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Abstract

The field of cavity optomechanics, which concerns the coupling of a mechanical object’s motion
to the electromagnetic field of a high finesse cavity, allows for exquisitely sensitive measurements
of mechanical motion, from large-scale gravitational wave detection to microscale accelerometers.
Moreover, it provides a potential means to control and engineer the state of a macroscopic mechan-
ical object at the quantum level, provided one can realize sufficiently strong interaction strengths
relative to the ambient thermal noise. Recent experiments utilizing the optomechanical interaction
to cool mechanical resonators to their motional quantum ground state allow for a variety of quantum
engineering applications, including preparation of non-classical mechanical states and coherent opti-
cal to microwave conversion. Optomechanical crystals (OMCs), in which bandgaps for both optical
and mechanical waves can be introduced through patterning of a material, provide one particularly
attractive means for realizing strong interactions between high-frequency mechanical resonators and
near-infrared light. Beyond the usual paradigm of cavity optomechanics involving isolated single
mechanical elements, OMCs can also be fashioned into planar circuits for photons and phonons,
and arrays of optomechanical elements can be interconnected via optical and acoustic waveguides.
Such coupled OMC arrays have been proposed as a way to realize quantum optomechanical memo-
ries, nanomechanical circuits for continuous variable quantum information processing and phononic
quantum networks, and as a platform for engineering and studying quantum many-body physics of
optomechanical meta-materials.

However, while ground state occupancies (that is, average phonon occupancies less than one)
have been achieved in OMC cavities utilizing laser cooling techniques, parasitic absorption and
the concomitant degradation of the mechanical quality factor fundamentally limit this approach.
On the other hand, the high mechanical frequency of these systems allows for the possibility of
using a dilution refrigerator to simultaneously achieve low thermal occupancy and long mechanical
coherence time by passively cooling the device to the millikelvin regime. This thesis describes efforts
to realize the measurement of OMC cavities inside a dilution refrigerator, including the development
of fridge-compatible optical coupling schemes and the characterization of the heating dynamics of
the mechanical resonator at sub-kelvin temperatures.

We will begin by summarizing the theoretical framework used to describe cavity optomechanical



vii
systems, as well as a handful of the quantum applications envisioned for such devices. Then, we
will present background on the design of the nanobeam OMC cavities used for this work, along
with details of the design and characterization of tapered fiber couplers for optical coupling inside
the fridge. Finally, we will present measurements of the devices at fridge base temperatures of
T; = 10 mK, using both heterodyne spectroscopy and time-resolved sideband photon counting, as
well as detailed analysis of the prospects for future quantum applications based on the observed

optically-induced heating.
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Preface

I joined the Painter group somewhat late in my first year (March 2010, I think; at least that’s when
I started keeping a lab notebook). While there were a number of projects ongoing in the group
at the time, Oskar suggested two in particular where he thought I might be a good fit. The first
project, manned by Raviv Perahia and Justin Cohen, involved combining the so-called “zipper”
optomechanical cavities with electrostatic actuators in active semiconductor material to make a
tunable laser. The other option was to work with Amir Safavi-Naeini and Thiago Alegre, who
at the time were attempting to measure an optomechanical analog of electromagnetically-induced
transparency as a route to measuring Amir’s new “snowflake” crystal design. I chose the former for
two reasons. First, Raviv’s response to my initial inquiries was something along the lines of “Here’s
when I'm in lab. Start coming by and we’ll eventually find a use for you” whereas Amir’s was “I
guess I can give you some papers to read”. Second, I thought “Hey, cool! Lasers!”. I have continued
to apply this deep level of consideration and introspection throughout graduate school and life in
general.

The tunable laser project would eventually result in a nice little paper and then sort of fizzle
out, while the EIT work would lead to a Nature paper and eventually roll into the other silicon
optomechanical crystal work headed by Jasper Chan, which resulted in a number of landmark
results in optomechanics, including one of the first demonstrations of ground state cooling in, the
first observation of motional sideband asymmetry, the first demonstration of wavelength conversion,
etc. In retrospect, maybe that was a questionable choice.

Still, the laser project had its upsides. In the several months in which we worked together
Raviv proved an excellent mentor, helping me ease into working in the lab and generally functioning
well within Oskar’s group. This project would also introduce me to Justin, who would remain my
constant lab partner throughout the next several years. In addition to starting to assist with actual
measurements, Raviv tasked me with figuring out how to properly simulate the expected mechanical
tuning of our structures including the intrinsic stress of the material, a task made difficult mostly by
the general crumminess of COMSOL’s documentation. This proved ideal, as it gave me something
concrete on which I could work alone with a reasonable expectation of success and which played to

my natural strengths (i.e., sitting in front of a computer and writing code). It also ended up setting
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the tone for the working relationship Justin and I would have in the years to come, where I would
focus on simulation and device design while Justin would work on device fabrication. This is also
how I have come to possess the dubious distinction of having spent the least time in the cleanroom
of all of Oskar’s students (though not zero time, contrary to popular belief).

By the time the laser work was published, Raviv had moved on to the real world and Oskar
suggested that Justin and I work on coupling self-assembled quantum dots in gallium arsenide
optomechanical resonators. This built nicely upon the III-V fabrication experience Justin had ac-
quired over the course of the laser work, and had the potential to give us a shortcut of sorts to
quantum optomechanics by coupling the mechanical and optical resonators directly to a quantum
two-level system. We set about designing, fabricating, and measuring electrostatically tunable cav-
ities in quantum dot material, with the initial goal of enabling simple spectral alignment of an
optical cavity with a particular quantum dot. At the same time, I began working on incorporating
high-frequency mechanics into the design and attempting to calculate how strong we expected the
quantum dot/phonon coupling to be.

Sadly, this project was impeded by a number of factors. For one, all other ongoing projects
in the lab at that time involved silicon devices, which meant that by a large margin most of the
device processing in our cleanroom was of silicon chips. Due to the finicky nature of reactive ion
plasma etching, and the very different etch chemistries of silicon and gallium arsenide, this meant
that fabricating good devices was pretty tricky (real talk for anyone not in the Painter group: when
I say “good” I mean optical quality factors of at least 40 — 50,000). The best results we obtained
came after monopolizing the cleanroom for a solid weekend doing nothing but etching devices, after
which the last chip came out pretty well. Another difficulty was testing the devices. As the ongoing
effort to cool silicon nanobeam OMCs into the ground state ramped up, it came to encompass all
available optical tables across both of the group’s labs. This meant that there were long stretches
of time where we could not test devices for fear of ruining someone else’s experiment.

After a fair amount of struggling on this project, we came to the conclusion that the numbers
probably were never going to quite work out: the optical s were too low, the estimated coupling
between the quantum dots and a high-frequency phonon was too weak, and the lifetimes and dephas-
ing times we expected in our quantum dots (based on earlier measurements by Kartik Srinivasan)
were too large. Moreover, we still hadn’t really nailed down exactly what we wanted to with such
a system. Eventually we made the painful decision to cut our losses, chalk the project up as a
dead-end, and move on. Looking back, I think part of the problem was the relative inexperience
of Justin and myself. As the earlier experiment with Raviv involved free-space photoluminescence
measurements, we started this project with zero experience in many of the basic techniques used in
the lab, such as optical fiber taper testing, heterodyne mechanical spectroscopy, pulling a new fiber

taper, etc. Over the course of the project we had to learn most of this on our own with relatively



XV

little guidance (typically just enough not to break anything) due to the focus on the ground state
experiment, which led to a lot of fumbling about on our part. This was extremely valuable in some
sense, as one tends to learn quite a bit in the course of failing, but ended up stretching the project
on much longer than was probably advisable.

Around this time the silicon nanobeam experiments had really started to pay off, and the next
major goal was to measure the devices inside a dilution refrigerator. At the time Jasper and Simon
Groblacher (and later Amir) had already begun testing free-space couplers as a potential route to
optically coupling to OMCs inside a fridge, with mixed results. Oskar suggested that Justin and I
work on a different type of coupler involving direct coupling of a cleaved fiber to a tapered on-chip
waveguide (the so-called “butt couplers” which are described in this thesis). As we hoped to avoid
some of the issues related to two-photon absorption in silicon, this project initially focused on using
silicon nitride. While we would eventually move back to silicon due to the much larger achievable
optomechanical coupling strengths, the initial coupler work would eventually prove useful for cou-
pling to optomechanical accelerometers developed by Alex Krause and Tim Blasius. In addition, the
high stress of the nitride gave us the ability to fabricate extremely long, fully suspended, efficiently
coupled waveguides. This would lead to a ongoing collaboration with Jeff Kimble’s group focused on
trapping atoms in the near-field of the optical photonic crystal waveguide. My involvement in this
project was mostly on the front end, helping to create the initial designs for the trapping waveguides
and calculating the relevant Casimir-Polder forces on the atoms.

Eventually, Oskar purchased a dilution fridge and our attention turned back to the measurement
of devices in the fridge. As most of the original silicon nanobeam team was gone or leaving shortly,
Justin and I started to take ownership of the project, assisted heavily in the beginning by Simon, Jeff,
and Amir. This led to the work which forms the bulk of this thesis, as well as other measurements

detailed in Justin’s thesis.



Chapter 1

Fundamentals of Cavity
Optomechanics and
Optomechanical Crystals

This chapter will present the basic theoretical framework used to describe the optomechanical in-
teraction and the measurement of mechanical motion within such systems, with a particular eye
towards the sideband-resolved systems which are the focus of this thesis. Some of the proposed
quantum applications for such systems will also be briefly summarized, as they serve to motivate
the experiments presented in this work. Finally, the basic theory and design of the specific optome-
chanical devices studied in the Painter group (the so-called optomechanical crystals, or OMCs) will
be presented. As much of this material has already been presented elsewhere, this chapter will aim
to present enough detail to support the experimental work while trying to avoid excessive redun-
dancy. In particular, the initial design of the OMC structures presented in section was largely
performed by previous Painter group students Jasper Chan and Amir Safavi-Naeini, and full details

of the design process and associated theory can be found in their theses [1,[2] and related papers.

1.1 Cavity Optomechanics

The canonical model of a cavity optomechanical system is shown in Fig. The optical cavity is
taken to be a simple Fabry-Perot cavity, with optical resonance frequency w. and photon annihilation
(creation) operator @ (a'), where one end mirror of the cavity is mechanically compliant (shown here
as a massive mirror mounted on a spring) and behaves as a simple harmonic oscillator with resonant
frequency wy, and phonon annihilation (creation) operator b (I;T) In the absence of any interaction,

the optical and mechanical resonators have the bare Hamiltonian

H = hwea'a + hwnb'b, (1.1)
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Figure 1.1: Canonical cavity optomechanical system. An optomechanical system may be
modeled as a Fabry-Perot cavity with a moving end mirror, where the intracavity optical field
(photon annihilation operator @) couples to the mechanical oscillator (phonon annihilation operator

l;) via the interaction Hamiltonian Hin = hgoata (l; =+ Z;T) This produces phase modulation on an

optical cavity drive (photon annihilation operator d;,), and phase sensitive detection of the cavity
reflection may be used to measure the mechanical oscillation by studying the resulting photocurrent
noise power spectral density Sir.

where @ and a' obey the usual bosonic commutation relation [&,d*] = 1, and similarly for b and
bt. While the fundamental microscopic interaction between the optical and mechanical degrees of
freedom can be rigorously derived from first principles for this model system , a more intuitive
derivation of the interaction Hamiltonian comes from noting that the optical resonance frequency
obeys the relation w. = nc/2L, n € Z, where ¢ is the speed of light in vacuum and L is the total
cavity length. As the length in turn depends on the position of the mechanical oscillator, &, via
the relation L = Ly + &, the optical frequency will be dependent upon z. For small amounts of

mechanical motion, we can make a Taylor expansion of w. (&) about & = 0 to first order and obtain
we (2) = we + —1, (1.2)

where w, is taken henceforth as the optical resonance frequency at the unperturbed length Lg (i.e.,
wc(0)). Using the definition of canonical position in terms of phonon creation and annihilation opera-
tors & = Tyzpr (l; + BT), where xzpp is the zero-point amplitude of the mechanical oscillator, we may
combine Egs. and [T.2] to obtain the lowest order interacting Hamiltonian of the optomechanical
system

H = hweitd + hwnb'b + hgoa'a (6 + BT) : (1.3)

where go = xzprwe/ Lo is the fundamental optomechanical interaction rate, physically representing

the optical frequency shift due to the zero-point motion of the mechanical oscillator. From this
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Figure 1.2: Sideband-resolved optomechanics. The optomechanical interaction scatters a coher-
ent drive tone (gray arrows) to produce Stokes (red arrows) and anti-Stokes (blue arrows) sidebands
corresponding to phonon emission and absorption, respectively. In the sideband resolved regime, the
modified density of states provided by the optical cavity may be used to enhance one or the other
scattering process. For red-detuned driving this results in an effective beam-splitter-like Hamilto-
nian which may be used for laser cooling or state transfer. For blue-detuned driving the effective
Hamiltonian has the form of two-mode squeezing, useful for amplification of the mechanical motion
or the heralded generation of non-classical mechanical states.

