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ABSTRACT 

Red fluorescent proteins (RFPs) have attracted significant engineering focus because of the 

promise of near infrared fluorescent proteins, whose light penetrates biological tissue, and 

which would allow imaging inside of vertebrate animals. The RFP landscape, which 

numbers ~200 members, is mostly populated by engineered variants of four native RFPs, 

leaving the vast majority of native RFP biodiversity untouched. This is largely due to the 

fact that native RFPs are obligate tetramers, limiting their usefulness as fusion proteins. 

Monomerization has imposed critical costs on these evolved tetramers, however, as it has 

invariably led to loss of brightness, and often to many other adverse effects on the 

fluorescent properties of the derived monomeric variants. Here we have attempted to 

understand why monomerization has taken such a large toll on Anthozoa class RFPs, and to 

outline a clear strategy for their monomerization. We begin with a structural study of the 

far-red fluorescence of AQ143, one of the furthest red emitting RFPs. We then try to 

separate the problem of stable and bright fluorescence from the design of a soluble 

monomeric β-barrel surface by engineering a hybrid protein (DsRmCh) with an oligomeric 

parent that had been previously monomerized, DsRed, and a pre-stabilized monomeric core 

from mCherry. This allows us to use computational design to successfully design a stable, 

soluble, fluorescent monomer. Next we took HcRed, which is a previously unmonomerized 

RFP that has far-red fluorescence (λemission = 633 nm) and attempted to monomerize it 

making use of lessons learned from DsRmCh. We engineered two monomeric proteins by 

pre-stabilizing HcRed’s core, then monomerizing in stages, making use of computational 

design and directed evolution techniques such as error-prone mutagenesis and DNA 

shuffling. We call these proteins mGinger0.1 (λem = 637 nm / Φ = 0.02) and mGinger0.2 

(λem = 631 nm Φ = 0.04). They are the furthest red first generation monomeric RFPs ever 

developed, are significantly thermostabilized, and add diversity to a small field of far-red 

monomeric FPs. We anticipate that the techniques we describe will be facilitate future RFP 

monomerization, and that further core optimization of the mGingers may allow significant 

improvements in brightness. 
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NOMENCLATURE 

RFP – Red fluorescent protein 

FP – Fluorescent protein 

Φ – Quantum yield of fluorescence 

ε – Extinction coefficient 

λabs – Maximum intensity absorbance wavelength 

λex – Maximum intensity excitation wavelength 

λem – Maximum intensity emission wavelength 

Å – Angstrom  

nm – Nanometer 

AUC – Analytical ultracentrifugation 

SEC – Size exclusion chromatography 

HPLC – High pressure liquid chromatography 

Tm – Melting temperature 

FRET – Förster Resonance Energy Transfer 

Homo-FRET – FRET between two molecules of a homodimer 

mP – Milli-polarization units 
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CHAPTER 1 

Introduction 

1.1 Background 

Fluorescent protein (FP) engineering emerged as a field in the late 1990’s, shortly after 

green fluorescent protein (GFP) from Aequorea victoria was first isolated and characterized 

(1-3). The field blossomed quickly, with FPs quickly becoming indispensible imaging 

agents across large swaths of biological research (4-6). GFP was engineered to fluoresce at 

a broad spectrum of wavelengths and brightened via directed evolution (7-9). The first 

major expansion of FP diversity came with the discovery of new naturally occurring 

fluorescent proteins with altered chromophore environments that absorbed and emitted 

light over a broad spectrum of colors, ranging from cyan to red (10-12). This encouraged 

molecular biologists and protein engineers to attempt to modify FP spectra artificially with 

mutations to the chromophore and residues in the immediate chromophore environment, 

which further expanded the color palette to include deep blues and far-reds (13-18). Shortly 

following the discovery of the diversity of FP spectra, a broad range of attributes were 

discovered and engineered including halide detection and photoactivatable and 

photoswitchable fluorescence (19-23). The field of FP engineering blossomed quickly and 

branched out into a number of smaller more specialized fields such as calcium imaging, 

long stokes-shift fluorescent proteins, and two-photon microscopy (24-27). 

Red fluorescent protein (RFP) engineering has garnered considerable sustained interest 

because of the possibility of engineering RFPs that are bright, photostable, and excite and 

emit at near-infrared (NIR) wavelengths. NIR light penetrates biological tissue with 

minimal absorption from the biological molecules that are the primary absorbers of light in 

visible to infrared wavelengths: melanin, hemoglobin, and water (28, 29). Two other 

classes of FPs have been reported that fluoresce at NIR wavelengths, but they are inferior 
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as universal biological markers. The first, a protein family derived from bacterial 

phytochrome called IFPs exhibit peak fluorescent emission anywhere from 670 nm to 720 

nm, but require a heme-derived cofactor, biliverdin, that is not ubiquitously present in 

mammalian tissue (30-33). Indeed the group that engineered the IFPs needed to engineer an 

artificial heme oxygenase 1 into a mouse to achieve bright fluorescence from the proteins. 

The other family of near-infrared FPs recently reported is the transmembrane bacterial 

opsin family (34, 35). These proteins’ peak fluorescence can range up to 731 nm, but they 

are very dim, located in the cell membrane, and like the bacterial phytochromes, require a 

cofactor, which in this case is retinal. The Aequorea victoria class of FPs remains the most 

desirable class so far identified. 

 

1.2 Statement of Problem 

The primary drawback of the Aequorea victoria class is that all native RFPs that have been 

characterized to date from this class are obligate tetramers, which is a hindrance to the 

standard usages of FPs as markers in a biological context. Most of these RFPs have been 

isolated from Anthozoa class corals and anemones (36-38). One of the primary usages of 

FPs is as a part of a fusion protein to track the cellular movements of a fused protein target 

(5). Fusing an oligomeric FP to a target protein necessarily means, though, that the target 

protein’s cellular localization and diffusion will be impacted by the oligomeric tendency of 

the FP it is fused to. This could mean aggregation of the protein target, causing it to fall 

into inclusion bodies, signaling or other downstream effects of improper oligomerization of 

the target protein, or false clustering in the case of structural or membrane-bound proteins 

whose cellular locations are being tracked (39, 40). 

Roger Tsien and colleagues engineered the first monomeric derivative of an Anthozoa class 

RFP, which they called mRFP1 (41). There are two symmetrical oligomeric interfaces that 

are part of each RFP tetramer, which are called the AB and the AC interface, and were so-

named because of the original chain names given to the individual monomers in the first 

structure of DsRed (42). The engineering process of mRFP1 began with the break of the 
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AB interface, by sticking charged residues into the primarily hydrophobic interface. This 

succeeded in breaking the interface, but severely compromised fluorescence. Many rounds 

of directed evolution were used to recover this fluorescence, whereupon the second of the 

two interfaces, the more stable AC interface, was broken via the same strategy. The break 

of the AC interface, however, completely extinguished fluorescence, necessitating much 

more extensive directed evolution to recover it. The final monomeric variant, mRFP1 

necessitated 33-point mutations from the native DsRed. mRFP1 was also much dimmer 

than DsRed, and exhibited a bathochromic shift to its fluorescent emission. mRFP1 has 

since been further optimized into the mFruits (mCherry, mRaspberry, tdTomato, mPlum, 

etc.), and other far-red FPs, but none of these variants has come anywhere close to 

recovering the brightness of the parent protein, DsRed (14, 43, 44).  

Since the first RFP monomerization of mRFP1 in 2002, scientists have identified 

approximately 50 RFPs and 20 chromoproteins that absorb in far-red wavelengths, but 

there have only been four other instances of RFP monomerization. One of these instances 

was a repeated monomerization of DsRed by Benjamin Glick and colleagues (45), while 

the other three were monomerizations of eqFP578 to FusionRed (46), eqFP611 to mRuby 

(47), and COCP to mKeima (48). COCP is a native chromoprotein; meaning that 

fluorescence was first induced into it with a well known cysteine to serine mutation that 

provides a hydrogen bond to the phenolate oxygen of the chromophore, serving to stabilize 

a fluorescent cis conformation of the chromophore. In all of these cases of RFP 

monomerization, the process used to engineer the final monomeric variant looked very 

similar to the path taken to engineer mRFP1, that is to say it was long, labor intensive, and 

involved significant mutation to the native protein’s chromophore environment and hence 

afforded little control over the final spectroscopic character of the resultant monomer. The 

lack of ability to readily monomerize RFPs has left the vast majority of native RFP 

biodiversity untapped in efforts to engineer improved RFP variants, as oligomerization is 

such a drawback to the potential use of any such marker. 

In addition to the difficulty of monomerizing native RFP tetramers, there is a considerable 

lack of interest in targeting novel RFPs for monomerization because there has been such 
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significant spectroscopic change to the proteins every time they have been monomerized. 

These changes to fluorescence have been difficult to predict and are often harmful to the 

usefulness of the monomeric variants. Some common negative repercussions of RFP 

monomerization include diminished brightness, decreased photostability, disrupted 

chromophore maturation, and a hyspochromic shift to fluorescent emission (21, 49). It is 

not well understood why monomerization is so harmful to fluorescence as it has been hard 

to disentangle the effects of all of the numerous mutations made to monomers over 

successive rounds of evolution. More direct approaches to understanding the fluorescent 

changes in RFPs have not had much success. Quantum mechanical studies of 

chromophores have difficulty even predicting the wavelength of fluorescent emission very 

accurately, and struggle to capture the effects of any nearby amino-acid residues that 

interact with the chromophore (50, 51). 

Devising a strategy to facilitate Anthozoa class RFP monomerization would allow greater 

diversity to be sampled in a monomeric context, possibly allowing for a brighter, more red-

shifted variant to be monomerized. Furthermore, by better understanding RFP 

monomerization, the forces behind the negative spectroscopic consequences that 

accompany the process might be diagnosed and addressed. 

 

1.3 Experimental Strategy 

It is a good guess that the fluorescent impacts of monomerization are due to changes to an 

RFP’s immediate chromophore environment, as the actual chemical makeup of its 

chromophore remains unchanged. Data demonstrating this have never been thoroughly 

presented, and doing so constitutes the first part of our efforts to rationalize and explore the 

landscape of RFP monomerization and far-red FP engineering. We attempt to disentangle 

the problems of (1) engineering a soluble monomeric protein and (2) ensuring that the new 

monomeric protein remains fluorescent and retains the desired spectroscopic attributes. 

Separately addressing these two problems involves innovative approaches to protein 

design, as distinct structural areas that overlap in primary sequence space (opposite sides of 
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a β-sheet alternate residues) are difficult to design libraries around. We sought to rationally 

target small groups of structural regions (5-20 residues), and use random or 

computationally designed libraries to query these spaces. 

This approach is novel, as past RFP engineering, and protein engineering in general, have 

for the most part focused on design and evolution at two very opposite ends of a 

continuum. On the one hand, site-saturation mutagenesis and rational design consider small 

numbers of residues and attempt to exhaustively search sequence space for the best 

combination of mutations at these positions (52-54). The other extreme is the classic 

directed evolution by random mutagenesis, primarily with error-prone PCR, that searches 

slowly through sequence space by making mostly random changes to a few residues at a 

time in a protein sequence, as large numbers of random mutations cause a protein to lose its 

functionality (55). These strategies have their benefits and their limitations. Site-saturation 

mutagenesis and rationally guided mutation can answer very specific mechanistic questions 

and exhaustively query the mutational landscape around small groups of residues and 

structural regions. By contrast, they are limited in their scope as in mutating only a few 

residues, it is easy to miss important effects at distal positions. Error-prone mutagenesis, on 

the other hand, can access vast areas of sequence space that might not be targeted by any 

rational approach, and is very easily implemented, but lacks direction, and necessitates the 

screening of very large libraries of variants to isolate synergistic mutations that are 

individually deleterious or neutral with regard to the screened attribute. In this work we try 

to access an area between rational design and random mutagenesis on the protein design 

spectrum. 

 

1.4 Summary of Results 

As an initial study of far-red FP engineering, we conducted an in depth analysis of the 

mechanisms behind the far-red fluorescence of AQ143, which is a tetrameric RFP that was 

designed from the chromoprotein aeCP597 (56, 57). We solved a crystal structure of 

AQ143, which demonstrates novel red-shifting chromophore interactions and confirms 
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some other hypothesized interactions. The far-red chromophore environment helps to 

expand our view of RFP core design and from this work we began to think about RFP 

cores as unique environments that are separate from the surface of the protein. 

In beginning the design, the protein surface seemed an easier place to start than the 

chromophore environment, and so we created a core-stabilized RFP variant that provided 

us a more facile test of our design methodologies. We successfully designed an RFP 

surface, succeeding in repeating the monomerization of DsRed for the third time. In this 

case, however, we made use of a pre-optimized fluorescent core found in the monomeric 

derivative, mCherry. These core positions allow us to use computational protein design to 

monomerize the protein, moving directly from a tetramer to a monomer without any 

directed evolution or the screening of large libraries of variants. In fact our computationally 

designed library contains 95 members, 97% of which are fluorescent and monomeric. 

However, this was only accomplished in the context of an RFP that had previously been 

monomerized, which afforded us a fluorescent core that was optimized in the context of a 

monomeric scaffold. The next step was to apply this technique to a previously 

unmonomerized RFP. 

We chose to work with HcRed (11) because it was reported to have a far-red fluorescent 

emission peak of 645 nm, and a broken AB oligomeric interface. As we will discuss later, 

there is a systemic problem in the FP engineering field of inaccurately reported fluorescent 

properties, so as it turns out neither of these attributes were exactly as advertised. HcRed’s 

fluorescent emission turned out to be closer to 633 nm, and it was dimeric, but with 

significant tetrameric tendency visible by SEC and in the fact that it crystallizes as a 

tetramer. As HcRed still exhibited relatively far-red fluorescent emission and had not 

previously been monomerized, we continued and took some of the lessons learned in our 

repeated monomerization of DsRed and tried to apply them to the monomerization of 

HcRed. We wanted to divide the engineering process into distinct steps, each of which 

could be targeted by small to medium-sized libraries of 102-105 variants, which we felt 

would allow the entire diversity of the library, or at least a significant proportion of it, to be 

accessed with medium-throughput screening techniques (expression in 96-well plates of 



 

 

7 

individual clones and assay by plate-reader). For each of these distinct steps, we 

determined a specific attribute to target, and then identified groups of residues that we felt 

rationally played a role in that attribute of the designed protein, whether it was 

oligomericity, stability, fluorescence, or solubility. We hoped to access large but targeted 

areas of sequence space that would be enriched with desired variants. 

We divided the task of engineering HcRed into distinct steps. The first step was core 

design, in which we attempted to build diversity into the HcRed core by targeting key 

structural regions with a library that was shaped by the amino acid diversity of engineered 

far-red FP variants (32, 44, 57, 58). We then took a group of fluorescent diversified core 

variants and perturbed them with a partial disruption of their AC dimeric interface. We 

isolated a variant that remained fluorescent after a partial tail deletion, and was both 

brighter and bathochromically shifted from wild-type HcRed. The mechanism of the 

brighter and far-red fluorescence in the core-optimized variant (HcRed7) was that an 

introduced tyrosine formed a π-stacking interaction with the chromophore phenolate. This 

optimization was not sufficient, however, as HcRed7 error prone mutagenesis was needed 

to recover dim fluorescence both after a full C-terminal tail deletion and again after 

completing the monomerization. We eventually arrived at monomeric variants mGinger0.1 

and mGinger0.2, which are the furthest red-shifted first generation monomeric RFPs 

reported to date. The design process was improved in a number of ways over previous RFP 

monomerizations. First, we managed to break the process into segments, each of which 

focused on one particular attribute of the design, and made use of a mutational strategy that 

fit the particular goal. Second, we maintained a baseline level of fluorescence throughout 

the process, not allowing the fluorescent emission to shift hypsochromically, and obviating 

the need for mutations to the chromophore environment to restore fluorescence – no core 

residue within 6.0 Å of the chromophore was mutated. Finally, the design procedure only 

involved two rounds of error prone mutagenesis, far less than other RFP monomerizations, 

and these rounds were supplemented with smaller, targeted libraries. mGinger0.1 and 

mGinger0.2 occupy a place among the brightest far-red monomers, and there is opportunity 

to further optimize their fluorescence. 
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Finally, prior studies of RFPs have inconsistently measured a variety of their spectroscopic 

properties. There are often large discrepancies between values reported in the literature, and 

we have encountered many incorrectly reported values in this work. Oligomerization, 

which is a principal focus of this work, is one of the most incompletely characterized 

properties of RFPs, which is troubling, as it is also one of the most important to determine 

prior to using an RFP in a biological context. We express and characterize a group of 

important RFPs, finding that many are improperly claimed to be monomeric, and propose 

standardized measurement techniques that we use to assay their brightness and determine 

maximum intensity fluorescent excitation and emission wavelengths. In characterizing this 

array of RFPs, we present a dataset that can be queried for relationships between various 

spectroscopic properties, and their structural basis. We remark upon a stark correlation 

between quantum yield and thermal stability among RFPs. 
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CHAPTER 2 

The Structure of a Far-Red Fluorescent Protein, AQ143, Shows 

Evidence in Support of Reported Red-Shifting Chromophore 

Interactions. 

Wannier, Timothy M.a and Mayo, Stephen L.a 

a Division of Biology and Biological Engineering, California Institute of Technology, 

Pasadena, CA 91125 

(This work appeared as a structure report in 2014 in the journal Protein Science) 

2.1 Abstract 

Engineering fluorescent proteins (FPs) to emit light at longer wavelengths is a significant 

focus in the development of the next generation of fluorescent biomarkers, as far-red light 

penetrates tissue with minimal absorption, allowing better imaging inside of biological 

hosts. Structure-guided design and directed evolution have led to the discovery of red FPs 

with significant bathochromic shifts to their emission. Here, we present the crystal structure 

of one of the most bathochromically shifted FPs reported to date, AQ143, a nine-point 

mutant of aeCP597, a chromoprotein from Actinia equina. The 2.19 Å resolution structure 

reveals several important chromophore interactions that contribute to the protein’s far-red 

emission and shows dual occupancy of the green and red chromophores. 
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2.2 Introduction 

Fluorescent proteins (FPs) that emit light in the near-infrared (NIR) window (~650-900 

nm) are in demand as biological imaging agents. The NIR window is a local minimum at 

which light penetrates tissue with minimal absorption from biological molecules such as 

melanin, hemoglobin, and water.1 FPs natively do not emit light in the NIR; the longest 

maximum intensity emission wavelength (λem) reported to date for a native red FP (RFP) is 

613 nm, found in NvFP-7R from Nematostella vectensis.2 FPs with significant 

bathochromic shifts to λem have been produced with both rational design and directed 

evolution but these molecules tend to have low quantum yields, poor brightness and other 

characteristics that compromise their utility.3-8 Many FP engineering strategies, including 

those that have induced bathochromic shifts in the λem, have relied on atomic-resolution 

structural data to guide intuition-based design, motivating continued efforts to obtain 

additional structural information for far-red FPs. AQ143, which was engineered from 

aeCP597, a chromoprotein from Actinia equine,9 is one of only seven known FPs of the 

Aequorea victoria FP-like superfamily that exhibit a peak emission wavelength of at least 

650 nm. The other five proteins (Neptune,10 eqFP650,7 TagRFP657,11 mCardinal12, 

eqFP670,7 and TagRFP6758) are all variants of eqFP578, a native RFP from Entacmaea 

quadricolor.13 There are known structures for five of these proteins (Neptune: 3IP2, 

eqFP650: 4EDO, mCardinal: 4OQW, eqFP670: 4EDS, TagRFP675: 4KGF), but as they 

are all derived from the same ancestral protein, there is limited sequence diversity among 

these structures. Here we report the 2.19 Å crystal structure of AQ143, which is derived 

from a more distantly related protein, aeCP597 (~60% sequence identity to eqFP578 and its 

variants). AQ143 has a novel chromophore environment (defined as all internal-facing 

residues within 5 Å of the chromophore), which shares no more than 70% (16 of 23 

positions) sequence identity with any other red fluorescent protein. Glu41 plays an 

important role in red-shifting AQ143’s emission spectrum and is not seen in any other 

fluorescent protein. The reported structure also provides evidence in support of recently 

reported red-shifting chromophore interactions.6,8,14 
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2.3 Results and Discussion 

The asymmetric unit contains eight protein molecules, which align with an all-atom r.m.s.d. 

of 0.27–0.74 Å with differences between molecules concentrated mostly in the loop regions 

and in the C- and N-terminal tails. The chromophore region also varies somewhat between 

molecules and shows weak electron density around the phenolate side chain, which could 

be attributed to mobility in the phenolate side chain and co-occupancy of two different 

chromophores -- green and red. 

