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Abstract

The current power grid is on the cusp of modernization due to the emergence of distributed gener-

ation and controllable loads, as well as renewable energy. On one hand, distributed and renewable

generation is volatile and difficult to dispatch. On the other hand, controllable loads provide signifi-

cant potential for compensating for the uncertainties. In a future grid where there are thousands or

millions of controllable loads and a large portion of the generation comes from volatile sources like

wind and solar, distributed control that shifts or reduces the power consumption of electric loads in

a reliable and economic way would be highly valuable.

Load control needs to be conducted with network awareness. Otherwise, voltage violations and

overloading of circuit devices are likely. To model these effects, network power flows and voltages

have to be considered explicitly. However, the physical laws that determine power flows and voltages

are nonlinear. Furthermore, while distributed generation and controllable loads are mostly located

in distribution networks that are multiphase and radial, most of the power flow studies focus on

single-phase networks.

This thesis focuses on distributed load control in multiphase radial distribution networks. In

particular, we first study distributed load control without considering network constraints, and then

consider network-aware distributed load control.

Distributed implementation of load control is the main challenge if network constraints can be

ignored. In this case, we first ignore the uncertainties in renewable generation and load arrivals, and

propose a distributed load control algorithm, Algorithm 1, that optimally schedules the deferrable

loads to shape the net electricity demand. Deferrable loads refer to loads whose total energy con-

sumption is fixed, but energy usage can be shifted over time in response to network conditions.

Algorithm 1 is a distributed gradient decent algorithm, and empirically converges to optimal de-

ferrable load schedules within 15 iterations.

We then extend Algorithm 1 to a real-time setup where deferrable loads arrive over time, and

only imprecise predictions about future renewable generation and load are available at the time

of decision making. The real-time algorithm Algorithm 2 is based on model-predictive control:

Algorithm 2 uses updated predictions on renewable generation as the true values, and computes a

pseudo load to simulate future deferrable load. The pseudo load consumes 0 power at the current
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time step, and its total energy consumption equals the expectation of future deferrable load total

energy request.

Network constraints, e.g., transformer loading constraints and voltage regulation constraints,

bring significant challenge to the load control problem since power flows and voltages are governed

by nonlinear physical laws. Remarkably, distribution networks are usually multiphase and radial.

Two approaches are explored to overcome this challenge: one based on convex relaxation and the

other that seeks a locally optimal load schedule.

To explore the convex relaxation approach, a novel but equivalent power flow model, the branch

flow model, is developed, and a semidefinite programming relaxation, called BFM-SDP, is obtained

using the branch flow model. BFM-SDP is mathematically equivalent to a standard convex re-

laxation proposed in the literature, but numerically is much more stable. Empirical studies show

that BFM-SDP is numerically exact for the IEEE 13-, 34-, 37-, 123-bus networks and a real-world

2065-bus network, while the standard convex relaxation is numerically exact for only two of these

networks.

Theoretical guarantees on the exactness of convex relaxations are provided for two types of net-

works: single-phase radial alternative-current (AC) networks, and single-phase mesh direct-current

(DC) networks. In particular, for single-phase radial AC networks, we prove that a second-order

cone program (SOCP) relaxation is exact if voltage upper bounds are not binding; we also modify

the optimal load control problem so that its SOCP relaxation is always exact. For single-phase mesh

DC networks, we prove that an SOCP relaxation is exact if 1) voltage upper bounds are not binding,

or 2) voltage upper bounds are uniform and power injection lower bounds are strictly negative; we

also modify the optimal load control problem so that its SOCP relaxation is always exact.

To seek a locally optimal load schedule, a distributed gradient-decent algorithm, Algorithm 9,

is proposed. The suboptimality gap of the algorithm is rigorously characterized and close to 0 for

practical networks. Furthermore, unlike the convex relaxation approach, Algorithm 9 ensures a

feasible solution. The gradients used in Algorithm 9 are estimated based on a linear approximation

of the power flow, which is derived with the following assumptions: 1) line losses are negligible;

and 2) voltages are reasonably balanced. Both assumptions are satisfied in practical distribution

networks. Empirical results show that Algorithm 9 obtains 70+ times speed up over the convex

relaxation approach, at the cost of a suboptimality within numerical precision.
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Chapter 1

Introduction

The power grid is at the cusp of modernization due to the emergence of controllable loads and

renewable generation. Controllable loads represented by electric vehicles have become a booming

industry: over 170,000 highway-capable electric vehicles have been sold in the US from 2008 to 2013,

and 16 electric vehicle models from 9 major manufacturers have been available in the US market by

March 2014 [107]. This trend is forecast to speed up as major vehicle manufacturers announce their

electric vehicle plans [8,47,99]. Renewable generation capacity has enjoyed an annual growth rate of

10–60% since 2004, e.g., the annual growth rate of wind generation capacity is 24% and the annual

growth rate of solar generation capacity is 60%. In 2010, renewable energy consumption already

occupies 16.7% of the total world energy consumption [105].

The adoption of controllable loads and renewable generation brings integration challenges to the

power grid. If not coordinated wisely, the charging of electric vehicles may lead to coincidence peaks

in electricity demand [62]. Consequently, power transmission/distribution lines carry much larger

currents and power transformers are loaded much more heavily. As a result, circuit device lifespan

will be greatly reduced [87], and network voltages will deviate significantly from their nominal

values [30]. Renewable generation is not dispatchable. Furthermore, it can fluctuate severely within

a short time frame, making the balance between electricity generation and demand fragile and

electricity blackouts more likely.

Distributed load control can mitigate these integration challenges. For example, the charging

of electric vehicles can be coordinated to compensate for the random fluctuations in renewable

generation, and reactive power injections of solar photovoltaics (considered as negative loads) can

be adjusted to stabilize network voltages. Consequently, frequency and voltage regulations can be

achieved with less participation of the expensive ancillary services and power electronic devices.

Finally, loads are located throughout the network. These millions devices can only be controlled in

a distributed way.
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1.1 Distributed Load Control

Load control falls into two categories: 1) direct load control, where a centralized load serving entity

determines when and how much each load consumes electricity [41, 45, 53, 75]; and 2) price-based

control, where the centralized load serving entity alters the electricity prices to incentivize the loads

to change their behavior [5,26,70]. Direct load control has the merits of obtaining reliable responses

while price-based control has to deal with uncertain human behavior. Hence, this thesis focuses on

distributed direct load control mechanisms.

A distributed direct load control mechanism has to deal with the following three issues among

others. 1) Since loads are controlled in a distributed manner, it is nontrivial to achieve system-level

objectives. 2) Loads may have nonconvex constraints, e.g., a load may consume a fixed amount of

power when it is turned on and the only flexibility in controlling the load is to decide when to turn it

on. Such constraints are integer constraints and make the load control problem NP-hard in general.

3) A real-world load control mechanism requires a real-time implementation due to the uncertainties

in renewable generation and load arrivals.

To minimize system-level objectives in a distributed way, we propose a gradient-decent algorithm:

Algorithm 1 in Chapter 2. Algorithm 1 assumes full knowledge of renewable generation and load,

and describes an iterative procedure where a centralized coordinator and a number of deferrable

loads negotiate on the power consumption schedules over a period of time. In each iteration, the

coordinator computes the gradients of the objective with respect to each load, and each load updates

its schedule by moving along the negative direction of the gradient. We prove that Algorithm 1

converges to global minimizers of the objective function in Theorem 2.8, and case studies in Section

2.4 verify that Algorithm 1 converges to optimal load schedules within 15 iterations.

To handle nonconvex load constraints, a randomized algorithm based on the martingale theory

is proposed in [45] (it is not included in this thesis since it is not related to other chapters of the

thesis). It is proved in [45] that the randomized algorithm converges almost surely to certain load

schedule, whose suboptimality is upper bounded by O(1/n) where n is the number of loads.

Model-predictive control is adopted to obtain a real-time distributed load control algorithm:

Algorithm 2 in Chapter 3. At each time step, Algorithm 2 computes a load schedule over a time

horizon into the future, but only implements the schedule for the first time slot. In computing the

schedule, renewable generation is approximated by its up-to-date prediction, and future deferrable

loads are simulated by a pseudo load. The pseudo load consumes 0 power at the first time slot, and

its total energy consumption equals the expected total energy request of future deferrable loads. Due

to its advantage of using up-to-date predictions, the average suboptimality of Algorithm 2 vanishes

as the time horizon expands (see Theorem 3.3). It is proved in [27] that the typical suboptimality of

Algorithm 2 is within a constant time of the average suboptimality. The improvement of Algorithm
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2 over the optimal static control is O(T/ lnT ) for two representative cases (see Corollary 3.10 and

3.11), where T is the length of the time horizon.

1.2 Optimal Power Flow

Load control has to be implemented taking into account of network constraints. For example, a load

schedule should not cause transformer overloads or severe voltage deviations. To capture network

power flows and voltages, the underlying physical laws have to be considered. These laws turn out

to be nonlinear and complicate optimization problems involving power flow constraints.

Approaches to handle nonlinear power flow equations fall into three categories. 1) Approximate

power flow equations by linear equations. 2) Look for local optima. 3) Consider convex relaxations

that can be solved in polynomial time and check if the solutions are feasible and hence optimal for

the original problem.

Within the scope of linear approximation, a DC approximation is adopted in the industry to

estimate the real power flows in balanced transmission networks [7, 94, 95]. However, DC approxi-

mation only provides estimates for real power flows but not estimates for reactive power flows nor

voltages. Furthermore, DC approximation does not apply to unbalanced multiphase networks, which

are the typical configurations of distribution networks. A linear approximation of the power flows

in multiphase radial networks that provides accurate estimates of the voltages, real power flows,

and reactive power flows is provided in Section 4.4. Empirical studies in Section 4.5.2 show that

the proposed linear approximation obtains voltage estimates within 0.0016 per unit from their true

values.

A variety of nonlinear programming techniques have been applied to obtain a local optimum of

the underlying optimization problem, e.g., [11, 21, 32, 59, 78, 92, 100]. These algorithms respect non-

linear power flow equations and obtain physically implementable solutions if they converge, but can

be computationally inefficient in comparison with the linear approximation approach. Besides, the

suboptimality is difficult to quantify. The distributed algorithm Algorithm 9 proposed in Chapter 5

is an algorithm of this type, but with similar computational complexity as the linear approximation

approach and a quantifiable suboptimality gap. In particular, the suboptimality gap provided in

Theorem 5.12 is close to zero for practical networks. Algorithm 9 is a gradient-decent algorithm,

with gradients approximated using the linearization of power flow proposed in Section 4.4. More-

over, Algorithm 9 is a distributed algorithm. Numerical studies in Section 5.5 show that a serial

implementation of Algorithm 9 achieves 70+ times speedup over the convex relaxation approach.

The convex relaxation approach seeks to minimize the objective over a convex superset of the

original feasible set. In general, only a lower bound on the optimal objective value can be obtained;

but in practice, the optimal solution of a convex relaxation usually lands in the original feasible set.
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In such cases, the convex relaxation is called exact and a global optimum of the original problem

can be recovered. There are three major questions in exploring this convex relaxation approach. 1)

What is the form of the convex relaxation? 2) Is there a numerically stable algorithm to solve the

convex relaxation that scales to large problem sizes? 3) When is a convex relaxation exact?

To answer question 1), a standard semidefinite programming relaxation referred to as standard-

SDP has been proposed in the literature for single-phase mesh networks [10]. Though a distribution

network is typically multiphase and radial [63], it has a single-phase mesh equivalent circuit [29,

60] and therefore standard-SDP is applicable [33]. By exploiting the radial network topology, an

equivalent SDP relaxation called BIM-SDP is proposed in Section 4.2 that reduces the computational

complexity from O(n2) for standard-SDP to O(n) for BIM-SDP, where n is the number of lines in

the network.

To answer question 2), an SDP relaxation BFM-SDP that enhances the numerical stability of

BIM-SDP is proposed in Section 4.3. BIM-SDP is ill-conditioned due to subtractions of voltages

that are close in value, and BFM-SDP avoids such subtractions by adopting different variables to

attain numerical stability.

To answer question 3), we prove that BIM-SDP is exact if and only if BFM-SDP is exact in

Theorem 4.9, and show that BFM-SDP is numerically exact for the IEEE 13, 34, 37, 123-bus

networks and a real-world 2065-bus network in Section 4.5.1. We also provide theoretical guarantees

for the exactness of convex relaxations of the optimal power flow problem for two types of networks:

single-phase radial alternative-current (AC) networks and single-phase mesh direct-current (DC)

networks. In particular, for single-phase radial AC networks, we prove that a second-order cone

programming (SOCP) relaxation is exact if voltage upper bounds are not binding (see Theorem

6.2); for single-phase mesh DC networks, we prove that a similar but different SOCP relaxation

is exact if voltage upper bounds are not binding (see Theorem 7.4), or voltage upper bounds are

uniform with strictly negative power injection lower bounds (see Theorem 7.5). For each type of

network, a modified optimal power flow problem is proposed that has an exact SOCP relaxation

(see Section 6.3 and 7.5, respectively). The modified problems are obtained by imposing additional

linear constraints on the power injections such that voltage upper bounds do not bind.

1.3 Thesis Overview

The thesis is organized as follows.

1. Chapters 2 and 3 focus on distributed load control without network awareness. In particular,

Chapter 2 focuses on offline scheduling of distributed loads and Chapter 3 focuses on real-time

control of distributed loads. Chapter 2 is based on [44] and Chapter 3 is based on [46].
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2. In Chapters 4 and 5, we explore methods for solving OPF. In particular, Chapter 4 introduces

power flow models for multiphase radial networks and develops two convex relaxations of the

optimal power flow problem and a linear approximation of the power flow. It is based on [43].

Chapter 5 develops a distributed gradient-decent algorithm for solving the optimal power flow

problem, and has not been published yet.

3. In Chapters 6 and 7, we provide sufficient conditions for the exactness of convex relaxations

for two types of networks: single-phase radial AC networks (Chapter 6) and single-phase mesh

DC networks (Chapter 7).

For single-phase radial AC networks, it is proved in Chapter 6 that an SOCP relaxation is exact

if voltage upper bound constraints do not bind. Based on this sufficient condition, a modified

OPF problem is proposed by imposing additional linear constraints on power injections such

that voltage upper bounds do not bind. The additional constraints only eliminate OPF feasible

points that are close to voltage upper bounds, and guarantees the exactness of SOCP.

For single-phase mesh DC networks, it is proved in Chapter 7 that an SOCP relaxation is

exact if either voltage upper bounds do not bind, or voltage upper bounds are uniform with

power injection lower bounds being strictly negative. A similar additional linear constraints

on power injections can be imposed to ensure the exactness of the SOCP.
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Chapter 2

Distributed Load Control

A distributed algorithm that optimally schedules deferrable electric loads represented by electric

vehicles (EV) is presented in this chapter. We first formulate EV charging scheduling as an opti-

mal control problem, whose objective is to impose a generalized notion of valley-filling, and study

properties of optimal charging profiles. We then give a distributed algorithm to iteratively solve

the optimal control problem. In each iteration, EVs update their charging profiles according to the

control signal broadcast by a centralized coordinator, and the coordinator alters the control signal to

guide their updates. Simulation results verify that the algorithm converges to optimal EV charging

schedules within 15 iterations.

Literature A variety of algorithms have been proposed in the literature to coordinate the charging

of EVs, ranging from centralized algorithms where a coordinator makes decisions for the EVs [85,86,

98, 102] to distributed algorithms where each EV makes its own decisions [23, 44, 76, 88]. Note that

distributed algorithms may still require coordinators to facilitate the communication among EVs.

Centralized algorithms are mainly for cost-benefit analysis purposes when the number of EVs is

large, since the computation burden would be too heavy for a single computation unit. In [102], a

large number of operational distribution networks in The Netherlands are investigated to quantify the

impact of EV charging on various network levels. Results show that controlled charging can reduce

infrastructure update investment by half over uncontrolled charging. In [85], uncontrolled charging

and smart charging of EVs are compared empirically to highlight that a second peak electricity

demand during the night can be avoided by adopting smart charging. In [98] and [86], centralized

linear programmings are proposed to compute the optimal charging profiles of EVs. In [98], the

linear programming aims to minimize the power supply cost subject to circuit capacity constraints

and the vehicle owner’s requirements. The linear programming in [86] further includes a power

network physical model that captures voltage deviations.

By distributing the computation burden among different units, a distributed algorithm is more

suitable for scenarios where a large number of EVs need to be coordinated. In [76], a distributed
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algorithm is proposed to schedule the charging of EVs such that the aggregate electricity demand

is made flat. It is proved in [76] that when the EVs are identical, the obtained aggregate electricity

demand will be optimal in the sense that it is as flat as possible. This notion of optimal aggregate

electricity demand is formalized in [44] which proposes a different distributed algorithm that always

attains optimality. The algorithms proposed in [23, 88] take another perspective: instead of trying

to flatten the aggregate electricity demand, they seek to minimize the charging cost given a pre-

determined electricity price profile by solving a dynamic programming at each EV.

Summary The contribution of this chapter is a distributed EV charging scheduling algorithm that

converges to optimal charging profiles. The algorithm is iterative. In each iteration, EVs update

their charging profiles according to the control signal broadcast by the utility company, and the

utility company alters the control signal to guide their updates. Imperfect information about non-

EV load and EV arrivals is considered in Chapter 3, and power flows are considered in Chapters

4–7.

The rest of the chapter is organized as follows. Section 2.1 formulates EV charging scheduling as

an optimal control problem. Section 2.2 studies properties of optimal charging profiles. Section 2.3

provides a distributed algorithm to iteratively solve the optimal control problem, and proves that

the algorithm converges to optimal charging profiles. Case studies are presented in Section 2.4.

2.1 Problem Formulation

This chapter studies the design and analysis of EV charging scheduling algorithms to flatten the

aggregate electricity demand. Throughout, we consider a discrete-time model over a finite time

horizon. The time horizon is divided into T time slots of equal length and indexed 1, . . . , T . In

practice, the time horizon could be one day and the length of a time slot could be 10 minutes.

Let base load b = {b(τ)}Tτ=1 denote the aggregate of non-EV load and assume that b is precisely

known by the load serving entity. In practice, base load b is a stochastic process due to the uncertainty

in both demand and renewable generation. This will be studied in the next chapter.

Consider a setting where n EVs arrive over the time horizon, each requiring a certain amount

of electricity by a given deadline. We use EV and deferrable load interchangeably in this thesis.

Assume that the load serving entity can negotiate with the EVs on their charging profiles over the

time horizon even if EVs have not arrived for charging. Imperfect information about the arrival

times and electricity requirements of these EVs will be considered in the next chapter.

For each EV, its arrival time and deadline, as well as other constraints on its power consumption,

are captured via upper and lower bounds on its possible power consumption during each time.

Specifically, let i = 1, 2, . . . , n denote these EVs. The power consumption of EV i at time t, denoted
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by pi(t), must be between given lower and upper bounds p
i
(t) and pi(t), i.e.,

p
i
(t) ≤ pi(t) ≤ pi(t), i = 1, . . . , n, t = 1, . . . , T. (2.1)

These are specified exogenously to our algorithms. For example, if an electric vehicle plugs in

with level II charging, then its power consumption must be within [0, 3.3]kW, i.e., p
i
(t) = 0 and

pi(t) = 3.3; if it is not plugged in (has either not arrived yet or has already departed), then its power

consumption is 0kW, i.e., p
i

= pi = 0. Further, we assume that an EV i must withdraw a fixed

amount of energy Pi by its deadline, i.e.,

T∑

t=1

pi(t) = Pi, i = 1, . . . , n. (2.2)

The objective of EV charging control is to “flatten” the aggregate load p0 = {p0(t)}Tt=1 that the

substation draws from the main grid [52], which equals

p0(t) = b(t) +

n∑

i=1

pi(t), t = 1, . . . , T (2.3)

assuming power loss is negligible. This objective is captured by minimizing the variance

V (p0) :=
1

T

T∑

t=1

(
p0(t)− 1

T

T∑

τ=1

p0(τ)

)2

(2.4)

of aggregate load p0.

To summarize, the optimal deferrable load control (ODLC) problem is as follows. Let T :=

{1, 2, . . . , T}, N := {0, 1, . . . , n}, and N+ := N\{0} for convenience.

ODLC: min
∑

t∈T

(
p0(t)− 1

T

∑

τ∈T
p0(τ)

)2

over pi(t), i ∈ N , t ∈ T ;

s.t. p0(t) = b(t) +

n∑

i=1

pi(t), t ∈ T ; (2.5a)

p
i
(t) ≤ pi(t) ≤ pi(t), i ∈ N+, t ∈ T ; (2.5b)
∑

t∈T
pi(t) = Pi, i ∈ N+. (2.5c)

In the ODLC problem (2.5), the objective is simply the variance V (p0) of the aggregate load p0,

and the constraints correspond to equations (2.3), (2.1), and (2.2), respectively.
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Discussion on the Objective. The objective function in (2.5) can be simplified. Note that

∑

t∈T
p0(t) =

∑

t∈T
b(t) +

n∑

i=1

Pi =: P

is a constant that does not depend on (p1, . . . , pn). Hence, the objective can be simplified as

∑

t∈T

(
p0(t)− 1

T

∑

τ∈T
p0(τ)

)2

=
∑

t∈T
p2

0(t)− 1

T
P 2

and it suffices to minimize

L(p0) :=
∑

t∈T
p2

0(t).

Remarkably, if f : R 7→ R is strictly convex, then minimizing

Lf (p0) :=
∑

t∈T
f(p0(t))

is equivalent to minimizing L(p0), as stated in the following theorem. Let p := (p0, p1, . . . , pn).

Theorem 2.1. Let f be strictly convex. Then

p∗ ∈ argmin L(p0)

s.t. (2.5a)− (2.5c)
⇐⇒

p∗ ∈ argmin Lf (p0)

s.t. (2.5a)− (2.5c).

Theorem 2.1 implies that the objective in (2.5) can be changed to Lf (p0) for arbitrary strictly

convex f without changing its optimal solutions.

Proof. We prove that p∗ ∈ argmin Lf (p0) implies p∗ ∈ argmin L(p0). The proof of p∗ ∈ argmin L(p0)

implies p∗ ∈ argmin Lf (p0) is similar and omitted for brevity.

Let p∗ be a minimizer of Lf (p0), then

(p∗1, p
∗
2, . . . , p

∗
n) ∈ argmin

∑

t∈T
f

(
b(t) +

n∑

i=1

pi(t)

)
s.t. (2.5b)− (2.5c).

This is equivalent to

n∑

i=1

∑

t∈T
f ′(p∗0(t))[pi(t)− p∗i (t)] ≥ 0 ∀(p1, . . . , pn) satisfying (2.5b)− (2.5c).

according to the first order optimality condition. Note that (2.5b)–(2.5c) are decoupled in terms of
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(p1, p2, . . . , pn). Hence, if we define

Pi :=

{
pi ∈ RT | p

i
(t) ≤ pi(t) ≤ pi(t),

∑

t∈T
pi(t) = Pi

}

for i ∈ N+, then
∑

t∈T
f ′(p∗0(t))[pi(t)− p∗i (t)] ≥ 0 ∀pi ∈ Pi

for i ∈ N+.

It follows that for each i ∈ N+, there exists µi such that

p∗i (t) =




pi(t) if f ′(p∗0(t)) < µi

p
i
(t) if f ′(p∗0(t)) > µi.

Since f is strictly convex, f ′ is strictly increasing. Therefore, there exists λi such that

p∗i (t) =




pi(t) if p∗0(t) < λi

p
i
(t) if p∗0(t) > λi.

It follows that
∑

t∈T
p∗0(t)[pi(t)− p∗i (t)] ≥ 0 ∀pi ∈ Pi

for i ∈ N+, and therefore

n∑

i=1

∑

t∈T
p∗0(t)[pi(t)− p∗i (t)] ≥ 0 ∀(p1, . . . , pn) satisfying (2.5b)− (2.5c).

This is the first order optimality condition for

(p∗1, p
∗
2, . . . , p

∗
n) ∈ argmin

∑

t∈T

(
b(t) +

n∑

i=1

pi(t)

)2

s.t. (2.5b)− (2.5c),

i.e., p∗ is a minimizer of L(p0). This completes the proof of Theorem 2.1.

Remark 2.1. If the objective is to track a given load profile G rather than to flatten the total

load profile, then the objective function in (2.5) can be modified as
∑
t∈T [p0(t)−G(t)]

2
. This is

equivalent to having a base load b−G.

2.2 Optimal Charging Profile

We study properties of optimal charging profiles in this section.
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Definition 2.1. A charging profile p = (p0, p1, . . . , pn) is

1) feasible, if it satisfies the constraints (2.5a)–(2.5c);

2) optimal, if it solves the ODLC problem (2.5);

3) valley-filling, if it is feasible, and there exists A ∈ R such that

p0(t) =

[
A− b(t)−

n∑

i=1

p
i
(t)

]+

, t ∈ T .

Property 2.2. A valley-filling charging profile is optimal.

Proof. Consider the relaxed optimal deferrable load control (R-ODLC) problem

R-ODLC: min
∑

t∈T

(
p0(t)− 1

T
P

)2

over p0(t), t ∈ T ;

s.t.
∑

t∈T
p0(t) = P ; (2.6a)

p0(t) ≥ b(t) +

n∑

i=1

p
i
(t), t ∈ T . (2.6b)

For any feasible charging profile p = (p0, p1, . . . , pn) of (2.5), p0 is feasible for the R-ODLC problem

(2.6). Besides, the objective function of (2.5) evaluated at p equals the objective function of (2.6)

evaluated at p0. Therefore, if p0 solves (2.6), then p solves (2.5).

It can be verified that for any valley-filling charging profile p = (p0, . . . , pn), p0 solves (2.6).

Hence, p solves (2.5).

Let Fi :=
{
pi | pi ≤ pi ≤ pi,

∑
t∈T pi(t) = Pi

}
denote the set of feasible pi for i ∈ N+, and F

denote the feasible set of the ODLC problem (2.5).

Property 2.3. Optimal charging profiles exist if feasible charging profiles exist, i.e., F 6= ∅.

Proof. It is straightforward to verify that the set F is compact and that the objective function in

(2.5) is continuous. Hence, optimal solutions of (2.5) exist.

Valley-filling is our intuitive notion of optimality. However, it is not always achievable. For

example, the “valley” in the base load may be so deep that even if all EVs charge at their maximum

rate, the valley still cannot be completely filled, e.g., at 4:00 in Figure 2.1 (right). Besides, EVs may

have stringent deadlines such that the potential for shifting the load over time to yield valley-filling

is limited. Defining optimal charging profiles as solving the ODLC problem (2.5) generalizes valley-

filling according to Properties 2.2 and 2.3: valley-filling charging profiles are optimal, e.g., Figure
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Figure 2.1: Base load profile is the average residential load in the service area of Southern California
Edison from 20:00 on February 13, 2011 to 9:00 on February 14, 2011 [2]. Optimal total load profiles
correspond to the solutions of the ODLC problem (2.5). With different EV specifications, optimal
charging profiles can be valley-filling (left figure) or non-valley-filling (right figure). Hypothetical
non-optimal total load profiles are shown in purple with dash-dot lines.

2.1 (left); while valley-filling charging profiles do not always exist, optimal charging profiles always

exist, e.g., Figure 2.1 (right). We now define an equivalence relation between two charging profiles,

and show that the set of optimal charging profiles is an equivalence class of this relation.

Definition 2.2. Two feasible charging profiles p = (p0, . . . , pn) and p′ = (p′0, . . . , p
′
n) are equivalent

if p0 = p′0. We denote this relation by p ∼ p′.

20:00 0:00 4:00 8:00

lo
a
d

20:00 0:00 4:00 8:00

lo
a
d

Figure 2.2: An example of equivalent charging profiles. In both top and bottom figures, the red
region corresponds to the charging profile of one EV, and the blue region corresponds to the charging
profile of another EV. The total load profiles in both figures equal, therefore the charging profiles in
both figures are equivalent.

An example of equivalent charging profiles is given in Figure 2.2. It is not difficult to check that
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∼ is an equivalence relation (satisfies reflexivity, symmetry, and transitivity [103]), and therefore we

can define an equivalence class {p′ ∈ F| p′ ∼ p} for each p ∈ F . Let

O := {p ∈ F | p is optimal}

denote the set of optimal charging profiles.

Theorem 2.4. Assume feasible charging profiles exist, i.e., F 6= ∅. Then the set O of optimal

charging profiles is non-empty, compact, convex, and an equivalence class.

Proof. The set O is nonempty according to Property 2.3. Let popt ∈ O, and define

O′ := {p′ ∈ F | p′ ∼ popt}.

It can be verified that O′ is closed and convex. Since F is compact, the set O′—a closed subset of

F—is also compact. Hence, O′ is non-empty, compact, convex, and an equivalence class.

We are left to prove that O = O′. It is not difficult to check that O′ ⊆ O, and we prove O ⊆ O′

as follows. For any p ∈ O, it follows from the first order optimality condition [18, Ch. 4.2.3] that

〈popt
0 , p0 − popt

0 〉 ≥ 0, 〈p0, p
opt
0 − p0〉 ≥ 0

since both popt and p minimize L(p0) over F . It follows that

〈p0 − popt
0 , p0 − popt

0 〉 ≤ 0

and therefore p0 = popt
0 . Hence, p ∈ O′ and it follows that O ⊆ O′.

Corollary 2.5. Optimal charging profile is in general not unique.

To summarize, defining optimal charging profiles as the profiles that minimize the load variance

generalizes valley-filling. With this definition, optimal charging profiles always exist and coincide

with valley-filling charging profiles if valley-filling charging profiles exist.

2.3 Distributed Scheduling Algorithm

A distributed scheduling algorithm that solves the ODLC problem (2.5) is provided in this section.

By distributed, we mean that EVs choose their own charging profiles, instead of being instructed

by a centralized coordinator. The coordinator only uses control signals, e.g. electricity prices, to

guide EVs in choosing their charging profiles. By scheduling, we mean that all EVs are available for

negotiation at the beginning of the scheduling horizon (even though they are not necessarily available
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for charging as reflected by the time-varying p1, . . . , pn). The EVs and the coordinator carry out an

iterative procedure at the beginning of the scheduling horizon to determine the charging rates for

each of the time slots t ∈ T in the future.

2.3.1 The Optimal Distributed Charging Algorithm

The distributed algorithm for solving (2.5) is presented in Algorithm 1, which we call the optimal

distributed charging (ODC) algorithm. The superscripts denote iteration indices, e.g., c(k) denotes

the control signal in iteration k.

Algorithm 1 Optimal distributed charging

Input: The coordinator knows the base load b, the number n of EVs, and stopping criteria ε. Each
EV i ∈ N+ knows its charging requirement Pi and bounds (p

i
, pi) on its charging rates.

Output: Each EV i ∈ N+ computes its own vector pi.

1: each EV i ∈ N+ initializes its charging profile as p
(0)
i ← 0 and sends p

(0)
i to the coordinator;

2: k ← 0;
3: the coordinator calculates control signal c(k) as

c(k) ← 1

n
p

(k)
0 =

1

n

(
b+

n∑

i=1

p
(k)
i

)
; (2.7)

4: if k ≥ 1 and
∥∥c(k) − c(k−1)

∥∥ ≤ ε, the coordinator broadcasts a stop signal for each EV to go to
Step 7);
otherwise the coordinator broadcasts c(k) to all EVs;

5: each EV i ∈ N+ calculates a new charging profile p
(k+1)
i as

p
(k+1)
i ← argmin

〈
c(k), pi

〉
+

1

2

∥∥∥pi − p(k)
i

∥∥∥
2

s.t. pi ∈ Fi; (2.8)

and sends p
(k+1)
i to the coordinator;

6: k ← k + 1; go to Step 3);

7: each EV i ∈ N+ sets final solution pi ← p
(k)
i ;

Coordinator 

EV 1 EV n 

p1 pn c 

Figure 2.3: Schematic view of the information flow between the coordinator and the EVs. Given
the control signal c, EVs update their charging profiles pi independently. The coordinator guides
their updates by altering the control signal c.

Figure 2.3 shows the information exchange between the coordinator and the EVs for Algorithm

1. Given the control signal c broadcast by the coordinator, EVs update their charging profiles pi

independently, and report the updated charging profiles to the coordinator. The coordinator alters

the control signal c according to the received charging profiles. In practice, the control signal c can
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be, e.g., electricity prices.

There are two main steps (3) and (5) in Algorithm 1. In Step (3), the coordinator updates control

signal c according to (2.7). Higher prices are set for slots with higher load, to incentivize the EVs to

shift their electricity consumption to slots with lower load. In Step (5), EVs update their charging

profiles to minimize the objective function in (2.8), which consist of two terms: the first term is

the electricity cost and the second term penalizes the deviation of pi from the charging profile p
(k)
i

calculated in the previous iteration. The penalty term ensures the convergence of Algorithm 1, and

vanishes as k →∞ (see Theorem 2.10). Hence, (2.8) reduces to the electricity cost as k →∞.

We now prove that Algorithm 1 converges to optimal charging profiles. Let the superscript k for

each variable denote its respective value in iteration k. For example, p
(k)
0 = b +

∑
i∈N p

(k)
i denotes

the total load profile in iteration k.

Lemma 2.6. Let i ∈ N+ and k ≥ 1. Then

〈
c(k), p

(k+1)
i − p(k)

i

〉
≤ −

∥∥∥p(k+1)
i − p(k)

i

∥∥∥
2

. (2.9)

Proof. Fix an arbitrary i ∈ N+ and an arbitrary k ≥ 1. The first order optimality condition for

(2.8) implies that 〈
c(k) + p

(k+1)
i − p(k)

i , pi − p(k+1)
i

〉
≥ 0 (2.10)

for all pi ∈ Fi. Note that p
(k)
i ∈ Fi. Hence,

〈
c(k) + p

(k+1)
i − p(k)

i , p
(k)
i − p

(k+1)
i

〉
≥ 0,

which implies (2.9).

Lemma 2.7. Let i ∈ N+ and k ≥ 1. Then

p
(k+1)
i = p

(k)
i ⇐⇒

〈
c(k), pi − p(k)

i

〉
≥ 0 for pi ∈ Fi. (2.11)

Lemma 2.7 follows from (2.10) and the strict convexity of (2.8).

Theorem 2.8. Charging profile p(k) converges to the set O of optimal charging profiles, i.e.,

p(k) → O, k →∞.
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Proof. Note that

L
(
p(k+1)

)
− L

(
p(k)

)
=
〈
p

(k+1)
0 , p

(k+1)
0

〉
−
〈
p

(k)
0 , p

(k)
0

〉

= 2
〈
p

(k)
0 , p

(k+1)
0 − p(k)

0

〉
+
∥∥∥p(k+1)

0 − p(k)
0

∥∥∥
2

= 2n

〈
c(k),

n∑

i=1

(
p

(k+1)
i − p(k)

i

)〉
+

∥∥∥∥∥
n∑

i=1

(
p

(k+1)
i − p(k)

i

)∥∥∥∥∥

2

≤ 2n

n∑

i=1

〈
c(k), p

(k+1)
i − p(k)

i

〉
+ n

n∑

i=1

∥∥∥p(k+1)
i − p(k)

i

∥∥∥
2

≤ − n
n∑

i=1

∥∥∥p(k+1)
i − p(k)

i

∥∥∥
2

≤ 0 (2.12)

for k ≥ 1. The first inequality is due to the Cauchy-Schwarz theorem, and the second inequality is

due to Lemma 2.6. It is easy to check that L(p(k+1)) = L(p(k)) if and only if p(k+1) = p(k).

If p(k+1) = p(k), then it follows from Lemma 2.7 that 〈c(k), pi−p(k)
i 〉 ≥ 0 for i ∈ N+ and pi ∈ Fi.

Therefore,
n∑

i=1

〈
2p

(k)
0 , pi − p(k)

i

〉
= 2n

n∑

i=1

〈
c(k), pi − p(k)

i

〉
≥ 0 (2.13)

for p = (p0, . . . , pn) ∈ F . This is the first order optimality condition for p(k) to solve (2.5). Hence,

p(k) ∈ O. On the other hand, if p(k) ∈ O, then L(p(k)) ≤ L(p(k+1)) ≤ L(p(k)). To summarize,

L
(
p(k+1)

)
= L

(
p(k)

)
⇐⇒ p(k+1) = p(k) ⇐⇒ p(k) ∈ O.

Finally, the facts that F is compact, every p ∈ O minimizes L, and L(p(k+1)) < L(p(k)) if p(k) /∈ O

imply that p(k) → O as k →∞.

Definition 2.3. A charging profile p is stationary, if p(k) = p for some k ≥ 0 implies p(m) = p for

all m ≥ k.

Corollary 2.9. A charging profile p is stationary if and only if it is optimal.

Corollary 2.9 follows from the fact that p(k+1) = p(k) if and only if p(k) ∈ O, which is shown in

the proof of Theorem 2.8.

Theorem 2.10. Let popt be an optimal charging profile and copt = popt
0 /n be the corresponding

control signal. Then

• total load profile converges to the optimal value, i.e., p
(k)
0 → popt

0 as k →∞;

• control signal converges to the optimal value, i.e., c(k) → copt as k →∞;

• charging profile update vanishes, i.e.,
∥∥∥p(k+1)

i − p(k)
i

∥∥∥→ 0 as k →∞ for i ∈ N+.
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Proof. According to Theorem 2.8, there exists a sequence {p̂(k)}k≥1 ∈ O of optimal charging profiles

such that ‖p(k)− p̂(k)‖ → 0 as k →∞. Note that O is an equivalence class of popt. Hence, p̂
(k)
0 = popt

0

for k ≥ 1. Therefore, p
(k)
0 → popt

0 as k →∞. It follows that c(k) → copt as k →∞.

It follows from (2.12) that L(p(k+1)) − L(p(k)) ≤ −n∑n
i=1 ‖p

(k+1)
i − p(k)

i ‖2 for k ≥ 1. Besides,

limk→∞ L(p(k+1))− L(p(k)) = 0. Hence, limk→∞ ‖p(k+1)
i − p(k)

i ‖ → 0 for i ∈ N+.

Theorem 2.8 shows that the sequence p(0), p(1), . . . , p(k), . . . converges to the optimal set O, while

Theorem 2.10 shows that the sequences p
(0)
0 , p

(1)
0 , . . . , p

(k)
0 , . . . and c(0), c(1), . . . , c(k), . . . converge to

the optimal values popt
0 and copt, respectively. Since charging profile updates

∥∥∥p(k+1)
i − p(k)

i

∥∥∥ vanish

as k →∞ for all EVs, the objective function in (2.8) approximates the electricity cost after a certain

number of iterations.

The EV update (2.8) is equivalent to p
(k+1)
i = argminpi∈Fi

∥∥∥pi −
(
p

(k)
i − c(k)

)∥∥∥
2

for i ∈ N+ and

k ≥ 0. Hence, Algorithm 1 can be interpreted as a gradient projection method [15, Ch. 3.3.2].

Remark 2.2 (extensions). Algorithm 1 converges in the presence of communication delay if the

control signal c is scaled down [41]. Besides, Algorithm 1 can be modified to incorporate nonconvex

load constraints [45].

2.4 Case Studies

We verify the optimality of Algorithm 1 through case studies in this section. In particular, we

compare Algorithm 1 with the algorithm proposed in [75], in homogeneous and non-homogeneous

cases. Homogeneous cases refer to the cases where EVs have the same p
i
, pi, and Pi (all EVs plug in

for charging at the same time, have the same deadline, need to charge the same amount of electricity,

and have the same maximum charging rate); and non-homogeneous cases refer to cases where p
i
,

pi, and Pi are not necessarily identical for all EVs. The algorithm proposed in [75] is referred to as

MCH—name initials of the authors, and Algorithm 1 is referred to as ODC for convenience.

Uncertainty about the base load and EV arrivals are not considered in this chapter, i.e., it is

assumed that all EVs are available for negotiation at the beginning of the scheduling horizon, and

that the coordinator predicts the base load exactly. These assumptions are relaxed in Chapter 3.

Power network constraints are not considered in this chapter, i.e., voltage and line constraints may

be violated and power loss is ignored. This restriction will be addressed in Chapter 4–7.

We choose the average residential load profile in the service area of South California Edison from

20:00 on February 13, 2011 to 9:00 on February 14, 2011 as the base load profile per household.

According to the typical EV charging characteristics [56], we assume that an EV can be charged

at any rate from 0 to 3.3kW, after it plugs in and before its deadline. We consider the penetration

level of 20 EVs in 100 households. The scheduling horizon is from 20:00 to 9:00 the next day, and is
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divided into 52 slots of 15 minutes. During each time slot, the charging rate of an EV is a constant.

The parameters of Algorithm MCH are chosen as p(x) = 0.15x2, c = 1, and δ = 0.15. The parameter

of Algorithm ODC is chosen as ε = 10−3.
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Figure 2.4: All EVs plug in at 20:00 with deadline at 9:00 on the next day, and need to charge
10kWh electricity. Multiple purple dash-dot curves correspond to the total load profiles in different
iterations of Algorithm MCH.

Homogeneous case Although Algorithm ODC obtains optimal charging profiles irrespective of

the EV specifications, we simulate the homogeneous case to compare it against Algorithm MCH. In

this example, all EVs plug in at 20:00 with deadline at 9:00 the next morning, and need to charge

10kWh electricity. Figure 2.4 shows the average total load profiles per household in each iteration of

Algorithm ODC and MCH. Both algorithms converge to a valley-filling profile. Moreover, Algorithm

ODC converges with a single iteration.
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Figure 2.5: All EVs plug in at 20:00 with deadline at 9:00 on the next day, but need to charge
different amounts of electricity that is uniformly distributed between 0 and 20kWh.

Different electricity consumption Figure 2.5 shows the average total load profile per household

at convergence of Algorithm ODC and MCH in a non-homogeneous case, where EVs need to charge

different amounts of electricity. Algorithm ODC still converges to a valley-filling profile in a few

iterations, while Algorithm MCH does not. The optimality proof provided in [75] does not seem to

extend straightforwardly to non-homogeneous cases.
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Figure 2.6: All EVs need to charge 10kWh electricity, but plug in at different times (uniformly
distributed between 20:00 and 23:00) with different deadlines (uniformly distributed between 6:00
to 9:00 on the next day).

Different plug-in times and deadlines Figure 2.6 shows the average total load profiles per

household at convergence of Algorithm ODC and MCH in another non-homogeneous case, where

EVs plug in at different times with different deadlines. Algorithm ODC still converges to a valley-

filling profile in a few iterations, while Algorithm MCH converges to a total load profile that is

significantly lower around 6:00 to 9:00. This is because Algorithm MCH uses a penalty term to limit

the deviation of the individual EV charging profiles from the average charging profile. EVs plug in at

different times with different deadlines, but are forced to follow the same charging profile. Algorithm

ODC changes the “deviation from the average penalty” to the “deviation from the previous iteration

penalty”. While preserving convergence, Algorithm ODC no longer imposes different EVs to follow

a common average charging profile, therefore successfully deals with the heterogeneity in charging

deadlines. In fact, Theorem 2.8 implies that Algorithm ODC always obtains optimal charging

profiles, even if the EVs plug in at different times, have different deadlines, charge different amounts

of electricity, and have different maximum charging rates.

2.5 Conclusions

We have proposed a distributed algorithm that schedules EV charging to optimally fill the valley in

electricity demand. The EV charging scheduling problem has been formulated as an optimal control

problem, and a gradient projection type distributed algorithm is proposed accordingly to solve the

problem. The algorithm is iterative. In each iteration, each EV updates its own charging profile

according to the control signal broadcast by a centralized coordinator, and the coordinator guides

their updates by altering the control signal. We have proved that the algorithm converges to optimal

charging profiles irrespective of the specifications of EVs.
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Chapter 3

Real-Time Distributed Load
Control

Real-time load control has the potential to compensate for the random fluctuations of renewable

generation, by reducing or shifting the power consumption of electric loads in response to generation

fluctuations. In this chapter, a real-time distributed algorithm that schedules deferrable loads to

reduce the deviation of aggregate load (load minus renewable generation) from some externally

specified target is proposed. At every time step, the algorithm minimizes the expected deviation to

go with updated predictions on renewable generation and deferrable load arrivals. We prove that

suboptimality of the algorithm vanishes quickly as prediction horizon expands. Further, we evaluate

the algorithm via trace-based simulations.