Hamiltonian it also follows that the cavity field exerts a radiation pressure force upon the mechanical
oscillator Fraq = OHing /0% o< a'a, where the per-photon force is equal to hgo/zzpr. While we
have explicitly considered a simple Fabry-Perot cavity, the Hamiltonian of Eq. is much more
general. Any system where the motion of a mechanical oscillator shifts the resonance frequency of an
electromagnetic cavity will have an interaction of this form to lowest order, where gy = 2zprdw./Ji.
As the optomechanical interaction dynamically modulates the cavity frequency (i.e., the phase),
driving the cavity with an input laser at frequency w; will result in phase noise on the output
correlated with the mechanical motion, oscillating at frequencies w) + wy,. In general, directing this
reflected output to some phase-sensitive detector (e.g., an optical heterodyne receiver) will then
produce an output photocurrent I with an RF component oscillating at the mechanical frequency.
By looking at the noise power spectral density (NPSD) Si(w) of this electronic signal, we can
measure the properties of the mechanical oscillator via the optical output field. In particular, for the
typical case of a mechanical oscillator driven by thermal noise, the NPSD, as illustrated in Fig. [I.1]
will consist of a Lorentzian peak (pink shaded region) centered at wy,, with a total noise power (i.e.,
area under the curve) related to the average phonon occupancy of the resonator, and a linewidth
equal to the mechanical decay rate. This signal sits atop a noise floor (green shaded region), which

in the ideal case is due solely to optical vacuum noise on the drive beam.
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Beyond enabling precise measurement of the mechanical motion, the optomechanical interaction
provides us with the tools necessary to control the state of the mechanics. This is most easily un-
derstood by considering the interaction in the frequency domain, as shown in Fig. In the weak
coupling regime, where the fundamental interaction rate gq is less than the cavity decay rate k, the
interaction between the drive laser (gray arrows, at frequency w) and the mechanical oscillator will
generate two weak optical sidebands at frequencies w; + wy,. As discussed above, this can be un-
derstood classically as a weak phase modulation process, but can also be considered microscopically
in terms of photon-phonon scattering. The upper sideband at w; + wy, (blue arrows), often called
the anti-Stokes sideband in analogy with Raman scattering, is generated by the interaction term
atab and represents the up-conversion of a drive photon accompanied by the absorption of a phonon
from the mechanical resonator. Conversely, the lower (Stokes) sideband at w) — wy, (red arrows)
is generated by the atab! interaction term and corresponds to down-conversion of drive photons
accompanied by phonon emission.

In the absence of an optical cavity these two fundamental processes will occur with equal strength,
and consequently there is no net effect on the mechanical resonator beyond the overall radiation
pressure force discussed above. However, the presence of the cavity provides a strong modification
to the density of optical states, represented in Fig. by blue shaded Lorentzians. In the so-
called “sideband-resolved” regime, when the sideband spacing is much larger than the optical cavity
linewidth (wy, > k), this modified density of states may be used to enhance one or the other of
these two basic scattering processes.

In particular, if the drive is placed at a lower frequency (red-detuned) from the cavity such
that the anti-Stokes sideband is resonant (A = w. — w; = wy,), as shown in Fig. [I.2h, one can
derive an effective linearized interaction in a rotating wave approximation (RWA) represented by
the Hamiltonian H.g = hG (&Tl; + &ET), where G = \/ncgo (nc is the number of intracavity drive
photons) is the parametrically enhanced coupling rate. This beam-splitter-like effective interaction
involves the coherent exchange of photons and phonons. The most straightforward application of
this interaction is to cool the system by converting phonons to photons which are then extracted
from the optical cavity. More generally, however, it may be used for state-transfer between the
optical and mechanical systems. This enables, for example, coherent transfer between different
optical wavelengths utilizing the mechanical resonator as an intermediary, as discussed further in
section 271

On the other hand, if the drive is blue-detuned from the cavity (A = —wp,) so that the Stokes
sidebands is resonantly enhanced, as shown in Fig. [[.2p, one finds an effective RWA interaction
H.¢ = hG (dl; + dTZ)T). This interaction, which has the form of two-mode squeezing, allows one to
amplify the mechanical motion, as the process of phonon emission rather than absorption is now

dominant. Beyond this, the creation and annihilation of photons and phonons in correlated pairs
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allows one to herald the creation of non-classical states of the mechanical resonator, as discussed in

section [1.2.2

1.1.1 Heisenberg-Langevin Equations of Motion

A full theoretical treatment of the cavity optomechanical system starts from the basic equations
of motion, working in the Heisenberg picture where the time evolution of an operator Ais given
by 121 = % [ﬁ ,/1} + %—‘?. While the optomechanical Hamiltonian given in Eq. describes the
internal dynamics of the system, it does not incorporate the effects of damping and noise due to the
surrounding environment. Such effects can be introduced via the standard input-output formalism
for open quantum cavities [4,[5], which is briefly summarized in Appendix leading to the full

Heisenberg-Langevin equations for the photon and phonon annihilation operators:

-
I

— (iwe + g) o — igoa (b+b) + Vet + Vi, (1.4)

— (iwm + %) b —igoata + /i, (1.5)

o>
I

where 7; and k = ke + k; are the decay rates of the mechanical and optical resonators, respectively.
The stochastic noise operator Bin arises from the coupling between the mechanical oscillator and its
surrounding environment, and obeys the commutation relation [l;in(t), IA)In(t’ )} = 0(t —t'). The
coupling of the optical cavity to its environment, on the other hand, has been explicitly separated
into two channels: the extrinsic channel, with coupling rate k. and noise operator a;,, and the
intrinsic channel, with coupling rate x; and noise operator G;. The extrinsic channel is the specific
mode via which the cavity is probed, while the intrinsic channel represents all other environmental
loss channels that go unmeasured (e.g., radiation of energy due to scattering, material absorption
inside the cavity, etc.). Both optical noise operators obey the same type of commutation relation as

bin. The output field in the extrinsic channel is given by the input-output boundary condition
Gout = Qin — \/Kel.- (1.6)

While by, and @; are pure noise variables, d;, typically consists of both a classical tone (technically,
a coherent state) at frequency wj in addition to stochastic noise. We may explicitly factor out both
the harmonic time dependence of the operator as well as the classical amplitude «;, by making the
substitution a;, — (qun + @in) e, As the optical drive frequency is much faster than the decay
rates of the system and the mechanical frequency, it is convenient to move into a frame rotating at

the drive frequency, focusing only on the slowly varying dynamics. This is accomplished by making

IThis is equivalent to the assumption that the environmental coupling is strictly Markovian, so that the noisy
environment effectively has no “memory” and the equations of motion only depend on the state of the system at time
t. For further details see Appendix and Ref. [5].
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the unitary transformation a — Utal , where U= ei"”&mt, leading to the final equations of motion:

i=— (m+ g) i — igod (13+13T) + V/Fo (Qin + in) + VFads, (1.7)
b= — (om + %) b —igod'a + /i, (1.8)

where A = w, — w) is the cavity-laser detuning.
Though we have made no assumptions so far as to the nature of the environmental noise, the
mechanical bath is typically taken to be in thermal equilibrium at temperature T3,, such that the

mechanical noise operator obeys the following correlation relations:

(1.9)

where ny, = (eh“’m/ kTh _ 1)_1 is the average occupancy of the mechanical resonator in thermal
equilibrium at temperature T},, and all other one- and two-time correlations of bin OF IA)ILrl are equal
to zero H The intrinsic optical bath is usually taken to be a thermal bath as well, and in the case of
optical systems at room temperature the frequency is large enough (fw., fiw) > kgT},) that the bath
may be approximated as zero-temperature (vacuum). Thus, the corresponding noise correlation
functions are

(al (i) =0,

(1.10)
(awal (1)) = ot~ 1),

where, as in the case of the mechanical noise, all other one- and two-time correlations vanish EL
The optical noise on the extrinsic channel, a;,, is typically also assumed to be vacuum noise, and
thus has the same type of correlation functions shown in Eq. (note that a;, and @; belong
to independent baths and are thus uncorrelated with each other). It is also possible for @, to
have additional noise due to technical noise on the drive laser, which will be discussed further in
section [1.1.6] The two-time correlations here can easily be converted into two-frequency correlation
functions via Fourier transforms (as defined in Appendix [A1)). We find that 6(t — ') — §(w + w’).

That is, <BT (w)l;(w’)> = npd(w + w’), and likewise for the other non-zero correlation functions.

2In addition to assuming the Markovian nature of the oscillator-bath interaction, the correlation functions given in
Eq. implicitly assume that the mechanical bandwidth +; is much smaller than wm (i.e., large mechanical Q-factor),
such that the effective occupancy of the bath can be approximated by the thermal occupation at a single frequency
wm rather than as an integral over all modes comprising the bath.

30nly the one- and two-time correlations are required for our purposes. However, as a thermal state is Gaussian
(i.e., the associated quasiprobability distributions are Gaussian), any higher order noise correlations can be expressed
in terms of the one- and two-time correlation functions [5], and thus Egs. andfully characterize the mechanical
and optical noise in the system.



1.1.2 Linearization Approximation

While the basic optomechanical interaction is fundamentally non-linear, all current physical realiza-
tions of optomechanical systems lie in the so-called vacuum weak coupling regime, where gy < k.
For such systems vacuum noise has a negligible effect on the system dynamics, and we may linearize
Egs. [I.7]and [I.§] to good approximation. When go 2 &, the so-called vacuum strong coupling regime,
a fully quantum nonlinear treatment is necessary [6-8].

For weakly coupled systems, a coherent drive (the a;, term in Eq. , will result in a coherent
steady state for both the optical and mechanical oscillators about which the system fluctuates.
Formally we may make a displacement transformation for the system operators (& — a+a, b— 153 +I;)
similar to that made for the input noise a;,. In particular we choose displacement amplitudes equal
to the classical steady state solution for the driven optomechanical system (i.e., the solution to

Eq. and when & = 3 = 0 and quantum noise operators are neglected). These are found to be

V Kelin

8= —igoNec ’
Z.Wrn + 71/27

where the modified cavity-drive detuning is A’ = A+gq (8 4+ 8*), and we have used the fact that the
steady-state intracavity photon number is given by n. = \a|2. For narrow bandwidth mechanical
resonators (wy, /¥ > 1) the static detuning shift is approximately equal to —2g¢2n./wy. For the
measurements made in this work this detuning shift is well under 1 MHz at all powers. As such a
shift is much less than both x and wy,, it is negligible for our purposes and henceforth we will let
A~ A.

By choosing these displacement amplitudes we remove the classical steady-state solution from
our definition of @ and b so that the remaining operators represent pure noise. Inserting this classical
solution into Egs. and and neglecting products of quantum noise operators (e.g., afa) as

“small”, we arrive at the linearized quantum Heisenberg-Langevin equations:

i=—(in+ g)d—iG (b+8") + Viaiin + vria, (1.12)

b

- (iwm + %) b—iG (a+a') + i, (1.13)

where G = go,/n. and for convenience we have chosen the phase of the input drive such that o € R.
This linearized set of equations now allows for simple analysis of the system output in the frequency
domain via Fourier transforms.

Before continuing, we will discuss what “small” means in the context of this linearization ap-

proximation. In particular, under what conditions the fluctuations a and b can be considered small
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relative to the classical steady-state. One can quantify the fundamental strength of the optome-
chanical interaction via a number of dimensionless parameters. The most important is go/x, which
specifies the per-phonon optical frequency shift in units of the optical linewidth. This ratio can be
thought of as a “quantumness” parameter [6], as it is the only parameter affecting the optomechan-
ical dynamics that vanishes in the classical limit A — 0. Provided this ratio is small, the quantum
nature of the non-linearity may be neglected. Indeed, for a sideband resolved system with detuning
A = +wy, the ratio of the total number of scattered sideband photons to the steady-state intracavity
photon number is given by (2go/x)* (n). Thus, the fluctuations will always be sufficiently small if
go/k < 1 even as n. — 0, provided (n) does not grow too large. This last point is important, as
when (n) grows too large the sideband scattering rate will become large enough to substantially de-
plete the intracavity photons at the drive frequency, at which point the fluctuations can no longer be
considered small and the system must be treated using a fully nonlinear, though classical theory [9).
The approximate threshold for when this breakdown occurs can be derived from a classical theory
where the optical field is expanded in an infinite series of sidebands, with the value n. = |a|? repre-
senting the energy in the 0-th order sideband. In this case we find the optomechanical interaction
can be treated as a classical phase modulation with an effective modulation depth z ~ 2gg \/@ /Wm,
where the amplitude of the n-th order sideband is proportional to J,(z) (J, is the n-th order Bessel
function of the first kind). Obviously, unless z < 1 the 0-th order sideband « may become much
smaller than the higher order fluctuations, in principle even being extinguished completely, in which
case the assumption of “small” fluctuations is no longer valid. In practice, as all current optomechan-
ical systems possess relatively weak coupling, this regime is only reached when (n) is amplified well
beyond its steady-state thermal value, as in the case of blue-detuned amplification in the sideband
resolved regime discussed below in section

Taking the Fourier transforms of Egs. and (as defined in Appendix , we arrive at

the expressions for the cavity fluctuations in the frequency domain:

VRl (@) + /i (w) — iG (i)(w) + iﬁ(w))
N i (A —w)+ k)2 ’
o — V(@) =G (a(w) + af(w)

i (wm —w) + K/2 '

(1.14)

(1.15)

We now insert Eq. and its conjugate [[] into Eq. and, after some algebraic manipulation,

arrive at an equation for the mechanical fluctuations solely in terms of the noise operators:

b(w) =xm (@) (VAibin (@) = 1G (o (@) (Vietin(@) + Vi (w))
o) (Ve ) + vAial @)) )

4Keep in mind that we have defined the Fourier transforms such that af(w) = (a(—w))f, as explained in Ap-

pendix

(1.16)
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where we have defined the mechanical and optical response functions xm(w) = (i(w/, —w) +7/2) "
and xo(w) = (i(A — w) + £/2), respectively, and where the mechanical frequency and linewidth have
been modified by the optomechanical interaction such that w!, = wy, + dwy and v = ; + §v, with

frequency and linewidth modifications given by

(5wm(A) = G?Im [Xo(wm) - X:;(_Wm)]

1 1
= G’Im L(A_wm)m/z T 5B T o) +,@/2]’ (1.17)

and

5’7(A) = 2G2Re [Xo(wm) - X:;(_wm)]

= 2G"Re [i(A—wrln) tr/2 —i(A—i—zjm) +/</2} (1.18)
Note that in obtaining Eq. we have dropped terms proportional to (i(wm — w) +%/2) " bf (w).
This is justified by the fact that bf (w) will be strongly peaked around w = —wy,, and its product with
(i(wm — w) 4+ 73/2) " (which is peaked at w = wy,) will be negligible when wy, /4 > 1. Additionally,
we take w & wy, in the definitions of dwy, and dy as the response of bis only significant for |w —wp,| <
v < k. While the damping rate modification is very important, in practice the frequency shift is
quite small, and it is often appropriate to let w}, & wy,, which will be done from here on for notational

simplicity.