Oligomerization 

AQ143 is a native tetramer, which is clear in the crystal packing. The asymmetric unit, 

however, contains eight monomers, or two such tetrameric assemblies with the C-terminal 

tail of each monomer involved in making inter-tetramer contacts. To verify the 

oligomerization state of AQ143, we ran both size exclusion chromatography (SEC) and 

analytical ultracentrifugation (AUC). SEC analysis indicates that AQ143 behaves as a 

tetramer, but that it has slight octomeric properties, while AUC confirms that the protein is 

predominantly tetrameric (Figs. S1 and S2). As oligomerization is an important 

consideration in the engineering of RFPs, all of which are natively tetrameric,15 we 

compared the AB and AC interfaces of AQ143 with those of four other native RFPs (Table 

S1) using the PISA server of the European Bioinformatics Institute16 and report average 

buried surface area and average ∆iG (the solvation free energy gain upon formation of the 

interface). The AC interface is known to be the tighter of the two interfaces,17 which is 

consistent with the AC interface having more negative ∆iGs. Interestingly, although AQ143 

showed a similar amount of buried AB interface surface area, the ∆iG for AQ143’s AB 

interface is very high, indicating a large amount of hydrophobic residues at this interface. 

The AC interface is more difficult to compare as the amount of buried surface area varies 

widely, although this is in part due to the lack of crystallographic density at the C-terminal 

tails (which participate intimately in this interface) in many of these structures. DsRed, the 

first successfully monomerized RFP17 shows the lowest ∆iG for its AC interface, possibly 

indicating that future monomerization efforts of AQ143 may be more difficult. 
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Green and red chromophores 

Many engineered far-red FPs exhibit slow or incomplete maturation to the red 

chromophore,4,11,18 and it has recently been shown that maturation to the green and red 

chromophores in DsRed-type FPs occurs via a branched pathway (i.e., the two forms of the 

chromophore are separate endpoints in chromophore maturation; the green is not an 

intermediate in the maturation to the red chromophore as had been previously proposed).19 

AQ143 is a DsRed-type FP with a chromophore composed of a 

methionine/tyrosine/glycine triad (MYG) that matures to both a green and a red 

chromophore (Fig. 1), as evidenced by its absorbance, excitation, and emission spectra 

(Figs. S3, S4, and S5). To calculate the percentage of chromophores that mature to the 

green and to the red, we determined the extinction coefficients of the two species by the 

dynamic difference method. In this procedure, AQ143 was pH-adjusted to alkaline 

conditions, in which the green and red chromophores denature at different rates and their 

respective contributions to the 450 nm alkali-denatured absorbance peak can be determined 

(Figs. S6, S7, S8 and Supplementary Methods).5 We calculated the extinction coefficient to 

be 58,000 ± 11,000 M-1cm-1 for the red chromophore and 47,000 ± 5,000 M-1cm-1 for the 

green chromophore. From these data, we estimated the percentages in the fully mature 

protein to be 33 ± 6% for the red and 67 ± 6% for the green chromophore. Measurements 

of the protein in the crystal condition suggested that this fraction did not change upon 

crystallization. Corroborating the spectroscopic evidence, we observed that the refined 

electron density map of AQ143 shows a mixture of chromophores containing both the 

oxidized N-acylimine (red) and the unoxodized N-acylamine (green) at the N-terminal 

residue of the chromophoric triad. The estimated occupancy of the red and green 

chromophores averaged across all eight monomers in the asymmetric unit is 24 ± 9% and 

76%, respectively. Thus the spectroscopic calculations of chromophore occupancy in the 

crystal condition are consistent with the crystallographic refinement. 
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Cis vs. trans phenolate 

The phenolate side chain of the chromophore (the phenolate group) in DsRed-type FPs and 

related chromoproteins can occupy either a cis or a trans conformation, indicating its 

proximity to the N1 nitrogen of the imidazolinone ring of the chromophore. For many 

RFPs, a trans to cis isomerization of this phenolate moiety, which is sometimes pH-

inducible,20,21 has been implicated in fluorescence. In non-fluorescent chromoproteins, for 

instance, the chromophore is found in the trans conformation, and mutations to these 

chromoproteins that stabilize the cis conformation have created FPs such as HcRed and 

AQ143. In engineering AQ143 from the chromoprotein aeCP597, Cys143Ser was reported 

to be responsible for inducing weak fluorescence,9 as the mutation to serine stabilizes the 

cis chromophore by providing a hydrogen bond to the hydroxyl oxygen of the phenolate 

side chain. In the referenced work, fluorescence was improved by removing a serine 

hydrogen bond to the hydroxyl of the trans phenolate with a Ser158Ala mutation, further 

stabilizing the cis over the trans chromophore. By inducing fluorescence in an otherwise 

non-fluorescent chromoprotein, these mutations seem to imply that the cis chromophore 

represents the fluorescent moiety in AQ143. 

Indeed, the refined structure shows good electron density for all parts of the chromophore 

with the exception of the phenolate side chain, which we modeled in the trans 

configuration. However, the difference map shows that the modeled phenolate is not a 

perfect fit, as the electron density is not sufficient to describe a chromophore that is solely 

found in the modeled trans configuration, while residual density appears in the position we 

expect that the cis phenolate would occupy. The refined electron density is such that we 

expect there is a co-occupancy in the crystal of two or more chromophore orientations and 

also possibly that the phenolate is mobile in one or both of these chromophore species. This 

would be consistent with a cis-trans isomerization of the chromophore upon fluorescence 

excitation, as has been seen in other FPs,5,22,23. The lack of clear electron density for the 

phenolate moiety implies that the fluorescence-inducing mutations in AQ143 may have had 

their predicted effects, namely in destabilizing the native trans chromophore, and allowing 

for the phenolate to occupy the cis conformation. Given the ambiguity associated with the 
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chromophore orientation and the lack of clear density for the cis conformation, we elected 

to model-build the cis phenolate post-refinement (Fig. 1). The modeled position of the cis 

phenolate accommodates a hydrogen bond between the hydroxyl of the fluorescence-

inducing Cys143Ser mutation and the phenolate oxygen, supporting the hypothesis that this 

interaction is linked to the induction of fluorescence in AQ143 (Fig. 2). A second water-

mediated hydrogen bond to the phenolate oxygen appears to further stabilize the cis 

conformation. 

Interestingly, neither the trans nor the modeled cis conformations of the chromophore are 

coplanar with the imidazoline ring. This non-coplanarity is relatively uncommon in FPs 

and has been proposed to be responsible for low quantum yields.10 AQ143 indeed has a 

very low quantum yield (0.04)9, and improving the coplanarity of the two chromophore 

rings may represent an opportunity to further improve its fluorescence. 

Mechanisms of bathochromic shift 

AQ143 exhibits a number of red-shifting chromophore interactions that have been well 

documented in the literature.8 A network of direct and water-mediated hydrogen bonds has 

been proposed to lower the energy of the photoexcited state of the chromophore’s 

conjugated π-electron system, resulting in bathochromic shifts to λem.
10,24 In AQ143, three 

hydrogen bonds to the chromophore are good candidates to provide such stabilization 

including two hydrogen bonds to the acylimine oxygen, as well as one to the phenolate 

oxygen (Fig. 2). 

Glu41 and a water molecule coordinated by Gln106 and the chromophore’s C-terminal acyl 

oxygen both form hydrogen bonds to the chromophore N-acylimine (Fig. 2). To our 

knowledge, the only other FPs known to have two hydrogen bonds to the acylimine oxygen 

are CjBlue, the furthest red-shifted chromoprotein, and TagRFP675, the furthest red-shifted 

FP, although in TagRFP675, the hydrogen bond donor at the position equivalent to Glu41 

in AQ143 is a glutamine.8,14 mPlum, the furthest red-shifted monomeric FP,3 has a similar 

hydrogen bonding interaction between Glu16 and the chromophore N-acylimine, but is 

lacking a coordinated water molecule to provide the second hydrogen bond. The 
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importance of hydrogen bonds to the N-acylimine was shown in mPlum variants, in which 

Glu16 is mutated to other residues including proline and glutamine, causing significant 

hypsochromic shifts to λem.18,25,26 

Additionally, flexibility in the hydrogen bonding network to the phenolate oxygen of the 

chromophore, particularly via water-mediated hydrogen bonds, has been proposed to be 

responsible for extended stokes’ shifts and significant bathochromic shifts to fluorescence 

emission.8 The modeled cis chromophore, which we believe to be the fluorescent moiety, 

can accommodate two hydrogen bonds to the phenolate oxygen from the hydroxyl of 

Ser143 and a structural water molecule (Fig. 2). The trans chromophore, despite the 

mutation away from Ser158, makes a hydrogen bond contact with a structural water 

molecule stabilized by Glu145 and Thr176, although the effect of this interaction is less 

clear as the trans chromophore is not thought to be fluorescent. 

Finally, many red-shifted fluorescent proteins have been described that exhibit π-stacking 

interactions with the phenolate group of the chromophore.6,27,28 Histidine and tyrosine have 

both been reported at positions analogous to His197 in AQ143 with histidine present in 

eqFP578, RFP639, and mRuby13,29,30, and tyrosine present in mRojoA, TagRFP657, and 

mGrape36,10,11. In engineering mRojoA, a tyrosine π-stacking interaction with the cis 

phenolate was explicitly designed into the protein which resulted in a 7nm red-shift6. In 

AQ143, His197 appears to form a π-stacking interaction with the trans phenolate (Fig. 2), 

which we presume to be the non-fluorescent entity. Interestingly, in mRuby and eqFP578, 

the histidine also π-stacks with the trans phenolate, whereas in the further red-shifted 

RFP639, the π-stack occurs with the cis phenolate. This implies that there may be room to 

further stabilize the photo-excited state of the cis phenolate of AQ143 and red-shift its 

emission by optimizing the π-stacking interaction with the cis chromophore. 
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2.4 Conclusion 

AQ143 is one of the furthest red-emitting FPs of the GFP family, and the structure reported 

in this study helps elucidate some of the features underlying its far-red emission.  A 

recently reported FP, TagRFP675, shares many of the same chromophore interactions 

responsible for AQ143’s bathochromic shift.8  

2.5 Materials and Methods 

Protein expression and purification 

A synthetic gene construct encoding an N-terminal poly-histidine tagged AQ143 (GenBank 

KF479351) was assembled in vitro, expressed in Escherichia coli BL21(DE3) cells, 

purified, and crystallized. Cultures were grown at 37°C to an optical density of ∼0.6 in LB, 

induced, then allowed to express protein at 20°C for 24 hours. Protein was purified via His-

tag affinity chromatography, run over a size exclusion column to remove trace 

contaminants and move the protein into storage buffer (1 × PBS pH 7.4), and finally 

concentrated to 18 mg/ml.   

Crystallization, data collection, and structure determination 

Rectangular plate crystals grew in 7 days by the sitting-drop vapor diffusion method in 100 

mM Tris pH 7.0 with 50 mM lithium sulfate and 20% w/v PEG 3350. Crystals were flash 

frozen in 2-Methyl-2,4-pentanediol (MPD) and shipped to beamline 12-2 at the Stanford 

Synchrotron Radiation Lightsource, where a 2.19 Å data set was collected. Phases were 

obtained through molecular replacement using the crystal structure of the FP asFP595 

(PDB ID 1A50).  

Following molecular replacement, model building and refinement were run with COOT 

and PHENIX.31,32 NCS restraints were applied to early refinement steps and removed at the 

final stages of refinement. TLS parameters were used throughout. The chromophore was 

initially left out of the refinement and added at a later stage when clear density became 
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evident for it. First the chromophore was added without the phenolate side chain, as little 

density appeared for this group. Subsequently, as density became clearer, a trans 

chromophore was added. The final modeled chromophore has a trans phenolate ring, an 

imidazoline heterocyclic ring, and dual occupancy of a green N-acylamine and a red N-

acylimine. Coordinates were deposited in the Protein Data Bank with the code 4OHS. Data 

collection and refinement statistics are listed in Table 1. 

Modeling the cis chromophore post refinement 

We modeled the cis chromophore after refining the structure because there was poor 

density for this conformation. There was, however, residual density in the region we 

expected the cis chromophore to be. We introduced the alternate conformation in COOT, 

fit it to the residual density, and ran the model through several rounds of PHENIX 

refinement, which resulted in the modeled positions shown in figures 1 and 2 in turquoise. 
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2.7 Tables and Figures: 

Table I. X-ray data reduction and crystallographic refinement statistics 

(A) X-ray data reduction statistics 

Space group P1 

Unit cell dimensions (a, b, c) 51.0 Å, 68.1 Å, 132.8Å 

Resolution 39.1 Å – 2.19 Å 

   (last shell) 2.31 Å – 2.19 Å 

Total measurements (last shell) 281,018 (30,290) 

Number of unique reflections (last shell) 72,946 (8,028) 

Wavelength  

R-merge (last shell) 0.072 (0.749) 

I/σ(I) (last shell) 11.9 (1.7) 

Completeness (last shell) 0.861 (0.648) 

Multiplicity (last shell) 3.9 (3.8) 

(B) Crystallographic refinement statistics 

Resolution 131.1 Å - 2.19 Å 

   (last shell) 2.22 Å – 2.19 Å 

No. of reflections (working set) 69,234 

No. of reflections (test set) 3,647 

R-factor (last shell) 0.190 (0.315) 

R-free (last shell) 0.221 (0.338) 

No. of amino acid residues 1,770 

No. of atoms 14,508 

No. of solvent molecules 355 

Average B-factor  

   Protein 62.5 Å2 

   Solvent 49.6 Å2 

R.m.s.d. from ideal geometry  

   Bond lengths 0.006 Å 

   Bond angles 0.987º 
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Figure 1. Alignment of the chromophores and C-terminal cysteine from each of the eight 

monomers in the asymmetric unit. The modeled cis phenolate is shown in turquoise. The 

N-acylamine and N-acylimine are present in the green and red chromophores respectively. 
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Figure 2.  Chromophore contacts in AQ143. Residues that directly interact with the 

chromophore or help to coordinate structural waters (red spheres) are shown along with the 

immediate hydrogen-bonding network. A representative chromophore was chosen (chain 

E) to illustrate the contacts. Hydrogen bonds (dotted lines) are shown for interactions with 

the chromophore. The modeled cis conformation is shown in turquoise, along with two 

putative hydrogen bonds to its hydroxyl group. Two hydrogen bonds to the acylimine 

oxygen from Glu41 and a coordinated water can be seen in the right of the figure. 
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2.8 Supplementary Tables and Figures: 

Table S1. Surface area analysis of oligomeric interfaces 
 

  AB Interface  AC Interface 

Protein PDB ID 
Average 

buried surface 
area (Å2) 

∆iG 
(kcal/mol)* 

 Average 
buried surface 

area (Å2) 

∆iG 
(kcal/mol)* 

AQ143 4OHS 979.6 -11.2  1203.9 -13.8 
KFP† 2A50 977.7 -6.4  1691.4 -19.2 
DsRed 1ZGO 993.9 -8.6  1326.8 -7.2 
eqFP578 3PIB 1043.1 -2.2  1564.6 -20.8 
eqFP611† 1UIS 988.1 -0.5  1185.6 -17.3 
 
* ∆iG indicates the solvation free energy gain upon formation of the interface. 
† Only two monomers were present in the asymmetric unit, so symmetry mates were 
generated to visualize the tetramer. 
 

Table S1. AQ143 is compared to four other native RFPs (all tetramers).  The surface area 

and solvation free energy of the AB and AC interfaces were evaluated with the PISA server 

from the European Bioinformatics Institute. 

http://www.ebi.ac.uk/pdbe/prot_int/pistart.html 
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Figure S1.  SEC traces of mCherry and AQ143. 100 µL of a 60 µM aliquot of each protein 

was run through a Superdex 75 column. mCherry is a monomer, whereas AQ143 appears 

to be a tetramer by AUC (Fig. S2), but is an octomeric assembly in crystal packing and 

demonstrates a clear octomeric peak by SEC. 
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Figure S2.  Sedimentation velocity analysis of mCherry and AQ143.  mCherry, a 

monomer, sediments at its molecular weight, which is 27 kD. AQ143 sediments at 108 kD, 

very near its tetrameric weight. 
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Figure S3. Excitation and emission spectra of the green chromophore of AQ1143.  

Emission was measured with an excitation wavelength of 465 nm, while excitation was 

measured at an emission wavelength of 560 nm.  These spectra were taken in a Photon 

Technology International fluorometer. 
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Figure S4. Excitation and emission spectra of the red chromophore of AQ1143.  Emission 

was measured with an excitation wavelength of 550 nm, while excitation was measured at 

an emission wavelength of 660 nm.  These spectra were taken in a Photon Technology 

International fluorometer. 
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Figure S5. Absorbance spectrum of AQ143 taken on a Tecan Safire2 platereader.  
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Figure S6. pH profile of the absorbance of 30 µM AQ143 between pH 5.0 and 12.0.  The 

protein undergoes two distinct transitions.  The first transition is between an acid-denatured 

absorbance profile at which there is little absorbance by either chromophore to the growth 

of both the green and red absorption peaks (510 nm and 588 nm, respectively).  The second 

transition is a rapid base denaturation of the protein in which both the red and green 

chromophores are converted into a yellow, 450 nm-absorbing species.  The extinction 

coefficient grows as the pH is increased, topping out near pH 10.0. 
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Figure S7. Time-dependent absorbance of AQ143 diluted 1:100 into alkaline buffer 

(100mM Na2HPO4; 150mM NaCl; pH 10.5). Time points are measured 5 minutes apart. 

Early time points are denoted with darker lines while late time points are denoted with 

lighter lines. 
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Figure S8. The loss in absorbance of the 588 nm (red chromophore) peak correlates 

linearly to an increase in the 470 nm (base-denatured chromophore) peak.  
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3.1 Abstract 

Computational design has been used with mixed success for the design of protein surfaces, 

with directed evolution heretofore providing better practical solutions than explicit design. 

