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ABSTRACT 

These studies explore how, where, and when representations of variables critical to decision-

making are represented in the brain. In order to produce a decision, humans must first 

determine the relevant stimuli, actions, and possible outcomes before applying an algorithm 

that will select an action from those available. When choosing amongst alternative stimuli, 

the framework of value-based decision-making proposes that values are assigned to the 

stimuli and that these values are then compared in an abstract “value space” in order to 

produce a decision. Despite much progress, in particular regarding the pinpointing of 

ventromedial prefrontal cortex (vmPFC) as a region that encodes the value, many basic 

questions remain. In Chapter 2, I show that distributed BOLD signaling in vmPFC represents 

the value of stimuli under consideration in a manner that is independent of the type of 

stimulus it is. Thus the open question of whether value is represented in abstraction, a key 

tenet of value-based decision-making, is confirmed. However, I also show that stimulus-

dependent value representations are also present in the brain during decision-making and 

suggest a potential neural pathway for stimulus-to-value transformations that integrates these 

two results. 

 

More broadly speaking, there is both neural and behavioral evidence that two distinct control 

systems are at work during action selection. These two systems compose the “goal-directed 

system”, which selects actions based on an internal model of the environment, and the 

“habitual” system, which generates responses based on antecedent stimuli only. 

Computational characterizations of these two systems imply that they have different 

informational requirements in terms of input stimuli, actions, and possible outcomes. 

Associative learning theory predicts that the habitual system should utilize stimulus and 

action information only, while goal-directed behavior requires that outcomes as well as 

stimuli and actions be processed. In Chapter 3, I test whether areas of the brain hypothesized 

to be involved in habitual versus goal-directed control represent the corresponding theorized 

variables. 
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The question of whether one or both of these neural systems drives Pavlovian conditioning 

is less well-studied. Chapter 4 describes an experiment in which subjects were scanned while 

engaged in a Pavlovian task with a simple non-trivial structure. After comparing a variety of 

model-based and model-free learning algorithms (thought to underpin goal-directed and 

habitual decision-making, respectively), it was found that subjects’ reaction times were better 

explained by a model-based system. In addition, neural signaling of precision, a variable 

based on a representation of a world model, was found in the amygdala. These data indicate 

that the influence of model-based representations of the environment can extend even to the 

most basic learning processes. 

 

Knowledge of the state of hidden variables in an environment is required for optimal 

inference regarding the abstract decision structure of a given environment and therefore can 

be crucial to decision-making in a wide range of situations. Inferring the state of an abstract 

variable requires the generation and manipulation of an internal representation of beliefs over 

the values of the hidden variable. In Chapter 5, I describe behavioral and neural results 

regarding the learning strategies employed by human subjects in a hierarchical state-

estimation task. In particular, a comprehensive model fit and comparison process pointed to 

the use of “belief thresholding”. This implies that subjects tended to eliminate low-

probability hypotheses regarding the state of the environment from their internal model and 

ceased to update the corresponding variables. Thus, in concert with incremental Bayesian 

learning, humans explicitly manipulate their internal model of the generative process during 

hierarchical inference consistent with a serial hypothesis testing strategy. 
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C h a p t e r  1  

INTRODUCTION 

Decision Neuroscience and Neuroimaging 

Through action we exert control over the world. With control, we increase the likelihood of 

our survival (Fuster, 2008). From homeostatic regulation (Rangel, 2013) to risk management 

(Symmonds, Bossaerts, & Dolan, 2010), the selection of good actions is a critical task for 

any nervous system. Understanding the neural and computational mechanisms of decision-

making will aid us in the treatment of its pathologies (P. Read Montague, Dolan, Friston, & 

Dayan, 2012) and also, in a more distant future, enable us to create machines that might 

exhibit some signs of intelligent behavior (Russell & Norvig, 2009). In addition, cross-

species (B. Balleine & O'Doherty, 2010; Rushworth, Mars, & Summerfield, 2009) and multi-

scale comparative analyses indicate that at least some neurobiological, algorithmic, and 

computational principles of decision-making (Franklin & Wolpert, 2011) are conserved 

across many domains of action. Thus, elucidating the decision-making process is of 

fundamental importance to understanding both the brain and the human experience. 

For many years, a major obstacle in this research program was the lack of in vivo recordings 

of neural signaling in the human brain with reasonable spatial and temporal resolutions. 

However, advances in non-invasive brain recording techniques have allowed us 

unprecedented access to functional activity within the human brain. In particular, in 1992 a 

seminal study (Ogawa et al., 1992) showed that a neuroimaging technique known as 

functional magnetic resonance imaging (fMRI) allowed us to non-invasively record blood-

oxygen-level dependent (BOLD) signals in the brain, effectively using our own blood as a 

contrast agent for magnetic resonance. Neural activity leads to increased energy demands in 

order to hyperpolarize cells following spiking, and the BOLD signal measures the 
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concomitant relative increase in regional oxygenated blood flow. Due to the lack of physical 

damage (for example, with intracranial recording) or effects of radiation (e.g., positron 

emission tomography) and comparatively excellent data resolutions, fMRI came to dominate 

modern neuroimaging. Combined with the application of sophisticated machine learning 

algorithms to analyze this neural data and the computational modeling of behavior in order 

to make predictions regarding the internal variables used by the brain, recent years have seen 

rapid advances in our understanding of human decision-making from a coarse neuro-

computational standpoint (John P. O'Doherty, 2011; Rangel & Hare, 2010; Rushworth & 

Behrens, 2008). 

Multi-Voxel Pattern Analysis 

A typical fMRI-based experiment consists of three steps: (i) the acquisition of imaging data 

while subjects perform a task, (ii) the pre-processing of said data, usually automated by a 

software package such as FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) or SPM 

(http://www.fil.ion.ucl.ac.uk/spm/), and (iii) the general linear modeling (GLM) of voxel 

responses via a haemodynamic response model as a function of task variables. This allows 

one to map predicted neural signals onto distinct regions of the brain, for example, BOLD 

signals in visual cortex would transiently increase when a stimulus is presented on-screen 

and motor cortex would be more active when a response is performed. In 2001, a novel 

approach to fMRI analysis was successfully attempted (Haxby et al., 2001) which is now 

known as multi-voxel pattern analysis (MVPA). In this study, distinct exemplars of faces 

and houses were “decoded” from patterns of BOLD signaling while subjects passively 

viewed images of these stimuli. More specifically, volumes of neural data were labeled with 

the exemplar being viewed during that scan, then the data was split into “training” and 

“testing” data before a classification algorithm (Bishop, 2006) or “classifier” learned how to 

distinguish between neural samples contained in the training data as a function of the labels. 

Finally, the classifier was asked to predict the labels of the held-out data samples in order to 
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estimate a generalization accuracy score. If this score was significantly above chance then it 

was determined that there existed multi-voxel activity patterns within the neural data which 

encoded the identities of the exemplars in question. 

To this day, most MVPA is based on variations of this basic analysis template. The progress 

made using this approach is exemplified by the fact that less than ten years later, a movie 

being watched by subjects in the scanner could be re-constructed (Nishimoto, Vu, & Gallant, 

2010) from independent clips of film (drawn from the Youtube video website). Essentially, 

MVPA reverses step (iii) of general linear modeling by attempting to predict decision 

variables from the neural data rather than predicting neural data from decision variables 

(Naselaris, Kay, Nishimoto, & Gallant, 2011; Pereira, Mitchell, & Botvinick, 2009). Since a 

model mapping data to variables does not necessarily require a response model defined a 

priori, MVPA attempts to take advantage of fine-grained statistical correlations across 

multiple voxels in order to makes its predictions (Haynes & Rees, 2006). The source of these 

distributed patterns of BOLD signaling, whether it be based on sampling from varied 

distributions of neuronal populations (Kamitani & Tong, 2005), coarse regional connectivity 

profiles and neural organization (Op de Beeck, 2010), or complex spatiotemporal filtering 

(Kriegeskorte, Cusack, & Bandettini, 2010), is still an open question. However many 

predictions regarding the representational contents of brain algorithms (which do not depend 

on the specification of a neuronal model) can be tested using MVPA only and not via GLM. 

For example, if we hypothesized that a brain region X contains motor instructions for a 

particular response A, a GLM might conclude that region X is active while such a 

representation is made, but only the analysis of the pattern of activity within X would be 

conclude that a specific motor command A is being represented and not another motor 

command B. Furthermore, representational dissimilarity analysis (Kriegeskorte, 2009; Mur, 

Bandettini, & Kriegeskorte, 2009) (one of myriad of MVPA techniques) can produce a 

distance function which relates objects cognitively in a “space” of internal representations, 

 



15 

 

thus addressing the question of how stimuli are represented in cognition and not just where 

in the brain. 

Feature selection forms a crucial part of MVPA, that is, what voxels do we input into our 

pattern analysis algorithm? The first paper (Haxby et al., 2001) to apply MVPA to 

neuroimaging data simply entered all available voxels into their decoding algorithm. 

Although this increases the chance of a significant classification by maximizing the number 

of features that the algorithm can take advantage of, it does so at the expense of localizing 

the representations to a specific region. One particular approach to this issue, which I employ 

in two studies in this thesis, is the “searchlight” technique (Chen et al., 2011; Kriegeskorte, 

Goebel, & Bandettini, 2006). Briefly, MVPA is performed within a sphere of voxels centered 

at each voxel in the brain. This allows one to assign a decoding score to each voxel in the 

brain based on the information available locally around that voxel. After smoothing and 

performing group-level statistical tests on these “decoding maps” of the brain, the 

experimenter can conclude where in the brain specific identities are being represented. In 

summary then, MVPA can estimate what, where, and how stimuli and variables are 

represented in the brain. Knowing what is being represented in the brain at specific 

timepoints during a decision progress significantly restricts the model space of plausible 

algorithms being implemented. 

Value-Based Decision-Making 

Many decision-making processes are modeled computationally as a value comparison 

problem. That is, a subjective value is assigned to each potential option and then these values 

are compared in order to produce a decision. This notion of value-based decision-making has 

a long history in machine learning (R. Sutton & Barto, 1998) and psychology (Schultz, 2006) 

and forms the cornerstone of micro-economic theory in the form of expected utility (von 

Neumann & Morgenstern, 1944). Though expected utility theory (EUT) has been shown to 

fail in some circumstances (Allais paradox) and leads to paradoxical predictions in others 
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(Ellsberg paradox), the core theoretical assumption of value representation and comparison 

has remained intact. In fact, refinements of EUT are generally thought of as context- and 

subject-dependent variations in what is considered valuable, and thus are modeled as 

adjustments to the “final common signal” of value (prospect theory). Thus, centuries of 

decision-making theories and experiments have deemed value to be of fundamental 

importance and therefore support a strong hypothesis that value is of neurobiological 

relevance. 

For many years, lesion studies were the only means of investigating the neurobiological 

foundry of decision-making. Despite the imprecise localization of lesion mapping both in the 

anatomical and functional domains, a broad consensus was formed that ventromedial 

prefrontal cortex (vmPFC) was of critical importance in action selection and inhibitory 

control. Lesions of this region lead to inappropriate and impulsive decision-making both 

from economic and social points of view, most famously exemplified in the case of Phineas 

Gage (Damasio, Grabowski, Frank, Galaburda, & Damasio, 1994; Harlow, 1848). Through 

carefully designed behavioral experiments, it became understood that, algorithmically, 

patients who suffered from a lesion of this brain region had trouble prospectively evaluating 

decisions and their outcomes and also integrating environment feedback into future decisions 

(Bechara, Damasio, Damasio, & Anderson, 1994; Szczepanski & Knight, 2014). 

Computationally, this effect is probably best observed in reversal learning tasks where 

patients perseverate in making decisions that are no longer rewarding (Fellows & Farah, 

2003). Both of these deficits are consistent with an impaired ability to assign values to 

decisions. Thus, it was not unexpected to find that one of the most consistent BOLD signals 

subsequently identified in the human brain was a parametric correlate of subjective value in 

vmPFC (John P. O'Doherty, 2004). 
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Value Abstraction 

A critical assumption is that values are represented and compared in a manner divorced from 

the stimulus to which they are associated, thus addressing the problem of value comparison 

between distinct stimuli with no common features (for example, a risky gamble and a 

chocolate bar). Neurally, one would hypothesize that there exists a region of the brain in 

which value is represented in the same manner regardless of the specific stimulus under 

consideration. In a series of electrophysiological experiments in which monkeys made binary 

choices between options which varied in the identity and amount of juice, it was shown that 

distinct sets of cells in orbitofrontal cortex (OFC) represented, via firing rate, the offer values 

of the two juice options and also the value of the chosen option regardless of the motor 

response requirements or sensory aspects of the task (Padoa-Schioppa & Assad, 2006). In a 

follow-up, the same experimenters found that these neural representations of economic value 

were “menu-invariant” (Padoa-Schioppa & Assad, 2008), consistent with the requirement of 

transitivity in EUT. That is, cells represented the value of a juice regardless of the alternative 

option in the choice. Interestingly, in contrast, some cells in OFC exhibited binary responses 

to the identity of a juice and did not reflect the amount or value of said juice. Furthermore, 

in other monkey electrophysiological experiments (S. Kennerley, Behrens, & Wallis, 2011; 

S. W. Kennerley, Dahmubed, Lara, & Wallis, 2009), abstract value encoding schemes were 

observed in anterior cingulate cortex (ACC, including the subgenual cingulate which forms 

a component of vmPFC in humans). Neurons in this region rate coded value in a multiplexed 

fashion over three qualitatively distinct decision variables, namely reward probability, 

reward magnitude, and effort cost. In contrast, in more ventral potions of the prefrontal cortex 

(PFC), neurons tended to only encode the value of two of the three or just one of the three 

variables. In summary, these data indicated that stimulus-dependent signaling was present in 

OFC during the choice process, in concert with abstract value representations in more dorsal 

portions of medial PFC. 
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In humans, this hypothesis was confirmed in a task requiring subjects to make decisions 

regarding three different categories of items, namely food items, sums of money, and 

material goods (Vikram S. Chib, Antonio Rangel, Shinsuke Shimojo, & John P. O'Doherty, 

2009). Using GLMs, it was found that BOLD signaling in an overlapping region of vmPFC 

correlated with the subjective value of items drawn from all three categories. However, there 

remained the possibility that the neural correlates of subjective value in vmPFC may have 

been based on stimulus-specific value representations in distributed activity patterns which 

were spatially smoothed as one of the standard pre-processing steps. Amongst other results, 

work described in Chapter 2 tested and rejected this possibility in an analogous experiment 

using multi-voxel pattern analysis. 

Value Construction 

A measure on this abstract uni-dimensional space of values is sometimes referred to as a 

“common currency” (P Read Montague & Berns, 2002). Assuming that stimuli 𝑥𝑥 are 

composed of elemental attributes or features with stimulus-specific parameters 𝑥𝑥𝑖𝑖 and 

weights 𝑣𝑣𝑖𝑖 associated with each attribute, the integration hypothesis of subjective value 

(Rangel & Clithero, 2014) proposes a weighted L1 norm for stimulus value computation 

𝑉𝑉(𝑥𝑥) ∶= �𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖
𝑖𝑖

 

Qualitatively, this theory has some empirical support. Studies have found neural signals (and 

modulation of functional connectivity) corresponding to the valuation of a specific attribute, 

namely “healthiness” in dlPFC (T. Hare, Camerer, & Rangel, 2009). Also, the same authors 

found that this attribute could be exogenously manipulated via putative attentional 

mechanisms (T. A. Hare, J. Malmaud, & A. Rangel, 2011). Together, these studies indicate 

that stimulus features make dissociable contributions to the overall value of a stimulus, that 

these contributions may be computed in distinct brain regions, and that attention can 
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modulate this contribution. Further evidence for regional differences in reward processing 

comes from an early neuroimaging meta-analysis (Kringelbach & Rolls, 2004) which found 

that neural signals for more abstract reinforcers (e.g., money) tended to be concentrated in 

more anterior portions of OFC as opposed to representations of primary rewards (e.g., food) 

in posterior OFC. Taken together, these results suggest the possibility that value 

representations which are dependent on the identity of a stimulus may be detectable in the 

human brain while subjects are evaluating a choice. In Chapter 2, I tested this hypothesis and 

indeed found stimulus-dependent value representations in OFC organized along a 

posterior/anterior gradient whereby value for food items were encoded more posteriorly 

while material goods such as DVDs and books were represented more anteriorly (McNamee, 

Rangel, & O’Doherty 2013). The use of MVPA was critical in this endeavor since these 

value representations were distributed across voxels rather than independently rate coded 

(Jimura & Poldrack, 2012). 

Learning from Reinforcement 

In order to control the world through our action, we must understand how it works. Decisions 

are made based on information acquired through experience which we use to (i) build internal 

models of the generative structure of the world, (ii) understand the effect our actions have on 

it, and (iii) develop policies, or action priorities in given situations. The simplest learning 

algorithms model how we estimate associations between distinct stimuli, a process which is 

referred to as Pavlovian conditioning in classical psychology (Pavlov, 1927). For example, 

if stimulus 𝑋𝑋 (known as the conditioned stimulus) repeatedly precedes stimulus 𝑌𝑌 (the 

unconditioned stimulus), organisms learn to predict 𝑌𝑌 given the presence of 𝑋𝑋. In 

probabilistic terms, a representation of 𝑃𝑃(𝑌𝑌|𝑋𝑋) is acquired. Although humans and animals 

are capable of encoding probabilistic distributions, the equations of classical conditioning 

theory developed in the early half of the twentieth century focused on the relatively primitive 
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representation of an association strength 𝐴𝐴 between stimuli 𝑋𝑋 and 𝑌𝑌, that is updated for each 

experience: 

𝐴𝐴 ← 𝐴𝐴 + 𝛼𝛼(𝐼𝐼 − 𝐴𝐴) 

where 𝐼𝐼 is an indicator variable for the presence of 𝑌𝑌 soon after or in conjunction with 𝑋𝑋. 

This incremental updating rule is the basic computational template for many conditioning 

phenomena. One notable modification is the Rescorla-Wagner rule which incorporates 

“blocking” or competition between stimuli for predictions, 

𝐴𝐴𝑗𝑗 ← 𝐴𝐴𝑗𝑗 + 𝛼𝛼 �𝐼𝐼 −�𝐴𝐴𝑖𝑖
𝑖𝑖

� 

where 𝐴𝐴𝑖𝑖 represent the associability for a stimulus 𝑋𝑋𝑖𝑖. This rule implies that if the presence 

or occurrence of a stimulus is fully explained by alternative stimuli already, then no 

associability is assigned to stimulus 𝑋𝑋𝑗𝑗. This is equivalent to an important principle in 

Bayesian inference where the likelihood of a given event is scaled by the probability of that 

event based on the current model (see Appendix A for a detailed derivation). 

Even such a basic ability to predict the world can mean the difference between life and death. 

Rustling bushes 𝑋𝑋 could imply that the appearance of a lion 𝑌𝑌 is imminent to a gazelle. 

Compared to 𝑃𝑃(𝑍𝑍|𝑋𝑋) where 𝑍𝑍 is a harmless elephant, this example highlights the importance 

of the value of the predicted outcome from a decision-theoretic point of view. Thus, we 

would like to estimate the reward or loss associated with a stimulus or action (as in 

instrumental conditioning). This moves us from the domain of associative learning to reward 

learning. For example, one might compute a value estimate 𝑉𝑉�(𝑎𝑎) from rewards 𝑅𝑅 obtained 

by selecting a particular action 𝑎𝑎 as the average reward obtained on previous performances 

of that action: 
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𝑉𝑉�(𝑎𝑎) ∶=
𝑅𝑅1 + 𝑅𝑅2 + ⋯+ 𝑅𝑅𝑛𝑛

𝑛𝑛
  

In this way, one can assign a subjective value to an action that inputs into the decision 

process. However, this averaged representation of reward based on a “batched” update is not 

consistent with real “online” interactions in the environment that occur continuously. This 

motivates the use of the aforementioned incremental updating algorithms for reward 

learning: 

𝑉𝑉𝑡𝑡+1(𝑎𝑎) =  𝑉𝑉𝑡𝑡(𝑎𝑎) + 𝛼𝛼(𝑅𝑅 − 𝑉𝑉𝑡𝑡(𝑎𝑎)) 

The relationship between a reward variable 𝑅𝑅 and its estimated value is non-trivial, primarily 

because a reward may have different values depending on the context in which it is 

considered. For example, the value of food is dependent on an animal’s internal state of 

hunger. Another complication is that reward may not be directly contingent on an action but 

require multiple sequential actions to be performed. Such sequential decision-making 

environments are modeled as Markov Decision Processes (MDPs), which consist of the 

following 5-tuple (R. Sutton & Barto, 1998): 

(𝑆𝑆, {𝐴𝐴𝑠𝑠, 𝑠𝑠 ∈ 𝑆𝑆},𝑃𝑃,𝑅𝑅, 𝛾𝛾) 

𝑆𝑆 denotes a set of states which could refer to parametric combinations of external factors and 

variables internal to an agent. 𝐴𝐴𝑠𝑠 is the set of actions available in state 𝑠𝑠 ∈ 𝑆𝑆, 𝑃𝑃: 𝑆𝑆 × 𝐴𝐴 × 𝑆𝑆 →

[0,1] is a transition probability function 𝑃𝑃(𝑠𝑠′|𝑎𝑎, 𝑠𝑠), which describes the probability of 

arriving in state 𝑠𝑠′ after taking action 𝑎𝑎 in state 𝑠𝑠. 𝑅𝑅 is a reward function where 𝑅𝑅(𝑠𝑠′,𝑎𝑎, 𝑠𝑠) 

describes the immediate reward acquired after the transition (𝑠𝑠′,𝑎𝑎, 𝑠𝑠), where 𝛾𝛾 ∈ [0,1] is a 

factor that exponentially discounts future rewards and thus weighs the relative importance of 

immediate and future rewards. Given that no agent in a naturalistic environment can be 

considered immortal, 𝛾𝛾 < 1 is a reasonable assumption and should be tuned to the expected 
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time horizon of the environment. The goal of an agent in such an environment is to compute 

a control policy which maximizes expected future reward 

𝑉𝑉(𝑡𝑡) = 𝐸𝐸[𝑅𝑅𝑡𝑡 + 𝛾𝛾1𝑅𝑅𝑡𝑡+1 + 𝛾𝛾2𝑅𝑅𝑡𝑡+2 + ⋯ ] 

𝑉𝑉(𝑡𝑡) = 𝐸𝐸 ��𝛾𝛾𝑖𝑖𝑅𝑅𝑡𝑡+𝑖𝑖
𝑖𝑖

� 

where time is indexed by 𝑡𝑡 and 𝑅𝑅 implicitly depends on the selected state-action transitions. 

Within this framework, a decision trajectory through many transitions may forgo many 

unrewarded actions in favor of a large final reward. Learning such policies raises the 

temporal “credit assignment” problem of delayed reinforcement. If an agent has to select 

many actions, only the last of which is rewarded, how to does it assign positive values to the 

distal non-rewarded actions? A popular approach to this problem is temporal difference 

learning (TD-learning) (R. Sutton & Barto, 1998), which is described by the following 

equations in the Pavlovian case (where an agent passively receives rewards at times indexed 

by 𝑡𝑡): 

𝑉𝑉�(𝑡𝑡) ← 𝑉𝑉�(𝑡𝑡) + 𝛼𝛼𝛿𝛿𝑡𝑡 

𝛿𝛿𝑡𝑡 = 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝑉𝑉�(𝑡𝑡 + 1) − 𝑉𝑉�(𝑡𝑡) 

𝑉𝑉�(𝑡𝑡) is the algorithm’s estimate of expected future reward, which is linearly updated by a 

prediction error 𝛿𝛿𝑡𝑡 scaled by a learning rate 𝛼𝛼. The prediction error 𝛿𝛿𝑡𝑡 is composed of the 

difference between the reward received plus the estimated future reward at time 𝑡𝑡 + 1 and 

the current estimate of 𝑉𝑉�(𝑡𝑡). This local updating rule is possible due to the fact that the 

expected reward function satisfies Bellman’s principle of optimality (Bellman, 1952). We 

can derive a new form of the expected reward function in order to expose Bellman’s principle 

in this situation: 
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𝑉𝑉(𝑡𝑡) = 𝐸𝐸 �� 𝛾𝛾𝑖𝑖𝑅𝑅𝑡𝑡+𝑖𝑖
𝑖𝑖=0…

� 

𝑉𝑉(𝑡𝑡) = 𝐸𝐸 �𝑅𝑅𝑡𝑡 + � 𝛾𝛾𝑖𝑖𝑅𝑅𝑡𝑡+𝑖𝑖
𝑖𝑖=1…

� 

𝑉𝑉(𝑡𝑡) = 𝐸𝐸[𝑅𝑅𝑡𝑡] + 𝛾𝛾𝛾𝛾(𝑡𝑡 + 1) 

TD-updating works by propagating reward prediction errors backwards through experienced 

trajectories. Initially, early states will be incorrect in their estimate of expected future reward 

while states proximal to the actual rewards will become more accurate. Over time, the 

estimates of expected rewards at future states will be used for reward prediction errors for 

earlier states and eventually they will be associated with accurate predictions of reward. 

Despite the simplicity of this approach, it has been successfully used to train an artificial 

agent to learn to play backgammon at an elite level (Tesauro, 1995), exhibiting its capacity 

for generating complex, apparently intelligent behaviors. Importantly, neural signals 

corresponding to the aforementioned prediction errors 𝛿𝛿𝑡𝑡 have been identified in 

dopaminergic neurons in the nervous system of several species (McClure, Berns, & 

Montague, 2003; Schultz, Dayan, & Montague, 1997), lending weight to the notion that 

temporal difference learning is being used in the brain. 

Multiple Mechanisms 

Based on classic early animal experiments we have described a reward-based associative 

account of reinforcement learning. However, there are many alternative algorithms which 

seek to learn a model of the MDP environment itself by estimating the reward and transitions 

functions directly (Engel, 2005). Based on this information, one can compute the expected 

future reward contingent on an action by brute force or sampling and thus produce a control 

policy. The collection of algorithms which take this approach are broadly referred to as 
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“model-based” as opposed to the “model-free” algorithms such as TD-learning and Q-

learning described previously. This distinction echoes the difference (Spence, 1950) between 

the development and use of “cognitive maps” in decision-making (Tolman, 1948) versus the 

reliance on conditioned stimulus-response behaviors (Pavlov, 1927). Since the early days of 

instrumental conditioning, evidence has accumulated that animals make decisions based on 

both of these systems depending on many environmental factors. A primary factor appears 

to be time, or more specifically, the reduction in uncertainty over time. The more experience 

an animal has with an action-outcome contingency, the more automated or habitual the 

selection of this action becomes. In contrast, in early learning periods, decision-making 

remains “goal-directed” in the sense that animals incorporate predictions regarding the 

expected outcome of an action during action evaluation. Two behavioral assays are used 

(Bernard W. Balleine & Anthony Dickinson, 1998) to distinguish between these modes of 

decision-making: (i) outcome devaluation and (ii) contingency degradation which test for 

sensitivity to rewards and transition probabilities, respectively. Neurobiologically, the neural 

substrates subserving these two methods of action selection have been localized to 

dorsolateral striatum and infralimbic or orbitofrontal cortex in rodents using a range of 

techniques from lesions to optogenetics (Jones et al., 2012). In humans, homologous regions 

such as the posterior putamen for habits (E. Tricomi, B. Balleine, & J. P. O'Doherty, 2009) 

and ventromedial prefrontal cortex for goal-directed action selection (Glascher, Daw, Dayan, 

& O'Doherty, 2010; Alan N. Hampton, Peter Bossaerts, & John P. O'Doherty, 2006; John P. 

O'Doherty, 2004) have been implicated. The essential distinction between these systems is 

the manner in which decision value is computed, whereby habits are based on cached or pre-

computed values that can be retrieved in the manner of a look-up table while goal-directed 

decision values are generated online. A theoretic study mapped habits and goal-directed 

decisions onto model-free and model-based reinforcement learning systems, respectively 

(Nathaniel D. Daw, Yael Niv, & Peter Dayan, 2005). 
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Questions of Representation 

Note that these two systems require different environment inputs in order to learn and control. 

For example, since the habit system is not outcome-sensitive, one expects that the neural 

system that generates a habitual action response would not receive or contain a representation 

of the predicted outcome(s). In contrast, the goal-directed system requires both action and 

outcome information in order to generate a decision. In Chapter 4, I describe an fMRI-MVPA 

study in which we decoded actions and outcomes at the time of the presentation of an initial 

stimulus (i.e., before an action is performed or an outcome received). We localized action 

(but not outcome) representations to posterior putamen in agreement with previous GLM-

based analyses (Elizabeth Tricomi et al., 2009) and showed that dlPFC contained 

overlapping representations of actions and outcomes during the putative decision phase. We 

also show that the action decoding accuracy in putamen and dlPFC (but not other regions 

such as vmPFC) correlated with reaction times on a per-subject basis, thus providing 

evidence that these regions are causally involved in generating responses. 

Hierarchical Reinforcement Learning1 

Many RL algorithms fail “in the real world” due to a problem with dimensionality, in which 

there are too many states over which to integrate information to make decisions let alone 

learn (Barto & Mahadevan, 2003). It has been proposed that state-space structures be 

compressed in order to make calculations tractable. In particular, multiple actions (and their 

interceding states) might be concatenated into “meta-actions” or, more generally, “options” 

(R. S. Sutton, Precup, & Singh, 1999). Decision policies would be developed over these 

options rather than the individual actions, thus reducing the computational complexity of any 

policy-learning algorithm. An example of an option might be “go to the lab”, which would 

be composed of more basic actions “leave home”, “catch bus”, and “enter building”. Of 

1 The next three subsections are adapted with permission from (O’Doherty, Lee, & McNamee, 2014). 
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course, these basic actions can themselves be composed of even more elemental actions 

reflecting a nested hierarchy of action complexity. It is has been suggested that the brain 

might implement such a hierarchical scheme, with different levels of a hierarchy tasked with 

selecting actions at different levels of abstraction. (Botvinick, Niv, & Barto, 2009). The 

notion of a hierarchy in RL appeals to a long literature in cognitive neuroscience suggesting 

the existence of a cognitive hierarchy within prefrontal cortex, with certain brain systems 

sitting higher up in the hierarchy (possibly located more anteriorly within prefrontal cortex) 

and thereby exerting control over systems lower down in the hierarchy (Badre & D'Esposito, 

2009; Koechlin, Ody, & Kouneiher, 2003). Consistent with the hierarchical RL notion, a 

recent neuroimaging study has found that neural activity in ACC and insula correlated with 

prediction errors based on “pseudo-rewards” (representing the completion of an elemental 

action forming part of a rewarding option) in a temporally extended, multi-step decision-

making task (Ribas-Fernandes et al., 2011). 

Bayesian Approaches to Reinforcement Learning 

Another important trend in the literature has been to use Bayesian inference to learn about 

reward distributions, or any other task-related decision variable, instead of using an RL 

approach involving reward prediction errors (Behrens, Woolrich, Walton, & Rushworth, 

2007; Friston et al., 2013; A. N. Hampton, P. Bossaerts, & J. P. O'Doherty, 2006; O'Reilly, 

Jbabdi, & Behrens, 2012). One advantage of the Bayesian approach is that this method 

provides a natural way to resolve the issue of how the rate at which a belief about the world 

is updated in the face of new information is set as a function of the environment (Yu & 

Dayan, 2003) . In particular, among other factors, the amount of volatility present in the 

environment (the extent to which reinforcement contingencies are subject to change), should 

influence the rate at which new information is incorporated into one’s beliefs, and this can 

be modeled in a very straightforward way in a Bayesian framework (Behrens et al., 2007). 

Another advantage of Bayesian inference is that because these models encode 

representations of full probability distributions (or approximations thereof), a natural 
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consequence is that it is easy to extract a measure of the degree of uncertainty (or, conversely, 

precision) one has in a particular belief. Such uncertainty or precision signals can be used not 

only to inform that rate at which one should update learning rates (see (Payzan-LeNestour & 

Bossaerts, 2011), but can also be used to inform decision-strategies such as when to explore 

or when to exploit a given decision option (i.e., one might want to explore an option about 

which one is maximally uncertainty) (Badre, Doll, Long, & Frank, 2012; Donoso, Collins, 

& Koechlin, 2014; Payzan-Lenestour & Bossaerts, 2012; Schwartenbeck, Fitzgerald, Dolan, 

& Friston, 2013). Supporting the relevance of a Bayesian framework for understanding the 

neural implementation of RL, uncertainty and precision signals have been reported in a 

number of brain structures, including the midbrain, amygdala, and prefrontal and parietal 

cortices (Payzan-LeNestour, Dunne, Bossaerts, & O'Doherty, 2013; Prevost, McCabe, 

Jessup, Bossaerts, & O'Doherty, 2011; Prevost, McNamee, Jessup, Bossaerts, & O'Doherty, 

2013; Schwartenbeck, FitzGerald, Mathys, Dolan, & Friston, 2014; K. Wunderlich, U. R. 

Beierholm, P. Bossaerts, & J. P. O'Doherty, 2011).  However, it is important to note that 

while Bayesian approaches have considerable appeal due to their elegance and appeal to 

optimality, it remains challenging to definitively ascertain whether or not the brain is literally 

implementing Bayesian inference, and it is often possible to capture many of the same 

features of Bayesian models, such as flexible adjustments of learning rate, or a representation 

of variance or uncertainty in a learned belief with non-Bayesian (Li, Schiller, Schoenbaum, 

Phelps, & Daw, 2011; John M. Pearce & Geoffrey Hall, 1980; Preuschoff & Bossaerts, 2007; 

K. Wunderlich et al., 2011) or hybrid Bayesian-RL approaches (Dearden, Friedman, & 

Andre). 

Learning and Inference over State-Space 

In many typical RL applications, the states and actions available in those states are defined 

from the outset, i.e., used as input into the algorithm and not considered further.  However, 

perhaps the biggest single challenge for RL agents is how to determine the relevant states 

and actions in the first place: when faced with noisy sensory information from the world, 
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how does the agent determine the relevant features that constitute a state, and then identify 

what are the relevant actions in that state? (Ahmad & Yu, 2013; Gershman & Niv, 2010; 

Kwok & Fox, 2004). This problem is essentially already being worked on by neuroscientists 

studying sensory perception and sensorimotor learning, as it depends on the capacity to 

segment and identify relevant objects and contexts and determine actions (Poggio & Ullman, 

2013; Ridderinkhof, 2014; Shadlen & Kiani, 2013; Wolpert, Diedrichsen, & Flanagan, 

2011).  One approach to this problem in the neural RL community has involved setting up 

an experimental situation in which a given stimulus has multiple dimensional attributes (e.g., 

shape, color, motion). Inspired by earlier cognitive set-shifting tasks (Milner, 1963; Robbins, 

1996), one of these dimensions is unbeknownst to the participant, selected to be “relevant” 

in terms of being associated with a reward, and the goal of the agent is to work out which 

attribute is relevant, as well as to work out which exemplar within an attribute (e.g., a green 

color vs a red color) is actually reinforced (R. C. Wilson & Y. Niv, 2011; K. Wunderlich et 

al., 2011). Bayesian inference or RL can then be used to establish the probability that a 

particular dimension is relevant, which can then be used to guide further learning about the 

value of individual exemplars within a dimension.  