Literature A number of distributed deferrable load control algorithms have been proposed in the

literature. Some of these algorithms are evaluated based on simulations [4,55,77], while some others

have theoretical performance guarantees [41, 75]. In particular, the algorithm proposed in [75] is

optimal if electric vehicles are identical, and the algorithm proposed in [41] achieves optimality even

if electric vehicles are not identical.

However, the algorithms proposed in [4,41,55,75,77] do not consider the uncertainties in renew-

able generation and deferrable load arrivals. In practice, only predictions of these quantities are

known ahead of time, and the impact of prediction errors can be dramatic, e.g., see Figure 3.3.

Algorithms that consider the uncertainties in renewable generation or/and deferrable load arrivals

have also been proposed in the literature. Most of these algorithms are evaluated with simulation-

based studies, e.g., [22,31,34], while some are provided with analytic performance guarantees [28,72,

97]. For example, the algorithm proposed in [28] proposes an algorithm that achieves the optimal

competitive ratio in the case where renewable generation is precisely known (and constant). The

algorithm proposed in [72] also has certain worst-case performance guarantees.

While the algorithms proposed in [28, 72, 97] are analyzed with a “worst-case” perspective, this
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chapter focuses on the “average-case” perspective to highlight the value of prediction.

Summary The goal of this chapter is to propose a real-time distributed deferrable load control al-

gorithm that incorporates uncertain predictions on deferrable load arrivals and renewable generation.

In particular, contributions of the chapter are threefold.

First, we model renewable generation prediction evolution as a Wiener filtering process [106] (see

Section 3.1.1), that is able to model any zero-mean and stationary prediction error.

Second, we propose a real-time distributed algorithm (Algorithm 2) for deferrable load control in

the presence of uncertainties (in Section 3.2), that reduces the deviation of aggregate load (load minus

renewable generation) from some externally specified target profile. At every time step, Algorithm 2

minimizes the expected deviation to go with up-to-date predictions on deferrable load arrivals and

renewable generation. A key technique is the introduction of a pseudo load, that is simulated at the

centralized coordinator to represent future deferrable load arrivals.

Third, we analyze the expected deviation achieved by Algorithm 2 and provide trace-based simu-

lations. In particular, the theorems in Section 3.3 characterize the impact of prediction inaccuracies

on the expected deviation. As time horizon expands, the expected deviation approaches the optimal

value (Corollary 3.7), and the performance gain of Algorithm 2 increases over the optimal open-loop

control (Corollary 3.10, 3.11). Trace-based simulations in real-world settings are provided in Section

3.4 to validate the analytic results, highlighting that Algorithm 2 obtains a small suboptimality even

under high uncertainties, and improves significantly over the optimal open-loop control.

3.1 Model Overview and Notation

This chapter studies the design and analysis of real-time deferrable load control algorithms to com-

pensate for the random fluctuations of renewable generation. In the following we present a model for

this scenario that includes renewable generation, non-deferrable loads, and deferrable loads, which

are described in turn.

Throughout, we consider a discrete-time model over a finite time horizon. The time horizon is

divided into T time slots of equal length and indexed 1, . . . , T . In practice, the time horizon could

be one day and the length of a time slot could be 10 minutes.

3.1.1 Renewable Generation and Non-Deferrable Load

We aggregate renewable generation and non-deferrable load into a single process, termed the base

load b = {b(τ)}Tτ=1, that is defined as the difference between non-deferrable load and renewable

generation. Renewable generation like wind and solar randomly fluctuates and is difficult to predict,

therefore b is a stochastic process.
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Figure 3.1: Diagram of the notation and structure of the model for base load, i.e., non-deferrable
load minus renewable generation.

To model the uncertainty of base load, we use a causal filter based model described as follows,

and illustrated in Figure 3.1. In particular, the base load at time τ is modeled as a random deviation

δb = {δb(τ)}Tτ=1 around its expectation b̄ = {b̄(τ)}Tτ=1. The process b̄ is specified externally to the

model, e.g., from historical data and weather report, and the process δb(τ) is further modeled as an

uncorrelated sequence of identically distributed random variables e = {e(τ)}Tτ=1 with mean 0 and

variance σ2, passing through a causal filter. Specifically, let f = {f(τ)}∞τ=−∞ denote the impulse

response of this causal filter and assume that f(0) = 1, then f(τ) = 0 for τ < 0 and

δb(τ) =

T∑

s=1

e(s)f(τ − s), τ = 1, . . . , T.

Given the model above, at time t = 1, . . . , T , a prediction algorithm can estimate the sequence e(s)

for s = 1, . . . , t, and predicts b as1

bt(τ) = b̄(τ) +

t∑

s=1

e(s)f(τ − s), τ = 1, . . . , T. (3.1)

Note that bt(τ) = b(τ) for τ = 1, . . . , t since f is causal.

This model allows for non-stationary base load through the specification of b̄ and a broad class

of models for uncertainty in the base load via f and e. In particular, two specific filters f that we

consider in detail later in the paper are:

Example 3.1. A filter with finite but flat impulse response, i.e., there exists ∆ ∈ (0, T ) such that

f(t) =





1 if 0 ≤ t < ∆

0 otherwise;

Example 3.2. A filter with an infinite and exponentially decaying impulse response, i.e., there exists

a ∈ (0, 1) such that

f(t) =




at if t ≥ 0

0 otherwise.

1This prediction algorithm is a Wiener filter [106].
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These two filters provide simple but informative examples for our discussion in Section 3.3.

3.1.2 Deferrable Load

To model deferrable loads we consider a setting where n deferrable loads arrive over the time horizon,

each requiring a certain amount of electricity by a given deadline. Further, a real-time algorithm

has imperfect information about the arrival times and sizes of these deferrable loads.

More specifically, we assume a total of n deferrable loads and label them in increasing order

of their arrival times by 1, . . . , n, i.e., load i arrives no later than load i + 1 for i = 1, . . . , n − 1.

Further, let n(t) denote the number of loads that arrive before (or at) time t for t = 1, . . . , T and

fix n(0) := 0. Thus, load 1, . . . , n(t) arrive before or at time t for t = 1, . . . , T and n(T ) = n.

For each deferrable load, its arrival time and deadline, as well as other constraints on its power

consumption, are captured via upper and lower bounds on its possible power consumption during

each time. Specifically, the power consumption of deferrable load i at time t, pi(t), must be between

given lower and upper bounds p
i
(t) and pi(t), i.e.,

p
i
(t) ≤ pi(t) ≤ pi(t), i = 1, . . . , n, t = 1, . . . , T. (3.2)

These are specified externally to the model. For example, if an electric vehicle plugs in with Level

II charging then its power consumption must be within [0, 3.3]kW. However, if it is not plugged in

(has either not arrived yet or has already departed) then its power consumption is 0kW, i.e., within

[0, 0]kW. Further, we assume that a deferrable load i must withdraw a fixed amount of energy Pi

by its deadline, i.e.,
T∑

t=1

pi(t) = Pi, i = 1, . . . , n. (3.3)

Finally, the n deferrable loads arrive randomly throughout the time horizon. Define

a(t) :=

n(t)∑

i=n(t−1)+1

Pi (3.4)

as the total energy request of all deferrable loads that arrive at time t for t = 1, . . . , T . We assume

that {a(t)}Tt=1 is a sequence of independent identically distributed random variables with mean λ

and variance s2. Further, let

A(t) :=

T∑

τ=t+1

a(τ) (3.5)

denote the total energy requested after time t for t = 1, . . . , T .

In summary, at time t = 1, . . . , T , a real-time algorithm has full information about the deferrable

loads that have arrived, i.e., p
i
, pi, and Pi for i = 1, . . . , n(t), and knows the expectation of future
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deferrable load total energy request E(A(t)). However, a real-time algorithm has no other knowledge

about deferrable loads that arrive after time t.

3.1.3 The Deferrable Load Control Problem

Recall that the objective of real-time deferrable load control is to compensate for the random fluc-

tuations in renewable generation and non-deferrable load in order to “flatten” the aggregate load

p0 = {p0(t)}Tt=1, which is defined as

p0(t) = b(t) +

n∑

i=1

pi(t), t = 1, . . . , T. (3.6)

In this chapter, we focus on minimizing the variance of the aggregate load p0, V (p0), as a measure

of “flatness”, that is defined as

V (p0) =
1

T

T∑

t=1

(
p0(t)− 1

T

T∑

τ=1

p0(τ)

)2

. (3.7)

To summarize, the optimal deferrable load control (ODLC) problem is as follows. Let T :=

{1, . . . , T}, N := {0, . . . , n}, and define N+ := N\{0}.

ODLC: min

T∑

t=1

(
p0(t)− 1

T

T∑

τ=1

p0(τ)

)2

over pi(t), i ∈ N , t ∈ T

s.t. p0(t) = b(t) +

n∑

i=1

pi(t), t ∈ T ; (3.8a)

p
i
(t) ≤ pi(t) ≤ pi(t), i ∈ N , t ∈ T ; (3.8b)

T∑

t=1

pi(t) = Pi, i ∈ N . (3.8c)

In the above ODLC problem (3.8), the objective is simply T times the variance of aggregate load,

V (p0), and the constraints correspond to equations (3.6), (3.2), and (3.3), respectively. We chose

V (p0) as the objective for ODLC because of its significance for microgrid operators [52]. However,

additionally, it is proved in Chapter 2 that the optimal solution does not change if the objective

function in (3.8) is replaced by f(p0) =
∑
t∈T U(p0(t)) where U : R→ R is strictly convex. Hence,

we can use V (p0) without loss of generality.
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3.2 Algorithm Design

Given the optimal deferrable load control (ODLC) problem defined in (3.8), the first contribution of

this chapter is to design an algorithm that solves the ODLC problem in real-time, given uncertain

predictions of base load and deferrable loads.

There are two key challenges for the algorithm design. First, the algorithm has access only to

uncertain predictions at any given time, i.e., at time t the algorithm only knows deferrable loads

1 to n(t) rather than 1 to n, and only knows the prediction bt instead of b itself. Second, even

if there were no uncertainty in predictions, solving the ODLC problem (3.8) requires significant

computational effort when there are a large number of deferrable loads.

Motivated by these challenges, in this section we design a distributed algorithm that provides

strong performance guarantees even when there are uncertainties in the predictions. The algorithm

we propose is built on Algorithm 1 in Chapter 2, which is distributed but assumes exact knowledge

(certainty) about base load and deferrable loads.

In this section, we adapt Algorithm 1 to the setting where there is uncertainty in base load and

deferrable load predictions, while maintaining strong performance guarantees. In particular, in this

section we assume that at time t, only the prediction bt is known, not b itself, and only information

about deferrable loads 1 to n(t) and the expectation of future energy requests E(A(t)) are known.

Algorithm statement: To adapt Algorithm 1 to deal with uncertainty, we replace the base

load b by its prediction bt in Algorithm 1.

However, dealing with the unavailability of future deferrable load information is trickier. To

do this we use a pseudo deferrable load, which is simulated at the coordinator, to represent future

deferrable loads. At each time t, we will predict the electricity demand pn+1(τ) of future deferrable

loads at times τ = t+ 1, . . . , T , and denote these forecasts by pn+1 := {pn+1(τ) | τ = t, . . . , T} with

pn+1(t) := 0. As will be seen in Algorithm 2, these forecast are chosen at each time t to minimize

the `2 norm of aggregate load, subject to the following (and other) constraints:

T∑

τ=t

pn+1(τ) = E(A(t)). (3.9)

We also assume that pn+1 is point-wise upper and lower bounded by some upper and lower bounds

pn+1 and p
n+1

, i.e.,

p
n+1

(τ) ≤ pn+1(τ) ≤ pn+1(τ), τ = t, . . . , T. (3.10)

Note that p
n+1

(t) = pn+1(t) = 0. The bounds p
n+1

and pn+1 should be set according to historical

data. Here, for simplicity, we consider them to be p
n+1

(τ) = 0 and pn+1(τ) =∞ for τ = t+1, . . . , T .

Given the above setup, the coordinator solves the following ODLC(t) problem at every time slot

t = 1, . . . , T to accommodate the availability of only partial information. Let N (t) := {0, 1, . . . , n(t)}
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and define N+(t) := N (t)\{0} for t = 1, 2, . . . , T . Let T (t) := {t, t+ 1, . . . , T} for t = 1, 2, . . . , T .

ODLC(t) : min
∑

τ∈T (t)

(
p0(τ)− 1

T − t+ 1

T∑

s=t

p0(s)

)2

over pi(τ), i ∈ N (t) ∪ {n+ 1}, τ ∈ T (t);

s.t. p0(τ) = bt(τ) +

n(t)∑

i=1

pi(τ) + pn+1(τ), τ ∈ T (t); (3.11a)

p
i
(τ) ≤ pi(τ) ≤ pi(τ), i ∈ N+(t) ∪ {n+ 1}, τ ∈ T (t); (3.11b)
∑

τ∈T (t)

pi(τ) = Pi(t), i ∈ N+(t) ∪ {n+ 1} (3.11c)

where Pi(t) = Pi −
∑t−1
τ=1 pi(τ) is the energy to be consumed at or after time t for i = 1, . . . , n(t);

and Pn+1(t) = E(A(t)) is the expected future energy request.

Now, adjusting Algorithm 1 to solve ODLC(t) gives Algorithm 2, which is a real-time, shrinking-

horizon control algorithm. Note that if base load prediction is exact (i.e., bt = b for t = 1, . . . , T )

and all deferrable loads arrive at the beginning of the time horizon (i.e., n(t) = n for t = 1, . . . , T ),

then ODLC(1) reduces to ODLC and Algorithm 2 reduces to Algorithm 1.
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Algorithm 2 Deferrable load control with uncertainty

Input: At time t, the coordinator knows the prediction bt of base load and the number n(t) of
deferrable loads. Each deferrable load i ∈ N+(t) knows its future energy request Pi(t) and
power consumption bounds (pi, pi). The utility sets stopping criteria ε.

Output: At time t, each deferrable load i ∈ N+(t) computes its own {pi(τ)}Tτ=t.
At time slot t = 1, . . . , T :

1: each old deferrable load i ∈ N+(t − 1) initializes its schedule {p(0)
i (τ)}Tτ=t as the schedule it

computes at time slot t− 1;

each new deferrable load i ∈ N+(t)\N+(t− 1) initializes its schedule {p(0)
i (τ)}Tτ=t as

p
(0)
i (τ)← 0, τ ∈ T (t);

2: k ← 0;

3: the coordinator computes pseudo load p
(k)
n+1 as

p
(k)
n+1 ← argmin

∑

τ∈T (t)


bt(τ) +

n(t)∑

i=1

p
(k)
i (τ) + pn+1(τ)




2

(3.12)

s.t. p
n+1

(τ) ≤ pn+1(τ) ≤ pn+1(τ), τ ∈ T (t);
∑

τ∈T (t)

pn+1(τ) = Pn+1(t);

the coordinator then calculates control signal c(k) as

c(k)(τ)← 1

n(t)
p

(k)
0 =

1

n(t)


bt(τ) +

n(t)∑

i=1

p
(k)
i (τ) + p

(k)
n+1(τ)


 , τ ∈ T (t);

4: if k ≥ 1 and ‖c(k) − c(k−1)‖ ≤ ε, the coordinator broadcasts a stopping signal to go to Step 7);
otherwise the coordinator broadcasts c(k) to deferrable load i ∈ N+(t);

5: each deferrable load i ∈ N+(t) calculates a new charging profile {p(k+1)
i (τ)}Tτ=t as

p
(k+1)
i ← argmin

∑

τ∈T (t)

c(k)(τ)pi(τ) +
1

2

∑

τ∈T (t)

(
pi(τ)− p(k)

i (τ)
)2

(3.13)

s.t. p
i
(τ) ≤ pi(τ) ≤ pi(τ), τ ∈ T (t);
∑

τ∈T (t)

pi(τ) = Pi(t)

and sends {pk+1
i (τ)}Tτ=t to the coordinator;

6: k ← k + 1; go to Step 3);

7: each deferrable load i ∈ N+(t) sets final solution pi ← p
(k)
i and updates Pi(t+1)← Pi(t)−pi(t);
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Algorithm convergence results: We provide analytic guarantees on the convergence and

optimality of Algorithm 2. In particular, we prove that Algorithm 2 solves ODLC(t) for every time

slot t ∈ T . Let O(t) denote the set of optimal solutions to ODLC(t), and let

dist
((
p0, . . . , pn(t)

)
,O(t)

)
:= min

(p̂0,...,p̂n(t),p̂n+1)∈O(t)
‖
(
p0, . . . , pn(t)

)
−
(
p̂0, . . . , p̂n(t)

)
‖

denote the distance from a schedule (p0, . . . , pn(t)) to optimal schedules O(t).

Theorem 3.1. For each t ∈ T , the sequence of deferrable load schedules p(0), p(1), . . . , p(k), . . .

computed in Algorithm 2 converges to optimal schedules of ODLC(t), i.e.,

lim
k→∞

dist
(
p(k),O(t)

)
= 0.

Proof. Fix an arbitrary t ∈ T . For any x = (p1, . . . , pn(t), pn+1) satisfying (3.11b)–(3.11c), let

p0(x) = bt +

n(t)∑

i=1

pi + pn+1, L(x) = 〈p0(x), p0(x)〉 .

As discussed in Section 2.1, x∗ minimizes L if and only if (p0(x∗), x∗) solves ODLC(t).

Follow the proof of Theorem 2.8 to obtain

L
(
p

(k+1)
1 , . . . , p

(k+1)
n(t) , p

(k)
n+1

)
≤ L

(
p

(k)
1 , . . . , p

(k)
n(t), p

(k)
n+1

)
(3.14)

for k ≥ 1, and the equality is attained if and only if p
(k+1)
i = p

(k)
i for i ∈ N+(t). It follows from the

first order optimality condition for optimizing (3.13) that the equality in (3.14) is attained if and

only if 〈
bt +

n(t)∑

i=1

p
(k)
i + p

(k)
n+1, p

′
i − p(k)

i

〉
≥ 0

for all i ∈ N+(t) and all feasible p′i.

According to (3.12),

L
(
p

(k+1)
1 , . . . , p

(k+1)
n(t) , p

(k+1)
n+1

)
≤ L

(
p

(k+1)
1 , . . . , p

(k+1)
n(t) , p

(k)
n+1

)
(3.15)

for k ≥ 0, and the equality is attained if and only if p
(k+1)
n+1 = p

(k)
n+1. It follows from the first order

optimality condition for optimizing (3.12) that the equality in (3.15) is attained if and only if

〈
bt +

n(t)∑

i=1

p
(k+1)
i + p

(k)
n+1, p

′
n+1 − p(k)

n+1

〉
≥ 0

for all feasible p′n+1.
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It then follows that

L
(
p

(k+1)
1 , . . . , p

(k+1)
n(t) , p

(k+1)
n+1

)
≤ L

(
p

(k)
1 , . . . , p

(k)
n(t), p

(k)
n+1

)
,

i.e., L(x(k+1)) ≤ L(x(k)), and that the equality is attained if and only if x(k+1) = x(k), and

〈
bt +

n(t)∑

i=1

p
(k)
i + p

(k)
n+1, p

′
i − p(k)

i

〉
≥ 0

for all feasible x′ = (p′1, . . . , p
′
n(t), pn+1), i.e., x(k) minimizes L(x). Then by Lasalle’s Theorem [104],

we have dist(p(k),O(t))→ 0 as k →∞.

Definition 3.1. Let t ∈ T . A feasible schedule p = (p0, . . . , pn(t), pn+1) of ODLC(t) is t-valley-

filling, if there exists C(t) ∈ R such that

pn+1(τ) +

n(t)∑

i=1

pi(τ) = [C(t)− bt(τ)]+, τ ∈ T (t). (3.16)

“t-valley-filling” provides a simple characterization of the optimal solutions of ODLC(t). Specif-

ically, the following corollary follows immediately from Theorem 2.2.

Corollary 3.2. Let t ∈ T . If a t-valley-filling schedule p = (p0, . . . , pn(t), pn+1) exists, then p solves

ODLC(t). Furthermore, all optimal schedules p∗ = (p∗0, . . . , p
∗
n(t), p

∗
n+1) of ODLC(t) satisfy p∗0 = p0.

This corollary serves as the basis for the performance analysis we perform in Section 3.3. Note

that t-valley-filling schedules tend to exist in cases where the number of deferrable loads is large.

3.3 Performance Evaluation

To this point, we have shown that Algorithm 2 makes optimal decisions with the information available

at every time slot, i.e., it solves ODLC(t) at time t for t = 1, . . . , T . However, these decisions are still

suboptimal compared to what could be achieved if exact information were available. In this section,

our goal is to understand the impact of uncertainty on the performance. In particular, we study

1) how the uncertainties about base load and deferrable loads impact the expected load variance

obtained by Algorithm 2, and 2) what is the improvement of using the real-time control provided

by Algorithm 2 over using the optimal static control.

Our answers to these questions are below. Throughout, we focus on the special, but practically

relevant, case when a t-valley-filling schedule exists at every time t = 1, . . . , T . As we have mentioned

previously, when the number of deferrable loads is large this is a natural assumption that holds

for practical load profiles. The reason for making this assumption is that it allows us to use the
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characterization of optimal schedules given in (3.16). In fact, without loss of generality, we further

assume C(t) ≥ bt(τ) for τ ∈ T (t), under which (3.16) implies

p0(t) = C(t) =
1

T − t+ 1


 ∑

τ∈T (t)

bt(τ) + E(A(t)) +

n(t)∑

i=1

Pi(t)


 (3.17)

for t = 1, . . . , T . To summarize, equation (3.17) defines the model we use for the performance

analysis of Algorithm 2.

The expected load variance of Algorithm 2 We start by calculating the expected load vari-

ance, E(V ), of Algorithm 2. The goal is to understand how uncertainty about base load and

deferrable loads impacts the load variance. Note that, if there are no base load prediction errors

and deferrable loads arrive at the beginning of the time horizon, then Algorithm 2 obtains optimal

schedules that have zero load variance. In contrast, when there are base load prediction errors and

stochastic deferrable load arrivals, the expected load variance is given by the following theorem.

To state the result, recall that {f(t)}∞t=−∞ is the causal filter modeling the correlation of base

load and define F (t) :=
∑t
s=0 f(s) for t = 0, . . . , T .

Theorem 3.3. Consider an instance where ODLC(t) admits a t-valley-filling solution at every time

t = 1, . . . , T . Then, the expected load variance obtained by Algorithm 2 is

E(V ) =
s2

T

T∑

t=2

1

t
+
σ2

T 2

T−1∑

t=0

F 2(t)
T − t− 1

t+ 1
. (3.18)

Theorem 3.3 explicitly and precisely states the interaction of the variability of the predictions of

base load (σ) and deferrable loads (s) with the horizon length T . Further, it highlights the role of

the impulse response of the causal filter through F . It follows immediately that the expected load

variance E(V ) tends to 0 as the uncertainties in base load and deferrable load arrivals vanish, i.e.,

σ → 0 and s→ 0. Theorem 3.3 is proved in Appendix 3.C.

Corollary 3.4. Consider an instance where ODLC(t) admits a t-valley-filling solution at every time

t = 1, . . . , T . Then, E(V )→ 0 as σ → 0 and s→ 0.

Another remark about Theorem 3.3 is that the two terms in the expression (3.18) for the expected

load variance E(V ) correspond to the impact of uncertainties in deferrable load prediction and base

load prediction, respectively. In particular, Theorem 3.3 is proved in Appendix 3.C by analyzing

these two cases separately and then combining the results. Specifically, the following two lemmas are

the key pieces in the proof of Theorem 3.3, but are also of interest in their own right. The lemmas

are proved in Appendix 3.A and 3.B, respectively.
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Lemma 3.5. Consider an instance where ODLC(t) admits a t-valley-filling solution at every time

t = 1, . . . , T . If there is no base load prediction error, i.e., bt = b for t = 1, . . . , T , then the expected

load variance obtained by Algorithm 2 is

E(V ) = s2

∑T
t=2

1
t

T
≈ s2 lnT

T
.

Lemma 3.6. Consider an instance where ODLC(t) admits a t-valley-filling solution at every time

t = 1, . . . , T . If there are no deferrable load arrivals after time 1, i.e., n(t) = n for t = 1, . . . , T ,

then the expected load variance obtained by Algorithm 2 is

E(V ) =
σ2

T 2

T−1∑

t=0

F 2(t)
T − t− 1

t+ 1
.

Lemma 3.5 highlights that the more uncertainty in deferrable load arrivals, i.e., the larger the s,

the larger the expected load variance E(V ). On the other hand, the longer the time horizon T , the

smaller the expected load variance E(V ).

Similarly, Lemma 3.6 highlights that a larger base load prediction error, i.e., a larger σ results in

a larger expected load variance E(V ). However, if the impulse response {f(t)}∞t=−∞ of the modeling

filter of the base load decays fast enough with t, then the following corollary highlights that the

expected load variance actually tends to 0 as time horizon T increases despite the uncertainty of

base load predictions. The corollary is proved in Appendix 3.D.

Corollary 3.7. Consider an instance where ODLC(t) admits a t-valley-filling solution at every time

t = 1, . . . , T . If there are no deferrable load arrivals after time 1, i.e., n(t) = n for t = 1, . . . , T ,

and |f(t)| ∼ O(t−1/2−α) for some α > 0, then the expected load variance obtained by Algorithm 2

satisfies E(V )→ 0 as T →∞.

The improvement of Algorithm 2 over static control The goal of this section is to quantify

the improvement of real-time control via Algorithm 2 over the optimal static (open-loop) control.

To be more specific, we compare the expected load variance E(V ) obtained by the real-time control

Algorithm 2, with the expected load variance E(V ′) obtained by the optimal static control, which

only uses base load prediction at the beginning of the time horizon (i.e., b̄) to compute deferrable

load schedules. We assume n(t) = n for t = 1, . . . , T in this section since otherwise any static control

cannot obtain a schedule for all deferrable loads. Thus, the interpretation of the results that follow

is as a quantification of the value of incorporating updated based load predictions into the deferrable

load controller.

To begin the analysis, note that E(V ) for this setting is given in Lemma 3.6. Further, it can be

proved that the optimal static control is to solve the ODLC problem (3.8) with b replaced by b̄ to
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obtain a deferrable load schedule, and the expected load variance E(V ′) it obtains is given by the

following lemma, which is proved in Appendix 3.E.

Lemma 3.8. Consider an instance where ODLC (with b replaced by b̄) admits a valley-filling so-

lution. If there is no stochastic load arrival, i.e., n(t) = n for t = 1, . . . , T , then the expected load

variance E(V ′) obtained by the optimal static control is

E(V ′) =
σ2

T 2

T−1∑

t=0

(
T (T − t)f2(t)− F 2(t)

)
.

Next, comparing E(V ) and E(V ′) given in Lemma 3.6 and 3.8 shows that Algorithm 2 always

obtains a smaller expected load variance than the optimal static control. Specifically, we prove the

following corollary in Appendix 3.F.

Corollary 3.9. Consider an instance where ODLC (with b replaced by b̄) admits a valley-filling

solution and ODLC(t) admits a t-valley-filling solution at every time t = 1, . . . , T . If there is no

deferrable load arrival after time 1, i.e., n(t) = n for t = 1, . . . , T , then

E(V ′)− E(V ) =
σ2

T

T∑

t=1

1

2t

t−1∑

m=0

t−1∑

n=0

(f(m)− f(n))
2 ≥ 0.

Corollary 3.9 highlights that Algorithm 2 is guaranteed to obtain a smaller expected load variance

than the optimal static control. The next step is to quantify how much smaller E(V ) is in comparison

with E(V ′).

To do this we compute the ratio E(V ′)/E(V ). Unfortunately, the general expression for the

ratio is too complex to provide insight, so we consider two representative cases for the impulse

response f(t) of the causal filter in order to obtain insights. Specifically, we consider Example 3.1

and 3.2 in Section 3.1.1. Briefly, in Example 3.1 f(t) is finite and in Example 3.2 f(t) is infinite but

decays exponentially in t. For these two cases, the ratio E(V ′)/E(V ) is summarized in the following

corollaries, which are proved in Appendix 3.G and 3.H.

Corollary 3.10. Consider an instance where ODLC (with b replaced by b̄) admits a valley-filling

solution and ODLC(t) admits a t-valley-filling solution at every time t = 1, . . . , T . If there is no

deferrable load arrival after time 1, i.e., n(t) = n for t = 1, . . . , T , and there exists ∆ > 0 such that

f(t) =





1 if 0 ≤ t < ∆

0 otherwise,

then
E(V ′)
E(V )

=
T/∆

ln(T/∆)

(
1 +O

(
1

ln(T/∆)

))
.



33

Corollary 3.11. Consider an instance that ODLC (with b replaced by b̄) admits a valley-filling

solution and ODLC(t) admits a t-valley-filling solution at every time t = 1, . . . , T . If there is no

deferrable load arrival after time 1, i.e., n(t) = n for t = 1, . . . , T , and there exists a ∈ (0, 1) such

that

f(t) =




at if t ≥ 0

0 otherwise,

then
E(V ′)
E(V )

=
1− a
1 + a

T

lnT

(
1 +O

(
ln lnT

lnT

))
.

Corollary 3.10 highlights that, in the case where f is finite, if we define λ = T/∆ as the ratio of

time horizon to filter length, then the load reduction roughly scales as λ/ ln(λ). Thus, the longer the

time horizon is in comparison to the filter length, the larger the expected load variance reduction

we obtain from using Algorithm 2 as compared with the optimal static control.

Similarly, Corollary 3.11 highlights that, in the case where f is infinite and exponentially decay-

ing, the expected load variance reduction scales with T as T/ lnT with coefficient (1 − a)/(1 + a).

Thus, the smaller a is, which means the faster f dies out, the more load variance reduction we obtain

by using real-time control. This is similar to having a smaller ∆ in the previous case.

Remark 3.1. It is shown in [27] that the typical performance of Algorithm 2 is similar to the

average performance of Algorithm 2.

3.4 Experimental results

In this section we use trace-based experiments in order to explore the generality of the analytic results

in the previous section. In particular, the results in the previous section precisely characterize

the expected load variance resulting from Algorithm 2 as a function of prediction uncertainties

and quantify the improvement from the application of Algorithm 2 over the optimal static (open-

loop) controller. However, the analytic results necessarily make assumptions on the statistics of the

uncertainties. Therefore, it is important to assess the performance of the algorithm using data from

real-world scenarios.

3.4.1 Experimental setup

The numerical experiments we perform use a time horizon of 24 hours, from 20:00 to 20:00 on the

following day. The time slot length is 10 minutes, which is the granularity of the data we have

obtained about renewable generation.
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Figure 3.2: Illustration of the traces used in the experiments. (a) shows the average residential
load in the service area of Southern California Edison in 2012. (b) shows the total wind power
generation of the Alberta Electric System Operator scaled to represent 20% penetration. (c) shows
the normalized root-mean-square wind prediction error as a function of the time looking ahead for
the model used in the experiments.

Base load Recall that base load is a combination of non-deferrable load and renewable generation.

The non-deferrable load traces used in the experiments come from the average residential load in

the service area of Southern California Edison in 2012 [93]. In the simulations, we assume that

the non-deferrable load is precisely known so that uncertainties in the base load only come from

renewable generation. In particular, non-deferrable load over the time horizon of a day is taken to

be the average over the 366 days in 2012 as in Figure 3.2(a), and assumed to be known to the utility

at the beginning of the time horizon. In practice, non-deferrable load at the substation feeder level

can be predicted within 1–3% root-mean-square error looking 24 hours ahead [38].

The renewable generation traces we use come from the 10-minute historical data for total wind

power generation of the Alberta Electric System Operator from 2004 to 2009 [6]. In the simulations,

we scale the wind power generation so that its average over the 6 years corresponds to a number

of penetration levels in the range between 5% and 30%, and pick the wind power generation of a

randomly chosen day as the renewable generation during each run. Figure 3.2(b) shows the wind

power generation for four representative days, one for each season, after scaling to 20% penetration.

We assume that the renewable generation is not precisely known until it is realized, but that a

prediction of the generation, which improves over time, is available to the utility. The modeling of

prediction evolution over time is according to a martingale forecasting process [50, 51], which is a

standard model for an unbiased prediction process that improves over time.

Specifically, the prediction model is as follows: For wind generation w(τ) at time τ , the prediction

error wt(τ)−w(τ) at time t < τ is the sum of a sequence of independent random variables ns(τ) as

wt(τ) = w(τ) +

τ∑

s=t+1

ns(τ), 0 ≤ t < τ ≤ T.

Here w0(τ) is the wind prediction without any observation, i.e., the expected wind generation w̄(τ)
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at the beginning of the time horizon (used by static control).

The random variables ns(τ) are assumed to be Gaussian with mean 0. Their variances are chosen

as

E(n2
s(τ)) =

σ2

τ − s+ 1
, 1 ≤ s ≤ τ ≤ T

where σ > 0 is such that the root-mean-square prediction error
√

E(w0(T )− w(T ))2 looking T time

slots (i.e., 24 hours) ahead is 0%–22.5% of the nameplate wind generation capacity.2 According to

this choice of the variances of ns(τ), root-mean-square prediction error only depends on how far

ahead the prediction is, as in Figure 3.2(c) in particular. This choice is motivated by [48].

Deferrable loads For simplicity, we consider the hypothetical case where all deferrable loads are

electric vehicles. Since historical data for electric vehicle usage is not available, we are forced to use

synthetic traces for this component of the experiments. Specifically, in the simulations the electric

vehicles are considered to be identical, each requests 10kWh electricity by a deadline 8 hours after

it arrives, and each must consume power at a rate within [0, 3.3]kW after it arrives and before its

deadline.

In the simulations, the arrival process starts at 20:00 and ends at 12:00 the next day so that the

deadlines of all electric vehicles lie within the time horizon of 24 hours. In each time slot during

the arrival process, we assume that the number of arriving electric vehicles is uniformly distributed

in [0.8λ, 1.2λ], where λ is chosen so that electric vehicles (on average) account for 5%–30% of the

non-deferrable loads.

Uncertainty about deferrable load arrivals is captured as follows. The prediction E(A(t)) of

future deferrable load total energy request is simply the arrival rate λ times the length of the rest

of the arrival process T ′ − t where T ′ is the end of the arrival process (12:00), i.e.,

E(A(t)) = λ(T ′ − t), t = 1, . . . , T ′.

If t > T ′, i.e., the deferrable load arrival process has ended, then E(A(t)) = 0.

Baselines for comparison Our goal in the simulations is to contrast the performance of Algo-

rithm 2 with a number of common benchmarks to tease apart the impact of real-time control and the

impact of different forms of uncertainty. To this end, we consider four controllers in our experiments:

(i) Offline optimal control: The controller has full knowledge about the base load and deferrable

loads, and solves the ODLC problem offline. It is not realistic in practice, but serves as a

benchmark for the other controllers since offline optimal control obtains the smallest possible

load variance.
2Average wind generation is 15% of the nameplate capacity, so the root-mean-square prediction error looking T

time slots ahead is 0%–150% the average wind generation.
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(ii) Static control with exact deferrable load arrival information: The controller has full knowledge

about deferrable loads (including those that have not arrived), but uses only the prediction of

base load that is available at the beginning of the time horizon to compute a deferrable load

schedule that minimizes the expected load variance. This static control is still unrealistic since

a deferrable load is known only after it arrives. But, this controller corresponds to what is

considered in prior works, e.g., [41, 45,75].

(iii) Real-time control with exact deferrable load arrival information. The controller has full knowl-

edge about deferrable loads (including those that have not arrived), and uses the prediction of

base load that is available at the current time slot to update the deferrable load schedule by

minimizing the expected load variance to go, i.e., Algorithm 2 with n(t) = n for t = 1, . . . , T .

The control is unrealistic since a deferrable load is known only after it arrives; however, it

provides the natural comparison for case (ii) above.

(iv) Real-time control without exact deferrable load arrival information, i.e., Algorithm 2. This

corresponds to the realistic scenario where only predictions are available about future deferrable

loads and base loads. The comparison with case (iii) highlights the impact of the uncertainty

in deferrable load arrival.

The performance measure that we show in all plots is the “suboptimality” of the controllers,

which we define as

η :=
V − V opt

V opt
,

where V is the load variance obtained by the controller and V opt is the load variance obtained by

the offline optimal, i.e., case (i) above. Thus, the lines in the figures correspond to cases (ii)-(iv).

3.4.2 Experimental results

Our experimental results focus on two main goals: (i) understanding the impact of prediction accu-

racy on the expected load variance obtained by deferrable load control algorithms, and (ii) contrast-

ing the real-time (closed-loop) control of Algorithm 2 with the optimal static (open-loop) controller.

We focus on the impact of three key factors: wind prediction error, the penetration of deferrable

load, and the penetration of renewable energy.

The impact of prediction error To study the impact of prediction error, we fix the penetration

of both renewable generation (wind) and deferrable loads at 10% of non-deferrable load, and simulate

the load variance obtained under different levels of root-mean-square wind prediction errors (0%–

22.5% of the nameplate capacity looking 24 hours ahead). The results are summarized in Figure

3.3(a). It is not surprising that suboptimality of both the static and the real-time controllers that
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have exact information about deferrable load arrivals is zero when the wind prediction error is 0,

since there is no uncertainty for these controllers in this case.
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(a) Wind and deferrable load penetra-
tion are both 10%.
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(b) Wind and deferrable load penetra-
tion are both 20%.

Figure 3.3: Illustration of the impact of wind prediction error on suboptimality of load variance.

As prediction error increases, the suboptimality of both the static and the real-time control

increases. However, notably, the suboptimality of real-time control grows much more slowly than

that of static control, and remains small (<4.7%) if deferrable load arrivals are known, over the

whole range 0%–22.5% of wind prediction error. At 22.5% prediction error, the suboptimality of

static control is 4.2 times that of real-time control. This highlights that real-time control mitigates

the influence of imprecise base load prediction over time.

Moving to the scenario where deferrable load arrivals are not known precisely, we see that the

impact of this inexact information is less than 6.6% of the optimal variance. However, real-time

control yields a load variance that is surprisingly resilient to the growth of wind prediction error,

and eventually beats the optimal static control at around 10% wind prediction error, even though

the optimal static control has exact knowledge of deferrable loads and the adaptive control does not.

As prediction error increases, the suboptimality of the real-time control with or without deferrable

load arrival information gets close, i.e., the benefit of knowing additional information on future

deferrable load arrivals vanishes as base load uncertainty increases. This is because the additional

information is used to overfit the base load prediction error.

The same comparison is shown in Figure 3.3(b) for the case where renewable and deferrable

load penetration are both 20%. Qualitatively the conclusions are the same, however at this higher

penetration the contrast between the resilience of adaptive control and static control is magnified,

while the benefit of knowing deferrable load arrival information is minified. In particular, real-

time control without arrival information beats static control with arrival information, at a lower

(around 7%) wind prediction error, and knowing deferrable load arrival information does not reduce

suboptimality of real-time control with 22.5% wind prediction error.
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The impact of deferrable load penetration Next, we look at the impact of deferrable load

penetration on the performance of the various controllers. To do this, we fix the wind penetration

level to be 20% and wind prediction error looking 24 hours ahead to be 18%, and simulate the

load variance obtained under different deferrable load penetration levels (5%–30%). The results are

summarized in Figure 3.4(a).
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(a) Impact of deferrable load penetration
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(b) Impact of wind penetration

Figure 3.4: Suboptimality of load variance as a function of (a) deferrable load penetration and (b)
wind penetration. In (a) the wind penetration is 20% and in (b) the deferrable load penetration is
20%. In both, the wind prediction error looking 24 hours ahead is 18%.

Not surprisingly, if future deferrable loads are known and uncertainty only comes from base load

prediction error, then the suboptimality of real-time control is very small (<11.2%) over the whole

range 5%–30% of deferrable load penetration, while the suboptimality of static control increases

with deferrable load penetration, up to as high as 166% (14.9 times that of real-time control) at

30% deferrable load penetration.

However, without knowing future deferrable loads, the suboptimality of real-time control in-

creases with the deferrable load penetration. This is because a larger amount of deferrable loads

introduces larger uncertainties in deferrable load arrivals. But the suboptimality remains smaller

than that of static control over the whole range of 5%–30% of deferrable load penetration. The

highest suboptimality 25.7% occurs at 30% deferrable load penetration, and is less than 1/6 of the

suboptimality of static control, which assumes exact deferrable load arrival information.

The impact of renewable penetration Finally, we study the impact of renewable penetration.

To do this we fix the deferrable load penetration level to be 20% and the wind prediction error

looking 24 hours ahead to be 18%, and simulate the load variance obtained by the four test cases

under different wind penetration levels (5%–25%). The results are summarized in Figure 3.4(b).

A key observation is that if future deferrable loads are known and uncertainty only comes from

base load prediction error, then the suboptimality of real-time control grows much slower than that

of static control, as wind penetration level increases. As explained before, this highlights that real-

time control mitigates the impact of base load prediction error over time. In fact, the suboptimality
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of real-time control is small (<15%) over the whole range of 5%–25% of wind penetration levels. Of

course, without knowledge of future deferrable loads, the suboptimality of real-time control becomes

bigger. However, it still eventually outperforms the optimal static controller at around 6% wind

penetration, despite the fact that the optimal static controller is using exact information about

deferrable loads.

3.5 Concluding remarks

We have proposed a real-time algorithm for distributed deferrable load control that can schedule a

large number of deferrable loads to compensate for the random fluctuations in renewable generation.

At any time, the algorithm incorporates updated predictions about deferrable loads and renewable

generation to minimize the expected load variance to go. Further, we have derived an explicit

expression for the expected aggregate load variance obtained by the algorithm by modeling the

base load prediction updates as a Wiener filtering process. Additionally, we have highlighted the

importance of the expression by using it to evaluate the improvement of real-time control over

static control. Interestingly, the sub-optimality of static control is O(T/ lnT ) times that of real-time

control in two representative cases of base load prediction updates. The qualitative insights from

the analytic results were validated using trace-based simulations, which confirm that the algorithm

has significantly smaller sub-optimality than the optimal static control.
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Appendix

3.A Proof of Lemma 3.5

When bt = b and E(a(t)) = λ for t = 1, . . . , T , the model (3.17) for Algorithm 2 reduces to

p0(t) =
1

T − t+ 1




T∑

τ=t

b(τ) + λ(T − t) +

n(t)∑

i=1

Pi(t)


 (3.19)

for t = 1, . . . , T . Then

(T − t+ 1)p0(t) =

T∑

τ=t

b(τ) + λ(T − t) +

n(t)∑

i=1

Pi(t),

(T − t+ 2)p0(t− 1) =

T∑

τ=t−1

b(τ) + λ(T − t+ 1) +

n(t−1)∑

i=1

Pi(t− 1)

for t = 2, . . . , T . Subtract the two equations and simplify using the fact that

b(t− 1) +

n(t−1)∑

i=1

(Pi(t− 1)− Pi(t)) = b(t− 1) +

n(t−1)∑

i=1

pi(t− 1) = p0(t− 1)

and the definition of a(t) to obtain

p0(t)− p0(t− 1) =
1

T − t+ 1
(a(t)− λ)

for t = 2, . . . , T . Substituting t = 1 into (3.19), it can be verified that p0(1) = λ +
∑T
τ=1 b(τ)/T +

(a(1)− λ)/T , therefore

p0(t) = λ+
1

T

T∑

τ=1

b(τ) +

t∑

τ=1

1

T − τ + 1
(a(τ)− λ)
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for t = 1, . . . , T . The average aggregate load is

u =
1

T

T∑

t=1

p0(t) = λ+
1

T

(
T∑

τ=1

b(τ) +

T∑

τ=1

(a(τ)− λ)

)
.

