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ABSTRACT

An approximate theory for steady irrotational flow through a
cascade of thin cambered airfoils is developed. Isolated thin airfoils
have only slight camber in most applications, and the well known
methods that replace the source and vorticity distributions of the
curved camber line by similar distributions on the straight chord line
are adequate. In cascades, however, the camber is usually appreci-
able, and significant errors are introduced if the vorticity and source
distributions on the camber line are approximated by the same dis-
tribution on the chord line.

The calculation of the flow field becomes very clumsy in
practice if the vorticity and source distributions are not confined to a
straight line. A new method is proposed and investigated; in this
method, at each point on the camber line, the vorticity and sources
are assumed to be distributed along a straight line tangent to the cam-
ber line at that point, and corrections are determined to account for
the deviation of the actual camber line from the tangent line. Hence,
the basic calculation for the cambered airfoils is reduced to the
simpler calculation of the straight line airfoils, with the equivalent
straight line airfoils changing from point to point.

The results of the approximate method are compared with
numerical solutions for cambers as high as 25 per cent of the chord.
The leaving angles of flow are predicted quite well, even at this high
value of the camber. The present method also gives the functional
relationship between the éxit angle and the other parameters such as

airfoil shape and cascade geometry.
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I. INTRODUCTION

In the present investigation, the two-dimensional, inviscid,
and irrotational flow past a cascade of airfoils is studied. Notable ex-
amples of cascade arrangement are found in turbomachinery. There,
cascades are used to deflect the direction of flow and to change the
magnitude of the velocity as the fluid passes from upstream to down-
stream through lattices of airfoils. Although cascade arrangements
are in use in radial flow machines as well as in axial flow ones, the
discussion will hereafter be limited to the axial-flow turbomachinery.

The relation between two-dimensional flow through a cascade
of airfoils and the flow in an axial turbomachine is somewhat similar
to the relation between two-dimensional flow around an airfoil and the
flow around a three-dimensional wing. There are differences, howev-
er, that influence the type of information needed. The blades of an
axial turbomachine extend between inner and outer annular walls, and
in this respect operate as if they had end plates. On the other hand,
the flow is ‘neyer strictly two-dimensional relative to annular surfaces,
because of the coupling of the centrifugal force field with the varia-
tions in the circumferential component of velocity. The flow field in
the turbomachine is often strongly rotational, and although the radial
component of vorticity is zero on the average, spanwise velocity com-
ponents may occur having.the same effect as sweepback of a three-

dimensional wing.

Practical examples of a cascade are also found in the flow-
deflecting devices in other technological fields, and such cascade ar-

rangements are called by various names according to their use --
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vanes, guides, or straighteners. Generally speaking, there are two
important classes of cascade problems: direct and inverse problems.
The direct problem is, given the inlet flow conditions and airfoil
shape, to determine the flow field around the cascade. Conversely,
in the inverse problem, one is interested in finding the airfoil shape
such as to produce the prescribed pressure distribution along the
blade surface under given inlet flow conditions.

Only the direct problem is treated in the present work. Ac-
cordingly, the question posed is the following: how does the flow pat-
tern look for the fluid past a two-dimensional cascade of given airfoil
shape under the given inlet flow conditions ? It is only natural to try
to analyze this cascade flow as a perturbation of the flow past an iso-
lated airfoil. This is the approach taken by Robinson and Laurmann in
ref. 1. There, the analysis is valid only for low solidity, i.e., high
spacing-chord ratio. Another approach is the limiting case of high
solidity, i.e., low spacing-chord ratio. In this limit, the flow be-
tween two adjacent blades can be regarded as channel flow. Every-
where except near the leading edges, the streamlines within the cas-
cade are in a direction parallel to the blade surfaces, and this enables
us to study such flow in a simple way. In most cascade arrangements
of interest, however, the solidity is of the order of unity, and these
cases cannot be handled adequately by either of the limiting approaches.

Various attempts have been made to treat the cascade of so-
lidity near unity. According to the methods adopted, these may be
diii=<Z intc two classes; conformal mapping and the singularity meth-

od. In the conformal mapping method, the airfoil shape in the physical
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plane is mapped by a series of transformations into a circle, and the
flow field around the circle is determined. In the singularity method,
vortices and sources are distributed along the camber line of the air-
foil and the flow field is studied in the physical plane.

Perhaps the most widely-known conformal mapping method is
that of Garrick (ref. 2), published in 1944. This is essentially an ex-
tension of Theodorsen's method (ref. 3) developed for isolated airfoils
of arbitrary shape. In Theodorsen's method, the airfoil shape is first
mapped into an intermediate mapping plane using the Joukowski trans-
formation. If the airfoil were a flat plate, the contour in the inter-
mediate plane would be a circle. In the case of an arbitrarily shaped
airfoil, the contour becomes a pseudo-circle. This pseudo-circle is
mapped into a true circle by secondary mapping, and the key of the
problem is to find a suitable mapping function. Garrick followed the
same procedure as Theodorsen's method, i.e., first mapping the air-
foil shape in a cascade into a pseudo-circle and then to a final true
circle. In transforming a cascade airfoil into a pseudo-circle, one
must use some function other than the Joukowski transformation to
take care of the periodicity of flow. For this purpose, Garrick used
the cascade mapping function, an exact transformation which maps a
cascade of flat plates into a circle. Periodicity of the flow in the
physical plane is dealt with by the use of logarithmic functions in the
mapping function. The final mapping from this pseudo-circle to the
true circle is done exa.ctiy in the same way as Theodorsen's method.

This method has several disadvantages in practical applica~-

tions. These all stem from the peculiar features of the cascade map-
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ping function. The upstream and downstream infinities in the physical
plane are mapped into two points close to the circle. The contour
representing the blade surface is strongly distorted and very sensitive
to errors near these points. It is difficult to transform the pseudo-
circle into a circle with rapid convergence. These distortions make
the conformal mapping technique unsuitable for practical purposes,
particularly if the solidity is greater than unity.

In an attempt to by-pass the difficulties encountered in con-
formal mapping methods, Schlichting and his collaborators made ex-
tensive investigation of a different approach, the singularity method.
This is an extension of the classical 'thin airfoil' theory to the air-
foils in a cascade. By thin airfoil is meant an airfoil of small thick-
ness and camber. Vortices and sources are located on the chord line
instead of on the camber line, and the flow tangency condition is satis-
fied for the induced velocities obtained on the chord line. The method
is discussed in more detail elsewhere; here, we merely remark that
approximations valid for the single airfoil become cruder for airfoils
in a cascade. Therefore, results based on Schlichting's method in-
volve inevitable errors ab initio, even for the case of a slightly cam-
bered airfoil to which his method is strictly applicable.

Practical isolated airfoils have small camber,and the approxi-
mation made by placing the vorticity and source distributions on the
straight chord line is not seriously in error. The blades in cascades,
however, have high camber in general, to conform to the large change
in flow direction through the cascade. Conventional thin airfoil theory

is not adequate; it is necessary to extend the theory to cambered air-




foils if it is to be useful.

Recently, another approach requiring the use of a high-speed
digital computer (refs. 6-8) has been quite successful. In this method,
vortices are distributed on the surface of the airfoil. With a sufficient
number of vortices (100 or more), one can obtain an accurate repre-
sentation of the flow even for thick airfoils. From the condition for
tangential flow at the blade surface, the magnitudes of the vortices
can be determined by direct numerical procedure. By this method, a
cascade of any airfoil shape, thick or thin, at any solidity, can be
studied with any desired accuracy.

The availability of this method, however, does not provide the
final answer to the problem. Being numerical from the beginning to
the end, it cannot give any insight to the functional relationship be-
tween some desired characteristic and the various factors affecting it.
In general, the designer is more in need of such functional relation-
ship in its simplest possible form rather than the detailed, accurate
results for a few specific examples. Such functional relationship
would enable him, firstly, to compute families of results for the dif-
ferent combinations of parameters, secondly, to study the optimum
design condition analytically,and thirdly, to furnish guidelines for the
systematic correlation of experimental data. Specifically, the main
interest of the cascade designer in the flow analysis will be to find
the dependence of airfoil surface pressure distribution and the exit
flow angle on parameters such as airfoil shape, cascade geometry,
and inlet flow direction. The velocity or pressure distribution is

important in estimating the boundary layer behavior over the airfoil




surface.

Because induced drag is of no importance in the turbomachine,
optimum performance of the blades occurs at a muchhigher 1lift coef-
ficient than for a three-dimensional wing. The pressure distribution
on the blade surfaces is at least helpful in estimating the stall margin
for the cascade.

Aside from pressure distribution, the designer needs to know
the overall performance of the cascade quite accurately, and for this
purpose the leaving angle is the most convenient parameter (ref. 18).
The leaving angle gives the deflection of the flow through the cascade,
and it is found to be not strongly dependent on incidence angle. Hence,
it is a better indicator of overall performance than the lift coefficient,
for instance, which varies appreciably with incidence angle. It is
clear that one cannot expect accurate information for pressure distri-
bution near the leading edges of the airfoil. Such information cannot
be found easily for the isolated airfoil, and for airfoils in a cascade
the situation is worse. Knowledge of the flow close to the leading edge
of the blade, however, is of little practical use compared with similar
knowledge for the airplane wing.

One should be able to predict the exit angle through analytical
treatment, because it is largely determined by the general outline of
the airfoil and cascade geometry; local leading edge contours have
small effect on the flow downstream. Methods used in the past have
not been very successful. For example, in Schlichting's work, loc.
cit., it is possible to express exit angle in terms of incidence angle

only after all -other parameters are given in numbers explicitly.
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Further, his work is applicable only to slightly cambered airfoils in
the cascade. Therefore, the principal objective of the present study
is to develop a theory without restriction to small camber that will
predict exit angle and pressure distribution with reasonable accuracy
and a minimum of numerical computation.

A remark about the degree of accuracy needed is pertinent
here. The Reynolds number for blades in a turbomachine is lower
than that appropriate to an airplane wing by a factor of 100 or more.
Hence, boundary layers are relatively much thicker; this, combined
with unavoidable errors in manufacture of blades and damage in oper-
ation, impliels that there is little point in attempting a very exact
theory of flow around blades of precisely given‘ contour.

A brief outline of the present method is given below. The
singularity method is adopted here. The essential difference between
the present singularity method and those of Schlichting and Mellor is
that the sources and vortices are distributed on the camber line of
airfoils in the cascadé instead of on the straight chord line. The
calculation of the flow field becomes very awkward in practice, how-
ever, unless the vortices and sources are not confined to a straight
1iné. At a point on the camber line of an airfoil in a cascade, the

major contribution to the induced velocity comes from the sources and

vortices located near the point on the same airfoil. This contribution
can be represented approximately by the source and vorticity distri-
bution on the straight line tangent to the airfoil camber line at that
point. Therefore, at each point on the camber line, the vortices and

sources are first assumed to be distributed along the tangent line,
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and corrections are made to account for the deviation of the actual
camber line from the tangent line and for the velocities induced by the
other airfoils in the cascade. Hence, basically, the calculation is
reduced to the similar case of straight line airfoils, with the equiva-
lent straight line airfoils changing from point to pcl)int. From the
flow tangency condition, the strengths of source and vortex distribu-

tion are determined.
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II. THEORY AND ANALYSIS

In this part, first the problem will be defined and formulated
by distributing the vortices and sources on the camber line. Then, in
section 2, the; technique of the method of 'tangent slope, ' as it is called
in the present work, will be introduced for the simplest case of the
isolated airfoil. Then, before applying this method to the cascade
problem, several preliminary steps will be described in sections 3
and 4. In section 5, we will see the application of the tangent slope
method to the cascade problem with some ensuing discussion in sec-
tions 6 and 7. In sections 8 and 9, the boundary condition and the
method of satisfying it will be discussed. In section 10, the main
steps of the calculation procedure will be summarized.

1. Formulation of the Problem.

In Figure 1, the fluid approaches the cascade from far up -
stream with velocity cg,ﬂ_ at an angle oy and leaves far downstream
of the cascade with velocity gd 2t an angle ofd . The vectorial
mean of Fu and Fd is called the mean velocity Zm at a mean
angle otm . Although usually Gu and «, are the given quanti-
ties, it is more convenient to regard Fm and ocm as given for
theoretical treatment. The conversion of these mean values to Fu
and ol can be made easily once the circulation around an airfoil
s determined. The angle which ¢« makes with the tangent to the
mean camber line of the airfoil at the leading edge is the incidence
angle o.; . (6 is called the stagger angle, and if @ is positive,

the cascade is a compressor cascade; if negative, a turbine cascade.
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The spacing chord ratio is § » and the reciprocal of g 1is called
solidity. As for the airfoil section, the chord ¢ connects the two
points of greatest curvature, the leading and trailing edges. A cam-
ber line vy, (x) is specified along the chord and, normal to the cam-
ber line, the profile thickness U(X) is superposed, see Figure 2.

The fluid is assumed to be in steady, inviscid, irrotational
flow. The flow at infinity is uniform.

If the airfoil is thin, the induced velocity at a given point
Z=xX+1iy can be obtained by distributing vorticity ¢ and source m
over the camber of each airfoil. From the periodicity of the cascade
flow, the strength of these singularities is the same on each airfoil at
the correspoinding points. If the position at which these singularities
are located on the Oth airfoil is Xi+ 2YeXi)= Xy . , then the cor-
responding péint on the Nth airfoil can be given as X+ nSc sin(ﬂ + 2 Yo(x)

rinsc.Cosf and the induced velocity at & is

. | . oo |
w - 0= S fomex) +ivon)( 7= z_Z‘_nscan@_mcmﬁyﬂ, (2 1)

N=~oo

where  di; is the segment of camber line, and the integration is

carried out over the entire camber line.
The sum inside the integral can be identified as the hyper-

bolic cotangent function (ref. 9), and the above relation can then be

rewritten as

u -@ﬁ-x'c—cj(fj(mcx,)nr(x-)) coth{ﬂ.f_‘%)_cap}dz, (2.2)
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It is convenient here to change the integration variable from

Zl to
X and define 'modified' source and vorticity as
)n()(.)d.l, = hL'(X-)dX,-
: (2.3)
y(x)ddy= v'(x)dx,

Then (2. 2) becomes

W= i = c'(j' (m’o«)ur’(x-))ooth[”—(fc;z—'le"é}ix. (2. 4)
= s

2. The Case of the Isolated Airfoil of Zero Thickness: Method of

Tangent Slope.

To illustrate the main idea of what, in the present work, is

called the 'method of tangent slope, ' consider the simplest case of

isolated airfoil of zero thickness. This corresponds to §—»e= ,m'=0 in
(2. 4) of the previous section.

[+

TS 7, Y L
u 11?‘—27(:] ¥ ix) - = AX;
C

Let ZX= Zo be the point on the camber line; then the induced ve-

locities on the camber line ., are given by

<

. Z

& ’ { dx
27-(_/ §(x) [X+1;)fo(’<)1— [)(,+ ij,(x,)] /

(5
- Z

7/(-0_'7;73"::

MI{\

v - i Ax, (2.5)
?-Tfl“x) X=X+ %x) = Yolxi)]
Tz

Now, even if Yo (X) is a relatively simple polynomial, it is difficult
to carry out this integration. To overcome this difficulty, expand the
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camber line Yo(x/) about X 1in a Taylor series.

yo (x)"'ya()(;) = _%’(X)(Xl —X)— %—%"{x)(x' __x)a__sl_yna)(x)(xl __x)i_ S

— =k e = X)L
Then

X = X+ 1 Yo ) = Jo(x)]

=(x=- x.)[ I+ (xJ—; LX) (X - X)+———)A3’(x)(x Xi) 4 em o 1,( iy ), ey (x -]

_ o eeietl ¢ f £ T k) X0 .
(et R x)(’ [+ :+f“iy.?'c'x')'(x )& T K

n—L———(x) —_— ”—l - - -
( ! I+1./V’(x)(x x') s J}
and

/
X = X+ ] yelx) = Yalxi)

/ I
[+ )/x) X—X,

X
[ 2 _%%x) _ YEI0x) o L TG T
: [ 2 ”*’;)"'("’(x - 6 X5 (X)(x e ) 1+t)f(x(x Xi) J
! l
I+ 1Ye X)X — X,

{r +,,‘,.Zf'[ -—I%(X B ? ﬁlzj_(’( Xi)H e (=) ——Z——Ll f:;j (x—x.)”‘L-A-J‘J

In the last step, the formula _—> a” is used. Carrying

out the expansion in the bracket, one gets
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7
K=Xi+1[ Y (X)=Yx))

/ /
I+ 1)) x—X,

. g =3 =2 %Y (1 + W
(145 TR e g SECZI ) e

& —*--31;}:”3'*4<I+iyal)]oll,x:(j)"'i: oG’(I"‘t:%’ 2
24 (1 1 50

+ =82 270+ e W)= (20 (I + 300 N1+ i X)* G0 3% 3&(j+ iy + 45 %4
rROLf + g YJF

(X —x)?

x()('-xt)4

i (ziyﬁ"(m )20 74 20 30 (14 S F— (a5 i) A 60¢ 0" (3O

X1+ L= 120- OFP 1+ B 4560,”)"}:( /440 (lf-ri)’f

X(X— X"+ --.. ]

It is to be noticed here that all the derivatives in the bracket{
are evaluated at the point x and independent of the integration
variable X

Thus, the induced velocities (2.5) can be written in the follow-

ing form.
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< (<]
. . 2 . i
i . J ¥ )dx %" '
ekl gy my:j x—xf*ﬁ%@# A
£.E =
: /e
e

“3.70//2__21;){3@)(’4_1;);01) 1’
1207+ 3y)3 I )% — X1 ) el

+

G,
2

C

—Jiol’J+4(/+i;u/))Q* =(.1} .o@)[ y)? '3;- .
* . 24(/)/+ i;,/): b1+ %] ¢ ) (X — X1 )X

c

M

4 ( — 6+ X (20 OVF 43005 U ) (1 1 i )4 G0 32,5 () ¢ s
%
*7zo() . L')’JJ FERd B

+ {25)(6(6)({ _+1;%1)4+ (/2),;/' 0(5)‘9'20%(3)'_70{4))(/‘*’:)/0’)3— (461' (%Uz_%(ay_f_soz")‘;’r_(]oajjl

(o)

x(/+iy°,)1_ /20<){’u34)°(3)(/+ t"}’)+45594”)5}

G
! %
/44a (( + t',)tﬂ:)s]r(x’)(x_ X')4”(xr+‘“" ] (2. 6)
(3

p)
Notice that due to Taylor series expansion of the camber line about X

all the factors associated with Y. are taken outside of the integral
and the integrand involves only x—x, and vorticity ¢ , and once
the form of ¢/ is given, they are in forms ready to be integrated.
The above expression for the induced velocities has a simple
physical interpretation. If one considers the velocity due to the first

term in the bracket,

c
z
M_ ) v { 3’”()(:)0()(
Us — 1o e EX5HE) g i (2.'2)

&
2

then, for the special case of Yo/ (x)=0 , this reduces to.
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&
. fE
E‘_’r—tf Tr_—()jgi% » and this is the familiar induced velocity on
€.

the chord due to the vorticity distributed over a flat plate lying along
X axis. In the general case of X(x)+# 0 , (2.7) can be identified
as a rotation of this flat plate in such a way that it becomes tangent to
the camber line at point x , where the velocity on the camber line is
computed, as shown in Figure 3. This can be demonstrated in the
following way. Equating the real and imaginary parts of both sides of

equation (2.7), one gets

< C
= <
() Y Cx)dx ' *
uo(n=_|____ X 4 = S T ') ¥(xn dx,
27 I+()1,Q<))i£ X =X 2t (J+¥)1) X —X
Z C
=3
. < (2. 8)
=z 2
‘0}(”:‘_ i i I’(X,)dxr = = . [ J’(x,)d’x,
° Tm 1+ Q) X=X 2t (1+Y42) X =X
C [
=3 2

On the other hand, let us consider the induced velocity at point P due
to the vorticity at @  with the same strength as at the corresponding
point @' on the camber line, but instead distributed on the straight-
line § axis, which is tangent at P to the camber line. Then, in

&7 coordinates,

ol
¢ =
i - . ¥(5.)45, ¥(8)=vx)
uS v i ZTEl&, § —_ g[ )
-
e
2
B £ 5 —51
™
T
Substituting §=-—x__ , § =2 » we get
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Figure 3. Tangent slope method.
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njn

= o Y (xi)dx,
Wy~e ’ﬁ"?_ 27T X = 3

Transforming to x ,y coordinate system,

Ux = U CoSF,~ “}‘5”'_? -—13-751.nj’ zvr (/-1-)/ ] xrfixz, J

<
- - _ g _ | ZX(Xn)G(Xf
Uy = g SUF, +Op CoOTT~ aly casfl v o <1+)4")JK“’<' 4
‘ Z.C,

Comparing these expressions with equation (2. 8), we see these ex-
pressions are identical. Hence, we can conclude that the first term
in the velocity equation of (2. 6) is due to the vorticity with the same
strength as at the corresponding point on a curved camber line, but
distributed on the tanéent to the mean camber line at the point where
the velocity is being evaluated. The remaining terms are all correc-
tion terrn.s to this first one, and each has its own physical meaning:
the .second term is due to the single vortex, the amount of which is
equal to the total circulation. This single vortex is located on the
concave side of the camber line, because by the first term the vor-
ticity distribution is displaced from the camber line to the tangent
line, which is located on the convex side, and the second term, the
largest of all remaining terms, must be placed in such a way as to
cancel this effect. The third term is due to the moment of vorticity
or doublet, ; the fourth term is due to the triplet, and so forth. Usu-
ally, the first term gives the most significant contribution, and from

its characteristic feature, the Taylor series eXpansion leading to
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equation (2. 6) is called the 'tangent slope' method in this study. The
rate of convergence of series expression in (2.6) will be examined in
Part III; in the following sections, the 'tangent slope' method will be
applied to the cascade problem. First, let us study the nature of the
singularity of the integrand in the cascade.

3. Two Types of Series Expansion of the Cotangent Hyperbolic Func-

tion in the Integral for the Cascade.

