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Abstract

The field of cavity optomechanics, which concerns the coupling of a mechanical object’s motion

to the electromagnetic field of a high finesse cavity, allows for exquisitely sensitive measurements

of mechanical motion, from large-scale gravitational wave detection to microscale accelerometers.

Moreover, it provides a potential means to control and engineer the state of a macroscopic mechan-

ical object at the quantum level, provided one can realize sufficiently strong interaction strengths

relative to the ambient thermal noise. Recent experiments utilizing the optomechanical interaction

to cool mechanical resonators to their motional quantum ground state allow for a variety of quantum

engineering applications, including preparation of non-classical mechanical states and coherent opti-

cal to microwave conversion. Optomechanical crystals (OMCs), in which bandgaps for both optical

and mechanical waves can be introduced through patterning of a material, provide one particularly

attractive means for realizing strong interactions between high-frequency mechanical resonators and

near-infrared light. Beyond the usual paradigm of cavity optomechanics involving isolated single

mechanical elements, OMCs can also be fashioned into planar circuits for photons and phonons,

and arrays of optomechanical elements can be interconnected via optical and acoustic waveguides.

Such coupled OMC arrays have been proposed as a way to realize quantum optomechanical memo-

ries, nanomechanical circuits for continuous variable quantum information processing and phononic

quantum networks, and as a platform for engineering and studying quantum many-body physics of

optomechanical meta-materials.

However, while ground state occupancies (that is, average phonon occupancies less than one)

have been achieved in OMC cavities utilizing laser cooling techniques, parasitic absorption and

the concomitant degradation of the mechanical quality factor fundamentally limit this approach.

On the other hand, the high mechanical frequency of these systems allows for the possibility of

using a dilution refrigerator to simultaneously achieve low thermal occupancy and long mechanical

coherence time by passively cooling the device to the millikelvin regime. This thesis describes efforts

to realize the measurement of OMC cavities inside a dilution refrigerator, including the development

of fridge-compatible optical coupling schemes and the characterization of the heating dynamics of

the mechanical resonator at sub-kelvin temperatures.

We will begin by summarizing the theoretical framework used to describe cavity optomechanical
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systems, as well as a handful of the quantum applications envisioned for such devices. Then, we

will present background on the design of the nanobeam OMC cavities used for this work, along

with details of the design and characterization of tapered fiber couplers for optical coupling inside

the fridge. Finally, we will present measurements of the devices at fridge base temperatures of

Tf = 10 mK, using both heterodyne spectroscopy and time-resolved sideband photon counting, as

well as detailed analysis of the prospects for future quantum applications based on the observed

optically-induced heating.
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Preface

I joined the Painter group somewhat late in my first year (March 2010, I think; at least that’s when

I started keeping a lab notebook). While there were a number of projects ongoing in the group

at the time, Oskar suggested two in particular where he thought I might be a good fit. The first

project, manned by Raviv Perahia and Justin Cohen, involved combining the so-called “zipper”

optomechanical cavities with electrostatic actuators in active semiconductor material to make a

tunable laser. The other option was to work with Amir Safavi-Naeini and Thiago Alegre, who

at the time were attempting to measure an optomechanical analog of electromagnetically-induced

transparency as a route to measuring Amir’s new “snowflake” crystal design. I chose the former for

two reasons. First, Raviv’s response to my initial inquiries was something along the lines of “Here’s

when I’m in lab. Start coming by and we’ll eventually find a use for you” whereas Amir’s was “I

guess I can give you some papers to read”. Second, I thought “Hey, cool! Lasers!”. I have continued

to apply this deep level of consideration and introspection throughout graduate school and life in

general.

The tunable laser project would eventually result in a nice little paper and then sort of fizzle

out, while the EIT work would lead to a Nature paper and eventually roll into the other silicon

optomechanical crystal work headed by Jasper Chan, which resulted in a number of landmark

results in optomechanics, including one of the first demonstrations of ground state cooling in, the

first observation of motional sideband asymmetry, the first demonstration of wavelength conversion,

etc. In retrospect, maybe that was a questionable choice.

Still, the laser project had its upsides. In the several months in which we worked together

Raviv proved an excellent mentor, helping me ease into working in the lab and generally functioning

well within Oskar’s group. This project would also introduce me to Justin, who would remain my

constant lab partner throughout the next several years. In addition to starting to assist with actual

measurements, Raviv tasked me with figuring out how to properly simulate the expected mechanical

tuning of our structures including the intrinsic stress of the material, a task made difficult mostly by

the general crumminess of COMSOL’s documentation. This proved ideal, as it gave me something

concrete on which I could work alone with a reasonable expectation of success and which played to

my natural strengths (i.e., sitting in front of a computer and writing code). It also ended up setting
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the tone for the working relationship Justin and I would have in the years to come, where I would

focus on simulation and device design while Justin would work on device fabrication. This is also

how I have come to possess the dubious distinction of having spent the least time in the cleanroom

of all of Oskar’s students (though not zero time, contrary to popular belief).

By the time the laser work was published, Raviv had moved on to the real world and Oskar

suggested that Justin and I work on coupling self-assembled quantum dots in gallium arsenide

optomechanical resonators. This built nicely upon the III-V fabrication experience Justin had ac-

quired over the course of the laser work, and had the potential to give us a shortcut of sorts to

quantum optomechanics by coupling the mechanical and optical resonators directly to a quantum

two-level system. We set about designing, fabricating, and measuring electrostatically tunable cav-

ities in quantum dot material, with the initial goal of enabling simple spectral alignment of an

optical cavity with a particular quantum dot. At the same time, I began working on incorporating

high-frequency mechanics into the design and attempting to calculate how strong we expected the

quantum dot/phonon coupling to be.

Sadly, this project was impeded by a number of factors. For one, all other ongoing projects

in the lab at that time involved silicon devices, which meant that by a large margin most of the

device processing in our cleanroom was of silicon chips. Due to the finicky nature of reactive ion

plasma etching, and the very different etch chemistries of silicon and gallium arsenide, this meant

that fabricating good devices was pretty tricky (real talk for anyone not in the Painter group: when

I say “good” I mean optical quality factors of at least 40 − 50, 000). The best results we obtained

came after monopolizing the cleanroom for a solid weekend doing nothing but etching devices, after

which the last chip came out pretty well. Another difficulty was testing the devices. As the ongoing

effort to cool silicon nanobeam OMCs into the ground state ramped up, it came to encompass all

available optical tables across both of the group’s labs. This meant that there were long stretches

of time where we could not test devices for fear of ruining someone else’s experiment.

After a fair amount of struggling on this project, we came to the conclusion that the numbers

probably were never going to quite work out: the optical Qs were too low, the estimated coupling

between the quantum dots and a high-frequency phonon was too weak, and the lifetimes and dephas-

ing times we expected in our quantum dots (based on earlier measurements by Kartik Srinivasan)

were too large. Moreover, we still hadn’t really nailed down exactly what we wanted to with such

a system. Eventually we made the painful decision to cut our losses, chalk the project up as a

dead-end, and move on. Looking back, I think part of the problem was the relative inexperience

of Justin and myself. As the earlier experiment with Raviv involved free-space photoluminescence

measurements, we started this project with zero experience in many of the basic techniques used in

the lab, such as optical fiber taper testing, heterodyne mechanical spectroscopy, pulling a new fiber

taper, etc. Over the course of the project we had to learn most of this on our own with relatively
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little guidance (typically just enough not to break anything) due to the focus on the ground state

experiment, which led to a lot of fumbling about on our part. This was extremely valuable in some

sense, as one tends to learn quite a bit in the course of failing, but ended up stretching the project

on much longer than was probably advisable.

Around this time the silicon nanobeam experiments had really started to pay off, and the next

major goal was to measure the devices inside a dilution refrigerator. At the time Jasper and Simon

Gröblacher (and later Amir) had already begun testing free-space couplers as a potential route to

optically coupling to OMCs inside a fridge, with mixed results. Oskar suggested that Justin and I

work on a different type of coupler involving direct coupling of a cleaved fiber to a tapered on-chip

waveguide (the so-called “butt couplers” which are described in this thesis). As we hoped to avoid

some of the issues related to two-photon absorption in silicon, this project initially focused on using

silicon nitride. While we would eventually move back to silicon due to the much larger achievable

optomechanical coupling strengths, the initial coupler work would eventually prove useful for cou-

pling to optomechanical accelerometers developed by Alex Krause and Tim Blasius. In addition, the

high stress of the nitride gave us the ability to fabricate extremely long, fully suspended, efficiently

coupled waveguides. This would lead to a ongoing collaboration with Jeff Kimble’s group focused on

trapping atoms in the near-field of the optical photonic crystal waveguide. My involvement in this

project was mostly on the front end, helping to create the initial designs for the trapping waveguides

and calculating the relevant Casimir-Polder forces on the atoms.

Eventually, Oskar purchased a dilution fridge and our attention turned back to the measurement

of devices in the fridge. As most of the original silicon nanobeam team was gone or leaving shortly,

Justin and I started to take ownership of the project, assisted heavily in the beginning by Simon, Jeff,

and Amir. This led to the work which forms the bulk of this thesis, as well as other measurements

detailed in Justin’s thesis.
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Chapter 1

Fundamentals of Cavity
Optomechanics and
Optomechanical Crystals

This chapter will present the basic theoretical framework used to describe the optomechanical in-

teraction and the measurement of mechanical motion within such systems, with a particular eye

towards the sideband-resolved systems which are the focus of this thesis. Some of the proposed

quantum applications for such systems will also be briefly summarized, as they serve to motivate

the experiments presented in this work. Finally, the basic theory and design of the specific optome-

chanical devices studied in the Painter group (the so-called optomechanical crystals, or OMCs) will

be presented. As much of this material has already been presented elsewhere, this chapter will aim

to present enough detail to support the experimental work while trying to avoid excessive redun-

dancy. In particular, the initial design of the OMC structures presented in section 1.3 was largely

performed by previous Painter group students Jasper Chan and Amir Safavi-Naeini, and full details

of the design process and associated theory can be found in their theses [1, 2] and related papers.

1.1 Cavity Optomechanics

The canonical model of a cavity optomechanical system is shown in Fig. 1.1. The optical cavity is

taken to be a simple Fabry-Perot cavity, with optical resonance frequency ωc and photon annihilation

(creation) operator â (â†), where one end mirror of the cavity is mechanically compliant (shown here

as a massive mirror mounted on a spring) and behaves as a simple harmonic oscillator with resonant

frequency ωm and phonon annihilation (creation) operator b̂ (b̂†). In the absence of any interaction,

the optical and mechanical resonators have the bare Hamiltonian

Ĥ = ~ωcâ
†â+ ~ωmb̂

†b̂, (1.1)
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Phase-Sensitive
Detection

S
II

 (ω
)

ωm

b̂, ωm

Ĥint = g0â
†â b̂+ b̂†

x̂ = xZPF b̂+ b̂†

â, ωcâin, ωl

Figure 1.1: Canonical cavity optomechanical system. An optomechanical system may be
modeled as a Fabry-Perot cavity with a moving end mirror, where the intracavity optical field
(photon annihilation operator â) couples to the mechanical oscillator (phonon annihilation operator

b̂) via the interaction Hamiltonian Ĥint = ~g0â
†â
(
b̂+ b̂†

)
. This produces phase modulation on an

optical cavity drive (photon annihilation operator âin), and phase sensitive detection of the cavity
reflection may be used to measure the mechanical oscillation by studying the resulting photocurrent
noise power spectral density SII.

where â and â† obey the usual bosonic commutation relation
[
â, â†

]
= 1, and similarly for b̂ and

b̂†. While the fundamental microscopic interaction between the optical and mechanical degrees of

freedom can be rigorously derived from first principles for this model system [3], a more intuitive

derivation of the interaction Hamiltonian comes from noting that the optical resonance frequency

obeys the relation ωc = nc/2L, n ∈ Z, where c is the speed of light in vacuum and L is the total

cavity length. As the length in turn depends on the position of the mechanical oscillator, x̂, via

the relation L = L0 + x̂, the optical frequency will be dependent upon x̂. For small amounts of

mechanical motion, we can make a Taylor expansion of ωc (x̂) about x̂ = 0 to first order and obtain

ωc (x̂) ≈ ωc +
ωc

L0
x̂, (1.2)

where ωc is taken henceforth as the optical resonance frequency at the unperturbed length L0 (i.e.,

ωc(0)). Using the definition of canonical position in terms of phonon creation and annihilation opera-

tors x̂ = xZPF

(
b̂+ b̂†

)
, where xZPF is the zero-point amplitude of the mechanical oscillator, we may

combine Eqs. 1.1 and 1.2 to obtain the lowest order interacting Hamiltonian of the optomechanical

system

Ĥ = ~ωcâ
†â+ ~ωmb̂

†b̂+ ~g0â
†â
(
b̂+ b̂†

)
, (1.3)

where g0 = xZPFωc/L0 is the fundamental optomechanical interaction rate, physically representing

the optical frequency shift due to the zero-point motion of the mechanical oscillator. From this
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a
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b

ωm

ωm ωm

∆ = ωm

∆ = −ωm

Ĥeff = G â†b̂+ âb̂†

• beam-splitter interaction
• cooling
• state transfer

Ĥeff = G âb̂+ â†b̂†

• squeezing interaction
• heating
• heralding

Figure 1.2: Sideband-resolved optomechanics. The optomechanical interaction scatters a coher-
ent drive tone (gray arrows) to produce Stokes (red arrows) and anti-Stokes (blue arrows) sidebands
corresponding to phonon emission and absorption, respectively. In the sideband resolved regime, the
modified density of states provided by the optical cavity may be used to enhance one or the other
scattering process. For red-detuned driving this results in an effective beam-splitter-like Hamilto-
nian which may be used for laser cooling or state transfer. For blue-detuned driving the effective
Hamiltonian has the form of two-mode squeezing, useful for amplification of the mechanical motion
or the heralded generation of non-classical mechanical states.

Hamiltonian it also follows that the cavity field exerts a radiation pressure force upon the mechanical

oscillator F̂rad = ∂Ĥint/∂x̂ ∝ â†â, where the per-photon force is equal to ~g0/xZPF. While we

have explicitly considered a simple Fabry-Perot cavity, the Hamiltonian of Eq. 1.3 is much more

general. Any system where the motion of a mechanical oscillator shifts the resonance frequency of an

electromagnetic cavity will have an interaction of this form to lowest order, where g0 = xZPF∂ωc/∂x̂.

As the optomechanical interaction dynamically modulates the cavity frequency (i.e., the phase),

driving the cavity with an input laser at frequency ωl will result in phase noise on the output

correlated with the mechanical motion, oscillating at frequencies ωl ± ωm. In general, directing this

reflected output to some phase-sensitive detector (e.g., an optical heterodyne receiver) will then

produce an output photocurrent Î with an RF component oscillating at the mechanical frequency.

By looking at the noise power spectral density (NPSD) SII(ω) of this electronic signal, we can

measure the properties of the mechanical oscillator via the optical output field. In particular, for the

typical case of a mechanical oscillator driven by thermal noise, the NPSD, as illustrated in Fig. 1.1,

will consist of a Lorentzian peak (pink shaded region) centered at ωm, with a total noise power (i.e.,

area under the curve) related to the average phonon occupancy of the resonator, and a linewidth

equal to the mechanical decay rate. This signal sits atop a noise floor (green shaded region), which

in the ideal case is due solely to optical vacuum noise on the drive beam.
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Beyond enabling precise measurement of the mechanical motion, the optomechanical interaction

provides us with the tools necessary to control the state of the mechanics. This is most easily un-

derstood by considering the interaction in the frequency domain, as shown in Fig. 1.2. In the weak

coupling regime, where the fundamental interaction rate g0 is less than the cavity decay rate κ, the

interaction between the drive laser (gray arrows, at frequency ωl) and the mechanical oscillator will

generate two weak optical sidebands at frequencies ωl ± ωm. As discussed above, this can be un-

derstood classically as a weak phase modulation process, but can also be considered microscopically

in terms of photon-phonon scattering. The upper sideband at ωl + ωm (blue arrows), often called

the anti-Stokes sideband in analogy with Raman scattering, is generated by the interaction term

â†âb̂ and represents the up-conversion of a drive photon accompanied by the absorption of a phonon

from the mechanical resonator. Conversely, the lower (Stokes) sideband at ωl − ωm (red arrows)

is generated by the â†âb̂† interaction term and corresponds to down-conversion of drive photons

accompanied by phonon emission.

In the absence of an optical cavity these two fundamental processes will occur with equal strength,

and consequently there is no net effect on the mechanical resonator beyond the overall radiation

pressure force discussed above. However, the presence of the cavity provides a strong modification

to the density of optical states, represented in Fig. 1.2 by blue shaded Lorentzians. In the so-

called “sideband-resolved” regime, when the sideband spacing is much larger than the optical cavity

linewidth (ωm � κ), this modified density of states may be used to enhance one or the other of

these two basic scattering processes.

In particular, if the drive is placed at a lower frequency (red-detuned) from the cavity such

that the anti-Stokes sideband is resonant (∆ = ωc − ωl = ωm), as shown in Fig. 1.2a, one can

derive an effective linearized interaction in a rotating wave approximation (RWA) represented by

the Hamiltonian Ĥeff = ~G
(
â†b̂+ âb̂†

)
, where G =

√
ncg0 (nc is the number of intracavity drive

photons) is the parametrically enhanced coupling rate. This beam-splitter-like effective interaction

involves the coherent exchange of photons and phonons. The most straightforward application of

this interaction is to cool the system by converting phonons to photons which are then extracted

from the optical cavity. More generally, however, it may be used for state-transfer between the

optical and mechanical systems. This enables, for example, coherent transfer between different

optical wavelengths utilizing the mechanical resonator as an intermediary, as discussed further in

section 1.2.1.

On the other hand, if the drive is blue-detuned from the cavity (∆ = −ωm) so that the Stokes

sidebands is resonantly enhanced, as shown in Fig. 1.2b, one finds an effective RWA interaction

Ĥeff = ~G
(
âb̂+ â†b̂†

)
. This interaction, which has the form of two-mode squeezing, allows one to

amplify the mechanical motion, as the process of phonon emission rather than absorption is now

dominant. Beyond this, the creation and annihilation of photons and phonons in correlated pairs
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allows one to herald the creation of non-classical states of the mechanical resonator, as discussed in

section 1.2.2.

1.1.1 Heisenberg-Langevin Equations of Motion

A full theoretical treatment of the cavity optomechanical system starts from the basic equations

of motion, working in the Heisenberg picture where the time evolution of an operator Â is given

by
˙̂
A = i

~

[
Ĥ, Â

]
+ ∂Â

∂t . While the optomechanical Hamiltonian given in Eq. 1.3 describes the

internal dynamics of the system, it does not incorporate the effects of damping and noise due to the

surrounding environment. Such effects can be introduced via the standard input-output formalism

for open quantum cavities [4, 5], which is briefly summarized in Appendix A.2, leading to the full

Heisenberg-Langevin equations for the photon and phonon annihilation operators:

˙̂a = −
(
iωc +

κ

2

)
â− ig0â

(
b̂+ b̂†

)
+
√
κeâin +

√
κiâi, (1.4)

˙̂
b = −

(
iωm +

γi

2

)
b̂− ig0â

†â+
√
γib̂in, (1.5)

where γi and κ = κe + κi are the decay rates of the mechanical and optical resonators, respectively.

The stochastic noise operator b̂in arises from the coupling between the mechanical oscillator and its

surrounding environment, and obeys the commutation relation 1
[
b̂in(t), b̂†in(t′)

]
= δ(t − t′). The

coupling of the optical cavity to its environment, on the other hand, has been explicitly separated

into two channels: the extrinsic channel, with coupling rate κe and noise operator âin, and the

intrinsic channel, with coupling rate κi and noise operator âi. The extrinsic channel is the specific

mode via which the cavity is probed, while the intrinsic channel represents all other environmental

loss channels that go unmeasured (e.g., radiation of energy due to scattering, material absorption

inside the cavity, etc.). Both optical noise operators obey the same type of commutation relation as

b̂in. The output field in the extrinsic channel is given by the input-output boundary condition

âout = âin −
√
κeâ. (1.6)

While b̂in and âi are pure noise variables, âin typically consists of both a classical tone (technically,

a coherent state) at frequency ωl in addition to stochastic noise. We may explicitly factor out both

the harmonic time dependence of the operator as well as the classical amplitude αin by making the

substitution âin → (αin + âin) e−iωlt. As the optical drive frequency is much faster than the decay

rates of the system and the mechanical frequency, it is convenient to move into a frame rotating at

the drive frequency, focusing only on the slowly varying dynamics. This is accomplished by making

1This is equivalent to the assumption that the environmental coupling is strictly Markovian, so that the noisy
environment effectively has no “memory” and the equations of motion only depend on the state of the system at time
t. For further details see Appendix A.2 and Ref. [5].
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the unitary transformation â→ Û†âÛ , where Û = eiωlâ
†ât, leading to the final equations of motion:

˙̂a = −
(
i∆ +

κ

2

)
â− ig0â

(
b̂+ b̂†

)
+
√
κe (αin + âin) +

√
κiâi, (1.7)

˙̂
b = −

(
iωm +

γi

2

)
b̂− ig0â

†â+
√
γib̂in, (1.8)

where ∆ = ωc − ωl is the cavity-laser detuning.

Though we have made no assumptions so far as to the nature of the environmental noise, the

mechanical bath is typically taken to be in thermal equilibrium at temperature Tb, such that the

mechanical noise operator obeys the following correlation relations:

〈
b̂†in(t)b̂in(t′)

〉
= nbδ(t− t′),〈

b̂in(t)b̂†in(t′)
〉

= (nb + 1) δ(t− t′),
(1.9)

where nb =
(
e~ωm/kBTb − 1

)−1
is the average occupancy of the mechanical resonator in thermal

equilibrium at temperature Tb, and all other one- and two-time correlations of b̂in or b̂†in are equal

to zero 2. The intrinsic optical bath is usually taken to be a thermal bath as well, and in the case of

optical systems at room temperature the frequency is large enough (~ωc, ~ωl � kBTb) that the bath

may be approximated as zero-temperature (vacuum). Thus, the corresponding noise correlation

functions are 〈
â†i (t)âi(t

′)
〉

= 0,〈
âi(t)â

†
i (t′)

〉
= δ(t− t′),

(1.10)

where, as in the case of the mechanical noise, all other one- and two-time correlations vanish 3.

The optical noise on the extrinsic channel, âin, is typically also assumed to be vacuum noise, and

thus has the same type of correlation functions shown in Eq. 1.10 (note that âin and âi belong

to independent baths and are thus uncorrelated with each other). It is also possible for âin to

have additional noise due to technical noise on the drive laser, which will be discussed further in

section 1.1.6. The two-time correlations here can easily be converted into two-frequency correlation

functions via Fourier transforms (as defined in Appendix A.1). We find that δ(t− t′)→ δ(ω + ω′).

That is,
〈
b̂†(ω)b̂(ω′)

〉
= nbδ(ω + ω′), and likewise for the other non-zero correlation functions.

2In addition to assuming the Markovian nature of the oscillator-bath interaction, the correlation functions given in
Eq. 1.9 implicitly assume that the mechanical bandwidth γi is much smaller than ωm (i.e., large mechanical Q-factor),
such that the effective occupancy of the bath can be approximated by the thermal occupation at a single frequency
ωm rather than as an integral over all modes comprising the bath.

3Only the one- and two-time correlations are required for our purposes. However, as a thermal state is Gaussian
(i.e., the associated quasiprobability distributions are Gaussian), any higher order noise correlations can be expressed
in terms of the one- and two-time correlation functions [5], and thus Eqs. 1.9 and 1.10 fully characterize the mechanical
and optical noise in the system.
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1.1.2 Linearization Approximation

While the basic optomechanical interaction is fundamentally non-linear, all current physical realiza-

tions of optomechanical systems lie in the so-called vacuum weak coupling regime, where g0 � κ.

For such systems vacuum noise has a negligible effect on the system dynamics, and we may linearize

Eqs. 1.7 and 1.8 to good approximation. When g0 & κ, the so-called vacuum strong coupling regime,

a fully quantum nonlinear treatment is necessary [6–8].

For weakly coupled systems, a coherent drive (the αin term in Eq. 1.7), will result in a coherent

steady state for both the optical and mechanical oscillators about which the system fluctuates.

Formally we may make a displacement transformation for the system operators (â→ α+â, b̂→ β+b̂)

similar to that made for the input noise âin. In particular we choose displacement amplitudes equal

to the classical steady state solution for the driven optomechanical system (i.e., the solution to

Eq. 1.7 and 1.8 when α̇ = β̇ = 0 and quantum noise operators are neglected). These are found to be

α =

√
κeαin

i∆′ + κ/2
,

β =
−ig0nc

iωm + γi/2
,

(1.11)

where the modified cavity-drive detuning is ∆′ = ∆+g0 (β + β∗), and we have used the fact that the

steady-state intracavity photon number is given by nc = |α|2. For narrow bandwidth mechanical

resonators (ωm/γi � 1) the static detuning shift is approximately equal to −2g2
0nc/ωm. For the

measurements made in this work this detuning shift is well under 1 MHz at all powers. As such a

shift is much less than both κ and ωm, it is negligible for our purposes and henceforth we will let

∆′ ≈ ∆.

By choosing these displacement amplitudes we remove the classical steady-state solution from

our definition of â and b̂ so that the remaining operators represent pure noise. Inserting this classical

solution into Eqs. 1.7 and 1.8, and neglecting products of quantum noise operators (e.g., â†â) as

“small”, we arrive at the linearized quantum Heisenberg-Langevin equations:

˙̂a = −
(
i∆ +

κ

2

)
â− iG

(
b̂+ b̂†

)
+
√
κeâin +

√
κiâi, (1.12)

˙̂
b = −

(
iωm +

γi

2

)
b̂− iG

(
â+ â†

)
+
√
γib̂in, (1.13)

where G = g0
√
nc and for convenience we have chosen the phase of the input drive such that α ∈ R.

This linearized set of equations now allows for simple analysis of the system output in the frequency

domain via Fourier transforms.

Before continuing, we will discuss what “small” means in the context of this linearization ap-

proximation. In particular, under what conditions the fluctuations â and b̂ can be considered small
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relative to the classical steady-state. One can quantify the fundamental strength of the optome-

chanical interaction via a number of dimensionless parameters. The most important is g0/κ, which

specifies the per-phonon optical frequency shift in units of the optical linewidth. This ratio can be

thought of as a “quantumness” parameter [6], as it is the only parameter affecting the optomechan-

ical dynamics that vanishes in the classical limit ~ → 0. Provided this ratio is small, the quantum

nature of the non-linearity may be neglected. Indeed, for a sideband resolved system with detuning

∆ = ±ωm the ratio of the total number of scattered sideband photons to the steady-state intracavity

photon number is given by (2g0/κ)
2 〈n〉. Thus, the fluctuations will always be sufficiently small if

g0/κ � 1 even as nc → 0, provided 〈n〉 does not grow too large. This last point is important, as

when 〈n〉 grows too large the sideband scattering rate will become large enough to substantially de-

plete the intracavity photons at the drive frequency, at which point the fluctuations can no longer be

considered small and the system must be treated using a fully nonlinear, though classical theory [9].

The approximate threshold for when this breakdown occurs can be derived from a classical theory

where the optical field is expanded in an infinite series of sidebands, with the value nc = |α|2 repre-

senting the energy in the 0-th order sideband. In this case we find the optomechanical interaction

can be treated as a classical phase modulation with an effective modulation depth z ≈ 2g0

√
〈n〉/ωm,

where the amplitude of the n-th order sideband is proportional to Jn(z) (Jn is the n-th order Bessel

function of the first kind). Obviously, unless z � 1 the 0-th order sideband α may become much

smaller than the higher order fluctuations, in principle even being extinguished completely, in which

case the assumption of “small” fluctuations is no longer valid. In practice, as all current optomechan-

ical systems possess relatively weak coupling, this regime is only reached when 〈n〉 is amplified well

beyond its steady-state thermal value, as in the case of blue-detuned amplification in the sideband

resolved regime discussed below in section 1.1.3.

Taking the Fourier transforms of Eqs. 1.12 and 1.13 (as defined in Appendix A.1), we arrive at

the expressions for the cavity fluctuations in the frequency domain:

â(ω) =

√
κeâin(ω) +

√
κiâi(ω)− iG

(
b̂(ω) + b̂†(ω)

)
i (∆− ω) + κ/2

, (1.14)

b̂(ω) =

√
γib̂in(ω)− iG

(
â(ω) + â†(ω)

)
i (ωm − ω) + κ/2

. (1.15)

We now insert Eq. 1.14 and its conjugate 4 into Eq. 1.15 and, after some algebraic manipulation,

arrive at an equation for the mechanical fluctuations solely in terms of the noise operators:

b̂(ω) =χm(ω)
(√

γib̂in(ω)− iG
(
χo(ω)

(√
κeâin(ω) +

√
κiâi(ω)

)
+χ∗o(−ω)

(√
κeâ
†
in(ω) +

√
κiâ
†
i (ω)

)))
,

(1.16)

4Keep in mind that we have defined the Fourier transforms such that â†(ω) = (â(−ω))†, as explained in Ap-
pendix A.1.
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where we have defined the mechanical and optical response functions χm(ω) = (i(ω′m − ω) + γ/2)
−1

and χo(ω) = (i(∆− ω) + κ/2), respectively, and where the mechanical frequency and linewidth have

been modified by the optomechanical interaction such that ω′m = ωm + δωm and γ = γi + δγ, with

frequency and linewidth modifications given by

δωm(∆) = G2Im [χo(ωm)− χ∗o(−ωm)]

= G2Im

[
1

i(∆− ωm) + κ/2
− 1

−i(∆ + ωm) + κ/2

]
, (1.17)

and

δγ(∆) = 2G2Re [χo(ωm)− χ∗o(−ωm)]

= 2G2Re

[
1

i(∆− ωm) + κ/2
− 1

−i(∆ + ωm) + κ/2

]
. (1.18)

Note that in obtaining Eq. 1.16, we have dropped terms proportional to (i(ωm − ω) + γi/2)
−1
b̂†(ω).

This is justified by the fact that b̂†(ω) will be strongly peaked around ω = −ωm, and its product with

(i(ωm − ω) + γi/2)
−1

(which is peaked at ω = ωm) will be negligible when ωm/γi � 1. Additionally,

we take ω ≈ ωm in the definitions of δωm and δγ as the response of b̂ is only significant for |ω−ωm| .
γ � κ. While the damping rate modification is very important, in practice the frequency shift is

quite small, and it is often appropriate to let ω′m ≈ ωm, which will be done from here on for notational

simplicity.

1.1.3 Sideband-Resolved Systems

We now consider the particular case of a sideband-resolved system, where κ� ωm, for a laser drive

which is detuned to either the red or blue sideband (∆ = ±ωm). Under these assumptions, the

frequency and damping shifts are given by

δωm(∆ = ±ωm) ≈ ±G
2

ωm
, (1.19)

δγ(∆ = ±ωm) ≈ ±4G2

κ
= ±γOM, (1.20)

where we have defined the rate γOM = 4G2/κ. Physically, this rate represents the scattering rate

of the resonant sideband photons due to the optomechanical interaction. Note that here we have

defined γOM as a strictly positive quantity such that γ = γi±γOM, depending on detuning. This is in

contrast to the typical convention, where the sign is included explicitly in the definition of γOM such

that γ = γi + γOM always. As many of our measurement results scale with the sideband scattering

rate it is notationally convenient to define γOM as positive rather than constantly write |γOM|. The
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reader should keep this fact in mind when comparing formulae from this thesis to other works.

Depending on the detuning, the damping modification will lead to either net cooling (red-detuning,

∆ = ωm) or amplification (blue-detuning, ∆ = −ωm) of the mechanical resonator. In particular, as

derived in Appendix A.4, the average phonon occupancy 〈n〉 =
〈
b̂†b̂
〉

is given for red-detuning by

〈n〉 |∆=ωm =
nb

1 + C
+

C

1 + C

(
κ

4ωm

)2

, (1.21)

and for blue-detuning by

〈n〉 |∆=−ωm
=

nb

1− C +
C

1− C , (1.22)

where we have defined the cooperativity C = γOM/γi, which quantifies the relative coupling strength

of the mechanical resonator to the effective bath provided by the optical noise compared to the me-

chanical thermal bath. The second term in Eq. 1.21 represents the limit to backaction cooling due

to scattering of the drive into the non-resonant sideband, and is often neglected as it is extremely

small for systems with good sideband resolution. Note that for blue-detuning 〈n〉 does not actually

diverge as C → 1. Rather, the mechanical occupation grows until the linear approximation under-

lying these equations breaks down, as discussed above in section 1.1.2. At this point the stimulated

scattering of sideband photons becomes great enough that the “pump” photons (i.e., photons at the

drive frequency) will be substantially depleted, effectively depleting the gain of the system until the

mechanical oscillator settles into a stable, self-oscillating limit cycle. This behavior can be accurately

described using a classical nonlinear treatment of the optomechanical cavity [9, 10].

We can also simplify the equations for the fluctuation operators. Explicitly considering the case

of red-detuning (∆ = ωm), we note that the contribution of â†in and â†i to b̂(ω) will be negligible, as

χ∗o(−ω) and χm(ω) are sharply peaked at −ωm and ωm, respectively, and ωm � κ, γ. Moreover, as

we are only concerned with frequencies |ω − ωm| � κ, we may approximate χo(ω) ≈ 2/κ. Thus, we

obtain

b̂(ω)|∆=ωm
≈ χm(ω)

(√
γib̂in(ω)− i

√
γOM

κ
(
√
κeâin(ω) +

√
κiâi(ω))

)
. (1.23)

We may insert this expression into Eq. 1.14, dropping the b̂† term as it only peaks near −ωm, and

utilize the scattering condition of Eq. 1.6 to obtain a solution for the output optical fluctuations in

terms of the noise operators

âout(ω)|∆=ωm
≈ r(ω; +)âin(ω) + n(ω; +)âi(ω) + s(ω; +)b̂in(ω), (1.24)

where r(ω; +), n(ω; +), and s(ω; +) are effective scattering matrix elements relating the system

output to the relevant noise operators. Similarly, for blue detuning we may discard the âin and âi
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terms from Eq. 1.16, and the b̂ term from Eq. 1.14, to obtain

âout(ω)|∆=−ωm
≈ r(ω;−)âin(ω) + n(ω;−)âi(ω) + s(ω;−)b̂†in(ω). (1.25)

The effective matrix scattering elements for both detunings are given explicitly in Appendix A.5.

1.1.4 Heterodyne Detection

The total output field is the superposition of the classical cavity reflection amplitude, given by

αout = αin −
√
κeα

= αin

(
1− κe

i∆ + κ/2

)
, (1.26)

and the fluctuation operator âout described in section 1.1.3. Placing this total output on a photode-

tector will result in an photocurrent proportional to |αout|2 +α∗outâout +αoutâ
†
out + â†outâout. The first

term is a DC term, while the last term can be neglected as the fluctuations are assumed much smaller

than the classical steady-state amplitude in the linear approximation. Thus, the relevant portion of

the detected photocurrent (neglecting conversion factors relating optical power to electrical current)

is

Î = α∗outâout + αoutâ
†
out. (1.27)

As this signal is linear in the fluctuation field operators, a measurement of this type is sometimes

referred to as “linear detection”. Recall that, in the lab frame, the sideband noise fluctuates at

a frequency ωl ± ωm. Thus, beating the noise against the classical coherent amplitude not only

amplifies these fluctuations, but also mixes them down in frequency to ±ωm, where conventional RF

measurement equipment may be used.