Hence,

E(p0(t)− u)2 = E

(
t∑

τ=1

1

T − τ + 1
(a(τ)− λ)− 1

T

T∑

τ=1

(a(τ)− λ)

)2

= E

(
t∑

τ=1

τ − 1

T (T − τ + 1)
(a(τ)− λ)− 1

T

T∑

τ=t+1

(a(τ)− λ)

)2

=
s2

T 2

(
t∑

τ=1

(τ − 1)2

(T − τ + 1)2
+ T − t

)

for t = 1, . . . , T . The last equality holds because (a(τ) − λ) are independent for all τ and each of

them have mean zero and variance s2. It follows that

E(V ) =
1

T

T∑

t=1

E(d(t)− u)2

=
s2

T 3

(
T∑

t=1

t∑

τ=1

(τ − 1)2

(T − τ + 1)2
+

T∑

t=1

(T − t)
)

=
s2

T 3

(
T∑

τ=1

(τ − 1)2

T − τ + 1
+

T∑

t=1

(T − t)
)

=
s2

T 3

(
T∑

t=1

(T − t)2

t
+

T∑

t=1

(T − t)t
t

)

= s2

∑T
t=2

1
t

T
≈ s2 lnT

T
.

3.B Proof of Lemma 3.6

In the case where no deferrable arrival after t = 1, i.e., n(t) = n for t = 1, . . . , T , the model (3.17)

for Algorithm 2 reduces to

(T − t+ 1)p0(t) =

T∑

τ=t

bt(τ) +

n∑

i=1

Pi(t) (3.20)

for t = 1, . . . , T . Substitute t by t− 1 to obtain

(T − t+ 2)p0(t− 1) =

T∑

τ=t−1

bt−1(τ) +

n∑

i=1

Pi(t− 1)
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for t = 2, . . . , T . Subtract the two equations to obtain

(T − t+ 1)p0(t)− (T − t+ 2)p0(t− 1) =

T∑

τ=t

e(t)f(τ − t)− b(t− 1)−
n∑

i=1

pi(t− 1)

= e(t)F (T − t)− p0(t− 1),

which implies

p0(t)− p0(t− 1) =
1

T − t+ 1
e(t)F (T − t)

for t = 2, . . . , T . Substituting t = 1 into (3.20) and recalling the definition of bt in (3.1), it can be

verified that

p0(1) =
1

T

(
n∑

i=1

Pi +

T∑

τ=1

b̄(τ)

)
+

1

T
e(1)F (T − 1).

Therefore,

p0(t) =
1

T

(
n∑

i=1

Pi +

T∑

τ=1

b̄(τ)

)
+

t∑

τ=1

1

T − τ + 1
e(τ)F (T − τ)

for t = 1, . . . , T . The average aggregate load is

u =
1

T

(
n∑

i=1

Pi +

T∑

t=1

b̄(t)

)
+

1

T

T∑

τ=1

e(τ)F (T − τ).

Hence,

E(p0(t)− u)2 = E

(
t∑

τ=1

1

T − τ + 1
e(τ)F (T − τ)−

T∑

τ=1

1

T
e(τ)F (T − τ)

)2

= E

(
t∑

τ=1

τ − 1

T (T − τ + 1)
e(τ)F (T − τ)−

T∑

τ=t+1

1

T
e(τ)F (T − τ)

)2

=
σ2

T 2

(
t∑

τ=1

(τ − 1)2

(T − τ + 1)2
F 2(T − τ) +

T∑

τ=t+1

F 2(T − τ)

)
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for t = 1, . . . , T . The last equality holds because e(τ) are uncorrelated random variables with mean

zero and variance σ2. It follows that

E(V ) =
1

T

T∑

t=1

E(p0(t)− u)2

=
σ2

T 3

T∑

t=1

(
t∑

τ=1

(τ − 1)2

(T − τ + 1)2
F 2(T − τ) +

T∑

τ=t+1

F 2(T − τ)

)

=
σ2

T 3

T∑

τ=1

F 2(T − τ)
(τ − 1)2

T − τ + 1
+
σ2

T 3

T∑

τ=2

(τ − 1)F 2(T − τ)

=
σ2

T 2

T∑

τ=1

F 2(T − τ)
τ − 1

T − τ + 1
=
σ2

T 2

T−1∑

t=0

F 2(t)
T − t− 1

t+ 1
.

3.C Proof of Theorem 3.3

Similar to the proof of Lemma 3.5 and 3.6, use the model (3.17) to obtain

p0(t) = λ+
1

T

T∑

τ=1

b̄(τ) +

t∑

τ=1

1

T − τ + 1
(e(τ)F (T − τ) + a(τ)− λ)

for t = 1, . . . , T and

u = λ+
1

T

T∑

τ=1

b̄(τ) +

T∑

τ=1

1

T
(e(τ)F (T − τ) + a(τ)− λ) .

Hence,

E [p0(t)− u]
2

= E

[
t∑

τ=1

1

T − τ + 1
(e(τ)F (T − τ) + a(τ)− λ)−

T∑

τ=1

1

T
(e(τ)F (T − τ) + a(τ)− λ)

]2

= E

[
t∑

τ=1

1

T − τ + 1
e(τ)F (T − τ)−

T∑

τ=1

1

T
e(τ)F (T − τ)

]2

+ E

[
t∑

τ=1

1

T − τ + 1
(a(τ)− λ)−

T∑

τ=1

1

T
(a(τ)− λ)

]2

.

The first term is exactly that in Lemma 3.6, and the second term is exactly that in Lemma 3.5.

Hence, the expected load variance is

E(V ) =
σ2

T 2

T−1∑

t=0

F 2(t)
T − t− 1

t+ 1
+
s2

T

T∑

t=2

1

t
.
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3.D Proof of Corollary 3.7

If |f(t)| ∼ O(t−1/2−α) for some α > 0, then |f(t)| ≤ Ct−1/2−α for some C > 0 and all t ≥ 1.

Without loss of generality, assume that 0 < α < 1/2 and C ≥ (1 − 2α)/(1 + 2α). Then F (0) = 1

and

|F (t)| =
∣∣∣∣∣
t∑

τ=0

f(τ)

∣∣∣∣∣ ≤ 1 +

t∑

τ=1

Cτ−1/2−α ≤ 1 + C +

∫ t

1

Cτ−1/2−αdτ ≤ 2C

1− 2α
t1/2−α

for t = 1, . . . , T . The last inequality holds because C ≥ (1− 2α)/(1 + 2α). Therefore it follows from

Lemma 3.6 that

E(V ) ≤ σ2

T

T−1∑

s=0

F 2(s)
1

s+ 1

≤ σ2

T
+
σ2

T

T−1∑

s=1

4C2

(1− 2α)2
s1−2α 1

s+ 1

≤ σ2

T
+
σ2

T

4C2

(1− 2α)2

T−1∑

s=1

1

s2α

≤ σ2

T
+
σ2

T

4C2

(1− 2α)2
+
σ2

T

4C2

(1− 2α)2

∫ T−1

1

1

s2α
ds

≤ σ2

T
+

4σ2C2

(1− 2α)2T
+

4σ2C2

(1− 2α)3T 2α
.

Hence, E(V )→ 0 as T →∞.

3.E Proof of Lemma 3.8

The aggregate load d obtained by the optimal static algorithm is

p0(t) =
1

T

(
n∑

i=1

Pi +

T∑

τ=1

b̄(τ)

)
− b̄(t) + b(t)

=
1

T

(
n∑

i=1

Pi +

T∑

τ=1

b̄(τ)

)
+

T∑

τ=1

e(τ)f(t− τ)

for t = 1, . . . , T . Hence,

E(p0(t)− u)2 = E

(
T∑

τ=1

e(τ)

(
f(t− τ)− 1

T
F (T − τ)

))2

=
σ2

T 2

T∑

τ=1

T 2f2(t− τ)− 2Tf(t− τ)F (T − τ) + F 2(T − τ)
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for t = 1, . . . , T . It follows that

E(V ′) =
1

T

T∑

t=1

E(p0(t)− u)2

=
σ2

T

T∑

t=1

T∑

τ=1

f2(t− τ)− 2σ2

T 2

T∑

τ=1

F (T − τ)

T∑

t=1

f(t− τ) +
σ2

T 2

T∑

τ=1

F 2(T − τ)

=
σ2

T

T∑

t=1

t−1∑

τ=0

f2(τ)− σ2

T 2

T∑

τ=1

F 2(T − τ)

=
σ2

T

T−1∑

τ=0

(T − τ)f2(τ)− σ2

T 2

T−1∑

τ=0

F 2(τ)

=
σ2

T 2

T−1∑

t=0

(
T (T − t)f2(t)− F 2(t)

)
.

3.F Proof of Corollary 3.9

Corollary 3.9 follows from Lemma 3.6 and Lemma 3.8 and the definition of F :

E(V ′)− E(V ) =
σ2

T

T−1∑

t=0

(T − t)f2(t)− σ2

T 2

T−1∑

t=0

F 2(t)

(
1 +

T − t− 1

t+ 1

)

=
σ2

T

T∑

n=0

(T − n)f2(n)− σ2

T

T−1∑

t=0

1

t+ 1
F 2(t)

=
σ2

T

T∑

n=0

T∑

t=n+1

f2(n)− σ2

T

T−1∑

t=0

1

t+ 1
F 2(t)

=
σ2

T

T∑

t=1

t−1∑

n=0

f2(n)− σ2

T

T∑

t=1

1

t

(
t−1∑

n=0

f(n)

)2

=
σ2

T

T∑

t=1

1

t


t

t−1∑

n=0

f2(n)−
(
t−1∑

n=0

f(n)

)2



=
σ2

T

T∑

t=1

1

2t

t−1∑

m=0

t−1∑

n=0

(f(m)− f(n))
2
.

3.G Proof of Corollary 3.10

We have

F (t) =




t+ 1 if 0 ≤ t < ∆

∆ if t ≥ ∆
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for t = 0, . . . , T . It follows that

E(V ) =
σ2

T 2

T−1∑

t=0

F 2(t)
T − t− 1

t+ 1

=
σ2

T 2

∆−1∑

t=0

(t+ 1)2T − t− 1

t+ 1
+
σ2∆2

T 2

T−1∑

t=∆

T − t− 1

t+ 1

=
σ2

T 2

∆∑

t=1

t(T − t) +
σ2∆2

T 2

T∑

t=∆+1

(
T

t
− 1

)

∈ σ2∆2

T 2

[
T ln

T + 1

∆ + 1
− T + ∆, T ln

T

∆
− T + ∆ + 1

]

= ∆σ2 ln(T/∆)

T/∆

(
1 +O

(
1

ln(T/∆)

))

and

E(V ′) =
σ2

T

T−1∑

t=0

(T − t)f2(t)− σ2

T 2

T−1∑

t=0

F 2(t)

=
σ2

T

∆−1∑

t=0

(T − t)− σ2

T 2

∆−1∑

t=0

(t+ 1)2 − σ2∆2

T 2
(T −∆)

= ∆σ2 (1 +O(∆/T )) .

Hence, the expected load variance reduction is

E(V ′)
E(V )

=
T/∆

ln (T/∆)

(
1 +O

(
1

ln(T/∆)

))
.

3.H Proof of Corollary 3.11

We have F (t) = (1− at+1)/(1− a) for t = 0, . . . , T . Note that for any ∆ ∈ {1, . . . , T},

E(V ) =
σ2

(1− a)2T 2

T∑

t=1

(
1− at

)2 T − t
t

=
σ2

(1− a)2T 2
(A+B)

where

A :=

∆∑

t=1

T − t
t

(
1− at

)2
, B :=

T∑

t=∆+1

T − t
t

(
1− at

)2

by splitting the sum at ∆. We can bound the terms A and B separately, on the one hand,

0 ≤ A ≤ T
∆∑

t=1

1

t
≤ T (1 + ln ∆).
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On the other hand,

B ≥
(
1− a∆+1

)2 T∑

t=∆+1

T − t
t

≥
(
1− a∆+1

)2(
T ln

T + 1

∆ + 1
− T + ∆

)

=
(
1− a∆+1

)2
T lnT

(
1 +O

(
ln ∆

lnT

))

and

B ≤
T∑

t=∆+1

T − t
t

≤ T ln
T

∆
− T + ∆

= T lnT

(
1 +O

(
ln ∆

lnT

))
.

Select ∆ = [lnT ] and let T →∞ to obtain

T lnT

(
1 +O

(
ln lnT

lnT

))
≤ A+B ≤ T lnT

(
1 +O

(
ln lnT

lnT

))
.

Therefore A+B = T lnT (1 +O (ln lnT/ lnT )) and it follows that

E(V ) =
σ2

(1− a)2

lnT

T

(
1 +O

(
ln lnT

lnT

))
.

We also have

E(V ′) =
σ2

T

T−1∑

t=0

(T − t)a2t − σ2

(1− a)2T 2

T∑

t=1

(
1− at

)2

=
σ2

1− a2

[
1− a2(1− a2T )

T (1− a2)

]
− σ2

(1− a)2T

[
1− a2 + 2a− 2aT+1 − 2aT+2 + a2+2T

T (1− a2)

]

=
σ2

1− a2

(
1 +O

(
1

T

))
.

Hence, the expected load variance reduction is

E(V ′)
E(V )

=
1− a
1 + a

T

lnT

(
1 +O

(
ln lnT

lnT

))
.
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Chapter 4

Optimal Power Flow

Distribution networks are usually multiphase and radial. To facilitate power flow computation and

optimization, two semidefinite programming (SDP) relaxations of the optimal power flow problem

and a linear approximation of the power flow are proposed. We prove that the first SDP relaxation

is exact if and only if the second one is exact. Case studies show that the second SDP relaxation is

numerically exact and that the linear approximation obtains voltages within 0.0016 per unit of their

true values for the IEEE 13, 34, 37, 123-bus networks and a real-world 2065-bus network.

Literature The optimal power flow (OPF) problem is nonconvex, and approximations and relax-

ations have been developed to solve it; see recent surveys in [20,25,39,54,81,84]. For convex relax-

ations, it is first proposed in [57] to solve OPF as a second-order cone programming for single-phase

radial networks and in [10] as a semidefinite programming (SDP) for single-phase mesh networks.

While numerically illustrated in [57] and [10], whether or when the convex relaxations are exact

is not studied until [66]; see [73, 74] for a survey and references to a growing literature on convex

relaxations of OPF.

Most of these works assume a single-phase network, while distribution networks are typically

multiphase and unbalanced [63]. It has been observed in [29, 60] that a multiphase network has

an equivalent single-phase circuit model where each bus-phase pair in the multiphase network is

identified with a single bus in the equivalent model. Hence methods for single-phase networks can

be applied to the equivalent model of a multiphase unbalanced network. This approach is taken

in [33] for solving optimal power flow problems. Additionally, [33] develops distributed solutions.

Summary This chapter develops convex relaxations of OPF and a linear approximation of power

flow. Solving OPF through convex relaxation offers several advantages. It provides the ability

to check if a solution is globally optimal. If it is not, the solution provides a lower bound on

the minimum cost and hence a bound on how far any feasible solution is from optimality. Unlike

approximations, if a relaxation is infeasible, it certifies that the original OPF is infeasible.
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There are three questions on convex relaxations: 1) how to compute convex relaxations efficiently,

2) how to attain numerical stability, and 3) when can a globally optimum of OPF be obtained by

solving its convex relaxation?

To address 1), the relaxation BIM-SDP is proposed in Section 4.2 to improve the computational

efficiency of a standard SDP relaxation by exploiting the radial network topology. While the standard

SDP relaxation declares O(n2) variables where n+1 is the number of buses in the network, BIM-SDP

only declares O(n) variables and is therefore more efficient.

To address 2), the relaxation BFM-SDP is proposed in Section 4.3 to improve the numerical

stability of BIM-SDP by avoiding ill-conditioned operations. BIM-SDP is ill-conditioned due to

subtractions of voltages that are close in value. Using alternative variables, BFM-SDP avoids these

subtractions and is therefore numerically more stable.

To partially address 3), we prove in Section 4.5 that BIM-SDP is exact if and only if BFM-SDP

is exact, and empirically show in Section 4.5 that BFM-SDP is numerically exact for the IEEE 13,

34, 37, 123-bus networks and a real-world 2065-bus network. Remarkably, BIM-SDP is numerically

exact only for the IEEE 13 and 37-bus networks. This highlights the numerical stability of BFM-

SDP.

Approximation LPF is proposed in Section 4.4 to estimate voltages and power flows. LPF is

accurate when line loss is small compared with power flow and voltages are nearly balanced, i.e., the

voltages of different phases have similar magnitudes and differ in angle by ∼120◦. Empirically, it is

presented in Section 4.5 that LPF computes voltages within 0.0016 per unit of their true values for

the IEEE 13, 34, 37, and 123-bus networks and a real-world 2065-bus network.

4.1 Optimal Power Flow Problem

OPF in multiphase radial networks is applicable for demand response and volt/var control.

4.1.1 A Standard Nonlinear Power Flow Model

A distribution network is composed of buses and lines connecting these buses. It is usually multiphase

and radial. There is a substation bus in the network with a fixed voltage. Index the substation bus

by 0 and the other buses by 1, 2, . . . , n. Let N = {0, 1, . . . , n} denote the set of buses and define

N+ = N\{0}. Each line connects an ordered pair (i, j) of buses where bus i lies between bus 0 and

bus j. Let E denote the set of lines. Use (i, j) ∈ E and i → j interchangeably. If i → j or j → i,

denote i ∼ j.
Let a, b, c denote the three phases of the network, let Φi denote the phases of bus i ∈ N , and

let Φij denote the phases of line i ∼ j. For each bus i ∈ N , let V φi denote its phase φ complex

voltage for φ ∈ Φi and define Vi := [V φi ]φ∈Φi
; let Iφi denote its phase φ current injection for φ ∈ Φi



50

and define Ii := [Iφi ]φ∈Φi
; let sφi denote its phase φ complex power injection for φ ∈ Φi and define

si := [sφi ]φ∈Φi
. For each line i ∼ j, let Iφij denote the phase φ current from bus i to bus j for φ ∈ Φij

and define Iij := [Iφij ]φ∈Φij ; let zij denote the phase impedance matrix and define yij := z−1
ij .

bus 0 bus i bus j 
V0 Vi Vjyij = z�1

ij

Iij Ii si

Figure 4.1: Summary of notations

Some notations are summarized in Figure 4.1. Further, let superscripts denote projection to

specified phases, e.g., if Φi = abc, then

V abi = (V ai , V
b
i )T .

Fill nonexisting phase entries by 0, e.g., if Φi = ab, then

V abci = (V ai , V
b
i , 0)T .

Let a letter without subscripts denote a vector of the corresponding quantity, e.g., z = [zij ]i∼j and

s = [si]i∈N .

Power flows are governed by [63]:

1) Ohm’s law: Iij = yij(V
Φij

i − V Φij

j ) for i ∼ j.

2) Current balance: Ii =
∑
j: i∼j I

Φi
ij for i ∈ N .

3) Power balance: si = diag(ViI
H
i ) for i ∈ N .

Eliminate current variables Ii and Iij to obtain the following bus injection model (BIM):

si =
∑

j: i∼j
diag

[
V

Φij

i (V
Φij

i − V Φij

j )HyHij

]Φi

, i ∈ N . (4.1)

4.1.2 Optimal Power Flow

OPF determines the power injection that minimizes generation cost subject to physical and oper-

ational constraints. Generation cost is separable. In particular, let Ci(si) : C|Φi| 7→ R denote the

generation cost at bus i ∈ N , and

C(s) =
∑

i∈N
Ci(si)

is the generation cost of the network.
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OPF has operational constraints on power injections and voltages besides physical constraints

(4.1). First, while the substation power injection s0 is unconstrained, a branch bus power injection

si can only vary within some externally specified set Si, i.e.,

si ∈ Si, i ∈ N+. (4.2)

For example, the sets Si of two types of devices are illustrated in Figure 4.2. Note that Si is usually

not a box, and that Si can be nonconvex or even disconnected.

0 
Si

Re(si)

Im(si)

0 Re(si)

Im(si)

A 

B Si = {A, B}

Figure 4.2: The left figure illustrates the set Si of an inverter, and the right figure illustrates the set
Si of a shunt capacitor. Note that the set Si is usually not a box, and that Si can be nonconvex or
even disconnected.

Second, while the substation voltage V0 is fixed and given (denote by V ref
0 that is nonzero compo-

nentwise), a branch bus voltage can be regulated within a range, i.e., there exists [V φi , V
φ

i ]i∈N+,φ∈Φi

such that

V0 = V ref
0 ; (4.3a)

V φi ≤ |V φi | ≤ V
φ

i , i ∈ N+, φ ∈ Φi. (4.3b)

For example, if voltages must stay within 5% from their nominal values, then 0.95 ≤ |V φi | ≤ 1.05

per unit.

To summarize, OPF can be formulated as

OPF: min
∑

i∈N
Ci(si)

over s, V

s.t. (4.1)− (4.3).

The following assumptions are made throughout this paper.

1. The network (N , E) is connected.

2. Voltage lower bounds are strictly positive, i.e.,

V φi > 0, i ∈ N+, φ ∈ Φi.
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3. Bus and line phases satisfy

Φi ⊇ Φij = Φj , i→ j.

4.2 Bus Injection Model Semidefinite Programming

OPF is nonconvex due to (4.1), and a standard SDP relaxation has been developed to solve it [33].

In this section we propose a different SDP relaxation, called BIM-SDP, that exploits the radial

network topology to reduce the computational complexity of the standard SDP.

BIM-SDP is derived by shifting the nonconvexity from (4.1) to some rank constraints and re-

moving the rank constraints. Let |A| denote the number of elements in a set A, and Hk×k denote

the set of k × k complex Hermitian matrices. Let vi ∈ H|Φi|×|Φi| for i ∈ N and Wij ∈ C|Φij |×|Φij |

for i ∼ j. If these matrices satisfy


v

Φij

i Wij

Wji vj


 =


V

Φij

i

Vj




V

Φij

i

Vj



H

, i→ j,

then (4.1) is equivalent to

si =
∑

j: i∼j
diag

[
(v

Φij

i −Wij)y
H
ij

]Φi

, i ∈ N .

Lemma 4.1. Let vi ∈ H|Φi|×|Φi| for i ∈ N and Wij ∈ C|Φij |×|Φij | for i ∼ j. If

• v0 = V ref
0 [V ref

0 ]H for some V ref
0 ∈ C|Φ0|;

• diag(vi) is nonzero componentwise for i ∈ N ;

• Wji = WH
ij for i→ j;

•


v

Φij

i Wij

Wji vj


 is rank one for i→ j,

then Algorithm 3 computes the unique V that satisfies V0 = V ref
0 and

vi = ViV
H
i , i ∈ N ; (4.4a)

Wij = V
Φij

i (V
Φij

j )H , i ∼ j. (4.4b)

Lemma 4.1 is proved in Appendix 4.A. It implies that OPF can be equivalently formulated as

BIM-OPF. Let A � 0 denote a hermitian matrix A being positive semidefinte.
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Algorithm 3 Recover V from (v,W ).

Input: (v,W ) that satisfies the conditions in Lemma 4.1.
Output: V .

1: V0 ← V ref
0 ;

2: Nvisit ← {0};
3: while Nvisit 6= N do
4: find i→ j such that i ∈ Nvisit and j /∈ Nvisit;
5: compute

Vj ←
1

tr
(
v

Φij

i

)WjiV
Φij

i ;

Nvisit ← Nvisit ∪ {j};

6: end while

BIM-OPF: min
∑

i∈N
Ci(si)

over si ∈ C|Φi| and vi ∈ H|Φi|×|Φi| for i ∈ N ; Wij ∈ C|Φij |×|Φij | for i ∼ j,

s.t. si =
∑

j: i∼j
diag

[
(v

Φij

i −Wij)y
H
ij

]Φi

, i ∈ N ; (4.5a)

si ∈ Si, i ∈ N+; (4.5b)

v0 = V ref
0 (V ref

0 )H ; (4.5c)

vi ≤ diag(vi) ≤ vi, i ∈ N+; (4.5d)

Wij = WH
ji , i→ j; (4.5e)


v

Φij

i Wij

Wji vj


 � 0, i→ j; (4.5f)

rank


v

Φij

i Wij

Wji vj


 = 1, i→ j (4.5g)

where the vectors vi and vi in (4.5d) are defined as

vi := [(V φi )2]φ∈Φi
, vi := [(V

φ

i )2]φ∈Φi
, i ∈ N+.

If Ci (in the objective) and Si [in (4.5g)] are convex, then BIM-OPF is convex except for (4.5g),
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and an SDP relaxation can be obtained by removing (4.5g) from BIM-OPF.

BIM-SDP: min
∑

i∈N
Ci(si)

over s, v,W

s.t. (4.5a)− (4.5f).

Note that BIM-SDP may be nonconvex due to Ci and Si.
If an optimal BIM-SDP solution (s, v,W ) satisfies (4.5g), then (s, v,W ) also solves BIM-OPF.

Furthermore, a global optimum (s, V ) of OPF can be recovered via Algorithm 3.

Theorem 4.2. Given an optimal solution (s, v,W ) of BIM-SDP that satisfies (4.5g), Algorithm 3

computes a V such that (s, V ) solves OPF.

Theorem 4.2 follows directly from Lemma 4.1.

Definition 4.1. BIM-SDP is exact if every optimal solution of BIM-SDP satisfies (4.5g).

If BIM-SDP is exact, then a global optimum of OPF can be obtained by solving BIM-SDP

according to Theorem 4.2.

Comparison with a Standard SDP A standard SDP relaxation of OPF has been proposed in

the literature [33]. It is derived by introducing

W̃ =




V0

...

Vn



[
V H1 · · · V Hn

]

to shift the nonconvexity from (4.1) in BIM-OPF to rankW̃ = 1, and removing the rank constraint.

We call this relaxation standard-SDP for ease of reference.

BIM-SDP is computationally more efficient than standard-SDP since it has fewer variables. It is

straightforward to verify that there are O(n) variables in BIM-SDP and O(n2) variables in standard-

SDP. Note that n+ 1 is equal to the number of buses in the network.

Standard-SDP does not exploit the radial network topology. In W̃ , only blocks corresponding to

lines i ∼ j appear in other constraints than W̃ � 0, i.e., if bus i and bus j are not connected, then

block (i, j) in W̃ only appears in W̃ � 0. Since the network is radial, n2 − n out of the (n + 1)2

blocks in W̃ only appear in W̃ � 0, leaving significant potential for exploring sparsity.

Call these n2 blocks that only appear in W̃ � 0 the W̃ -only blocks and the other 2n+ 1 blocks

the key-blocks. The purpose of having W̃ -only blocks in the optimization is to make sure that the

partial matrix specified by key-blocks can be completed to a positive semidefinite full matrix.
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It is known that a partially positive semidefinite matrix has a positive semidefinite completion

if and only if its underlying graph is chordal [40]. Essentially, BIM-SDP applies this technique to

exploit the radial network topology.

4.3 BFM Semidefinite Programming

BIM-SDP is not numerically stable and a different relaxation is proposed in this section to improve

the numerical stability of BIM-SDP.

4.3.1 Alternative Power Flow Model

We start with introducing a novel branch flow model (BFM) of power flow. BFM enhances the

numerical stability of BIM (4.1). BIM (4.1) is ill-conditioned due to subtractions of V
Φij

i and V
Φij

j

that are close in value. BFM obtains an improved numerical stability by avoiding such subtractions in

the calculation of power flows (though such subtractions are still used in the calculation of voltages).

BFM is given by the following three equations.

1. Ohm’s law:

V
Φij

i − Vj = zijIij , i→ j. (4.6)

2. Definition of auxiliary variables:

`ij = IijI
H
ij , Sij = V

Φij

i IHij , i→ j. (4.7)

3. Power balance:

∑

i: i→j
diag(Sij − zij`ij) + sj =

∑

k: j→k
diag (Sjk)

Φj , j ∈ N . (4.8)

To interpret ` and S, note that diag(`ij) denotes the magnitude squares of current Iij , and

diag(Sij) denotes the sending-end power flow on line i → j. To interpret (4.8), note that the

receiving-end power flow on line i→ j is

diag(VjI
H
ij ) = diag(Sij − zij`ij).

BIM and BFM are equivalent in the sense that they share the same solution set (s, V ). More
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specifically, let

FBIM := {(s, V ) | (s, V ) satisfies (4.1)},

FBFM :=



(s, V )

∣∣∣∣∣∣
∃ (I, `, S) such that

(s, V, I, `, S) satisfies (4.6)–(4.8)





denote the sets of (s, V ) that satisfy BIM or BFM.

Theorem 4.3. The solution set FBIM = FBFM.

Theorem 4.3 is proved in Appendix 4.B. It implies that OPF can be equivalently formulated as

follows.

OPF’: min
∑

i∈N
Ci(si)

over s, V, I, `, S

s.t. (4.2)− (4.3), (4.6)− (4.8).

4.3.2 Branch Flow Model Semidefinite Programming

A numerically stable SDP that has a similar computational efficiency as BIM-SDP is proposed in

this section. To motivate the SDP, assume (4.4a), (4.6), and (4.7) hold, then

Vj = V
Φij

i − zijIij , i→ j.

Multiply both sides by their Hermitian transposes to obtain

vj = v
Φij

i − (Sijz
H
ij + zijS

H
ij ) + zij`ijz

H
ij , i→ j. (4.9)

Furthermore, the matrix 
v

Φij

i Sij

SHij `ij


 =


V

Φij

i

Iij




V

Φij

i

Iij



H

is positive semidefinite and rank one for i→ j.

Lemma 4.4. Let vi ∈ H|Φi|×|Φi| for i ∈ N . Let Sij ∈ C|Φij |×|Φij | and `ij ∈ H|Φij |×|Φij | for i → j.

If

• v0 = V ref
0 [V ref

0 ]H for some V ref
0 ∈ C|Φ0|;

• diag(vi) is nonzero componentwise for i ∈ N ;

• (v, S, `) satisfies (4.9);
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•


v

Φij

i Sij

SHij `ij


 is rank one for i→ j,

then Algorithm 4 computes the unique (V, I) that satisfies V0 = V ref
0 , (4.4a), (4.6), and (4.7).

Algorithm 4 Recover (V, I) from (v, S, `).

Input: (v, S, `) that satisfies the conditions in Lemma 4.4.
Output: (V, I).

1: V0 ← V ref
0 ;

2: Nvisit ← {0};
3: while Nvisit 6= N do
4: find i→ j such that i ∈ Nvisit and j /∈ Nvisit;
5: compute

Iij ←
1

tr
(
v

Φij

i

)SHij V
Φij

i ;

Vj ← V
Φij

i − zijIij ;
Nvisit ← Nvisit ∪ {j};

6: end while

Lemma 4.4 is proved in Appendix 4.C. It implies that OPF’ can be equivalently formulated as

BFM-OPF.

BFM-OPF: min
∑

i∈N
Ci(si)

over si ∈ C|Φi|, vi ∈ H|Φi|×|Φi| for i ∈ N ;

Sij ∈ C|Φij |×|Φij |, `ij ∈ H|Φij |×|Φij | for i→ j,

s.t.
∑

i: i→j
diag(Sij − zij`ij) + sj =

∑

k: j→k
diag (Sjk)

Φj , j ∈ N ; (4.10a)

si ∈ Si, i ∈ N+; (4.10b)

v0 = V ref
0 (V ref

0 )H ; (4.10c)

vi ≤ diag(vi) ≤ vi, i ∈ N+; (4.10d)

vj = v
Φij

i − (Sijz
H
ij + zijS

H
ij ) + zij`ijz

H
ij , i→ j; (4.10e)


v

Φij

i Sij

SHij `ij


 � 0, i→ j; (4.10f)

rank


v

Φij

i Sij

SHij `ij


 = 1, i→ j. (4.10g)

If Ci and Si are convex, then BFM-OPF is convex except for (4.10g), and an SDP relaxation
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can be obtained by removing (4.10g) from BFM-OPF.

BFM-SDP: min
∑

i∈N
Ci(si)

over s, v, S, `

s.t. (4.10a)− (4.10f).

Note that BFM-SDP may not be convex due to Ci and Si.
If an optimal BFM-SDP solution (s, v, S, `) satisfies (4.10g), then (s, v, S, `) also solves BFM-

OPF. Moreover, Algorithm 4 produces a global optimum (s, V, I, `, S) of OPF’.

Theorem 4.5. Given an optimal solution (s, v, S, `) of BFM-SDP that satisfies (4.10g), compute

(V, I) according to Algorithm 4. Then (s, V, I, `, S) solves OPF’.

Theorem 4.5 follows directly from Lemma 4.4.

Definition 4.2. BFM-SDP is exact if every optimal solution of BFM-SDP satisfies (4.10g).

If BFM-SDP is exact, then a global optimum of OPF’ can be obtained by solving BFM-SDP

according to Theorem 4.5.

4.3.3 Comparison with BIM-SDP

BFM-SDP is numerically more stability than BIM-SDP since it avoids subtractions of v
Φij

i and Wij

that are close in value. Meanwhile, BFM-SDP has similar computational efficiency as BIM-SDP

since they have the same number of variables and constraints.

There exists a bijective map between the feasible sets of BIM-SDP and BFM-SDP that preserves

the objective value. Let FBIM-SDP and FBFM-SDP denote the feasible sets of BIM-SDP and BFM-SDP.

Theorem 4.6. The map f : FBIM-SDP 7→ FBFM-SDP defined by f(s, v,W ) = (s, v, S, `) where

Sij = (v
Φij

i −Wij)y
H
ij , i→ j;

`ij = yij(v
Φij

i −Wji −Wij + vj)y
H
ij , i→ j

is bijective, and its inverse g : FBFM-SDP 7→ FBIM-SDP is given by g(s, v, S, `) = (s, v,W ) where

Wij = v
Φij

i − SijzHij , Wji = WH
ij , i→ j.

Theorem 4.6 is proved in Appendix 4.D. It implies that f is also bijective from the optimal

solutions of BIM-SDP to the optimal solutions of BFM-SDP.
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Corollary 4.7. Let f be as in Theorem 4.6. A point (s, v,W ) solves BIM-SDP if and only if

f(s, v,W ) solves BFM-SDP.

Theorem 4.8. Let f be as in Theorem 4.6. A feasible solution (s, v,W ) of BIM-SDP satisfies

(4.5g) if and only if the feasible solution f(s, v,W ) of BFM-SDP satisfies (4.10g).

Theorem 4.8 is proved in Appendix 4.E. It implies that BIM-SDP is exact if and only if BFM-

SDP is exact.

Corollary 4.9. BIM-SDP is exact if and only if BFM-SDP is exact.

4.4 Linear approximation

A linear approximation of the power flow LPF is proposed in this section. It is obtained by assuming:

B1 Line losses are small, i.e., zij`ij � Sij componentwise for i→ j.

B2 Voltages are nearly balanced, e.g., if Φi = abc, then

V ai
V bi
≈ V bi
V ci
≈ V ci
V ai
≈ ej2π/3.

With B1, omit the zij`ij terms in (4.8) and (4.9) to obtain

∑

i: i→j
diag(Sij) + sj =

∑

k: j→k
diag(Sjk)Φj , j ∈ N ; (4.11a)

vj = v
Φij

i − (Sijz
H
ij + zijS

H
ij ), i→ j. (4.11b)

Given sj for j ∈ N+, (4.11a) determines uniquely s0 and diag(Sij) for i→ j, but not the off-diagonal

entries of Sij . B2 is used to approximate the off-diagonal entries in Sij with diag(Sij). Specifically,

define

α := e−j2π/3, β :=




1

α

α2


 , γ :=




1 α2 α

α 1 α2

α2 α 1


 ,

and assume the voltages to be balanced. Then for each line i → j, each column of Sij is in the

range space of βΦij . It follows that if Λij = diag(Sij), let Diag(Λij) denote a diagonal matrix with

diagonal Λij , then

Sij = γΦijdiag(Λij).
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To summarize, (4.11) can be written as

LPF:
∑

i: i→j
Λij + sj =

∑

k: j→k
Λ

Φj

jk , j ∈ N ; (4.12a)

Sij = γΦijdiag(Λij), i→ j; (4.12b)

vj = v
Φij

i − SijzHij − zijSHij , i→ j. (4.12c)

Given sj for j ∈ N+ and v0, (4.12) determines uniquely s0, (Λij , Sij) for i→ j, and vj for j ∈ N+

as

s0 = −
∑

k∈N+

sΦ0

k ;

Λij = −
∑

k∈Down(j)

s
Φij

k , i→ j;

Sij = γΦijdiag(Λij), i→ j;

vj = v
Φj

0 −
∑

(k,l)∈Pj

[
Sklz

H
kl + zklS

H
kl

]Φj
, j ∈ N+,

where Pj denotes the path from bus 0 to bus j, and Down(j) denotes the downstream of j, i.e.,

Down(j) := {k ∈ N | j ∈ Pk},

for j ∈ N+.

LPF generalizes the Simplified DistFlow Equations [12] from single-phase networks to multiphase

networks. While DC approximation assumes a constant voltage magnitude, ignores reactive power,

and assumes rij = 0, LPF does not.

4.5 Case studies

In this section, we 1) check if BIM-SDP (BFM-SDP) can be solved by the generic solver sedumi [96];

2) compare the running times of BIM-SDP and BFM-SDP; 3) compute how close the BIM-SDP

(BFM-SDP) solutions are to rank one; and 4) evaluate the accuracy of LPF for the IEEE 13, 34,

37, 123-bus networks [1] and a real-world 2065-bus network.

The test networks are modeled by BIM and BFM with the following simplifications: 1) trans-

formers are modeled as lines with appropriate impedances; 2) circuit switches are modeled as open

or short lines depending on the status of the switch; 3) regulators are modeled as having a fixed

voltage (the same as the substation); 4) distributed load on a line is modeled as two identical loads

located at two end buses of the line; and 5) line shunt is modeled using the π model, assuming a
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fixed impedance load at each end of the line with the impedance being half of the line shunt [63].

The real-world network locates in a residential/commercial area in Southern California. All simula-

tions are done on a laptop with Intel Core 2 Duo CPU at 2.66GHz, 4G RAM, and MAC OS 10.9.2,

MATLAB R 2013a.

4.5.1 BIM-SDP vs BFM-SDP

OPF is set up as follows. The objective is power loss, i.e.,

C(s) =
∑

i∈N

∑

φ∈Φi

Re(sφi ).

The power injection constraint (4.2) is set up such that

1. for a bus i representing a shunt capacitor with nameplate capacity qi,

Si = {s ∈ C|Φi| | Re(si) = 0, 0 ≤ Im(si) ≤ qi};

2. for a solar photovoltaic bus i with real power generation pi and nameplate rating si,

Si = {s ∈ C|Φi| | Re(si) = pi, |si| ≤ si};

3. for a bus i with multiple devices, Si is the summation of the above mentioned sets. Here, the

summation A+B of two sets A and B are defined as A+B := {a+ b | a ∈ A, b ∈ B}.

Two choices of the voltage constraint (4.3) are considered:

1. V φi = 0.95 and V
φ

i = 1.05 for i ∈ N+ and φ ∈ Φi;

2. V φi = 0.90 and V
φ

i = 1.10 for i ∈ N+ and φ ∈ Φi.

BIM-SDP and BFM-SDP are applied to solve OPF. In particular, the generic optimization solver

sedumi is used to solve them and the results are summarized in Table 4.1 and 4.2.

Table 4.1: Simulation results with 5% voltage flexibility.

network
BIM-SDP BFM-SDP

value time ratio value time ratio
IEEE 13-bus 152.7 1.08 9.5e-9 152.7 0.79 1.6e-10
IEEE 34-bus -100.0 1.97 1.0 5.001e-5 3.00 0.712
IEEE 37-bus 212.3 2.32 1.1e-8 212.3 2.00 9.0e-11
IEEE 123-bus -7140 6.02 2.2e-2 229.8 7.55 0.5e-11
Rossi 2065-bus -100.0 111.56 1.0 19.15 90.32 4.8e-8
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Table 4.2: Simulation results with 10% voltage flexibility.

network
BIM-SDP BFM-SDP

value time ratio value time ratio
IEEE 13-bus 152.7 1.05 8.2e-9 152.7 0.74 2.8e-10
IEEE 34-bus -100.0 2.22 1.0 279.0 1.64 3.3e-11
IEEE 37-bus 212.3 2.66 1.5e-8 212.2 1.95 1.3e-10
IEEE 123-bus -8917 7.21 3.2e-2 229.8 8.86 0.6e-11
Rossi 2065-bus -100.0 115.50 1.0 19.15 96.98 4.3e-8

Table 4.1 summarizes the simulation results with V = 0.95 and V = 1.05, and Table 4.2 summa-

rizes the simulations results with V = 0.9 and V = 1.1. Each table contains the (value, time, ratio)

triple for each of the (network, relaxation) pairs. For example, in Table 4.1, the (value, time, ratio)

triple for the (IEEE 13-bus, BIM-SDP) pair is (152.7, 1.08, 9.5e-9).

The entry “value” is the objective value in kW. In the above example, with 5% voltage flexibility,

the minimum power loss of the IEEE 13-bus network computed using BIM-SDP is 152.7kW. The

entry “time” is the running time in second. In the above example, with 5% voltage flexibility, it

takes 1.08s to solve BIM-SDP for the IEEE 13-bus network.

The entry “ratio” quantifies how close an SDP solution is to rank one. Due to finite numerical

precision, even if BIM-SDP (BFM-SDP) is exact, its numerical solution only approximately satisfies

(4.5g) [(4.10g)], i.e., the matrices in (4.5g) [(4.10g)] are only approximately rank one. To quantify

how close the matrices are to rank one, one can compute their largest two eigenvalues λ1, λ2 (|λ1| ≥
|λ2| ≥ 0) and look at their ratios |λ2/λ1|. The smaller the ratios, the closer the matrices are to

rank one. The maximum ratio over all matrices in (4.5g) [(4.10g)] is the entry “ratio”. In the above

example, with 5% voltage flexibility, the solution of BIM-SDP for the IEEE 13-bus network satisfies

|λ2/λ1| ≤ 9.5× 10−9 for all matrices in (4.5g). Hence, BIM-SDP is numerically exact.

With 10% voltage flexibility, BFM-SDP is numerically exact for all test networks while BIM-SDP

is numerically exact for only two test networks. This highlights that BFM-SDP is numerically more

stable than BIM-SDP, since both SDPs should be exact simultaneously if there are infinite digits of

precision. When voltage flexibility reduces to 5%, the OPF problem for the IEEE 13-bus network

becomes infeasible. Consequently, BFM-SDP is not numerically exact in this case.

To summarize, BFM-SDP is numerically exact for up to 2000-bus networks when OPF is feasible,

while BIM-SDP gets into numerical difficulties for as few as 34-bus networks.

4.5.2 Accuracy of LPF

Now we evaluate the accuracy of LPF (4.12). In particular, given the optimal power injections

computed by BFM-SDP in Section 4.5.1, we use the forward backward sweep algorithm (FBS) to

obtain the real power flows and voltage magnitudes [63], use LPF to estimate the power flows and
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voltage magnitudes, and compare their differences. The results are summarized in Table 4.3.

Table 4.3: Accuracy of LPF.

network
time error

FBS LBF V (p.u.) S (%)
IEEE 13-bus 0.11s 0.03s 4.5e-4 3.1
IEEE 34-bus 0.16s 0.02s 1.0e-3 4.2
IEEE 37-bus 0.12s 0.02s 2.0e-4 1.5
IEEE 123-bus 0.37s 0.07s 5.5e-4 3.3
Rossi 2065-bus 4.73s 0.98s 1.6e-3 5.3

It can be seen that the voltages are within 0.0016 per unit and the power flows are within 5.3%

of their true values for all test networks. This highlights the accuracy of LPF (4.12).

4.6 Conclusions

Two convex relaxations, BIM-SDP and BFM-SDP, have been presented to solve OPF in multiphase

radial networks. BIM-SDP explores the radial network topology to improve the computational

efficiency of a standard SDP relaxation, and BFM-SDP avoids ill-conditioned operations to enhance

the numerical stability of BIM-SDP. We have proved that BIM-SDP is exact if and only if BFM-SDP

is exact.

A linear approximation LPF has been proposed to estimate the power flows and voltages in

multiphase radial networks. LPF is accurate when line loss is small and voltages are nearly balanced.

Case studies show that BFM-SDP is numerically exact when OPF is feasible and LPF obtains

voltages within 0.0016 per unit of their true values for the IEEE 13, 34, 37, 123-bus networks and a

real-world 2065-bus network.
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Appendix

4.A Proof of Lemma 4.1

We prove that Algorithm 3 computes a V that satisfies V0 = V ref
0 and (4.4). The proof of uniqueness

of such V is straightforward and omitted for brevity.

