemistry that 

titanium methylidenes and titanium alkylidenes undergo. 

hv, THF 

cyclopropyl 
carbinyl rearg. 

0 Cp2Ti~ 
'\ + 

0 6 

The presumed intermediate, 
oxatitanacyclobutane was not 
observed. Carbonyls investigated 
include benzaldehyde, 
benzophenone, cyclpentanone. 

Cp2Ti~ 
'\ 

0 
T=-95 oc 

steric interaction lowers r barrier to retro 2+2 in 
( aliphatic systems 

15J)~/ 
~i ____ ,...,. ..... ""' ...... _____ _ 

%----0 
Figure 15. Alkylidene transfer failed to provide evidence for an a­

oxatitanacyclobutane at low temperature. 
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The a-oxatitanacyclobutane is generated from the 2+2 cyclo-addition 

of the organic carbonyl to the metal-carbon double bond. As was shown in 

the first chapter, it is possible to generate carbon-titanium double bonds at 

very low temperatures by photolysis of the metallacycle derived from 

dimethylcyclopropene. Reaction of this titanium alkylidene with 

benzophenone, benzaldehyde, and cyclopentanone at temperatures as low 

as -100 °C, -95 °C, and -90 °C, respectively, did not generate any species that 

could be identified by NMR as an oxatitanacyclobutane. The reaction is 

shown in Figure 15. In a typical experiment, 3 equivalents of 

cyclopentanone and the dimethylcyclopropene metallacycle in THF was 

irradiated at -95 °C. Following the photolysis, the reaction was transferred 

at -95 oc to an NMR spectrometer. No signals attributable to an 

oxatitanacyclobutane were observed. Only products associated with 

alkylidene transfer were observed. A control experiment (same reaction 

conditions without photolysis) indicated that no thermal chemistry was 

taking place. This was also true for the benzaldehyde and benzophenone 

reactions. It should be noted that these oxatitanacyclobutanes are not the 

same ones that would be generated from the reaction of titanocene and the 

epoxides studied. Additionally, these a-oxatitanacyclobutanes are expected 

to be extremely sterically crowded. The alpha substituents on the ring point 

into the cyclopentadienyl rings. This type of steric congestion makes the 

aliphatic metallacycles more prone to retro 2+2 cleavage and by analogy 

should destabilize the oxatitanacyclobutane. Attempts to labelize 

photochemically the trimethylphosphine ligand of the titanocene 

methylidene trimethylphosphine adduct to generate free titanium 

methylidene proceeded in very low yield. (The steric congestion in the 
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alpha position is a result of using a titanocene alkylidene instead of a 

methylidene.) The starting material appeared to decompose faster than 

methylene transfer to the carbonyl occurred. 

An attempt was undertaken to trap the postulated 1 ,4-biradical. 

Reaction of 1 ,2-epoxy-6-heptene with titanocene in toluene was undertaken. 

If the biradical were long-lived enough, then an exo-cyclic cyclization might 

occur. Similar reactivity has been observed in the reaction of 

bis(cyclopentadienyl)titanium(Ill)chloride.22 Reaction of 1 ,2-epoxy-6-

heptene with titanocene resulted in -90% yield of 1,6-heptadiene as shown 

in Figure 16. No materials resembling cyclopentane rings were observed. 

This observation places the rate of decomposition of the biradical 

somewhere between 1 x 105 sec-1, the rate of 5-hexenyl trapping23and the 

rate of bond rotation, which could be around 1 x 109 sec-1 . Other radical 

clocks were not examined. 
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Observed Reactivity 

-20 °C, h v 

t-Butyl .. L + [cp,n] Cp2 Tio-1-Butyl 
toluene d 8 

toluene d 8 

-20 °C, h v 

-90% yield 

Possible Modes of Reaction 

• closure 

Figure 16. Attempted radical trapping. 

The thermal reaction of epoxides and metallacycles was investigated. 

No thermal reaction occurred between an epoxide and a metallacycle at -20 

°C . However, it was found that epoxides reacted with titanium 

methylidenes. Styrene oxide reacts with titanium methylidene (generated 

from a titanacyclobutane at 0 °C) to give a phenyl-substituted a-
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oxatitanacyclopentane. The chemistry associated with and the mechanism 

of formation of this interesting and thermally stable class of compounds 

will be detailed in a forthcoming paper.24 Reaction of the titanium 

methylidene with nonphenyl substituted epoxides resulted in intractable 

product mixtures from which approximately 15% olefin could be isolated. 

This was felt to be due to undefined reaction pathways to the 

thermodynamic product. Interesting the oxatitanacyclopentanes are 

thermally stable. The special instability of four-membered rings has been 

observed previously in other organometallic systems.25 

The reaction of photochemically generated titanocene with epoxides 

results in formation of a P-oxa metal-centered 1 ,4-biradical, which 

undergoes cleavage to form titanocene-j.l-oxo (which subsequently 

polymerizes), and an olefin. The reaction is believed to be stepwise based on 

labelling studies. Attempts to intercept the biradical failed. Interestingly, 

the metal-centered biradical generated from photolysis of the parent 

metallacycle undergoes reductive elimination to titanocene and 

cyclopropane, while the P-oxa metal-centered 1 ,4-biradical generated 

thermally from the reaction of titanocene and an epoxide undergoes the 

typical formal 2+2 cleavage reaction to yield olefin and titanocene-j.l-oxo . 

Partial responsibility for the irreversibility of the reaction is felt to lie in the 

thermodynamics and the fact that the material is a 1,4-biradical and as 

such already well on the reaction path to product. The oxygen carbon bond 

may be polarized and thus may facilitate cleavage. 
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Experimental Section: 

General Procedures. All work involving air- and/or moisture­

sensitive compounds was performed using standard high-vacuum or 

Schlenk-line techniques under argon purified by passage through columns 

of BASF RS-11 (Chemalog) and Linde 4A molecular sieves. Work involving 

manipulation of air-sensitive compounds was accomplished under 

nitrogen in a Vacuum Atmospheres drybox equipped with a -40 °C 

refrigerator and a dry-cool recirculator. Proton, deuterium, and carbon 

NMR spectra were recorded on a JEOL FX-90Q (89.9 MHz 1 H, 22.5 MHz, 

13C), or a JEOL GX-400 (399.65 MHz 1H, 61.35 MHz 2H, 100.67 MHz 13C). 