For simplicity, let & be defined as

§(2, Z) zl(_‘g—'c‘_li)cf@

then equation (2. 4) can be written as

; z
U—2 - z_isc_cfy (m'(x)+ {,B"CX,)) cat},s (2, Z)dx,,

(2.9)
E =X+i¥, Zi= X+ (X))

Now the only singularity of the integrand in (2. 9) comes from the

point 2z = %, ; namely, if we fix the point £ to be a point on the
OLh blade, E = Za = X +1)e(X) , then the singularity occurs when
the integration variable X, crosses the point X . The form of the

singularity at the point %, 1in question is apparent from equation
(2. 1), for from that equation, the singular term at X, 1is found to be

given by n=o "

L %)) — —
27_Ej(m(x.) + 21 (X)) e 44,
i. e., the velocities induced by the sources and vortices on the airfoil
where the point 2z, is also situated. Such singular behavior of the

integrand can be brought out in explicit form, if we expand cath§

near 2 — & or § =0 (e. g. ref. 10).
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cobhS =5+ 35 — 355+ 755 55*"“*‘—7%ﬁjr‘ﬂ%5 +-- (2. 10)

5] <
where the B8n 's are Bernoulli numbers. The first term of the ex-
pansion gives the a.bove—mentioned singularity of the isolated airfoil,
and the corrections to this are provided by the rest of the series.
When § 1is small, a few terms in this expansion provide a good ap-
proximation.
Since the radius of convergence of this series is 7t , the

validity of (2. 10) over the entire chord is restricted to

I§l= TClz—zr[

s LT
or
|2 — 2, <sc {2, 11}
But since | £ — Eipx=C , the expansion above is valid over the
entire chord line only if §> { . Thus, except for cascades of

high spacing-chord ratio, expansion (2. 10) cannot be used over the
entire chord, and another type of expansion of <coth§ for large §
is needed. This is

5

5 8 S2n5,

= —6
coth = +280+ 234285+ - - #2874 - (2. 12)

Re¥ >0

The leading term of the right hand side corresponds to the limiting

case of § —= oo , l.e., S —=0 for a finite value of =z — &, .

Physically, S—=0 means a closely-spaced cascade, and in this

case, instead of the discontinuous vorticity distribution along the
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direction parallel to the cascade axis for a finite spacing S , the
vorticity distribution becomes uniform -- in other words, smeared
out -- along the cascade axis. The remaining terms correct for the

periodicity of vorticity distribution for the finite spacing $

These two expansions, (2.10) and (2. 12), of the same function
cothf are suitable in different ranges of § and to evaluate the
integral of equation (2. 9), the chord line is split in such a way that in
each division we can replace coth§ by the correspondingly appro-

priate form. Hereafter, equation (2. 10) type expansions are called

inner expansions, while those like (2. 12) are called outer expansions,
denoting each with subscripts = and o respectively. Then (2.9) can

be written into two integrals as

Ua(x) =20 (X) = ﬁcf@j(m’(x,) +00'(0))(coth§ ) %
Lol eig j (/%) 4 5 570))( coth§ o dX

25¢C
- ﬁc.‘@l‘ (M) + id"(xf))(—sl + ?[5 —%534 _..)dx,
- e;@f('m'(x,)+ ir’(xf))(f +285 zE4§+ - )X

25c¢ (2. 13)

4. Range of Inner and Outer Expansion.

In this section, we study the method of determining the range

of the inner - outer expansion. Near §=0 , the inner expansion of
equation (2. 10) is valid, while for |§]|>1 »an equation (2.12) type
outer expansion is suitable. In the overlapping region where the two

types of expansion are both valid, however, there is no unique way to

determine which expansion is preferable. For example, if one type
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of expansion results in easier integration along the chord up to the
higher order terms, then it might be wise to widen the range of such
expansion within the overlapping region. But whatever the choice of
range might be, the final induced velocity of equation (2. 13) should be
independent of such choice. In reality, however, this would be so
only if the infinite series are kept in their full form, and when one
truncates such series expansions, then the final approximate ex-
pression for the induced velocity does depend on the choice of inner -
outer expansion range. Nevertheless, we can anticipate that even
such approximate velocities would not be too sensitive to the choice
of such range. This is because such velocities consist of outer and
inner expansion integrals, and if the range of inner expansion inte-
gral is taken to be narrower, then compensation will be made by
widening the range of outer expansion. Such cancelling effect does
not appreciably influence the sum of these two integrals.

Now let us first decide how to truncate the series expansions.
As for the inner expansion series of equation (2. 10), after assuming
proper forms for sources and vortices, every term is found to be in-
tegrated, explicitly and without difficulty, and we can retain any
number of terms as we like. But for the purpose of the present in-
vestigation of obtaining as simple a method as possible, it would be
best to take as small a number of terms as possible. Solet us try

the first and second terms in the inner expansion, equation (2. 10),

(c‘.otbﬁ){,=-5i-+“3—'*5 (2. 14)
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and choose the range of expansion in such a way as the other terms
are negligible.

As for the outer expansion, the terms of the form 2E1"5 are
found to make the integration difficult, so let us take only the first
term in equation (2. 12),

(cath§), =1 (2. 15)
and again we hope that there exists a range of expansion where the
remaining terms can be neglected.

Of course, if we could not find a suitable range of § where
both (2. 14) and (2. 15) are valid, then we would have to add extra
terms, but as we will see in the next paragraph, such a range exists.
First, consider the following problem, with P =0 , E=X = =X

2 2

and
§o B (SXC—X:)

Let us choose the range of expansion in such a way that coth§ can be
best represented by  (coth§ ) and (coth§)o over the entire
chord range with the least possible error. Defining F(5§) as

(coths); =_,5’_ + 58 , 0<5<5er

FL8}) =

(coth§)o= 1 ) 5cr<5<&52%l

where S, = M%EL corresponds to the limit of inner expansion

to the left of the fixed position of x . Then the square of the er-

ror in expressing coth§ by F(5) can be written as




"

7 (X+ %)
azj ST catht — F(5))S
g
S e 5)
- cotht —-L _ &)y e
( g 35) 5"“ (CoC/)S—-—")ZG(S
[e]

Choose Ser in such a way that E* is a minimum,

QE! -
o8 "0
or
( coth},, - ?Ic_r __J_ISW)Z_( cothSe, — I)Z:.O
or
SHYS S . - ! /
1 B 3§cr) CZCOH)S“— I_S—q——:i—scf)=o
SRY TR ! [
=75, ~F5a=0 or  2cothSer—1 =g — 55,~0
range of inner The first equation does not possess
expanszon
_ any real §¢r solution, while the

fdnge cf i 5cr = 1-6400
outer afansdq'b: A
X

T

Xl 0 Xcr

|
{* / | second equation yields
|
|
<
2

i Similarly, it can be shown that the
<
z2

range of inner expansion to the right

of x can be found to be the same
as those to the left of x

(coth§)s =5 + 55

. Therefore,

,  0<[5]<]5er

(2. 16)
(cothy )g = 1

, outside of the above range
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| Ser| = ElX=Xed oy g400 (2. 17)

SC

In Figure 4, the graph of coth§ is plotted against (coth’ )
and (cothf)o . There, it is seen that the inner expansion
provides a good approximation over a large portion of the inner ex-
pansion range, while in the outer expansion range, the outer expan-
sion (coth§), gives a satisfactory approximation. The largest er-
ror between cathg and two types of approximation occurs at

S *‘Scr' {-6400 , where

CobhSer = 1-0782

(cchng)i;— /'!564) ( COﬁhS(?’)o= l-000

and the discrepancies between the exact values and the two approxi-
mations are almost the€ same and about 8 per cent; the inner expansion
over-estimates the true value while the outer expansion under-
estimates. Thus, these two errors almost cancel each other in the
inteéral evaluation of equation (2. 13). Furthermore, the largest con-
tribution to this integral comes from the integrand near x,= X or
§=o0 , and since inner expansion approximates well near such a
point, these errors are almost completely negligible. We will see in
Part III, after making comparison with the exact solution for the flat
plate, that this is indeed so. It might be noteworthy to add that the
accuracy of this approximation does not change from a cascade of one
solidity to another, if we join the two expansions according to (2. 16)

and (2.17). This is due to the fact that § is given as the ratio of

the distance on the chord to spacing 5¢ , and if this ratio is kept
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Figure 4. Approximation by inner-outer expansion.




A
constant, then the degree of approximation becomes similar for the
cascade of any solidity.

Now the above method of determining the optimum expansion
range applies only to a particular simple configuration related to the
cascade. For the general case of a staggered and cambered cascade,
we should compute such a range case by case, but such a procedure
would complicate the problem. Instead, it is more useful for the
present purpose to determine the range of expansion in some simple,
uniform manner. This we will do by simply assuming that the ex-
pansion range Xcr , determined by (2. 17) and a function of both posi-
tion on chord x and spacing-chord ratio S , is applicable to a cas-
cade of staggered, cambered airfoils. We will see,in Part III,
numerical justification of this assumption, too. The validity of this
somewhat crude determination of expansion range comes from the
aforementioned insensitivity of final results to such a split-up. Hav-
ing determined the expansion range, we will apply the method of
tangent slope to the cascade problem in the next section.

5. Application of Method of 'Tangent Slope' to the Cascade Problem.

Truncating the series expression in the integral of equation

(2. 13) according to section 4, one gets
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Uo(x)"'i"l)’o(x)
- Z'SC eit"‘j(m'cx,)nr’(xo)(-‘— + 45 ) dx,

T .Z.SC et pf(m(x)—frvf()(,))cix

& ———Cflﬂj(m(X:)+Lf(X-))[ﬁzf_sz)+31_E?T—Fé)c‘.éJde’

gzl ] (m' () + £ 70x))alx,

= — (m(x, +L(’<X1))——ZJ—-AX, + JE(LZ’)Q (m/(Xl)+bf/(X1))(£o i‘:)dx

zlc C:QL(m’(x.) £ L)) dx,

(2.18)

Now the first term in the equation corresponds to the isolated airfoil,

and the method of 'tangent slope' of section 2 can be directly applied to

evaluate the integral.

As for the second term, we can use the similar technique of

Taylor expansion about X , such as
Bo— 2= (406 )X = X0 ) = X (X — %)+ 2 52 () (X = X1)% -
e (=) A=) =

Thus, (2.18) can be written in the following form.
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+
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Once the form of sources m'X) and vortices Y(X:)  are given,
then all the integrals are in the forms ready to be integrated. In the
next section, such forms will be discussed.

6. Series Form for Source and Vorticity Distribution.

Physically it is obvious that source m(x,) and vorticity 7 (x,)
are the differences of the velocities normal and tangential to the
camber line, respectively, when they are evaluated just off the cam-

ber line,
mx) = ?n,4 (x)— ?n,-(x)
() = e+ ) — g~ (X)

where suffixes + and - denote just above and below the camber line,
respectively. Mathematical proof of this relation for the case of iso-
lated airfoil is given in ref. 11, and the proof for the case of a cas-
cade is given in Appendix 1 of the present work.

Introducing the auxiliary variable defined by

g = cogl(’%) (2. 20)

we take this variable & to be positive for the point just above the
camber line and negative for the point just below the camber line.
Using this convention and dropping suffixes
m(e)= 4,(8) —¢,(~96)
r(6)= ¢5(0)— 4e(-6)
Also, from Appendix 1,
n (&)= 5miv)=—4y(=0),
46(0)~ 4 1(8)= — ¢ (~9)
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From these relations, cg,, and v are odd functions, and therefore
m and ¢ are also odd functions of & . Thus, the modified singu-
larities m’ and ¢’ are also odd functions of‘ I}
As for the source distribution m , the total sum of these
sources should be zero for the trailing edge to be closed. From the
relation of equation (2. 3), the total sum of the sources is equal to the

total sum of modified sources, and thus m' should satisfy

%
[/71("0)41 =] m’(Xs) "b(l =0 (2. 21)

2

Therefore, one should choose the form of m'(6) and r'(6) as the
odd function of & , satisfying the closure condition. Assume modi-

fied sources to be Allen type series (ref. 12), as

)

m' () = Ua{botan,—g— +>  bnsin neJ b= -2}o (2. 22)
h=1{

This series satisfies the above requirements,and the first term in the
bracket corresponds to an isolated, thin, symmetrical Joukowski air-
foil. The unknown coefficients in this and in the following series are
going to be determined from the flow tangency condition, as we will
see later.

Modified vorticity is assumed to be a Birnbaum type series

(ref. 13), as

r'(e) = Um[aotdn-zg +;ahsinne} (2. 23)
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For the isolated airfoil, the first term corresponds to a flat plate at
an angle of attack and the second term to a parabolic-arc airfoil with
small camber. The singularity near the leading edge comes from the
first term.

Notice in {2.23) that r'(0)=0 , i.e., the vorticity distri-
bution has the zero value at the trailing edge, satisfying the Kutta
condition automatically. Were it not so, the flow would turn around
the.trailing edge.

Having assumed the form of the distribution of the singulari-
ties, we are now ready to perform the integration to obtain the ex-
plicit formula for the induced velocity.

7. Explicit Expressions for the Induced Velocity.

Before substituting the series form obtained in section 6 to
equation (2. 19), we express the range of expansions obtained in sec-
tion 4 in terms of the auxiliary variable € . There, the range of

inner expansion was given by

[X_P‘ X+ P}
where
¢/ TCP
E 4 : ’S—C—=l'6400
g ‘{" Z or, in terms of 6 ,
¢ ' 7
L: 9\} [6+JJ_,8“JIJ
a 1 A
= ‘L ! ¢ where
2 F—_L-_ F_-"— 2 x + P=__§_C03<6—5})

X —P -%COSCG '*'JL)

The integral over the inner range j in equation (2. 19) should be

v

carried out within this range. The left hand side of the limit of the
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range can be written more explicitly as

S2 = a’CC°5<x ZP)— 6

2

= arccos (—é = 1-04405 ) —arc cos ‘:f
2

provided =R08400 | £ ¢

N|(\l><

If >{ , then the left hand side of the limit of inner

X
< —/-04405
2

expansion should not be extended beyond the leading edge, namely,

Jz = 7C — arccoSs %

2 X
provided | & ~/-04405|>¢
2
Similarly,
cﬂ - — drCCOS(—% + 1-04405)+arcc05 —?—
X
provided £+ 04405 |5/
=
If = e 04403|>1 |, then the right hand side limit of inner ex-

pansion should not be extended beyond the trailing edge, i.e.,

d, = arc cos—)c(—
z

+ {-a440S5 (> 1

Njofx

provided l

Correspondingly, the integral over the outer range f is carried out
o

within two separated regions outside of the inner range, [ 0, 8—4 J

and [6 +é-1, TEJ . Notice once more that the range of expansion at a

point X is determined by the point X itself and the spacing-chord
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ratio, S

Now, with the assumed series form, it is clear that the inte-
grals of section 5, equation (2. 19), come out as the sum of the two

terms proportional to d, and bn , respectively. Define

m-2
[(mlcx, }# EPCRIE~ %) 4%

= Um[ ; bn'Anm*’i“i"aﬂ “ Anm J(—C’—)m_zl Im

2

(2. 24)

where Amm 's are all real and dimensionless. The similarity of the
assumed form of the sources and vortices leads to the above results,

where the same expression A,m appears twice in the first and sec-
ond series. The explicit forms of Anm and the following Bn will

be given in Appendix 2. Also, write

j( m'(x.) + LX’(X.)) dx = U-c[ no‘f_:. bo* By + igdﬂ'ﬁnj(%) (2. 25])

where B, are all real and dimensionless.

The induced velocity can be written as

Uo (X ) = 113, 0x) = U»[ibn-(—g,,—efn)+ian(fn-iin)] (2. 26)

where f, and ¢, are real. We would like to obtain the explicit
forms of fn and In > and this is accomplished, without loss of
generality, by putting bp=0 (n=o,/,--- )in (2. 26). Substituting
(2. 24), (2.25), and (2. 26) into equation (2. 19), and equating the coef-

ficients of dn on both sides of the equation,
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Separating real and imaginary parts on the right hand side, one ob-

tains, for fn and gn
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)Cn and g, are functions of position on the chord —= , airfoil

N[y

shape ) and its derivatives, stagger angle p’ , and spacing-
chord ratio S . Only the dependence on 5 is implicit, and this
comes from the fact that the App are dependent upon 5 through

4 and d: . As mentioned before, complete derivations of Anm

and Bn are given in Appendix 2. The following are samples of Anm .

sin(6+ —ZLJ,_) sin-‘é—aﬁ,
sin(6 —z4) sin L4

Aol (_?}5)=<or, **c(:.)_ :&Eglo

518

Aoz (Z=;s)= (4= JZ)_[sin(e-r&.)~5£ﬁ(6—&)}

F3

Although An, and B, are such simple combinations of

logarithmic and trigonometric functions and can be evaluated without

difficulty for any f._( and s ., the numerical values of these co-

2
efficients are tabulated in Appendix 3 as functions of the two parame-

ters

X
L

2
the values of An,,m and Bp are taken from these tables for a given

and S so as to facilitate the computation. Hence, once

point —£— and specified spacing-chord ratioc S , f» and gn

2
are expressed as functions depending explicitly on airfoil shape Y.(x)
and stagger angle (3 . Thus, we can express the functional relation-
ship between the desired aerodynamic parameters and the other fac-
tors, once the spacing-chord ratio is specified. We will come back to

this point in Part III, where a .umber of examples of such relation=-

ships are given.
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After fn and ¢, are obtained, the induced velocities on the

camber line can be determined from equation (2. 26) as

Us(X) _ = e S B
=2y anifn =2 s

(2. 29)
Pl T &,
o By O Tt L

From the flow tangency condition on the surface of the airfoil, the co-
efficients 4, and bn determining the unknown strength of singu-
larities are obtained. In the following section, this boundary condition
will be discussed.

8. Boundary Conditions.

Since we are treating the fluid as inviscid, the boundary con-
dition on the surface of the airfoil is that the flow should be tangent
to the slope of the airfoil sur-
face. For a thin airfoil, ex-
cept for the vicinity of the
leading edge, the surface
velocities can be obtained
by superposing one-half of
the strength of singularity on

the velocity at a point on the

camber line. Referring to the

figure at the right,
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velocity normal to the upper surface:

= —(fm,t t Lot *“5‘3')5”’4’*‘(?%'7 +%oln+3'm)co.51;/

dt
=—(§mt+?a,5+)_l—r),:_21— + (gmn+ ¢ P W S A" (2. 30)
' dE T ntfentz =
//+@1) r-m—lfcw)
velocity normal to the lower surface:
x I
= (?mft +fa,5 _2"{—3/)5"’“}’—(§m,r} +§,’n——z—m)cos+
|y 4E
“—( L D,G"__{, _( m.n o,N , ! o (2. 31)
Adding (2.30) and (2.31), we get
5 X) = (e + Go,6) 4E 2. 32
z gme t %.6) 70 (2. 32)

and physically, this means that the flux of fluid out of two adjacent
surfaces normal to the camber line is balanced by the flow produced
from the sources.

Subtracting (2. 30) from (2.31), we get

(2. 35
Fan + ?o,n—%{%w)

and this means that the velocity is not quite tangent to the camber line

due to the unsymmetrical flow pattern on the upper and lower surfaces

of the airfoil. For a thin airfoil, the term —zl_—d’—ﬁzt- is small, ex-
cept near -the leading edge, where é—%— becomes infinitely large;

elsewhere the velocity is almost tangent to the camber line.
Expressing normal and tangential components of the induced
velocity on the camber line by X, ¥y components, U and J5

which in turn are given in terms of &, and bpn by equation (2.29),
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we obtain

?m ‘_U”S"”‘T“LV”COSJD /Tﬁa(f‘”"’( 7°)
B -H—y——{Zan(gn 7fn)+ibn(fn+y,gn)]

gmt = Voo <;o5j:° + Voo sung =

75 (1 # 3t
Fot = l+)é [Zan(fn‘*}{a?n) an(7’7 %)J

Substituting these into (2. 32) and (2. 33),

tang +5 pose AL
botan— "';605 nne +2 WZEn(jn )’fn)

— 24 7,——?—;/724"(]‘/)*7 gn)=24L h(l+j’t¢no<) (2. 34)

idn(?n 7fn i bn (fn b fn) ———Hﬁy“ (aofan > +ian5’nn6)

n=y

o 357 cbix
x - (2. 35)

Once the airfoil shape and cascade geometry are specified, the only
unknown factors in these equations are a,'s and 5, 's. One re-
mark is pertinent here. It is usual in the isolated thin airfoil theory
to simplify the boundary conditions (2.32) and (2. 33). For example,
the induced velocity ¢, in the equation and the unsymmetrical term

i :
75’% are ordinarily neglected and, more important, in a ver-

sion of equation (2. 33),




o

Veo * U5
“lerw "

/

the x component of the induced velocity % is neglected in com-
parison with the undisturbed velocity (b . Such linearization is not
made in the present work in anticipation of the importance of some of
these terms in cascade flow. This point will be taken up again in Part
III, but in passing, let us see in the following paragraph that the re-
sults of the isolated thin airfoil theory can be formally recovered,
without making these assumptions a priori.