Let N (0) := {0} and N (k) denote the set Nvisit after iteration k = 1, 2, . . . , n of Algorithm 3. Let

E(k) := E ∩ N (k) ×N (k) denote the edges of the subgraph induced by N (k) for k = 0, 1, . . . , n.

After iteration k ≥ 0, voltage Vi is recovered for i ∈ N (k). In particular, after iteration n, Vi is

recovered for i ∈ N (n) = N . Hence, it suffices to prove

vi = ViV
H
i , i ∈ N (k); (4.13a)

Wij = V
Φij

i V Hj , Wji = Vj(V
Φij

i )H , (i, j) ∈ E(k) (4.13b)

for k = 0, 1, . . . , n.

We prove (4.13) by induction. When k = 0, (4.13) holds trivially. Assume that (4.13) holds for

k = K (0 ≤ K ≤ n− 1), we prove that (4.13) holds for k = K + 1 as follows.

Let j = N (k)\N (k−1). Since the network (N , E) is radial, there exists a unique i such that i→ j.

Furthermore, i ∈ N (k−1). It suffices to prove

vj = VjV
H
j , Wij = V

Φij

i V Hj , Wji = Vj(V
Φij

i )H .

Since the matrix 
v

Φij

i Wij

Wji vj




is hermitian and rank one, there exists α, β ∈ C|Φij | such that


v

Φij

i Wij

Wji vj


 = η


α
β



[
αH βH

]
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where η = ±1. Since v
Φij

i = V
Φij

i (V
Φij

i )H � 0 and v
Φij

i 6= 0, one has η = 1 and therefore

v
Φij

i = ααH , Wij = αβH , Wji = βαH , vj = ββH .

Furthermore, V
Φij

i = α exp(iθ) for some θ ∈ R since

V
Φij

i (V
Φij

i )H = v
Φij

i = ααH .

It follows that

Vj =
1

tr
(
v

Φij

i

)WjiV
Φij

i =
1

tr (ααH)
βαHα exp(iθ) = β exp(iθ).

Then, it is straightforward to verify that

VjV
H
j = ββH = vj ,

V
Φij

i V Hj = αβH = Wij ,

Vj(V
Φij

i )H = βαH = Wji.

This completes the proof that Algorithm 3 computes a V that satisfies V0 = V ref
0 and (4.4).

4.B Proof of Theorem 4.3

First prove FBIM ⊆ FBFM. Let (s, V ) ∈ FBIM, and we want to prove (s, V ) ∈ FBFM. Let Iij =

yij(V
Φij

i − V Φij

j ) for i ∼ j, then (V, I) satisfies (4.6). Define (`, S) according to (4.7). It suffices to

prove (s, `, S) satisfies (4.8). This is because

∑

k: j→k
diag(Sjk)Φj −

∑

i: i→j
diag (Sij − zij`ij) =

∑

k: j→k
diag

(
V

Φjk

j IHjk

)Φj

−
∑

i: i→j
diag

(
VjI

H
ij

)

=
∑

i: i∼j
diag

(
V

Φij

j IHji

)Φj

=
∑

i: i∼j
diag

[
V

Φij

j (V
Φij

j − V Φij

i )HyHij

]Φj

= sj

for j ∈ N . This completes the proof of FBIM ⊆ FBFM.

Next prove FBFM ⊆ FBIM. Let (s, V ) ∈ FBFM, and we want to prove (s, V ) ∈ FBIM. Let (I, `, S)

be such that (s, V, I, `, S) satisfies (4.6)–(4.8). It suffices to prove (s, V ) satisfies (4.1). This is
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because

∑

i: i∼j
diag

[
V

Φij

j (V
Φij

j − V Φij

i )HyHij

]Φj

=
∑

k: j→k
diag

(
V

Φjk

j IHjk

)Φj

−
∑

i: i→j
diag

(
V

Φij

j IHij

)Φj

=
∑

k: j→k
diag(Sjk)Φj −

∑

i: i→j
diag

[
(V

Φij

i − zijIij)IHij
]

=
∑

k: j→k
diag(Sjk)Φj −

∑

i: i→j
diag (Sij − zij`ij) = sj

for j ∈ N . This completes the proof of Theorem 4.3.

4.C Proof of Lemma 4.4

We prove that Algorithm 4 computes a (V, I) that satisfies V0 = V ref
0 , (4.4a), (4.6), and (4.7). The

proof of uniqueness of such (V, I) is straightforward and omitted for brevity.

Let N (0) := {0} and N (k) denote the set Nvisit after iteration k = 1, 2, . . . , n of Algorithm 4. Let

E(k) := E ∩ N (k) ×N (k) denote the edges of the subgraph induced by N (k) for k = 0, 1, . . . , n.

After iteration k ≥ 0, voltage Vi is recovered for i ∈ N (k) and current Iij is recovered for

(i, j) ∈ E(k). In particular, after iteration n, Vi is recovered for i ∈ N (n) = N and Iij is recovered

for (i, j) ∈ E(n) = E . Hence, it suffices to prove

vi = ViV
H
i , i ∈ N (k); (4.14a)

V
Φij

i − Vj = zijIij , `ij = IijI
H
ij , Sij = V

Φij

i IHij , (i, j) ∈ E(k) (4.14b)

for k = 0, 1, . . . , n.

We prove (4.14) by induction. When k = 0, (4.14) holds trivially. Assume that (4.14) holds for

k = K (0 ≤ K ≤ n− 1), we prove that (4.14) holds for k = K + 1 as follows.

Let j = N (k)\N (k−1). Since the network (N , E) is radial, there exists a unique i such that i→ j.

Furthermore, i ∈ N (k−1). It suffices to prove

vj = VjV
H
j , V

Φij

i − Vj = zijIij , `ij = IijI
H
ij , Sij = V

Φij

i IHij .

Since the matrix 
v

Φij

i Sij

SHij `ij



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is hermitian and rank one, there exists α, β ∈ C|Φij | such that


v

Φij

i Sij

SHij `ij


 = η


α
β



[
αH βH

]

where η = ±1. Since v
Φij

i = V
Φij

i (V
Φij

i )H � 0 and v
Φij

i 6= 0, one has η = 1 and therefore

v
Φij

i = ααH , Sij = αβH , `ij = ββH .

Furthermore, V
Φij

i = α exp(iθ) for some θ ∈ R since

V
Φij

i (V
Φij

i )H = v
Φij

i = ααH .

It follows that

Iij =
1

tr
(
v

Φij

i

)SHij V
Φij

i =
1

tr (ααH)
βαHα exp(iθ) = β exp(iθ)

and

Vj = V
Φij

i − zijIij = α exp(iθ)− zijβ exp(iθ) = (α− zijβ) exp(iθ).

Then, it is straightforward to verify that

VjV
H
j = (α− zijβ)(α− zijβ)H = v

Φij

i − (zijS
H
ij + Sijz

H
ij ) + zij`ijz

H
ij = vj ,

IijI
H
ij = ββH = `ij ,

V
Φij

i IHij = αβH = Sij .

This completes the proof that Algorithm 4 computes a (V, I) that satisfies V0 = V ref
0 , (4.4a), (4.6),

and (4.7).

4.D Proof of Theorem 4.6

First prove that f(s, v,W ) ∈ FBFM-SDP for any (s, v,W ) ∈ FBIM-SDP. Let (s, v,W ) ∈ FBIM-SDP, let

(s, v, S, `) = f(s, v,W ), and we want to prove (s, v, S, `) ∈ FBFM-SDP.

It is straightforward that (s, v, S, `) satisfies (4.10b)–(4.10d). The point (s, v, S, `) satisfies (4.10a)
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because

Sij − zij`ij = (v
Φij

i −Wij)y
H
ij − (v

Φij

i −Wij −Wji + vj)y
H
ij = −(vj −Wji)y

H
ij

for i→ j and therefore

∑

k: j→k
diag(Sjk)Φj −

∑

i: i→j
diag (Sij − zij`ij)

=
∑

k: j→k
diag

[
(v

Φjk

j −Wjk)yHjk

]Φj

+
∑

i: i→j
diag

[
(vj −Wji)y

H
ij

]

=
∑

i: i∼j
diag

[
(v

Φij

j −Wji)y
H
ji

]Φj

= sj

for j ∈ N . The point (s, v, S, `) satisfies (4.10e) because

v
Φij

i − (Sijz
H
ij + zijS

H
ij ) + zij`ijz

H
ij

= v
Φij

i − (v
Φij

i −Wij + v
Φij

i −Wji) + v
Φij

i −Wij −Wji + vj

= vj

for i→ j. The point (s, v, S, `) satisfies (4.10f) because


v

Φij

i Sij

SHij `ij


 � 0

⇔ v
Φij

i � 0, Sij ∈ R(v
Φij

i ), `ij � SHij (v
Φij

i )+Sij

⇔ v
Φij

i � 0, Wij ∈ R(v
Φij

i ), v
Φij

i −Wij −Wji + vj � (v
Φij

i −Wji)(v
Φij

i )+(v
Φij

i −Wij)

⇔ v
Φij

i � 0, Wij ∈ R(v
Φij

i ), vj �Wji(v
Φij

i )+Wij

⇔


v

Φij

i Wij

Wji vj


 � 0 (4.15)

for i→ j. This completes the proof that f(s, v,W ) ∈ FBFM-SDP for any (s, v,W ) ∈ FBIM-SDP.

Next show that g(s, v, S, `) ∈ FBIM-SDP for any (s, v, S, `) ∈ FBFM-SDP. Let (s, v, S, `) ∈
FBFM-SDP, let g(s, v, S, `) = (s, v,W ), and we want to prove (s, v,W ) ∈ FBIM-SDP.

It is straightforward that (s, v,W ) satisfies (4.5b)–(4.5e). The point (s, v,W ) satisfies (4.5a)

because

(vj −Wji)y
H
ij = − (v

Φij

i − zijSHij − vj)yHij = − (Sijz
H
ij − zij`ijzHij )yHij = − (Sij − zij`ij)
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for i→ j and therefore

∑

i: i∼j
diag

[
(v

Φij

j −Wji)y
H
ji

]Φj

=
∑

i: i→j
diag

[
(vj −Wji)y

H
ji

]
+
∑

k: j→k
diag

[
(v

Φjk

j −Wjk)yHjk

]Φj

= −
∑

i: i→j
diag(Sij − zij`ij) +

∑

k: j→k
diag(Sjk)Φj = sj

for j ∈ N . The point (s, v,W ) satisfies (4.5f) due to (4.15). This completes the proof that

g(s, v, S, `) ∈ FBIM-SDP for any (s, v, S, `) ∈ FBFM-SDP.

It is straightforward to verify that f ◦ g and g ◦ f are both identity maps. This completes the

proof of Theorem 4.6.

4.E Proof of Theorem 4.8

Let (s, v,W ) ∈ FBIM-SDP and (s, v, S, `) = f(s, v,W ). It suffices to prove that

rank


v

Φij

i Sij

SHij `ij


 = 1 ⇐⇒ rank


v

Φij

i Wij

Wji vj


 = 1

for i→ j. Fix an arbitrary i→ j. Since rank(v
Φij

i ) ≥ 1 by (4.5d),

rank


v

Φij

i Sij

SHij `ij


 = 1

⇔ rank(v
Φij

i ) = 1, Sij ∈ R(v
Φij

i ), `ij = SHij (v
Φij

i )+Sij

⇔ rank(v
Φij

i ) = 1, Wij ∈ R(v
Φij

i ), v
Φij

i −Wji −Wij + vj = (v
Φij

i −Wji)(v
Φij

i )+(v
Φij

i −Wij)

⇔ rank(v
Φij

i ) = 1, Wij ∈ R(v
Φij

i ), vj = Wji(v
Φij

i )+Wij

⇔ rank


v

Φij

i Wij

Wji vj


 = 1.

This completes the proof of Theorem 4.8.
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Chapter 5

An OPF Solver

In this chapter, we derive a distributed algorithm for solving the OPF problem, and provide a

suboptimality bound for the solution it obtains. Simulation results indicate that the suboptimality

is within 2e-7, and that the distributed algorithm is much more efficient to compute than the convex

relaxation method, for a series of real-world networks.

Literature The OPF problem is difficult to solve since power flow is governed by nonlinear physical

laws. There are three ways to deal with this challenge: 1) approximate the power flow equations (by

linear or easier nonlinear equations); 2) look for local optima of the OPF problem; and 3) convexify

the constraints imposed by the nonlinear physical laws. The third approach has been explored in

the previous chapter, and we focus on the first two approaches in this chapter.

Power flow equations can be approximated by some linear equations known as the DC power flow

equations [7, 94, 95] if 1) power losses on the lines are small; 2) voltages are close to their nominal

values; and 3) voltage angle differences between adjacent buses are small. With the DC power flow

approximation, the OPF problem reduces to a linear programming. For transmission networks, the

three assumptions are satisfied and the approach is widely used in practice. However, DC power

flow equations do not consider voltages and reactive power flows, and therefore cannot be used

for applications like power routing [108] and volt/var control [101]. Besides, the obtained solution

may not be implementable since physical laws are not fully respected. Moreover, for distribution

networks, power losses on the lines are not negligible and voltages can deviate significantly from their

nominal values. Consequently, DC power flow equations are not accurate enough for distribution

networks.

A number of algorithms look for a local optimum of the OPF problem. These algorithms use

nonlinear power flow equations and therefore 1) can be used in applications like voltage regulation

and volt/var control; 2) have physically implementable solutions; and 3) apply to both transmission

and distribution networks. Representative algorithms of this kind include successive linear/quadratic

programming [32], trust-region based methods [78,92], Lagrangian Newton method [11], and interior-
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point methods [21, 59, 100]. Some of these algorithms, especially those based on Newton-Ralphson,

are quite successful empirically. However, these algorithms may not converge, and suboptimality of

their solutions is rarely characterized.

Summary The distributed algorithm presented in this chapter also seeks a local optimum of OPF.

It differs from other algorithms of this kind in its 1) guaranteed convergence, 2) high computational

efficiency, and 3) well-characterizable suboptimality.

The algorithm implements gradient projection in a distributed manner. In each iteration of the

algorithm, derivatives of the objective function with respect to controllable variables are estimated,

and then used as the negative directions to update controllable variables. Derivatives are estimated

using a linear approximation of the power flow equations, and line search is adopted to determine

the step sizes of the updates.

The rest of this chapter is organized as follows. A simplified OPF that illustrates the main

structure of the distributed algorithm is described in Section 5.1. The algorithm is provided in

Section 5.2 and numerical results are presented in Section 5.5.

5.1 A Simplified OPF Problem

The OPF problem in distribution networks has been described in Section 4.1. To highlight the

main components of the distributed algorithm without worrying about the complication of multiple

phases, we assume that the network is single-phase and radial. In particular, the bus voltages Vi,

bus power injections si, and branch power flows Sij are complex scalars.

For each bus i ∈ N , let vi = |Vi|2 denote the square of its complex voltage magnitude, e.g., if the

voltage is Vi = 1.05∠120◦ per unit, then vi = 1.052. Note that v0 is fixed and given. Let pi = Re(si)

and qi = Im(si) denote the real and reactive power injections, respectively. Let Pi denote the unique

path from bus 0 to bus i. Since the network is radial, the path Pi is well-defined. For each line

(i, j) ∈ E , let `ij = |Iij |2 denote the square of the complex current magnitude, e.g., if the current is

Iij = 0.5∠10◦, then `ij = 0.52. Let Pij = Re(Sij) and Qij = Im(Sij) denote the real and reactive

power flows, respectively. Let rij = Re(zij) and xij = Im(zij) denote the resistance and reactance,

respectively. Some of the notations are summarized in Figure 5.1.

Bus 0 Bus j Bus i 

Pi

vjvi
zij

Sij , `ij
si

Figure 5.1: Some of the notations.
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The simplified OPF problem that we seek to solve is as follows.

min

n∑

i=0

(aip
2
i + bipi) (5.1a)

over pi and qi for i ∈ N+;

p0, q0, vi for i ∈ N+, Pij , Qij and `ij for i→ j;

s.t.
∑

i: i→j
(Pij − rij`ij) + pj =

∑

k: j→k
Pjk, j ∈ N ; (5.1b)

∑

i: i→j
(Qij − xij`ij) + qj =

∑

k: j→k
Qjk, j ∈ N ; (5.1c)

vi − vj = 2(rijPij + xijQij)− |zij |2`ij , i→ j; (5.1d)

`ij =
P 2
ij +Q2

ij

vi
, i→ j; (5.1e)

vi ≤ vi ≤ vi, i ∈ N+; (5.1f)

pi ∈
[
p
i
, pi

]
, qi ∈

[
q
i
, qi

]
, i ∈ N+. (5.1g)

The objective function (5.1a) is assumed to be separable, quadratic, and purely a function of p.

Equations (5.1b)–(5.1e) are obtained from (4.10a), (4.10e), and (4.10g). They describe the physical

laws that govern the power flow. Equation (5.1f) is the voltage regulation constraints, and equation

(5.1g) is the power injection constraints. The results in this chapter generalize to arbitrary convex

power injection constrains other than the form described by (5.1g).

5.1.1 Basic and Derived Variables

The following assumption is the foundation of the algorithm developed in this chapter:

Assumption 5.1. Given the substation voltage v0 and the branch bus power injections si for i ∈ N+,

we assume there exists a unique “practical” power flow solution ([vi]i∈N+ , [`ij ]i→j , [Sij ]i→j , s0).

Here “practical” means that the voltages vi are close to their nominal values of 1.0 per unit. It is

justified in [12] that all other power flow solutions have vi ≈ 0 for some i ∈ N+. In fact, Assumption

5.1 is commonly acknowledged by the industry. With this assumption, the optimization variables

can be classified into two categories:

1. Basic variables that are controllable. These variables include the branch bus real and reactive

power injections pi and qi for i ∈ N+.

2. Derived variables that are uniquely determined [by power flow equations (5.1b)–(5.1e)] after

specifying the basic variables. These variables include the substation power injection p0, q0,

the branch bus voltages vi for i ∈ N+, and line flows Pij , Qij , `ij for i→ j.
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Let x = (p1, . . . , pn, q1, . . . , qn) denote all basic variables, then derived variables are functions of x,

i.e.,

p0 = p0(x), q0 = q0(x);

vi = vi(x), i ∈ N+;

Pij = Pij(x), Qij = Qij(x), `ij = `ij(x), i→ j.

Remove derived variables to transform the OPF problem (5.1) into the following form:

min a0p
2
0(x) + b0p0(x) +

n∑

i=1

(aip
2
i + bipi)

over x

s.t. vi ≤ vi(x) ≤ vi, i ∈ N+; (5.2a)

p
i
≤ pi ≤ pi, qi ≤ qi ≤ qi, i ∈ N+. (5.2b)

While (5.2) is equivalent to (5.1) for radial networks under Assumption 5.1, (5.2) has much fewer

optimization variables than (5.1) and is therefore potentially more efficient to compute. Furthermore,

the derived variables (p0, [vi]i∈N+) will be automatically computed by power flow physics once

the basic variable x is computed. This motivates an iterative procedure for solving OPF: in each

iteration, first update the basic variable x and then let derived variables be automatically computed

by power flow physics.

5.2 A Gradient Projection Algorithm

The algorithm that we propose to solve the OPF problem (5.2) is presented in this section. It

is a gradient projection algorithm. In each iteration of the algorithm, derivatives of the modified

objective function with respect to the basic variables are estimated, and then used as the negative

direction of updating the basic variables. Line search is implemented to determine the step sizes of

basic variable updates so as to ensure the convergence of the algorithm.

5.2.1 Estimation of Derivatives

One of the key reasons that the gradient projection algorithm we propose in this chapter is efficient

is that the derivatives can be estimated efficiently. In this section, we first compute the derivatives

exactly, and then propose an estimation of the derivatives that can be done much more efficiently.
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5.2.1.1 Exact Derivatives

We first compute the gradients exactly. Since the network is radial, (5.1b)–(5.1e) imply

∂xPij = rij∂x`ij − ∂xpj +
∑

k: j→k
∂xPjk, (5.3a)

∂xQij = xij∂x`ij − ∂xqj +
∑

k: j→k
∂xQjk, (5.3b)

∂xvj = ∂xvi − 2 (rij∂xPij + xij∂xQij) + |zij |2∂x`ij , (5.3c)

∂x`ij =
2Pij
vi

∂xPij +
2Qij
vi

∂xQij −
`ij
vi
∂xvi (5.3d)

for i→ j. Let I denote the 2× 2 identity matrix and remove ∂x`ij to obtain


I − 2

vi


rij
xij



(
Pij Qij

)



∂xPij
∂xQij


 =

∑

k: j→k


∂xPjk
∂xQjk


−


∂xpj
∂xqj


−


rij
xij


 `ij

vi
∂xvi,

∂xvj =

(
1− |zij |2

`ij
vi

)
∂xvi − 2

(
rij − |zij |2

Pij
vi

)
∂xPij − 2

(
xij − |zij |2

Qij
vi

)
∂xQij

for i→ j. Hence, the gradients ∂x(P,Q, v, p0, q0) can be computed by Algorithm 5.

Algorithm 5 Compute gradients

Input: network graph (N , E), power flow solution (p, q, P,Q, v, `), stopping criterion ε.
Output: gradient ∂x(P,Q, v, p0, q0) where x = (p1, . . . , pn, q1, . . . , qn).

1: Initialization.
∂xvi ← 0 for i = 0, 1, . . . , n;

2: Backward sweep.
From the leafs j → k to the roots i→ j, compute

(
∂xPij
∂xQij

)
←
[
I − 2

vi

(
rij
xij

)(
Pij Qij

)]−1

 ∑

k: j→k

(
∂xPjk
∂xQjk

)
−
(
∂xpj
∂xqj

)
−
(
rij
xij

)
`ij
vi
∂xvi


 ;

3: Forward sweep.
From the roots i to the leafs j, compute

∂xvj ←
(

1− |zij |2
`ij
vi

)
∂xvi − 2

(
rij − |zij |2

Pij
vi

)
∂xPij − 2

(
xij − z2

ij

Qij
vi

)
∂xQij ;

4: if update in ∂x(P,Q, v) > ε
go to 2;

end
5: Return value.

(
∂xp0

∂xq0

)
←

∑

k: 0→k

[
I − 2

v0

(
r0k

x0k

)(
P0k Q0k

)]−1
[ ∑

l: k→l

(
∂xPkl
∂xQkl

)
−
(
∂xpk
∂xqk

)
−
(
r0k

x0k

)
`0k
v0
∂xv0

]
;

Remark 5.1. The calculation of gradients ∂x(P,Q, v, p0, q0) in Algorithm 5 depends on the power
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flow solution (P,Q, v, p0, q0) at which the gradients are evaluated. Since it is assumed in Assumption

5.1 that the practical (P,Q, v, p0, q0) is unique given (p, q), the gradients ∂x(P,Q, v, p0, q0) is unique.

Remark 5.2. The implicit function theorem is used to derive (5.3) from (5.1b)–(5.1e). To apply

the theorem, we have made the mild assumption that the gradients ∂x(P,Q, v, `) exist.

5.2.1.2 Approximated Derivatives

To avoid the iterative procedure described by Algorithm 5 to improve the computational efficiency,

one can estimate the gradients as follows. Note that the current terms in (5.1b)–(5.1d) are much

smaller than the other terms in practice, and one can estimate (P,Q, v) by (P̂ , Q̂, v̂) defined as

∑

i: i→j
P̂ij + pj =

∑

k: j→k
P̂jk, j ∈ N ;

∑

i: i→j
Q̂ij + qj =

∑

k: j→k
Q̂jk, j ∈ N ;

v̂i − v̂j = 2(rijP̂ij + xijQ̂ij), i→ j.

Note that because the equations are linear, it is straightforward to obtain

∂xP̂ij =
∑

k: j→k
∂xP̂jk − ∂xpj , i→ j;

∂xQ̂ij =
∑

k: j→k
∂xQ̂jk − ∂xqj , i→ j;

∂xv̂j = ∂xv̂i − 2rij∂xP̂ij − 2xij∂xQ̂ij , i→ j

since the network is radial.

i 

j 

0 i ^ j

Figure 5.1: The bus i ∧ j denotes the joint of bus i and bus j. The resistance Ri denotes the total
resistance of the red solid line segment.

Let i ∧ j denote the joint of bus i and j for i, j ∈ N , and let Ri denote the total resistance

from bus 0 to bus i for i ∈ N . See Figure 5.1 for an example. Then ∂x(P̂ , Q̂, v̂) has the following
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closed-form expression

∂pk P̂ij = −1j∈Pk
, ∂qk P̂ij = 0, k = 1, 2, . . . , n, i→ j; (5.4a)

∂pkQ̂ij = 0, ∂qkQ̂ij = −1j∈Pk
, k = 1, 2, . . . , n, i→ j; (5.4b)

∂pk v̂i = 2Ri∧k, ∂qk v̂i = 2Xi∧k, k = 1, 2, . . . , n, i ∈ N+. (5.4c)

We remark on several interesting properties of (5.4):

Remark 5.3. The derivatives ∂pkvi and ∂qkvi are symmetric in (i, k), i.e., the impact of an injection

on voltage is symmetric in their respective locations.

Remark 5.4. The impact on voltages of injections close to the substation is smaller; similarly, the

voltages close to the substation are less sensitive to injections. This agrees with intuition.

One can approximate ∂x(P,Q, v) by ∂x(P̂ , Q̂, v̂), i.e.,

∂x(P,Q, v) ≈ ∂x(P̂ , Q̂, v̂).

Note that ∂x(P̂ , Q̂, v̂) is a constant that does not depend on (P,Q, v), and therefore need to be

computed only once ahead of time.

Finally, one can approximate ∂x(p0, q0) as follows. Sum up (5.1b) for j ∈ N to obtain

n∑

i=0

pi =
∑

i→j
rij`ij =

∑

i→j
rij
P 2
ij +Q2

ij

vi
.

Hence,

∂pip0 = − 1 +
∑

k→l
rkl∂pi

(
P 2
kl +Q2

kl

vk

)

= − 1 +
∑

k→l
rkl

(
2Pkl
vk

∂piPkl +
2Qkl
vk

∂piQkl −
`kl
vk
∂pivk

)

≈ − 1 +
∑

k→l
rkl

(
2Pkl
vk

∂pi P̂kl +
2Qkl
vk

∂piQ̂kl −
`kl
vk
∂pi v̂k

)

∂qip0 =
∑

k→l
rkl∂qi

(
P 2
kl +Q2

kl

vk

)

=
∑

k→l
rkl

(
2Pkl
vk

∂qiPkl +
2Qkl
vk

∂qiQkl −
`kl
vk
∂qivk

)

≈
∑

k→l
rkl

(
2Pkl
vk

∂qi P̂kl +
2Qkl
vk

∂qiQ̂kl −
`kl
vk
∂qi v̂k

)

for i = 1, 2, . . . , n. The expressions for ∂xq0 are symmetric with rij replaced by xij .
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5.2.2 Modified Objective Function

To enable a distributed algorithm, i.e., each bus i updates its own (pi, qi) locally, the constraints of

OPF have better be decoupled, i.e., constraints of the form (5.2b) are easy to handle while constraints

of the form (5.2a) should be avoided.

To avoid coupled constraints (5.2a), one can add a log-barrier function to the objective as

L(x;µ) = a0p
2
0(x) + b0p0(x) +

n∑

i=1

(aip
2
i + bipi)− µ

n∑

i=1

ln(vi(x)− vi)− µ
n∑

i=1

ln(vi − vi(x)),

where µ = (µ, µ) > 0 componentwise. Note that vi ≤ vi(x) ≤ vi for i ∈ N+ is enforced since

lim
t↓vi
−µ ln(t− vi) =∞, lim

t↑vi
−µ ln(vi − t) =∞, i ∈ N+

and OPF seeks to minimize L. Besides,

lim
µ↓0

L(x;µ) = a0p
2
0(x) + b0p0(x) +

n∑

i=1

(aip
2
i + bipi)

and therefore solving OPF is similar to minimizing L(x;µ) with small enough µ.

To summarize, the distributed algorithm proposed in this chapter seeks to solve

OPF(µ) : min L(x;µ)

over p1, . . . , pn, q1, . . . , qn;

s.t. p
i
≤ pi ≤ pi, qi ≤ qi ≤ qi, i = 1, 2, . . . , n

for a decreasing sequence of µ. In the rest of this section, we solve OPF(µ) for a specific µ.

5.2.3 Gradient Projection

There are two key steps in a gradient projection algorithm: 1) compute (or approximate) the gradi-

ents; and 2) choose a step size to update the optimization variables.
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The gradients can be approximated using (5.4). In particular,

∂piL = (2a0p0 + b0)∂pip0 + (2aipi + bi)−
n∑

k=1

[
µ

vk − vk
+

µ

vk − vk

]
∂pivk

= (2a0p0 + b0)

[
−1 +

∑

k→l
rkl

(
2Pkl
vk

∂piPkl +
2Qkl
vk

∂piQkl −
`kl
vk
∂pivk

)]

+ (2aipi + bi)−
n∑

k=1

[
µ

vk − vk
+

µ

vk − vk

]
∂pivk

≈ (2a0p0 + b0)

[
−1 +

∑

k→l
rkl

(
2Pkl
vk

∂pi P̂kl +
2Qkl
vk

∂piQ̂kl −
`kl
vk
∂pi v̂k

)]

+ (2aipi + bi)−
n∑

k=1

[
µ

vk − vk
+

µ

vk − vk

]
∂pi v̂k

= − (2a0p0 + b0)

[
1 +

∑

k→l
rkl

(
2Pkl
vk

1l∈Pi
+
`kl
vk
Ri∧k

)]

+ (2aipi + bi)−
n∑

k=1

[
µ

vk − vk
+

µ

vk − vk

]
2Ri∧k (5.5)

for i = 1, 2, . . . , n. Similarly,

∂qiL ≈ − (2a0p0 + b0)
∑

k→l
rkl

(
2Qkl
vk

1l∈Pi
+
`kl
vk
Xi∧k

)
−

n∑

k=1

[
µ

vk − vk
+

µ

vk − vk

]
2Xi∧k (5.6)

for i = 1, 2, . . . , n.

The step size can be determined by doing a line search along the direction of −∂(p,q)L (in the

software implementation, the estimation of ∂(p,q)L in (5.5)–(5.6) is used instead), i.e., back off the

step size until the modified objective function can be well-approximated by its linearization around

the current solution point. Three parameters α (determine the back off speed, set to 0.5 in the

current implementation), β (criteria for the linearization of the objective to be accurate enough, set

to 0.5 in the current implementation), and ε (criteria for the progress to be too slow, set to 1e-4

in the current implementation) are needed in the line search step. In particular, the line search is

described in Algorithm 6. To state the algorithm, let

∏

C

x := argminy∈C‖y − x‖2

denote the (unique) projection of a point x onto a non-empty compact convex set C.

Theorem 5.2 (well defined). Given specified input, Algorithm 6 always produces (p′, q′, stopFlag).

Theorem 5.2 implies that Algorithm 6 is well defined.

Proof. Assume that Algorithm 6 fails to produce (p′, q′, stopFlag) for some instance. Consider this
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Algorithm 6 Line search

Input: back-off parameter α ∈ (0, 1), linearization parameter β ∈ (0, 1), progress parameter ε� 1,
current solution (p, q), bounds

(
p, p, q, q, v, v

)
, gradient ∂(p,q)L.

Output: update value (p′, q′), stopping flag stopFlag.
1: η = 1, stopFlag = 0;
2: (p′, q′)← (p, q)− η∂(p,q)L;
3: p′ ←∏

[p,p] p
′, q′ ←∏

[q,q] q
′;

4: run the backward-forward sweep algorithm to obtain the power flow solution (v′, p′0, q
′
0) with

respect to (p, q, v0);
5: if v′ /∈ [v, v]

η ← αη, go to 2;
end

6: ∆p← p′ − p, ∆q ← q′ − q;
7: if ‖∆p‖+ ‖∆q‖ ≤ ε

stopFlag = 1;
else if L(p′, q′) > L(p, q) + β (∂pL ·∆p+ ∂qL ·∆q)

η ← αη, go to 2;
end

8: if L(p′, q′) > L(p, q)
p′ ← p, q′ ← q;

end

instance and derive a contradiction as follows. Let the superscript (k) denote the round of iteration

for k = 0, 1, 2, . . . where iteration 0 refers to the initial value, e.g., ∆p(k) = p(k) − p for k ≥ 1.

Let m > 0 denote the minimum positive number among {|∂piL|, |∂qiL| : i = 1, 2, . . . , n}. Note

that ∂piL ·∆p(k)
i ≤ 0 and ∂qiL ·∆q(k)

i ≤ 0 for k ≥ 1 and i ∈ N+. Furthermore, ∂piL = 0 implies

∆p
(k)
i = 0 for k ≥ 1 and i ∈ N+. Hence,

∂piL ·∆p(k)
i ≤ −m|∆p(k)

i |, k ≥ 1, i ∈ N+.

It follows that

∂pL ·∆p(k) =
∑

i∈N+

∂piL ·∆p(k)
i ≤

∑

i∈N+

−m|∆p(k)
i | = −m

∥∥∥∆p(k)
∥∥∥

1

for k ≥ 1, where ‖ · ‖1 denotes the `1 norm of a vector, i.e., ‖x‖1 =
∑n
i=1 |xi| for x ∈ Rn. Similarly,
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∂qL ·∆q(k) ≤ −m‖∆q(k)‖1 for k ≥ 1. It follows that

L(p(k), q(k)) = L(p+ ∆p(k), q + ∆q(k))

= L(p, q) + ∂pL ·∆p(k) + ∂qL ·∆q(k) + o(∆p(k),∆q(k))

= L(p, q) + β
(
∂pL ·∆p(k) + ∂qL ·∆q(k)

)

+ (1− β)
(
∂pL ·∆p(k) + ∂qL ·∆q(k)

)
+ o(∆p(k),∆q(k))

≤ L(p, q) + β
(
∂pL ·∆p(k) + ∂qL ·∆q(k)

)

−m(1− β)
(∥∥∥∆p(k)

∥∥∥
1

+
∥∥∥∆q(k)

∥∥∥
1

)
+ o(∆p(k),∆q(k))

for k ≥ 1. When k is sufficiently big, ‖∆p(k)‖1 + ‖∆q(k)‖1 is sufficiently small such that

o(∆p(k),∆q(k)) ≤ m(1− β)
(∥∥∥∆p(k)

∥∥∥
1

+
∥∥∥∆q(k)

∥∥∥
1

)
.

Hence, eventually

L(p(k), q(k)) ≤ L(p, q) + β
(
∂pL ·∆p(k) + ∂qL ·∆q(k)

)
.

Then, the loop specified by Step 7) is exited and (p′, q′, stopFlag) is produced. This contradicts the

assumption that Algorithm 6 fails to produce a (p′, q′, stopFlag) and completes the proof of Theorem

5.2.

Remark 5.5. The introduction of ε in the “if” branch in Step 7) is to stop the iterations when

progress gets too slow, i.e., ‖∆p‖+‖∆q‖ ≤ ε. When this happens, stopFlag is set to 1 and iterations

are stopped. Otherwise, a large number of iterations will run without updating (p, q) significantly.

With the “if” branch in Step 7), it is possible that L(p′, q′) > L(p, q). In this case, (p′, q′) is set

to (p, q) to ensure that new point (p′, q′) does not have a larger objective value than (p, q).

Definition 5.1 (local optimum). A point (p, q) is a local optimum for minimizing L if

〈∂piL, p̃i − pi〉 ≥ 0, ∀p̃i ∈ (p
i
, pi), ∀i ∈ N+;

〈∂qiL, q̃i − qi〉 ≥ 0, ∀q̃i ∈ (q
i
, qi), ∀i ∈ N+.

Theorem 5.3 (stationary points). In Algorithm 6, if ε = 0, then

(p, q) = (p′, q′) ⇐⇒ (p, q) is a local optimum.

Theorem 5.3 implies that a point (p, q) is stationary for Algorithm 6, i.e., the output (p′, q′) =

(p, q), if and only if (p, q) is a local optimum of minimizing L.
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Proof. Either ‖∆p‖+ ‖∆q‖ ≤ ε = 0 or L(p′, q′) ≤ L(p, q) + β(∂pL ·∆p + ∂qL ·∆q) ≤ L(p, q) when

entering Step 8). In either case, L(p′, q′) ≤ L(p, q) and therefore

p′ =
∏

[p,p]

(p− η∂pL) , q′ =
∏

[q,q]

(q − η∂qL)

after exiting Algorithm 6.

“⇐”: Let (p, q) be a local optimum. Want to prove that (p, q) = (p′, q′). For brevity, we present

the proof of pi = p′i for an arbitrarily chosen i ∈ N+ below. The proof of qi = q′i for an arbitrarily

chosen i ∈ N+ is similar.

Note that p′i =
∏

[p
i
,pi]

(pi − η∂piL). If ∂piL = 0, then p′i = pi. If ∂piL > 0, since

〈∂piL, p̃i − pi〉 ≥ 0, p
i
≤ p̃i ≤ pi,

let p̃i = p
i

to obtain pi = p
i
; consequently p′i = pi. If ∂piL < 0, let p̃i = pi to obtain pi = pi;

consequently p′i = pi. This completes the proof of “⇐”.

“⇒”: Assume (p, q) = (p′, q′). Want to prove that (p, q) is a local optimum. For brevity, we

present the proof of

〈∂piL, p̃i − pi〉 ≥ 0, p
i
≤ p̃i ≤ pi (5.7)

for an arbitrary i ∈ N+. The proof of

〈∂qiL, q̃i − qi〉 ≥ 0, q
i
≤ q̃i ≤ qi

for an arbitrary i ∈ N+ is similar.

Note that pi = p′i =
∏

[p
i
,pi]

(pi − η∂piL). If ∂piL = 0, then (5.7) holds. If ∂piL > 0, then pi = p
i

and therefore (5.7) holds. If ∂piL < 0, then pi = pi and therefore (5.7) holds. This completes the

proof of “⇒”.

Combining “⇐” and “⇒” completes the proof of Theorem 5.3.

Theorem 5.4 (progress). If ε = 0, then the input (p, q) and output (p′, q′) of Algorithm 6 satisfy

L(p′, q′) ≤ L(p, q).

The equality is attained if and only if (p′, q′) = (p, q).

Theorems 5.3 and 5.4 imply that L(p′, q′) < L(p, q) unless (p, q) is a local optimum, in which

case (p′, q′) = (p, q).

Proof. Either ‖∆p‖ + ‖∆q‖ ≤ ε = 0 or L(p′, q′) ≤ L(p, q) + β(∂pL · ∆p + ∂qL · ∆q) ≤ L(p, q)



82

when entering Step 8). In either case, L(p′, q′) ≤ L(p, q) and therefore p′ =
∏

[p,p] (p− η∂pL),

q′ =
∏

[q,q] (q − η∂qL) after exiting Algorithm 6.

Let m > 0 denote the minimum positive number among {|∂piL|, |∂qiL| : i ∈ N+}. Fix an

arbitrary i ∈ N+. Note that ∂piL ·∆pi ≤ 0 and that ∂piL = 0 implies ∆pi = 0. Hence,

∂piL ·∆pi ≤ −m|∆pi|.

Similarly, ∂qiL ·∆qi ≤ −m|∆qi| for i ∈ N+. It follows that either ‖∆p‖+ ‖∆q‖ = 0, or

L(p′, q′) ≤ L(p, q) + β (∂pL ·∆p+ ∂qL ·∆q)

= L(p, q) + β

n∑

i=1

(∂piL ·∆pi + ∂qiL ·∆qi)

≤ L(p, q)−mβ
n∑

i=1

(|∆pi|+ |∆qi|)

= L(p, q)−mβ (‖∆p‖1 + ‖∆q‖1) .

Hence, L(p′, q′) ≤ L(p, q) and the equality is attained if and only if (p, q) = (p′, q′).

Remark 5.6. The gradient ∂(p,q)L is only approximated by (5.5)—(5.6) in the software implemen-

tation. Hence, Theorems 5.2–5.4 may not hold. However, the following conclusions can be made:

• Theorem 5.2 holds if ε > 0. This is because ‖∆p(k)‖+‖∆q(k)‖ tends to 0 as k tends to infinity

and therefore the “if” branch in Step 7) will be chosen for sufficiently big k. Hence, with

gradient ∂(p,q)L approximated, Algorithm 6 is still well-defined as long as ε > 0.

• Theorems 5.3 and 5.4 hold if ∂(p,q)L is replaced by its approximate in Definition 5.1. This is

because the proofs of Theorems 5.3 and 5.4 do not rely on the fact that ∂(p,q)L is a gradient.

However, since one has to set ε > 0 to ensure that Algorithm 6 always produces a solution, the

ε = 0 condition in Theorems 5.3 and 5.4 does not hold and the conclusions do not apply.

5.2.4 Distributed Gradient Projection Algorithm

The distributed gradient projection algorithm is obtained by putting all the pieces in Section 5.2.1–

5.2.3 together. It is summarized in Algorithm 7, which solves OPF(µ) with different values of µ.

In particular, let µ1, µ2, . . . , µK denote a sequence of µ that approaches 0 and x = (p, q). Given a

feasible initial point x(0), Algorithm 7 solves OPF(µ1) with initial point x(0) to obtain x(1), then

solves OPF(µ2) with initial point x(1) to obtain x(2), . . ., and finally solves OPF(µK) with initial

point x(K−1) to obtain the final output solution x(K).
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5.2.4.1 Algorithm Statement

To solve each OPF(µ), Algorithm 7 repeatedly calculates the gradient ∂xL(x;µ) and does a line

search along the direction of −∂xL to update x, until stopFlag = 1, which indicates that numerically

no further improvements can be made. Algorithm 7 is stated below.

Algorithm 7 A gradient decent algorithm

Input: A feasible point (p, q).
Output: A numerical solution (p∗, q∗) of (5.2).

1: p∗ = p, q∗ = q;
2: for µ = µ1, µ2, . . . , µK
3: do
4: run backward-forward sweep to obtain the power flow solution (v∗, p∗0, q

∗
0) at (p∗, q∗, v0);

5: compute gradient ∂(p,q)L(p∗, q∗;µ);
6: run Algorithm 6 to get an updated (p∗, q∗, stopFlag);
7: while stopFlag ! = 1
8: end

Theorem 5.5 (inner convergence). Consider an inner loop of Algorithm 7 where µ is a fixed con-

stant. Let O∗ denote the set of local minima of L(x;µ). If ε = 0, then the sequence x(1), x(2), . . . , x(k), . . .

of intermediate power injections computed in Algorithm 7 converges to O∗, i.e.,

x(k) → O∗, k →∞.

Furthermore, when the set O∗ has finitely many elements, then

x(k) → x∗, k →∞

for some x∗ ∈ O∗.

Theorem 5.5 implies a local minimum of L(x;µ) is obtained in each inner loop of Algorithm 7.

Proof. If x(k) 9 O∗, then there exists δ > 0 such that dist(x(k),O∗) > δ infinitely often. Let

X :=
[
p, p
]
×
[
q, q
]

denote the compact feasible set of x, and define

A := {x ∈ X | dist(x,O∗) ≥ δ}.

Then the set A is closed and therefore compact. Also define

B := {x ∈ X | L(x;µ) ≤ L(x(0);µ)}.

Then the set B is also closed and compact. The sequence x(0), x(1), . . . , x(k), . . . lies in the set

C := A ∩ B infinitely often. Note that C is compact and that L(x;µ) has uniformly bounded first
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and second derivatives on C.

If x(k) ∈ C, then x(k) /∈ O∗ and therefore x(k+1) 6= x(k) by Theorem 5.3. Besides,

x(k+1) =
∏

X

(
x(k) − η(k)∂xL(x(k);µ)

)

where η(k) is the first η in the exponential backoff stage that satisfies

L(x(k+1);µ) ≤ L(x(k);µ) + β∂xL(x(k);µ) ·
(
x(k+1) − x(k)

)
.