1.1.3 Sideband-Resolved Systems

We now consider the particular case of a sideband-resolved system, where k < wy,, for a laser drive
which is detuned to either the red or blue sideband (A = fwy,). Under these assumptions, the

frequency and damping shifts are given by

G2
(A = ) &, (1.19)
4 2
SY(A = dwy) & i% = tvoM, (1.20)

where we have defined the rate yom = 4G?/k. Physically, this rate represents the scattering rate
of the resonant sideband photons due to the optomechanical interaction. Note that here we have
defined yowu as a strictly positive quantity such that v = v =vom, depending on detuning. This is in
contrast to the typical convention, where the sign is included explicitly in the definition of yon such
that v = v + yom always. As many of our measurement results scale with the sideband scattering

rate it is notationally convenient to define youm as positive rather than constantly write |yowm|. The
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reader should keep this fact in mind when comparing formulae from this thesis to other works.
Depending on the detuning, the damping modification will lead to either net cooling (red-detuning,
A = wyy,) or amplification (blue-detuning, A = —wy,) of the mechanical resonator. In particular, as

derived in Appendix the average phonon occupancy (n) = <l;Tl;> is given for red-detuning by

2
o C K
) la=en =776 Y750 (4wm) ’ (1.21)

and for blue-detuning by
ny C

—ctizc (1.22)

<n> |A:_wm =

where we have defined the cooperativity C' = yom/7i, which quantifies the relative coupling strength
of the mechanical resonator to the effective bath provided by the optical noise compared to the me-
chanical thermal bath. The second term in Eq. represents the limit to backaction cooling due
to scattering of the drive into the non-resonant sideband, and is often neglected as it is extremely
small for systems with good sideband resolution. Note that for blue-detuning (n) does not actually
diverge as C' — 1. Rather, the mechanical occupation grows until the linear approximation under-
lying these equations breaks down, as discussed above in section At this point the stimulated
scattering of sideband photons becomes great enough that the “pump” photons (i.e., photons at the
drive frequency) will be substantially depleted, effectively depleting the gain of the system until the
mechanical oscillator settles into a stable, self-oscillating limit cycle. This behavior can be accurately
described using a classical nonlinear treatment of the optomechanical cavity [9,/10].

We can also simplify the equations for the fluctuation operators. Explicitly considering the case
of red-detuning (A = wy,), we note that the contribution of &iTn and diT to b(w) will be negligible, as
Xi(—w) and xm(w) are sharply peaked at —wy, and wy,, respectively, and wy, > k,7y. Moreover, as
we are only concerned with frequencies |w — wy,| < Kk, we may approximate Xo(w) =~ 2/k. Thus, we

obtain

b(w)| Amwon, = Xm (@) <\/W3m(w) — iy /%TM (V/felin(w) + \//?idi(w))> . (1.23)

We may insert this expression into Eq. dropping the bt term as it only peaks near —wy,, and
utilize the scattering condition of Eq. to obtain a solution for the output optical fluctuations in

terms of the noise operators
Gout (W) |Azw,, = r(w;+)ain(w) + n(w; +)ai(w) + s(w; +)1A7in(w), (1.24)

where r(w;+), n(w;+), and s(w;+) are effective scattering matrix elements relating the system

output to the relevant noise operators. Similarly, for blue detuning we may discard the @;, and §;



11

terms from Eq. and the b term from Eq. , to obtain
out ()| A= & (w5 =)in(w) + n(w; =) (w) + s(w; —)bl, (). (1.25)
The effective matrix scattering elements for both detunings are given explicitly in Appendix

1.1.4 Heterodyne Detection

The total output field is the superposition of the classical cavity reflection amplitude, given by

Qout = Qin — /Kel

Re
= Quin (l_iA—i-n/Z)’ (1.26)

and the fluctuation operator a., described in section Placing this total output on a photode-
tector will result in an photocurrent proportional to |out|* + 0y Gout —i—ozoutdiut —|—dlutdout. The first
term is a DC term, while the last term can be neglected as the fluctuations are assumed much smaller
than the classical steady-state amplitude in the linear approximation. Thus, the relevant portion of
the detected photocurrent (neglecting conversion factors relating optical power to electrical current)
is

I = al, bou + Cout@y,- (1.27)

As this signal is linear in the fluctuation field operators, a measurement of this type is sometimes
referred to as “linear detection”. Recall that, in the lab frame, the sideband noise fluctuates at
a frequency w) + wy,. Thus, beating the noise against the classical coherent amplitude not only
amplifies these fluctuations, but also mixes them down in frequency to £wy,, where conventional RF
measurement equipment may be used.

This detection scheme is a specific case of a measurement technique called “heterodyning”.
In general, upon photodetection the output noise will beat against some strong coherent tone at
frequency wi, known as the “local oscillator”. This may be either the classical cavity reflection, as
above, or some separate coherent tone mixed in prior to photodetection. The resulting RF portion
of the output photocurrent (assuming the local oscillator is intense enough that small fluctuation

terms may be ignored) will be given by
I = lavol (aow €+l ), (1.28)

where |ay,0] is the local oscillator amplitude and ¢ is the relative phase between the local oscillator

and the signal ﬂ Ignoring for the moment any overall gain factors, the power spectral density (as

5We have glossed over a couple finer points here. In particular, the absence of additional amplified noise terms due
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defined in Appendix |A.1]) of this photocurrent is given by

Sux(w) = [ Z 4’ ({out (@)l (@)} + (] (@)aou (@) 129)

 (aout (@)aout () ) €2 + (@l (@)abue (@) €772¢) .

As shown in section for a sideband-resolved system driven with detuning A = “wy,, Gout
will depend only on a;,, G; and either i)in or ZA):rn depending on the detuning. Thus, from the noise
correlation relations in Eqs. and it follows that only the first two terms in the integrand of
Eq. will be non-vanishing. Consequently, under these conditions the output spectrum will not
depend on the relative phase between the local oscillator and the signal.

Using Egs. [1.24] and for the output spectrum along with the noise correlation relations and
the relation |r(w;=£)|? + [n(w; £)|? £ |s(w; £)|* = 1, it is straightforward to evaluate the spectral

density. For red detuning we find

S11(0)] A, = 1w +)[2 + In(es )2 + [s(ews ) (1, + 1) + [s(=ws )]
= Lty (|s(w; )2 + [s(—wi +)) (1.30)

e _
=1+ 2;'YOM Stb(W; (N) |A=wm )

where Sy, is the symmetrized spectral density of b, as defined in Appendix Meanwhile, for blue

detuning we obtain

S11(w)|a=—wn = [7(w; =)* + [n(w; =) * + [s(w; =) nn + [s(—w; =) (nb + 1)
=1+ (np+1) (|s(w; +)[* + [s(—w; +)?) (1.31)

Ke _
=1+ 2Z’YOM Sbf bt (w; (1) |A=—wpm)-

In a real measurement setup, there will exist some energy loss between the cavity and detector,
including the non-unity quantum efficiency of the detector itself. To treat this loss while preserving
the commutator of the output field, we can use the standard practice of introducing a fictitious
beam splitter into the optical path prior to detection [5], which mixes the signal with uncorrelated
environmental noise (vacuum noise, in the case of an optical signal). This results in a detected

photocurrent of

I =larol ((\/ﬁ Gous + /1 — 1 a) el + (ﬁ alw+v/1—1 ai) e—w) : (1.32)

where 7 is the total power detection efficiency of the measurement setup and Gy, represents vacuum

to the local oscillator’s vacuum noise assumes a particular setup, known as balanced heterodyning, which is discussed
in Refs. [11] and [12|. Moreover, the local oscillator need not have frequency wj, in which case the optical sideband
fluctuations will merely be shifted to frequencies other than fwm. These points are discussed further in section @
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noise similar to (but uncorrelated with) @; and d;,. Due to the admission of this additional vacuum
noise, we find that the noise floor is unchanged, while the Lorentzian terms centered at w = Fwyy,
are reduced by a factor of 7. Note that the formulae given in Eqgs. and are normalized to
the vacuum noise level. For red detuning, the actual physical detected spectral density, including

electronic noise on the detector and the conversion between optical and electronic power, is

G? , Ke -
St1()] s, = Saark + =S (14 2072700 Son(ws (m)) ) (1.33)
L K

where Sqark is the spectral density of the electronic noise, G, and Ry, are the optical conversion gain
of the detector and input impedance of the spectrum analyzer, respectively, and Sy, is the optical
vacuum noise power spectral density. Obviously, for blue detuning the same relation holds, with
gbb — Sbr bi-

As the integrals of Sy, and Si 1 are equal to (n) and (n) + 1 (see Appendix [A.3), we can
perform calibrated thermometry of the mechanical resonator using the above relations. This is
particularly simple when the local oscillator is separated from the cavity output. In this case,
blocking the signal will result in a measurement of the amplified vacuum, with measured spectral
density Shoise = Sdark + %Sﬁac, while blocking both the signal and local oscillator will measure the

dark noise of the detector Sq.rk. For a red-detuned drive, the occupancy can be determined from

/°° dw Sti(w) — Suvise _ / T G (w: ()

) 27 Snoise — Sdark —c0

the relation

b (1.34)
= 2n—"0m (1),

provided we know ke/k, yom and 7. For a blue-detuned measurement the same formula holds true,

with (n) — (n) + 1. This fact allows for an alternative method of thermometry for low (n). In

particular, if we define P as the total integrated sideband power for A = 4wy,, then for small

cooperativity (i.e., (n)|a=w, = (n) |a=—w,, ) We can define the sideband asymmetry parameter:

p_ = +1 1
_ <n>|A——m+ 1l (1.35)

R T T T ) e my’

which allows for determination of (n) without calibration of the detection efficiency or any related
cavity parameters. Provided that one can obtain sufficiently small (n) and maintain good signal

quality for C' < 1, this proves an accurate form of thermometry [13H16].

1.1.5 Phonon Counting

Linear detection via optical heterodyning allows for extremely sensitive measurements of the me-
chanical noise (in principle down to (n) = 0), and has the advantage of being compatible with

off-the-shelf photodetectors and detection electronics. However, a number of proposed applications
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of optomechanical systems, such as the heralded preparation of non-classical mechanical states dis-
cussed in section [I.2:2] require the ability to measure single phonon emission or absorption events.
This can be accomplished by counting scattered photons in the Stokes (anti-Stokes) sideband, as
each photon is correlated with the emission (absorption) of a single phonon, effectively performing
a phonon counting measurement ﬁ

As the full reflected signal from the cavity includes the reflected drive amplitude, which is many
orders of magnitude larger than the sideband signal, we must first filter the cavity output to reject
the drive. Provided the filter is sufficiently high-finesse, it can be modeled in the frequency domain

by a single Lorentzian function:

Iif/2

F(W,Wf) = Z((Uf—(JJ) +K}f/2’

(1.36)

where xf and wy are the resonant frequency of the filter, respectively. Now, explicitly considering the
case of red-detuned driving in the sideband-resolved regime, the filtered cavity output will be the
product of F(w;ws) with the frequency domain output of the cavity. As the resonantly enhanced

anti-Stokes sideband photons will be detuned by wy, from the drive, we choose wf = wy,. Using

Eq. [[:24] we obtain
e (@) = F(@s0m) (Qond(w) +7(w; +)am(w) + nw; +)ai(w) + 5(@; b)) (1.37)
Performing photon counting on the filtered output then results in an average count rate of

D() = (ahy (Dase (1))

1 oo oo ) , . R

% dw/ dw’ ez(w+w )t <ag1t(w)aﬁlt (w/)>
1
2w

(17001 Pl + Zr0m [ el i) S ()

Ke
~ Alagul + —vom (n), (1.38)

where A = %|F (0;wm)|? is the drive attenuation factor, and where we have assumed a filter band-
width k¢ > 7, allowing us to approximate |F (w;wm)|? & |F(wm;wm)|? = 1 inside the integral over
Sbb- A similar analysis for blue detuning (where wf = —wy, to filter the Stokes sideband) yields a
comparable result, with (n) — (n)+1. Note that this result also assumes that a;, and @; are vacuum
noise, and thus do not contribute to counting of real photons.

The total count rate, including noise of the photon counter and reduction of the drive and signal

6We use the term “phonon counting” here in the same sense as common usage of the term “photon counting”.
That is, counting individual phonons as they are created or destroyed. One should not confuse this with either a
quantum nondemolition measurement of the phonon number or projective measurement of a phonon Fock state.
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due to measurement inefficiency, is given for red-detuning by

K
Ftot = Fdark + I—‘drive + 77;6’YOM <7’L> ) (139)

where ['qap is the dark count rate of the photon detector, grive = NA|aous|? and 7 is the total
measurement efficiency. These expressions can be used to perform thermometry in a similar fashion
to linear detection, either by calibrating the cavity parameters and total measurement efficiency or
by measuring the asymmetry between the red- and blue-detuned count rates.