This detection scheme is a specific case of a measurement technique called “heterodyning”.

In general, upon photodetection the output noise will beat against some strong coherent tone at

frequency ωl, known as the “local oscillator”. This may be either the classical cavity reflection, as

above, or some separate coherent tone mixed in prior to photodetection. The resulting RF portion

of the output photocurrent (assuming the local oscillator is intense enough that small fluctuation

terms may be ignored) will be given by

Î = |αLO|
(
âout e

iφ + â†out e
−iφ
)
, (1.28)

where |αLO| is the local oscillator amplitude and φ is the relative phase between the local oscillator

and the signal 5. Ignoring for the moment any overall gain factors, the power spectral density (as

5We have glossed over a couple finer points here. In particular, the absence of additional amplified noise terms due
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defined in Appendix A.1) of this photocurrent is given by

SII(ω) =

� ∞
−∞

dω′
(〈
âout(ω)â†out(ω

′)
〉

+
〈
â†out(ω)âout(ω

′)
〉

+
〈
âout(ω)âout(ω

′)
〉
ei2φ +

〈
â†out(ω)â†out(ω

′)
〉
e−i2φ

)
.

(1.29)

As shown in section 1.1.3, for a sideband-resolved system driven with detuning ∆ = ±ωm, âout

will depend only on âin, âi and either b̂in or b̂†in depending on the detuning. Thus, from the noise

correlation relations in Eqs. 1.9 and 1.10 it follows that only the first two terms in the integrand of

Eq. 1.29 will be non-vanishing. Consequently, under these conditions the output spectrum will not

depend on the relative phase between the local oscillator and the signal.

Using Eqs. 1.24 and 1.25 for the output spectrum along with the noise correlation relations and

the relation |r(ω;±)|2 + |n(ω;±)|2 ± |s(ω;±)|2 = 1, it is straightforward to evaluate the spectral

density. For red detuning we find

SII(ω)|∆=ωm
= |r(ω; +)|2 + |n(ω; +)|2 + |s(ω; +)|2(nb + 1) + |s(−ω; +)|2nb

= 1 + nb

(
|s(ω; +)|2 + |s(−ω; +)|2

)
= 1 + 2

κe

κ
γOM S̄bb(ω; 〈n〉 |∆=ωm),

(1.30)

where S̄bb is the symmetrized spectral density of b̂, as defined in Appendix A.3. Meanwhile, for blue

detuning we obtain

SII(ω)|∆=−ωm
= |r(ω;−)|2 + |n(ω;−)|2 + |s(ω;−)|2nb + |s(−ω;−)|2(nb + 1)

= 1 + (nb + 1)
(
|s(ω; +)|2 + |s(−ω; +)|2

)
= 1 + 2

κe

κ
γOM S̄b† b†(ω; 〈n〉 |∆=−ωm

).

(1.31)

In a real measurement setup, there will exist some energy loss between the cavity and detector,

including the non-unity quantum efficiency of the detector itself. To treat this loss while preserving

the commutator of the output field, we can use the standard practice of introducing a fictitious

beam splitter into the optical path prior to detection [5], which mixes the signal with uncorrelated

environmental noise (vacuum noise, in the case of an optical signal). This results in a detected

photocurrent of

Î = |αLO|
((√

η âout +
√

1− η âvac

)
eiφ +

(√
η â†out +

√
1− η â†vac

)
e−iφ

)
, (1.32)

where η is the total power detection efficiency of the measurement setup and âvac represents vacuum

to the local oscillator’s vacuum noise assumes a particular setup, known as balanced heterodyning, which is discussed
in Refs. [11] and [12]. Moreover, the local oscillator need not have frequency ωl, in which case the optical sideband
fluctuations will merely be shifted to frequencies other than ±ωm. These points are discussed further in section 3.1.
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noise similar to (but uncorrelated with) âi and âin. Due to the admission of this additional vacuum

noise, we find that the noise floor is unchanged, while the Lorentzian terms centered at ω = ±ωm

are reduced by a factor of η. Note that the formulae given in Eqs. 1.30 and 1.31 are normalized to

the vacuum noise level. For red detuning, the actual physical detected spectral density, including

electronic noise on the detector and the conversion between optical and electronic power, is

SII(ω)|∆=ωm
= Sdark +

G2
e

RL
S2

vac

(
1 + 2η

κe

κ
γOM S̄bb(ω; 〈n〉)

)
, (1.33)

where Sdark is the spectral density of the electronic noise, Ge and RL are the optical conversion gain

of the detector and input impedance of the spectrum analyzer, respectively, and Svac is the optical

vacuum noise power spectral density. Obviously, for blue detuning the same relation holds, with

S̄bb → S̄b† b† .

As the integrals of S̄bb and S̄b† b† are equal to 〈n〉 and 〈n〉 + 1 (see Appendix A.3), we can

perform calibrated thermometry of the mechanical resonator using the above relations. This is

particularly simple when the local oscillator is separated from the cavity output. In this case,

blocking the signal will result in a measurement of the amplified vacuum, with measured spectral

density Snoise = Sdark +
G2

e

RL
S2

vac, while blocking both the signal and local oscillator will measure the

dark noise of the detector Sdark. For a red-detuned drive, the occupancy can be determined from

the relation � ∞
−∞

dω

2π

SII(ω)− Snoise

Snoise − Sdark
=

� ∞
−∞

dω

2π
S̄bb(ω; 〈n〉)

= 2η
κe

κ
γOM 〈n〉 ,

(1.34)

provided we know κe/κ, γOM and η. For a blue-detuned measurement the same formula holds true,

with 〈n〉 → 〈n〉 + 1. This fact allows for an alternative method of thermometry for low 〈n〉. In

particular, if we define P± as the total integrated sideband power for ∆ = ±ωm, then for small

cooperativity (i.e., 〈n〉 |∆=ωm
≈ 〈n〉 |∆=−ωm

) we can define the sideband asymmetry parameter:

ξ =
P−
P+
− 1 =

〈n〉 |∆=−ωm
+ 1

〈n〉 |∆=ωm

− 1 ≈ 1

〈n〉 , (1.35)

which allows for determination of 〈n〉 without calibration of the detection efficiency or any related

cavity parameters. Provided that one can obtain sufficiently small 〈n〉 and maintain good signal

quality for C � 1, this proves an accurate form of thermometry [13–16].

1.1.5 Phonon Counting

Linear detection via optical heterodyning allows for extremely sensitive measurements of the me-

chanical noise (in principle down to 〈n〉 ≈ 0), and has the advantage of being compatible with

off-the-shelf photodetectors and detection electronics. However, a number of proposed applications
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of optomechanical systems, such as the heralded preparation of non-classical mechanical states dis-

cussed in section 1.2.2, require the ability to measure single phonon emission or absorption events.

This can be accomplished by counting scattered photons in the Stokes (anti-Stokes) sideband, as

each photon is correlated with the emission (absorption) of a single phonon, effectively performing

a phonon counting measurement 6.

As the full reflected signal from the cavity includes the reflected drive amplitude, which is many

orders of magnitude larger than the sideband signal, we must first filter the cavity output to reject

the drive. Provided the filter is sufficiently high-finesse, it can be modeled in the frequency domain

by a single Lorentzian function:

F (ω;ωf) =
κf/2

i(ωf − ω) + κf/2
, (1.36)

where κf and ωf are the resonant frequency of the filter, respectively. Now, explicitly considering the

case of red-detuned driving in the sideband-resolved regime, the filtered cavity output will be the

product of F (ω;ωf) with the frequency domain output of the cavity. As the resonantly enhanced

anti-Stokes sideband photons will be detuned by ωm from the drive, we choose ωf = ωm. Using

Eq. 1.24, we obtain

âfilt(ω) = F (ω;ωm)
(
αoutδ(ω) + r(ω; +)âin(ω) + n(ω; +)âi(ω) + s(ω; +)b̂in(ω)

)
. (1.37)

Performing photon counting on the filtered output then results in an average count rate of

Γ(t) =
〈
â†filt(t)âfilt(t)

〉
=

1

2π

� ∞
−∞

dω

� ∞
−∞

dω′ ei(ω+ω′)t
〈
â†filt(ω)âfilt(ω

′)
〉

=
1

2π

(
|F (0;ωm)|2|αout|2 +

κe

κ
γOM

� ∞
−∞

dω|F (ω;ωm)|2 Sbb(ω; 〈n〉)
)

≈ A|α2
out|+

κe

κ
γOM 〈n〉 , (1.38)

where A = 1
2π |F (0;ωm)|2 is the drive attenuation factor, and where we have assumed a filter band-

width κf � γ, allowing us to approximate |F (ω;ωm)|2 ≈ |F (ωm;ωm)|2 = 1 inside the integral over

Sbb. A similar analysis for blue detuning (where ωf = −ωm to filter the Stokes sideband) yields a

comparable result, with 〈n〉 → 〈n〉+1. Note that this result also assumes that âin and âi are vacuum

noise, and thus do not contribute to counting of real photons.

The total count rate, including noise of the photon counter and reduction of the drive and signal

6We use the term “phonon counting” here in the same sense as common usage of the term “photon counting”.
That is, counting individual phonons as they are created or destroyed. One should not confuse this with either a
quantum nondemolition measurement of the phonon number or projective measurement of a phonon Fock state.
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due to measurement inefficiency, is given for red-detuning by

Γtot = Γdark + Γdrive + η
κe

κ
γOM 〈n〉 , (1.39)

where Γdark is the dark count rate of the photon detector, Γdrive = ηA|αout|2 and η is the total

measurement efficiency. These expressions can be used to perform thermometry in a similar fashion

to linear detection, either by calibrating the cavity parameters and total measurement efficiency or

by measuring the asymmetry between the red- and blue-detuned count rates.

To assess the sensitivity of this counting scheme, it is convenient to express the measurement

noise floor Γdark + Γdrive in terms of an equivalent number of mechanical quanta (that is the

mechanical occupancy 〈n〉 that would be needed to yield a signal-to-noise of one). This noise-

equivalent phonon number is obtained by dividing the total noise floor by the per-phonon count rate

ΓSB,0 = η(κe/κ)γOM, yielding

nNEP =
Γdark + Γdrive

ΓSB,0
. (1.40)

For a highly sideband-resolved system, the reflected drive in the case of ∆ = ±ωm will be approxi-

mately given by αout ≈ αin. This in turn can be expressed in terms of the intracavity photon number

by using Eq. 1.11, yielding |αout|2 ≈ ω2
mnc/κe. Thus, nNEP as a function of nc is given by

nNEP(nc) =
κ2Γdark

4ηκeg2
0nc

+A

(
κωm

2κeg0

)2

. (1.41)

As the above equation shows, the ultimate sensitivity of a phonon counting measurement is depen-

dent primarily on the filter attenuation relative to the figure g0/ωm. As all current sideband-resolved

systems lie in the regime g0 � κ � ωm, we require an extremely high degree of drive attenuation

in order to achieve single phonon sensitivity (nNEP < 1). It should also be emphasized that, while

in principle one could always increase nc in order to reduce the effects of the dark count term, in

practice we are limited in how much optical power we may input to a given cavity. In order to reach

the drive-limited regime it is crucial to have efficient detection, low dark-counts, and relatively large

g0/κ.

1.1.6 Technical Laser Noise

Thus far we have assumed that the noise on the coherent drive, âin, is simply vacuum noise. However,

a real laser will have both intensity and phase noise. This additional technical noise will increase the

optical noise floor above the ideal limits given in sections 1.1.4 and 1.1.5. More importantly, excess

laser noise can also contribute to heating of the mechanical mode [17–20] and systematic errors in

thermometry caused by noise squashing [21,22] and anti-squashing.

For the specific drive laser and optomechanical devices used in this work, intensity noise has been
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previously shown to be negligible in the vicinity of the mechanical frequency [23], and this section

will deal only with excess phase noise of the laser. A third possibility is intracavity frequency noise,

which has been found to be significant in some other optomechanical systems [22]. In dielectric

optical microcavities the noise of this type is typically due to thermo-refractive fluctuations, which

have been observed in silica microsphere [24] and microtoroid [25] resonators. However, thermo-

refractive noise is generally less important at higher frequencies, and scales with the thermo-optic

coefficient dn/dT , which decreases sharply as a function of temperature in Si at wavelengths near

λ ∼ 1550 nm [26]. As we have previously observed no signs of thermo-refractive noise at base

temperatures of T ≈ 16 K when measuring low frequency (ωm ∼ 30 MHz) optomechanical devices

similar to those used in this work [27], we do not expect a significant contribution of thermo-refractive

noise in our current measurements, which involve mechanical frequencies of ωm ∼ 4− 5 GHz at base

temperatures below 10 K.

Given a laser input amplitude αin (in the rotating frame), the presence of phase noise is captured

by the addition of a stochastic phase factor φ(t), so that

αin(t) = |αin| eiφ(t). (1.42)

The phase noise is assumed to be a real, stationary Gaussian process with zero mean, such that it

is characterized fully by the two-time correlation function. The phase noise is taken to be delta-

correlated in the frequency domain, such that [17,19,23]

〈φ(ω)φ(ω′)〉 = Sφφ(ω)δ(ω + ω′), (1.43)

where the expectation value here corresponds to a classical ensemble average. Note that Sφφ(ω) =

S̄φφ(ω) due to the realness of φ(t). From this, the two-time correlation function is given by

〈φ(t)φ(t′)〉 =

� ∞
−∞

dω

2π
e−iω(t−t′) Sφφ(ω). (1.44)

Assuming the phase fluctuations are small, Eq. 1.42 may be expanded so that αin(t) ≈ |αin| (1 + iφ(t)),

and the spectral density of the input field is given by

Sαα(ω) = |αin|2 (2πδ(ω) + Sφφ(ω)) . (1.45)

As we are only concerned with the phase noise near the mechanical frequency, the δ(ω) term may

be ignored. The phase noise may be incorporated into our analysis by replacing the input noise

operator âin by

âin,tot(t) = âin(t) + aφ(t), (1.46)
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where âin(t) still represents vacuum noise and aφ(t) = i|αin|φ(t) is an additional (classical) stochastic

noise term, with the frequency domain correlation function

〈
a†φ(ω)aφ(ω′)

〉
= Sαα(ω)δ(ω + ω′). (1.47)

Note that due to the real, classical nature of φ(t), we also have the relations

〈
a†φ(ω)aφ(ω′)

〉
=
〈
aφ(ω)a†φ(ω′)

〉
, (1.48)〈

aφ(ω)aφ(ω′)
〉

=
〈
a†φ(ω)a†φ(ω′)

〉
= −Sαα(ω)δ(ω + ω′). (1.49)

By inserting this additional noise term into Eq. 1.16, we may repeat the analysis of Appendix A.4

and find that in a sideband-resolved system, for either red or blue detuning ∆ = ±ωm, the presence

of phase noise heats the mechanical resonator. The additional added phonon occupancy is given

by [23]

〈n〉φ |∆=±ωm
=
κe

κ

γOM

γ
nφ, (1.50)

where we have defined nφ = Sαα(ωm), and where we have assumed that Sαα(ω) is sufficiently

slow-varying in the vicinity of ω = ωm (specifically for |ω − ωm| . γ) that we may approximate

Sαα(ω) = Sαα(ωm) when integrating over frequency to obtain 〈n〉.

1.1.6.1 Phase Noise in Heterodyne Detection

As derived in Ref. [23], the presence of phase noise on the drive laser leads to an additional component

of the heterodyne photocurrent power spectral density. Relative to the vacuum noise level, this is

equal to

SIφIφ(ω)|∆=±ωm = nφ

(
2κe

κ

)2(
1∓ γOM

2

γi ± γOM/2

(ωm ± ω)2 + (γ/2)2

)
. (1.51)

In the limit of small cooperativity, this leads to squashing of the mechanical noise for red-detuning,

and anti-squashing for blue-detuning. That is, the naively inferred phonon occupancy based on

integrating the total observed sideband noise (as described in section 1.1.4) is

〈n〉inf |∆=±ωm,C�1 ≈
nb ∓ (κe/κ)nφ

1± C . (1.52)

For large cooperativity the phase noise causes anti-squashing for a red-detuned drive, leading to an

inferred phonon occupancy

〈n〉inf |∆=ωm,C�1 ≈
nb + (κe/2κ) C nφ

1 + C
. (1.53)

As these equations make clear, in the presence of significant phase noise, squashing/anti-squashing
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effects can drastically affect the inferred mode temperature and the observed sideband asymmetry.

1.1.6.2 Phase Noise in Phonon Counting

Including the phase noise term aφ in the derivation presented in section 1.1.5 leads to an additional

contribution to the total photon count rate

Γφ|∆=±ωm
= η

� ∞
−∞

dω

2π
Sαα(ω)|F (ω,±ωm)|2|r(ω;±)|2. (1.54)

If we make the usual assumptions that Sαα(ω) is slowly-varying in frequency for |ω − ωm| . γ and

that κf � γ, this simplifies to

Γφ|∆=±ωm = ηnφ

(
κf

4

(
1− 2κe

κ

)2

+
κeγOM

κ

(
γOMκe

γκ
±
(

1− 2κe

κ

)))
. (1.55)

Using the fact that nφ = |αin|2Sφφ(ωm) ≈ ω2
mncSφφ(ωm)/κe, we obtain the contribution of phase

noise to the noise-equivalent phonon number:

nNEP,φ|∆=±ωm
=

(
ωmκ

2κeg0

)2

Sφφ(ωm)

(
κf

4

(
1− 2κe

κ

)2

+
κeγOM

κ

(
γOMκe

γκ
±
(

1− 2κe

κ

)))
.

(1.56)

Like the drive-bleed through, phase noise leads to a constant contribution to nNEP, and leads to

squashing or anti-squashing of the noise depending on detuning and cooperativity, similar to het-

erodyne detection. Note, however, that in the case κe/κ = 0.5 the contribution of phase noise will

not depend upon detuning. Thus, even in the presence of large phase noise it is possible to avoid

detuning dependent noise squashing/anti-squashing, though one will still have a large overall phase

noise floor.

It is useful for characterization purposes to calculate the phase-noise contribution to the observed

count rates when the laser is far-detuned from the cavity resonance (|∆| � ωm). Assuming that the

laser-filter detuning is kept constant at ±ωm, the phase-noise count rate in this case is just

Γφ||∆|�ωm
= η

� ∞
−∞

dω

2π
Sαα(ω)|F (ω,±ωm)|2

= η
κf

4
nφ, (1.57)

with a corresponding noise-equivalent phonon number

nNEP,φ||∆|�ωm
=

(
ωmκ

4κeg0

)2

κfSφφ(ωm). (1.58)
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1.2 Applications of Sideband-Resolved Systems in the Quan-

tum Regime

We now turn our attention to a brief discussion of some concrete applications of the sideband-

resolved cavity optomechanical systems considered in the previous section. We will focus on two

specific applications, each with potential uses in future quantum networks [28]. The first is co-

herent conversion between optical and microwave frequencies [29, 30], which allows for an efficient

interface between superconducting microwave circuits [31] and optical photons for the purposes of

long-distance communication between disparate quantum information processing nodes. The second

is the heralded generation of non-classical mechanical states, including single phonon Fock states

and entangled states of separate mechanical resonators [32–34], which can be utilized for scalable

distribution of entangled quantum states [35,36].

Though these tasks are by no means the only useful applications of cavity optomechanics, they

both share technical challenges that serve to motivate the experimental work performed in this

thesis. In particular, both require low thermal occupancy of the mechanical resonator, which may

be achieved in optomechanical resonators with sufficiently high mechanical frequency by operating

in a dilution refrigerator, as in Ref. [37]. Moreover, interfacing an optomechanical device with a

superconducting microwave resonator requires operation in a dilution refrigerator, while the low

thermal noise provided by the fridge environment allows for greatly enhanced coherence times of

any generated non-classical states.

1.2.1 Wavelength Conversion

As the field of experimental quantum information processing advances, a key goal is to develop the

ability to efficiently link disparate quantum processing units [28]. Optical signals traveling in fiber,

particularly in the telecom band, are typically proposed as A communication channel due to the

extremely low losses (∼ 0.2 dB/km). Though one would ultimately like to develop efficient optical

interfaces for a variety of quantum systems, a particularly relevant case is the problem of conversion

between optical and superconducting microwave signals, given the tremendous recent successes of

circuit QED systems in the field of quantum computing [38,39]. As described below, optomechanics

provides an efficient means of conversion between different electromagnetic wavelengths, utilizing a

common mechanical resonator to connect two optical or microwave cavities. This mechanism has

already been used to demonstrate efficient optical-to-optical wavelength conversion [40], as well as

reversible optical-to-microwave conversion at the classical level [41]. It remains an open challenge

to demonstrate optical-to-microwave conversion at the single photon level.

The basic concept behind the optomechanical wavelength conversion process is illustrated in

Fig. 1.3. Two optical cavities, with photon annihilation operators and resonant frequencies âj
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α1, ωl,1 = ωc,1 − ωm α2, ωl,2 = ωc,2 − ωm

â1, ωc,1 â2, ωc,2

Ĥeff,2 = G2 â†2b̂+ â2b̂
†Ĥeff,1 = G1 â†1b̂+ â1b̂

†

b̂, ωm

γi

Figure 1.3: Wavelength conversion. Schematic of the wavelength conversion process. Two optical
cavities, with resonant frequencies ωc,1 and ωc,2, respectively, are coupled to the same mechanical
oscillator. Each cavity is driven by a red-detuned coherent tone (black arrows) with amplitude
αj (j = 1, 2) and frequency ωl,j = ωc,j − ωm. In the sideband resolved regime, this results in an
effective beam-splitter type interaction in each cavity with linearized coupling rates Gj = αjg0,j.
An additional weak optical signal input to cavity 1 at frequency ∼ ωc,1 (red pulse) can then be
converted into a signal exiting cavity 2 at frequency ∼ ωc,2 (blue pulse) via the joint optomechanical
interaction. The efficiency of this process depends on matching the effective scattering rates in each
cavity and overcoming mechanical noise entering the system at rate γi (green arrow).

and ωc,j (j = 1, 2), respectively, are coupled to the same mechanical oscillator via the standard

optomechanical interaction. In general each cavity will have a different coupling rate so that the

total interaction Hamiltonian is given by Ĥint =
∑

j ~g0,jâ
†
j âj

(
b̂+ b̂†

)
. Both cavities are driven by a

coherent tone, with amplitudes αj and drive frequencies ωl,j. Provided each cavity is in the sideband

resolved regime, and each drive tone is red-detuned (∆j = ωc,j−ωl,j = ωm), the effective interaction

in the rotating wave approximation will have the form Ĥeff =
∑

j ~Gj

(
â†j b̂+ âjb̂

†
)

, with Gj = αjg0,j.

If an additional weak optical signal is sent into cavity 1 under these conditions, the effective beam-

splitter interaction will convert it into a phononic signal at the optomechanical scattering rate

γOM,1 = 4G2
1/κ1, which may then be converted back into an optical signal inside cavity 2 at rate

γOM,2 = 4G2
2/κ2, with a corresponding shift in optical frequency. The overall effectiveness of the

conversion will depend on the relative photon-phonon scattering rates γOM,j. Additionally, as the

beam-splitter interaction will convert any phonons into photons, any thermal noise in the mechanical

resonator (which enters from the bath at rate γi) will appear as optical noise in the output.

One may work out the quantitative details of the conversion process by solving the linearized

Heisenberg-Langevin equations of the joint optomechanical system to derive an effective scattering

matrix relating the optical input in cavity 1 to the output at cavity 2 [30, 40, 42, 43]. In particular,

we consider a weak optical input to cavity 1 (in addition to the red-detuned coherent drive) with

spectral density Sin,1(ω) in a frame rotating at ωl,1. The corresponding output spectral density from

cavity 2, in a frame rotating at ωl,2, is

Sout,2(ω) =
κe,2

κ2
γOM,2

(
γi

(ω + ωm)2 + (γ/2)2
nb +

κe,1

κ1

γOM,1

(ω + ωm)2 + (γ/2)2
Sin,1(ω)

)
, (1.59)
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where γ = γi + γOM,1 + γOM,2 is the total mechanical linewidth in the presence of the red-detuned

driving of both cavities. The first term in Eq. 1.59 represents the output noise due to conversion of

thermal phonons, while the second term represents the desired optomechanically induced wavelength

conversion. The bandwidth of the conversion process is equal to the total mechanical linewidth γ,

and the conversion efficiency is maximized for frequencies detuned by ωm from the cavity drives,

which corresponds to input and output at ωc,1 and ωc,2, respectively. The peak conversion efficiency

is given by

ηmax =
κe,1

κ1

κe,2

κ2

4C1C2

(1 + C1 + C2)2
, (1.60)

where Cj = γOM,j/γi, which makes it clear that we can in principle reach unity conversion efficiency,

provided we can obtain γOM,1 = γOM,2 and γOM,j � γi. That is, the photon-phonon conversion rates

in each cavity must be equal (this can be thought of as an impedance matching requirement [30])

and must exceed the intrinsic dissipation rate of the mechanics so that phonons are not lost before

being converted back to photons. Additionally, Eq. 1.60 makes it clear that we need κe,j/κj to be

as high as possible, as photons lost to intrinsic absorption are useless for our purposes.

In addition to the conversion efficiency, we must also consider the output optical noise added by

the presence of thermal noise in the mechanics 7. This is most conveniently expressed in an effective

number of added noise quanta [40]:

nadded ≈ 2
κ1

κe,1

γinb

γ
. (1.61)

As the above equation makes clear, one necessary requirement for quantum limited wavelength

conversion is to achieve a large effective cooperativity, Ceff = γ/γinb. Note that in the large coopera-

tivity limit, where conversion is most efficient, this is approximately given by Ceff ∼ 〈n〉−1
. The nec-

essary low occupancy can in principle be achieved solely via sideband cooling due to the red-detuned

drives necessary for the conversion process. However, while sideband cooling has been previously

used [45, 46] to cool mechanical resonators to 〈n〉 < 1, occupancies lower than 〈n〉 ≈ 0.2− 0.3 have

not been achieved in any system via this method. In particular, the Si optomechanical devices used

in this work (detailed in section 1.3.4), suffer from degradation of the optical and mechanical quality

factor at high powers due to two-photon absorption [45], providing a limit to the effects of laser

cooling. Passive cooling of the device inside a dilution refrigerator offers a route to circumvent this

technical roadblock and achieve Ceff � 1, and thus nadded � 1.

Even more importantly, as mentioned above one of the most promising applications of the op-

tomechanical wavelength conversion process is to provide an efficient and reversible transducer be-

tween quantum optical and microwave signals. As the two cavities must couple to the same me-

7There is also noise in the output due to quantum backaction from the coherent drive. However, these terms are
proportional to (κ/4ωm)2, and thus can typically be neglected for sideband resolved systems until we reach the regime
γinb/γ ∼ (κ/4ωm)2. For full detail see Refs. [40] and [44].



22

SPD

Filter

a b

|ψ m = |1

|ψ m =
1√
2
(|10 + |01 )

p ≈ γOMτ 1
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Figure 1.4: Heralded Fock and entangled states. a, Schematic of the process used to generate
a single phonon Fock state. A short blue-detuned (∆ = −ωm) pulse (with pulse width τ such that
γOMτ � 1) is used to drive the cavity, resulting in an effective two-mode squeezing Hamiltonian in
the sideband resolved limit. After interacting with the cavity, there is a probability p ≈ γOMτ that
an entangled photon-phonon pair is created. After filtering out the drive frequency ωl, measurement
of a photon using a single photon detector (SPD) projects the mechanical system into a Fock state.
b, To create an entangled state, two cavities are driven in this manner, and their outputs combined
on a 50/50 beam-splitter prior to the SPD. This erases the which-path information such that a single
click on the SPD projects the joint system into an entangled state.

chanical oscillator, it is necessary to bring the optical cavity into close physical proximity to the

superconducting microwave resonator, which requires operation inside a dilution fridge.

1.2.2 Heralded State Preparation

At its most basic level, the optomechanical interaction allows us to add and subtract phonons from

the mechanical resonator. Even in the vacuum weak-coupling regime, this allows for the creation

of a variety of non-classical mechanical states using appropriate red- or blue-detuned pulses [32],

provided we are content to generate such states in probabilistic, heralded fashion. In particular,

recent proposals have explicitly considered heralding of both a single phonon Fock state [34] and an

entangled state of two mechanical resonators [33, 47] via application of a short blue-detuned pulse

to an optomechanical system in its motional quantum ground state and subsequent detection of the

emitted sideband photon.

The basic idea behind heralded generation of a Fock state is illustrated in Fig. 1.4a. A short,

blue-detuned drive pulse is sent into the cavity which, as discussed in section 1.1, will result in

an effective interaction Hamiltonian (in the sideband-resolved limit) Ĥeff = ~G
(
âb̂+ â†b̂†

)
which

creates and annihilates photons and phonons in correlated pairs. If the pulse is sufficiently short

(specifically, if the pulse width τ is short enough that γOMτ � 1), it will generate a single photon-
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phonon pair with a small probability p ≈ γOMτ , with a vanishingly small chance of higher-order

(i.e., multi-phonon) events. In this case, provided the mechanical system starts in the ground state,

the approximate state of the system after filtering out the drive pulse will be |ψ〉 ≈ √1− p |0c0m〉+
√
p |1c1m〉, where subscripts c and m refer to the optical cavity and mechanical resonator subsystems,

respectively. Subsequent detection of the sideband photon on a single photon counter (which occurs

with probability ηp, where η is the total detection efficiency) will herald the creation of a single

phonon Fock state.

The same protocol can be extended to creating an entangled state of two separate mechanical

resonators, as shown in Fig. 1.4b. Two optomechanical cavities are driven by a blue-detuned pulse,

as in the case of Fock state generation, and their respective outputs are combined using a 50/50

beam-splitter after filtering out the drive. This erases any information about which cavity emitted

a sideband photon, such that detection of a single sideband photon projects the joint mechanical

system into an entangled state. Similar protocols have been used successfully in the past to generate

heralded entanglement of atomic ensembles [48, 49], trapped ions [50], and even vibrational modes

in macroscopic diamonds [51].

This form of heralded entanglement provides the basic building block for a “quantum repeater”,

enabling the scalable distribution of entangled states utilizing the well known DLCZ protocol [35,36].

Beyond applications in quantum networking, however, the generation of entangled (or other non-

classical) states of mesoscopic mechanical objects potentially allows for the testing of novel theories

regarding quantum decoherence [52] or the nature of entanglement at the macroscopic scale [33,51,

53], as well as additional practical applications such as improving the measurement sensitivity of

weak forces [54].

The fidelity of the heralding process is directly related to the initial thermal occupancy of the

mechanical mode. Unity fidelity can only be achieved in principle by starting fully in the ground

state (〈n〉 = 0), while generally the initial mechanical state will be a thermal state with 〈n〉 > 0.

However, high fidelity can still be achieved provided 〈n〉 � 1. In particular, the fidelity of heralded

Fock state generation will be roughly given by (〈n〉+ 1)
−1

, the probability of measuring a thermal

state in the mechanical ground state. Again, as with wavelength conversion, the necessary low

occupancies can in principle be achieved by using a strong red-detuned pulse to pre-cool the system

via the optomechanical interaction, as considered in Ref. [34]. Due to the aforementioned limitations

of laser cooling in current realizable systems, however, we are forced to turn to passive cooling in a

dilution fridge as a means to obtain 〈n〉 � 1.

An additional prerequisite for the heralding protocols discussed here is the ability to count single

emitted sideband photons with high efficiency. Indeed, without the effective nonlinearity provided

by the photon counter it is impossible to generate non-Gaussian states such as a Fock state from

solely Gaussian optical and mechanical inputs. While this type of measurement is conceptually
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straightforward, it should be noted that prior to the work performed in this thesis such measurements

had not been demonstrated. Though the development of this kind of phonon counting measurement

is not the primary focus of this work, it is technically nontrivial as efficient detection requires both

strong optomechanical coupling, low detector dark counts, and a high degree of drive suppression, as

detailed in section 1.1.5. The measurements performed in Chapter 4, alongside a previous experiment

detailed in Refs. [55] and [56], are the first experiments to perform phonon counting in a cavity

optomechanical system.

1.3 Optomechanical Crystals

As mentioned previously, the basic physics of cavity optomechanics apply to any system where me-

chanical motion couples to the frequency of an electromagnetic cavity, and a variety of experimental

geometries have been realized in the last several years across an enormous range of length and

mass scales, ranging from suspended gram scale mirrors [57], to reflective micromechanical mem-

branes [58–61], to microtoroids, disks, and spheres [18, 44, 62, 63], to superconducting microwave

circuits [64–67], all the way down to cold atomic ensembles trapped in an optical cavity [68]. One

notices a general trend in these systems towards smaller optical and mechanical resonators, with

physical dimensions and motional masses pushed below the micrometer and femtogram scale, re-

spectively. This is no accident, and relates to the strength of the fundamental optomechanical

interaction.

In section 1.1 we explicitly considered an optomechanical system composed of a Fabry-Perot

optical cavity with one mirror mounted on the spring. In this case the optomechanical coupling

rate g0 is easily shown to be inversely proportional to both the length of the cavity and the square

root of the mirror mass (this latter fact comes from the relation xZPF =
√

~
2mωm

, where m is the

mass of the mirror). Thus, the smaller the cavity and motional mass, the larger the fundamental

quantum interaction strength. Although we have explicitly shown this to be the case for this simple

geometry, in general it is true that the vacuum optomechanical coupling rate will increase as the

size of the cavity decreases, much in the same way that the interaction strength between an atom

and an optical cavity is inversely proportional to the effective cavity volume. Reducing the motional

mass of the oscillator typically has the added benefit of raising the mechanical frequency, making it

easier to achieve the sideband-resolved regime and allowing one to reach a low phonon occupancy

simply by passive cooling in a cryogenic environment.

However, keep in mind that the parameters which really matter are the ratios g0/κ (which quanti-

fies the strength of the optomechanical interaction) and ωm/κ (which quantifies the level of sideband

resolution). As volume of the cavity is reduced it is crucial to maintain a low optical decay rate κ, or

equivalently a large optical quality factor Qc = ωc/κ. Thus, roughly speaking, what we would like
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to do is maximize the ratio Q/V for both the optical and mechanical resonators, again in analogy to

the problem of atom-cavity coupling encountered in cavity quantum electrodynamics. One strategy

for achieving this goal is to use photonic crystal cavities, which have demonstrated Q-factors ap-

proaching or in excess of 106 at telecom frequencies λ ≈ 1300− 1600 nm in common semiconductor

materials such as Si and GaAs [69,70] while maintaining effective cavity volumes close to the theo-

retical minimum value of (λ/2n)
3
. Beyond confining photons, with proper engineering such devices

can also be made into phononic crystal cavities which simultaneously create a high-quality acoustic

mode co-localized with the optical resonance. Such structure are dubbed optomechanical crystals

(OMCs).