Proton chemical shifts are referenced to internal residual 

monoprotiosolvents. Carbon chemical shifts are referenced to the carbon 

signal of the deuterated solvents. Deuterium chemical shifts are 

referenced to natural abundance deuterium in the solvent. Gas 

chromatography analyses (VPC) were performed on a Shimadzu GC-Mini 

2 flame ionization instrument with a 50 meter capillary column and 

equipped with a Hewlett-Packard model 339A integrator. Preparative VPC 

was performed on a Varian 920 Aerograph with a thermal conductivity 

detector equipped with a Hewlett Packard 7127 A strip recorder (columns: 6 

ft by 114 in., SE-30 or a 4 ft by 112 in. silver nitrate column for volatile 

olefins). Thin-layer chromatography (TLC) was performed on precoated 

TLC plates ( silica gel 60 F-254, EM Reagents). Flash chromatography was 

by the method of Still et aJ.26, using silica gel 60 (230-400 mesh ATMk, EM 

Reagents). Elemental analysis was performed at the analytical facilities of 

the California Institute of Technology or at Galbraith Labs. Photolyses 

were performed with a 450 watt high pressure mercury Hanovia lamp. 
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Temperatures were maintained with clear pyrex dewars filled with 

isopropanol at the desired temperature. Temperatures cited reflect the 

final temperature that the bath obtained at the end of photolysis; typically, a 

change of only 10 °C was observed. All photolyses were pyrex filtered 

unless otherwise stated. 

Materials. The solvents were purified as follows: toluene, benzene, 

tetrahydrofuran, and diethyl ether were vacuum-transferred from sodium 

benzophenone ketyl into solvent flasks equipped with Teflon screw-type 

valves. Methylene chloride, acetonitrile, chloroform, pyridine were distilled 

from calcium hydride at atmospheric pressure and subsequently freeze­

pump-thaw degassed. Dimethylsulfoxide was distilled from calcium 

hydride at reduced pressure. Solvents used in photochemical reactions 

(typically, THF, benzene, and toluene) were vacuum-distilled directly into 

the reaction vessels from thoroughly degassed solvent pots containing a 

small amount of sodium-potassium alloy. Metallacycles derived from 

N eohexene27, and 2,2-dimethylcyclopropene28 were synthesized from 

adaptations of the literature procedure. 

recrystallized from methylene chloride. 

2,2-dimethyl-1-butyne (neohexyne), 

m-Chloroperbenzoic acid was 

Benzaldehyde, cyclopentanone, 

1 ,2-epoxy-3,3-dimethylbutane 

(neohexene oxide), 1 ,6-heptadiene, propene episulfide, phenyl acetylene, 

styrene oxide, trimethylene oxide (oxetane), and were purchased and 

distilled prior to use and degassed. Benzophenone, and 2,3-

epoxynorbornane (norbornene oxide) were sublimed under vacuum. 

Literature procedures were employed to synthesize 1 ,1-diphenylethylene 

oxide from benzophenone, trimethylsulfoxonium chloride and sodium 

hydride in dimethylsulfoxide and the product was carefully recrystallized 

prior to use.29 N-methyl-2-phenylaziridene was synthesized from the 
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literature procedure30 and was received as a gift from Joon Won Park. 2-

phenylaziridene was received as a gift from Joon Won Park. It was 

synthesized from the reaction of sodium azide with styrene oxide.31 The 

resulting 2-hydroxy-1-phenyl-1-ethylazide was treated with 

triphenylphosphine in diethyl ether at ambient temperature for 48 hours to 

give the phenylaziridene, which was distilled prior to use. Trans-styrene 

episulfide-d1 was prepared jointly with Joon Won Park. The experimental 

given here is reproduced from his thesis. 32 Diphenyl zirconocene was 

prepared from phenyl lithium and zirconocene dichloride by the literature 

method.33 

Trans-styrene-dt: A 500 mL Schlenk flask was charged with 29.88 g 

of zirconocene dichloride (1 02.22 mmole) and dissolved in 350 mLs of dry 

THF. In 20 mLs of THF 0.9957 g of lithium aluminum hydride (26.23 

mmole) was dissolved. This was cannulated into the zirconocene 

dichloride solution. The resulting white solid was washed three times with 

10 mLs of THF and then dried under vacuum. The solid was suspended in 

250 mLs of toluene and 9.50 mLs of phenylacetylene (8.83 g, 86.5 mmole). 

The reaction mixture was stirred 16 hours. The volatiles were removed 

under under vacuum. The resulting solids were washed with pentane and 

then suspended in diethyl ether. To this was syringed 15 mLs ofD20 (16.5 

g, 0.82 moles). The reaction mixture was stirred 6 hours and then filtered. 

The ether was removed by distillation at ambient. The labeled styrene was 

distilled from a trace of BHT at 40 °C and 15 Torr to give 6.5 g (61 mmole, 

72%) of product that contained a 12% proton impurity at the trans position. 

This resulted from inadvertent hydrolysis, not from isomerization of the 

product. 
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Trans-styrene oxide-d1: A small Schlenk was charged with 3.13 g of 

the trans-styene-d1 (29.8 mmole) and 50 mLs of methylene chloride. To this 

was added 5.20 g of m-chloroperbenzoic acid (30.1 mmole). The solution 

was stirred 24 hours, filtered and extracted with cold 10% NaOH. The 

mixture was dried over sodium sulphate and then was distilled to give 1.79 

g (14.8 mmole, 50%) of product. 1 HNMR CCDCl3) 8 7.32 (s, 5H, ph); 3.86 (d, 

1H, JHH=2.69 Hz); 2.79 (d, 1H, JHH=2.69 Hz). 

Trans-styrene episulfide-d1: Trifluoroacetic acid (0.64 mL, 8.3 mmol) 

was added to a mixture of trans-styrene oxide-d1 (1.00 g, 8.25 mmole) and 

triphenylphosphine sulfide (2.45 g, 8.32 mmole) in dry benzene (35 mLs) at 

room temperature. The solution was stirred overnight with excess sodium 

bicarbonate, after the solution was allowed to react for 2.5 hrs. After 

filtration, the solvent was removed under vacuum. Triphenylphosphine 

oxide was removed by filtration after the addition of 5 mLs of benzene. The 

product was purified by column chromatography, using benzene. 1 HNMR 

(C6D6) 8 7.02 (m, 5H, Ph); 3.42 (d, 1H, JHH= 5.4 Hz, a-CH); 2.28 (m, 0.14, H, 

~-CH); 2.16 (d, 1H, JHH=5.4 Hz, ~-CH). The 14% trans-a-protio impurity 

remained. In order to prevent polymerization, the product was stored as a 

frozen solution in benzene at -50 °C. 