For simplicity, consider the isolated airfoil of small camber
and zero thickness. Then t(x)=o and from (2. 34), j,=0

and equation (2.35) becomes

> an gy = yifa) = %/ — bancs (2. 36)

From equations (2. 27) and (2. 28), we get for the isolated airfoil, i.e.,
S —> oo ,
|
= Hfo =~ g b

for small camber € = J‘:__ﬁ)—«/
2

to the first order of € . Now, from Appendix 2, Ap can be ob-
tained by putting §,=6 and d,=x—6 for S— = , yielding

Api = jrcosné

(2.36) becomes

_T{i dp coShe = ]o/— Gan A
Nn=go




=B
or

7T
__ 2 b
ao~—-7r—o()/°’—tano()del anz——f% A cospg-dg  (nz1)

(]

These final results are the familiar ones for the case of the 'thin air-
foil theory' for an isolated airfoil, valid up to the order ¢
Now, in this special case, the boundary condition (2. 36) is

satisfied everywhere on the chord. In the general case of a highly-
cambered airfoil, if we try to satisfy (2. 34) and (2. 35) everywhere on
the chord line by a method such as Fourier analysis, the procedure
would lead to a more complicated result, and the numerical work does
not justify the higher accuracy that might be attained. Instead, the
collocation method is adopted here. Namely, by computing 5, , 95 ,

){,’ i % . l‘;tn—z@- , and sinne  at a suitable number of discrete
points on the chord and truncating the series at the corresponding
number of terms in (2. 34) and (2. 35), linear simultaneous equations
for the a, 's and bn's are obtained. Of course, if we increase the
number of such 'control points' -- the points where the boundary con-
ditions are satisfied -- then presumably the accuracy of the values of

dn and bp obtained would improve. For practical purposes, how-
ever, there is no need to take the number of control points more than
necessary for reasonable engineering estimates. The choice of num-
ber of control points is discussed in the section following.

Before leaving this section, a final remark is in order. Notice

that equations (2. 34) and (2. 35) are linear with respect to attack angle

tanw ; the fact enables us to separate (2.34) and (2. 35) into two parts,

one independent of o .and one proportional to tanx . If we express
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ap and b, as
an =O(n+§n‘t4no(

bp = o +{1‘n*- tano (2. 37)

then equations (2.34) and (2. 35) can be decomposed into two sets of

equations, each set independent of the other, i.e.,

do* tdl?‘-zg +Zo{n‘5vﬂf]6 o 2'6( +711 Zdn (?’) yfﬂ

—24L
2 miancfwm) 2

> oln (gn=Xfn) > ot (fo+ %'5n) (2. 38)
h=o

n=a

83 tan -3 +; ot stnné + 23;( /ﬂy—,l Z@n Cgn—%fn)

o(t l At )i,’
X 757 e B S+ X ) = 2 I [Ty

2 Bn (?n_%/j[ﬂ)+rz @n*(j(n ")’.;’?n)

(2« 3%)
- S +3° Basi [__dt __
2 (POtdn? 'f'ng’l ?,,S:JJHGW d_)( = ’
~
Once o (3,, » ot , and (9,1* are determined from these

equations, 4, and .H, are computed for any arbitrary attack
angle o and thus we can obtain an explicit functional relationship

involving
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9,  Choice of Control Points.

It is clear from the very beginning that the choice of control
points involves some arbitrariness. We require that such control
points be well distributed over the cﬂord and representative of the
general shape of the airfoil, but otherwise there is no unique way of
determining the distribution of such points. If a point p is a control
point, then any other points in the neighborhood of p can take the
place of p . There are certain points, however, which cannot be
used as control points. The leading edge and its neighboring points
cannot be candidates for control points, because there the previous
formulation of boundary condition is invalid. Also, for the series
form of source distribution assumed, the trailing edge cannot be used
for such a purpose unless the trailing edge has a cusp. This arises
from the fact that at §=0 , the source strength at the left hand side
of equation (2.32) becomes zero, while the right hand side does not
vanish unless d

C
2L =0

for control points. In ref. 4, Schlichting uses the 'three-quarter

Otherwise, any other points can be chosen

chord method' to determine such points. These are the points chosen
in such a way as, for n-points collocation, the chord is divided into
n equally-spaced segments, and for each segment a control point is

allocated at three-quarters of the segment. For example, for three-

pad

I /
point collocation, the control points are located at ‘—‘% = — 7 v & s
. - - —-—J'
and —g . For four-point collocation, they are located at ‘A% T

4, 3 , and T , and so forth.
g g 3
As is well known, this three-quarter method comes from an

attempt to improve Prandtl's lifting line theory so as to obtain chord-
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wise distribution of load. In the Prandtl's lifting line theory, a single
vortex is placed at the aerodynamic center of the airfoil, which is
about one-quarter chord from the leading edge. To see the special
meaning of the three-quarter point, consider the simple case of the
flat plate at an angle of attack. Let [’ be the magnitude of circula-
tion of the vortex, and we try to determine [7 by satisfying the
boundary condition at a single control point. If we happen to choose
the three-quarter chord point as such a point, then the downwash

there, J, , is given by

& [ !’7 | f_’
«~Z2n 3 i~ 2w £
& 4 2
and from the boundary condition U = Ueo STNX , we pget

[7 = 7C Un Stne
and this agrees with the exact result. Therefore, the three-quarter
point is the best single collocation point to obtain the overall aerody-
namic factors for a flat piate.

Since concentration of lift in one vortex does not furnish infor-
mation about the chordwise distribution of the load, an attempt was
made to improve this by using two or more vortex lines. In ref. 15,
Wieghardt generalized the above approach. For a number 2 of
vortices nm,rI7, ... and [} , he put a lifting line at the quar-
ter points of the n equal divisions of the chord and satisfied the
boundary condition at each control point located at the three-quarter
point of the segment. For the flat plate, the sum of the circulations

7 =[7+[Z+----+ [T can be shown to be the same as the exact

magnitude of the circulation (ref. 16).
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It is obvious, however, that the advantage of the three-quarter
method is a result of the particular distribution of vorticity on an iso-
lated flat plate, and for the more general vortex distribution for a
cascade such as treated in this investigation, the method loses some
of its significance. The best that it can offer in this case is to pro-
vide us some conventional standard for determininé the control points.
Any other well-distributed points could be used for control points, and
in the preliminary numerical experiments performed by changing the
position of control points, the results obtained by the three-quarter
method are found to be no better than those by different choice of
control points. But since we apparently do not have a way to deter -
mine a method definitely superior, in the present study the three-
quarter method is adopted. In Appendix 3, the values of A4,, are
tabulated at the lower part of the table at the control points corre-
sponding to three- and four-point collocation chosen according to the
three-quarter method.

10. Summary of Calculation Procedure and Various Aerodynamic

Parameters.

In this section, we give a brief summary of steps of calcula-
tion procedure developed so far. They are:
(1) decide the number of control points A and choose them
according to the three-quarter method;
(2) compute the derivatives %', Y”,---- from the given
camber line equation at these points;
(3) calculate Jf,, and ap in equations (2.27) and (2. 28) at

the control points for n=o to N for given solidity
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( Anm's in these expressions are tabulated in Appendix 3
as fmctioz;ls of solidity and collocation points);
(4) compute % from the thickness distribution equation;
(5) solve op , Bn and 84T ; Fn)‘ from equations (2. 38)
and (2.39); the number of o/'s and 5B,,'s are N , re-
spectively, while the number of o4 's and lB,f's are
N+/! , respectively. The additional coefficients 0(:/}-]
and F‘J‘Nf; come from the fact, by the closure condition,
that b, is not independent but given by b, =-2b, ; and
(6) determine d,(n=o0,N-1) and bp (n=0,N) from equation
(2.37).
Once an and p, are determined, various aerodynamic parameters

can be deduced easily in the following way.

surface velocity and pressure distribution:

?_n(?mc*%oo~z ) H), [/+>gt;ano<+Zan(fn 77,,)
: _Z b (?n—x’l,f" ij(btanz 'E'ngﬁ,,sinne)}

The * sign in the brackets corresponds to the upper and lower surfaces,
respectively. From the Bernoulli equation, the pressure distribution
on the surface can be computed.

circulation and lift coefficients:

- C
2
P .—_-ja/dl, .=/d’/0()(= —;TEU&(G.:+-;{—6(:)
5
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or, expressing 4, and «; interms of «), and ‘5,, 5

Xt ;

i —— L i) cos

< [(o{o+ 2) o +(€0+_@)5:an

From the Kutta-Joukowski theorem, lift perpendicular to mean ve-

locity ¢m can be given by

Li=fgnl’
and the lift coefficient is expressed by

Le

A
‘:ZfimC

- 7T (e(o-f%i—')coSO{-f- (Fowkéi’-)&;')dj

zero-lift angle and ideal angle of attack:

The zero lift angle 4 is expressed as:

band = _ ot /2

o + % @f
The ideal angle of attack, defined as the angle at which the velocity is
~ finite at the leading edge (shockless entry in steam turbine terminol-

ogy), can be obtained by putting a4, =0¢ , i.e.,

tdng*: — Ao

o

upstream and downstream directions of flow:

The upwash at infinity parallel to the frontal line of the cascade is

r

— Thus, referring to Figure 1,
25C

given by

) .
tanold = 7 &+p)” 35cq,
CoS( +6) )

[
ban oty = SN (OHP)+ 25Cen
COS(O(-*F)
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III. RESULTS AND DISCUSSION

The results based upon the theory developed in Part Ilare dis-
cussed here. For convenience, the cascades are divided into three
classes according to the camber; slightly, moderately, and highly cam-
bered cascades. A slightly cambered cascade is one which deviates
slightly from the flat plate. A moderately cambered cascade is one
with a maximum camber of about 10 per cent; cascades with greater
camber tﬁan this are referred to as highly cambered cascades.

In section 1, the present method is compared to the known ex-
act solution for the flat plate cascade and is found to be in close a-
greement. The next three sections deal with the slightly cambered
cascade. First, Schlichting's method is outlined and its weaknesses
discussed. In section 3, an example of the functional relationship of
the exit angle with other parameters is derived. In section 4, as an
aside, the formula for widely spaced cascades is deduced and the re-
sults are found to agree with those given in other references. In sec-
tions 5 and 6, the cases of moderately and highly cambered cascades
are studied numerically by hand and compared with the results ob-
tained by the direct use of a digital computer. The comparison indi-
cates that the present method can predict the overall factors with
reasonable accuracy. In section 7, and example of the functional re-
lationship of the exit angle to other parameters is derived for highly
cambered cascades. In the final section, closely spaced blades are
discussed.

1. Case of the Flat Plate Cascade.

In section 4 of Part II, the optimum range of two different types
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of expansions is determined. First, the optimum range for the un-
staggered flat-plate cascade is determined; this result is applied to
the staggered cascade. In this section, a numerical investigation is
made concerning the validity of this optimum range for the case of
the flat-plate cascade of zero thickness, which has been solved ex-
actly by conformal mapping. According to the present method, (2.28)

is reduced, for the flat plate, to

| TC e T . 3.1
g = = ghn — Geep €05 38(5) Ans 352 (3) 0% B Gl
Of these terms, the A, , Apz and B, are affected by the choice

of expansion range. The dn's are determined from equation (2. 35),

which becomes, in this case,

S ang,=—tanx, bp=o0 for all n (3. 2)
nh=4a

If we take the number of control points to be three, then, according to

the three-quarter method, they are % o , 0./6667T , and
1)
©0-¥333 . Corresponding to the optimum range, the necessary
values Ap Ans and Bn at the control points are read from the

tables of Appendix 3, the In 's are computed, and equation (3. 2) can
be solved for 4. , 4, , and 4. . The comparison of the results
obtained by the present method and the exact conformal mapping
method are made in Figures 5 and 6 for the unstaggered cascade of
B=o . Figure 5 is for a solidity of unity; that is, a spacing-
chord ratio of S=1/-0 . Figure 6 is for a solidity of two. It can be
noted in these figures that the agreement between the present method

(approximate) and the conformal mapping method (exact) is extremely
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UNSTAGGERED
L . 8343 -sina (EXACT THEORY) FLAT PLATE
Cam 1
= |.841i1 'sina (PRESENT METHOD)
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Figure 5. Unstaggered cascade of flat-plaie airfoils
with S = 1. 0.
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UNSTAGGERED
FLAT PLAT

o= = 09963 - sin @ (EXACT THEORY) wadbitally
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= 0.9966 - sin @ (PRESENT METHOD) sc
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Gm s =0.5
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X
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Figure 6. Unstaggered cascade of flat-plate airfoils
with S = 0. 5.
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good with respect to both velocity and vorticity distribution. Although
these two figures are drawn for the attack angle, « = 10 degrees, the
agreement between the two methods is equally good for any other at-
tack angle, as shown by the comparison of circulation, written in the
box in the figures. The assumption that the optimum range deter-
mined for the unstaggered cascade is also applicable to the staggered
cascade is verified in Figure 7. This is the case of stagger angle

(5 = 30 degrees, with solidity 2. Again, the agreement between the
two methods is seen to be good. An interesting point pertinent to these
examples is that, although the da, terms vanish except for the lead-
ing term d. in the case of the isolated flat-plate airfoil, the aero-
dynamic interference between the airfoils gives rise to higher terms
of dn in the cascade. For example, the values of d, 's in Figure 5

are as follows:

do =~ 1-493|8*CanX , a;=—0-6422]Can™, Ay = 004279 Lans

Thus, there are non-zero values of 4, , . even in the flat-plate
airfoil cascade.

Having confirmed the present method for the caée of flat-
plate cascade, the slightly cambered cascade is treated in the follow-

ing three sections.

2. A Critical Discussion of Schlichting's and Mellor's Methods for

Slightly Cambered Cascades.

In this section, a critical review of the Schlichting and related
Mellor's method is given. Schlichting's work (ref. 4) essentially

parallels the so-called 'thin airfoil' theory of an isolated airfoil.
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T . . STAGGERED
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Figure 7. Staggered casc%de of flat-plate airfoils,
S=0.5 Bp=230".
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Usgally, thin airfoil theory is based upon two key assumptions:

(1) the vortices can be displaced from the camber line to
chord line and the induced velocities on the camber line
can be approximated by those on the chord line; and

(2) the X component of the induced velocity . is negli-
gible as compared to the undisturbed velocity component

Ue , i.e.,
+ Voo ‘
o
In Schlichting's analysis, although in the flow tangency condition

the X component of the induced velocity is retained, assumption (1)
is adopted. We will see in a moment that, by extending this approach
to the case of a cascade,.the results obtained are nore crude than
the corresponding isolated airfoil flow problem, and for more satis-
factory treatment, the present method should be used instead. But
for the time being, let us skip this point and follow the outline of

Schlichting's method. In equation (2. 4), he puts

and rewrites the equa.tion as

wU X, 0) = 2TX, 0)— T( m(x.)-r@f(x,))T"(-)—;’(‘—
H5 N
z c (Scoth TF(X X)cn(ﬂ %xiﬁ('j(m(x,)ﬂd’(x,))dx‘

N

The first integral represents the induced velocity by the single air-
foil, namely, that due to the singularity located on the same airfoil at

which the induced velocity is being computed. It is separated from the
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rest so that the second integral becomes non-singular. Assuming the
series forms for source m&) and vorticity distribution #(x)
the integration can be carried out easily in the first integral in the
same way as in thin airfoil theory. The second integral, however,
does not lend itself to easy integration, and Schlichting prepared ex-
tensive tables, based on direct numerical integration, to compute this.

If we express induced velocity, after substituting the series form for

the singularity, as
u(x,0)-i(x,0)=)_ afa (Bis, %) +> biGn(g;5,%)

where fi, and G, 's are universal functions of three parameters --
stagger angle B solidity S , and positiop on chord —%—— --
then they can be found from the compiled tabulation for the combina-
tions of these parameters. These universal functions, being the re-
sults of numerical integration, cannot be obtained easily for the values
of parameters other than the ones listed in the table, and one has to
use interpolation in such cases. In the present method, the corre-
sponding universal functions A,m are simple combinations of loga-
rithmic and trigonometric functions, and they can be computed for any
solidity 5 and the position on the chord —%— , the only parame-
ters. As for the effect of stagger angle g , this appears explicitly
in the expressions of f, and of ¢, in section 7, Part II. There-
fore, by the present method, one can study the functional dependence
of aerodynamic parameter on the stagger angle (S , while in

Schlichting's method, this effect is embedded implicitly in the numeri-

cal tables. Thus, in this respect, the present method is more flexible
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than his method. An example of the functional relationship between
the exit angle and the various parameters will be given in section 3.
As for the effect of solidity, it has to be given a priori in both meth-
ods. The rest of the calculation procedure of Schlichting's method is
quite similar to the present one. Substitution of the velocity expres-
sion in the flow tangency condition yields a simultaneous linear equa-
tion for dn's and bn's. Collocating these boundary conditions at
control points chosen according to the three-quarter point method and
truncating the series, we can solve those equations for g,'s and b,s.

One of the drawbacks of Schlichting's method is that the flow
tangency condition is not satisfied everywhere but only at discrete
points. To improve this, Mellor (ref. 5) uses a Fourier analysis,

i. e., expresses both sides of the flow tangency condition in a Fourier
series and equating these coefficients. This requires a second inte-
gration. Some of these double integrals are not a universal function,
but depend on the airfoil shape and have to be worked out numerically
each time for a new airfoil shape. From the practical point of view,
such improvements, made at the cost of time required for one compu-
tation, might not be justified.

Now let us return to the basic assumption made in Schlichting's
analysis, commensurate with the assumption (1) in thin airfoil theory
for an isolated airfoil. To investigate its validity, let us see whether
such an assumption follows from the present method for the slightly
cambered cascade, which, since the singularity is located on the
camber line instead of on the chord line, can be made to be exact, at

least for the airfoil of zero thickness. To simplify the treatment, ex-
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press the airfoil camber line for slight camber as

y,,=_e(—§_-)F(><) , e<<f

where F(X) 1is some function of X . The thickness is assumed to
be zero. Noting all the derivatives of camber line _yc(’”(x) are of the

order of € gn in (2. 28) can be written as

50 == 3em — B o250 - Wi 5 s -t 003 o |
— 2'_5('(%) cos@. Bn

to the order of € , while fn in (2. 27) can be written as
_ TE . 2 .
fn = ~ o 51472(3(%)-/};13 —ZI-TC(%).smF-Bn
to the order of unity. Thus, to the order of € ,
gn = fo == 2ihn = e cessp (5 hns — zhc(§)<osp )
. €A L sy wi < \3
. ———ch)l[—zy,’.smz@ -(T)Arﬁ + 5 S”"Z?(T) Ant =~ ]

+[ Py RO B”J

The expression in the first bracket is of the order of unity, while the
expressions in the second and third brackets are of the order of € .
The flow tangency conditions, (2.38) and (2.39), become

O r ra
ngoldn U— ﬁA"' —-aﬂms——c)—z—cosz(j%) An3 —ZLC %)Cos\@’.ﬁn}
1 ou) !

— T~ 2K 2B A+ pursin 2B (S Ans - *J

¢
ke o C€E)
+ e (E) Koo = %
oce) 4 oTCG) {3+ 3)
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2"" o N e ¥ I i
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where dp=oln +@n-tan¥ . Let us notice first that in the limiting
case of S-—>° , corresponding to an isolated airfoil, all the OC€)

terms and some of the ©(/) terms in the left hand side of the equation

vanish, and (3. 3) and (3. 4) become
dﬂ =, —-——A / = o
MZO. ( 27 ”) .

ié,,(‘—ll—vt/%m)n_]}
N=o0
and as S —> o2 ,

An| = TTCoS no

The familiar result for thin airfoil theory is recovered, as pointed out

in section 8, Part II. Namely, the on 's are of order € , given by

i 7C
2 g {
°(°"—?[)’o’d6 , ofna«_“;ic“[)é’ws”f’ 48 (n21)

while the (8,, 's are of the order of unity, given by
=2 , Bn=o0 (nzi)

or, in terms of 4a» ,
™ ™

4"_"__7% (= tanol )d6 ) dn‘-—% %’co5n6446 ¢ axl)
+ o
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valid up to the order of € . Thus, the two assumptions made in the
thin airfoil theory for the isolated airfoil are legitimate if we are
concerned only with the values of vorticity distribution up to the order
of € . Returning to the case of a cascade where S+« , the terms
of the order of € are found to be non-vanishing in general in equa-
tions (3. 3) and (3. 4). If we started from the beginning using assump -
tion (1) in the previous section, then the results would be the same as
putting Yo=0 in the left hand side of equations (3. 3) and (3. 4).
Then it is seen that all the terms of the order of € wvanish there.

This vanishing of the € term in the left hand side of the
equations does not affect the values of o»n up to the order of € .
For, if for the time being we perform the collocation at a large num-
ber of discrete points on the chord and solve (3.3) by Cramer's rule
for on 's, then, since the right hand side of the equations is of the
order of € , the «p's must be of the order of € , and only the
terms of order unity in the bracket of the left hand side of the equa-
tion matter.

The vanishing of the term does affect the value of @,, up to
the order of € , however, as can be seen easily if we perform the
same operation as above for equation (3.4). Therefore, if we adapt
assumption (1) in thin airfoil theory to the case of a cascade, then
part of the term of the order of € will be lost in the final expression
of vorticity strength day =ofn + o’ tan® and the difference between the
flat-plate cascade, which corresponds to the o(/) term, and the
cambered-airfoil cascade will not be fully brought out. Physically,

this me ans that in the case of a cascade, the velocity field near the
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airfoil is quite different from that near the isolated airfoil, and the
displacement of the coordinate points resulting from as sumption (1)
of thin airfoil theory causes an appreciable EI.'I'OI‘ in the magnitude of
the velocities. A question might be raised that equations (3. 3) and
(3. 4) are not exact. This does not invalidate the present conclusion,
for even if we express coth§ in an infinite series as (2. 13) -- where
it becomes exact -~ the forms of equations (3. 3) and (3. 4) are of the
same nature only with the additional terms. Thus, right from the
beginning, Schlichting's method is based on an assumption which is a
cruder approximation for a cascade than for the isclated airfoil; and
accordingly in his analysis, the important difference between the flat-
plate cascade and cambered cascade is partly lost, unless the
spacing~chord ratio is sufficiently large.

3. Functional Relationship of the Exit Angle to Other Parameters for

a Slightly Cambered Cascade.