1.3.1 Photonic Crystals

As the name suggests, the physics of photonic crystals [71] are analogous to those of crystalline

solids. That is, a periodic array of dielectric scatterers (in our case, holes etched into a dielectric

membrane) will affect the allowed propagating solutions of an electromagnetic wave in much the

same way that a periodic electronic potential will modify the quantum mechanical motion of an

electron. In particular, for the right periodicity destructive interference between fields scattered

from adjacent holes can give rise to bandgaps, regions of frequency where light cannot propagate

freely in the structure. Such bandgaps serve as excellent effective mirrors for an optical cavity. We

will briefly present the main ideas necessary for understanding the optical structures used in this

work. A full treatment of the theory and properties of photonic crystals can be found in Refs. [72]

and [73].

Mathematically, we consider a linear, lossless, and isotropic dielectric medium. As we typically

only care about solutions to Maxwell’s equations within a particular frequency range, it is appropriate

to ignore dispersion such that the material is completely characterized by a scalar dielectric function

ε(x) = ε0εr(x) which is only a function of the position vector x. Note that ε0 is the constant vacuum

permittivity, and the relevant quantity is the relative permittivity εr, which can be equivalently

represented by the index of refraction n defined by εr = n2. As most materials of interest are

nonmagnetic, we usually set the magnetic permeability equal to the vacuum permeability (µ = µ0) 8.

As we have assumed linear materials, an arbitrary solution of Maxwell’s equations can be decomposed

into a sum of time-harmonic solutions. That is, the total magnetic field may be written as

H(x, t) =
∑
m

= amHm(x)e−iωmt, (1.62)

and similarly for the electric field E. Finding these time-harmonic solutions can then be cast as a

8It is straightforward, though more cumbersome, to deal with anisotropic, magnetic materials, and small amounts
of material absorption. Details can be found in Ref. [72].
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Figure 1.5: One- and two-dimensional lattices. Schematics of the different types of crystal
lattices relevant to the work in this thesis, including a, one-dimensional, b, two-dimensional square,
and c, two-dimensional hexagonal lattices. The primitive lattice vectors and their explicit represen-
tations in the xyz coordinate system are shown by red/blue arrows and text, respectively, while the
unit cell for each lattice is shown in dark gray. The corresponding first irreducible Brillouin zone is
illustrated below each lattice.

Hermitian eigenvalue problem [72]:

Θ̂Hm(x) = ∇×
(

1

εr(x)
∇×Hm(x)

)
=
(ωm

c

)2

Hm(x). (1.63)

We are interested specifically in dielectrics possessing discrete translational symmetry. That is,

εr(x) = εr(x+R), (1.64)

where R =
∑

jmjaj, mj ∈ Z, and the vectors aj are the primitive lattice vectors which define the

periodic structure of the dielectric. In particular these lattice vectors help define the unit cell, a

primitive dielectric structure which is tiled infinitely throughout space to form the crystal, and the

lattice constant a, which is the fundamental length scale of the system. Though there are many

crystal lattices possessing distinct symmetries, in this work we are concerned only with three cases, in

which the dielectric is periodic in either one or two dimensions. These three lattices, one-dimensional,

two-dimensional square, and two-dimensional hexagonal, are illustrated in Fig. 1.5.

For each set of primitive lattice vectors we may define a set of reciprocal lattice vectors bj such

that ai · bj = 2πδij (δij is the Kronecker delta function). The discrete translational symmetry of

the lattice guarantees that Bloch’s theorem [74] holds, which states that any solution of the wave
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Figure 1.6: Nanobeam optical bandstructure. a, Three-dimensional unit cell of a nanobeam
photonic crystal, with relevant dimensional parameters labeled. This structure has periodicity only
along the axial (x) direction. b, Computed photonic band structure, showing mode frequency versus
the axial component of the wavevector kx for z-symmetric modes, assuming a Si beam (refractive
index n = 3.48) and specific dimensions (a, t, w, hx, hy) = (436, 220, 529, 165, 366) nm. Bands shown
in red are modes of odd vector symmetry in y, while blue bands are even. The red shaded region
indicates the pseudo-bandgap, while the gray shaded region is the light cone. The frequency of
interest (ν ∼ 194 THz, corresponding to λ ∼ 1550 nm) is indicated by a black dashed line.

equation can be expressed in the form

Hk(x) = eik·xhk(x), (1.65)

where the wavevector k =
∑

j ljbj, lj ∈ Z exists in the reciprocal lattice and hk(x) is a periodic

function on the lattice (i.e., hk(x) = hk(x +R)). The eigenvalue problem can then be cast in the

form [72]

Θ̂khk(x) = (ik +∇)×
(

1

εr(x)
(ik +∇)× hk(x)

)(
ω(k)

c

)2

hk(x). (1.66)

Due to the periodic boundary conditions imposed upon hk, the eigenvalue problem can be restricted

to a single unit cell of the crystal, which results in a discrete spectrum of eigenfrequencies ωj(k)

for any given wavevector k (i.e., the band structure of the crystal). Furthermore, due to both the

discrete translational symmetry and the other symmetries of the lattice point group [74], we may

restrict our attention to a limited region of the reciprocal lattice, known as the first irreducible

Brillouin zone (IBZ). Solutions to Eq. 1.66 for any other wavevectors k may then be obtained from

this subset of solutions by applying the appropriate symmetry operations. The IBZs are illustrated

below their respective lattices in Fig. 1.5. Note that for the one-dimensional lattice in Fig. 1.5a the

IBZ is merely the line kx ∈ [0, π/a]. In practice one solves for the band structure of a given dielectric

lattice via one of a variety of numerical methods. We use a planewave-expansion based algorithm

developed at MIT [75], which is implemented in the freely available MIT Photonic Bands (MPB)

software package [76].
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To illustrate the properties of photonic band structures, we will focus on the structure of primary

interest in this work: the nanobeam photonic crystal, whose full three-dimensional unit cell is shown

in Fig. 1.6a. This structure, like the schematic shown in Fig. 1.5a, has periodicity only along the

axis of the beam, denoted here as the x-direction, while the other dimensions of the beam are finite

in extent (the beam is assumed to be surrounded by vacuum with n = 1). A typical computed

band structure for this class of photonic crystal is shown in Fig. 1.6b, where one observes a bandgap

(red shaded region) in which no guided modes of the structure exist. However, as the crystal is

finite in extent in y and z there exist different classes of modes. The modes we care about are

the “guided” modes, for which the electromagnetic fields are confined via index-guiding (i.e., total

internal reflection) to a small region around the nanobeam. In addition to these modes there exists

a continuum of modes which can carry energy infinitely far away from the nanobeam, the so-called

“radiation” modes. As these modes must satisfy the free-space condition ω2 = c2|k|2, they can only

exist in a particular region of frequency-momentum space known as the “light cone” (gray shaded

region) defined for a nanobeam by ω > ckx. Finally, there exist “leaky” modes, guided modes which,

while localized near the waveguide, exist in the light cone region and can strongly couple to radiation

modes. Due to the existence of radiation modes, we can never have true photonic bandgaps in such

partially index-guided structures, but rather pseudo-gaps in which no guided or leaky modes exist.

There are a few additional points worth making before moving on. The first is that, despite

the lack of translational symmetry in y or z, there is reflection symmetry in both directions about

the center of the beam. This allows us to classify the solutions of Maxwell’s equations by their

vector symmetry with respect to reflection about the y = 0 and z = 0 planes (assuming the origin

is placed along the beam axis). As we will see in section 1.3.3, in practice we are only concerned

with the lowest frequency optical band. For the optically thin structures considered in this work this

mode will always be of even vector symmetry in z (these are the so-called “TE-like” modes, whose

electric field lies predominantly in the z = 0 plane). Moreover, for the nanobeam the lowest lying

mode is always of even vector symmetry in y, and thus when computing photonic band structures

it is sufficient to compute only modes which are even (odd) symmetry in z (y), which allows us

to simulate only one-quarter of the full unit cell provided the appropriate boundary conditions are

applied at the symmetry planes.

The second point is that, due to the scale invariance of Maxwell’s equations the frequencies of

the optical bands can be shifted arbitrarily without changing the band structure itself by making

appropriate transformations to the dielectric function and structural dimensions [72]. In particular,

uniformly scaling the dimensions of the crystal by some factor s (formally making the transformation

ε′(x) = ε(x/s)) will simply result in the same band structure with scaled frequencies and mode

profiles ω′ = ω/s and u′k(x) = uk(x/s), respectively. Once a suitable band structure is obtained

it is trivial to adjust the design parameters such that the particular frequency of interest lies in



29

the bandgap 9. When performing band structure simulations the dimensions of the structure are

typically expressed in units of the fundamental lattice constant a, which can then be selected to yield

the desired mode frequencies. Similarly, scaling the dielectric function according to ε′(x) = s2ε(x)

scales the frequencies as ω′ = sω with no change in the band structure or mode profiles. This is only

true if one scales the entire dielectric function (i.e., that of the cladding as well as the nanobeam).

If one only changes the nanobeam material the band structure can and will change, with smaller

index contrasts yielding smaller bandgaps, all else being equal.

One final point is that, while there seem to be many free parameters in even this simple, quasi-

one-dimensional problem, there are a number of rules of thumb which can provide a rough starting

point for the design. In this case we want to maximize the size of the bandgap and place our desired

cavity frequency roughly in the center of the gap (the attenuation and corresponding confinement of

a mode in the bandgap region is higher the further the mode frequency is from the band edges). Note

that in Fig. 1.6b the bandgap is located around a frequency of ν ∼ 200 THz, where the refractive

index of Si is roughly n = 3.48. The corresponding wavelength is thus λ = c/nν ∼ 430 nm ∼ a. In

general one finds that any bandgap will tend to occur at frequencies such that the lattice constant a

is comparable to one wavelength in the material (λ/n), as this maximizes interference between the

scattered fields from adjacent unit cells. Furthermore the size of the bandgap, typically measured by

the dimensionless constant ∆ν/ν0, where ∆ν is the frequency span of the gap and ν0 is the mid-gap

frequency, is maximized for a particular thickness and hole size, which depends on the index contrast

between the beam and the cladding [72]. In our case the index contrast is about 3.5, and optimal

thickness tends to be around t ∼ (0.5 − 1)a, while the optimal hole size is typically such that the

filling fraction (the ratio between the hole area and the total unit cell area) is roughly 0.2 − 0.25.

The bandgap isn’t terribly sensitive to the hole shape (e.g., whether the hole is circular or oblate)

as long as the filling fraction is kept fixed. This will prove useful when designing a simultaneous

optical and mechanical cavity.

1.3.2 Phononic Crystals

The propagation of acoustic waves through a periodic elastic medium can be treated in a similar

way to the propagation of electromagnetic fields [77, 78]. Thus, any photonic crystal will also serve

as a phononic crystal 10 and, with the proper design, will possess bandgaps for certain frequencies

of sound as well as light [79, 80]. Due to the large difference between the speeds of sound and light

9In practice this can be complicated by other restrictions on the structural dimensions. For example, one might only
have high-quality material with a particular device layer thickness, fixing the thickness of the fabricated nanobeam
and preventing arbitrary uniform scaling of the structure.

10Actually, this is not strictly true. As light can propagate in vacuum it is possible to have a photonic crystal
composed of an array of disconnected dielectric objects. As phonons cannot propagate through vacuum any acoustic
waves would be unaffected by the periodicity. Rather, each object would behave as an independent mechanical
oscillator. In this work we are only concerned with suspended, connected membranes with periodic holes and we do
not need to worry about this other type of photonic crystal.
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such bandgaps will occur at frequencies orders of magnitude lower than the optical bandgaps, in the

GHz range.

The mathematics of phononic crystals are slightly more complicated than those of photonic

crystals, as the transverse and longitudinal components of the acoustic displacement field can mix.

Considering a linear, lossless elastic medium, we may again represent an arbitrary solution of the

acoustic wave equations as a linear superposition of time-harmonic solutions Q(x, ω) = Q(x)e−iωt,

with the displacement field vector Q given by a solution to the eigenvalue problem [81]:

Φ̂Q(x) =
1

ρ(x)
∇T (C(x)∇Q(x)) = −ω2Q(x), (1.67)

where ρ and C are the scalar material density and rank four elasticity tensor, respectively, and where

∇T denotes the transpose of the nabla operator. This can be equivalently written in component

form as
1

ρ(x)
∂j (Cijkl(x)∂lQk(x)) = −ω2Qi(x), (1.68)

where repeated subscript indices are summed over. In contrast to the electromagnetic eigenvalue

equation we have treated the elastic material as explicitly anisotropic. This is in general necessary

even if the dielectric tensor is isotropic, as is the case with Si. As before, in the presence of discrete

translational symmetry we may express the solutions to the acoustic wave equation as Bloch modes

and numerically solve for the phononic band structure. In this case we use COMSOL [82], a com-

mercial finite-element-method (FEM) solver, using the appropriate periodic boundary conditions to

solve for the desired number of bands at any desired point within the IBZ 11.

The computed phononic band structure for the nanobeam unit cell is shown in Fig. 1.7, assuming

the elastic properties of Si and the same unit cell dimensions used to compute the photonic band

structure in Fig. 1.6b. As with the electromagnetic solutions we may classify the modes by their

vector symmetries with respect to reflection in the y and z directions. In this case we care about

the acoustic modes with even vector symmetry in both directions, for reasons which will be made

clear in section 1.3.3. These modes are shown as red lines, while other symmetries are displayed as

blue lines. The most striking difference from the photonic band structure is the absence of a light

cone, as phonons cannot propagate in the cladding (vacuum) and thus radiation transverse to the

beam is impossible. This in principle allows for the formation of complete phononic bandgaps. In

this structure, however, we have no true gaps but rather only gaps for particular symmetries. The

relevant pseudo-gap (sometimes called a symmetry gap) for the even symmetry modes is shaded in

red, and contains several bands of differing symmetry. In a perfectly symmetric structure this is of no

11One might reasonably ask why we don’t use FEM to solve for the photonic band structure. The reason is that, due
to the condition of transversality imposed by Maxwell’s equations (∇ ·H = 0, or for a Bloch mode (ik+∇) ·hk = 0)
it is more efficient to use a planewave basis for finding physical solutions to the eigenvalue equation [75]. As acoustic
waves do not have this constraint, it is more efficient to solve them using FEM. This also affords several advantages
such as the use of a nonuniform mesh, allowing us to resolve fine features in the geometry more effectively.
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Figure 1.7: Nanobeam mechanical bandstructure. Computed acoustic band structure for a
nanobeam with a unit cell like that of Fig. 1.6a, showing mode frequency versus the axial component
of the wavevector kx for z-symmetric modes, assuming a Si beam with the same dimensions as
Fig. 1.6b. Bands shown in red are modes of even vector symmetry in both y and z, while blue bands
are other symmetries. The red shaded region indicates the bandgap, while the frequency of interest
(ν ∼ 5 GHz) is indicated by a black dashed line.

consequence, as different symmetries are uncoupled from each other. In a real, fabricated structure,

on the other hand, imperfections will always exist which break the perfect mirror symmetries of

the structure and couple modes of different symmetry. While this coupling is typically not strong

enough to prevent localization of a mechanical mode, it has important ramifications for the quality

of the mechanical cavities formed from such a gap, discussed further below.

1.3.3 Cavity Design

Once a unit cell has been found with appropriate photonic and phononic bandgaps, we may form a

resonant cavity by creating a defect in the lattice which locally perturbs the otherwise perfect crystal

symmetry. For example, one might remove a hole from an otherwise uniform crystal structure, or

even just change the dimensions of one unit cell slightly. The breaking of translational symmetry

then allows for the existence of modes at frequencies within the bandgap, which are necessarily

localized in space around the defect region.

However, due to the possibility of radiating light into the cladding we must take care in how we

design the defect in order to assure high optical quality. In particular, unlike a guided mode of the

ideal, infinite photonic crystal, which exists at a single, well-defined point in k-space, a spatially

localized cavity mode will necessarily be composed of many individual momentum components. As

with electronic defect states [83], the photonic defect modes can be approximately written in terms

of the Bloch functions of particular band edge, Hd(x) ≈ ∑j fj(x) e−ikj·x hkj , where kj are the

degenerate k points corresponding to the band edge (i.e., the star of k [74]), and fj(x) are a set

of envelope functions which can be described in terms of a Wannier-like equation dependent on the

dielectric perturbation which forms the defect [84–87]. Thus, the decomposition of the defect mode



32

into its Fourier components will be peaked near the band edges, with a distribution dependent on

the Fourier transforms of the envelope functions. As any momentum components located within the

light cone may couple to radiation modes and contribute to optical loss, it is crucial to tailor the

defect so that the envelope functions are as localized as possible in the Fourier domain [88,89].

In a quasi-one-dimensional waveguide such as the nanobeam, this is straightforwardly accom-

plished by creating a smooth variation of the unit cell along the direction of propagation such that

the frequency of one of the optical band edges at the X point of the IBZ (kx = π/a) tunes into the

bandgap, creating a localized defect mode drawn from that band edge. For a perturbation which

varies roughly quadratically the envelope function will be approximately Gaussian, with a width in

k-space inversely related to the spatial extent of the defect region. As discussed in section 1.3.1,

we focus on the lowest lying band edge (the “valence” band), as a lower frequency corresponds to

a larger distance in k-space between the X-point and the light cone. Due to the aforementioned

scaling properties of Maxwell’s equations, the frequency of the lowest band can be tuned into the

bandgap by reducing the local lattice constant a. At the same time the size of the hole is also

reduced in an attempt to keep the local band structure constant aside from an overall frequency

shift (this is not strictly possible, of course, without also scaling beam width and thickness). This

results in a defect unit cell shown in Fig. 1.8b, which can be compared to the nominal unit cell in

Fig. 1.8a. Fig. 1.8c shows the band edge from which we draw our mode, and the tuning of the band

edge frequency as the nominal unit cell is deformed into the defect unit cell.

The behavior of the optical mode in the defect region is not the only concern. While the localized

mechanical mode cannot suffer transverse radiation loss in the same manner as the optical mode, not

all localized mechanical modes will couple strongly to the optical cavity mode. We must determine

from which mechanical band we want to draw our localized mode to maximize the optomechanical

coupling strength, and ensure the defect is designed in such a way as to tune this mode into the

bandgap. In order to do so we must first derive a formula for computing g0, given the unperturbed

optical and mechanical modes.

There are two components in the computation of g0. The first is determining the zero-point am-

plitude of the mechanical motion, given by xZPF =
√

~
2meffωm

, where the effective mass is defined 12

via an integral over the mode volume as

meff = ρ

�
d3x|q(x)|2, (1.69)

where q(x) is the displacement vector field of the mechanical mode, normalized such that max(|q|) =

1. The zero-point amplitude can thus be easily determined from the vector field profile of a mechan-

12This definition is determined by choosing the mechanical mode to be parametrized by an amplitude α such that
Q = αq, and requiring that the parametrized potential energy equal the true potential energy. In principle we could
choose a different definition of mode amplitude α, which would result in a different definition for effective mass, or
vice versa. We may choose one freely, but not both.
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Figure 1.8: Nominal and defect unit cells. a, Nominal unit cell of the OMC nanobeam cavity,
representing the mirror region. The dimensions are (a, t, w, hx, hy) = (436, 220, 529, 165, 366). b,
Unit cell in the center of the defect region, with dimensions (a, t, w, hx, hy) = (327, 220, 529, 199, 170).
c, Optical bandgap of the nominal unit cell, with the X-point band edge mode of interest circled in
green. The plot on the side shows the tuning of the band edge frequency as the unit cell geometry is
varied between the nominal and defect dimensions, along with corresponding plots of the dominant
electric field component Ey. d, Acoustic bandgap of the nominal unit cell, with the Γ-point band
edge mode circled in green. The side plot shows tuning of the mode in the defect region along with
corresponding plots of the displacement field Q.
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ical eigenmode obtained via FEM simulation. The second component is determining the quantity

gOM = ∂ωc/∂α, the change in optical mode energy for an infinitesimal mechanical displacement

amplitude α. From standard perturbation theory we know that the first order change in energy will

depend on the unperturbed eigenvectors (in this case, the electric field mode). Since the energy den-

sity for an electromagnetic wave depends only on E and the dielectric tensor ε this leads naturally

to the expression

gOM =
∂ωc

∂α
= −ωc

2

�
d3x E∗(x) · ∂ε(x)

∂α E(x)�
d3x E∗(x) · ε(x)E(x)

, (1.70)

which is recognized as a version of the standard Hellman-Feynman perturbation formula [90], and

where the electric field vector is the unperturbed eigenmode. To first order, there are two fundamen-

tal ways in which the dielectric tensor can be perturbed by small displacements of the geometry. The

first is that the material’s internal dielectric properties remain unchanged while the boundaries of

the object distort, altering the spatial overlap of the dielectric and electric field. This effect is often

termed the “boundary contribution”. Computation of this figure requires careful consideration of

the boundary conditions imposed by Maxwell’s equations in order to ensure the result is expressed

in terms of functions which are continuous across the boundary. For an isotropic dielectric function

it is given in terms of the optical and mechanical mode profiles as [91]

gOM,bnd = −ωc

2

�
dA q(x) · n̂(x)

(
∆ε|E‖(x)|2 −∆ε−1|D⊥(x)|2

)
�
d3x ε(x)|E(x)|2 , (1.71)

where the top integral is over all boundaries of the crystal while the bottom is over all space, n̂ is the

surface normal vector at any boundary, q is the normalized mechanical displacement field, ∆ε is the

difference between the dielectric constant of the crystal and that of the cladding (here, ∆ε = εSi−1),

and D = εE is the electric displacement field. The subscripts ‖ and ⊥ denote vector components

parallel and perpendicular to the boundary, respectively. The second way mechanical motion can

change ε is via the photoelastic effect, where the internal strain caused by the deformation causes a

shift in the internal dielectric properties of the material. This shift is given by [92]

dε

dα
= ε

(
pS

ε0

)
ε, (1.72)

where p is the rank-four photoelastic tensor of the material and S is the strain tensor defined in

terms of the displacement field as Sij =
(
∂qi
∂xj

+
∂qj
∂xi

)
. For an initially isotropic material this simplifies

to
dεij
dα

= −ε0ε2rpijklSkl. (1.73)

Note that the shifted dielectric tensor is in general anisotropic even if the unperturbed material is

isotropic. This expression can be inserted into Eq. 1.70 to obtain a straightforward, if somewhat
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cumbersome, expression for the photoelastic contribution

gOM,pe =
ε0ε

2
rωc

2

�
dV E∗i (x)Ej(x)pijklSkl(x)�

d3x ε(x)|E(x)|2 , (1.74)

where the top integral is over the volume of the crystal, and all repeated subscript indices are summed

over. In practice this is greatly simplified by the underlying microscopic crystal symmetries of the

dielectric, which require most elements of the photoelastic tensor to vanish [92]. In particular, for

Si there exist only three independent, non-zero elements of p, which can be obtained at the relevant

optical frequencies from Ref. [93]. Putting it all together, the vacuum optomechanical coupling rate

is given by the expression

g0 = xZPF (gOM,bnd + gOM,pe) , (1.75)

which can be calculated using only the unperturbed mechanical and optical eigenmodes (obtained

via FEM simulation) and the known elastic and optical properties of the material.

With an explicit expression for g0 in hand we can immediately eliminate most mechanical modes

from consideration. First, notice that g0 is quadratic in the electric field but linear in either the

displacement q or the strain tensor S. Consequently, it follows that any mechanical modes possessing

odd vector symmetry with respect to either mirror symmetry plane of the structure will have a

vanishing contribution to g0 when integrated over all space. Moreover, recall that at the X-point

the guided mode will have an overall phase factor eiπx/a. That is, the guided mode profiles in

adjacent unit cells will be π out of phase with each other. Thus, q and S will flip sign while |E|2

stays constant. This implies that mechanical modes drawn from the X-point will have negligible

g0 due to a high degree of cancellation between adjacent unit cells in the cavity region. The only

remaining mechanical modes which are expected to yield high g0 are those at the Γ-point (kx = 0)

with completely even vector symmetry, from which we must draw our mechanical cavity mode.

We can estimate the expected relative optomechanical coupling strengths of each mode by com-

puting g0 per unit cell using the guided mode optical and mechanical profiles. We find that the

optimal mechanical mode is the second even band, circled in green in the mechanical band structure

shown in Fig. 1.8d. Note that this mode is higher in frequency than the bandgap, and our defect

must tune the Γ-point frequency down into the gap. Unfortunately, as the elastic wave equations

possess the same type of scale invariance as Maxwell’s equations, the reduction of lattice constant a

and hole area will tend to raise the frequency of the mechanical bands as well as the optical bands.

Unlike the optical bands, however, the mechanical bands are highly sensitive to the hole shape.

In particular, by increasing the hole aspect ratio hx/hy while keeping the total hole area constant

we effectively raise the motional mass of the mechanical mode of interest, reducing its frequency,

while minimally perturbing the optical modes. Adding this effect yields the full defect cell shown in

Fig. 1.8b, and tunes the mechanical mode in the desired direction, as shown in Fig. 1.8d.
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Figure 1.9: Optimized nanobeam OMC cavity. a, SEM image of a fabricated nanobeam cavity,
showing the defect cavity region. In addition to this, nominal (“mirror”) unit cells extend for several
periods on either side. b, Normalized electric field Ey component of the fundamental optical mode
at ωc/2π ≈ 194 THz. c, Normalized displacement profile of the mechanical “breathing” mode at
ωm/2π ≈ 5.1 GHz.

With the optimal modes identified, and a suitable defect perturbation in hand, creating a good

optomechanical cavity now comes down to choosing a gradual, smooth transition between the nom-

inal and defect unit cells in order to reduce optical scattering and match the spatial extents of the

optical and mechanical defect modes (as can be inferred from the above expressions for g0, roughly

speaking we need the extent of q to be comparable to that of |E|2). Moreover, there is still a fair

amount of optimization of the specific dimensions of both the nominal and defect unit cell, which

will provide small but important changes to the final value of g0 for a given cavity. At this point,

it proves more efficient to rely on numerical optimization, and we use the Nelder-Mead simplex

algorithm [94] in order to optimize the cavity over a range of dimensional parameters. At each step

the localized optical and mechanical eigenmodes are computed using COMSOL and the resulting

calculated value of g0 is used as a fitness function for the optimization, with an additional penalty

applied if the optical Q drops too low. The full details of the optimization procedure can be found

in Ref. [1].

1.3.4 Nanobeams

A scanning electron microscope (SEM) image of a fabricated, fully optimized Si nanobeam OMC

is shown in Fig. 1.9, with the corresponding FEM-simulated electric field and displacement mode

profiles shown in Fig. 1.9b and c, respectively. For this design, the nominal unit cell (which acts

as the cavity mirror) has the dimensions specified in the caption of Fig. 1.8a, while the unit cell

at the center of the defect region has the dimensions specified in the caption of Fig. 1.8b. In
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between these two points the lattice constant and hole area are varied quadratically over several

holes, with a smooth variation of the hole aspect ratio as described in the previous section. Though

the image displays only the cavity region and a single mirror period on either end, in practice several

more periods of the mirror region are present on either end of the cavity in order to provide good

confinement of the modes (6− 7 periods on either side is usually more than sufficient).

The as-designed optical and mechanical mode frequencies are ωc/2π ≈ 194 THz and ωm/2π ≈
5.1 GHz, respectively, while in practice small fabrication errors can result in small variations in the

measured frequencies. The optimized optomechanical coupling for this structure is g0 = 860 kHz, of

which 950 kHz is due to the photoelastic effect and −90 kHz is due to the moving boundary effect.

While this is particular design has the maximum as-designed g0, it is possible to find other designs

with only slightly lower g0. In particular, a design with ωm/2π ≈ 3.6 GHz, but a simulated g0 which

is still on the order of 700 − 800 kHz, is used in the measurements of Chapter 3 as it allows us to

avoid a prominent phase noise peak of the laser at ∼ 5 GHz.

The optical quality factor Qc = ωc/κ, as calculated in COMSOL, reaches roughly 108. However,

this only accounts for coupling due to radiation losses in an ideal structure. In a typical fabricated

structure the real measured intrinsic optical quality factor lies in the range 5× 105− 106, limited by

a number of factors including disorder, surface roughness, and optical absorption within the Si. The

highest intrinsic Q measured in such a nanobeam is 1.22 × 106 (κi/2π ≈ 160 MHz) [95], which is

within an order of magnitude of the highest recorded optical Q in any Si photonic crystal cavity [70].

The mechanical quality factor Qm = ωm/γi is another story, as it depends strongly on tem-

perature. At room temperature the mechanical Q is typically Qm ≈ 2000 − 3000. This is limited

by material damping processes such as phonon-phonon interactions [96] and thermoelastic damp-

ing [97], and shows little dependence on the quality of the acoustic bandgap in the mirror section

or on any additional acoustic shielding as described below. Detailed modeling of the mechanical

damping at high temperature can be found in Ref. [1]. As the temperature is lowered, the effects of

these intrinsic damping mechanisms are expected to reduce and radiation of acoustic energy through

the beam (sometimes called “clamping loss”) should begin to dominate the mechanical damping.

However, one finds Qm ≈ 104 even at low temperatures (Tb . 10 K), with little increase as the

number of mirror periods is increased. The culprit is the lack of a complete phononic bandgap

in the nanobeam, as discussed in section 1.3.2. As the mirror region only possesses a symmetry

bandgap, small amounts of fabrication-induced disorder can couple the mechanical cavity mode to

nearby modes of different symmetry for which no bandgap exists, limiting the ability of the mirror

region to suppress phonon radiation. This problem, first studied for nanobeams in Ref. [98], can

be remedied by surrounding the cavity with an additional phononic crystal possessing a complete

bandgap.
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Figure 1.10: Cross phononic crystal. a, Unit cell of the 2D “cross” phononic crystal, with
relevant dimensional parameters labeled. This crystal is periodic in both x and y, forming a square
lattice (see Fig. 1.5b). b, SEM image of a fabricated nanobeam cavity with a surrounding cross
pattern (green) serving as an acoustic radiation shield. c, Complete phononic band structure in Si
for (a, t, h, w) = (534, 220, 454, 134) nm. The bandgaps (red shaded region) are complete phononic
bandgaps, and the nanobeam mechanical mode frequency is indicated by a black dashed line. d,
Radiation limited mechanical quality factor Qm obtained from FEM simulations as a function of
disorder parameter σ, for a nanobeam without (red) a phononic radiation shield and with a shield
consisting of four (blue) and six (green) cross periods in all directions. The expected range of disorder
estimated from SEM images of fabricated devices is represented by the gray shaded region. The
inset shows the dependence of Qm on the number of cross periods ncross for σ = 2%.

1.3.5 Crosses

Generally speaking, the necessary requirement for obtaining a complete phononic bandgap is to find

a crystal comprised of large masses connected by thin sections of material [80]. For low frequency

modes, where the phonon wavelength is large compared to the lattice constant, the crystal can be

approximated as a homogeneous effective medium, the stiffness of which is greatly reduced compared

to the unpatterned material due to the weak links between the masses. For high frequency modes,

on the other hand, the crystal may be described by a tight binding model where the interaction

between the masses is reduced by the small links. The net result is that the low lying modes are

pushed down in frequency while the dispersion of the high frequency modes flattens out, creating a

bandgap for frequencies where the phonon wavelength is comparable to the lattice constant.

One of the simplest and most effective crystals of this type is the so-called “cross” crystal, the

unit cell of which is illustrated in Fig. 1.10a. This crystal, which consists of cross-shaped holes

arrayed in a two-dimensional square lattice (see Fig. 1.5b) is placed around the entire nanobeam

cavity, providing an additional shield for acoustic radiation. A simulated phononic band structure

of a cross crystal is shown in Fig. 1.10c, in which we observe a large (∼ 1 GHz) complete phononic

gap centered around the mechanical resonance frequency of the nanobeam.
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While this structure is still affected by disorder, the large gap between the frequency of interest

and the band edges and the complete nature of the bandgap minimize the effects of small amounts

of disorder. The radiation limited Qm can be simulated in COMSOL by placing an additional region

around the shielded cavity, in which the elasticity tensor has a small imaginary component which

mimics acoustic absorption. By tuning the size and position dependence of this fictitious absorption

this layer becomes the acoustic equivalent of a perfectly matched layer [99], which provides an

absorbing boundary condition while minimizing spurious reflections of mechanical energy. The full

details of how the PML is tuned can be found in Ref. [98]. To introduce disorder into the simulation,

we randomize the dimensions and positions of the holes about the nominal parameters according

to a normal distribution with a specified standard deviation. For simplicity, the standard deviation

for each parameter is chosen to be a fixed percentage σ of its nominal value. In Fig. 1.10d we show

the simulated Qm for a nanobeam without a cross shield (red) and with four (blue) and six (green)

periods of the cross shield in all directions, as a function of the disorder parameter σ, with the gray

shaded region indicating the range of disorder (σ ∼ 2%) expected in actual fabricated devices based

on SEM images. A plot of Qm versus the number of cross periods ncross for σ = 2% is shown in

the inset, showing the expected exponential dependence with Qm ≈ 103.8+0.96ncross . As we shall

see in Chapters 3 and 4, the observed mechanical Q at millikelvin temperatures agrees well with

the simulated radiation-limited values in the presence of moderate amounts of disorder, suggesting

we can reach the regime in which the mechanical lifetime is determined solely by the phononic

engineering of the structure.

1.3.6 Snowflakes

One might reasonably ask why we don’t just make an OMC defect cavity using the 2D cross structure,

as its complete phononic bandgap is superior in terms of acoustic confinement when compared to

the symmetry gap of the nanobeam. Unfortunately, the cross structure has no photonic pseudo-gap

for the TE-like modes due to the presence of leaky modes, and does not even possess a guided mode

gap for the TM-like modes [80]. This arises from the low symmetry of the cross structure’s square

lattice, which leads to very different behavior for plane waves propagating along different directions

of the crystal (e.g., the X and M directions, as seen in the IBZ diagram of Fig. 1.5b), resulting in

a correspondingly smaller photonic bandgap.

This problem can be remedied by moving to a lattice with a higher degree of symmetry, such as

the hexagonal lattice illustrated in Fig. 1.5c. Extending the ideas of the cross structure to this lattice

symmetry results in the “snowflake” crystal [80], the unit cell of which is shown in Fig. 1.11a. With

proper tuning of the dimensional parameters, we can obtain simultaneous photonic pseudo-gaps and

complete phononic bandgaps, as illustrated in Figs. 1.11b and c.

Given the 2D nature of the lattice, there is more freedom in how the defect cavity is formed.