There exists an η1 > 0 such that for any x(k) ∈ C and any η ∈ (0, η1], the value x′ defined as

x′ =
∏

X

(
x(k) − η∂xL(x(k);µ)

)

satisfies

L(x′;µ) ≤ L(x(k);µ) + β∂xL(x(k);µ) ·
(
x′ − x(k)

)

since ∂xxLµ is uniformly upper bounded on C. Hence, if x(k) ∈ C, then η(k) is lower bounded by

η0 = αη1 > 0. It follows that if x(k) ∈ C, then

L(x(k+1);µ)− L(x(k);µ) ≤ β∂xL(x(k);µ) ·
(
x(k+1) − x(k)

)

= β

2n∑

i=1

∂iL ·


 ∏

[xi,xi]

(
x

(k)
i − η(k)∂iL

)
− x(k)

i




≤ β

2n∑

i=1

∂iL ·


 ∏

[xi,xi]

(
x

(k)
i − η0∂iL

)
− x(k)

i


 . (5.8)

The expression in (5.8) is continuous in x(k) and nonpositive. Furthermore, it is strictly smaller than

0 since otherwise x(k) ∈ O∗, which contradicts with dist(x(k),O∗) ≥ δ > 0. Since C is compact,

L(x(k+1);µ)− L(x(k);µ) ≤ −θ

for some θ > 0.

Since the sequence {x(k) : k ≥ 1} visits C infinitely often, the limit

lim
k→∞

L(x(k);µ) = −∞.

This contradicts with the fact that L(x;µ) is lower bounded on x ∈ X. Hence, one must have

x(k) → O∗, k →∞.
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When the set O∗ is finite, let x∗1, x∗2, . . . , x∗m denote all its elements and d denote the minimum

distance among them. There exists r such that whenever dist(x(k),O∗) < r, ‖x(k+1) − x(k)‖ < d/3.

There exists k1 ∈ N such that whenever k ≥ k1, dist(x(k),O∗) < min{r, d/3}. It follows that

‖x(k1) − x∗‖ < d/3 for an x∗ ∈ O∗. Then, it is not difficult to verify that ‖x(k1+1) − x∗∗‖ > d/3

for any x∗∗ ∈ O∗ but x∗∗ 6= x∗. Hence, ‖x(k1+1) − x∗‖ < d/3. By mathematical induction, one can

show that

‖x(k) − x∗‖ < d/3, dist
(
x(k),O∗\{x∗}

)
> 2d/3, k ≥ k1.

Then, since dist
(
x(k),O∗

)
→ 0, one must have

x(k) → x∗.

This completes the proof of Theorem 5.5.

5.2.4.2 Distributed Implementation

An important advantage of Algorithm 7 is that it can be implemented in a distributed way. The

infrastructure required to implement Algorithm 7 in a distributed way is described as follows.

• There is an agent at each branch bus i ∈ N+, and a coordinator at the substation bus 0. Call

the agent at bus i agent i for brevity.

• Agent i knows the impedance (rij , xij) for all j such that i ∼ j; it can measure the voltage

vi, the power flow (Pij , Qij), and the current `ij for all j such that i → j; it can control the

power consumption (pi, qi); and it can communicate with the coordinator and agent j if i ∼ j.

• The coordinator knows the impedance (r0j , x0j) for all j such that 0→ j; it can measure the

voltage v0, the substation power injection (p0, q0), the power flow (P0j , Q0j), and the current

`0j for all j such that 0→ j; and it can communicate with all agents in the network.

Remark 5.7. To implement Algorithm 7 in a distributed way, only buses i whose power injections

(pi, qi) can be controlled need to have agents. For example, if p
i

= pi and q
i

= qi, then bus i does

not need to have an agent.

There are two key components in the distributed implementation of Algorithm 7: 1) compute

gradient ∂(p,q)L(p∗, q∗;µ) in a distributed way; and 2) run line search (Algorithm 6) in a distributed

way. For clarity, we first present these two key components before describing the distributed imple-

mentation of Algorithm 7.

Distributed gradient computation. The approximate gradients (5.5)–(5.6) can be computed

in a backward forward sweep as described below.
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Let down(i) := {j ∈ N | i ∈ Pj} denote the buses downstream of bus i ∈ N as illustrated in

Figure 5.2. Define

i j 0 

Backward sweep to update (g,h) 

Forward sweep to update (c,d,e,f) 

Figure 5.2: Buses down(i) downstream of bus i lies in the shaded region.

ci =

n∑

k=1

2Ri∧k

(
µ

vk − vk
+

µ

vk − vk

)
, i ∈ N ;

di =

n∑

k=1

2Xi∧k

(
µ

vk − vk
+

µ

vk − vk

)
, i ∈ N ;

ei =
∑

k→l
rkl

(
2Pkl
vk

1l∈Pi
+
`kl
vk
Ri∧k

)
, i ∈ N ;

fi =
∑

k→l
rkl

(
2Qkl
vk

1l∈Pi
+
`kl
vk
Xi∧k

)
, i ∈ N .

Then the approximate gradients (5.5)–(5.6) can be simplified as

∂piL = −(2a0p0 + b0) (1 + ei) + (2aipi + bi)− ci, i ∈ N+; (5.9a)

∂qiL = −(2a0p0 + b0)fi − di, i ∈ N+. (5.9b)

The centralized coordinator has access to p0 and can broadcast 2a0p0 + b0 to all branch buses.

Each agent i knows pi and can easily compute 2aipi + bi. Hence, the main challenge is to compute

ci, di, ei, fi in a distributed manner.

The quantities ci, di, ei, fi can be computed recursively. To derive the recursive equations, note

that for each i→ j, one has

Ri∧k −Rj∧k = −rij1k∈down(j)
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and therefore

ci − cj =

n∑

k=1

2 (Ri∧k −Rj∧k)

(
µ

vk − vk
+

µ

vk − vk

)

= −
n∑

k=1

2rij1k∈down(j)

(
µ

vk − vk
+

µ

vk − vk

)

= − 2rij
∑

k∈down(j)

(
µ

vk − vk
+

µ

vk − vk

)
.

Similarly,

di − dj = − 2xij
∑

k∈down(j)

(
µ

vk − vk
+

µ

vk − vk

)
.

Besides,

1l∈Pj
− 1l∈Pi

= 1l=j

and therefore

ei − ej =
∑

k→l
rkl

[
2Pkl
vk

(
1l∈Pi − 1l∈Pj

)
+
`kl
vk

(Ri∧k −Rj∧k)

]

= −
∑

k→l
rkl

[
2Pkl
vk

1l=j +
`kl
vk
rij1k∈down(j)

]

= − 2rijPij
vi

− rij
∑

k∈down(j)

rkl`kl
vk

.

Similarly,

fi − fj = −2rijQij
vi

− xij
∑

k∈down(j)

rkl`kl
vk

.

Hence, if we define

gi =
∑

k∈down(i)

(
µ

vk − vk
+

µ

vk − vk

)
, i ∈ N+;

hi =
∑

k∈down(i)

rkl`kl
vk

, i ∈ N+,

then ci, di, ei, fi can be computed recursively as

cj = ci + 2rijgj , i→ j; (5.10a)

dj = di + 2xijgj , i→ j; (5.10b)

ej = ei +
2rijPij
vi

+ rijhj , i→ j; (5.10c)

fj = fi +
2rijQij
vi

+ xijhj , i→ j. (5.10d)
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Algorithm 8 Distributed gradient computation

Input: the agent/coordinator at bus i ∈ N knows the parameter (µ, µ) and impedance (rij , xij) for
all j such that i ∼ j; it can measure the voltage vi, power flow (Pij , Qij), and current `ij for all
j such that i→ j.

Output: each agent i ∈ N+ computes (∂piL, ∂qiL) for i ∈ N+.
Backward sweep to compute (g, h).

1: each agent i ∈ N+ measures vi and `ij for all j such that i → j. On receiving (gj , hj) from all
its downstream neighbors j, agent i computes (gi, hi) according to

gi =
µ

vi − vi
+

µ

vi − vi
+
∑

j: i→j
gj ; hi =

∑

j: i→j

(
rij`ij
vi

+ hj

)
, (5.11)

and sends (gi, hi) to its (unique) upstream neighbor;
2: backward sweep terminates when the coordinator receives (gj , hj) from all its downstream neigh-

bors j.
Forward sweep to compute (c, d, e, f).

3: the coordinator measures v0 and (P0j , Q0j) for all j such that 0→ j, sets

c0 ← 0, d0 ← 0, e0 ← 0, f0 ← 0,

and sends (c0, d0, e0 + 2r0jP0j/v0, f0 + 2r0jQ0j/v0) to each downstream neighbor j;
4: each agent j ∈ N+ measures vj and (Pjk, Qjk) for all k such that j → k. On receiving (ci, di, ei+

2rijPij/vi, fi + 2rijQij/vi) from its (unique) upstream neighbor i, agent j computes cj , dj , ej , fj
according to (5.10), and sends (cj , dj , ej + 2rjkPjk/vj , fj + 2rjkQjk/vj) to each downstream
neighbor k;
Compute gradients.

5: the coordinator broadcasts 2a0p0 + b0 to all agents i ∈ N+;
6: once having received 2a0p0 + b0 from the substation and computed (ci, di, ei, fi), agent i ∈ N+

computes ∂piL and ∂qiL according to (5.9);

To summarize, the distributed gradient projection algorithm is given in Algorithm 8, where

L := {i ∈ N+ | @j such that i→ j}

denotes the set of leaf buses. It consists of three main steps:

S1 Backward sweep to compute (g, h): for each agent i ∈ N+, when all its downstream neighbors

j have computed (gj , hj), computes (gi, hi) according to (5.11).

S2 Forward sweep to compute (c, d, e, f): for each agent j ∈ N+, when its (unique) upstream

neighbor i has computed (ci, di, ei + 2rijPij/vi, fi + 2rijQij/vi), computes (cj , dj , ej , fj) as in

(5.10).

S3 Compute ∂(p,q)L: each agent i ∈ N+ computes ∂piL and ∂qiL according to (5.9).

Distributed line search. Line search given in Algorithm 6 can also be implemented in a dis-

tributed manner, which gives rise to a distributed implementation of the inner loop of Algorithm 7.

The distributed implementation is presented in Algorithm 9.
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In Algorithm 9, each agent i ∈ N+ keeps track of its last approved power injection (pold
i , qold

i ) and

proposes tentative power injections (pnew
i , qnew

i ) while computing some other quantities (∆si,∆Li, valuenew
i ),

with which the coordinator decides whether to approve the tentative power injections.

Tentative power injection (pnew, qnew) is computed by gradient projection (5.13a)–(5.13b), where

the gradient is computed as in Algorithm 8 and the step size η is controlled by the coordinator.

The coordinator initializes η = 1 and reduces η by a fraction of 1 − α until voltage constraints are

satisfied, i.e., vi ≤ vi ≤ vi for i ∈ N+, and the modified objective function is well-approximated by

its linearization, i.e., Lnew < Lthres (see step 11 in Algorithm 9).

The coordinator decides whether to approve the tentative power injection, i.e., set (pold, qold)←
(pnew, qnew), and when to terminate Algorithm 9, i.e., set (p′, q′). In other cases, the coordinator

reduces the step size η to αη to ask for the submission of new tentative power injection (pnew, qnew).

The coordinator makes these decisions based on (∆si,∆Li) computed by the agents i ∈ N+.

The quantity ∆si captures the update size of (pi, qi), and ∆Li is the product of gradient ∂(pi,qi)L

and power injection update. In particular, if
∑
i∈N+ ∆si ≤ ε, the coordinator decides to stop the

inner loop; or else if Lnew ≤ Lold + β
∑
i∈N+ ∆Li, the coordinator decides to approve the tentative

power injection, i.e., (pold, qold) ← (pnew, qnew); or else the coordinator reduces the step size η by a

fraction of 1− α, i.e., η ← αη.

Distributed gradient decent. Algorithm 7 can be implemented in a distributed manner by

calling Algorithm 9 for a sequence (µ1, µ2, . . . , µK) of decreasing µ as illustrated in Figure 5.3.

Distributed	
  
inner	
  loop	
  
with	
  μ1	
  

Distributed	
  
inner	
  loop	
  
with	
  μ2	
  

Distributed	
  
inner	
  loop	
  
with	
  μ3	
  

Figure 5.3: Flow chart illustrating the distributed implementation of Algorithm 7.
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Algorithm 9 Distributed inner loop

Input: each agent i ∈ N+ knows its original power injection (pi, qi), voltage vi, impedance (rij , xij)
for neighboring lines i ∼ j, and power flow (Pij , Qij) for downstream lines i→ j; the centralized
coordinator at substation bus 0 knows algorithm parameters α, β, µ, and ε.

Output: each agent i ∈ N+ computes a new (p′i, q
′
i).

1: the coordinator broadcasts µ to all agents i ∈ N+;
2: each agent i ∈ N+ sets (pold

i , qold
i )← (pi, qi);

3: each agent i ∈ N+ computes

valueold
i = ai

(
pold
i

)2
+ bip

old
i + µ ln(vi − vi) + µ ln(vi − vi) (5.12)

and reports valueold
i to the coordinator;

4: the coordinator computes the original objective value

Lold = a0p
2
0 + b0p0 +

∑

i∈N+

valueold
i ;

5: run Algorithm 8 to obtain (∂piL, ∂qiL) for each agent i ∈ N+;
6: the coordinator initializes the step size η ← 1;
7: the coordinator broadcasts η to all agents i ∈ N+;
8: each agent i ∈ N+ computes

pnew
i ←

∏

[p
i
,pi]

(
pold
i − η∂piL

)
; (5.13a)

qnew
i ←

∏

[q
i
,qi]

(
qold
i − η∂qiL

)
; (5.13b)

∆si ←
∣∣pnew
i − pold

i

∣∣+
∣∣qnew
i − qold

i

∣∣ ; (5.13c)

∆Li ← ∂piL · (pnew
i − pold

i ) + ∂qiL · (qnew
i − qold

i ); (5.13d)

valuenew
i ← ai (pnew

i )
2

+ bip
new
i + µ ln(vi − vi) + µ ln(vi − vi), (5.13e)

and reports (pnew
i , qnew

i ,∆si,∆Li, valuenew
i ) to the coordinator;

9: network power flows stabilize to reach a steady state (P,Q, v, p0, q0);
10: if an agent i ∈ N+ detects vi /∈ [vi, vi], the agent sends out a signal to the coordinator;

the coordinator sets η ← αη, and returns to Step 7);
11: the coordinator computes

∆s←
∑

i∈N+

∆si;

Lnew ← a0p
2
0 + b0p0 +

∑

i∈N+

valuenew
i ;

Lthres ← Lold + β
∑

i∈N+

∆Li;

if ∆s ≤ ε, the coordinator sends out a signal to terminate the inner loop, i.e., go to Step 13);
else if Lnew > Lthres, the coordinator sets η ← αη, and returns to Step 7);
otherwise, the coordinator sends out a signal to update (pold, qold), i.e., go to Step 12);

12: each agent i ∈ N+ sets pold
i ← pnew

i , qold
i ← qnew

i , and returns to Step 3);
13: the coordinator sets

resetFlag←
{

1 if Lnew > Lold,

0 otherwise,

and broadcasts resetFlag to all agents i ∈ N+;
14: each agents sets

(p′i, q
′
i)←

{
(pold
i , qold

i ) if resetFlag = 1,

(pnew
i , qnew

i ) otherwise;



91

5.3 Performance analysis

Note that Algorithm 7 may converge to a local optimum of the OPF problem (5.2). Hence, we

analyze the suboptimality of Algorithm 7 in this section.

5.3.1 Convexity

The OPF problem (5.1), or equivalently (5.2), is nonconvex. If they were convex, then the subopti-

mality gap of Algorithm 7 will be 0. We will show in this subsection that (5.2) is “nearly” convex.

Hence, the suboptimality gap of Algorithm 7 should be small.

Compute the Hessian matrix. Let H(x;µ) := ∂xxL(x;µ) denote the Hessian matrix defined

on X := [x, x]. Let diag(a) denote the diagonal matrix with diagonal entries (a1, a2, . . . , an), then

∂2L

∂pi∂pj
=

∂

∂pj

{
(2a0p0 + b0)

∂p0

∂pi
+ (2aipi + bi)−

n∑

k=1

[
µ

vk − vk
+

µ

vk − vk

]
∂vk
∂pi

}

=
∂

∂pj

{
(2a0p0 + b0)

∂p0

∂pi

}
+

∂

∂pj
{2aipi + bi} −

∂

∂pj

{
n∑

k=1

[
µ

vk − vk
+

µ

vk − vk

]
∂vk
∂pi

}

= 2a0
∂p0

∂pi

∂p0

∂pj
+ (2a0p0 + b0)

∂2p0

∂pi∂pj
+ 2ai1i=j

+

n∑

k=1

[
µ

(vk − vk)2
+

µ

(vk − vk)2

]
∂vk
∂pi

∂vk
∂pj
−

n∑

k=1

[
µ

vk − vk
+

µ

vk − vk

]
∂2vk
∂pi∂pj

= 2a0

[
∂pp0∂

T
p p0

]
ij

+ (2a0p0 + b0) [∂ppp0]ij + 2 [diag(a)]ij

+

n∑

k=1

[
µ

(vk − vk)2
+

µ

(vk − vk)2

] [
∂pvk∂

T
p vk

]
ij
−

n∑

k=1

[
µ

vk − vk
+

µ

vk − vk

]
[∂ppvk]ij

for i, j = 1, 2, . . . , n. Hence,

∂ppL = 2a0∂pp0∂
T
p p0 + (2a0p0 + b0)∂ppp0 + 2diag(a)

+

n∑

k=1

[
µ

(vk − vk)2
+

µ

(vk − vk)2

]
∂pvk∂

T
p vk −

n∑

k=1

[
µ

vk − vk
+

µ

vk − vk

]
∂ppvk.

Similarly, one can compute

∂qqL = 2a0∂qp0∂
T
q p0 + (2a0p0 + b0)∂qqp0

+

n∑

k=1

[
µ

(vk − vk)2
+

µ

(vk − vk)2

]
∂qvk∂

T
q vk −

n∑

k=1

[
µ

vk − vk
+

µ

vk − vk

]
∂qqvk
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and

∂qpL = 2a0∂qp0∂
T
p p0 + (2a0p0 + b0)∂qpp0

+

n∑

k=1

[
µ

(vk − vk)2
+

µ

(vk − vk)2

]
∂qvk∂

T
p vk −

n∑

k=1

[
µ

vk − vk
+

µ

vk − vk

]
∂qpvk.

Recall x = (p, q). It follows that the Hessian matrix

H(x;µ) =


∂ppL ∂pqL

∂qpL ∂qqL




= 2a0 [∂xp0] [∂xp0]
T

+ (2a0p0 + b0)∂xxp0 + 2


diag(a)

0




+

n∑

k=1

(
µ

(vk − vk)2
+

µ

(vk − vk)2

)
[∂xvk] [∂xvk]

T −
n∑

k=1

[
µ

vk − vk
+

µ

vk − vk

]
∂xxvk.

(5.14)

Conditions for convexity. The following conditions will be encountered in asserting the positive

semidefiniteness of H(x;µ).

C1) Quadratic coefficients are nonnegative, i.e., ai ≥ 0 for i = 0, 1, . . . , n;

C2) Marginal cost at the substation is nonnegative, i.e., 2a0p0 + b0 ≥ 0;

C3) p0(x) is convex on x ∈ X;

C4) vk(x) is concave on x ∈ X for k = 1, 2, . . . , n.

C1 and C2 are satisfied in practice. To justify C3, consider the following SOCP0(x) problem

SOCP0(p, q) : min p0

over v, `, P,Q, p0, q0;

s.t.
∑

h:h→i
(Phi − rhi`hi) + pi =

∑

j: i→j
Pij , i ∈ N ; (5.15a)

∑

h:h→i
(Qhi − xhi`hi) + qi =

∑

j: i→j
Qij , i ∈ N ; (5.15b)

vi − 2(rijPij + xijQij) + |zij |2`ij = vj , i→ j; (5.15c)

`ij ≥
P 2
ij +Q2

ij

vi
, i→ j (5.15d)

for each fixed x = (p, q) in X. SOCP0(x) is a convex relaxation and will be explained in great

detail in the next chapter. Here just note that (5.15d) is an inequality constraint while power flow

constraint (5.1e) is an equality constraint. Also, we say that SOCP0(x) is exact if every one of its
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optimal solutions satisfies (5.1e). The reason we emphasize SOCP0 is that it has a close connection

with C3, as formally stated in the following theorem.

Theorem 5.6. Let C be convex. If SOCP0(x) is exact for x ∈ C, then p0(x) is convex on C.

Theorem 5.6 implies that if SOCP0(x) is exact on X, then p0(x) is convex on X.

Proof. Let x̃ = (p̃, q̃) ∈ C and x̂ = (p̂, q̂) ∈ C be distinct. It suffices to show that the point

x := θx̃+ (1− θ)x̂ satisfies p0(x) ≤ θp0(x̃) + (1− θ)p0(x̂) for any θ ∈ (0, 1).

Let (P̃ , Q̃, ṽ, ˜̀, p̃0, q̃0) denote the power flow solution with respect to x̃, then p̃0 = p0(x̃). Let

(P̂ , Q̂, v̂, ˆ̀, p̂0, q̂0) denote the power flow solution with respect to x̂, then p̂0 = p0(x̂). Since p0(x) is

the optimal value of SOCP0(x), and the point

(P,Q, v, `, p0, q0) = θ(P̃ , Q̃, ṽ, ˜̀, p̃0, q̃0) + (1− θ)(P̂ , Q̂, v̂, ˆ̀, p̂0, q̂0)

is feasible for SOCP0(x), one must have

p0(x) ≤ p0 = θp̃0 + (1− θ)p̂0 = θp0(x̃) + (1− θ)p0(x̂).

This completes the proof of Theorem 5.6.

Remarkably, SOCP0(x) is exact on X under mild conditions, as formalized in Theorem 5.7.

Theorem 5.7. SOCP0(x) is exact for x ∈ X if Condition C1 in Theorem 6.2 holds.

The Condition C1 in Theorem 6.2 is mild and always holds in practice with large margin, as will

be elaborated in the next chapter. Hence, SOCP0(x) is exact on X under mild conditions. It follows

that p0(x) is convex on X. The proof of Theorem 5.7 is similar to that of Theorem 6.2 and omitted

for brevity.

To justify C4, consider the following SOCPk(p, q) problem:

SOCPk(p, q) : max vk

over v, `, P,Q, p0, q0;

s.t.
∑

h:h→i
(Phi − rhi`hi) + pi =

∑

j: i→j
Pij , i ∈ N ; (5.16a)

∑

h:h→i
(Qhi − xhi`hi) + qi =

∑

j: i→j
Qij , i ∈ N ; (5.16b)

vi − 2(rijPij + xijQij) + (r2
ij + x2

ij)`ij = vj , i→ j; (5.16c)

`ij ≥
P 2
ij +Q2

ij

vi
, i→ j (5.16d)
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for each k ∈ N+ and each (p, q) ∈ X. SOCPk(p, q) is a convex relaxation that will be explained

in great detail in the next chapter. Here just note that (5.16d) is an inequality constraint while

power flow constraint (5.1e) is an equality constraint. Also, we say that SOCPk(p, q) is exact if

every one of its optimal solutions satisfies (5.1e). The reason we emphasize SOCPk is that it has a

close connection with C4, as formally stated in the following theorem.

Theorem 5.8. Let C be convex and k ∈ N+. If SOCPk(x) is exact for x ∈ C, then vk(x) is concave

on C.

Theorem 5.8 implies that if SOCPk(x) is exact on X, then vk(x) is concave on X. The proof of

Theorem 5.8 is similar to that of Theorem 5.6 and omitted for brevity.

Similar to the case of SOCP0, SOCPk is also exact under mild conditions for k ∈ N+.

Theorem 5.9. SOCPk(p, q) is exact for k ∈ N+ and for x ∈ X if Condition C1 in Theorem 6.2

holds.

The Condition C1 in Theorem 6.2 is mild and always holds in practice with large margin, as will

be elaborated on in the next chapter. Hence, SOCPk(x) is exact on X under mild conditions. It

follows that vk(x) is concave on X. The proof of Theorem 5.9 is similar to that of Theorem 6.2 and

omitted for brevity.

Corollary 5.10. Assume Condition C1 in Theorem 6.2 holds. Then p0(x) is convex on X and vk(x)

is concave on X for k ∈ N+.

Corollary 5.10 implies that C3 and C4 hold under mild conditions that are widely satisfied in

practice. This completes the justification of C1–C4.

Convexity results. The following theorem studies the region A where H(x;µ) is positive semidef-

inite, i.e., L(x;µ) is locally convex.

Theorem 5.11. Assume C1–C4 hold. Then H(x;µ) � 0 on

A :=

{
x ∈ X | v(x) ≤

µ

µ+ µ
v +

µ

µ+ µ
v

}
.

In particular, H(x;µ) � 0 on X if µ = 0 or v =∞.

Note that if v equals ∞, then H(x;µ) � 0 on X. In general, H(x;µ) � 0 on a subset A of X.

The proof of Theorem 5.11 is a direct application of (5.14) and omitted for brevity.

Remark 5.8. Let F := {x ∈ X | vi ≤ vi(x) ≤ vi for i ∈ N+} denote the feasible set of (5.2). If the

sequence µ1, µ2, . . . , µk, . . . of µ is chosen according to

µ
k

= δk, µk = δ2
k, k = 1, 2, . . . ,
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where limk→∞ δk = 0, then the difference set F\A vanishes as k →∞.

We would like to emphasize that Theorem 5.11 does not guarantee L(x;µ) to be convex over F ,

though the set A can be arbitrarily close to F with carefully chosen µ. In fact, L(x;µ) cannot be

convex over F since F is nonconvex.

5.3.2 Suboptimality

Unlike most nonlinear programming algorithms, the suboptimality of Algorithm 7 can be character-

ized as in the following theorem.

Theorem 5.12 (suboptimality). Assume C1–C4 hold. Let x′ = (p′, q′) be feasible for (5.2) and

x∗ = (p∗, q∗) be a local optimum of L(x;µ). Assume the matrix ∂qv|x∗ to be invertible, and define

∂qv :=
[
∂qv1 ∂qv2 · · · ∂qvn

]
,

r(θ) :=
1

2

[
∂qv|x∗

]−1




(x′ − x∗)T · ∂xxv1|θx′+(1−θ)x∗ · (x′ − x∗)
(x′ − x∗)T · ∂xxv2|θx′+(1−θ)x∗ · (x′ − x∗)

...

(x′ − x∗)T · ∂xxvn|θx′+(1−θ)x∗ · (x′ − x∗)



, θ ∈ (0, 1).

If q′ + r(θ) ∈
(
q, q
)

for all θ ∈ (0, 1), then

L(x∗;µ)− L(x′;µ) ≤ (2a0p
∗
0 + b0) ·

(
∂qp0|x∗

)T · r(η)− a0(p∗0 − p′0)2

for some η ∈ (0, 1), where p∗0 = p0(x∗) and p′0 = p0(x′).

Theorem 5.12 characterizes the suboptimality of an arbitrary local minimum x∗ of L(x;µ). In

particular, for any x′ = (p′, q′) ∈ F that satisfies q′ + r(θ) ∈ (q, q), the objective value L(x∗;µ)

cannot exceed L(x′;µ) by more than (2a0p
∗
0 + b0) · ∂qp0|x∗ · r(η)− a0(p∗0 − p′0)2.

The term r(θ) is the deviation of v(x) from its linear approximation, and is in practice small

for all θ ∈ (0, 1). Hence, x′ can be nearly all points in F ∩ X◦ where X◦ denotes the interior of X.

Additionally, the derivative ∂qp0 is also small and therefore the gap (2a0p
∗
0 + b0) · ∂qp0|x∗ · r(η) −

a0(p∗0 − p′0)2 ≈ −a0(p∗0 − p′0)2. Hence, Theorem 5.12 roughly says that a local optimum x∗ is no

worse than any strictly feasible point x′.

Proof. The idea is to create a trajectory x(θ) of feasible solutions of (5.2) that approaches x∗ as

θ → 0, and make use of the fact that L(x∗) ≤ L(x(θ)) for sufficiently small θ.

The trajectory x(θ) is constructed using the implicit function theorem. Let (v′, p′0) and (v∗, p∗0)

denote the power flow solutions corresponding to x′ and x∗ respectively, i.e., v′ = v(x′), p′0 = p0(x′),



96

v∗ = v(x∗), p∗0 = p0(x∗). Consider the following function:

f(q, θ) := (1− θ)v∗ + θv′ − v [(1− θ)p∗ + θp′, q] .

Note that f(q∗, 0) = v∗ − v(p∗, q∗) = 0 and that the partial derivative ∂qf = −∂qv is full rank.

Hence, there exists q(θ) near a small neighborhood (−η, η) where η > 0 of 0 that satisfies

q(0) = q∗, f(q(θ), θ) = 0.

The equality f(q(θ), θ) = 0 is equivalent to

(1− θ)v∗ + θv′ = v [(1− θ)p∗ + θp′, q(θ)] .

Let v(θ) := (1− θ)v∗+ θv′ and p(θ) := (1− θ)p∗+ θp′ for θ ∈ (−η, η), then v(θ) = v(p(θ), q(θ)). Let

p0(θ) := p0(p(θ), q(θ)) for θ ∈ (−η, η). To this point, the trajectory x(θ) has been constructed.

Now we show that x(θ) ∈ F for sufficiently small θ. In particular, it suffices to prove q(θ) ∈ [q, q]

for sufficiently small θ. It follows from

0 = ∂qf |(q∗,0) · ∂θq|0 + ∂θf |(q∗,0) = − ∂qv|x∗ · ∂θq|0 + v′ − v∗ − ∂pv|x∗ · (p′ − p∗)

that

∂θq|0 =
[
∂qv|x∗

]−1 ·
[
v′ − v∗ − ∂pv|x∗ · (p′ − p∗)

]

=
[
∂qv|x∗

]−1 ·





∂qv|x∗ · (q′ − q∗) +
1

2




(x′ − x∗)T · ∂xxv1|νx′+(1−ν)x∗ · (x′ − x∗)
(x′ − x∗)T · ∂xxv2|νx′+(1−ν)x∗ · (x′ − x∗)

...

(x′ − x∗)T · ∂xxvn|νx′+(1−ν)x∗ · (x′ − x∗)








= q′ − q∗ + r(ν) ∈
(
q, q
)
− q∗

for some ν ∈ (0, 1). Therefore, by the hypothesis of the theorem,

q(θ) = q∗ + θ · ∂θq|0 + o(θ) ∈
(
q, q
)

for sufficiently small θ.

Finally we make use of the local optimality of L(x∗), which implies L(x∗) ≤ L(x(θ)) for suffi-
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ciently small θ > 0. Substitute

L(x(θ)) = a0p
2
0(θ) + b0p0(θ) +

n∑

i=1

aip
2
i (θ) + bipi(θ)−

n∑

i=1

[
µ ln(vi(θ)− vi) + µ ln(vi − vi(θ))

]

≤ a0p
2
0(θ) + b0p0(θ) + (1− θ)

(
n∑

i=1

ai [p∗i ]
2

+ bip
∗
i

)
+ θ

(
n∑

i=1

ai [p′i]
2

+ bip
′
i

)

− (1− θ)
n∑

i=1

[
µ ln(v∗i − vi) + µ ln(vi − v∗i )

]
− θ

n∑

i=1

[
µ ln(v′i − vi) + µ ln(vi − v′i)

]

= (1− θ)L(x∗) + θL(x′) + a0p
2
0(θ) + b0p0(θ)− (1− θ)

[
a0 (p∗0)

2
+ b0p

∗
0

]
− θ

[
a0 (p′0)

2
+ b0p

′
0

]

to obtain

θ [L(x∗)− L(x′)] ≤ a0p
2
0(θ) + b0p0(θ)− a0 (p∗0)

2 − b0p∗0 + θ
[
a0 (p∗0)

2
+ b0p

∗
0 − a0 (p′0)

2 − b0p′0
]

for sufficiently small θ > 0. Take the gradient with respect to θ at θ = 0 to obtain that

L(x∗)− L(x′) ≤ (2a0p
∗
0 + b0) ·

[
∂pp0|x∗ · (p′ − p∗) + ∂qp0|x∗ · (q′ − q∗ + r(ν))

]

+ a0 (p∗0)
2

+ b0p
∗
0 − a0 (p′0)

2 − b0p′0.

Due to the convexity of p0(x), one has

p′0 − p∗0 ≥ ∂pp0|x∗ · (p′ − p∗) + ∂qp0|x∗ · (q′ − q∗)

and therefore

L(x∗)− L(x′) ≤ (2a0p
∗
0 + b0) ·

[
p′0 − p∗0 + ∂qp0|x∗ · r(ν)

]
+ a0 (p∗0)

2
+ b0p

∗
0 − a0 (p′0)

2 − b0p′0
= (2a0p

∗
0 + b0) · ∂qp0|x∗ · r(ν)− a0(p∗0 − p′0)2.

This completes the proof of Theorem 5.12.

5.4 Multiphase Networks

The objective function to minimize is

L(x;µ) =
∑

φ∈Φ0

a
(
pφ0 (x)

)2

+ bpφ0 (x)−
n∑

k=1

∑

φ∈Φk

(
µ ln(vφk − vk) + µ ln(vk − vφk )

)
.

Hence, to compute ∂xL, it suffices to compute ∂xp
φ
0 and ∂xv

φ
k for each k ∈ N+ and each φ ∈ {a, b, c}.

We estimate ∂xp
φ
0 and ∂xv

φ
k for each k ∈ N+ and each φ ∈ {a, b, c} using the linearized power
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flow equations (4.12) repeated below:

∑

i: i→j
Λij + sj =

∑

k: j→k
Λ

Φj

jk , j ∈ N ;

Sij = γΦijdiag(Λij), i→ j;

vj = v
Φij

i − SijzHij − zijSHij , i→ j.

In particular, let Λij = Pij + iQij for i→ j, then (here we take the positive direction of s as being

load)

∂

∂pϕi
Pφkl = 1φ=ϕ1i∈down(l),

∂

∂qϕi
Pφkl = 0, i ∈ N+, k → l, ϕ ∈ Φi, φ ∈ Φkl;

∂

∂pϕi
Qφkl = 0,

∂

∂qϕi
Qφkl = 1φ=ϕ1i∈down(l), i ∈ N+, k → l, ϕ ∈ Φi, φ ∈ Φkl;

∂

∂pϕi
pφ0 = 1φ=ϕ,

∂

∂qϕi
pφ0 = 0, i ∈ N+, ϕ ∈ Φi, φ ∈ Φkl.

Hence, we are left to compute ∂xv
φ
k for k ∈ N+ and φ ∈ Φk.

To compute ∂xv
φ
k , noting that

vφj = vφi −
∑

ϕ∈Φij

(
Sφϕij z

φϕ
ij + zφϕij S

φϕ
ij

)

and that Sφϕij = Λϕijα
φ−ϕ for φ, ϕ ∈ Φij (use a = 0, b = 1, and c = 2 when performing φ − ϕ), one

obtains

∂

∂pξk
vφj =

∂

∂pξk
vφi −

∑

ϕ∈Φij

(
zφϕij

∂

∂pξk
Sφϕij + zφϕij

∂

∂pξk
Sφϕij

)

=
∂

∂pξk
vφi −

∑

ϕ∈Φij

(
zφϕij α

φ−ϕ ∂

∂pξk
Λϕij + zφϕij α

ϕ−φ ∂

∂pξk
Λϕij

)

=
∂

∂pξk
vφi −

∑

ϕ∈Φij

(
zφϕij α

φ−ϕ + zφϕij α
ϕ−φ

)
1ξ=ϕ1k∈down(j)

=
∂

∂pξk
vφi −

(
zφξij α

φ−ξ + zφξij α
ξ−φ
)

1ξ∈Φij
1k∈down(j)

for i→ j, φ ∈ Φij , k ∈ N+, and ξ ∈ Φk. Sum up over the path Pl to obtain that

∂

∂pξk
vφl = −

∑

(i,j)∈Pl

(
zφξij α

φ−ξ + zφξij α
ξ−φ
)

1ξ∈Φij
1k∈down(j)
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for k ∈ N+, ξ ∈ Φk, l ∈ N+, and φ ∈ Φl. Substitute variables to obtain that

∂

∂pξi
vφk = −

∑

(s,t)∈Pk

(
zφξst α

φ−ξ + zφξst α
ξ−φ
)

1ξ∈Φst
1i∈down(t)

for i ∈ N+, ξ ∈ Φi, k ∈ N+, and φ ∈ Φk. Then,

∂

∂pξi
vφk −

∂

∂pξj
vφk =

∑

(s,t)∈Pk

(
zφξst α

φ−ξ + zφξst α
ξ−φ
)

1ξ∈Φst

(
1j∈down(t) − 1i∈down(t)

)

=
∑

(s,t)∈Pk

(
zφξst α

φ−ξ + zφξst α
ξ−φ
)

1ξ∈Φst
1j=t

=
(
zφξij α

φ−ξ + zφξij α
ξ−φ
)

1k∈down(j)

for i→ j, ξ ∈ Φij , k ∈ N+, and φ ∈ Φk.

Similarly, one has

∂

∂qξk
vφj =

∂

∂qξk
vφi −

∑

ϕ∈Φij

(
zφϕij

∂

∂qξk
Sφϕij + zφϕij

∂

∂qξk
Sφϕij

)

=
∂

∂qξk
vφi −

∑

ϕ∈Φij

(
zφϕij α

φ−ϕ ∂

∂qξk
Λϕij + zφϕij α

ϕ−φ ∂

∂qξk
Λϕij

)

=
∂

∂qξk
vφi − i

∑

ϕ∈Φij

(
zφϕij α

φ−ϕ − zφϕij αϕ−φ
)

1ξ=ϕ1k∈down(j)

=
∂

∂qξk
vφi − i

(
zφξij α

φ−ξ − zφξij αξ−φ
)

1ξ∈Φij
1k∈down(j)

for i→ j, φ ∈ Φij , k ∈ N+, and ξ ∈ Φk. Sum up over the path Pl to obtain that

∂

∂qξk
vφl = −i

∑

(i,j)∈Pl

(
zφξij α

φ−ξ − zφξij αξ−φ
)

1ξ∈Φij
1k∈down(j)

for k ∈ N+, ξ ∈ Φk, l ∈ N+, and φ ∈ Φl. Substitute variables to obtain that

∂

∂qξi
vφk = −i

∑

(s,t)∈Pk

(
zφξst α

φ−ξ − zφξst αξ−φ
)

1ξ∈Φst
1i∈down(t)
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for i ∈ N+, ξ ∈ Φi, k ∈ N+, and φ ∈ Φk. Then,

∂

∂qξi
vφk −

∂

∂qξj
vφk = i

∑

(s,t)∈Pk

(
zφξst α

φ−ξ − zφξst αξ−φ
)

1ξ∈Φst

(
1j∈down(t) − 1i∈down(t)

)

= i
∑

(s,t)∈Pk

(
zφξst α

φ−ξ − zφξst αξ−φ
)

1ξ∈Φst
1j=t

= i
(
zφξij α

φ−ξ − zφξij αξ−φ
)

1k∈down(j)

for i→ j, ξ ∈ Φij , k ∈ N+, and φ ∈ Φk.

Now, the gradient ∂xL can be estimated as follows.

∂

∂pξi
L =

∑

φ∈Φ0

(
2apφ0 + b

) ∂

∂pξi
pφ0 −

n∑

k=1

∑

φ∈Φk

(
µ

vφk − vk
+

µ

vφk − vk

)
∂

∂pξi
vφk

≈ 2apξ0 + b−
n∑

k=1

∑

φ∈Φk

(
µ

vφk − vk
+

µ

vφk − vk

)
∂

∂pξi
vφk ,

∂

∂qξi
L =

∑

φ∈Φ0

(
2apφ0 + b

) ∂

∂qξi
pφ0 −

n∑

k=1

∑

φ∈Φk

(
µ

vφk − vk
+

µ

vφk − vk

)
∂

∂qξi
vφk

≈ −
n∑

k=1

∑

φ∈Φk

(
µ

vφk − vk
+

µ

vφk − vk

)
∂

∂qξi
vφk

for i ∈ N+ and ξ ∈ Φi. Then, the difference across lines are

∂

∂pξi
L− ∂

∂pξj
L =

n∑

k=1

∑

φ∈Φk

(
µ

vφk − vk
+

µ

vφk − vk

)(
∂

∂pξj
vφk −

∂

∂pξi
vφk

)

= −
n∑

k=1

∑

φ∈Φk

(
µ

vφk − vk
+

µ

vφk − vk

)(
zφξij α

φ−ξ + zφξij α
ξ−φ
)

1k∈down(j)

= −
∑

φ∈Φj

(
zφξij α

φ−ξ + zφξij α
ξ−φ
) ∑

k∈down(j)

1φ∈Φk

(
µ

vφk − vk
+

µ

vφk − vk

)
,

∂

∂qξi
L− ∂

∂qξj
L =

n∑

k=1

∑

φ∈Φk

(
µ

vφk − vk
+

µ

vφk − vk

)(
∂

∂qξj
vφk −

∂

∂qξi
vφk

)

= −i

n∑

k=1

∑

φ∈Φk

(
µ

vφk − vk
+

µ

vφk − vk

)(
zφξij α

φ−ξ − zφξij αξ−φ
)

1k∈down(j)

= −i
∑

φ∈Φj

(
zφξij α

φ−ξ − zφξij αξ−φ
) ∑

k∈down(j)

1φ∈Φk

(
µ

vφk − vk
+

µ

vφk − vk

)

for i→ j and ξ ∈ Φij . Define

gφj :=
∑

k∈down(j)

1φ∈Φk

(
µ

vφk − vk
+

µ

vφk − vk

)
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for j ∈ N+ and φ ∈ Φj , then

∂

∂pξj
L =

∂

∂pξi
L+

∑

φ∈Φj

(
zφξij α

φ−ξ + zφξij α
ξ−φ
)
gφj ,

∂

∂qξj
L =

∂

∂qξi
L+ i

∑

φ∈Φj

(
zφξij α

φ−ξ − zφξij αξ−φ
)
gφj

for i→ j and ξ ∈ Φij .

To summarize, the gradient can be estimated using the following backward-forward sweep method:

gφi =
µ

vφi − vi
+

µ

vφi − vi
+
∑

j: i→j
gφj , i→ j, φ ∈ Φi;

∂

∂pξj
L =

∂

∂pξi
L+

∑

φ∈Φj

(
zφξij α

φ−ξ + zφξij α
ξ−φ
)
gφj , i→ j, ξ ∈ Φj ;

∂

∂qξj
L =

∂

∂qξi
L+ i

∑

φ∈Φj

(
zφξij α

φ−ξ − zφξij αξ−φ
)
gφj , i→ j, ξ ∈ Φj .

5.5 Numerical Results

We evaluate the accuracy and efficiency of Algorithm 7 for a number of balanced test networks in

this section. In particular, we use the convex relaxation approach to obtain the global optimal value

of (5.1), and check by how much does the objective value obtained by Algorithm 7 deviate from

the global optimal value. The convex relaxation is solved by CVX [49] and [96], and its execution

time is used as a benchmark to investigate the efficiency of Algorithm 7. All simulations use matlab

7.9.0.529 (64-bit) with toolbox cvx 1.21 on Mac OS X 10.7.5 with 2.66GHz Intel Core 2 Due CPU

and 4GB 1067MHz DDR3 memory.

5.5.1 Test Networks

The test networks include a 47-bus network [35], a 56-bus network [37], and subnetworks of a 2065-

bus network. These networks are all in the service territory of Southern California Edison (SCE),

a utility company in California, USA [2]. Topologies of the 47-bus network and the 56-bus network

are given in Figure 5.1 with parameters provided in Table 5.1 and 5.2.

5.5.2 OPF Setup

The following OPF setup is used throughout this section.