In this section, let us obtain the relation of the exit angle to
various parameters by retaining the term of the order of € in equa-

tion (3.4). Express the camber line equation as

€ P A Y .. e 1
_yo-‘_ [X — [(— J( Q e
s £/
and take the solidity as
S = 148

Selecting a three-point collocation chosen according to the three-
quarter method and reading Anm and Bn {from the tables of Ap-
pendix 3, the oin's and gn's are solved from equations (3.3) and

(3.4). The final result can be expressed in terms of the exit angle od
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in the following way.

tano(d = tan (X + (5‘) = —%c-—scc(O( + (5) € Kof?:(\ﬁ)’p:(fg)/za(é) cos6l

Re(B)+€ | KoRr(B)+ Ki Rs (8)]
R3 (‘@)+ €| K RalB) + ki R ()]

sinof (3. 5)

where Bl are partial sums of the Fourier series in terms of
P

stagger angle such as
Rn(@) T o 2. C,,;WCosmé +Z Sm(n)_s «:nm?
m= m=1

and the Cp's and Sp's are tabulated in Appendix 4. This expres-
sion, though not as simple as desired, does provide, by straight-
forward computation, the relation between the exit angle «d in
terms of the attack angle o , stagger angle f# , and airfoil shape € ,
K, and K, for given solidity s =10 + .Equivalent expressions
for the other values of solidity or more complicated airfoil shapes can
be worked out easily in a similar way. It is of interest to note that if
the number of control points is increased, the number of coefficients
in the series Rn((s) would be augmented proportionally, and in the lim-
iting case of satisfying the boundary condition everywhere, one ob-
tains the Fourier series expansion of certain functions of stagger
angle g instead of the truncated forms Rn(@) . Some of such
closed forms can be obtained explicitly if we consider the special case

of a flat-plate cascade. Putting € =0 in (3.5), we get

banxd = Gan (0(4_-@) —%Jscc (e + @)i%%} Sunoe| (3. 6)
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On the other hand, the exact solution based upon the conformal map-

ping provides us with the following expression for the case of a flat-

plate cascade.

Canold = tan <°(+F) - _:}71._5ec kol ‘L(ﬂ)[ W‘;Cosbzﬁwsz@ Js’;na (3.7)

where 1}f(s,p) is given as the solution of the following transcendental

equation:

% _ cosp-fog /coS/?Zi+C052I5 +,/2 Cosf } + 25ing. ta;( /2 sinB J (3. 8)

J/ Coshay+cos2f— /2 cos‘@ 1/cosbz1’(r-rCo_52€

Comparison of (3. 6) and (3. 7) shows that the truncated Fourier series

expression —i—é(é) corresponds to | % Yz . Itis
3(‘?) Tfﬁost':,lr-}-Cosz?

also seen that from the transcendental dependence of 4 on solidity S
and stagger angle é’ in the exact solution for the flat plate that a
rather involved expression for stagger angle Bn effect and the speci-
fication of the solidity as a number at the beginning are of somewhat
unavoidable consequence.

Returning to a cambered cascade, Klingemann discovered the
velocity expression which satisfies approximately the boundary condi-
tion on a cascade of parabolic airfoils as well as the condition at in-
finity (ref. 19). The approximation is based on the two as sumptions
in isolated thin airfoil theory which were described in the preceding
section. Therefore, as far as the basic assumption is concerned, his
method is no better than Schlichting's. In this connection, Rannie
first pointed out in ref. 18 that the application of the assumptions of

isolated airfoil theory to the cascade problem should be made with
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more reservation than for the corresponding isolated airfoil problem.
Apart from this defect, the advantage of Klingemann's result is that
for the parabolic airfoil, the exit angle can be expressed as a function
of each of the influencing factors, including the solidity S

Following the descriptions given in ref. 18, a brief outline of
Klingemann's method will be given below, along with an improvement
of Rannie. The cascade mapping function that maps a unit circle in

the § plane into a flat-plate cascade in the £ plane is given by
o i
Z _2__ ‘3107 +e'Fﬁ7%_§ } (3.9)

where 7 is given by (3.8). Consider the following expression for

the complex velocity:

i ' (5,:(0“.(3)“}. y Cc'(ou-e)-dr)sz . (Cd(o(+@)+1j/+ éi(o('l"?}-‘n[')
I (e + V)5 (ciprT L e )

265 i (FCEE el Y) e (Pt &0 Mg (i)
) CEPT+ B V)5t (P T &P y) |

i8 1, +e an s sinh2
Zsyeifd ?(i—*e—v) TS (@ s (c et et Y)

where 1 is a yet unspecified velocity. It can be shown that this
satisfies the flow condition at infinity. If we put § = ev? correspond-

ing to the chord line — S L , then the following velocity

i
=

N

components on the airfoil chord line are obtained:
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The circulation [7 can be determined by applying the Kutta condition
at the trailing edge. The substitution of § = f"‘fs is commensurate
with assumption (1) in thin airfoil theory.

So far, nothing has been mentioned about the shape of the air-

foil. The slope of the streamline on the X axis is given by

i

~ax X 3.10
=L =2th 2 ( )

If we put w= 4p €059 , the X component of the vector mean of far
upstream and far downstream velocities, corresponding to assumption

(2) in thin airfoil theory, then

&2 s X
9%:“}’ gmCoSof- C & L

and thus the airfoil is approximately parabolic. From the given para-
bolic shape of the airfoil, 1%} 1is determined and the expression for
the exit angle can be deduced. This particular choice of the X com-
ponent of velocity is the analog of the correct X component for an
isolated airfoil. It is a reasonable choice for S large; however,

for S approaching zero, the leaving direction is not parallel to
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the trailing edge as it should be. To remedy this, Rannie chose for
the X component of velocity the exact value at the trailing edge, so
that the flow angle at the trailing edge coincides with the airfoil slope
at that point. Such a choice guarantees that the leaving angle from
the cascade is consistent with the cascade geometry at all solidities.
In section 8 of this part, we will see that for any camber or
airfoil shape, the present method is also consistent.

4. A Remark on the Slightly Cambered Cascade of Low Solidity.

In section 2 of this part, it was shown that for the limiting
case of spacing-chord ratio S — <= , the usual assumptions of thin
airfoil theory are valid. In this section, consider the case of large

but finite s . For large s , 9n —70’)(') b section. ? Feliires o
! ! ¢y I e
‘}n _%fn =[—EF/4HI— —Z—%E)—ZCOSZF-(—E_) An3 ~ Zsc —Z—)COS(S- Bn ]

where terms of order € are justifiably neglected, as in assumption

(1) of section 2. The boundary condition becomes

n=o

i[ ~ -E_L?T—Anl — —é-'g—cy-msz@-é—)z/inj — Z?IC(Z‘L)COSP-BIJQ?=);I— tanst. (3. 12)

This boundary condition, although somewhat in disguise, is the same
as assumption (2) of section 2. If we neglect the X component of the

induced velocity,

ket Ve
Pk ”
=~ 0
and substitute the expression for % obtained in (2. 29) for zero

thickness fp,=0 , we get
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=]

>, angn = J — tand

n=o
It can be recognized easily that the expression in the bracket on the

left hand side of equation (3. 12) is g, itself, the higher order term

Y/ fn being neglected.

Now, for s> 1 » the range of inner expansion occupies the

entire chord. This implies

J;-——‘re, CYZ———>T(-6

and Anm and B in Appendix 2 are reduced to the following forms.

An;=71'CoSI75) _/40.3 =7C(C'058+ ‘_2.['_) ) ﬁnzo (ﬂ?o)

JC
A[j = TCO.SG
_ yis
Al3 = 4

An3= Q (n-‘?j)

The vanishing of the B8, 's for any » corresponds to the disappear-

ance of the outer expansion range. Substituting these expressions into

(3.12) and writing explicitly, we get

o e e B (co.se}L Ao 4 |— L cos® — T cos28.cose | &
T 7 T 245 <032 z)| 4 2 T

oo

2.
+ _z_cosze o % COSZ? ]a; E c,osne ap _){,—tano(

Rearrange the left hand side of this equation as

[(‘ 435‘ cos 2(5)‘“" = — 54

CoS!P dz.J =
7'(’

/ I
=l Co.SZ(S a,) oS58 — .__azco_sze ”E‘a —?-_—Cosne dn _):, — GanX
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Expand the right hand side of the equation in Fourier series as

=)

1
Y —tanot = — 235 — -+ cosne
-7

2 Z 5

where

P A
B _%[(j,’— tand)d6 |, dn =——;—Fr—[){,’usnede nz/

The &, 's denote the vorticity for the isolated airfoil of §—> oo

Equating the coefficients of cosine on both sides of the equation and

re-arranging, we get

=, | | + > cosz T—a v Ccos2
2432 @J * 4557 ¢

2

o 7T gr 2 i
a = cosz ] Y dn =a hz!
i d°/252 (G+a,[l+24szco.52?] , dn n ( -

The result is that a particular case of the present method is the same
as those obtained in ref. 1, p. 156, where, due to the different form

of the original vorticity distribution such as

V= Un(%tand +5 5 agsinne)

the demonimator in the second term in 4, appears to be 245% in-
stead of 48S’ , and in the first term of 4, , 245%* instead of
/125% . From these expressions, for the case of S>1 , the

vorticity can be evaluated as a correction to the one corresponding to

the isolated airfoil.

5. Moderately Cambered Cascades.

In this section, let us consider the moderately cambered cas-
cade. As a yardstick to make comparison with the present method, we

refer to the direct numerical solution of the exact integral equation by
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the use of the digital computer. In ref. 6, Jakob gives a program for
the cascade problem. In his method, the vortices, the magnitude of
which is equal to the surface velocity, are distributed on the surface
of the airfoil. This distribution on the surface is a more accurate
description of the flow outside the airfoil contour than one in which
both sources and vortices are located upon the camber line, as in the
present method. The tangential flow condition yields an integral equa-
ti01:1 with the surface velocity as an unknown.

Direct numerical solution of the integral equation is carried
out by dividing the airfoil surface into a number of elements and as-
suming the vorticity is constant along any element. Physically, this
means the approximation of chordwise continuous vorticity distribution
by a number of discrete vortices. The integral is then replaced by a
sum taken over the entire chord, and the strength of each discrete
vortex can be determined as a solution of simultaneous linear equa-
tions. The most crucial step is to take care of the singularities in the
kernel of the integral, for the computer cannot handle such singular
behavior properly. This is done by studying the property of the prin-
cipal integral analytically. With the aid of a high-speed computer, the
number of such discrete vortices can be increased to as many as we
like, resulting in higher accuracy. Jakob's programming allows one
to distribute up to a total number of 100 discrete vortices. In working
out the results by use of the computer to make comparison with the
present method, this maximum number of vortices was employed.

The choice of position on the airfoil surface where such vortices are

placed is described in Jakob's report. In short, they are clustered
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more closely near the leading and trailing edges where the curvature
of the airfoil contour, and hence change of vorticity strength, is
greatest. Even though there is no direct convenient way to check
Jakob's programming with the known exact solution, such as flat plate,
due to the difficulties é.ssocia.ted with the leading edge infinity, this
method can be regarded as highly reliable, and for 100 points, almost
exact. |

As an additional remark, in Jakob's programming, the up-
stream inlet angles are given in terms of oy rather than o
Thus, in making comparison with the present method wh ere the up-
stream inlet angles are given in terms of o« , oy is changed to
by using the circulation obtained by the computer.

As an example of a moderately cambered cascade, the NACA
8410 type airfoil shown in Figure 8 was studied. This airfoil has the
following geometrical characteristics:

max. camber/chord = 8 per cent,

position of max. camber/chord = 40 per cent from the

leading edge,
max. thickness/chord = 10 per cent.
The camber line consists of two parabolic arcs having a continuous
slope at the point of maximum camber. The thickness distribution is
given by

t = £ 05(02969/7 —0:/12607-03516 7%+ 0 254373 (3. 13)
—0- 1o 15 7% )
where 7 is the ratio of the distance along the chord measured from

the leading edge.

In this case, the series in the first bracket of £, in equation




TP

Figure 8. NACA 8410 Airfoil.
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(2.27) and ¢n in equation (2. 28) become an infinite series, and the
problem of where to truncate the series must be considered. In gen-
eral, the convergence property of this series is as follows: the series
becomes less convergent as the maximum camber of the airfoil be-
comes large or as the solidity decreases, i. é. , as spacing-chord ra-
tio increases . In the present example of maximum camber of 8 per
cent, S =1-0 , the fifth term becomes negligibly small, and even in
the case of a highly cambered airfoil of the next section, where the
maximum camber is 25 per cent, the sixth term is negligible. Of
course, these do not serve as a rigorous justification for truncation
of the series at a particular term. Figures 9 and 10 show the com-
parison of the present method with the computer solution for the cas-
cade in a compressor arrangement with stagger angle [ =45
spacing-chord ratio §=7-0 , and for two different angles of attack.
In both cases, the agreement between the present method and the com-
puter results is good. The discrepancies are small even at the points
near the leading edge, where the present method, being collocated at
only three discrete points, cannot be expected to give good results.
For the overall characteristics, such as circulation and exit angle,
the agreement is quite satisfactory. At this point, ‘a comment about
the practical solution for the singularities' strength is needed. .These
singularity strengths are obtained as the solutions of simultaneous
linear equations. For three-point collocation in its exact form, two
sets of simultaneous equations, which are independent of each other,
given by equations (2.38) and (2.39), must be solved. For practical

purposes, iterative solutions reduce the numerical labor considerably:
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first, the vorticity strengths are determined by neglecting the thick-
ness, and then, with this vorticity strength, the source strength is
determined, and this source strength modifies the vorticity. For a
thickness of about 10 per cent as treated here, this iteration is suf-
ficient.

Figures 11 and 12 show the results for the turbine arrange-
ment at two different angles of attack. The solidity is unity and the
stagger angle is -30 ciegrees. In these cases, although discrepancies
are somewhat larger than the former ones, the agreement between
the‘present method and the computer results is reasonably good.
Also, the agreement for the overall factors is good. Therefore, it is
concluded that various assumptions made in the analysis of Part 1I,
such as the range of expansion and the choice of control points, are
justified for the moderately cambered cascade.

According to the present method, the velocity becomes infi-
nitely large at the leading edge, even for the airfoil with finite radius
of curvature at the point. At attempt was made to improve the cal-
culation, and although it was not pursued because the amount of nu-
merical work required seemed inconsistent with the spirit of the
present method, a brief description is given below.

To illustrate the idea, consider the simplest case of an iso-

lated, uncambered airfoil, as shown

in the figure on the left. To obtain a

|
N
1N/

T finite velocity at the leading edge, the

distribution of sources and vortices

R

0

. begins at a distance {— from the




~ T

e =0.735, ag = -38.3° (JAKOB'S PROGRAMMING)
m
=0773, =-39.0°(PRESENT METHOD) N ZA 8410
LIRFOIL
\,f’-——“ \
;
q
VELOCITY =
Ay

SUCTION SIDE

PRESSURE SIDE

———— RESULT BASED ON JAKOB'S

! PROGRANMING

| © PRESENT MITHOD, THREE
POINT COLLOCATION ACCORD-
ING TO 3/4 CHORD METHOD

Figure 11. Velocityodistribution for turbine cascade,
G = 8.2
i




o

9m

Z—=0646, ag = -38.4° (JAKOB'S PROGRAMMING)
=0687,  =-39.2°(PRESENT METHOD)

NACA 8410

VELOCITY aq—
u

SUCTION SIDE
| -
o Q

AIRFOIL

R L
o —3—= ©
f/( PRESSURE SIDE
1
-1.0 . 1.0
i c
2
; "
RESULT BEASZD ON JAKOB'S
PROGRAMMING
0} PRESENT METHOD, THREE
POINT COLLOCATION ACCORD-
- ING TO 374 CHORD METHOD
Figure 12. Velocity distribution for turbine cascade,

a. = 3.2°.
1




=G

leading edge where ¥ is the radius of curvature of the leading edge.
For such a distribution of vortices and sources on a straight line, the
velocity field for the flow past the airfoil is given by a simple expres-
sion. Using this, the velocity can be obtained on the airfoil surface
instead of on the chord line, once the strengths of sources and
vortices are known, and the velocity at the leading edge becomes
finite. The airfoil surface is identified with the streamline through
the stagnation point; the position of the latter is readily determined.
By successive approximations, the strengths of sources and vortices
to give any airfoil shape can be determined.

Combining this idea with the tangent slope method, a cambered
airfoil can also be treated. By the tangent slope‘ method, the vorticity
distribution can be displaced from the camber line to a straight line,
and the above procedure is then applied to obtain the velocity on the
airfoil surface. Of course, in the cambered airfoil, the correction
term to the tangent slope term, explained in section 2, Part II, must
be added. Again, the strengths of sources and vortices are deter-
mined from the flow tangency condition on the airfoil surface, as the
solutions of simultaneous linear equations. The unfortunate aspect of
this method is that, to take the effect of airfoil shape into considera-
tion, four collocation points near the leading edge, in addition to the
usual collocation points distributed over the chord, were not sufficient
to represent the contour of the nose of an airfoil. The increase of the
number of collocation points results in a larger amount of numerical

work.
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6. The Case of a Highly Cambered Cascade.

Figure 13 shows the outline of an example of a highly cambered
airfoil. The geometrical characteristics of this airfoil are essentially
the same as an NACA four-digit type airfoil. The major specifica-
tions are as follows:

maximum camber/chord = 25 per cent,

position of maximum camber/chord = 40 per cent from the

leading edge,
maximum thickness/chord = 10 per cent.
The camber line consists of two parabolic arcs having a continuous

slope at the point of maximum camber, i.e.,

HX)_
C C

7=} o875

J

200 - Lot {i=amrang -] ns78!

where £
= =025, 7 - 04

and 7 is defined in the preceding section. The thickness distribu-
tion is given by equation (3. 13). The results for this airfoil in a tur-
bine arrangement with stagger angle ‘B = —30° and solidity unity

are shown in Figure 14. Here, the discrepancy between the present
method and the computer results is appreciably large for the velocity
distribution at all points along the chord. The main cause for this
discrepancy is considered to be due to the neglect of higher harmon-
ics. From three-point collocation, the first three terms of source
and vorticity distribution are do , &1 , 42 , bo by = —2be 5 bz ’
and b; . The contribution from the other higher harmonics is ne-

glected. Now, as the camber of the airfoil increases, the higher
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Figure 13. Airfoil with 25 per cent camber.
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harmonics in the vorticity distribution become important. To illus-
trate this point, the values of the an terms for the various cambers
are listed in Table 1. From this table, it is observed that the magni-

tude of 4« and 4: increases as the camber of the airfoil becomes

TABLE 1.
a.o al az

zero camber 1.4932 tane -0.6422 tana 0.0428 tana
(Figure 5)

8 per cent camber 1. 6400 tana  -0.3170 tana -0.0511 tana
(Figures 11 and 12) -0. 0585 +0. 6740 -0. 1595

25 per cent camber 1. 9496 tana  -0.0561 tana 0. 1858 tana
(Figure 14) -0.0190 +2.1523 -0. 2501

larger, and much higher harmonics, which are ignored in the three-
point collocation scheme, gain importance for the study of detailed
velocity distribution. The accuracy of velocity distribution can be
increased by increasing the number of control points, but for practical
purposes, we would like to keep the number of collocation points as
small as possible. The influence of the neglect of 44 and higher
order terms in three-point collocation would be felt most at the pre-
ceding term 4d; and less on the first and second terms «. , @i
Now the overall characteristics, such as circulation and exit angles,
depend upon only the 4. and & terms, as shown in section 10,
Part II. Thus, even if the higher harmonics are neglected in the vor-
ticity distribution by the adoption of three-point collocation, we ex-
pect that the gross factors might be obtained more accurately. That

this is indeed so can be seen from the values of circulation [’ and
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exit angle oA in Figure 14. (The almost complete agreement of
these values with the computer results is considered to be accidental. )
Although these values are for one angle of attack only, it is seen in
Figure 15 that the agreement continues for other incidence angles.
Figure 16 shows the case of the same airfoil, but with the different
spacing-chord ratio of 0. 5. Here again, the present method can
predict the exit angle with the range of one degree as compared to the
computer res‘ults.

Judging from these results, it is concluded in this section
that the present method, although it does not provide the local velocity
distribution with good accuracy, does furnish the overall character-
istic reasonably well.

7. Functional Relationship of the Exit Angle to Other Parameters for

a Highly Cambered Cascade: Parabolic Airfoil with 25 Per Cent

Camber.

Iﬁ section 3 of this part, an example of the relation of the exit
angle to other parameters was worked out for a slightly cambered
cascade. In this section, let us obtain a similar formula applicable
to a highly cascade. In this case, it is better to prescribe the factors
expressing airfoil shape as numbers, instead of K, and K, as
done in section 3, so as to get simplified formulas.

As an example, consider the parabolic airfoil cascade of so-
lidity S=17+0 . Letthe maximum camber be 25 per cent of chord;

then the camber line equation becomes

2 uo-z5{(?)z~ IJ
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Consider the zero thickness airfoil. Based upon the three-point col-

location chos.en according to the three-quarter method, the exit angle
o/ can be expressed by the following formu_la..:

tanold = Gan (X+8)— —%xc(oﬁ 8) _fai(-@[ R,(F)COSOC + Rz(@)&‘nooj

where
£r(6) wl. m§_1 CprCosmp mi/ S0 mg

The coefficients C,” , sx” , etc., are tabulated in Table 2.

Thus, for a given solidity of S5 =-/-0 , and given parabolic airfoil
shape, this formula enables us to compute the exit angle «d in
terms of attack angle and stagger angle. Any other airfoil shape or

solidity can be treated in a similar way.

TABLE 2.
Cf’ﬁ) and Sf_g) for a Parabolic Cascade of 0. 25 Per Cent Camber,

Solidity = 1. 0.

Cgo) = -1.1395698 cgl) - -0.7098496 G’ = -3.6833350

c{® = -0.9620596 !l =-0.0636729  c!¥ = 1. 4659480

c(ZO) = -0.4429371 c(zl) = -, 2155793 c(zz) = -1.0608070

cl® = 01602979 Gl = -0.0009919  clP) = 0.0779449

cfio) = -0.0328556 CELI) - -0. 0082174 cf) = -0.0355160

C(SO) = -0.0064075 cé” = .0 céz) = 0.0

céo) = -0.0010934 cé” = 0.0 at¥t= p.g

5(10) = -0. 2327600 s(ll) = -0.0540893 s(lz) = 0.3774247

st = _0.0719335 sl = 0.0870694 s$?) = ~0. 0089040

5(30) = -0.0250258 sél) = -0.0099241 5(32) = 0.0107248

sﬁf) = -0. 0117860 Sil) = 0.0069052 sf) = -0.0030035
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TABLE 2 (cont'd. )

séo) = ~0.0010946 5(51) = 0.0 sé?‘) = 0.0
(0) _ (1) _ (2) _
sy”) = -0.0003375 sg'= 0.0 5% = 0.0

8. A Remark on the Limiting Case of a High Solidity Cascade: the

Basis for Channel Theory.