To assess the sensitivity of this counting scheme, it is convenient to express the measurement
noise floor T'gark + Carive in terms of an equivalent number of mechanical quanta (that is the
mechanical occupancy (n) that would be needed to yield a signal-to-noise of one). This noise-
equivalent phonon number is obtained by dividing the total noise floor by the per-phonon count rate

Lsp,o = 1(ke/K)v0M, yielding

1.40
I'se,o (1.40)

NNEP =

For a highly sideband-resolved system, the reflected drive in the case of A = fw,, will be approxi-
mately given by aout &~ ain. This in turn can be expressed in terms of the intracavity photon number

by using Eq. [1.11} yielding |aout|? & w2 ne/ke. Thus, nygp as a function of n. is given by

K2D dark ) 2
Q) = ar A m . 1.41
nNEP(n ) 47]’%9(2)7% * (2/%90) ( )

As the above equation shows, the ultimate sensitivity of a phonon counting measurement is depen-
dent primarily on the filter attenuation relative to the figure go/wp,. As all current sideband-resolved
systems lie in the regime gy < Kk < wy,, we require an extremely high degree of drive attenuation
in order to achieve single phonon sensitivity (nygp < 1). It should also be emphasized that, while
in principle one could always increase n. in order to reduce the effects of the dark count term, in
practice we are limited in how much optical power we may input to a given cavity. In order to reach

the drive-limited regime it is crucial to have efficient detection, low dark-counts, and relatively large

Jo/ k-

1.1.6 Technical Laser Noise

Thus far we have assumed that the noise on the coherent drive, aiy, is simply vacuum noise. However,
a real laser will have both intensity and phase noise. This additional technical noise will increase the
optical noise floor above the ideal limits given in sections [I.1.4] and [[.1.5] More importantly, excess
laser noise can also contribute to heating of the mechanical mode [17-20] and systematic errors in
thermometry caused by noise squashing [21,/22] and anti-squashing.

For the specific drive laser and optomechanical devices used in this work, intensity noise has been



16

previously shown to be negligible in the vicinity of the mechanical frequency [23], and this section
will deal only with excess phase noise of the laser. A third possibility is intracavity frequency noise,
which has been found to be significant in some other optomechanical systems [22]. In dielectric
optical microcavities the noise of this type is typically due to thermo-refractive fluctuations, which
have been observed in silica microsphere [24] and microtoroid [25] resonators. However, thermo-
refractive noise is generally less important at higher frequencies, and scales with the thermo-optic
coefficient dn/dT, which decreases sharply as a function of temperature in Si at wavelengths near
A ~ 1550 nm [26]. As we have previously observed no signs of thermo-refractive noise at base
temperatures of T' ~ 16 K when measuring low frequency (wy, ~ 30 MHz) optomechanical devices
similar to those used in this work 27|, we do not expect a significant contribution of thermo-refractive
noise in our current measurements, which involve mechanical frequencies of wy,, ~ 4 —5 GHz at base
temperatures below 10 K.

Given a laser input amplitude «;,, (in the rotating frame), the presence of phase noise is captured

by the addition of a stochastic phase factor ¢(t), so that
in(t) = |oun| €720, (1.42)

The phase noise is assumed to be a real, stationary Gaussian process with zero mean, such that it
is characterized fully by the two-time correlation function. The phase noise is taken to be delta-

correlated in the frequency domain, such that [17}/19}23]

(p(w)p(w)) = Sps(w)d(w + '), (1.43)

where the expectation value here corresponds to a classical ensemble average. Note that Sye(w) =
Ss(w) due to the realness of ¢(t). From this, the two-time correlation function is given by

oo
dw p—iw(t—t’

o ) S (w). (1.44)

(DH(t) = /

— 00

Assuming the phase fluctuations are small, Eq. may be expanded so that iy, (t) & |ain| (1 +i¢(t)),
and the spectral density of the input field is given by

Saa(w) = |ain|? (278 (w) + Sge(w)) - (1.45)

As we are only concerned with the phase noise near the mechanical frequency, the §(w) term may
be ignored. The phase noise may be incorporated into our analysis by replacing the input noise
operator a;j, by

Gin tot (t) = @in(t) + ae (), (1.46)
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where @;y, (t) still represents vacuum noise and a4(t) = #|ain|¢(t) is an additional (classical) stochastic

noise term, with the frequency domain correlation function
<a;(w)a¢(w')> = Sna(w)d(w +w'). (1.47)

Note that due to the real, classical nature of ¢(t), we also have the relations

(ab@)as(@)) = (as@)af@)). (1.48)

<a¢(w)a¢(w')> - <aL(w)a;(w')> = —Saa(w)d(w + ). (1.49)

By inserting this additional noise term into Eq. we may repeat the analysis of Appendix
and find that in a sideband-resolved system, for either red or blue detuning A = +w,,, the presence

of phase noise heats the mechanical resonator. The additional added phonon occupancy is given

by [23]

Ke YOM
iy, = — =Ty, 1.50
(g la=twn = — ol (1.50)
where we have defined ngy = Saa(wm), and where we have assumed that Suq(w) is sufficiently

slow-varying in the vicinity of w = wy, (specifically for |w — wp,| < ) that we may approximate

Saa(w) = Sqa(wm) when integrating over frequency to obtain (n).

1.1.6.1 Phase Noise in Heterodyne Detection

As derived in Ref. [23], the presence of phase noise on the drive laser leads to an additional component
of the heterodyne photocurrent power spectral density. Relative to the vacuum noise level, this is

equal to

2%\ 2 YoM 7 £ Yom/2
Sty1, (W) a=tw, =N <K> <1 F (om £ 0)2 + (7/2)2> . (1.51)

In the limit of small cooperativity, this leads to squashing of the mechanical noise for red-detuning,
and anti-squashing for blue-detuning. That is, the naively inferred phonon occupancy based on

integrating the total observed sideband noise (as described in section |1.1.4]) is

Ny F (Ke/K)Ng

Y (1.52)

(M) ing | A=twm,c<1 *

For large cooperativity the phase noise causes anti-squashing for a red-detuned drive, leading to an

inferred phonon occupancy

Ny, + (ke/2k) C ng
1+C '

(N)ing |a=wm,c>1 = (1.53)

As these equations make clear, in the presence of significant phase noise, squashing/anti-squashing
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effects can drastically affect the inferred mode temperature and the observed sideband asymmetry.

1.1.6.2 Phase Noise in Phonon Counting

Including the phase noise term a4 in the derivation presented in section leads to an additional

contribution to the total photon count rate

* dw
Tyl Acaor. :n/ S S (@) F(w, %) Pl (w3 1) (1.54)

If we make the usual assumptions that S, (w) is slowly-varying in frequency for |w — wy| < v and

that k¢ > ~y, this simplifies to

2
K 2K, K K 2K,
Tylazw,, = nmg <4f (1 - /:> + % (707%59 + <1 - ;))) . (1.55)

Using the fact that ny = |ain|*Spe(Wm) & W2 ncSsp(wWm)/kKe, We obtain the contribution of phase

noise to the noise-equivalent phonon number:

2 2
WK Kf 2Ke KeYOM [ YOMKe 2Ke
. = S WDl = (1= e )
A=t (2%90) go(w )<4 ( - ) + ( o ( - )))

(1.56)

NNEP,

Like the drive-bleed through, phase noise leads to a constant contribution to nyxgp, and leads to
squashing or anti-squashing of the noise depending on detuning and cooperativity, similar to het-
erodyne detection. Note, however, that in the case k./x = 0.5 the contribution of phase noise will
not depend upon detuning. Thus, even in the presence of large phase noise it is possible to avoid
detuning dependent noise squashing/anti-squashing, though one will still have a large overall phase
noise floor.

It is useful for characterization purposes to calculate the phase-noise contribution to the observed
count rates when the laser is far-detuned from the cavity resonance (|A| > wy,). Assuming that the

laser-filter detuning is kept constant at +wy,, the phase-noise count rate in this case is just

> dw

et 2
o S (W) F(w, £wm)|

F¢|\A\>>wm = 77/

—o0
Rf

=%, (L57)

with a corresponding noise-equivalent phonon number

2
Wmk
NNEP,¢||A[>wm = (45 go) KtSpp(Wm)- (1.58)
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1.2 Applications of Sideband-Resolved Systems in the Quan-
tum Regime

We now turn our attention to a brief discussion of some concrete applications of the sideband-
resolved cavity optomechanical systems considered in the previous section. We will focus on two
specific applications, each with potential uses in future quantum networks [28]. The first is co-
herent conversion between optical and microwave frequencies [29,/30], which allows for an efficient
interface between superconducting microwave circuits [31] and optical photons for the purposes of
long-distance communication between disparate quantum information processing nodes. The second
is the heralded generation of non-classical mechanical states, including single phonon Fock states
and entangled states of separate mechanical resonators [3234], which can be utilized for scalable
distribution of entangled quantum states [35}/36].

Though these tasks are by no means the only useful applications of cavity optomechanics, they
both share technical challenges that serve to motivate the experimental work performed in this
thesis. In particular, both require low thermal occupancy of the mechanical resonator, which may
be achieved in optomechanical resonators with sufficiently high mechanical frequency by operating
in a dilution refrigerator, as in Ref. [37]. Moreover, interfacing an optomechanical device with a
superconducting microwave resonator requires operation in a dilution refrigerator, while the low
thermal noise provided by the fridge environment allows for greatly enhanced coherence times of

any generated non-classical states.

1.2.1 Wavelength Conversion

As the field of experimental quantum information processing advances, a key goal is to develop the
ability to efficiently link disparate quantum processing units [28]. Optical signals traveling in fiber,
particularly in the telecom band, are typically proposed as A communication channel due to the
extremely low losses (~ 0.2 dB/km). Though one would ultimately like to develop efficient optical
interfaces for a variety of quantum systems, a particularly relevant case is the problem of conversion
between optical and superconducting microwave signals, given the tremendous recent successes of
circuit QED systems in the field of quantum computing |3839]. As described below, optomechanics
provides an efficient means of conversion between different electromagnetic wavelengths, utilizing a
common mechanical resonator to connect two optical or microwave cavities. This mechanism has
already been used to demonstrate efficient optical-to-optical wavelength conversion [40], as well as
reversible optical-to-microwave conversion at the classical level [41]. It remains an open challenge
to demonstrate optical-to-microwave conversion at the single photon level.

The basic concept behind the optomechanical wavelength conversion process is illustrated in

Fig. [1.3] Two optical cavities, with photon annihilation operators and resonant frequencies a;
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Figure 1.3: Wavelength conversion. Schematic of the wavelength conversion process. Two optical
cavities, with resonant frequencies w.; and w2, respectively, are coupled to the same mechanical
oscillator. Each cavity is driven by a red-detuned coherent tone (black arrows) with amplitude
a; (7 = 1,2) and frequency wyj = wej — wm. In the sideband resolved regime, this results in an
effective beam-splitter type interaction in each cavity with linearized coupling rates Gj = «;jgo ;.
An additional weak optical signal input to cavity 1 at frequency ~ w1 (red pulse) can then be
converted into a signal exiting cavity 2 at frequency ~ w2 (blue pulse) via the joint optomechanical
interaction. The efficiency of this process depends on matching the effective scattering rates in each
cavity and overcoming mechanical noise entering the system at rate 7; (green arrow).

and wej (j = 1,2), respectively, are coupled to the same mechanical oscillator via the standard
optomechanical interaction. In general each cavity will have a different coupling rate so that the
total interaction Hamiltonian is given by Hiy, = > 1go,; &J.T&j (13 + l;T> Both cavities are driven by a
coherent tone, with amplitudes o4 and drive frequencies wy j. Provided each cavity is in the sideband
resolved regime, and each drive tone is red-detuned (Aj =Wej—Wj = wm ), the effective interaction
in the rotating wave approximation will have the form Heg = > hG; (&JTZA) + a; I;T>, with Gj = a;go ;.
If an additional weak optical signal is sent into cavity 1 under these conditions, the effective beam-
splitter interaction will convert it into a phononic signal at the optomechanical scattering rate
Yom,1 = 4G3/k1, which may then be converted back into an optical signal inside cavity 2 at rate
Youm,2 = 4G3/ka, with a corresponding shift in optical frequency. The overall effectiveness of the
conversion will depend on the relative photon-phonon scattering rates yom,j. Additionally, as the
beam-splitter interaction will convert any phonons into photons, any thermal noise in the mechanical
resonator (which enters from the bath at rate ;) will appear as optical noise in the output.

One may work out the quantitative details of the conversion process by solving the linearized
Heisenberg-Langevin equations of the joint optomechanical system to derive an effective scattering
matrix relating the optical input in cavity 1 to the output at cavity 2 . In particular,
we consider a weak optical input to cavity 1 (in addition to the red-detuned coherent drive) with
spectral density Sin 1(w) in a frame rotating at wi 1. The corresponding output spectral density from

cavity 2, in a frame rotating at wj g, is

Ke,2 Yi Ke,1 YOM,1
Son — Ke2 et ’ Sin (159
12(@) = = r0m (<w o 2™ e o + (1727 ’““”) (1.59)
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where v = 7 + Yom,1 + Yowm,2 is the total mechanical linewidth in the presence of the red-detuned
driving of both cavities. The first term in Eq. [I.59] represents the output noise due to conversion of
thermal phonons, while the second term represents the desired optomechanically induced wavelength
conversion. The bandwidth of the conversion process is equal to the total mechanical linewidth ~,
and the conversion efficiency is maximized for frequencies detuned by wy, from the cavity drives,
which corresponds to input and output at w.; and w2, respectively. The peak conversion efficiency
is given by
Ke,1 Ke,2 4C,C,

max — 5 1.60
K k1 k2 (L+Cp+ Co)? (1.60)

where Cj = yom,j/7i, which makes it clear that we can in principle reach unity conversion efficiency,
provided we can obtain yom,1 = Yom,2 and yom,j > ;. That is, the photon-phonon conversion rates
in each cavity must be equal (this can be thought of as an impedance matching requirement [30])
and must exceed the intrinsic dissipation rate of the mechanics so that phonons are not lost before
being converted back to photons. Additionally, Eq. makes it clear that we need ke j/kj to be
as high as possible, as photons lost to intrinsic absorption are useless for our purposes.