1. The objective is to minimize power loss in the network.

2. The power injection constraints are as follows. For each bus i ∈ N+, there may be multiple

devices including loads, capacitors, and PV panels. Assume that there is a total of Di such
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Figure 5.1: Topologies of the SCE 47-bus and 56-bus networks [35,37].

devices and label them by 1, 2, . . . , Di. Let si,d = pi,d+iqi,d denote the power injection of device

d for d = 1, 2, . . . , Di. If device d is a load with given real and reactive power consumptions p

and q, then we impose

si,d = −p− iq. (5.17)

If device d is a load with given peak apparent power speak, then we impose

si,d = −speak exp(jθ) (5.18)

where θ = cos−1(0.9), i.e, power injection si,d is considered to be a constant, obtained by

assuming a power factor of 0.9 at peak apparent power. If device d is a capacitor with nameplate

q, then we impose

Re(si,d) = 0 and 0 ≤ Im(si,d) ≤ q. (5.19)
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Table 5.1: Line impedances, peak spot load, and nameplate ratings of capacitors and PV generators
of the 47-bus network.

Network Data

Line Data Line Data Line Data Load Data Load Data PV Generators

From To R X From To R X From To R X Bus Peak Bus Peak Bus Nameplate
Bus Bus (Ω) (Ω) Bus Bus (Ω) (Ω) Bus Bus (Ω) (Ω) No MVA No MVA No Capacity

1 2 0.259 0.808 8 41 0.107 0.031 21 22 0.198 0.046 1 30 34 0.2
2 13 0 0 8 35 0.076 0.015 22 23 0 0 11 0.67 36 0.27 13 1.5MW
2 3 0.031 0.092 8 9 0.031 0.031 27 31 0.046 0.015 12 0.45 38 0.45 17 0.4MW
3 4 0.046 0.092 9 10 0.015 0.015 27 28 0.107 0.031 14 0.89 39 1.34 19 1.5 MW
3 14 0.092 0.031 9 42 0.153 0.046 28 29 0.107 0.031 16 0.07 40 0.13 23 1 MW
3 15 0.214 0.046 10 11 0.107 0.076 29 30 0.061 0.015 18 0.67 41 0.67 24 2 MW
4 20 0.336 0.061 10 46 0.229 0.122 32 33 0.046 0.015 21 0.45 42 0.13
4 5 0.107 0.183 11 47 0.031 0.015 33 34 0.031 0.010 22 2.23 44 0.45 Shunt Capacitors
5 26 0.061 0.015 11 12 0.076 0.046 35 36 0.076 0.015 25 0.45 45 0.2 Bus Nameplate
5 6 0.015 0.031 15 18 0.046 0.015 35 37 0.076 0.046 26 0.2 46 0.45 No. Capacity
6 27 0.168 0.061 15 16 0.107 0.015 35 38 0.107 0.015 28 0.13
6 7 0.031 0.046 16 17 0 0 42 43 0.061 0.015 29 0.13 Vbase = 12kV 1 6.0 MVAR
7 32 0.076 0.015 18 19 0 0 43 44 0.061 0.015 30 0.2 Sbase = 1MVA 3 1.2MVAR
7 8 0.015 0.015 20 21 0.122 0.092 43 45 0.061 0.015 31 0.07 Vsub = 12.35kV 37 1.8MVAR
8 40 0.046 0.015 20 25 0.214 0.046 32 0.13 47 1.8MVAR
8 39 0.244 0.046 21 24 0 0 33 0.27

Table 5.2: Line impedances, peak spot load, and nameplate ratings of capacitors and PV generators
of the 56-bus network.

Network Data

Line Data Line Data Line Data Load Data Load Data Load Data

From To R X From To R X From To R X Bus Peak Bus Peak Bus Peak
Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) No. MVA No. MVA No. MVA

1 2 0.160 0.388 20 21 0.251 0.096 39 40 2.349 0.964 3 0.057 29 0.044 52 0.315
2 3 0.824 0.315 21 22 1.818 0.695 34 41 0.115 0.278 5 0.121 31 0.053 54 0.061
2 4 0.144 0.349 20 23 0.225 0.542 41 42 0.159 0.384 6 0.049 32 0.223 55 0.055
4 5 1.026 0.421 23 24 0.127 0.028 42 43 0.934 0.383 7 0.053 33 0.123 56 0.130
4 6 0.741 0.466 23 25 0.284 0.687 42 44 0.506 0.163 8 0.047 34 0.067 Shunt Cap
4 7 0.528 0.468 25 26 0.171 0.414 42 45 0.095 0.195 9 0.068 35 0.094 Bus Mvar
7 8 0.358 0.314 26 27 0.414 0.386 42 46 1.915 0.769 10 0.048 36 0.097 19 0.6
8 9 2.032 0.798 27 28 0.210 0.196 41 47 0.157 0.379 11 0.067 37 0.281 21 0.6
8 10 0.502 0.441 28 29 0.395 0.369 47 48 1.641 0.670 12 0.094 38 0.117 30 0.6
10 11 0.372 0.327 29 30 0.248 0.232 47 49 0.081 0.196 14 0.057 39 0.131 53 0.6
11 12 1.431 0.999 30 31 0.279 0.260 49 50 1.727 0.709 16 0.053 40 0.030 Photovoltaic
11 13 0.429 0.377 26 32 0.205 0.495 49 51 0.112 0.270 17 0.057 41 0.046 Bus Capacity
13 14 0.671 0.257 32 33 0.263 0.073 51 52 0.674 0.275 18 0.112 42 0.054
13 15 0.457 0.401 32 34 0.071 0.171 51 53 0.070 0.170 19 0.087 43 0.083 45 5MW
15 16 1.008 0.385 34 35 0.625 0.273 53 54 2.041 0.780 22 0.063 44 0.057
15 17 0.153 0.134 34 36 0.510 0.209 53 55 0.813 0.334 24 0.135 46 0.134 Vbase = 12kV
17 18 0.971 0.722 36 37 2.018 0.829 53 56 0.141 0.340 25 0.100 47 0.045 Sbase = 1MVA
18 19 1.885 0.721 34 38 1.062 0.406 27 0.048 48 0.196 Zbase = 144Ω
4 20 0.138 0.334 38 39 0.610 0.238 28 0.038 50 0.045

If device d is a PV panel with nameplate s and real power generation pi, then we impose

Re(si,d) = pi and |si,d| ≤ s. (5.20)

The power injection at bus i is

si =

Di∑

d=1

si,d

where si,d satisfies one of (5.17)–(5.20).

3. The voltage regulation constraint is considered to be 0.952 ≤ vi ≤ 1.052 for i ∈ N+.

5.5.3 Results

Numerical results are summarized in Table 5.3. It can be seen that Algorithm 7 obtains 70× speed

up over using the generic convex program solver CVX/sedumi, at the cost of a suboptimality gap

within numerical precision, for large-scale networks. Note that Algorithm 7 is run in series rather

than in parallel due to the limitation of our simulation platform. The speed up can be even more

significant once parallel implementation is completed.
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Table 5.3: Objective values and CPU times of CVX and IPM

# bus
CVX IPM

error speedup
obj time(s) obj time(s)

42 10.4585 6.5267 10.4585 0.2679 -0.0e-7 24.36
56 34.8989 7.1077 34.8989 0.3924 +0.2e-7 18.11
111 0.0751 11.3793 0.0751 0.8529 +5.4e-6 13.34
190 0.1394 20.2745 0.1394 1.9968 +3.3e-6 10.15
290 0.2817 23.8817 0.2817 4.3564 +1.1e-7 5.48
390 0.4292 29.8620 0.4292 2.9405 +5.4e-7 10.16
490 0.5526 36.3591 0.5526 3.0072 +2.9e-7 12.09
590 0.7035 43.6932 0.7035 4.4655 +2.4e-7 9.78
690 0.8546 51.9830 0.8546 3.2247 +0.7e-7 16.12
790 0.9975 62.3654 0.9975 2.6228 +0.7e-7 23.78
890 1.1685 67.7256 1.1685 2.0507 +0.8e-7 33.03
990 1.3930 74.8522 1.3930 2.7747 +1.0e-7 26.98
1091 1.5869 83.2236 1.5869 1.0869 +1.2e-7 76.57
1190 1.8123 92.4484 1.8123 1.2121 +1.4e-7 76.27
1290 2.0134 101.0380 2.0134 1.3525 +1.6e-7 74.70
1390 2.2007 111.0839 2.2007 1.4883 +1.7e-7 74.64
1490 2.4523 122.1819 2.4523 1.6372 +1.9e-7 74.83
1590 2.6477 157.8238 2.6477 1.8021 +2.0e-7 87.58
1690 2.8441 147.6862 2.8441 1.9166 +2.1e-7 77.06
1790 3.0495 152.6081 3.0495 2.0603 +2.1e-7 74.07
1890 3.8555 160.4689 3.8555 2.1963 +1.9e-7 73.06
1990 4.1424 171.8137 4.1424 2.3586 +1.9e-7 72.84

5.6 Conclusions

A gradient projection type algorithm, Algorithm 7, has been derived for solving OPF. Algorithm 7

has a distributed implementation, and its suboptimality bound has been derived. Simulation results

indicate that a serial implementation of Algorithm 7 obtains 70× speed up over the convex relaxation

approach, at essentially no loss of optimality, for a number of real-world test networks.
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Chapter 6

Exact Convex Relaxation for
Single-Phase Radial Networks

We study sufficient conditions for a convex relaxation of the OPF problem to be exact in this chapter.

In particular, we focus on single-phase radial networks, and prove that a second-order cone program

is exact under a mild condition after shrinking the OPF feasible set slightly. The condition can be

checked a priori, and holds for the IEEE 13, 34, 37, 123-bus networks and two real-world networks.

Literature Solving OPF through semidefinite relaxation is first proposed in [57] as a second-order

cone program (SOCP) for radial networks and in [10] as a semidefinite program (SDP) for general

networks in a bus injection model. It is first proposed in [35,36] as an SOCP for radial networks in

the branch flow model of [13, 14]. While these convex relaxations have been illustrated numerically

in [57] and [10], whether or when they are exact is first studied in [66] (i.e., when an optimal solution

of the original OPF problem can be recovered from every optimal solution of an SDP relaxation).

Exploiting graph sparsity to simplify the SDP relaxation of OPF is first proposed in [9, 58] and

analyzed in [17, 79]. These relaxations are equivalent for radial networks in the sense that there is

a bijective map between their feasible sets [17]. The SOCP relaxation, however, has a much lower

computational complexity. We will hence focus on the SOCP relaxation in this paper.

Convex relaxations may not be exact [19, 69, 80]. For radial networks, three types of sufficient

conditions have been developed in the literature that guarantee their exactness. They are not

necessary in general but have implications on allowable power injections, voltage magnitudes, or

voltage angles:

1. Power injections: These conditions require that not both constraints on real and reactive

power injections be binding at both ends of a line [16,35,36,91,109].

2. Voltage angles: These conditions require that the voltage angles across each line be sufficiently

close [65,68]. This is needed also for stability reasons.
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3. Voltages magnitudes: These conditions require that the upper bounds on voltage magnitudes

not be binding [41,42,71]. They can be enforced through affine constraints on power injections.

This paper generalizes these results.

Summary The goal of this chapter is to show that after modifying the OPF problem for radial

networks slightly, the corresponding SOCP relaxation is exact under a mild condition that can be

checked a priori. In particular, contributions of this chapter are threefold.

First, we prove in Theorem 6.2 that if voltage upper bounds do not bind at optimality, then the

SOCP relaxation is exact under a mild condition. The condition can be checked a priori and holds

for the IEEE 13, 34, 37, 123-bus networks and two real-world networks. The condition has a physical

interpretation that all upstream reverse power flows increase if the power loss on a line is reduced.

Second, in Section 6.3 we modify the OPF problem by limiting power injections to a region where

voltage upper bounds do not bind so that the SOCP relaxation is exact under the aforementioned

condition. We illustrate that this only eliminates power injections from the original feasible set that

are close to voltage upper bounds. Examples exist where the SOCP relaxation is not exact without

this modification.

Third, we prove in Theorem 6.8 that the result in this paper unifies and generalizes the results

in [41, 42].

The rest of this chapter is organized as follows. The OPF problem and the SOCP relaxation are

introduced in Section 6.1, and a sufficient condition for exactness is provided in Section 6.2. The

condition consists of two parts, C1 and C2. Since C2 cannot be checked a priori, we propose in

Section 6.3 a modified OPF problem that always satisfies C2 and therefore its SOCP relaxation is

exact under C1. We compare C1 with prior works in Section 6.4 and show in Section 6.5 that C1

holds with large margin for a number of test networks.

6.1 The optimal power flow problem

6.1.1 Power flow model

A distribution network is composed of buses and lines connecting these buses, and is usually radial.

The root of the network is a substation bus that connects to the transmission network. It has a fixed

voltage and redistributes the bulk power it receives from the transmission network to other buses.

Index the substation bus by 0 and the other buses by 1, . . . , n. Let N := {0, . . . , n} denote the

collection of all buses and define N+ := N\{0}. Each line connects an ordered pair (i, j) of buses

where bus j lies on the unique path from bus i to bus 0. Let E denote the collection of all lines,

and abbreviate (i, j) ∈ E by i → j whenever convenient. Note that the orientation of lines in this

chapter is opposite to the orientation adopted in Chapter 4 and 5, to ease the proofs of theorems.
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For each bus i ∈ N , let vi denote the square of the magnitude of its complex voltage, e.g., if the

voltage is 1.05∠120◦ per unit, then vi = 1.052. The substation voltage v0 is fixed and given. Let

si = pi + iqi denote the power injection of bus i where pi and qi denote the real and reactive power

injections, respectively. Let Pi denote the unique path from bus i to bus 0. Since the network is

radial, the path Pi is well-defined. For each line (i, j) ∈ E , let zij = rij + ixij denote its impedance.

Let `ij denote the square of the magnitude of the complex current from bus i to bus j, e.g., if the

current is 0.5∠10◦, then `ij = 0.52. Let Sij = Pij + iQij denote the sending-end power flow from

bus i to bus j where Pij and Qij denote the real and reactive power flow, respectively. Some of the

notations are summarized in Fig. 6.1. We use a letter without subscripts to denote a vector of the

corresponding quantities, e.g., v = (vi)i∈N+ , ` = (`ij)(i,j)∈E . Note that subscript 0 is not included

in nodal quantities such as v and s. For a complex number a ∈ C, let ā denote the conjugate of a.

Bus 0 Bus j Bus i 

Pi

vj vizij

Sij , `ij
si

Figure 6.1: Some of the notations.

Given the network (N , E), the impedance z, and the substation voltage v0, the other variables

(s, S, v, `, s0) are described by the branch flow model for radial networks [13,14]:

Sij = si +
∑

h:h→i
(Shi − zhi`hi), ∀(i, j) ∈ E ; (6.1a)

0 = s0 +
∑

h:h→0

(Sh0 − zh0`h0); (6.1b)

vi − vj = 2Re(z̄ijSij)− |zij |2`ij , ∀(i, j) ∈ E ; (6.1c)

`ij =
|Sij |2
vi

, ∀(i, j) ∈ E . (6.1d)

6.1.2 The OPF problem

We consider the following controllable devices in a distribution network: distributed generators,

inverters, controllable loads such as electric vehicles and smart appliances, and shunt capacitors. For

application examples, in volt/var control, reactive power injection of inverters and shunt capacitors

are controlled to regulate voltages; in demand response, real power consumption of controllable

loads is reduced or shifted. Mathematically, power injection s is the control variable, and the other

variables (S, v, `, s0) are determined by the power flow laws in (6.1) once s is specified.
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The power injection si of a bus i ∈ N+ is constrained to be in a pre-specified set Si, i.e.,

si ∈ Si, i ∈ N+. (6.2)

The set Si for some controllable devices are:

• If si represents a shunt capacitor with nameplate capacity qi > 0, then

Si = {s ∈ C | Re(s) = 0, Im(s) = 0 or qi}.

Note that Si is nonconvex and disconnected in this case.

• If si represents a solar panel with generation capacity pi, that is connected to the grid through

an inverter with nameplate capacity si, then

Si = {s ∈ C | 0 ≤ Re(s) ≤ pi, |s| ≤ si}.

• If si represents a controllable load with constant power factor η, whose real power consumption

can vary continuously from −pi to −p
i

(here p
i
≤ pi ≤ 0), then

Si =
{
s ∈ C | p

i
≤ Re(s) ≤ pi, Im(s) =

√
1− η2Re(s)/η

}
.

Note that si can represent the aggregate power injection of multiple such devices with an appropriate

Si, and that the set Si is not necessarily convex or connected.

An important goal of control is to regulate the voltages to lie within pre-specified lower and

upper bounds vi and vi, i.e.,

vi ≤ vi ≤ vi, i ∈ N+. (6.3)

For example, if voltages must not deviate by more than 5% from their nominal values, then 0.952 ≤
vi ≤ 1.052 per unit. We consider the control objective

C(s, s0) =
∑

i∈N
fi(Re(si)) (6.4)

where fi : R → R denotes the generation cost at bus i for i ∈ N . If fi(x) = x for i ∈ N , then C is

the total power loss on the network.

The OPF problem seeks to minimize the generation cost (6.4), subject to power flow constraints
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(6.1), power injection constraints (6.2), and voltage constraints (6.3):

OPF: min
∑

i∈N
fi(Re(si))

over s, S, v, `, s0

s.t. Sij = si +
∑

h:h→i
(Shi − zhi`hi), ∀(i, j) ∈ E ; (6.5a)

0 = s0 +
∑

h:h→0

(Sh0 − zh0`h0); (6.5b)

vi − vj = 2Re(z̄ijSij)− |zij |2`ij , ∀(i, j) ∈ E ; (6.5c)

`ij =
|Sij |2
vi

, ∀(i, j) ∈ E ; (6.5d)

si ∈ Si, i ∈ N+; (6.5e)

vi ≤ vi ≤ vi, i ∈ N+. (6.5f)

The following assumptions are made throughout this paper.

A1 The network (N , E) is a tree. Distribution networks are usually radial.

A2 The substation voltage v0 is fixed and given. In practice, v0 can be modified several times a

day, and therefore can be considered as a given constant at the timescale of OPF.

A3 Line resistances and reactances are strictly positive, i.e., rij > 0 and xij > 0 for (i, j) ∈ E .

This holds in practice because lines are passive (consume power) and inductive.

A4 Voltage lower bounds are strictly positive, i.e., vi > 0 for i ∈ N+. In practice, vi is slightly

below 1 per unit.

The equality constraint (6.5d) is nonconvex, and one can relax it to inequality constraints to

obtain the following second-order cone programming (SOCP) relaxation [36]:

SOCP: min
∑

i∈N
fi(Re(si))

over s, S, v, `, s0

s.t. (6.5a)− (6.5c), (6.5e)− (6.5f);

`ij ≥
|Sij |2
vi

, ∀(i, j) ∈ E . (6.6)

Note that SOCP is not necessarily convex, since we allow fi to be nonconvex and Si to be nonconvex.

Nonetheless, we call it SOCP for brevity.

If an optimal SOCP solution w = (s, S, v, `, s0) is feasible for OPF, i.e., w satisfies (6.5d), then

w is a global optimum of OPF. This motivates the following definition.
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Definition 6.1. SOCP is exact if every of its optimal solutions satisfies (6.5d).

6.2 A sufficient condition

We now provide a sufficient condition that ensures SOCP is exact. It motivates a modified OPF

problem in Section 6.3.

6.2.1 Statement of the condition

We start with introducing the notations that will be used in the statement of the condition. One

can ignore the ` terms in (6.1a) and (6.1c) to obtain the Linear DistFlow Model [13, 14]:

Sij = si +
∑

h:h→i
Shi, ∀(i, j) ∈ E ;

vi − vj = 2Re(z̄ijSij), ∀(i, j) ∈ E .

Let (Ŝ, v̂) denote the solution of the Linear DistFlow model, then

Ŝij(s) =
∑

h: i∈Ph

sh, ∀(i, j) ∈ E ;

v̂i(s) := v0 + 2
∑

(j,k)∈Pi

Re
(
z̄jkŜjk(s)

)
, ∀i ∈ N

as in Fig. 6.1. Physically, Ŝij(s) denotes the sum of power injections sh towards bus 0 that go

through line (i, j). Note that (Ŝ(s), v̂(s)) is affine in s, and equals (S, v) if and only if line loss

zij`ij is 0 for (i, j) ∈ E . For two complex numbers a, b ∈ C, let a ≤ b denote Re(a) ≤ Re(b)

ij

0 k

2Re(z̄jkŜjk(s))

Ŝij(s)
{h : i 2 Ph}

v0

v̂i

Ŝij = sum of s in shaded region
v̂i = v0 + sum of terms over dashed path

Figure 6.1: Illustration of Ŝij and v̂i. The shaded region is downstream of bus i, and contains the

buses {h : i ∈ Ph}. Quantity Ŝij(s) is defined to be the sum of bus injections in the shaded region.
The dashed lines constitute the path Pi from bus i to bus 0. Quantity v̂i(s) is defined as v0 plus the
terms 2Re(z̄jkŜjk(s)) over the dashed path.

and Im(a) ≤ Im(b). For two vectors a, b of the same dimension, let a ≤ b denote componentwise

inequality. Define <, >, and ≥ similarly.

Lemma 6.1. If (s, S, v, `, s0) satisfies (6.1a)–(6.1c) and ` ≥ 0 componentwise, then S ≤ Ŝ(s) and

v ≤ v̂(s).
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Lemma 6.1 implies that v̂(s) and Ŝ(s) provide upper bounds on v and S. It is proved in Appendix

6.A. Let P̂ (s) and Q̂(s) denote the real and imaginary parts of Ŝ(s), respectively. Then

P̂ij(s = p+ iq) = P̂ij(p) =
∑

h: i∈Ph

ph, (i, j) ∈ E ;

Q̂ij(s = p+ iq) = Q̂ij(q) =
∑

h: i∈Ph

qh, (i, j) ∈ E .

Assume that there exist pi and qi such that

Si ⊆ {s ∈ C | Re(s) ≤ pi, Im(s) ≤ qi}

for i ∈ N+ as in Fig. 6.2, i.e., Re(si) and Im(si) are upper bounded by pi and qi, respectively.

Define a+ := max{a, 0} for a ∈ R. Let I := diag(1, 1) denote the 2× 2 identity matrix, and define

Re 

Im 

pi

qi

0 

Si

Figure 6.2: We assume that Si lies in the left bottom corner of (pi, qi), but do not assume that Si
is convex or connected.

uij :=


rij
xij


 , Aij := I − 2

vi


rij
xij



(
P̂+
ij (p) Q̂+

ij(q)
)

for (i, j) ∈ E . For each i ∈ N+, (i, j1) ∈ E and (i, j2) ∈ E implies j1 = j2, and therefore we can

abbreviate uij and Aij by ui and Ai, respectively, without ambiguity.

Further, let L := {l ∈ N | @k ∈ N such that k → l} denote the collection of leaf buses in the

network. For a leaf bus l ∈ L, let nl + 1 denote the number of buses on path Pl, and suppose

Pl = {lnl
→ lnl−1 → . . .→ l1 → l0}

with lnl
= l and l0 = 0 as in Fig. 6.3. Let

Svolt := {s ∈ Cn | v̂i(s) ≤ vi for i ∈ N+}

denote the power injection region where v̂(s) is upper bounded by v. Since v ≤ v̂(s) (Lemma 6.1),
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L

l1

l2

lnl�1

lnl

l0 = 0, lnl
= l

l0

Al1

Al2

ul2

ul1

Figure 6.3: The shaded region denotes the collection L of leaf buses, and the path Pl of a leaf bus
l ∈ L is illustrated by a dashed line.

the set Svolt is a power injection region where voltage upper bounds do not bind.

The following theorem provides a sufficient condition that guarantees the exactness of SOCP.

Theorem 6.2. Assume that f0 is strictly increasing, and that there exist pi and qi such that Si ⊆
{s ∈ C | Re(s) ≤ pi, Im(s) ≤ qi} for i ∈ N+. Then SOCP is exact if the following conditions hold:

C1 AlsAls+1
· · ·Alt−1

ult > 0 for any l ∈ L and any s, t such that 1 ≤ s ≤ t ≤ nl;

C2 every optimal SOCP solution w = (s, S, v, `, s0) satisfies s ∈ Svolt.

Theorem 6.2 implies that if C2 holds, i.e., optimal power injections lie in the region Svolt where

voltage upper bounds do not bind, then SOCP is exact under C1. C2 depends on SOCP solutions

and cannot be checked a priori. This drawback motivates us to modify OPF such that C2 always

holds and therefore the corresponding SOCP is exact under C1, as will be discussed in Section 6.3.

We illustrate the proof idea of Theorem 6.2 via a 3-bus linear network in Fig. 6.4. The proof

0 1 2 

A1 u2

S10

s1 s2

S21S0,�1

S0,�1 = �s0

Figure 6.4: A 3-bus linear network.

for general radial networks is provided in Appendix 6.B. Assume C1 and C2 hold. If SOCP is not

exact, then there exists an optimal SOCP solution w = (s, S, v, `, s0) that violates (6.5d). We will

construct another feasible point w′ = (s′, S′, v′, `′, s′0) of SOCP that has a smaller objective value

than w, contradicting the optimality of w and implying SOCP is exact.

There are two ways (6.5d) gets violated: 1) (6.5d) is violated on line (1, 0); or 2) (6.5d) is satisfied

on line (1, 0) but violated on line (2, 1). To illustrate the proof idea, we focus on the second case,
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i.e., the case where `10 = |S10|2/v1 and `21 > |S21|2/v2. In this case, the construction of w′ is

Initialization: s′ = s, S′21 = S21;

Forward sweep: `′21 = |S′21|2/v2,

S′10 = S′21 − z21`
′
21 + s′1;

`′10 = |S′10|2/v1,

S′0,−1 = S′10 − z10`
′
10;

Backward sweep: v′1 = v0 + 2Re(z̄10S
′
10)− |z10|2`′10;

v′2 = v′1 + 2Re(z̄21S
′
21)− |z21|2`′21

where S′0,−1 = −s′0. The construction consists of three steps:

S1 In the initialization step, s′ and S′21 are initialized as the corresponding values in w.

S2 In the forward sweep step, `′k,k−1 and S′k−1,k−2 are recursively constructed for k = 2, 1 by alter-

natively applying (6.5d) (with v′ replaced by v) and (6.5a)/(6.5b). This recursive construction

updates `′ and S′ alternatively along the path P2 from bus 2 to bus 0, and is therefore called

a forward sweep.

S3 In the backward sweep step, v′k is recursively constructed for k = 1, 2 by applying (6.5c). This

recursive construction updates v′ along the negative direction of P2 from bus 0 to bus 2, and

is therefore called a backward sweep.

One can show that w′ is feasible for SOCP and has a smaller objective value than w. This

contradicts the optimality of w, and therefore SOCP is exact.

Remark 6.1. Theorem 6.2 still holds if there is an additional power injection constraint s ∈ S in

OPF, where S can be an arbitrary set. This is because we set s′ = s in the construction of w′, and

therefore s ∈ S implies s′ ∈ S. Hence, an additional constraint s ∈ S does not affect the fact that

w′ is feasible for SOCP and has a smaller objective value than w.

6.2.2 Interpretation of C1

We illustrate C1 through a linear network as in Figure 6.5. The collection of leaf buses is a singleton

L = {n}, and the path from the only leaf bus n to bus 0 is Pn = {n → n − 1 → · · · → 1 → 0}.
Then, C1 takes the form

AsAs+1 · · ·At−1ut > 0, 1 ≤ s ≤ t ≤ n.
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That is, given any network segment (s−1, t) where 1 ≤ s ≤ t ≤ n, the multiplication AsAs+1 · · ·At−1

of A over the segment (s− 1, t− 1) times ut is strictly positive.

As At�1 ut

network segment (s� 1, t)

0 s� 1 s t� 2 t� 1 t n

✓
dPs�1,s�2

dQs�1,s�2

◆
= �As · · · At�2utd`t,t�1

Figure 6.5: A linear network for the interpretation of Condition C1.

C1 only depends on SOCP parameters (r, x, p, q, v). It can be checked a priori and efficiently

since A and u are simple functions of (r, x, p, q, v) that can be computed in O(n) time and there are

no more than n(n+ 1)/2 inequalities in C1.

Proposition 6.3. If (p, q) ≤ (p′, q′) and C1 holds for (r, x, p′, q′, v), then C1 also holds for (r, x, p, q, v).

Proposition 6.3 implies that if C1 holds for a set of power injections, then C1 also holds for

smaller power injections. It is proved in Appendix 6.C.

Proposition 6.4. If (p, q) ≤ 0, then C1 holds.

Proposition 6.4 implies that if every bus only consumes real and reactive power, then C1 holds.

This is because when (p, q) ≤ 0, the quantities P̂ij(p) ≤ 0, Q̂ij(q) ≤ 0 for (i, j) ∈ E . It follows

that Ai = I for i ∈ N+. Hence, Als · · ·Alt−1
ult = ult > 0 for any l ∈ L and any s, t such that

1 ≤ s ≤ t ≤ nl.
For practical parameter ranges of (r, x, p, q, v), line resistance and reactance rij , xij � 1 per unit

for (i, j) ∈ E , line flows P̂ij(p), Q̂ij(q) are on the order of 1 per unit for (i, j) ∈ E , and voltage lower

bound vi ≈ 1 per unit for i ∈ N+. Hence, Ai is close to I for i ∈ N+, and therefore C1 is likely

to hold. As will be seen in Section 6.5, C1 holds for several test networks, including those with big

(p, q) (high penetration of distributed generation).

C1 has a physical interpretation. Recall that Sk,k−1 denotes the reverse power flow on line

(k, k − 1) for k = 1, . . . , n and introduce S0,−1 := −s0 for convenience. If the power loss on a line

is reduced, it is natural that all upstream reverse power flows will increase. More specifically, the

power loss on line (t, t − 1) where t ∈ {1, 2, . . . , n} is reduced if the current `t,t−1 is reduced by

−d`t,t−1 > 0. When power loss gets smaller, reverse power flow Ss−1,s−2 is likely to increase, i.e.,

dSs−1,s−2 > 0, for s = 1, 2, . . . , t.

Let dSs−1,s−2 = dPs−1,s−2 + idQs−1,s−2 > 0 for s = 1, . . . , t. It can be verified that

(dPt−1,t−2 dQt−1,t−2)T = −utd`t,t−1,
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and one can compute from (6.1) the Jacobian matrix

Ak :=



∂Pk−1,k−2

∂Pk,k−1

∂Pk−1,k−2

∂Qk,k−1

∂Qk−1,k−2

∂Pk,k−1

∂Qk−1,k−2

∂Qk,k−1


 = I − 2

vk


rk,k−1

xk,k−1


 (Pk,k−1 Qk,k−1)

for k = 1, . . . , n. Therefore

(dPs−1,s−2 dQs−1,s−2)T = −AsAs+1 · · ·At−1utd`t,t−1

for s = 1, . . . , t. Then, dSs−1,s−2 > 0 implies

AsAs+1 · · ·At−1ut > 0 (6.7)

for s = 1, 2, . . . , t. Note that Ak is obtained by replacing (P,Q, v) in Ak by (P̂+(p), Q̂+(q), v) (so

that Ak only depends on SOCP parameters), and then (6.7) becomes C1.

6.3 A modified OPF problem

The condition C2 in Theorem 6.2 depends on SOCP solutions and cannot be checked a priori. It

can, however, be enforced by the additional constraint

s ∈ Svolt (6.8)

on OPF. Condition (6.8) is equivalent to n affine constraints on s, v̂i(s) ≤ vi for i ∈ N+. Since

vi ≤ v̂i(s) (Lemma 6.1), the constraints vi ≤ vi in (6.5f) become redundant after imposing (6.8). To

summarize, the modified OPF problem is

OPF-m: min
∑

i∈N
fi(Re(si))

over s, S, v, `, s0

s.t. (6.5a)− (6.5e);

vi ≤ vi, v̂i(s) ≤ vi, i ∈ N+. (6.9)

A modification to OPF is necessary to ensure an exact SOCP, since otherwise examples exist

where SOCP is not exact. Remarkably, the feasible sets of OPF-m and OPF are similar since v̂i(s)

is close to vi in practice [13,14,101].
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One can relax (6.5d) to (6.6) to obtain the corresponding SOCP relaxation for OPF-m:

SOCP-m: min
∑

i∈N
fi(Re(si))

over s, S, v, `, s0

s.t. (6.5a)− (6.5c), (6.6), (6.5e), (6.9).

Note again that SOCP-m is not necessarily convex, since we allow fi and Si to be nonconvex.

Since OPF-m is obtained by imposing additional constraint (6.8) on OPF, it follows immediately

from Remark 6.1 that SOCP-m relaxation is exact under C1—a mild condition that can be checked

a priori.

Theorem 6.5. Assume that f0 is strictly increasing, and that there exist pi and qi such that Si ⊆
{s ∈ C | Re(s) ≤ pi, Im(s) ≤ qi} for i ∈ N+. Then SOCP-m is exact if C1 holds.

The next result implies that SOCP (SOCP-m) has at most one optimal solution if it is convex

and exact. The theorem is proved in Appendix 6.D.

Theorem 6.6. If fi is convex for i ∈ N , Si is convex for i ∈ N+, and SOCP (SOCP-m) is exact,

then SOCP (SOCP-m) has at most one optimal solution.

The proof of Theorem 6.6 also implies that the feasible set of OPF (OPF-m) is hollow, as stated

in the following corollary.

Corollary 6.7. Let x̃ = (s̃, S̃, ṽ, ˜̀, ṽ0) and x̂ = (ŝ, Ŝ, v̂, ˆ̀, v̂0) be two distinct feasible points of OPF

(OPF-m), then any convex combination of x̃ and x̂ cannot be feasible for OPF (OPF-m), i.e., the

point x = θx̃+ (1− θ)x̂ is infeasible for OPF (OPF-m) for any θ ∈ (0, 1).

The proof of Corollary 6.7 is similar to that of Theorem 6.6 and omitted for brevity.

6.4 Connection with prior results

Theorem 6.2 unifies and generalizes the results in [41, 42] due to Theorem 6.8 proved in Appendix

6.E. Theorem 6.8 below says that C1 holds if at least one of the followings hold: 1) Every bus

only consumes real and reactive power; 2) lines share the same resistance to reactance ratio; 3) The

buses only consume real power and the resistance to reactance ratio increases as lines branch out

from the substation; 4) The buses only consume reactive power and the resistance to reactance ratio

decreases as lines branch out from the substation; 5) upper bounds P̂+(p̄), Q̂+(q̄) on reverse power

flows are sufficiently small. Let

E ′ := {(i, j) ∈ E | i /∈ L}
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denote the set of all non-leaf lines.

Theorem 6.8. Assume that there exist pi and qi such that Si ⊆ {s ∈ C | Re(s) ≤ pi, Im(s) ≤ qi}
for i ∈ N+. Then C1 holds if any one of the following statements is true:

1) Ŝij(p+ iq) ≤ 0 for (i, j) ∈ E ′.

2) rij/xij is identical for (i, j) ∈ E; and vi − 2rijP̂
+
ij (p)− 2xijQ̂

+
ij(q) > 0 for (i, j) ∈ E ′.

3) rij/xij ≥ rjk/xjk whenever i→ j, j → k; and P̂ij(p) ≤ 0, vi − 2xijQ̂
+
ij(q) > 0 for (i, j) ∈ E ′.

4) rij/xij ≤ rjk/xjk whenever i→ j, j → k; and Q̂ij(q) ≤ 0, vi − 2rijP̂
+
ij (p) > 0 for (i, j) ∈ E ′.

5)




∏

(k,l)∈Pj

1− 2rklP̂
+
kl(p̄)

vk
−

∑

(k,l)∈Pj

2rklQ̂
+
kl(q̄)

vk

−
∑

(k,l)∈Pj

2xklP̂
+
kl(p̄)

vk

∏

(k,l)∈Pj

1− 2xklQ̂
+
kl(q̄)

vk





rij
xij


 > 0 for (i, j) ∈ E.

The results in [41,42] say that, if there are no voltage upper bounds, i.e., v =∞, then SOCP is

exact if any one of 1)–5) holds. Since C2 holds automatically when v =∞ and C1 holds if any one

of 1)–5) holds (Theorem 6.8), the results in [41,42] follow from Theorem 6.2. Besides, the following

corollary follows immediately from Theorems 6.5 and 6.8.

Corollary 6.9. Assume that f0 is strictly increasing, and that there exist pi and qi such that

Si ⊆ {s ∈ C | Re(s) ≤ pi, Im(s) ≤ qi} for i ∈ N+. Then SOCP-m is exact if any one of 1)–5)

holds.

6.5 Case Studies

In this section, we use six test networks to demonstrate that

1. SOCP is simpler computationally than SDP.

2. C1 holds. We define C1 margin that quantifies how well C1 is satisfied, and show that the

margin is big.

3. The feasible sets of OPF and OPF-m are similar. We define modification gap that quantifies

the difference between the feasible sets of OPF and OPF-m, and show that this gap is small.

6.5.1 Test networks

The test networks include IEEE 13, 34, 37, 123-bus networks [1] and two real-world networks [35,37]

in the service territory of Southern California Edison (SCE), a utility company in California, USA [2].
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Table 6.1: DG penetration, C1 margins, modification gaps, and computation times for different test
networks.

DG penetration numerical precision SOCP time SDP time C1 margin estimated modification gap

IEEE 13-bus 0% 10−10 0.5162s 0.3842s 27.6762 0.0362

IEEE 34-bus 0% 10−10 0.5772s 0.5157s 20.8747 0.0232

IEEE 37-bus 0% 10−9 0.5663s 1.6790s +∞ 0.0002

IEEE 123-bus 0% 10−8 2.9731s 32.6526s 52.9636 0.0157

SCE 47-bus 56.6% 10−8 0.7265s 2.5932s 2.5416 0.0082

SCE 56-bus 130.4% 10−9 1.0599s 6.0573s 1.2972 0.0053

The IEEE networks are unbalanced three-phase radial networks with some devices (regulators,

circuit switches, transformers, and distributed loads) not modeled in (6.1). Therefore we modify the

IEEE networks as follows.

1. Assume that each bus has three phases and split its load uniformly among the three phases.

2. Assume that the three phases are decoupled so that the network becomes three identical single

phase networks.

3. Model closed circuit switches as shorted lines and ignore open circuit switches. Model regu-

lators as multiplying the voltages by fixed constants (set to 1.08 in the simulations). Model

transformers as lines with appropriate impedances. Model the distributed load on a line as

two identical spot loads located at two ends of the line.

The SCE networks, a 47-bus network and a 56-bus network, are shown in Fig. 5.1 with parameters

given in Tables 5.1 and 5.2.

These networks have increasing penetration of distributed generation (DG) as listed in Table 6.1.

While the IEEE networks do not have any DG, the SCE 47-bus network has 56.6% DG penetration

(6.4MW nameplate DG capacity against 11.3MVA peak spot load), and the SCE 56-bus network

has 130.4% DG penetration (5MW nameplate DG capacity against 3.835MVA peak spot load).

6.5.2 SOCP is more efficient to compute than SDP

We compare the computation times of SOCP and SDP for the test networks, and summarize the

results in Table 6.1. All simulations in this paper use matlab 7.9.0.529 (64-bit) with toolbox cvx

1.21 on Mac OS X 10.7.5 with 2.66GHz Intel Core 2 Due CPU and 4GB 1067MHz DDR3 memory.

We use the following OPF setup throughout the simulations.

1. The objective is to minimize power loss in the network.

2. The power injection constraints are as follows. For each bus i ∈ N+, there may be multiple

devices including loads, capacitors, and PV panels. Assume that there is a total of Di such

devices and label them by 1, 2, . . . , Di. Let si,d denote the power injection of device d on bus
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i for d = 1, 2, . . . , Di. If device d is a load with given real and reactive power consumptions p

and q, then we impose

si,d = −p− iq. (6.10)

If device d is a load with given peak apparent power speak, then we impose

si,d = −speak exp(jθ) (6.11)

where θ = cos−1(0.9), i.e, power injection si,d is considered to be a constant, obtained by

assuming a power factor of 0.9 at peak apparent power. If device d is a capacitor with nameplate

q, then we impose

Re(si,d) = 0 and 0 ≤ Im(si,d) ≤ q. (6.12)

If device d is a PV panel with nameplate s, then we impose

Re(si,d) ≥ 0 and |si,d| ≤ s. (6.13)

The power injection at bus i is

si =

Di∑

d=1

si,d

where si,d satisfies one of (6.10)–(6.13).

3. The voltage regulation constraint is considered to be 0.92 ≤ vi ≤ 1.12 for i ∈ N+. Note that

we choose a small voltage lower bound 0.9 so that OPF is feasible for all test networks. We

choose a big voltage upper bound 1.1 such that Condition C2 holds and therefore SDP/SOCP

is exact under C1.
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Figure 6.1: Comparison of the computation times for SOCP and SDP.

The computation times of SDP and SOCP for different test networks are summarized in Fig.

6.1. The number of buses determines the number of constraints and variables in the optimization,

and therefore reflects the problem size. Network topology also affects the computation time. As the

number of buses increases, the computation time of SOCP scales up much more slowly than that
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of SDP and their ratio increases dramatically. Hence SOCP is much more efficient than SDP for

medium to large networks.

SOCP and SDP can only be solved to certain numerical precisions. The best numerical precision

we obtain without applying pre-conditioning techniques are listed in Table 6.1.

6.5.3 C1 holds with a large margin

In this section, we show that C1 holds with a large margin for all test networks. Noting that C1

becomes more difficult to hold as (p, q) increases (Proposition 6.3), one can increase p, q until C1

fails. More specifically, let pfix
i and qfix

i denote the fixed real and reactive loads at bus i ∈ N+, let

PVi and Capi denote the nameplate capacities of the photovoltaic panels and the shunt capacitors

at bus i ∈ N+, and define

pi(η) := pfix
i + η · PVi, i ∈ N+, η ≥ 0;

qi(η) := qfix
i + η · (PVi + Capi), i ∈ N+, η ≥ 0.

When η = 0, one has (p(η), q(η)) ≤ 0 and therefore C1 holds according to Proposition 6.4. According

to Proposition 6.3, there exists a unique η∗ ∈ R+ ∪ {+∞} such that

η < η∗ ⇒ C1 holds for (r, x, p(η), q(η), v); (6.14a)

η > η∗ ⇒ C1 does not hold for (r, x, p(η), q(η), v). (6.14b)

Definition 6.2. C1 margin is defined as the unique η∗ ≥ 0 that satisfies (6.14).

Physically, η∗ is the multiple by which one can scale up distributed generation (PVs) and shunt

capacitors before C1 fails to hold. Noting that p = p(1) and q = q(1), C1 holds for (r, x, p, q, v) if

and only if η∗ > 1 (ignore the corner case where η∗ = 1). The larger η∗ is, the “more easily” C1

holds.

The C1 margins of different test networks are summarized in Table 6.1. The minimum C1 margin

is 1.30, meaning that one can scale up distributed generation and shunt capacitors by 1.30 times

before C1 fails to hold. C1 margin of the IEEE 37-bus network is +∞, and this is because there is

neither distributed generation nor shunt capacitors in the network.

The C1 margin is above 20 for all IEEE networks, but much smaller for SCE networks. This is

because SCE networks have big p and q (due to big PVi and Capi) that make C1 more difficult to

hold. However, note that the SCE 56-bus network already has a DG penetration of over 130%, and

that one can still scale up its DG by a factor of 1.30 times before C1 breaks down. This highlights

that C1 is a mild condition.
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6.5.4 The feasible sets of OPF and OPF-m are similar

In this section, we show that OPF-m eliminates some feasible points of OPF that are close to the

voltage upper bounds for all test networks. To present the result, let FOPF denote the feasible set

of OPF, let ‖ · ‖∞ denote the `∞ norm,1 and let

ε := max ‖v̂(s)− v‖∞ s.t. (s, S, v, `, s0) ∈ FOPF (6.15)

denote the maximum deviation of v from its linear approximation v̂(s) over all OPF feasible points

(s, S, v, `, s0).

OPF-­‐ε	
   OPF-m OPF 

w 

Figure 6.2: Feasible sets of OPF-ε, OPF-m, and OPF. The point w is feasible for OPF but not for
OPF-m.

The value ε quantifies the difference between the feasible sets of OPF and OPF-m. Consider the

OPF problem with a stricter voltage upper bound constraint:

OPF-ε: min
∑

i∈N
fi(Re(si))

over s, S, v, `, s0

s.t. (6.5a)− (6.5e);

vi ≤ vi ≤ vi − ε, i ∈ N+.