In section 2 of this part, the limiting case of the low solidity
cascade, i.e., high spacing-chord ratio, was discussed. It was
found there that the present method reduces to the familiar thin air-
foil theory for the isolated airfoil. Also, in section 4, a perturbation
to this limiting case is described.

It is of interest to investigate the other limiting case of high
solidity, i.e., the closely spaced cascade, by applying the present
method. It is noted that the present section is different from the
preceding ones in the respect that no restriction will be imposed on
the magnitude of camber.

Let the spacing-chord ratio be small, say, s<</{ , and con-
sider again the airfoil with zero thickness. The flow tangency condi-

tion becomes
S an (90 —Yfn) = N — tandt (3. 14)
n=1

In the case of closely spaced airfoils, the flow exit angle is expected
to be almost parallel to the slope at the trailing edge. Hence, let us
satisfy (3. 14) at the trailing edge and see what conclusion we can

draw from this, i.e.,
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> an( gn

n=/

._)g’jf,,[& )-%/L — fanx (3. 15)
%= o= % =1

A

N

Now for closely spaced airfoils, the range of inner expansion is
small, and particularly at the trailing edge the right side of the inner

expansion is zero, i.e.,
d, =0 (3. 16)

while from section 7, Part II, the left side of the range is given by

/ __/.04-405:(.050(2 3
i
-:[__é;_f_é’:._.__,

JZ-VZ'OKXOS(I_!'O(S)) (3. 17)

Using (3. 16) and (3. 17), the Ay 's which appear in 9, and fp
are found to be as follows:
s
Ani = 0(d2)= 0(5%) )
3.
An=0(53) = o(5%)

A Q50 (82) nRs

For example, from Appendix 2,

! {
_ [ —cose sn(e+ EJLJssz, _s
Aoj ea:[arp +d2 ——mg_ﬁo? 5in(0 _%&)S{n%&
6=0
Aoz ‘{(Jr + Jl)—(Sin(G'ngz) -s5th(6 - J:)JJ = J,_—sincgz - gg_’l-a,....
o 6=0 ‘




= O~

A03

_—_[(JJ +<L)<Co.56 -+ T[) —(Sin(e +JL)_:>~JH(6 _J,))(/ + cose)
Q=0

+ _L(sinl(é) +c;z)-5if72(9‘c"’))]

g=o0
- %J — 2Sind; +-4’—sﬁnchz

—_—13—JZ [J hji?3+%5+_-.]+-4’7[2cf1-_%}3+;L{*—)i-.}
» ‘SJ

Also

Bo=7‘C+O(5%), 5:=—ZTE+O(53I)/ Bn=0(5%) (nz2)

Substituting these into expressions for 9, and fn , obtained in
section 7, Part II, equation (3. 15) can be written explicitly as

Ao TC[ Ao+ O (57‘_)) z{(CQSZP_ 2);’-.5:201 —)(,/'ZCosz )G_s_)l/qaj_,___,
E %9 O((f_ iy ¢ J
S (cosB ~Yisin 7T + 0(5%)
256( )( g )O( P))( + )j
+ a, IZ_IT(_'[_A” + OQST)J —s(sc)z[(coszé—z)/uf-sinzlﬁ “%’FCOSz(s)Q%-)ZAU — ]
o) — L o(/3) :

~ () <o K )( L + osh) )

— e

-+ ; dn } Z_ITL'&[ —An/ o z)J — 67(26)1[((_052@ _z);’.’szjnz(g _7/3(,051(5‘)(%)1/4”“_"]
toys) t o ;
:asc,(z)< o5 —ytsi ”@)an - % —tand,
S, S
% = 7« I

(3.18)
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The leading terms in the above equation are those underlined, and
the other terms in the bracket i Eare all of the order of /35
Originally, the underlined terms came from the outer expansion inte-
gral, which is predominant in the closely spaced cascade, while the
inner expansion integrals are of the lower order of v5 , reflecting
the narrow range of the inner expansion. Neglecting the terms of the

order of yYS , (3.18) becomes

_11595(%)(@55_;;5;"@)(40 +—Z'~a.)=],’—bano< : %’/E%IL;

z

=/

From the expression of circulation given in section 10, Part II,

[T _ —cosot- Y+ sink Y=y
25¢y CQSF —-){,’-sin(ﬂ 7 et %

F3

and the expression for the exit angle becomes

. Iz
Banodl = sbn(oC”rp’)—{;?%zm

cos@+g)
S cos@ —senol
.Sz:ﬂ<°<+\5)+ cos%—‘){,’-&'nﬁ y’:y’
B Cos(0<,+€_> s
s
2

Although this exit angle od appears to be dependent upon the attack
angle & in this expression, it can be shown that actually it is inde-

pendent of o/ in the following way:




G

5un(0(+5)<COS@ -%-sing)+ (%" casol — scnoK)
tanO(a{ COS<O<-+?)<COS§ 7/ 5’”?)

(Sme caszﬁ + CoSX - s.ng coSB suro()+)4, (—smo( sin3- COs@ —<Co S 5,0134 Coso()
, cos (x +€J(Cosp i _Sm(@) ;

(—seno(» sin’ B+ cosd- sinfB+cosB)+ W (—sinot- Sin3+ CoSB + c o 5q- cas}e)

Cd5t°"*@)(co$? Y- sm(g’)
_sl,nﬁ( sn®(- Smﬁ+coso{ cosﬁ)-;—jo c::.sﬁ(—.s;,no( ' Sin@ + cosdl-cosf)
C05(0L+€)(cos.’3—)', s,n@
Cos e g)(sinf+ - <o38)
coslx(+§) (cosB Y rcosB)
scnfB + Y cosf
Cos\@ - Siﬁ\B

(3.19)

Thus, od is found to be independent of attack angle o . This re-

lation has a very simple physical meaning. Rewriting (3. 19) as

- fJ + % — _tan8+ tand
tano(d - tan? I—‘L‘ane-Ganﬁ = Uaf](@-#@),

9 = arc tcm)l‘,’

i
—Z=[
2

old = g +arc tam)(, {3. 20}

Nla[X

Referring to the figure on the left, this relation means that the exit

angle «d is parallel to the slope at

the trailing edge, or the deviation

o angle is zero, irrespective of the di-
= —arctan)(,’lé
: i rection of the inlet flow.
This is the basis of the chan-
nel flow theory for the closely spaced

cascade (refs. 17 and 18). It is of interest to note that if we take the




e s
effect of higher order terms in equation (3. 18), which is of the order
of ¥YS , the dewviation angle would be found to be of the order of VS
This behavior is consistent with Constant's Rule (ref. 21),

which was

obtained from examination of cascade experiments.
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APPENDIX 1.

The Relation Between the Strengths of Sources and Vortices and

Induced Velocity Just Off the Camber Line in a Cascade.

In the followin.g, it will be proved for the cascade that induced
velocities just above and below the camber line are equal to one-half
of the strengths cf sources and vortices.

From (2. 17), the induced velocity at an arbitrary point £ can
be expressed as

i
—-Lﬁ’-———e (

o)+ ) coth] 222 cigl

T

Divide the range of integration into three parts, i.e.,

X+d X— J
E z?c’ f J / (1-1)
X-I—

where d is a constant.

Now & — 2%, can be written as
E— E = X—X + i(j—)é(x))
=X =X+ < ()= (xi)+ e (= %)

where y, denotes the position of camber line. Choose y in such
a way as
y — %)= h= constant,

and expanding  Y.(x) around X in a Taylor series, one obtains

2 — 2 = ih+ (X = X1) 4 00X —X1) = = B 0N K —X)% - -

Changing the independent variable from X to € defined by
X—X =¢h




- GG

then

£ Zimh [ e (140000~ ok iyreg exh -]
and

X, = X—€h , dX=—hde

Substituting these into the first integral in (I-1), we get

“Th
u(x)—w(x)q:’_effj[m(x eh)+ ol (x~ eh)} COt/L[ {'L+€(I+L]o()())
‘“‘1'7"€h1 j @]ﬁde

e, / /(m(x:)+pf’(x.) Co(;/'][ M&ld
_g_

for small A L

UCX) = 2V(X) = Es‘_ce"d[ m(x—eh)+ t{’(x-eh)]- (—h)
/5

(=4
{ %h[@.+€([+1:ya’)—Lg'j°'/ez.}]+--.J
o ———h[z +E([+L ) )+--- j de

€' J j (”7/()(;) +ol (Xl)) Coth[ W(Z" Z’+Lh pl@}d){

Let h-—+o , keeping J a positive constant
Us (X)) = it (x) = _'_[m’cx,)+z;r’(x,)J . . W
z +€(,+L)/¢’)

ZSC C' ] /(m(x,)-mb’(xl))wth[ TF(Z;CZ')ﬁgj

Next, let J§ —=—o
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(= -4

U )= 9400 = e ’"""')*“'("')J[??%i_ay—y

.. c;(j z(m’(xn)—#if'(xi))- coth[zr—(%%ﬂ"—"fsj“(x'

25C

The second integral on the right hand side of this equation is identified
as the induced velocity on the camber line, and from now on we drop

this term with the understanding that the velocities are measured with

this induced velocity as a base.

oo

)= i (0= gz #r6) ”mj/ TG
[ I - G
] i—nr—[m(x)wwd’(")}WEO?[t+6(I+£){,’)J
€==® (1-2)
using log(—1) = — 7o
Ut (x) = 04 (X) = _%_""i(/%%@ (I-3)

The choice of —7wc instead of 7v in equation (I-2) comes from the
reason that, by choosing a negative value, (I-3) can be reduced to the
familiar expression U+ X)= —é—-)”(x) , for the particular case m'X)=0
and W =0 . Writing (I-3) as

Up () -t (X) = — _ZL (m'o) + L F O - %)

It Y2
=)W A6 L —mea = EY
- 2 ' -+ 70/2 2 / _,.7./1.

U () m o H) N1 g(x) o),
a AN T2 Ty
S (x) o L HCUHTCON 1 me)+ EW
+ (%)= 2z ] .,%u =2 /T-P—)!.’z_
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In the above, changes from modified singularities to true singularities
are made. Converting these expres-

sions to the velocities tangential and

normal to the camber line, we get
Camber - £ine

Fe,+(X) = Uy coST, +7K - sing,

) =) % mx)e e+ Y)W
2(/,4,)10/:.) + 2(.’"‘)‘,7 "'ZJ()())

Gn+X)=— Uype .sr;njb, + 70 cosﬁ

LOONW = mE) WP m(x)+ 162 _

—+mx
2(I+7’Il) 2(;+>,'_/z) 2 )

Similarly,
4t,-(x)= ——,_izr(x)}
gn, = (X) = —J-m(x)

Thus
) = FealX) — fg, -1,

mx) = gns <)~ fn,- )
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APPENDIX 2.

Derivations of A and B .
nm n—

From (2. 24) and (2. 25), Asnm and B, are defined as

m-2 M=1 oo
/‘;[’(XI)(X - X.) Ax = Uaa(—g-u) ; Z‘ dn* Anm (II-1)
fo J”(X,) d)(t = Uoo("g—'):;l apn’ ﬁn (H—Z)

Substitute the following expression
J’(X’.) = Usn (do tani +ian5ﬁ'ﬂn#’)
2 =T

into the above equation (II-1) and express the range of integration ex-

plicitly as

+da-
/’ge

(o tan %i i i“” sen n4>)(co.se _coscﬁ)?’?.:mlb-diﬁ =idn “Anm
! n=1 . n=2

Equating the coefficients of &, , one obtains
S*Jz
m-2
Aom -j (I — cosgp)(co58 — cosd) 475 (II-3)
6-Ji

R A
Anm = —2'7] [cos(n—-')‘f‘ —_ Cﬁ(nu}«ﬁj(cose —casqb)m;l;b (11-4)

6-di nzi

Similarly, from (II-2),

b= | Cmcup)dp + | fi-5)
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7T e-d;
-%[j -[C°5(H—f)$5-C05(I’)+I)¢Ja(¢ +j j/n;] (I1-6)
G*Jz (2]

First, the Anm are obtained, and then the Br are derived.

I. A
nm

() m=1 7 Am

4:51 ’
Aol -‘-je ﬁL’_CaS 'df)is
) cOse—Coscf

6-05‘1
. __j cos(n—1)d —Cos(n'“)q() 4) N>

Cosg — CaS ,

e+Ja

These integrals can be obtained once we evaluatej cos;bo_sgose d‘#’ =1p.
s CRLY

L - T —dp =| Ly sin (0 +4)]]°*
4_J Co5P — casg | s *f sun4(6-) gk
= Lim (g, ] Sinz(etd) #- e“;z | 5*”“03*4’) A
= g S:n@ t .SLHJ-(G"‘¢) + 2 Svh@ LL§ Stﬂl(g 4’} 4’=6-JI
B de | 5bn(@+ J,_)Sbﬂ af, [ .Sl;n(e_—)
T €>e { Scnd sen(6 —'"“JF)S!;"—TJZ Svad sin(6 *?2—6) J
_ ; _3,,";(6 +-ZJ1)‘5LHTJI
= Sone sin(@—7dihsenL],
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6+Jz J
CoS -dl i
I' ﬂjg‘_;MCos 5 = [(#’JG-J, + CO.SS'I.O
0—-9

; o
- (J 4JL)'|’ Co_se'zo ._Sn.n(e +—_-2,-c§-z.)'5uﬂ?<;1
I 50 sin (6 —-4di .5;,,_2'?&

As particular cases, let Jz =T -6 and J.:e in I, and I, ;
then J =o and ] =7t , and these are well-known Glauert integrals
(ref. 14). In general,

] cos(n+1)d +c05(n~')4’4?b = Zsinnd

6+éz
+2cos6-Ip
e-Jf

. _;_?7_[ Scn n(6+JL) -sinn(8 _J,)] +2co58-Lp

Ipar + Iy

C osqS — Co38

and from this recurrence formula, I, for arbitrary # can be ob-
tained. The A 's can be written as
Aa[ - I| - Io /

Anl-—zf—(l'nﬂ-—l-n—r) nzl

The final expressions for the A, are as follows:

Aol = () +d2)~ 122939  fog

5¢ne

.Sg.'n(6+-!2—_-a-z. .Su'nz—ljfl
S{n(s —%Jt) sin—i—j: 5

A = -ZL- (Iz - L)
- (5, +8.) coso +[ 3in(0+8) —sin(o~d.)

| [/_ Cose.Cose]L,A ‘S'J"(e"f‘i_‘g")s':"llél !

~ sené s,,:n(e —% J,)S»'n—zf—crz




-103-

Azr= (1 - 1)

- (d)+d.)co520 + 2 cose-[sin(eﬂf;)-sin(G—Jn)J
+ - sen2(0+di)—sinz(6 - &)

|

.Sz,'n(s +—2r—c§z)-sgn ZLJ, ,
3en(6 —?'J:)- s¢n ~2LJ,-.l

As; 'f,(Lf—Ia)

= ( J; “+ c;;,) Co336 + 2cCos 26-{5'1/7 (9+J,_)_ _5';,,(9_5’)J
+ °°56'[5""2(6*J‘)‘S"'“(G—J')I+T’[5»‘na(e+&)__ggm(9_ ‘;')J
B sclne (cosze _°°56'C°‘5‘39J"iag 3in(8+L8.) sin5d)

sen (@ —55:). Sin— 9z

i

Ani = zf'(l'nu ~ Ip~t)

= (d)+Jz) cosne + 2COS(H—’)G'[Sin(e'FJz)-Jl:n(e—Jf)I

+ -g_cos(n—z)e-[ sen2(6 +Jz)—5£nz(s—5r)]

+ -§ co.s(q—s)e[ s5:n3(6+d2)-s5:n3(6 -J,)J

+ -2

= coS8 ( sin(n-1)(6+d.) —san(n—:)(e—d’,)J

+ T‘[ sinn(g+da) - sdnﬂ(G—Jr)J

s»!ne [ cos(n-16 - COSG-Co.Sne]. l"i

sin(6+ -;—J;)sinil—gl
5en(@ —4d1) sint &

ne |
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m22z, Anm
Integrals (II-3) and (II-4) can be obtained once Jm's and Ko,m 's
defined by
6+:$z e«Sz
nm=2 -
jm -"Tj (,' -—caSch) coS + -dtf? j Kn.m = EL/ fc“"(”""is—COS(mr)qu.:os"’;,,@
8-3 B-di

are integrated.

6+J1
m=-2z2; T =/J(I-<_o.$47)d¢ = (J,+J¢)—[sdn(6+<§-u)__5.,',7(6_3',)J )
6+éz
Kn,2= —2—/ [CG.S(I?—J)?S_ cos(n+1)4aja(+
6—-3,‘
- T,(JHJL)—_&L[ .Su'nz(e-fc{z)—-.SinZ(e—-Jr)], h=l
sen(n—1)(e +<51.)—5£n(n_p)(e_J,)
n—=j

]
z
— L sin(n+1)(©@+dz)- sin(n+1)(e -di) Nl
Z N+ ’

6+Jz

m= 3, J3 = (;—c°5¢)c<:5c5£-d75
!

8-4
S T N
O+ad:
Kn,3 = —2'-/‘; [ cos(n-ig¢ — cas(n+t)¢1cos<;> 4'79
9-9
- ZI_ Sin(n—-2)(0+d:)— sen(n-2)(e-di)

n=z
sen(n+2)(6+92)—s:n(n+2)(0 ~di)
n+2

, N+ 2

/
=
_ _‘HJHJ,_)__l_{‘_[s,,-n4(s+6;)—s£n4(e—év)] , N=z
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6+
m=4 ;) Js ‘/ (I—co.5<f>)Co5‘<’5o(cfv

6-4d
- -_z’.(J, -}c;;_)—- % [5517(6 +c§:.) —5;'/1(9 —Jl)}
+ 7’[ .s::nz(9+<§:.)-5m2(6~5|)]— "—1[5&'!!3(6 +é:.)_.si”3(9 -—J:)J

O‘H!z
Kn4 = El"/ [C05(ﬂ-1)<}5 —cos(n +i)+J Cos‘:jﬁ 4'515

6-di
| .s;n(n—a)(6+c5z)—.sa:n(n—j)(e—é,)
(5 n—3
+_;sﬁn(n*l)(e-f&)—sm(n—n)(e—cﬂ)
¥ n—|
_ _t sen(n+1)(e +di)=sun(n+i)Ne-4i)
T nt|
0 .scn(n+3)(e+Jz)—5in(n+3)(6—J:)
5 n+3 ¢ MRSy

/

- _%__(Jp-)-:;;)._sli_[ .31.'n4(6+5¢,)—.$::n4-(e —JI)J p=]

= —;—(J, +Jz) + %(.Sa‘nz(enfz)— sinz(e—cﬂ)J

- ..3_fi_[ scn4(6 -+Jz) - 5in4(6 - Jr)}

—4_”:—[ 3£n6(6+J1)—5£n6(9*S')] ) n=3
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eic‘z

m=5;, Js =jg(¢--cos<;b)<:os3<;, a(cf:

o_
_—— %{J, +Jx) +%—[J£n(e +Jz)—s¢n(e—J.)J— w‘;'—[sin.z(e +Jz)~.s.‘nz(e~3:)I

-+ 7!2——[ Ss'nj(s +c{a.) "5;’;)_3(8-—;1)) ——3%-[51';}4(6 +J;_)—5b‘.‘74(9 —JI)J

9+Jz
Kn,s = Tj [cos(n~f)7’> = c’os(n+/)¢J. cos3¢ Jiﬁ
a_

J
N ( 1 _Sin(n—4)(6+d) =sin(n—4)@—5)
16 n—4
el s»‘n(n—z)(e-f:;:.)-*Sin(n‘z)(G“Jt)
] h—2
o d .s,:n(n-r:.)(eﬂf;)—s,,-n(n+z)(9_3,)
5 nt+2
v 4 3) - 5 -d
o), sin(n? Ne+ )n::n(ﬂﬂ)(e d)) > sl

= —;-(J.+Jz)+3’1-[5¢nz(e+JL)—-sinz(e-éf)j
J L 1-3.’?[5»?14(9 'f-c;:.)—Sc‘n‘F(G-J:)J

— g 3in6(0+da)—sin6(0—d)]  , pas
S| )+ L sir206 )= nstomdiy
- '4_‘3'('”"6(6“{‘ -Sv'nG(G‘JI)J

S
728
L

[sm?(e-u;a.)— -SL‘nt(G—JI)J ;) n=4%
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Using these, the A,y's are obtained easily in the following
way.