In addition to the conversion efficiency, we must also consider the output optical noise added by
the presence of thermal noise in the mechanics m This is most conveniently expressed in an effective

number of added noise quanta [40]:

Maddod ~ 22100 (1.61)

Rea1l 7Y

As the above equation makes clear, one necessary requirement for quantum limited wavelength
conversion is to achieve a large effective cooperativity, Cog = 7/vim1,. Note that in the large coopera-
tivity limit, where conversion is most efficient, this is approximately given by Ceg ~ <n>71. The nec-
essary low occupancy can in principle be achieved solely via sideband cooling due to the red-detuned
drives necessary for the conversion process. However, while sideband cooling has been previously
used [45,/46] to cool mechanical resonators to (n) < 1, occupancies lower than (n) ~ 0.2 — 0.3 have
not been achieved in any system via this method. In particular, the Si optomechanical devices used
in this work (detailed in section , suffer from degradation of the optical and mechanical quality
factor at high powers due to two-photon absorption [45], providing a limit to the effects of laser
cooling. Passive cooling of the device inside a dilution refrigerator offers a route to circumvent this
technical roadblock and achieve Cog > 1, and thus n.qdeq < 1.

Even more importantly, as mentioned above one of the most promising applications of the op-
tomechanical wavelength conversion process is to provide an efficient and reversible transducer be-

tween quantum optical and microwave signals. As the two cavities must couple to the same me-

"There is also noise in the output due to quantum backaction from the coherent drive. However, these terms are
proportional to (k/4wm )2, and thus can typically be neglected for sideband resolved systems until we reach the regime
iy /vy ~ (k/4wm)?. For full detail see Refs. 40| and [44].
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Figure 1.4: Heralded Fock and entangled states. a, Schematic of the process used to generate
a single phonon Fock state. A short blue-detuned (A = —wy,) pulse (with pulse width 7 such that
YomT < 1) is used to drive the cavity, resulting in an effective two-mode squeezing Hamiltonian in
the sideband resolved limit. After interacting with the cavity, there is a probability p ~ yonm7T that
an entangled photon-phonon pair is created. After filtering out the drive frequency w;, measurement
of a photon using a single photon detector (SPD) projects the mechanical system into a Fock state.
b, To create an entangled state, two cavities are driven in this manner, and their outputs combined
on a 50/50 beam-splitter prior to the SPD. This erases the which-path information such that a single
click on the SPD projects the joint system into an entangled state.

chanical oscillator, it is necessary to bring the optical cavity into close physical proximity to the

superconducting microwave resonator, which requires operation inside a dilution fridge.

1.2.2 Heralded State Preparation

At its most basic level, the optomechanical interaction allows us to add and subtract phonons from
the mechanical resonator. Even in the vacuum weak-coupling regime, this allows for the creation
of a variety of non-classical mechanical states using appropriate red- or blue-detuned pulses ,
provided we are content to generate such states in probabilistic, heralded fashion. In particular,
recent proposals have explicitly considered heralding of both a single phonon Fock state and an
entangled state of two mechanical resonators via application of a short blue-detuned pulse
to an optomechanical system in its motional quantum ground state and subsequent detection of the
emitted sideband photon.

The basic idea behind heralded generation of a Fock state is illustrated in Fig. [[.4h. A short,
blue-detuned drive pulse is sent into the cavity which, as discussed in section [} will result in
an effective interaction Hamiltonian (in the sideband-resolved limit) Heg = AG (&B + dT5T> which
creates and annihilates photons and phonons in correlated pairs. If the pulse is sufficiently short

(specifically, if the pulse width 7 is short enough that yom7 < 1), it will generate a single photon-
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phonon pair with a small probability p &~ yonm7, with a vanishingly small chance of higher-order
(i.e., multi-phonon) events. In this case, provided the mechanical system starts in the ground state,
the approximate state of the system after filtering out the drive pulse will be |¢) & /T — p|0.01,) +
/P |1clm), where subscripts ¢ and m refer to the optical cavity and mechanical resonator subsystems,
respectively. Subsequent detection of the sideband photon on a single photon counter (which occurs
with probability np, where 7 is the total detection efficiency) will herald the creation of a single
phonon Fock state.

The same protocol can be extended to creating an entangled state of two separate mechanical
resonators, as shown in Fig. [[.4p. Two optomechanical cavities are driven by a blue-detuned pulse,
as in the case of Fock state generation, and their respective outputs are combined using a 50/50
beam-splitter after filtering out the drive. This erases any information about which cavity emitted
a sideband photon, such that detection of a single sideband photon projects the joint mechanical
system into an entangled state. Similar protocols have been used successfully in the past to generate
heralded entanglement of atomic ensembles [48)/49], trapped ions [50], and even vibrational modes
in macroscopic diamonds [51].

This form of heralded entanglement provides the basic building block for a “quantum repeater”,
enabling the scalable distribution of entangled states utilizing the well known DLCZ protocol [35,36].
Beyond applications in quantum networking, however, the generation of entangled (or other non-
classical) states of mesoscopic mechanical objects potentially allows for the testing of novel theories
regarding quantum decoherence [52] or the nature of entanglement at the macroscopic scale [33,/51,
53|, as well as additional practical applications such as improving the measurement sensitivity of
weak forces [54].

The fidelity of the heralding process is directly related to the initial thermal occupancy of the
mechanical mode. Unity fidelity can only be achieved in principle by starting fully in the ground
state ((n) = 0), while generally the initial mechanical state will be a thermal state with (n) > 0.
However, high fidelity can still be achieved provided (n) < 1. In particular, the fidelity of heralded
Fock state generation will be roughly given by ((n) + 1), the probability of measuring a thermal
state in the mechanical ground state. Again, as with wavelength conversion, the necessary low
occupancies can in principle be achieved by using a strong red-detuned pulse to pre-cool the system
via the optomechanical interaction, as considered in Ref. [34]. Due to the aforementioned limitations
of laser cooling in current realizable systems, however, we are forced to turn to passive cooling in a
dilution fridge as a means to obtain (n) < 1.

An additional prerequisite for the heralding protocols discussed here is the ability to count single
emitted sideband photons with high efficiency. Indeed, without the effective nonlinearity provided
by the photon counter it is impossible to generate non-Gaussian states such as a Fock state from

solely Gaussian optical and mechanical inputs. While this type of measurement is conceptually
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straightforward, it should be noted that prior to the work performed in this thesis such measurements
had not been demonstrated. Though the development of this kind of phonon counting measurement
is not the primary focus of this work, it is technically nontrivial as efficient detection requires both
strong optomechanical coupling, low detector dark counts, and a high degree of drive suppression, as
detailed in section[I.1.5] The measurements performed in Chapter[4] alongside a previous experiment
detailed in Refs. [55] and [56], are the first experiments to perform phonon counting in a cavity

optomechanical system.

1.3 Optomechanical Crystals

As mentioned previously, the basic physics of cavity optomechanics apply to any system where me-
chanical motion couples to the frequency of an electromagnetic cavity, and a variety of experimental
geometries have been realized in the last several years across an enormous range of length and
mass scales, ranging from suspended gram scale mirrors [57], to reflective micromechanical mem-
branes [58-61], to microtoroids, disks, and spheres [18,44,62,/63], to superconducting microwave
circuits [64H67], all the way down to cold atomic ensembles trapped in an optical cavity [68]. One
notices a general trend in these systems towards smaller optical and mechanical resonators, with
physical dimensions and motional masses pushed below the micrometer and femtogram scale, re-
spectively. This is no accident, and relates to the strength of the fundamental optomechanical
interaction.

In section we explicitly considered an optomechanical system composed of a Fabry-Perot
optical cavity with one mirror mounted on the spring. In this case the optomechanical coupling
rate gg is easily shown to be inversely proportional to both the length of the cavity and the square

root of the mirror mass (this latter fact comes from the relation zzpp = where m is the

T
mass of the mirror). Thus, the smaller the cavity and motional mass, the larger the fundamental
quantum interaction strength. Although we have explicitly shown this to be the case for this simple
geometry, in general it is true that the vacuum optomechanical coupling rate will increase as the
size of the cavity decreases, much in the same way that the interaction strength between an atom
and an optical cavity is inversely proportional to the effective cavity volume. Reducing the motional
mass of the oscillator typically has the added benefit of raising the mechanical frequency, making it
easier to achieve the sideband-resolved regime and allowing one to reach a low phonon occupancy
simply by passive cooling in a cryogenic environment.

However, keep in mind that the parameters which really matter are the ratios g/« (which quanti-
fies the strength of the optomechanical interaction) and wy,/x (which quantifies the level of sideband
resolution). As volume of the cavity is reduced it is crucial to maintain a low optical decay rate &, or

equivalently a large optical quality factor Q. = w./k. Thus, roughly speaking, what we would like
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to do is maximize the ratio /V for both the optical and mechanical resonators, again in analogy to
the problem of atom-cavity coupling encountered in cavity quantum electrodynamics. One strategy
for achieving this goal is to use photonic crystal cavities, which have demonstrated Q-factors ap-
proaching or in excess of 10% at telecom frequencies A ~ 1300 — 1600 nm in common semiconductor
materials such as Si and GaAs [69}70] while maintaining effective cavity volumes close to the theo-
retical minimum value of (\/ 2n)3. Beyond confining photons, with proper engineering such devices
can also be made into phononic crystal cavities which simultaneously create a high-quality acoustic
mode co-localized with the optical resonance. Such structure are dubbed optomechanical crystals

(OMCs).

1.3.1 Photonic Crystals

As the name suggests, the physics of photonic crystals |[71] are analogous to those of crystalline
solids. That is, a periodic array of dielectric scatterers (in our case, holes etched into a dielectric
membrane) will affect the allowed propagating solutions of an electromagnetic wave in much the
same way that a periodic electronic potential will modify the quantum mechanical motion of an
electron. In particular, for the right periodicity destructive interference between fields scattered
from adjacent holes can give rise to bandgaps, regions of frequency where light cannot propagate
freely in the structure. Such bandgaps serve as excellent effective mirrors for an optical cavity. We
will briefly present the main ideas necessary for understanding the optical structures used in this
work. A full treatment of the theory and properties of photonic crystals can be found in Refs. [72]
and [73].

Mathematically, we consider a linear, lossless, and isotropic dielectric medium. As we typically
only care about solutions to Maxwell’s equations within a particular frequency range, it is appropriate
to ignore dispersion such that the material is completely characterized by a scalar dielectric function
e(x) = epe(x) which is only a function of the position vector . Note that € is the constant vacuum
permittivity, and the relevant quantity is the relative permittivity €., which can be equivalently
represented by the index of refraction n defined by e, = n?. As most materials of interest are
nonmagnetic, we usually set the magnetic permeability equal to the vacuum permeability (= 1) ﬂ
As we have assumed linear materials, an arbitrary solution of Maxwell’s equations can be decomposed

into a sum of time-harmonic solutions. That is, the total magnetic field may be written as

H(z,t) =Y = anHun(z)e ", (1.62)

m

and similarly for the electric field E. Finding these time-harmonic solutions can then be cast as a

81t is straightforward, though more cumbersome, to deal with anisotropic, magnetic materials, and small amounts
of material absorption. Details can be found in Ref. |72].
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Figure 1.5: One- and two-dimensional lattices. Schematics of the different types of crystal
lattices relevant to the work in this thesis, including a, one-dimensional, b, two-dimensional square,
and c, two-dimensional hexagonal lattices. The primitive lattice vectors and their explicit represen-
tations in the zyz coordinate system are shown by red/blue arrows and text, respectively, while the
unit cell for each lattice is shown in dark gray. The corresponding first irreducible Brillouin zone is
illustrated below each lattice.