The ability to construct a simplified representation of the environment focused only on 

essential details reduces the complexity of the state-space encoding problem. One way to 

accomplish this is to represent states by their degree of similarity to other states, either via 

relational logic (Kumaran & Maguire, 2009), transition statistics (Schapiro, Rogers, 

Cordova, Turk-Browne, & Botvinick, 2013), or feature-based metrics (Konidaris, 

Scheidwasser, & Barto, 2012; Mnih et al., 2013). Furthermore, the construction of 

generalized state-space representations can speed up state-space learning considerably by 

avoiding the time cost of re-learning repeated environmental motifs (e.g., if I learn how to 

open my first door, I can generalize this to all doors). 
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Latent Learning 

Part of the process of identifying the current state of an environment with respect to decision-

relevant variables is to accurately estimate the state of unobservable variables based on 

observable, conditionally related signals using hierarchical inference. This problem becomes 

particularly challenging when multiple distinct states must be estimated over as opposed to 

a binary state-space where the likelihood of each possible state is anti-correlated (K. 

Wunderlich, U. Beierholm, P. Bossaerts, & J. P. O'Doherty, 2011; Yang & Shadlen, 2007). 

Due to cognitive limitations, it is possible that humans use a serial hypothesis testing strategy 

when performing Bayesian inference over many states in order to simplify the inference 

process. More specifically, a person might eliminate a possible state from their “belief space” 

if its posterior probability falls below a fixed threshold and continue to perform inference 

over a reduced state-space. We investigated whether such manipulations of internal models 

are performed in a computational fMRI study, as reported in Chapter 5. 
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C h a p t e r  2  

STIMULUS-DEPENDENCY OF VALUE ENCODING IN VMPFC2 

In order to choose between manifestly distinct options it is suggested that the brain assigns 

values to goals using a common currency. While previous studies have reported activity in 

ventromedial prefrontal cortex (vmPFC) correlating with the value of different goal-stimuli, 

it remains unclear whether such goal-value representations are independent of the associated 

stimulus categories as required by a common currency. Using multi-voxel pattern analyses 

on fMRI data, a region of medial prefrontal cortex was found to contain a distributed goal-

value code that is independent of stimulus category. More ventrally in vmPFC, spatially 

distinct areas of the medial orbitofrontal cortex were found to contain unique category-

dependent distributed value codes for food and consumer items. These results implicate the 

medial prefrontal cortex in the implementation of a common currency and suggest a ventral 

versus dorsal topographical organization of value signals within vmPFC. 

 

2 Adapted with permission from (McNamee et al., 2013). 
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Introduction 

There is a considerable body of research demonstrating value signals in the brain while 

participants engage in a variety of decision-making tasks, particularly within the medial 

orbitofrontal and adjacent medial prefrontal cortices, collectively known as the ventromedial 

prefrontal cortex or vmPFC (T. Hare, O'Doherty, Camerer, Schultz, & Rangel, 2008; Kable 

& Glimcher, 2007; Padoa-Schioppa & Assad, 2006; H. Plassmann, J. P. O'Doherty, & A. 

Rangel, 2007; Rushworth & Behrens, 2008; Tom, Fox, Trepel, & Poldrack, 2007; L. 

Tremblay & Schultz, 1999). In order to enable decisions to be made between stimuli with 

fundamentally different qualities, it has been suggested that the brain uses a “common 

currency” in which values are assigned to different stimuli on a common neural scale (P Read 

Montague & Berns, 2002; John P O'Doherty, 2007; Rangel, Camerer, & Montague, 2008). 

Consistent with this hypothesis, several fMRI studies have reported overlapping univariate 

value signals in vmPFC while human subjects evaluate different types of goods such as food, 

money, books, DVDs, clothes, and social rewards (Vikram S. Chib et al., 2009; FitzGerald, 

Seymour, & Dolan, 2009; D. J. Levy & Glimcher, 2011; Lin, Adolphs, & Rangel, 2011).  

However, the finding of overlapping neural activations representing goal-value for distinct 

stimuli in a univariate manner does not provide sufficient evidence for the existence of a 

stimulus-independent goal-value code, as required by the common currency hypothesis. 

There remains the possibility that an area exhibiting scaling with goal-values in a similar 

manner across different categories could in fact be composed of distributed and distinct yet 

spatially overlapping goal-value codes for different item categories. The first aim of this 

study was to determine whether distributed value signals within the vmPFC are unique for 

each category of good, even if such value signals overlap spatially, or whether by contrast 

there exists a truly generic common value signal in which the value of each category of good 

is encoded using the same distributed code. 

Even if there is a common currency to facilitate comparisons across goals of different types 

at choice time, it is also necessary to represent unique goal-specific value codes. This is 
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because in order to compute the current incentive value of particular goals, the specific 

sensory properties of a goal-outcome must be integrated together with the organism’s current 

motivational state. For instance, the goal-value of salted peanuts and a soda will differ 

markedly depending on whether an individual is salt-deprived or thirsty. Moreover, 

according to attribute integration theories of value computation, the summary value of a 

complex good is computed online by summing the value of component attributes of a good 

at the time of decision-making (Padoa-Schioppa, 2011; Rangel & Hare, 2010). This type of 

mechanism would also involve the encoding of a goal-value signal that depends on the 

sensory features of the goal-stimulus being valued as an intermediate step toward the 

computation of a generic value code. This motivates the second aim of this study: to test for 

distributed patterns of activity in which goal-values are encoded in a manner that is specific 

to particular categories of stimuli. 
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Results 

To address these aims, we modified a previously deployed paradigm (Vikram S. Chib et al., 

2009), in which we optimized the design for multi-voxel pattern analysis techniques 

(MVPA). MPVA has been successfully applied in many decision-making paradigms: 

economic value (Krajbich, Camerer, Ledyard, & Rangel, 2009), associative value (Kahnt, 

Heinzle, Park, & Haynes, 2010), reward modality (Clithero, Smith, Carter, & Huettel, 2011), 

value-based decisions (Alan N. Hampton & O'Doherty, 2007), and consumer choices (I. 

Levy, Lazzaro, Rutledge, & Glimcher, 2011; Tusche, Bode, & Haynes, 2010) have all been 

decoded from fMRI data. In this study, participants were scanned with fMRI while they 

reported their “willingness to pay” (a proxy measure of their stimulus valuation obtained via 

a Becker-DeGroot-Marschack auction process (Becker, DeGroot, & Marschak, 1964)) for 

three different classes of goods: food items, monetary lotteries, and non-comestible 

consumer items (Figure 1a). We trained a pattern classifier on distributed voxel activity to 

categorize stimuli at the time of decision-making as being either high or low in subjective 

value based on each participant’s ratings. Although each category was composed of different 

stimuli, many value-relevant features are common to all stimuli in each category and there is 

little to no overlap across categories. Thus we hypothesized that a classifier would be able to 

decode stimulus-independent value patterns across categories, while stimulus-dependent 

value representations should only be decodable within categories.  

This motivated the following classifier training procedures: first, to test for the presence of 

category-independent value signals, we trained a classifier to decode value from samples 

drawn from one of the categories, and tested its performance in recognizing the value of 

exemplars drawn from a different category. Second, to test for category-dependent value 

codes, we trained the classifier on one stimulus category only, and determined if this 

classifier could decode the value of independent exemplars drawn from that same category 

but not exemplars from other categories. Third, we tested for regions representing stimulus 
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identity (particularly the category from which the items were drawn) independent of stimulus 

value. 

Notably, all multivariate analyses were performed on data in which the regularly observed 

univariate value signals had been removed (see Online Methods), thus ensuring that the 

MVPA could not classify based on this smoothed “global” activity. On account of prior 

findings in which stimulus value signals and other decision-making variables have been 

localized to vmPFC (Elliott, Dolan, & Frith, 2000; John P. O'Doherty, Kringelbach, Rolls, 

Hornak, & Andrews, 2001; Padoa-Schioppa & Assad, 2006; L. Tremblay & Schultz, 1999; 

Wallis, 2007, 2011), we focused our analysis on this area. To elucidate the spatial 

organization of various value coding strategies in vmPFC, we correlated voxel t-scores from 

the group-level multivariate value analysis with those from the univariate to determine how 

these qualitatively different value signals relate to each other. Moreover, we correlated the 

multivariate value voxel t-scores with voxel location to assess spatial variation in value 

signals across vmPFC. These correlation analyses suggest a topographic map of value signals 

within vmPFC with respect to stimulus-dependency and coding complexity (the distributed 

or univariate nature of the neural activity). 

All reported value-related effects (both univariate and multivariate) are significant at a 

voxelwise FDR-adjusted threshold of p < 0.05 corrected for multiple comparisons within 

vmPFC. Effects which are unrelated to value representation are corrected across the whole 

brain at the same threshold (see Online Methods). A cluster extent threshold of 10 voxels 

was applied in all analyses. All conjunctions are performed using the “conjunction null” 

hypothesis (Nichols, Brett, Andersson, Wager, & Poline, 2005). 

 

Univariate stimulus value signals. 

To replicate previously reported univariate results (Vikram S. Chib et al., 2009) in which an 

overlapping area of vmPFC was found to correlate with the stimulus value of goods from all 

three categories, we performed the same univariate analysis (Vikram S. Chib et al., 2009) , 
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testing for overlapping correlations with WTP for the goods from each category. Consistent 

with our previous findings, an area of vmPFC showed a significant effect in a conjunction 

contrast (peak [x = 0, y = 35, z = −7], t = 3.14, Figure 1b). We then searched for a brain 

region expressing univariate value uniquely for a particular class of items by examining 

linear contrasts between the WTP regressor parameter estimates for each category. No part 

of vmPFC showed a significant correlation between smoothed BOLD activity and WTP for 

only one of the categories (even at p < 0.005 uncorrected). In a whole-brain analysis, some 

activations were observed in parts of the visual and premotor cortices for the trinkets category 

only (only at p < 0.005 uncorrected); however, these clusters did not survive a corrected 

threshold and are thus not interpreted further. This lack of category-dependent univariate 

value coding is in agreement with previous results (Vikram S. Chib et al., 2009). 

 

Distributed category-dependent stimulus value signals. 

Our multivariate analyses showed that regions of the medial orbitofrontal cortex (mOFC) 

encode the value for food and trinkets in a category-dependent manner (Figure 2a). A 

posterior region of mOFC exhibited food-dependent value coding (peak [x = −9, y =

17, z = −22], t = 3.05), while a more anterior region of mOFC exhibited trinket-dependent 

value coding (peak [x = −3, y = 41, z = −11], t = 3.86). We did not find evidence for a 

unique category-dependent value-coding region for monetary gambles in prefrontal cortex. 

To replicate these results independently, we repeated our procedures on a previously 

acquired dataset (Vikram S. Chib et al., 2009), which used a similar task, but was not 

optimized for MVPA. This additional analysis revealed the same pattern of category-

dependent stimulus value signals in mOFC, with an anterior locus encoding the value of 

trinkets and a posterior locus encoding the value of food goals (Supplementary Figure 2). 
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Spatial organization of the category-dependent value codes. 

Figure 2b plots MVPA t-values for the within-category analyses for all voxels in mOFC as 

a function of the MNI y-coordinate. Taking this t-score as an indication of the strength of the 

distributed value representation, we found that the strength of food value representation 

declined (r = −0.52) along the posterior-anterior axis, while the value representation 

strength of trinket items increased (r = 0.54). Linear regressions of these voxel accuracy t-

scores against their MNI y-coordinates, performed separately for each category, were highly 

significant according to parametric tests (p < 10−21). To control for correlation inflation 

caused by the spatial smoothing of the classification results, we ran a simulation analysis (see 

Online Methods). In this non-parametric test, no correlation drawn from the simulated null 

distribution exceeded the empirically observed correlations for either food or trinkets, 

thereby ruling out a spatial smoothing confound. These results therefore show an interaction 

between item category and the directionality of the encoding gradient. 

We also performed an analogous test using a leave-one-participant-out procedure to alleviate 

concerns about the possibility of a non-independence bias contributing to this result. This 

supplementary approach also yielded a significant interaction between decoding accuracies 

for food and trinket values as a function of posterior vs. anterior location within mOFC 

(Supplementary Figure 3). A similar analysis in mPFC showed that this category-dependent 

encoding gradient was not present in mPFC, and thus is specific to mOFC. 

Another potential concern is that our anterior/posterior gradient results are due to differences 

in generic properties (i.e., independent of the category definitions) of the goal-stimuli across 

categories such as, for instance, the familiarity of the stimuli or their availability to the 

participant. To address this, we obtained behavioral ratings for the stimuli from a subset of 

the original participants (8 out of 13) on five attribute scales ( “valence”, “intensity”, “liking”, 

“access”, and “familiarity”), and tested for a difference in average ratings between the food 

and trinket stimulus categories. At the group-level there was no significant difference with 

respect to any attribute (p > 0.05). There were few significant differences in some of these 
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attributes at the level individual subjects, and none of those differences were consistent 

across individuals (Supplementary Figure 4, Supplementary Table 2, Supplementary Table 

3, Supplementary Table 4). This analysis therefore suggests that potential generic stimulus 

attribute differences do not explain the anterior/posterior gradient results. 

 

Category-independent value signals. 

In contrast to the category-dependent value representation results in mOFC, a more dorsal 

region of vmPFC (overlapping with that from the univariate analysis, Figure 3a) was found 

to contain category-independent value signals. A classifier trained in this area using data 

from one item category was able to predict the value class (high vs. low) in either of the other 

stimulus categories as well as in its own category. At p < 0.05 SVFDR, all six cross-

category training/testing combinations were significant in a conjunction test (peak 

[x = −3, y = 41, z = 3], t = 2.40). 

A potential confound is the fact that for zero bids (which make up a large proportion of the 

low value items), no motor response had be performed, while high value items always require 

a button press. Thus the neural processes involved in generating the motor response may be 

contributing to the significant category-independent value classification signals in vmPFC. 

To account for this possibility, we performed a category-independent value searchlight 

analysis with zero bid trials omitted and tested whether there was a significant classification 

signal within a 20mm radius sphere surrounding the peak coordinates of the category-

independent value signal identified previously. We again found evidence for a category-

independent value signal, albeit at an uncorrected threshold due to the fewer number of trials 

and smaller value variance (peak [x = 9, y = 53, z = 7], t = 1.94). We also tested whether 

there were any clusters within the regions identified as representing value in a category-

dependent manner (using small volumes around the relevant coordinates), and found no 

significant classification signals. Thus, only the dorsal portion of vmPFC represented value 

in a category-independent manner regardless of whether zero bid trials were included. In 
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addition, we replicated the category-independent result in mPFC in the independent dataset 

from Chib et al. (Vikram S. Chib et al., 2009) (Supplementary Figure 2a). This provides 

further evidence against a possible motor confound since in that paradigm a motor response 

was required on all trials, yet the same result was found. 

Another issue is that the information on the bid feedback screen (Figure 1a) is correlated with 

our measurement of goal value, and thus activity could be driven by a signal elicited by the 

bid feedback as opposed to the goal-value per se. Evidence that this effect does not explain 

our results also comes from the additional analysis of the Chib et al. dataset (Vikram S. Chib 

et al., 2009). In that task, no feedback was given to the subjects at the end of each trial, yet 

we still find evidence of a category-independent value code in mPFC.  

 

Comparison between univariate and multivariate value codes. 

Our finding of both univariate and multivariate value signals within vmPFC raises the 

question of how these different value encoding mechanisms relate to each other. It is possible 

that a set of voxels might encode both a univariate code and a multivariate code 

simultaneously. Alternatively, a set of voxels might exclusively encode a univariate value 

signal but no multivariate value signal, or vice versa. In order to establish whether value 

signals within the vmPFC are either uniquely multivariate or univariate, or show multiplexed 

univariate and multivariate value coding, we computed correlations between multivariate 

decoding accuracy and univariate signal strengths separately for our two main areas of 

interest: the mOFC and the mPFC. A multiplexed signaling strategy would manifest as a 

relatively high correlation between multivariate decoding accuracy and univariate signal 

strength. Alternatively, a low correlation implies that either a univariate or multivariate signal 

is present but not both. These distinct possibilities have implications for the computational 

nature of value encoding processes occurring in a given region.  

On the basis of the findings for category-dependent multivariate value codes in mOFC, and 

univariate value signals more dorsally in mPFC, we hypothesized that the complexity of 
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value coding in vmPFC might follow a ventral/dorsal gradient such that value codes 

distributed along the orbital surface tend not to contain any univariate encoding, but that as 

one moves superiorly up the medial wall, value codes could come to increasingly reflect a 

univariate code in conjunction with multivariate signals, while at the same time shedding 

category-dependency in the value code. 

This hypothesis makes several predictions: (1) univariate value coding strength should 

increase along the z-axis while multi-voxel encoding should be more evenly divided between 

mOFC and mPFC, (2) the univariate signal should be relatively stronger than the multivariate 

signal in mPFC on average across voxels, and (3) univariate and multivariate coding should 

be more highly correlated dorsally in mPFC (such that both of these encoding strategies are 

present in the same voxels). We investigated this coding gradient hypothesis by testing each 

of these predictions in analyses which compare the univariate and within-category 

multivariate value coding results within mOFC and mPFC (Figure 3): (1) we correlated 

second-level voxel t-scores against voxel MNI z-coordinates across vmPFC (that is, mOFC 

and mPFC together) for the univariate and multivariate signals separately and examined 

whether these correlations were significantly different, (2) paired t-tests on a per-voxel basis 

were used to study how the relative strengths of these encoding strategies change across 

vmPFC, and (3) a correlation study was implemented to investigate whether the predictive 

relationship between univariate and multivariate signaling is different in these two 

subregions. 

To implement the first test, we correlated the multivariate and univariate value t-scores from 

the second-level analyses with the z-axis coordinate of the associated voxel (Figure 4a). This 

was done for the food (univariate r = 0.89, distributed r = 0.4) and trinket stimulus 

categories (univariate r = 0.72, distributed r = 0.68). For each combination of item class 

and coding strategy, value signal strength increased along a ventral-dorsal gradient (p <

0.05, in both parametric and non-parametric tests). By bootstrapping the empirically 

observed results, we estimated sampling distributions for these correlation strengths. Non-
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parametric confidence bounds on the correlation strengths were established and indicated 

that although the strength of both signals increased along an ventral-dorsal gradient, 

univariate coding increased significantly more steeply (p < 0.05). In addition, we 

implemented a similar analysis investigating differences between peak value representation 

scores in ventral and dorsal regions of vmPFC for multivariate and univariate encoding 

strategies while utilizing data on a leave-one-participant-out basis. This analysis again 

confirmed these results (Supplementary Figure 5). 

Our second test examined the relative prevalence of univariate and multivariate codes in 

these regions. We found a significant difference (paired t-tests, p < 0.05) in the relative 

strengths of the multivariate and univariate value signals between mOFC and mPFC for both 

the food and trinkets categories by comparing t-scores on a per-voxel basis. An important 

caveat here is that univariate and multivariate analyses have different intrinsic sensitivities 

(Jimura & Poldrack, 2012), thereby complicating the interpretation of absolute differences. 

However, this result does show that the multivariate signal is relatively stronger in mOFC as 

compared to mPFC (Figure 4b).  

The third test aimed to determine how the univariate and distributed codes interact in mOFC 

and mPFC. The second-level t-scores from the univariate and multivariate analyses were 

correlated on a per-voxel basis in each of these two subregions separately. This revealed a 

strong difference between the subregions, whereby the univariate and multivariate t-scores 

are significantly more correlated in mPFC for both food (r = 0.24) and trinkets (r = 0.61) 

than in mOFC (food r = −0.28, trinkets r = 0.34, Figure 3b). This indicates that the 

distributed goal-value signals found in mOFC are largely independent from univariate goal-

value codes, whereas this is not the case in mPFC. 

 

Distributed coding of stimulus category. 

Finally we looked for regions showing distributed coding of stimulus category, independent 

of its value. We found category discriminating activity in several areas of the brain (Figure 
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5). Areas in the frontal lobe included medial PFC (peak [x = −3, y = 20, z = −22], t =

6.12), central OFC (peak [x = −21, y = 38, z = −11], t = 11.14), dorsolateral PFC (right 

hemisphere peak [x = 45, y = 32, z = 21], t = 5.84, left hemisphere peak [x = −60, y =

17, z = 14], t = 11.34), and frontopolar cortex (peak [x = 6, y = 65, z = −11], t = 6.89). 

Fusiform (peak [x = 24, y = −43, z = −29], t = 6.90), parahippocampal (peak [x =

36, y = −10, z = −33], t = 6.56), and inferior temporal gyri (right hemisphere peak [x =

30, y = −73, z = −15], t = 7.36, left hemisphere peak [x = −45, y = −64, z = −22], 

t = 7.64) were observed in the temporal lobes. More posteriorly, the intraparietal sulcus 

(right hemisphere peak [x = 33, y = −70, z = 42], t = 7.94, left hemisphere peak [x =

−48, y = −31, z = 42], t = 11.65), precuneus (peak [x = −6, y = −64, z = 14], t =

5.54), posterior cingulate cortex (peak [x = 3, y = −43, z = 42], t= 7.43), and visual 

cortex (peak [x = 9, y = −79, z = 32], t = 11.34) were implicated. 
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Discussion 

It has been argued that to make decisions involving different types of goods the brain needs 

to encode item values on a comparable scale, often called a “common currency” (Alan N. 

Hampton & O'Doherty, 2007; P Read Montague & Berns, 2002; Rangel et al., 2008). While 

a number of studies have found that BOLD responses in an overlapping area of vmPFC 

correlate with the value of stimuli at the time of making decisions (Vikram S. Chib et al., 

2009; FitzGerald et al., 2009; T. A. Hare, Camerer, Knoepfle, & Rangel, 2010; Hackjin Kim, 

Shimojo, & O'Doherty, 2011; D. J. Levy & Glimcher, 2011), there are many open questions 

regarding the nature of the code used in these computations. In particular, previous tests 

cannot rule out the possibility that the results were generated by category-dependent (e.g., 

foods vs. social vs. objects) value codes that are implemented in distinct yet spatially 

intermingled networks, and which are inconsistent with the common currency hypothesis. In 

addition, previous studies have been unable to find a spatial topography in the organization 

of goal-value signals in vmPFC. 

Here, by using a paradigm optimized for multivariate analyses, we found evidence for the 

existence of both category-dependent value signals (which only reflect the value of particular 

types of stimuli), and category-independent value signals (which reflect the value of all 

stimuli, regardless of their category). The category-independent value signals were located 

in a region of vmPFC along the medial wall but above the orbital surface, and coincided 

substantially with the areas found in previous univariate analyses (Vikram S. Chib et al., 

2009), as well as in a univariate analysis of the present dataset. Our results provide evidence, 

up to the fidelity provided by multi-voxel fMRI (Formisano & Kriegeskorte, 2012; Misaki, 

Kim, Bandettini, & Kriegeskorte, 2010), for the existence of a truly generic value code in the 

mPFC in which goal-values are represented independently of the category from which the 

stimuli are drawn. They also point towards a ventral-dorsal gradient within the vmPFC, as 

one transitions from the category-dependent value regions of the orbital surface to the more 

dorsal category-independent regions of mPFC. This suggestion is consistent with the fact 
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that in many fMRI studies which have identified value representations in vmPFC for 

different classes of reinforcers using standard univariate techniques, decision-value and goal-

value signals tend to appear superior to the orbital surface (Vikram S. Chib et al., 2009; T. 

Hare et al., 2008; Hilke Plassmann et al., 2007). In contrast, two distinct voxel clusters in 

mOFC were found at the group level to encode category-dependent goal-values for food and 

trinkets; a more posterior region was found to contain food-dependent value signals, while a 

more anterior region of mOFC was found to encode a trinket-dependent value signal. 

Furthermore, a correlational analysis of the classifier’s local sensitivity vs. spatial location 

revealed an anterior-posterior gradient in the mOFC, with category-dependent values of 

increased abstractness (i.e., trinkets) encoded more anteriorly. Although a similar effect 

could be caused by two separate food and trinkets peaks with Gaussian noise, visual 

inspection of the t-score plots and the strength of the linear dependence suggest an actual 

gradient effect in the nature of the value code. These findings resonate with the results of a 

meta-analysis (Kringelbach & Rolls, 2004) in which an anterior vs. posterior gradient was 

reported within mOFC in response to reward outcomes according to the “complexity” or 

degree of abstractness of the reinforcer. A previous univariate fMRI study reported 

dissociated posterior and anterior clusters of activation within OFC for reward expectation 

representations for sexual vs. money reinforcers (Sescousse, Redouté, & Dreher, 2010), 

though this effect was located more laterally where we observed stronger distributed 

encoding of stimulus category rather than stimulus value. However, unlike these studies, the 

results of the present study correspond specifically to goal-value representations where 

values are used as an input to the choice process as opposed to pure expectancy signals or 

the value computed at the time of the consumption experience (often called outcome value). 

These results support the proposal that there is indeed a gradient within mOFC whereby 

value signals corresponding to the processing of more biologically basic stimulus attributes, 

such as food or sexual stimuli, are encoded more posteriorly, while the value of more abstract 

stimulus attributes are encoded more anteriorly. 
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The findings obtained here implicating vmPFC in the encoding of a common currency for 

goal-values are consistent with evidence from lesion studies in both human and non-human 

primates implicating this region in value-based decision-making (Bechara et al., 1994; 

Fellows & Farah, 2005; Walton, Behrens, Buckley, Rudebeck, & Rushworth, 2010). The 

present results suggest that a lesion to the vmPFC would alter or disrupt the encoding of goal-

values that are in turn used to guide behavior, thereby resulting in a decision-making 

impairment. In particular, an implication of the present findings is that a selective lesion to 

either anterior or posterior mOFC might result in a very specific impairment at decision-

making over only certain classes of goods. While it is unlikely that lesions studied in human 

patients would ever have the anatomical specificity to enable such a possibility to be tested, 

this is something that could be potentially tested in an animal model. 

It is notable that we did not find evidence for a category-dependent value code for monetary 

gambles, while both a univariate value signal for these gambles and category-independent 

value signals (training or testing on neural samples from the money category) were robustly 

encoded more dorsally within the mPFC areas involved in implementing category-

independent value codes. One possible interpretation of this result is that because money is 

by definition a generalized reinforcer that has acquired value by virtue of its exchangeability 

for other reinforcers, money might only be represented according to a generic (category-

independent) as opposed to a category-dependent value code. Furthermore, money is not tied 

to a specific sensory modality, and is therefore not dependent on specific sensory coding 

mechanisms (such as taste, olfaction, or vision). Moreover, within the attribute integration 

account of valuation, given that money does not have any component attributes, it could be 

argued that money cannot be encoded in a category-dependent manner. Another more 

mundane possibility is that, unlike items drawn from the food and trinkets categories, the 

actual values of the monetary sums are presented explicitly and do not require a complex 

stimulus-to-value transformation as would be the case if, for example, piles of coins had been 

displayed whose composition and size were indicative of monetary value. 
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Beyond goal-value signals, we also found evidence for value independent category identity 

codes within a region of central OFC, but also extending more medially to overlap with some 

of the value coding areas. These findings suggest the existence within parts of OFC of 

stimulus-identity codes. Perhaps unsurprisingly, such stimulus-identity coding was also 

found to be widespread in other parts of the brain outside of the OFC, including dorsal frontal 

cortex, parietal cortex, and visual cortical areas. Many of these areas were previously 

implicated in a EEG study of the time course of value computation (Harris, Adolphs, 

Camerer, & Rangel, 2011). Nevertheless, the presence of such signals within the OFC 

provides insight into the possible mechanisms by which value codes might get computed 

within the vmPFC during the choice process. In order to compute a category-dependent value 

code, it is clearly necessary to first have access to information about the identity of the 

stimulus, so that the incentive value of the goal state can be retrieved with respect to prior 

associations between the identity of the goal state and motivational states acquired through 

incentive learning (Bernard W. Balleine & Anthony Dickinson, 1998). Such goal-value 

codes are also likely necessary in order to facilitate choices over goals to be computed, 

because when comparing between the values of different goods, it is also necessary to be 

able to bind the results of the comparison process with the identity of the specific goods in 

question. Furthermore, according to the attribute integration view of value computations, it 

is necessary to encode information about various attributes associated with each stimulus in 

order to pass such information to the areas involved in category-dependent valuation. Further 

work will need to be performed to determine how these distinct value and identity 

representations within vmPFC get integrated and used during the decision process.  

The loci of the value coding and category coding results in vmPFC can be interpreted in 

terms of the neuroanatomical structure of the brain. Based on cytoarchitectonic 

heterogeneities in OFC (Mackey & Petrides, 2010; Ongur & Price, 2000), a broad distinction 

has been made between a lateral prefrontal network (Brodmann areas 11, 13, and 47/12) 

covering central and lateral OFC and a medial prefrontal network (Brodmann areas 11m, 13 
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medially, along with 14 and extending up the medial wall to areas 10m, 24, 25, and 32) 

corresponding to ventromedial prefrontal cortex. Recently, a resting-state connectivity study 

(Kahnt, Chang, Park, Heinzle, & Haynes, 2012) has provided functional evidence in support 

of this parcellation scheme in human OFC. The sensory efferents of central OFC and the 

visceromotor afferents of the medial network (Croxson et al., 2005; Ongur & Price, 2000) 

suggest that the sensory-visceromotor pathway from central OFC to mOFC to mPFC could 

support a high-level stimulus-to-value transformation during decision-making. In this study, 

we found that central OFC coded stimulus category bilaterally, with these areas partially 

overlapping value-coding regions in vmPFC. This part of OFC has been shown to receive 

sensory input in all sensory modalities (both unimodal and multimodal), association cortices, 

and memory-related regions, and in particular is connected to several of the posterior regions 

which were found to encode stimulus category in a distributed manner. Moreover, adjacent 

to this central OFC result, category-dependent value signals were located in medial OFC, 

which has strong reciprocal connections to limbic areas involved in the emotional and 

hedonic processing of stimuli along with other parts of prefrontal cortex, which may 

contribute to an evaluation of the stimulus in the context of the current internal state of the 

subject and external state of the world (Louie & Glimcher, 2012). These effects could include 

inhibiting desires to consume food (T. Hare et al., 2009), or retrieving goal-related episodic 

memories (Duarte, Henson, Knight, Emery, & Graham, 2010) such as remembering whether 

or not a book has been read or not. Finally, these attribute-dependent value signals would be 

passed to the more dorsal areas of mPFC involved in category-independent value 

representations where a summary goal value is transmitted to action control circuits via 

mPFC (T. Hare, J. Malmaud, & A. Rangel, 2011; John P. O'Doherty, 2011; Rangel & Hare, 

2010). Further support for this value processing pathway model can be found in a recent 

electrophysiological study (Cai & Padoa-Schioppa, 2012) in monkeys which found that 

neurons in anterior cingulate cortex (ACC) encoded the value of a chosen outcome only after 

a decision had been made and in particular after the same variables had been signaled by, 
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presumably upstream, neurons in OFC. In addition, neurons in the dorsal bank of ACC but 

not the ventral bank were sensitive to the action required to make the choice. 

It is important to note that while the present conclusions are supported by the particular set 

of stimuli we have used (consumer items, food, and money gambles), we cannot rule out the 

possibility that if we had used an entirely different class of goods (such as luxury goods, or 

social stimuli, etc.), the results could have turned out differently. Future studies will need to 

further establish the generality of the common coding area in the more dorsal part of vmPFC 

identified here, as well as establish whether other classes of items are coded uniquely within 

the medial orbital surface. 

Finally, the importance of the multivariate methodology used in this paper is worth 

highlighting. As described above, a large number of previous studies have found that neural 

activity in an overlapping area of vmPFC, which encompasses the area where we have found 

category-independent goal-value signals, correlates with the value of a wide class of stimuli 

and stimuli at the time of choice. However, none of these previous univariate studies found 

the category-dependent value codes identified here. The reason might be due to the nature of 

the category-dependent signals. If, as conjectured above, they reflect the computation of 

value for stimulus specific attributes, then the category-dependent value signals are likely to 

be distributed across multiple voxels, which makes them difficult to localize using univariate 

approaches. 
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Figures 

Figure 1. Task, univariate value signals, and behavioral results. 

 
Figure 1. a.) Illustration of experiment time course and data extraction. Subjects were 

presented with an 80% chance of obtaining a stimulus drawn from a pool of 120 stimuli 

evenly divided into three categories (food, money, and “trinkets”) and they responded with 

an integer willingness-to-pay value between zero and four euros inclusive (see Online 

Methods). In preparation for the multivariate analyses, we extracted a sample of neural data 

at the bid time-point on each trial (with a shift of five seconds to account for haemodynamic 

delay). For a given bid, the two volumes closest in time (one before, one after) to the shifted 

time-point were averaged to create a single sample (Clithero et al., 2011). b.) A region of 
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vmPFC, overlapping with a previous similar result (Vikram S. Chib et al., 2009), was found 

to be parametrically modulated by the chosen bid value at the time of decision, peak 

coordinates [x = 0, y = 35, z = −7], t = 3.14, p < 0.05 SVFDR (results presented at p <

0.005 uncorrected in figure). c.) Distribution of WTP bids across all subjects for each 

category of items. The distribution of bids is shown in c, and is similar to those obtained 

previously (Vikram S. Chib et al., 2009). The average bid was €1.47 (SD, €1.28) for food 

items, €1.91 (SD, €1.3) for monetary sums, and €1.97 (SD, €1.56) for trinkets. There was a 

difference between the mean bids of the three categories (ANOVA, p < 0.001). The average 

bids were significantly greater than zero for all three classes (p < 0.001). The majority of 

bids were non-zero (71% for food, 82% for money, 74% for trinkets). 
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Figure 2. Distributed category-dependent value codes in mOFC for food and trinkets. 