@ m=2; Ana

gichi |
Aoz -j ([—cﬁ¢)d¢ =Jz - (J{+Jz) e [5‘:’1(6 +Jz)—5;’n(6—dr1)J

e-d
e-rn;z
Anz = "i'“j [Coi(n—')rfv - co3(n 4’)‘?]0{#’ = Kh, 2
8-3i
= —2’-(J,+J;) —?_L[Jml(6+c§;)—sfnz(e _J,)J , n=|
. 1 _sin(n=1)(@+d.)=sin(n-1)(6-di)
2 n—j
_ I _sin(n+1)e +d:)-sin(n—1)(e-4) Ty
Z n+|

3) m=3, Ani
Gféz

Aoz = (I—COSCP)(CoSG-—Co.SC#))Acf: - CaSsz _']:5
Y

(]
= ( a[; + Jz)(COSG -+ —2,—) -—[S,,‘n(e-rél) ~sn(g - Jl)J(] +Co.36)
3 _‘;..‘[ sin2(0+48.)-5in2 (0 ——J:)]

9 +da
Ana = —zl—/ [ COS(”—”%—CO‘S(” +f)ﬂ(cose -C05¢)475= CaS6- Kn,z - Kn,j
d

6-9

ac, (J,-&J,_)S"_ZSQ —4—'[.s::n(9+31)—-5a'n(6—¢§',)]_;i_’_[s,;nz(e-c5,_)_.5;,,)_(6«.‘5})}“39

+ <[ sns(e+di)-sens(e—4)) n=1,

e == %(J(-*JL)-F I—IZ[S':I? (6+J&)—55’7(6—31)J(_o$6

_Tl[smj(mJl)—sms(s—J.)}cQsen%6[5,-,,4(94.5‘)_;;n4(9_5,ﬂ n= 2
sin(n-2)e+d2)—=s:n(n-2)(e -4:)

4~

4
[ Sin(n—|)(e+Jl)—5b'n(l1"’)(6—51,(_059
L =1
i sin(p+n(©+dL) —sen(n "")(G‘J’),cose
T % n+l
I _sen(p+1)(@+32)—Scn(n+2)(8—di)
£l 5

,; nkl, 2
n+2
\
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@) m=4; An4
6+51

hesn) Ci—wosp i eut® ol = Lot Jy wizesis Jot

-

e (4 Ja)(—zu + co36 + 0570 ) — (2 +2¢cas@ + cos [ sin(g+4.) — sen(o —Jr)]
" (1'_ +E‘-<°se){s1’nz(9+<§;) -5in2(6 -J,)J

- _,_fz_[ sin3(6+ &) ~sin3(e—41)]

e+Jz
Bni %‘j [COS(’)—”‘i’ —cos(n -H)ﬂ(cose -Cos@wﬂf

6-d

= (€058)% Kn,2 —2¢c050- Kn,3 + Kn.4

((d) +JL)(—— + —nCDJlGJ —C-%Q[:,én(e +02)-5un (6~ J,)J
- %—G[San(G-PJz) —SJﬂZ(G—JI)J + —GLCOSG-[SL"JJ (6 +JL)—Ju‘n3 (6-—5:)}

*E'T[ s.;n4(6+J:.)—5£n4(6—5!] , h=l,

————-(J} + J;)COSG -+ (-ﬁ- + COG"G)[-SLIT(Q +JL) _sm(g c;p)]
-( 7 -+ —G—COS’_G)[.SLHJ(G'F Jx.) -—.5;)73(9—(;: ]

S (028 A0 39 sS04 1,

= T;I(J""J'-)—-C;‘;Se[sin(e-«né._)-s,_‘n(e_J,)I
-J-( 7’—6" + C.:_sze')[ 5.;,,z(e+é,_)__5;,,2(9_5')J

= ( e cos’e)[ scnd(8+d2) —svn4(6 —512] + 5,%"36[ sen&(@+dz)-5in5 (3*54]
i

-—4—8,-[ s:n6(8 +5L)—-5t'n§(9—é.iﬂ n=23

e

/

_ __ sin(n- 3)(6+J:.) —son(n-3)(6-d1) cos0. sen(n-2)(@+d.) —sin(n-2)(6~d:)
=3 n—2
+( ! ms’e) 3»n(ﬂ ')(6+5nz)_’5 "('7")(6—5')
_(l 4 co:te) sin(ﬂ+/)(6+JL)-Sin(ﬂ'ﬂ)(e—‘;')
2

P cose ssalnpafesd)- 5n(n+z)(e -4
n+2

\ _._'_ sin(n+3)(e+ds)-sin(nt3)e=d)  pxy, 2,3
3 n+3 ‘
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&) m=5; Ans

6+J1
Aos =j (I —cos¢)(cosg~ cos¢)3d:)£
9-5¢

= (cose)sj',_ —.3((:056)2):, +3cos0 Jy - J5

= (d+ J;)((Cose)’ar FHcosef+ 3-coso + %)
—[( cos6)’+3(os6)* F cos0 + -f;—J( sin(6+3v) ~5L‘n(e—J;)_)
+[ %{COJe)z-f “;—cose oL 2‘—](5072(6“;..) -5¢ z(e-aJ,))
— (rcost+ %)(sms(ewz)— 5in3(6~di)+ 5 (s;n4(e+JL)_5cn4(9 - J;))

R 5 r( di + Jz)(?'@ose)’,u —%—cw@)-(ﬁ:@ose)’-«u -EL)(.scn(6+JL)~S»'n(6 ~d1))
— 036 (50n2(6+d1)=sun 2(6-51)

+ (i—@o&ﬁf-}-;{—?)(acﬂj (6+J.)—$1.‘,173(9-Jt)).

— 311-(0956)( 3cn4(6+392)—-son4(6-d1)) + 5,5 (sens(o+de)~5in5(e _J,))) n=i,
= | = (G 8:)(F 30 ) + (7 €o36P+ Feos0) (50 +dv) ~sunfe~d)
- 3’3 (5in2(8+9)~sim2(8 —J:)) ~(g'(<o se)% Blcose 5in3(6+41) —swn3(6 ~di))
+ (%(CoSG) z+ﬁ—)(3£n4(9 +JL) ~-scn4(6 _Jf))

- 25 co36 (sins(e +du) —s»'n.s"(e—Jx)) + 7”—6( 5in6(0+49) ~sin6(6 _J,)) =2,
- - (Ji+di)coso — (FHease )+ 75)(5in(0+ 1) ~sin(6~31))
& (—4L(cose)3+ %cﬁe)(s;n 2(6+3.)-sun2(6 - J,))

- ( —é— (c:ose)’-a- J_a‘Z- Cose)(-s"""f(e + Ja.)—- s»‘n4(e—J:))

+ (-2—33-(('_059)!4- 3_'75)( 560.5(6-1-5:-) “56'15(9—‘{'))

— _fs._CO_ge,(s"_-”G(e*_ 5‘-)__ 5‘;,’6(6-—51)-;- TILJ. (51—"1 7(6 fcjl)-.fl;ﬁ 7(6 ‘Jl)))

n=3,
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— e (d1+8) + 2coso (sin(0+dL) = sin(-di)
— (€504 75 )(sin2(0+d1) ~5n2(0 ~41)
+ (gleoso)™ ?,C,OSG) (5in3(6+31)-s5n3(6-d1))
- (r‘i)(@’e)’ﬂ* :;%cw) (sens(+dr) ~sons(6-d1))
+ (Feose)'+ #)( sin6(e+ds)~siné(0~d1))

—~ Z o3 (3in7(6+82) - scn 7(6—-51}) + Tz,_.?(s':"?(e +w) - 5 E’(e—J:}) , n=4,

I sin(n=4)(6+3:)=sin(n -4)(6-4)
/6 n—4
3¢o56,

+ T E__Lj[-35”(”—3)(61'3:.)—Sén(ﬂ—le-—Jl)]
_.( 33-@056)2-4- 'S’L) ﬂ-f'l [S,,-n(”_z)(e +c§:.) —s::n(”..z)(e —JI)I

+ (5€030P4 3 cos) i (sin(n—1)(o+ds) ~sin(n-1)(0~41)]

~($eos0r o)

niw [s.-n(;w (e +é:) —.sdn(n-f-.')(e—&)J
+ (—;- + -:‘:—@ose)‘) nll[ sin(n+2)(6+d2) —sen(n+ z)(e—JL)]
- -%— Co36- his [s.‘n(n+3)(e +<¥1,)—5~'n(n+3)(e-Jx)J

\ * —,—'6-7—‘:-_—;(5;.1(#+4)(6+JL)- rin(n+4-)(0—-c5f):{ , Nkl 2,3, 4
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In a similar way, the expressions for other higher coefficients

can be derived.

II. B
n
- il
Bo =f(1 —cos¢)dd —
o 0-91
=7C —Aoz}
x ' 6442

By = —?':-![[Cos(n—l)e# —coS(n+i )#:]dtf _/e-é, k

= | dw—Aiz ) n=1

—Ana J %]
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APPENDIX 3.

Tables of A .
nm
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X AO1 © AG2 AQ3
0.99990 1.07236 0.19412 0.06185
095000 1.04%69 0.22474 0.06739 .
0.9C000 1.01992 0.25735 Q0.0G7237

COOO0OO0ODOOO0O

0.80000 0.97137 0432850 (0.08028
0«75000 . 094867 .. 0.36711 . 008305
0.70C00 Q.92708 C.4C781 0.08494

£ . .

D.6C000 0.8B764 0.49576 0.08574

e« @

050000 0.85397 0.59303 C.08216

sleloBoNoNal

0.40000 084629 0.69017 Q(Q.07945

[ 3 [ L] * .

0.30000 0.87197 0.78321 0.08150
025000 0.89358 08301717 C.08352

0.65000 0.90670 .- 0.45067 . 0.08585 .

— 0.53000—0.87001 __0.54318_C.08453_0.04740

AQYG AOS
002329 (0.CCG951
0.02518 (C«01024
0.02707 C.0109¢

085000 ..0.99514. . 0.29193__.C.07670___0.02903__.C.01167___

003114 G(C.01236
.0.03349 0.01301
0.03617 0.C1358
0.03930 (C.Cl402
0.04300 0.0l427
0.01425__.
C.05264 (C.01385

0.45000 —0.84388__0.64323 _0.07S75 _0.05824_._0.01329.._

0.06308 0.01316

0435000 --0.85608 - 0.73653 _0.08012_0.C6774.___0.0C1328.._

0.07239 0.0135¢C
0.07710—0.01382___

0.20000 0.92094 0.871967 (0.08615

e & o

' !
muomuuuuvouuwmoubhooreouuunbhhavuvon

0.1C000 0.99445 0.98236 0.09342
- 0.05000._1.04205__1.03914__0.09821
Ce 1.09838 1.09838 0.10395

|
1
|

0OOoO0Oo

0.08195 0.01427

_ 0.15000__0.95436__0.93038__0.08943_0.08699__0.01482__.

0.09229 (0.C155¢C
(0.09791__0.01632___
0.10395 0.01731

—0+5 =0.05000—1.16508_ 1.16183  0.11C85 _0,1105]1 0.0185C

0.5 -0.10000 1l.24442 1.23051 0.11918
—0e5 - -0.15000 -1.33952
O0e5 -0.20000 1.45489 1.38936 ($.14203
— 045 -0.25C000—1.59720
0«5 =0.30000 1.77710 1.59432 0.17935

0.11774 0.01695

1.20574 _0.12937 __(0.12583__(0.02174

0.13507 0.02399

le/48411 _0.15814___0,14591___0.0268G___

0.15912 0.03077

—0.5-=0.35000—2.01312 —1.72770 —C.20880—Q.17614__0.03631 ___

O0e5 =-0+440000 2.34366 1.90083 0.25371

0.20037 0.04509

— 0e5 =0445C00__2.88662 _2.168C4__0.33949_ (024412 0.0631C___

0.5 =-0.5C000 3.80925 2.59255 0.48888
0e5-=0+55000—3.86013__2.54240_0.38668
0.5 -0.60000 3.91301 2.48966 (C.28839

0.31505 0.09241
0.25763__0.05672___
0.20955 0.02928

0e5-=0.65000 3,96804 2.43421  0,19423 _0.17034__0.0088C

0s5 —-0.70000 4.02545 2.27587 Q(0.10442
——0e5_ —0.75000._4.08549__2.31443__0.01922
0e¢5 -0.80000 4.14844 2.24966 -0.06108

0.13955 —=G.00605
0.11666_=0.01643_
0.10115 =0.02346

- 0e5 —0485000 _ 421466 _.2.18128 -G.13618__0.09243_ =-0.02817 _

Oe5 —=049000C 4.28458 2.10896 —-0.20570

0.08986 —-Q0.03149

O0af8 =0.92000 4,31370 2.C07884 —=0.23186__ 0.09041 =0,03261____

0«5 =0.94000 4.34354 2.04799 =0.25703
— 065 _=0.950C0__4.35874
0.5 -0.96000 4.37413 2.0163G -0.28118

0.09179 =0.N3368

2403229 =0.26923__-0.09277 _—C.0342]1 .

009394 =-C.03475

— 0e5-=0.98C00 _4.40553__1.68400_=0.320427_0.09683_—=0.03587

"0.5 =0.99990 4.43644 1.55094 =-0.32617
0.5 =0.50000 3.80925 2.59255 __0.48888

0.10037 =0.037G5
031505 __ 009241

OeS5 0616670 0.94249 0.91321 0.08826
— De5..0e83330__0.98709__0.30392__0.07758
0.5 =0.62500 3.,94024 2.46229 0.24078
ce 0 e85 _=06.12500.-11.28976__.1.26720._._0.12401
0«5 Q37500 085037 0.71336 007969
Da5 Q.87500 1.00741 0.21439 Q.07462

0.08528 0.014¢2
0.02972_C.01191
0.18886 0.01826
0.12166__0.02080_
0.06542 (0.01321
0.02804 (0.01132
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S X All AY2 Al3 AL4 AlS
0«5 069999C 1495050 04322637 0.10040 0.03706 C.01495
2. 098 . 0495000 . LeBl435 .. 0.3T0ES 0.10623W 0.03885 (0.C1l559
0e5 0e9C000 1.68050 0.41€60 «11043 (C.C4047 (C.0l614
eeiDa 5 B 850001454908 0O 46?37__0 11285 ___0.04204__C.01661___
0.5 080000 1.41997 0.51102 0.11337 0.04369 C.0169¢
~0e5 075000 1.293206 0.55938 (0.11186 .0.04559 (.C1l715
0.5 QCa70000 1.16823 0.60834 0.10822 004791 (G.01710
0.5 0.65000. 1.04540  0.£65774 0.10236. C.05Q82. .C.01673
0.5 0.60000 0.92446 0.70747 0.09419 0.05453 (Q.01592
—0e 5 0.55000—D.80534 __ 075740008363 0.05922_ _0.0145C__
0.5 0.50C0C 0.68793 0.80739 0.07060 GC.06511 (0©.0123QC
05 _044500C.0.58040 _0.85293 _0.05740.__0.,07116._0.C0978 _
0.5 0.40000 0.49463 0.88679 0.04815 0.07513 0.C0813
045 _.0.35000 0441917 __0.91420._0.04C42__0.07818 . 0.C0675
0.5 0.30000 0.35035 0.93667 0.03357 0.08061 (C.C0562

—0.5_0.,25000—0.28621—0,954594
Oe5 0420000 0422545 0.96946 0.02144 0.08407 0.00258
05015000 —-0:16714 _0.98050 001586 0.0852]1__.0.0026%...
0.5 0.1C0C0C 0.11053 0.98827 0C.01C047 0.08601 0.00174
—0e5. 0.05000_.0.05501__.0.99289_. 0.00521 __(C.08649__ 0.C0087__.
0.5 Q. -0.00000 0.69442 -0.00C00 0.08665 -0.00CCGC
—0+5 =0.05000 =0,05500—0.55289_=0.00521 Q. :
0«5 -0.1000C —-0.11053 0.98827 -0.01C47 0.08601 —-0.00174
—0e5 =0.15000 -0.16714__G0.S8050.~0.01586__0.08521_-0.00264___
O0e5 =0.20000 =0.22545 0.96946 -C.02144 0.08407 -0.00358
— 065025000 —0428621_ _0.G5494_-0.02730_0.08254 -0.0045¢é.__
0.5 -0.30000 -0.35035 0.93667 -0.03257 0.08061 -0.00562
—0+5 =-0.35000—=0,.41917—0.91420-—~-0.04C42 _0.07818_ =C.0067S_
0.5 -0.40000 -0.49463 0.E8679 =-0.04815 0.C7513 -0.00813
—0e5 -0.45000 . ~-0.58040-_0.85293 _~0.05740__0.07116 —-C.00978__
0.5 =0.500C0C ~-0.68793 0.80739 =-0.07C60 0.06511 -C.C1230
—0e5 —0655000 —Co80534__C.75740_~-0.08363_0.,05922 =C.C1l45C __
0«5 =0e60000 —0.92446 0.70747 -0.09419 0.05453 —-0.015G2

— 05 =0.65000-=1.04540__0.£5774 =0.10236 _L£.05082_=0.C01673
0.5 -0.70000 -1.16823 0.60834 -0.10822 C.04791 —-0.C1710C

— 0650475000 ~1.29206__0.55938 -0.11186__0.04559_-0.C01715__
0e5 -0.80000 =-1.41997 (0451102 -0.11337 0.04369 -C.0169¢
0«5 —0.85000 ~1.54908__0.46337_-0.11285_0.04204_-0.01661___
O0e5 =049CC00 —1468050 0.41660 -C+11043 0.04047 —-0.01614

—0+e5.=0,92000_=1.73374___(.39817 =0.10896._0.03984_=0.01593___
0.5 =0.94000 =1.78738 ©0.27991 -C.10721 0.03919 -0.01571

— 0.5 -0.95000.—-1.81435_0.37085_~-0.10623_0.03885 =0.0155G _
05 —0.96000 =1.84142 0.26183 -0.10519 0.03851 =-C.01547

~0e5 =0.98000_-~1.89589___0.24395_.-0,10291__0.,03780 -C.01521 _
0e5 =099990 -1.95050 0.32637 =-0.1004C 0.03706 =0.01495

— 0.5 =0.5C000 =0.68793 _0.80739 =0.07060__0.066511 =0.01230__
Ge5 0416670 0.18639 0.97718 C.01770 0C.08487 0.00295

=i 050 83330150571 QeATI20.. 0,13324. 0.0A425T. E.016T4.
0«5 —0.62500 —0.98470 0.68258 -C0.09857 0.05256 -0.01636
0«5 =0412500--=0.13867_0.98479_-0.01315__0.08566_=0.0021G ___

0.5 0.37500 0.45591 0.90118 0Q.04415 0.07674 C.C0743
0.5 0.87500 1.61450 0.43987 0.11187 0.04125 Q.01£39




~115~

S X A21 AZ?2 A272 A4 A25
Q0.5 0.99990 2.24787T 0.4%186 0.12667 0.04421 0.C1l71#
0.5 95000 2.70558 0449214 Uel2413 (0.04264 0.01640
0.5 0.90000 219170 N.52901 0al1783 0.04056 0.0154C
eV 5 085000 1.eT086869.-.0.5 . C.C3824__0.01419___
0e5 0.80000 1424992 (0459089 (0.09400 0.03599 (.01273
D65 .. 075000 . 082082 .Ca8&1536 - 0.07660...0.03410 0.01096
De5 0.70000 C.41885 0.63523 (0.05569 0.03287 0.00877
0.5.. 0.6500C. 0.04353..0.65035 . 0.03142 _0.03261. 0.C060C2 _
CG.5 0.60000 -0.30559 0.66059 (0.00397 0.03360 C.0025%2
045 0.55000_=0.62892___0.665R8_=0.02645__0.0361l4_=0.00192___
0.5 050000 =-0.92686 ND.6618 -0.056G¢61 0.04051 =-0.C0761
- 0e5--0e45000-=1.1835C_-—-0.£5284 ~0.,09066 —_0.,04449 —0,0134G___
0.5 0.40000 =1.37788 0.61314 -0.11174 0.C4384 =-G.01725
065 _0e35000-=1e53498 . 0.55910_--0.12806__0.04114_~0.02009
0.5 0430000 —1.66313 0.45486 -0.14107 0.03712 -0.02233

i

— 05— 025000176678 —0.42287——0+15144—0.03215=0.02410—
5 0.239000 =-1.84873 Q0.34490 -0.15955 0.02647 —-0.02548
5 _0615000-—1.91086 _0+26243 —0.16567—0.02028_.-0.02652.—
5 0.10000 -1.95444 0.17671 -0.16993 0.01371 ~C.02724
5. 0405000—=1.,98028——0.08887=0,1L7246__0.,0069] ~0.02767—
5 0. -1.98885 0.00000 -0.17329 0.00000 -0.02781
+~5—0-05000-—=1.98028 =0.08887—=0.17246_=0.,00691 =C.02767
0.5 -0.10000 —-1.95444 -0.17671 -0.16993 -0.01371 =-0.02724
—0e5-—0e15000-=1.91086-=-0.26243 -0.,16567_-0.02028_~-C.02652_
Oe5 =0.20000C =1.84873 =0.24490 =0.15955 -0.02647 —-C.02548
—0e5..70.25000—"—1-.76678—=0.42286—-0,15144_=0.03215--0.0241GC
0e5 —0.30000 -1.66313 -0.49486 -0,14107 —-0.,03712 —-0.02233°
—0+5—=0,35000—=1-53488=0,55910-~0.12806-=0.04114-=0.C2006—
0e5 =0.40000 -1.37788 =-0D.61314 =0.11174 -0.04384 =0.01725 .
—0e5-=045000.-—-1.18350~-0.65284 —0.09C66. —0.04449. -0.01349 __.
0.5 -0.50000 -0.92686 -0.66618 =0.05961 -0.04051 -G.00761
—0e5.-0.55000-0.62893..~0.66588 =0.02645-~-0.03614 _=0.00192__
0«5 —0.60000 =0.30559 —-0.£66059 0.00397 —-0.03360 (€.00253
—0.5 =0,65000_0.04353_ ~0.565035—0,03142—=0,03261—0.00602 __.
Oe5 —-0.7C000 0.41885 -0.63523 0.05569 -0.03287 C.00877
— 05 =0.75000 082081l ~-0.61536__0.07660.~0.03410__0.0109¢6.._
0s5 =0.80000 1424992 -0.59089 (0.09400 -0.03599 Q.C1273
-0e5 =0.85000..1.70669.~0.56203._0.10778.~0.03824__0.01419__
0.5 -0.90000 2.19170 —-0.529C1 0411783 -0.04056 (€.0154C
Qa5 =0,92000 2.39375 -(0,.51471 Q.1208] -
0«5 =0.94000 2.60046 -0.49981 0.12218 -0.04226 0.01622
— 05 =0495000__2.70558_=0.49214__0.12413 _~0.04264__0.01640__
0«5 =-0.96000 2.81187 -0.48434 0.,12494 =-0.04301 GC.01658
0.5 .-0.98000....3.02803.=0.46832__.0.12611_~-0.04367__0.0169C. .
0e5 =0.99990 3.24787 —0,45186 0.12667 -0.04421 0.C1718
U8 =0.50000 =0.928686 =C.tb6618 =0.,05961 _=0.04051 =0.00761____
«S5 0.16670 =1.89223 0.29040 =-0.16384 0.02239 -0.02621
050wl @ B3 T T 5502 0.0 5T 214D LOB59. . 00204 ... 0= Q1373
«e5 =0.6250C0 -0.13428 -0.65608 (0.01808 -0.03263 0.C0043¢8
«5
5
5