Directed evolution, though, has the drawback of necessitating an easy, high-throughput 

screen because the random nature of mutation does not enrich for desired traits. Here we 

demonstrate the successful design of the β-sheet surface of a red fluorescent protein (RFP), 

enabling control over its oligomerization. To isolate the problem of surface design, we 

created a hybrid RFP from DsRed and mCherry with a stabilized protein core that allows 

for monomerization without loss of fluorescence. We designed an explicit library for which 

93 of 96 (97%) of the protein variants are soluble, stably fluorescent, and monomeric. RFPs 

are heavily used in optical biology, but are natively tetrameric, and creating RFP monomers 

has proven extremely difficult. We show that surface design and core engineering are 

separate problems in RFP development and that the next generation of RFP markers will 

depend on improved methods for core design. 
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3.2 Introduction 

Computational methods have heavily influenced protein design, but despite successes in 

core repacking, computational design of protein surfaces, especially those with a high β-

sheet content, has lagged [1]. There are relatively few instances of demonstrated success in 

β-sheet design [2-4]. Directed evolution, having proven effective at tackling problems that 

computational protein design (CPD) is ill-equipped to address, has been used to some 

success to evolve soluble β-sheet surfaces [5,6]. Directed evolution, however, is lengthy, 

requiring high-throughput screening, and inefficient, as error-prone mutagenesis is used to 

randomly walk through sequence space. Here we present a CPD-driven library creation 

process that can efficiently search sequence space for soluble protein surfaces, facilitating 

surface design of proteins in situations that are not readily adaptable to high-throughput 

screening methods [7,8]. We demonstrate the successful design of fluorescent protein (FP) 

β-sheet surfaces, expediting monomerization of a core-stabilized RFP. 

Oligomerization is a significant barrier to novel FP development. Most native FPs are 

oligomeric [9-11], and many engineered FPs that are thought to be monomeric exhibit 

dimerization in certain laboratory or biological contexts, complicating data interpretation, 

and even contributing to erroneous scientific findings [12,13]. Soluble, monomeric FP 

probes are needed to prevent FP-driven aggregation or FP-mediated assembly of linked 

protein targets, and to limit the cytotoxic effects of poorly soluble proteins [12,14]. A major 

challenge facing FP-engineering is to break oligomeric interfaces without negatively 

impacting the fluorescent characteristics of a wild-type FP. To do so means designing 

soluble, beta-barrel surfaces that are not aggregation prone. No standard technique has 

emerged for efficiently and effectively moving from a dimeric or tetrameric FP to a 

monomer without extensive intuition-based mutagenesis to disrupt oligomerization, 

followed by successive rounds of directed evolution to restore fluorescence [15].  

The most challenging FPs to effectively monomerize have proven to be red FPs (RFPs). 

All known native RFPs are tetrameric, the vast majority of which have not been extensively 

used or characterized because of the difficulty of breaking their oligomerization without 

compromising fluorescence. Of the more than 50 native RFPs described to date, only four 
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have been successfully monomerized, as determined by a variety of in vitro methods, and 

in each case there has been significant mutation to the core of these proteins, often blue-

shifting their fluorescent excitation and emission spectra and decreasing their brightness 

and photostability [5,12,16-18]. Efforts to improve brightness, engineer bathochromic 

shifts, or otherwise improve existing RFPs have focused on engineered monomers, and so 

have targeted only a small subset (< 10%) of known RFP biodiversity. It is poorly 

understood why monomerizing RFPs has negatively impacted their spectroscopic 

properties. 

Here we explore the engineering of monomeric RFPs, attempting to deconvolute the design 

of a soluble β-barrel surface from any impacts that core mutations have on an FP’s 

spectroscopic properties. We show that CPD, used in conjunction with efficient library 

construction and screening, is an effective tool to engineer the surface of RFP-type β-barrel 

proteins. We tested our method in a hybrid protein engineered as a cross between DsRed, a 

native tetrameric RFP, and mCherry, a monomeric variant of DsRed, from which we took 

the evolved protein core (13 mutations from DsRed). Screening a small library of 

computationally designed variants of a tetrameric RFP, we found that 97% were bright, 

stable, monomeric, and little changed spectroscopically. This process represents a stark 

improvement to the speed and efficiency of RFP monomerization, and may facilitate the 

study of a much broader array of native RFPs, allowing researchers to target engineering 

efforts to residues in the protein core, as structural stabilization of the chromophore 

environment appears to be the primary bottleneck to RFP monomerization. This novel 

computationally driven method for the monomerization of fluorescent proteins should be 

applicable as a general technique for creating soluble monomeric protein variants. 
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3.3 Results 

A Hybrid RFP Demonstrates the Functional Distinction Between Core and Surface 

Domains 

To validate the computational design of β-barrel surfaces, we decided to work with DsRed, 

as it has been twice independently monomerized via directed evolution and there exist >60 

characterized monomeric variants of the protein. We set out to create a DsRed mutant that 

would tolerate surface mutations – possessing a structurally sound core that would retain 

fluorescence upon monomerization. Such a variant would allow us to separate the problem 

of surface design from the effects of mutations to the chromophore environment. We 

hypothesized that stabilizing mutations to the core of DsRed were both responsible for 

changes to its spectroscopic properties and necessary for monomerization, as no 

monomerization of a native RFP has been successful without altering the protein core 

[5,12,16-18]. One of the most studied and thoroughly characterized monomeric variants of 

DsRed is mCherry, a less-bright but red-shifted 30-point mutant [19]. We created a hybrid 

RFP (DsRmCh) that is a 13-point mutant of DsRed, containing every mutation to a residue 

in the core of the protein that was introduced during the evolution of mCherry (Figure 1). 

Consistent with the hypothesis that core residues are determinant of the fluorescent 

properties of an FP, DsRmCh is spectroscopically mCherry-like, but remains tetrameric. 

Specifically, DsRmCh retains the bathochromic shift to its fluorescent emission, decreased 

brightness, and quickened maturation of mCherry, suggesting that the residues responsible 

for these properties are indeed among the 13 core mutations (Table 1). We measured the 

oligomerization of DsRmCh, which retains a wild-type DsRed surface, by analytical 

ultracentrifugation (AUC) and size exclusion chromatography (SEC) (Figure 2). DsRmCh 

remains tetrameric indicating that the core residues are not implicated in oligomerization. 

Conversely, the inverse of DsRmCh, mChDsR, comprising an mCherry exterior and a 

DsRed interior, is not fluorescent, and is in fact not solubly expressed (data not shown), 

indicating that stabilization to the core of DsRed is required to successfully monomerize 

the protein. To directly measure the stabilizing effect of DsRmCh’s core mutations we ran 

thermal melts of DsRed, DsRmCh, and mCherry, in which fluorescence is tracked in real 

time as the temperature is ramped to 99 °C and the temperature at which the protein most 
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rapidly loses fluorescence (apparent Tm) is calculated. These data show that DsRmCh is 

thermostabilized over DsRed by 4 °C, but that when its oligomerization is broken in 

moving from DsRmCh to mCherry, the protein is destabilized by 9 °C (Table 1 and Figure 

S1). The mutations that optimize DsRed’s core for monomerization are also 

thermostabilizing. 

 

DsRmCh is Monomerized with CPD 

Having determined that mutation to the core of mCherry is responsible for the 

spectroscopic alterations to the protein, we next sought to determine if the optimized 

mCherry core would indeed facilitate monomerization. As an initial test of the stability of 

the fluorescence in DsRmCh to surface perturbation, we partially destabilized the AC 

interface, the more stable of the two oligomeric interfaces, by deleting the protein’s five-

residue C-terminal tail. The C-terminal tail stabilizes the AC interface with a crucial 

intermolecular interaction (Figure 1B), and deletion of even the two C-terminal residues in 

DsRed completely knocks out fluorescence (data not shown). DsRmCh, however, tolerates 

a complete deletion of its C-terminal tail, comprising residues 221-225. This variant, which 

we call DsRmCh∆5, remains tetrameric (Figure 3), and there is no significant change to its 

fluorescent properties, although it does dim very slightly (Table 1). The tail deletion to 

DsRmCh does lower its apparent Tm to that of mCherry and there is a slight shift in its 

elution peak by SEC (Figure 3B), indicating that the oligomeric interaction is destabilized. 

As DsRmCh was mostly unperturbed by a deletion of its C-terminal tail, we set out to 

design, via CPD, the β-sheet surfaces of DsRmCh∆c5 to fully monomerize the protein. 

We analyzed DsRed’s two oligomeric interfaces, the AB and AC interface (Figure 1), 

which are named for the crystallographic chain names from the original structure of DsRed 

[20], to determine which residues to target for design. To help narrow down the choices, 

we found ten instances of FP monomerization in the literature, and made an alignment of 

the native FPs and their engineered monomeric variants [5,16,18,21-27]. We found 17 

positions at the two interfaces that were heavily buried, made significant intermolecular 

contacts, and that had been frequently mutated during the monomerization of previous FPs 
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(Figure 2). We then targeted these positions, split about evenly between the AB and the AC 

interface, for surface design using CPD, and allowed the software to sample 12 amino 

acids, mostly polar and charged residues. We ran a single state design calculation because 

in not allowing wild-type amino acids at many of the most buried, hydrophobic interface 

positions, we were confident that we would break oligomerization by force of the number 

of mutations made. Much like Hu and colleagues found in 2008, we did not need to use an 

explicit negative design to achieve a soluble β-sheet surface [2]. We constructed a 

monomeric library (mLib), which comprised the 96 designed variants with the lowest 

predicted free energy in silica. We then expressed and characterized mLib, and found 97% 

(93/96) of mLib to be measurably fluorescent. As an initial test of the success of the 

monomer design, the oligomerization of mLib was tested in high-throughput with a homo-

FRET assay, which measures the loss of polarization due to non-radiative energy transfer 

between neighboring chromophores (Figure 4). Every fluorescent member of mLib was 

also monomeric, confirming the success of the design. To confirm the results of the homo-

FRET assay, select members of mLib were verified by SEC and AUC to be monomeric 

(Figure 3). Importantly, members of mLib were significantly mutated, with 13-16 surface 

mutations per variant, but did not share significant mutational similarity to mCherry apart 

from the shared core mutations. Nine of the 17 non-core sites that were mutated during the 

evolution of mCherry were targeted for mutation in mLib, but in only one instance was the 

amino acid residue present in mCherry picked by the computational design software. As 

the protein core was unchanged between mCherry and the mLib variants, mLib variants 

were spectroscopically similar to mCherry and about equally as bright (Figure 5). 

To objectively measure the success of the computationally designed library mLib, we 

created a 24-member random control library (rLib) in which we randomized amino acid 

mutations at the two oligomeric interfaces.  We varied the same 17 surface positions in 

rLib as were targeted with computational design in mLib, and sampled only the amino acid 

residues that had been allowed in the computational design for mLib. Additionally, we 

weighted the frequency of occurrence of the amino acids at the randomized positions in 

rLib by their occurrence on the surface of bacterial mesophilic intracellular proteins [28].  

We characterized rLib and when compared with mLib, which was 97% fluorescent, we 
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found only 8% (2/24) of rLib variants to be fluorescent enough to accurately measure. Most 

of rLib expressed poorly, with some variants displaying very faint, trace fluorescence (data 

not shown), and the two fluorescent variants that expressed well were both significantly 

dimmer than the median mLib variant (Figure 5). 

We noticed that some mLib variants, although spectroscopically similar to mCherry when 

characterized in vitro, did not seem to express as robustly in culture. We reasoned that the 

C-terminal tail might have some effect on soluble protein expression. To gauge protein 

expression, we directly measured the fluorescence of induced bacterial cultures. We then 

chose four variants from mLib and added back a DsRed or an mCherry tail to see if these 

tails would aid protein expression. In every case, adding DsRed’s hydrophobic C-terminal 

tail (His-His-Leu-Phe-Leu) worsened expression while adding mCherry’s tail, which is a 

GFP mimic, improved expression to a level equivalent to that of mCherry (Figure S2). A 

culture expressing a representative variant, mLib77, was about 70% as bright as mCherry, 

but when mCherry’s 11-residue C-terminal tail was added to the protein, it expressed 

slightly better than mCherry and was more thermostable (Table 1). 

 

Exploring the Core Mutations Found in mCherry 

To further assess the degree to which core stabilization was necessary in the engineering of 

mCherry, and to better understand why mChDsR is not fluorescent, we conducted a series 

of mutational analyses of mCherry. First we reverted each of the 13 positions that had been 

mutated in the core of mCherry (and which were mutated in DsRed to make DsRmCh) to 

the wild-type residue found in DsRed. Ten of these mutants were detectably fluorescent, 

eight of which were about equally fluorescent to mCherry (Table 2). All ten mutants 

showed similar excitation and emission peaks, shifted only by ~2-3 nm. One reversion 

mutation of note was from a glutamine to a lysine at position 163, which improved 

mCherry’s quantum yield (Φ) and brightness. We named this variant mCherryR1. In 

DsRed and mCherry, residue 163 makes Van der Waals contact with the chromophore’s 

phenolate group, but the mutation to glutamine in mCherry appears to disrupt a hydrogen 

bonded water molecule that lys163 stabilizes along with the backbone carbonyl of residue 
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144. Using mCherryR1 as a template, we then continued to revert core positions to their 

wild-type DsRed residues, beginning with the highest quantum yield single reversion 

variants we had characterized. No reversion mutations to mCherryR1 were found to be 

beneficial, and indeed as successive core reversions were made, even though they were not 

negatively impactful individually, in aggregate there was a steady loss of robust protein 

expression and brightness. After several rounds of mutation and screening, we found a 

minimally mutated mCherry core that contained only seven mutations from the wild-type 

DsRed core instead of the 13 present in mCherry. This protein, which we call mCherryR6, 

has six core residue reversion mutations: A44V, A71V, L124F, M150L, Q163K, and 

T179S. Any further reversion mutations to the remaining seven mutated core sites of 

mCherryR6 resulted in a protein that was too weakly expressed to characterize. 

Thermostability measurements of these variants help to explain mCherry’s tolerance for the 

six core reversion mutations found in mCherryR6. The reversion mutation A217T had been 

the most puzzling, as it slightly improves mCherry’s brightness, but was not tolerated in the 

mCherryR6 background. Thermostability data, however, showed that this mutation lowers 

mCherry’s apparent Tm by 9%, which is more than double the impact of any of the six 

mutations present in mCherryR6. No mutation in mCherryR6 had more than a 4% impact 

on stability or a 9% impact on brightness. 

 

3.4 Discussion 

The success of the computational design of an RFP surface shows both that properly 

implemented computational procedures can be successful in designing soluble protein 

surfaces, and that FP monomerization is a problem that is readily solved when separated 

from the more difficult problem of core optimization. We have provided a systematic 

demonstration of the capacity of CPD to design stable and soluble β-sheet surfaces, and 

more specifically the surface of a β-barrel protein. We allowed our computational 

procedure to design 17 surface residues on DsRmCh, or about one third of the total RFP 

surface, and designed variants had anywhere from 13 to 16 surface mutations. To our 

knowledge this is the first demonstration of the use of computational design to transform a 
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β-sheet surface seamlessly from a hydrophobic intermolecular interface into a solvated 

surface. Designing the surface of a fluorescent protein presented us with a unique 

opportunity to easily diagnose the success or failure of designed variants, as the brightness 

and monomericity of each variant could be assayed in high throughput. In fact mLib, the 

library of 96 DsRmCh∆5 variants that we designed using CPD, is 97% fluorescent, entirely 

monomeric, and exhibits a mean brightness near to that of the heavily evolved mCherry. In 

mLib we replicated the monomerization of mCherry, reproducing with one small, explicitly 

designed library, the surface optimization that was conducted over numerous successive 

rounds of evolution by fluorescence-activated cell sorting (FACS) and colony screening 

[19]. An important confirmation of the value added from CPD is that a random control 

library, rLib, only produced two of twenty-four fluorescent variants, both of which were 

significantly dimmer than the median mLib variant.  

In addition to showing the utility of CPD for designing the surface of globular β-sheet 

proteins, we can take away some interesting lessons as they pertain to RFP engineering 

more generally. Previous efforts at RFP engineering have struggled to decouple alterations 

to the spectroscopic properties of an RFP from oligomeric control of the protein. To our 

knowledge, significant perturbation to the oligomerization of RFPs by way of intuition-

based mutation to RFP surfaces has negatively impacted fluorescence in every case. It has 

only then been through extensive directed evolution, involving heavy mutation to the RFP 

core, that fluorescence in a monomer has been restored. What has not been clear, however, 

is the degree to which surface positions are implicated directly in fluorescence as opposed 

to having more general structural roles. Here, we attribute RFPs’ sensitivity to surface 

mutations, especially those targeted at disrupting oligomeric interfaces, to a general 

structural perturbation that ensues a loss or partial loss of oligomerization. In native RFPs, 

the chromophore core, being adapted to the oligomer, is presumably perturbed in some 

important way when oligomerization is disrupted even partially, leading to loss of protein 

stability or a disturbance of the active site geometry. This theory is supported by the fact 

that every successful RFP monomerization has involved significant restructuring of the 

immediate chromophore environment [18,29-32]. By contrast, in DsRmCh, we borrow a 
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previously adapted core, which then permits monomerization completely independent of 

any compensatory mutation to core residues. 

It has also been proposed that a well-designed C-terminal tail is important to a monomeric 

FP, despite little structural evidence to support this theory. During the evolution of 

mCherry, for instance, GFP’s tail was grafted onto the C-terminus of an early variant, a 

strategy that has subsequently been repeated in other FP engineering efforts [19]. We find 

that the C-terminal tail plays a critical structural role in oligomeric RFPs, but does not do so 

in monomeric RFPs, as an RFP that has a core that is adapted to a monomeric scaffold can 

tolerate a full tail deletion, whereas a strictly oligomeric RFP cannot. We deleted the entire 

C-terminal tail of DsRmCh (residues 221-225) before engineering its β-sheet surface to 

break oligomerization, with no significant impact to its brightness. DsRed, by contrast, 

being maladapted to monomerization, takes a significant hit to its fluorescence with the 

deletion of just one C-terminal residue, Leu225, and completely loses fluorescence with the 

deletion of a second (Table 1). We then find through the study of mLib variants that the C-

terminal tail can improve the expression of monomeric RFPs, which most likely has to do 

with protein solubility effects. The addition of mCherry’s C-terminal tail to mLib variants 

improves their expression and thermostability, whereas the addition of DsRed’s 

hydrophobic tail decreases protein expression in mLib variants, although confusingly not 

thermostability. Neither tail, however, had any significant impact on brightness. We 

propose that a well-engineered C-terminal tail may help to prevent protein aggregation in 

some monomeric RFPs, but that further optimization may obviate the need for the tail 

altogether. 

We describe the successful computational design of the surface of a soluble protein with a 

large β-sheet component, breaking homo-oligomerization. By designing the surface of an 

RFP we were able to both easily measure the success of the designed variants, and 

contribute to a better understanding of FP engineering. Our results suggest that the core of 

an FP determines its fluorescent characteristics, independent of serious structural 

perturbation, but that not every fluorescent core is viable in a monomeric scaffold. To 

design the next generation of brighter and bathochromically shifted RFPs, researchers will 

need to gain a more thorough understanding of the structural environment throughout the 
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protein core, especially in the vicinity of the chromophore. Specifically, it will be important 

to find red-shifted RFP cores that remain structurally sound, catalyze chromophore 

cyclization, and provide an environment shielded from bulk solvent in the context of a 

monomeric scaffold. 