Hermitian eigenvalue problem :

OH,(x) = V x <6T(1$)v x Hm(a;)> _ (@)2 Ho(). (1.63)

We are interested specifically in dielectrics possessing discrete translational symmetry. That is,
e (x) = ¢ (x + R), (1.64)

where R = ZJ. mja;j, mj € Z, and the vectors a; are the primitive lattice vectors which define the
periodic structure of the dielectric. In particular these lattice vectors help define the unit cell, a
primitive dielectric structure which is tiled infinitely throughout space to form the crystal, and the
lattice constant a, which is the fundamental length scale of the system. Though there are many
crystal lattices possessing distinct symmetries, in this work we are concerned only with three cases, in
which the dielectric is periodic in either one or two dimensions. These three lattices, one-dimensional,
two-dimensional square, and two-dimensional hexagonal, are illustrated in Fig. [[.5]

For each set of primitive lattice vectors we may define a set of reciprocal lattice vectors b; such
that a; - bj = 2mdy; (0 is the Kronecker delta function). The discrete translational symmetry of

the lattice guarantees that Bloch’s theorem holds, which states that any solution of the wave
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Figure 1.6: Nanobeam optical bandstructure. a, Three-dimensional unit cell of a nanobeam
photonic crystal, with relevant dimensional parameters labeled. This structure has periodicity only
along the axial (x) direction. b, Computed photonic band structure, showing mode frequency versus
the axial component of the wavevector ky for z-symmetric modes, assuming a Si beam (refractive
index n = 3.48) and specific dimensions (a,t, w, hx, hy) = (436,220, 529, 165, 366) nm. Bands shown
in red are modes of odd vector symmetry in y, while blue bands are even. The red shaded region
indicates the pseudo-bandgap, while the gray shaded region is the light cone. The frequency of
interest (v ~ 194 THz, corresponding to A ~ 1550 nm) is indicated by a black dashed line.

equation can be expressed in the form
Hy(x) = ¢*hy(z), (1.65)

where the wavevector k = };;b;, l; € Z exists in the reciprocal lattice and hg(z) is a periodic

function on the lattice (i.e., hg(x) = hgx(x + R)). The eigenvalue problem can then be cast in the

form

Orhi(x) = (ik + V) x (e(lw) (ik + V) x hk(m)> (“i"”) by (). (1.66)

Due to the periodic boundary conditions imposed upon hyg, the eigenvalue problem can be restricted
to a single unit cell of the crystal, which results in a discrete spectrum of eigenfrequencies wj(k)
for any given wavevector k (i.e., the band structure of the crystal). Furthermore, due to both the
discrete translational symmetry and the other symmetries of the lattice point group 7 we may
restrict our attention to a limited region of the reciprocal lattice, known as the first irreducible
Brillouin zone (IBZ). Solutions to Eq. for any other wavevectors k may then be obtained from
this subset of solutions by applying the appropriate symmetry operations. The IBZs are illustrated
below their respective lattices in Fig. Note that for the one-dimensional lattice in Fig. the
IBZ is merely the line ky € [0,7/a]. In practice one solves for the band structure of a given dielectric
lattice via one of a variety of numerical methods. We use a planewave-expansion based algorithm
developed at MIT , which is implemented in the freely available MIT Photonic Bands (MPB)
software package [76].
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To illustrate the properties of photonic band structures, we will focus on the structure of primary
interest in this work: the nanobeam photonic crystal, whose full three-dimensional unit cell is shown
in Fig. [[.6h. This structure, like the schematic shown in Fig. [I.5h, has periodicity only along the
axis of the beam, denoted here as the z-direction, while the other dimensions of the beam are finite
in extent (the beam is assumed to be surrounded by vacuum with n = 1). A typical computed
band structure for this class of photonic crystal is shown in Fig. [[.6p, where one observes a bandgap
(red shaded region) in which no guided modes of the structure exist. However, as the crystal is
finite in extent in y and z there exist different classes of modes. The modes we care about are
the “guided” modes, for which the electromagnetic fields are confined via index-guiding (i.e., total
internal reflection) to a small region around the nanobeam. In addition to these modes there exists
a continuum of modes which can carry energy infinitely far away from the nanobeam, the so-called

2 = ¢?|k|?, they can only

“radiation” modes. As these modes must satisfy the free-space condition w
exist in a particular region of frequency-momentum space known as the “light cone” (gray shaded
region) defined for a nanobeam by w > cky. Finally, there exist “leaky” modes, guided modes which,
while localized near the waveguide, exist in the light cone region and can strongly couple to radiation
modes. Due to the existence of radiation modes, we can never have true photonic bandgaps in such
partially index-guided structures, but rather pseudo-gaps in which no guided or leaky modes exist.

There are a few additional points worth making before moving on. The first is that, despite
the lack of translational symmetry in y or z, there is reflection symmetry in both directions about
the center of the beam. This allows us to classify the solutions of Maxwell’s equations by their
vector symmetry with respect to reflection about the y = 0 and z = 0 planes (assuming the origin
is placed along the beam axis). As we will see in section in practice we are only concerned
with the lowest frequency optical band. For the optically thin structures considered in this work this
mode will always be of even vector symmetry in z (these are the so-called “TE-like” modes, whose
electric field lies predominantly in the z = 0 plane). Moreover, for the nanobeam the lowest lying
mode is always of even vector symmetry in y, and thus when computing photonic band structures
it is sufficient to compute only modes which are even (odd) symmetry in z (y), which allows us
to simulate only one-quarter of the full unit cell provided the appropriate boundary conditions are
applied at the symmetry planes.

The second point is that, due to the scale invariance of Maxwell’s equations the frequencies of
the optical bands can be shifted arbitrarily without changing the band structure itself by making
appropriate transformations to the dielectric function and structural dimensions |72]. In particular,
uniformly scaling the dimensions of the crystal by some factor s (formally making the transformation
€ (x) = e(x/s)) will simply result in the same band structure with scaled frequencies and mode
profiles w’ = w/s and wuj(x) = uk(x/s), respectively. Once a suitable band structure is obtained

it is trivial to adjust the design parameters such that the particular frequency of interest lies in
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the bandgap El When performing band structure simulations the dimensions of the structure are
typically expressed in units of the fundamental lattice constant a, which can then be selected to yield
the desired mode frequencies. Similarly, scaling the dielectric function according to € (z) = s¢(x)
scales the frequencies as w’ = sw with no change in the band structure or mode profiles. This is only
true if one scales the entire dielectric function (i.e., that of the cladding as well as the nanobeam).
If one only changes the nanobeam material the band structure can and will change, with smaller
index contrasts yielding smaller bandgaps, all else being equal.

One final point is that, while there seem to be many free parameters in even this simple, quasi-
one-dimensional problem, there are a number of rules of thumb which can provide a rough starting
point for the design. In this case we want to maximize the size of the bandgap and place our desired
cavity frequency roughly in the center of the gap (the attenuation and corresponding confinement of
a mode in the bandgap region is higher the further the mode frequency is from the band edges). Note
that in Fig. [[.6p the bandgap is located around a frequency of v ~ 200 THz, where the refractive
index of Si is roughly n = 3.48. The corresponding wavelength is thus A = ¢/nv ~ 430 nm ~ a. In
general one finds that any bandgap will tend to occur at frequencies such that the lattice constant a
is comparable to one wavelength in the material (A/n), as this maximizes interference between the
scattered fields from adjacent unit cells. Furthermore the size of the bandgap, typically measured by
the dimensionless constant Av /vy, where Av is the frequency span of the gap and vy is the mid-gap
frequency, is maximized for a particular thickness and hole size, which depends on the index contrast
between the beam and the cladding [72]. In our case the index contrast is about 3.5, and optimal
thickness tends to be around ¢ ~ (0.5 — 1)a, while the optimal hole size is typically such that the
filling fraction (the ratio between the hole area and the total unit cell area) is roughly 0.2 — 0.25.
The bandgap isn’t terribly sensitive to the hole shape (e.g., whether the hole is circular or oblate)
as long as the filling fraction is kept fixed. This will prove useful when designing a simultaneous

optical and mechanical cavity.

1.3.2 Phononic Crystals

The propagation of acoustic waves through a periodic elastic medium can be treated in a similar
way to the propagation of electromagnetic fields [77}/78]. Thus, any photonic crystal will also serve
as a phononic crystal |E| and, with the proper design, will possess bandgaps for certain frequencies

of sound as well as light [79}[80]. Due to the large difference between the speeds of sound and light

91n practice this can be complicated by other restrictions on the structural dimensions. For example, one might only
have high-quality material with a particular device layer thickness, fixing the thickness of the fabricated nanobeam
and preventing arbitrary uniform scaling of the structure.

10 Actually, this is not strictly true. As light can propagate in vacuum it is possible to have a photonic crystal
composed of an array of disconnected dielectric objects. As phonons cannot propagate through vacuum any acoustic
waves would be unaffected by the periodicity. Rather, each object would behave as an independent mechanical
oscillator. In this work we are only concerned with suspended, connected membranes with periodic holes and we do
not need to worry about this other type of photonic crystal.
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such bandgaps will occur at frequencies orders of magnitude lower than the optical bandgaps, in the
GHz range.

The mathematics of phononic crystals are slightly more complicated than those of photonic
crystals, as the transverse and longitudinal components of the acoustic displacement field can mix.

Considering a linear, lossless elastic medium, we may again represent an arbitrary solution of the

acoustic wave equations as a linear superposition of time-harmonic solutions Q(x,w) = Q(x)e™ ™!,
with the displacement field vector @ given by a solution to the eigenvalue problem [81]:

. 1

PQ(x) = — VT (C(2)VQ(x)) = —w?Q(x), (1.67)

p(x)

where p and C are the scalar material density and rank four elasticity tensor, respectively, and where
VT denotes the transpose of the nabla operator. This can be equivalently written in component

form as

maj (Cijla(®)81Qx(x)) = —w?Qi(), (1.68)

where repeated subscript indices are summed over. In contrast to the electromagnetic eigenvalue
equation we have treated the elastic material as explicitly anisotropic. This is in general necessary
even if the dielectric tensor is isotropic, as is the case with Si. As before, in the presence of discrete
translational symmetry we may express the solutions to the acoustic wave equation as Bloch modes
and numerically solve for the phononic band structure. In this case we use COMSOL [82], a com-
mercial finite-element-method (FEM) solver, using the appropriate periodic boundary conditions to
solve for the desired number of bands at any desired point within the IBZ E

The computed phononic band structure for the nanobeam unit cell is shown in Fig.[1.7] assuming
the elastic properties of Si and the same unit cell dimensions used to compute the photonic band
structure in Fig. [[.6b. As with the electromagnetic solutions we may classify the modes by their
vector symmetries with respect to reflection in the y and z directions. In this case we care about
the acoustic modes with even vector symmetry in both directions, for reasons which will be made
clear in section These modes are shown as red lines, while other symmetries are displayed as
blue lines. The most striking difference from the photonic band structure is the absence of a light
cone, as phonons cannot propagate in the cladding (vacuum) and thus radiation transverse to the
beam is impossible. This in principle allows for the formation of complete phononic bandgaps. In
this structure, however, we have no true gaps but rather only gaps for particular symmetries. The
relevant pseudo-gap (sometimes called a symmetry gap) for the even symmetry modes is shaded in

red, and contains several bands of differing symmetry. In a perfectly symmetric structure this is of no

1 One might reasonably ask why we don’t use FEM to solve for the photonic band structure. The reason is that, due
to the condition of transversality imposed by Maxwell’s equations (V- H = 0, or for a Bloch mode (ik + V) - by, = 0)
it is more efficient to use a planewave basis for finding physical solutions to the eigenvalue equation |75]. As acoustic
waves do not have this constraint, it is more efficient to solve them using FEM. This also affords several advantages
such as the use of a nonuniform mesh, allowing us to resolve fine features in the geometry more effectively.
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Figure 1.7: Nanobeam mechanical bandstructure. Computed acoustic band structure for a
nanobeam with a unit cell like that of Fig. [[.6h, showing mode frequency versus the axial component
of the wavevector ky for z-symmetric modes, assuming a Si beam with the same dimensions as
Fig.[T.6p. Bands shown in red are modes of even vector symmetry in both y and z, while blue bands
are other symmetries. The red shaded region indicates the bandgap, while the frequency of interest
(v ~ 5 GHz) is indicated by a black dashed line.

consequence, as different symmetries are uncoupled from each other. In a real, fabricated structure,
on the other hand, imperfections will always exist which break the perfect mirror symmetries of
the structure and couple modes of different symmetry. While this coupling is typically not strong
enough to prevent localization of a mechanical mode, it has important ramifications for the quality

of the mechanical cavities formed from such a gap, discussed further below.

1.3.3 Cavity Design

Once a unit cell has been found with appropriate photonic and phononic bandgaps, we may form a
resonant cavity by creating a defect in the lattice which locally perturbs the otherwise perfect crystal
symmetry. For example, one might remove a hole from an otherwise uniform crystal structure, or
even just change the dimensions of one unit cell slightly. The breaking of translational symmetry
then allows for the existence of modes at frequencies within the bandgap, which are necessarily
localized in space around the defect region.

However, due to the possibility of radiating light into the cladding we must take care in how we
design the defect in order to assure high optical quality. In particular, unlike a guided mode of the
ideal, infinite photonic crystal, which exists at a single, well-defined point in k-space, a spatially
localized cavity mode will necessarily be composed of many individual momentum components. As
with electronic defect states [83], the photonic defect modes can be approximately written in terms
of the Bloch functions of particular band edge, Ha(z) = }_; fj(z) e *i'® Ry, where k; are the
degenerate k points corresponding to the band edge (i.e., the star of k [74]), and fj(x) are a set
of envelope functions which can be described in terms of a Wannier-like equation dependent on the

dielectric perturbation which forms the defect [84H87]. Thus, the decomposition of the defect mode
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into its Fourier components will be peaked near the band edges, with a distribution dependent on
the Fourier transforms of the envelope functions. As any momentum components located within the
light cone may couple to radiation modes and contribute to optical loss, it is crucial to tailor the
defect so that the envelope functions are as localized as possible in the Fourier domain [88}/89].

In a quasi-one-dimensional waveguide such as the nanobeam, this is straightforwardly accom-
plished by creating a smooth variation of the unit cell along the direction of propagation such that
the frequency of one of the optical band edges at the X point of the IBZ (kx = m/a) tunes into the
bandgap, creating a localized defect mode drawn from that band edge. For a perturbation which
varies roughly quadratically the envelope function will be approximately Gaussian, with a width in
k-space inversely related to the spatial extent of the defect region. As discussed in section [1.3.1
we focus on the lowest lying band edge (the “valence” band), as a lower frequency corresponds to
a larger distance in k-space between the X-point and the light cone. Due to the aforementioned
scaling properties of Maxwell’s equations, the frequency of the lowest band can be tuned into the
bandgap by reducing the local lattice constant a. At the same time the size of the hole is also
reduced in an attempt to keep the local band structure constant aside from an overall frequency
shift (this is not strictly possible, of course, without also scaling beam width and thickness). This
results in a defect unit cell shown in Fig. |[1.8b, which can be compared to the nominal unit cell in
Fig.[[.8h. Fig. shows the band edge from which we draw our mode, and the tuning of the band
edge frequency as the nominal unit cell is deformed into the defect unit cell.

The behavior of the optical mode in the defect region is not the only concern. While the localized
mechanical mode cannot suffer transverse radiation loss in the same manner as the optical mode, not
all localized mechanical modes will couple strongly to the optical cavity mode. We must determine
from which mechanical band we want to draw our localized mode to maximize the optomechanical
coupling strength, and ensure the defect is designed in such a way as to tune this mode into the
bandgap. In order to do so we must first derive a formula for computing gg, given the unperturbed
optical and mechanical modes.