Trans-1-deutero-3,3-dimethyl-1-butene: A Schlenk was charged in a 

drybox with 10.61 g of zirconocene hydrio chloride (41.1 mmole), prepared 

as described above from zirconocene dichloride and lithium aluminum 

hydride. The hydride was suspended in 150 mLs of toluene. To this 

suspension was cannulated 5 .0 mLs of 3,3-dimethyl-1-butyne (3.33 g, 40.5 

mmoles) dissolved in 10 mLs of toluene. The resulting solution was stirred 

overnight and then volatiles were removed under vacuum. The resulting 

solid was washed with 100 mLs of pentane. This was followed by drying 
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under vacuum. The solid was redissolved in 30 m.Ls of toluene. To this was 

syringed an excess of D20. The resulting suspension was stirred 8 hours . 

The volatiles were vacuum-transferred to a round-bottomed flask. The 

product was isolated by distillation from the toluene to give 2.60 g, 30.5 

mmole, 74%. The product was isotopically pure by NMR. 1HNMR (C6D6) 8 

5.82 (dd, 1H, JHH=17.5 Hz, JHD=l.6 Hz, H gem to tert-butyl); 4.92 (d, lH, 

JHH=1 7.5 Hz, H cis to tert-butyl and gem to deuterium); 0.96 (s, 9H, tert­

butyl). 

Trans-1-deutero-3,3-dimethyl-1,2-epoxybutane: A small Schlenk was 

charged with 2.00 g of m-chloroperbenzoic acid (11.59 mmole) and 70 m.Ls of 

methylene chloride under argon. The solution was cooled to 0 °C, and 7.63 

g of trans-1-deutero-3,3-dimethyl-1-butene (7.63 mmole) was added by cold 

syringe. The suspension was stirred at 0 °C for 2 hours and at room 

temperature for 5 hours. The volatiles were vacuum-transferred into a 

small round-bottomed flask. The product was isolated by distillation and 

subsequent preparative vapor-phase chromatography on an SE-30 column 

isothermally at 100 °C. The yield of the reaction was not determined, a s the 

entire crude product was not purified by VPC. 1HNMR (C7D3) 8 2.42 (d, lH, 

JHH=2.68 Hz); 2.21 (d, 1H, JHH=2.68 Hz); 0.78 (s, 9H, tert-butyl). 

1,2-Epoxy-6-heptene: A small Schlenk was charged with 0.86 g of1 ,6-

heptadiene (8.9 mmole, 2.9 eq) and 5 m.Ls of methylene chloride. A solution 

of 0.54 g of m -chloroperbenzoic acid in 10 mLs of methylene chloride 

wascannulated slowly into the diene at ambient temperature. The solution 

was stirred at room temperature for approximately 8 hours. The reaction 

mixture was cooled to 0 °C and filtered . The volatiles were removed under 

vacuum. The product was purified by preparative vapor phase 

chromatography on an SE-30 column isothermally at 150 °C. 1 HNMR 
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(CDC13) 8 5.75 (m, 1H); 5.00 (d, 1H); 4.94 (d, 1H); 2.90 (br m, 1H); 2.73 (pseudo 

t, 1H); 2.45 (m, 1H); 2.09 (br m, 2H); 1.53 (br m, 4H). 

NMR tube reaction: In a drybox, the metallacycle (typically this was 

the ~-tert-butyltitanacyclobutane, since it was thermally stable and had a 

simple NMR spectra) was weighed into a tared NMR tube. To this was 

added approximately 450 ~-tL of the deuterated solvent (typically toluene or 

THF). To this was then added, by microLiter syringe, the desired epoxide or 

episulfide. The tube was then quickly stoppered with a rubber septum, 

removed from the drybox, shaken to mix, and then cooled to the desired 

temperature (typically -20 °C). NMR spectra were recorded prior to 

photolysis to ensure that no thermal chemistry was occurring. NMR 

spectra were recorded at low temperature during the course of the 

photolysis by stopping the photolysis and recording the NMR spectra. 

Afterwards, the photolysis was restarted. Internal standards were used to 

determine mass loss; typically, there was negligible mass lost during the 

reaction. The yield of the reaction was determined by measuring the ratio 

of the integrated cyclopropane resonances to the resonances of the product 

(olefin). The ratio of starting metallacycle to epoxide was usually about 4:1. 

The organometallic product of the reaction of titanocene with an epoxide is 

titanocene-J.l.-oxo. This material occasionally precipitated from solution. 

When this occurred, it was removed by centrifuging it to the top of the NMR 

tube. If it appeared that the polymeric titanocene-~-t-oxo was interfering 

with the integration of the product olefin and the cyclopropane, then the 

volatiles were analyzed by NMR separately. In the deuterium-labeling 

experiments the volatiles were also vacuum-transferred to a separate NMR 

tube and reexamined by NMR and capillary gas chromatography, if 

necessary. 
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Sealed NMR Tube Reaction: A sealable NMR tube was charged in a 

drybox with the metallacycle. On a vacuum line the solvent was condensed 

in, followed by the epoxide (quantitatively vacuum-transferred from a 

previously tared Kontes flask). The tube was sealed. Its NMR spectrum 

was recorded at low temperature. The tube was irradiated and 

reexamined. Again, the volatiles were removed and examined by NMR and 

vapor-phase chromatography if necessary. 
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CHAPTER4 

Oxidation Chemistry of 

Bis(l15 -cyclopen tadienyl)ti tanacycl obutanes 
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Introduction: 

During investigations aimed at methylenating the carbonyl 

functionality of 2,3,4,5-tetrakis(trifluoromethyl)-2,4-cyclopentadiene-1-one, 

the reaction of 2,3,4,5-tetrakis(trifluoromethyl)-2,4-cyclopentadiene-1-one 

and bis(TJ5-cyclopentadienyl)titanacyclobutanes was investigated. 

Titanacyclobutanes undergo a thermally allowed retro 2+2 cleavage to 

generate an olefin and an equivalent of titanium methylidene, which is a 

powerful methylenating agent. The result of the reaction was not the 

fulvene expected but rather a cyclopropane and a new organometallic 

product, Figure 1 . This result was rationalized as a result of oxidatively 

induced fragmentation of the metallacycle. It is well known that 2,3,4,5-

tetrakis(trifluoromethyl)-2,4-cyclopentadiene-1-one is a strong oxidant. 