The feasible set FOPF-ε of OPF-ε is contained in FOPF. Hence, for every (s, S, `, v, s0) ∈ FOPF-ε ⊆
FOPF, one has

v̂i(s) ≤ vi + ‖v̂(s)− v‖∞ ≤ vi − ε+ ε = vi, i ∈ N+

by (6.15). It follows that FOPF-ε ⊆ FOPF-m and therefore

FOPF-ε ⊆ FOPF-m ⊆ FOPF

as illustrated in Fig. 6.2.

If ε is small, then FOPF-m is similar to FOPF. Any point w that is feasible for OPF but infeasible

for OPF-m is close to the voltage upper bound since vi > vi − ε for some i ∈ N+. Such points are

perhaps undesirable for robust operation.

1The `∞ norm of a vector x = (x1, . . . , xn) ∈ Rn is defined as ‖x‖∞ := max{|x1|, . . . , |xn|}.
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Definition 6.3. The value ε defined in (6.15) is called the modification gap.

We demonstrate that the modification gap ε is small for all test networks through Monte-Carlo

simulations. Note that ε is difficult to compute since the objective function in (6.15) is not concave

and the constraints in (6.15) are not convex. We choose 1000 samples of s, calculate the corre-

sponding (S, v, `, s0) by solving the power flow equations (6.1a)–(6.1d) (using the forward backward

sweep algorithm [63]) for each s, and compute ε(s) := ‖v̂(s) − v‖∞ if (s, S, v, `, s0) ∈ FOPF. We

use the maximum ε(s) over the 1000 samples as an estimate for ε. The estimated modification gap

εset we obtained for different test networks are listed in Table 6.1. For example, εset = 0.0362 for

the IEEE 13-bus network, in which case the voltage constraints are 0.81 ≤ vi ≤ 1.21 for OPF and

0.81 ≤ vi ≤ 1.1738 for OPF-ε (assuming ε = εset).

6.6 Conclusion

We have proved that SOCP is exact if conditions C1 and C2 hold. C1 can be checked a priori,

and has the physical interpretation that upstream power flows should increase if the power loss

on a line is reduced. C2 requires that optimal power injections lie in a region Svolt where voltage

upper bounds do not bind. We have proposed a modified OPF problem that includes the additional

constraint that power injections lie in Svolt, such that the corresponding SOCP relaxation is exact

under C1. We have also proved that SOCP has at most one optimal solution if it is convex and

exact. These results unify and generalize our prior works [41, 42]. Empirical studies show that C1

holds with a large margin and that the feasible sets of OPF and OPF-m are close, for the IEEE 13,

34, 37, 123-bus networks and two real-world networks.
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Appendix

6.A Proof of Lemma 6.1

Let (s, S, v, `, s0) satisfy (6.1a)–(6.1c) and ` ≥ 0 componentwise. It follows from (6.1a) that

Sij = si +
∑

h:h→i
(Shi − zhi`hi) ≤ si +

∑

h:h→i
Shi

for (i, j) ∈ E . On the other hand, Ŝij(s) is the solution of

Ŝij = si +
∑

h:h→i
Ŝhi, (i, j) ∈ E .

By induction from the leaf lines, one can show that

Sij ≤ Ŝij(s), (i, j) ∈ E .

It follows from (6.1c) that

vi − vj = 2Re(z̄ijSij)− |zij |2`ij ≤ 2Re(z̄ijSij) ≤ 2Re(z̄ijŜij(s))

for (i, j) ∈ E . Sum up the inequalities over Pi to obtain

vi − v0 ≤ 2
∑

(j,k)∈Pi

Re(z̄jkŜjk(s)),

i.e., vi ≤ v̂i(s), for i ∈ N .

6.B Proof of Theorem 6.2

The proof idea of Theorem 6.2 has been illustrated via a 3-bus linear network in Section 6.2.1. Now we

present the proof of Theorem 6.2 for general radial networks. Assume that f0 is strictly increasing,

and that C1 and C2 hold. If SOCP is not exact, then there exists an optimal SOCP solution
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w = (s, S, v, `, s0) that violates (6.5d). We will construct another feasible point w′ = (s′, S′, v′, `′, s′0)

of SOCP that has a smaller objective value than w. This contradicts the optimality of w, and

therefore SOCP is exact.

Construction of w′

The construction of w′ is as follows. Since w violates (6.5d), there exists a leaf bus l ∈ L with m ∈
{1, . . . , nl} such that w satisfies (6.5d) on (l1, l0), . . . , (lm−1, lm−2) and violates (6.5d) on (lm, lm−1).

Without loss of generality, assume lk = k for k = 0, . . . ,m as in Fig. 6.B.1. Then

`m,m−1 >
|Sm,m−1|2

vm
, (6.16a)

`k,k−1 =
|Sk,k−1|2

vk
, k = 1, . . . ,m− 1. (6.16b)

0 1 m� 1 m l

Figure 6.B.1: Bus l is a leaf bus, with lk = k for k = 0, . . . ,m. Equality (6.5d) is satisfied on
[0,m− 1], but violated on [m− 1,m].

One can then construct w′ = (s′, S′, v′, `′, s′0) as in Algorithm 10. The construction consists of

three steps:

S1 In the initialization step, s′, `′ outside path Pm, and S′ outside path Pm−1 are initialized as

the corresponding values in w. Since s′ = s, the point w′ satisfies (6.5e). Furthermore, since

`′ij = `ij for (i, j) /∈ Pm and S′ij = Sij for (i, j) /∈ Pm−1, the point w′ also satisfies (6.5a) for

(i, j) /∈ Pm−1.

S2 In the forward sweep step, `′k,k−1 and S′k−1,k−2 are recursively constructed for k = m, . . . , 1

by alternatively applying (6.5d) (with v′ replaced by v) and (6.5a)/(6.5b). Hence, w′ satisfies

(6.5a) for (i, j) ∈ Pm−1 and (6.5b).

S3 In the backward sweep step, v′i is recursively constructed from bus 0 to leaf buses by applying

(6.5c) consecutively. Hence, the point w′ satisfies (6.5c).

The point w′ satisfies another important property given below.

Lemma 6.10. The point w′ satisfies `′ij ≥ |S′ij |2/vi for (i, j) ∈ E.
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Algorithm 10 Construct a feasible point

Input: an optimal SOCP solution w = (s, S, v, `, s0) that violates (6.5d), a leaf bus l ∈ L with
1 ≤ m ≤ nl such that (6.16) holds (assume lk = k for k = 0, . . . ,m without loss of generality).

Output: w′ = (s′, S′, v′, `′, s′0).
Initialization. Construct s′, `′ outside Pm, and S′ outside Pm−1.

1: keep s: s′ ← s;
2: keep ` outside path Pm: `′ij ← `ij for (i, j) /∈ Pm;
3: keep S outside path Pm−1: S′ij ← Sij for (i, j) /∈ Pm−1;

Forward sweep. Construct `′ on Pm, S′ on Pm−1, and s′0.
4: for k = m,m− 1, . . . , 1

5: `′k,k−1 ←
|S′k,k−1|2

vk
;

6: S′k−1,k−2 ← sk−11k 6=1 +
∑
j: j→k−1(S′j,k−1 − zj,k−1`

′
j,k−1);

7: end
8: s′0 ← −S′0,−1;

Backward sweep. Construct v′.
9: v′0 ← v0;

10: Nvisit ← {0};
11: while Nvisit 6= N
12: find i /∈ Nvisit and j ∈ Nvisit such that i→ j;
13: v′i ← v′j + 2Re(z̄ijS

′
ij)− |zij |2`′ij ;

14: Nvisit ← Nvisit ∪ {i};
15: end

Proof. When (i, j) /∈ Pm, it follows from Step S1 that `′ij = `ij ≥ |Sij |2/vi = |S′ij |2/vi. When

(i, j) ∈ Pm, it follows from Step S2 that `′ij = |S′ij |2/vi. This completes the proof of Lemma

6.10.

Lemma 6.10 implies that if v′ ≥ v, then w′ satisfies (6.6).

Feasibility and Superiority of w′

We will show that w′ is feasible for SOCP and has a smaller objective value than w. This result

follows from Claims 6.11 and 6.12.

Claim 6.11. If C1 holds, then S′k,k−1 > Sk,k−1 for k = 0, . . . ,m− 1 and v′ ≥ v.

Claim 6.11 is proved later in this appendix. Here we illustrate with Fig. 6.B.2 that S′k,k−1 >

Sk,k−1 for k = 0, . . . ,m− 1 seems natural to hold. Note that S′m,m−1 = Sm,m−1 and that `′m,m−1 =

0 m� 1 m

Sm,m�1Sm�1,m�2

Figure 6.B.2: Illustration of S′k,k−1 > Sk,k−1 for k = 0, . . . ,m− 1.

|S′m,m−1|2/vm = |Sm,m−1|2/vm < `m,m−1. Define ∆w = (∆s,∆S,∆v,∆`,∆s0) = w′ − w, then
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∆`m,m−1 < 0 and therefore

∆Sm−1,m−2 = ∆Sm,m−1 − zm,m−1∆`m,m−1 = − zm,m−1∆`m,m−1 > 0. (6.17)

Intuitively, after increasing Sm−1,m−2, upstream reverse power flow Sk,k−1 is likely to increase for

k = 0, . . . ,m− 2. C1 is a condition that ensures Sk,k−1 to increase for k = 0, . . . ,m− 1.

Claim 6.12. If C2 holds, then v′ ≤ v.

Proof. If C2 holds, then it follows from Lemma 6.1 that v′ ≤ v̂(s′) = v̂(s) ≤ v.

It follows from Claims 6.11 and 6.12 that v ≤ v ≤ v′ ≤ v, and therefore w′ satisfies (6.5f).

Besides, it follows from Lemma 6.10 that `′ij ≥ |S′ij |2/vi ≥ |S′ij |2/v′i for (i, j) ∈ E , i.e., w′ satisfies

(6.6). Hence, w′ is feasible for SOCP. Furthermore, w′ has a smaller objective value than w because

∑

i∈N
fi(Re(s′i))−

∑

i∈N
fi(Re(si)) = f0(−Re(S′0,−1))− f0(−Re(S0,−1)) < 0.

This contradicts with the optimality of w, and therefore SOCP is exact. To complete the proof, we

are left to prove Claim 6.11.

Proof of Claim 6.11

Assume C1 holds. First show that ∆Sk,k−1 > 0 for k = 0, . . . ,m − 1. Recall that S = P + iQ and

that ui = (rij xij)
T . It follows from (6.17) that


∆Pm−1,m−2

∆Qm−1,m−2


 = −um∆`m,m−1 > 0.

For any k ∈ {1, . . . ,m− 1}, one has

∆Sk−1,k−2 = ∆Sk,k−1 − zk,k−1∆`k,k−1 = ∆Sk,k−1 − zk,k−1

|S′k,k−1|2 − |Sk,k−1|2
vk

,

which is equivalent to


∆Pk−1,k−2

∆Qk−1,k−2


 = Bk


∆Pk,k−1

∆Qk,k−1




where

Bk = I − 2

vk


rk,k−1

xk,k−1



[
Pk,k−1+P ′k,k−1

2

Qk,k−1+Q′k,k−1

2

]
.
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Hence, one has 
∆Pk−1,k−2

∆Qk−1,k−2


 = −BkBk+1 · · ·Bm−1um∆`m,m−1

for k = 1, . . . ,m. To prove ∆Sk,k−1 > 0 for k = 0, . . . ,m−1, it suffices to show thatBk · · ·Bm−1um >

0 for k = 1, . . . ,m.

C1 implies that As · · ·At−1ut > 0 when 1 ≤ s ≤ t ≤ m. One also has Bk −Ak = ukb
T
k where

bk =




2P̂+
k,k−1(p)

vk
− Pk,k−1+P ′k,k−1

vk
2Q̂+

k,k−1(q)

vk
− Qk,k−1+Q′k,k−1

vk


 ≥ 0

for k = 1, . . . ,m − 1. To show that Bk · · ·Bm−1um > 0 for k = 1, . . . ,m, we prove the following

lemma.

Lemma 6.13. Given m ≥ 1 and d ≥ 1. Let A1, . . . , Am−1, A1, . . . , Am−1 ∈ Rd×d and u1, . . . , um ∈
Rd satisfy

• As · · ·At−1ut > 0 when 1 ≤ s ≤ t ≤ m;

• there exists bk ∈ Rd that satisfies bk ≥ 0 and Ak −Ak = ukb
T
k , for k = 1, . . . ,m− 1.

Then

As · · ·At−1ut > 0 (6.18)

when 1 ≤ s ≤ t ≤ m.

Proof. We prove that (6.18) holds when 1 ≤ t ≤ s ≤ m by mathematical induction on t− s.

i) When t− s = 0, one has As · · ·At−1ut = ut = As · · ·At−1ut > 0.

ii) Assume that (6.18) holds when t − s = 0, 1, . . . ,K (0 ≤ K ≤ m − 2). When t − s = K + 1,

one has

As · · ·AkAk+1 · · ·At−1ut

= As · · ·Ak−1AkAk+1 · · ·At−1ut +As · · ·Ak−1(Ak −Ak)Ak+1 · · ·At−1ut

= As · · ·Ak−1Ak · · ·At−1ut +As · · ·Ak−1ukb
T
kAk+1 · · ·At−1ut

= As · · ·Ak−1Ak · · ·At−1ut +
(
bTkAk+1 · · ·At−1ut

)
As · · ·Ak−1uk

for k = s, . . . , t − 1. Since bk ≥ 0 and Ak+1 · · ·At−1ut > 0, the term bTkAk+1 · · ·At−1ut ≥ 0.

According to induction hypothesis, As · · ·Ak−1uk > 0. Hence,

As · · ·AkAk+1 · · ·At−1ut ≥ As · · ·Ak−1Ak · · ·At−1ut
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for k = s, . . . , t− 1. By substituting k = t− 1, . . . , s in turn, one obtains

As · · ·At−1ut ≥ As · · ·At−2At−1ut ≥ · · · ≥ As · · ·At−1ut > 0,

i.e., (6.18) holds when t− s = K + 1.

According to i) and ii), (6.18) holds when t− s = 0, . . . ,m− 1. This completes the proof of Lemma

6.13.

Lemma 6.13 implies that Bs · · ·Bt−1ut > 0 when 1 ≤ s ≤ t ≤ m. In particular, Bk · · ·Bm−1um >

0 for k = 1, . . . ,m, and therefore ∆Sk,k−1 > 0 for k = 0, . . . ,m− 1.

Next show that v′ ≥ v. Noting that ∆Sij = 0 for (i, j) /∈ Pm−1 and ∆`ij = 0 for (i, j) /∈ Pm, it

follows from (6.5c) that

∆vi −∆vj = 2Re(z̄ij∆Sij)− |zij |2∆`ij = 0

for (i, j) /∈ Pm. When (i, j) ∈ Pm, one has (i, j) = (k, k − 1) for some k ∈ {1, . . . ,m}, and therefore

∆vi −∆vj = 2Re(z̄k,k−1∆Sk,k−1)− |zk,k−1|2∆`k,k−1

≥ Re(z̄k,k−1∆Sk,k−1)− |zk,k−1|2∆`k,k−1

= Re(z̄k,k−1(∆Sk,k−1 − zk,k−1∆`k,k−1))

= Re(z̄k,k−1∆Sk−1,k−2) > 0.

Hence, ∆vi ≥ ∆vj whenever (i, j) ∈ E . Add the inequalities over path Pi to obtain ∆vi ≥ ∆v0 = 0

for i ∈ N+, i.e., v′ ≥ v. This completes the proof of Claim 6.11.

6.C Proof of Proposition 6.3

Let A and A′ denote the matrices with respect to (p, q) and (p′, q′), respectively, i.e., let

A′i = I − 2

vi
ui

(
P̂+
ij (p′) Q̂+

ij(q
′)
)
, (i, j) ∈ E ;

Ai = I − 2

vi
ui

(
P̂+
ij (p) Q̂+

ij(q)
)
, (i, j) ∈ E .

When (p, q) ≤ (p′, q′), one has Alk −A
′
lk

= ulkb
T
lk

where

blk =
2

vlk


 P̂

+
lklk−1

(p′)− P̂+
lklk−1

(p)

Q̂+
lklk−1

(q′)− Q̂+
lklk−1

(q)


 ≥ 0
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for any l ∈ L and any k ∈ {1 . . . , nl}.
If A′ls · · ·A

′
lt−1

ult > 0 for any l ∈ L and any s, t such that 1 ≤ s ≤ t ≤ nl, then it follows from

Lemma 6.13 that Als · · ·Alt−1
ult > 0 for any l ∈ L any s, t such that 1 ≤ s ≤ t ≤ nl. This completes

the proof of Proposition 6.3.

6.D Proof of Theorem 6.6

In this appendix, we prove that SOCP has at most a unique solution under the conditions in Theorem

6.6. The proof for SOCP-m is similar and omitted for brevity.

Assume that fi is convex for i ∈ N , Si is convex for i ∈ N+, SOCP is exact, and SOCP has

at least one solution. Let w̃ = (s̃, S̃, ṽ, ˜̀, s̃0) and ŵ = (ŝ, Ŝ, v̂, ˆ̀, ŝ0) denote two arbitrary SOCP

solutions. It suffices to show that w̃ = ŵ.

Since SOCP is exact, ṽi ˜̀ij = |S̃ij |2 and v̂i ˆ̀ij = |Ŝij |2 for (i, j) ∈ E . Define w := (w̃+ ŵ)/2. Since

SOCP is convex, w also solves SOCP. Hence, vi`ij = |Sij |2 for (i, j) ∈ E . Substitute vi = (ṽi+ v̂i)/2,

`ij = (˜̀
ij + ˆ̀

ij)/2, and Sij = (S̃ij + Ŝij)/2 to obtain

ŜijS̃
H
ij + S̃ijŜ

H
ij = v̂i ˜̀ij + ṽi ˆ̀ij

for (i, j) ∈ E , where the superscript H stands for hermitian transpose. The right hand side

v̂i ˜̀ij + ṽi ˆ̀ij = v̂i
|S̃ij |2
ṽi

+ ṽi
|Ŝij |2
v̂i
≥ 2|S̃ij ||Ŝij |,

and the equality is attained if and only if |S̃ij |/ṽi = |Ŝij |/v̂i. The left hand side

ŜijS̃
H
ij + S̃ijŜ

H
ij ≤ 2|S̃ij ||Ŝij |,

and the equality is attained if and only if ∠Ŝij = ∠S̃ij . Hence, S̃ij/ṽi = Ŝij/v̂i for (i, j) ∈ E .

Introduce v̂0 := ṽ0 := v0 and define ηi := v̂i/ṽi for i ∈ N , then η0 = 1 and Ŝij = ηiS̃ij for

(i, j) ∈ E . Hence,

ˆ̀
ij =

|Ŝij |2
v̂i

=
|ηiS̃ij |2
ηiṽi

= ηi
|S̃ij |2
ṽi

= ηi ˜̀ij

and therefore

ηj =
v̂j
ṽj

=
v̂i − 2Re(zHij Ŝij) + |zij |2 ˆ̀

ij

ṽi − 2Re(zHij S̃ij) + |zij |2 ˜̀
ij

= ηi

for (i, j) ∈ E . Since the network (N , E) is connected, ηi = η0 = 1 for i ∈ N . This implies ŵ = w̃

and completes the proof of Theorem 6.6.
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6.E Proof of Theorem 6.8

Theorem 6.8 follows from Claims 6.14–6.18.

Claim 6.14. Assume that there exist pi and qi such that Si ⊆ {s ∈ C | Re(s) ≤ pi, Im(s) ≤ qi} for

i ∈ N+. Then C1 holds if Ŝij(p+ iq) ≤ 0 for (i, j) ∈ E ′.

Proof. If Ŝij(p+ iq) ≤ 0 for (i, j) ∈ E ′, then Alk = I for l ∈ L and k ∈ {1 . . . , nl− 1}. It follows that

Als · · ·Alt−1
ult = ult > 0 for l ∈ L and s, t such that 1 ≤ s ≤ t ≤ nl, i.e., C1 holds.

Claim 6.15. Assume that there exist pi and qi such that Si ⊆ {s ∈ C | Re(s) ≤ pi, Im(s) ≤ qi} for

i ∈ N+. Then C1 holds if 1) rij/xij is identical for (i, j) ∈ E; and 2) vi−2rijP̂
+
ij (p)−2xijQ̂

+
ij(q) > 0

for (i, j) ∈ E ′.

Proof. Assume the conditions in Claim 6.15 hold. Fix an arbitrary l ∈ L, and assume lk = k for

k = 0, . . . , nl without loss of generality. Fix an arbitrary t ∈ {1, . . . , nl}, and define (αs βs)
T :=

As · · ·At−1ut for s = 1, . . . , t. Then it suffices to prove that αs > 0 and βs > 0 for s = 1, . . . , t. In

particular, we prove

αs > 0, βs > 0, αs/βs = r10/x10 (6.19)

inductively for s = t, t− 1, . . . , 1. Define η := r10/x10 and note that rij/xij = η for all (i, j) ∈ E .

i) When s = t, one has αs = rt,t−1, βs = xt,t−1, and αs/βs = η. Therefore (6.19) holds.

ii) Assume that (6.19) holds for s = k (2 ≤ k ≤ t), then

[
αk βk

]T
= c

[
η 1

]T

for some c ∈ {c ∈ R | c > 0}. Abbreviate rk−1,k−2 by r, xk−1,k−2 by x, P̂+
k−1,k−2(p̄) by P , and

Q̂+
k−1,k−2(q̄) by Q for convenience. Then

vk−1 − 2rP − 2xQ > 0
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and it follows that


αk−1

βk−1


 =


I − 2

vk−1


r
x



[
P Q

]



αk
βk




=


I − 2

vk−1

x


η

1



[
P Q

]

 c


η

1




= c


η

1


− 2

vk−1

c


η

1



[
P Q

]
x


η

1




=


αk
βk


− 2

vk−1


αk
βk



[
P Q

]

r
x




=

(
1− 2

vk−1

(rP + xQ)

)
αk
βk




=
1

vk−1

(
vk−1 − 2rP − 2xQ

)

αk
βk


 > 0

and αk−1/βk−1 = αk/βk = η. Hence, (6.19) holds for s = k − 1.

According to i) and ii), (6.19) holds for s = t, t−1 . . . , 1. This completes the proof of Claim 6.15.

Claim 6.16. Assume that there exist pi and qi such that Si ⊆ {s ∈ C | Re(s) ≤ pi, Im(s) ≤ qi}
for i ∈ N+. Then C1 holds if 1) rij/xij ≥ rjk/xjk whenever (i, j), (j, k) ∈ E; and 2) P̂ij(p) ≤ 0,

vi − 2xijQ̂
+
ij(q) > 0 for all (i, j) ∈ E ′.

Proof. Assume the conditions in Claim 6.16 hold. Fix an arbitrary l ∈ L, and assume lk = k for

k = 0, . . . , nl without loss of generality. Fix an arbitrary t ∈ {1, . . . , nl}, and define (αs βs)
T :=

As · · ·At−1ut for s = 1, . . . , t. Then it suffices to prove that αs > 0 and βs > 0 for s = 1, . . . , t. In

particular, we prove

αs > 0, βs > 0, αs/βs ≥ rt,t−1/xt,t−1 (6.20)

inductively for s = t, t − 1, . . . , 1. Define η := rt,t−1/xt,t−1 and note that rs,s−1/xs,s−1 ≤ η for

s = 1, 2, . . . , t.

i) When s = t, one has αs = rt,t−1, βs = xt,t−1, and αs/βs = η. Therefore (6.20) holds.

ii) Assume that (6.20) holds for s = k (2 ≤ k ≤ t), then

αk ≥ ηβk > 0.

Abbreviate rk−1,k−2 by r, xk−1,k−2 by x, P̂+
k−1,k−2(p̄) by P , and Q̂+

k−1,k−2(q̄) by Q for conve-



132

nience. Then

P = 0, vk − 2xQ > 0

and it follows that


αk−1

βk−1


 =


I − 2

vk−1


r
x



[
P Q

]



αk
βk




=


αk
βk


− 2

vk−1


r
x


Qβk.

Hence,

βk−1 = βk −
2xQ

vk−1

βk =
1

vk−1

(
vk−1 − 2xQ

)
βk > 0.

Then,

αk−1 = αk −
2rQ

vk−1

βk ≥
(
η − 2rQ

vk−1

)
βk ≥ η

(
1− 2xQ

vk−1

)
βk = ηβk−1 > 0.

The second inequality is due to r/x ≤ η. Hence, (6.20) holds for s = k − 1.

According to i) and ii), (6.20) holds for s = t, t−1, . . . , 1. This completes the proof of Claim 6.16.

Claim 6.17. Assume that there exist pi and qi such that Si ⊆ {s ∈ C | Re(s) ≤ pi, Im(s) ≤ qi}
for i ∈ N+. Then C1 holds if 1) rij/xij ≤ rjk/xjk whenever (i, j), (j, k) ∈ E; and 2) Q̂ij(q) ≤ 0,

vi − 2rijP̂
+
ij (p) > 0 for all (i, j) ∈ E ′.

Proof. The proof of Claim 6.17 is similar to that of Claim 6.16 and omitted for brevity.

Claim 6.18. Assume that there exist pi and qi such that Si ⊆ {s ∈ C | Re(s) ≤ pi, Im(s) ≤ qi} for

i ∈ N+. Then C1 holds if




∏

(k,l)∈Pj

ckl −
∑

(k,l)∈Pj

dkl

−
∑

(k,l)∈Pj

ekl
∏

(k,l)∈Pj

fkl





rij
xij


 > 0, (i, j) ∈ E (6.21)

where ckl := 1 − 2rklP̂
+
kl(p̄)/vk, dkl := 2rklQ̂

+
kl(q̄)/vk, ekl := 2xklP̂

+
kl(p̄)/vk, and fkl := 1 −

2xklQ̂
+
kl(q̄)/vk.

The following lemma is used in the proof of Claim 6.18.

Lemma 6.19. Given i ≥ 1; c, d, e, f ∈ Ri such that 0 < c ≤ 1, d ≥ 0, e ≥ 0, and 0 < f ≤ 1
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componentwise; and u ∈ R2 that satisfies u > 0. If




i∏

j=1

cj −
i∑

j=1

dj

−
i∑

j=1

ej

i∏

j=1

fj



u > 0, (6.22)

then 
 cj −dj
−ej fj


 · · ·


 ci −di
−ei fi


u > 0 (6.23)

for j = 1, . . . , i.

Proof. Lemma 6.19 can be proved by mathematical induction on i.

i) When i = 1, Lemma 6.19 is trivial.

ii) Assume that Lemma 6.19 holds for i = K (K ≥ 1). When i = K + 1, if




i∏

j=1

cj −
i∑

j=1

dj

−
i∑

j=1

ej

i∏

j=1

fj



u > 0,

one can prove that (6.23) holds for j = 1, . . . ,K + 1 as follows.

First prove that (6.23) holds for j = 2, . . . ,K + 1. The idea is to construct some c′, d′, e′, f ′ ∈
RK and apply the induction hypothesis. The construction is

c′ = (c2, c3, . . . , cK+1), d′ = (d2, d3, . . . , dK+1),

e′ = (e2, e3, . . . , eK+1), f ′ = (f2, f3, . . . , fK+1).

Clearly, c′, d′, e′, f ′ satisfies 0 < c′ ≤ 1, d′ ≥ 0, e′ ≥ 0, 0 < f ′ ≤ 1 componentwise and




K∏

j=1

c′j −
K∑

j=1

d′j

−
K∑

j=1

e′j

K∏

j=1

f ′j



u =




K+1∏

j=2

cj −
K+1∑

j=2

dj

−
K+1∑

j=2

ej

K+1∏

j=2

fj



u ≥




K+1∏

j=1

cj −
K+1∑

j=1

dj

−
K+1∑

j=1

ej

K+1∏

j=1

fj



u > 0.

Apply the induction hypothesis to obtain that


 c′j −d′j
−e′j f ′j


 · · ·


 c′K −d′K
−e′K f ′K


u > 0
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for j = 1, . . . ,K, i.e., (6.23) holds for j = 2, . . . ,K + 1.

Next prove that (6.23) holds for j = 1. The idea is still to construct some c′, d′, e′, f ′ ∈ RK

and apply the induction hypothesis. The construction is

c′ = (c1c2, c3, . . . , cK+1), d′ = (d1 + d2, d3, . . . , dK+1),

e′ = (e1 + e2, e3, . . . , eK+1), f ′ = (f1f2, f3, . . . , fK+1).

Clearly, c′, d′, e′, f ′ satisfies 0 < c′ ≤ 1, d′ ≥ 0, e′ ≥ 0, 0 < f ′ ≤ 1 componentwise and




K∏

j=1

c′j −
K∑

j=1

d′j

−
K∑

j=1

e′j

K∏

j=1

f ′j



u =




K+1∏

j=1

cj −
K+1∑

j=1

dj

−
K+1∑

j=1

ej

K+1∏

j=1

fj



u > 0.

Apply the induction hypothesis to obtain

v′2 :=


 c′2 −d′2
−e′2 f ′2


 · · ·


 c′K −d′K
−e′K f ′K


u > 0,

v′1 :=


 c′1 −d′1
−e′1 f ′1


 · · ·


 c′K −d′K
−e′K f ′K


u > 0.

It follows that


 c1 −d1

−e1 f1


 · · ·


 cK+1 −dK+1

−eK+1 fK+1


u =


 c1 −d1

−e1 f1




 c2 −d2

−e2 f2


 v′2

=


 c1c2 + d1e2 −c1d2 − d1f2

−e1c2 − f1e2 f1f2 + e1d2


 v′2

≥


 c1c2 −d2 − d1

−e1 − e2 f1f2


 v′2

=


 c′1 −d′1
−e′1 f ′1


 v′2

= v′1 > 0,

i.e., (6.23) holds for j = 1.

To this end, we have proved that (6.23) holds for j = 1, . . . ,K+ 1, i.e., Lemma 6.19 also holds

for i = K + 1.

According to i) and ii), Lemma 6.19 holds for i ≥ 1.
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Proof of Claim 6.18. Fix an arbitrary l ∈ L, and assume lk = k for k = 0, . . . , nl without loss

of generality. Fix an arbitrary t ∈ {1, . . . , nl}, then it suffices to prove that As · · ·At−1ut > 0 for

s = 1, . . . , t. Denote rk := rk,k−1 and Sk := Sk,k−1 for k = 1, . . . , t for brevity.

Substitute (i, j) = (k, k − 1) in (6.21) to obtain




k−1∏

s=1

(
1− 2rsP̂

+
s

vs

)
−
k−1∑

s=1

2rsQ̂
+
s

vs

−
k−1∑

s=1

2xsP̂
+
s

vs

k−1∏

s=1

(
1− 2xsQ̂

+
s

vs

)





rk
xk


 > 0 (6.24)

for k = 1, . . . , t. Hence,

k−1∏

s=1

(
1− 2rsP̂

+
s

vs

)
rk >

k−1∑

s=1

2rsQ̂
+
s (q)

vs
xk ≥ 0

for k = 1, . . . , t. It follows that 1− 2rkP̂
+
k /vk > 0 for k = 1, . . . , t− 1. Similarly, 1− 2xkQ̂

+
k /vk > 0

for k = 1, . . . , t− 1. Then, substitute k = t in (6.24) and apply Lemma 6.19 to obtain




1− 2rsP̂
+
s

vs
−2rsQ̂

+
s

vs

−2xsP̂
+
s

vs
1− 2xsQ̂

+
s

vs


 · · ·




1− 2rt−1P̂
+
t−1(p)

vt−1

−2rt−1Q̂
+
t−1(q)

vt−1

−2xt−1P̂
+
t−1(p)

vt−1

1− 2xt−1Q̂
+
t−1(p)

vt−1





rt
xt


 > 0

for s = 1, . . . , t, i.e., As · · ·At−1ut > 0 for s = 1, . . . , t. This completes the proof of Claim 6.18. �
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Chapter 7

Exact Convex Relaxation for
Single-Phase Direct Current
Networks

We study the OPF problem in direct current (DC) networks in this chapter. An SOCP relaxation

is considered for solving the OPF problem. We prove that the SOCP relaxation is exact if either

(1) voltage upper bounds do not bind; or (2) voltage upper bounds are uniform and power injection

lower bounds are negative. Based on (1), a modified OPF problem is proposed, whose corresponding

SOCP is guaranteed to be exact. We also prove that SOCP has at most one optimal solution if it is

exact. Finally, we discuss how to improve numerical stability and how to include line constraints.

7.1 Introduction

Direct current (DC) networks (e.g., DC-microgrids) have the following advantages over alternative

current (AC) networks [61,89,90]. 1) Some devices, e.g., photovoltaic panels, wind turbines, electric

vehicles, electronic appliances, and fuel cells, are more easily integrated with DC networks than

AC networks. These devices are either DC in nature or have a different frequency than the main

grid. 2) DC microgrids are robust to voltage sags and frequency deviations in the main grid. This is

because DC voltages are easy to stabilize and there is no frequency synchronization for DC networks.

3) System efficiency can be higher for DC networks because conversion losses of inverters can be

avoided. This is why modern data centers use DC networks.

The optimal power flow (OPF) problem determines power generations/demands that minimize

certain objectives such as generation cost or power loss [24]. It is one of the fundamental problems

in power system operations. This paper focuses on the OPF problem in DC networks.

The OPF problem is difficult to solve since power flow is governed by nonlinear physical laws.

There are three approaches to deal with this challenge: 1) approximate the power flow equations (by

linear or easier nonlinear equations); 2) look for local optima of the OPF problem; and 3) convexify
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the constraints imposed by nonlinear power flow laws. After a brief introduction of the first two

approaches, we will focus on the third approach.

Power flow equations can be approximated by some linear equations1 if 1) power losses on the

lines are small; 2) voltages are close to their nominal values; and 3) voltage angle differences between

adjacent buses are small. With the linear power flow approximation, the OPF problem reduces to

a linear programming [94]. For transmission networks, the three assumptions are satisfied and

the approach is widely used in practice. However, the linear power flow approximation does not

consider voltages and reactive power flows, and therefore cannot be used for applications like voltage

regulation and volt/var control. Besides, the obtained solution may not be implementable since

physical laws are not fully respected. Moreover, for distribution networks, power losses on the lines

are not negligible and voltages can deviate significantly from their nominal values. Consequently,

the linear power flow approximation is not accurate enough for distribution networks.

A number of algorithms look for local optima of the OPF problem. These algorithms use non-

linear power flow equations and therefore 1) can be used in applications like voltage regulation and

volt/var control; 2) have physically implementable solutions; 3) apply to both transmission and

distribution networks. Representative algorithms of this kind include successive linear/quadratic

programming [32], trust-region based methods [78], Lagrangian Newton method [11], and interior-

point methods [100]. Some of these algorithms, especially those based on Newton-Ralphson, are quite

successful empirically. However, these algorithms may not converge to global optimal solutions.

The convexification approach is the focus of this paper. The idea is to optimize the OPF objective

over a convex superset of the OPF feasible set (which is nonconvex). The resulting optimization

problem, referred to as a convex relaxation, can be solved much more efficiently. Furthermore, if

the optimal solution of a convex relaxation lies in the OPF feasible set, then it must solve the OPF

problem. In such cases, the convex relaxation is called exact.

There are three central problems in pursuing the convexification approach:

1. Exact relaxation: When can a global optimum of the OPF problem be obtained by solving its

relaxation?

2. Efficient computation: How to design computationally efficient algorithms that scale to large

problem sizes?

3. Numerical stability: How to attain numerical stability especially for ill-conditioned problem

instances?

Significant effort has been devoted in the literature to address Problem 1), and sufficient conditions

have been derived to guarantee the exactness of the SDP relaxation for special networks such as radial

1Known as “DC” linear power flow equations. But this “DC” does not refer to direct current as described in this
paper.
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networks and DC networks; see [73,74] for a tutorial with extensive references. To address Problem

2), [9,58] exploit graph sparsity to simplify the SDP relaxation based on the chordal extension theory

[40, 82, 83]. One of the main difficulties is to choose a chordal extension of the network graph that

minimizes the resulting problem size, and effective techniques have been proposed in [79]. Another

direction to deal with computational complexity is through distributed algorithms. To address

Problem 3), note that the SDP relaxation requires taking differences of voltages at neighboring

buses. These voltages are close in practice and therefore taking their differences is numerically

unstable. The SOCP relaxation proposed in [36] for radial networks avoids such subtractions and

has an improved numerically stability.

Summary of contributions: The goal of this paper is to propose a convex relaxation of the OPF

problem for DC networks, study its exactness, and improve its numerical stability. In particular,

contributions of this paper are threefold.

First, we propose a second-order cone programming (SOCP) relaxation of the OPF problem for

DC networks. The SOCP relaxation exploits network sparsity to improve computational efficiency

of the standard SDP relaxation, but is less likely to be exact than the SDP relaxation for mesh

networks [17].

Second, we prove that the SOCP relaxation is exact if either 1) voltage upper bounds do not

bind; or 2) voltage upper bounds are uniform and power injection lower bounds are negative. In

a DC microgrid, voltage upper bounds do not bind if there are no distributed generators, and are

usually uniform. Besides, power injection lower bounds are nonpositive if generators are allowed

to be turned off. Based on 1), we impose additional constraints on the OPF problem such that

its SOCP relaxation is always exact. These constraints restrict power injections such that voltage

upper bounds do not bind.

Third, we improve numerical stability of the SOCP relaxation by adopting alternative variables.

The SOCP relaxation is ill-conditioned since it requires subtractions of numerically close voltages.

By adopting different variables, such subtractions can be avoided and numerical stability can be

improved.

The rest of the chapter is organized as follows. The OPF problem is formulated in Section 7.2

and an SOCP relaxation is introduced in Section 7.3. Section 7.4 provides sufficient conditions for

the exactness of the SOCP relaxation, and Section 7.5 proposes a modified OPF problem that always

has an exact SOCP relaxation. Section 7.6 describes how to improve numerical stability and how

to include line constraints, and Section 7.7 provides numerical studies.
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7.2 The Optimal Power Flow Problem

This paper studies the optimal power flow (OPF) problem in direct current (DC) networks, and is

applicable for demand response and voltage regulation. In the following we present a model that

incorporates nonlinear power flow.

7.2.1 Power Flow Model

A DC network is composed of buses and lines connecting these buses. It can be either radial or mesh.

There is a swing bus in the network with a fixed voltage. Index the swing bus by 0 and the other

buses by 1, . . . , n. Let N := {0, . . . , n} denote the collection of all buses and define N+ := N\{0}.
Each line connects a pair {i, j} of buses. Let E denote the collection of all lines and abbreviate

{i, j} ∈ E by i ∼ j.
For each bus i ∈ N , let Vi denote its voltage, Ii denote its current injection, and pi denote its

power injection. For each line i ∼ j, let yij denote its admittance, Iij denote the current from bus i

to bus j, and define zij := 1/yij . In a DC network, Vi, Ii, pi, yij , zij , and Iij are all real numbers.

Bus j Bus i
Viyij

Ii

Vj

pi

Figure 7.1: Summary of notations.

Some notations are summarized in Fig. 7.1. Further, we use a letter without subscripts to denote

a vector of the corresponding quantities, e.g., V = [Vi]i∈N , y = [yij ]i∼j .

Power flows are governed by the following physical laws:

• Ohm’s Law: Iij = yij(Vi − Vj) for {i, j} ∈ E ;

• Current balance: Ii =
∑
j: j∼i Iij for i ∈ N ;

• Power balance: pi = ViIi for i ∈ N .

By eliminating current variables, one obtains

pi = Vi
∑

j: j∼i
(Vi − Vj)yij , i ∈ N . (7.1)

We use (7.1) to model the power flow in this paper.



140

7.2.2 The Optimal Power Flow Problem

The OPF problem determines power injection p that minimizes the total generation cost, subject to

physical and operational constraints.

The total generation cost is assumed separable. In particular, let fi(pi) : R → R denote the

generation cost of bus i for i ∈ N . Then the total generation cost is

C(p) =
∑

i∈N
fi(pi). (7.2)

Note that if fi(x) = x for i ∈ N , then (7.2) reduces to the total power loss.

Besides the physical power flow constraint (7.1), the OPF problem has operational constraints

on power injections and voltages.

First, while the substation power injection p0 is unconstrained, the power injection pi of a branch

bus i ∈ N+ can only vary within some externally specified set Pi:

pi ∈ Pi, i ∈ N+. (7.3)

For example, if bus i represents an inelastic load with power demand di, then Pi is a singleton

Pi = {−di};

if bus i represents a controllable load that can be turned on and off (while it is turned on, it consumes

di amount of power), then Pi contains two distinct points

Pi = {0,−di};

if bus i represents a generator that can generate any amount of power between 0 and its capacity

Ci, then Pi is an interval

Pi = [0, Ci].

Note that the set Pi can be nonconvex.

Second, the substation voltage V0 is fixed and given (denote by V ref
0 > 0), and the magnitudes

of branch bus voltages need to be regulated within a narrow range, i.e., there exists V i and V i for

i ∈ N+ such that

V0 = V ref
0 ; (7.4a)

V i ≤ Vi ≤ V i, i ∈ N+. (7.4b)
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For example, if voltages must not deviate by over 5% from their nominal values, then 0.95 ≤ Vi ≤ 1.05

per unit [3].

There are other constraints in a real-world OPF problem, e.g., line constraints and security

constraints. How to include line constraints will be discussed in Section 7.6.2. In DC microgrids,

line constraints typically do not bind since distribution networks are often over-provisioned. Security

constraints are ignored for simplicity.

To summarize, the OPF problem can be formulated as

OPF: min
∑

i∈N
fi(pi)

over p, V

s.t. pi = Vi
∑

j: j∼i
(Vi − Vj)yij , i ∈ N ;

pi ∈ Pi, i ∈ N+;

V0 = V ref
0 ;

V i ≤ Vi ≤ V i, i ∈ N+.

The following assumptions are made throughout this work.

A1) The network (N , E) is connected.

A2) Line admittance yij > 0 for {i, j} ∈ E . In practice, y > 0 since lines are lossy.

A3) Voltage lower bound V i > 0 for i ∈ N+. In practice, V is slightly below 1.

7.3 An SOCP Relaxation

A second-order cone programming (SOCP) relaxation has been proposed to solve the OPF problem

for radial networks [91]. We propose using it to solve the OPF problem for DC networks, which can

be mesh.

The SOCP relaxation seeks to overcome the nonconvexity in (7.1). It is derived through two

steps: (a) transform OPF to shift the nonconvexity in (7.1) to a rank constraint, and (b) remove

the rank constraint.

Transform OPF: Introduce slack variables

vi = V 2
i , i ∈ N ; (7.5a)

Wij = ViVj , i ∼ j. (7.5b)
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Then, (7.1) is transformed to a linear equality constraint

pi =
∑

j: j∼i
(vi −Wij)yij , i ∈ N

in (p, v,W ). For each line i ∼ j where i < j, the 2× 2 matrix


 vi Wij

Wji vj


 =


Vi
Vj



[
Vi Vj

]

is rank one (assuming Vi 6= 0) and positive semidefinite.

The following lemma provides the theoretical foundation of transforming OPF. Let

A � 0
def⇐⇒ A is positive semidefinite,

i→ j
def⇐⇒ i ∼ j & i < j,

x ∈ R+ def⇐⇒ x ≥ 0.

Lemma 7.1. Given vi > 0 for i ∈ N and Wij ∈ R+ for i→ j, let Wji = Wij for i→ j. If

rank


 vi Wij

Wji vj


 ≤ 1

for i → j, then there exists a unique V that satisfies V0 =
√
v0 and (7.5). Furthermore, such V is

given by

Vi =
√
vi, i ∈ N .