There are two components in the computation of gg. The first is determining the zero-point am-
plitude of the mechanical motion, given by xzpr = 4/ m, where the effective mass is defined

via an integral over the mode volume as

et = p / alq(@)?, (1.69)

where g() is the displacement vector field of the mechanical mode, normalized such that max(|q|) =

1. The zero-point amplitude can thus be easily determined from the vector field profile of a mechan-

12This definition is determined by choosing the mechanical mode to be parametrized by an amplitude « such that
Q = agq, and requiring that the parametrized potential energy equal the true potential energy. In principle we could
choose a different definition of mode amplitude «, which would result in a different definition for effective mass, or
vice versa. We may choose one freely, but not both.
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Figure 1.8: Nominal and defect unit cells. a, Nominal unit cell of the OMC nanobeam cavity,
representing the mirror region. The dimensions are (a,t,w, hy, hy) = (436,220, 529, 165, 366). b,
Unit cell in the center of the defect region, with dimensions (a, t, w, hy, hy) = (327, 220, 529, 199, 170).
¢, Optical bandgap of the nominal unit cell, with the X-point band edge mode of interest circled in
green. The plot on the side shows the tuning of the band edge frequency as the unit cell geometry is
varied between the nominal and defect dimensions, along with corresponding plots of the dominant
electric field component F,. d, Acoustic bandgap of the nominal unit cell, with the I'-point band
edge mode circled in green. The side plot shows tuning of the mode in the defect region along with
corresponding plots of the displacement field Q.
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ical eigenmode obtained via FEM simulation. The second component is determining the quantity
goMm = Owe/Oa, the change in optical mode energy for an infinitesimal mechanical displacement
amplitude «. From standard perturbation theory we know that the first order change in energy will
depend on the unperturbed eigenvectors (in this case, the electric field mode). Since the energy den-
sity for an electromagnetic wave depends only on E and the dielectric tensor € this leads naturally
to the expression

we  w, [dz E*(z) 22 E()

JOM =50 T T2 [ &z E*(x) - e(x)E(x)’

(1.70)

which is recognized as a version of the standard Hellman-Feynman perturbation formula [90], and
where the electric field vector is the unperturbed eigenmode. To first order, there are two fundamen-
tal ways in which the dielectric tensor can be perturbed by small displacements of the geometry. The
first is that the material’s internal dielectric properties remain unchanged while the boundaries of
the object distort, altering the spatial overlap of the dielectric and electric field. This effect is often
termed the “boundary contribution”. Computation of this figure requires careful consideration of
the boundary conditions imposed by Maxwell’s equations in order to ensure the result is expressed
in terms of functions which are continuous across the boundary. For an isotropic dielectric function

it is given in terms of the optical and mechanical mode profiles as [91]

we [ dA q(x) - n(x) (AelE)(x)|> — Ae Do (z)]?)
2 | @z e(z) | E(x)[? ’

goM,bnd = — (1.71)

where the top integral is over all boundaries of the crystal while the bottom is over all space, 7 is the
surface normal vector at any boundary, q is the normalized mechanical displacement field, Ae is the
difference between the dielectric constant of the crystal and that of the cladding (here, Ae = eg; — 1),
and D = eF is the electric displacement field. The subscripts || and L denote vector components
parallel and perpendicular to the boundary, respectively. The second way mechanical motion can
change € is via the photoelastic effect, where the internal strain caused by the deformation causes a
shift in the internal dielectric properties of the material. This shift is given by [92]

de  (pS
o€ <> €, (1.72)

€o

where p is the rank-four photoelastic tensor of the material and S is the strain tensor defined in

terms of the displacement field as Sj; = (gg‘_ + %) For an initially isotropic material this simplifies
3 i
to
deij 2
da = *€0€rpijlek1~ (173)

Note that the shifted dielectric tensor is in general anisotropic even if the unperturbed material is

isotropic. This expression can be inserted into Eq. to obtain a straightforward, if somewhat
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cumbersome, expression for the photoelastic contribution

_ cocrwe [ AV Ef () Ej(2)pijaSi(z) (1.74)
JoM,pe B [ B3z e(x)|E(z)|2 ’ .

where the top integral is over the volume of the crystal, and all repeated subscript indices are summed
over. In practice this is greatly simplified by the underlying microscopic crystal symmetries of the
dielectric, which require most elements of the photoelastic tensor to vanish [92]. In particular, for
Si there exist only three independent, non-zero elements of p, which can be obtained at the relevant
optical frequencies from Ref. [93]. Putting it all together, the vacuum optomechanical coupling rate
is given by the expression

9o = 2zpF (goM,bnd + JOM,pe) » (1.75)

which can be calculated using only the unperturbed mechanical and optical eigenmodes (obtained
via FEM simulation) and the known elastic and optical properties of the material.

With an explicit expression for gy in hand we can immediately eliminate most mechanical modes
from consideration. First, notice that gy is quadratic in the electric field but linear in either the
displacement g or the strain tensor S. Consequently, it follows that any mechanical modes possessing
odd vector symmetry with respect to either mirror symmetry plane of the structure will have a
vanishing contribution to gop when integrated over all space. Moreover, recall that at the X-point
the guided mode will have an overall phase factor e’/ That is, the guided mode profiles in
adjacent unit cells will be 7 out of phase with each other. Thus, q and S will flip sign while |E|?
stays constant. This implies that mechanical modes drawn from the X-point will have negligible
go due to a high degree of cancellation between adjacent unit cells in the cavity region. The only
remaining mechanical modes which are expected to yield high gy are those at the I'-point (kx = 0)
with completely even vector symmetry, from which we must draw our mechanical cavity mode.

We can estimate the expected relative optomechanical coupling strengths of each mode by com-
puting go per unit cell using the guided mode optical and mechanical profiles. We find that the
optimal mechanical mode is the second even band, circled in green in the mechanical band structure
shown in Fig. [I.8d. Note that this mode is higher in frequency than the bandgap, and our defect
must tune the I-point frequency down into the gap. Unfortunately, as the elastic wave equations
possess the same type of scale invariance as Maxwell’s equations, the reduction of lattice constant a
and hole area will tend to raise the frequency of the mechanical bands as well as the optical bands.
Unlike the optical bands, however, the mechanical bands are highly sensitive to the hole shape.
In particular, by increasing the hole aspect ratio hy/hy, while keeping the total hole area constant
we effectively raise the motional mass of the mechanical mode of interest, reducing its frequency,
while minimally perturbing the optical modes. Adding this effect yields the full defect cell shown in
Fig. [I.8p, and tunes the mechanical mode in the desired direction, as shown in Fig. [[.8.
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Figure 1.9: Optimized nanobeam OMC cavity. a, SEM image of a fabricated nanobeam cavity,
showing the defect cavity region. In addition to this, nominal (“mirror”) unit cells extend for several
periods on either side. b, Normalized electric field £y component of the fundamental optical mode
at w./2m ~ 194 THz. c, Normalized displacement profile of the mechanical “breathing” mode at
wm /27 =~ 5.1 GHz.

With the optimal modes identified, and a suitable defect perturbation in hand, creating a good
optomechanical cavity now comes down to choosing a gradual, smooth transition between the nom-
inal and defect unit cells in order to reduce optical scattering and match the spatial extents of the
optical and mechanical defect modes (as can be inferred from the above expressions for go, roughly
speaking we need the extent of g to be comparable to that of |E|?). Moreover, there is still a fair
amount of optimization of the specific dimensions of both the nominal and defect unit cell, which
will provide small but important changes to the final value of gg for a given cavity. At this point,
it proves more efficient to rely on numerical optimization, and we use the Nelder-Mead simplex
algorithm in order to optimize the cavity over a range of dimensional parameters. At each step
the localized optical and mechanical eigenmodes are computed using COMSOL and the resulting
calculated value of gy is used as a fitness function for the optimization, with an additional penalty

applied if the optical @ drops too low. The full details of the optimization procedure can be found
in Ref. [1].

1.3.4 Nanobeams

A scanning electron microscope (SEM) image of a fabricated, fully optimized Si nanobeam OMC
is shown in Fig. with the corresponding FEM-simulated electric field and displacement mode
profiles shown in Fig. and c, respectively. For this design, the nominal unit cell (which acts
as the cavity mirror) has the dimensions specified in the caption of Fig. , while the unit cell
at the center of the defect region has the dimensions specified in the caption of Fig. [[:8p. In
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between these two points the lattice constant and hole area are varied quadratically over several
holes, with a smooth variation of the hole aspect ratio as described in the previous section. Though
the image displays only the cavity region and a single mirror period on either end, in practice several
more periods of the mirror region are present on either end of the cavity in order to provide good
confinement of the modes (6 — 7 periods on either side is usually more than sufficient).

The as-designed optical and mechanical mode frequencies are w./27 ~ 194 THz and wy, /27 =
5.1 GHz, respectively, while in practice small fabrication errors can result in small variations in the
measured frequencies. The optimized optomechanical coupling for this structure is go = 860 kHz, of
which 950 kHz is due to the photoelastic effect and —90 kHz is due to the moving boundary effect.
While this is particular design has the maximum as-designed gq, it is possible to find other designs
with only slightly lower go. In particular, a design with wy, /27 &~ 3.6 GHz, but a simulated gy which
is still on the order of 700 — 800 kHz, is used in the measurements of Chapter [3| as it allows us to
avoid a prominent phase noise peak of the laser at ~ 5 GHz.

The optical quality factor Q. = w./k, as calculated in COMSOL, reaches roughly 108. However,
this only accounts for coupling due to radiation losses in an ideal structure. In a typical fabricated
structure the real measured intrinsic optical quality factor lies in the range 5 x 10% — 10°, limited by
a number of factors including disorder, surface roughness, and optical absorption within the Si. The
highest intrinsic @) measured in such a nanobeam is 1.22 x 108 (x;/27 ~ 160 MHz) |95], which is
within an order of magnitude of the highest recorded optical @ in any Si photonic crystal cavity [70].

The mechanical quality factor @y = wm/7; is another story, as it depends strongly on tem-
perature. At room temperature the mechanical @ is typically Qn ~ 2000 — 3000. This is limited
by material damping processes such as phonon-phonon interactions [96] and thermoelastic damp-
ing [97], and shows little dependence on the quality of the acoustic bandgap in the mirror section
or on any additional acoustic shielding as described below. Detailed modeling of the mechanical
damping at high temperature can be found in Ref. [1]. As the temperature is lowered, the effects of
these intrinsic damping mechanisms are expected to reduce and radiation of acoustic energy through
the beam (sometimes called “clamping loss”) should begin to dominate the mechanical damping.
However, one finds Q,, ~ 10* even at low temperatures (7, < 10 K), with little increase as the
number of mirror periods is increased. The culprit is the lack of a complete phononic bandgap
in the nanobeam, as discussed in section As the mirror region only possesses a symmetry
bandgap, small amounts of fabrication-induced disorder can couple the mechanical cavity mode to
nearby modes of different symmetry for which no bandgap exists, limiting the ability of the mirror
region to suppress phonon radiation. This problem, first studied for nanobeams in Ref. [98], can
be remedied by surrounding the cavity with an additional phononic crystal possessing a complete

bandgap.
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Figure 1.10: Cross phononic crystal. a, Unit cell of the 2D “cross” phononic crystal, with
relevant dimensional parameters labeled. This crystal is periodic in both z and y, forming a square
lattice (see Fig. [L.5p). b, SEM image of a fabricated nanobeam cavity with a surrounding cross
pattern (green) serving as an acoustic radiation shield. ¢, Complete phononic band structure in Si
for (a,t, h,w) = (534,220,454, 134) nm. The bandgaps (red shaded region) are complete phononic
bandgaps, and the nanobeam mechanical mode frequency is indicated by a black dashed line. d,
Radiation limited mechanical quality factor @y, obtained from FEM simulations as a function of
disorder parameter o, for a nanobeam without (red) a phononic radiation shield and with a shield
consisting of four (blue) and six (green) cross periods in all directions. The expected range of disorder
estimated from SEM images of fabricated devices is represented by the gray shaded region. The
inset shows the dependence of ()., on the number of cross periods n¢yoss for o = 2%.

1.3.5 Crosses

Generally speaking, the necessary requirement for obtaining a complete phononic bandgap is to find
a crystal comprised of large masses connected by thin sections of material . For low frequency
modes, where the phonon wavelength is large compared to the lattice constant, the crystal can be
approximated as a homogeneous effective medium, the stiffness of which is greatly reduced compared
to the unpatterned material due to the weak links between the masses. For high frequency modes,
on the other hand, the crystal may be described by a tight binding model where the interaction
between the masses is reduced by the small links. The net result is that the low lying modes are
pushed down in frequency while the dispersion of the high frequency modes flattens out, creating a
bandgap for frequencies where the phonon wavelength is comparable to the lattice constant.

One of the simplest and most effective crystals of this type is the so-called “cross” crystal, the
unit cell of which is illustrated in Fig. [[.LI0p. This crystal, which consists of cross-shaped holes
arrayed in a two-dimensional square lattice (see Fig. ) is placed around the entire nanobeam
cavity, providing an additional shield for acoustic radiation. A simulated phononic band structure
of a cross crystal is shown in Fig. m, in which we observe a large (~ 1 GHz) complete phononic

gap centered around the mechanical resonance frequency of the nanobeam.
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While this structure is still affected by disorder, the large gap between the frequency of interest
and the band edges and the complete nature of the bandgap minimize the effects of small amounts
of disorder. The radiation limited @y, can be simulated in COMSOL by placing an additional region
around the shielded cavity, in which the elasticity tensor has a small imaginary component which
mimics acoustic absorption. By tuning the size and position dependence of this fictitious absorption
this layer becomes the acoustic equivalent of a perfectly matched layer [99], which provides an
absorbing boundary condition while minimizing spurious reflections of mechanical energy. The full
details of how the PML is tuned can be found in Ref. [98]. To introduce disorder into the simulation,
we randomize the dimensions and positions of the holes about the nominal parameters according
to a normal distribution with a specified standard deviation. For simplicity, the standard deviation
for each parameter is chosen to be a fixed percentage o of its nominal value. In Fig. we show
the simulated @y, for a nanobeam without a cross shield (red) and with four (blue) and six (green)
periods of the cross shield in all directions, as a function of the disorder parameter o, with the gray
shaded region indicating the range of disorder (o ~ 2%) expected in actual fabricated devices based
on SEM images. A plot of @, versus the number of cross periods n¢yoss for o = 2% is shown in
the inset, showing the expected exponential dependence with Q,, =~ 103-3+0:96ncross  Ag we shall
see in Chapters [3| and 4] the observed mechanical @ at millikelvin temperatures agrees well with
the simulated radiation-limited values in the presence of moderate amounts of disorder, suggesting
we can reach the regime in which the mechanical lifetime is determined solely by the phononic

engineering of the structure.