 
Figure 2. a.) Stimulus value was found to be represented in distributed codes in mOFC for 

the food (blue) and trinkets (red) categories. The peak classification accuracy t-scores are at 

the following coordinates; food [𝑥𝑥 = −9,𝑦𝑦 = 17, 𝑧𝑧 = −22], 𝑡𝑡 = 3.05; trinkets [𝑥𝑥 =

−3,𝑦𝑦 = 41, 𝑧𝑧 = −11], 𝑡𝑡 = 3.86, p<0.005 SVFDR (results presented at 𝑝𝑝 < 0.005 

uncorrected in figure). No evidence for a multi-voxel money category value representation 

was found. b.) Food and trinket category-dependent value encoding regions in mOFC are 

organized along an anterior to posterior axis across subjects, with the most significant voxels 

for food values located significantly more posteriorly within mOFC, while the most 

significant voxels for trinket values are located significantly more anteriorly, as shown in a 

correlation analysis of second-level voxel t-scores vs. y-axis location. The large dots indicate 

peak 𝑡𝑡-scores. No such effect was found more dorsally in mPFC. 
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Figure 3. Organization of univariate and distributed value signals in vmPFC 

distinguished by coding mechanism and stimulus information content. 

 
Figure 3. a.) A sagittal view of vmPFC shows that univariate and multivariate category-

independent value representations are concentrated in mPFC while category-dependent 

value signals (for the food and trinkets categories) are located more ventrally in OFC. The 

peak of the category-independent value decoding conjunction was found at [𝑥𝑥 = −3, 𝑦𝑦 =

41, 𝑧𝑧 = 3], 𝑡𝑡 = 2.40, 𝑝𝑝 < 0.05 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (results presented at p<0.005 uncorrected in figure). 

b.) Histograms reflect bootstrapping results for univariate/multivariate value correlation 

analyses performed for each combination of category and vmPFC subregion. Correlations 

were significantly stronger in mPFC compared to mOFC for both food and trinkets. For food, 

the univariate and multivariate value t-scores were significantly anti-correlated. 
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Figure 4. Comparisons of univariate and multivariate value signal strengths across 

vmPFC subregions. 

 

 
Figure 4. a.) For the food and trinket categories, univariate (brighter colors) and within-

category MVPA (darker colors) second-level voxel t-scores are plotted as a function of the 

voxel’s z-coordinate. This plot shows that the t-scores in the univariate brain maps show a 

significantly greater tendency to increase along the z-axis (𝑝𝑝 < 0.05). b.) Bars indicate the 

difference between the within-category MVPA and univariate value t-scores across voxels 

for the food and trinkets item categories within mPFC and mOFC. Error bars indicate 

standard error of the mean (+/- SEM). 
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Figure 5. Stimulus category coding. 

 
Figure 5. In the frontal lobe, central OFC (peak [𝑥𝑥 = −21,𝑦𝑦 = 38, 𝑧𝑧 = −11], 𝑡𝑡 = 11.14), 

mPFC (peak [𝑥𝑥 = −3,𝑦𝑦 = 20, 𝑧𝑧 = −22], 𝑍𝑍 = 6.12), mFPC (peak [𝑥𝑥 = 6,𝑦𝑦 = 65, 𝑧𝑧 =

−11], 𝑡𝑡 = 6.89), and dlPFC (peak [𝑥𝑥 = −60,𝑦𝑦 = 17, 𝑧𝑧 = 14], 𝑡𝑡 = 11.34) contain 

distributed neural patterns pertaining to the identity of the stimulus under consideration. 

More posteriorly, regions of the temporal lobes including the fusiform, inferior temporal, and 

parahippocampal gyri and areas around the intraparietal sulci also reflect category 

discriminating activity (see Supplementary Table 1). Results presented at 𝑝𝑝 < 0.005 𝐹𝐹𝐹𝐹𝐹𝐹. 
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Supplementary Figures 

Supplementary Figure 1. Masks covering distinct subregions of vmPFC. 

 
Supplementary Figure 1. Based on previous functional and anatomical results, our a priori 

hypothesis was that distributed and univariate value encoding signals would be found in 

vmPFC extending from the orbital surface to more dorsal regions up to and including parts 

of Brodmann areas 10 and 32. Due to the similarity of the experimental design, we used 

univariate peak coordinates from a related study (Chib et al., 2009) to construct a medial 

prefrontal cortex (mPFC) mask as a sphere with a radius of 9mm surrounding these peak 

coordinates (corresponding to the size of the multivariate searchlight sphere). A similar 

functional mask did not exist for the medial orbitofrontal cortex (mOFC), most likely due to 

the distributed nature of the value codes found there and the relative scarcity of MVPA 

studies in value-based decision-making, and thus the mOFC mask was constructed according 

to anatomical descriptions used previously in the literature (Beckmann et al., 2009). This 

mask encompassed the medial orbital and olfactory sulci bilaterally with the anterior and 

 



55 

 

posterior limits defined by the extents of these sulci. The vmPFC mask was defined as a 

union of these two masks. 

 

Supplementary Figure 2. Independent replication of main results. 

 
Supplementary Figure 2. For an independent replication of our results, we applied our 

analysis procedures to the data acquired for a previous study (Chib et al., 2009) with a similar 

task paradigm but with some important differences. This study also used a BDM auction 

process to elicit the participants’ willingness-to-pay (WTP) on an integer scale from $0 to $3 

for a variety of items drawn from three categories (food, monetary sums, and “trinkets”). 

However, the WTP bids (that is, the goal values) for all the items were recorded before the 

participant entered the scanner. Subsequently, on each trial in the scanner, participants were 

required to make binary choices between an item and a fixed reference sum of money (the 

median bid over all items placed during the pre-scan behavioral experiment). The motor 

response performed was a left or right button press and was completely uncorrelated with 

both the choice and the value of the item since the item and the reference sum of money were 

randomly presented to the left and right of a fixation cross. Choosing the item meant that the 
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participant paid the reference price in exchange for an 80% chance of receiving the item. If 

they chose the reference amount of money, they would neither pay anything nor have the 

opportunity to play the lottery. 

The analyses in the original study indicated that the value of the lottery item on each trial 

was commonly represented (as a smoothed univariate BOLD response) in a dorsal portion 

of vmPFC for all three item categories. This value representation was interpreted as a 

“decision value” signal (as opposed to a goal value in the paradigm used in the current study), 

since it is being computed in order to make a binary decision choice. In light of our results, 

we hypothesized that distributed value signals, both category-dependent and category-

independent, would accompany this smoothed value signal in the ventral and dorsal portions 

of vmPFC, respectively. More specifically, we expected to see an anterior/posterior 

dissociation in category-dependent value signals along the medial orbital surface, whereby 

food value would be located more posteriorly and trinkets more anteriorly. We performed 

the same value decoding analyses as described in the main text on this dataset (19 

participants; 15 male; mean age, 23.7; age range, 18-47). For this dataset, we thresholded all 

statistics at p < 0.005 uncorrected (unless otherwise specified), since this data was not 

optimized for MVPA and since we have strong a priori hypotheses from the primary 

analyses in the main text. 

a.) At 𝑝𝑝 < 0.005 uncorrected, food-category-dependent value representation was located in 

posterior mOFC (peak [𝑥𝑥 = 3,𝑦𝑦 = 33, 𝑧𝑧 = −24], 𝑡𝑡 = 2.86). At 𝑝𝑝 < 0.05 uncorrected, a 

category-independent value signal (conjunction across training/testing on food/trinkets and 

trinkets/food respectively) was located in mPFC (peak [𝑥𝑥 = 6,𝑦𝑦 = 57, 𝑧𝑧 = 12], 𝑡𝑡 = 1.98). 

b.) At 𝑝𝑝 < 0.005 uncorrected, a trinket-category-dependent value representation was 

located in anterior mOFC (peak [𝑥𝑥 = −15,𝑦𝑦 = 57, 𝑧𝑧 = −9], 𝑡𝑡 = 2.94). No clusters were 

present in any unanticipated ROI (e.g., a trinket category-dependent value signal where food 

category-dependent signals were found in the primary dataset). Not unexpectedly (since this 

dataset was not optimized for MVPA), none of these clusters reached significance under 
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SVFDR correction (though the category-dependent results survive small volume familywise 

error correction, 𝑝𝑝 < 0.05 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆). Results are thresholded at 𝑝𝑝 < 0.005 and 𝑝𝑝 < 0.05 

and overlaid on an averaged structural image. These results provide a completely 

independent replication of the ventral/dorsal and anterior/posterior vmPFC value coding 

dissociations observed in the main study. 
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Supplementary Figure 3. Leave-one-participant-out anterior/posterior mOFC gradient 

analysis. 

 
Supplementary Figure 3. Here we replicate the anterior/posterior mOFC gradients 

identified in the main text in a completely non-circular manner using ANOVA interaction 

tests applied to per-subject classification scores derived using a leave-one-participant-out 

approach.  

For each subject and item category, we first performed second-level mass-univariate t-tests 

on the classification maps for 12 participants only (leaving one participant out). The peak t-

score coordinate within the mOFC ROI was identified and the classification score for the 

left-out participant at the peak coordinate was recorded. In addition, the peak t-score from 

the alternative item category analysis within a searchlight sphere of voxels (restricted to the 

mOFC ROI) surrounding that peak coordinate was also taken. For example, for each subject 

we recorded two food value classification scores: (1) one based on the peak coordinate in 

mOFC and (2) the other based on the peak coordinate within a searchlight sphere of the peak 

coordinate from the trinket value decoding. Similarly, two trinket value classification scores 

were also acquired for each subject. In this way, for each item category and subject, we 
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independently derived a classification score and then also recorded a classification score for 

the alternative item category within the same locality. This process was repeated for every 

subject in both analyses being contrasted. The end result was a dataset composed of four 

classification scores for each subject derived in a completely independent manner. 

 

The data was entered into a repeated-measures 2x2 ANOVA design (spatial location x item 

category) and there was a significant interaction between the two factors (p < 0.05) whereby 

the trinket-category-dependent value encoding signal was stronger in the region identified 

more anteriorly but not posteriorly and vice versa for the analogous food-related signal. This 

replicates the corresponding result in the main text (Figure 2b) in a completely independent 

manner. 

In this figure, the simple main effect of spatial location on classification score is plotted 

across item category, i.e., the distribution of the relative differences in t-scores between the 

anterior and posterior ROIs (food items in blue, trinkets in red). Error bars reflect standard 

error of the mean. 
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Supplementary Figure 4. Item ratings.

 
Supplementary Figure 4. We acquired post-hoc behavioral ratings of the food and trinket 

items used from 9/13 of the original participants. One participant did not complete the 

questionnaire, leaving 8/13 to be analyzed. The items were rated on five scales from a score 

of 1 to 7: “valence”, “intensity”, “liking”, “accessibility”, and “familiarity”. Items were 

presented in a random fashion across categories. Specifically, the questions were: 

 

LIKING – How much do you like this item? A score of 1 means “I do not like this item at 

all”, a score of 4 means “I neither like nor dislike this item”, while a score of 7 means “I 

really like this item a lot”. 

FAMILIARITY – How familiar are you with this item? A score of 1 means “This item is 

unknown to me”, a score of 4 means that “I am somewhat familiar with this item”, while a 

score of 7 means “I’m completely familiar with this item”. 
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INTENSITY – How intense are the feelings evoked by this item? A score of 1 indicates 

“This item evokes no feelings or emotion for me”, a score of 4 “I have some feelings towards 

this item”, while a score of 7 means “I have very intense feelings towards this item”. Note 

that for this question, it is irrelevant whether the feelings/emotions you have are positive or 

negative. 

ACCESSIBILITY – How easy do you feel it is for you to obtain this item? A score of 1 

means “It is almost impossible for me to get this item”, a score of 4 means “I can get this 

item without much difficulty”, while a score of 7 means “I would have no problem getting 

this item”. 

VALENCE – How pleasant or unpleasant is this item? A score of 1 means “It is a very 

unpleasant item”, a score of 4 means “This item is neither pleasant nor unpleasant”, while a 

score of 7 means “This is a very pleasant item”. 

The point-biserial correlation rpb is the Pearson correlation between item ratings and the 

dichotomous variable indicating whether the item is a food item or a trinket. It describes to 

what extent higher or lower ratings are correlated with trinkets or food items. Positive 

correlations indicate that higher ratings correlate with trinkets; negative correlations indicate 

that higher ratings correlate with food items. A zero correlation implies that the ratings are 

evenly matched across items. 

Results of statistical analyses can be seen in Supplementary Tables 2-4. At p > 0.05, there 

was no significant difference between food and trinket items with respect to any rating 

(across subjects or across items). In two ratings (“intensity” and “familiarity”), there was a 

trend towards higher ratings in the food category. The subject-level point-biserial correlation 

showed that this was a weak effect within individual subjects, with only one subject reaching 

a p < 0.05 significance threshold for each rating. Though these ratings were taken post-hoc, 

it is unlikely that the time interval since the scanning took place caused a systematic change 

to the between-category differences in ratings. 
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The bar chart in this figure reflects the point-biserial correlation coefficients 𝑟𝑟𝑝𝑝𝑝𝑝 for each 

subject between item ratings and a dichotomous variable which indicated whether the item 

was drawn from the food or trinket category. Repeated-measure statistical tests of any ratings 

difference between the food and trinkets category were not significant (𝑝𝑝 > 0.05). As can 

be seen from this figure, there is a high degree of variability within and across subjects in 

these ratings indicating that they are unlikely to account for the gradient effects reported in 

the main analyses. 
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Supplementary Figure 5. Leave-one-participant-out ventral/dorsal vmPFC gradient 

analysis. 

 
Supplementary Figure 5. Here we replicate the ventral/dorsal vmPFC gradients identified 

in the main text in a completely non-circular manner using ANOVA interaction tests applied 

to per-subject classification scores derived using a leave-one-participant-out approach. 

For each analysis, we first performed second-level mass-univariate t-tests on the multivariate 

classification maps and general linear modeling beta maps for 12 participants only. The peak 

t-score coordinate within each vmPFC ROI was identified and a value representation score 

(classification score for the multivariate analyses or first-level GLM t-score for the univariate 

analyses) for the left-out participant at the peak coordinate was recorded. This process was 

repeated for every subject for both the food and trinket item categories. The end result was a 

dataset composed of four classification scores for each subject derived in a completely 

independent manner. 

Since we seek to compare results across encoding strategies, we standardized these results 

by computing the distribution of standardized value signal differences between the ventral 

and dorsal ROIs for each item category and encoding strategy. That is, we subtracted the 

mPFC scores from the mOFC scores and then divided by the standard deviation across both 

ROIs. This data is plotted in this figure. The data was then entered into a repeated-measures 

2x2 ANOVA design (spatial location x encoding strategy) and there was a significant 
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interaction between the two factors (p < 0.05) across item categories, whereby there was a 

greater drop in signal strength in mOFC compared to mPFC for univariate encoding as 

opposed to multivariate encoding. This replicates the corresponding result in the main text 

(Figure 4a) in a completely independent manner. 
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Supplementary Figure 6. Value decoding based on “mean-subtraction” searchlight. 

 
Supplementary Figure 6. We have used the terms “univariate” and “multivariate” to refer 

to signals identified using mass-univariate general linear modeling and MVPA (after 

orthogonalization with respect to the univariate signals), respectively. An alternative 

interpretation of “univariate” and “multivariate” signals in the context of a multivariate 

searchlight algorithm would be the signal identified using the mean and “mean-subtracted” 

activity, respectively, for each sample in the searchlight. The mean-subtracted activity is the 

voxel responses in a searchlight after subtracting the mean voxel response across the 
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searchlight. We repeated the value decoding analyses using this alternative approach. This 

involved applying the same classification procedures as in the main text except with two 

crucial differences: (1) the smoothed GLM-estimated goal value signal was not projected out 

and (2) the mean activity was subtracted and the variance across voxels normalized on a per-

sample basis in every searchlight sphere (in effect, the neural pattern was standardized for 

every sample/sphere). 

We repeated both the category-dependent and category-independent value decoding analyses 

in this manner. To ensure that this different methodology identified the same signals as 

previously in the main text, we tested for a significant activation (at p < 0.05 SVFDR, 10 

voxel extent threshold) within ROIs defined as 20mm-radius spheres (Chib et al., 2009) 

surrounding peaks defined by the equivalent analyses. We also checked that no activations 

were unexpectedly present in an alternative ROI. 

Significant clusters of voxels overlayed on an averaged brain template are presented in this 

figure. Food-category-dependent goal value coding was observed in posterior mOFC (peak 

[x = 9, y = 14, z = −22], t = 3.15, 𝑝𝑝 < 0.005 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) and trinket-category-dependent 

goal value coding in anterior mOFC (peak [x = −3, y = 41, z = −11], t = 4.20, 𝑝𝑝 <

0.005 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆). Cross-category value representations (conjunction across pairwise-category 

analyses) were located more dorsally in mPFC (peak [x = −3, y = 47, z = −4], t = 2.74). 

No results were “mismatched” between the two analysis methodologies occurred. That is, no 

trinket-category-dependent value representation was found in the food ROI and vice versa, 

and no category-dependent value decoding was present in the category-independent ROI and 

vice versa. 

We also implemented an average signal searchlight whereby we attempted to decode cross-

category value signals based on the mean activity within a searchlight sphere only. Out of 

six training/testing data combinations (e.g., train to decode value on monetary sums, test on 

food items), four resulted in a significant cluster in dorsal vmPFC at p < 0.005 uncorrected 

(10 voxel extent threshold), though they did not reach the corrected threshold p <
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0.05 SVFDR. The ROI was defined as a 20mm-radius sphere surrounding the peak 

coordinates [x = −6, y = 53, z = −4] from the cross-category value decoding conjunction 

in the main text. 

Each panel refers to an equivalent panel in the main text: Figure 2a (a,b), Figure 3a (c), and 

Figure 2b (d). Results are thresholded at 𝑝𝑝 < 0.005 uncorrected and overlaid on an averaged 

structural image. 
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Supplementary Tables 

Supplementary Table 1. fMRI results. 

Category Region Hemi x y z t p 

 

Univariate Value Representation 

Food* Medial prefrontal cortex L -3 38 -4 4.35 <0.001 

Money Medial prefrontal cortex L -3 32 -7 3.24 0.001 

Trinkets* Medial prefrontal cortex  0 41 -7 4.35 <0.001 

Conjunction Medial prefrontal cortex  0 35 -7 3.14 0.001 

 

Distributed Category-Dependent Value Representation 

Food* Medial orbitofrontal cortex L -9 17 -22 3.05 0.002 

Trinkets* Medial orbitofrontal cortex L -3 41 -11 3.86 <0.001 

 

Distributed Category-Independent Goal Value Representation 

Conjunction*† Medial prefrontal cortex L -6 53 -4 2.88 0.002 

Conjunction Medial prefrontal cortex L -3 41 3 2.40 0.008 

 

Distributed Goal Category Representation*‡ 

Conjunction Medial orbitofrontal cortex L -3 20 -22 6.12 <0.001 

Conjunction Medial prefrontal cortex L 9 29 0 7.56 <0.001 

Conjunction Lateral orbitofrontal cortex L -21 38 -11 11.14 <0.001 

Conjunction Frontopolar cortex R 6 65 -11 6.89 <0.001 

Conjunction Frontopolar cortex L -12 71 14 6.78 <0.001 

Conjunction Dorsolateral prefrontal cortex L -60 17 14 11.34 <0.001 
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Conjunction Dorsolateral prefrontal cortex R 45 32 21 5.84 <0.001 

Conjunction Insula R 45 5 3 5.27 <0.001 

Conjunction Middle frontal gyrus L -33 5 35 6.84 <0.001 

Conjunction Middle frontal gyrus R 30 2 28 6.29 <0.001 

Conjunction Middle frontal gyrus L -18 2 60 5.68 <0.001 

Conjunction Anterior cingulate cortex R 15 8 32 6.90 <0.001 

Conjunction Intraparietal sulcus L -48 -31 42 11.65 <0.001 

Conjunction Intraparietal sulcus R 33 -70 42 7.94 <0.001 

Conjunction Precuneus L -6 -64 14 5.54 <0.001 

Conjunction Posterior cingulate cortex R 3 -43 42 7.43 <0.001 

Conjunction Parahippocampal gyrus R 36 -10 -33 6.56 <0.001 

Conjunction Inferior temporal gyrus L -45 -64 -22 7.64 <0.001 

Conjunction Inferior temporal gyrus R 30 -73 -15 7.36 <0.001 

Category Region Hemi x y z t p 

 

Distributed Goal Category Representation*‡ (continued) 

Conjunction Fusiform R 24 -43 -29 6.90 <0.001 

Conjunction Fusiform L -27 -43 -22 7.18 <0.001 

Conjunction Extrastriate cortex L -12 -79 32 11.34 <0.001 

Conjunction Extrastriate cortex R 63 -61 10 6.99 <0.001 

Conjunction Extrastriate cortex R 9 -70 -7 5.15 <0.001 

Conjunction Striate cortex L -21 -79 14 9.67 <0.001 

Supplementary Table 1. Results thresholded at 𝑝𝑝 < 0.05 𝐹𝐹𝐹𝐹𝐹𝐹. Voxelwise FDR correction 

was performed within a ventromedial prefrontal ROI for all value-related results (i.e., 
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SVFDR). 

* Results which survive at 𝑝𝑝 < 0.005 FDR or SVFDR. 
† Conjunction across five binary category permutations (all except training value on money 

and decoding value on trinkets). 
‡ Conjunction across all three binary category combinations. 

 

 

Supplementary Table 2. Item ratings, subject-level analysis. 

 P1 P2 P3 P4 P5 P6 P7 P8 

Valence (𝐫𝐫𝐩𝐩𝐩𝐩) 0.110 -0.129 -0.022 -0.223 0.163 0.296 -0.028 -0.014 

Intensity (𝐫𝐫𝐩𝐩𝐩𝐩) 0.073 0.025 -0.141 0.149 -0.016 -0.307 -0.043 -0.160 

Liking (𝐫𝐫𝐩𝐩𝐩𝐩) 0.108 -0.095 -0.056 -0.232 0.195 0.364 0.021 0.000 

Access (𝐫𝐫𝐩𝐩𝐩𝐩) 0.026 0.079 -0.282 -0.079 -0.112 -0.073 -0.046 0.235 

Familiarity (𝐫𝐫𝐩𝐩𝐩𝐩) -0.124 0.038 -0.196 -0.056 0.056 -0.014 -0.284 -0.011 

 

 Mean SEM p 

Valence (𝐫𝐫𝐩𝐩𝐩𝐩) 0.019 0.058 0.750 

Intensity (𝐫𝐫𝐩𝐩𝐩𝐩) -0.090 0.043 0.077 

Liking (𝐫𝐫𝐩𝐩𝐩𝐩) 0.038 0.065 0.579 

Access (𝐫𝐫𝐩𝐩𝐩𝐩) -0.032 0.053 0.572 

Familiarity (𝐫𝐫𝐩𝐩𝐩𝐩) -0.074 0.042 0.122 

Supplementary Table 2. Trinkets (+), Food (–), grey background indicates significance at 

p = 0.05 (rpb = ±0 .2199) 
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Supplementary Table 3. Item ratings, distribution per category across subjects. 

 Food Trinkets   Food > Trinkets 

 Mean SEM Mean SEM  Repeated-measures t-test 

Valence 4.450 0.199 4.456 0.107  p = 0.973, t = -0.035 

Intensity 4.028 0.166 3.712 0.146  p = 0.059, t = 2.250 

Liking 4.400 0.242 4.494 0.126  p = 0.692, t = -0.412 

Access 5.309 0.265 5.225 0.270  p = 0.640, t = 0.489 

Familiarity 5.534 0.214 5.278 0.207  p = 0.111, t = 1.822 

Supplementary Table 3. 
 

Supplementary Table 4. Item ratings, distribution per category across items. 

 Food Trinkets   Food > Trinkets 

 Mean SEM Mean SEM  Independent t-test 

Valence 4.450 0.126 4.456 0.109  p = 0.970, t = -0.037 

Intensity 4.028 0.100 3.712 0.162  p = 0.101, t = 1.661 

Liking 4.400 0.133 4.494 0.129  p = 0.614, t = -0.507 

Access 5.309 0.141 5.225 0.134  p = 0.666, t = 0.440 

Familiarity 5.534 0.144 5.278 0.190  p = 0.285, t = 1.077 

Supplementary Table 4. 
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Supplementary Table 5. Items used organized by category. 

Food Items Money Items “Trinket” Items 

Ambrosia 20c 1984, George Orwell (book) 

Apple Pies 30c A Brief History of Time, Stephen Hawkings (book) 

Bombay Mix 40c A Portrait of the Artist as a Young Man, J. Joyce (book) 

Cashews 60c Abbey Road, The Beatles (music CD) 

Choco Chip Cookies 70c Alarm Clock 

Coco Pops 90c Batteries 

Cornflakes 1.2EUR Blade Runner (movie DVD) 

Cream Crackers 1.3EUR Blank DVDs 

Crunchies 1.5EUR Bourne Ultimatum (movie DVD) 

Digestives 1.6EUR Calendar 

Doritos 1.8EUR Combination Lock 

Elevenses 1.9EUR Dracula (book) 

Fig Rolls 2EUR Family Guy Season 7 (TV series DVD) 

Fingers 2.1EUR Golden Compass, Philip Pullman (book) 

Frosties 2.2EUR Harry Potter (book) 

Fruit Pastilles 2.3EUR Indiana Jones (movie DVD) 

Gherkins 2.4EUR James Bond, Quantum of Solace (movie DVD) 

Granola Bar 2.5EUR Joshua Tree, U2 (music) 

Spam 2.6EUR Kings of Leon Live (music/movie DVD) 

Jaffa Cakes 2.7EUR Lord of the Rings (movie DVD) 

Bacon Fries 2.8EUR Monopoly (boardgame) 

Liquorice All Sorts 2.9EUR OK Computer, Radiohead (music CD) 
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Mikado 3EUR Playing Cards 

Mini Rolls 3.1EUR Shampoo 

Beetroot 3.2EUR Sherlock Holmes (book) 

Pineapple Rings 3.3EUR Slumdog Millionaire (movie DVD) 

French Fancies 3.4EUR Socks 

Pickled Onions 3.5EUR The Departed 

Green & Black Chocolate 3.6EUR The Hitchhiker's Guide to the Galaxy (book) 

Rice Krispie Squares 3.7EUR Stapler 

Riesen 3.8EUR T-Shirt 

Salted Peanuts 3.9EUR The Dark Knight (movie DVD) 

Sesame Sticks 4.1EUR The Wire Season 4 (TV series DVD) 

Pringle's Original 4.2EUR Travel Plug Adaptor 

Fox's Shortcakes 4.3EUR Trinity College Key Chain 

Tea Cakes 4.4EUR Trinity College Mug 

Terry's Orange 4.6EUR Trinity College Sweatshirt 

Pickled Eggs 4.7EUR Umbrella 

Walkers Crisps 4.8EUR USB Key 2GB 

Werthers Sweets 4.9EUR Water Bottle 

Supplementary Table 5. The items used were similar to those used in Chib et al, 2009, 

although they were customized to be familiar to participants in Ireland, where the study was 

performed. Our motivation for using these specific goods is that we wanted to include large 

varied groups of items that were approximately similar in their average values to participants 

so as to control for the effects of value per se when doing between category comparisons. In 

addition, we required that the items be “everyday” items to ensure that all the subjects would 

be similarly exposed to the items and thus would be able to reasonably evaluate them. All 
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subjects reported a high degree of familiarity with each of the items in a post-scan verbal 

report. Monetary amounts were selected in the range 10c to 5 euros, in 10c increments. Item 

order was randomly determined at the beginning of each experiment. Forty items were used 

in each class. 

Subjects were only allowed to bid using a discrete set of values (Chib et al., 2009, Plassmann 

et al., 2007), thus the bids recorded are an approximation to the true values for the items. A 

true WTP of €1.20 is measured as €1, and if the subject values an item at €4.50, we record a 

value of €4. However, a correlation analysis reported in Plassmann et al., 2007 showed that 

this discretized WTP distribution strongly reflects how much a subject likes the items, and 

thus can be taken as a good approximation to their true subjective goal-valuations. 
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Supplementary Table 6. Items used in Chib et al., 2009 organized by category. 

Food Items Money Items Trinket Items 

Chocolate Chip Cookies 20c 300 (movie DVD) 

Chocolate Pudding 40c A Brief History of Time, Stephen Hawkings (book) 

Cookies 60c Batman Begins (movie DVD) 

Doritos Chips 80c Blade Runner (movie DVD) 

Fig Rolls $1 Bourne Ultimatum (movie DVD) 

Ghiradelli Chocolate Bar $1.2 Caltech Backpack 

Hershey's Milk Chocolate Bar $1.4 Caltech Cap 

Ho-Ho Chocolate Cake Rolls $1.6 Caltech Flag 

Kit Kat Chocolate Bar $1.8 Caltech Key Chain 

Lindt Chocolate Bar $2 Caltech Mug 

Mrs Fields Cookies $2.2 Caltech Travel Mug 

Oreo Cookies $2.4 Caltech Sack 

M & Ms $2.6 Caltech Straw Hat 

Powdered Donuts $2.8 Freakonomics, S. Levitt & S. Dubner (book) 

Pringles Chips $3 Indiana Jones Boxed Set (movie DVDs) 

Reeses Peanut Butter Cups $3.2 Stapler 

Rice Krispie Squares $3.4 Spiderman (movie DVD) 

Skittles Sweets $3.6 The Big Lebowski (movie DVD) 

Sweetarts Hard Candy $3.8 The World is Flat, T. Friedman (book) 

Twix Chocolate Bar $4 Transformers (movie DVD) 

Supplementary Table 6. 
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Methods 

Task. 

Subjects were presented with high-resolution images of three classes of goods: snacks, 

consumer goods (e.g., DVDs, books), and monetary prizes (see Table S5 for details). On 

each trial, participants bid for the right to the prospect of obtaining a displayed item with 

80% probability and nothing otherwise. We introduced the probabilistic element to ensure 

that valuations for monetary sums would be nontrivial. Bids were elicited using a Becker-

DeGroot-Marschack (BDM) auction process. On a given trial, the participant bids €0, €1, €2, 

€3, or €4 for an item. At the end of the experiment one trial is selected at random from each 

of the categories. For each trial selected, a random number is drawn with equal probability 

from the categories of €0, €1, €2, €3, or €4. If the bid equals or exceeds the amount drawn in 

the lottery, then participants pay the bid amount and receive the corresponding item prospect. 

Otherwise, they pay nothing. These rules favor an optimal strategy of bidding the amount 

closest to one’s subjective valuation. The BDM rules were fully explained to participants. 

Subjects were asked to refrain from eating for four hours before arrival for testing. 

Compliance was confirmed through self-reports. Participants were requested to remain in the 

laboratory for one hour post-scan to consume items obtained during the experiment. This 

helped maximize participants’ valuation for food items during testing. On each trial subjects 

were endowed with €4 for bidding (since one trial from each category is ultimately played 

out, this corresponds to a €12 endowment across all three categories). Any remaining money 

from the initial endowment is retained by the subject. 

Each trial began with a stimulus presentation (Figure 1a). Subjects generated a bid within 5s 

by pressing one of four buttons or not responding for a zero bid, followed by a presentation 

of the bid amount (500ms). The inter-trial interval was uniformly drawn from 1-23 seconds. 

Four sessions of length 16 minutes each were completed. The hand used for responding was 

switched after two sessions and the correspondence between the buttons and bids was 
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alternated for the second and fourth sessions. The button configurations were practiced at the 

beginning of each session. 

 

fMRI Data Acquisition. 

Fifteen healthy right-handed subjects participated in this study. The data from two subjects 

were excluded because of technical problems with the MRI scanner, leaving thirteen subjects 

(eight male; mean age 22.1; SD 3.6 years). All subjects gave informed consent and the 

experiment was approved by the School of Psychology Research Ethics Committee, Trinity 

College Dublin. Functional imaging was performed on a 3T Philips scanner with an 8-

channel SENSE head coil at Trinity College Institute of Neuroscience, Dublin, Ireland. 

Thirty-five contiguous sequential ascending echo-planar T2*-weighted slices were acquired 

for each volume, giving whole brain coverage with a slice thickness of 3.55mm and no slice-

gap (in-plane resolution: 3.00 x 3.00 mm; repetition time (TR): 2000ms; echo time (TE): 

30ms; field of view: 240 x 240 mm2; matrix: 80 x 80). A whole-brain high-resolution T1-

weighted structural scan (voxel size: 0.9 x 0.9 x 0.9mm3) was also acquired for each subject. 

Slice orientation was tilted -30° from a line connecting the anterior and posterior commissure 

to alleviate signal loss in the OFC (Vikram S. Chib et al., 2009). 

 

Data Preprocessing and Filtering.  

Slice timing correction, motion correction, and spatial normalization were applied to the data. 

For the general linear model (GLM), the data was high-pass filtered (120s cut-off), and serial 

autocorrelations were estimated using a first-order autoregressive model. 

To minimize analysis differences between the univariate and multivariate approaches, we 

carried out the following: prior to multi-voxel sample extraction, low frequency components 

(below 1/120Hz), serial autocorrelations, and head motion were subtracted from the data. In 

addition, smoothed univariate value signals for all three categories identified in the GLM 
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analysis were removed from the data to ensure that the multi-voxel patterns identified in the 

MVPA analyses do not reflect overlying univariate signals. This was accomplished by 

multiplying the convolved parametric value regressor by the beta estimated in the GLM and 

subtracting the resulting time series from the data on a per-voxel basis. To correct for session-

related mean and scaling effects, we applied second-order detrending and z-scoring on a per-

voxel per-session basis (Alan N. Hampton & O'Doherty, 2007; Kahnt et al., 2010). Here we 

use the terms “univariate” and “multivariate” to refer to signals identified using mass-

univariate general linear modeling and MVPA (after orthogonalization with respect to the 

univariate signals), respectively. An alternative interpretation of “univariate” and 

“multivariate” is the signal identified using the mean and “mean-subtracted” activity, 

respectively, within the searchlight. We repeated the value decoding analyses using this 

alternative approach, which yielded similar results (Supplementary Figure 6). We applied 

spatial smoothing (8mm full-width-half-maximum) to the data used for the univariate GLM, 

but not in the multi-voxel pattern analysis, in order to preserve local variance (Kahnt et al., 

2010; Pereira et al., 2009). Pre-processing and filtering were performed using SPM8 

(http://www.fil.ion.ucl.ac.uk/spm/), except detrending and z-scoring for which the PyMVPA 

package was used (Hanke et al., 2009). 

 

General Linear Model. 

We used a GLM to identify activity at decision time correlating with goal-values (as 

measured by WTP). The GLM included regressors for image presentation and bid defined 

for each item category (0s duration). Subject-specific WTPs were used as a parametric 

modulator for each regressor. To minimize head motion confounds, motion parameters were 

included as nuisance regressors. For the second-level analysis, beta maps corresponding to 

the WTP regressors for each subject for each item category were included in a 3x1 factorial 

design (each category being a factor). To test for regions representing stimulus value for all 
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item categories in a univariate manner, we performed a conjunction analysis across all three 

categories using the “conjunction null” hypothesis (Nichols et al., 2005). 