The lemma is proved in Appendix 7.A.
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Lemma 7.1 immediately implies that OPF is equivalent to

OPF’: min
∑

i∈N
fi(pi)

over pi ∈ R, vi ∈ R for i ∈ N ;

Wij ∈ R+ for i ∼ j,

s.t. pi =
∑

j: j∼i
(vi −Wij)yij , i ∈ N ; (7.6a)

pi ∈ Pi, i ∈ N+; (7.6b)

v0 = [V ref
0 ]2; (7.6c)

V 2
i ≤ vi ≤ V

2

i , i ∈ N+; (7.6d)

Wij = Wji, i→ j; (7.6e)

 vi Wij

Wji vj


 � 0, i→ j; (7.6f)

rank


 vi Wij

Wji vj


 = 1, i→ j. (7.6g)

Note that the nonconvexity in (7.1) (in OPF) is transformed to the nonconvexity in (7.6g) (in OPF’).

Remove rank constraint: The following SOCP relaxation can be obtained by removing the non-

convex rank constraint (7.6g) in OPF’.

SOCP: min
∑

i∈N
fi(pi)

over p, v,W

s.t. (7.6a)− (7.6f).

Note that SOCP may not be convex since fi (in the objective) and Pi (in (7.6b)) may not be convex.

Nonetheless, we call it second-order cone programming for convenience.

Exact SOCP relaxation: If an optimal SOCP solution (p, v,W ) satisfies (7.6g), then (p, v,W )

also solves OPF’. Furthermore, compute V as

Vi ←
√
vi, i ∈ N ,

then it can be shown that (p, V ) solves OPF. This motivates the definition of an exact SOCP

relaxation as follows.
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Definition 7.1. SOCP is exact, provided that every optimal SOCP solution satisfies (7.6g).

When SOCP is exact, one can obtain a global optimum of the nonconvex OPF problem by solving

a convex SOCP program (assuming fi and Pi are convex).

Related work: An SDP relaxation has been proposed in literature via the same two steps: trans-

formation and relaxation [10]. In the transformation step, slack variable

W̃ :=




V0

...

Vn



[
V0 · · · Vn

]

is introduced and the nonconvexity in (7.1) (in OPF) is transformed to the nonconvexity in

rankW̃ = 1.

In the relaxation step, the rank constraint rankW̃ = 1 is removed, but a positive semidefinite

constraint W̃ � 0 needs to be kept. We refer to this relaxation as SDP hereafter.

SDP enlarges the feasible set of OPF to a smaller convex superset than that of SOCP, and is

therefore more likely to be exact [17]. However, we propose SOCP over SDP for DC networks for

the following two reasons:

a) SOCP is much more efficient to compute than SDP;

b) SOCP is exact under existing conditions that guarantee the exactness of SDP.

To demonstrate (a), note that SDP introduces an (n+ 1)× (n+ 1) matrix W̃ and therefore the

number of variables in SDP is O(n2). For a given set A, let

|A| def⇐⇒ number of elements in A.

SOCP introduces |E| 2×2 matrices and therefore the number of variables in SOCP is O(|E|). Power

networks are usually sparse, i.e., |E| � n2. Hence, SOCP has fewer optimization variables than SDP

and is therefore more efficient.

To demonstrate (b), we review existing conditions that guarantee the exactness of SDP/SOCP.

The conditions are summarized in Propositions 7.2 and 7.3, and follow directly from a more general

result in [64, Theorem 3.1].

Proposition 7.2 ( [66]). If there exists pi such that Pi = (−∞, pi] for i ∈ N+, and fi is strictly

increasing for i ∈ N , then SDP is exact.

Proposition 7.3 ( [67]). If there exists pi such that Pi = (−∞, pi] for i ∈ N+, and fi is strictly

increasing for i ∈ N , then SOCP is exact.
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The conditions in Propositions 7.2 and 7.3 are the same, which completes the demonstration of

(b).

7.4 Sufficient Conditions for Exact Relaxation

Two sufficient conditions that guarantee the exactness of SOCP are provided in this section. One

condition (Theorem 7.4) requires nonbinding voltage upper bounds, and the other condition (The-

orem 7.5) requires uniform voltage upper bound.

Theorem 7.4. SOCP is exact provided that

• V i =∞ for i ∈ N+;

• f0 is strictly increasing.

Theorem 7.4 is proved in Appendix 7.B. Note that voltage upper bounds do not bind if there

are no distributed generators like photovoltaic panels.

Theorem 7.4 still holds if (7.6b) is generalized to

(p1, . . . , pn) ∈ P (7.6b’)

where P can be arbitrary, since the proof of Theorem 7.4 does not require any structure on P.

Theorem 7.5. SOCP is exact provided that

• 0 < V ref
0 ≤ V 1 = · · · = V n;

• there exists p
i
, pi such that p

i
< 0 and Pi = [p

i
, pi] for i ∈ N+;

• fi is strictly increasing for i ∈ N .

Theorem 7.5 implies that if voltage upper bounds are uniform and (7.6b) is a collection of box

constraints with negative lower bounds, then SOCP is exact. It is proved in Appendix 7.C. Voltage

upper bounds are usually uniform for distribution networks. If SOCP is convex with a closed

feasible set, then there exists p
i
, pi ∈ R ∪ {±∞} such that Pi = [p

i
, pi] for i ∈ N+. Further, p

i
≤ 0

if generators can be turned off.

Theorem 7.6. If SOCP is convex and exact, then it has at most one optimal solution.

Theorem 7.6 implies that if fi and Pi are convex, and SOCP is exact, then SOCP has at most

one optimal solution. It is proved in Appendix 7.D, and still holds if (7.6b) is generalized to (7.6b’)

with P being convex.
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7.5 A Modified OPF Problem

A modified OPF problem that always has an exact SOCP relaxation is proposed in this section.

The modified OPF problem is motivated by Theorem 7.4. The idea is to impose additional

constraints on (p1, . . . , pn) such that vi ≤ V
2

i in (7.6d) do not bind and therefore V is effectively ∞.

More specifically, an affine function v̂i(p1, . . . , pn) that upper bounds vi is derived. An additional

constraint

v̂i(p1, . . . , pn) ≤ V 2

i , i ∈ N+ (7.7)

is imposed on OPF’ such that vi ≤ V
2

i does not bind.

7.5.1 Derive v̂i(p1, . . . , pn)

First derive the affine functions v̂i(p1, . . . , pn). Let

Pij := (vi −Wij)yij , i ∼ j (7.8)

denote the sending-end power flow from bus i to bus j, and

`ij := |Iij |2, i→ j (7.9)

denote the magnitude square of the current on i ∼ j, then

pi =
∑

j: j∼i
Pij , i ∈ N+; (7.10a)

Pij + Pji = zij`ij , i→ j; (7.10b)

vi − vj = zij(Pij − Pji), i→ j. (7.10c)

Given the swing bus voltage v0, branch bus power injection (p1, . . . , pn), and line current `, then

(7.10) is a collection of n+ 2|E| linear equations on n+ 2|E| variables v1, . . . , vn and Pij for i ∼ j.

Lemma 7.7. Given v0, pi for i ∈ N+, and `ij for i→ j. There exists a unique ([Pij ]i∼j , [vi]i∈N+)

that satisfies (7.10a)–(7.10c).

Lemma 7.7 implies that Pij and vi are linear functions in (v0, [pi]i∈N+ , [`ij ]i→j). It is proved in

Appendix 7.E.

Definition 7.2. Given v0, denote the unique solution ([Pij ]i∼j , [vi]i∈N+) to (7.10a)–(7.10c) as a
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function of ([pi]i∈N+ , [`ij ]i→j) by

P̂ij ([pi]i∈N+ , [`ij ]i→j) , i ∼ j;

v̂i ([pi]i∈N+ , [`ij ]i→j) , i ∈ N+.

Two examples, one for a two-bus network (in Fig. 7.1(a)) and one for a three-bus network (in

Fig. 7.1(b)), are used to illustrate P̂ij and v̂i.

0 1 
z01 `01

P01 P10

p1p0

v0 v1

(a) A two-bus network

0 

1 

p1

p0

2 
z12`12

P12 P21

P01

P10

P02

P20

p2v1 v2

v0

(b) A three-bus network

Figure 7.1: Two example networks.

Example 7.1. For the two-bus network in Fig. 7.1(a), (7.10) is

p1 = P10, P01 + P10 = z01`01,

v0 − v1 = z01(P01 − P10).

Given v0, the affine functions P̂01, P̂10, v̂1 are

P̂10(p1, `01) = p1,

P̂01(p1, `01) = z01`01 − P10,

v̂1(p1, `01) = v0 + 2z01p1 − z2
01`01.

Example 7.2. For the three-bus network in Fig. 7.1(b), (7.10) is

p1 = P10 + P12, p2 = P20 + P21,

P01 + P10 = z01`01, v0 − v1 = z01(P01 − P10),

P02 + P20 = z02`02, v0 − v2 = z02(P02 − P20),

P12 + P21 = z12`12, v1 − v2 = z12(P12 − P21).

Assume z01 = z02 = z12 = 0.01 for brevity. Given v0, abbreviate (p1, p2) by p and (`01, `02, `12) by
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`, then the affine functions P̂01, P̂10, P̂02, P̂20, P̂12, P̂21, v̂1, v̂2 are

P̂01(p, `) = −
2

3
p1 −

1

3
p2 +

5

600
`01 +

1

600
`02 +

1

200
`12,

P̂10(p, `) =
2

3
p1 +

1

3
p2 +

1

600
`01 −

1

600
`02 −

1

200
`12,

P̂02(p, `) = −
1

3
p1 −

2

3
p2 +

1

600
`01 +

5

600
`02 +

1

200
`12,

P̂20(p, `) =
1

3
p1 +

2

3
p2 −

1

600
`01 +

1

600
`02 −

1

200
`12,

P̂12(p, `) =
1

3
p1 −

1

3
p2 −

1

600
`01 +

1

600
`02 +

1

200
`12,

P̂21(p, `) = −
1

3
p1 +

1

3
p2 +

1

600
`01 −

1

600
`02 +

1

200
`12,

v̂1(p, `) = v0 +
1

75
p1 +

1

150
p2 −

1

15000
`01 −

1

30000
`02 −

1

10000
`12,

v̂2(p, `) = v0 +
1

150
p1 +

1

75
p2 −

1

30000
`01 −

1

15000
`02 −

1

10000
`12.

The following lemma shows that v̂ is decreasing in `. Let the operator ≥ denote componentwise.

Lemma 7.8. If ` ≥ `′, then v̂i(p, `) ≤ v̂i(p, `′) for i ∈ N+.

Lemma 7.8 implies that v̂i(p, `) is decreasing in `. The lemma is proved in Appendix 7.F. In

Examples 7.1 and 7.2, it can be seen that the coefficients of ` in v̂ are negative.

Since current magnitude square ` ≥ 0, one obtains

v̂i(p, `) ≤ v̂i(p, 0), i ∈ N+.

The left hand side is the real voltage vi, and the right hand side is the affine function in p that we

aim for.

Definition 7.3. Define affine functions v̂i ([pi]i∈N+) as

v̂i
(
[pi]i∈N+

)
= v̂i

(
[pi]i∈N+ , [`ij ]i→j

) ∣∣∣
`=0

, i ∈ N+.

In Example 7.1,

v̂1(p1) = v0 + 2z01p1.

In Example 7.2,

v̂1(p1, p2) = v0 +
1

75
p1 +

1

150
p2,

v̂2(p1, p2) = v0 +
1

150
p1 +

1

75
p2.

As having been discussed, v̂i(p) upper bounds vi.

Corollary 7.9. Let (p, v,W ) be feasible for SOCP, then vi ≤ v̂i(p) for i ∈ N+.

The corollary is proved in Appendix 7.G.
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7.5.2 Impose Additional Constraint

If additional constraint (7.7) is imposed on SOCP, then it follows from Corollary 7.9 that the

constraints vi ≤ V
2

i in (7.6d) do not bind, and therefore V i is effectively ∞. To summarize, the

modified OPF problem is

OPF’-m: min
∑

i∈N
fi(pi)

over p, v,W

s.t. (7.6a)− (7.6c);

V 2
i ≤ vi, v̂i(p) ≤ V

2

i , i ∈ N+; (7.11)

(7.6e)− (7.6g).

Removing rank constraint (7.6g) gives the following relaxation

SOCP-m: min
∑

i∈N
fi(pi)

over p, v,W

s.t. (7.6a)− (7.6c), (7.11), (7.6e)− (7.6f).

Note that SOCP-m may not be convex since fi (in the objective) and Pi (in (7.6b)) may not be

convex. Nonetheless, we call it second-order cone programming for convenience.

Recall that Theorem 7.4 holds for the more general power injection constraint (7.6b’), and note

that (7.7) is a special case of (7.6b’). It follows that SOCP-m is always exact.

Theorem 7.10. SOCP-m is exact if f0 is strictly increasing.

Theorem 7.10 still holds if (7.6b) is generalized to (7.6b’) with P being arbitrary.

7.6 Extensions

7.6.1 Improve Numerical Stability

SOCP is ill-conditioned since (7.6a) requires subtractions of numerically close vi and Wij . One

can avoid such subtractions by adopting alternative variables to improve the numerical stability of
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SOCP. In particular, adopt variables p, v, P, ` as in the following convex relaxation:

stable-SOCP: min
∑

i∈N
fi(pi)

over pi ∈ R, vi ∈ R for i ∈ N ;

Pij ∈ R for i ∼ j, `ij ∈ R for i→ j;

s.t. pi =
∑

j: j∼i
Pij , i ∈ N ;

pi ∈ Pi, i ∈ N+;

v0 = [V ref
0 ]2;

V 2
i ≤ vi ≤ V

2

i , i ∈ N+;

Pij + Pji = zij`ij , i→ j;

vi − vj = zij(Pij − Pji), i→ j;

`ij ≥
P 2
ij

vi
, i→ j.

Theorem 7.11. SOCP and stable-SOCP are equivalent, i.e., there exists a one-to-one map between

the feasible set of SOCP and the feasible set of stable-SOCP.

Let FSOCP and Fstable-SOCP denote the feasible sets of SOCP and stable-SOCP, respectively.

Then the map

f : (p, v,W ) 7→ (p, v, P, `)

given by

Pij = (vi −Wij)yij , i→ j;

`ij = y2
ij(vi −Wij −Wji + vj), i→ j

can be verified to be one-to-one from FSOCP to Fstable-SOCP.

7.6.2 Include Line Constraints

Noting that line constraints are not considered in the main text, we discuss how to include line

constraints in this section.

Line constraints impose that line currents should not exceed certain thresholds, i.e., there exists

Iij for i→ j such that

|Iij | ≤ Iij .
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It can be considered by adding constraints

y2
ij(vi −Wij −Wji + vj) ≤ I

2

ij , i→ j

to SOCP/SOCP-m, or adding constraints

`ij ≤ I
2

ij , i→ j

to stable-SOCP. But Theorems 7.4, 7.5, and 7.10 do not apply after adding these constraints.

One way to maintain some of the theoretical guarantees is to impose the line constraints in terms

of power flows instead. In particular, |Iij | ≤ Iij is equivalent to |Pij | ≤ ViIij . Assuming that Vi is

close to its nominal value, |Pij | ≤ ViIij can be approximated by |Pij | ≤ P ij for some P ij ∈ R. Since

P̂ij(p) provides an approximation of Pij , |Pij | ≤ P ij can be further approximated by |P̂ij(p)| ≤ P ij .
Hence, one can impose

|P̂ij(p)| ≤ P ij , i→ j (7.12)

as an approximation of the line constraints to SOCP/SOCP-m/stable-SOCP. Since (7.12) is a con-

straint on p, Theorem 7.4 and 7.10 still hold after imposing the approximated line constraints (7.12).

7.7 Case Study

We empirically evaluate the exactness and computational efficiency of SOCP in this section. All

simulations are done on a laptop with Intel Core 2 Duo CPU at 2.66GHz, 4G RAM, and Mac OS

X 10.7.5.

More specifically, we check whether SOCP is exact, and compare its computation time with that

of the SDP relaxation proposed in [10], for several test networks. SOCP and SDP are solved via

CVX [49], and the test networks are modified from the matlab toolbox matpower by ignoring line

reactances and reactive power flows. The results are summarized in Table 7.1.

Table 7.1: Exactness and computational efficiency of SOCP.

network SDP time SOCP time ratio
case6ww 1.1s 1.1s 3.4e-13

case9 1.2s 1.4s 9.6e-10
case14 1.7s 1.3s 1.3e-9

case ieee30 1.4s 1.1s 2.1e-8
case39 1.4s 1.2s 7.9e-12

The first column of Table 7.1 lists where the network data comes from. In particular, it provides

the names of the “.m” files where the network data is stored (these files can be found in the folder
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of the matlab toolbox matpower). For example, the data for a 6-bus network is stored in file

“case6ww.m”, and the data for a 9-bus network is stored in file “case9.m”.

For each network, the following numbers are presented:

1. SDP time: the computation time of SDP.

2. SOCP time: the computation time of SOCP.

3. ratio: used to quantify the exactness of SOCP.

The “ratio” column quantifies how numerically exact SOCP is. At a numerical SOCP solution

(p, v,W ), which can be slightly different from the real SOCP solution (p∗, v∗,W ∗), a 2× 2 matrix

W{i, j} =


 vi Wij

Wji vj




can be obtained for each line i → j. Let λ1
ij , λ

2
ij denote its two eigenvalues and assume |λ1

ij | ≥
|λ2
ij | ≥ 0.

Assume SOCP is exact, i.e., rank(W ∗{i, j}) = 1 for i→ j. If there are infinite digits of precision,

i.e., (p, v,W ) = (p∗, v∗,W ∗), then rank(W{i, j}) = rank(W ∗{i, j}) = 1 and therefore λ2
ij = 0 for

i→ j. It follows that the ratio |λ2
ij |/|λ1

ij | = 0.

Due to finite digits of precision, the ratio |λ2
ij |/|λ1

ij | is not exactly 0. The smaller ratio, the closer

is W{i, j} to rank one. And the column “ratio” lists upper bounds on the ratios |λ2
ij |/|λ1

ij | over all

i → j. For example, for the 6-bus network specified in case6ww.m, the ratios |λ2
ij |/|λ1

ij | are upper

bounded by 3.4e-13.

It can be seen from the “ratio” column that SOCP is exact for all test networks. Furthermore, it

can be seen from the “SDP time” and “SOCP time” columns that SOCP is more computationally

efficient than SDP.

7.8 Conclusion

We have proposed an SOCP relaxation of the OPF problem for DC networks that is more compu-

tationally efficient than the standard SDP relaxation. We have proved that the SOCP relaxation is

exact if either (1) voltage upper bounds do not bind, or (2) voltage upper bounds are uniform and

power injections have box constraints with negative lower bounds. We have also proved that the

SOCP relaxation has at most one optimal solution if it is convex and exact.

We have proposed a modified OPF problem that always has an exact SOCP relaxation. The

modified OPF problem is motivated by (1) and obtained by imposing additional constraints on

power injections such that voltage upper bounds do not bind.
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We have discussed how to improve the numerical stability of SOCP—by adopting alternative

variables to avoid ill-conditioned numerical operations. We have also discussed how to include line

constraints: after adding some approximate line constraints, some of the theoretical guarantees

remain unchanged.
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Appendix

7.A Proof of Lemma 7.1

Existence Let Vi =
√
vi for i ∈ N . It suffices to show that V satisfies V0 =

√
v0 and (7.5).

It is straightforward to check that V satisfies V0 =
√
v0 and (7.5a). The matrices


 vi Wij

Wji vj




are not full rank, and therefore

vivj −WijWji = 0, i→ j.

Since Wij ≥ 0, one has

Wij =
√
W 2
ij =

√
WijWji

=
√
vivj = ViVj

for i ∼ j, i.e., V satisfies (7.5b). This completes the proof of existence.

Uniqueness Let Ṽ denote an arbitrary solution to Ṽ0 =
√
v0 and (7.5). It suffices to show that

Ṽi =
√
vi for i ∈ N .

Assume Ṽi 6=
√
vi for some i ∈ N , then it follows from (7.5a) that Ṽi = −√vi < 0. For any

j such that i ∼ j, one has 0 ≤ Wij = ṼiṼj and therefore Ṽj ≤ 0. It follows that Ṽj < 0 since

Ṽ 2
j = vj 6= 0. Such propagation (when Ṽi < 0, one has Ṽj < 0 for all neighboring j) can continue

and eventually one has Ṽ0 < 0 since the network is connected. This contradicts with the assumption

that Ṽ0 =
√
v0 ≥ 0. Hence, Ṽi =

√
vi for i ∈ N , which completes the proof of uniqueness.

7.B Proof of Theorem 7.4

Assume the conditions in Theorem 7.4 hold. We will show that for any SOCP feasible point (p, v,W )

that violates (7.6g), there exists another SOCP feasible point (p′, v′,W ′) that has a smaller objective
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value than (p, v,W ). Hence, every SOCP solution must satisfy (7.6g), i.e., SOCP is exact.

Construction of (p′, v′,W ′) is based on Lemmas 7.12 and 7.13.

Lemma 7.12. Let (p, v,W ) be feasible for SOCP and violate (7.6g) on some i→ j where i, j 6= 0.

Then there exists (p, v′,W ′) that

• satisfies (7.6a), (7.6e), (7.6f);

• satisfies

v′k





= vk k 6= i, j

> vk k = i, j;

• violates (7.6g) for all k → l such that {k, l} ∩ {i, j} 6= ∅.

Furthermore, if V k =∞ for k ∈ N+, then (p, v′,W ′) is feasible for SOCP.

Lemma 7.12 implies that violation of (7.6g) propagates to neighboring lines: if there exists an

SOCP solution (p, v,W ) that violates (7.6g) on some line i→ j, then there exists an SOCP solution

(p, v′,W ′) that violates (7.6g) on all neighboring lines of i→ j.

Proof. Let (p, v,W ) be feasible for SOCP and violate (7.6g) on i→ j where i, j 6= 0. Since (p, v,W )

satisfies (7.6f), one has 0 ≤ Wij ≤ √vivj . Since (p, v,W ) violates (7.6g) on i → j, one has

Wij 6= √vivj . Hence,

Wij <
√
vivj .

Pick ε ∈ (0,
√
vivj −Wij), construct v′ as

v′k =




vk +

yij∑
l: l∼k ykl

ε k = i, j

vk otherwise,

(7.13)

and construct W ′ as

W ′kl =




Wkl + ε if {k, l} = {i, j}

Wkl otherwise.

We will show that (p, v′,W ′) is as required in Lemma 7.12.

It follows immediately from (7.13) that v′k = vk if k 6= i, j and v′k > vk if k = i, j. The point

(p, v′,W ′) satisfies (7.6a) because

∑

l: k∼l
(v′k −W ′kl)ykl =

∑

l: k∼l
(vk −Wkl)ykl +

∑

l: k∼l

yij∑
l: l∼k ykl

εykl − εyij =
∑

l: k∼l
(vk −Wkl)ykl = pk

for k = i, j, and
∑

l: k∼l
(v′k −W ′kl)ykl =

∑

l: k∼l
(vk −Wkl)ykl = pk
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for k 6= i, j. The point (p, v′,W ′) satisfies (7.6e) because

W ′kl −W ′lk = Wkl −Wlk = 0

for k → l. The point (p, v′,W ′) satisfies (7.6f) because

W ′kl = Wkl ∈ [0,
√
vkvl] ⊆

[
0,
√
v′kv
′
l

]

for {k, l} 6= {i, j}, and

W ′kl = Wkl + ε ∈ [ε,
√
vkvl) ⊆

[
0,
√
v′kv
′
l

]

for {k, l} = {i, j}. It follows that |W ′kl| ≤
√
vkvl for k → l. In particular, for k → l such that

{k, l} ∩ {i, j} 6= ∅,
|W ′kl| ≤

√
vkvl <

√
v′kv
′
l.

We have shown that (p, v′,W ′) is as required in Lemma 7.12. When V k = ∞ for k ∈ N+, it is

straightforward that (p, v′,W ′) is feasible for SOCP. This completes the proof of Lemma 7.12.

Lemma 7.13. Let (p, v,W ) be feasible for SOCP and violate (7.6g) on some 0 → i. Then there

exists (p′, v′,W ′) that

• satisfies (7.6a), (7.6e), (7.6f);

• satisfies

v′k




> vk k = i

= vk k 6= i;

• satisfies p′0 < p0 and p′i = pi for i ∈ N+.

Furthermore, if V k =∞ for k ∈ N+, then (p′, v′,W ′) is feasible for SOCP; if f0 is strictly increasing,

then (p′, v′,W ′) has a smaller objective value than (p, v,W ).

Lemma 7.13 implies that every SOCP solution satisfies (7.6g) on all neighboring lines of the

swing bus: for any SOCP feasible point (p, v,W ) that violates (7.6g) on some neighboring line 0→ i

of the swing bus 0, there exists an SOCP feasible point (p′, v′,W ′) with a smaller objective value

and therefore (p, v,W ) cannot be optimal.

Proof. Let (p, v,W ) be feasible for SOCP and violate (7.6g) on some 0→ i. Since (p, v,W ) satisfies

(7.6f), one has 0 ≤ W0i ≤
√
v0vi. Since (p, v,W ) violates (7.6g) on 0 → i, one has W0i 6=

√
v0vi.

Hence,

W0i <
√
v0vi.
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Pick ε ∈ (0,
√
v0vi −W0i), construct v′ as

v′k =




vk + y0i∑

h: h∼k ykh
ε k = i

vk otherwise,

(7.14)

construct W ′ as

W ′kl =




Wkl + ε if {k, l} = {0, i}

Wkl otherwise,

and construct p′ as

p′k =
∑

l: l∼k
(v′k −W ′kl)ykl, k ∈ N .

We will show that (p′, v′,W ′) is as required in Lemma 7.13.

It follows immediately from (7.14) that v′k = vk if k 6= i and v′k > vk if k = i. The point

(p′, v′,W ′) satisfies (7.6a) according to the construction of p′. The point (p′, v′,W ′) satisfies (7.6e)

because

W ′kl −W ′lk = Wkl −Wlk = 0

for k → l. The point (p, v′,W ′) satisfies (7.6f) because

W ′kl = Wkl ∈ [0,
√
vkvl] ⊆

[
0,
√
v′kv
′
l

]

for {k, l} 6= {0, i}, and

W ′kl = Wkl + ε ∈ [ε,
√
vkvl) ⊆

[
0,
√
v′kv
′
l

]

for {k, l} = {0, i}. One can prove that p′i = pi for i ∈ N+ as in Lemma 7.12, and

p′0 =
∑

k: k∼0

(v′0 −W ′0k)y0k =
∑

k: k∼0

(v0 −W0k)y0k − y0iε < p0.

We have shown that (p′, v′,W ′) is as required in Lemma 7.13. When V k =∞ for k ∈ N+, it is

straightforward that (p′, v′,W ′) is feasible for SOCP. When f0 is strictly increasing, it is straight-

forward that (p′, v′,W ′) has a smaller objective value than (p, v,W ). This completes the proof of

Lemma 7.13.

Combining Lemmas 7.12 and 7.13 gives the proof of Theorem 7.4. Assume there exists an SOCP

solution (p, v,W ) that violates (7.6g). By repeating the construction described in Lemma 7.12, one

can find an SOCP solution (p, v′,W ′) that violates (7.6g) on some neighboring line 0 → i of the

swing bus 0 since the network is connected. By Lemma 7.13, this contradicts the optimality of

(p, v,W ). Hence, every SOCP solution must satisfy (7.6g), i.e., SOCP is exact. This completes the
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proof of Theorem 7.4.

7.C Proof of Theorem 7.5

Assume the conditions in Theorem 7.5 hold. We will show that for any SOCP feasible point (p, v,W )

that violates (7.6g), there exists another SOCP feasible point (p′, v′,W ′) that has a smaller objective

value than (p, v,W ). Hence, every SOCP solution must satisfy (7.6g), i.e., SOCP is exact.

Construction of (p′, v′,W ′) is based on Lemmas 7.14–7.17.

Lemma 7.14. Assume the conditions in Theorem 7.5 hold and let (p, v,W ) be feasible for SOCP.

If pi = p
i

for some i ∈ N+, then vi < V
2

i .

Lemma 7.14 implies that power injection lower bound p and voltage upper bounds cannot bind

simultaneously: if the constraint pi ≥ p
i

is binding at some bus i ∈ N+, then vi ≤ V
2

i cannot bind

at bus i.

Proof. When pi = p
i
< 0, one has

0 > p
i

= pi =
∑

j: j∼i
(vi −Wij)yij

and therefore (vi − Wij)yij < 0 for some j ∈ N . It follows from (7.6g) that Wij ≤ √vivj and

therefore

vi < Wij ≤
√
vivj ⇒ vi < vj ≤ V

2

j = V
2

i .

This completes the proof of Lemma 7.14.

Lemma 7.15. Assume the conditions in Theorem 7.5 hold and let (p, v,W ) be feasible for SOCP.

If

• (p, v,W ) violates (7.6g) on some i→ j;

• pi > p
i
, pj > p

j
(introduce p

0
= −∞ since p0 is unconstrained),

then there exists (p′, v,W ′) that

• satisfies (7.6a)–(7.6f);

• satisfies

p′k




< pk if k = i, j

= pk otherwise.
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Lemma 7.15 implies that if an SOCP solution violates (7.6g) on some i → j, it must satisfy

pi = p
i

or pj = p
j
.

Proof. Since (p, v,W ) satisfies (7.6f), 0 ≤ Wij ≤ √vivj . Since (p, v,W ) violates (7.6g) on i → j,

Wij 6= √vivj . Hence, Wij <
√
vivj .

Pick an ε > 0 such that

ε < min

{
pi − pi
yij

,
pj − pj
yij

,
√
vivj −Wij

}
,

construct W ′ as

W ′kl =




Wkl + ε if {k, l} = {i, j}

Wkl otherwise,

and construct p′ as

p′k =
∑

l: l∼k
(vk −W ′kl)ykl, k ∈ N .

We will show that (p′, v,W ′) is as required in Lemma 7.15.

The point (p′, v,W ′) satisfies (7.6a) according to the construction of p′. When k 6= i, j, one has

p′k =
∑

l: l∼k
(vk −W ′kl)ykl =

∑

l: l∼k
(vk −Wkl)ykl = pk;

When k = i, j, one has

p′k =
∑

l: l∼k
(vk −W ′kl)ykl =

∑

l: l∼k
(vk −Wkl)ykl − yijε = pk − yijε ∈ (p

k
, pk).

Hence, (p′, v,W ′) satisfies (7.6b) and

p′k




< pk if k = i, j

= pk otherwise.

The point (p′, v,W ′) satisfies (7.6e) because

W ′kl −W ′lk = Wkl −Wlk = 0

for k → l. The point (p′, v,W ′) satisfies (7.6f) because

W ′kl = Wkl ∈ [0,
√
vkvl]
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when {k, l} 6= {i, j} and

W ′kl = Wkl + ε ∈ [0,
√
vkvl)

when {k, l} = {i, j}. This completes the proof of Lemma 7.15.

Lemma 7.16. Assume the conditions in Theorem 7.5 hold and let (p, v,W ) be feasible for SOCP.

If

• (p, v,W ) violates (7.6g) on some i→ j where i, j 6= 0;

• (pi = p
i

& pj > p
j
) or (pi > p

i
& pj = p

j
),

then there exists (p′, v′,W ′) that

• satisfies (7.6a)–(7.6f);

• satisfies
∑

i∈N
fi(p

′
i) <

∑

i∈N
fi(pi).

Lemmas 7.15 and 7.16 imply that every SOCP solution, if violating (7.6g) on some i→ j where

i, j 6= 0, must satisfy pi = p
i

and pj = p
j
.

Proof. We present the proof for the case where

pi = p
i

and pj > p
j
.

The proof for the case where pi > p
i

and pj = p
j

is similar and omitted for brevity. As discussed in

Lemma 7.15, one has

Wij <
√
vivj .

It follows from Lemma 7.14 that

vi < V
2

i .

Pick an ε > 0 such that

ε < min

{pj − pj
yij

,
√
vivj −Wij ,

∑
k: k∼i yki
yij

(
V

2

i − vi
)}

,

then

pj − yijε > p
j
, Wij + ε <

√
vivj , vi +

yij∑
k: k∼i yki

ε < V
2

i .
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Construct W ′ as

W ′kl =




Wkl + ε if {k, l} = {i, j}

Wkl otherwise,

construct v′ as

v′k =




vk +

yij∑
l: l∼k ykl

ε if k = i

vk otherwise,

and construct p′ as

p′k =
∑

l: l∼k
(v′k −W ′kl)ykl, k ∈ N .

We will show that (p′, v′,W ′) is as required in Lemma 7.16.

The point (p′, v′,W ′) satisfies (7.6a) according to the construction of p′. When k 6= i, j, one has

p′k =
∑

l: l∼k
(v′k −W ′kl)ykl =

∑

l: l∼k
(vk −Wkl)ykl = pk;

Besides, one has

p′i =
∑

k: k∼i
(v′i −W ′ki)yki

=
∑

k: k∼i
(vi −Wki)yki + (v′i − vi)

∑

k: k∼i
yki − yijε

=
∑

k: k∼i
(vi −Wki)yki = pi,

p′j =
∑

k: k∼j
(v′j −W ′kj)ykj

=
∑

k: k∼j
(vj −Wkj)ykj − yijε

= pj − yijε ∈ (p
j
, pj).

Hence, (p′, v′,W ′) satisfies (7.6b) and

p′k




< pk if k = j

= pk otherwise.

It follows that
∑
i∈N fi(p

′
i) <

∑
i∈N fi(pi). Note that

v′k




> vk if k = i

= vk otherwise
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and v′i < V
2

i , the point (p′, v′,W ′) satisfies (7.6c) and (7.6d). The point (p′, v,W ′) satisfies (7.6e)

because

W ′kl −W ′lk = Wkl −Wlk = 0

for k → l. The point (p′, v,W ′) satisfies (7.6f) because

W ′kl = Wkl ∈ [0,
√
vkvl] ⊆

[
0,
√
v′kv
′
l

]

when {k, l} 6= {i, j} and

W ′ij = Wij + ε ∈ [0,
√
vivj) ⊆

[
0,
√
v′iv
′
j

]
.

This completes the proof of Lemma 7.16.

Lemma 7.17. Assume the conditions in Theorem 7.5 hold and let (p, v,W ) be feasible for SOCP.

If

• (p, v,W ) violates (7.6g) on some i→ j where i, j 6= 0;

• pi = p
i

and pj = p
j
,

then there exists (p, v′,W ′) that

• satisfies (7.6a)–(7.6f);

• violates (7.6g) for k → l such that {k, l} ∩ {i, j} 6= ∅.

Lemmas 7.15–7.17 imply that violation of (7.6g) propagates to neighboring lines: if there exists

an SOCP solution that violates (7.6g) on some i → j where i, j 6= 0, then there exists an SOCP

solution that violates (7.6g) on all neighboring lines k → l of i→ j.

Proof. As discussed in Lemma 7.15, one has

Wij <
√
vivj .

It follows from Lemma 7.14 that

vi < V
2

i , vj < V
2

j .

Pick an ε > 0 such that

ε < min

{
√
vivj −Wij ,

∑
k: k∼i yki
yij

(
V

2

i − vi
)
,

∑
k: k∼j ykj
yij

(
V

2

j − vj
)}

,

then

Wij + ε <
√
vivj , vi +

yij∑
k: k∼i yki

ε < V
2

i , vj +
yij∑

k: k∼j ykj
ε < V

2

j .



163

Construct W ′ as

W ′kl =




Wkl + ε if {k, l} = {i, j}

Wkl otherwise,

and construct v′ as

v′k =




vk +

yij∑
l: l∼k ykl

ε if k = i, j

vk otherwise.

We will show that (p, v′,W ′) is as required in Lemma 7.17.

It is straightforward to check that the point (p, v′,W ′) satisfies (7.6c) and (7.6d). The point

(p, v′,W ′) satisfies (7.6a) because

∑

l: k∼l
(v′k −W ′kl)ykl =

∑

l: k∼l
(vk −Wkl)ykl +

∑

l: k∼l

yij∑
l: l∼k ykl

εykl − εyij =
∑

l: k∼l
(vk −Wkl)ykl = pk

for k = i, j, and
∑

l: k∼l
(v′k −W ′kl)ykl =

∑

l: k∼l
(vk −Wkl)ykl = pk

for k 6= i, j. The point (p, v′,W ′) satisfies (7.6e) because

W ′kl −W ′lk = Wkl −Wlk = 0

for k → l. The point (p, v′,W ′) satisfies (7.6f) because

W ′kl = Wkl ∈ [0,
√
vkvl] ⊆

[
0,
√
v′kv
′
l

]

for {k, l} 6= {i, j}, and

W ′kl = Wkl + ε ∈ [ε,
√
vkvl) ⊆

[
0,
√
v′kv
′
l

]

for {k, l} = {i, j}. It follows that |W ′kl| ≤
√
vkvl for k → l. In particular, for k → l such that

{k, l} ∩ {i, j} 6= ∅,
|W ′kl| ≤

√
vkvl <

√
v′kv
′
l.

This completes the proof of Lemma 7.17.

Combining Lemmas 7.14–7.17 gives the proof of Theorem 7.5. Assume the conditions in Theorem

7.5 hold. If SOCP is not exact, then there exists an SOCP solution (p, v,W ) that violates (7.6g) on

some i→ j.

According to Lemmas 7.15–7.16, one must have pi = p
i

and pj = p
j

since otherwise (p, v,W )

cannot be optimal for SOCP (introduce p
0

= −∞ since p0 is unconstrained).

According to Lemma 7.17, there exists an SOCP solution (p′, v′,W ′) that violates (7.6g) on all
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neighboring lines k → l of i → j. Since the network (N , E) is connected, one can continue such

propagation to obtain an SOCP solution that violates (7.6g) on some neighboring line 0→ k of the

swing bus 0. Then,

p0 = p
0

= −∞ /∈ R.

This contradicts with p0 ∈ R. Hence, SOCP is exact. This completes the proof of Theorem 7.5.

7.D Proof of Theorem 7.6

Assume that SOCP is convex, exact, and has at least one solution. Let w̃ = (p̃, ṽ, W̃ ) and ŵ =

(p̂, v̂, Ŵ ) be two SOCP solutions. It suffices to prove w̃ = ŵ.

Let w := (p, v,W ) := (w̃+ ŵ)/2 be the average of w̃ and ŵ. Since SOCP is convex, w is optimal

for SOCP. Since SOCP is exact, the points w̃, ŵ, and w all satisfy (7.6g), i.e.,

ṽiṽj = W̃ 2
ij , (7.15a)

v̂iv̂j = Ŵ 2
ij , (7.15b)

vivj = W 2
ij (7.15c)

for i → j. Substitute v = (ṽ + v̂)/2, W = (W̃ + Ŵ )/2 in (7.15c), and simplify using (7.15a) and

(7.15b) to obtain

ṽiv̂j + v̂iṽj = 2W̃ijŴij , i→ j.

It follows that

ṽiv̂j + v̂iṽj = 2
√
ṽiṽj v̂iv̂j ≤ ṽiv̂j + v̂iṽj

for i→ j. The inequality attains equality, and therefore

v̂i
ṽi

=
v̂j
ṽj
, i→ j.

Let ηi := v̂i/ṽi denote the ratio of v̂i to ṽi for i ∈ N , then η0 = 1 and ηi = ηj if i→ j. Since the

network is connected, ηi = 1 for i ∈ N . Hence, v̂ = ṽ. Then, it follows from (7.15) that

Ŵij =
√
v̂iv̂j =

√
ṽiṽj = W̃ij , i→ j.

We have shown that (v̂, Ŵ ) = (ṽ, W̃ ). It follows immediately that p̂ = p̃ and therefore ŵ = w̃.
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7.E Proof of Lemma 7.7.

Fix (v0, p, `) and let e := |E| denote the number of lines. Then (7.10a)–(7.10c) collect n+ 2e linear

equations in n + 2e variables (vi)i∈N+ and (Pij)i∼j . To show the uniqueness of (v, P ) satisfying

(7.10a)–(7.10c), it suffices to prove that (7.10a)–(7.10c) are linearly independent, i.e., if the coeffi-

cients of vi and Pij for all i and all i ∼ j in

∑

i∈N+

ai


∑

j: j∼i
Pij


+

∑

i→j
bij(Pij + Pji) +

∑

i→j
cij [vi − vj − zij(Pij − Pji)]

are 0, then (a, b, c) = 0.

Introduce a0 := 0 for convenience. For each i→ j, the coefficients of Pij and Pji being 0 implies

0 = ai + bij − zijcij , (7.16a)

0 = aj + bij + zijcij . (7.16b)

It follows that

cij =
yij
2

(ai − aj), i→ j.

Hence, a = 0 implies c = 0, and it further follows from (7.16a) that b = 0. Therefore, it suffices to

prove that a = 0.

Let A := argmaxi∈Nai denote the set of buses i where ai is maximized. Since a0 = 0, a = 0 is

equivalent to A = N . Since the network (N , E) is connected and A 6= ∅, to prove A = N , it suffices

to show

i ∈ A & i ∼ j ⇒ j ∈ A.

For i ∈ N+, the coefficient of vi being 0 implies

0 =
∑

j: i→j
cij −

∑

h:h→i
chi

⇒ 0 =
∑

j: i→j

yij
2

(ai − aj)−
∑

h:h→i

yhi
2

(ah − ai)

⇒ 0 =
∑

j: i∼j
yij(ai − aj).

If i ∈ A and i ∼ j, then

0 =
∑

k: i∼k
yik(ai − ak) ≥ yij(ai − aj) ≥ 0.

Hence, aj = ai and therefore j ∈ A. This completes the proof of Lemma 7.7.
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7.F Proof of Lemma 7.8.

Let ` ≥ `′. Define ∆v0 := 0 and

∆vi := v̂i(p, `
′)− v̂i(p, `), i ∈ N+;

∆Pij := P̂ij(p, `
′)− P̂ij(p, `), i ∼ j.

Let A := argmini∈N∆vi denote the set of buses i where ∆vi is minimized. If 0 ∈ A, then ∆vi ≥
∆v0 = 0, i.e., v̂i(p, `

′) ≥ v̂i(p, `) for i ∈ N+. Hence, it suffices to prove that 0 ∈ A.

We prove 0 ∈ A by contradiction. Assume 0 /∈ A. Let B denotes a nonempty connected

component of A, then 0 /∈ B. Whenever i ∼ j, i ∼ B, and j /∈ B, one has j /∈ A (otherwise j ∈ B by

the definition of a connected component). Therefore ∆vi < ∆vj (since ∆vi is minimized in A) and

it follows that

0 > ∆vi −∆vj = zij (∆Pij −∆Pji) = 2zij∆Pij − z2
ij

(
`′ij − `ij

)
≥ 2zij∆Pij .

Hence, ∆Pij < 0 for all i ∼ j such that i ∈ B and j /∈ B.

It follows that

0 =
∑

i∈B
pi −

∑

i∈B
pi

=
∑

i∈B

∑

j: j∼i
P̂ij(p, `

′)−
∑

i∈B

∑

j: j∼i
P̂ij(p, `)

=
∑

i∈B

∑

j: j∼i
∆Pij

=
∑

i∈B


 ∑

j∈B: j∼i
∆Pij +

∑

j /∈B: j∼i
∆Pij




=
∑

i∼j,i∈B,j /∈B
∆Pij +

∑

i∼j,i∈B,j∈B
∆Pij

<
∑

i∼j,i∈B,j∈B
∆Pij

=
1

2

∑

i∼j,i∈B,j∈B
(∆Pij + ∆Pji)

=
1

2

∑

i∼j,i∈B,j∈B
zij
(
`′ij − `ij

)
≤ 0,

which is a contradiction. Hence, 0 ∈ A. This completes the proof of Lemma 7.8.
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7.G Proof of Corollary 7.9

Let (p, v,W ) be feasible for SOCP, and define P and ` according to (7.8) and (7.9). It is straight-

forward to check that the point (p, v, `) satisfies (7.10a)–(7.10c) and therefore

vi = v̂i(p, `), i ∈ N+.

Since (v,W ) satisfies (7.6f), one has |Wij | ≤ √vivj and therefore

`ij = y2
ij (vi −Wij −Wji + vj) ≥ y2

ij

(√
vi −

√
vj
)2 ≥ 0

for i→ j, i.e., ` ≥ 0. It follows that v̂i(p, 0) ≥ v̂i(p, `), i.e., v̂i(p) ≥ vi, for i ∈ N+.
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