O
—O0e
0
—0Q
G
—0

=0:12500..=14293492. =0421990_=0.16802 =0.01703 =0.02692... .
0437500 =-l.46043 0.58759 =0.12038 0.04269 ~0.0187¢
087500 1.94562  0.54602 . 0.11327 0.0394]1 (Q.0Q1482
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X A3l A32 A33 A34h A35
0949990 3.64088 0.432392 0.06449 0.01700 Q.C051%
0.95000 2.34196 C.31596 0.04423 0.0C937 G.C020¢
090000 1.20654 0.269965 (0.02055 0.C0173 -C.COLC2
0.85000.. 0.22824__0.27652.-0.00613 ~0.,00539 -0.C0404
0.80C00 =0.6018H 0.24641 -0.03494 -0.01156 =Q0.C07C7
075000 -1.29256 C$.21046 -0.06515 -0.01636 -0.C1lCC7
0.70000 -1.85231 0GC.16961 =-0.09569 -0.01943 -C.01317
0.65000 —-2.28951  0.12487 -0.12673 -0.02048 =0.01652
0.60000 =2.61235 0Q0.07729 -0.15662 -C.01%27 -C.52027
—0.55000.-2.82892_.0.02767.-0.18501.-0.01561.-C0.02464__
056000 —2.94715 -0.C2198 -0.21123 -0.00939 -C.02984
0.45000 -2.95123 -C.08405 -0.22798 -0.00413 -0.03418
0.40000 -2.82321 -0.17260 -0.22523 -0.00555 ~0.C3448
0.35000 -2.61187 -0.2667T0 -C.21235 -0.00919 -0.03288
D.30C0GC =2.33766 -C.325761 -0.19245 -0.01367 =-0.030C1
5 __0.25000_~2.01533_=0.44063_ ~-C.16732_-0.01827_-0.C2621__
0.20000 =1.65475 =-0.51238 =-0.13820 -0.02251 =-0.G2172
015000 =1.26526 -0.57044 -0.10611 -0.02609 =-0.01671
C.10000 -0.85484 -0.€1306 -0.07189 -0.02879 =0.01134
0.05000 =-0.43078 -0.63909 -0.03628 -0.03047 =C.C0573
Oe -0.0000C -0.64784 -0.C0000 -0.03103 0.CCGCC
3078_=0.€39C9 =i, 0.C0O573__
-O luCOO D 85484 =-0.€1306 0.07189 -0.02879 (0.01134
- =0.15000..1.26526_-0.57044 __3.10611 -0G.02609__0.C1671 _
020000 1.65475 —-0.51238 (0.12820 -G.02251 0.02172
—0e5 —0.25000 ..2.01533 ~0.44063 . 0.16732 -0.01827 . 0.02621 _
0.5 =-0.30000 2.33796 —-0.35761 0.19245 -0.01367 (C.03CGC1
-ilia B =0235000. 261187 ~0.266T70__0+21235 =0.00919___0.03288__
0«5 =0.40000 2.82321 -0.17280 C.22523 =0.00555 0.03448
-~ 0e5 -0.45000 _2.95123 -0.C84C5 . C.22798 —-0.C0413 _ 0.03415
0«5 -0.50000 2.94715 =-0.C€2198 0.21123 -0.00939 0.02684
- 0e5 ~0.5500C__2.82892 0.02797  0.18501 -0.01561. 0.02464 _
O0e5 -0.60000 2.61235 (G.C7729 0.15€62 =-C0.01927 0.C2027
—0.5_-0.65C00__2.28951__0.124€7__Ca12673_-0.02048__ 0.01652__
0.5 ~0.70000 1.85231 0.16961 0.096C0 -0.01943 (Q0.01317
- 05 -0.75000. 1429256 _ 0.21046 . C.06515 -0.01636 G.C1CC7
0«5 —0.800C0 0.60188 0.24641 0.03494 =-0.01156 C.C07C7
—~0e5.-0.85000.-0.22824 (0.27652 0.00613 =-0.00539 (C.0C408
Oe5 -0.90000 -1.20654 0.29995 -0.02055 0C.00173 Q.00103
—0e5_=0.92000_=1.64135___0.20728_=0.03045__0.00475_-0.00021__
Qe5 —-0.94000 -2.10187 C.31338 —-C.03684 C.00782 —C.0Gl45
- 0e5.-0.95000.-2.34196 0.31596 =0.04433_ 0.00937 -0.00208 _
«5 —0.96000 —-2.58869 0.31821 -0.04868 0.01091 -0.0C27Q0
«5 ~C.98000 _=-3.10242 0.32174 -0.0569%92__C.01399 -0.00395 _
«5 -0.99990 -3.64088 0.,32392 -0.06449 0.01700 -0.00518
«5_=0.5C000__2,94715 =0.02168_ 0.21123 -0.00939_ 0.02984__
5 016670 —1.39806 —-0.5526G -C.11711 -0.02499 —=0.Cl842
5083330 _-0.06506_ 0.26717 =-G.01555 -0.00758 =0.00508_ _
5 -0.62500 2.46472 0.10137 GC.14182 -C.02017 0Q0.01823
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5 0.87500 0.69832 0,28912 0.00753 =-0,00192 =-0.00256
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S X A4l Ah 2 A3 AG 4 N4 E
0 0.5665C 1 e 2BH32 CaCEESE -0,0317T1 -DC2060 =-C01C27
G5 BaS55CCCE LellZz22 C.01651 ~-0.058A3 =C0.02G6C01 -C.Cl2:z8
Ue5 (0eGCLCCC =-Cot1983 -C.03C1S -0.08422 -0.,02526 ~0.01549%
TUe5 T 0e85CCC T =1eB8T1T73 ™=CuNT7G6G =041CT7407=0.L3626 =-0.0150
0ed QuBCLLEE =2.TCETS =C«126875 =0,12879 =0.C4034 «=0.C3175G
0.5 Qe 75CCC —~321E8057 -Cal6G237 =0e14161 -0,0284G ~C.C1770C
Uad Qe TCCCO =34381281 =Ce20579 ~UelBl22 Q023373 «Co0C1743
CeDd  (OebEHCCEC =3,28G€63 =Ce23456 =0.15520 ~0.02620 -0+017C0
Ce5 CobCCCC -2.98382 =-Ce?25459 =-(0.15338 -C.01618 -C.01¢t4
TUCE T U EBS5CCU 252883 —C 26510 =00145837 =0.CC403 =0, 01659
Jeb CeHCCCO =La91623 =0u2657T0 -0«13284 0.0€C978B =0.C17CS
"0695 7 Ge4BLC0 —le3LaE0 =C.27252 =0.10625  (C2015 =C.C1EES
Ce5 0+4CCCC -CeH2508 -Ce3C093 -CeCH5734 (C.CZ2068 =C.CCS59
e 5 G 35CCO7 " C.24CCS -C.3211 -0.00220 7 0.1818 =-C.CC175
Q5 «3CCCC C.975586 -Ca32453 ($.05294 0.,01466G G«CCEZE
G TZSCCU“”iTéW 3§ =-C.30855 0V104231 0.C01114 0.0 411
0«5 0«2ELCC 221160 =C.27345 - 0.,14G630 0.CC796 C.C2C96
'C.S"'U.lSCCOJgZ.é721§"—C.22134‘~C.18602" 0.C0532  0.,02€659
Ce8 (e1GCCE 3.CC9¢€0 ~Ce1555% (Qe21314 0<CC320 C+E83C 6
m0.57"0.C5CCG"_3.21538_—C}C80221ﬂ0-22976_'O.CC149”"O-C3333*M
Q<5 0. 28452 -C.CCCO0Q0 0Q.23536 =-0.CCCCO C.C3420
“0ed =0 LSCLO"-3‘?1375 C.CB8022 0.22676 =0.C0149 C.(C2223—
Ueb =0+ 1CLCE 3.CCGEHN CalEEHS (621314 -0.0C320 0.C3C76
"Ce5 =0415CCCT 2667216 (Ce22134 0.18€02 -0.C0532 " C.02¢€59 —

J

Ce5 -020CCC 2.21160 Ca27345 G0.14630 -0.CC796 (C.02CS6
T0457T-0425C00 7T 1464038 Ce3C8557 Cul04217=0.C1114" Q0.01411
05 -C3CCCL C.97588 Ca32453 (.05294 -0.C146G (C.CCe&Z8
T0L.5T=0.35CC0 Ca24CCY T Cuv3211C=Co002207-0.C1818 =C+CC1l75—
«5 —0.4CCCC -0.52508 C.3C0093 -0.05734 -0.C2068 -C.CCS59
a5 —0.45CC07=1.3C45077C.272527-0.10€25 " -0.C2015 ~C.C01l5E9
Oe5 —Q5CCLC —1.97623 C.2657C =0.13284 -0.0C978 ~Q.C1l7CS
«5 -C0.55CCC 2% S’EEB_mC 2651070414583 0.CC403 " =-C.01€659
0.5 -0.,€6CCCC -2.9€3E2 «25459 —-0.15238 0.C01618 —-0.01l¢e€4
TCLET =0 65CC 0T =3.¢2€963 L.2345é—1U11‘520_”CIC2620“:C2C17CD——
Cu b =0 TCLEC =24,3512F Ce20579 =0+15122 0Wwl3373 =C+C1743
T0457=0.75CCCT=3.1ECHT Cal16937T =0.14161 «032849 -0.017707
0«8 ~-0.8C00C —2.7C575 C.12675 =-0.12679 0.04034 =0.01759
T0e5T=0.85CC0T=T1.871737 C.076965 -0.107407 C.C2926 -C.C1eSC —
0.5 =-0. QCCCC ~C.€16&3 (C.03Cl9 -C.08432 0.C253G6 -C.ClE4S
TOVET=UVG2CCCT UWVOTITe CLoT10207=C0707429 0L C23117-0WC147YL
Ce5 -0.54CC0 0.72428 -C.C0967 -C.06292 0.02046 =-C.C137S
T0e5 —CeG5CCCT 1411222 -C.01651 -C.058637 0.C02901 -C.C12Z28
0.5 -0.G6CCC 1.52169 -C.C2927 -0.05230 0.C02747 -G.C1lz74
U5 -0.68CCCTT2,40G24 -Ce04844 -0.042517 CeC2416 -0.C1156
Je5 =0.6G69C 3.38532 -C.06694 -0.03171 0.C2060 -C.C1C27
TCV5T=0WSCCCC =1.976337 C 26570 =0.12284 =0.C09787=C.Cl17Cs——
«5 G.1667C 2.53150 -C.24045 0.17477 C.CC614 Q.024E86
« 577083330 -2.16379 -C.09578 -0.11434 =0.032964 =C.01721
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~0.€625CC =-2.14G636 C.24573 =-0.15501 C.CZ2148 -C.C1l€7S
«5™=0.125CC7 2.85689 C€.18691  0.20085 =C0.0C420 C.02EE7
e5 0.375CC —-Cel4491 -C.31278 -0.03C07 0.Q01964 -C.CO0E77.
0.5 0+675C0 =1+3C182 =C.05511 =0.09626 =0.C3766 =0.01629"—
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S X AC1 A2 AC3 AC4h ACS
0.7 0.99990 1.2982C C.23522 C.15083 0.07991 (C.04587
O0e7 095000 .l.28484 Co37412 C.16157  G.085C9 Q.0487C
Oe7 0.90000 1.27267 0.41519 0C.17186 G.09035 Q0.05157
— 07 __0.85000__1.26181___C.45844___0.18163__0.09577_C.05449__
0.7 0.80000 1.25237 0$.50393 0.19C83 0.,10144 C.0574¢
_.0e7 - 075000 124448 . 0.E55177 0.16941 0410747  C.C6047
O«7 0470000 1.23829 0.€0207 0.20733 0.11399 (0.0635¢
—0eT - 0e65000--1623397..0465465 ... 0.21456 - 0412113.. 0.06651 -
0.7 0.60000 1.23175 0.71056 0.22107 0.12904 0.0694¢
welBle e Hla 55000 a2 31BB - 0.0 l690 7002268500 l3T89 - Ca 07229
Oe7 0450000 1le22467 0.83069 023190 0.14785 0.07492
—0e7.-0.45000 . 1.24048_..0.86565...0.,23623__C.15913_0.07727_.
Oe7 0440000 1.24976 0.96424 0.23988 0.17195 (0.07G23
—0e7 —0e35000 1.26305._1.03679_..0.24289_0.18656_...0.08C68&
0.7 0.3000C 1.28103 1.11372 (Q.24536 0.20322 0.0815C
—0.7 - 0.25000Q 1.30624  1.189426_0.24837 __(0,22158__0.08205_
Oe7 0.20000 1.34608 1.27416 C.25588 0.23907 QC.08447
~ 0.7 _0.15000__1.39813_1.35669 __C.26665_0.257T04__0.08814__
O0s7 0.10000 146286 1.44374 0428062 0.27620 0.09301
—0s7.. 0.05C000__1.54212__1.53709_0.29831___C.29714__Q0.09926 _
0.7 Q. 1.63897 1.€63897 0.32064 0.32064 Q0.10728
—0ed—=0+05000-1.75824 _1.75246__ 034920 0.34783___Q.11770__
0.7 -0.10000 1.90784 1.88248 G(.328674 0.38055 0.13166
—0e7 - ~0,15000__2.,10192_ _2.03779_ 043857 _0.42239__C.15157__
0«7 =0420000 2437116 2.238C7 0.51735 0.48187 Q0.18306
-l Lm0 28000 2. 828572 2.55T83.-. 0abT39]1. (59431 . 0:25081. -
0«7 —-0.30000 3.38142 2.91862 0.84056 (0.70415 GC.31021
07 =0.35000 341197 _2.8861l1 _0.71919 __0.60882 0.22457
Oe7 =0.40000 3.4437C 2.85164 0.60093 0.52443 0.1531¢6
-~ 0e7 —0.45000__3.47661__2.81518__0.48590__0.45065_. 0.0943G __
0«7 -0.50000 351075 2.77669 C.37422 (C.38711 0.0467C

_AO.7;3‘0.55000-——3.54613‘———20

73611 __0.26605

0.33346__0C.00862__
G.28929 -0.02129

69337 C.16153

28847~ 006084 . 025419 ~0.04439

0.7 -0.60000 3.58281 2.
—Ded =0.65000__3.62085
Ce7 ~-0.70000 3.66032 2.

60112 -0.03585 0.22772 —-0.06197

— 067 =-0a475000__3.70133___2.55140_~-0.12834_0.20941 _~-0.07525 _

0«7 -0.8GC000

0«7 -0.96000

374397 2.
0.7 _-0.85000_3.78839__2.
3.83473 2.
—0.7 =0.92000_ _3.85384 2.36238 =-0.40834__0.20128
3.87330 2.
047 _-=0.95000_3.88317 2.
3.89313 2.
0.7 -0.98000_:3.91333_ 2.

49914 =0.21642 0.19877 -0.08538
44417 =0.29985 __0.19527 -0.09339 __
38635 =0.37837 0.19834 -0.10C27
-0.10290__
33760 =0.43745 0.20513 -0.10553
22547 -0.45169 _ 0.20738 -C.10687_.
31291 =0.46570 0.20984 —-0.10822
28739 _=0.49205 _ 0.21539_=-0.11101 _

O0e7 =0.99990 3.93265 2.26144 -0.51635 0(.22168 =0.113G3
07 =0.50000__3.51075 2.77669 _ 0.37422 0.38711 C.C467C0_ _
Q.7 0.16670 137939 1.32870 0.26271 0.25094 (0.0867S

0«7 _0.83330__1.25850__0.
3.60165 2.
~ 0.7 =0.12500__1.99802 1.

47338__ 0418477

0.09763__0.C5548 _
0.27063 =-0.03361

67118 0.11070

$5615  Q0.41036___0.39999__0.14067 _.

0«7 037500 1.25586 0.99999 (0.24146 017901 0.080C3
OaTec 0.6 87500 126707 Q43654 (.17681 0.09304 Q.Q05302
- TR
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S X All Al2 ALZ Al4 A1lS

0.7 0.96990 2.261C5 G.51958 0422174 ©€C.11395 C.C64ll
O0e7 0495C00 2413131 C.56796 0.22596 ..0.11724 (C.C65¢5
O+7 Q.9CCO0 2.00288 0.€17C0 C.23618 0.12010 C.GC6702

a7 —0.85C0CC_ 187592  G.£6647 _0.24025___(0.12268___C.06812
0.7 0.8CC0GC 1.75034 0.71625 C.242C6 GC.12513 0.0689¢

Qe T Qe TE5CO00 -1 e62607... 076619 0a24150 ..0.12761 .- 0406G5C -
Q.7 Q.70000 1.50302 0.8161S 0.23847 (132029 0.065¢67
-0e7 - 0s65C00...138111---0.86€610 .. 0.23289 _.C.12336 .0.065838.._ |
0.7 0.6C00CC 1.26025 0.91582 0.22467 (0.13701 C.C6852

e 0ad 055000 114035 __(0.96520.-0.21274.__0.14144. __0.06692
0.7 0.5CC00 1.02132 1.C1413 0.20C00 0.14685 GC.06441

— Qe 7—0a45000——-0.90305- 14016246 C+.18241 _0.15347__0.C6C7€
0.7 0.40CCC 0.78542 1.11CC6 0.16388 0.16150 (0.05573

el g i)  BE OO Qo 0 65683301 156 T BB 14334 G oL 7117 - 0.04904. —
0.7 0.3000C 0.55163  1.20247 0.11575 (0.18269 (0.04C3¢

— 0o d—C25000—0.438546-——1.246446—0.08887—0,1G5492__0.C3C34___
0.7 0.20000 0.34114 1.27310 0.06799 0.20241 C.0226¢8

—0e7-—-0.15000 0425116 _1.29354_ 0.04960__0.2C746_ C.01¢€68 _.
Oe7 0.10000 0416542 1.30749 (.03249 0.21081 (.C1086

—0.7-.0.05000__0.08213 _1.21564_..0.016C8_£.21273__.€.00538___
0.7 Q. -0.000C60 1.31832 -0.00000 Q0.21337 -0.GCCGCC

—0ed—=0405000-=0.08213 _1.31564_=C.01608 __0.21273_=0.0053¢e___
O.7 -0.10000 =-Q.16542 1.3C749 -0.03249 C.21081 -0.01C86S
—0ea7-=0e15000_=0e25116__1.29354_—-0.04960__0.20746_-0C.01e68_
0.7 =0.2000C =0.34114 1.27310 =-0.06769 (Q.2C241 -0.0226¢8
—Q0ea7-—0.25000—=0.43854% le26446 —0.,08887 _0.16492 —-0.03034____
O.7 =03C000 =0e55162 1.20247 =-C.11575 0.18269 -C.04C36
—0e =0 . 35000-—=0,.66833—1+15678-—-0+14134—0.17117 . =0.04904___
0.7 -0.40000 -0.78542 1.11C06 =-0.16288 (0.16150 -0.05573
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e 1e0..0e83330___1.63323__0.80552__0.48225__0.36676_..0.30133_.