 

Classification Algorithm. 

We used a Gaussian Naive Bayes (GNB) classification algorithm(Mitchell, 1997) with an 

assumption of zero covariance across voxels . To perform binary classification, our algorithm 

first estimates mean activity vectors and covariance matrices from training data for the 

Gaussian distributions 𝐩𝐩 (𝐱𝐱|𝐀𝐀) and 𝐩𝐩 (𝐱𝐱|𝐁𝐁). Then, the algorithm assigns a test sample 𝐱𝐱𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 

to the condition with the maximum posterior probability at 𝐱𝐱𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 based on the estimated 

distributions: if 𝐩𝐩 (𝐱𝐱𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭|𝐀𝐀)  >  𝐩𝐩 (𝐱𝐱𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭|𝐁𝐁) the algorithm infers that 𝐱𝐱𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 was sampled under 

condition 𝐀𝐀. Generalization accuracy is estimated using cross-validation (Mitchell, 1997). 

This involves training and testing on mutually exclusive subsets of samples and repeating 

with a different partitioning on each “fold”. Cross-validation was done on a leave-one-

session-out basis. On every fold, the classifier was trained on three sessions and tested on the 

remaining session, thereby avoiding session-related dependencies between training and 

testing samples (N. Kriegeskorte, W. K. Simmons, P. S. F. Bellgowan, & C. I. Baker, 2009; 

Mitchell, 1997; Pereira et al., 2009). Accuracy scores were averaged to give the 

generalization accuracy. All preprocessing and filtering was performed on a per-session 

basis. 

 

Multivariate Pattern Analysis. 

A searchlight procedure (Kriegeskorte et al., 2006) provided a spatially unbiased estimator 

of distributed activity across the brain. Each fMRI data sample had two task-related 

characteristics, stimulus category and value. A potential concern is that significant 

correlation between stimulus category and stimulus values could bias the classification 

results, since the classifier might leverage variance which distinguishes between categories 
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when attempting to decode value, and vice versa. WTP for food was lower on average 

compared to the money or trinket categories (Figure 1c). To address this concern the set of 

samples for each category was median split into ‘high’ and ‘low’ value classes on a cross-

session basis for each subject. This relabeling eliminates correlations between value and 

category labels for every subject (Spearman correlation, p > 0.2 for all subjects), resulting 

in six classes of samples, one for each value/category combination. To avoid class imbalance 

bias, all analyses were balanced on a per-session basis (i.e., the number of samples in each 

class was equalized for each session and therefore cross-validation folded) by randomly 

removing some samples. Analyses were run multiple times to confirm that the outcome of 

the analysis was not dependent on the balancing procedure. 

 

Category-independent value. 

We identified category-independent value signals as those whose representations enabled 

decoding of value level across stimulus categories. We ran all six binary cross-category value 

classification analyses by training to decode high vs. low value on samples drawn from one 

category (e.g., food) and testing on samples drawn from another (e.g., money). 

 

Within-category value. 

We searched for areas encoding value that were able to predict within the same category. 

Note that the value representations pinpointed in this analysis may or may not be category-

dependent, but the results of this exercise are necessary to carry out the category-dependent 

analysis described next.  
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Category-dependent value. 

We identified regions involved in category-dependent valuation as those that allowed us to 

decode values only within particular categories. These value representations would be coded 

in voxel response distributions which differ across categories.  

For this, we compared results of the cross-category and within-category value decoding 

analyses. We first identified voxels that could significantly decode (p < 0.005 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 

between high and low values within each category. Next we tested if these areas could predict 

value across categories. Any voxel that survived the cross-category analysis even at p <

0.05 (corrected for two comparisons at each voxel) was deemed to exhibit properties of 

category-independent value encoding. Clusters which survived the within-category analysis, 

but did not survive the cross-category analysis, were deemed to involve category-dependent 

valuation. 

 

Stimulus category identity. 

Finally, we looked for regions exhibiting multivariate encoding of stimulus category. We 

implemented three binary classification analyses – food vs. money, money vs. trinkets, and 

food vs. trinkets. The searchlight accuracy maps were entered into a conjunction analysis 

(Nichols et al., 2005) to identify regions whose activity discriminated between all category 

pairs. This ensured that areas of the brain identified by this analysis contained distributed 

codes pertaining to the identity of each stimulus category individually. 

 

Significance Testing. 

For the searchlight analyses, the percentage of correctly identified samples averaged across 

folds in the cross-validation was used as the classification score in each searchlight, and this 

score was assigned to the voxel at the center. This defined q classification accuracy map for 

each subject, which was then smoothed with an 8mm FWHM kernel. A second-level analysis 

was implemented by performing voxel-wise t-tests, comparing the distribution of accuracies 
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across subjects against 50%, which is the expected performance of an algorithm randomly 

labeling samples. Since multivariate classification is susceptible to optimistic classification 

biases, we carried out permutation tests to validate our decoding procedure (Mukherjee, 

Golland, & Panchenko, 2003) (see Permutation Testing For Multivariate Analyses). 

All univariate and multivariate results were significant at FDR-adjusted p < 0.05 corrected 

for multiple comparisons by controlling the voxelwise false discovery rate (FDR) with a 10 

voxel extent threshold. We had a strong prior hypothesis regarding value signals in medial 

prefrontal regions (Elliott et al., 2000; John P. O'Doherty et al., 2001; Padoa-Schioppa & 

Assad, 2006; L. Tremblay & Schultz, 1999; Wallis, 2007, 2011), thus, for value-based 

analyses, correction was performed within a vmPFC mask defined a priori from related 

functional (Vikram S. Chib et al., 2009) and anatomical (Beckmann, Johansen-Berg, & 

Rushworth, 2009) studies (see Supplementary Figure 1). This correction threshold is denoted 

p < 0.05 SVFDR. For other analyses, unrelated to value, whole-brain correction was used 

(denoted p < 0.05 FDR). For display purposes, we present all results at p < 0.005. Results 

corrected within a small volume are displayed uncorrected. All results are overlaid on a 

normalized T1-weighted image averaged across subjects. Our main results are based on the 

p < 0.05 SVFDR threshold (and displayed at p<0.005 uncorrected) since (a) it was used 

previously in a similar paradigm (Vikram S. Chib et al., 2009), thus allowing a direct signal 

power comparison, and (b) controlling the false discovery rate rather than the familywise 

error rate has been shown to have greater sensitivity with minimal risk of false positives 

(Chumbley, Worsley, Flandin, & Friston, 2010). 

 

Permutation Testing For Multivariate Analyses. 

For each multivariate analysis, the searchlight procedure was repeated 200 times with 

permuted labeling (Krajbich et al., 2009; Kriegeskorte et al., 2006; Pereira et al., 2009). To 

satisfy exchangeability criteria (Pereira & Botvinick, 2011) and to prevent label imbalances 

in the cross-validation, labels were permuted along with their positions in the dataset 
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partitions. The resulting accuracy maps were entered into mass univariate t-tests to determine 

if the accuracy distributions over the permuted datasets were significantly different from 

chance. At 𝐩𝐩 < 𝟎𝟎.𝟏𝟏, for all analyses, no voxel’s accuracy distribution significantly deviated 

from random chance in any subject. This indicates that the classification algorithm used for 

the data analysis across all conditions is fair and unbiased, i.e., the significant results reported 

for the non-permuted labels are not due to an optimistic classification bias. 

 

ROI Gradient Analyses. 

The t-score maps computed at the second-level in our univariate and within-category 

multivariate value analyses are indicative of the relative strengths of distinct types of value 

coding within vmPFC. We used these maps to investigate how the structure of stimulus value 

representation varies along (a) an anterior-posterior gradient in mOFC in relation to the 

abstractness of the stimulus being valued and (b) a ventral-dorsal gradient in vmPFC as a 

whole with respect to the relationship between the univariate and multivariate representation 

of value. 

 

Anterior-posterior gradient of stimulus abstractness. 

For voxels in mOFC, the t-scores obtained from the within-category value decoding analyses 

were tested for a correlation with the position of the voxels along the y-axis (Figure 2b). This 

was done for the food and trinkets categories separately. Since the smoothing applied to 

classification accuracy maps prior to the second-level analyses artificially inflates the 

strength of any spatial correlation, we generated a more reasonable correlation distribution 

under the null hypothesis by randomly generating noise within mOFC using the same mean 

and variance as in the empirically observed unsmoothed t-scores. We then smoothed this 

noise and computed the t-score/y-axis correlation, repeating this process 10,000 times. A 

non-parametric p-value was derived by determining the fraction of randomly generated 

correlations which exceeded the actual correlation. 
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Ventral-dorsal gradient of value processing complexity. 

Three analyses were performed to compare univariate and multivariate value signals in 

mOFC and mPFC: first, we correlated each voxel’s univariate and within-category MVPA 

t-scores with its position along the z-axis (Figure 4a). This was done for all voxels in the 

mOFC and mPFC masks together. We generated a null correlation distribution for each 

combination of category and value coding strategy by randomly generating correlations from 

simulated data generated using the same process described above. The null correlation 

distribution defines a non-parametric p-value as the proportion of randomly generated 

correlations which exceed the empirically observed correlation scores. Since we sought to 

determine whether or not the univariate and distributed coding strengths were differentially 

correlated with the z-axis, we derived confidence intervals around the respective correlation 

estimations via bootstrapping. That is, 10,000 samples were randomly generated with 

replacement and a sampling distribution estimated for each category and value coding 

strategy. From this sampling distribution, we can establish the range of values that the actual 

correlations might take (within an error probability thresholded at p < 0.05). 

Second, we examined how voxel preference for multivariate or univariate coding of value 

changes along an inferior-superior axis. To do this, we extracted the t-scores obtained in the 

second-level analyses for the univariate and within-category MVPA analyses for all voxels 

in each mask, and then for each voxel we subtracted the univariate t-score from the MVPA 

t-score, resulting in a single value indicative of that voxel’s relative preference for the 

multivariate or univariate encoding value. This was done for all voxels in mPFC and mOFC 

separately (Figure 4b). The resulting samples were tested using two-sided paired t-tests. 

In our third test, we correlated the second-level t-scores from the univariate and within-

category MVPA analyses on a voxel-by-voxel basis in each region. Again, this procedure 

was implemented for the food and trinkets categories separately. Since the number of voxels 

in each vmPFC subdivision is different, we tested differences in correlations using a 
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bootstrap procedure (Hastie, Tibshirani, & Friedman, 2008). For each combination of 

stimulus category and vmPFC subdivision, we resampled 348 data points of interest with 

replacement (corresponding to the number of voxels in the larger mOFC mask) and 

computed the correlation. In this way, 10,000 correlation coefficients were generated (Figure 

3b), giving an estimate of the empirical distribution. 
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C h a p t e r  3  

PROSPECTIVE AND RETROSPECTIVE CORTICAL AND STRIATAL 

REPRESENTATIONS OF DECISION VARIABLES 

While there is accumulating evidence for the existence of distinct neural systems supporting 

goal-directed and habitual action selection in the mammalian brain, much less is known about 

the nature of the information being processed in these different brain regions. Associative 

learning theory predicts that brain systems involved in habitual control, such as the 

dorsolateral striatum, should contain stimulus and response information only, but not 

outcome information, while regions involved in goal-directed action, such as ventromedial 

and dorsolateral prefrontal cortex and dorsomedial striatum, should be involved in processing 

information about outcomes as well as stimuli and responses. To test this prediction, human 

participants underwent fMRI while engaging in a binary choice task designed to enable the 

separate identification of these different representations with a multivariate classification 

analysis approach. Consistent with our predictions, the dorsolateral striatum contained 

information about responses but not outcomes at the time of an initial stimulus, while the 

regions implicated in goal-directed action selection contained information about both 

responses and outcomes. These findings suggest that differential contributions of these 

regions to habitual and goal-directed behavioral control may depend in part on basic 

differences in the type of information that these regions have access to at the time of decision-

making. 
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Introduction 

Two distinct strategies support behavioral control: a goal-directed strategy that flexibly 

generates decisions based on deliberate evaluation of the consequences of actions, and a 

habitual strategy that relies on a reflexive, automatic, elicitation of actions (B.W. Balleine, 

Daw, & O'Doherty, 2008; B. W. Balleine & A. Dickinson, 1998; Dickinson, 1985). These 

distinct mechanisms depend on at least partly dissociable brain systems, with the posterior 

dorsolateral striatum (DLS) being implicated in habits (E. Tricomi, B. W. Balleine, & J. P. 

O'Doherty, 2009; Yin, Knowlton, & Balleine, 2004) and the ventromedial prefrontal cortex 

(vmPFC) (or homologous regions in the rodent brain) and the dorsomedial striatum (DMS) 

contributing to goal-directed control (B. W. Balleine & A. Dickinson, 1998; Killcross & 

Coutureau, 2003; S. C. Tanaka, B. W. Balleine, & J. P. O'Doherty, 2008; Yin, Ostlund, 

Knowlton, & Balleine, 2005). However, the nature of the information encoding in these 

regions is much less understood. 

 

According to associative learning theory, in habits, associations are formed between stimuli 

(S) and responses (R), without any encoding of the goal or outcome (O). By contrast, in goal-

directed learning, associations are formed between stimuli, responses, and outcomes (B. W. 

Balleine & A. Dickinson, 1998). Specifically, goal representations are suggested to be 

elicited via S-O associations, which in turn retrieve response representations via an O-R 

association (Bernard W Balleine & Ostlund, 2007; Sanne de Wit & Dickinson, 2009).  

 

Several neurophysiology studies have explored whether brain regions implicated in habitual 

and goal-directed action contain different types of associative information. The results of 

such studies are equivocal, with most reporting similar information encoding in both DMS 

and DLS (Gremel & Costa, 2013; H. Kim, Lee, & Jung, 2013; Hoseok Kim, Sul, Huh, Lee, 

& Jung, 2009; Kimchi, Torregrossa, Taylor, & Laubach, 2009; Thomas A Stalnaker, 

Gwendolyn G Calhoon, Masaaki Ogawa, Matthew R Roesch, & Geoffrey Schoenbaum, 
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2010).  Another approach has been to adopt formal computational models of learning and 

correlate these to data acquired with fMRI or neurophysiology (J. O'Doherty, Dayan, Friston, 

Critchley, & Dolan, 2003; Samejima, Ueda, Doya, & Kimura, 2005). Some studies report 

that different types of reinforcement-learning models (model-free vs model-based) correlate 

with activity in DLS compared to DMS, vmPFC, and dorsolateral prefrontal cortex (dlPFC) 

(Glascher et al., 2010; A. N. Hampton et al., 2006; Lee, Shimojo, & O'Doherty, 2014; K. 

Wunderlich, Dayan, & Dolan, 2012) while others have found evidence for more mixed 

representations (N. D. Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Simon & Daw, 

2011). However, while such analyses reveal the computations that might be operating in a 

given area, they do not illuminate the type of information being encoded in those regions 

upon which a particular computational process may act. 

 

In the present study, human participants underwent fMRI while performing a binary decision 

task, in which we carefully manipulated response and outcome identity across experimental 

sessions. Using a multivariate pattern analysis classification method, we tested for the 

presence of response information and outcome information at the time of stimulus and action 

performance in different brain regions. We hypothesized that brain regions implicated in 

habitual control, such as the DLS, would encode response, but not outcome, information at 

the time of stimulus presentation, indicating a role for this region in supporting stimulus-

response associations, while other brain regions such as the vmPFC, dlPFC, and anterior 

DMS would contain representations of both responses and outcomes, indicative of a role for 

those regions in goal-directed learning and control.  
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Materials and Methods 

Participants 

Nineteen healthy right-handed volunteers participated in this study (11 male; mean age 22.9; 

SD 4.1 years). The volunteers were pre-assessed to exclude those with a history of 

neurological or psychiatric illness.  All participants gave informed consent and the study was 

approved by the Institutional Review Board of the California Institute of Technology. 

 

Task 

Participants performed a simple binary decision task (Figure 1A). At the start of each trial an 

initial stimulus environment was indicated by one of two Sanskrit characters. The participant 

then performed one of two possible actions and subsequently entered an outcome state in 

which they received an associated reward. There were two distinct initial stimuli, two 

possible outcome states (respectively represented by a blue circle and a red square), and two 

reward distributions—high (equal probability of $8, $10, $12) and low (equal probability of 

$2, $4, $6). Participants interacted with the environment using two qualitatively different 

actions: a double button press and a trackball roll. These actions were performed on the same 

device using the right hand. Action outcomes were anti-correlated and deterministic, i.e., 

actions always led to outcomes and these outcomes (and associated reward distributions) 

were always distinct. The initial stimulus determined the subsequent action-outcome 

contingencies and thus indicated which of the two actions was highly rewarded on a given 

trial. Crucially, the relationships between initial stimuli, actions, outcomes, and reward 

distributions were permuted across four conditions, ensuring that representations of one 

decision variable (e.g., actions) could not be confounded with those of another (e.g., 

outcomes) (phi correlation coefficient < |0.005|). A description of the full permutation order 

is provided in Table 1. Participants received training prior to each condition to ensure that 

they were fully aware of the relevant action-outcome contingencies.  Twelve sessions were 

run in total (three for each condition) with sixteen trials in each session (eight for each initial 
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stimulus). In addition, after training, participants nearly always selected actions leading to 

the high reward distribution and thus could not confound our decoding of initial stimulus, 

actions, and outcomes with the anticipated level of reward.  

 

fMRI Data Acquisition 

Functional imaging was performed with a 3 T Siemens Trio scanner. Forty-five contiguous 

interleaved transversal slices of echo-planar T2*-weighted images were acquired in each 

volume, with a slice thickness of 3mm and no gap (repetition time, 2650ms; echo time, 30ms; 

flip angle, 90°; field of view, 192mm2; matrix, 64x64). Slice orientation was tilted 30° from 

a line connecting the anterior and posterior commissure. This slice tilt alleviates the signal 

drop in the OFC (Deichmann, Gottfried, Hutton, & Turner, 2003). We discarded the first 

three images before data processing and statistical analysis, to compensate for the T1 

saturation effects. A whole-brain high-resolution T1-weighted structural scan (voxel size: 1 

x 1 x 1mm3) was also acquired for each subject. 

 

Data Preprocessing and Filtering 

Slice timing correction, motion correction, and spatial normalization were applied to the data. 

Prior to multi-voxel sample extraction, low frequency components (below 1/120Hz), serial 

autocorrelations, and head motion were subtracted from the data. To correct for session-

related mean and scaling effects, we applied second-order detrending and z-scoring on a per-

voxel per-session basis (Pereira et al., 2009). Pre-processing and filtering was performed 

using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/), except detrending and z-scoring, for which 

the PyMVPA package was used (Hanke et al., 2009). 
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General Linear Model 

Eight regressors of interest were included in the general linear model (GLM). Each regressor 

corresponded to the identity of a particular decision variable (i.e., one regressor for each 

initial stimulus, each action, each outcome, and each reward distribution). In addition, 

parametric modulators reflecting the actual reward delivered on a given trial were added to 

the reward distribution regressors. Time series of head motion estimated during realignment 

were included as covariates of no interest. 

 

Classification Algorithm 

We used a Gaussian Naive Bayes (GNB) classification algorithm (Mitchell, 1997) with an 

assumption of zero covariance across voxels. To perform binary classification our algorithm 

first estimates mean activity vectors and covariance matrices from training data for the 

Gaussian distributions p(x|A) and p(x|B). Then, the algorithm assigns a test sample xtest to the 

condition with the maximum posterior probability at xtest based on the estimated distributions: 

if p(xtest|A) > p(xtest|B) the algorithm infers that xtest  was sampled under condition A. 

Generalization accuracy is estimated using cross-validation. This involves training and 

testing on mutually exclusive subsets of samples and repeating with a different partitioning 

on each “fold”. Cross-validation was done on a leave-one-session-out basis. On every fold, 

the classifier was trained on three sessions and tested on the remaining session, thereby 

avoiding session-related dependencies between training and testing samples (Nikolaus 

Kriegeskorte et al., 2009; Mitchell, 1997; Pereira et al., 2009) . Accuracy scores were 

averaged to give the generalization accuracy. All preprocessing and filtering was performed 

on a per-session basis. Importantly, the average Spearman correlation between combinations 

of decision variables across subjects was 2x10-5, 1x10-3, and 2x10-4, respectively, indicating 

that the classifier could not erroneously decode one decision variable based on correlated 

representations of another. 
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Multivariate Pattern Analysis 

A searchlight procedure (Kahnt et al., 2010; Kriegeskorte et al., 2006) provided a spatially 

unbiased estimator of distributed activity across the brain. This involved the performance of 

GNB classification on the fMRI data in spheres of voxels of radius 3 throughout the brain. 

We extracted a sample of neural data corresponding to the initial stimulus, action, and 

outcome timepoints in each trial (with a shift of 5 s to account for hemodynamic delay) by 

averaging the two volumes closest in time (one before and one after) to the relevant timepoint 

(Clithero et al., 2011; McNamee et al., 2013). Each fMRI data sample had two task-related 

characteristics: timepoint and identity. Our hypotheses required us to decode based on a 

variety of interactions between these two characteristics, which we detail below. In 

particular, we performed the following analyses in order to determine whether neural 

representations of decision variables are present at timepoints in a trial other than the moment 

of perception or action. For all analyses below, cross-fold validation was used, in which 

training was done on the data from 11 sessions, and testing was done on the data from the 

12th session. This was then repeated 12 times, using a different test session on each occasion.  

 

Time-span Decoding 

In “time-span” decoding analyses, we trained the classifier at one time point in the trial to 

discriminate activity patterns elicited at another time point in the trial (Figure 1B). 

 

Time-shift Decoding 

Here we train and test at the same timepoint in the trial but label the samples according to an 

alternate timepoint. For example, we decode preceding action at the time of outcome state 

presentation. The important distinction between these “time-shift” analyses and the previous 

“time-span” analyses is that, in our example, the “time-shift” analyses do not require that the 

action representation at the outcome timepoint be the same as that at the action timepoint. 
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Action at Stimulus Time 

To detect regions involved in encoding action representations at the time of initial stimulus 

presentation, we trained our classifier to discriminate between different action 

representations (double button press vs. trackerball roll) at the time of action selection. We 

then tested the classifier at the time of initial stimulus presentation to assess whether activity 

in a given brain area during the time of initial stimulus presentation reflected the action that 

would subsequently be selected on that trial. A successful classification in a given brain 

region would indicate that information about the to-be-performed action is being represented 

during the initial decision period, suggesting the presence of stimulus-response associations 

in that region. 

 

Outcome at Stimulus Time  

To detect regions involved in encoding outcome representations at the time of initial stimulus 

presentation in the trial, we trained our classifier to discriminate different target outcomes, 

e.g., blue circle vs red square, as they were presented at the time of outcome delivery. We 

then tested the classifier at the time of initial stimulus presentation (i.e., at the onset of the 

trial), to assess whether activity in a given brain area during the time of initial stimulus 

presentation reflected the outcome that would ultimately be delivered on that trial (contingent 

on the subsequent action). A successful classification in a given brain area would indicate 

that information about the goal of an action is represented in that area during the initial 

decision period.  

 

Decoding of Integrated Representations 

We were also interested in testing for “integrated representations”, in which distinct 

combinations of stimuli and actions (e.g., S1-A1 and S2-A2) might be encoded as unique 

configurations (S1A1 vs S2A2), as opposed to being encoded as elemental action 

representations (A1 vs A2). The key distinction is that an integrated representation of an S1-
 



94 

 

A1 combination would successfully decode only on trials in which A1 is selected in the 

presence of S1 but not otherwise; in contrast, a unitary representation of action A1 would 

successfully decode on any trial in which A1 was selected, irrespective of whether S1 or S2 

was present. To detect such integrated representations we performed the following steps: 

 

(1) Establishing potential ROIs: First we trained the classifier to decode S1-A1 vs S2-A2 

configurations at the time of initial stimulus presentation and tested for those representations 

at the same time-point. A significant signal in this analysis is indicative of the encoding of 

unitary stimulus representations, unitary action representations, or integrated stimulus-action 

representations. 

 

(2) Ruling out unitary stimulus representation: Secondly, we used the classifier weights 

trained up in stage (1) in order to also test for discrimination between S1-A2 vs S2-A1. If the 

classifier performs significantly above-chance, this would indicate that unitary stimulus 

information is being decoded (since the only consistent labels between the training and 

testing data are S1 and S2).  

 

(3) Ruling out unitary action representation: In our third analysis, we again used the classifier 

weights from stage (1), and tested if the classifier could decode S2-A1 vs S1-A2. Similar 

logic implies that significant decoding in this analysis is consistent with unitary action 

representations. 

 

It is also possible that both integrated and unitary representations are present in a region 

simultaneously. Significant classification in stage (1) but not in stages (2) and (3) is indicative 

of integrated stimulus-action representations only. Thus, in order to attribute decoding 

signals specifically to integrated representations, we consider the conjunction between two 

statistical maps obtained from per-voxel paired t-tests between (i) accuracy scores in stage 
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(1) vs. stage (2) and (ii) accuracy scores in stage (1) vs. stage (3). The only explanation for a 

signal that survives this stringent criterion is that it is generated by an integrated stimulus-

action representation, since the first paired t-test rules out stimulus-only decoding and the 

second rules out action-only decoding. 

 

Significance Testing 

For the searchlight analyses, the percentage of correctly identified samples, averaged across 

folds in the cross-validation, was used as the classification score in each searchlight and this 

score was assigned to the voxel at the center of the searchlight sphere. This defined a 

classification accuracy map for each subject, which was then smoothed with an 8mm FWHM 

kernel. A second-level analysis was implemented by performing voxel-wise t-tests 

comparing the distribution of accuracies across participants against 50%, which is the 

expected performance of an algorithm randomly labeling samples. Since multivariate 

classification is susceptible to optimistic classification biases, we carried out permutation 

tests to validate our decoding procedure (McNamee et al., 2013). 

 

All results were significant at FWE-adjusted p < 0.05 corrected for multiple comparisons by 

controlling the familywise error rate (FWE) with a 10 voxel extent threshold. We had strong 

prior hypotheses regarding action and outcome representations in posteriolateral and anterior 

medial striatum, and in ventromedial prefrontal cortex. Thus, in these areas, corrections were 

performed within small volumes defined a priori based on relevant functional imaging 

studies (see Table 2). Small volume corrections are denoted throughout by SVFWE and 

whole-brain corrections by FWE. For display purposes, we present overlays thresholded at 

p < 0.005 uncorrected. 
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Psychophysiological Interactions 

BOLD time courses were extracted from regions of interest (ROIs) using SPM’s “Volume 

of Interest” functionality correcting for an F-contrast composed of all effects of interest in 

the GLM. ROIs were defined as the set of voxels within a 6mm radius of seed coordinates 

which were independently defined based on related functional imaging studies (see 

Supplementary Table S2). A GLM was then constructed with three regressors in the 

following order: the BOLD time course from the seed region (the physiological term), an 

indicator regressor encoding the initial stimulus onset on each trial (the psychological term), 

and the corresponding interaction regressor. Once the GLMs were estimated for all 

participants, a second-level contrast (i.e., across participants) was specified for the interaction 

regressor. The resulting statistical map details the degree of coupling, modulated by the 

psychological regressor, between the seed region and voxels throughout the brain. It does 

this by measuring how much BOLD activity in the target location is accounted for by the 

interaction term in the GLM. 
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Results 

Behavioral Performance 

Due to the relatively simple nature of the task, and the training conducted before each 

experimental condition, participants were expected to perform close to optimally (defined as 

choosing actions associated with the high reward distribution in each condition).  Consistent 

with this prediction, mean percentage of optimal action-selection was 90% across 

participants.  Performance ranged from (85.4% to 97.4%), except in one participant who was 

an outlier in terms of having a performance level of 60.1%. The individual with the outlier 

performance level was nonetheless included in the fMRI analysis, as a sufficient number of 

trials were still available for the classification performance. 

 

Neuroimaging Results 

Goal-directed associative encoding: S-O, R-O and S-R associations. 

We first tested for areas surviving individual tests for outcome information or action 

information during the initial stimulus period, and then finally report a conjunction across 

those tests, which is the key criterion for a region involved in goal-directed associative 

encoding (Balleine & Ostlund, 2007). 

 

Outcome at stimulus time. 

We first tested for brain regions involved in encoding outcome identity at the time of the 

initial stimulus, as such representations would be indicative of regions having access to the 

goal or outcome at the time of decision-making. Prospective representations of the predicted 

outcome state at the time of stimulus were identified in right dlPFC (p < 0.05 SVFWE, 

t(18)=4.55, x=60, y=20, z=34) and in central OFC (p < 0.05 SVFWE, t(18)=3.11, x=18, 

y=32, z=-20).  
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Outcome at action time. 

We also tested for regions encoding outcome information at the time of action performance. 

For this we used a time-span analysis to train the classifier on outcome representations at the 

time of outcome delivery, and then tested at the time of action execution. We found 

significant signals in dlPFC (p < 0.05 SVFWE, t(18)=5.15, x=51, y=17, z=37), vmPFC (p < 

0.05 SVFWE, t(18)=6.02, x=0, y=53, z=-20), central OFC (p < 0.05 SVFWE, t(18)=5.15, 

x=30, y=38, z=-11), and caudate (p < 0.05 SVFWE, t(18)=4.02, x=9, y=20, z=16). 

 

Action at stimulus time. 

We also expected regions involved in goal-directed control to encode action information at 

the time of initial stimulus presentation. Out of the regions identified above as containing 

outcome information at the time of either initial stimulus presentation or action execution, 

two regions also contained action information at the initial stimulus time, the dlPFC (p < 0.05 

SVFWE, x=57, y=8, z=34, t(18)=3.85) and vmPFC (p < 0.05 SVFWE, x=0, y=53, z=-20, 

t(18)=6.02). 

 

Regions containing both action and outcome information at stimulus time. 

In order to formally identify voxels containing both outcome and action information at the 

time of the initial stimulus, we performed a conjunction analysis on the results of the 

“outcome at stimulus time” and “action at stimulus time” statistical maps. This analysis 

yielded significant effects only in right dlPFC (conjunction, p < 0.05 SVFWE, x=60, y=17, 

z=34, t(18)=3.47). (Figure 7a). Although we did not specify the dorsomedial prefrontal 

cortex as an a-priori region of interest, activity was also found in this region at an uncorrected 

threshold. Given that this region was identified as being involved in model-based RL in a 

previous study by Lee et al, 2014, we performed a post-hoc small volume correction using 

dmPFC coordinates identified in that study (x=12, y=32, z=37), which revealed a significant 
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cluster (p < 0.05 SVFWE, x=21, y=35, z=40, t(18)=3.36). As this was a post-hoc inference, 

we refrain from discussing it further, but report it for completeness. 

 

Regions containing BOTH action at stimulus time and outcome at action execution. 

We also performed a conjunction analysis in order to pinpoint regions in which action 

information is available at the initial stimulus time, while outcome information is represented 

during action execution. This contrast revealed significant effects in the vmPFC (p < 0.05 

SVFWE, x=3, y=53, z=-20, t(18)=5.54), as well as the left (p < 0.05 SVFWE, x=-42, y=26, 

z=49, t(18)=4.78) and right (p < 0.05 SVFWE, x=51, y=29, z=43, t(18)=3.97) dlPFC. 

 

Habitual encoding of stimulus-response associations. 

In order to identify brain regions that could potentially be involved in habitual action-

selection we tested for areas that encoded action information at the initial stimulus time but 

that were not encoding outcome information at either the stimulus time or during action 

performance.  Of the areas identified in the analysis testing for significant decoding of actions 

at the time of stimulus, two regions in particular were identified as containing action 

representations that did not also contain outcome representations: the posterior lateral 

putamen (p < 0.05 SVFWE, x=-27, y=-22, z=7, t(18)=3.24) (peak within same cluster x=-

21, y=-19, z=7, t(18)=4.79), and the supplementary motor cortex (p<0.05 FWE, x=15, y=32, 

z=61, t(18)=7.95). In an independent follow up analysis using anatomically defined regions 

of interest centered on the posterior putamen and supplementary motor cortex, we tested 

whether these regions contained on average significantly better predictions of actions 

compared to outcomes at the time of stimulus. In a paired t-test we found that action 

representations were significantly more strongly represented than outcome representations 

in both these regions (see Figure 8; putamen p=0.001, t(18)=3.9; SMA p=0.005, t(18)=2.86). 

In addition to these paired t-tests, we performed one-sample t-tests against a random-chance 
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accuracy score, which indicated that only action information, but not outcome information, 

was present in the putamen and SMA at the time of the initial stimulus presentation. 

 

If putamen is driving motor activity during the performance of habitual actions, one would 

expect this area to be functionally connected to the thalamus, and the thalamus in turn to the 

motor cortex in the contralateral (left) hemisphere, as dictated by the anatomy of 

corticostriatal loops. We tested for psycho-physiological interactions (PPI) between an 

indicator variable for the onset of the initial stimulus and neural activity seeded at the 

putamen and thalamus. The putamen-based PPI resulted in a significant correlation with 

activity in the left thalamus (p<0.05SVFWE, x=-12, y=-19, z=-2, t(18)=4.07) and the 

thalamus PPI correlated significantly with activity in left premotor cortex (p<0.05SVFWE, 

x=-39, y=-7, z=46, t(18)=7.39). A weaker effect was also found in the ipsilateral (right) 

premotor cortex (p<0.05SVFWE, x=42, y=-10, z=58, t(18)=5.45).  All seed coordinates used 

in the PPI were defined independently of results of the other analyses in this study (see Table 

2). 

 

Integrated Stimulus-Action Representations. 

We also tested for integrated stimulus-action representations – encoding specific stimulus-

action pairs as unique configurations (e.g., S1A1) – at the time of the initial stimulus (see 

Methods). Integrated stimulus-action representations were identified in the anterior 

dorsomedial striatum (caudate nucleus; (p < 0.05 SVFWE, x=15, y=11, z=22, t(18)=4.16) 

and hippocampus (p < 0.05 SVFWE, x=24, y=-1, z=-20, t(18)=4.35). 

 

Integrated Action-outcome Representation. 

We also tested for evidence of integrated action-outcome representations at the time of 

stimulus, using a similar approach. No significant decoding of integrated action-outcome 

representations was found. 
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Ruling out response time confounds. 