 

3.5 Materials and Methods 

Plasmids and Bacterial Strains 

DsRed and mCherry sequences were taken from their Genbank entries (accession numbers 

AF168419 and AY678264). Ten amino acids were added to the N-terminus of each 

protein, consisting of a methionine followed by a 6x histidine tag for protein purification, 

and then followed by a Gly-Ser-Gly linker sequence. All gene sequences were constructed 

with gene assembly PCR, oligonucleotides for the assembly were designed with 

DNAworks, and then ordered from Integrated DNA Technologies (IDT). Assembled genes 

were PCR-amplified and cloned into the pET-53-DEST expression plasmid (EMD 

Millipore) with PIPE cloning followed by CPEC. Constructs were sequence-verified 

(Laragen) with a primer specific to the T7 promoter, and then transformed into BL21-

Gold(DE3) competent cells, a protein expression strain (Agilent). 

 

Construction of Designed Libraries and Variants 
Explicitly-designed DsRmCh, mLib, and rLib protein sequences were input into 

DNAworks as “mutant runs” of the wild-type DsRed gene assembly. This allows explicit 

libraries of gene variants to be assembled and minimizes the number of oligonucleotides 

needed. Oligonucleotides were ordered from IDT and cloning was carried out as described 

above. 
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Protein Expression and Purification 

Single bacterial colonies were picked with sterile toothpicks and inoculated into 300 µl of 

Super Optimal Broth (SOB) supplemented with 100 µg/ml ampicillin in 2 ml deep-well 96-

well plates (Seahorse Bioscience). The plates were sealed with microporous film to 

facilitate gas exchange during growth. Cultures were grown overnight at 37 °C / 300 RPM. 

The next morning 800 µl of fresh SOB with 100 µg/ml ampicillin and 1mM Isopropyl β-D-

1-thiogalactopyranoside (IPTG) was added to a total volume of 1 ml (evaporation losses 

overnight are approximately 100 µl). Plates were then shaken 12 hours at 37 °C / 400 

RPM. Cell cultures turn red if there is strong RFP expression. The 96-well plates were then 

centrifuged at 3,000 x g in a swinging-bucket rotor and the supernatant was decanted. 

Pellets were resuspended in 500 µl of lysis buffer (50 mM sodium phosphate, 150 mM 

NaCl, 0.1% v/v Triton-X, 10% v/v 10x Cell Lytic B, pH 7.4) supplemented with 50 

Units/ml Benzonase and 0.05 mg/ml Hen Egg Lysozyme. Plates were then shaken on a 

benchtop plate shaker with a 3 mm orbital stroke length at 1,000 RPM for 30 minutes. To 

pellet down the cellular debris, the plates were again centrifuged for 10 minutes at 3,000 

RPM in a swinging-bucket rotor. The colored supernatant was then applied to a 96-well 

His-Select filter plate (Sigma), washed twice (50 mM sodium phosphate, 150 mM NaCl, 15 

mM Imidazole, pH 7.4), and eluted with 500 µl elution buffer (50 mM sodium phosphate, 

150 mM NaCl, 250 mM Imidazole, pH 7.4). All His-Select purification steps were 

performed at 1,000 x g in a swinging bucket rotor. 

Fluorescent Protein Characterization 

Purified proteins were assayed in triplicate in Greiner UV-Star 96-well plates with a Tecan 

Safire2. An absorbance scan (260 – 650 nm), a fluorescence excitation scan (500 – 640 nm 

excitation / 675 nm emission), and a fluorescence emission scan (550 nm excitation / 575 – 

800 nm emission) were run on 100 µl of eluted protein to determine spectral peaks. 

To measure the quantum yield we diluted each protein so that the absorbance for 200 µl of 

protein at 540 nm was between 0.1 and 0.5. We then measured the A550 in triplicate (or 

duplicate if it was a poorly expressed protein), diluted the sample to an A550 of 0.04 and 

took an emission scan (540 nm excitation / 550 – 800 nm emission). The area under the 
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emission curve was calculated after fitting it to a 4th order Gaussian, and the quantum yield 

was calculated with the following formula: 

Φx = ( As / Ax )( Fx / Fs )( nx / ns )2 Φs   (1) 

Where Φ is quantum yield, A is absorbance, F is total fluorescent emission (area under the 

curve), and n is the refractive index of the solvents used. Subscript X refers to the queried 

substance and subscript S refers to a standard of known quantum yield.  It is important that 

the standard be excited with the same wavelength of light as the unknown sample. We use 

DsRed, which has a known quantum yield of 0.79 as the protein standard. 

To measure extinction coefficient we took 100 µl of the protein solution that had been 

diluted to an A550 of between 0.1 and 0.5 and measured absorbance between 400 nm and 

700 nm in triplicate. We then added 100 µl of 2M NaOH to each well and remeasured 

absorbance between 400 nm and 700 nm. The base-denatured chromophore, which peaks 

at approximately 450 nm has a known extinction coefficient of 44,000 M-1cm-1. Then to 

calculate the extinction coefficient is calculated with the following formula: 

ε = AChromophore * 44,000 M-1cm-1 / A450   (2) 

To measure thermal stability, purified proteins were diluted to an absorbance of 0.2 at the 

wavelength of maximum absorbance (λabs) so that their fluorescence would not saturate 

the detector. 50 µl of each purified protein was then loaded into a 96-well PCR plate and 

covered with clear optical tape. The proteins were incubated at 37°C for 10 minutes and 

then the temperature was ramped at 0.5°C every 30 seconds up to 99°C, with fluorescence 

measured every ramp step in a CFX96 Touch Real-Time PCR Detection System (Bio-

Rad). We refer to this as a thermal melt. The derivative curve of the thermal melt finds the 

inflection point of the slope, which is the apparent temperature at which fluorescence is 

irrecoverably lost (apparent Tm). 

Oligomeric Determination 

Size exclusion chromatography 
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100 µl of each purified protein analyzed was run over a Superdex 75 10/300 size exclusion 

column with 25 ml bed volume on an AKTA from GE Life Sciences. Absorbance was 

measured after passage through the column at 575 nm, where the red chromophore absorbs. 

Analytical ultracentrifugation 

Purified protein samples were diluted to an A575 of 0.5 for a path-length of 1.25 cm. These 

samples were put into two-channel sedimentation velocity cuvettes with the blank channel 

containing PBS. Sedimentation velocity was run at 40,000 RPM overnight with full A575 

scans collected with no pause between reads. Data was loaded into Sedfit and a c(m) 

distribution was run with default assumptions made for PBS buffer viscosity. After 

integration, the c(m) curve was exported to Excel. (C) Homo-FRET. 200 µl of each 

purified protein was diluted to an Absorbance of 0.1 to 0.5 at 530 nm in 96-well Greiner 

UV-Star plates. Polarization scans were then taken with excitation at 530 nm and emission 

at 610 nm in a Tecan Safire2 plate-reader. Rose Bengal was used as a standard to calculate 

the instrument G factor (mP = 349). 
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3.7 Tables and Figures 

Table 1. Properties of DsRed, mCherry, DsRmCh, and Variants. This table lists the 
spectroscopic properties of the important RFP variants mentioned in this paper. “mLib 
Avg” gives the mean of all members of mLib, while “mLib Top” gives the top value of 
each attribute seen in mLib. “mLib Top” does not refer to one specific variant. 

 

RFP Name 

# Non-tail 
mutations 
(∆/+ tail 
length) 

Excitation 
Max 

λex  (nm) 

Emission 
Max 

λem (nm) 
Φ 

 ε  
(M-1 cm-1) 

/ 1000 

Brightness 
(Φ x ε) / 

1000 

Apparent 
Tm (°C) 

Fluorescence 
in Culture: 

 570 nm ex / 
610 nm em  

(% mCherry) 
DsRed -- 558 585 0.79 73 58 94.5 -- 

DsRed∆1 ∆1 † 558 584 0.57 53 30 84.0 -- 
mCherry 30 +6 ‡ 588 611 0.22 85 19 89.5 100 

mCherry∆6 30 588 611 0.21 91 19 89.5 103 
mCherry∆11 30 ∆5 † 588 612 0.20 78 16 87.5 98 

DsRmCh 13 585 611 0.23 97 22 98.5 133 
DsRmCh∆5 13 ∆5 † 586 612 0.20 92 21 89.5 113 
mLib Avg 26 ∆5 † 585 608 0.23 62 14 -- -- 
mLib Top 29 ∆5 † 586 609 0.26 72 19 -- -- 
mLIb77 27 ∆5 † 586 609 0.23 72 17 89.0 72 

mLib77 + 
DsRed Tail 27 584 609 0.23 72 17 91.5 45 

mLib77 + 
mCherry Tail 27 +6 ‡ 586 609 0.24 72 17 93.0 107 

† - ∆ indicates a number of residues deleted from the C-terminal tail 

‡ - + indicates a number of residues added to the C-terminal tail 

  



 

 

52 

Table 2. mCherry Core Reversion Variants This table lists changes to peak emission 
wavelength, brightness, and thermostability as the result of reversion mutations to 
mCherry’s core. 

 
Mutation Brightness 

(% mCherry) 
Apparent Tm 
(% mCherry) 

Shift in 
emission 

(nm) 
 WT mCherry 100 100 -- 

A44V 93 96 +2 
M68Q 90 95 -3 
A71V 100 100 -3 
L124F 99 99 -- 
M150L 91 98 -1 
Q163K 

(mCherryR1) 108 98 -- 

A175V 84 98 -- 
V177F 24 93 +4 
T179S 95 98 +1 
A217T 104 91 -2 

M150L / Q163K 104 99 -2 
Q163K / T179S 94 99 +1 
A71V / Q163K / 

T179S 100 99 -1 

A71V / M150L / 
Q163K / T179S 95 98 -3 

A71V / L124F / 
M150L / Q163K / 

T179S 
93 97 -3 

A44V / A71V / 
L124F / M150L / 
Q163K / T179S 
(mCherryR6) 

81 89 -1 
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Figure 1. Structure of DsRed (PDB ID: 1ZGO). (A) Positions that were mutated in the 

core of the protein during the directed evolution of mCherry. DsRed is shown as a cartoon 

in gray, mutated residues are shown in sticks, and those within 5 Å of the chromophore are 

highlighted in orange. The aligned residues from mCherry (PDB ID: 2H5Q) are overlaid in 

pink. (B) To visualize the tertiary structure of DsRed chains B, C, and D from the crystal 

structure are shown as a gray surface, while chain A is shown as an orange cartoon. The C-

terminal tail of chain A, shown as spheres, stabilizes the AC interface between chain A and 

chain C, to its immediate left in the image. Below chain A in the image is chain B, with 

which chain A forms the AB dimeric interface. 

  

A B 
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Figure 2. Schematic Representation of the AB and AC Interfaces. (A + B) Color-coded 

representation of mutational frequency during the monomerization of a select group of FP 

monomers (mRFP1, DsRed.M1, mTFP1, mAG, mKO, mEosFP, mKeima, TagRFP, 

Dendra, and Dronpa) mapped onto the AB and AC interfaces. (C + D) A representation of 

the two interfaces as a grid, with solid squares denoting residues from chain A and open 

squares denoting residues from the interacting chain. The proximity of solid to open 

residues represents inter-chain oligomeric interactions and the dashed lines are the lines of 

symmetry. Note that β-sheets from opposing subunits of the AC interface are stacked in an 

anti-parallel fashion, while those of the AB interface are offset by ~90°. Note also that 

cleaving residues from position 221 onward (C-terminal tail) noticeably decreases the 

complexity of the AC interface. (E) The residues picked for computational design in mLib 

were chosen to be those that were highly mutated and made numerous intermolecular 

contacts. 

21,96,106,125,127,145,149,153,162,1
64,174,176,180,182,192,194,216 

B 

C 
D 

E 

A 
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Figure 3. Low Throughput Oligomerization Analysis of Important FPs by AUC and 

SEC. (A) The c(m) distribution was calculated for a sedimentation velocity run by AUC. 

This data clearly shows that DsRed, DsRmCh, and DsRmCh∆5 are tetrameric, while 

mCherry and mLib variant 23 are both monomeric. (B) SEC data was collected on a 

Superdex 75 column. DsRed and DsRmCh are clearly tetrameric and a shift can be seen in 

DsRmCh∆5 after the deletion of the five C-terminal residues. mCherry by contrast, runs as 

a clear monomer, and the designed mLib variants run even further shifted than mCherry, 

possibly reflecting their lack of C-terminal tail. 
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Figure 4. High Throughput Oligomerization Analysis of mLib and Important FPs by 

Homo-FRET. The polarization of the fluorescent emission of purified proteins was 

analyzed to determine their oligomeric state. Non-radiative transfer of energy between 

monomers in an oligomeric protein will cause a drop in the polarization of the fluorescent 

emission. DsRed and DsRmCh clearly show lower polarization than do mCherry and 

mLib, both confirming the results seen by AUC and SEC in Figure 3 and suggesting that 

Homo-FRET is a good high-throughput technique for accurately gauging the 

oligomerization of fluorescent proteins. Position along the x-axis just serves to separate 

individual variants for better visibility. 
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Figure 5. Characterization of Designed Libraries and Important Variants. The charts 

above graphically represent the (Top) quantum yield, (Middle) extinction coefficient, and 

(Bottom) brightness of mLib, rLib, and important standards. Only two of the twenty-four 

rLib variants expressed well enough to characterize, and both are significantly dimmer than 

the mLib mean. The brightest mLib variants are about equally as bright as mCherry, but 

with a higher quantum yield and lower extinction coefficient than mCherry. Note that 

DsRed is much brighter than DsRmCh, entirely due to its greatly increased quantum yield. 

DsRmCh by contrast has a higher extinction coefficient than DsRed. Library error bars 

represent one standard deviation of the average mLib or rLib member. Error bars on 

specific variants represent the standard deviation from three separate measurements. 
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3.8 Supplementary Tables and Figures 

 

Figure S1. Thermal Stability of Important Variants. Important DsRed, DsRmCh, and 

mCherry variants were purified and thermally denatured in a real-time PCR machine. The 

decrease in fluorescence as the proteins unfolded was measured in real-time, and shown 

here are the normalized derivative curves. The peaks of these curves represent the 

temperature at which fluorescence dropped the most quickly (apparent Tm). DsRmCh is 

the most stable variant, as it is tetrameric, has the C-terminal tail, and a stabilized mCherry 

core. Monomerization destabilizes mCherry, and the effects of core reversion mutations 

can be seen in the mCherry variants R1 and R6. 
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Figure S2. mCherry Tail Improves Protein Expression. We grafted either a 5-residue 

DsRed tail (HHLFL) or an 11-residue mCherry tail (HSTGGMDELYK) onto four mLib 

variants and measured their fluorescence in an induced bacterial culture. The DsRed tail 

negatively impacts protein expression, while the mCherry tail significantly improves it. 

mLib variants with grafted mCherry tails express as well as mCherry. 
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DsRed&Residue: T V T I V A R R H A L E I M Y Y R

mLib&# 21 96 10
6

12
5

12
7

14
5

14
9

15
3

16
2

16
4

17
4

17
6

18
0

18
2

19
2

19
4

21
6

1 R R Q T T E N Q N Q R K C C N Q C
2 R R Q T T E N Q N Q R K C N N Q C
3 R R Q T T E N Q N Q K K C C N Q C
4 R R Q T T E N A N Q R K C C N Q C
5 R H R T T E N Q N Q R K C C N Q C
6 R R Q T T E N Q D Q R K C C N Q C
7 R R Q T T E N N N Q R K C C N Q C
8 R R Q T T K N Q N Q R K C C N Q C
9 R R Q Q T E N Q N Q R K C C N Q C
10 R T Q T R E N Q N Q R K C C N Q C
11 R R Q T T E N Q N Q R K C C D Q C
12 R R Q T T E N Q N Q Q K C C N Q C
13 R R Q T T E D Q N Q R K C C R K C
14 R R Q T T E N A N Q K K C C N Q C
15 R R Q C T E N Q N Q R K C C N Q C
16 R R Q T T E N A N Q R K C N N Q C
17 R R Q T T K N Q N Q R K C N N Q C
18 R R Q T T E N Q N Q H K C C N Q C
19 R R Q T T E N Q N Q R H C C N Q C
20 R R Q T T E Q A N Q R K C C N C C
21 R H R T T E N A N Q R K C C N Q C
22 R R Q T T E N Q D Q H K C C N Q C
23 R R Q T T K N Q D Q R K C C N Q C
24 R H R Q T E N Q N Q R K C C N Q C
25 R R Q T T E N A D Q R K C C N Q C
26 R H R T T E N Q D Q R K C C N Q C
27 R H R T T K N Q N Q R K C C N Q C
28 R R Q T T K Q Q N Q R K C C N C C
29 R R Q T T K N A N Q R K C C N Q C
30 R R Q Q T E N A N Q R K C C N Q C
31 R T Q T R E N A N Q R K C C N Q C
32 R R Q Q T E N Q N Q K K C C N Q C
33 R R Q Q T E N Q D Q R K C C N Q C
34 R T Q T R K N Q N Q R K C C N Q C
35 R R Q C T E N Q N Q K K C C N Q C
36 R T Q T R E N Q D Q R K C C N Q C
37 R H R T T E N Q N Q K K C C N Q C
38 R R C T T E N Q N Q R K C C N Q C
39 R R Q T T K N Q N Q Q K C C N Q C
40 R R Q T T E N A N Q Q K C C N Q C
41 R H R T T E N Q N Q Q K C C N Q C
42 R R Q Q T E N Q N Q Q K C C N Q C
43 R R Q T T E D A N Q R K C C R K C
44 R R Q C T E N A N Q R K C C N Q C
45 R R Q T T E N Q D Q K K C C N Q C
46 R T Q T R E N Q N Q Q K C C N Q C
47 R R C Q T E N Q N Q R K C C N Q C
48 R R Q T T E D A N Q R K C C R Q C
49 R K C Q T E N Q N Q R K C C N Q C
50 R R Q T T E D Q D Q R K C C R K C
51 R T N T T E N Q N Q R K C C N Q C
52 R R Q C T E N Q D Q R K C C N Q C
53 R R Q C T E N N N Q R K C C N Q C
54 R R Q Q T E N A N Q K K C C N Q C
55 R R Q T T K N Q D Q H K C C N Q C
56 R R Q T T E N A N Q H K C C N Q C
57 R R Q T T K N A N Q R K C N N Q C
58 R R Q C T K N Q N Q R K C C N Q C
59 R R Q T T E N S N Q R K T N N Q C
60 R H R T T E N Q N Q H K C C N Q C
61 R R Q T T E N A D Q H K C C N Q C
62 R R Q T T K N A D Q R K C C N Q C
63 R T Q T R E N Q N Q H K C C N Q C
64 R H R Q T E N A N Q R K C C N Q C
65 R H R T T K N A N Q R K C C N Q C
66 R H R T T E N A D Q R K C C N Q C
67 R H R T T K Q Q N Q R K C C N C C
68 R R Q C T E N Q N Q Q K C C N Q C
69 R H R Q T E N Q D Q R K C C N Q C
70 R R Q Q T K N Q D Q R K C C N Q C
71 R R Q Q T K N A N Q R K C C N Q C
72 R R Q Q T E N A D Q R K C C N Q C
73 R H Q T T K N Q N Q R K C C N Q C
74 R H R T T K N S N Q R K C C N Q C
75 R R Q Q T E N Q D Q H K C C N Q C
76 R T Q T R K Q Q N Q R K C C N C C
77 R T Q T R K N A N Q R K C C N Q C
78 R H R T T K N Q N Q K K C C N Q C
79 R T Q T R E N A D Q R K C C N Q C
80 R T Q T R K N Q D Q R K C C N Q C
81 R T Q C R E N A N Q R K C C N Q C
82 R R C T T E N Q N Q K K C C N Q C
83 R H R T T K N Q N Q Q K C C N Q C
84 R H R T T E N A N Q Q K C C N Q C
85 R T Q C R K N Q N Q R K C C N Q C
86 R T Q C R E N Q D Q R K C C N Q C
87 R H R T T K N Q N Q K K C C D Q C
88 R T Q T R E N S D Q R K C C N Q C
89 R R Q T T K D A N Q R K C C R Q C
90 R T Q T T E N Q D Q R K C C N Q C
91 R H R T T K N S N Q R K C C D Q C
92 R R Q T T K N Q D Q K K C C N Q C
93 R R Q T T K N N D Q R K C C N Q C
94 R R C T T E N Q D Q R K C C N Q C
95 R R Q T T E N Q N S K N C C N Q C
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CHAPTER 4 

mGinger: A Soluble Far-Red Fluorescent Monomer Derived 

from HcRed 

 (The following people contributed to this work: R. Scott McIsaac2 provided helpful 

discussion, Kevin S. Brown3 helped with MSA calculations, and Frances H Arnold2 

provided helpful discussion.) 
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2 Division of Chemistry and Chemical Engineering, Mail Code 210-41, California Institute 
of Technology, Pasadena, California, United States of America 
 