40

r

w

t

a b c

fr
eq

ue
nc

y 
(T

H
z)

500

400

300

200

100

0
Γ M K Γ Γ M K Γ

fr
eq

ue
nc

y 
(G

H
z)

12

10

8

6

4

2

0

a

Figure 1.11: Snowflake optomechanical crystal. a, Unit cell of the 2D “snowflake” crystal, with
relevant dimensional parameters labeled. b, Computed photonic band structure for the TE-like
modes in Si, for (a, r, w, t) = (500, 200, 75, 220) nm, with the light cone (gray) and pseudo-gap (red)
regions indicated. c, Computed phononic band structure for the same dimensions as b, with the
complete phononic gap indicated by the red shaded region.
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Figure 1.12: Snowflake W1 waveguide. a, Unit cell of the W1 waveguide formed from a snowflake
lattice. One row of holes is removed and the remaining holes are shifted inward by an amount W ,
yielding a waveguide width of ∆y =

√
3a − 2W . Photonic and phononic band structures for the

effective 1D waveguide are shown in b and c, respectively, assuming the lattice parameters detailed
in Fig. 1.11 and W = 200 nm (∆y = 400 nm). The bandgaps are shaded in red and the optical and
mechanical cavity frequencies indicated by black dashed lines. Green circles indicate the optical X-
point and mechanical Γ-point modes from which the cavity modes are drawn. The dark gray region
of the photonic band structure indicates the light cone (radiation out of plane), while the light gray
regions in both band structures indicate frequencies above and below the in-plane bandgap defining
the waveguide (radiation in-plane).
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Figure 1.13: Heterostructure snowflake OMC cavity. FEM simulated optical (a) and mechan-
ical (b) mode profiles of the W1 snowflake cavity.

For our purposes we choose to form a double heterostructure cavity, which has been demonstrated

to yield extremely high optical Qs in similar hexagonal lattice photonic crystals [100, 101]. In this

type of cavity we first remove a single row of holes from the lattice, forming a line defect which

serves as a waveguide [102, 103]. This reduces the problem to that of a 1D waveguide, similar to

the nanobeam, with an effective unit cell shown in Fig. 1.12a. The corresponding band structures

for this waveguide are shown in Fig. 1.12b and c. In this case the remaining holes in the lattice

are shifted inward towards the center of the line defect in order to tune the optical and mechanical

waveguide bands and obtain the desired band structures [80].

Forming a defect cavity now becomes very similar to the case of the nanobeam, with a gradual

modulation of the geometry introduced along the waveguide axis in order to locally tune the desired

optical X-point and mechanical Γ-point modes into the bandgap. In this case, a small (∼ 3%)

reduction in the hole radius is gradually introduced, leading to the localized optical and mechanical

modes shown in Fig. 1.13a and b, respectively. The optical and mechanical resonance frequencies of

this cavity are ωc/2π = 205 THz and ωm/2π = 9.5 GHz, respectively, with a vacuum optomechanical

coupling rate of g0/2π ≈ 300 kHz.

Though snowflake cavities are not be used in the main experimental work presented in this

thesis, their two-dimensional nature presents an attractive solution the problem of excess heating at

sub-kelvin temperatures, as discussed further in Chapter 5.
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1.3.7 Fabrication Overview

The Si devices studied in this work are fabricated from a silicon-on-insulator (SOI) wafer (SOITEC,

220 nm device layer, 3 µm buried oxide) using electron beam lithography followed by reactive ion

etching (RIE/ICP) with a C4F8/SF6 chemistry.

For the end-fire coupled devices detailed in section 2.5 and measured in chapters 3 and 4, the

Si device layer is then masked using ProTEK PSB photoresist to define a mesa region of the chip.

Outside of the protected mesa region, the buried oxide is removed with a plasma etch and a trench is

formed in the underlying silicon substrate using tetramethylammonium hydroxide (TMAH), allowing

a lensed fiber tip to be brought into the near-field of the end-fire couplers.

Finally the devices are released in hydrofluoric acid (49 % aqueous HF solution) and cleaned in

a piranha solution (3-to-1 H2SO4:H2O2) before a final hydrogen termination in diluted HF in order

to passivate the surface [104]. During the initial lithography step, arrays of the nominal design are

scaled by ±2 % to account for frequency shifts due to fabrication imperfections and disorder.

Further details about the fabrication process can be found in Refs. [44] and [55].
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Chapter 2

Optical Coupling in a Dilution
Refrigerator

2.1 Motivation

To couple light in and out of the optical cavity, the initial nanobeam OMC experiments [13,40,45,105]

utilized an evanescently coupled, dimpled fiber taper probe developed within the Painter group [106].

This coupling scheme is useful for rapid development and testing of devices, as it allows one to quickly

test hundreds of devices spread across a single chip. However, it suffers from a number of drawbacks.

The coupling scheme is inherently two-sided, meaning that light can couple from the cavity into the

forwards and backwards propagating waveguide modes with equal efficiency. In practice we only

detect light at one end of the optical fiber, and thus this coupling scheme limits us to a coupling

efficiency of 50% even in the ideal case of no additional intrinsic loss in the cavity (κi = 0). In a

realistic cavity the actual coupling efficiency is typically much less than 50% due to finite intrinsic

loss from fabrication imperfections, absorption, etc. Moreover, the exact extrinsic coupling rate κe

depends very sensitively on the positioning of the fiber relative to the cavity, which can be difficult

to achieve consistently. The taper itself can in some cases cause additional scattering of the optical

cavity mode, increasing κi without increasing κe, reducing the overall coupling efficiency.

In principle these problems can be overcome by utilizing a slightly different coupling scheme,

where the dimpled taper is coupled to an intermediate tapered waveguide which subsequently directs

light to the optical cavity [107–109]. By separating the fiber-to-chip coupling efficiency and the

cavity coupling efficiency, this method allows for single-sided coupling where in principle 100% of

the cavity light can be directed to the output channel and the cavity coupling rate κe can be

precisely controlled independent of the fiber coupling efficiency. However, both this scheme and

the direct fiber-to-cavity coupling require the careful positioning of the fiber taper in the near-field

of a nanostructure. As no signal from the cavity is observed until the fiber has been brought to

within a few microns of the optimal position, this coupling scheme requires real-time imaging of
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the device during the coupling process. This is difficult to achieve in a dilution refrigerator due to

issues with heating of the environment by the imaging system and alignment issues owing to thermal

contraction at low temperatures of the various materials comprising the imaging setup. It is possible

to construct imaging systems suitable for real-time imaging at mK temperatures utilizing optical

fiber bundles to transmit images to a room-temperature camera [110], and coupling of a fiber taper

to an optomechanical bottle resonator inside a dilution fridge has recently been demonstrated using

this technique [111]. However, a simpler approach is to develop a coupling scheme that does not

utilize a fiber taper at all and can be aligned without direct imaging of the sample.

One alternative approach is to use an on-chip grating coupler [112–118] to couple a near-normal

incidence free-space beam (e.g., launched from a lensed optical fiber) to an on-chip waveguide.

While in principle such couplers can reach efficiencies of greater than 90% [113], typical experimen-

tally demonstrated values are closer to 20 − 30%, though this can be improved to 60 − 70% via

nonuniform etching or modification of the substrate [115–117]. More importantly, such grating cou-

plers typically require leaving the buried oxide substrate intact, which complicates integration with

the fully undercut OMC structures used in this work. While progress has been made in developing

high efficiency, fully suspended grating couplers [118], they have only demonstrated efficiencies of

∼ 25% for the TE-like modes used in our OMC designs. There were some initial efforts to design

and fabricate novel suspended free-space couplers within the Painter group [1], but the fabricated

couplers possessed rather low coupling efficiencies (∼ 20%) and were difficult to characterize owing

to multiple reflections within the coupler structure that greatly complicated the optical reflection

spectrum.

Ultimately, the approach which proved most successful was to design couplers consisting of either

a lensed or cleaved optical fiber aligned on-axis to a narrow, mode-matched on-chip waveguide, which

tapers up to the appropriate width for coupling into the optical cavity. Couplers of this type have

been widely used for efficient fiber-to-chip coupling and on-chip optical interconnects [119–122], and

allow for single-sided coupling with demonstrated fiber-to-cavity efficiencies as high as 75%. Most

importantly, it is straightforward to couple such devices without imaging the sample, and in some

cases without any in-situ alignment at all, as we will discuss below.

2.2 Adiabatic Mode Coupling Theory

In this section, we will present an overview of the mode coupling theory underlying the design

of the fiber-to-waveguide couplers used in this work. A more rigorous and complete treatment of

the theory presented here can be found in a number of textbooks on optical waveguide theory,

particularly Refs. [123] and [124].
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2.2.1 Waveguide Modes

We begin by considering a waveguide formed from lossless, isotropic dielectric materials, where the

axis of the waveguide will be taken as the z-axis, with an arbitrary cross-sectional refractive index

profile n(x, y) but homogeneous along the z-axis. We consider only monochromatic fields, so that

all electric and magnetic fields have an assumed time-dependence of eiωt. Assuming nonmagnetic

materials, Maxwell’s wave equations for the electric and magnetic field vectors E and H are

∇×E = −iωµ0H, (2.1)

∇×H = iωε0n
2E. (2.2)

In general, the longitudinal components of the fields Ez and Hz can be determined from the trans-

verse components. In particular, it is straightforward to show using Eqs. 2.1 and 2.2 that

Ez =
(
iωε0n

2
)−1∇t ×Ht, (2.3)

Hz = − (iωµ0)
−1∇t ×Et, (2.4)

where ∇t = ∇− ẑ∂/∂z and ẑ is the unit vector in the z-direction. This simple relation allows us to

focus solely on the transverse field components, which is advantageous when considering junctions

between two waveguides along the waveguide axis as the transverse components are continuous

across the boundary.

Due to the assumed continuous translational symmetry of the system along the z-axis, the

solutions of Maxwell’s equations can be expressed as E = E(x, y)eiβz for some propagation constant

β (similarly for H). The propagation constant is often written in terms of an effective refractive

index, β = (ω/c)neff. Any such solutionEj will satisfy the following wave equations for the transverse

field vectors:

−1

iωµ0
∇t × (∇t ×Ej) + iβ (ẑ ×Hj) = iωε0n

2Ej, (2.5)

1

iωε0
∇t ×

(
1

n2
∇t ×Hj

)
+ iβ (ẑ ×Ej) = −iωµ0Hj. (2.6)

These solutions can be further divided into guided modes and radiation modes. Guided modes

are defined as those modes for which energy is confined to a finite region in the xy-plane and does

not propagate freely to infinity. There exists a discrete set of these modes, with real effective indices

satisfying

n2(∞) < n2
eff < max

(
n2(x, y)

)
. (2.7)

The specific number of guided modes depends on the specific refractive index distribution, but there
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will always be at least one guided mode whenever n(x, y) > n(∞) for some x and y in the plane.

There will also exist an infinite continuum of unconfined modes, the so-called radiation modes,

which carry energy away to infinity and for which Eq. 2.7 need not be satisfied (and neff need not be

real). The guided and radiation modes together form a complete set of modes, so that an arbitrary

transverse field can be expanded in terms of the guided modes and the radiation field [123]:

Et(x, y, z) =
∑

j

(
a+

j e
iβjz + a−j e

−iβjz
)
Ej(x, y) +

�
dρ
(
a+
ρ e

iβρz + a−ρ e
−iβρz

)
Eρ(x, y), (2.8)

Ht(x, y, z) =
∑

j

(
a+

j e
iβjz − a−j e−iβjz

)
Hj(x, y) +

�
dρ
(
a+
ρ e

iβρz − a−ρ e−iβρz
)
Hρ(x, y), (2.9)

where the summation over j extends over all possible guided modes, and the integral over ρ over

the continuum of radiation modes. Note that we have explicitly separated forward traveling guided

modes (superscript + on the expansion coefficients) from backward traveling guided modes (super-

script − on the expansion coefficients) due to the different symmetry properties of the electric and

magnetic transverse fields upon reflection in the z direction.

In addition to forming a complete set, the transverse guided and radiation modes of the waveguide

are orthogonal with respect to power. That is, for a lossless, source-free (i.e., no free charge or

current) waveguide it can be shown that any two distinct guided or radiation modes of the waveguide

(i.e., modes with distinct propagation constants) with vector field profiles Ej and Ek obey the

orthogonality relation [123]:

�
dA (Ej ×H∗k ) · ẑ =

�
dA
(
E∗j ×Hk

)
· ẑ = 0, j 6= k, (2.10)

where the integration is over the entire xy-plane. For j = k the real part of the integrals in Eq. 2.10

are proportional to the modal power flow in the z-direction. We also note that the orthogonality

relation only involves the transverse field components.

Strictly speaking, waveguide modes as we have described above only exist for an ideal infinite

waveguide (i.e., a waveguide with perfect translational invariance). In real waveguides this assump-

tion will always be violated to some degree, and in particular the couplers we will discuss in this

section involve waveguides where the cross-sectional refractive index profile n(x, y) is intentionally

varied along the axis of the waveguide. Such waveguides cannot support the modes described above.

However, as the ideal waveguide modes form a complete set, at any point z = z0 along the waveg-

uide we may expand the real propagating field in terms of the modes of the corresponding infinite

waveguide (that is, the waveguide where n = n(x, y, z0) ∀ z). If the index variation is slow enough

along the z-axis it is intuitively obvious that these modes will provide an approximation to the real

solutions of Maxwell’s equations in some local region about z0. As we will see below this local mode

formalism may be used to determine how slowly a waveguide must change in order to transmit light
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Figure 2.1: Fiber-to-waveguide coupling. a, Optical fiber aligned with a nanowire waveguide
(not to scale). b, Cross-sectional detail in the xz-plane, corresponding to the orange boxed region
in a. The core and cladding regions of the fiber with refractive indices nco,1 and ncl,1, are indicated
by dark and light blue shading, respectively, while the core and air-cladding of the nanowire with
refractive indices nco,2 and ncl,2 = 1, are indicated by green and gray shading. The solid black line
represents the fundamental Gaussian guided mode of the fiber, Eg,1, while the dashed black line
represents the guided mode of the nanowire, Eg,2, the energy of which is primarily concentrated in
the exponentially decaying evanescent field. c As explained in the main text, the physical structure
shown in b may be approximated by two infinite, uniform dielectric half-spaces for the purposes of
determining the reflected fields at the interface. In the case that n1 ≈ nco,1 is sufficiently small,
the reflected field may be neglected and the transverse field at the interface may be taken to be
Et ≈ Eg,1.

efficiently in a single mode of the waveguide.

2.2.2 Fiber-to-Nanowire Coupling

We now turn our attention to the problem of coupling light from a single mode optical fiber to a thin,

suspended, on-chip dielectric waveguide with a rectangular cross-section, hereafter referred to as a

nanowire waveguide, as shown in Fig. 2.1a. In both waveguides the dimensions and refractive index

profile are assumed to be such that they are single mode. That is, there is only one guided mode

of each orthogonal transverse polarization. In practice, the photonic crystal structures to which

we wish to couple only possess bandgaps for the TE-like polarizations where the electric field lies

predominantly in the plane of the device layer (the y = 0 plane, as shown in the orange boxed region

of Fig. 2.1a and Fig. 2.1b). Thus, we need only consider a single bound mode of each waveguide,

with transverse field vectors Eg,1 and Eg,2 for the input (fiber) and output (nanowire) waveguides,

respectively.

At the junction between the two waveguides, the total transverse field Et may be expanded in
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terms of the local waveguide modes of waveguide 2, as in Eqs. 2.8 and 2.9:

Et = agEg,2 +Eother,2, (2.11)

Ht = agHg,2 +Hother,2, (2.12)

where Eother,2 denotes the sum over all other guided and radiation modes of waveguide 2 (similarly

for Hother,2). Physically it is clear that only the forward traveling guided mode can be excited in

this configuration, so we do not need to distinguish between forward and backwards traveling guided

modes at this stage. The total power propagating in the output guided mode is given by

Pout,2 =
1

2
Re

[
|ag|2

�
dA
(
Eg,2 ×H∗g,2

)
· ẑ
]
, (2.13)

while the mode coefficient ag can be determined using the orthogonality relation Eq. 2.10:

ag =

�
dA
(
Et ×H∗g,2

)
· ẑ�

dA
(
Eg,2 ×H∗g,2

)
· ẑ , (2.14)

We would like to relate this output power to the total power in the specified input mode, Eg,1.

However, the expressions above involve the total transverse field Et, which is the sum of the known

incident field and any fields reflected from the interface between the two waveguides. In general, the

problem of determining the reflected fields is quite complicated and often has no exact analytical

solution. However, in this specific case we can make a few reasonable approximations to obtain Et

in terms of Eg,1.

The refractive index profile of both waveguides, shown in the xz-plane in Fig. 2.1b, consists of a

high-index core with refractive index nco near the z-axis surrounded by a lower index cladding with

refractive index ncl < nco. In both cases the waveguide modes of interest are sufficiently localized

about the z-axis that the uniform cladding can be approximated as extending infinitely far in all

transverse directions. In the case of a typical single mode fiber, nco ≈ ncl (e.g., in our work we use

SMF-28 optical fiber at a vacuum wavelength of λ ≈ 1550 nm, where nco/ncl ≈ 1.004), and for the

purposes of determining the reflected fields, the half-space containing the fiber may be approximated

as a uniform dielectric with index n1 ≈ nco ≈ 1.5. In the case of the nanowire, the cladding is vacuum

(ncl = 1) while the core is typically has a relatively large refractive index (e.g., nco ≈ 2 for Si3N4

and 3.5 for Si at λ = 1550 nm), so in general this half-space may not be approximated as having a

single refractive index. In practice, however, the cross-sectional dimensions of the nanowire are small

(∼ 100s of nm) compared to the dimensions of the fiber core (∼ 10 µm), and high coupling efficiency

requires the spatial extents of the guided modes (i.e., the mode-field diameters) to be comparable.

Consequently, the nanowire mode must be largely evanescent, such that almost all of the energy is

carried in the cladding. In this case, we can approximate this region as a uniform dielectric with
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n ≈ ncl = 1, and so for the purposes of determining the reflected field the whole system may be

roughly approximated as two infinite dielectric half-spaces, as shown in Fig. 2.1c.

Furthermore, when the guided mode diameter is large compared to the free-space wavelength

of electromagnetic field (here, ∼ 10 µm and ∼ 1.5 µm, respectively), we may approximate the

reflection by the usual expressions for reflection of a normal incidence plane wave at the interface

between two uniform dielectrics. In this approximation the transverse field at the interface will be

approximately [123]:

Et ≈ tEf
g,1 + rEb

g,1, (2.15)

where Ef
g,1 and Eb

g,1 denote the forward and backward propagating guided modes of waveguide 1,

respectively. Clearly, only the forward propagating wave should contribute to the forward propagat-

ing power in waveguide 2. The prefactors t and r are the usual Fresnel reflection and transmission

coefficients. The corresponding power transmission and reflection coefficients, T and R, are given

by

T = |t|2 =
4n1n2

((n1 + n2)2
, (2.16)

R = |r|2 =
(n1 − n2)2

((n1 + n2)2
, (2.17)

where n1 and n2 are the approximate uniform refractive indices in the half-spaces corresponding to

waveguide 1 and 2, respectively. Using n ≈ 1.5 for the fiber and n ≈ 1 for the on-chip waveguide,

we find T ≈ 0.96, and so neglecting for the moment the small amount of reflection loss we may

approximate Et ≈ Eg,1. Inserting this into Eq. 2.14, using Eq. 2.13 and normalizing by the power

in the incident guided mode, we thus arrive at the approximate expression for the fiber-to-nanowire

coupling efficiency ηoverlap = Pout,2/Pin,1 in terms of the guided modes

ηoverlap ≈ Re

[∣∣� dA (Eg,1 ×H∗g,2

)
· ẑ
∣∣2�

dA
(
Eg,2 ×H∗g,2

)
· ẑ

]
1

Re
[�
dA
(
Eg,1 ×H∗g,1

)
· ẑ
] . (2.18)

The guided modes may be computed readily via a number of numerical methods, after which the

vector fields can be numerically integrated according to Eq. 2.18. For any given fabricated structure,

the device layer has a fixed thickness, and thus optimization of the coupling efficiency simply involves

computed ηoverlap as a function of nanowire width. As we will see below, the efficiency of this junction

(neglecting the small amount of reflection) can approach ηoverlap ≈ 0.95.

2.2.3 Adiabatic Waveguide Taper

Once the light has been coupled onto the chip, the width of the waveguide (and the confinement

of the guided mode) must subsequently be increased to an appropriate width for coupling into the
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optical cavity. As the width of the waveguide changes, so too do the corresponding local modes.

Since the local fundamental guided mode at any given point along the waveguide is not in general

orthogonal to the higher order guided modes and radiation modes at a different point, care must be

taken in how the waveguide dimensions are altered so as to avoid coupling significant amounts of

power out of the mode of interest.

This problem is formally similar to the problem of energy transfer between coupled modes in

quantum mechanics, first considered by Landau and Zener [125] in the context of molecular energy

level crossings. In the case of a time-dependent Hamiltonian Ĥ(t), which varies smoothly between

Ĥ0 at time t = t0 and Ĥ1 at t = t1, the adiabatic theorem [126] states that a system initially prepared

in the ground state of Ĥ0 at t = t0 will be found in the ground state of Ĥ1 at t = t1 provided that

the change in the Hamiltonian is sufficiently slow. In particular, if the minimum energy between

the ground state and any excited state of the system during the evolution of the Hamiltonian is ∆,

“sufficiently slow” is taken to mean that the evolution time τ = t1 − t0 � ~∆−1.

This concept of adiabatic passage can be readily adapted to the problem of efficient eigenmode

conversion in fiber-coupled optical waveguides [119,127], where variation of the waveguide dimensions

along the propagation axis substitutes for the variation in the Hamiltonian in time, and difference in

the modal effective refractive index substitutes for difference in the eigenstate energies. The relevant

adiabatic condition can be readily derived from a coupled mode theory involving the local modes at

different points along the waveguide.

We may write the total transverse electric field at any point z along the length of the waveguide

as a sum over the complete set of local modes [123]:

Et =
∑

j

(
b+j (z) + b−j (z)

)
Ej(z), (2.19)

Ht =
∑

j

(
b+j (z)− b−j (z)

)
Hj(z), (2.20)

b±j (z) = a±j (z)e
±i

� z
z0
dz
′
βj(z

′
)
, (2.21)

where both the modal amplitudes and the modal vector fields are functions of z, ± once again denotes

forward or backward propagating waves, and the expansion coefficients b±j explicitly incorporate

both the modal amplitudes a±j and the changing phase due to the z-dependence of the propagation

constants. Note that, for convenience of notation, the sums in Eqs. 2.19 and 2.20 implicitly include

both a sum over guided modes and an integral over radiation modes. Due to the lack of translation

symmetry in z, the total transverse fields Et and Ht now satisfy the more general, globally valid
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transverse wave equations:

−1

iωµ0
∇t × (∇t ×Et) +

(
ẑ × ∂Ht

∂z

)
= iωε0n

2Et, (2.22)

1

iωε0
∇t ×

(
1

n2
∇t ×Ht

)
+

(
ẑ × ∂Et

∂z

)
= −iωµ0Ht. (2.23)

Inserting Eqs. 2.19 and 2.20 into Eqs. 2.22 and 2.23, and making use of the fact that the local

modes at any given point z = z0 (Ej(z0) andHj(z0), and their corresponding propagation constants)

are the complete set of solutions to Eqs. 2.5 and 2.6 for n = n(x, y, z0), we obtain

∑
j

[(
db+j
dz
−
db−j
dz
− iβj

(
b+j + b−j

))
(ẑ ×Hj) +

(
b+j − b−j

)(
ẑ × ∂Hj

∂z

)]
= 0, (2.24)

∑
j

[(
db+j
dz

+
db−j
dz
− iβj

(
b+j − b−j

))
(ẑ ×Ej) +

(
b+j + b−j

)(
ẑ × ∂Ej

∂z

)]
= 0, (2.25)

which is valid for any set of local modes defined at a given z0.

We would like to now obtain the equation detailing the change in the mode amplitude of the

fundamental forward propagating guided mode. If the waveguide variation is sufficiently slow (i.e.,

the local modes at z = z0 are good approximations to the real solutions of Maxwell’s equations in

some small region about z0), the fundamental guided mode can be well approximated at any given

point along the waveguide by one of the local modes, which we will denote by the vector fields E0

and H0 with mode amplitude a+
0 . In the absence of absorption, we may choose the field components

such that the transverse components are purely real. Then, taking the dot product of Eqs. 2.24 and

2.25 with E0 and H0, respectively, using the vector relation A · (B ×C) = B · (C ×A), using the

orthogonality relation Eq. 2.10, and subtracting the results, we arrive at the equations:

db+0
dz

= iβ0b
+
0 +

∑
j

(
C+

j b
+
j + C−j b

−
j

)
, (2.26)

C±j = −1

2

�
dA
(
E0 × ∂Hj

∂z ±
∂Ej

∂z ×H0

)
· ẑ�

dA (E0 ×H0) · ẑ , j 6= 0; C0 = 0. (2.27)

Using the orthogonality of the local modes, as well as the fact that E0, H0 and their derivatives

go to zero exponentially as x and y go to infinity, it can be shown that [123,128]

(
E0 ×

∂Hj

∂z
± ∂Ej

∂z
×H0

)
· ẑ = ±

√
ε0
µ0

1

neff,0 − neff,j
E0 ·Ej

∂n2

∂z
, (2.28)

leading to

C±j = ∓
√
ε0
µ0

1

4P0 (neff,0 − neff,j)

�
dAE0 ·Ej

∂n2

∂z
, (2.29)
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where P0 is the power propagating in mode E0. For the tapered waveguides considered here, n2 has

the explicit expression n2 = 1 +
(
n2

co − 1
)

Rect(x/w(z), y/t), where Rect(x, y) is the 2D rectangle

function, w(z) is the z-dependent width of the tapered waveguide, and t its (fixed) thickness. Taking

the derivative with respect to z, we find

∂n2

∂z
=
(
n2

co − 1
)

Rect(y/t) (δ(x/w − 1/2)− δ(x/w + 1/2))
x

w(z)2

dw

dz
. (2.30)

Inserting this into Eq. 2.29 yields

C±j = ∓
√
ε0
µ0

(
n2

co − 1
)

8P0 (neff,0 − neff,j)

1

w

dw

dz

� t/2

−t/2
dy
(
(E0 ·Ej) |x=w/2 + (E0 ·Ej) |x=−w/2

)
. (2.31)

From Eq. 2.31 it is clear that, regardless of any particulars of the specific local modes at a

given point z0 along the taper, the adiabatic transfer of power within the fundamental mode (i.e.,

|C±j | � 1) is possible provided the waveguide taper satisfies

dw

dz
� |neff,0 − neff,j| ∀j 6= 0, (2.32)

at every point along the taper length. This adiabatic condition directly shows that efficient trans-

mission requires that the rate of change of the waveguide dimensions be small relative to the gap in

eigenvalue (here, the effective refractive index) between the mode of interest and any other modes

of the system, and is directly analogous to the traditional adiabatic theorem of quantum mechanics.

In principle, Eqs. 2.26 and 2.31 can be used to directly compute the efficiency of power transfer in

the fundamental guided mode over the length of the taper by computing a sufficient number of local

modes at various points along the taper length and using them to make discrete approximations

to ∂b+0 /∂z. However, this method is both cumbersome and tricky. In particular, most of the

time the waveguide will be single mode for most (if not all) of the length of the taper, and can

only lose power via coupling to radiation modes. Thus, accurate computation of the transmission

loss requires accurate determination of a large number of radiation modes. Due to the extended

character of such modes, their simulation is highly dependent on the size and boundary conditions

of the simulation region. A simpler, more efficient method for determining the transmission loss is

to simulate propagation of the fundamental mode along the taper directly in the time-domain, using

the finite-difference-time-domain method (FDTD), and utilize a mode coupling integral analogous

to that used to compute ηoverlap in Eq. 2.18 in order to determine the power in the local fundamental

mode at the output of the taper. However, the adiabatic condition in Eq. 2.32 still proves a useful

guide for choosing an appropriate taper shape and length.
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2.3 Waveguide-to-Cavity Coupling

Once the nanowire waveguide has been tapered up to the appropriate size, we typically want to

accomplish two tasks: couple resonant light into the optical cavity in a controllable way, and reflect

off-resonant light back towards the fiber. The latter goal is not strictly necessary, but proves useful

for calibrating the reflection efficiency and, in some cases, aligning the fiber. The most effective way

of reflecting light over the wavelength band of interest is to simply terminate the waveguide in a

broadband photonic crystal mirror, of the same type used to confine light in the optical cavity itself.

To avoid excess scattering in the mirror region it is necessary to introduce the mirror gradually,

by slowly increasing the hole size (with fixed period) over a number of periods ntrans, up the full

hole dimensions required by the mirror. This is followed by a variable number of mirror periods

nmirr, which may be either as long as desired to give near-unity reflection, or varied to adjust the

waveguide cavity coupling rate in the case of end-coupled cavities, as discussed below. In principle

one can rigorously derive an adiabatic theorem for such a photonic crystal taper [129], similar to

that derived in section 2.2.3, in order to estimate the adiabaticity of a given taper based on a set

of local guided modes. In practice, however, when one is coupling into a bandgap region (rather

than a guided mode of the crystal) the taper need not be long or especially complex, and so it is

easier to simply run FDTD simulations to determine the scattering loss and reflectivity of a given

tapered mirror and iteratively find an optimal design. Generally a linear tapering of the hole size

over ntrans ≈ 8− 10 periods is sufficient to nearly eliminate scattering loss. Regardless of the taper

design, the scattering loss in this region is practically limited by how small of a hole one can fully

etch (i.e., how gradually one can actually increase the hole size), which is dependent on the thickness

and material of the device layer. Since this is finite, even the best designed tapered mirror typically

has a real scattering loss of several percent.

2.3.1 End-coupling

To couple light into the cavity, two approaches exist. The most straightforward is to end-couple the

cavity, as shown in Fig. 2.2a. By simply reducing nmirr to make a partially transparent mirror which

serves as one of the cavity’s end-mirrors, a controllable amount of the incident light is permitted

to leak through to the cavity region. As the defect region of the cavity is highly reflective for light

detuned from the cavity resonance frequencies, this does not compromise the overall off-resonant

reflectivity. The measured quality factors of a series of identical cavities are shown in Fig. 2.2b, with

extrinsic (Qe), intrinsic (Qi), and total (Qt) quality factor shown as red, blue, and green circles,

respectively. Though this coupling method can be generally applied to any type of photonic crystal

cavity, the specific devices measured here are the so-called “zipper” double nanobeam cavities [130,

131] shown below in section 2.4, where the partial mirror exists on only one of the two beams that
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Figure 2.2: End-coupled cavity. a, Schematic of the end-coupled cavity. The sizes of the photonic
crystal holes gradually taper up over a number of periods ntrans to minimize scattering loss, after
which the mirror section extends for a number of periods nmirr, which controls the coupling rate
between the waveguide and the photonic crystal cavity. b, Measured quality factor Q, for a series
of identical end-coupled cavities with varying nmirr. Red circles show the extrinsic quality factor
Qe, blue circles show the intrinsic quality factor Qi, and green circles illustrate the total quality
factor. The red dashed line indicates the theoretical extrinsic quality factor determined from FEM
simulations. c, Waveguide-cavity coupling ratio κe/κ corresponding to the points shown in b,
showing the transition from under- to overcoupling. Dashed horizontal lines correspond to critical
coupling (κe = κi = κ/2) and perfect overcoupling (κe = κ).

comprise the cavity. The extrinsic coupling is seen to match well with a theoretical estimate based

comparing the power outflow in the waveguide to the total power outflow in a FEM simulation of

the waveguide coupled cavity. Due to the exponential attenuation of light in a photonic crystal

bandgap the coupling rate between the waveguide and cavity is exponentially dependent on nmirr.

For the modest Qi values measured in these devices, variation of the coupling rate over a wide

range is not observed to affect the intrinsic scattering rate of the cavity, though in general there can

be a small modification which is apparent once the intrinsic scattering rate becomes low enough.

For optomechanical measurements the relevant figure of merit is the cavity-to-waveguide coupling

efficiency κe/κ = Qt/Qe, which is displayed in Fig. 2.2c. As this coupling geometry is single-sided,

we can reach the overcoupled regime κe > κi, and can in principle approach the perfectly overcoupled

regime κe = κ.

2.3.2 Side-coupling

While the end-coupled scheme is conceptually simple, it has a number of drawbacks. The first is that

we are limited in how finely we can control the extrinsic coupling rate, as we can only add or remove

discrete numbers of holes which cause relatively large jumps in the waveguide-cavity coupling due to

the exponential dependence on nmirr. More importantly, the end-coupled scheme removes the ability

to clamp one end of the cavity in a specific way. In particular, for the nanobeam OMCs studied
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Figure 2.3: Side-coupled cavity. a, Schematic of the side-coupled cavity. The input waveguide
transitions into a photonic crystal mirror similarly to the end-coupled case, but the width of the
waveguide prior to the mirror, wcpl, can be smaller than the width of the mirror section in order to
maximize the evanescent field overlap with the cavity. The overall coupling rate is then primarily
determined by the gap between the waveguide and the cavity, gcpl. b, Typical FEM simulation
of the optical field intensity for a side-coupled nanobeam cavity, normalized to its maximum and
displayed on a logarithmic scale. c, Measured quality factors Q, for a series of identical side-coupled
cavities with varying gcpl, for fixed wcpl. Red circles show the extrinsic quality factor Qe, blue circles
show the intrinsic quality factor Qi, and green circles illustrate the total quality factor. The red
dashed line indicates the theoretical extrinsic quality factor determined from FEM simulations. d,
Waveguide-cavity coupling ratio κe/κ corresponding to the points shown in b, showing the transition
from under- to overcoupling. Dashed horizontal lines correspond to critical coupling (κe = κi = κ/2)
and perfect overcoupling (κe = κ).

in this work we typically want to place acoustic shielding on either end of the cavity, as described

in section 1.3.5. A solution to both of these problems is to use the side-coupling scheme illustrated

in Fig. 2.3a. In this scheme, the waveguide is terminated in a tapered photonic crystal mirror, but

now nmirr can be made arbitrarily large. Placing the waveguide in the near-field of the cavity allows

for coupling via the evanescent fields of the cavity and waveguide, where the coupling rate may be

continuously varied by changing the waveguide-cavity gap gcpl. In addition, the waveguide width

just prior to the photonic crystal mirror, wcpl, is typically fabricated smaller than the width of the

mirror itself (with the width tapering along with the hole size in the transition region), in order

to maximize the evanescent field overlap. In general, there is an optimal value of wcpl where the

waveguide mode is not too confined to overlap with the cavity mode profile, but not so extended

that such overlap is minimal. For the Si nanobeam design used in this work, the optimal value is

wcpl ≈ 500 nm. A FEM simulation of the coupled waveguide-cavity system is displayed in Fig. 2.3b.

As with the end-coupled devices, the measured quality factors and cavity-to-waveguide coupling

efficiencies are shown as a function of gcpl in Fig. 2.3c and d, respectively. For these measurements

the cavity is the Si nanobeam design discussed in section 1.3.4 and used for the experiments in

chapters 3 and 4. Similarly to the end-coupled mirror, the extrinsic coupling rate has an exponential
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dependence on gcpl, which matches well our theoretical estimates based on FEM simulations.