There was a significant difference in response times for the two actions (two-sided paired t-

test, t(18)=3.415, p=0.003); in contrast, no difference was found in response times as function 

of the identity of the initial stimulus (t(18)=0.561, p=0.582), or outcome state (two-sided 

paired t-test,  t(18)=0.577, p=0.571). To ensure that response times were not confounding 

our results, we ran additional analyses assessing action-dependent decoding.  Specifically, in 

these analyses, we included individual trial reaction times as a covariate of no-interest in the 

fMRI design matrix and re-ran all of the classification analyses involving actions as described 

above.  We filtered out any voxel activity variance explained by trial-to-trial response time 

at the INITSTIM and ACTION timepoints. This was accomplished by estimating a GLM 

which included trial-to-trial reaction times as parametric modulators time-locked to the 

INITSTIM and ACTION trial events. Following GLM estimation, beta values for these 

parametric modulators were multiplied by the corresponding regressors and linearly 

subtracted from the data. All of our results remained significant after inclusion of the reaction 

time covariate, indicating that our classifier is not relying on differences in reaction times in 

order to decode action information. 
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Discussion 

Contemporary associative theory distinguishes between habitual S-R associations and a 

combination of S-O, O-R, and R-O associations thought to mediate goal-directed 

performance (Bernard W Balleine & Ostlund, 2007).  In this study, we used multivariate 

pattern analysis to assess whether dissociable regions of the human brain encode these 

distinct associative structures. Unlike previous work in humans, contrasting qualitatively 

different experimental conditions designed to encourage different action selection strategies, 

or comparing largely parameter driven value signals generated by RL algorithms, our 

approach sought to identify a neural implementation of the associative content of goal-

directed versus habitual behavioral control. We found evidence for stimulus-elicited 

response representations but no outcome representations, indicative of habits, in the DLS 

(posterior putamen).  Conversely, in the vmPFC, dlPFC, and anterior caudate nucleus, both 

response and outcome representations were present, indicative of goal-directed decision-

making. 

 

Our finding of stimulus-elicited response, but not outcome, representations in the DLS 

suggests that this area is especially involved in encoding S-R associations. While previous 

studies have found evidence that activity in this area increases over time as habits come to 

control behavior (E. Tricomi et al., 2009), and that activity in this region correlates with 

model-free value signals (Lee et al., 2014; K. Wunderlich et al., 2012), the present study 

illuminates the associations being encoded in the region. A previous report found that the 

degree of structural connectivity between the posterior putamen and the premotor cortex 

predicts susceptibility to habit-like “slips-of-action” (S. de Wit et al., 2012). Our connectivity 

analysis suggests a potential mechanism by which stimulus-response related activity in the 

putamen is ultimately transferred to the motor cortex via the thalamus, in order to implement 

habitual motor control. 
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Whereas habits depend on a reflexive retrieval of a previously reinforced response, goal-

directed behavior involves selecting, evaluating, and initiating an action based on the 

probability and utility of its consequences. The “associative cybernetics theory” (Bernard W 

Balleine & Ostlund, 2007; Sanne de Wit & Dickinson, 2009) postulates that the retrieval of 

potential outcomes, of the actions that produce them, and of the values of those actions is 

mediated respectively by S-O, O-R and R-O associations.  Critically, to allow for sensitivity 

to sensory-specific outcome devaluation and contingency degradation, defining features of 

goal-directed performance, the associations relating the probabilities and utilities of potential 

outcomes to the stimuli and actions that produce them must be flexible and current, 

suggesting a dynamic binding of features. 

 

One area well suited for the dynamic binding of stimuli, actions, and outcomes is the dlPFC, 

given prior evidence for a role of this structure in working-memory and goal-directed 

behavior more generally (Patricia S Goldman-Rakic, 1996; Earl K Miller & Jonathan D 

Cohen, 2001). We found that activity in this region reflected representations of both action 

and outcome identities at the time of initial stimulus presentation, indicative of a key role for 

this region in encoding the information necessary to guide goal-directed actions at the time 

of decision-making. Specifically, the finding that dlPFC activity reflects information about 

action and outcome identities, necessary for computing goal-directed action values, is 

consistent with a contribution of this area to encoding the model component of a model-

based RL algorithm. Previous findings reported state-prediction errors in this region that 

could underpin the learning of the underlying associations needed to form such a model 

(Glascher et al., 2010). The present findings suggest that not only is dlPFC involved in 

learning or updating such a model, but also in encoding (or at least retrieving) the model 

itself. 
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The contribution of dlPFC to the encoding of associative information necessary for 

computing goal-directed actions at the time of initial stimulus presentation can be contrasted 

with our findings in the vmPFC.  Whereas vmPFC did encode information about the action 

at the time of initial stimulus presentation, information about the outcome identity was not 

present until later in the trial, during action execution. However, in the central orbitofrontal 

cortex (cOFC), an area adjacent to and highly connected to the vmPFC (Carmichael & Price, 

1996), outcome identity information was represented at the time of initial stimulus 

presentation.  One possibility, therefore, is that the cOFC encodes the identity of a goal at the 

time of initial decision-making and that this outcome-identity representation is then used to 

retrieve outcome value signals in the vmPFC. Consistent with this interpretation, a previous 

study by our group reported activity in central OFC extending to vmPFC correlating with the 

categorical identity of the goal at the time of decision-making (McNamee et al., 2013). In 

that previous study, information about the value of the goal was most prominently 

represented in vmPFC. An important feature of our experiment is that we have controlled for 

value (i.e., kept value constant throughout, with high and low value outcomes assigned 

equally often to every possible combination of stimuli and actions), to ensure that outcome 

identity information is not confounded with the outcome-value. Thus, we cannot test in the 

present design when value information about outcomes emerges in vmPFC. However, 

previous studies have reported such information to be present in both the vmPFC and in the 

dlPFC at the time of decision-making (V. S. Chib, A. Rangel, S. Shimojo, & J. P. O'Doherty, 

2009; H. Plassmann, J. O'Doherty, & A. Rangel, 2007). 

 

Our findings provide new insight into the differential functions of DLS vs DMS. While the 

posterior DLS (posterior putamen) was found to encode representations of responses elicited 

by discriminative stimuli, but not of outcomes, the anterior dorsomedial striatum (anterior 

caudate) was likewise found to encode response representations at the time of initial stimulus 

presentation but also to contain significantly decodable information about outcome identities 
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at the time of action performance. However, there was also a difference in the type of 

stimulus-response coding present in the DMS compared to the DLS. In the DMS, the 

encoding of response associations was integrated with stimulus identity; a unique distributed 

representation was present in the DMS for each stimulus-response pair. In contrast, in the 

DLS, each response was coded independently of the stimulus that elicited it. The binding of 

stimulus-response associations into a single representation found in the DMS could underpin 

a form of abstraction of stimulus-response codes, which could potentially be part of a 

mechanism for chunking stimulus-response chains. Our finding of a difference in the type of 

encoding present in the dorsomedial vs dorsolateral striatum is important, given that a 

number of previous neurophysiology studies have not found clear differences in information 

encoding between these regions (Hoseok Kim et al., 2009; Kimchi et al., 2009; Thomas A 

Stalnaker et al., 2010). 

 

Some neurophysiology studies have reported outcome representations at the single-neuron 

level in both DLS and DMS (Hikosaka, Sakamoto, & Usui, 1989; H. Kim et al., 2013; 

Hoseok Kim et al., 2009; Lau & Glimcher, 2007; Thomas A Stalnaker et al., 2010), whereas 

here we found such representations only in DMS. An important feature of our experimental 

design is that differences found in outcome identity representations could not be accounted 

for by potential differences in the value of the outcomes. While we did have actions leading 

to high vs low rewards in our experiment, we trained the classifier to distinguish between 

different outcome states leading to the SAME high valued reward. This is necessary because 

differences in outcome value, i.e., between high and low valued goal states, could drive 

differences in outcome-related neural activity in a brain region even if that area is not 

explicitly representing outcome identity; indeed, even a pure S-R learning system would 

discriminate high and low valued states as the high valued state would be associated with 

stronger S-R associations through trial-by-trial reinforcement.  
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Naturally, the absence of significant decoding from the BOLD signal in a given brain area 

does not imply the absence of that information at the level of single neurons. fMRI  and 

single unit data may capture different aspects of neural activity in any event, with the BOLD 

signal suggested to be correlated more closely with input into a region and intrinsic 

processing therein as opposed to output (Logothetis, Pauls, Augath, Trinath, & Oeltermann, 

2001). Nevertheless, it is striking that our current findings about information content do 

accord very well with previous evidence about the differential role of dorsolateral striatum 

in habitual control, and a corresponding role for dorsomedial striatum and prefrontal cortex 

regions in goal-directed actions (Glascher et al., 2010; Valentin, Dickinson, & O'Doherty, 

2007; Yin et al., 2004; Yin et al., 2005). 

 

To conclude, our present results suggest that different brain areas are involved in encoding 

different kinds of information about responses and outcomes, consistent with a differential 

role for these regions in goal-directed and habitual learning and control. Whereas cortical 

areas, including the dorsolateral prefrontal cortex and the ventromedial prefrontal cortex 

alongside the anterior dorsomedial striatum, contained associative information about the 

identities of both responses and outcomes necessary for goal-directed control, the 

dorsolateral striatum contained only information about stimuli and responses, which would 

be sufficient for habitual but not goal-directed control. 
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Figures 

Figure 6, Task structure. 

 
Figure 6. a) Task structure. Subjects performed a binary decision task. One of two possible 

initial stimuli (INITSTIM) was presented which determined the subsequent deterministic 

action-outcome contingencies between two possible actions and two possible outcome states. 

Outcome states were denoted by either a blue circle or a red square and were followed after 

a short delay by one of two distributions of monetary rewards (large or small). Crucially, 

each possible combination of stimulus, action, and outcome was permuted across sessions, 

thereby ensuring that the identity of the stimulus, or the value of the monetary reward per se, 

does not get conflated with action identity or outcome identity, which are the critical 

variables being examined in the present study. b) Time-span analysis. The aim of this 
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analysis was to identify ROIs containing “preplayed” action and outcome state 

representations which may be contributing to action control. In the example presented 

(ACTION->INITSTIM), this would require an action representation which is present at the 

time of action performance to be encoded at the time of the initial stimulus presentation. 
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Figure 7, Goal-directed, S-O, R-O, and S-R representations. 

 
Figure 7. a) Right dlPFC encoded both action and outcome representations at the time of the 

initial stimulus presentation (conjunction analysis, x=60, y=17, z=34, t(18)=3.47). b) vmPFC 

encoded action at the time of initial stimulus presentation and outcome information at the 

time of action performance (conjunction, x=3, y=53, z=-20, t(18)=5.54). c) Bar plot depicts 

accuracy score distributions in an independently defined dlPFC ROI. This score is the 

decoding accuracy minus 0.5, which is the expected accuracy of a random algorithm.  * 

indicates significance at p<0.05, **p<0.005. d) Bar plot depicts accuracy score distributions 

for vmPFC, ***p<0.0005. 
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Figure 8, Habitual, S-R associations. 

 
Figure 8. a) A region of DLS (posterior putamen), extending into the globus pallidus (GP) 

was found to encode information about the action to be performed at the time of initial 

stimulus presentation (p < 0.05 SVFWE, x=-27, y=-22, z=7, t(18)=3.24), but critically no 

 



111 

 

significant information about outcome. b) The distribution of accuracy scores for actions and 

outcomes at the time of initial stimulus in an independently defined putamen/GP region-of-

interest, ***p<0.0005. 
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Figure 9. Integrated stimulus-action representations. 

 
Figure 9. Integrated stimulus-action representations were localized in DMS (anterior caudate 

nucleus) (p<0.05SVFWE, x=15, y=11, z=22, t(18)=4.16) and hippocampus 

(p<0.05SVFWE, x=24, y=-1, z=-20, t(18)=4.35). 
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Figure 10. Behavioral performance, decision variable orthogonalization, RT/MVPA 

correlations. 
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Figure 10. a) Percentage of sub-optimal choices, the median percentage of sub-optimal 

choices across subjects was 8.9% (mean 10.03, S.E.M. 1.83) corresponding to 1.42 incorrect 

choices per session on average (16 trials per session). One outlier subject did not respond 

optimally on 39.06% of trials. b) The average Spearman correlation between combinations 

of decision variables across subjects was 2x10-5, 1x10-3, and 2x10-4, respectively, indicating 

that the classifier could not erroneously decode one decision variable based on correlated 

representations of another. c) We performed linear regressions based on the average 

decoding accuracies in ROIs with significant time-span decoding of ACTION at INITSTIM. 

We hypothesized that the strength of the multivoxel representation would correlate with 

response times in ROIs which causally contribute to response selection (Picard, Matsuzaka, 

& Strick, 2013). RLM denotes “robust linear regression”, OLM denotes “ordinary linear 

regression”. Due to the discrepancy between the regression p-values for putamen we ran a 

bootstrap analysis in order to empirically generate regression slope distributions for 

significant ROIs. This analysis strongly indicated that decoding accuracies in the putamen 

significantly explained reaction times and confirmed the results for the other ROIs. d) Linear 

regressions between reaction times and OUTCOME time-span decoding at INITSTIM. 

dlPFC was the only region with a significant correlation between decoding accuracy and 

response time. There was also a significant anti-correlation between SMA decoding accuracy 

and response time. Note that all accuracy scores are averaged within an independently 

defined ROI and subtracted from expected performance of a randomized algorithm (0.5). 
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Tables 

Table 1. Experimental conditions. 
Condition INITSTIM ACTION OUTCOME REWARD 

1 S1 A1 Red High 

 S1 A2 Blue Low 

 S2 A1 Red Low 

 S2 A2 Blue High 

2 S1 A1 Blue Low 

 S1 A2 Red High 

 S2 A1 Blue High 

 S2 A2 Red Low 

3 S1 A1 Blue High 

 S1 A2 Red Low 

 S2 A1 Blue Low 

 S2 A2 Red High 

4 S1 A1 Red Low 

 S1 A2 Blue High 

 S2 A1 Red High 

 S2 A2 Blue Low 

Table 1. Illustration of the experimental conditions describing the permutation across 

sessions. (S1,S2) stimuli indicating initial stimulus; (A1,A2) button press and tracker ball 

actions. Note that the order of presentation of the experimental conditions was also permuted 

across participants. 
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Table 2. Regions of interest (ROIs). 
Region Coordinates Source 

dlPFC (48,9,36) (Glascher et al., 2010) 

vmPFC (-3,41,-11) (McNamee et al., 2013) 

cOFC (21,38,-11) (McNamee et al., 2013) 

Caudate (anterior) (6,10,20) (Tanaka et al., 2008) 

Putamen/GP (posterior) (-33,-24,0) (E. Tricomi et al., 2009) 

Hippocampus (18,-6,-20) (-34,-14,-18) (Simon & Daw, 2011) 

   

PPI Analysis Only   

Thalamus WFU PickAtlas mask (Maldjian, Laurienti, Kraft, 

& Burdette, 2003) 

Motor Cortex WFU PickAtlas mask (Maldjian et al., 2003) 

Table 2. dlPFC, dorsolateral prefrontal cortex; vmPFC, ventromedial prefrontal cortex; 

cOFC, central orbitofrontal cortex; GP, globus pallidus. Correction was performed within a 

10mm-radius sphere surrounding the corresponding coordinates. 
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Supplementary Figures 

Supplementary Figure 7. Reaction time permutation tests. 

 
Supplementary Figure 7. In order to clarify the discrepancy between the conclusions of the 

robust and ordinary linear regression analyses for the putamen ROI (Figure 10), we 

empirically generated a slope distributed via bootstrapping. This involved randomly drawing 

accuracy/RT pairs with replacement (1000 samples) and computing the corresponding 

regression slope. The fraction of slope values less than zero provided a one-sided non-

parametric one-sided test of the significance of the regression. 
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Supplementary Figure 8. Decoding action at the time of outcome. 

 
Supplementary Figure 8. Here, we use time-shift decoding (as opposed to time-span 

decoding; see Methods). Results of the ACTION@OUTCOME analysis. Action was 

represented in caudate tail (x=-21, y=-37, z=13, t(18)=4.39) at the time of OUTCOME but 

not at the ACTION or INITSTIM timepoints. 
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Supplementary Figure 9. INITSTIM representations in parietal cortex. 

 
Supplementary Figure 9. INITSTIM representation in parietal cortex (x=27, y=-76, z=49, 

t(18) = 4.95). 
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Supplementary Tables 

Supplementary Table 1. Sub-optimal choice logistic regression. 
No. Observations 3648      

Df Residuals 3641      

Df Model  6      

Log-Likelihood  -1150.3      

LL-Null  -1188.5      

LLR p-value  1.98E-14      

      

      Independent Variable                Coef. Std. Err. z P > |z| [95.0% Conf. Int.] 

Constant                 -1.6365 0.389 -4.211 0 -2.398    -0.875 

Timepoint 

(timepoint within a session)         0.0009 0.003 0.334 0.739 -0.005     0.006 

Value 

(previous outcome value)                  

-0.0118 

 

0.042 

 

-0.281 

 

0.779 

 

-0.094     0.071 

 

Switch 

(compared to previous choice)                

1.1545 

 

0.379 

 

3.047 

 

0.002 

 

0.412     1.897 

 

Switch x Value -0.1494 0.045 -3.324 0.001 -0.238    -0.061 

Timepoint x Value        -0.0005 0 -1.63 0.103 -0.001     0.000 

Timepoint x Switch x Value 9.94E-05 0 0.526 0.599 -0.000     0.000 

The binary dependent variable was an indicator of when a sub-optimal choice was made. The 

only significant coefficients of interest were those corresponding to the “Switch” and 

“Switch x Value” interaction. The “Switch” variable was a binary indicator of when a 

different choice was made compared to the previous. The “Value” variable encoded the 

monetary sum earned on the previous trial. Thus, the negative coefficient of the “Switch x 

Value” interaction variable indicates that subjects made sub-optimal choices in order to not 

repeat an action that had resulted in a relatively low outcome on the previous trial. 
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C h a p t e r  4  

MODEL-BASED SIGNALING IN THE HUMAN AMYGDALA DURING 

PAVLOVIAN CONDITIONING3 

Contemporary computational accounts of instrumental-conditioning have emphasized a role 

for a model-based system in which values are computed with reference to a rich model of 

the structure of the world, and a model-free system in which values are updated without 

encoding such structure. Much less studied is the possibility of a similar distinction operating 

at the level of Pavlovian conditioning. In the present study, we scanned human participants 

with fMRI while they participated in a Pavlovian conditioning task with a simple structure. 

Fitting a model-based algorithm and a variety of model free algorithms, we found evidence 

at both behavioral and neural levels to support a role for a model-based as opposed to a 

model-free learning process in the amygdala. These findings support an important role for 

model-based algorithms in describing the processes underpinning Pavlovian conditioning, as 

well as providing evidence of a role for the human amygdala in model-based inference. 

3 Adapted with permission from (Prévost, McNamee, Jessup, Bossaerts, & O'Doherty, 2013). Data acquisition and fMRI 
data analysis performed by Charlotte Prévost. 
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Introduction 

Neural computations mediating instrumental conditioning are suggested to depend on two 

distinct mechanisms: a “model-based” reinforcement learning system, in which the value of 

actions is computed on the basis of a rich knowledge of the states of the world and the nature 

of the transitions between states, and a “model-free” reinforcement learning system, in which 

action-values are updated incrementally via a reward prediction error without using a rich 

representation of the structure of the decision problem (Corrado & Doya, 2007; N. D. Daw, 

Y. Niv, & P. Dayan, 2005; P. Dayan & Daw, 2008; P. Dayan, Kakade, & Montague, 2000; 

Doya, Samejima, Katagiri, & Kawato, 2002; Gershman, Blei, & Niv, 2010). Accumulating 

evidence supports the existence of model-based representations during instrumental 

conditioning in a number of brain regions, including the ventromedial prefrontal cortex, 

striatum, and parietal cortex (N. D. Daw et al., 2011; Glascher et al., 2010; A. N. Hampton 

et al., 2006). However, instrumental conditioning is not the only associative learning 

mechanism in which model-based computations might play a role.  

Pavlovian conditioning can also be framed as a model-based learning process, in which the 

animal begins with a model of the possible structure of the world: the stimuli within it, and 

sets of possible contingencies that could exist between conditioned stimuli and 

unconditioned stimuli, as well as assumptions about how these contingencies might change 

over time. In essence, learning within such a system corresponds to determining the statistical 

evidence for which structure out of the set of possible causal structures best describes the 

environment, as well as determining whether or when the relevant causal processes have 

changed as a function of time. Model-based approaches to classical conditioning to date have 

used Bayesian methods to yield inference over structure (A. C. Courville, Daw, & Touretzky, 

2006). 

Very little is known about the extent to which such model-based algorithms are implemented 

in the brain during Pavlovian conditioning. The aim of the present study was to address this 

question using computational fMRI. Human participants were scanned while undergoing a 
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Pavlovian conditioning procedure with a sufficiently complex structure to enable the 

predictions of model-based and model-free algorithms to be compared and contrasted (see 

Figure 11). We then constructed a Bayesian algorithm incorporating a model of the structure 

of the learning problem and compared the predictions of this algorithm against two widely 

adopted “model-free” algorithms for Pavlovian conditioning: the Rescorla-Wagner (RW) 

learning rule (Rescorla, 1972) and the Pearce-Hall (PH) learning rule (J. M. Pearce & G. 

Hall, 1980).  

In order to test for model-based signals in the brain we focused on the amygdala, a structure 

heavily implicated in Pavlovian conditioning in both animal and human studies (Buchel & 

Dolan, 2000; Delgado, Olsson, & Phelps, 2006; Fanselow & LeDoux, 1999; Johansen, Cain, 

Ostroff, & LeDoux, 2011). To obtain signals from this region with sufficient fidelity, we 

used a high-resolution fMRI protocol in which we acquired images with more than 4 times 

the resolution of a standard 3mm isotropic scan, alongside an amygdala specific 

normalization procedure (Prevost et al., 2011). We hypothesized that the model-based 

algorithm would account better for both behavioral and fMRI data acquired during both the 

appetitive and aversive conditioning phases than would the models of Pavlovian conditioning 

which do not contain such structured knowledge. 
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Results 

Behavioral results 

Affective ratings for the liquid outcomes 

Subjects were asked to give subjective ratings of the pleasant and neutral tasting liquids 

before and after the appetitive session and of the unpleasant and neutral tasting liquids before 

and after the aversive session. The pleasant, neutral, and unpleasant tasting liquids 

(unconditioned stimuli or USs) were reported to be highly pleasant, neutral, and unpleasant 

by subjects as indicated by their ratings averaged across before and after conditioning (Figure 

12a). There was no significant difference in the pleasantness ratings of any of the liquid 

outcomes before and after conditioning (paired t-tests, all p>0.05). 

 

Revealed preference rankings for the cue stimuli 

Subjects made binary preferences between the visual cues used in the conditioning protocols 

before and after the experiment (Figure 12b). Subjects showed increased preference rankings 

for the cues displayed in the appetitive session (averaging across both CS+ and CS- cues as 

both were paired with reward and neutral outcomes over the course of the experiment due to 

the reversal) after as compared to before the experiment (p<0.001). Furthermore, the set of 

cues used in the aversive sessions showed a significant decrease in their relative preference 

rankings (p<0.001). Preference rankings for the control cues (cues not included in either the 

appetitive or aversive conditioning sessions) showed no significant changes from before to 

after the experiment. These results indicate that while the cues displayed in the appetitive 

session have acquired an increased positive value, those displayed in the aversive session 

have acquired a negative value indicating that subjects showed a modulation in their affective 

responses to the cue stimuli as a function of the context in which these stimuli had been 

conditioning (appetitive vs aversive). 
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Pleasantness ratings for the cue stimuli 

We also obtained pleasantness ratings from subjects while in the scanner during the 

conditioning procedure. In the middle of the appetitive session, a few trials after a new pair 

of cues was presented, subjects rated the cue paired with the pleasant liquid significantly 

higher than the cue paired with the neutral liquid (p<0.01) (Figure 12c). Subjective ratings 

were obtained at the end of the appetitive session, hence following reversal of the last pair of 

cues, and although they still rated the cue paired with the pleasant liquid higher than the one 

paired with the neutral liquid, this difference was not significant. Similarly, in the aversive 

session, the cue paired with the unpleasant liquid was rated significantly higher than the cue 

paired with the neutral liquid a few trials after a novel pair of cue was presented (p<0.01) but 

not after a reversal had occurred (Figure 12d). 

 

Heart rate  

Participants’ pulse rate (an estimation of heart rate) was monitored using a pulse oximeter 

for the duration of the experiment. Existing research on heart rate responses to significant 

stimuli has identified an initial bradycardia associated with more aversive stimuli (Libby, 

Lacey, & Lacey, 1973). This deceleration is thought to express attentional orienting to salient 

events through parasympathetic activity (Bradley, 2009). Aversive trials were associated 

with a more pronounced cardiac deceleration (as assessed by the number of beats) compared 

to appetitive trials during anticipation, in a time window of 1.5-3.5s following stimulus onset, 

as reported elsewhere (Nicotra, Critchley, Mathias, & Dolan, 2006) (paired t-test, p<0.01). 

Such physiological changes signal a more aversive emotional state for aversive as compared 

to appetitive trials, thereby reflecting a differential heart-rate conditioned response in the 

aversive relative to the appetitive conditioning trials. 
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Respiration 

When analyzing respiration signals, we found that in the aversive condition, subjects learned 

to inspire before cue offset and expire at the time of the aversive liquid delivery. In contrast, 

subjects expired before cue offset and inspired at the time of the appetitive liquid delivery in 

the appetitive condition. The amplitudes between the appetitive and aversive conditions were 

significantly different both before cue offset (3.5s) and at the time of liquid delivery (4.5s) 

(p<0.05). However, note that these results need to be interpreted with caution because they 

do not survive multiple comparisons across all time windows tested.  

 

Pupil dilation and blinking 

We also recorded pupil diameter, an automatic measure of arousal previously shown to 

provide a measure of conditioning (Bitsios, Szabadi, & Bradshaw, 2004; Bray, Rangel, 

Shimojo, Balleine, & O'Doherty, 2008; Seymour, Daw, Dayan, Singer, & Dolan, 2007). We 

found a significantly smaller amplitude in pupil diameter for trials where the cue was 

predictive of the pleasant liquid (appetitive condition) as compared to trials where the cue 

was predictive of the neutral liquid (neutral condition) (p<0.05) in a time window of 0.8-1.5s 

after cue onset where amplitude changes in pupil diameter have previously been reported 

(Seymour et al., 2007) in the 10 subjects from which we obtained pupil amplitude measures 

(Figure 12e). A higher degree of arousal (significantly smaller peak amplitude) would have 

been equally expected when subjects saw cues predictive of the aversive liquid; however, 

reliable analysis of amplitude in pupil diameter for these trials was prevented by the 

prolonged blinking elicited by these aversive cues. Given that blinking is also a conditioned 

response, we looked for evidence of blinking in the aversive condition as opposed to the 

neutral condition. We found significant differences between the aversive and neutral 

conditions during the first second after cue onset and the last second before cue offset (paired 

t-tests, p<0.05) as well as at the time of liquid delivery and swallowing (paired t-tests, 

p<0.01). 
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Model comparison on behavioral data using reaction times. 

We used Bayesian information criterion (BIC) to compare the model goodness of the HMM 

against the baseline model and the model-free algorithms on the basis of trial by trial 

variation in reaction times. We found that the HMM model fit better than each of the other 

models including the baseline model, indicating that this model was providing the best 

account of trial by trial variation in conditioning as reflected in reaction times. On the other 

hand, neither the RW nor the PH learning rules provided a better fit to the data than did the 

baseline model, suggesting that these algorithms cannot account for changes in reaction time 

as a function of conditioning any better than a random actor (Table 3 and Table 4). The 

normalized RT data is shown plotted against the value signal predictions of the HMM model 

in Figure 12f,g, indicating that RTs become slower under situations where the cue presented 

is associated with a stronger prediction of an aversive outcome in the aversive condition, and 

become faster as cues are associated with a stronger prediction of an appetitive outcome in 

the appetitive condition. 

 

fMRI results 

We report results from our analyses from our model-based learning algorithm (the HMM 

model) within the amygdala using a height threshold of p<0.005, with an extent threshold 

significant at p<0.05 corrected for multiple comparisons. We first report expected value 

signals because these signals are generated by both our model-based and model-free learning 

algorithms and can therefore be easily compared. However, note that finding neural evidence 

for precision signals is an even more critical test for model-based computations in this task, 

as such signals can only be generated by our model-based learning algorithm. 
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Expected value signals 

We first investigated BOLD activity in the amygdala correlating with expected value (EV) 

signals at the time of cue presentation (see Figure 13 a for an illustration of EV signals). In 

the appetitive session, we found significant activity positively correlating with expected 

value in the medial part of the right amygdala, corresponding to the basolateral complex 

(Figure 14a in green, MNI [x y z] [10 -10 -18], T = 6.29, k=28 voxels). In the aversive 

session, activity positively correlating with expected value was found in the centromedial 

complex of the left amygdala (Figure 14a in red, [x y z] [-27 -2 -9], T = 5.63, k=44 voxels; 

[x y z] [-17 -15 -14], T = 5.41, k=69 voxels), such that the greater the activity in these areas, 

the less an aversive outcome is predicted to occur. We also looked for areas correlating 

negatively with EV in both the appetitive and aversive sessions, that is, areas showing an 

increase in activity the less a positive outcome was predicted to occur given the cue. We did 

not find evidence for such activity in the amygdala in either the appetitive or the aversive 

session at our statistical threshold. 

 

Precision signals 

Next, we examined amygdala activity correlating positively with precision or else correlating 

negatively with precision during both the appetitive and aversive sessions (see Figure 13b 

for an illustration of precision signals). While no significant negative correlation was found 

with precision, we did find significant correlations with precision signals during both the 

appetitive and aversive sessions within our centromedial complex ROI (appetitive session: 

[x y z] [25 -1 -10], T = 4.12, k=44; aversive session: [x y z] [27 -5 -10], T = 5.31, k=115; [x 

y z] [18 -2 -16], T = 4.75, k=44) (Figure 15a). To test whether there was a significant overlap 

between these clusters in the appetitive and aversive sessions, we performed a formal 

conjunction analysis (at our omnibus threshold of p<0.005 with a cluster extent of p<0.05). 

In this contrast we found a common area activated by precision signals in the appetitive and 
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aversive sessions in the centromedial complex of the amygdala ([x y z] [24 -4 -9], T = 3.52, 

k=23) (Figure 15c). 

 

Model comparison on BOLD data 

In order to determine whether BOLD activity in the amygdala is better accounted for by the 

HMM than by the model-free learning algorithms, we performed a Bayesian Model Selection 

(BMS) analysis. The expected value contrasts from our “model-based” Hidden state Markov 

switching model (HMM) and the “model-free” Rescorla-Wagner (RW) and Pearce-Hall 

(PH) models were used to compare BOLD activity in the amygdala separately for the 

aversive and appetitive sessions. In this model comparison, we included voxels within a 4mm 

sphere centered on the peak voxels of amygdala activities correlating with either expected 

value signals for the ‘model-based’ HMM or expected value signals for the model-free 

algorithm using the leave-one-out method, thereby avoiding a non-independence bias in the 

voxel selection. We found that the model-based HMM outperformed both model-free 

algorithms with an exceedance probability of 0.94 (posterior probability = 0.64) for the 

aversive session and of 0.93 (posterior probability = 0.55) for the appetitive session.  

We also performed a similar BMS to discriminate between our “model-based” HMM and a 

simpler version of this HMM which uses Bayesian updating but does so in a manner 

resembling a more “model-free” algorithm. The essential difference between these two 

HMMs is that the “model-based” HMM does not allow for a reversal without moving from 

a non-reversal state to a possible reversal state. Note that the expected reward signals 

generated by these two HMMs are highly correlated, whereas the precision values are not. 

Hence, we compared neural activity within the contrasts showing activity positively 

correlating with precision signals including voxels within a 4mm sphere centered on the peak 

voxels of the amygdalar activities correlating either with precision signals for the “model-

based” HMM or the ‘’model-free’’ HMM using the leave-one-out method, thereby avoiding 

a non-independence bias in the voxel selection. We found that activity was better explained 
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by precision signals estimated by the “model-based” HMM in both the aversive and 

appetitive sessions (aversive session: exceedance probability=0.99; appetitive session: 

exceedance probability=0.57). 
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Discussion 

In this study, we used a Pavlovian conditioning task with a rudimentary higher-order 

structure in both appetitive and aversive domains to investigate whether neural activity in the 

human amygdala reflects learning that requires access to model-based representations. By 

comparing neural activity correlating with expected value signals generated by model-based 

versus model-free learning algorithms using a Bayesian model selection (BMS) procedure, 

we have been able to show that in at least some parts of the human amygdala, activity during 

Pavlovian conditioning is better accounted for by a model-based rather than a model-free 

algorithm. 

One of the critical distinctions between the model-free and model-based learning algorithms 

in the present study is that while the expected value of a stimulus previously paired with the 

unpleasant outcome is still low following reversal of contingencies, because that was the 

value it had before reversal in a model-free system, the expected value of this stimulus will 

become high in a model-based system because it incorporates the knowledge that after a 

reversal stimulus values switch (i.e., there is full resolution of uncertainty when a reversal 

occurs). We have captured model-based representations in formal terms using an elementary 

Bayesian Hidden Markov computational model that incorporates the task structure (by 

encoding the inverse relationship between the cues and featuring a known probability that 

the contingencies will reverse). 

Our behavioral analysis demonstrated that participants showed evidence of conditioned 

responses to the conditioned stimuli and thus successfully learnt the associations between the 

different cues and outcomes. In a trial-by-trial analysis in which we correlated reaction times 

against the model predictions, we found that the HMM model predicted changes in reaction 

times over time as a function of learning better than the model-free alternatives, and that 

indeed the model-free algorithms did not predict variation in reaction times significantly 

better than chance.  
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In the imaging data, we found trial-by-trial positive correlations of model-based expected 

values in an area consistent with the basolateral complex of the amygdala according to the 

Mai atlas in the appetitive session, and in areas in the likely vicinity of the centromedial 

complex in the aversive session (Mai, Paxinos, & Voss, 2008). It is interesting to note that 

activity in these same areas (i.e., basolateral versus centromedial complex) has been found 

to correlate with expected value signals generated by a simple RW model in a recent reward 

versus avoidance instrumental learning task (in an appetitive versus aversive context 

respectively) (Prevost et al., 2011). Using a BMS procedure, we found that amygdala activity 

correlating with expected value was better explained by model-based rather than model-free 

learning algorithms. Whereas the model-free system has received considerable attention in 

the past (J. P. O'Doherty, A. Hampton, & H. Kim, 2007), the more sophisticated and flexible 

model-based system has been more sparsely studied particularly in relation to its role in 

Pavlovian learning. Thus, our results point to the need for integrating model-based 

representations and their rich adaptability into our understanding of Pavlovian conditioning 

in general, and of the role of the amygdala in implementing this learning process in particular. 