3 Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, 
United States of America  

4.1 Abstract 

Anthozoa class red fluorescent proteins (RFPs) are heavily used as biological markers, with 

far-red emitting variants (λem ~ 600 – 900 nm) sought for whole animal imaging because 

biological tissues are most permeable to light in this range. However, all known RFPs are 

natively tetrameric, which is not ideal for cell biological applications. Efforts to engineer 

monomeric variants for imaging applications have imposed a brightness cost and often 

produced blue-shifted monomers. Fluorescence is sensitive to structural changes in the 

protein, and is typically lost when oligomeric interfaces are broken apart. As a result only 

four native RFPs have been monomerized, leaving the vast majority of RFP biodiversity 

untapped in biomarker development. Here we report the first monomerization of HcRed, a 

far-red FP, and describe a comprehensive methodology for the rapid monomerization of 

novel red-shifted tetrameric RFPs. We first engineered HcRed7 (λem = 642 nm), a dimeric 

core variant that is brighter, stabilized, and bathochromically shifted, and whose structure 

helps to shed light on far-red emission. The final designed monomeric variants are called 

mGinger0.1 (λem = 637 nm) and mGinger0.2 (λem = 631 nm). 
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4.2 Introduction 

Monomeric fluorescent proteins (FPs) are preferred as fluorescent biomarkers because the 

oligomerization of an FP tag can artificially aggregate its linked protein target, altering 

diffusion rates and interfering with target transport, trafficking, and activity (1, 2). To the 

best of our knowledge, ~50 native red fluorescent proteins (RFPs) and ~40 chromoproteins 

(CPs) with peak absorbance in the red or far-red (λabs >550 nm) have been described to 

date, but most have not been extensively characterized because they are as a class 

tetrameric (3, 4). These proteins exhibit spectroscopic properties that would be of use in 

monomeric RFP markers (e.g. far-red excitation/emission and enhanced brightness), but 

breaking tetramerization without disrupting fluorescence has proven difficult. An 

underlying biological reason for the observed obligate tetramerization of native RFPs is not 

well understood, but it has been suggested to be related to proposed photoprotective 

functions of RFPs (5, 6), and it has been noted that chromoproteins (CPs) and RFPs, which 

are all obligate tetramers are protected better against reactive oxygen species than green 

and cyan FPs (7, 8). It is possible, however, that the tetramerization of Anthozoa class RFPs 

plays a basic structural role in stabilizing a chromophore environment that allows for bright 

and stable fluorescence at red wavelengths. This possibility is supported by the observation 

that of the five known independent instances in which an RFP has been monomerized (9-

12), there has always been either a hypsochromic shift to the maximum intensity emission 

wavelength (λem) or a decrease in the brightness of the protein, and sometimes both (Table 

1). Furthermore, in each of these cases significant mutagenesis of the RFP core and 

chromophore environment has been necessary to permit fluorescence in the engineered 

monomer. We recently showed that a protein core that has been optimized to be fluorescent 

in a monomeric scaffold is sufficient to enable efficient monomerization, which we 

accomplished via computational design of the RFP β-sheet surface. Changes to the 

fluorescent properties of the protein were conveyed entirely by mutations to the protein 

core, which suggested that in future RFP engineering, core optimization will need to be a 

separate and carefully conducted part of any monomerization process. 
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Beyond monomericity, RFPs that excite and emit in the far-red or near infrared are in high 

demand. These wavelengths penetrate tissue with minimal absorption by biological 

molecules such as hemoglobin, melanin, and water, making bright infrared molecular 

probes ideal for a variety of imaging applications in live vertebrate hosts (13). RFPs have 

been useful in this context, and engineered monomeric RFP variants have seen the most 

widespread adoption because of the benefits that a monomer confers. Efforts to 

monomerize RFPs though have invariantly led to detrimental effects on their fluorescent 

properties, in addition to the aforementioned loss of brightness or hyspochromic shift to 

fluorescence emission, many engineered monomeric RFPs are less photostable or show 

disrupted chromophore maturation (14, 15). The current slate of monomeric RFPs consists 

of a cadre of red to far-red variants that has not been extensively or uniformly characterized 

and that – when compared with their green- or cyan-emitting cousins – is extremely dim 

(16, 17). Furthermore, the brightest of these RFPs tend to exhibit the lowest λem, because as 

they have been targeted for brightness gains via directed evolution there has been a 

tendency to accumulate mutations that hypsochromically shift fluorescent emission. In fact 

there is a clear negative correlation between brightness and bathochromic fluorescent 

emission among both native and engineered RFPs regardless of oligomeric state (Figure 1). 

Native RFPs, which are all tetrameric, mostly emit between 575 and 615 nm, and 

engineered monomeric and oligomeric variants within this spectral range have been 

optimized to approach the native proteins’ brightness. When proteins are engineered for 

far-red fluorescent emission, however, brightness drops off significantly faster among 

monomeric proteins than among higher-order oligomers, although there is a clear decline in 

brightness among the latter group as well. The biophysical reasons for this trend are not 

understood, and many of these far-red proteins have been poorly characterized, with 

oligomeric state in particular subject to frequent mischaracterization (1, 11).  

RFP engineering has mostly focused on the continued development of previously targeted 

proteins, leaving the vast majority of known RFP biodiversity untapped. Previous efforts to 

monomerize native RFP tetramers relied on directed evolution, with intuition-based 

disruption of oligomeric interfaces followed by random mutagenesis to recover 

fluorescence. Though partially successful, these processes are long and labor-intensive, and 
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furthermore the spectroscopic character of the parental RFP has never been preserved in the 

monomeric derivative. Fluorescence is knocked out in native RFPs after the introduction of 

mutations that break a tight dimeric interface, necessitating recovery of the lost 

fluorescence by error-prone mutagenesis, which has invariantly introduced protein core and 

chromophore-proximal mutations. By requiring mutation to the chromophore environment 

for successful monomerization, it has not been possible to exert any significant degree of 

control over the spectroscopic properties of the resultant monomer. To illustrate this point, 

the furthest red parental protein of any successful monomerization attempt to date is 

mKate2 (18), with a λem of 630 nm. But in monomerizing the protein, 7 core positions were 

mutated, leaving the monomer FusionRed significantly hypsochromically shifted, with a 

λem of 608 nm (11) (Table 1). 

Here we present a comprehensive engineering strategy for the monomerization of novel 

RFPs that focuses on separating core optimization from surface design. This allows the 

screening of a diverse set of RFP cores for optimized variants that better tolerate 

monomerization. This strategy allows us to fully monomerize an RFP for the first time 

without mutation to the protein core. We chose to engineer HcRed, a far-red engineered 

dimer/tetramer (19) (λem = 633 nm) with the dual goal of monomerization and retention of 

far-red λem. We generated mGinger0.1, the most red-shifted first generation monomeric 

RFP to date; however, unlike our previous work in which an optimized RFP core allowed 

monomerization with little change to the parent tetramer’s spectroscopic properties, the 

monomerization of a core-optimized HcRed caused a hypsochromic shift to the λem and a 

significant loss of brightness. Still, mGinger0.1 and mGinger0.2, named for their bright red 

coloring, fit along the monomeric RFP brightness frontier (Figure 1), and are among the 

brightest and furthest red-shifted monomeric RFPs engineered to date (mGinger0.1: λem = 

637 nm, Φ = 0.02; mGinger0.2: λem = 631, nm Φ = 0.04). To contribute to a better 

understanding of RFP engineering, and learn some lessons from the design process, we 

conducted a structural study of the monomerization of HcRed. Here we present the 

structures of a red-shifted, core-optimized dimer; we are close to obtaining a structure of 

the final monomers. We successfully engineer red-shifting chromophore interactions into 

the dimer that we believe are partially maintained after monomerization. This structural 
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study will help to shed some light on the reasons behind hypsochromic shifts and 

brightness loss in RFP monomers and suggests strategies for designing next generation 

markers. 

4.3 Results 

Small Perturbations to Oligomerization Knock Out Fluorescence in HcRed 

HcRed is a 9-point mutant of the chromoprotein HcCP (19). Two mutations were made to 

its core while engineering the protein: Cys143Ser is a known cis chromophore stabilizing 

mutation that induced fluorescence in HcCP, and Leu173His was found during error prone 

mutagenesis. Additional mutations were made to the surface to disrupt oligomerization, but 

HcRed remains dimeric with a slight tetrameric proclivity (Figure S1). Its AC interface 

remains intact, while its AB interface is partially broken; these interfaces are named for the 

‘A’, ‘B’, and ‘C’ chains from the first structure of DsRed (20). The AC interface is the 

more stable and difficult to break of the two dimeric interfaces, and it buries a defect in the 

RFP beta barrel: a protrusion in the surface of the β-barrel at β-strand 7 is caused by the 

phenolate ring of the chromophore (Figure 2B). To test the ability of HcRed to sustain 

perturbation to its AC interface, we made successive deletions to its C-terminal tail, which 

stabilizes the interface with an intermolecular loop-β-sheet interaction (Figure 2A). Like 

other native RFPs, HcRed does not tolerate a C-terminal tail deletion, losing significant 

brightness with the deletion of just one C-terminal residue, and completely losing 

detectable fluorescence with a deletion of five C-terminal residues (data not shown). This 

loss of fluorescence mirrors the loss of fluorescence seen during efforts to break HcRed 

oligomerization through perturbations to the surface of the AC interface. The intolerance of 

HcRed to a tail deletion suggested that it was not optimized for fluorescence in a 

monomeric scaffold, and so optimization of the chromophore environment would be 

necessary prior to monomerization. 
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Optimization of the HcRed Core Leads to a Brighter RFP Dimer 

To pick sites to target for mutagenesis in the protein core we constructed an alignment of 

well-characterized, bright, and far-red monomeric and dimeric RFPs along with their native 

tetrameric parents (Table S2). Residues that showed diversity in the alignment or that were 

frequently mutated in engineered monomers and dimers were selected for mutagenesis. We 

then designed a library that sampled amino acids that appeared frequently in the alignment, 

or that were of interest because they contributed to known red-shifting chromophore 

interactions. 

The first mutational hotspot we identified was a group of residues that surrounds the two 

alternative conformations of the phenolate side chain of the chromophore, which are visible 

in HcRed’s crystal structure (Figure 3A) and were confirmed to exist in single-molecule 

studies. HcRed was engineered from a non-fluorescent chromoprotein (HcCP) with the 

introduction of a cysteine to serine mutation at position 143 that stabilizes an alternative, 

fluorescent conformation of the chromophore with a hydrogen bond to its phenolate 

oxygen. This alternative conformation is called the cis chromophore, as the phenolate 

group sits cis to the proximal nitrogen on the imidazolinone ring rather than trans to it. In 

most known RFPs and red-absorbing chromoproteins (CPs), the cis chromophore is the 

fluorescent species, whereas the trans chromophore is non-fluorescent. As HcCP is a native 

chromoprotein with a chromophore pocket naturally evolved to stabilize the non-

fluorescent trans chromophore, we designed a first core library (cLibA) to increase 

brightness in HcRedAB1 by comparatively stabilizing the cis over the trans chromophore. 

We targeted trans-stabilizing residues for mutation (Asn158 and His173 are hydrogen bond 

donors to the phenolate oxygen), and hoped to place bulkier side chains in the trans pocket. 

A total of 14 mutations were allowed at Ser143, Asn158, Met160, His173, and Thr175, for 

a theoretical total library size of 448 (Figure S1). 

We used a second core library (cLibB) to target a structural region that lies above the 

chromophore, between the central α-helix and the unbroken AC oligomeric interface 

(Figure 3B). The reason for the high occurrence of mutations found in this region when 

monomerizing RFPs is unclear. An important structural feature may provide a clue, in that 
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there is a channel populated by structural waters that stretches from the protein surface at 

the top of the β-barrel significantly into the center of the protein. Thus instability in this 

region caused by a break in the AC oligomeric interface may open up a water channel from 

the bulk solvent to the chromophore, which would quench the chromophore cyclization 

reaction. Alternatively, the break in oligomerization may interfere with the placement of 

arg67, which is a key catalytic residue found in this region that is responsible for 

abstracting a proton from the bridging carbon of the phenolate side chain during 

chromophore maturation. A total of 18 mutations were allowed at Gly28, Met41, Arg67, 

Thr68, Phe80, Asn158, Ile196, and Ser215, for a theoretical total library size of 432 (Figure 

S1). Two chromophore-backing positions (Gly28 and Met41) were included in this library, 

because they have been shown to be important in maturation and far-red fluorescence (14, 

21, 22). 

 We screened each library to >95% coverage on large LB agar plates supplemented with 

IPTG, which produced colonies of various colors ranging from pink to red to purple. We 

picked colonies that were brightly colored, sequenced them and expressed and 

characterized 16 cLibA variants and 21 cLibB variants in vitro. The variants had a 

surprisingly large diversity of spectroscopic properties including improved brightness of up 

to 10-fold over HcRed and a range of λem’s  from 606 to 647 nm. To determine whether the 

collection of improved core variants included cores that were stabilized in the context of a 

monomer, we deleted the five C-terminal residues from each characterized core variant. 

HcRed does not tolerate this tail deletion, but six of the core variants tolerated the deletion 

well, and of these a double mutant R67K and H196Y, which we call HcRed7, was the most 

red-shifted (λem  = 642 nm). The core mutations in HcRed7 bathochromically shift its 

emission by 9 nm, improve Φ by 60%, and thermostabilize the protein by 6 °C over 

HcRed. This stabilized core allows it to partially tolerate a C-terminal tail deletion. HcRed7 

maintains most of its brightness with a deletion of up to 5 C-terminal residues (HcRed7∆5), 

but loses significant brightness with the deletion of a sixth C-terminal residue (HcRed7∆6), 

indicating that the core is partially but not wholly optimized for monomerization. With no 

obvious rational design strategy for improving the fluorescence of the tail-deleted variants, 
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we used a directed evolution strategy to recover the dim but detectable fluorescence of a 6-

residue tail-deleted HcRed7 mutant.  

Enhancing HcRed7∆6 Fluorescence via Directed Evolution.  

HcRed7∆6 is significantly thermally destabilized compared to HcRed7, losing 16ºC of 

thermal stability with the tail deletion (Figure 5). We reasoned that improving the thermal 

stability of HcRed7∆6 might increase its brightness. To this end we screened two libraries 

in parallel. The first was a library built with error-prone PCR (mLibEP), which randomly 

mutagenized the gene, while the second was a consensus library (mLibC) in which we 

mutated positions to the consensus sequence from an FP alignment. The consensus 

mutation strategy has been shown to be effective for engineering thermostable protein 

variants, but requires a large, well-constructed multiple sequence alignment (MSA) and a 

good genetic distance algorithm to be effective. To generate the consensus FP sequence we 

made an MSA that consisted of every Aequorea victoria class FP, a total of 741 sequences. 

From this MSA, a consensus sequence was generated (see supplemental Methods), and we 

designed mLibC to sample all 105 non-consensus positions in HcRed with the consensus 

amino acid. The error rate of mLibC and mLibEP were carefully tuned to a rate that would 

allow significant variation while retaining fluorescence in most variants. We screened 

mLibC at 1.2 mutations per variant and mLibEP at 1.8 mutations per variant. Induced 

bacterial cultures from each library were screened in 96-well format for bright fluorescent 

emission at 675 nm to give a selective advantage to mutants that maintained a red-shifted 

λem. Screening at 675 nm allowed us to maximally differentiate between HcRed7 mutants 

peaking around 630 nm and those hypsochromically-shifted variants that often peaked 

between 605 nm and 620 nm. mLibC was screened to 40x coverage (~4300 clones) and 

~8600 clones were screened from mLibEP. We isolated 14 unique hits from mLibC, and 26 

from mLibEP. Guided by the variations in the brightness and λem of each variant, and 

considering the location of each mutation on the protein, we made four chimera constructs 

that combined hits from each library. We assembled consensus chimeras that included 

either four (HcRed74) or seven (HcRed77) of the top mutations isolated from the 

consensus library, and error prone chimeras that split the 29 isolated error prone mutations 
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between a fourteen-fold variant (EPchimera1) and a fifteen-fold variant (EPchimera2). The 

brightest of these synthetic proteins was HcRed77. All of the brightness lost in deleting the 

tail from HcRed7 was recovered in HcRed77, without any hypsochromic shift to the λem of 

HcRed7∆6, although HcRed77 remained hypsochromically shifted from HcRed7. 

A Fluorescence-Stabilized HcRed77 is Monomerized 

Despite the partial sensitivity of HcRed7’s core to tail deletion, we investigated if HcRed77 

would tolerate full monomerization. By size exclusion chromatography (SEC), HcRed77 is 

still dimeric (Figure S1), although it appears to have lost the trace tetramerization visible in 

HcRed7, indicating that the tail deletion did indeed partially destabilize oligomerization. To 

fully monomerize HcRed77, we designed the remaining intact dimeric AC interface with a 

computational protein design (CPD) procedure that we had used successfully in previous 

work with RFPs. We targeted a set of five residues (Val146, Val159, Ile170, Phe191, and 

Phe193) in the heart of the AC interface that make extensive intermolecular contacts and 

which we found were frequently mutated in past FP monomerizations (Figure 2C and 2D). 

We decided to limit the design to these five crucial residues both for ease of library 

construction and screening and to limit synthesis costs. We made a small combinatorial 

library to sample the top design hits at each of the five positions using degenerate codons, 

requiring just four custom degenerate primers. The library was screened on large agar 

plates supplemented with IPTG, and colored colonies were picked after two days of 

expression at room temperature. We saw faint color in only one colony from the screen, but 

this colony proved to be the first generation HcRed monomer, which we called HcRedm1. 