This oxidatively induced fragmentation was surprising, since it is typically 

thought that d0 organometallic compounds are difficult to oxidize. 

Cp2 Tio--t-Butyl 

+ ~ 

C>---t-Butyl 

Figure 1. Oxidative elimination of cyclopropane by 2,3,4,5-
tetrakis( trifl uoromethyl)-2,4-cyclopentadiene-1-one. 

t-Butyl 



Cp2TiO<R 
R' 

R=Me, R'=Me 
R=t-Butyl, R'=H 
R=isopropyl, R'=H 

+ 
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Oxidant 

0 

R 

C><R' 

Cl 
or Cp~e+ or Electrode 

Cl 

Figure 2. General oxidation of titanacyclobutanes. 

In order to investigate this reaction efficiently, a collaborative 

investigation was undertaken involving Caltech together with Mark Burk 

and William Tumas of Dupont. The introduction will detail much of their 

initial electrochemical results, while the results and discussion section will 

examine the stereochemical labelling studies performed here at Caltech. It 

should be remembered that this work is still in progress and that much of 

the work is still relatively preliminary. Despite this, the synergism between 

photochemistry and electrochemistry has unified and deepened current 

understanding of the mechanism of cyclopropane formation from 

titanacyclobutanes. The relationship between electrochemistry and 

photochemistry is based on the fact that both techniques probe the electronic 

nature of the material being investigated. 

The oxidation of a series of titanacyclobutanesl by 2,3 ,4 ,5-

tetrakis(trifluoromethyl)-2,4-cyclopentadiene-1-one was investigated, 
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Figure 2. The reaction was found to be quantitative by 1 H NMR. The 

organometallic product of the reaction was identified by single crystal x-ray 

diffraction as the titanium enolate of the dienone shown in Figure 3. The 

NMR spectra were too ambiguous to allow identification of the product 

without x-ray crystallography. The oxidation reaction of titanacyclobutanes 

to give cyclopropanes was found to proceed equally well with ferrocenium 

ions or DDQ. However, with ferrocenium ions or DDQ, the organometallic 

product was not a discrete or easily characterizable material. 

Cp2Tio--t-Butyl + 

Quantitative by NMR 

[:>--t-Butyl 

F3C 

NMR Data (CD2Cl2) 
1H: 8 6 .4 (Cp) 
13C: 8 171.1 (C-0) 

F 

19F: 8 -56.5, -54.7, -53.3 (mult., CF3) 

-51.5 (dd, a- C F 2), -47.5 (mult., a-C F2) 

60 (Ti-F) 

Figure 3. Identification of organometallic products of the 2,3,4,5-
tetrakis( trifluoromethyl}-2,4-cyclopentadiene-1-one oxidation. 
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While expanding the scope of the chemistry to include zirconocene, it 

was found that diphenylzirconocene yields biphenyl upon oxidation with 

either 2,3,4,5-tetrakis(trifluoromethyl)-2,4-cyclopentadiene-1-one or DDQ. 

This result is similar to some of the oxidation results that have been 

observed by Jordan and coworkers. They found that dimethylzirconocene 

upon oxidation by silver tetraphenylborate yields an unquantified amount of 

ethane in addition to a zirconocene methyl cation.2 In a similar reaction, 

Jordan found that oxidation of dibenzylzirconocene with ferrocenium 

tetraphenylborate in tetrahydrofuran yielded half an equivalent of 1,2-

diphenylethane, the benzyl coupling product. This is shown in Figure 4. 

The organometallic product was the THF adduct of zirconocenebenzyl 

cation.3 In these studies, a complete reaction was not proposed, but it was 

thought to involve radicals, since traces of benzylferrocene were observed in 

the ferrocenium oxidation of dibenzylzirconocene. Jordan's work is 

believed by the author to be the only other study of d0 metallocene oxidation. 

X-ray Structure 

Figure 4 . Other oxidations of early d0 transition metal complexes. 

The oxidation of 13-tert-butyltitanacyclobutane was studied, usmg 

electrochemical means. In acetonitrile with 0.1 M tetrabutylammonium 

tetraphenylborate as the electrolyte, the oxidation potential of the 
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titanacyclobutane was found to be 0.64 V vs. SCE and 0.33 V vs. Ag/Ag+ 

(AgN03). The oxidation was not reversible. Bulk electrolysis allowed the 

organic products to be identified. The organic product was te rt­

butylcyclopropane, the same product as found in the chemical oxidations. 

The heterogeneous electron transfer rate was measured by a rotating disk 

electrode as 3x1 o-4 em sec-1. 

The intermolecular electron transfer rate constant between ~-tert-

butyltitanacyclobutane and ferrocenium was measured by the method of 

Save ant and Vianello. 4 The technique was applied to ferrocene, 

methylferrocene and 1 ,1'-dimethylferrocene. A plot of the logarithm of the 

rate of electron transfer as a function of driving force, E 0 (Ti)-E0 (Fe+), yields 

a straight line as predicted by Marcus theory. Figures 5, 6, and 7 show 

some sample cyclic voltammograms and the resulting plots of rate vs. 

potential. 

0.1M TBA.BPh4 
CH3CN 

0.33 vs. Ag/Ag• (AgN03) 

[0.64 vs. SCE] 

aACKGAOUNO 

r 
""' 1 

HETEROGENEOUS ELECTRON TRANSFER RATE 
ko = 3 X 10"4 em s"1 (ROTATING DISK) 

Figure 5. Cyclic voltammogram of titanacyclobutane oxidation. 
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Figure 6. Mechanism of kinetic data . 

.. 

Cp2Fe 
0.1 M TBABPII•/CHlCN 

Cp2Fe (1.0 eq.) 

cp2TJ~t-Bu (7.0 eq.) 

0.1 M TBA+8Phi/CH3CN 

I 
201-lA 

l 
1 

f 

Reduction wave 
decreases with 
slower scan rates 

Addition of 1 eq. 
of titanacyclobutane 

Pseudo-first order kinetics: 

I oo = nFA[Fe](DFek[TI]) 1 12 
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Figure 7. Linear correlation between rate of electron transfer and redox 
potential. 