 Another important feature of the model-based algorithm featured in this study is that as well 

as keeping track of expected value, this model also keeps track of the degree of precision in 

the prediction of expected value over the course of learning. This precision starts off low at 

the beginning of a learning session with a new stimulus because the expected value 

computation is very uncertain at this juncture, but once outcomes are experienced in response 

to specific cues, the precision in the estimate quickly increases. However, this precision 

lessens again as the trial progresses because a reversal in the contingencies is increasingly 

expected to occur (hence the expected value becomes more and more uncertain). Signals 

correlating with precision were found to be located in the vicinity of the centromedial 

complex in both the appetitive and aversive sessions. Precision signals might play an 

important role in the directing of attentional resources toward stimuli in the environment. 

The presence of a precision signal in the centromedial amygdala in the present paradigm 
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could be a key computational signal underpinning the putative role of this structure in 

directing attention and orienting toward affectively significant stimuli. 

The presence of a precision-related signal in the amygdala during Pavlovian conditioning 

may relate to other findings in which the amygdala has been suggested to play a role in 

“associability”, as implemented in a model-free algorithm such as the Pearce-Hall learning 

rule (Li et al., 2011; Roesch, Calu, Esber, & Schoenbaum, 2010). Associability as defined in 

such a model is essentially a model free computation of uncertainty, the inverse of precision: 

associability is maximal when the absolute value difference between expected and actual 

rewards is greatest. However, in our case, an associability signal is clearly distinct from the 

signal we observe in the amygdala in the centromedial complex (even leaving aside the fact 

the signal we found is negatively as opposed to positively correlated with uncertainty). First 

of all, because the signal in our HMM is model-based, it changes to reflect anticipated 

changes in task structure (such as a reversal), whereas Pearce-Hall associability does not 

change to reflect anticipated changes in task structure, rather, both change only reflexively 

once contingencies have reversed. The model-based nature of our signal was confirmed by 

comparing the precision signal generated by the model-based algorithm with that generated 

by a model-free version of our Hidden-Markov Model: activity in the amygdala was best 

accounted for by the precision signal generated by the model-based algorithm. Note that 

although this BMS comparison provided clear evidence in the aversive session, the evidence 

was much weaker in the appetitive session, in which case interpretation in favor of either 

model is difficult. However, it is interesting to note that ‘aversive’ precision signals in the 

amygdala were better accounted for by a model-based learning algorithm given the 

traditional view of the amygdala being associated with aversive processing, although this 

view has been considerably challenged in the past few years (Baxter & Murray, 2002; 

Murray, 2007).  

Finally, we checked the correlation between the precision signal we found here and an 

associability signal generated by the Pearce-Hall learning rule, and we found the correlation 
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between these signals to be essentially negligible (with r ranging from -0.06 to -0.14), as 

opposed to being strongly negatively or positively correlated, as would be anticipated were 

these signals to tap similar underlying processes.  

The fact that in the present study we found model-based signals in the amygdala does indicate 

that this structure is capable of performing model-based inference even during Pavlovian 

conditioning. However, it is important to note that the findings of the present study do not 

rule out a role for this structure in model-free computations during Pavlovian conditioning. 

Indeed, while the model-free learning rules we used did not work very well in accounting for 

behavior on the task (as indexed by changes in reaction times), we did find some evidence 

(albeit weakly) of model-free value signals in the amygdala as generated by either a Rescorla-

Wagner or Pearce-Hall learning rule. Indeed, while using our HMM model we did not find 

evidence for aversive-going expected value signals in the aversive session (i.e., by showing 

an increase in activity the more the unpleasant tasting liquid was expected), we did find such 

a signal correlating with expected value as computed by a Pearce-Hall learning rule. As a 

consequence, we cannot rule out a contribution for the amygdala in model-free computations. 

It is important to note however, that in many tasks in which neuronal activity was found in 

the amygdala to correlate with the predictions of model-free learning algorithms (Elliott, 

Newman, Longe, & William Deakin, 2004; A. N. Hampton, Adolphs, Tyszka, & O'Doherty, 

2007; Prevost et al., 2011; Yacubian et al., 2006), such tasks were either not set up to 

discriminate the predictions of model-free versus model-based learning rules, or else the 

relevant model comparisons were not performed. Thus, it is entirely feasible that many of 

the computations found in the amygdala in previous studies correspond more closely to 

model-based as opposed to model-free learning signals. More generally, if indeed, both 

model-based and model-free signals are present in the amygdala during Pavlovian 

conditioning, then an important question for future research will be to address how and when 

these signals interact with each other. 
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To conclude, we have found in the present study evidence for the existence of model-based 

learning signals in the human amygdala during performance of a Pavlovian conditioning task 

with a simple task structure. These findings provide an important new perspective into the 

functions of the amygdala by suggesting that this structure may participate in model-based 

computations in which abstract knowledge of the structure of the world is taken into account 

when computing signals leading to the elicitation of Pavlovian conditioned responses. The 

findings also resonate with an emerging theme in the neurobiology of reinforcement learning 

whereby value signals are suggested to be computed via two mechanisms: a model-based 

and a model-free approach (P. Dayan & Daw, 2008; Doya et al., 2002). Whereas up to now, 

theoretical and experimental work on this distinction has tended to be focused on the domain 

of instrumental conditioning (N. D. Daw et al., 2005; Glascher et al., 2010; A. N. Hampton 

et al., 2006), the present study illustrates how similar principles may well apply even at the 

level of Pavlovian conditioning. Thus the distinction between model-based and model-free 

learning systems may apply at a much more general level across multiple types of associative 

learning in the brain. Furthermore, the present results provide evidence that model-based 

computations may be present not only in prefrontal cortex and striatum, but also in other 

brain structures such as the amygdala. 
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Materials and Methods 

Subjects 

Nineteen right-handed subjects (8 females) with a mean age of 22.21 ± 3.47 participated in 

the study. All subjects were free of neurological or psychiatric disorders and had normal or 

correct-to-normal vision. Written informed consent was obtained from all subjects, and the 

study was approved by the Trinity College School of Psychology research ethics committee.  

Task Description 

Subjects participated in a Pavlovian task where they had to learn associations between 

different cues (fractal images) and a pleasant (blackcurrant juice [Ribena, Glaxo-Smithkline, 

UK]), affectively neutral (artificial saliva made of 25mM KCl and 2.5 mM NaHCO3), or 

unpleasant (salty tea made of 2 black tea bags and 29g of salt per liter) flavor liquid. The task 

consisted of two sessions lasting approximately 22 minutes each. Each session was 

composed of 120 trials, leading to a total of 240 trials. In one of the sessions, subjects 

underwent an appetitive Pavlovian conditioning procedure whereby they were presented 

with cues leading to the subsequent delivery of either the pleasant flavor, or the affectively 

neutral one, while in the other aversive conditioning session subjects underwent an aversive 

conditioning procedure whereby they were presented with cues leading to the subsequent 

delivery of either the unpleasant flavor stimulus, or else the affectively neutral stimulus. The 

rationale for including the appetitive and aversive conditioning procedures in separate 

sessions as opposed to including both conditions intermixed within the same sessions was to 

avoid contrast effects observed in prior behavioral piloting whereby cues signaling the 

aversive outcome tended to overwhelm cues signaling the pleasant one such that both the 

pleasant and the neutral cue stimuli were viewed as relief stimuli (contrasted against the 

aversive outcome) (Seymour et al., 2005). Performing the appetitive and aversive 

conditioning procedures in separate sessions ensured robust behavioral conditioning in both 

the appetitive and aversive cases and largely avoided contrast effects between the appetitive 

and aversive conditions.  
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For both sessions, on each trial a cue was displayed randomly on either the left or right side 

of a fixation cross for 4 seconds. Following a well-established Pavlovian conditioning 

protocol (Gottfried, O'Doherty, & Dolan, 2002, 2003; J. O'Doherty et al., 2004), subjects 

were also instructed to indicate on which side of the screen the cue was presented by means 

of pressing the laterally corresponding button on a response box, yet they were also instructed 

that the subsequent outcomes were not contingent on their responses. This serves two 

purposes: it allows one to monitor the extent to which participants are paying attention to the 

cues on each trial, as well as offering a response time measure which can serve as an index 

of conditioning. The offset of the cue (after 4 secs) was followed by delivery of one of the 

liquid flavor stimuli with a probability of 0.6, or else no liquid stimulus was delivered. The 

next trial was triggered following a variable 2-11 secs inter-trial interval.  

At the beginning of each session, subjects were presented with two novel fractal cues (not 

seen before in the course of the experiment): which we will denote as cue 1 and cue 2. In the 

appetitive session, cue 1 predicted the subsequent presentation of the pleasant liquid 60% of 

the time (or no liquid delivery 40% of the time), while in the aversive session cue 1 predicted 

the delivery of the aversive liquid 60% of the time (or no liquid delivery 40% of the time). 

cue 1 and cue 2 trials were presented in a randomly intermixed order. After 16 trials (8 trials 

of each type), a reversal of the cue-outcome associations was set to occur with a probability 

of 0.25 on each subsequent trial. The probabilistic triggering of the reversal after the 16th 

trial ensured that the onset of the reversal was not fully predictable by subjects. Once a 

reversal was triggered, cue 1 no longer predicted the appetitive or aversive outcome but 

instead was associated with delivery of the neutral outcome, while cue 2 now predicted the 

appetitive or aversive outcome. After another 16 trials (8 trials of each type) following the 

onset of the reversal, another event was triggered to occur with probability 0.25 on one of 

the subsequent trials: this time instead of a reversal, a completely novel pair of stimuli was 

introduced. One of these, cue 3, was now paired with the appetitive or aversive outcome, 

while cue 4 was now paired with the neutral outcome. These new cues were presented for a 
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further 16 trials, and followed again after a probabilistic trigger of p=0.25 on each subsequent 

trial with a reversal of the associations. After the reversal, a new set of cues was introduced 

according to the same probabilistic rule and this was followed again by a reversal. Thus in 

total, 3 unique pairs of stimuli were used in each session and each of these pairs underwent 

a single reversal (Figure 11a,b). A completely different set of cues was used for each session, 

so that subjects experienced a total of 6 pairs of fractal stimuli throughout the whole 

experiment. 

Within each session, the presentation order of the affective and neutral cue presentations was 

randomized throughout, with the one constraint being that the cue predicting the neutral 

tasting liquid delivery had to be delivered twice every four trials. This ensured that the 

appetitive and neutral cues, and aversive and neutral cues, were approximately evenly 

distributed in their presentation throughout the appetitive and aversive sessions, respectively. 

All fractal images were matched for luminance. The order of the sessions was 

counterbalanced across subjects so that half of the subjects started the experiment with the 

appetitive session and half of the subjects with the aversive session. 

Subject Instructions 

Before the conditioning session, subjects received the following task instructions: 

“In each trial, an image will appear on the screen and may be followed by some liquid 

delivery. There are six different images per session. Each image will lead to either a pleasant, 

neutral, or unpleasant tasting liquid. You will have to learn these associations. However, 

during the experiment, this may change (or reverse), making image 1 associated with the 

liquid of image 2 and image 2 associated with the liquid of image 1. This reversal may 

actually happen more than once during the experiment and you have to fully pay attention 

and realize that it has happened. These cues may change during the experiment, so that you 

will have to learn these associations again with these new cues (which may also reverse). 

At the beginning of each trial, the image will either appear on the left or right side of the 

screen. You will have to press the left button of the response pad if the image appears on the 
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left side, or the right button if it appears on the right side. It is important that you press the 

button because we need to record your response times, although the trial will carry on if you 

don't press any button. 

At the beginning and end of each session, we will ask you to rate different images and liquids. 

You will also have to rate these images in the middle of each session.” 

Apparatus 

The pleasant, neutral, and unpleasant tasting liquids were delivered by means of three 

separate electronic syringe pumps positioned in the scanner control room. These pumps 

pushed 1 mL of liquid to the subject’s mouth via ~10 m long polyethylene plastic tubes, the 

other end of which were held between the subject’s lips like a straw, while they lay supine 

in the scanner. 

Behavioral Measures 

Affective evaluations of the fractal images and liquids 

Participants were asked to provide subjective ratings indicating their perceived subjective 

hedonic evaluation for each of the 6 pairs of fractal images that were displayed. This was 

done during the experiment before each session, in the middle of each session (during the 

scanning), and at the end of each session by presenting a picture of the fractal alongside an 

instruction to rate the fractal for its pleasantness on a scale going from 1 (do not like at all) 

to 4 (strongly like). These ratings could therefore provide a behavioral measure of evaluative 

conditioning (Bray et al., 2008) at three different time points throughout the experiment. 

Furthermore, before and after the appetitive session, the pleasant and neutral liquids were 

rated for their subjective pleasantness using a scale ranging from -5 (very unpleasant) to +5 

(very pleasant), and similarly the aversive and neutral liquids were rated before and after the 

aversive session.  

Preference ranking test 

Before the experiment started and after the experiment was over, participants were asked to 

make binary choices indicating their relative preferences for each of 16 different fractals (12 
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of which were included in the experiment; 6 each in the appetitive and aversive sessions 

respectively, while 4 of the fractals were not featured in either session). Each of the 16 

fractals was paired with each other fractal. This test allowed us to estimate a preference 

ranking for each of the fractals, thereby potentially providing an additional and even more 

direct behavioral metric of evaluative conditioning beyond the pleasantness ratings. 

Pupillary dilation 

Pupil diameter was continuously measured during scanning using an MRI compatible 

integrated goggle and infrared eye tracking system (NordicNeuroLab AS, Bergen, Norway). 

Pupil reflex amplitude has been shown to be modulated by arousal level and can therefore 

be used as a physiological index of conditioning (Bitsios et al., 2004; Bray et al., 2008; 

Seymour et al., 2007). Pupil measurements could not be taken from 9 participants because 

space constraints within the head-coil alongside variations in head size meant that in some 

individuals the eye-tracker could not fit them comfortably. 

Fluctuations in respiration and heart rate 

Estimates of heart rate and respiration were recorded using a pulse oximeter positioned on 

the forefinger of subjects’ left hand and a pressure sensor placed on the umbilical region. The 

time courses derived from these measures were used as a further physiological index of 

conditioning as well as being used separately to remove physiological noise from the fMRI 

data analysis (see fMRI data analysis). 

Data Acquisition 

Functional imaging was performed on a 3T Philips scanner equipped with an 8-channel 

SENSE (sensitivity encoding) head coil. Since the focus of our study was on the amygdala, 

we only acquired partial T2*-weighted images centered to include the amygdala while 

subjects were performing the task. These images also encompassed the ventral part of the 

prefrontal cortex, the ventral striatum, the insula, the hippocampus, the ventral part of the 

occipital lobe and the upper part of the cerebellum (amongst other regions). Nineteen 

contiguous sequential ascending slices of echo-planar T2*-weighted images were acquired 
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in each volume, with a slice thickness of 2.2 mm and a 0.3 mm gap between slices (in-plane 

resolution: 1.58 x 1.63 mm; repetition time (TR): 2000 ms; echo time (TE): 30 ms; field of 

view: 196 x 196 x 47.2 mm; matrix: 128 x 128). A whole-brain high-resolution T1-weighted 

structural scan (voxel size: 0.9 x 0.9 x 0.9 mm) and three whole-brain T2*-weighted images 

were also acquired for each subject. To address the problem of spatial EPI distortions, which 

are particularly prominent in the medial temporal lobe (MTL) and especially in the amygdala, 

we also acquired gradient field maps. To provide a measure of swallowing motion, a motion-

sensitive inductive coil was attached to the subjects’ throat using a Velcro strap. The time 

course derived from this measure was used as a regressor of no interest in the fMRI data 

analysis. Finally, to account for the effects of physiological noise in the fMRI data, subjects’ 

cardiac and respiratory signals were recorded with a pulse oximeter and a pressure sensor 

placed on the umbilical region and further removed from time-series images. We discarded 

the first 3 volumes before data processing and statistical analysis to compensate for the T1 

saturation effects. 

Preprocessing 

All EPI volumes (partial scans acquired while subjects were performing the task and the three 

whole-brain functional scans acquired prior to the experiment) were corrected for differences 

in slice acquisition and spatially realigned. The mean whole-brain EPI was co-registered with 

the T1-weighted structural image, and subsequently, all the ‘partial’ volumes were co-

registered with the registered mean whole-brain EPI image. ‘Partial’ volumes were then 

unwrapped using the gradient field maps. After the structural scan was normalized to a 

standard T1 template, the same transformation was applied to all the ‘partial’ volumes with 

a resampled voxel size of 0.9x0.9x0.9 mm. In order to maximize the spatial resolution of our 

data, no spatial smoothing kernel was applied to the data. These preprocessing steps were 

performed using the statistical parametric mapping software SPM5 (Wellcome Department 

of Imaging Neuroscience, London, UK). 
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Amygdalae Segmentation 

Amygdalae Regions of Interest (ROIs) were manually segmented for each subject by a single 

observer using a pen tablet (Wacom Intuos3 Graphics Tablet) in FSL View (FSL 4.1.2). This 

program allows magnification and the simultaneous viewing of volumes in coronal, sagittal, 

and horizontal orientations. Amygdalae were manually outlined on each coronal image 

containing the amygdala using detailed tracing guidelines based on the Atlas of the Human 

Brain (Mai et al., 2008). Outlines were checked in horizontal and sagittal planes when they 

proved more valuable for the identification of structure boundaries. The anterior limit of the 

amygdala was defined using the horizontal and sagittal planes. The following guidelines 

were used: in its rostral part, the amygdala is bordered ventromedially by the entorhinal 

cortex, ventrally by the temporal horn of the lateral ventricle and subamygdaloid white 

matter, and laterally by white matter of the temporal lobe. Midrostrocaudally, the amygdala 

increases in size and is bordered ventromedially by a thin tract of white matter separating the 

amygdala and the entorhinal cortex, laterally by the white matter of the temporal lobe, and 

medially by the semiannular sulcus. Caudally, the amygdala is bordered dorsally by the 

substantia innominata and fibers of the anterior commissure, laterally by the putamen, 

ventrally by the temporal horn of the lateral ventricle and the alveus of the hippocampus, and 

medially by the optic tract. 

Amygdalae Normalization 

Because structures in the MTL exhibit significant inter-individual anatomic variability, the 

signal-to-noise ratio in group analyses is substantially limited in this area (Insausti et al., 

1998). Atlas-based approaches used to register whole-brain EPI images across subjects (such 

as SPM) look for a global optimum alignment which is achieved under the limitations 

imposed by the available degrees of freedom, and which is at the expense of regional 

accuracy. Consequently, BOLD signals in the MTL may be underestimated or possibly 

missed (Miller, Beg, Ceritoglu, & Stark, 2005). Alignment of the MTL is substantially 

improved by a ROI-alignment (ROI-AL) approach, where segmentations of regions of 
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interest (ROIs) are drawn on structural images and aligned directly, resulting in an increased 

statistical power (Yassa & Stark, 2009). The last iteration of this alignment tool is ROI-

Demons, which has proven to be exceptionally accurate in the alignment of hippocampal 

subfields, for instance (http://darwin.bio.uci.edu/~cestark/roial/roial.html). Thirion’s 

original demons algorithm has been implemented by Vercauteren and enforces smooth 

deformations by operating on a diffeomorphic space of displacement fields (Thirion, 1998; 

Vercauteren, Pennec, Perchant, & Ayache, 2007). Here, we used the implementation of ROI-

Demons in the DemonsRegistration command-line tool (http://www.insight-

journal.org/browse/publication/154). Our segmented amygdalae ROIs were registered with 

our amygdalae template based on 20 subjects from a previous study (Prevost et al., 2011) to 

serve as an initial model and to align all amygdalae using DemonsRegistration. The resulting 

registered amygdalae were then averaged in SPM5 (using ImCalc) to create a first model. 

Subsequently, the initial non-registered amygdalae were registered with this first model and 

the newly registered amygdalae were averaged to create a second model. We repeated the 

last two steps three more times in order to generate a more accurate model. We finally 

registered our initial amygdalae ROIs with the fifth model to generate the resulting 

displacement fields (or transformation calculations). These individual displacement fields 

were then applied to each subject’s normalized EPI scans in order to specifically normalize 

their amygdalae to our template amygdalae. We applied the same transformation to each 

subject’s structural scan before averaging all the aligned structural scans, to create an 

amygdalae-aligned average structural brain of our 19 subjects. Finally, amygdalar 

subdivisions were hand-drawn on our template amygdalae using the Atlas of the Human 

Brain (Mai et al., 2008). We delineated three sub-areas within the amygdala: the basolateral 

complex comprised of the basomedial, basolateral and lateral nuclei; the centromedial 

complex comprised of the central and medial nuclei; and the cortical complex (or cortical 

nucleus). In its most rostral part, the amygdala is exclusively composed of the basolateral 

complex. The cortical nucleus appears in the dorso-medial part of mid-rostral amygdala. The 
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centromedial complex appears slightly more caudally than the cortical nucleus in the most 

dorsal part of the amygdala. The basolateral complex increases in size as one moves caudally 

from the anterior amygdala, has its maximal size midrostrocaudaully, and then decreases as 

one moves further back toward the caudal amygdala, whereas the cortical nucleus and 

centromedial complex slightly enlarge midrostrocaudally, but do not decrease in size as one 

moves further caudally within the amygdala. The cortical nucleus ends midcaudally, the 

basolateral complex ends in caudal amygdala, while the centromedial complex ends in the 

most caudal part of amygdala. 
 

Computational Model analysis 

To test whether amygdala activity was better explained by model-based or model-free 

learning algorithms, we correlated brain activity in this region with expected value signals 

estimated by a number of different computational models. In model-free learning algorithms, 

the agent is surprised when a reversal occurs and starts learning again after it happens, 

whereas in model-based learning algorithms, the agent expects the reversal and considers it 

as resolution of uncertainty and does not need to relearn. The two modes of learning are 

diametrically opposed in the current task, therefore allowing us to test whether amygdala is 

tracking model-based or model-free computations. 

 

Model-based Learning Algorithms 

HMM with dynamic expectation of change 

For the model-based learning algorithm, we used a Hidden Markov Model (HMM). In this 

HMM, the inferred state of the environment is defined in terms of an association between 

cues and outcomes and is represented by the psychological variable 𝑆𝑆.There are three 

possible liquid outcomes in the experiment (pleasant and neutral in the appetitive session and 

unpleasant and neutral in the aversive session) and two cues on any given trial. The state 
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values 𝑆𝑆𝑡𝑡 are the possible combinations of cues and outcomes, for example 𝑆𝑆𝑡𝑡 =

 (𝑐𝑐𝑐𝑐𝑐𝑐 2,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙). Although the subjects were unaware that pleasant and unpleasant 

outcomes could not be delivered concurrently, this possible state value was omitted since it 

did not affect the results of the analyses. We also incorporated a binary-valued variable 𝐻𝐻 in 

this HMM. The values of this hidden node determine whether (𝐻𝐻 = 1) or not (𝐻𝐻 = 0) the 

subject is expecting a reversal. A third random variable 𝑂𝑂 represents the observed cue-

outcome combination (see Figure 11d for a simple graphical representation of the model). 

The transition probabilities of the reversal variable 𝐻𝐻 are 

𝑃𝑃(𝐻𝐻𝑡𝑡|𝐻𝐻𝑡𝑡−1)  = �1 − 𝛼𝛼 𝛼𝛼
0 1� 

Variable values are enumerated along the row and column axes. Each entry of the matrix 

represents the probability of moving from one value on trial 𝑡𝑡 − 1 (rows) to another on trial 

𝑡𝑡 (columns). At position (1,2), the 𝛼𝛼 parameter is the probability of moving to the state of 

expecting a reversal (𝐻𝐻 = 1) from the 𝐻𝐻 = 0 state. Once a subject begins expecting a 

reversal, they do not switch back. This is encoded in the asymmetry of the transition matrix. 

The time evolution of 𝐻𝐻 represents a subject’s growing expectation of a reversal in the cue-

outcome association. After the presentation of a novel pair of cues, 𝐻𝐻 is set to the zero state. 

The transitions for the state variable 𝑆𝑆 are conditionally dependent on the reversal variable: 

𝑃𝑃(𝑆𝑆𝑡𝑡|𝑆𝑆𝑡𝑡−1,𝐻𝐻𝑡𝑡) =  �1 − 𝛽𝛽 𝛽𝛽
𝛽𝛽 1 − 𝛽𝛽� 

State reversals are inferred with a non-zero probability 𝛽𝛽 when 𝐻𝐻 is in the reversal 

expectation state (𝐻𝐻𝑡𝑡 = 1), otherwise 𝛽𝛽 = 0 and 𝑃𝑃 (𝑆𝑆𝑡𝑡|𝑆𝑆𝑡𝑡−1,𝐻𝐻𝑡𝑡 = 0) is the identity matrix. 

Note that after the first trial following the presentation of novel cues, the subject has a 

nonzero probability of being in the reversal expectation state, thus they are always expecting 

a reversal to some degree and are prepared to react to an observation indicative of a 

contingency reversal. The posterior probability distribution 𝑃𝑃 (𝑆𝑆𝑡𝑡) over the state values on 

trial 𝑡𝑡 is determined by the prior state probability distribution 𝑃𝑃 (𝑆𝑆𝑡𝑡−1), the cue-outcome 

observation 𝑂𝑂𝑡𝑡, and the state transition probabilities: 
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𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝑆𝑆𝑡𝑡) =  � � 𝑃𝑃(𝑆𝑆𝑡𝑡|𝑆𝑆𝑡𝑡−1,𝐻𝐻𝑡𝑡)
𝐻𝐻𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑡𝑡−1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑃𝑃 (𝐻𝐻𝑡𝑡)𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 (𝑆𝑆𝑡𝑡−1) 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝑆𝑆𝑡𝑡) =
𝑃𝑃(𝑂𝑂𝑡𝑡|𝑆𝑆𝑡𝑡)𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 (𝑆𝑆𝑡𝑡)

∑ 𝑃𝑃(𝑂𝑂𝑡𝑡|𝑆𝑆𝑡𝑡)𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 (𝑆𝑆𝑡𝑡)𝑆𝑆𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 

The prior over the state values at the beginning of a new set of cues is uniform. Beliefs are 

updated based on the likelihood of observing an outcome for a given cue and assuming a 

state such as “cue j is rewarding and this is likely to reverse soon”. For instance, if no reward 

is observed for cue j, then this state is given less credence because the likelihood that this 

occurs is low (0.4), and the expectation of reward for cue j is decreased. Significantly, 

expectations for the other cue are updated simultaneously, even if it is not implicated in the 

current trial. This is because a lower chance for the state “cue j is rewarding and this is likely 

to reverse soon” implies that the state “the other cue is rewarding and this is unlikely to 

reverse soon,” is more likely, and hence, the mathematical expectation of the reward upon 

presentation of the other cue increases.  

The expected reward 𝑄𝑄𝑗𝑗 when presented with a given cue j is 

𝑄𝑄𝑗𝑗(𝑡𝑡) = 𝐸𝐸[𝑅𝑅|𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡] = � � 𝑅𝑅 𝑃𝑃 (𝑅𝑅|𝑆𝑆𝑡𝑡, 𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐)𝑃𝑃 (𝑆𝑆𝑡𝑡)
𝑆𝑆𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 

The reward 𝑅𝑅 takes the values -1, 0, 1 for unpleasant, neutral, and pleasant rewards, 

respectively. Here, “E” denotes the mathematical expectation operator. This means that the 

forecast is correct on average for all possible outcomes given a specific history of past 

rewards for both cues. 

Confidence in, or precision about, the identity of the current state can be measured by the 

extent to which there are differences in the posterior probabilities of the possible states given 

past experience and the cues presented. When these differences are high, one posterior 

probability is necessarily high, and hence, precision is high. Conversely, if all posterior 

probabilities are the same, precision is lowest. We measure precision on a given trial 𝑡𝑡 using 

the inverse Shannon entropy of the posterior distribution of the state variable 𝑆𝑆: 

 



147 

 

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬(𝑆𝑆𝑡𝑡) = − � 𝑃𝑃 (𝑆𝑆𝑡𝑡) log𝑃𝑃(𝑆𝑆𝑡𝑡)  
𝑆𝑆𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

As more and more trials with no reward are experienced, the 𝐻𝐻 node inputs a growing 

uncertainty about the identity of the current state into the HMM (since a reversal may have 

occurred in the absence of a rewarding outcome). Every time a new pair of cues is presented, 

precision is low but increases dramatically when the agent knows what particular state they 

are in (i.e., what the cue-liquid association is). Precision lowers again until the agent knows 

that a reversal has occurred, after which precision increases again. A random effects Bayesian 

approach was used for parameter fitting and model comparisons (note that we excluded one 

subject who failed to make motor responses from this analysis). Model parameters (such as 

𝛼𝛼 and 𝛽𝛽) were fixed a priori and the model fits were not sensitive to the specific values of 

these parameters. HMM estimation was performed via forward smoothing using the HMM 

toolbox for MATLAB (http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html). 

Model-Free Learning Algorithms 

Rescorla Wagner model.  

In the Rescorla Wagner (RW) model, the new expected value at trial t + 1 for a given cue is 

based on the sum of the current expected value and the prediction error between the reward 

obtained and the expected value at time t, weighted by the learning rate (Rescorla, 1972): 

𝑄𝑄𝑗𝑗(𝑡𝑡 + 1) = 𝑄𝑄𝑗𝑗(𝑡𝑡) +  𝛼𝛼 ⦁ (𝑅𝑅(𝑡𝑡) − 𝑄𝑄𝑄𝑄(𝑡𝑡)) 

When j is a given cue, α is the learning rate with a range 0 ≤ α ≤ 1, and R (t) is the reward 

received on the current trial. If the valenced (pleasant or unpleasant) liquid was obtained on 

the current trial, R (t) = 1, else R (t) = 0. Hence there is one free parameter in this model, α. 

Note that using a random effects approach, we found that the optimal free parameters in the 

appetitive and aversive sessions averaged across subjects were 0.54 (SEM=0.09) and 0.18 

(SEM=0.05) respectively. 

 

 

http://www.cs.ubc.ca/%7Emurphyk/Software/HMM/hmm.html
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Pearce Hall model.  

This model differs from the Rescorla Wagner model (RW) in that it introduces an 

associability component and allows the effectiveness of the reinforcer to remain constant 

throughout conditioning. The associability values estimated by this model will decrease as 

the consequences of the conditioned stimulus become accurately predicted (J. M. Pearce & 

G. Hall, 1980). The expected values Q (t) of a given cue were updated according to: 

   𝑄𝑄𝑗𝑗(𝑡𝑡 + 1) = 𝑄𝑄𝑗𝑗(𝑡𝑡) + 𝑆𝑆 ⦁ |𝑅𝑅(𝑡𝑡 − 1) − 𝑄𝑄𝑄𝑄(𝑡𝑡 − 1)| ⦁ 𝑅𝑅 (𝑡𝑡) 

When j is a given cue, S is a free parameter governing the intensity of the CS, and R (t) is the 

reward received on the current trial. If the valenced (pleasant or unpleasant) liquid was 

obtained on the current trial, R (t) = 1, else R (t) = 0. In the Pearce Hall model (PH), the new 

expected value at trial t + 1 for a given cue is based on the sum of the current expected value 

and the product of the absolute value of the difference between the outcome obtained on the 

previous trial and the expected reward on the previous trial, and the outcome obtained on the 

current trial; this product is weighted by the free parameter. Hence there is one free parameter 

in this model, S. Note that using a random effects approach, we found that the optimal free 

parameters in the appetitive and aversive sessions averaged across subjects were 0.58 

(SEM=0.09) and 0.40 (SEM=0.10), respectively. 

 

In addition to the Rescorla-Wagner and Pearce-Hall models, we also tested a hybrid model 

introduced by Li et al., (2011), in which the Rescorla-Wagner rule is used to update value 

expectations, while the Pearce-Hall rule is used to set the learning rate. However, this hybrid 

model performed similarly to the Rescorla-Wagner and Pearce-Hall rules alone in terms of 

model-fits to the behavioral data and performed markedly worse than the HMM. 

Consequently, we do not consider this model further. 
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HMM Model with Static Expectations of Change 

In order to further test whether amygdala activity is tracking precision signals from a model-

based algorithm as opposed to more generically tracking precision signals computed in a 

model-free manner, we used a simpler version of the HMM described above, where precision 

signals resemble more closely what a “model-free” algorithm would estimate. In this version 

of the HMM, 𝐻𝐻 is always set to the 𝐻𝐻 = 1 state and thus the chance of a reversal happening 

is constant over time. As a result, in this HMM, precision starts low every time a new pair of 

cues is presented and increases substantially when the agent knows in which state they are, 

but because the chance of a reversal occurring does not increase over time, the precision 

remains high through the rest of the learning with that cue until a new pair of cues is 

introduced. In other words, there is no decrease in precision related to the anticipation of a 

change in the contingencies (which would come from having a model of when the 

contingencies are predicted to reverse), but instead a decrease in precision occurs only once 

a contingency change has occurred and been detected through trial and error experience 

(hence the algorithm is essentially model-free). Although the precision signals generated by 

our “model-based” and “model-free” HMM are very different, the expected reward signals 

from both signals are strongly correlated. 

Baseline Model 

Our baseline model simply assumes that rewards occur completely at random and no learning 

takes place. Hence, expected values for all trials are kept at a constant value of 0.5.  

Model Comparison on Behavioral Data 

To perform a formal model comparison on the behavioral conditioning data, we used the 

trial-by-trial reaction time data (measuring the length of time taken on each trial for 

participants to press a button to indicate which side of the screen the Pavlovian cue stimulus 

had been presented). Many previous studies have shown that changes in RTs to a Pavlovian 

cue are correlated with changes in associative encoding between cues and behaviorally 

significant outcomes (Bray & O'Doherty, 2007; Gottfried et al., 2003; Li et al., 2011; J. 
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O'Doherty et al., 2004). For each session separately, we log transformed and adjusted the RT 

data to account for a linear trend in RTs over time independently of trial type, as well as to 

remove the effects of changes in reaction time related to switching responses from one side 

of the screen to the other. This was done by regressing the log transformed RTs against a 

matrix containing a column of ones, a column accounting for the linear trend over time, and 

a column indicating whether participants switched their response from left to right or vice 

versa between the current and previous trial using the function regress in Matlab.  

Using the same function, we then regressed these adjusted response times against the 

expected values generated by our ‘model-based’ HMM, our ‘model-free’ RW and PH 

models, and our baseline model. (For the baseline model, a small amount of noise was added 

to each expected value in order to compute the regression; without any noise the regression 

would not be calculable). This second regression analysis was run for each of these models, 

and cycled through all the possible learning rate parameters for the RW model, and CS 

intensity parameters for the Pearce-Hall model between 0 and 1, with increments of 0.001. 