1.0 =0.62500 3.32566 2.91112 -0.10011 045779 =0.20149
e l1eC . =0e12500._3.15182___3,13059.__1.18994___1.21443___Q0.67028__

1.8 0.37500 1.88592 1.56037 Q.74507 0.63618 0.49903

1.0 . 0.87500 0.75498 046201 0.35105 Q28871

l.62635
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S X All Al2 AlZ Al4 AlS
1.C 0.59990 2.61358 0.82947 C.49703 0(0.36103 (C.2480¢8
10 . 0«95008.x 248560 - G87925 - 0906368 . 036519 Q29035
1.C 0.90C00 2.35801 0.92889 C.51298 C.3¢8320 G.29181
L

1.0 0.85000—2.2309Y9__0.97816__0.51674__0.37050__0.2924&__
leG ($.8C000 210445 1.02695 051754 037192 Q.26G227
el @ G D 79600 L9783 ] 510 . B 51526 .. Q27278 .. 0a29L2C o
1«C 0.70C00 1.A5246 1.12248 0.50978 0C.37310 (.28917

el ol - 065C00... LsT26E80 - Lo168B9% ..0.50100 - 0-.37318.. 028607
l1.C 0.6C000 1.60120 1.21434 (0.48880 0.37313 (0.28175
10 055000 - 1e67554...1.25849 . 0.47307 037313 __0.276C2__
1.0 0.50000 1.34G66 1l.30122 0.45368 0.37334 C(C.2686¢

] 0 0o DatS000-—-1e22338 1434233 0443050 Ca37390 --0+2594C_.—
1.0 0.4C000 1.09650 1.38159 0.40338 C0.37496 0.24791

el e O e 0635000 0968V — 1 w4187 - DeBT215__L0e37564. ..0:23382
1.0 (C.30080 083990 1.45347 0.33660 0.37902 0.21668

e L O 25000 . 0, F09GH N  A4BEARD 29646 - (38218 _0,19555
le€@ Ca20000 Q57701 1.51408 (0.25138 (0.38595 017096
— 1.C _0.1500C _0.44175__1.53878__0.20083_0.39021 _C.14C86 __
1.0 0.10000 0.30254 1.55840 (C.14286 0.39431 C.10434
1«0 -.0e0500C- 015666157036 007808 __0+39615___0.05860__
1.0 0. -0.00C0C 1.57080 (0.00C00 0.39270 0.0CCCC
] e 0 =0, 05000 =0.15666__1 . 57036 =0,07808 . _ 0.39615 —=0.,05860 .
l.C =0.1000C =0.30254% 1.55840 =0.143286 039431 =-C.10434
l.0-=0.15000_=0.44175 1.53878_ —0+20083__ 0435021 —0.14086__
leC -0.200060 =0457701 1.514C8 -0.25138 0.38565 -0.17096
le0 =0.2500C=0.70948 1.48542 =0.29646_..0.38215_=0.19595__
le0 -0.30000 =0.83990 1.45347 =C.33660 0437902 =Q0.21668
—el e =0 35000 =0.9687T8 -1 41874 =0.37215 __0.37664_=0.23382 ___
1.0 =0.4000C -1.09650 1.38159 =0.40338 037496 —-C.24791
leQ-=0.45C000_-=1.22338.1.24223 -0.43050_0.37390 -0.25940__
1eC =0.50C000 =1.34966 130122 =Ce45368 037334 —-0.268¢¢
o 1B -=Ne55000 =18 7554 1 ,25849. =0.47T307T. 0437313 70.276062___
1.0 =G.60C00 —-1.6012C 1.21434 -0.48880 (0.37313 =-C.28175
1o =0.65000_=1,.72680 1.2889% =0.50100.0.39318.=0.2860C7___
1LeC =~Co70000 ~1485246 1.12248 =0.50978 C.37310 —-C.28S17
10 ~0eT5C00.=1e9783) __1.C7510_=0e51526___0.37274_—=042912C__
1.0 -0.80C00 =2.10445 1.C26S5 =0.51754 (0.37192 =C.29227
1 el . —0e85000_=2.23C099 _0.97816_=0.51¢674_0.37050_~0.2924¢ __
1.0 -0.9GG00 =-2.35801 0.92889 —-0.51298 0.36830 —C.29181
— 10 =0.92000=2.40897 0.90907 =0.51067 __0.361717_=0.29132
le0 —0.54C00 =2.46C03 0.88920 =-0.50791. 0C.36589 —=0.29C7C
. 1eC ~Ce95000_—2.48560___0.87925 _-0.50636__0.36519 ~-0.29035__
1.0 =0.96000 -2.51119 0.86626 =-0.50471 0.36444 —-(0.2866G6
1ol —0.98B000 =2.56245__0.84934 _-0.50107__0.36282._~-0.2890C8 __
leC =0.99990 =2.61358 0.82947 =0.49703 0.36103 -0.28808
1eC =0.50000_=1,.34964 1.30122 =0.45368 L.37334 =0.2686%
leC 016670 0.48730 1.53102 (0.21837 '0.38876 Hel51585
— 1e0_083330__2.18868B._0.69452 051735 __0.37105_.0.2924S __
l1.C =0.62500 -1.6640C 1.19178 =0.49533 (0.37316 —-C0.28407
0 1eC.-m0.12500.=0e37274. . 1.54932_=0.17323__.0.36235_=0.12351 __
1.0 0327500 1.03277 140044 (0.38829 0.37572 Qe24122
1.0 0.87800 2.29443 (0.95358 (£.515823  0.36950 (£.29223
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S X N2 )L n2z A23 Ne4 A2S
1eC Ge99990 3.56768 06472 027190 0£.14582 0.09CC6
LeC Da95000 . 2% 13 565785 0623171 0.11316 008284
1.C 0.90000 2.30004 0.64604 G 18676 0.07932 'C.03495
1 el Ce85000.-1.83635...0.62939.. G313 747 . 0.04493-.0.00668__
1.C 0.80600 1.31322 0.60803 (€.08422 C.01054 -C.C2178
el 2B D THOO0 - QBIT27.-0458213 Q02751 -~0,02330 ~0.05028...
1.0 0.70C00 0.34848 0455191 -0.03251 -0.05601 ~0.07871
-1 40 = Ve 65600..~0,09305-.-0481T63 =0+09506.-~0.08701--0+108696 -
1«C 0.6000C =0.50723 (0.47960 =0.15971 =0.11574 ~0.1350C
—lall 0555000 —0,83389 __0.42820 —=0422589 —0:14159 =C.16270 7
1.0 0.50000 -1.25278 1229386 -0.29299 -0.16398 —-C.1902¢
—-1e0 -=0e45000-~1e58361--Ca347C9 —0.36035-~0.18228.~0.21744% .-
1.C 0.4C0C0 —-1.88597 (0.29850 =0.42722 -0.19585 =0.2443C
vl @0 0 3500Q =2415933..0.24882. =0.49278-~0.20400_—-0,27078
1.0 0.30000 -2.40301 0.19889 —-0.55609 -0.20595 =-0.2967¢
—l e 00+ 250002461605 — 0+ 14975 =0+61606—=0.20082—=0.32203——
1.0 0.20000 -2.79735 0,.,1C0287 -0.67135 -C.18754 ~0.34618
—1l.C.. 0e15000.-2.94503._..0.05998.-0.72018.-0,16465.-G.36844_
1.0 0.10000 -3.05630 0.02395 -0.75985 =0.12982 -0.38717
—1le0.. 0+05000.-3.12505_ 0.C0087 _~0.78448.=C.C7758..-0.39759 __
1.0 0. -3.14159 ~-0.C0CC0 =-0.78540 =-0.C0000 =0.2927C
—1.0 =0.05800 - =3,12505 =0.C0087—=0.78448___ 0.07758_=0.39759___
l.0 -0.10000 -3.05630 -0.02395 -0.75G685 " 0.12982 ~-0.38717
—-1e0-~0e15000.—=2.94503 ~0.05998 ~0.72018__0.16465_-~0.36844___
1.0 -0.20000 =-2.79735 -0.10287 -C.67135 0.18754 —-0.3461€
—1.C ~0.25000——2.61609. =0.14979_—0.61E06__0,20082_—~0.322203__.

1.0 -0.306600 ~-2.40301 -0.
—]l e Ge=0-+-35030=2-15933 =

1.0 -0.4C000 -1.88597 -0.
— L oD 45000 —=L.58386] 0.
1.0 -0.50000 ~1.25278 -0.
—}_ . O~7-O. 55000———0.89389—-—100
1.0 -0.60000 =0.50723 ~0.

0N

— A —

1.0 -0.70060 {(.34848 -0.

~——1e0-~0+75000 -—_D:81727--0,58213-..0.02741 -

le€@ =0s8U3000 "1.31323 —Q.
.«l.OM~O.8SOOO__1.83635¢~O.

+-65000—=0.09305 =0,

16889 =0.55609 0.20595 -0.2967¢
-24882——=0..49278—0,.20400=0.27078——
26850 -0.42722 0.19585 =-0.24430
34709 =0+36035-0.18228_~0.21744.__
29386 —-0.29299 ©0.16398 —-0.19026

43820 =04.22589 __0.14159 —0.16277——
47960 ~0.15971 0.11574 -0.135G60C
£1763=0.09506_—_0.08701—=0.10696—
55191 =0.03251 0.05601 -0.G7871
0.02330_-0.05028.___
60803 0.08422 -C.01054 -0.0217¢
£2939 (013747 ~-0.04493___C.00668__

1.0 =0.9G000 «38664 -0.64604 (0.18676 —0.07933 0.034S5
__L+C_mﬂﬁﬂgﬂbu__2~olAﬁl__C*bJ135__C420528 =0.09296 .. 0.04616
l1eC -0a94000 2.84645 -0.65588 0.22308 -0.10647 C.05730
—1eCm0e95000-—-296413 =0.65785 023171 =0.11316...0.06284__
1.0 -0.9600C 3.08290 -C0.65962 0.24015 =C.11981 0.C6835
el e 0-=0e58000—3.32372 =0.66258-. 0.25645 =0.13296-- 0.07929 -
1eGC —0.99990 3.56768 —-0.€66472 0.27190 -0,14582 0.09C0s
—~—lel-=0.,50000-—=1.25278 =0.29386.-=0,.29299 _0.16398 _=0.19026__
1e0 0416670 -2.89958 0.0737L —-0.70473 -0.17348 -0.36129

el 2 B0 B3 B30l HEHHL O

$§2277 012011 0,03342 ~0.00281L -

10 ~0+562500 -0.,302357 -0.49906 —0.12715 016170 =0.1210C1
—1e0-=0.12500--=3.00546-=0.04086_ —-0.74139 . 0.14893 ~0.37841
1.6 0.37500 -2.02631 0.27375 -0.46022 ~0.20065 =0.25760
1.0 0.87500 2 . 10R10 0 _63831 (0.16264  (0.06217 (0.02085
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S X A31 h32 A33 24 h35
1.0 0e9999C 3.191067 =-0.04346 —0.24492 -0.24953 =0.2262¢
1.0 0.95C00 1.83055 =0.09275 ~0.29244 -0.27585 =0.2453¢
1.0 0.90000 0.64585 -0.13954 =-0.,23547 -0,29541 -0.25567
1o 085000 ~0a36797..r0:283124 .~0a3729) ~D.3UT4T_ =B.25897 __
1¢C 0.80000 =1.21934 -0.22253 =0+40387 —-0.31150 =-G.2582¢
1.0 0475000 =1.91667 =C.25671 =Ce42755 ~0.30712 =-0.25065
1.0 Q.7C000 -2.46840 -0.284178 ~0.44329 -0.29410 =-0.23736
_ . 1aC 065000 ~2.88202 ~0<3C591 —-C.450355 ~(.27237 —Q.21884
1.C 0.66000 =-3.16908 -0.31941 —-0.44897 -0.24203 ~-0.19551
le0 (55000 ~3..33520_~0.32470_-0.43836_~0.20335_~0.16802___
1.0 0.50000 -3.39015 =0.32138 =0.41871 -0.15681 -0.13715
_ 1«0 0.45000 ~3.34281 =0.30925 -0.39024 -0.1C3C7 -0.10377
l.C 0.40C00 -3.20229 -0.728835 ~0,35345 =0.043204 -C.0689¢
. la0 0Qa«350800 -2.97794 -0.25901 -0.30910 0.02212 =-0.03365
1.0 0.30000 —2.67948 =-0.22196 -C.25836 0.09093 -C.00GC23 .
e Lol 0625000 2431710 _-0.17839_~0.,20285._0.16151___C.03041___
1.0 0.20000 -1.90168--0.15023 =-0.14483 (0.22140 0.05572
~1.C 0415000 =1.44522 —-0.08043 —-0.08758 0.29727 0.07266& .
1.¢ 0.10000 -0.961706 -0.03392 =0.03619 0.35407 0.C7658
—~1.C. 0.05000.-0.47091 -0.C0130 -C.00136 _0.39127 (Q.05741 _
1.C 0. =0.0000C -0. 0.000C0 ©€.29270 (G.CCCCC
10 =0.05000_0.47C091 _=0.C0130__C.00136__C.35127_=0.05741___
1.C'=-0.10000 0.96170 =0.03392 C.03619 0.35407 —-C.07658¢
= 1eC.-0.15000_..1.44522.-0.08043 _0.08758__C.29727_-0.07266 ___
1.0 -0.2C000 1.90168 -0.13023 (0.14483 0.23140 -0.05572
~-1aC . =-0.25000 .2.3171C -0.17839__.0.20285_ 0.1¢151 —-0.03C41
1.0 -0.3C000 2.67948 -0.22196 (0.25836 0.09093 (0.00023
— 1.0 =0.35000__.2.97794_=0.25901__0.30610__ ¢.02212__0C.03365___
1.0 —0.4000C 3.20229 -0.28835 0.35345 -0.04304 0.0689¢
ol a0_o~0.45000_._.3.34281 -0+30925 __ 0329024 —-0.10307__0.10377
1«0 -0.5C0000 339015 =-0.32138 -0+41871 -G.15681 (.l3715
el 90 =0: 55000333521 =0532470..Q«43836.~0.20335_..0s16803___
1.0 =0.6000C 3.16908 -0.21941 0.44897 -C.24203 Q.19551

— 1.0 _=0.65000__2.88302_=0.30591__0.45055_~0.27237__0.21884___

1.0 -0.7CC00 2.46840 =5.28478 (0.44329 -0.29410 G.2373S
—laC_=0.75000....1.91667. -0.25671.__0.42755 -0,30712__0.250¢e5___
1.0 -0.80000 1.21934 -0.22253 0.40387 -0.31150 (0.25826
—-1e0_—0.85000_ 0.36797 —-D.18314_ 0.37291 ~0.3C747 _0.25G97 _ _
1.0 -0.9000C -0.64585 —-0.13954 0.33547 -0.29541 0.25567
1.0 _~0.,92000_=1.09876_~-0.12114__0.31887 _—0.28845__0.2522&____
1.0 -5.94000 =-1.57954 -0.10231 0.30145 -0.28033 (C.2479C
-~ 1.0_-0.G65000 ~1.8B3055_ -0.09275_ . 0.29244 —-0.27585  Q0.2453¢ _
140 =0.56000 -2.08874 -0.08310 Q.28325 —-0.27110 0Q.24256

1.0 =0.98000 —-2.62689 -0.06360__0.26435 -0.26079 0.23636
1.0 -0.99990 -3.19162 -0.04396 0.24492 -0.24953 0.22926

— 1.0 -0.5C000__3.39015 -0.32138___ C.41871 —-0.15681__ C.13715_
1.C 0.1¢670 -1.60144 -0.09700 —-C0.10636 C€.27597 (C.06817

_1aC _. 0483330 -0.66998_-0,19682_-0.38401 —-C.30973 -0.26C07__

1.0 -0.62500 3.04158

. 1.0.=0.12500__1.20583__

1.6 G.37500 =3.10000

-0.31365 Q0.45088 -0.25826 0.20774
=0.05633 _ 0.06071 _ 0.32724 -0.07665 ___
=0.27470 —0.33216 -0.01101 -0.05136

—1.Q 0.87500 0.1131811 =Q,1618Q =0.35495 -0.3024] =0.25857
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S A A4l Nt 2 AG 3 A44 A4 E
el 0O«$959C 2.9C285 -Ce26279 —0.26268 -0+16631% -0s131S8
1.0 0.55CCC C.65941 =C2451G9 =0.228¢&4 =N.14655 -0.C615C
l1s0 DB«9CCCC ~04G4503 =C22627 -0.19979 =0.CS9973 ~C.04¢EET
1.0 0.850CC =2.065€627=-C.194G1 =-3.15649 =0.C4768 =C.CCCCa—
le 0.8CCCC ~2.081912 -C.15634 ~C.10741 C.CC75S C.C4ati4
1.0 0.75CCC -2,17885 -C.11210 ~-C.05449 (C.0€6393 (C.0G182
le@ ©B«TCELE =Bul23aE9 =CaL064033 D0VeCCC11 QW©:L11985 C.l13277
1.0 "G.65CCC =3.043C5 =C.01421 0.05408 " 0Q.17062 0.167¢7
la0 ©a€CCLC -2:6CcES C0350868 0410499 0.21633 0.154¢€2
L0 T OSRBEICT=2wiaban T CaUBIBET OGTIEERY 0L25396 T a2ilsl
1le0 0.5CC0C0 ~1.454¢&1 Ca12218 0.18790 G0C.28147 C.21&C7
"1.0  0.45C0C -C.BC642 C.15507 (215267 (0.297C7 (€.21165
1a@ ©Ce40CCC ~C.0951&6 G177l 04232532 0429934 0.,16ZEC
10 "0.35CCC C.56280 "C.lEEO08 0.23216 C€C.2€736 0.16C41
l. C.3CCCG 1.23623 C.18466 (0.21621 0.2€¢087 QC.l1521
Tie0 Ge2300C 181435 Q. l8811L U 15183 C.Z22075 C.Gses0
1.0 0:.20CC0 2.29714 C«13471 0.15063 <C€.16886 -C.CCTZ5
1207 0.15CCC 2.67232 C.CS105 0.09937 C.1C851 ~-C.CT77178
1e0 0.1CCCC 2493179 C.04165 (04446 (.C4748 -C.145€4
"1.0 C.C5CCC 3.08057 C.C0172 C.COlE0 C.C818G6 =-C.16427
1.0 GC. 3.14159 -C.C0C00 -0.CCCCO -C.CCCGCQ -0.1G€325
1. 0T=0L 05000 2L.08057T-0L.C01727 C.001807-0.00189 =0.15437
1.0 -0.1CCCC 2.G3179 -CeC4165 C(Cue04446 -0.04748 ~C.145¢€4

"1le0 T -0.15CCN T2.6723272 =C.06105 0.09937 -0.10851"=-0.C7778 —

“1e0 =0.20CCC 2.25714 =C.13471 0,15063 =C.1£866 =C.CCT725

" 1e07-Ce25CC0 1481433 -Cul€671 0419163 -0.22075 C.05E50
1.0 -0.3CCCC 1.22923 -C.18466 (0.216921 -0.26C97 (C.llc21

"1.0 -0,.,35CC0  (.56280"-C.18E08 0.23216 -0.2€735 0.léc4a1
1e0 =-0.4CCCC -C.06516 -C.17771 0.23053 -0.26934 0.1528C

160 =0.45CCC ~G.8C642 =Ce15507 0421526 =0.29707 C.21165

l.o

1.0

~C.5CCCO
T1e0 =0455CCC T-2,12545 =C.C8136"
-C.6CCCC
1. 0T=0.€65CCC=32.043C5

LelQ ~iCwiCCLL

-1.46461 -C.12218 (C.1879Q

-2.0268% -C.03506 0U.104499

~3.2246% C.06403 0.0C011

-0.28147

~') ¢ 11805

0.21EC7

0.15039 -0.2£5366 0.211S81

C.1G4¢2

Ce01421 0L.C5408 —=CL170627 C 1767

0.13277

1.0 =0.75CCC =3.17E85 C.11210 -0.05449 =0.C€2932  0.061827

l. -OOSCCCC

-2.81912 C.15634 -0.10741

=C.CC755

"0.C4684

T1e0 T -0.85CCC =2.065€72 CualG491 =-0.15€49 C.C4768 =-C.CCCCE

leG =0.GCCCC =0494503 C€.22627 -0.16S79 Q.0S973 -C.04€87
1.0 =0.52CCC =0 35037 C.23651 =0.215107 0.11919 =C.0&5Cs
1eC =0.84CCC Ce32769 C«24533 -0+22914 012770 -C.CB2E4
"1.C 7 -0.55CCCTT0.665941 0.24G1G -0.235€4 0.146557-C.081507
1.0 -C.5&CCC l.09368 C.25268 -C.24179  0.15513 =C.1CCCC
10 =0.68CCCT 1495217 C.25852-0.253C07 0.17136=0.11€44
140 -0.65590C 2.90285 (£.26279 -0.26265 O0.18631 -0.13168
Tl CT=0VSTCT o =Le4S4€6L =0 122l 8™ Q18790 =0.2€8147 C.21eCT
l.0 0.16670 2.559¢€6 «.1C¢67 0.11732 0.12915 -0.C54Cé
Tl.07 0.8333G =2.38157 -C.18B276 -0.14065 -0.C2548  C.C1l5€8
1«0 =0.625C0 -2.87110 -C.01064 (C.08007 -0.16435 (C.18225
T1.07=0.125CC 2.81l¢€€6 =C.C6648 0.07174=C.C77457=0.11271
1.0 G.375CC C€.25072. C.18454 0.23312 0.2¢518 0.17€25
1.0 0.875CC =1.57780 -C.211I58 =0.17€ST =C0.07424 -C0.0232¢€2
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S X Ad1 AGCZ AO 3 AC4H AOS
1e2 099990 1.82638 C.85896 (068228 0.63090 0.62844
le2 D95C00 . 1L.84072 0.92535 C.72095 . 0.66509 0C.66195
1.2 0.90000 1.85792 0.59564 GC76099 070132 0.69774

—la2 _0.85000__1.8783 96.__CGeT73601._
le2 0.80000 1.90235 1.14907 0Q.84612 0.78153 0.7772¢8
o102 -~ 0ad5C00..-1.9306L--~-123321 -.0.,89200 -0.82670 .. 082215
le2z 0.70000 1.96378 1.322318 0.94083 0.87630 C.87139
1le2 - 0.65000...2.00277 ..1.41989 ..0.993243. 0.93140. 0.92603
l.2 0.60000 2.04874 1.52451 1.05G094 ($.99344 (0.98749

—1.2-0.550002,10329._1.63871 _1.11496___1.06443__1.05780._
le2 0.50000 2.16868 1.76482 1.18792 1.14731 1.14006
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APPENDIX 4.

Tables of C ‘™ and s &) 5 Section 3, Part III.
m m

R,(B) R (p) R, (p)
cy? = 4. 08181 ot = —2. 79420 cot? = -1, 25926
c, %= 0. 42090 ¢, < _o. 24261 c,®) = _o. 24657
c,% = _2. 02739 ¢, = -0. 79307 c,%) = -0. 56473
c,{% = -0, 16202 ¢, = ~0. 00904 ¢, = -0. 00304
c %= o.15225 c, 1) = —0. 02945 c,'? = _0. 02611
¢ % = -0. 02309 ¢, "= cs(z’ = 0.
c %= o.00326 A G B = o,
SnEO) =l sl 2,0 ] smf” = 0. (m=L2,...) sniz) = 0. (m=1,2,...)
R,(B) R ,(B) R (p)
o = 4.08181
¢, = 0. 42090 s, = 0.31632 5,157 = ~0. 40807
¢, = _2. 02739 s,/ = 1, 24215 5, = _0. 26714
c,?) = -0, 16202 s, = _0. 12137 5, = 0. 21549
64(3) = 0.15225 s, = -0. 01830 34(5) = 0.03044
c5(3) = -0. 02309 35(4) = -0. 04067 55(5) = 0.09550
C6(3) = 0.00326 56(4) = -0.00383 56(5) = 0.01577

srrf3)= 6. Bl Boens § cn(:": 0. (mzo,l,z,...)cngs’z 0, [r=0,1,2,0ex )
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APPENDIX 4 (cont'd.)

R (B) Ro(B) Rg(PB)
cot?) = -3.61963
c,®) = 1.46974 5,7 = 1.50595 s, = 1.00755
c,) = -1. 06303 52(7’ = 0.04600 s, = 0.72053
03(6’ - 0.07831 s, = 0. 05229 s,®) = -0. 03182
c4(6) = -0.03876 5,7 = -0. 00101 s, = 0. 05085
sm“” = 0. (mslZies) cnf;” = 0. (m=0,1,2,ues )crfls’ = On Geis0,1, 2y )