2.4 Butt-Coupling

The simplest approach to building a fiber-to-waveguide coupler is to cleave a standard single mode

fiber and place the endface in direct contact (or, more practically, very nearly in contact) with

the endface of the on-chip nanowire waveguide, exactly as shown in Fig. 2.1a. This approach is

often called “butt-coupling”. For the initial demonstration of these couplers, we chose to work

with devices fabricated from thin-film, stoichiometric Si3N4 deposited on top of Si. Though the

lower refractive index and smaller photoelastic effect of Si3N4 compared to Si results in reduced

optomechanical coupling, there are a number of advantages which led to the selection of this material

for the initial coupler work. At the time a primary reason to select Si3N4 over Si was due to

its much larger bandgap as compared to Si. Two-photon absorption limited earlier work in Si

nanobeam OMCs at higher input optical powers by causing degradation of the optical and mechanical

quality factors [45], and moving to a wider bandgap material mitigates this effect. As we will see in

subsequent chapters, the dominant source of absorption-induced heating at sub-kelvin temperatures

in Si is found to be linear absorption due to mid-gap defect states rather than two-photon absorption.

Nevertheless, the material properties of stoichiometric Si3N4 do provide a number of advantages when

fabricating butt-couplers. In particular, the large tensile stress (∼ 1 GPa) of the device layer causes

the suspended waveguide to pull taut when it is undercut, allowing fabrication of extremely long

suspended waveguides with minimal bending out of plane. This allows for nearly perfect adiabatic

waveguide tapers, as the change in waveguide width can be made extremely slow as a function of

length along the waveguide. Additionally, the Si substrate etches anisotropically in KOH, while

Si3N4 remains unetched, allowing for easy fabrication of v-grooves that enable robust self-alignment

of the fiber.

The greatly reduced optomechanical coupling rate in Si3N4 compared to Si makes it difficult

to measure the high-frequency mechanical modes of the nanobeam OMCs. Consequently, the ini-

tial experiments involving these couplers made use of an alternative optomechanical cavity design

comprised of two parallel nanobeams, the so-called “zipper” cavity [130, 131], which strongly cou-

ples the optical cavity to the low-frequency, fundamental in-plane mechanical modes of the beams.

These structures are in the sideband unresolved regime, where ωm � κ, and as such are better

suited for applications relying on fast measurement of the mechanical oscillator’s position, such as

precision force sensing [132,133], and feedback cooling of mechanical motion [134,135], rather than

the quantum state-engineering applications which are the ultimate goal of this work. As a result,

our presentation of these devices will focus only on the design and optical characterization of the

coupler efficiency, while details about the associated optomechanical measurements may be found
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Figure 2.4: Butt-coupler design. a, Fiber-to-nanowire waveguide coupling efficiency ηoverlap

as a function of the nanowire width. b, Adiabaticity parameter δ as a function of taper length
for different polynomial taper shapes, assuming initial and final waveguide widths of 230 nm and
850 nm, respectively. For both plots the free-space optical wavelength is λ = 1550 nm and the
thickness of the nanowire waveguide is fixed at 400 nm.

in Refs. [136] and [55].

2.4.1 Design

The zipper cavities used in this work are designed for operation at an optical frequency of ωc/2π ≈
193 THz, corresponding to a free-space wavelength of λ ≈ 1550 nm. As designed, the cavities have a

thickness of 400 nm and each nanobeam possesses a width of 850 nm. This fixes both the thickness

and the final width of the nanowire waveguide, and optimization of the coupler involves determining

the optimal initial width at the fiber-to-nanowire junction as well as the optimal taper length and

shape. The optical fiber used is standard SMF-28, which has a single guided mode with a mode-field

diameter of 10.4 µm at λ = 1550 nm [137]. The guided field of the fiber can be obtained numerically

via FEM simulation using the known core diameter and core-cladding refractive index difference, or

more simply by using the well-known approximate analytical solutions for weakly guiding fibers [124],

adjusting the parameters to obtain the appropriate mode-field diameter. Once the guided mode of

the fiber is specified, we simulate the fundamental TE-like guided mode profile of the nanowire

waveguide as a function of waveguide width using the commercial FEM package COMSOL [82]. We

can then compute the coupling efficiency ηoverlap by numerically integrating the two mode profiles

according to Eq. 2.18, producing the plot shown in Fig. 2.4a, where the optimal width of ∼ 230 nm

is seen to yield a coupling efficiency of ηoverlap ≈ 95% (neglecting the small amount of reflection

from the interface, as discussed in section 2.2.2).

Once the initial waveguide width is fixed, we would like to determine the optimal tapering

function between the initial and final waveguide widths. As discussed in section 2.2.3, the most

efficient method of computing the transmission efficiency of the tapered waveguide is to use FDTD
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to propagate the initial guided mode along the waveguide. Accurate computations tend to be rather

time-consuming due to the necessity of a large simulation volume combined with a sub-wavelength

grid spacing, and in order to reduce the overall number of full propagation simulations we must

perform it is useful to use the general adiabatic condition given in Eq. 2.32 to roughly define the

taper shapes and lengths for which we expect high efficiency. We use COMSOL to compute the local

guided modes and corresponding effective indices at a variety of waveguide widths w in between the

two fixed endpoints. Once we select a specific taper function w(z) describing the width as a function

of position along the waveguide, we may use these results to fit an approximate functional form to

neff(w(z)) for each guided mode. This allows us to compute both dw/dz and neff for any arbitrary

point z along the length of the waveguide. We define the adiabatic parameter

δ = max

[
(|neff,0 − neff,j|)−1 dw

dz

]
z,j

, (2.33)

where as in section 2.2.3 the subscripts 0 and j refer to the fundamental local guided mode and any

other local transverse modes, respectively, and where as indicated the maximization is performed

over all points z along the waveguide and over all local modes other than the fundamental at each

point z. According to Eq. 2.32 a necessary condition for an efficient taper is that δ � 1. After the

initial computation of several sets of local guided modes, we may rapidly compute δ for any number

of trial taper functions w(z) to perform an initial assessment of their adiabaticity.

Over the majority of the taper, the width is small enough that the waveguide is single-mode.

Therefore, the fundamental mode can only lose energy via coupling to radiation modes. These

modes all have effective indices neff ≤ 1, so the index difference in Eq. 2.33 may be approximated as

|neff,0 − neff,j| ≈ neff,0 − 1. As discussed in section 2.2.2, near the fiber-nanowire coupling junction,

the fundamental guided mode of the nanowire must be almost entirely evanescent in order to match

the fiber mode’s large mode-field diameter, and thus at this point the effective index of the mode is

neff,0 ≈ 1. Therefore, dw/dz must be very small close to the nanowire tip in order to avoid scattering

into radiation modes. As the width increases and the mode becomes more confined, neff,0 becomes

larger and the width may increase at a faster rate. This suggests that using higher order polynomials

(i.e., w(z) ∝ za for large a) will result in higher transmission efficiency. Fig. 2.4b shows the adiabatic

parameter δ computed for a variety of polynomial shapes, from linear (a = 1) to quartic (a = 4), with

lengths ranging up to several hundred microns. As we can see, the necessary condition δ � 1 is only

obtained for higher degree polynomials and even then only for lengths over ∼ 300 µm. We can also

see that going to larger and larger degree polynomials offers diminishing returns, as the difference

between cubic and quartic taper shapes is minimal. Guided by this approximate analysis, we select

a cubic, 400 µm long taper for our design. Using the commercial FDTD solver Lumerical [138] to

compute the full transmission efficiency ηtaper, we find that this design yields ηtaper ≈ 98%.
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Figure 2.5: Fabricated Si3N4 butt-coupler. SEM images illustrating the optical coupling scheme,
with FEM-simulated mode profiles of optical power in b and c, and electric field in d and e. a,
Fabricated device after fiber coupling via self-aligned v-groove placement. b, The fiber-to-nanowire
junction. c, The waveguide with supporting tethers after tapering. d, Photonic crystal mirror. e,
Photonic crystal cavity.

A series of SEM images of a fabricated butt-coupler device are shown in Fig. 2.5. Releasing the

structure in KOH selectively etches the Si substrate down to the 〈111〉 crystal planes, forming a

v-groove in which the cleaved fiber rests, as shown in Fig. 2.5a. As the fiber diameter and v-groove

angles are known, this allows us to precisely define the vertical displacement of the fiber relative

to the device layer simply by changing the width of the groove during the initial lithography. In

this way, the v-groove allows for robust vertical and lateral alignment with the nanowire waveguide.

Once the fiber is firmly set in the groove it may be permanently affixed with epoxy, at which point

no further alignment is necessary. We have verified that no appreciable change in the coupling

efficiency is observed when such a device is cooled down to sub-kelvin temperatures inside a dilution

refrigerator, indicating that misalignment due to thermal contraction is not a significant issue.

Although the calculation of the theoretical fiber-to-nanowire coupling efficiency assumes they are

in direct contact, in practice it is only necessary to bring the two close enough so that the field

launched from the cleaved fiber facet does not expand appreciably before reaching the nanowire. As

the mode of the fiber is approximately Gaussian, this distance can be characterized by the Rayleigh

range, the distance at which the beam radius increases by a factor of
√

2, which in this case should

be roughly 50 µm. Consequently, it is sufficient to only bring the fiber within 5 − 10 µm of the

nanowire tip, to avoid the possibility of damaging the nanowire waveguide upon contact.

As shown in Fig. 2.5b, a single tether is necessary to support the nanowire tip. Due to the tensile

stress of the device layer, in principle no other tethers are needed to support the structure, though

in this particular device additional tethers are placed near the optomechanical cavity, as shown

in Fig. 2.5c, in order to isolate the zipper cavity from the low-frequency mechanical vibrations
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Figure 2.6: Si3N4 butt-coupler optical response. a, Wide-band optical reflection spectrum of
a butt-coupled device. b, The solid line shows the estimated single-pass transmission efficiency ηcpl

extracted from the fringe visibility in a. The as-designed ideal value of ηcpl is shown as a dashed
line.

of the taper itself. The additional scattering loss of the tethers may be computed directly via

FDTD propagation simulations. For a 70 nm wide tether (the smallest tether size which may

be reliably fabricated) near the nanowire tip the transmission is computed to be ηtether ≈ 95%.

The array of tethers further back along the waveguide has a negligible contribution to the overall

transmission efficiency due to the high confinement of the guided mode at this point. After tapering

up to the full cavity nanobeam width of 850 nm the waveguide is terminated in a photonic crystal

mirror, shown in Fig. 2.5d, and end-coupled to the optomechanical cavity shown in Fig. 2.5e, as

described in section 2.3. Due to the transition between nanowire waveguide and photonic crystal

mirror, the reflection efficiency of this section is ηmirror ≈ 95%. Overall, the as-designed round-trip

reflection efficiency of the coupler is ηrt = (ηoverlapηtetherηtaper)
2
ηmirror = 74%. For the purposes

of optomechanical transduction, we typically are only concerned with the single-pass transmission

efficiency (that is, the transmission efficiency from the cavity output into the fiber), as we are rarely

limited by our input power and only the detection efficiency matters. For the presented coupler

design, this figure is ideally ηcpl =
√
ηrt = 86%.

2.4.2 Characterization

The broadband optical reflection spectrum of a butt-coupled device in the 1500 nm wavelength band

is displayed in Fig. 2.6a. The three sharp dips around λ = 1515, 1535, and 1555 nm correspond to

resonant modes of the optical cavity, while the broad off-resonant fringes arise from a low-finesse

Fabry-Perot etalon formed between the near-perfect photonic crystal mirror and the weakly reflective

cleaved fiber facet. The exact reflectivity of the fiber can be calculated via FDTD and is found to
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Figure 2.7: Under- and overcoupled butt-coupled cavities. Simulated normalized reflection
R for undercoupled (blue, κe/κ = 0.1), critically coupled (green, κe/κ = 0.5) and overcoupled
(red, κe/κ = 0.9) cavities, showing the different lineshapes which result when the cavity resonance
frequency is a, at the top of a fringe, b, on the side of a fringe, and c, at the bottom of a fringe.
For all of these plots we assume Rfib = 3.5%, ηcpl ≈ 70%, and κ equal to roughly 1% of the etalon’s
free-spectral range.

be Rfib = 3.5%, in good agreement with the rough prediction based on Fresnel coefficients made

in section 2.2.2. While the presence of this additional etalon can complicate certain applications,

it does provide a convenient way of calibrating the coupler efficiency without calibrating the losses

in the detection train. In particular, given that the reflectivity of the fiber endface is known, and

approximating that the photonic crystal mirror has unity reflectivity, a simple Fabry-Perot model

including internal loss shows that the visibility of the fringes is related to the single-pass efficiency

by

V =
Rmax −Rmin

Rmax +Rmin
=

2
√
Rfib (1−Rfib) ηcpl

(
1− η2

cpl

)
Rfib + η2

cpl +Rfibη2
cpl

(
Rfib + η2

cpl − 4
) , (2.34)

where Rmax and Rmin are the maximum and minimum reflection of a fringe, respectively. The single-

pass efficiency, determined using Eq. 2.34, is shown as a solid line in Fig. 2.2.2b, with the theoretical

maximum single-pass efficiency shown as a dashed line. This device is observed to have a measured

single-pass efficiency of ηcpl = 75%. The discrepancy with the ideal value of 86% is attributed to

small differences in the sizes of the waveguide dimensions (e.g., the nanowire tip width, the tether

width, etc.) due to fabrication error.

The presence of the fringes also simplifies the determination of κe. Typically in cavity input-

output theory the off-resonance reflection is assumed flat as a function of frequency. In that case, the

cavity appears in the reflection scan as a Lorentzian dip with a linewidth equal to the total cavity

loss rate κ and a minimum reflection level (normalized to the off-resonance reflection level) given by

R0 = (1 − 2κe/κ)2. In the case of double-sided coupling, where κe < κ/2, this minimum reflection

level can be used to directly determine the extrinsic coupling rate κe. In single-sided coupling,

however, this is no longer sufficient, as there exist two possible values of κe/κ which yield the same

value of R0. In particular, the transformation κe/κ→ 1−κe/κ leaves R0 unchanged. In general, one
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will need to look at both the amplitude and phase response of the optical cavity in order to determine

the cavity-to-waveguide coupling efficiency, as described below in section 2.5.2. In the presence of an

intermediate low-finesse etalon, however, the optical cavity can have highly non-Lorentzian shapes

depending on κe/κ and where the cavity resonance sits on a fringe. A simple coupled-cavity model,

illustrated in Fig. 2.7, shows that an overcoupled cavity can possess a strongly asymmetric, Fano-

like lineshape when positioned on the side of a fringe, or even become a peak rather than a dip

when positioned at the bottom of a fringe. These lineshapes arise from interference between the

circulating etalon field and the cavity reflection due to the strong, frequency-dependent phase shift

upon reflection from an overcoupled cavity. In most cases, this model allows us to determine κe/κ

directly from the amplitude response of the cavity. Further details of the model used to derive

Eq. 2.34 and produce Fig. 2.7 are given in Appendix B.

2.5 End-fire Coupling

The butt-couplers presented in section 2.4 possess many desirable characteristics: high efficiency,

controllable single-sided coupling, and alignment-free coupling (after the initial placement and gluing

of the fiber). However, there are a number of drawbacks that make them unsuitable for our purposes.

In particular, while the permanent placement of a fiber in a v-groove is convenient, it also limits

us to measuring a small number of devices per fiber. This is undesirable for measurements inside

a dilution fridge, as we are often limited in the number of fibers which can be sent into the fridge.

Most importantly, utilizing a cleaved fiber requires a large evanescent field at the fiber-to-nanowire

junction which in turn requires a waveguide taper with a length on the order of several hundred

microns, as explained in section 2.4.1. While this is possible with high stress Si3N4, a free-standing

Si waveguide will begin to sag if it is made much longer than 15 − 20 µm, precluding the use

of such long waveguide tapers without an excessive number of supporting tethers (which in turn

greatly increase the scattering loss). As we would like to use Si devices to take advantage of the

stronger optomechanical coupling it is necessary to substantially reduce the taper length, which in

turn necessitates a larger initial nanowire width and correspondingly smaller mode-field diameter.

To address this issue, the tapered coupler may be modified to couple to a lensed optical fiber

rather than a cleaved optical fiber. Commercial lensed optical fibers can possess mode-field diameters

at the beam waist of only a couple microns, allowing for a much larger optimal nanowire tip width.

Couplers of this type are often referred to as “end-fire” couplers, though the design principles are

identical to that used for “butt-couplers”. While it is possible to mount such lensed fibers in v-

grooves similar to those used for the butt-couplers, we opt for a design where the lensed fiber is

mounted on a set of nanopositioning stages for alignment with the waveguide tapers, to avoid the

drawback associated with permanently coupled fibers. As we will explain below, the reflection from
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Figure 2.8: Fabricated Si end-fire coupler. a, SEM image of an end-fire coupled nanobeam
OMC. b, Edge view SEM image of the central waveguide tip. c, Zoom-in SEM image showing
details of the waveguide-cavity coupling region.

the chip proves sufficient to allow precise alignment without imaging the sample, and thus allows

for simple, high-efficiency coupling even inside a dilution fridge.

2.5.1 Design

The design process for the end-fire coupler is identical to that described for the butt-couplers in

section 2.4.1. The lensed fibers used in this work produce a focused Gaussian beam with a mode-

field diameter at the beam waist of ∼ 2.5 µm, resulting in a substantially larger optimal beam width

(in this case, the coupling is optimized assuming the nanowire tip is placed in the focal plane of the

lensed fiber) but a comparable fiber-to-nanowire coupling efficiency of ηoverlap ≈ 97%. Due to the

limitations on maximum taper length in Si, the optimal tapering strategy is found to be a linear

taper with a length of ∼ 13 µm; a longer taper would require additional support tethers to avoid

sagging of the waveguide, which in turn would add increased scattering loss and negate any efficiency

gained by utilizing a longer taper. The estimated transmission efficiency of such a short taper is

only ηtaper ≈ 80%, in contrast to the near-unity efficiency achieved with the much longer taper in

the case of Si3N4. Including scattering loss from the single support tether, the ideal single-pass loss

of the coupler is estimated to be ηcpl = 70%.

A sample fabricated coupler is shown in both a top-down and edge-on view in Fig. 2.8a and

b. To couple to the waveguides, we utilize the side-coupling geometry detailed in section 2.3.2 and

shown in Fig. 2.8c, which allows us to clamp the nanobeam OMCs on either side with a “cross”-type

acoustic radiation shield, as seen in Fig. 2.8a. To maximize the number of devices which can be

measured with a single coupler we couple each waveguide to two cavities (one on either side) that
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Figure 2.9: Fiber coupling in the dilution refrigerator. a, Photo of the attocube nanopositioner
stages and sample mount affixed to the bottom of the dilution refrigerator mixing plate. b, Photo of
the lensed fiber mounted on the positioning stages, showing alignment to a Si test chip. c, Diagram
showing the lensed fiber (not-to-scale) coupling to an end-fire coupled Si OMC, with a superimposed
FEM simulation of optical intensity.

are fabricated to have slightly different resonance frequencies. As discussed in section 1.3.7, during

fabrication a deep trench is etched in the Si substrate after etching the device layer, creating an

exposed mesa with the couplers sitting at the very edge. This allows us to bring the lensed fiber

close enough to the couplers that the nanowire tip lies in the fiber’s focal plane (about ∼ 14 µm

from the fiber tip).

The microchip sample is mounted to bottom of the mixing chamber plate in the dilution refrig-

erator, and the lensed fiber tip is clamped down on a stack of position encoded piezo xyz-stages

(attocube models ANPx101 and ANPz101) (Fig. 2.9a), which allow nanopositioning with respect to

the sample. When mounting the sample, the fiber is roughly aligned to within a few millimeters,

as illustrated in Fig. 2.9b, prior to closing up the fridge and cooling down. Once the sample is

cold, the fiber tip can be carefully positioned to maximize the reflected signal. This may seem to

require imaging of the sample, just like fiber-taper coupling. However, in contrast to the case of

an evanescently coupled fiber-taper, a measurable reflection from the edge of the chip is observed

even when the lensed fiber is far from alignment with an actual device, allowing us to bring the

fiber into alignment along one axis at a time. First, the fiber is slowly lowered while monitoring

the reflected power. Due to both the high refractive index of the device layer and the fact that

light launched from the fiber hits the device layer at roughly normal incidence (as opposed to the

underlying silicon substrate which is etched at an angle), the reflected power is maximized when the

fiber tip is vertically aligned with the device layer, even if it is not laterally aligned with a coupler.

Once rough vertical alignment is achieved, the fiber is scanned laterally until a weak increase in

the signal is observed due to the presence of a waveguide coupler. At this point the fiber may be

slowly moved towards the chip, readjusting vertical and lateral alignment at each step to maximize

the reflected signal, until the fiber is well aligned with the coupler. Once the reflected signal is
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Figure 2.10: End-Fire coupler optical characterization. a, The experimental setup used to
optically characterize the end-fire couplers. λ-meter: wavemeter, FPC: fiber polarization controller,
φ-m: electro-optic phase modulator, VOA: variable optical attenuator, SW: optical switch, PM:
optical power meter, PD: high-speed photodetector, VNA: vector network analyzer. b, Calibrated
optical reflection spectrum of a cavity resonance versus cavity detuning ∆ = ωc − ωl (blue) with a
Lorentzian fit (red), yielding Q = 236, 000. c, Phase response of the optical resonance shown in b,
yielding κe/κ = 0.52.

globally maximized, it is a straightforward task to scan laterally across the sample to test different

devices. When the desired device is found the stages may be grounded, at which point we observe

no measurable drift in the reflection efficiency (and thus the fiber position), even over many days of

testing.

2.5.2 Characterization

The lensed fibers used for end-fire devices are antireflection coated, thus the only substantial reflec-

tions along the taper are due to weak (0.5% or less) reflections from the waveguide-air interface.

While this leads to some weak fringing effects similar to those observed in the butt-couplers (see

section 2.4.2), the specific reflectivity is highly dependent on fabrication error and is hard to simulate

accurately. This, combined with the much weaker visibility of the fringes themselves, prohibits us

from accurately determining the coupling efficiency solely from fringe visibility. Instead, we calibrate

both the input power and the excess losses in the detection train.

The basic setup used to characterize the coupler efficiency is illustrated in Fig. 2.10a. A tunable

laser is used to scan the devices in the 1520 − 1570 nm wavelength range, with a small amount

(∼ 1%) of the output power being sent to a wavemeter in order to provide accurate calibration and

stabilization of the laser wavelength. The power input to the device is controlled using a variable

optical attenuator and the input polarization is adjusted with a fiber polarization controller in order
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to maximize reflection from the sample. Power directed via an optical circulator to the lensed fiber

tip is reflected by the device and subsequently detected on an optical power meter. Calibration of

the input power to the circulator, Pin, the circulator input loss, η12, and the loss between port 2

of the circulator and the power meter, η2PM, allows us to compare the reflected power detected on

the power meter PM directly to the input power and extract the device’s reflection efficiency. We

typically measure a single-pass efficiency of ηcpl ≈ 50%, though in several devices we have measured

efficiencies as high as ηcpl = 68%, very nearly reaching the ideal efficiency possible with this coupler

design.

A representative scan of the calibrated reflection from an end-fire coupled cavity is shown in

Fig. 2.10b. Due to the relatively flat off-resonance reflection spectrum in these devices, the cav-

ity does appear as an ideal Lorentzian dip, and as such it is impossible to determine κe/κ simply

from the reflected power due to the single-sided nature of the coupling scheme, as explained in sec-

tion 2.4.2. Instead, the laser is locked several GHz off-resonance with the cavity using the wavemeter

and sent through an electro-optic phase modulator. Driving the phase modulator with a vector net-

work analyzer (VNA) creates an optical sideband which can be swept from 0 − 8 GHz across the

optical resonance. For this measurement the reflected optical signal is switched to a high-speed

photodetector connected to the VNA, rather than the optical power meter used to calibrate reflec-

tion efficiency. The optical sideband beats against the carrier frequency to generate an RF signal

measured by the high-speed detector and fed back into the VNA. By calibrating this signal against a

sweep taken very far-detuned from the cavity (such that the cavity is not present within the 8 GHz

range of the sideband sweep), the phase and amplitude response of the optical detection train can

be measured and used to normalize the signal, yielding the amplitude and phase response of the

cavity. After determining the cavity resonance frequency and total linewidth κ from the optical

reflection spectrum, the phase response (Fig. 2.10c) may be fit to obtain κe/κ. For the device shown

here, the overall decay rate was κ ≈ 820 MHz (Q ≈ 230, 000) and κe/κ ≈ 0.5. Typically, once we

determine a typical as-fabricated intrinsic decay rate κi, an appropriate cavity-waveguide gap gcpl

(see section 2.3.2) is chosen to aim for critical coupling (κe/κ = 0.5), which offers a good compromise

between cavity-waveguide coupling efficiency and overall cavity decay rate.
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Chapter 3

Optomechanical Spectroscopy in a
Dilution Refrigerator

3.1 Balanced Heterodyne Spectroscopy

As discussed in section 1.1, driving the optomechanical cavity with a coherent laser tone at frequency

ωl will generate mechanically induced optical noise sidebands at frequencies ωl±ωm. In principle one

can measure these sidebands by direct detection of the reflected optical signal with a sufficiently high-

speed photodetector. Upon detection, the reflected carrier acts as a local oscillator, beating against

the noise sidebands to produce an RF electrical signal oscillating at ωm that can be detected on an

electronic spectrum analyzer. While this method is technically simple and was successfully utilized

in the initial experiments involving the nanobeam OMCs within the Painter group [13, 40, 45, 105],

it does possess serious limitations from a signal-to-noise (SNR) standpoint. In particular, the shot

noise power spectral density scales with the power of the optical carrier, and the drive must be

sufficiently intense in order to amplify this optical noise above the electronic noise floor of the

detector. For the high speed photodetectors utilized in previous experiments, a carrier power on

the order of 1 mW is necessary in order for the optical shot noise to exceed the electronic noise

floor. As the nanoscale optical cavities measured in this work cannot handle this amount of input

power, post-cavity amplification using an erbium-doped fiber amplifier (EDFA) is necessary. While

the amplifier allows us to beat the electronic noise in the setup, it also adds at least 3 dB of

extraneous optical noise (and in practice much more) to the signal [139], greatly reducing the SNR.

As the mechanically induced sidebands scale in amplitude with both average phonon number and

intracavity photon number, it is crucial to improve the detection sensitivity if we hope to make low

power measurements in or near the mechanical ground state.

Obviously, the solution to this problem is to split off most of the laser power prior to the cavity

input, recombining it later with the reflected cavity signal before detection. In this way, the local

oscillator power can be made as high as necessary in order to amplify the optical shot noise without
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increasing the input power to the optical cavity. For maximum sensitivity one typically performs a

balanced measurement, where the local oscillator and signal are combined with a 50/50 beamsplitter

and the outputs are directed to a pair of identical photodetectors. By measuring the difference of

the two resulting photocurrents, the amplified noise of the local oscillator is rejected so that only the

amplified noise of the reflected cavity signal is observed [11, 12]. This allows for an ideal shot-noise

limited measurement of the kind considered in section 1.1.4.

In general the local oscillator frequency can be shifted from that of the drive tone, which results

in the two mechanical sidebands being mixed down to different frequencies. If the anti-Stokes and

Stokes sidebands are at frequencies ωl ± ωm, and the local oscillator has frequency ωl + ωm + δω,

one finds that the anti-Stokes sideband will mix down to δω while the Stokes sideband will be

mixed to 2ωm + δω, and vice versa if the local oscillator has frequency ωl−(ωm + δω). If we select

δω � ωm we may then use a much lower bandwidth amplifier, with correspondingly larger gain and

lower noise, in order to measure the signal. This also allows us to utilize commercially available

balanced photodetector units, which typically have bandwidths on the order of 100 MHz. The one

caveat is that we must select the appropriate local oscillator frequency shift in order to mix down the

sideband of interest (depending on whether we are driving with blue or red detuning), but in practice

this is simple, as only one sideband will be resonantly enhanced for a detuned, sideband-resolved

measurement.

3.2 Experimental Setup

The full experimental setup for balanced heterodyne mechanical spectroscopy and thermometry is

shown in Fig. 3.1. A fiber-coupled, wavelength-tunable external cavity diode laser is used as the

light source, with a small percentage (1%) of the laser output sent to a wavemeter (λ-meter) for

accurate determination of laser frequency. The wavemeter may also be used to provide feedback to

the laser controller, allowing us to lock the laser at a specified wavelength to within roughly 0.5 pm

(∼ 60 MHz). The remaining laser power is split into two paths: a low-power (. 20 µW) path to be

used to drive the OMC cavity, and a high-power (∼ 1 mW) path to be used as the local oscillator

(LO) in a balanced optical heterodyne measurement.

The drive light is sent through an electro-optic amplitude modulator (a-m), which is used both

to stabilize the signal intensity and for calibration purposes, as described below in section 3.2.1, and

a variable optical attenuator (VOA), which allows control of the drive power sent to the cavity over

a 60 dB range. The drive is subsequently sent into port 1 of an optical circulator that directs light

to the dilution refrigerator, where the fiber terminates with a lensed tip for end-fire coupling to the

device as described in section 2.5. The cavity reflection then circulates to a variable coupler (VC)

where it is recombined with the LO path before being directed to a pair of balanced photodiodes
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Figure 3.1: Experimental setup. Full setup for performing calibrated optical heterodyne spec-
troscopy and thermometry of the OMC. λ-meter: wavemeter, a-m: electro-optic amplitude mod-
ulator, φ-m: electro-optic phase modulator, VOA: variable optical attenuator, SW: optical switch,
EDFA: erbium-doped fiber amplifier, PM: optical power meter, VC: variable coupler, BPD: balanced
photodiode pair, RSA: real-time spectrum analyzer, FPC: fiber polarization controller.

(BPD). The difference photocurrent of the two inputs is then amplified and the NPSD of the resulting

electrical signal is measured on a real-time spectrum analyzer (RSA).

The LO is first sent through an electro-optic phase modulator (φ-m), which is driven by an RF

signal generator in order to produce optical sidebands detuned by ±(ωm/2π−50 MHz) from the laser

frequency for the purposes of mixing the mechanically induced signal modulation down to within

the detector bandwidth. An EDFA is used to amplify the LO, while the final LO power reaching

the BPD is controlled via another VOA. Finally, a high-finesse tunable Fabry-Perot filter is used to

select the appropriate LO sideband and reject the carrier.

Throughout the setup, fiber polarization controllers (FPCs) are utilized to optimize the input po-

larization to various polarization sensitive components (e.g., the electro-optic modulators, the OMC

cavity, etc.). To stabilize the amplitude modulator and lock the tunable Fabry-Perot cavity, inline

fiber optic power monitors (represented in Fig. 3.1 by beamsplitters combined with a photodetector)

are used to detect the transmitted power, and the resulting signals are fed back to the devices via

PID controllers.

In order to reject the noise of the LO (which includes not only shot noise but excess technical

noise added by the EDFA), it is crucial to keep the BPD inputs balanced. This is done by adjusting

the variable coupler while monitoring the DC output of each photodiode until they give identical

readings at full LO power. If the coupler is initially very unbalanced the LO power must be slowly

ramped up while adjusting the coupling ratio, in order to avoid a large power imbalance on the two

photodiodes, which can overload the difference current amplifier. We may verify that the system
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is shot-noise limited by measuring the noise floor versus LO power. In the absence of excess noise,

the optical noise floor (i.e., the noise floor with the background electronic noise subtracted) should

scale linearly with LO power. The LO power may then be adjusted as high as necessary to elevate

the optical vacuum noise above the electronic noise floor. For this setup, an LO power of roughly

1 mW is sufficient to amplify the shot-noise at least 10 dB above the electronic noise.

3.2.1 Thermometry Calibration

As shown in section 1.1.4, in the case of a shot-noise limited measurement the single-sided NPSD of

the noise photocurrent for a drive placed on the red-sideband (∆ = ωm) is given by

SII (ω) = Sdark +
G2

e

RL
S2

vac

[
1 + 2η

κe

κ
γOMS̄bb (ω)

]
, (3.1)

where Sdark is the electronic NPSD of the detector and RSA, Svac =
√

2~ωoPLO is the optical vacuum

noise NPSD arising from PLO of LO optical power at optical frequency ωo, Ge is the conversion gain

between optical power and voltage, RL is the input impedance of the RSA, η is the total detection

efficiency, κe and κ are the extrinsic and total decay rates of the optical cavity, γOM is the optome-

chanical scattering rate defined in section 1.1.1, and S̄bb is the symmetrized mechanical spectral

density defined in section A.3 (which in this case will be downshifted in frequency due to heterodyn-

ing so that the peak is located at ω ≈ 2π×(50 MHz) rather than at ω = ωm). The total noise floor

Snoise = Sdark +
(
G2

e/RL

)
S2

vac may be measured by blocking the signal path, while Sdark may be

measured by blocking both the signal and LO, allowing us to extract the optical NPSD normalized

to the shot-noise level. We may then determine the average phonon occupancy of the mechanical

resonator 〈n〉 by integrating this normalized NPSD and using the fact that
�∞
−∞

dω
2π S̄bb (ω) = 〈n〉,

provided we know η, κe/κ and γOM (see Eq.1.34).

The waveguide cavity coupling ratio κe/κ is determined from the phase and amplitude response of

the cavity as described in section 2.5.2, and γOM may be determined by observing the optomechanical

backaction as a function of intracavity photon number, as described below in section 3.3, leaving

only the detection efficiency of the setup to be determined. The total detection efficiency is given by

η = ηcplη2detηdet, where ηcpl is the single-pass transmission efficiency of the end-fire coupler, η2det is

the transmission efficiency between port 2 of the circulator and the heterodyne detector, and ηdet is

the efficiency of the detector itself. The determination of the single-pass end-fire efficiency is detailed

in section 2.5.2, and in this case was found to be ηcpl = 34%, which is a rather low value compared

to the typical values measured at room temperature (ηcpl ≈ 50% or higher). It was later determined

that additional loss was incurred inside the fridge when cold. During this experiment the fibers inside

the fridge were tightly wrapped around a series of mandrels in order to keep the excess fiber length

neatly organized. While the diameter of each mandrel is large enough (∼ 63.5 mm diameter) to avoid
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significant macrobending loss in the spooled fiber, this setup induces an additional single-pass loss

of roughly 1.5 dB at low temperature. The exact cause of this has not been definitively determined,

though our hypothesis is that thermal contraction of the fibers combined with roughness on the

surface of the mandrels induces microbending loss in the fibers [140], which can become significant

due to the large amount of excess fiber in the fridge. When this extra loss is accounted for, the

single-pass end-fire coupling efficiency is around 50%, as expected. The microbending loss can be

avoided by spooling the fibers without using mandrels.