HcRedm1 was verified to be monomeric by analytical ultracentrifugation (AUC) (Figure 

S1). The protein is very dim, and poorly expressed, but doesn’t see a large hypsochromic 

shift to its fluorescence. The extremely poor fluorescence of HcRedm1 shows that the core 

of HcRed77 is not perfectly adaptable to monomerization without additional stabilizing 

mutations. However, as HcRedm1 is further red-shifted than any other first generation RFP 

monomer, we thought it would be a good candidate for improvements to its brightness 

through further directed evolution. We had thus far made only one additional mutation to 

the core of HcRed7 (A59S), and a reversion of this mutation did not significantly impact 



 

 

73 

the fluorescence or expression of HcRedm1. To keep the core of HcRed7 intact so that we 

could directly ask what impact monomerization had on far-red emission and brightness, we 

moved forward with a variant of HcRedm1 with the S59A reversion. 

The Brightness of HcRedM1 is Improved with DNA Shuffling and Error-Prone 

Mutagenesis 

We sought to improve the brightness of HcRedm1 with a DNA shuffling library that 

incorporated mutations identified from the error prone library of HcRed7∆6. This 

represented a pool of mutations that had been shown to be beneficial, but that had not been 

incorporated into HcRedm1. The error prone library had identified 26 mutations, some of 

which occurred to the same position on the protein, and many of which were close together 

in primary structure. The proximity of the mutations did not allow them to be efficiently 

shuffled if they were on the same parental strand of DNA as our DNA shuffling procedure 

cuts DNA into ~30bp fragments. We therefore synthesized two chimeric HcRed variants 

and distributed the mutations between the two constructs, which we named chimeraA and 

chimeraB. Following DNA shuffling, we screened ~750 clones by 96-well plate 

expression, and isolated 18 variants that were brighter and red-shifted. We chose to fully 

characterize two variants, one of which had significantly recovered brightness 

(HcRedm13), and one of which was only marginally brighter, but slightly red-shifted 

(HcRedm14). HcRedm13 has seven mutations, three of which are on external β-strands, 

with the rest on loops at the two ends of the protein. HcRedm14 has 12 mutations, one of 

which, Ile43Val, is a chromophore backing mutation in the protein core, four are on surface 

β-strands, and the remainder are on loops. The core mutation in HcRedm14 is responsible 

for the bathochromic shift in emission, as a reversion of this mutation does not exhibit the 

same spectral shift (data not shown). 

HcRedm13 and HcRedm14, however display indications of inhibited chromophore 

maturation. Both proteins exhibit multiple absorbance peaks, a sign that they do not fully 

mature to the red chromophore. Additionally, once purified into PBS, neither protein is 

stable for long at room temperature, losing pigment and yellowing. We reasoned that we 

may have lost some stability by screening protein variants at 30°C instead of 37°C, and so 
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both variants were then subjected to a subsequent round of directed evolution by error-

prone mutagenesis with screening at 37°C. Large libraries of ~4,000 clones were screened 

for both HcRedm13 and HcRedm14 by 96-well protein expression. Ten mutations were 

found between the two proteins that increased their fluorescent emission at 675 nm in 

culture. A final round of DNA shuffling was then done to incorporate in these new 

mutations as well as to resample the diversity in HcRedm13 and HcRedm14 at 37°C. We 

synthesized a chimeric variant of HcRedm13 that included the ten new error-prone 

mutations, which we called chimeraC. We then shuffled HcRedm14 and chimeraC, and 

screened at 37°C. After screening about 750 clones we isolated two variants that we called 

mGinger0.1 and mGinger0.2. The mGingers are first generation monomeric RFPs that 

express well at 37°C, mature completely to the red chromophore, and have a λem of 

637/631 nm and a brightness of 1.2/1.5 when excited with far-red light. The two proteins 

fall right along the brightness-λem boundary for monomeric proteins. 

Engineered HcRed Variants Show That Thermal Stability is Linked to Brightness 

As we engineered HcRed, we measured the thermal stability of the designed variants. 

Fluorescence was repeatedly knocked down and improved while engineering HcRed 

monomers, and we noticed that the thermal stability of HcRed variants (the degree to which 

the fluorescence of a purified protein changes with an increase in temperature) was well 

correlated to brightness. We measure the thermal stability of the RFP variants by ramping 

up the temperature while measuring fluorescence in real-time, to determine an apparent 

temperature at which fluorescence is irrecoverably lost (apparent Tm). Interestingly, the 

mutations during the engineering process that improved brightness also improved the 

apparent Tm, including HcRed à HcRed7, HcRed7∆6 à HcRed77, and HcRedm1 à 

mGinger0.1, while those that decreased brightness also decreased the apparent Tm, 

including HcRed7 à HcRed7∆6, and HcRed77 à HcRedm1 (Figure 5A). We further 

observed that there is a positive correlation between quantum yield and apparent Tm for all 

of these variants (R2 of dimers = 0.94; monomers = 0.14) (Figure 5B). The correlation 

appears to divide into two distinctly correlated groups: the dimeric species have higher 

quantum yields at higher apparent Tm’s than do the monomeric species. Significantly, 
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mGinger0.1 and mGinger0.2 are ~5 °C thermostabilized over the parental protein, HcRed7, 

but are both dimmer. It is not clear why this is the case, but clearly monomerization has an 

important impact on RFP fluorescence. 

4.4 Discussion 

The RFP Monomer Design Process 

Native oligomeric proteins have most likely had selective pressure to oligomerize, and their 

functionality has evolved in the context of an oligomeric scaffold. It is an 

oversimplification to think that monomerizing a protein is as simple as slipping large polar 

or charged residues into a hydrophobic interface. We present here a comprehensive design 

process for the monomerization of RFPs that can equally well be applied to other 

oligomeric enzymes or signaling proteins. Past monomerization efforts have ignored the 

role that core-stabilization plays in engineering a soluble monomer. Together with previous 

work, we show here that an evolved oligomeric protein does not necessarily function well 

as a monomer without significant optimization. We suggest that this could be due to a loss 

of overall structural integrity, as breaking apart tightly bound oligomers can leave an 

individual monomeric subunit without the evolved structural support from its oligomeric 

mate. Here, with HcRed, we first attempted to evolve a stabilized protein core and 

subsequently tested a diverse HcRed core library with perturbation to its oligomerization. A 

two-pronged rational design strategy was used to improve HcRed’s core: first, by 

comparatively stabilizing the cis vs the trans chromophore we hoped to increase the 

apparent quantum yield of the protein, and second, through repacking of a key internal 

structural region, we expected to create HcRed variants with improved structural integrity. 

This strategy worked reasonably well, and the improved core was enough to get us to a 

monomeric protein, but we did not fully succeed in designing a core solid enough to 

tolerate full monomerization without additional stabilizing mutations. 

As it may be difficult a priori to fully optimize a protein to maintain its functionality as it is 

monomerized, we find that it is instrumental to take modest steps toward monomerization 

while maintaining a functional handle for screening and optimization. Importantly, we 
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maintained some minimal fluorescence in the HcRed variants throughout monomerization 

as a handle to guide the evolution of variants that were more stable and showed improved 

brightness. This allowed us to be stringent in our selections and maintain HcRed7’s far-red 

λem. Additionally, consensus design has been described as a method to add thermostability 

to proteins, and we found that it was a useful tool for stabilizing the HcRed variants, 

allowing recovery of fluorescence of the tail-deleted HcRed7∆6, and significantly 

outperforming random mutagenesis (Figure S2). We also found temperature to be an 

important consideration during evolution and screening, as evolution at low temperatures 

(30°C) significantly thermally destabilized the HcRed variants, interfering with cyclization, 

while evolution at 37°C quickly recovered thermal stability. Finally, a very successful 

strategy for us was to use successive rounds of error-prone mutagenesis interspersed with 

DNA shuffling (23, 24), which served to efficiently sample every error-prone hit. This 

strategy allowed us to use only two rounds of error-prone mutagenesis in the engineering of 

mGinger0.1. We screened ~4,000 variants in each round of error-prone and ~750 variants 

in each round of DNA shuffling. This is a comparatively efficient directed evolution 

approach, as we incorporated 15 error-prone mutations after only four rounds (two error-

prone, two shuffling) and shuffled variants were marked improvements over individual 

error-prone hits. 

The Structure of HcRed7 Reveals the Mechanism For Its Increased Brightness and 

Bathochromically Shifted λem 

We solved an x-ray crystal structure of HcRed7, which shows that the mutation from 

histidine to tyrosine at position 196 serves to add a π-stacking interaction with the 

chromophore phenolate ring (Figure 3C). Tyr196 π-stacks with the fluorescent cis 

orientation of the phenolate, serving to both stabilize the fluorescent chromophore over the 

trans phenolate (in wild-type HcRed the chromophore occupies both cis and trans 

conformations), and to red-shift the λem, as a π-stacking phenolate interaction has been 

shown to reduce the energy of the excited state of the chromophore (25-27). In turn, 

position 67 is a key catalytic residue that functions as a base, abstracting a proton from the 

bridging carbon of the phenolate side chain during cyclization (28, 29). This residue is 
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almost invariably a lysine or arginine in the alignment of RFPs, and we propose that the 

mutation from arginine to lysine here allows room for the π-stacking interaction and the 

bulkier tyrosine side chain. A bathochromic shift from this π-stacking interaction has been 

demonstrated, but here we note that a 6 °C improvement to apparent Tm and a 60% 

improvement in quantum yield accompany this engineered interaction, which has not been 

shown before. 

Monomerization of mGinger0.1 Hypsochromically Shifts the λem Without Mutation to 

the Protein Core 

We had expected to stabilize HcRed’s protein core enough that it would tolerate 

monomerization with little to no change in spectroscopic properties, as we had 

demonstrated in previous work. This did not happen, however, and even with minimal 

mutation to the protein core, we saw a significant loss of brightness and a hyspsochromic 

shift to λem in moving from the dimer to the monomer. This has been seen in past 

monomerization efforts, but because these past efforts have all involved significant 

mutation to the core of the protein (9, 11, 30-32), it had been difficult to separate the effects 

of core mutations from the true effects of monomerization, which may include a loss of 

scaffold rigidity or increased hydration of the protein core (33).  

One clue into scaffold rigidity is to measure the thermal stability of HcRed variants. It has 

been suggested that quantum yield is linked to the structural rigidity of an FP’s excited-

state chromophore (16, 34). The more rigid the excited-state of the chromophore, the 

higher the quantum yield, as thermal motion can lead to non-radiative decay via other 

atomic interactions. This is supported by the fact that the quantum yield of small molecule 

fluorophores increases with decreased temperature (35), and holds true even in proteins, as 

a cyan FP with a quantum yield of 0.93 was engineered with rational design by stabilizing a 

β-strand near the chromophore (16). The apparent Tm of mGingers were improved by ~5 

°C over HcRed7, ~10 °C over HcRed, and ~13 °C over HcRed77, their nearest dimeric 

ancestor. The cause of this thermal stabilization is unknown, but we presume that it had a 

large impact on the brightness of these variants as far-red monomers. It is puzzling though 

that a less-thermally stable dimer should be brighter than its thermostabilized monomeric 
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derivative, despite sharing an almost identical protein core, and this could indicate that 

thermostabilizing mutations were permissive to the evolution of monomerization (36). 

Monomerizing Mutations Accumulate in Key Structural Regions 

The mutations found during the design/evolution of mGinger0.1 and mGinger0.2 help 

further our understanding of the important structural regions in RFPs that might be targeted 

during future RFP monomerization. The core of the mGingers was not mutated except for 

the chromophore backing position Ile43Val (The Cγ of Ile43 lies 6.5 Å from the 

chromophore glutamate), which was responsible for maintaining a bathochromic shift to 

emission in the HcRedm1-chimeraA/B shuffling library, and three positions found on the 

periphery of the β-barrel. One of these peripheral core mutations, His72Tyr (12.3 Å from 

the chromophore), was a spontaneous mutation that appeared in the only fluorescent 

monomer hit from the surface design of HcRed77 to HcRedm1. This position was reverted, 

but found to be beneficial. The last two core mutations: Ser137Thr and Met200Ile (13.5 

and 8.3 Å from the chromophore) are part of a structural deformity in the β-barrel that was 

mentioned earlier, and is buried by the AC interface (Figure 2B). Residues 135-139 are part 

of the deformed β-strand punched out by the cis chromophore and residues 199-203 are on 

a neighboring β-strand that is distorted by an inter-molecular interaction with the 

neighboring monomer’s C-terminal tail. These deformities leave a wide gap between the 

two β-strands that is populated by 11 stationary water molecules in the structure of HcRed7 

(Figure 6A). Of the ten residues that make up the distorted β-strands, eight are mutated in 

the mGingers. Three neighboring residues on the surface of the β-barrel that interact with 

the C-terminal tail of the neighboring monomer are also mutated (Arg197, Tyr212, and 

Ala214), two of which, Arg197 and Ala214 were identified by the grid-map of the AC 

interface but not designed as part of the AC surface design of HcRed77 to HcRedm1. This 

large structural region is a mutational hotspot, and is clearly strongly tied to improving the 

integrity of the monomeric scaffold and protecting the chromophore environment from 

bulk solvent in the absence of the stabilizing effects of oligomerization. Three more 

positions mutated (Cys155, Tyr174, and Ser176) are on the outside of the β-barrel near the 

fringe of the AC interface. The rest of the positions mutated in the mGingers are on loop 
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regions and the surface of the β-barrel away from the two oligomeric interfaces, and 

probably affect protein solubility. The clearest conclusion from this mutational data is that 

a larger proportion of the AC interface would benefit from explicit design during future 

monomerization attempts, and special focus should be given to the β-barrel defect between 

β-strands 7 and 10. 

4.5 Conclusion 

We monomerized HcRed, a far-red fluorescent protein that had been the target of previous 

unsuccessful monomerization attempts. The rational approach that we lay out in 

monomerizing HcRed should be repeatable in the future with other novel RFP oligomers 

that have interesting spectroscopic properties. We did not successfully stabilize the core of 

HcRed enough so that it tolerated monomerization unperturbed, but did find a core that was 

stabilized enough to be adaptable to monomerization with the addition of beneficial surface 

mutations. The design process that we lay out includes elements of intuition-based design, 

computational design, and directed evolution, which are all tools that skilled protein 

engineers will need to be able to incorporate to push the field of protein engineering. We 

notice an interesting correlation between brightness and thermal stability among HcRed 

variants, which has been suggested by other work, but to our knowledge never explicitly 

shown. Finally, we identify a key structural region whose stabilization greatly impacts 

monomerization and conclude that a more extensive design of the surface of the RFP AC 

interface may be helpful in future RFP monomerization efforts. Future engineering of RFP 

cores will be necessary to determine how to significantly improve brightness post-

monomerization. 
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4.6 Materials and Methods 

Plasmids and Bacterial Strains 

The HcRed sequence was taken and modified from the HcCP Genbank entry (accession 

number AF363776). Ten amino acids were added to the N-terminus, consisting of a 

Methionine followed by a 6x Histidine tag for protein purification, and then followed by a 

Gly-Ser-Gly linker sequence. All gene sequences were constructed with gene assembly 

PCR, oligonucleotides for the assembly were designed with DNAworks, and then ordered 

from Integrated DNA Technologies (IDT). Assembled genes were PCR-amplified and 

cloned into the pET-53-DEST expression plasmid (EMD Millipore) with PIPE cloning 

followed by CPEC. Constructs were sequence-verified (Laragen) with a primer specific to 

the T7 promoter, and then transformed into BL21-Gold(DE3) competent cells, a protein 

expression strain (Agilent). 

Construction of HcRed Designed Libraries 

To construct explicitly-designed HcRed core libraries, protein sequences were input into 

DNAworks as “mutant runs” of the wild-type HcRed gene assembly. This allows explicit 

libraries of gene variants to be assembled and minimizes the number of oligonucleotides 

needed. The AC surface library was designed using degenerate codons that code for the 

amino acids found in the designed sequence variants. The triplet codon “VRN” was used to 

code for all residues found in the sequence design. Oligonucleotides were ordered from 

IDT and cloning was carried out as described above. 

Error Prone Mutagenesis 

Error prone mutagenesis of HcRed variants was performed by addition of manganese 

chloride to Taq DNA polymerase PCR reactions. 10µM, 15µM, and 20µM MnCl2 were 

tested and cloned with PIPE cloning into pET-53-DEST for sequencing. Twelve colonies 

from each library were picked and sequenced, and the library with a mutation rate closest to 

but not more than 2.0 mutations per gene was selected for further screening. 

DNA Shuffling 



 

 

81 

The variants that were to be shuffled together were PCR-amplified run on gel 

electrophoresis, visualized with Gel Red, cut out of the gel and then purified via a standard 

spin-column gel purification kit (Qiagen). 5 µg of the purified DNA fragments were then 

cut with 0.5 U of DNAseI (NEB) in a 50 µl reaction. The reaction was allowed to sit for 7.5 

minutes at room temperature and then quenched with 5 µl of 100 mM EDTA (4x the 

concentration of MgCl2 in the reaction buffer). The reaction was further heat-inactivated 

for 10 minutes at 90ºC in a thermocycler and run on gel electrophoresis. Bands were cut 

out of the gel that ran at ~30 bp. We used a 30 bp primer (IDT) and a 100 bp DNA ladder 

(NEB) as standards. These gel slices were frozen and then purified using a Freeze ‘N 

Squeeze gel purification kit (BioRad) because a typical spin column will not efficiently 

bind 30bp DNA. Purified digested fragments were mixed together at a 1:1 ratio and 

assembled via Gene Assembly PCR as discussed above. 

Protein Expression and Library Screening 

Single bacterial colonies were picked with sterile toothpicks and inoculated into 300 µl of 

Super Optimal Broth (SOB) supplemented with 100 µg/ml ampicillin in 2 ml deep-well 96-

well plates (Seahorse Biosciences) The plates were sealed with microporous film (Denville 

Scientific) to facilitate gas exchange during growth. Cultures were grown overnight at 37 

°C / 300 RPM. The next morning 800 µl of fresh SOB with 100 µg/ml ampicillin and 1mM 

Isopropyl β-D-1-thiogalactopyranoside (IPTG) was added to a total volume of 1 ml 

(evaporation losses overnight are approximately 100 µl). Plates were then shaken 12 hours 

at either 30ºC or 37 °C and 400 RPM. Cell cultures turn red if there is strong RFP 

expression. After overnight expression, plates were screened with a Tecan robotic liquid 

handling robot with robotic arm linked to a Tecan platereader Saffire 2. 200 µl of each 

culture was added to Greiner UV-Star 96-well plates and imaged for fluorescence emission 

at 675 nm after excitation at 600 nm. Controls were included on each plate to account for 

plate to plate variability. To re-screen potential hits from the initial screen, a sterile 

toothpick was dipped into the bacterial culture and the potential hit was streaked out onto a 

fresh LB plate supplemented with ampicillin. The plate was grown overnight at 37ºC, and 

four colonies were picked for each potential hit. These were then grown again and screened 
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as detailed above, with hits then ranked on their significant variation from the parent or 

control. 