Fsrrocsn• E0( V vs. SCE) k (M'•·') 

ferrocene 0.41 340 
[Cp2Fe] 

1-methylferrocene 0.33 180 
[(CpMe}CpFe] 

1,1 '-dlmethylferrocene 0.29 140 
[(CpMe)2Fe] 

8.0 

5.8 

5.8 

~ 
5.4 

.5 

5.2 

5.0 

4.8 
0.20 0 .25 0.30 0 .35 

( Eo(Tl)-Eo) 

Linear correlation between reaction rate 
and redox potential of metallocene 
(Marcus Equation) 
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Current work includes attempts to perform ESR studies on the 

transiently formed radical cation by performing the oxidation in the probe 

of an ESR spectrometer. Additionally, the oxidation is being examined with 

other oxidants, d0 metal compounds, and d0 bimetallic systems. The 

successful oxidation of d0 organometallic species by both Jordan and our 

group potentially provides the opportunity to generate interesting materials 

previously thought to be inaccessible or difficult to synthesize. 

Furthermore, information gained from electrochemistry about 

titanacyclobutanes could help verify the observations and hypotheses 

concerning the photochemical reductive elimination of cyclopropanes 

discussed in the first chapter. Photochemistry and electrochemistry are 

both means to investigate the electronic nature of materials and therefore 

can provide complementary information by different routes. With the goal 

of greater understanding and potential for corroborating the theories put 

forth in Chapter 1, the mechanism of the oxidatively induced fragmentation 

was investigated. 
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Results and Discussion! 

The chemical oxidation of a series of metallacycles was investigated. 

In order to learn more about the mechanism of the reductive elimination, 

the oxidation was investigated using stereolabelled metallacycles. As was 

explained in Chapter 1, if the cyclopropane is formed with 100% retention of 

stereochemistry relative to the metallacycle, then a concerted reaction is 

indicated. If the cyclopropane is generated with less retention, then a 

stepwise reaction is more likely. These mechanisms are illustrated in 

Figure 8. 

Because the oxidants were relatively insoluble and became 

paramagnetic after oxidation, NMR could be employed only to examine the 

volatile products of the reaction. An exception to this was 2,3,4,5-

tetrakis(trifluoromethyl)-2,4-cyclopentadiene-1-one which, after oxidation of 

the organometallic species, went on to generate diamagnetic species. 

Reaction of stereolabelled metallacycles 1 and 2 with 

dichlorodicyanoquinone (DDQ) in methylene chloride resulted in formation 

of cyclopropanes. Integration of NMR resonances (1 H NMR for 1 and 

2DNMR for 2) indicated a 5.5±1 to 1 retention/isomerization, Figure 9 . This 

ratio was very similar to that found in the early stages of the 

photochemically induced reductive elimination. Control experiments 

clearly indicated that the cyclopropane was not isomerized by excess DDQ. 

Reaction of a pure sample of trans-2-deutero-isopropylcyclopropane in 

methylene chloride with excess DDQ showed no change after 24 hours at 

room temperature. 



[cp2Ti]+ 
[oxidant]~ 

174 

Cp2Tio--R + Oxidant 

! 
[ Cp2 Ti o--Rr + [ Oxidant]-'-

e~~~i ~~molysis 

+ [>-R [ Cp2 r()-R l + 

?t 
+ [Oxidant]..: 

organometallic product 
is dependent on oxidant 

[ Cp2Ti:)--R l + 

JR 
organometallic product 
is dependent on oxidant 

Figure 8. Concerted vs. stepwise reaction mechanism. 
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Cyclopropane Stereochemistry 

Oxidant retention /inversion 

0 20:1 (originally 25:1) 
F3CnCF3 

~ /, 

F3C CF3 

CD2Cl2 I RT 

100:1 by 2DNMR 

0 5.5:1 
CI:(XCN 

I I 
Cl CN 

0 

CD2Cl2 I RT 

5:1 by 2DNMR 

20:1 (originally 25:1) 

Not As Clean 

Figure 9. Stereochemical results. 
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Interestingly, the stereochemical ratio changes when other oxidants 

are employed. For example, oxidation of 2 with 2,3,4,5-

tetrakis(trifl uoromethyl)-2,4-cyclopentadiene-1-one cleanly affords 

cyclopropanes, which by 2D NMR are >1 00:1 retention:isomerization. 

Repeating the reaction with 1 using 1 H NMR to examine the 

stereochemistry of the cyclopropane generated also indicated that retention 

exceeded isomerization to the extent of >80:1. The actual stereochemical 

result observed was 20:1 retention:isomerization; however, the starting 

metallacycle was only 25:1 for the isomer indicated. These two ratios, 100:1 

and 80:1 are felt to be identical within the error range associated with NMR 

integrations. 

Oxidation of 1 with ferrocenium he~afluorophosphate also generated 

cyclopropane with a 20:1 isomer ratio favoring retention of stereochemistry. 

This again translates into an -80:1 ratio of retention to isomerization, since 

the starting material was only 25:1 for the isomer indicated. The 

stereochemical results are summarized in Figure 9. 

The reason that the stereochemistry is not the same for the oxidants 

examined is not entirely clear at this time. More oxidants with different 

oxidation potentials are being examined in the hope of further elucidating 

the mechanism. Only the ferrocenium cation is clearly an outer-sphere 

electron oxidant. The other oxidants may or may not be outer-sphere 

oxidants for the titanacycles. The different isomer ratios may depend on 

whether an inner sphere mechanism or outer-sphere mechanism were 

operative. Partial isomerization (as observed with DDQ) could be 

rationalized for an inner-sphere mechansim. An outer-sphere mechanism 

could favor retention (ferrocenium and 2,3,4,5-tetrakis(trifluoromethyl)-2,4-

cyclopentadiene-1-one). If the radical cation were very rapidly fragmenting 
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to cyclopropane, failure to stabilize the intermediate would mean a short­

lived intermediate and more retention. In an inner-sphere mechanism, 

coordination of the anion to the cationic metal center may stabilize the 

intermediate, allowing it to be longer-lived and allowing more 

isomerization to occur at the carbon-centered radical. 

. Cp2Tiy-R + homolysis 

o 

concer~ 
[>-R 

/ 
I 

D 

;\R 
Cp2Ti . ···- .. .., 0 + 

kcleave ~ !s-ot 

Figure 10. Possible oxidation mechanisms. 

Nonetheless, these observations suggest that the mechanism of the 

fragmentation is either through a very short-lived intermediate, or the 

mechanism is concerted. If an intermediate is invoked, it must be short-

lived, since none of the cyclopropanes were formed with complete 

isomerization (1 :1 retention:isomerization). A mechanism is proposed in 

Figure 10. Currently, this is only speculation. 