The circulator-to-detector efficiency η2det may be measured simply by sending a known optical

power into port 2 of the circulator and measuring the transmitted power at the input to the variable

coupler, and is found to be η2det = 84%. This leaves only the efficiency of the heterodyne detection

itself, which as defined here includes excess insertion loss in the variable coupler, intrinsic quantum

efficiency of the BPD, and the alignment of the polarization between the LO and the signal. This

is measured by tuning the laser far off-resonance from the optical mode, so that the reflection is

only determined by the flat response of the optical coupler, and driving the amplitude modulator

to create optical sidebands detuned from the signal by ωm. The optical switches SW1 and SW2 are

used to route the signal through a second tunable filter to select a single sideband that is reflected

off the device and directed onto the BPD. The power Pcal in this sideband is directly measured on

a power meter (PM) at SW3, and the photocurrent NPSD as transduced on the RSA is given, in

analogy with Eq. 3.1, by

SII (ω) = Sdark +
G2

e

RL
S2

vac

[
1 +

ηdetScal (ω)

~ωo

]
, (3.2)

where Scal is the NPSD of the calibration signal, and
�∞
−∞ Scal (ω) dω2π = Pcal. The detector efficiency

may then by extracted via

ηdet =
~ωo

Pcal

� ∞
−∞

dω

2π

SII(ω)− Snoise

Snoise − Sdark
= 72%. (3.3)

This, combined with the measured device coupling efficiency, yields the overall measurement effi-

ciency η used for calibrated mechanical thermometry

η = ηcplη2detηdet = 20%. (3.4)

One detail that requires caution when calibrating the setup is the power meter used to measure

Pcal. Most of the efficiency calibrations performed in this work involve measuring the input power

to a device and measuring the output power using the same power meter. As such, it is not typically

necessary to have an absolutely accurate power meter. Rather, it is sufficient merely for the power

meter reading to be consistent and linear with actual measured power. However, calibration of ηdet
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requires comparing the power reading on the BPD unit to the power reading on a separate power

meter, which does require an absolute accuracy. Many fiber-coupled power meters are inadequate

for this task, as they consist of a fiber-to-free space coupler attached to a free-space power meter.

It is relatively easy for the lens inside the fiber-to-free space coupler to become slightly misaligned,

leading to inaccurate absolute power readings even if the underlying free-space detector is properly

calibrated. We found it necessary to employ a fiber-coupled integrating sphere power meter, which

does not suffer from this limitation. This power meter is also used to calibrate the input power to

the device, as it is necessary to know the absolute input power in order to accurately determine the

intracavity photon number.

3.2.2 Effects of Phase Noise

As discussed in section 1.1.6.1, the presence of laser phase noise can cause substantial systematic

errors in calibrated heterodyne thermometry due to noise squashing and anti-squashing effects.

However, previous measurements of the phase noise of the laser used in this experiment [23] (a model

6728 New Focus Velocity laser) have shown that the phase noise spectral density at the mechanical

frequency ωm/2π = 3.6 GHz is approximately Sφφ(ωm) ≈ 7.8 × 10−17 Hz−1. From this, we can

calculate the effective phase noise occupancy nφ as defined in section 1.1.6. The input laser amplitude

(in units of
√

photons/ s) αin can be related to the intracavity photon number nc by the relation

|αin|2 ≈ ω2
mnc/κe, assuming sideband resolution (ωm � κ/2) and a laser detuning of ∆ = ±ωm.

Then, the phase noise occupancy is given by nφ = |αin|2Sφφ(ωm) ≈ ω2
mSφφ(ωm)nc/κe. For the

largest intracavity photon number used in this experiment, nc ≈ 200, this yields nφ ≈ 8×10−3. The

resultant heating of the mechanics and noise squashing/anti-squashing of the detected heterodyne

signal can be calculated using the formulae given in section 1.1.6.1, and is found to be negligible on

the level of the occupancies measured here (〈n〉 ∼ 1).

3.2.3 Dilution Refrigerator Details

The dilution refrigerator used in this work is a commercial cryogen-free system (BlueFors BF-LD250),

which utilizes a pulse tube cryocooler to pre-cool to a fridge base temperature of Tf ≈ 4 K before

adding the 3He/4He mixture to achieve a base temperature of Tf ≈ 10 mK. While the mixture is

circulating, a set of gas-gap heat switches between the mixing chamber and still stages allow the

base temperature to be raised from 10 mK up to Tf ≈ 700 mK (and points in-between). As shown in

Fig. 2.9a and b, the microchip sample is mounted to the mixing chamber of the dilution refrigerator

on a copper bracket assembly. The bracket is located 10 cm from a calibrated ruthenium oxide

resistive temperature sensor. The temperature readings from this sensor are used for comparison

and validation of our calibrated optomechanical thermometry measurements, with accuracies of
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50 mK near temperatures of 4 K, and 0.06 mK near 10 mK.

3.3 Device Characterization at 4 K

The first step with any optomechanical cavity is a full characterization of the relevant cavity pa-

rameters. As many of the cavity’s material properties, such as refractive index and photoelastic

constants, can shift as the temperature is lowered from room temperature, the initial characteri-

zation is performed at 4 K, utilizing only the pulse tube to cool the sample. At 4 K, the rate of

change of most material parameters becomes negligible, so the cavity parameters extracted at this

temperature will remain valid as the system cools to sub-kelvin temperatures (with the exception of

the intrinsic mechanical decay rate γi, as we will see). Basic optical characterization of the end-fire

coupled cavities is described in section 2.5.2, from which we extract the optical resonance frequency

ωc and the extrinsic and total optical decay rates κe and κ. For the device measured in this experi-

ment, the optical cavity parameters are ωc/2π = 194 THz (λc ≈ 1545 nm), κe/2π = 153 MHz, and

κ/2π = 529 MHz. These parameters, along with ηcpl, allow us to determine the intracavity photon

number nc for a known input power and detuning, according to Eq. 1.11.

Once the optical parameters are characterized, we use the optical heterodyne detection scheme

discussed in section 3.2 to measure the motion of the localized “breathing” mode at frequency

ωm/2π = 3.6 GHz. As discussed in section 1.1.4, in the case of a drive red-detuned from cavity res-

onance by ∆ = ωm, the resultant NPSD as transduced on a spectrum analyzer yields a Lorentzian

signal proportional to the average phonon occupancy 〈n〉, with a linewidth equal to the total me-

chanical damping rate γ = γi+γOM, where γOM = 4g2
0nc/κ is the optomechanically induced damping

rate (see section 1.1.3). For a blue-detuned drive (∆ = −ωm), the resonant component of the NPSD

is proportional to 〈n〉+ 1 and γ = γi − γOM.

The coupling rate g0 can be determined by observing the dependence of the mechanical linewidth

on nc for both red (∆ = ωm) and blue (∆ = −ωm) drive detunings, as shown in Fig. 3.2a. Above a

threshold value, nc > nthr ≈ 1.5, optomechanically driven self-oscillation of the mechanical resonator

occurs for blue detuning. Below this value, the optomechanical damping γOM can be found from the

difference between the red- and blue-detuned linewidths. In particular, due to the equal and opposite

contributions of γOM to the total mechanical linewidth we can average the measured linewidths for

red- and blue-detuned drives to obtain γi, which in this case has a minimum value of γi/2π ≈ 13 kHz.

Subtracting this result from either the red- or blue-detuned linewidth to obtain γOM. A linear fit of

the derived γOM versus nc yields a coupling rate of g0/2π = 840 kHz. Using this value of g0 along with

the calibrated optical detection efficiency, the mechanical mode occupancy versus nc is extracted

from the area under the resonant part of the measured NPSD (see Fig. 3.2b and Fig. 3.2c). At

high nc the cooling of the mechanical mode is observed, whereas at low nc the calibrated occupancy
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Figure 3.2: Mechanical characterization at Tf = 4 K. a, Measured mechanical linewidth γ
for ∆ = ωm (red) and −ωm (blue) at a fridge temperature of Tf = 4 K. The vertical blue dashed
line indicates the threshold nc beyond which the mechanical resonance self-oscillates for ∆ = −ωm,
resulting in a 40 dB increase in the mechanical signal level. Black circles indicate the values of γi

obtained by taking the average of the detuned data. The inset shows γOM determined by subtracting
γi from the red-detuned γ (circles), and from cooperativity C using the calibrated 〈n〉 (squares).
A linear fit (red line) yields g0/2π = 840 kHz. b, Calibrated mechanical mode occupancy 〈n〉
versus intracavity photon number nc. Blue and red circles are measured with drive laser detunings
∆ = ±ωm, respectively. The mode occupancy nf corresponding to Tf = 4 K is indicated by a
black solid line. c, Series of red-detuned NPSD for range of nc. Here the NPSD is plotted as
Sxx = x2

ZPFS̄bb, where xZPF = 4.1 fm is the zero-point amplitude of the “breathing” mode.

saturates to a constant value in good agreement with the expected mechanical bath occupancy at

a fridge base temperature of Tf = 4 K (solid black line). Initially the cooling trend follows the

expected result derived in section 1.1.3, where 〈n〉 = nf(1+C)−1 (C = γOM/γi is the cooperativity),

while at high nc the cooling deviates from this ideal behavior and begins to taper off as a function of

nc. This behavior has been observed in previous attempts to laser cool nanobeams into the ground

state [45], and is attributed to a combination of nc-dependent heating of the mechanical bath and

an increase in γi with nc. The latter effect is observable, though very weak, in the low power γi

data shown in Fig. 3.2a. The nc-dependence of both the bath temperature and γi will become much

more significant as the fridge base temperature is lowered, and will be discussed in greater detail in

the following sections.
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Figure 3.3: Mechanical frequency jitter at Tf = 185 mK. a, Mechanical linewidth versus nc

for red- (red circles, ∆ = ωm) and blue-detuned (blue circles, ∆ = −ωm) drives at Tf = 185 mK.
The blue dashed line indicates the self-oscillation threshold. b, Measured resonant signal power
(circles) versus optical detuning, ∆, for nc ∼ 1.5. The red curve shows a best fit to the data,
yielding C = γOM/γi = 3.9. The black dashed curve shows the best fit in the absence of backaction
cooling (C → 0), consistent with assuming γi is equal to the measured time-averaged linewidth.
c, Corresponding measured (circles) mechanical linewidth versus ∆. The red curve is a fit with C
constrained (C = 3.9), but assuming a Voigt lineshape with additional Gaussian frequency jitter
term. The dashed black curve is the best fit for C constrained but with no additional frequency
jitter term.

3.4 Mechanical Frequency Jitter

As the fridge temperature is lowered into the sub-kelvin range, the behavior of the observed me-

chanical signal begins to deviate sharply from the near ideal behavior observed at 4 K and above.

The first thing we notice when performing mechanical spectroscopy is a very different dependence of

measured linewidth on optical drive power. In particular, the measured mechanical linewidth versus

nc, shown in Fig. 3.3a for Tf = 185 mK, increases with decreasing drive power below an apparent

minimum at nc ∼ 1, rather than reaching a fixed intrinsic value. However, there are several clues

that the observed linewidth in this range is not the true mechanical damping rate. For one, the

observed self-oscillation threshold (which occurs when γOM ≈ −γi) occurs at nthr ≈ 0.1, an order

of magnitude lower than the observed threshold at Tf = 4 K. As κ and g0 should not change with

decreasing temperature, γOM as a function of nc should be the same as in Fig. 3.2a, implying that

γi is indeed much smaller. Furthermore, the observed linewidths for red- and blue-detuned drives

are identical at nthr, and are in fact larger than the minimum observed linewidth. These incon-

sistencies indicate that the linewidth associated with the true energy decay rate of the mechanics

is likely obscured in the time-averaged spectrum (from which the measured values in Fig. 3.3a are

extracted) due to frequency jitter [141, 142]. As a result of the long averaging times (minutes to
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hours) required at low optical drive power, direct observation of the mechanical frequency jitter is

not possible. However, indirect confirmation of the frequency jitter can be ascertained by studying

the detuning (∆) dependence of the transduced signal power and linewidth for a fixed nc, as shown

in Fig. 3.3b and c.

By adjusting the input power to keep nc constant (in this case, nc ≈ 1.5), such a measurement

keeps constant any effects, such as optical heating or frequency jitter, that might depend on the intra-

cavity photon number. To good approximation (see Eq. 1.18), when ωm/κ � 1 and (∆− ωm)
2 �

(∆ + ωm)
2
, the detuning dependent optomechanical contribution to the mechanical damping is given

by

δγ (∆) ≈ γOM
1

1 + 4 (∆− ωm)
2
/κ2

, (3.5)

while the transduced heterodyne signal power (i.e., the integrated power in the sideband noise peak)

will be proportional to δγ 〈n〉 ∝ δγ (∆) [1 + δγ (∆) /γi]
−1

. When there is negligible backaction (i.e.,

C = γOM/γi → 0), the dependence of the total signal power on ∆ is simply a Lorentzian with a

width equal to the cavity linewidth κ, while the response broadens for increasing cooperativity C.

As seen in Fig. 3.3b, a fit to the observed signal power assuming negligible backaction (black dashed

line) provides an extremely poor fit to the data, while allowing C to vary freely leads to a best-fit

result (red line) of C = 3.9. As nc and κ are known exactly, this constrains the quantity g2
0/γi. In

principle we do not expect g0 to vary appreciably at temperatures below 4 K, and a linear fit to the

observed γ in Fig. 3.3a for the large nc yields the same value of g0, so one may infer γi from the

constrained value of C alone. However, while we can directly measure κ at low nc via a sufficiently

low power wavelength scan of the cavity, g0 can only be measured directly once nc is large enough

that γOM & γi. As large nc can (and, as we will see in the next section, does) heat the cavity

via optical absorption, we cannot rule out the possibility that any temperature dependence of g0 is

merely masked by heating effects at large nc. Consequently, in order to separately determine both

g0 and γi we also fit the linewidth dependence on ∆.

The total linewidth is ideally given as a function of detuning by γ (∆) = γi + δγ (∆), where

δγ (∆) is approximately given by Eq. 3.5. Given the known value of C, we can fit this function to

the observed linewidth data shown in Fig. 3.3c by using γi as the fitting parameter while using the

constraint C = 3.9 to determine g0, which results in a poor fit to the data (black dashed line). On

the other hand, in the presence frequency jitter corresponding to a random Gaussian process the

mechanical noise peak will technically be a Voigt lineshape (the convolution of a Gaussian with a

Lorentzian) rather than a pure Lorentzian, with a linewidth approximately given by [143]

γ (∆) ≈ 0.5246 (γi + δγ (∆)) +

√
0.2166 (γi + δγ (∆))

2
+ γ2

G, (3.6)

where γG is the full width at half maximum of the Gaussian process describing the frequency jitter.
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Figure 3.4: Mechanical occupancy at Tf = 10 mK and 635 mK. Calibrated mode occupancy 〈n〉
versus nc for Tf = 10 mK and 635 mK. A best fit to both temperature data sets using the proposed
phenomenological heating model are shown as solid curves, with shaded region representing the
variation in the fit for γ0/2π = 306 ± 28 Hz. The inset shows the measured asymmetry parameter
ξ as a function of nc, with the prediction of the best fit model shown as solid curves. Tf = 10 mK
data/fits are shown as purple circles/solid curves. Tf = 635 mK data/fits are shown as green
circles/solid curves.

Fitting this functional form to the observed linewidth data, using γi and γG as fitting parameters

while keeping C fixed by adjusting g0 as before, we obtain an excellent fit (red line) that yields

γi/2π = 2.3 kHz for the intrinsic mechanical energy decay rate, γG/2π = 6.1 kHz for the Gaussian

frequency jitter, and g0/2π = 805 kHz, consistent with the Tf = 4 K value as expected. These

measurements confirm the presence of nc dependent frequency jitter in the mechanics, as well as

the fact that γi is in fact much lower at lower base temperatures while g0 does not vary appreciably.

While the method applied here works well for determining γi at moderate nc, for very small nc it

is ineffective as the amount of optomechanical backaction is too small to accurately determine C

from measurements of the total signal power versus ∆. Without this constraint, one cannot obtain

reliable estimates for γi, as there is a much wider range of γi and γG values which can provide good

fits to the linewidth curve. In what follows, we will instead determine γi by fitting the heating

behavior of the device over the full range of nc.

3.5 Optically Induced Heating

An even more striking deviation from the behavior at Tf = 4 K is observed in the calibrated

occupancy of the mechanical resonator. The calibrated mechanical mode occupation 〈n〉 for a red-

detuned (∆ = ωm) drive is plotted against nc in Fig. 3.4 for Tf = 10 mK (purple) and 635 mK (green).

Both curves exhibit a series of dramatic heating and cooling trends, and in fact coincide for nc & 1.
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Figure 3.5: Heating model. a, Schematic showing the phenomenological three-bath model for
the mechanical occupancy. See text for details. b, Measured phonon occupancy versus intracavity
photon number for a resonant drive at Tf = 10 mK. The red line shows a power law fit to the
occupancy. The right axis shows the equivalent bath temperature, Tp. c, Measured mechanical
linewidth versus nc for resonant (gray circles) and red-detuned (red circles) drives. The blue circles
show the best fit values of γi = γ0 +γp to both Tf = 10 and 635 mK data sets. The best fit value for
γ0 and a smooth curve fit to the inferred γp are shown as a black dashed line and a solid red line,
respectively.

At the lowest optical drive powers (nc = 0.016) and lowest fridge temperature (Tf = 10 mK), the

calibrated phonon occupancy reaches a minimum 〈n〉 = 0.98± 0.11, corresponding to T ≈ 270 mK.

The complex behavior of these two cooling curves can be understood by incorporating both nc

dependent heating of the thermal bath as well as temperature (and thus nc) dependence of the

intrinsic damping rate γi into the equations determining 〈n〉. Indeed, such effects have already been

seen to play a small role at large nc in previous experiments at Tf = 4 − 15 K (see Ref. [45] as

well as comments in section 3.3). Due to the sharp drop in thermal conductance with decreasing

temperature [144], heating of the mechanical mode by optical absorption is expected to be much

more significant at sub-kelvin base temperatures.

3.5.1 Phenomenological heating model

The simplest approach to modeling heating effects is to use a single thermal bath, which couples to

the mechanics at rate γi and has average occupancy nb, both of which are now assumed to have a

dependence on nc. However, more realistically one expects multiple effective thermal baths for the

mechanics, corresponding to different physical regions on the chip and coupling via different physical

processes. In particular, there exist two fundamental ways in which the localized mechanical mode of

interest can exchange energy with its environment. The first is coupling to local phonons of different

frequencies, typically via anharmonic phonon-phonon scattering [145], the rate of which strongly

depends upon the local phonon temperature. The second is direct coupling to the environment
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external to the cavity region via phonon radiation out the ends of the beam. In this case, the

coupling rate should depend only on the nature of clamping at the end of the beam (i.e., the

engineered phononic shield surrounding the cavity), and not on temperature. Moreover, while one

expects that optical absorption will create some local population of hot phonons in the cavity

region, one expects negligible heating of the environment external to the cavity region, due to the

small amount of absorbed optical power, the weak thermal link between the cavity region and

the external chip, and the large thermal link between the external chip and the fridge. For these

reasons we explicitly separate these two physical processes when modeling the system, leading to

the phenomenological three-bath model illustrated in Fig. 3.5a. Here the local breathing mode, with

average occupancy 〈n〉, is coupled to the exterior environmental bath, which has a fixed occupancy

n0, at a constant rate γ0 which depends only on the properties of the acoustic radiation shield. It is

also coupled to a localized hot-phonon bath driven by optical absorption, with effective temperature

Tp (nc) and corresponding occupancy np (Tp), at a temperature-dependent rate γp (Tp). Finally, the

optomechanical interaction couples the mechanical mode to an effectively zero temperature bath 1

at rate γOM. One should note that, due to finite thermal resistance between the sample and the

mixing chamber plate, the exterior bath occupancy n0 will not necessarily be equal to the fridge

occupancy nf even if excess heating is negligible. For the measurements made in this chapter one

finds that the results are not strongly dependent on the specific value of n0 due to the large value

of np, so for simplicity we will take n0 ≈ nf .

Under this model, the average mode occupancy is given by 2

〈n〉 =
γ0n0 + γp (Tp)np (Tp)

γ0 + γp (Tp) + γOM (nc)
, (3.7)

where we have explicitly noted the nc dependence of γOM and where γp and np are implicitly

dependent on nc via their dependence on the local hot-phonon effective temperature Tp (nc). Initially

there exist a number of unknowns in this model. In particular, while n0 can be approximated as nf

and a guess at γ0 can be made based on FEM simulation of the phononic shield (see section 1.3.5),

we have no a priori model for either γp or np as a function of nc, making a proper fit of the complex

heating and cooling behavior observed in Fig. 3.4 highly error-prone. However, when the optical

drive laser is placed on resonance with the cavity (∆ = 0), the optomechanical damping vanishes

(δγ = 0, as seen in Eq. 1.18). In this case, for sufficiently large nc we expect np � n0 and therefore

〈n〉 ≈ np. From such on-resonance measurements of 〈n〉, shown in Fig. 3.5b, we find that np follows

1As discussed in section 1.1.3 and Appendix A.1, the effective bath provided by the optomechanical interaction
is not really zero-temperature, but rather has an effective occupancy neff = (κ/4ωm)2 due to the presence of non-
resonant phonon emission. As this is extremely small due to the high degree of sideband-resolution in our system
(neff ≈ 0.001) we simply approximate neff = 0.

2The derivation of this expression is almost identical to that of a single bath, only now we assume multiple
uncorrelated thermal baths driving the mechanics in Eq. 1.8. This is similar to the separation of the optical dissipation
into extrinsic and intrinsic channels discussed in section 1.1.1.
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a simple power law np ∝ n0.25
c . Unfortunately, due to lack of resonant enhancement by the optical

cavity, the sideband scattering amplitudes are reduced by a factor of κ
2ωm

when driving on-resonance,

preventing us from measuring np directly down to the lowest measured nc. However, as discussed

below in section 3.6, it is reasonable based on a proposed physical model of the heating process

to expect this power law will hold down to our lowest measurement powers, and we extrapolate to

obtain np as a function of nc across the whole measurement range.

With n0, np and γOM thus determined, we need only determine γp and γ0. To do so, we guess

an initial value of γ0 based on FEM simulations of the phononic shield and find a single spline

fit to γp (nc) which best matches the two sets of occupancy curves shown in Fig. 3.4. Iterating

this procedure as a function of γ0 yields the best fit to our phenomenological heating model. The

resulting γi(nc) = γp(nc) + γ0 curve that best fits the measured 〈n〉 data for both Tf = 10 mK and

635 mK is plotted in Fig. 3.5c (blue circles). Also shown in Fig. 3.5c are the best fit value of the

coupling to the fridge bath γ0/2π = 306±28 Hz (dashed black horizontal curve) and a smooth spline

curve fit to the inferred values of γp(nc) (red solid curve). A plot of the best fit model is shown

alongside the measured 〈n〉 cooling curves in Fig. 3.4, with the associated shading regions showing

the variation in the model fit within the uncertainty in γ0. In addition to the good agreement of

the model for both fridge temperatures, the inferred intrinsic energy damping rate is also consistent

with the measured self-oscillation threshold (Fig. 3.3a). At the lowest drive powers (nc = 0.016),

the energy damping mechanical Q-factor reaches an impressively high value of Qm = 9× 106.

Alongside the calibrated mode occupancy 〈n〉, we have also measured the sideband asymmetry,

ξ, defined in Eq. 1.35, shown in the inset to Fig. 3.4. The asymmetry is sensitive to both the absolute

mode occupancy and to the sum of γ0 and γp through the cooperativity C = γOM/(γ0 + γp). Good

correspondence can also be seen between the best fit model (solid curves) and the measured ξ

(circles).

3.6 Discussion

While the phenomenological model presented in the previous section does not attempt to explain

the microscopic physics of the optically induced heating, some details of the underlying physical

processes can be elucidated by studying how the frequency jitter and hot phonon coupling rate scale

with the local hot phonon temperature.

3.6.1 Temperature Dependence of Frequency Noise

As detailed in section 3.4, at sub-kelvin fridge temperatures frequency noise of the mechanical

resonance is seen to dominate the time-averaged measured linewidth for low optical drive powers.

In the case of the red-detuned drive, frequency noise is observed for nc < 1 before optomechanical
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damping kicks in, while the on-resonance measurement shows frequency noise for nc < 10 before

the intrinsic energy damping (γp) begins to dominate. By comparing to the on-resonance measured

mode occupancy (Fig. 3.5b), the frequency noise can be plotted with respect to the optical absorption

driven temperature Tp, as shown in Fig. 3.6a. A power law fit of the time-averaged linewidth in the

frequency jitter dominated regime shows a frequency jitter scaling proportional to T−0.9
p .

Similar inverse temperature scaling of frequency noise has been observed in superconducting

microwave resonators [142], with substantial evidence indicating the source to be fluctuations in

two-level tunneling states (TLS) of near-field amorphous materials [146,147]. These TLS also couple

to phonons, contributing to not only the dielectric properties of the material, but also the elastic

properties. As such, the mechanical modes of the devices studied here can be expected to couple to

TLS in a similar fashion to microwave electromagnetic resonators. The decrease in frequency noise

with temperature can then be attributed to the thermal excitation and saturation of the TLS. The

presence of TLS in the Si devices of this work likely stems from the formation of a native oxide on the

Si surfaces of the patterned nanobeam. Careful measures, involving a final wet etch in HF acid [148],

are made to passivate the Si surfaces of the nanobeam in order to reduce the optical absorption from

mid-bandgap surface electronic states. While this cleaning should have been effective in removing

the surface oxide as well, a one hour procedure was required to load the sample into the dilution

refrigerator, during which time a native oxide would at least partially reform on the Si surfaces

of the device. This native oxide is likely to be the source of the TLS. Future work will look to

substantially reduce the device loading time after HF surface cleaning, hopefully reducing both the

optical absorption and TLS density.

3.6.2 Heating and Damping via Three-Phonon Scattering Processes

Though a detailed microscopic calculation of the additional heating and damping due to optical

absorption is beyond the scope of this work, some qualitative insight into the nature of the locally

heated mechanical bath and its coupling to the mechanical mode of interest can be obtained from

consideration of a simplified model of the phonon-phonon interactions. At the temperatures consid-

ered in this work (T < 10 K) the mean free path of the thermal phonons is expected to be much

larger than the wavelength of the mechanical mode of interest. Consequently, the damping should

be described by the Landau-Rumer theory, where losses occur primarily due to three-phonon mixing

with the local thermal environment due to anharmonicity in the Si lattice [145, 149]. As shown

below, a simple toy model of three-phonon scattering assuming a hot phonon bath consisting of high

frequency phonons above some frequency cutoff ωco � ωm predicts a universal low temperature

scaling γp ∝ Tpe
−Tco/Tp , where Tco = ~ωco/kB.

Consider a toy model where two modes, with frequencies ω1 and ω2, respectively, are coupled

with the mode of interest at frequency ωm. For now we assume that both auxiliary modes are high-
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Figure 3.6: Linewidth scaling and physical heating model. a, Mechanical linewidth vs
optical-absorption-driven hot phonon bath temperature Tp as determined from the resonant heating
measurement of Fig. 3.5b. The time-averaged measured total linewidth is shown for red-detuned
(∆ = ωm, red circles) and resonant (∆ = 0, gray squares) drives, as well as the hot phonon coupling
rate γp, extracted from the heating model (blue circles). A power law fit of the total measured
linewidth corresponding to T−0.9

p is shown as a solid green curve, and a fit to γp at the low tempera-
ture end of the curve, corresponding to the three-phonon scattering model discussed in the main text,
is shown as a purple curve. b, Diagram illustrating the proposed model of optical-absorption-driven
heating of the mechanics. See text for details.

frequency, so that ω1, ω2 > ωm, and without loss of generality ω1 − ω2 = ωm. As will become clear,

the reason for considering this special case, is that it leads to a unique, universal temperature scaling

for the three-phonon coupling rate at low temperatures. To first order in perturbation theory, the

scattering rates into and out of the mechanical cavity mode due to the lowest order anharmonic

interaction can be given by [149] Γ+ = A(nm + 1)(n2 + 1)n1 and Γ- = A(n1 + 1)nmn2, where A is a

constant that depends on the matrix element of the anharmonic potential, and n1, n2, and nm are

the number of quanta in each of the three mechanical modes. In the absence of other dissipative

processes a simple rate equation for the population of the mechanical cavity mode is given by

ṅm = Γ+ − Γ- = −A(n2 − n1)nm +A(n2 + 1)n1, (3.8)

which has the same form as the equation for a harmonic oscillator interacting with a bath of occu-

pation np with a coupling rate γp, where

np =
n2(n1 + 1)

n2 − n1
, γp = A(n2 − n1). (3.9)

If the two high-frequency modes are both in equilibrium with each other at some elevated tempera-

ture Tp, such that ni = (exp
(

~ωi

kBTp

)
− 1)−1, it is easy to show that np is simply given by the Bose-

Einstein occupation factor for the mechanical mode at temperature Tp (np = (exp
(

~ωm

kBTp

)
− 1)−1).

We can also see that the scattering rate γp will depend on Tp through the temperature dependence

of the population difference n2 − n1. This dependence can be approximately linear or exponential
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in Tp, depending on the value of ~ω2/kBTp.

More realistically, the optical absorption process will populate a range of high-frequency phonon

modes above some cutoff frequency (ωco), which can contribute to the heating. On the assumption

that these modes come into quasi-equilibrium with each other at some elevated temperature Tp, we

can easily show that that the expression for np is unchanged, and the effective bath occupancy np

will be given by the above expression. The scattering rate will now be given by

γp =

� ∞
ωco

dωρ(ω)A(ω, ωm) (n(ω, Tp)− n(ω + ωm, Tp)) , (3.10)

where ρ(ω) is the density of modes at frequency ω, the matrix element A now can depend explicitly

on frequency, and n(ω, T ) is just the Bose-Einstein occupation at frequency ω and temperature T .

In general, we can obtain limited analytical results if we assume that the product of the density of

states and the matrix element obeys some power law as a function of frequency, ρ(ω)A(ω, ωm) ∝ ωa.

For example, under a simple continuum elastic model the product would be given by ρ(ω)A(ω, ωm) ∝
ωm(ωm + ω)ω3 [149]. Making a simple change of variables x = ~ω

kBTp
, and assuming ωm � ωco, we

then arrive at the approximate relation:

γp ∝ ωmT
a+1
p

� ∞
xco

dx
xaex

(ex − 1)2
; xco =

~ωco

kBTp
. (3.11)

Considering first the limiting case xco � 1 (low temperature), we note that the integral can be

approximated by � ∞
xco

dx
xaex

(ex − 1)2
≈

� ∞
xco

dx
xa

ex
= Γ(a+ 1, xco), (3.12)

where Γ(α, z) is the upper incomplete Gamma function. For real values of z, this function has the

asymptotic behavior Γ(α, z)→ zα−1e−z as |z| → ∞. This leads to the approximate scaling law

γp ∝ T a+1
p xacoe

−xco = Tpe
−(Tco/Tp), (3.13)

where Tco = ~ωco

kB
and Tp � Tco. It is important to note that this limiting form has no dependence

on a. As we can always expand the phonon density of states and scattering matrix elements as

power series in ω, finding that each term reduces to the same functional dependence on Tp, this

scaling with Tp can be taken as universal behavior at sufficiently low temperatures for the coupling

to high-frequency phonons.

In the opposite limiting case xco � 1 (high temperature), the lower limit of the integral can be

extended to 0, and a simple integration by parts shows that, for a > 1,

� ∞
0

dx
xaex

(ex − 1)2
= a

� ∞
0

dx
xa−1

ex − 1
= aΓ(a)ζ(a), (3.14)
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where Γ(a) is the gamma function and ζ(a) is the Riemann zeta function. As this is a simple

constant, we get the scaling law γp ∝ T a+1
p , when Tp � ~ωco

kB
and a > 1.

Though we have considered explicitly the case where both bath phonons participating in the

three-phonon scattering are much higher in frequency than ωm, it is straightforward to repeat this

analysis for the cases when one or both of the phonons are lower frequency. In this case, one does

not find the particular universal low-temperature behavior noted above, but rather a power law

which depends on the particulars of the density of states and scattering matrix elements. Thus, the

appearance of a bath coupling rate of the particular form in Eq. 3.13 at low temperatures can be

taken as evidence (though not definitive proof) of a predominantly high frequency phonon bath.

As displayed in Fig. 3.6a the low temperature end of the inferred γp(Tp) data fits well to this

functional form, suggesting that the local hot phonon bath in our device is indeed composed primarily

of a quasi-equilibrium population of high-frequency phonons. The effective cutoff temperature is

Tco ≈ 2 K, corresponding to a cutoff frequency of ωco/2π ≈ 35 GHz. The phonon wavelength in Si

at this cutoff frequency is λco ∼ 200 nm, which is comparable to the cross-sectional dimensions of

the nanobeam (∼ 500×220 nm). This fact suggests a possible physical explanation for the formation

of such a hot phonon population.

Our proposed microscopic picture of the heating process is illustrated schematically in Fig. 3.6b.

The source of optical absorption in our structures is most likely due to the well known Pb0,1 elec-

tronic defect states at the surface of Si [148, 150], which lie in the middle of the bandgap of silicon

(represented schematically by valence and conduction band energy levels Ev and Ec) in an energy

range which encompasses the frequency of our drive laser (~ωl ≈ 0.8 eV). Though phonon emission

processes from such excited electronic states have not been extensively studied, it is reasonable to as-

sume that phonon assisted emission can occur primarily involving relatively high-frequency phonons

in the 100s of GHz to THz range, rather than low-frequency acoustic phonons near the breathing

mode frequency. In addition to radiating into the external environment at some fast rate γHF (as

these high-frequency phonons are not affected by the phononic shield), the hot phonon population

will approach local thermal equilibrium by scattering energy to lower frequencies. However, below

the cutoff frequency the nanobeam will appear effectively one-dimensional due to the small dimen-

sions relative to phonon wavelength, and the reduced dimensionality will result in a reduced number

of decay channels compared to bulk Si. The corresponding reduced down-conversion rate, in con-

junction with the relatively fast pumping and radiative escape of the high-frequency phonons, will

result in a population above ωco (green shaded region) which is in quasi-equilibrium at an elevated

effective temperature Tp much larger than the effective temperature of the rest of the phonon spec-

trum (gray shaded region). This type of “1D bottleneck” effect and the corresponding generation

of a high frequency hot phonon population under optical pumping conditions has been observed in

low-dimensional systems such as carbon nanotubes [151,152] and graphene [153].
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The existence of a predominantly high-frequency hot phonon bath helps to explain the power law

behavior of np versus nc observed in the on-resonance measurements, as phonons with wavelengths

small relative to the dimensions of the structure are expected to possess a thermal conductance

scaling as Gth ∼ T 3 [154], which leads to a relation Pabs =
� Tp

T0
dTGth(T ) ∝ T 4

p − T 4
0 between

the absorbed power Pabs, the local hot-phonon temperature, and the external temperature T0.

