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ABSTRACT 

Transcription factor p53 is the most commonly altered gene in human cancer.  As 

a redox-active protein in direct contact with DNA, p53 can directly sense oxidative stress 

through DNA-mediated charge transport.  Electron hole transport occurs with a shallow 

distance dependence over long distances through the π-stacked DNA bases, leading to the 

oxidation and dissociation of DNA-bound p53.  The extent of p53 dissociation depends 

upon the redox potential of the response element DNA in direct contact with each p53 

monomer.  The DNA sequence dependence of p53 oxidative dissociation was examined 

by electrophoretic mobility shift assays using radiolabeled oligonucleotides containing 

both synthetic and human p53 response elements with an appended anthraquinone 

photooxidant.  Greater p53 dissociation is observed from DNA sequences containing low 

redox potential purine regions, particularly guanine triplets, within the p53 response 

element.  Using denaturing polyacrylamide gel electrophoresis of irradiated 

anthraquinone-modified DNA, the DNA damage sites, which correspond to locations of 

preferred electron hole localization, were determined.  The resulting DNA damage 

preferentially localizes to guanine doublets and triplets within the response element. 

Oxidative DNA damage is inhibited in the presence of p53, however, only at DNA sites 

within the response element, and therefore in direct contact with p53.  From these data, 

predictions about the sensitivity of human p53-binding sites to oxidative stress, as well as 

possible biological implications, have been made.  On the basis of our data, the guanine 

pattern within the purine region of each p53-binding site determines the response of p53 

to DNA-mediated oxidation, yielding for some sequences the oxidative dissociation of 
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p53 from a distance and thereby providing another potential role for DNA charge 

transport chemistry within the cell.  

To determine whether the change in p53 response element occupancy observed in 

vitro also correlates in cellulo, chromatin immunoprecipition (ChIP) and quantitative 

PCR (qPCR) were used to directly quantify p53 binding to certain response elements in 

HCT116N cells.  The HCT116N cells containing a wild type p53 were treated with the 

photooxidant [Rh(phi)2bpy]3+, Nutlin-3 to upregulate p53, and subsequently irradiated to 

induce oxidative genomic stress.  To covalently tether p53 interacting with DNA, the 

cells were fixed with disuccinimidyl glutarate and formaldehyde.  The nuclei of the 

harvested cells were isolated, sonicated, and immunoprecipitated using magnetic beads 

conjugated with a monoclonal p53 antibody.  The purified immounoprecipiated DNA 

was then quantified via qPCR and genomic sequencing.  Overall, the ChIP results were 

significantly varied over ten experimental trials, but one trend is observed overall: greater 

variation of p53 occupancy is observed in response elements from which oxidative 

dissociation would be expected, while significantly less change in p53 occupancy occurs 

for response elements from which oxidative dissociation would not be anticipated.  

The chemical oxidation of transcription factor p53 via DNA CT was also 

investigated with respect to the protein at the amino acid level.  Transcription factor p53 

plays a critical role in the cellular response to stress stimuli, which may be modulated 

through the redox modulation of conserved cysteine residues within the DNA-binding 

domain.  Residues within p53 that enable oxidative dissociation are herein investigated.  

Of the 8 mutants studied by electrophoretic mobility shift assay (EMSA), only the C275S 

mutation significantly decreased the protein affinity (KD) for the Gadd45 response 
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element.  EMSA assays of p53 oxidative dissociation promoted by photoexcitation of 

anthraquinone-tethered Gadd45 oligonucleotides were used to determine the influence of 

p53 mutations on oxidative dissociation; mutation to C275S severely attenuates oxidative 

dissociation while C277S substantially attenuates dissociation.  Differential thiol labeling 

was used to determine the oxidation states of cysteine residues within p53 after DNA-

mediated oxidation.  Reduced cysteines were iodoacetamide labeled, while oxidized 

cysteines participating in disulfide bonds were 13C2D2-iodoacetamide labeled.  Intensities 

of respective iodoacetamide-modified peptide fragments were analyzed using a QTRAP 

6500 LC-MS/MS system, quantified with Skyline, and directly compared.  A distinct 

shift in peptide labeling toward 13C2D2-iodoacetamide labeled cysteines is observed in 

oxidized samples as compared to the respective controls.  All of the observable cysteine 

residues trend toward the heavy label under conditions of DNA CT, indicating the 

formation of multiple disulfide bonds potentially among the C124, C135, C141, C182, 

C275, and C277.  Based on these data it is proposed that disulfide formation involving 

C275 is critical for inducing oxidative dissociation of p53 from DNA. 
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