In order to further probe the reaction mechanism of this oxidation, 

the radical trap used in Chapter 1 was employed. The titanacyclobutane 
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derived from titanocene methylidene and 3,3-dimethylcyclopropene, 3, was 

oxidized at ambient temperature with DDQ. NMR examination of the 

volatiles revealed 4-methyl-1 ,3-pentadiene as the major product by 

comparison with an authentic sample. Repeating the reaction with bis(T\5-

methylcyclopentadienyl)ferrocenium tetrafluoroborate and metallacycle 3 

in THF at 0 °C also yielded 4-methyl-1 ,3-pentadiene as the major product. 

Traces of two other olefins were also present but could not be identified. The 

4-methyl-1 ,3-pentadiene could be formed directly from the oxidation of 3, or 

it could be formed from the transition-metal catalyzed rearrangement of an 

initially generated 2,2-dimethylbicyclobutane. Rearrangements of 

bicyclobutanes to butadienes by metals such as silver and by Lewis acids 

such as zinc iodide are well documented.5 Reaction of 3 with ferrocenium 

hexafluorophosphate in methylene chloride at -78 oc for 4 hours followed by 

removal of the volatiles at -78 °C and analysis by NMR indicated 4-methyl-

1 ,3-pentadiene as the only volatile product. This result indicates that if 

bicyclobutane was indeed being formed, it had to rearrange at -78 oc in 

order not to be observed by this technique. Therefore, it seems unlikely that 

bicyclobutane is formed. This set of reactions is illustrated in Figure 11. 
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Comparison of photochemistry and oxidation chemistry 

hv, THF, -78 oc 
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Two Possible mechanisms: 

_ox_i_da_,~~t <rD>< ~­
externally catalyzed rearrang. 

Bicyclobutane, if formed, 
rearranges below -78 °C 

oxidant ... 

-78 oc 
~warming,.? 

Figure 11. Radical clock oxidation. 
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In order to circumvent the restriction of examining only the volatiles, 

the reaction of 3 with 2,3,4,5-tetrakis(trifluoromethyl)-2,4-cyclopentadiene-1-

one was investigated. Reaction of 2,3,4,5-tetrakis(trifluoromethyl)-2,4-

cyclopentadiene-1-one with metallacycles generates, as the organometallic 

product, a titanium enolate, which is diamagnetic and does not interfere 

with NMR spectrometry, Figure 3. Reaction of 3 with 2 ,3,4,5-

tetrakis(trifluoromethyl)-2,4-cyclopentadiene-1-one in toluene at -78 °C 

followed by warming to room temperature and NMR examination revealed 

that a single product was formed in 100% yield. This material is as of yet 

unidentified. 6 The reaction was complicated by the fact that 2 ,3 ,4,5-

tetrakis( trifl uoromethyl)-2 ,4-cyclopen tadiene-1-one forms a charge-transfer 

complex with toluene. This unidentified material was observed in other 

solvents, too. Reaction of 2 ,3,4,5-tetrakis(trifluoromethyl)-2,4-

cyclopentadiene-1-one with 3 in methylene chloride at -78 °C, followed by 

NMR analysis at -70 °C, indicated the presence ofunreacted 3 and 4-methyl-

1 ,3-pentadiene and the unknown compound mentioned previously. Upon 

warming, it was apparent from the integrations, 3 was reacting to form 4-

methyl-1 ,3-pentadiene, which was then going on to react in some 

unspecified manner to yield the unknown compound. Reaction of titanium 

alkylidene phosphine adduct with 2,3,4,5-tetrakis(trifluoromethyl)-2 ,4-

cyclopentadiene-1-one did not yield any identifiable products. 

The scope of the oxidation-promoted fragmentation was examined 

after oxidation techniques were successfully employed to increase the yield 

of the reductive elimination of lactones from 2 -oxa -5-

oxotitanacyclohexanes.7 Reaction of DDQ or 2 ,3,4 ,5-

tetrakis(trifluoromethyl)-2,4-cyclopentadiene-1 -one and the a- e x o­

methylene metallacycle (derived from a titanium methylidene and 1 ,1 -
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dimethylallene) failed to generate cleanly the expected methylene 

cyclopropane. Likewise, attempts to oxidize a,~-diphenyltitanacyclobutene 

did not yield any tractable products. It is possible that 1,2-

diphenylcyclopropene was formed but was not stable to the reaction 

conditions. These two reactions, Figure 12, were not further examined. 

decomposition 

Figure 12. Unsucessful oxidations. 

Examination of the oxidation chemistry of bicyclic metallacycles was 

much more successful. Oxidation of the metallacycle derived from 

norbornene and the titanium methylidene was examined in methylene 

chloride with a variety of oxidants. With 2,3,4,5-tetrakis(trifluoromethyl)-

2,4-cyclopentadiene-1-one the yield of the expected product , 

cyclopropylnorbornene (an authentic sample was prepared from Simmons­

Smith cyclopropanation of norbomene) was 91%. With DDQ the yield was 

26% and with ferrocenium hexafluorophosphate the yield was 57%. The 

cyclopropylnorbornene was the only observed product of these oxidations. 
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The yields from the DDQ and ferrocenium hexafluorophosphate may be 

artificially low, since control experiments indicated that it was extremely 

difficult to vacuum-transfer the product out of the reaction mixture 

quantitatively. The yield of the fragmentation of the norbornene 

metallacycle using 2,3,4,5-tetrakis(trifluoromethyl)-2,4-cyclopentadiene-1-

one was found to be very dependent on stoichiometry. Excess oxidant 

lowered the yield of the reaction. These reactions are illustrated in Figure 

13. 

dieneone 0 oc 
CD2Cl2 CJ reaction slow, insertion ? 

dieneone 0 oc 

dieneone 0 °C 

CD2C~ 

only volatile 

tentative assignment 

Figure 13: Oxidation of bicyclic metallacycles. 

91 % 

100% 

The oxidation of the thermally unstable cyclohexene metallacycle 

was examined using 2,3,4,5-tetrakis(trifluoromethyl)-2,4-cyclopentadiene-1 -

one, Figure 13. The only volatile product was [5.1.0] bicycloheptane in low 
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yield. The organometallic fraction of the reaction upon redissolving 

indicated that the the metallacycle was not entirely reacted. Additionally, a 

second product was observed, which tentatively appears to be a result of 

insertion of the oxidant into the titanacyclobutane ring. The low 

temperature at which the reaction was run explains the unreacted starting 

material. Another very preliminary example of insertion chemistry with 

2,3,4,5-tetrakis(trifluoromethyl)-2,4-cyclopentadiene-1-one may have been 

observed in the reaction of 2,3,4,5-tetrakis(trifluoromethyl)-2,4-

cyclopentadiene-1-one with ~-dimethylsilylatitanacyclobutane. This 

assignment is only preliminary, and verification that these materials are 

correctly identified will probably require x-ray crystal structure 

determination. 