This method returned Sum Squared Error (SSE) values for each of these parameter values, 

thereby allowing us to obtain the best fitting value for the free parameter for the appetitive 

and aversive sessions (i.e., the free parameter associated with the lowest SSE value). In order 

to compare the model goodness between these four different models, we converted the best 

SSE value of each session (appetitive and aversive) and each model into a Bayesian 

information criterion (BIC) value. The BIC adds a penalty proportional to the number of 

additional free parameters to the SSE value of each model, depending also on the number of 

degrees of freedom, which in this case is the total number of trials per session across all 

subjects (Schwarz, 1978). Using this procedure, we found that in both the appetitive and 

aversive sessions, the ‘model-based’ HMM outperformed the baseline model, and the 

baseline model outperformed both the ‘model-free’ RW and PH models (Table 3 and Table 

4). Therefore, the ‘model-based’ HMM best fit our behavioral data, whereas the best fitting 

RW and PH models did not fit our behavioral data better than a random model. Hence, unlike 
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RW and PH, the ‘model-based’ HMM predicted RTs better than chance performance. Note 

that we did not regress the expected values generated by our simple HMM since they were 

highly correlated with that of our ‘model-based’ HMM. 

 

fMRI Data Analysis 

The event-related fMRI data were analyzed by constructing sets of δ (stick) functions at the 

time of cue presentation and at the time of outcome for the appetitive and aversive sessions. 

For our main GLM (illustrated in Figure 14 and Figure 15), additional regressors were 

constructed by using the expected values and the precision values generated by the model-

based HMM as modulating parameters at the time of cue presentation. In order to compare 

model-based versus model-free learning algorithms in the amygdala, we ran three additional 

GLMs. For RW, the regressors were similar to our model-based HMM except that we did 

not have a regressor for precision which is not estimated by RW, and we added a modulating 

parameter for prediction error at the time of outcome. The regressors used in the GLM 

computed using PH model were the same as the ones used in our model-based HMM, except 

that the precision modulating parameter was replaced with an associability modulating 

parameter at the time of cue presentation. Finally, we ran a “model-free” HMM GLM using 

the same regressors as for our model-based HMM. All of these regressors were convolved 

with a canonical hemodynamic response function (HRF). The six scan-to-scan motion 

parameters derived from the affine part of the realignment procedure were included as 

regressors of no interest to account for residual motion effects. To account for motion of the 

subjects’ throat during swallowing, we added a regressor of no interest for swallowing 

motion. Finally, we also included 13 additional regressors to account for physiological 

fluctuations (4 related to heart rate, 9 related to respiration) which were estimated using the 

RETROICOR algorithm (Glover, Li, & Ress, 2000). 6 of the 38 (2 sessions x 19 subjects) 

log files could not be used to estimate these regressors due to a technical problem during data 

collection, and the missing physiological regressors were simply omitted for those sessions. 
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All of these regressors were entered into a general linear model and fitted to each subject 

individually using SPM5. The resulting parameter estimates for regressors of interest were 

then entered into second-level one sample t-tests to generate the random-effects level 

statistics used to obtain the results shown in Figure 14 and Figure 15. All reported fMRI 

statistics and p values arise from group random-effects analyses. We present our statistical 

maps at a threshold of p < 0.005, corrected for multiple comparisons at p < 0.05. To correct 

for multiple comparisons, we first used the 3dFWHMx function in AFNI to estimate the 

intrinsic smoothness of our data, within the area defined by a mask corresponding to our 

amygdala template. We then used the AlphaSim function in AFNI to estimate via Monte 

Carlo simulation an extent threshold for statistical significance that was corrected for 

multiple comparisons at p < 0.05 for a height threshold of p < 0.005 within the amygdala 

ROI. 

 

Model Comparison on BOLD Data 

In order to test whether the amygdala acts according to model-based or model-free learning 

algorithms, we used a Bayesian model selection procedure (BMS) to test which expected 

value signals estimated by model-based versus model-free learning algorithms better 

accounted for amygdala activity (Stephan, Penny, Daunizeau, Moran, & Friston, 2009). For 

both the appetitive and aversive sessions, we included in this model comparison individual 

betas averaged across voxels within a 4mm sphere centered on the peak voxels of the 

amygdalar activities correlating with either expected value signals for the HMM or the 

model-free algorithm using the leave-one out method, thereby avoiding a non-independence 

bias in the voxel selection (N. Kriegeskorte, W. K. Simmons, P. S. Bellgowan, & C. I. Baker, 

2009). Using the spm_BMS function in SPM8, we compared expected value signals across 

all model-based (HMM) and model-free models separately for the appetitive and aversive 

sessions.  
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We used a similar approach to compare neural activity pertaining to precision signals 

estimated by our “model-based” and “model-free” HMMs. The difference between these two 

HMMs is that the “model-based” HMM does not allow for a reversal without moving from 

a “non-reversal state” to a “possible reversal state”. As a consequence, the precision values 

generated by these models are clearly distinguishable and thus easily comparable using a 

BMS (whereas the estimated expected rewards are strongly correlated). Again, we included 

in this model comparison voxels within a 4mm sphere centered on the peak voxels of the 

amygdalar activities correlating with precision signals for either the “model-based” HMM or 

the ‘’model-free’’ HMM using the leave-one out method. Here, we compared activity 

correlating with precision signals between the “model-based” and “model-free” HMM 

separately for the appetitive and aversive sessions (see Results section for the exceedance 

probabilities). 

 

ROI Analyses 

Functional regions of interest (ROIs) were defined using the MarsBaR toolbox 

(http://marsbar.sourceforge.net/). Beta estimates were extracted for each subject from the 

functional clusters of interest as they appeared on the statistical maps of a given contrast 

using the leave-one-out method to avoid a non-independence bias. They were then averaged 

across subjects to plot expected reward (Figure 14b) and precision (Figure 15b) according to 

three categories (category one corresponding to the lowest values and category three 

corresponding to the highest values). 
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Figures 

Figure 11. Appetitive versus aversive Pavlovian learning task. 

 
Figure 11. Sequence and timing of events in the appetitive (a) and aversive (b) sessions. On 

each trial, a cue was presented on one side of the screen for 4 seconds, followed by some 

liquid delivery 60% of the time. The trial ended with a 2-11s inter-trial interval. Each session 

started with the presentation of cue 1 and cue 2, leading 60% of the time to a pleasant or a 

neutral liquid delivery in the appetitive session or an unpleasant or a neutral liquid delivery 

in the aversive session. After a number of trials, a reversal occurred so that cue 1 now led to 

the liquid associated with cue 2, and cue 2 led to the liquid associated with cue 1. 

Subsequently, a new pair of cues was presented, which also reversed after a number of trials. 

In total, three new pair of cues were presented, and each of these pairs reversed once. c) 

Computational models used to estimate expected reward on each trial (Qj). The expected 
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rewards generated by the model-free learning algorithms (Rescorla-Wagner (RW) and 

Pearce-Hall (PH) were compared against a model-based learning algorithm (Hidden Markov 

Model or HMM) at both the behavioral and neural levels. d) Graphical model representation 

of the Bayesian HMM. 
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Figure 12. Behavioral results. 

 
Figure 12. a) Ratings for the pleasant, neutral, and unpleasant liquids (-5 being very 

unpleasant and 5 very pleasant). *** indicates a significance of p<0.001 as computed by one 

sample t-tests comparing the mean of the different liquids against a mean of 0, n.s stands for 

not significant. b) Difference in the number of times a cue is preferred after - before the 

experiment. *** indicates a significance of p<0.001 as computed by one sample t-tests 

comparing the mean of the different liquids against a mean of 0. c,d) Ratings for the cue 

paired with the pleasant (c) or unpleasant (d) liquid and the cue paired with the neutral liquid 

after a few trials after a new pair of cue has been presented (Post new learning) and a few 

trials after a reversal has occurred (Post reversal). A rating of 1 indicates that participants 

strongly dislike the cue whereas a rating of 4 indicates that they strongly like it. ** indicates 

a significance of p<0.01 as computed by two sample t-tests comparing the means of the 

ratings for the cues paired with pleasant/unpleasant and neutral liquids. e-g) Conditioned 

responses. e) Time course for pupil diameter in response to cues paired with the pleasant 

liquid (green line) and the neutral liquid (black line) averaged across all trials in the appetitive 

session for the 10 subjects showing reliable amplitude in their pupil diameter. A one-tailed 

paired t-test for a time window 0.8-1.5s revealed a significant decrease in constriction when 
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participants were presented with cues paired with the pleasant liquid (p<0.05). f,g) Detrended 

and normalized response times averaged across low, medium, and high categories of 

expected values (EV) as determined by the model-based learning algorithm in the appetitive 

(f) and aversive (g) sessions.  
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Figure 13. Expected value and precision signal time series. 

 
Figure 13. Plots showing expected value signals (a) and precision signals (b) from the model-

based learning algorithm for the appetitive (green) and aversive (red) sessions for a typical 

participant. 
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Figure 14. Expected value signals from the model-based learning algorithm model in the 

amygdala. 

 
Figure 14. a) Blood oxygen level-dependent (BOLD) signals positively correlating with the 

magnitude of the expected value of the cue were found in the basolateral complex in the 

appetitive session (in green) and in the centromedial complex in the aversive session (in red). 

b) Plots showing the beta estimates for low, medium, and high categories of expected 

rewards in the appetitive (green) and aversive (red) sessions in the clusters activated using 

the leave-one-out method. 
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Figure 15. Precision signals from the model-based learning algorithm in the amygdala. 

 
Figure 15. a) Blood oxygen level-dependent (BOLD) signals correlating with the precision 

of the cue were found in the centromedial complex of the amygdala in both the appetitive 

session (in green) and aversive session (in red). b) Plots showing the beta estimates for low, 

medium, and high categories of precision in the appetitive (green) and aversive (red) sessions 

in the clusters activated using the leave-one out method. c) Results from formal conjunction 

analysis of precision signals from the appetitive and aversive sessions in the centromedial 

complex. 
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Tables 

Table 3. BIC scores. 
Session HMM – RW HMM - PH 

Aversive Mean = -3.09 

SEM = 1.05 

p<0.01 

Mean = -5.08 

SEM = 0.84 

p<0.0001 

Appetitive Mean = -6.22 

SEM = 1.46 

p<0.001 

Mean = -6.23 

SEM = 1.53 

p<0.001 

Table 3. Bayesian Information Criterion (BIC) values and standard errors to the mean (SEM) 

for the model-based learning algorithm (HMM) versus the model-free learning algorithms 

(RW and PH). A smaller BIC value indicates a better fit, therefore the model-based learning 

algorithm best fit the behavioral data. P-values as computed by paired t-tests on BIC values 

are also reported. HMM is significantly outperforming both model-free learning algorithms 

in both the appetitive and aversive sessions. 

 

Table 4, Random effects test of models compared to baseline. 

Session HMM < Baseline RW < Baseline PH < Baseline 

Aversive <0.05 0.93 1 

Appetitive <0.001 1 1 

Table 4. A random effects test of the models versus a baseline model was performed by 

simulating random expected value estimates (10,000 repetitions) and then computing a non-

parametric p-value per subject as the fraction of repetitions in which the baseline BIC is 

lower than the model BIC. These p-values were then combined across subjects using Fisher’s 

combined probability test. Only HMM outperforms the baseline model in both the appetitive 

and aversive sessions. 
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C h a p t e r  5  

BELIEF STATE-SPACE MANIPULATION IN HIERACHICAL INFERENCE 

Hierarchical inference is a ubiquitous task for humans. From stock markets to social 

interactions, the natural world contains many hidden variables which may only be indirectly 

inferred based on conditionally related signals. Knowledge of the state of these ‘latent’ 

variables is required for optimal inference regarding the abstract decision structure of a given 

environment and therefore can be crucial to decision-making in a wide range of situations. 

Inferring the state of an abstract variable requires the generation and manipulation of an 

internal representation of beliefs over the values of the hidden variable. Here, we aimed to 

explore the learning strategies employed by human subjects in a hierarchical state-estimation 

task. The task contained two experimental conditions corresponding to whether or not 

“switches” could take place. We hypothesized that this key environmental feature would bias 

subject behavior between distinct learning strategies which differed depending on the 

subjects' manipulations of their belief state-space. Namely, in a “switch” condition, we 

expected participants to attempt to update beliefs over the entire belief state-space while in a 

“no-switch” condition, we hypothesized that they would exclude low-probability states from 

the inference process in order to minimize computational load. 
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Methods 

Task 

Participants engaged in an observational probabilistic hierarchical inference task akin to 

card-sorting tasks used to investigate executive functioning (Robbins, 1996). On each trial 

(Figure 16), subjects were presented with two stimuli composed of three features: color, 

motion, and shape. Each of these features had two exemplars. Color could be red or green, 

motion could be in the left or right direction, and shape could be a circle or a square. The two 

stimuli were randomly generated based on these exemplars in an anti-correlated fashion, i.e., 

one of the stimuli was red while the other was green, and similarly for the motion and shape 

dimensions. On any given trial, one of the exemplars was “active” but the subject was not 

told which exemplar this was. After the stimuli were presented for 1s, the stimulus containing 

the “active” exemplar was stochastically selected. The task of the subject was to infer which 

dimension contained the active exemplar. After a jittered ISI, subjects bet on which 

dimension contained the active exemplar by distributing $20 across the three dimensions. 

Subjects were paid the amount of money they put on the objectively correct dimension in a 

randomly chosen trial. Suppose that on such a trial, they bet $10 on color, $5 on motion, and 

$5 on shape. Then, if the correct dimension was actually motion, they would receive $5. It 

was explained to the subjects that they should bet on each dimension according to their 

beliefs and degree of uncertainty in their beliefs. It was explained to the subjects that they 

should pay close attention to the selection process and integrate information over several 

trials in order to form their beliefs. Each subject engaged in six blocks of 40 trials each. Half 

of the sessions contained unsignaled extra-dimensional switches in the active exemplar. That 

is, when a switch occurred, the new active exemplar came from a different dimension to the 

previous active exemplar. Switches could occur multiple times within the same block. Switch 

and no-switch blocks were randomly interleaved. At the start of each block, subjects were 

told whether they were in a switch or no-switch environment. Subjects were trained on 

simplified versions of the task immediately before the main experiment began.  

 



164 

 

 

Functional Magnetic Resonance Imaging 

Twenty-two healthy right-handed Caltech students (mean age 24 years, SD 2.9, 14 male) 

volunteered to participate in this study. The data from two participants were excluded 

because their median performance was below that of a random decision-making algorithm. 

All participants gave informed consent and the study was approved by the Institutional 

Review Board of the California Institute of Technology. Functional imaging was performed 

with a 3 T Siemens Trio scanner. Forty-three contiguous interleaved transversal slices of 

echo-planar T2*-weighted images were acquired in each volume, with a slice thickness of 

3mm and no gap (repetition time, 2340ms; echo time, 30ms; flip angle, 80°; field of view, 

192mm2; matrix, 64x64). Slice orientation was tilted 30° from a line connecting the anterior 

and posterior commissure. This slice tilt alleviates the signal drop in the OFC (Deichmann 

et al., 2003). We discarded the first three images before data processing and statistical 

analysis, to compensate for the T1 saturation effects. A whole-brain high-resolution T1-

weighted structural scan (voxel size: 0.9 x 0.9 x 0.9mm3) was also acquired for each subject. 
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Learning Model 

Sensing Probability - Beta Distribution Parameter Updates 

An alternative formulation would be to directly track the counts of each selection event on a 

per-dimension basis. This gives a very compact encoding which can be flexibly unpacked in 

order to generate probability representations. It is not dependent to any neuronal model of 

probability. We use a Dirichlet belief variable 

𝐵𝐵 ∼ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑙𝑙𝑙𝑙𝑙𝑙(𝛼𝛼1,𝛼𝛼2,𝛼𝛼3) 

where the 𝛼𝛼𝑖𝑖 parameters encode the strength of evidence within each dimension 

𝛼𝛼𝑖𝑖 ∶= 𝛼𝛼𝑖𝑖+ ∶=  𝑛𝑛𝑖𝑖+  −  𝑛𝑛𝑖𝑖− 

Note that the index + always refers to the feature which currently holds the balance of  

Probability, i.e., 

+ =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑓𝑓=1,2𝑛𝑛𝑓𝑓  

𝛼𝛼𝑖𝑖 can always be manipulated to reflect the number of selections of the alternative feature in 

that dimension by combining with 𝑛𝑛𝑐𝑐, the number of trials since the last changepoint: 

𝑛𝑛𝑖𝑖−  =  
𝑛𝑛𝑐𝑐  − 𝛼𝛼𝑖𝑖+

2
 

The mean and mode being, respectively, 

𝒑𝒑 ∶=  
𝜶𝜶
∑𝜶𝜶

 

𝒙𝒙 ∶=  
𝜶𝜶 − 1
∑𝜶𝜶 − 3

 

The marginal distribution for a dimension 𝑖𝑖 is 

𝐵𝐵𝑖𝑖 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝛼𝛼𝑖𝑖,𝛼𝛼0 − 𝛼𝛼𝑖𝑖) 

where 𝛼𝛼0 ∶= ∑𝜶𝜶. This model suggests the following prediction errors: 

 

Per-dimension prediction errors (with predictive coding): 

𝛿𝛿𝑖𝑖𝑆𝑆=1 =
𝛼𝛼𝑖𝑖 + 1

𝛼𝛼0 + 1 − 𝛼𝛼𝑖𝑖
−

𝛼𝛼𝑖𝑖
𝛼𝛼0  − 𝛼𝛼𝑖𝑖
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𝛿𝛿𝑖𝑖𝑆𝑆=0 =
𝛼𝛼𝑖𝑖

𝛼𝛼0 + 1 − 𝛼𝛼𝑖𝑖
−

𝛼𝛼𝑖𝑖
𝛼𝛼0  − 𝛼𝛼𝑖𝑖

 

Per-dimension prediction errors (without predictive coding) could be modeled as follows: 

𝐵𝐵𝑖𝑖 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛+,𝑛𝑛−) 

𝛿𝛿𝑖𝑖𝑆𝑆=1 =
𝑛𝑛+  +  1

𝑛𝑛+ + 1 + 𝑛𝑛−
−  

𝑛𝑛+

𝑛𝑛+ + 𝑛𝑛−
 

𝛿𝛿𝑖𝑖𝑆𝑆=0 =
𝑛𝑛+

𝑛𝑛+ + 1 + 𝑛𝑛−
−  

𝑛𝑛+

𝑛𝑛+ + 𝑛𝑛−
 

Across-dimension prediction errors are given by a divergence metric, although the 

expression for the KL-divergence between Dirichlets is relatively complicated, see (Gallistel, 

Krishan, Liu, Miller, & Latham, 2014) for the Beta version. 

𝐷𝐷𝐾𝐾𝐾𝐾(𝐵𝐵𝑡𝑡+1||𝐵𝐵𝑡𝑡) = �𝑙𝑙𝑙𝑙𝑙𝑙 �
𝐵𝐵𝑖𝑖𝑡𝑡+1

𝐵𝐵𝑖𝑖𝑡𝑡
�𝐵𝐵𝑖𝑖𝑡𝑡+1

𝑡𝑡

 

where we define 𝐵𝐵𝑡𝑡+1 as the Dirichlet variable computed up to trial 𝑡𝑡 and 𝐵𝐵𝑡𝑡:𝑡𝑡′ as the 

Dirichlet variable computed from trial 𝑡𝑡 to 𝑡𝑡′. 𝐵𝐵𝒉𝒉𝑡𝑡:𝑡𝑡′ is the same Dirichlet variable but 

computed based on the hypothesis set 𝒉𝒉. For BOLD signal modeling purposes, all prediction 

errors are presumed to be positive since information has no valence. We fit a prior for all 𝛼𝛼𝑖𝑖 

as a “softmax” parameter which is bounded from below by 𝛼𝛼𝑖𝑖 = 2,𝑛𝑛𝑖𝑖  =  2 for all variables. 

 

Reasoning About Beliefs - Do I Need To Change My Beliefs? 

This can be captured in a model by thresholding the divergence between a current belief and 

the posterior probability given the observed data: 

𝑛𝑛 𝐷𝐷𝐾𝐾𝐾𝐾(𝐵𝐵𝑡𝑡′||𝐵𝐵𝑡𝑡𝑢𝑢)  >  𝑇𝑇1 

If 𝑇𝑇1 is not exceeded, no further updating is performed on this trial, and the same beliefs are 

reported. This quantity is used in (Gallistel et al., 2014), however, it is a complex computation 

requiring perfect memory. It also raises the question, if 𝐵𝐵𝑡𝑡′ is being computed on every trial 
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anyway, why not use that? A more computationally efficient and plausible method would be 

to threshold based on the history of “event prediction errors”: 

∑𝑡𝑡𝑢𝑢:𝑡𝑡 log
𝑃𝑃𝐾𝐾(𝑆𝑆)
𝑃𝑃𝐵𝐵(𝑆𝑆)

= (𝑡𝑡 − 𝑡𝑡𝑢𝑢) log 0.8 − log𝑃𝑃𝐵𝐵�𝑆𝑆𝑡𝑡𝑢𝑢:𝑡𝑡� > (𝑡𝑡 − 𝑡𝑡𝑢𝑢)𝑇𝑇1 

where 𝑡𝑡′ is the current trial, 𝑆𝑆 is the observed selection event, 𝑡𝑡 − 𝑡𝑡𝑢𝑢 is the number of trials 

since the last update, and 𝐾𝐾 represents perfect knowledge of the generative process. This 

ratio compares how well your beliefs explain the environment dynamics versus the 

maximum possible prediction performance given perfect knowledge 𝐾𝐾. For example, the 

likelihood 𝐿𝐿(𝑆𝑆|𝐾𝐾) of selection 𝑆𝑆 on a given trial based on the generative model of the 

environment is 𝐿𝐿(𝑆𝑆|𝐾𝐾) = 0.8 in the switches condition and 𝐿𝐿(𝑆𝑆|𝐾𝐾) = 0.7 on the non-

switches condition. This quantity is similar to the likelihood divided by the model evidence 

in Bayes' rule and thus probably results in an algorithm equivalent to that of (Gallistel et al., 

2014). This could be computed on a trial-by-trial basis and averaged 

𝛿𝛿 ∶= log  𝐿𝐿(𝑆𝑆|𝐾𝐾) − log𝑃𝑃𝐵𝐵(𝑆𝑆) 

𝛿𝛿 = log 𝐿𝐿(𝑆𝑆|𝐾𝐾) −� log 𝐿𝐿(𝑆𝑆|𝐵𝐵𝑖𝑖)𝑃𝑃(𝐵𝐵𝑖𝑖)
𝑖𝑖

 

𝛿𝛿 = log 𝐿𝐿(𝑆𝑆|𝐾𝐾) − log�𝐿𝐿(𝑆𝑆|𝐸𝐸)𝑃𝑃(𝐸𝐸|𝐷𝐷)𝑃𝑃(𝐷𝐷)
𝐸𝐸

 

∑ 𝛿𝛿𝑡𝑡𝑡𝑡

𝑛𝑛
> 𝑇𝑇1 

On a given trial, 𝛿𝛿 has a maximum value of log 0.8
0.2 = log 4 = 1.386 corresponding to an 

incorrect deterministic belief and a minimum value of log 0.8
0.8 = log 1 = 0 corresponding to 

a perfect prediction. 

 

Reasoning About Beliefs - Hypothesis Elimination and Explaining Away 

Hypothesis testing involves the elimination of hypotheses by thresholding beliefs. If the 

posterior probability of a particular hypothesis falls below a certain threshold 𝑇𝑇2, then a 
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conclusion is made that this hypothesis is incorrect and should not be considered any further. 

This is accomplished by directly threshold the posterior belief mode 

𝑥𝑥𝑖𝑖 < 𝑇𝑇2 

then we eliminate dimension ℎ𝑖𝑖 as a hypothesis, set 𝛼𝛼𝑖𝑖  =  0 ⇒  𝐵𝐵𝑖𝑖 = 0, and no longer 

update. This will effect the updating over other dimensions via the “explaining away” 

phenomenon. For example: 

𝑃𝑃(ℎ1|𝑆𝑆 = 1,ℎ2 = 0)  >  𝑃𝑃(ℎ1|𝑆𝑆 = 1) 

Practically, we distribute the 𝛼𝛼𝑖𝑖 variable amongst the other dimensions in proportion to their 

probabilities, e.g., 

(𝛼𝛼1,𝛼𝛼2,𝛼𝛼3) → �0,𝛼𝛼2 + �𝛼𝛼1×𝛼𝛼2
𝛼𝛼2+𝛼𝛼3

� ,𝛼𝛼3 + �𝛼𝛼1+𝛼𝛼3𝛼𝛼2+𝛼𝛼3
�� 

It is possible that subjects' would have some idea of the pattern of associations between 

features in previous trials and distribute 𝛼𝛼𝑖𝑖 according to such memories, but this is probably 

quite noisy and we will disregard it. Practically, this means that we only “re-distribute” 

probability at the dimension level and not the exemplar level. 

𝑇𝑇2 should depend on the number of hypotheses remaining, i.e., we would not use the same 

threshold to eliminate one of three hypotheses and also to eliminate one of two. Thus, 𝑇𝑇2 is 

fitted as the product of a free parameter multiplied by the random chance level of probability 

which depends on the number of hypotheses remaining. 

 

Reasoning about Beliefs - Re-evaluating Hypothesis Eliminations 

People may have “second thoughts”—“was I really correct to eliminate hypothesis ℎ𝑖𝑖?” If 

𝑥𝑥𝑖𝑖 > 𝑇𝑇2 for the most recently eliminated hypothesis, we re-consider ℎ𝑖𝑖 as a hypothesis, 

update our hypothesis set 𝒉𝒉, and re-compute 𝐵𝐵 based on 𝑆𝑆𝑡𝑡ℎ:𝑡𝑡 where 𝑡𝑡ℎ is the trial on which 

the last hypothesis elimination was performed. We only model the re-consideration of the 

last hypothesis elimination (rather than for example the last two) for two reasons: (i) bounded 

cognitive resources and (ii) re-consideration of two hypotheses is effectively a reversal. Note 
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that rejecting a conclusion constitutes an “internal changepoint”. We assume that subjects 

cease to track information regarding dimensions other than the assumed correct dimension 

thus when a conclusion is rejected, the subject has no recent data to draw upon and therefore 

begins again with a flat prior. 

 

Detecting Changepoints - Identification and Retrospection 

Changepoint trials on which the active exemplar has been switched to another. We can detect 

such changes by comparing the likelihoods of competing explanations—either there was a 

changepoint on some trial or there wasn't. We compute a Bayes factor 𝐾𝐾: = 𝑃𝑃(𝑆𝑆|𝑀𝑀1)
𝑃𝑃(𝑆𝑆|𝑀𝑀0) weighted 

by model priors 𝑃𝑃(𝑀𝑀1)
𝑃𝑃(𝑀𝑀0) in order to adjudicate. The model evidence for the no-changepoint 

model 𝑀𝑀0 is the sum over hypothesis likelihood functions: 

𝑃𝑃(𝑆𝑆𝑡𝑡𝑐𝑐:𝑡𝑡|𝑀𝑀0) = �𝑃𝑃(𝑆𝑆𝑡𝑡𝑐𝑐:𝑡𝑡|ℎ𝑖𝑖)
𝑖𝑖

 

For the changepoint model we need to sum over the possibility of the changepoint occurring 

on each trial: 

𝑃𝑃�𝑆𝑆𝑡𝑡𝑐𝑐:𝑡𝑡�𝑀𝑀1� = ���𝑃𝑃(𝑆𝑆𝑡𝑡𝑐𝑐:𝑡𝑡′|ℎ𝑖𝑖)
𝑖𝑖

+ �𝑃𝑃(𝑆𝑆𝑡𝑡′:𝑡𝑡|ℎ𝑖𝑖)
𝑗𝑗

�
𝑡𝑡′

×
1

𝑡𝑡 − 𝑡𝑡𝑐𝑐
 

where 1
𝑡𝑡−𝑡𝑡𝑐𝑐

 represents the uniform probability that a trial 𝑡𝑡′ contains the changepoint. 

 

The Bayes factor 𝐾𝐾 is not appropriate for model comparison in this case. In the prior model 

probabilities are not equal given that a changepoint relatively rare, thus we multiply the 

Bayes factor 𝐾𝐾 by the prior odds: 

𝑃𝑃(𝑀𝑀1)
𝑃𝑃(𝑀𝑀0) =

∑ 𝑝𝑝𝑐𝑐 × (1 − 𝑝𝑝𝑐𝑐)𝑛𝑛−11:𝑡𝑡−𝑡𝑡𝑐𝑐
(1− 𝑝𝑝𝑐𝑐)𝑛𝑛 =

(𝑡𝑡 − 𝑡𝑡𝑐𝑐)𝑝𝑝𝑐𝑐
1 − 𝑝𝑝𝑐𝑐

  

and threshold the following signal: 
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𝑃𝑃(𝑆𝑆|𝑀𝑀1)𝑃𝑃(𝑀𝑀1)
𝑃𝑃(𝑆𝑆|𝑀𝑀0)𝑃𝑃(𝑀𝑀0)

> 𝑇𝑇3 

Note that these quantities can be computed simply by counting the number of hypothesis-

consistent selection events occurring within the given timeframe (since the data likelihood is 

the same under all hypotheses). The minimum value of this quantity is 0 (𝑝𝑝𝑐𝑐 → 0) while the 

maximum value is ∞ (𝑝𝑝𝑐𝑐 → 1). Let us assume that max𝑝𝑝𝑐𝑐 = 0.33 and min𝑝𝑝𝑐𝑐 = 0.005, 

then a more realistic maximum value would be ∼ 2 × 2 = 4 and a more realistic minimum 

would be ∼ 1
2 × 0.005 = 0.0025. 

 

If a changepoint is detected, we attempt to identify the specific trial on which this occurred 

via 

𝑡𝑡𝑐𝑐 = arg min
𝑡𝑡𝑐𝑐<𝑡𝑡′≤𝑡𝑡

�𝑃𝑃�𝑆𝑆𝑡𝑡𝑐𝑐:𝑡𝑡′�ℎ𝑖𝑖� × 𝑃𝑃�𝑆𝑆𝑡𝑡′:𝑡𝑡�ℎ𝑗𝑗�
𝑖𝑖,𝑗𝑗

 

We also update our perception of the changepoint rate (also known as the hazard rate 

(Wilson, Nassar, & Gold, 2010)): 

𝑝𝑝𝑐𝑐 ←
𝑛𝑛𝑐𝑐 + 𝛼𝛼𝑐𝑐 − 1

𝑛𝑛 + 𝛼𝛼𝑐𝑐 + 𝛽𝛽𝑐𝑐 − 2
 

where 𝑛𝑛𝑐𝑐 is the number of perceived changepoints, 𝑛𝑛 is the total number of trials, and 𝛼𝛼𝑐𝑐 ,𝛽𝛽𝑐𝑐 

are hyperpriors to approximate the true changepoint rate. Note that this can handle the case 

where more than one hypothesis is still active. Just as with hypothesis elimination, reversals 

can be re-evaluated. In such a situation, we re-set the priors according to 𝑆𝑆𝑡𝑡𝑐𝑐:𝑡𝑡. 

 

Producing A Decision - Risk Attitudes and Dirichlet Modeling 

Given their actual belief mode across dimensions encoded by 𝒙𝒙, subjects may report a warped 

set of announced beliefs 𝝅𝝅 according to their risk attitude. Introducing a risk-aversion 

parameter 𝛾𝛾, we have: 
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𝜋𝜋𝑖𝑖 =
𝑥𝑥𝑖𝑖
1/𝛾𝛾

∑ 𝑥𝑥𝑗𝑗
1/𝛾𝛾

𝑗𝑗
 

where 0 < 𝛾𝛾 < ∞. This is isomorphic to re-scaling the belief parameters directly 

𝜋𝜋𝑖𝑖 ≔ 𝛼𝛼𝑖𝑖
1/𝛾𝛾 
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Model Fitting 

Our main hypothesis was that subjects may use a hypothesis-testing strategy in order to 

simplify the state-space representation. As with statistical hypothesis testing (Liese & 

Miescke, 2008), this is accomplished by thresholding a summary statistic (in this case, a 

posterior belief) and rejecting hypotheses which did not meet this threshold. We assume that 

subjects subsequently eliminate this dimension from their belief state-space and no longer 

update this variable. We propose that this computational mechanism is a form of gating 

which might underpin executive attention (Lara & Wallis, 2014; Robbins, 1996). Parameter 

𝑇𝑇2 was a direct measure of this effect. The parametric value of 𝑇𝑇2 measures the evidence 

𝑃𝑃(𝑫𝑫|ℎ𝑖𝑖)  required by each subject to reject a hypothesis ℎ𝑖𝑖. Lower values of 𝑇𝑇2 imply that 

more evidence is required in order to reject a hypothesis. In addition to fitting this parameter, 

we also fit4 𝑇𝑇3, which controls subjects’ sensitivity to switches, a risk attitude parameter, and 

a softmax parameter for a total of 4 parameters. We fit these parameters in two ways: (i) by 

standard maximum likelihood estimation (MLE) and (ii) by hierarchical Bayesian analysis 

(HBA). This was motivated by the fact that this task is particularly challenging and thus MLE 

may not be sufficient to accurately fit these parameters. Using HBA, we can “regularize” 

per-subject variability in task performance with group-level behavior, thus achieving a better 

fit. In addition, a direct comparison between these estimation methods has not been 

performed in the context of Bayesian inference and thus contributes to a growing suite of 

studies comparing these methods in the psychological literature (Farrell & Ludwig, 2008; 

Fox & Glas, 2001; Wiecki, Sofer, & Frank, 2013). 

Objective Function 

We used the cumulative Kullback-Leibler divergence between the model predictions and the 

actual announced beliefs of the subjects as a measure of model error. This was computed for 

4 In the switch condition only. 
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all sessions and thus represents a within-sample indicator of model prediction. This objective 

function was optimized during parameter estimation. Since more complex models tend to 

overfit, we need to regularize this objective function based on the number of parameters 

considered. We use the Bayesian Information Criterion (BIC) for the purposes of model 

comparison. A BIC formula based on KL-divergence is derived in Appendix B. 

Maximum Likelihood Estimation 

For MLE, we used the MYSTIC framework, a Python-based model-independent 

optimization package (McKerns, Strand, Sullivan, Fang, & Aivazis). We used the Nelder-

Mead simplex solver, which wraps the fmin function in scipy.optimize 

(http://www.scipy.org/). This commonly used optimization algorithm ran until the relative 

change in the objective function dropped below 0.0001. Our parameters were constrained as 

described in Table 1.  

Hierarchical Bayesian Analysis 

Group and individual parameter were estimated simultaneously and related in a hierarchical 

model using Markov chain Monte Carlo sampling (MCMC) (Gelman, Carlin, Stern, & 

Rubin, 2003). Specifically, we used the Metropolis-Hastings method (MacKay, 2003). 