Protein Purification 

To further characterize important variants, 1 L of SOB in Fernbach flasks were 

supplemented with ampicillin were inoculated with overnight growth of bacteria and 

induced at 37ºC for 12 hours with 1mM IPTG. After protein expression, the broth was then 

transferred to centrifuge flasks and spun at 5,000 x g in a fixed angle rotor for 10 min, 

whereupon the supernatant was decanted. Pellets were resuspended in 25 ml of lysis buffer 

(50 mM sodium phosphate, 150 mM NaCl, 0.1% v/v Triton-X, pH 7.4) supplemented with 

50 Units/ml Benzonase and 0.05 mg/ml Hen Egg Lysozyme. Resuspended pellets were 

then run over a microfluidizer to fully lyse the bacteria. To pellet down the cellular debris, 

the lysed cultures were again centrifuged for 10 minutes at 15,000 x g in a fixed angle 

rotor. The colored supernatant was then applied to His-Select resin (Sigma) in a hand-

poured column, washed twice (50 mM sodium phosphate, 150 mM NaCl, 15 mM 

Imidazole, pH 7.4), and eluted with 500 µl elution buffer (50 mM sodium phosphate, 150 

mM NaCl, 250 mM Imidazole, pH 7.4). Proteins were then polished by running over a 

Superdex 75 10/300 column on an AKTA fast protein liquid chromatography (FPLC) 

instrument and in the process buffer exchanged into PBS. 

Fluorescent Protein Characterization 

Purified protein variants were assayed in triplicate in Greiner UV-Star 96-well plates with a 

Tecan Saffire 2. An absorbance scan (260 – 650 nm), a fluorescence excitation scan (500 – 

640 nm excitation / 675 nm emission), and a fluorescence emission scan (550 nm excitation 

/ 575 – 800 nm emission) were run on 100 µl of eluted protein to determine spectral peaks. 

To measure the quantum yield we diluted each protein so that the absorbance for 200 µl of 

protein at 540 nm was between 0.1 and 0.5. We then measured the A550 in triplicate (or 

duplicate if it was a poorly expressed protein), diluted the sample to an A550 of 0.04 and 

took an emission scan (540 nm excitation / 550 – 800 nm emission). The area under the 

emission curve was calculated after fitting it to a 4th order Gaussian, and the quantum yield 

was calculated with the following formula: 
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Where Φ is quantum yield, A is absorbance, F is total fluorescent emission (area under the 

curve), and n is the refractive index of the solvents used. Subscript X refers to the queried 

substance and subscript S refers to a standard of known quantum yield.  It is important that 

the standard be excited with the same wavelength of light as the unknown sample. We use 

DsRed, which has a known quantum yield of 0.79 as the protein standard. 

To measure extinction coefficient we took 100 µl of the protein solution that had been 

diluted to an A550 of between 0.1 and 0.5 and measured absorbance between 400 nm and 

700 nm in triplicate. We then added 100 µl of 2M NaOH to each well and remeasured 

absorbance between 400 nm and 700 nm. The base-denatured chromophore, which peaks 

at approximately 450 nm has a known extinction coefficient of 44,000 M-1cm-1. Then to 

calculate the extinction coefficient is calculated with the following formula: 

 

Thermal Stability 

Purified proteins were diluted to an absorbance of 0.2 at the wavelength of maximum 

absorbance (λabs) so that their fluorescence would not saturate the rtPCR detector. 50 µl of 

each purified protein was then loaded into a 96-well PCR plate and covered with clear 

optical tape. The proteins were incubated at 37°C for 10 minutes and then the temperature 

was ramped at 0.5°C every 30 seconds up to 99°C, with fluorescence measured every ramp 

step in a CFX96 Touch Real-Time PCR Detection System (Bio-Rad). We refer to this as a 

thermal melt. The derivative curve of the thermal melt finds the inflection point of the 

slope, which is the apparent temperature at which fluorescence is irrecoverably lost 

(apparent Tm). 

Oligomeric Determination 

(A) Size exclusion chromatography. 100 µl of each purified protein analyzed was run over 

a Superdex 75 10/300 size exclusion column with 25 ml bed volume on an AKTA from GE 

Life Sciences. Absorbance was measured after passage through the column at 575 nm, 

where the red chromophore absorbs. (B) Analytical ultracentrifugation. Purified protein 

ΦX = (AS / AX )(FX / FS )(nX / nS )
2ΦS

ε = AChromophore *44,000M
−1cm−1 / A450
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samples were diluted to an A575 of 0.5 for a path-length of 1.25 cm. These samples were 

put into two-channel sedimentation velocity cuvettes with the blank channel containing 

PBS. Sedimentation velocity was run at 40,000 RPM overnight with full A575 scans 

collected with no pause between reads. Data was loaded into Sedfit and a c(m) distribution 

was run with default assumptions made for PBS buffer viscosity. After integration, the 

c(m) curve was exported to Excel. (C) Homo-FRET. 200 µl of each purified protein was 

diluted to an Absorbance of 0.1 to 0.5 at 530 nm in 96-well Greiner UV-Star plates. 

Polarization scans were then taken with excitation at 530 nm and emission at 610 nm in a 

Tecan Safire2 plate-reader. Rose Bengal was used as a standard to calculate the instrument 

G factor (mP = 349). 

Crystallography 

Rectangular plate crystals of HcRed7 grew in 7 days by the sitting-drop vapor diffusion 

method in 100 mM Bis-Tris pH 6.5 with 200 mM ammonium sulfate and 25% w/v PEG 

3350. Crystals were flash frozen in 2-Methyl-2,4-pentanediol (MPD) and shipped to 

beamline 12-2 at the Stanford Synchrotron Radiation Lightsource, where a 1.63 Å data set 

was collected. Phases were obtained through molecular replacement using the crystal 

structure of HcRed (PDB ID 1YZW).  

Following molecular replacement, model building and refinement were run with COOT 

and PHENIX (37, 38). NCS restraints were applied to early refinement steps and removed 

at the final stages of refinement. TLS parameters were used throughout. The chromophore 

was initially left out of the refinement and added at a later stage when clear density became 

evident for it. Coordinates were deposited in the Protein Data Bank with the code XXXX. 

Data collection and refinement statistics are listed in Table S1. 
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4.8 Tables and Figures 
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Table 2 – Spectroscopic characterization of HcRed variants 

RFP Φ 
 ε  

(M-1 cm-1) 
 / 1000 

Brightness 
(Φ x ε) 
 / 1000 

λex 
(nm) 

λem 
(nm) 

Apparent 
Tm (ºC) 

HcRed 0.05 70 6.0 585 633 69.0 
HcRed7 0.08 75 8.4 592 645 75.0 

HcRed7∆5 0.06 69 4.3 592 643 70.5 
HcRed7∆6 ND ND ND 582 635 65.0 
HcRed77 0.05 † † ND ND 67.5 
HcRedm1 0.01 † † ND ND 64.0 
HcRedm13 0.03 † † ND ND 65.0 
HcRedm14 0.02 † † ND ND 58.0 
mGinger0.1 0.02 58 1.2 587 637 79.0 
mGinger0.2 0.04 36 1.5 578 631 80.0 

 

ND – Not determined 

† - Extinction coefficient (and therefore brightness) could not be measured because of 

multiple chromophore species present. 
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Figure 1 – There is a negative correlation between brightness and λem among RFPs. 

All known RFPs whose brightness and λem have been measured are plotted. Among 

Aequorea victoria class RFPs there is a noticeable trend that the further bathochromic the 

shift to fluorescent emission, the dimmer the fluorescence. Native proteins are all 

tetrameric and exhibit the brightest fluorescence. Monomeric proteins are the dimmest and 

their brightness drops off quickly at longer wavelengths. 
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Figure 2 – A structural view of the HcRed AC interface. (A) A view of the HcRed 

dimeric interface stabilized by the C-terminal tail. One monomer is shown as a cartoon 

while the second is shown as a surface; residues 222-227 are shown in spheres. (B) A 

structural flaw in the β-barrel is covered by the AC interface. (C) The five AC interface 

positions designed with CPD to create HcRedm1 are shown in green spheres. These 

positions were chosen based on an analysis of previously monomerized FPs. Eleven such 

FPs were aligned, and their AC mutations mapped onto a grid (D), which shows the 

intermolecular contacts that each residue makes in the interface and is color coded by its 

frequency of mutation. Residues 146, 159, 170, 191, and 193 were designed. Residues 222-

223 were deleted as part of the C-terminal tail. 
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Figure 3 – The design of HcRed7. (A) The crystal structure of HcRed (PDB: 1YZW) 

shows dual occupancy of the chromophore’s phenolate group. The cis chromophore (cis to 

the imidazolinone nitrogen) is stabilized by a Cys143Ser mutation from parent protein 

HcCP. The trans chromophore is stabilized by two hydrogen bonds from Glu145 and 

Asn158. Chromophore is shown in gray, side chains are shown in blue, and hydrogen 

bonds in yellow. (B) Two core libraries targeted unique structural regions of the protein 

core. The first region (pink) surrounds the phenolate side chain of the chromophore.  The 

second (green), is a very highly mutated region in RFP monomer evolution.  This region 

holds an internal water channel, key catalytic residues, and abuts the AC interface. (C) A 

crystal structure of HcRed7 (blue), isolated from core library B is overlaid onto HcRed 

(magenta). HcRed7 has mutations Arg67Lys and Ile196Tyr. Tyr196 provides a π-stacking 

interaction with the chromophore, red-shifting emission and stabilizing the chromophore in 

the cis orientation. Lys67 plays a key catalytic role, but the mutation away from arginine 

frees up room for Tyr196.   
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Figure 5 – Thermal stability of HcRed variants. (A) We measured the stability of the 

various HcRed variants with a ramped temperature melt in a qPCR machine. Thermal 

stability decreased with significant engineering events such as the deletion of HcRed7’s tail 

and the monomerization of HcRed. Directed evolution at 30°C improved expression of the 

protein, but decreased its thermostability (HcRed77, HcRedm13, HcRedm14). When the 

expression temperature for screening was increased to 37°C, the thermostability jumped 

rapidly (mChimeraC, mGinger0.1, mGinger0.2). (B) Thermostability during the evolution 

of HcRed (the same ten variants from (A) are plotted) appears to be correlated to quantum 

yield. Monomers exhibit weaker quantum yield than tetramers. Extinction coefficient was 

not measurable for some variants because there were multiple chromophore species 

present. 

  



 

 

92 

 

Figure 6 – A structural comparison of the mGingers to HcRed7. (A) There is a 

deformity in the structure of the β-barrel that takes the form of a large gap between β-

strands 7 and 10. Eleven water molecules crystalize in this gap, forming a long channel that 

appears to be structurally stabilized by the nearby AC dimeric interactions. Molecule A is 

shown as a blue surface with nitrogens and oxygens colored blue and red respectively. 

Molecule B is shown as a gray surface. Water molecules are shown as red spheres. (B,C,D) 

More sub-figures expected with the mGinger structure.. 
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4.9 Supplementary Tables and Figures 

 

 

Table S1 – Mutations to select core residues during RFP engineering. Alignment of 

far-red engineered proteins of interest and the tetrameric RFPs they were derived from. 

Dots on the far left indicate monomers. Residue 143 was part of both HcRed core libraries. 

Allowed residues in both core libraries are listed at the bottom. Total theoretical library size 

for library A was 448, and for library B was 432. 

 

  

A"/"B
Position"(DsRed) 63 95 143 161 163 177 179 199 146 31 44 70 71 83 148 181 195 197 215 217 66 67 68
Position"(hcCP) 60 92 140 158 160 173 175 198 143 28 41 67 68 80 145 177 194 196 213 215 63 64 65
hcCP P R W N M L T L C G M R T F E Y T I E S E Y G
HcRed 55 55 55 55 55 H 55 55 S 55 55 55 55 55 55 55 55 55 55 55 55 55 55
aeCP597 P R W S M L T I C G E K T F E Y G H E A M Y G
AQ143 55 55 55 A 55 55 55 55 S 55 55 55 55 55 55 55 55 55 55 55 55 55 55
#20CP P R W N M F S L N G V I P V E Y V R E S Q Y G

* mKeima 55 55 55 D 55 55 55 55 S 55 55 55 55 F 55 55 I 55 55 A 55 55 55
anmCP H R I C I F L I T A V P F A T F V V E T Q Y G
J5Red 55 55 55 A 55 55 M T N 55 55 55 55 55 55 55 55 I 55 55 55 55 55
DsRed P R W I K F S L S G V K V K E Y V S E T Q Y G

* DsRed.M1 -- 55 55 55 H 55 T 55 55 55 A 55 A M 55 55 55 55 55 A 55 55 55
* mRFP1 -- 55 55 55 M V T 55 55 55 A 55 A L 55 55 T I 55 A 55 55 55
* mCherry 55 55 55 55 Q V T 55 55 55 A 55 A L 55 55 55 I 55 A M 55 55
* mGrape3 55 55 55 V M V T 55 55 55 A 55 A M 55 55 L Y 55 A 55 55 55
* mPlum 55 55 55 M M V T 55 55 55 A 55 A L 55 55 T I 55 A M 55 55
* mRaspberry 55 55 55 M M V T 55 55 55 A 55 G L 55 55 T I 55 A M 55 55

E25Crimson 55 55 55 N M 55 S 55 55 55 A 55 A L 55 55 55 Y 55 A F 55 55
eqFP611 T R W S M F T L N G M K T F E Y V H E A M Y G

* mRuby 55 55 55 T 55 55 55 55 55 55 55 R 55 55 55 55 55 55 55 55 55 55 55
* mRuby2 55 55 55 T 55 55 55 55 55 55 55 R 55 55 55 55 55 55 55 55 55 55 55

RFP637 55 55 55 A 55 55 55 55 S 55 55 55 55 55 55 55 55 55 55 55 55 55 55
RFP639 55 55 55 C 55 55 55 55 S 55 55 55 55 55 55 55 55 55 55 55 55 55 55
eqFP578 T R W S M F T L N S M K T F E Y V H E A M Y G

* FusionRed 55 55 55 C 55 L 55 55 S 55 55 R 55 55 55 55 55 55 55 55 55 55 55
TagRFP 55 55 55 55 55 55 55 55 55 55 55 R 55 55 55 55 55 55 55 55 55 55 55
Katushka 55 55 55 55 55 L 55 55 S 55 55 55 55 55 55 55 55 R 55 55 55 55 55
mKate 55 55 55 55 55 L 55 55 S 55 55 55 55 55 55 55 55 R 55 55 55 55 55
mKate2 55 55 55 A 55 L 55 55 S 55 55 55 55 55 55 55 55 R 55 55 55 55 55
Neptune 55 55 55 C 55 L 55 55 S 55 G 55 55 55 55 55 55 R 55 55 55 55 55
mNeptune 55 55 55 C 55 L 55 55 S 55 G 55 55 55 55 55 55 R 55 55 55 55 55
TagRFP657 55 55 55 T L 55 55 55 H 55 Q H 55 55 55 55 55 Y 55 55 55 55 55
eqFP650 55 55 55 S 55 L 55 55 S 55 A 55 55 55 55 55 55 R 55 55 55 55 55
eqFP670 55 55 55 N 55 L 55 55 55 55 C 55 55 55 55 55 55 R 55 55 55 55 55

I H L S N S A K A L H A
A L F A C H P M R
C Q V E Y
S Q
T V
M

Chromophore

Positions"allowed"in"
Library

Library"B"5"Above"chromophore,"near"structural"waters"+"chromophore"
backing"positions"28"and"41

Library"A"5"Chromophore"phenolate"pocket



 

 

94 

 

Table S2 – Spectroscopic characterization of hits from two HcRed core libraries. 

Variant core7 was called HcRed7 in this work. 

 

  

core1
core2
core3
core4
core5
core7
core9
core10
core11
core12
core13
core14
core15
core17
core18
core19
core20
core21
core24
core25
core26
core27
core28
core29
core30
core31
core34
core35
AC_core1
AC_core2
AC_core3
AC_core4
AC_core5
AC_core6
AC_core7
AC_core8
AC_core9
AC_core10
AC_core11
AC_core12
AC_core13
AC_core14
AC_core15
AC_core16
AC_core17
AC_core18
AC_core19
AC_core20
AC_core21
AC_core22
AC_core23
AC_core24
AC_core25
AC_core26

λex λem Φ ε Brightness
574 616 0.36 96,403 34,414
596 632 0.03 79,614 2,301
586 628 0.09 64,094 5,631
580 618 0.20 50,323 9,813
596 636 0.04 94,905 3,657
594 642 0.07 76,670 5,367
588 626 0.02 63,298 1,038
590 638 0.04 48,913 2,005
592 640 0.04 70,564 2,990
596 646 0.04 76,537 3,328
596 638 0.03 87,410 2,302
584 644 0.04 88,840 3,402
588 612 0.25 73,240 18,056
592 628 0.03 77,821 2,389
588 632 0.02 89,906 2,011
592 630 0.02 89,220 2,199
586 632 0.09 75,300 7,108
596 634 0.03 81,281 2,738
584 624 0.19 108,173 20,014
574 618 0.26 84,953 22,046
564 614 0.43 68,643 29,312
586 622 0.14 49,196 6,994
568 610 0.37 101,824 38,009
586 616 0.02 95,910 1,745
594 616 0.00 92,130 222
594 640 0.07 98,159 7,173
592 620 0.01 95,290 577
592 620 0.01 102,455 1,504
579 617 0.30 73,312 22,250
594 632 0.14 61,430 8,333
580 619 0.33 64,566 21,531
587 628 0.23 64,526 14,800
584 618 0.24 73,402 17,724
590 628 0.22 65,283 14,057
572 614 0.39 59,841 23,159
583 620 0.21 64,220 13,216
582 621 0.16 64,915 10,409
594 632 0.13 55,972 7,124
586 624 0.14 50,955 7,208
586 624 0.16 36,297 5,716
583 620 0.17 62,469 10,826
577 616 0.33 65,210 21,386
580 618 0.01 108,944 1,051
588 624 0.07 56,968 3,822
592 630 0.12 70,650 8,594
585 624 0.15 56,009 8,450
584 626 0.19 39,874 7,730
594 633 0.13 78,293 9,820
577 620 0.31 71,419 22,456
580 618 0.24 71,205 16,843
589 624 0.18 61,844 10,880
582 614 0.19 59,592 11,063
578 613 0.14 66,129 9,523
583 612 0.01 63,028 431
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Table S3 – Mutations to the HcRed core in the bright, characterized hits. Variant 

core7 was called HcRed7 in this work. 