Assuming Pabs ∝ nc and Tp � T0, this results in the measured power law Tp ∝ n0.25
c . This also

helps to justify the extrapolation of the observed power law to lower Tp. One might expect a

transition to a different power law for Gth as the bath temperature lowers (e.g., to one-dimensional

conduction where Gth ∼ T , as has been observed in dielectric nanowires [155]). However, such

transitions take place when the temperature becomes low enough that most of the thermal energy

is transported by low frequency phonons with wavelengths comparable to the nanostructure’s cross-

sectional dimensions. In the situation proposed here, where the excess heat is carried primarily by

high-frequency, short wavelength phonons, such a transition would not be expected to occur. Of

course, this simple toy model does not capture all of the features of the measured γp(Tp) curve (in

particular, the kink at Tp ≈ 3 K). In addition, the estimated escape time of ballistic high-frequency

phonons from the nanobeam (γ−1
HF ∼ 1 − 10 ns) suggests that they must quickly come into quasi-

equilibrium. Given the slow rates of most bulk relaxation processes [156], this fast thermalization

may indicate a unexpectedly large degree of diffusive and inelastic scattering at the surfaces of the

patterned nanobeam [157].

Given that we have tentatively attributed the mechanical frequency jitter in our system to

dispersive coupling to TLS, one wonders whether the observed temperature dependent damping

can be adequately explained by dissipative coupling to TLS rather than by three-phonon scattering

as proposed above. In general, the TLS contribution to the damping of an acoustic mode with

frequency ω is given by [158]

γTLS(ω) =
D2

ρv2

1

kBT

� ∞
0

d∆

� ∞
0

d∆0 f(∆,∆0)

(
∆

E

)2

sech2

(
E

2kBT

)
ω2τ

1 + ω2τ2
, (3.15)

where D is the deformation potential coupling between the TLS and the acoustic mode, ρ and

v are the material density and speed of sound, ∆ is the TLS energy asymmetry, ∆0 the TLS

tunnel splitting, and f(∆,∆0) is the TLS density of states. The total energy E of a given TLS is

defined by E =
√

∆2 + ∆2
0, while its relaxation time is τ ∝ tanh(E/2kBT )/E∆2

0 with a constant

of proportionality dependent on material properties. The specific temperature dependence of this

damping rate is highly dependent on both the thermal energy scale kBT relative to the average TLS

energy, as well as the specific density of states.

In the case when all TLS have nearly the same energy and relaxation time, so that we may take

f(∆,∆0) to be approximately a delta function in both ∆ and ∆0, we find that for T � E/kB we
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obtain γTLS ∝ T−1 e−E/kBT . This functional form fits reasonably well to the γp data at low Tp,

with E ≈ 0.34 meV (∼ 80 GHz). While this shows that a TLS model could in principle lead to the

type of low temperature damping behavior observed in our devices, it would require a distribution

of TLS very different from that typically observed in real materials. In structural glasses (such as

silicon oxide) one expects a density of states of the form f(∆,∆0) ≈ P/∆0, where P is a constant,

resulting in a broad range of energies and relaxation times which lead to damping rates scaling as

T 3 [158]. On the other hand, it has been suggested that TLS in the bulk of crystalline solids such

as silicon have a well defined tunnel splitting ∆0 owing to the ordered nature of the solid, with the

density of states f(∆) having an approximate Gaussian form with standard deviation ∆1 dependent

upon the variation of strain within the material [159]. Provided ∆1 � ∆0, this would be consistent

with the observed damping in this work. However, to date experiments studying the effects of TLS

on microscale mechanical resonators in crystalline Si and GaAs have observed γTLS ∝ T (albeit at

lower mechanical frequencies, on the kHz-MHz scale), suggesting a reasonably broad distribution of

TLS energy (in particular ∆1/∆0 ∼ 100) [160, 161]. Overall, TLS coupling seems a less plausible

explanation for the observed dependence, though it cannot be completely ruled out at this time.

Although significant work remains to determine the exact microscopic details of the optical

absorption heating and frequency jitter observed in the measurements of the quasi-1D OMC cavity

studied here, there are nonetheless several interesting points to note. Firstly, the phononic shield

provides excellent mechanical isolation of the ‘breathing’ mode, while at the same time providing

good mechanical coupling to the fridge bath for heat carrying phonons above the acoustic bandgap.

Secondly, although lower phonon occupancies could have been measured using thinner phononic

shields, effectively increasing the coupling rate γ0 to the fridge bath at Tf, this would come with

a commensurate reduction in cooperativity C = γOM/γi. Coherent quantum interactions between

the optical cavity field and the mechanical resonator require C > 1 and 〈n〉 < 1, and although

the devices of this work closely approach this limit, a move to quasi-2D Si OMC devices [162] with

larger thermal conductance should enable future work in the quantum regime as envisioned in recent

proposals [163–166]. Further discussion of this will be given in Chapter 5.
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Chapter 4

Pulsed Optomechanical
Measurements at Millikelvin
Temperatures

The initial cryogenic measurements performed in Chapter 3 have demonstrated that operation deep

in the mechanical ground-state is not possible in the steady state in our Si nanobeam OMCs due

to excessive amounts of heating from even modest parasitic optical absorption. However, the pos-

sibility is still left open for performing the kind of quantum engineering applications discussed in

section 1.2 using sufficiently short drive pulses, provided the mechanical heating is slow enough.

Indeed, certain applications (in particular, the heralded generation of mechanical Fock or entangled

states) require the use of short pulses. In this chapter we will use pulsed measurement in conjunc-

tion with phonon counting techniques [56] to study the heating dynamics of a Si nanobeam OMC

at millikelvin temperatures.

The measurement is shown schematically in Fig. 4.1a. Electro-optic modulation of the laser drive

generates optical pulses with frequency and duty-cycle controlled by a variable delay electrical pulse

generator. The red arrows indicate a red-detuned coherent drive (∆ = ωm). In this case absorption

of a single phonon from the nanomechanical resonator results in upconversion of a drive photon to

the anti-Stokes sideband at ωc, represented by the black arrows. The cavity reflection is filtered

to reject the drive frequency and subsequently directed to a high-efficiency single-photon detector

(SPD) and a time-correlated single photon counting system synced to the pulse generator. This

measurement repeats each pulse period, building up a histogram with respect to photon arrival time

relative to a synchronization signal sent by the pulse generator. As the number of anti-Stokes photons

is directly proportional to the phonon occupancy of the mechanical resonator 〈n〉, the photon count

rate in each time bin then portrays the time-evolution of 〈n〉 during the pulse on-state, as described

theoretically in section 1.1.5. For a blue-detuned drive (∆ = −ωm) the observed Stokes count rate

is proportional to 〈n〉 + 1. As described in Chapter 3 and illustrated in Fig. 4.1c, the observed
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Figure 4.1: Pulsed measurement schematic. a, Schematic of the pulsed phonon counting mea-
surement. Pump light at frequency ωl (red arrows) is pulsed using an electro-optic modulator
(EOM), and subsequently directed to the OMC inside a dilution fridge via an optical circulator.
The cavity reflection is then filtered at the cavity frequency ωc (black arrows) and directed to a sin-
gle photon detector (SPD). b, SEM image of the nanobeam OMC cavity used for this measurement.
c, The phonon occupancy of the OMC acoustic resonance is affected by three processes. Detuned
drive light at ωl (red) exchanges energy with the acoustic mode at rate γOM, generating scattered
photons at ωc (black) in the process. Additionally, the laser drive causes excitation of electronic
defect states in the silicon device layer, subsequently exciting a hot phonon bath that heats the
mechanical resonator at rate γp, and phonons can escape the cavity volume via the acoustic shield
at intrinsic decay rate γ0.

time-resolved heating curves will depend on a combination of the optomechanical damping/heating

due to sideband scattering at rate γOM, local coupling, at rate γp, to hot phonons generated via

optical absorption, and coupling to the external environment at a rate γ0 determined by the acoustic

radiation shield. In particular, these time-resolved pulsed measurements allow us to gauge how

quickly the hot phonon bath “turns on”, which directly impacts the feasibility of performing pulsed

quantum optomechanical experiments in the ground state. All measurements presented herein were

performed at a fridge base temperature of Tf = 10 mK.

4.1 Experimental Setup

The full measurement setup is shown in Fig. 4.2. A fiber-coupled, wavelength tunable external

cavity diode laser is used as the light source, with a small portion (∼ 1%) of the laser output sent

to a wavemeter (λ-meter) for frequency stabilization. The remaining laser power is sent through

both a C-band optical demultiplexer (DeMux) to reject broadband spontaneous emission from the

laser, and a high-finesse tunable filter to remove laser phase noise at the mechanical frequency. As

discussed in detail below in section 4.1.3, this avoids excess technical noise on the single photon

detector [56], as well as issues of noise squashing/anti-squashing, as discussed in section 1.1.6.2.
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Figure 4.2: Experimental setup. Full setup for performing pulsed phonon counting. λ-meter:
wavemeter, DeMux: C-band optical demultiplexer, φ-m: electro-optic phase modulator, SW: optical
switch, a-m: high-extinction electro-optic amplitude modulator, switch: high-speed electro-optic
switch, VOA: variable optical attenuator, EDFA: erbium-doped fiber amplifier, PD: high-speed pho-
todetector, RSA: real-time spectrum analyzer, VNA: vector network analyzer, SPD: single photon
detector, TCSPC: time-correlated single photon counting, FPC: fiber polarization controller.

After pre-filtering the laser drive is sent through an electro-optic phase modulator (φ-m), which

may be driven by either an RF signal generator, to generate optical sidebands for locking the filter

cavities, or a vector network analyzer (VNA) for obtaining the amplitude and phase response of the

optical cavity.

To generate pulses, an optical switch (SW1) allows the drive tone to be sent through a series

of electro-optic amplitude modulators for the generation of optical pulses. The first is a fast high-

extinction modulator (a-m) with a rise and fall time of ∼ 25 ns. Though in principle the high-

extinction modulator can provide 50 − 60 dB extinction on its own, its transmission level is much

less stable and difficult to lock at the maximum extinction point. Thus, we lock the modulator at

∼ 30 dB of extinction and use two electro-optic switches, each providing ∼ 18 − 20 dB extinction,

to fully extinguish the drive. While these switches are much slower (∼ 200 ns rise time, ∼ 30 µs fall

time), the extra switching time should have a negligible impact, as it is much smaller than the pulse

periods used here (∼ 1 ms or more). The modulators are collectively driven by a variable delay

electrical pulse generator, which also provides a synchronization pulse to the single photon counting

electronics.

A variable optical attenuator (VOA) controls the power input to the cavity, after which an

optical circulator routes the laser light to a lensed fiber tip inside the dilution refrigerator for end-

fire coupling to the device. Subsequently, the cavity reflection can be switched (SW3) into one of two
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detection setups. The first setup sends the signal through an erbium-doped fiber amplifier (EDFA)

followed by a high-speed photodetector (PD). The resulting amplified photocurrent may be directed

to a real-time spectrum analyzer (RSA) in order to measure the optical noise power spectral density

(NPSD) for mechanical characterization 1, or to the VNA, which is used in conjunction with the

phase modulator to measure the full complex response of the optical cavity for purposes of optical

characterization, as discussed in section 2.5.2. The second detection path sends the reflected signal

through three additional tunable filters in order to reject the drive frequency, and then back into

the dilution refrigerator where it is detected by a superconducting single photon detector (SPD).

The output of this detector is sent to a time-correlated single photon counting (TCSPC) module to

build up a histogram of photon count events as a function of time relative to the sync pulse received

from the pulse generator. Further details of the single photon detectors used in this work are given

in Appendix C.

The tunable filters used for both pre-filtering the drive and filtering the cavity reflection are

commercially available, piezo-tunable Fabry-Perot filters (Micron Optics, FFP-TF2), all with a

∼ 50 MHz bandwidth, a free-spectral range of ∼ 20 GHz, and a tuning voltage of . 18 V per

free-spectral range. The filters each offer roughly 40 dB of drive suppression (relative to the peak

transmission) measured at a filter-drive detuning of ∆filter ≈ ωm, though the exact amount varies by

1−2 dB from filter to filter. When locking the post-cavity filters a switch is used to bypass the cavity

(SW2), as a relatively large amount of CW power is used during the locking procedure and we would

like to avoid sending large amounts of power into the cavity unless necessary. More importantly, the

SPD is also bypassed (SW4), as allowing too much power to reach the SPD will saturate it, resulting

in significantly elevated dark counts (Γdark ≈ 500− 1000 c.p.s.) for 1− 2 minutes after the signal is

turned off. Once the switches are set an RF signal generator is used to drive the phase modulator at

ωm, producing an optical sideband that is aligned with the cavity (and motional sideband) frequency.

To lock the filter chain, a sinusoidal voltage (with an initial range of ±10 V) is used to dither each

filter while monitoring its transmission. The offsets of the sinusoids are then adjusted, and their

amplitudes reduced, to maximize transmission of the desired sideband, fixing the voltages once all

three filters are well aligned. Over time the filters will drift and the locking procedure will need to

be repeated, though in subsequent re-locking attempts a much smaller dithering amplitude of ∼ 1 V

is sufficient. As the piezo elements controlling each filter have a finite settling time, the filters will

drift much more rapidly following the initial locking attempt (during which large voltage shifts are

applied) than following subsequent re-locks. After several re-locks, the filters will typically become

stable enough that the total transmission at the sideband frequency changes by . 5% over several

1Here we use direct detection, where the classical cavity reflection is used as the local oscillator, rather than the
more complex heterodyning scheme utilized in Chapter 3. While this results in a much lower signal-to-noise ratio
(SNR), as discussed in section 3.1, it is technically much simpler. As heterodyne spectroscopy is used here only for
the initial characterization of the device parameters at Tf = 4 K, the reduced SNR is of no real consequence.



91

100

10-2

102

10010-2 10210-410-6

ph
on

on
 n

um
be

r
nc

nc, on

Tf  = 10 mK

nc, o�

Tf = 70 mK

Figure 4.3: Pulsed measurement sensitivity. Noise-equivalent phonon number nNEP (gray
squares) and phonon occupancy 〈n〉 (red circles) for red-detuned (∆ = ωm) continuous-wave (CW)
driving versus intracavity photon number nc. The red dashed line indicates the expected nNEP

contribution from SPD dark counts. The vertical dashed line at nc ≈ 45 indicates the photon
number during the on-state of the pulse (nc,on), while the dashed line at nc ≈ 4× 106 indicates the
levels reached during the off-state (nc,off). Solid green and purple lines show fits to the CW heating
model for fridge bath temperatures of Tf = 70 mK and 10 mK, respectively, extrapolated to the
range of nc,off.

minutes. At this point the phase modulator is turned off, the pulse generator, cavity, and SPD are

switched back into the optical train, and we begin accumulating pulsed data for 2 minutes before

re-locking the filters. The total filter transmission is recorded at the end of a locking procedure

and again prior to re-locking, and if the transmission has shifted by more than a few percent the

previous pulsed dataset is discarded. All the time-resolved data shown in this chapter are taken in

this manner, with all 2 minute datasets averaged together to produce the final pulsed histogram.

4.1.1 Device Characterization

The basic device parameters are characterized at a fridge base temperature of Tf = 4 K in the same

manner described in sections 2.5.2 and 3.3. For the device measured in this chapter the relevant

parameters are ηcpl = 68%, κ/2π = 443 MHz, κe/κ = 0.5, g0/2π = 710 kHz, and ωm/2π = 5.6 GHz.

The measurements of this chapter utilize sideband asymmetry to determine 〈n〉 (as discussed in

section 1.1.5), and as such do not strictly require us to calibrate the total detection efficiency η, as it

is common to both red and blue detunings. However, we may calibrate the total detection efficiency

in a similar fashion to Chapter 3, yielding η2det ≈ 2% and ηSPD ≈ 68%, for a total detection efficiency

of η = ηcplη2detηSPD ≈ 1%, consistent with the observed count rates and occupancy 〈n〉 estimated

via sideband asymmetry.
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4.1.2 Phonon Counting Sensitivity

As discussed in section 1.1.5, the signal-to-noise ratio (SNR) of the phonon counting measurement

is determined by the sideband scattering rate γOM, the total system detection efficiency η, the dark

count rate of the SPD Γdark, and the residual transmission A, relative to the peak transmission,

of the filters at the drive frequency. A useful parameterization of the sensitivity to low 〈n〉 is the

noise-equivalent phonon occupancy nNEP, given by

nNEP =
κΓdark

ηκeγOM
+A

(
κωm

2κeg0

)2

. (4.1)

A typical nNEP curve for the setup illustrated in Fig. 4.2, measured using a comparable device at

room temperature, is shown in Fig. 4.3 as gray squares. To compute nNEP, the noise count rate

Γdark + Γdrive is measured with the drive laser detuned far off-resonance from the optical cavity

(∆ � ωm) while the drive-filter detuning is kept constant. While this eliminates the signal due to

motional sideband photons, because of the flat cavity reflection for ∆ ≥ ωm in the sideband resolved

regime (see Fig. 2.10b) it does not change the reflected drive amplitude or the corresponding noise

count rate Γdrive. To determine the per-phonon sideband count rate ΓSB,0, the sideband count rate

(i.e., total count rate minus the measured noise count rate) is measured at low nc where back-

action is negligible and 〈n〉 is equal to the known room temperature thermal mode occupancy of

nb ≈ 1100. Since ΓSB,0 scales linearly with nc, we can then determine ΓSB,0 for all nc from this

single measurement without relying on calibration of the optomechanical backaction. We may then

compute nNEP by dividing the measured noise count rate by the extrapolated ΓSB,0 at each value of

nc. The measured sensitivity follows the expected curve at low power due to detector dark counts

(dashed red curve), and at the highest nc begins to saturate to a limiting value of nNEP ≈ 4× 10−3,

corresponding in this case to ∼ 102 dB of drive suppression.

For sufficiently high probe power (nc > 40), nNEP falls below 0.01, enabling sensitive detection

of the mechanical resonator deep in its quantum ground state. However, as we know, at sub-kelvin

temperatures optical absorption heating produces a steady-state 〈n〉 > 1 for nc > 0.01 (red circles in

Fig. 4.3) during continuous-wave (CW) detection. In order to maintain the OMC in the mechanical

ground state, the duty cycle of the pulse train must be kept sufficiently low, and the modulation

depth sufficiently high, such that the mechanical mode thermalizes to the ambient bath temperature

provided by the dilution fridge (with occupancy n0) between successive pulses.

As in Chapter 3, the CW behavior fits well to the phenomenological heating model detailed in

section 3.5.1. When extrapolated to low nc, fits of the CW 〈n〉 assuming n0 corresponding to fridge

base temperatures Tf = 10 mK (purple solid line) and 70 mK (green solid line) reveal a relevant

pulse-off-state regime of nc < 10−4 in which absorption heating effects are negligible. We are able

to reliably achieve pulse extinction ratios in the range 65 − 75 dB, allowing for high-sensitivity
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Figure 4.4: Technical laser noise contributions to nNEP. a, Noise equivalent phonon number
nNEP versus intracavity photon number nc calculated using the measured signal and noise count
rates for a two-filter setup (gray circles). Solid lines indicate the theoretically expected contributions
due to dark counts (red) and drive bleed-through (blue), based on the measured system efficiency
and drive suppression, with the sum of the two contributions displayed as a purple dashed line. b,
nNEP versus filter-drive detuning ∆filter for nc ≈ 65, with (red) and without (gray) an additional
C-band band-pass filter inserted. The vertical green line indicates the detuning corresponding to
the data from a, and the horizontal black line indicates the expected limiting sensitivity.

detection during the on-state (nc,on = 45, corresponding to an optomechanical damping rate of

γOM/2π = 200 kHz) and fridge thermalization during the off-state (nc,off < 1.2× 10−5).

4.1.3 Effects of Technical Laser Noise

For this experiment we use a higher frequency nanobeam OMC design than that studied in Chapter 3,

with a mechanical frequency of ωm/2π = 5.6 GHz. While the higher frequency is desirable for

achieving lower phonon occupancies at a given temperature, it also raises concerns about the effects

of laser phase noise on the measurements, as the laser used in this experiment has previously been

observed to possess a prominent phase noise peak at 5 GHz [23]. In addition to phase noise, most

diode lasers typically have a small amount of broadband spontaneous emission. While this additional

noise is orders of magnitude weaker than the laser tone itself, it exists outside the wavelength region

(λ ∼ 1520−1570 nm) where the filters are guaranteed to be high finesse, and thus can be transmitted

with high efficiency to the SPDs.

These noise contributions to the phonon counting noise floor were previously examined using a

similar OMC device in an earlier version of the setup incorporating only two tunable filters [56].

In Fig. 4.4a we show the measured nNEP of the two-filter setup (solid gray circles), as well as the

expected theoretical curve given by Eq. 1.41 (purple dashed line) and the individual contributions

of dark counts (red solid line) and drive bleed-through (blue solid line). At high nc we observe

nNEP saturate to a value several times larger than expected given the ∼ 80 dB of drive attenuation

provided by the two filters. To characterize this excess noise we measure nNEP as a function of

filter-drive detuning ∆filter at a high power, where the drive bleed-through dominates the noise
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(nc ≈ 65), as shown in Fig. 4.4b. A strong dependence on ∆filter is observed, with a peak in the

noise at 5 GHz and a secondary peak at 6.1 GHz, consistent with measured phase-noise of the

laser [23]. With the addition of a C-band bandpass filter prior to the SPD to remove broadband

spontaneous emission from the drive laser, and at frequencies far from the laser phase-noise peaks, the

measured nNEP agrees well with the theoretical predictions based on the expected drive suppression

(horizontal dashed curve). Recall that, as the measurement of noise counts is taken when ∆� ωm,

the contribution of the phase noise to nNEP will be given by Eq. 1.58 rather than Eq. 1.56. Using the

maximum value of nNEP ≈ 70 observed in Fig. 4.4b, which is due almost entirely to phase noise, we

extract a peak phase noise spectral density of Sφφ(ω) ≈ 1.3× 10−14 Hz−1 at ω ≈ 5 GHz, consistent

with the value previously measured using Mach-Zender interferometry in Ref. [23].

To get rid of this excess noise, we insert both the bandpass filter (for filtering spontaneous

emission) and a tunable high-finesse filter (for filtering phase noise) immediately after the drive laser

output as shown in Fig. 4.2, enabling us to reach nNEP � 1 using a three-filter phonon counting

setup. As discussed in section 4.1.2 the effective drive attenuation is only ∼ 102 dB rather than the

expected value of ∼ 120 dB, likely due to a small amount of phase noise not removed by pre-filtering

the drive laser 2. A conservative estimate of the residual phase noise can be made by assuming that

the limiting value of nNEP ≈ 4×10−3 observed in Fig. 4.3 is entirely due to phase noise (i.e., perfect

filtering of the drive tone). Using Eq. 1.58 we find Sφφ(ωm) . 8× 10−19 Hz−1. For the drive power

during the on-state of the pulse (nc,on ≈ 45), the corresponding effective phase noise occupancy is

nφ ≈ 3.2× 10−5, which has a negligible effect on the measurements here.

4.2 Experimental Results

The sideband photon count rate versus time is shown in Fig. 4.5a, for both red- (∆ = ωm) and blue-

detuned (∆ = −ωm) driving. Henceforth, the variable t refers to time relative to the synchronization

signal generated by the pulse generator, while tpulse refers to time relative to the start of the optical

pulse occurring around t ≈ 1 µs. For the measurements shown here the pulse period is Tper =

5 ms. Vertical dashed lines indicate the time bins corresponding to the start and stop of the pulse,

determined from observing the rising and falling edges of the pulse when bypassing the cavity.

Throughout the pulse a pronounced asymmetry is observed between count rates for red-detuned

versus blue-detuned driving, which can be quantified by the asymmetry parameter ξ = Γ−/Γ+ − 1,

where Γ± is the sideband photon count rate for a drive detuning ∆ = ±ωm. This asymmetry,

shown versus tpulse in Fig. 4.5b, initially decreases with time before leveling off and beginning to

increase for sufficiently long pulse times. The increase at later times can be ascribed to the effect of

2It is also possible that some of the residual noise is spontaneous emission. However, this is of much less concern as,
unlike phase noise, it is far off-resonant with the optical cavity and cannot contribute to real heating of the mechanical
mode or noise squashing/anti-squashing effects.
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Figure 4.5: Time-resolved heating and asymmetry. a, Total photon count rate versus time t
for a red-detuned (red circles, ∆ = ωm) and blue-detuned (blue circles, ∆ = −ωm). For both data
sets nc,on ≈ 45 and Tper = 5 ms. Vertical dashed lines indicate the start and stop times of the pulses.
b, Sideband asymmetry ξ versus time within the pulse tpulse. The green dashed and orange dash-
dotted lines show the theoretically expected ξ(t) in the absence of backaction and heating effects,
respectively.

optomechanical backaction, which results in cooling or heating of the mechanical resonator for red-

or blue-detuned drives, respectively. However, for tpulse � γ−1
OM ≈ 750 ns the effects of backaction

can be neglected and the phonon occupancy 〈n〉 may be assumed equal for both drive detunings.

In this case, the asymmetry is simply related to the occupancy by ξ = 〈n〉−1
, and arises from

the fundamental asymmetry between phonon absorption (Γ+ ∝ 〈n〉) and emission (Γ− ∝ 〈n〉 + 1)

processes [13, 167]. Theoretical plots of the two contributions to ξ(t) are shown in Fig. 4.5b. The

green dashed line shows the expected ξ(t) assuming that 〈n〉 |∆=ωm
= 〈n〉 |∆=−ωm

(no backaction),

while the orange dash-dotted line shows ξ(t) in the absence of optical heating and in the case

when nb � 1 such that ξ(0) = 0 and asymmetry arises solely from backaction effects. From the

asymmetry measured in the first 25 ns time bin, we extract a minimum phonon occupancy of 〈n〉min =

0.021 ± 0.007 (Tmin ≈ 70 mK). This measured occupancy is lower than previous results in both

cavity optomechanical [45] and electromechanical [46] systems by more than an order of magnitude,

and is comparable to the occupancy measured in other GHz frequency mechanical oscillators at mK

temperatures [37]. Moreover, while motional sideband asymmetry has previously been measured in a

variety of optomechanical and electromechanical systems using linear detection schemes [13–16] , the

use of phonon counting techniques allows the observed asymmetry to be directly and unambiguously

attributed to quantum fluctuations of the mechanical oscillator [14,168].

During the off-state of the pulse, optical heating of the mechanical resonator should be negligible

and the phonon occupancy should cool at the intrinsic damping rate γ0. Thus, the initial and

final occupancies during the pulse (〈n〉i and 〈n〉f, respectively) should obey the relation 〈n〉i =

e−γ0Tper 〈n〉f, assuming the pulse period Tper is much larger than the pulse width Tpulse. The ratio

〈n〉i / 〈n〉f, shown in Fig. 4.6a versus Tper, displays the expected exponential decay with γ0/2π =
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Figure 4.6: Ringdown measurement of γ0. Ratio of initial/final phonon number 〈n〉i / 〈n〉f versus
pulse period Tper. The solid red curve shows a fit to exponential decay. The inset shows 〈n〉 versus
tpulse for the different values of Tper.

328±14 Hz and a corresponding intrinsic mechanical quality factor ofQm ≈ 1.7×107. This decay rate

corresponds well with the value inferred from fitting the proposed heating model to CW occupancy

data, as in Chapter 3. From our measurement of γ0 and 〈n〉min we can estimate a thermal coherence

time of τth = (γ0(1 + 〈n〉min))−1 = 475 ± 21 µs. This value of Qm also shows excellent agreement

with that expected from simulation for 4 cross periods and roughly 2% disorder in the hole sizes and

periods (see section 1.3.5), suggesting that we can reach the regime where the mechanical damping

is limited by the radiation shield.

Once 〈n〉 is determined in the initial time bin it may be used to convert measured count rates

to phonon occupancies throughout the pulse for either drive detuning. The resulting calibrated

occupancy versus tpulse is shown for ∆ = ωm in Fig. 4.7a, and for ∆ = −ωm in Fig. 4.7b. The

simplest model of the heating dynamics assumes the creation of the hot phonon bath to be effectively

instantaneous. In this case 〈n〉 will obey the following rate equation during the pulse on-state:

˙〈n〉|∆=±ωm
= −γ 〈n〉+ γpnp + γ0n0 +

1

2
(1∓ 1) γOM, (4.2)

where γ = γ0 + γp ± γOM, and the extra factor of γOM for a blue-detuned drive accounts for

the possibility of spontaneous emission into the mechanical resonator due to the optomechanical

interaction. This has the simple solution

〈n〉 (t)|∆=±ωm
= 〈n〉 (t0)e−γt + nH

(
1− e−γt

)
, (4.3)

nH = γ−1

(
γpnp + γ0n0 +

1

2
(1∓ 1) γOM

)
, (4.4)

where t0 is the start time of the pulse, and t0 ≤ t ≤ t0 + Tpulse.
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Figure 4.7: Calibrated occupancy. Calibrated phonon occupancy 〈n〉 versus tpulse for a, ∆ = ωm

and b, ∆ = −ωm. The solid black lines show fits to a model including a slow exponential turn-on of
the hot phonon bath. The inset of a shows detail for tpulse < 750 ns on a linear scale.

In principle, γOM can be determined independently by calibrating the device parameters, γ0 is

found by fitting the occupancy decay during the pulse off-state (see Fig. 4.6 and associated discussion

above), and γp and np can be subsequently determined by fitting the CW occupancy curve shown in

Fig. 4.3. However, using these independently determined values to fit Eq. 4.4 to the red- and blue-

detuned data shown in Fig. 4.7a and b results in a poor fit and inconsistent results. In particular,

the apparent exponential heating rate γ is much smaller than expected for the red-detuned pulse and

larger than expected for the blue-detuned pulse. Moreover, as can be seen in the inset to Fig. 4.7a,

the heating rate abruptly changes around tpulse ≈ 600 ns. These inconsistencies indicate additional

complexity in the heating dynamics, likely due to a finite equilibration time of the hot phonon bath.

Though it does not perfectly model the abruptness of the change in heating rate, the simplest

addition to the heating model which yields good agreement with the experimental data is to ap-

proximate the finite hot phonon equilibration time by allowing a fraction of the bath occupancy np

to turn on exponentially over time. Thus, the phenomenological rate equation becomes

˙〈n〉|∆=±ωm
= −γ 〈n〉+ γpnp

(
1− δbe−γSt

)
+ γ0n0 +

1

2
(1∓ 1) γOM, (4.5)

where δb is the slow growing fraction of np and γS is the turn-on rate. Strictly speaking γp should

depend on the phonon distribution of the hot phonon bath, and thus would be expected to be time-

dependent in this model as well. However, as the resulting rate equation becomes intractable, and

the effects should be negligible in the regime γOM � γp, we approximate γp equal to its steady-state

value. This modified rate equation has the solution

〈n〉 (t)|∆=±ωm
= 〈n〉 (t0)e−γt + nH

(
1− e−γt

)
+ nδ

(
e−γSt − e−γt

)
, (4.6)

nδ =
γpnpδb
γS − γ

, (4.7)
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which is used to obtain the fits shown in Fig. 4.7a and b, using 〈n〉 (t0), γS, and δb as free parameters,

yielding δb = 0.79 ± 0.08, γS/2π = 215 ± 29 kHz, and 〈n〉 (t0) in good agreement with the value

〈n〉min obtained via asymmetry measurements.

During the off-state of the pulse (t0+Tpulse ≤ t ≤ t0+Tper), the resonator will simply cool towards

the ambient fridge occupancy n0 at the intrinsic damping rate γ0. Using the initial condition that

〈n〉 (t0) = n0 for the first pulse (t0 = 0), and iterating many pulses, we find that in the steady-state

the initial phonon occupancy during a pulse (assuming Tper � Tpulse) is

〈n〉 (t0) =
n0

(
1− e−γ0Tper

)
+ nH

(
1− e−γTpulse

)
e−γ0Tper + nδ

(
e−γSTpulse − e−γSTper

)
e−γ0Tper

1− e−γTpulse−γ0Tper
.

(4.8)

Thus, once n0, γS and δb are determined by fitting the occupancy curves, we may use Eqs. 4.7

and 4.8 to determine the occupancy throughout the pulse for arbitrary Tper and Tpulse. This allows

us to determine the maximum attained phonon occupancy as a function of pulse parameters in

order to assess the feasibility of various quantum protocols that require ground state operation, as

discussed further in Chapter 5.
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Chapter 5

Future Work and Outlook

At this point we can envision two main routes to progress beyond the initial cryogenic measurements

performed in this work. One is to attempt to perform initial wavelength conversion and state

heralding experiments using suitably short pulses in the current nanobeam structures. Using our

measurements of the steady-state and time-resolved heating dynamics, we are now in a position to

quantitatively assess the feasibility of such experiments.

The second option is to attempt to mitigate the effects of heating in the steady-state by moving

to an alternative structure. For this task we may turn to the snowflake OMCs discussed briefly in

section 1.3.6, as the two-dimensional nature of such cavities should offer a thermal conductivity that

is superior to that of the one-dimensional nanobeams.

5.1 Prospects for 1D Nanobeams

5.1.1 Wavelength Conversion

While the low initial thermal occupancies and long mechanical coherence times measured in this

work are promising, the utility of cavity optomechanical systems for performing coherent quantum

operations between the optical and mechanical degrees of freedom is ultimately predicated upon

the ability to simultaneously achieve 〈n〉 � 1 and large cooperativity C = γOM/γi, where γi =

γ0 + γp is the total coupling rate between the mechanical resonator and its thermal bath. In the

specific example of optomechanically mediated coherent transfer of photons between optical and

superconducting microwave resonators discussed in section 1.2.1, the relevant figure of merit is the

effective cooperativity Ceff = C/nb, where nb is the effective bath occupancy defined such that

γinb = γ0n0 + γpnp. A necessary condition for achieving low noise conversion at the single photon

level is Ceff � 1. Using the values of γ0 and γS measured in Chapter 4, we may use Eqs. 4.7 and 4.8

to calculate the maximum phonon occupancy achieved during the pulse, 〈n〉max, for a given Tpulse

and Tper and ∆ = ωm (Fig. 5.1a), as well as Ceff as a function of tpulse (Fig. 5.1b).
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Figure 5.1: Pulsed Ceff. a, Maximum phonon occupancy 〈n〉max versus pulse period Tper and pulse
width Tpulse. The white contour delineates the region where the effective cooperativity Ceff ≥ 1
throughout the pulse. b, Ceff versus time within the pulse tpulse for Tper = 5 ms, Tpulse = 3 µs.

Though optical heating of our devices precludes the use of a CW drive, due to the slow turn-

on of the hot phonon bath observed in this work, we find that 〈n〉 < 1 and Ceff > 1 can be

maintained throughout the entire pulse period for Tpulse . 300 ns at pulse rates approaching 1 MHz.

Furthermore, we find Ceff � 1 during the initial 100 ns of the pulse and reaches values as large as

Ceff ≈ 40. This demonstrates that coherent optical to microwave conversion should in principle be

possible at the single photon level using current systems, provided we are willing to operate in the

pulsed regime.

Of course, in this discussion we have neglected any mention of the coupling of superconducting

microwave resonators to the high-frequency modes of a silicon nanobeam, which is another necessary

component for optical-to-microwave state conversion. Although a detailed discussion of such matters

is beyond the scope of this thesis, it has been shown theoretically that it is possible to fabricate

electromechanical systems which are compatible with the type of nanobeam OMCs studied in this

work, with sufficiently strong coupling between the microwave resonator and the localized “breath-

ing” mechanical mode to enable the type of state transfer protocols considered here [169]. Efforts

to experimentally realize such devices are currently ongoing in the Painter group [170,171].