1.3.6 Snowflakes

One might reasonably ask why we don’t just make an OMC defect cavity using the 2D cross structure,
as its complete phononic bandgap is superior in terms of acoustic confinement when compared to
the symmetry gap of the nanobeam. Unfortunately, the cross structure has no photonic pseudo-gap
for the TE-like modes due to the presence of leaky modes, and does not even possess a guided mode
gap for the TM-like modes [80]. This arises from the low symmetry of the cross structure’s square
lattice, which leads to very different behavior for plane waves propagating along different directions
of the crystal (e.g., the X and M directions, as seen in the IBZ diagram of Fig. [1.5p), resulting in
a correspondingly smaller photonic bandgap.

This problem can be remedied by moving to a lattice with a higher degree of symmetry, such as
the hexagonal lattice illustrated in Fig.[[.5k. Extending the ideas of the cross structure to this lattice
symmetry results in the “snowflake” crystal [80], the unit cell of which is shown in Fig. . With
proper tuning of the dimensional parameters, we can obtain simultaneous photonic pseudo-gaps and
complete phononic bandgaps, as illustrated in Figs. and c.

Given the 2D nature of the lattice, there is more freedom in how the defect cavity is formed.
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Figure 1.11: Snowflake optomechanical crystal. a, Unit cell of the 2D “snowflake” crystal, with
relevant dimensional parameters labeled. b, Computed photonic band structure for the TE-like
modes in Si, for (a,r, w,t) = (500,200, 75,220) nm, with the light cone (gray) and pseudo-gap (red)
regions indicated. ¢, Computed phononic band structure for the same dimensions as b, with the
complete phononic gap indicated by the red shaded region.
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Figure 1.12: Snowflake W1 waveguide. a, Unit cell of the W1 waveguide formed from a snowflake
lattice. One row of holes is removed and the remaining holes are shifted inward by an amount W,
yielding a waveguide width of A, = V/3a — 2W. Photonic and phononic band structures for the
effective 1D waveguide are shown in b and c, respectively, assuming the lattice parameters detailed
in Fig. and W = 200 nm (A, = 400 nm). The bandgaps are shaded in red and the optical and
mechanical cavity frequencies indicated by black dashed lines. Green circles indicate the optical X-
point and mechanical I'-point modes from which the cavity modes are drawn. The dark gray region
of the photonic band structure indicates the light cone (radiation out of plane), while the light gray
regions in both band structures indicate frequencies above and below the in-plane bandgap defining
the waveguide (radiation in-plane).



Figure 1.13: Heterostructure snowflake OMC cavity. FEM simulated optical (a) and mechan-
ical (b) mode profiles of the W1 snowflake cavity.

For our purposes we choose to form a double heterostructure cavity, which has been demonstrated
to yield extremely high optical @s in similar hexagonal lattice photonic crystals . In this
type of cavity we first remove a single row of holes from the lattice, forming a line defect which
serves as a waveguide . This reduces the problem to that of a 1D waveguide, similar to
the nanobeam, with an effective unit cell shown in Fig. [l.12h. The corresponding band structures
for this waveguide are shown in Fig. and c. In this case the remaining holes in the lattice
are shifted inward towards the center of the line defect in order to tune the optical and mechanical
waveguide bands and obtain the desired band structures .

Forming a defect cavity now becomes very similar to the case of the nanobeam, with a gradual
modulation of the geometry introduced along the waveguide axis in order to locally tune the desired
optical X-point and mechanical T-point modes into the bandgap. In this case, a small (~ 3%)
reduction in the hole radius is gradually introduced, leading to the localized optical and mechanical
modes shown in Fig. and b, respectively. The optical and mechanical resonance frequencies of
this cavity are w. /27 = 205 THz and wy, /27 = 9.5 GHz, respectively, with a vacuum optomechanical
coupling rate of go/2m ~ 300 kHz.

Though snowflake cavities are not be used in the main experimental work presented in this
thesis, their two-dimensional nature presents an attractive solution the problem of excess heating at

sub-kelvin temperatures, as discussed further in Chapter
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1.3.7 Fabrication Overview

The Si devices studied in this work are fabricated from a silicon-on-insulator (SOI) wafer (SOITEC,
220 nm device layer, 3 um buried oxide) using electron beam lithography followed by reactive ion
etching (RIE/ICP) with a C4Fg/SFg chemistry.

For the end-fire coupled devices detailed in section [2.5] and measured in chapters [3] and [4] the
Si device layer is then masked using ProTEK PSB photoresist to define a mesa region of the chip.
Outside of the protected mesa region, the buried oxide is removed with a plasma etch and a trench is
formed in the underlying silicon substrate using tetramethylammonium hydroxide (TMAH), allowing
a lensed fiber tip to be brought into the near-field of the end-fire couplers.

Finally the devices are released in hydrofluoric acid (49 % aqueous HF solution) and cleaned in
a piranha solution (3-to-1 H2SO,4:H203) before a final hydrogen termination in diluted HF in order
to passivate the surface [104]. During the initial lithography step, arrays of the nominal design are
scaled by +2 % to account for frequency shifts due to fabrication imperfections and disorder.

Further details about the fabrication process can be found in Refs. [44] and [55].
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Chapter 2

Optical Coupling in a Dilution
Refrigerator

2.1 Motivation

To couple light in and out of the optical cavity, the initial nanobeam OMC experiments [1340,45/105]
utilized an evanescently coupled, dimpled fiber taper probe developed within the Painter group [106].
This coupling scheme is useful for rapid development and testing of devices, as it allows one to quickly
test hundreds of devices spread across a single chip. However, it suffers from a number of drawbacks.
The coupling scheme is inherently two-sided, meaning that light can couple from the cavity into the
forwards and backwards propagating waveguide modes with equal efficiency. In practice we only
detect light at one end of the optical fiber, and thus this coupling scheme limits us to a coupling
efficiency of 50% even in the ideal case of no additional intrinsic loss in the cavity (k; = 0). In a
realistic cavity the actual coupling efficiency is typically much less than 50% due to finite intrinsic
loss from fabrication imperfections, absorption, etc. Moreover, the exact extrinsic coupling rate ke
depends very sensitively on the positioning of the fiber relative to the cavity, which can be difficult
to achieve consistently. The taper itself can in some cases cause additional scattering of the optical
cavity mode, increasing k; without increasing k., reducing the overall coupling efficiency.

In principle these problems can be overcome by utilizing a slightly different coupling scheme,
where the dimpled taper is coupled to an intermediate tapered waveguide which subsequently directs
light to the optical cavity [107H109]. By separating the fiber-to-chip coupling efficiency and the
cavity coupling efficiency, this method allows for single-sided coupling where in principle 100% of
the cavity light can be directed to the output channel and the cavity coupling rate k. can be
precisely controlled independent of the fiber coupling efficiency. However, both this scheme and
the direct fiber-to-cavity coupling require the careful positioning of the fiber taper in the near-field
of a nanostructure. As no signal from the cavity is observed until the fiber has been brought to

within a few microns of the optimal position, this coupling scheme requires real-time imaging of
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the device during the coupling process. This is difficult to achieve in a dilution refrigerator due to
issues with heating of the environment by the imaging system and alignment issues owing to thermal
contraction at low temperatures of the various materials comprising the imaging setup. It is possible
to construct imaging systems suitable for real-time imaging at mK temperatures utilizing optical
fiber bundles to transmit images to a room-temperature camera [110], and coupling of a fiber taper
to an optomechanical bottle resonator inside a dilution fridge has recently been demonstrated using
this technique [111]. However, a simpler approach is to develop a coupling scheme that does not
utilize a fiber taper at all and can be aligned without direct imaging of the sample.

One alternative approach is to use an on-chip grating coupler |112H118] to couple a near-normal
incidence free-space beam (e.g., launched from a lensed optical fiber) to an on-chip waveguide.
While in principle such couplers can reach efficiencies of greater than 90% [113], typical experimen-
tally demonstrated values are closer to 20 — 30%, though this can be improved to 60 — 70% via
nonuniform etching or modification of the substrate [115H117]. More importantly, such grating cou-
plers typically require leaving the buried oxide substrate intact, which complicates integration with
the fully undercut OMC structures used in this work. While progress has been made in developing
high efficiency, fully suspended grating couplers [118], they have only demonstrated efficiencies of
~ 25% for the TE-like modes used in our OMC designs. There were some initial efforts to design
and fabricate novel suspended free-space couplers within the Painter group [1], but the fabricated
couplers possessed rather low coupling efficiencies (~ 20%) and were difficult to characterize owing
to multiple reflections within the coupler structure that greatly complicated the optical reflection
spectrum.

Ultimately, the approach which proved most successful was to design couplers consisting of either
a lensed or cleaved optical fiber aligned on-axis to a narrow, mode-matched on-chip waveguide, which
tapers up to the appropriate width for coupling into the optical cavity. Couplers of this type have
been widely used for efficient fiber-to-chip coupling and on-chip optical interconnects [119H122], and
allow for single-sided coupling with demonstrated fiber-to-cavity efficiencies as high as 75%. Most
importantly, it is straightforward to couple such devices without imaging the sample, and in some

cases without any in-situ alignment at all, as we will discuss below.

2.2 Adiabatic Mode Coupling Theory

In this section, we will present an overview of the mode coupling theory underlying the design
of the fiber-to-waveguide couplers used in this work. A more rigorous and complete treatment of
the theory presented here can be found in a number of textbooks on optical waveguide theory,

particularly Refs. [123] and [124].
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2.2.1 Waveguide Modes

We begin by considering a waveguide formed from lossless, isotropic dielectric materials, where the
axis of the waveguide will be taken as the z-axis, with an arbitrary cross-sectional refractive index
profile n(x,y) but homogeneous along the z-axis. We consider only monochromatic fields, so that
all electric and magnetic fields have an assumed time-dependence of ¢’*. Assuming nonmagnetic

materials, Maxwell’s wave equations for the electric and magnetic field vectors E and H are

V x E = —iwuoH, (2.1)

V x H = iwegn’E. (2.2)

In general, the longitudinal components of the fields E, and H, can be determined from the trans-

verse components. In particular, it is straightforward to show using Egs. and [2.2] that

E, = (iweon®) "' Vi x H,, (2.3)

H, = — (iwp)” "V, x E, (2.4)

where Vi =V — 20/0z and 2 is the unit vector in the z-direction. This simple relation allows us to
focus solely on the transverse field components, which is advantageous when considering junctions
between two waveguides along the waveguide axis as the transverse components are continuous
across the boundary.

Due to the assumed continuous translational symmetry of the system along the z-axis, the
solutions of Maxwell’s equations can be expressed as E = E(z, y)e'#* for some propagation constant
B (similarly for H). The propagation constant is often written in terms of an effective refractive
index, 8 = (w/c)neq. Any such solution Ej will satisfy the following wave equations for the transverse

field vectors:

-1

- Vi X (Vt X EJ) +1if (2 X HJ) = iweonQEj, (25)
iwpo
1 1 o/ a .

th X <,',L2Vt X Hj) -+ Zﬁ (Z X EJ) = 7Z(U[,LOHj. (26)

These solutions can be further divided into guided modes and radiation modes. Guided modes
are defined as those modes for which energy is confined to a finite region in the xy-plane and does
not propagate freely to infinity. There exists a discrete set of these modes, with real effective indices
satisfying

n*(00) < nZg < max (n*(z,y)). (2.7)

The specific number of guided modes depends on the specific refractive index distribution, but there
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will always be at least one guided mode whenever n(x,y) > n(co) for some z and y in the plane.
There will also exist an infinite continuum of unconfined modes, the so-called radiation modes,
which carry energy away to infinity and for which Eq. need not be satisfied (and neg need not be
real). The guided and radiation modes together form a complete set of modes, so that an arbitrary

transverse field can be expanded in terms of the guided modes and the radiation field [123]:

Ei(z,y,2z) = Z (aj"’ewjz + aj_e_w-‘z) Ei(z,y) + /dp (a:eiﬁf’z + a;e‘iﬁf’z) E,(z,y), (2.8)

j
Hi(x,y,2) = Z (afeiﬁjz — a;e_iﬁjz) Hj(z,y) + /dp (aje’ﬂpz - a;e‘wﬂz) H,(z,y), (2.9)
j
where the summation over j extends over all possible guided modes, and the integral over p over
the continuum of radiation modes. Note that we have explicitly separated forward traveling guided
modes (superscript + on the expansion coefficients) from backward traveling guided modes (super-
script — on the expansion coefficients) due to the different symmetry properties of the electric and
magnetic transverse fields upon reflection in the z direction.

In addition to forming a complete set, the transverse guided and radiation modes of the waveguide
are orthogonal with respect to power. That is, for a lossless, source-free (i.e., no free charge or
current) waveguide it can be shown that any two distinct guided or radiation modes of the waveguide
(i.e., modes with distinct pro