100,000 were burned and 100,000 subsequently drawn to estimate the posterior over the 

model parameters. A comparison of three chains indicated that the sampling process had 

converged (𝑅𝑅� = 1) (Brooks, Gelman, Jones, & Meng, 2011). The chains always converged 

in the switches condition but did not always converge in the no-switch condition despite the 

fact that subjects’ behavior is less noisy in the no-switch condition due to the relative 

simplicity of the environment. From a data analytics point of view, this might be intuitively 

explained by the fact that there is less independent behavioral data in the no-switch condition. 

Participants often converge on the correct dimension within the first 10 trials and then 

subsequently make very similar belief reports for the remainder of the experiment. We 

assumed that parameter values were normally distributed at the group-level and modeled 
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hyperpriors for the group-level means. Specifically, we used a uniform prior (ranging over 

the corresponding parameter bounds) for the mean 𝜇̂𝜇 and computed the group-level variance 

𝜎𝜎�2 as  

𝜎𝜎�2 =
1

�𝜇̂𝜇(𝑚𝑚− 𝜇̂𝜇)/3
 

where 𝑚𝑚 is the maximum possible value of that parameter. This ensured that the distribution 

was unimodal but flexible and also precluded the necessity of separately estimating the 

variability parameter (Ahn, Krawitz, Kim, Busemeyer, & Brown, 2011). MCMC was 

performed using the PyMC Python package (Patil, Huard, & Fonnesbeck, 2010) versions 

2.3. 

 

Methodological Comparison 

In Figure 17 and Figure 18, samples from the hierarchical model of behavioral parameters 

are presented. In white are samples drawn from the prior before any sampling occurs, while 

in black are samples drawn from the stationary distribution after the chains had been 

determined to have converged. These figures suggest that two important characteristics of 

accurate parameter fitting are satisfied using HBA (i) the posterior probability density is 

concentrated smoothly around unique combinations of parameter values (as opposed to a 

noisy extended density function with a large non-trivial support) and (ii) the stationary 

posterior distributions are not dependent on the specification of a prior. In contrast to many 

decision-making paradigms (Wiecki et al., 2013), learning models result in dependencies 

between samples. This means that the data likelihood 𝑃𝑃(𝐷𝐷|𝜃𝜃) is non-Markov. In order to 

compute 𝑃𝑃(𝑫𝑫|𝜃𝜃), the learning model must be re-run in its entirety for each new combination 

of parameter values 𝜃𝜃. This computational bottleneck can be avoided by pre-computing all 

learning model predictions for a grid approximation of parameter values 𝜃𝜃�. The sampling 

algorithm can then draw on these pre-computed predictions instantly for the nearest-neighbor 

parameter values 𝜃𝜃� in order to compute 𝑃𝑃(𝑫𝑫|𝜃𝜃) ≈ 𝑃𝑃(𝑫𝑫|𝜃𝜃�). In Figure 19, I plot correlations 
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between parameter fits based on sampling with and without “grid preparation”. Parameter 

values estimated using the two approaches were very highly correlated despite the dramatic 

reduction in processing time for sampling based on pre-prepared model predictions. 

In order to compare the quality of HBA and MLE parameter fits, model predictions from 

both methods were Spearman correlated with the announced beliefs of the subjects for the 

switches and no-switches conditions separately (Figure 20). In paired t-tests across subjects 

and conditions, it was found that the HBA method led to model predictions that were more 

strongly correlated with the announced beliefs from the subjects (p=0.00022). 
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General Linear Modeling 

SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) was used for slice timing correction, volume 

realignment, and spatial normalization to the Montreal Neurological Institute (MNI) 

echoplanar imaging template. All volumes were then spatially smoothed using a three-

dimensional Gaussian kernel (at a full-width-half-maximum of 8mm). Prior to GLM 

estimation, the data was also high-pass filtered by removing signal components oscillating 

at a frequency below 1/120Hz. 

 

We estimated general linear models on a per-subject basis and then, in order to model random 

effects, performed second-level t-tests on sets of first-level contrasts (Penny, Holmes, & 

Friston, 2003). There were three timepoints of interest in each trial (Figure 1), namely (i) cue 

onset, (ii) stimulus selection, and (iii) simplex onset. Broadly speaking, these cues should 

elicit representations of prior information, updating based on the observed selection, and 

representation of posterior beliefs, respectively. Thus, we matched the relevant components 

of our learning model to their corresponding trial timepoints. Given that beliefs are 

represented in three dimensions, we used negative entropy as a univariate measure of belief 

for the purposes of linear modeling. We hypothesized that (i) posterior probabilities for each 

dimension would be represented in the same region and (ii) local mutual inhibition would 

imply that the neural signaling emanating from that region would scale with the strength of 

belief in any one dimension (Machens, Romo, & Brody, 2005, 2010; Strait, Blanchard, & 

Hayden, 2014). This is captured by negative entropy which is effectively a non-parametric 

measure of precision. During the update phase of the experiment, we used Jensen-Shannon 

divergence as an information-theoretic measure of the distance between the prior and the 

posterior. This can be thought of has a “Bayesian prediction error” triggered by the 

observation of a stimulus selection (see Appendix A). 

Each no-switch session had seven regressors in total, four onsets for the cue, stimulus 

selection, simplex onset, and rating. Parametric modulators were included for the cue 
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(negative entropy of the prior −𝐻𝐻(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)), stimulus selection (Bayesian prediction error), 

and simplex onset (negative entropy posterior −𝐻𝐻(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)). In the switches condition 

an extra parametric modulator was added to the stimulus selection indicator regressor 

corresponding to 𝑇𝑇3. Time series of head motion estimated during realignment were included 

as covariates of no interest. All results are displayed at p<0.001 uncorrected. 
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Discussion 

Computational theories of prefrontal cortex broadly agree that one of the main functions of 

this area is to direct attention towards relevant goals and environment variables (E. K. Miller 

& J. D. Cohen, 2001). An important component of this process is estimating the current state 

of the environment (Gold & Shadlen, 2007). In many realistic scenarios (Stanley & Adolphs, 

2013), the current state of the environment is hidden and must be estimated over many 

interactions with the environment from conditionally related signals. This process is made 

particularly difficult by the high-dimensionality of our stimulus-rich world (Robert C. 

Wilson & Yael Niv, 2011). The Wisconsin card-sorting task has often been used to measure 

a participant’s ability to flexibly identify relevant environment variables and adapt to 

switches in the environment dynamics (Berg, 1948). Here we scan subjects engaged in a 

probabilistic hierarchical inference task inspired by the Wisconsin card-sorting task while 

they are scanned using functional magnetic resonance imaging. A computational analysis of 

their behavior revealed that they used a belief thresholding strategy (see Learning Model, 

Figure 21) in conditions where the environment is stable. In uncertain conditions, they did 

not eliminate hypotheses from their state-space and their behavior was well-approximated 

by a Bayesian algorithm. 

We performed a model-based fMRI analysis using time series of internal variables generated 

from our learning model. Our results are consistent with the neural hypothesis that dlPFC 

holds and updates an internal model of the belief state-space. We find that activity in dlPFC 

scales with the certainty of priors beliefs at cue onset (Figure 22), and also reflects the 

Bayesian prediction error driven by stimulus selection (Glascher et al., 2010). Subsequently, 

dorsomedial prefrontal cortex activity scales with the certainty of posterior beliefs when 

subjects make their response (Figure 23). This is consistent with studies which show that 

dmPFC is more active in decision-making scenarios where knowledge gleaned from abstract 

state-space representations must be integrated into behavior (Alan N. Hampton et al., 2006). 

An important component of learning in the switches condition is identifying whether a 
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changepoint has occurred. We find (Figure 24) that fronto-polar cortex tracks increasing 

evidence of a changepoint as expected due to previously acquired evidence that FPC is 

involved in computations regarding the favorability of alternative behavioral strategies 

(Boorman, Behrens, Woolrich, & Rushworth, 2009). 
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Figures 

Figure 16. Task. 

 
Figure 16. At cue onset, two stimuli are randomly generated in three binary dimensions. One 

second later, the environment stochastically selects one of the stimuli based on which 

exemplar is “active” (which is unknown to the subject). After an inter-stimulus interval of 

0.2, or 4 seconds, subjects report their beliefs regarding which dimension is currently active 

on a continuous scale. Each trial is separated by an inter-trial interval of 2, 5, or 8 seconds. 
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Figure 17. MCMC example, group-level. 

 
Figure 17. Samples from the prior are in white while samples drawn from the stationary 

distribution are in black. These samples are plotted for softmax, risk aversion, and hazard 

rate parameter distributions in the switches condition. One can see that the model is 

insensitive to the specific value of the hazard rate. In contrast, the softmax and risk aversion 

parameters combine focally in parameter space. 
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Figure 18. MCMC example output, individual-level. 

 
Figure 18. Plotted are the prior and stationary distributions for two subjects (5 and 13). Note 

the Gaussian priors in contrast to the uniform distributions used for the group mean 

hyperprior (Figure 17). The large divergences from the prior to the stationary posterior 

indicate that the model fitting procedure is not reliant on the specification of a strong prior 

(Bishop, 2006). One can see that, at the level of individual subjects, the probability density 

function is peaked on specific values of the hazard rate. This is in contrast to the group-level 

(Figure 17). This suggests a large variability in expected changepoint probability across 

subjects. 
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Figure 19, Grid preparation of model beliefs for HBA. 

 
Figure 19. In order to speed up the HBA analysis, model beliefs were pre-computed as a 

function of all learning parameters. Then the sampling process need only to retrieve the pre-

computed beliefs rather than compute them online. Here I compare the model fits with “no 

grid-preparation” (150,000 samples, ~3hrs) and without “grid-preparation” (10,000, ~36hrs). 

The results show that the correlation for all fitted parameters is > 0.99, thus vindicating this 

method. Note the lack of correlation for the hazard rate in the no-reversal condition as 

expected. 
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Figure 20. Correlation with announced beliefs computed using HBA and MLE 

techniques. 

 
Figure 20. As a quantitative indication of the relative quality of the HBA and MLE fits, model 

predictions from both methods were Spearman correlated with the announced beliefs of the 

subjects. Correlations based on HBA are plotted in the top panels, while the bottom panels 

display the same data for MLE. This is done for the switches (or “reversals”) and no-switches 

(“no-reversals”) conditions separately. In paired t-tests across subjects and conditions, it was 

found that the HBA method led to model predictions that were more strongly correlated with 

the announced beliefs from the subjects (p=0.00022). 
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Figure 21. Model comparison. 

 

Figure 21. a) log Bayes factors for each subject plotted per condition. The larger the log 

Bayes factor, the better the fit of a belief thresholding model compared to a purely Bayesian 

learner. Log Bayes factors are estimated from 100,000 samples of the stationary MCMC 

chain. These results indicate strong evidence for a belief thresholding mechanism in the no-

switches condition but are ambiguous in the switches condition. b) This is consistent with 

the use of deviance information criterion (DIC) as an indicator of model fit. DIC is a 

hierarchical generalization of BIC, which is easily computed via MCMC (Patil et al., 2010). 
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Figure 22. Neural activity at cue and simplex onsets. 

 

Figure 22. a) −𝐻𝐻(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) was represented in dlPFC bilaterally at cue onset. These clusters 

were positioned very similarly to those observed in (Glascher et al., 2010) for state prediction 

errors. b) At simplex onset, −𝐻𝐻(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) correlated with activity in dorsomedial 

prefrontal cortex (dmPFC, t(19)=4.42, x=3, y=53, z=25) and premotor cortex. 
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Figure 23. Bayesian prediction errors in dlPFC and ventral striatum at stimulus 

selection onset. 

 

Figure 23. Bayesian prediction errors were observed in dlPFC and ventral striatum at the 

stimulus selection timepoint. Note that no −𝐻𝐻(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) correlation was observed in ventral 

striatum at the cue onset timepoint. 
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Figure 24. Neural correlates of changepoint model Bayes factors. 

 

Figure 24. Increasing evidence of a changepoint (red) was represented by bilateral clusters 

in fronto-polar cortex. Activity in dorsal vmPFC scaled with evidence consistent with a 

changepoint not having occurred. 

 

 



189 

 

Tables 

Table 5. Parameter bounds. 
Parameter Low Bound Upper Bound 

𝑇𝑇2 (testing threshold) 0 1 

𝑇𝑇3 (switch sensitivity) 0 10 

𝛾𝛾 (risk) 0.005 10 

𝜏𝜏 (softmax) 2 20 

Table 5. Parameter bounds for MLE and HBE analyses. 
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C h a p t e r  6  

CONCLUSIONS 

The studies described in this thesis address several questions in the neurobiological and 

psychological literatures regarding the representation of variables while the brain engages in 

several standard learning and decision-making paradigms. Since a groundbreaking study in 

2001 (Haxby et al., 2001), the use of pattern analysis tools in functional neuroimaging has 

become more prevalent to the point where it forms a robust minority of studies (Norman, 

Polyn, Detre, & Haxby, 2006). As an investigative tool, pattern identification techniques 

(Bishop, 2006) provides a complimentary approach to the univariate analyses typically used 

in functional neuroimaging experiments (Coutanche, 2013). This allows us to evaluate some 

underlying assumptions of previous neuroimaging studies as to the meaning of 

representation-via-correlation (John P. O'Doherty, Alan Hampton, & Hackjin Kim, 2007). 

For example, if the activity in a region correlates with the value of chosen actions (Klaus 

Wunderlich, Rangel, & O'Doherty, 2009), is that region representing the chosen action? Can 

we detect evidence for a distinct neural firing pattern that is unique to a particular action? 

Similar arguments can be made for other decision variables such as environmental states and 

values (Vikram S. Chib et al., 2009). MVPA can provide evidence in support or against such 

conclusions as shown in Chapter 3. Based on a time-delayed binary choice paradigm, we 

decoded representations of decision variables at different points in time throughout the 

decision process. We a priori defined several regions of interest based on related univariate 

functional imaging studies (McNamee, Rangel, & O'Doherty, 2013; Saori C. Tanaka, 

Bernard W. Balleine, & John P. O'Doherty, 2008; Elizabeth Tricomi et al., 2009) 

 and tested whether the corresponding representations were present in these regions while a 

decision is made (Table 2). Our results were broadly consistent with our current assumptions 

regarding the functional role played by each region within the model-free vs. model-based 
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framework (Dolan & Dayan, 2013). In particular, the representation of outcome identity in 

prefrontal cortex (both dorsolateral and ventromedial portions) is supported by a wealth of 

lesion data (Fellows & Farah, 2003) and the presence of outcome representations in anterior 

caudate is congruent with a fMRI study showing that anterior caudate activity scales with the 

learned correlation between an action and an outcome (Saori C. Tanaka et al., 2008). We 

found that actions but not outcomes were represented in dorsolateral striatum. Previous 

functional imaging (Elizabeth Tricomi et al., 2009) found this region to be particularly 

implicated in habitual action control (see Chapter 1 for a review). For example, after multiple 

sessions of free responding, subjects (who were deemed to be insensitive to outcome 

devaluation and thus acting habitually) were found to have an overall increased level of 

activity in posterior putamen (Elizabeth Tricomi et al., 2009). Neurophysiological studies are 

less clear on the DLS vs. DMS distinction between action and outcome encoding. Both action 

and outcome signaling were present in both these regions in rodent models (Thomas A. 

Stalnaker, Gwendolyn G. Calhoon, Masaaki Ogawa, Matthew R. Roesch, & Geoffrey 

Schoenbaum, 2010). How should be integrate the clear differences found in our MVPA 

study? First, a failure to reject to the null hypothesis does not imply that a particular 

representation does not exist in a region. Combined electrophysiological/fMRI studies have 

shown that some signaling detected in the visual stream using single-unit recordings is 

inaccessible to fMRI (Dubois, de Berker, & Tsao, 2015). Taking the aforementioned 

example of action but not outcome encoding in DLS, we can reasonably conclude that either 

(a) action encoding is stronger than outcome encoding in DLS, or (b) that actions and 

outcomes are represented differently (e.g., neuronal response and/or feature space 

characteristics may vary), and that the action encoding mechanism is more amenable to 

fMRI. In (Dubois et al., 2015), it was concluded the spatial clustering of neurons with similar 

response profiles was necessary for fMRI-MVPA decoding while sparseness did impact 

classification performance. A second possible source of divergence between the results of 

fMRI-MVPA and single-unit experiments is the nature of a typical electrophysiological 
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analysis. Usually, neurons are categorized by their response profiles and counts of neurons 

whose activity significantly correlates with task variables are tabulated. This essentially 

univariate analysis may lead to erroneous negative results whenever representations are 

encoded in a distributed fashion. For example, if a stimulus is encoded in a vector space 

spanned by a set of attribute dimensions and neurons only encode a one of these dimensions 

than analyzing these neurons in isolation may not reveal the hypothesized distributed 

representations in this region. 

In Chapter 3, we show that stimuli and actions are combined into unique distributed 

representations. To our knowledge, these are the first published results showing that the brain 

combines internal and external variables to form new variables. Going forward, it is possible 

that many other combinations of internal and external variables may similarly be utilized by 

the brain. In the social domain, the combination of an agent representation along with an 

action representation would be one example. These results also emphasize a deeper 

philosophical point regarding psychology and neuroscience research — in a typical 

experiment, we do not know what representations are being used by the brain’s algorithms. 

Given the fundamental interplay between representation and algorithm (Marr & Poggio, 

1976), it seems that this theme would serve as a rich seam of research. In particular, it 

highlights how crucial neural data can be since it seems that no psychological experiment 

could provide evidence for such representational strategies. Determining the functional role 

of such representations and how they emerge will be critical to understanding how action 

control systems in the brain operate and interact (Dolan & Dayan, 2013; O’Doherty, Lee, & 

McNamee, 2015). The theory of predictive state representations may provide a 

computational framework in which to understand these representations (Littman, 1996). 

Briefly, states are represented by the preceding history of state-action combinations that led 

to that state. For example, if an agent transitions through S1-A1-S2-A2-S3 then state S3 is 

represented as S1-A1-S2-A2. This scheme addresses the question of how a completely 

novice agent, with no prior experience of the environment, consolidates its experiences into 
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a structured representation of their environment. Subjects might be scanned in more complex 

environments while similar decoding analyses are performed in order to confirm whether 

subjects build representations of novel environments in a similar manner to that predicted by 

this theory. 

 

MVPA can also determine how a variable is being represented. An important question is this 

regard is “what is the feature space in which a variable is transmitted?” There are multiple 

approaches to this issue within the MVPA framework. One prominent technique is 

representational dissimilarity analysis (Kriegeskorte, Mur, & Bandettini, 2008) where a 

distance measure is applied to neural data vectors usually followed by a cluster analysis. 

Furthermore, the resulting representational dissimilarity matrix can be embedded in a 

Euclidean space for visualization. An experimenter would infer that clustered data samples 

are represented in the same manner and, most importantly, that the distance between data 

samples represents the distance between samples in feature space. One drawback of this 

approach is that results can depend strongly on the distance measure used (Kriegeskorte et 

al., 2006). Thus, this approach is particularly well suited to large sets of diverse stimuli in 

order to ensure robustness. In Chapter 2, we addressed this question of neural representation 

in the case of value signaling in the human brain using an alternative approach (McNamee 

et al., 2013). Instead of “model-free” representational dissimilarity analyses, we ran multiple 

decoding analyses using different data labels. From these results we logically deduced 

representational characteristics of the neural data. For example, we provide the first evidence 

that value is represented in a manner which is dependent on the class of stimuli being 

evaluated. In addition, the loci of stimulus-dependent and stimulus-independent value 

representations was suggestive of a stimulus-to-value pathway from central orbitofrontal 

cortex to medial orbitofrontal cortex to more dorsal regions of ventromedial prefrontal 

cortex. In addition, these results pointed to the presence of multiple functional gradients in 

the ventromedial prefrontal cortex. Namely, a posterior-to-anterior gradient with respect to 
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stimulus abstractness along the medial orbital surface and a ventral-to-dorsal gradient along 

which the complexity of value encoding decreased. That is, value signaling tended to be more 

distributed along the orbital surface. Several primate experimental datasets are consistent 

with various components of this broad neurobiological theory (Cai & Padoa-Schioppa, 2012; 

Kringelbach & Rolls, 2004; Wallis & Kennerley, 2011) but further experimentation is 

required for confirmation. In order to corroborate the gradient hypotheses, one could repeat 

a similar experiment as the one performed here but with a more controlled set of stimuli 

which evenly spanned the spectrum of “abstractness”. Probably the most difficult challenge 

of such a study would be to define and precisely measure the psychological notion of 

stimulus abstractness on a continuous scale. Published electrophysiological data is consistent 

the aforementioned ventral-dorsal gradient however the functional implications of this 

network-level are not understood (S. Kennerley et al., 2011). Theoretic analysis of data from 

multi-electrode arrays would be an ideal approach however implantation in such deep 

cortical regions remains difficult. In the absence of an empirical dataset, theoretic analyses 

could still proceed in order to make predictions regarding the functional role of these distinct 

value signaling strategies. Testable behavioral predictions could be generated for patients 

with brain lesions (Gläscher et al., 2012). Ideally, two populations of such patients would be 

used. One population with lesions along the orbital surface and the other more dorsally. A 

rough conjecture would be that the former population would be inhibited when evaluating 

novel goals online while the latter would make noisier choices for goals with learned, or 

easily computable, values (e.g., monetary sums). Finally, the premise of this study ignores 

“the other half” of decision valuation — the costs of actions themselves. Based on recent 

neuroimaging (Croxson, Walton, O'Reilly, Behrens, & Rushworth, 2009), 

electrophysiological (Hillman & Bilkey, 2012), and especially lesion-based evidence 

(Camille, Tsuchida, & Fellows, 2011; Rudebeck et al., 2008), one hypothesis would be that 

a parallel action-to-value transformation occurs in dorsomedial portions of the brain and that 

both stimulus-to-value and action-to-value signals are integrated in a “final common value 
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pathway” in subgenual cingulate in preparation for action initiation. Although the feature 

space for actions could be very high-dimensional (corresponding to all possible degrees of 

freedom in the human body), probably a relatively small subspace is relevant for valuation 

(e.g., energy cost) thus value gradients may be more difficult to detect. 

The fundamental distinction between the results of Chapters 2 and 3 is that the focus of the 

analysis on variable and algorithm respectively. Chapter 2 answers the question of how a 

variable (in this case, goal value) is represented while Chapter 3 effectively asks “how is an 

algorithm represented?” In other words, what are the input and output variables of the 

algorithm. This latter question can be addressed using univariate fMRI analyses since our 

inference is based on the presence or absence of particular variables. Chapter 4 provides an 

example of this. From the representational point of view, we ask “how is Pavlovian learning 

represented in the amygdala?” Due to the presence of neural activity correlating with 

precision signals that can only be obtained from learning based on a higher-order model of 

the environment structure, we conclude that Pavlovian conditioning, in the amygdala, is 

model-based on nature. This result could potentially be applied to a wide range of research 

paradigms which focus on the amygdala, for example, fear conditioning and the 

identification of emotion from facial expressions (Adolphs, 2010). In the case of facial 

expressions, one could ask how our knowledge regarding the mental state of another human 

being impacts our classification of their emotional state. This paradigm would be amenable 

to a model-based analysis and, based on our results here, we would hypothesize that 

amygdala activity would be sensitive to the belief structure a participant holds for another 

person (Koster-Hale & Saxe, 2013). 

With respect to the task in Chapter 4, one could ask how participants might come to 

understand the task structure without instruction. How could one determine what the relevant 

variables are in the environment for decision-making? In Chapter 5, we examine how 

humans construct belief structures online. Participants engaged in a probabilistic Wisconsin 

Card-Sorting Task (Berg, 1948) and reported their posterior beliefs on a continuous scale 
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(Figure 16). Behavioral analyses (Figure 21) showed that humans dynamically adjust the 

process by which decision state-spaces are constructed. In particular, it was found subjects 

were less likely to reject hypotheses regarding the environment dynamics when unsignaled 

changepoints could occur (Robert C. Wilson & Yael Niv, 2011). This behavior is consistent 

with an optimal observer model. Intuitively, it means that humans try to keep track of as 

many variables as possible in order to be able to adapt rapidly to an environment changepoint. 

If there are no changepoints (as was the case in half the sessions), there is no reason to do 

encode and update all possible variables, and instead, one can focus on those which are 

relevant in the current state of the environment. More generally, one can view these results 

as integrating reinforcement learning with cognitive science (Chater, Tenenbaum, & Yuille, 

2006; Téglás et al., 2011) — we studied how subjects construct cognitive representations via 

reinforcement. Neurally, activity in dorsolateral prefrontal cortex (dlPFC) was correlated the 

precision of the prior beliefs on each trial (as measured by negative entropy) and the 

divergence between the prior and posterior as evidence is accumulated (a “bayesian 

prediction error”). This is consistent with the functional characterization of dlPFC as a 

“working memory” module (P. S. Goldman-Rakic, 1995). Our results provide a 

computationally precise, model-based point of view which complements the prior literature 

(John P. O'Doherty et al., 2007). We can view our results within the classical framework of 

attention whereby dlPFC evaluates the relevance of state-space components (i.e., the color, 

motion, and shape variables) to the current decision problem. Recent electrophysiological 

data in monkeys in an analogous region is congruent with this interpretation (S. Tremblay, 

Pieper, Sachs, & Martinez-Trujillo, 2014). Despite the sophisticated nature of the 

computational mechanisms observed, this thresholding model could lead to sub-optimal 

inferences regarding the structure of the world and thus decisions. A hypothesis regarding 

the dynamics of the environment might be erroneously eliminated due to an unlikely run of 

events. The development of these cognitive “blind spots” could potentially be present in a 

wide range of decision-making paradigms and is ripe for further investigation. For example, 
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one could model the “jumping-to-conclusions” bias (Averbeck, Evans, Chouhan, Bristow, 

& Shergill, 2011) using the computational model developed in Chapter 5 (P. Read Montague 

et al., 2012). This bias is often observed in clinical populations with disruptions in 

dopaminergic pathways in the brain such as seems to be the case with schizophrenia (Rolls, 

Loh, Deco, & Winterer, 2008). Working memory impairments have already been shown to 

underpin reinforcement learning deficits in schizophrenic patients (Collins, Brown, Gold, 

Waltz, & Frank, 2014) which suggest, in concert with the results described here, that 

disruptions in the mesocortical pathway (which projects to dlPFC) might impede 

schizophrenic patients ability to construct and maintain accurate models of the decision 

environment. 
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APPENDIX A 

 

Processing of rewards and percepts are typically modeled using different tools in 

computational neuroscience based on the scientific development of these disciplines. 

Learning is typically modeled using Bayesian formalisms in the perceptual domain (Gold & 

Shadlen, 2007) while associative learning or, more generally, reinforcement learning (RL) is 

used in reward-based decision-making (Peter Dayan & Berridge, 2014; John P. O'Doherty, 

2011) with some notable exceptions (A. Courville, Daw, & Touretzky, 2004; A. C. Courville 

et al., 2006; Nathaniel D. Daw & Courville, 2007). Based on the simple functional analogy 

between information-theoretic log-probabilities and economic value as exemplified in the 

computational convergence of decision-making models across these domains (Krajbich, 

Armel, & Rangel, 2010), we show Bayesian updating is equivalent to reinforcement learning 

in “log space”. It turns out that the learning rate parameter in RL is effectively a temperature 

or softmax parameter in Bayesian updating. Let us consider the simplest possible application 

of Bayesian inference—the estimation of a single parameter value ℎ given a stream of data 

𝐷𝐷. We assume that we have an a priori defined model which specifies the data likelihood 

values 𝑃𝑃(𝐷𝐷|ℎ). Based on a single sample, Bayes’ theorem gives the following update: 

𝑃𝑃(ℎ) ←
𝑃𝑃(𝐷𝐷|ℎ)𝑃𝑃(ℎ)

𝑃𝑃(𝐷𝐷)
 

←
𝑃𝑃(𝐷𝐷|ℎ)𝑃𝑃(ℎ)

∑ 𝑃𝑃(𝐷𝐷|ℎ)𝑃𝑃(ℎ)ℎ
 

In log space, 

log𝑃𝑃(ℎ) ← log𝑃𝑃(𝐷𝐷|ℎ) + log𝑃𝑃(ℎ) − log�𝑃𝑃(𝐷𝐷|ℎ)𝑃𝑃(ℎ)
ℎ

 

This can be re-arranged into a linear update rule based on summing a prediction error 

log𝑃𝑃(ℎ) ← log𝑃𝑃(ℎ) + �log𝑃𝑃(𝐷𝐷|ℎ) − log�𝑃𝑃(𝐷𝐷|ℎ)𝑃𝑃(ℎ)
ℎ

� 
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What is missing in this expression is a learning rate. After adding a learning rate 𝛼𝛼, we will 

re-interpret this equation in “exp space”. 

log𝑃𝑃(ℎ) ← log𝑃𝑃(ℎ) + 𝛼𝛼 �log𝑃𝑃(𝐷𝐷|ℎ) − log�𝑃𝑃(𝐷𝐷|ℎ)𝑃𝑃(ℎ)
ℎ

� 

log𝑃𝑃(ℎ) ← log𝑃𝑃(ℎ) + log𝑃𝑃(𝐷𝐷|ℎ)𝛼𝛼 − log��𝑃𝑃(𝐷𝐷|ℎ)𝑃𝑃(ℎ)
ℎ

�
𝛼𝛼

 

log𝑃𝑃(ℎ) ← log𝑃𝑃(ℎ) + log
𝑃𝑃(𝐷𝐷|ℎ)𝛼𝛼

𝑃𝑃(𝐷𝐷)𝛼𝛼
 

𝑃𝑃(ℎ) ← 𝑃𝑃(ℎ) × �
𝑃𝑃(𝐷𝐷|ℎ)
𝑃𝑃(𝐷𝐷)

�
𝛼𝛼

 

Here, �𝑃𝑃(𝐷𝐷|ℎ)
𝑃𝑃(𝐷𝐷)

�
𝛼𝛼

 can be interpreted as a ratio prediction error. It measures the ratio between 

the evidence of data 𝐷𝐷 given perfect knowledge of the variable under investigation ℎ against 

the current prediction. The prediction error is scaled by 𝛼𝛼 which weights its contribution to 

the new estimate of 𝑃𝑃(ℎ) as a learning rate would. 
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APPENDIX B 

 

Here we derive the Bayesian Information Criterion (Schwarz, 1978) for KL-divergence. The 

basic definition of KL-divergence 𝐷𝐷 is 

𝐷𝐷(𝑃𝑃,𝑄𝑄) ∶= �𝑃𝑃𝑖𝑖 log
𝑃𝑃𝑖𝑖
𝑄𝑄𝑖𝑖𝑖𝑖

  

but we will use it in the following equivalent form5: 

𝐷𝐷(𝑃𝑃,𝑄𝑄): = −𝐻𝐻(𝑃𝑃) − 〈log𝑄𝑄〉𝑃𝑃  

 

The BIC formula is 

−2 log𝑃𝑃(𝑥𝑥|𝑀𝑀) ≈  𝐵𝐵𝐵𝐵𝐵𝐵 ∶=  −2 log max
𝜃𝜃

𝐿𝐿(𝑥𝑥|𝜃𝜃,𝑀𝑀) +  𝑘𝑘(log𝑛𝑛 − log 2𝜋𝜋) 

For 𝑛𝑛 ≫ 0, this is effectively 

𝐵𝐵𝐵𝐵𝐵𝐵 ≈  −2 log max
𝜃𝜃

𝐿𝐿(𝑥𝑥|𝜃𝜃,𝑀𝑀) +  𝑘𝑘 log𝑛𝑛 

In terms of log-likelihoods based on our model-predicted 𝑃𝑃𝑀𝑀 and announced belief 

distributions 𝑃𝑃𝐴𝐴, 

𝐷𝐷(𝑃𝑃𝐴𝐴,𝑃𝑃𝑀𝑀) = −𝐻𝐻(𝑃𝑃𝐴𝐴) − 〈log max
θ

𝐿𝐿(𝑥𝑥|𝜃𝜃,𝑀𝑀)〉𝑃𝑃𝐴𝐴 

= −
1

3𝑛𝑛
� log max

θ
𝐿𝐿(𝑥𝑥𝑖𝑖𝑖𝑖|𝜃𝜃,𝑀𝑀) + 𝐶𝐶

𝑖𝑖,𝑡𝑡

 

 

assuming a flat prior on the data where 𝑛𝑛 is the number of trials and the factor of 3 refers to 

the three belief dimensions. Thus minimizing KL-divergence is equivalent to maximizing 

log-likelihood and we have 

𝐵𝐵𝐵𝐵𝐵𝐵 ≈ −2 log max
θ

𝐿𝐿(𝑥𝑥|𝜃𝜃,𝑀𝑀) +  𝑘𝑘 log 3𝑛𝑛 

5 See http://www.hongliangjie.com/2012/07/12/maximum-likelihood-as-minimize-kl-divergence/. 
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= −2[−3𝑛𝑛 𝐷𝐷(𝑃𝑃𝐴𝐴,𝑃𝑃𝑀𝑀)] +  𝑘𝑘 log 3𝑛𝑛 

= 6𝑛𝑛 𝐷𝐷(𝑃𝑃𝐴𝐴,𝑃𝑃𝑀𝑀) +  𝑘𝑘 log 3𝑛𝑛 

 

Note that KL-divergence is additive over samples 

𝐷𝐷(𝑃𝑃1:𝑛𝑛,𝑄𝑄1:𝑛𝑛) = 𝐷𝐷(𝑃𝑃1:𝑗𝑗,𝑄𝑄1:𝑗𝑗)  +  𝐷𝐷(𝑃𝑃𝑗𝑗:𝑛𝑛,𝑄𝑄𝑗𝑗:𝑛𝑛)  

 

Note that 2𝐷𝐷(𝑃𝑃,𝑄𝑄) is the 𝐺𝐺-statistic, to which 𝜒𝜒2 is now understood to be an approximation6. 

There are only two degrees of freedom in our data and predictions, namely two out of the 

three beliefs. In our derivation, this implies that the prior over the “third'” belief is 1 since it 

is uniquely defined by ∑ 𝑃𝑃𝐴𝐴(𝑖𝑖)𝑖𝑖=1…3 = 1. Thus we simply drop this belief vector from our 

BIC score to get, 

𝐵𝐵𝐵𝐵𝐵𝐵 =  4𝑛𝑛 𝐷𝐷(𝑃𝑃𝐴𝐴,𝑃𝑃𝑀𝑀) +  𝑘𝑘 log 2𝑛𝑛 

where 𝑃𝑃𝐴𝐴 and 𝑃𝑃𝑀𝑀 are computed over the color and motion dimensions only. 

 

6 See e.g. http://strimmerlab.github.io/statisticalthinking/pdf/c4.pdf, page 4. 
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