Preliminary results indicate that the oxidation of trisubstituted 

metallacycles can also be achieved. It should be remembered that the 

trisubstituted metallacycles are photochemically inert. Oxidation of the 

metallacycle shown in Figure 13 with 2,3,4,5-tetrakis(trifluoromethyl)-2,4-

cyclopentadiene-1-one provides in almost 100% yield a product that by 1 H 

NMR appears to be the product shown. The product has only 1 vinyl group 

and a single methyl resonance as well as only a single resonance for the 

norbornane ring protons, confirming that the symmetry of the product 

indicated is present in the sample. Further characterization is being 

undertaken. 
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C>-t-Butyl 

hv, ethylene 
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trace 
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quantitative 

Figure 14. Preliminary oxidations of titanacyclopentane. 

Preliminary examinations into the reaction of 2,3 ,4 ,5 -

tetrak.is( trifluoromethyl)-2,4-cyclopentadiene-1-one and ti tanacyclopen tane 

indicate that the fragmentation to cyclobutane is possible, Figure 14. 

Photolysis of the P-tert-butyltitanacyclobutane in toluene in the presence of 

excess ethylene yielded, upon warming, a 1 :1 :1 mixture of unreacted 

metallacycle, tert-butylcyclopropane, and titanacyclopentane. The oxidant 

was added to the reaction mixture, and after 1 hour at room temperature, 

the volatiles were quantitatively transferred to an NMR tube and examined 

by NMR. By comparison to an internal standard, the amount of te rt ­

butylcyclopropane found was exactly that expected from oxidation of the 

remaining P-tert-butyltitanacyclobutane. A trace of cyclobutane was al so 

observed. This indicates that either the yield of the reaction is very low or 

that the oxidation was stopped prematurely. The quantitative yield of ter t-
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butylcyclopropane indicates that the oxidation of titanacyclopentane to 

cyclobutane must be much slower than that of the titanacyclobutane to 

cyclopropane. The reaction needs to be reinvestigated at higher 

tern per a tures. 

The results of the electrochemical oxidation studies are relevant to 

the photochemistry of titanacyclobutanes. In the photochemistry studies, 

the metal was formally reduced through a ligand to metal charge transfer 

(LMCT). Preliminary studies investigating the chemical reduction of 

titanacyclobutanes using sodium naphthalide, sodium potassium alloy, 

and electrochemical means have all yielded the same products. These 

products have not been unambiguously identified, but they appear to be 

aliphatic materials derived from reduction and protonation of the ring. 

Neither olefin, from retro 2+2, nor cyclopropane was observed. Concurrent 

with the formal reduction of the metal in LMCT, the titanium-carbon bond 

or perhaps the titanium-cyclopentadiene bond is formally oxidized. It is 

clear that the reductive elimination of cyclopropane is a result of bond 

oxidation, not a result of metal center reduction. Chemical reductions did 

not yield cyclopropanes. In the oxidation of the titanacyclobutanes, the 

HOMO is oxidized, followed by fragmentation to cyclopropane. The bond 

oxidized is likely to be a metal-a-carbon bond, not a metal-cyclopentadiene 

bond, or a cyclopentadiene ligand. This assumption is based on the 

similarity of this oxidation to the photochemistry which was presumed to 

proceed through an LMCT with the metal-a-carbon being the HOMO. The 

photochemistry possibly could be explained by cyclopentadiene to metal 

charge transfer followed by cleavage of the weaker metal-a-carbon bond. 

The same could be true of the oxidation chemistry. The metal 
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cyclopentadiene bond could be oxidized, followed by cleavage of the weaker 

bond. 

1) This chapter 
2) Chapter 1, this Thesis 

Photochemistry 

2) 

3) 

3) 

3) 

[>-A 
initially 6:1 

reten. : isomer. 

Biphenyl 

Benzyl 
Radicals 

Oxidation 
..................... ....,.. ..... 

1) [>-A 
stereochemistry variable 

from 100:1 to 7:1 reten. : isom. 

1) Ethane 

4) Biphenyl 

(Ph)CH2C H 2(Ph) 

S) evidence for 
benzyl radicals 

3) Pourreau, D. B.; Geoffroy, G. L. Adv. Organomet Chern. 1985,24, 249. 
4) Jordan, R. F.; Dasher, W. E.; Echols, S. F. f. Am. Chern. Soc. 1986, 108, 1719. 
5) Jordan, R. F.; LaPointe, R. E.; Chandrasekhar, B. 5.; Echols, S. F.; Willett, R. 

f. Am. Chern. Soc. 1987, 109, 4111. 

Figure 15. Comparison of photochemistry and oxidation chemistry for a 

series of zirconocenes and titanacyclobutanes. 

A comparison of the photochemistry and oxidation chemistry of 

titanacyclobutanes and a few representative zirconocene alkyls and aryls 
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reveals many similarities, as shown 1n Figure 15. Except for the 

photochemically induced reductive elimination of biphenyl from 

diphenylzirconocene, which is considered to be concerted, the other three 

photochemical reactions all provide evidence of radical intermediates. The 

photochemically induced fragmentation appears to provide more evidence 

of intermediates prior to formation of the final products. The chemical 

oxidations do not seem to indicate the presence of intermediates as clearly, 

although there are indications of radicals that are even shorter-lived than 

the ones photochemically generated. Benzyl radicals are likely present in 

the oxidation of dibenzylzirconocene by ferrocenium tetraphenylborate, as 

evidenced by traces of the coupling product, benzylferrocene. This may be a 

somewhat special case since benzyl radicals are stabilized radicals. As 

evidenced by almost exclusive retention in the stereochemical studies and a 

failure to observe intermediates, the other oxidation reactions indicate that 

the fragmentation reaction is, if not concerted, at least faster than the 

photochemical fragmentation. 
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Figure 16. Similarity of the formal oxidation of a metal carbon bond by both 

the photochemically induced reductive elimination and the oxidatively 

induced fragmentation. 