5.1.2 Heralded Fock State Generation

We may also evaluate the fidelity of the creation of a single phonon Fock state [34] in our system as

a function of pulse width and period. To properly account for the effects of heating during the pulse,

we must extend the simple picture described in section 1.2.2 in order to include to lowest order the

effects of interaction with mechanical bath.

The fidelity of heralded phonon addition/subtraction, as discussed in section 1.2.2, is in principle

degraded by a number of non-ideal factors, including counter-rotating terms in the interaction Hamil-

tonian, a small probability of multi-phonon events, the initial thermal occupancy of the mode, and
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finite amounts of heating or mechanical bath interaction during the pulse. In the specific optome-

chanical systems considered in this work, the predominant source of non-ideal behavior is optically

induced heating during the pulse which, as discussed in Chapters 3 and 4, can be substantial at the

cryogenic temperatures where we wish to operate. Consequently, in order to assess the feasibility of

heralded state preparation in our devices, it is necessary to develop a theoretical expression for the

fidelity of the generated state, including the effects of mechanical heating to lowest order.

For concreteness we will consider the case ∆ = −ωm (blue-detuned drive). We start from the

linearized Heisenberg-Langevin equations given in Eq. 1.12 and 1.13. Moving into a frame rotating

at the mechanical frequency (i.e., â→ âeiωmt, and so on for all operators), and making the rotating

wave approximation, valid in the weak coupling (g0
√
nc � κ) and sideband-resolved (κ/ωm � 1)

limit, we obtain

˙̂a = −κ
2
â+ iGb̂† +

√
κâin, (5.1)

˙̂
b = −γ

2
b̂+ iGâ†in +

√
γb̂in, (5.2)

where G = g0
√
nc and âin, b̂in are the usual noise operators multiplied by e−iωmt.

Since we are working in the weak-coupling limit (G� κ) we may use the adiabatic solution for â

(i.e., ˙̂a ≈ 0). Moreover, we wish to include the effects of mechanical noise to lowest order. Considering

the effect of a short optical pulse of duration τ , we consider the case γτ, γ
� τ

0
ds nb(s)� 1, as well

as γOMτ � 1 and γOM � γ. Note that we have taken the mechanical bath occupancy nb to

be explicitly time dependent. As we will see in Chapter 4, the optically induced heating is best

modeled by assuming a phenomenological time-dependence to the bath. Under these assumptions,

as in Ref. [172], the noise term will be retained in the mechanical equation of motion only, since in

the optical equations of motion it will acquire an extra factor of γOMτ and thus can be neglected to

lowest order. Furthermore, the (γ/2) b̂ term will be neglected in favor of the much larger (γOM/2) b̂

term. With these approximations, we arrive at the approximate equations:

â ≈ i
√
γOM

κ
b̂† +

2

κ
âin, (5.3)

˙̂
b ≈ γOM

2
b̂+ i
√
γOMâ

†
in +
√
γb̂in. (5.4)

Formally integrating the equation of motion for b̂ over the duration of the pulse while using the

optical input-output relation Eq. 1.6, we arrive at the approximate equations:

âout(t) = âin(t) + i
√
γOMe

γOMt

2 b̂†(0) + γOMe
γOMt

2

� t

0

ds e
−γOMs

2 âin(s) (5.5)

b̂(t) = e
γOMt

2 b̂(0) + i
√
γOMe

γOMt

2

� t

0

ds e
−γOMs

2 â†in(s) +
√
γe

γOMt

2

� t

0

ds e
−γOMs

2 b̂in(s). (5.6)
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We now introduce the following temporal modes [172]:

B̂in = b̂(0), B̂out = b̂(τ), (5.7)

Âin =

√
γOM

1− e−γOMτ

� τ

0

ds e
−γOMs

2 âin(s), (5.8)

Âout =

√
γOM

eγOMτ − 1

� τ

0

ds e
γOMs

2 âout(s) (5.9)

F̂ =
√
γe

γOMτ

2

� τ

0

ds e
−γOMs

2 b̂in(s), (5.10)

which allows us to rewrite the input/output equations at the end of the pulse (t = τ):

Âout = e
γOMτ

2 Âin + i
√
eγOMτ − 1B̂†in, (5.11)

B̂out = e
γOMτ

2 B̂in + i
√
eγOMτ − 1Â†in + F̂ . (5.12)

Note that [Âin, Â
†
in] = [Âout, Â

†
out] = [B̂in, B̂

†
in] = 1 as expected. As for the noise operator F̂ ,

the commutator and correlation functions are defined, using the known properties of b̂in(t) to lowest

order as

[F̂ , F̂ †] ≈ γτ +O(γOMγτ
2), (5.13)〈

F̂ †F̂
〉

= γeγOMτ

� τ

0

ds e−γOMsnb(s),
〈
F̂ F̂ †

〉
= γτ +

〈
F̂ †F̂

〉
. (5.14)

We now seek a unitary propagator Û such that Âout = Û†ÂinÛ and B̂out = Û†B̂inÛ . Note that if

we define eγOMτ/2 = cosh(r),
√
eγOMτ − 1 = sinh(r), then the input/output equations have the form

of two-mode squeezing between Âin and B̂in in the absence of mechanical noise F̂ . Thus, we want

Û = ÛmÛ0, where

Û0 = eir(ÂinB̂in+Â†inB̂
†
in), (5.15)

Û†mB̂inÛm = B̂in + F̂ , (5.16)

[Ûm, Âin] = 0. (5.17)

We find that a beam-splitter type interaction between B̂in and F̂ satisfies this condition to lowest

order. That is, if Ûm = eB̂
†
inF̂−B̂inF̂

†
, then using the above commutation relations for F̂ we can show,

Û†mB̂inÛm = cos (
√
γτ) B̂in + (γτ)

−1/2
sin (
√
γτ) F̂

≈ B̂in + F̂ . (5.18)

Given this propagator Û , which yields the approximate system evolution over the pulse interval
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τ , and assuming an initial density matrix ρ0 = |0A〉 〈0A| ⊗ ρB,0 ⊗ ρF, where A, B, and F refer to

the optical, mechanical, and bath subsystems, respectively, the density matrix for the mechanical

resonator, ρB, conditioned upon detection of a single photon, is given by

ρB =
TrA,F

(
|1A〉 〈1A| ⊗ IB ⊗ IFÛρ0Û

†
)

Tr (|1A〉 〈1A| ⊗ IB ⊗ IFρ0)

= P−1TrF

(
Ûm 〈1A| Û0ρ0Û

†
0 |1A〉 Û†m

)
, (5.19)

where P is the overall probability of photodetection, given by

P = TrB

(
〈1A| Û0 |0A〉 〈0A| ⊗ ρB,0Û

†
0 |1A〉

)
. (5.20)

Denoting ρB,ideal = P−1B̂†inρB,0B̂in as the ideal conditional matrix in the absence of mechanical

dissipation, and expanding Û to lowest order in γOMτ , γτ and
〈
F̂ †F̂

〉
, we find

P ≈ γOMτ
〈
B̂†inB̂in

〉
, (5.21)

and

ρB ≈
(

1−
〈
F̂ †F̂

〉)
ρB,ideal +

〈
F̂ †F̂

〉
B̂†inρB,idealB̂in +

(
γτ +

〈
F̂ †F̂

〉)
B̂inρB,idealB̂

†
in

− 1

2

(
γτ + 2

〈
F̂ †F̂

〉)(
B̂†inB̂inρB,ideal + ρB,idealB̂

†
inB̂in

)
. (5.22)

To evaluate the fidelity of the phonon addition subtraction we use the definition of fidelity between

two quantum states ρ1 and ρ2, given by [173] F = Tr

(√
ρ

1/2
1 ρ2ρ

1/2
1

)
, which is straightforward to

evaluate for an initial thermal mechanical state, as both ρ1 and ρ2 will be diagonal in the Fock state

basis.

Note that the only substantive difference in the case of phonon subtraction (∆ = ωm, red-detuned

driving) is that the propagator Û0 will have the form of a beam-splitter interaction rather than two

mode squeezing. This will only change P and ρB,ideal, which are now given by

P ≈ γOMτ
〈
B̂†inB̂in

〉
, (5.23)

ρB,ideal = B̂inρB,0B̂
†
in, (5.24)

while the definition of ρB in terms of ρB,ideal is unchanged assuming that the bath heating is only

dependent on drive power and not drive detuning.

We assume the initial state of the mechanics to be a thermal state with average phonon number

〈n〉 given by Eq. 4.8, and evaluate
〈
F̂ †F̂

〉
using the fit parameters of the effective time-dependent
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Figure 5.2: Fock state generation. a, Fidelity F of the generation of a single phonon Fock state
versus pulse width Tpulse (pulse period Tper = 1 ms). b, Average time required to herald a Fock
state TFock versus pulse width Tpulse. The solid line is calculated using the total detection efficiency
measured in this work, while the dashed line uses the estimated ideal detection efficiency.

hot phonon bath.

Considering a range of pulse widths 0 < Tpulse ≤ 100 ns, which is sufficient to guarantee the

necessary condition γOMTpulse � 1, we find that for Tper ≥ 1 ms there is no appreciable loss in fidelity

due to long term heating causing an increase in 〈n〉 (t0), and the primary loss in fidelity is due to

transient heating during the pulse. Thus, we set Tper = 1 ms and calculate the fidelity of Fock state

generation as a function of pulse width, displayed in Fig. 5.2a. For short (Tpulse < 10 ns) pulse widths,

the fidelity approaches 98.5%, and remains above 80% for pulse widths up to 100 ns. However, it is

equally important to quantify the expected time to herald such a state (i.e., the expected time before

detection of a sideband photon), which in this case is given by TFock = Tper/(ηγOMTpulse 〈n〉 (t0)),

where η is the total detection efficiency of the phonon counting measurement. This is shown versus

Tpulse in Fig. 5.2b for two cases. The solid line is calculated the actual measured detection efficiency

of the pulsed setup in Chapter 4, η ≈ 1%, while the dashed line is calculated using a realistic estimate

of the ideal efficiency of our current measurement setup, η ≈ 5.5%. This latter figure is calculated

using the measured efficiencies of the SPD (ηSPD = 68%), the fiber-to-waveguide coupling efficiency

(ηcpl = 68%), and the waveguide-cavity coupling efficiency (κe/κ = 0.5), adding an additional 2 dB

insertion loss per filter and 0.5 dB for the insertion loss of the optical circulator, which correspond

to the highest efficiencies measured for these components in our lab. As shown in Fig. 5.2, even in

the idealized case the expected time for the generation of a Fock state is & 100 ms, which is much

longer than the lifetime of the mechanical state. Thus, while it is feasible to use our current systems

for the heralded, high-fidelity generation of non-classical mechanical states, it is still necessary to

reduce heating effects (and thus allow for shorter pulse periods) in order to utilize this procedure for

useful quantum information processing tasks (e.g., scalable entanglement distribution via the DLCZ
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protocol [35,36]).

5.2 2D Snowflake OMCs

While the Si nanobeam design used throughout this work has been optimized in terms of optome-

chanical coupling strength and optical quality, it represents one of the worst designs possible from

the standpoint of heat dissipation, as any hot phonons generated within the cavity volume may

only escape via a narrow, one-dimensional channel. A relatively simple way to mitigate some of

the effects of heating is to move into a two-dimensional OMC structure such as the snowflake cav-

ities described in section 1.3.6. Beyond improving the thermal properties, the planar nature of

the snowflake structure would allow the development of a wider variety of optomechanical circuits

composed of coupled arrays of OMC cavities. If successfully thermalized into the quantum ground

state, such devices would form the basis for quantum phononic networks [174] and allow the study

of quantum many-body physics in optomechanical metamaterials [166].

5.2.1 Heating

Estimating the specific heating behavior of such a cavity is non-trivial. In particular, as discussed

in section 3.6 we have reason to believe the hot phonon bath formed in the nanobeam cavities

is affected partly by a phonon bottleneck effects, and is thus dependent upon the specific cross-

sectional dimensions of the structure. However, while we do not expect exactly the same effects in a

2D structure, the small thickness of the Si membrane (which is identical in both 1D and 2D cavities)

should still provide a reduction of the phononic density of states compared to large structures,

and thus a bottleneck effect should still arise. As the corresponding cutoff frequency should be

determined by the lowest dimension of the structure, one would also expect the cutoff frequency to

be similar.

Consequently, a crude estimate of the heating in the snowflake cavity can be made by assuming

the nature of the hot phonon bath to be roughly the same as in the 1D case, with a similar cutoff

frequency, and that the only substantive difference lies in the thermal conductance of the structure.

As heat would still be carried predominantly by high-frequency phonons, one would still expect

a thermal conductance scaling as T 3, so that Gth,2D/Gth,1D is approximately constant. From a

radiative model of heat transfer in the ballistic regime [175] one expects Gth ≈ G0T
3, where G0 is a

constant proportional to the effective cross-sectional area through which phonons may escape, Aeff,

and otherwise dependent only on the material properties of Si. Then, assuming the absorbed power

per photon is roughly the same as the nanobeam cavities we may relate the hot phonon temperature
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Figure 5.3: Estimated heating in a snowflake OMC. a, Estimated phonon occupancy 〈n〉 versus
intracavity photon number nc for the 2D snowflake cavity, assuming the same thermal conductance
as for the 1D nanobeam (red) and the expected enhanced thermal conductance of the 2D slab (blue).
Curves are calculated for g0/2π = 300 kHz (solid), 500 kHz (dashed) and 1 MHz (dot-dashed). b,
Cooperativity C = γOM/ (γ0 + γp) versus nc for the same sets of parameters as a.

Tp in the 1D and 2D cases:

Pabs =

� Tp,1D

T0

dTGth,1D(T )

=
1

4
G0,1D

(
T 4

p,1D − T 4
0

)
=

1

4
G0,2D

(
T 4

p,2D − T 4
0

)
,

which yields

Tp,2D =

(
Aeff,1D

Aeff,1D

(
T 4

p,1D − T 4
0

)
+ T 4

0

)1/4

. (5.25)

Given the empirical formula Tp,1D =
(
D nc + T 4

0

)1/4
, we then have

Tp,2D =

(
Aeff,1D

Aeff,2D
D nc + T 4

0

)1/4

, (5.26)

where D may be obtained from our fit to Tp in the 1D case (see Fig. 3.5b). Although the reduction

in Tp will only scale as (Aeff,1D/Aeff,2D)
1/4

for sufficiently large nc, the exponential dependence of

γp on Tp can lead to a significant change in the heating, as we will see.

For the 1D nanobeam Aeff,1D is simply the cross-sectional area of the beam, while for the

snowflake cavity we take Aeff,2D to be the perimeter of the optical cavity region. For the het-

erostructure snowflake cavity shown in Fig. 1.13 this leads to Aeff,1D/Aeff,2D ≈ 0.03. We take γp(Tp)

to have the same functional form and approximate cutoff temperature as shown in Fig. 3.6a, and

assume T0 ≈ 70 mK, in accordance with our pulsed measurements of the minimum phonon occu-

pancy of the nanobeams in the fridge. To determine γOM(nc), we take g0/2π = 300 kHz, as was
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Figure 5.4: Effects of disorder on the heterostructure snowflake cavity. a, Plot of the
linear acoustic energy density profile ua(x), for the localized mechanical resonances with strong
optomechanical coupling to the fundamental optical resonance. The top black curve corresponds
to the unperturbed structure. Each pair of red and blue curves corresponds to the mechanical
resonance with the largest and second largest magnitude of optomechanical coupling, respectively, for
a different disordered structure; ua(x) is computed by integrating the acoustic energy density across
the transverse y and z dimensions. b, Plot of the corresponding mechanical frequency difference and
c, optomechanical coupling rate g0 for the two most strongly coupled mechanical resonances. Here,
we show results for a representative eight of the simulated disordered structures.

simulated for the heterostructure snowflake cavity, and assume κ is roughly the same as the value

measured for nanobeams in this work. We assume the same value of radiation-limited mechanical Q

as was measured in the nanobeams (Qm ≈ 1.7×107), which for the higher frequency snowflake mode

(ωm/2π = 9.5 GHz) corresponds to γ0/2π ≈ 560 Hz. The corresponding estimated values of 〈n〉 and

cooperativity C = γOM/(γ0 +γp) under CW drive conditions are shown versus nc in Fig. 5.3a and b,

respectively. The 2D estimates for the parameters stated above are shown as solid blue lines, while

a solid red line shows the corresponding values assuming the same Tp(nc) curve measured in the 1D

case (i.e., no increase in thermal conductance). From this we see that even the relatively modest

increase in thermal conductance leads to a drastic change in the heating, with C ≥ 1 and 〈n〉 . 0.1

achieved for nc ≥ 1. While the snowflake design presented in section 1.3.6 has a relatively low value

of g0, there exists room for optimization. In particular, a different design presented in Ref. [30]

possesses g0/2π ≈ 500 kHz. For comparison, the heating curves for g0 = 500 kHz and g0 = 1 MHz

are shown in Fig. 5.3 as dashed and dot-dashed lines, respectively. Provided a snowflake cavity was

designed with coupling comparable to the nanobeams, one could achieve C � 1 and 〈n〉 ∼ 10−2

without using pulsed driving.

5.2.2 Experimental Demonstration

While the snowflake OMC designs are not as mature experimentally as the nanobeam cavities, initial

fabrication and measurement of snowflake heterostructure cavities is detailed in Ref. [176]. While
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this initial demonstration is promising, it reveals a fundamental flaw in the initial heterostructure

design. In particular, when measuring the mechanical modes of the snowflake cavity, multiple closely

spaced modes were observed near the expected resonance frequency of ωm/2π ≈ 9.4 GHz, each with

a relatively weak optomechanical coupling.

This is explained by noting that the extremely flat dispersion of the acoustic waveguide mode

from which the cavity is formed (see Fig. 1.12c) causes the spectrum of localized mechanical cavity

modes to be highly sensitive to unavoidable fabrication disorder. To investigate this, the localized

optical and mechanical modes for 50 different disordered structures were calculated numerically

via FEM simulation, the results of which are summarized in Fig. 5.4. As with the simulations of

mechanical Q described in section 1.3.5, disorder was introduced into the structures by varying the

position, width, and radius of the snowflake holes according to a normal distribution with a given

percent standard deviation about the nominal value. Based upon SEM images of the fabricated

structures, we selected a standard deviation of σ = 2%, which is the same degree of disorder which

yields good correspondence between the simulated and measured Qm at low temperature in the

nanobeam cavities (see sections 1.3.5 and 4.2). Roughly 10% of the simulated disordered structures

yield localized mechanical resonances with the frequency splitting and optomechanical coupling rates

measured in the actual device.

As most of the simulated disordered structures possess values of g0 well below the expected

theoretical value of g0/2π ≈ 300 kHz, this flaw in the snowflake design presents a significant practical

challenge to the goal of replacing nanobeam cavities. The high degree of sensitivity to disorder will

need to be addressed in future generations of snowflake cavities by redesigning the W1 waveguide

to yield larger dispersion in the desired mechanical band.



109

Appendix A

Mathematical Definition and
Additional Derivations

A.1 Definitions

We use the following symmetric definition for the Fourier transform of an operator and the inverse

transform:

Â(ω) =
1√
2π

� ∞
−∞

dt eiωtÂ(t),

Â(t) =
1√
2π

� ∞
−∞

dω e−iωtÂ(ω).

(A.1)

Note that the same definition is used when taking the transform of the conjugate. That is,

Â†(ω) =
1√
2

� ∞
−∞

dt eiωtÂ†(t),

so that Â†(ω) =
(
Â(−ω)

)†
. The power spectral density of an operator Â is defined,

SAA(ω) =

� ∞
−∞

dτeiωτ
〈
Â†(t+ τ)Â(t)

〉
=

� ∞
−∞

dω′
〈
Â†(ω)Â(ω′)

〉
, (A.2)

where
〈
Â†Â

〉
denotes the usual quantum expectation value and it is assumed we are dealing with

stationary processes, where the two-time expectation value depends only on the time-difference τ ,

so that in general we may take t = 0. The symmetrized spectral density is defined as S̄AA =

1
2 (SAA(ω) + SAA(−ω)).
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A.2 Input-Output Theory

In this section we briefly summarize the steps taken to derive the type of Heisenberg-Langevin

equation shown in section 1.1.1. A full derivation can be found in Refs. [4] and [5]. We consider

a single cavity with resonance frequency ωc and annihilation (creation) operator â (â†), defined by

the system Hamiltonian:

Ĥsys = ~ωcâ
†â. (A.3)

The external bath consists of a continuum of independent harmonic oscillators, with Hamiltonian

Ĥbath = ~
� ∞
−∞

dω ω Â†(ω)Â(ω), (A.4)

where the bath creation and annihilation operators obey the commutation relations
[
Â(ω), Â†(ω′)

]
=

δ(ω − ω′). Note that using ω = −∞ as the lower limit (rather than 0) is justified in the case

when ωc � 1, as we only care about coupling to some frequency range in the vicinity of the cavity

frequency. Assuming a generic linear interaction between the cavity and bath, and making a rotating

wave approximation, the system-bath interaction Hamiltonian has the form

Ĥint = i~
� ∞
−∞

dω g(ω)
(
Â†(ω)â− â†Â(ω)

)
, (A.5)

where g(ω) is the mode coupling rate 1. The full Hamiltonian is given by Ĥ = Ĥsys + Ĥbath + Ĥint.

Using the Heisenberg equation of motion
˙̂
A = i

~

[
Ĥ, Â

]
+ ∂Â

∂t , we obtain the equations for both ˙̂a

and
˙̂
A(ω). We may then formally integrate the equations of motion for

˙̂
A(ω) starting from initial

time t0 < t, and insert them into the equation for ˙̂a to arrive at

˙̂a(t) = −iωcâ(t)−
� ∞
−∞

dω g(ω) e−iω(t−t0)Â(ω, t0)−
� ∞
−∞

dω g(ω)2

� t

t0

dt′e−iω(t−t′)â(t′), (A.6)

Unfortunately, this equation for ˙̂a(t) depends on the state of the system at t′ 6= t. In order to simplify,

we assume that the bath coupling rate g(ω) is sufficiently slow-varying within the frequency range

of interest (centered on ωc) in the that is may be approximated as a constant g(ω) ≈
√
κ/2π. This

approximation, known as the Markov approximation, allows us to obtain the approximate equation

of motion for the cavity field

˙̂a ≈ −
(
iωc +

κ

2

)
â+
√
κâin, (A.7)

1It is not strictly necessary to assume the form given here for Ĥsys and Ĥint. Rather, we may assume an arbitrary

system Hamiltonian, with Ĥint then taken as linear in some system operator d̂. For simplicity of presentation we have
chosen to explicitly present the relevant case for this work.
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where the input noise operator is defined in terms of the initial state of the bath at t0 as

âin =
−1√
2π

� ∞
−∞

dωe−iω(t−t0)Â(ω, t0), (A.8)

which can be shown to obey the commutation relation
[
âin(t), â†in(t′)

]
= δ(t− t′). We may also write

a time-reversed equation using the state of the bath at time tf > t as the initial condition, finding

˙̂a ≈ −
(
iωc −

κ

2

)
â+
√
κâout, (A.9)

where the output noise operator is defined as

âout =
−1√
2π

� ∞
−∞

dωe−iω(t−tf )Â(ω, tf ). (A.10)

Equating Eqs. A.7 and A.9 yields the input-output boundary condition

âout = âin −
√
κâ. (A.11)

This analysis can be performed for both the optical and mechanical resonators to obtain the equations

of motion used in section 1.1.1. For the optical resonator we assume two completely uncorrelated

baths, corresponding to the extrinsic and intrinsic decay channels. Although an input-output bound-

ary condition may be defined for the intrinsic optical bath and the mechanical bath, by definition

these baths are unmonitored and so such a relation is of no use in our analysis.

A.2.1 Bath Correlation Functions

We assume that the bath is initially in a thermal state. That is, every mode comprising the bath

exists at a single well-defined temperature Tb at time t0. This implies that

〈
Â†(ω, t0)Â(ω′, t0)

〉
= n(ω)δ(ω − ω′), (A.12)〈

Â(ω, t0)Â†(ω′, t0)
〉

= (n(ω) + 1)δ(ω − ω′), (A.13)

where n(ω) =
(
e~ω/kBTb − 1

)−1
is the thermal occupancy of the bath mode, and all other one- and

two-time correlation functions are equal to zero. Using the definition of the input noise operator, it

follows that 〈
â†in(t)âin(t′)

〉
=

� ∞
−∞

dω eiω(t−t′) n(ω). (A.14)

Assuming that we only care about a narrow bandwidth about the cavity frequency (i.e., κ � ωc),
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we may approximate n(ω) ≈ n(ωc) which yields

〈
â†in(t)âin(t′)

〉
≈ n(ωc)δ(t− t′). (A.15)

From this,
〈
âin(t)â†in(t′)

〉
follows from the input noise operator commutation relation, and all other

one- and two-time correlation functions of âin and â†in are easily shown to be equal to zero.

A.3 Spectral Density of the Mechanical Resonator

Consider first the Heisenberg-Langevin equation for the mechanical resonator in the absence of

optomechanical coupling

˙̂
b = −

(
iωm +

γi

2

)
b̂+
√
γib̂in. (A.16)

Transforming into the frequency domain and computing the power spectral density of b̂ according

to the definition given in section A.1, we obtain

Sbb(ω) =

� ∞
−∞

dω′
1

−i(ωm + ω) + γi/2

1

i(ωm − ω′) + γi/2
γi

〈
b̂†in(ω)b̂in(ω′)

〉
=

� ∞
−∞

dω′
1

−i(ωm + ω) + γi/2

1

i(ωm − ω′) + γi/2
γinbδ(ω + ω′)

=
γinb

(ωm + ω)2 + (γi/2)2
. (A.17)

As we will see, this function and its symmetrized counterpart will naturally arise in our derivation of

the detected output noise spectrum of the optomechanical system. In general, we define the spectral

density in terms of an arbitrary average phonon number and mechanical damping rate as

Sbb(ω; 〈n〉) =
γ 〈n〉

(ωm + ω)2 + (γ/2)2
. (A.18)

The corresponding spectral density for the creation operator is found to be

Sb† b†(ω; 〈n〉) =
γ (〈n〉+ 1)

(ωm − ω)2 + (γ/2)2
. (A.19)

Note that these spectral densities have the important property

� ∞
−∞

dω

2π
Sbb(ω; 〈n〉) = 〈n〉 ,

� ∞
−∞

dω

2π
Sb† b†(ω; 〈n〉) = 〈n〉+ 1.

(A.20)
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A.4 Phonon Occupancy

The steady-state phonon occupancy can be defined in terms of the frequency domain fluctuation

operators as

〈n〉 =
〈
b̂†(t)b̂(t)

〉
=

1

2π

� ∞
−∞

dω

� ∞
−∞

dω′ e−i(ω+ω′)t
〈
b̂†(ω)b̂(ω′)

〉
. (A.21)

Inserting the full expression for b̂(ω) given in Eq. 1.16, using the two-time correlation definitions

given in section 1.1.1, and integrating over ω′, we obtain

〈n〉 =
1

2π

� ∞
−∞

dω|χm(ω)|2
(
γinb +G2κ|χ∗o(−ω)|2

)
=

� ∞
−∞

dω
γ/2π

(ωm − ω)2 + (γ/2)2

(
γinb

γ
+
G2κ

γ

1

(∆ + ω)2 + (κ/2)2

)
. (A.22)

For κ� ωm, ∆ = ±ωm, we can focus only on frequencies near ωm (|ω− ωm| � κ) and approximate

∆ + ω ≈ ∆ + ωm. In the red-detuned (∆ = ωm) case we obtain

〈n〉 ≈ γinb

γ
+
γOM

γ

(
κ

4ωm

)2

=
nb

1 + C
+

C

1 + C

(
κ

4ωm

)2

, (A.23)

where we have defined the cooperativity C = γOM/γi. Likewise, for blue-detuning (∆ = −ωm) we

obtain

〈n〉 ≈ γinb

γ
+
γOM

γ

=
nb

1− C +
C

1− C . (A.24)

A.5 Scattering Matrix Elements

As described in section 1.1.3, for a sideband-resolved (κ � ωm) system under red- or blue-detuned

driving conditions (∆ = ±ωm, respectively), the optical cavity output in the frequency domain may

be related to the optical and mechanical noise operators by the equations

âout(ω)|∆=ωm
≈ r(ω; +)âin(ω) + n(ω; +)âi(ω) + s(ω; +)b̂in(ω), (A.25)

and

âout(ω)|∆=−ωm
≈ r(ω;−)âin(ω) + n(ω;−)âi(ω) + s(ω;−)b̂†in(ω), (A.26)
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where the scattering matrix elements are given by

r(ω;±) = 1− 2κe

κ
± γOMκe

κ

1

±i (ωm ∓ ω) + γ/2
, (A.27)

n(ω;±) = ±
√
κiκe

κ

(
γOM

±i (ωm ∓ ω) + γ/2
∓ 2

)
, (A.28)

and

s(ω;±) =

√
κe

κ

i
√
γiγOM

±i (ωm ∓ ω) + γ/2
. (A.29)

It can be shown that, in general, the scattering matrix elements have the property |r(ω;±)|2 +

|n(ω;±)|2 ± |s(ω;±)|2 = 1.
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Appendix B

Coupled-Cavity Model for
Butt-Couplers

The butt-coupler reflection spectrum, and the corresponding effects on the reflected cavity signal,

can be modeled with reasonable accuracy by the system shown in Fig. B.1. The coupling waveguide,

including the weak reflection from the fiber-to-nanowire interface and the high-reflectivity photonic

crystal end-mirror, is modeled by a Fabry-Perot etalon, with front and back mirror reflectivities

r1 and r2, respectively. We also assume a total round-trip power transmission efficiency ηrt and a

phase shift θrt. The round-trip phase shift can also be written θrt = 2kLeff, where k = ωl/c is the

free-space wavenumber of the incident drive laser at frequency ωl, and Leff is the effective length

of the etalon. The effective length will be a little longer than the physical length of the coupling

waveguide, due to the fact that the interior of the etalon includes the dielectric waveguide (i.e not

vacuum). In practice the effective length can be determined empirically from the free-spectral range

of the etalon (the spacing of the broad fringes in Fig. 2.6a). The front mirror is taken to have a real

reflection coefficient r1 =
√
Rfib (and corresponding transmission coefficient t1 =

√
1−Rfib), where

Rfib is the reflectivity of the fiber endface. We assume coupling to a high-finesse optical cavity (with

total decay rate κ) at a rate κe via the back-mirror, which is otherwise perfectly reflective far from

resonance. If this secondary cavity is high-finesse enough, we may consider only a single resonant

mode, in which case the back mirror reflection coefficient can be given by the usual result

r2 = 1− κe

i∆ + κ/2
, (B.1)

where ∆ = ωc − ωl is the cavity-drive detuning.

For an incident drive amplitude Ain, the reflected amplitude Aout may be written as a sum of

an infinite number of partial reflections produced by multiple reflections between the two surfaces
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r1 r2

Ain

Aout

θrt , ηrt κe

coupling waveguide

OMC
cavity

κ

Figure B.1: Coupled-cavity schematic. The butt-coupled cavity can be modeled by a Fabry-
Perot etalon, with round-trip phase shift and transmission efficiency θrt and ηrt, respectively, and
front and back mirror reflectivities r1 and r2. This cavity is in turn coupled to the high-finesse
OMC cavity at rate κe. This coupling can be incorporated into the definition of the back mirror
reflectivity r2.

of the etalon. This results in the expression [177]

Aout = Ain

(
r1 −

(
1− r2

1

)
r2
√
ηrte

−iθrt
∞∑
n=0

(
r1r2
√
ηrte

−iθrt
)n)

= Ain

(
r1 −

(
1− r2

1

)
r2
√
ηrte

−iθrt

1− r1r2
√
ηrte−iθrt

)

= Ain

(
r1 − r2

√
ηrte

−iθrt

1− r1r2
√
ηrte−iθrt

)
. (B.2)

Far away from cavity resonance, we can approximate r2 ≈ 1. Then, inserting r1 =
√
Rfib and

√
ηrt = ηcpl into Eq. B.2, the total normalized reflection R = |Aout/Ain|2 is given by

R =

(√
Rfib − ηcpl

)2
+ 4ηcpl

√
Rfib sin2 (θrt/2)(

1− ηcpl

√
Rfib

)2
+ 4ηcpl

√
Rfib sin2 (θrt/2)

, (B.3)

from which we derive Eq. 2.34 using Rmin = R (θrt = 0) and Rmax = R (θrt = π). The full expression

including the cavity, obtained by combining Eqs. B.1 and B.2, can be used to fit the cavity lineshape

in the presence of interference from the etalon, and is used to produce the plots in Fig. 2.7.
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Appendix C

Superconducting Nanowire Single
Photon Detectors

The SPDs used in this work are amorphous WSi-based superconducting nanowire single-photon

detectors developed in collaboration between the Jet Propulsion Laboratory and NIST, designed for

high-efficiency detection of individual photons in the wavelength range λ = 1520 − 1610 nm with

maximum count rates of about 2.5× 107 counts per second (c.p.s) [178]. The SPDs are mounted on

the still stage of the dilution refrigerator at ∼ 700 mK. Single-mode optical fibers (Corning SMF-28)

are passed into the refrigerator through vacuum feedthroughs and coupled to the SPDs via a fiber

sleeve attached to each SPD mount. Proper alignment of the incoming fiber with the 15 µm × 15 µm

square area of the SPD nanowire is ensured by a self-aligned mounting system incorporated into the

design of the SPD [178]. The radio-frequency output of each SPD is amplified by a cold-amplifier

mounted on the 50 K stage of the refrigerator as well as a room-temperature amplifier, then read

out by a triggered PicoQuant PicoHarp 300 time-correlated single photon counting module. By

systematically isolating the input optical fiber from environmental light sources and filtering out long

wavelength blackbody radiation inside the fridge we have achieved dark count rates of ∼ 4 (c.p.s.).

At just below the switching current of the detectors, we have measured a peak detection efficiency

of ηSPD = 68%, with . 20% variability depending on photon polarization.
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Publications

S. M. Meenehan, J. D. Cohen, G. S. MacCabe, and O. Painter, “Pulsed excitation dynamics of an

optomechanical crystal resonator near its quantum ground-state of motion,” in preparation (2015).

J. D. Cohen, S. M. Meenehan, G. S. MacCabe, A. H. Safavi-Naeini, F. Marsili, M. D. Shaw, and

O. Painter, “Phonon counting and intensity interferometry of a nanomechanical resonator,” Nature,

in press (arXiV:1410.1047) (2015).

S. M. Meenehan, J. D. Cohen, S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini, M. Aspelmeyer, and

O. Painter, “Silicon optomechanical crystal resonator at millikelvin temperatures,” Phys. Rev. A,

vol. 90, 011803(R) (2014).

A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, J. Chan, S. Gröblacher, and O. Painter, “Two-

dimensional phononic-photonic bandgap optomechanical crystal cavity,” Phys. Rev. Lett., vol.

112, 153603 (2014).
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[59] S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab,
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