It is important to note that differentiation between a concerted 

reaction and a stepwise reaction is not always distinct, and undoubtedly 

many reactions fall into the gray area between these two extremes. The 

assignment of a reaction as concerted or stepwise is dependent on the time 

resolution of the mechanistic probe. Stereochemistry is a probe with 

resolution on the time scale of a bond rotation. Any interaction that affects 
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bond rotation affects the nature of the probe. Both the oxidation and 

photochemical experiments indicate that once the metal carbon bond is 

oxidized, the complex fragments and eliminates cyclopropane very rapidly. 

The fragmentation may be rationalized as an attempt by the metal to 

undergo reductive elimination and to reestablish a stable electron 

configuration. The photochemically generated electron hole pair and the 

oxidatively generated metal-carbon hole provide a unifying mechanism for 

understanding the formation of cyclopropanes from titanacyclobutanes. 
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Experimental Section: 

General Procedures. All work involving air- and/or moisture­

sensitive compounds was performed using standard high-vacuum or 

Schlenk-line techniques under argon purified by passage through columns 

of BASF RS-11 (Chemalog) and Linde 4A molecular sieves. Work involving 

manipulation of air-sensitive compounds was performed under nitrogen in 

a Vacuum Atmospheres drybox equipped with a -40 oc refrigerator and a 

dry-cool recirculator. Proton, deuterium, and carbon NMR spectra were 

recorded on a JEOL FX-90Q (89.9 MHz 1 H, 22.5 MHz, 13C), and a JEOL GX-

400 (399.65 MHz 1H, 61.35 MHz 2H, 100.67 MHz 13C). Proton chemical 

shifts are referenced to internal, residual monoprotio-solvents. Carbon 

chemical shifts are referenced to the carbon signal of the deuterated 

solvents. Deuterium chemical shifts are referenced to natural-abundance 

deuterium in the solvent. Gas chromatography analyses (VPC) were 

performed on a Shimadzu GC-Mini 2 flame-ionization instrument with a 50 

meter capillary column and equipped with a Hewlett-Packard model 339A 

integrator. Photolyses were performed with a 450 watt high-pressure 

mercury Hanovia lamp. Temperatures were maintained with clear pyrex 

dewars filled with isopropanol at the desired temperature. Temperatures 

cited reflect the final temperature that the bath reached at the end of 

photolysis; typically, a change of only 10 oc was observed. All photolyses 

were pyrex-filtered. 

Materials. The solvents were purified as follows: toluene, benzene, 

tetrahydrofuran, and diethyl ether were vacuum-transferred from sodium 

benzophenone ketyl into solvent flasks equipped with Teflon screw-type 

valves. Methylene chloride, acetonitrile, chloroform, were distilled from 
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calcium hydride at atmospheric pressure and subsequently freeze-pump­

thaw degassed. Deuterated solvents, dg toluene, dg tetrahydrofuran, and d6 

benzene were vacuum-transferred into the reaction vessel from degassed 

solvent pots containing a small amount of sodium/potassium alloy. 

Deuterated methylene chloride was dried over CaH2 and subsequently 

freeze-pump-thaw degassed. Dichlorodicyanoquinone and 

tetrachloroquinone (chloranil) were recrystallized from methylene chloride 

and stored in a drybox. Ferrocenium hexafluorophosphate was received as 

a gift from John Brewer. It was synthesized from the oxidation of ferrocene 

by sulfuric acid and oxygen, followed by metathesis of the salt with sodium 

hexafl uorophosphate and subsequent recrystallization. 2,3,4,5-

Tetrakis( trifl uoromethyl)-2 ,4-cyclopentadiene-1-one was received as a gift 

from Mark J . Burk (Dupont, Central Research and Development, 

Wilmington, Delaware) and was synthesized in a proprietary manner from 

hexafluoro-2-butyne and carbon monoxide with a rhodium catalyst. It was 

purified by sublimation. Stereolabelled metallacycles were synthesized as 

previously described in Chapter 1. Stereochemical studies undertaken at 

Dupont used the same stereolabelled titanacyclobutanes. Ethylene was 

polymer grade from Matheson and was freeze-pump-thaw degassed on a 

high-vacuum line immediately prior to use. 

Standard Stereochemical Experiment: In a drybox the stereolabelled 

metallacycle (-10 mgs) was placed in a 10 mL round-bottomed flask 

equipped with a stir bar and fitted with a high-vacuum valve and adapter. 

The oxidant was also weighed into the flask. Typically, for DDQ and the 

ferrocenium salts, 2-3 equivalents were employed because of their limited 

solubility. If tetrakis(trifluoromethyl)-2,4-cyclopentadiene-1-one was 

employed as the oxidant, then only one equivalent was used. On a vacuum 
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line, solvent was condensed into the flask. Temperatures were maintained 

below room temperature so that thermal chemistry was not observed. 

Additionally, care was taken to keep light away from the reactions, since 

light isomerizes the stereochemical centers of the starting metallacycles. 

After the reaction was complete, the volatiles from the reaction mixture 

were vacuum-transferred into an NMR tube and the spectrum recorded. 

The course of the reactions could not be followed directly in the initital NMR 

tube because of the paramagnetic nature of the products and to the 

heterogeneous nature of the reaction. 

Typical Oxidation Experiment: In a drybox an NMR tube was 

charged with the desired titanacycle. A volatile internal NMR standard 

was then chosen such that its resonances in an NMR spectrum did not 

overlap with that of the starting material. Solvent was added by syringe in 

the drybox and the tube was stoppered with a latex septum. Solvent was 

added by syringe in the drybox and the tube was stoppered with a latex 

septum. Outside the drybox the septum was sealed with parafilm and the 

NMR spectra were recorded. The tube was retumed to the drybox and the 

desired oxidant was added to the tube. The reaction was allowed to proceed 

at the desired temperature. The volatile components of the reaction were 

then vacuum-transferred into another NMR tube. Additional deuterated 

solvent was added to the remaining organometallic materials. The NMR 

spectrum of both tubes was then recorded. The ratio of the starting 

material to the internal standard and the ratio of product to internal 

standard were used to calculate the yield of the reaction. If the oxidant was 

tetrakis( trifl uoromethyl)-2,4-cyclopentadiene-1-one, then the vola tiles did 

not need to be vacuum-transferred to another NMR for analysis. This is 

because the tetrakis(trifluoromethyl)-2,4-cyclopentadiene-1-one is extremely 



193 

soluble, and the resulting products are typically diamagnetic product. If 

the reaction was paramagnetic, then the volatiles were vacuum­

transferred as before. 
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