  

Position
WT)Residue
core1
core5
core6
core7
core8
core9
core10
core11
core12
core13
core14
core15
core16
core17
core18
core19
core2
core3
core20
core4
core21
core22
core23
core24
core25
core26
core27
core28
core29
core30
core31
core32
core33
core34
core35
core36
core37

A)/)B
158 160 173 175 143 28 41 67 68 80 196 215
N M H T S G M R T F I S
D D D D D D D D D D H A
D D D D D D D D A D D D
D D D D D D D H D D Y D
D D D D D D D K D D Y D
D D D D D D D K A D D D
D D D D D D D K P D D D
D D D D D D A K D D Y A
D D D D D D A K A D Y A
D D D D D D C K D D Y D
D D D D D D C K A D D D
D D D D D D Q K A D D D
D D D D D D V K D D D D
D D D D D A D K D D D D
D D D D D A D K D D D A
D D D D D A D K A D D D
D D D D D A D K A D D A
D D L D D D D D D D D D
D D V D D D D D D D D D
D D V D D D D D D D Y A
D Q V S D D D D D D D D
A H D D D D D D D D Y A
A H D D N D D D D D Y D
A H D D N D D D D D Y A
C D D D D D D D D D D D
C D D D D D D D D D D A
C D D D D D D D D D H D
C D D S D D D D D D D D
C D V D D D D D D D D D
C D V D N D D D D D D A
C D V S N D D D D D D D
C H D D D D D D D D Y A
M Q D D D D D D D D H A
S D V D N D D D D D D A
S H D D D D D D D D Y A
T D V S D D D D D D D D
T L F D N D D D D D R A
A H D D D D D D D D D D

Library)A Library)B
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Table S4. X-ray data reduction and crystallographic refinement statistics for HcRed7 

(A) X-ray data reduction statistics 

Space group P1 21 1 

Unit cell dimensions (a, b, c) 54.3 Å, 122.1 Å, 108.8Å 

Resolution 39.3 Å – 1.63 Å 

   (last shell) 1.72 Å – 1.63 Å 

Total measurements (last shell) 761,418 (83,674) 

Number of unique reflections (last shell) 111,329 (13,784) 

Wavelength  

R-merge (last shell) 0.093 (1.554) 

I/σ(I) (last shell) 11.6 (1.1) 

Completeness (last shell) 0.957 (0.797) 

Multiplicity (last shell) 6.8 (6.1) 

(B) Crystallographic refinement statistics 

Resolution 33.7 Å – 1.63 Å 

   (last shell) 1.83 Å – 1.63 Å 

No. of reflections (working set) 111,232 

No. of reflections (test set) 5,487 

R-factor (last shell) 0.190 (0.312) 

R-free (last shell) 0.221 (0.338) 

No. of amino acid residues 893 

No. of atoms 7,154 

No. of solvent molecules 655 

Average B-factor  

   Protein 30.1 Å2 

   Solvent 36.1 Å2 

R.m.s.d. from ideal geometry  

   Bond lengths 0.010 Å 

   Bond angles 1.331º 
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Figure S1 – Oligomeric characterization of HcRed variants. (A) As a first test of 

oligomerization we ran size exclusion chromatography (SEC). This method gives a rough 

idea of molecular size, and the trend is clear that throughout the engineering process from 

HcRed to mGinger0.1, there has been a steady shift towards later elution from the column, 

indicating that smaller molecules are present. (B) We confirmed SEC data with analytical 

ultracentrifugation (AUC). We ran sedimentation velocity at 50,000 RPM and performed a 

c(M) analysis of the sedimentation data. DsRed was run as a tetrameric standard, HcRed as 

a dimeric standard, and mCherry and FusionRed as monomeric standards. The mGingers 

sediment even slightly below mCherry and FusionRed, an effect that is explained by their 

lack of C-terminal tail. mCardinal, in contrast with the mGingers, is not actually 

monomeric. 
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Figure S2 – A comparison of directed evolution techniques. Consensus design and 

error-prone mutagenesis were used concurrently to try to recover the fluorescence of a 

destabilized HcRed7∆6. Consensus design produced many more bright variants, and a 

greater percentage of the overall library was fluorescent. Error-prone mutagenesis pulled 

out mutations that complemented the consensus positions. 
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Figure S3 – All mutations made to HcRed7 during monomerization. These mutations 

are overlaid onto the structure of HcRed7. In yellow are the mutations shared between 

mGinger0.1 and mGinger0.2. In green are the five positions mutated in mGinger0.2 from 

mGinger0.1. 
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Figure S4 – A brightness vs. emission plot that includes HcRed variants. HcRed core 

variants and the mGingers are plotted along with the rest of the known characterized 

fluorescent proteins. The HcRed core library spanned a large number of wavelengths and 

produced some bright variants. The mGingers fit right onto the apparent brightness frontier 

for monomeric RFPs. 
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Figure S5 – Fluorometer readings of far-red FP and HcRed variant spectra. HcRed7 

is 9 nm red-shifted from HcRed. mGinger is red-shifted from mRaspberry and mPlum 

E16P, which is a variant of mPlum with full maturation to the red chromophore, in contrast 

to mPlum, which has a mixed green/red chromophore. 
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4.10 Supplemental Methods 

Generating a multiple sequence alignment (MSA) and computing a consensus sequence. 

We searched various resources including GenBank, SwisProt, UniProt, NCBI-BLAST, and 

patent databases for reported FP sequences. We found 741 unique fluorescent protein 

sequences and aligned them with MAFFT, which we then hand-curated with the use of a 

163-member structural alignment. Phylogenetic distances were estimated and then used to 

weight a consensus sequence calculation. 

Specific technique: 

Computes a consensus sequence for the MSA, by doing the following: 

            1. Henikoff weight the alignment 

            2. Compute symbol counts (singlets are used here) 

            3. Compute the column entropy, IGNORING GAPS 

            4. Compute uncertainty reduction for each column, using  

                    R_c = log2(20) - H_c 

            5. Reduce R_c by the gap fraction (R_c' = (1-gaps[c])*R_c 

            6. Calculate a score for each position and each non-gap character via  

                    S_c(A) = p_c(A)*R_c' 

            7. Find max(S_c(A)) over A, for each c.  That's the consensus character. 

For a rough score interpretation, a nongapped column that is partitioned equally among the 

20 amino acids will have a score of 0.0. 

This function returns an alignment-position indexed dictionary of consensus AAs and 

score, along with a 20 x Npos matrix of character scores, and a corresponding key to  

identity of the rows. 

No pseudocounting is used in determining character frequencies.  
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CHAPTER 5 

Accurate Characterization of Some Common Anthozoa Class 

Red Fluorescent Proteins 

 

5.1 Abstract 

Red fluorescent proteins (RFPs) are broadly used across biology, and are of special interest 

to protein engineers because of the allure of in vivo imaging of vertebrate hosts at near-

infrared wavelengths. ~200 RFP variants have been reported in the literature, but we have 

found that drawing on the literature for RFP engineering or choosing an RFP marker for 

biological studies is hampered by a lack of reliable data. Most proteins are not thoroughly 

characterized, and for those that are, the data are often marred by significant errors or 

inconsistencies in measurement. Here we detail a thorough characterization of some of the 

most heavily used RFPs. We find that key attributes such as oligomerization, peak 

emission, and brightness are often misreported or have significant error. Because all RFPs 

in this study are expressed, purified, and assayed in parallel, as opposed to comparing 

values calculated across different instrumentation, we are confident in the comparative 

story that these results tell. To guide future measurement techniques, this study attempts to 

lay out a standard methodology for characterizing RFPs so that future variants can be 

effectively compared to the existing cadre of engineered RFPs.  
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5.2 Introduction 

Aequorea victoria class red fluorescent proteins (RFPs) are heavily used biological 

markers. They contribute to a broad color palette that is used for multi-wavelength 

spectroscopy and are of crucial interest because of the possibility of engineering bright, 

near infrared (NIR) variants that would allow imaging through biological tissue (1). Since 

2000 when the first structures of DsRed were published, ~50 native and ~130 engineered 

RFPs have been reported, and characterized to some degree. The most common 

characterization of these proteins is to report the wavelengths at which the RFP maximally 

excites and emits light. Quantum yield and extinction coefficient, which are the two 

determinants of brightness, are then reported for most of the engineered variants. Apart 

from brightness and wavelength, there is little uniformity in the characterization of RFPs. 

Additionally, many of the assays that measure biophysical attributes are not standardized or 

conducted with any uniformity. Even some of the more standardized assays that measure 

basic biophysical attributes can produce very different results depending on subtle 

differences in the instruments or protocol used (2-4). The problems with RFP 

characterization can in turn complicate any efforts to draw conclusions about RFP 

engineering. Pooling data from multiple sources that are subject to large experimental 

variation is an exercise that can be easily swamped with error. Even more importantly, 

imprecisely determined FP attributes can lead to the misinterpretation of experimental data 

when these proteins are used to visualize biological processes. 

The most commonly reported fluorescent characteristics of RFPs are their maximum 

intensity absorbance (λabs), excitation (λex), and emission (λem) wavelengths, and their 

brightness, which is the product of a protein’s quantum yield (Φ) and its extinction 

coefficient (ε). Other commonly reported parameters are the pKa of the chromophore, its 

photostability, its fluorescence lifetime, and the oligomeric state of the protein. Together 

these are the thought to be the most important fluorescent characteristics for common 

biological imaging applications. There are other properties of these proteins that are less 

often reported such as the green to red ratio of the chromophore, the halftime of 

chromophore maturation, and the thermal stability of the protein. These attributes can 



 

 

109 

provide insight into the biophysical basis for fluorescence, and we believe they are 

important for RFP design. Thorough and accurate characterization of a key set of important 

and commonly used RFP variants would be an invaluable data set that we believe would 

help to instruct future RFP design. 

Here we focus on a subset of fluorescent characteristics that we believe are tied to the 

design of bright, far-red monomeric RFP variants. We measure quantum yield, extinction 

coefficient, λem, thermal stability, and oligomericity in some of the most commonly used 

and a group of recently reported far-red FPs. This data set is ripe for querying with 

questions about the correlations amongst RFP fluorescent properties, and for drawing 

conclusions about some important structural underpinnings of fluorescence. 

5.3 Results and Discussion 

RFP Oligomericity is Poorly Characterized in the Literature 

RFP monomerization has been one of the principal goals for RFP engineers, as all known 

native RFPs are tetrameric (5, 6). Monomeric markers are much preferred for biological 

applications, as the fusion of a dimeric or tetrameric RFP to a target cellular protein can 

drive aggregation or clustering of the linked protein target (7). Five RFPs have been 

claimed to have been monomerized: DsRed, dKeima, eqFP578, eqFP611, and HcRed 

recently by our group (3, 8-11). The means by which the oligomericity of the designed 

variants has been measured, however, are inconsistent between these studies. Recent in 

vitro and in vivo studies have hinted that many so-called “monomeric” RFPs are in fact 

relatively high-affinity dimers (7, 8). A large family of engineered RFPs derived from 

eqFP578, which includes some of the brightest and most red-shifted variants, has long been 

claimed to be monomeric. This family was engineered from a first generation variant that 

called TagRFP. It was recently shown, however, that two key members of this family, 

mNeptune and mKate2, do not behave monomerically by HPLC. This is problematic for 

the claim that any member of this family, which includes mKate, mKate2, mNeptune, 

mNeptune2.5, and mCardinal, is in fact monomeric. There are very few mutations to either 

of the dimeric protein-protein interfaces between any of the family members; the vast 
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majority of the mutations are elsewhere on the surface or in the protein core, effecting 

fluorescence. In addition to in vitro data that seems to question the monomericity of one 

family of RFPs, mCherry has been implicated alongside TagRFP as being aggregation 

prone in live bacterial cells when fused to an Escherichia coli nuclear associated protein, 

H-NS. 

We sought to directly test the oligomericity of the TagRFP family of fluorescent proteins 

and mCherry, both of which had been hinted to not be completely monomeric. We first 

attempted to assay the oligomericity via Homo-FRET, which we had used as a high-

throughput test for a library of DsRed variants, but because of the high degree of variability 

between the various RFP cores, the read-out from this assay was not easily interpretable. 

As a slightly lower-throughput option, we then ran size exclusion chromatography (SEC) 

as an initial test of oligomericity. We ran mCherry; mCardinal – a recently reported far-red 

variant of mNeptune; FusionRed – a reportedly fully monomerized mKate variant; and 

mGinger0.1 – an HcRed variant that we had recently engineered. SEC analysis was not 

conclusive, but strongly suggested that mCardinal was dimeric as it eluted earlier than any 

other dimeric standard we ran (Figure 1A). mCherry, FusionRed, and mGinger0.1 ran close 

together in order of their molecular weight. SEC is not quantitative, but it does appear that 

FusionRed and especially mCherry run significantly earlier than mGinger0.1, enough so 

that it there may be an indication that mCherry has some slight oligomeric tendency, which 

would confirm in vivo results. 

To test if mCardinal would run differently at lower concentrations, perhaps behaving 

dimerically only at high protein concentrations, we analyzed varying concentrations of 

mCardinal by SEC (Figure 2). The elution profile of mCardinal at 740µm, 7.4µM, and 

740nM, which neared the signal-to-noise limit for our instrument, all perfectly overlap, 

showing that its oligomeric state is not concentration-dependent within that range. This is 

biologically relevant, as the average concentration of an expressed protein in a budding 

yeast cell is between 0.4 and 1.4 µM, suggesting that expression of mCardinal as a fusion 

protein in vivo would necessarily cluster its linked protein target. 
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For further confirmation of these results, we ran a sedimentation velocity study by 

analytical ultracentrifugation (AUC), which is one of the most reliable biophysical assays 

for determining molecular size in solution. We ran DsRed as a tetrameric standard, HcRed 

as a dimeric standard, and mGinger0.1 as a monomeric standard. Indeed, mCardinal 

appears dimeric by AUC, sedimenting at ~60 kD, or about twice the molecular weight of 

the monomer, confirming our earlier study by SEC (Figure 1B). FusionRed and mCherry 

neatly overlay with mGinger0.1, contrasting with SEC data that had shown both proteins, 

but especially mCherry, eluting much earlier than mGinger0.1. Further study of these 

proteins is needed; specifically, it would be helpful to determine the dissociation constants 

of oligomerization, possibly with accurate fluorescence anisotropy or isothermal 

calorimetry. 

Noisy measurement of Extinction Coefficient and Quantum Yield Affects Reported 

Brightness 

A critical measure of the usefulness of an RFP is its brightness. Brightness is dependent on 

two parameters. The first, quantum yield (Φ), is a unitless measure of the efficiency of a 

chromophore at emitting absorbed light, and can be thought of as the amount of light 

emitted as a percentage of the total light absorbed by the chromophore. Second, extinction 

coefficient (ε) is a measure of how readily a chromophore absorbs light. It is usually 

expressed in per molar, per centimeter units, meaning that it is a measure of the absorbance 

at a particular wavelength of light over a one-centimeter path length by a one molar 

solution of the chromophore. Reported brightness values can vary widely between 

publications, but most publications do not remeasure previous work, which can lead to 

errors being propagated through the literature. 

Here, we measure Φ and ε in parallel for a number of widely used red and far-red FPs. We 

find that the values we measure vary by as much as 50% from reported values in the 

literature. We tried to follow the most precise methods and used careful technique, but even 

more importantly, these measurements were made in parallel on the same instruments. This 

means that if the absolute values are not accurate, the comparative value of these 

measurements will allow insights from the variance of Φ, ε, and brightness as they relate to 
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protein structure and sequence. We have fairly high confidence in our numbers because 

reported literature values cluster pretty uniformly both above and below our measured 

values (Figure 3). For two RFPs, mCardinal and mNeptune2.5 the reported values are 

significantly higher than our measured values: 63% and 53% respectively, while for 

mPlum and FusionRed the reported values are lower than our measured values by 41% and 

21% respecively (Table 1). All other brightness measurements we made are within 20% of 

the reported values.  

These measurements were made with a Tecan Saffire 2 platereader. We used the red dye 

Rose Bengal (12) as a standard and came very close to the known values for the heavily 

studied proteins mCherry and DsRed. The values that have only been reported once or 

twice in the literature tended to be much less accurate. 

Peak Excitation and Emission Wavelengths are Dependent on the Instrument Used 

The wavelengths at which an RFP maximally excites and emits are of high interest, as 

RFPs are sought that both excite and emit further into the near infrared. Instrumentation, 

however, can give very different measurements dependent on a number of factors. 

Principally, optical instrumentation is very precise and needs to be tuned regularly. Of 

specific note is that many photomultiplier tubes do not detect far-red photons as efficiently 

as shorter-wavelength photons, meaning that some instruments will undercount the 

intensity of far-red light. We use a fluorometer from Photon Technology International with 

a Xenon arc lamp that has a correction for the dampened detection at long wavelengths to 

measure the spectra of various RFPs (Figure 4). 

For the most part we found that the reported literature values were fairly accurate. 

mCardinal and mNeptune2.5 were slight exceptions, with reported values overstated by 2-4 

nm (13). A major outlier, however, which was ironic considering the amount of work we 

had put into it, was HcRed (14). The reported literature value for its peak fluorescent 

emission is 645 nm, reported by two groups. We found it to have maximum emission at 

633 nm, which is a very large error. 
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There is a Correlation Between Thermal Stability and Quantum Yield. 

Quantum yield (Φ) is one of the most important RFP attributes, as it is a measure of the 

efficiency of the chromophore at emitting fluorescent light. A major goal of NIR FP 

engineering is to improve Φ in far-red monomers, as RFP monomerization causes a 

significant hit to Φ, and there is also a steep negative relationship between quantum yield 

and λem. We have reported on the negative correlation between Φ and λem in a previous 

chapter. This negative correlation is different for monomers and for oligomers, with 

monomers having significantly lower quantum yields at high wavelengths than oligomeric 

RFPs. It is known that quantum yield is correlated to the stability of the excited state of the 

chromophore, and because monomerizaiton would seem to destabilize the protein scaffold, 

there seemed to be a good explanation for why quantum yield drops with monomerization. 

We showed with HcRed variants that thermal stability was a good metric for predicting the 

drop in quantum yield, with unstable proteins more likely to take significant hits to 

quantum yield than monomers that have been thermo-stabilized, usually via core 

optimization. 

Here we measure the thermal stability of some monomeric and dimeric variants of DsRed, 

HcRed, and eqFP578, and show that this relationship holds (Figure 5Α). As with the 

correlation between Φ and λem, there appears to be a diagonal barrier, above which lies 

space unpopulated by FP engineering. Essentially, the current relationship between Φ and 

apparent Tm implies that protein engineers have been working within a framework that 

limits the Φ of a protien to some value defined by its Tm. However DsRed, a native 

tetramer, easily cruises through this barrier, with a quantum yield of nearly four times the 

brightest monomer, FusionRed (Figure 5B). The measurement of a broader array of RFPs 

is needed to further characterize this relationship. It is possible though, in the context of an 

Anthozoa class RFP, that a three-parameter analysis of λem, Φ, and apparent Tm could 

predict a maximum brightness for a given stability and emission wavelength. 
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5.4 Conclusion 

This has been a preliminary study of the characterization of RFPs. More standardization 

and accuracy is needed in the field for data to be useful for FP engineers. We attempt to lay 

out best practices for measuring ε, λem, Φ, apparent Tm, and oligomericity. Of these 

parameters, the most disturbingly misreported parameter is oligomericity, with a whole 

family of RFPs having been categorically miscategorized as monomers. Brightness values 

are very noisy as well, so better techniques are needed to improve accuracy. λem seems to be 

the one parameter that is fairly accurately reported. 

5.5 Materials and Methods 

Materials and Methods have been described previously in chapters III and IV. 
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5.6 Tables and Figures 

 
 
Figure 1 – Measuring the oligomericity of RFPs. (A) We first ran RFPs 
over SEC to gauge their oligomericity. SEC provides a qualitative output that 
shows that mCardinal is an apparent dimer, while mCherry and FusionRed are 
likely monomers, and mGinger0.1 is a definite monomer. (B) We then 
measured the apparent molecular weight by sedimentation velocity on an 
analytical ultracentrifuge. There is a clear distribution into monomers: 
mGingers, mCherry, FusionRed; dimers: mNeptune2.5, mCardinal, HcRed; 
and tetramers: DsRed. 
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Figure 2 – The oligomericity of mCardinal. We analyzed three 
concentrations of mCardinal, spanning three orders of magnitude via SEC. 
We see that the peaks perfectly overlay one on top of the other, indicating that 
mCardinal’s oligomericity does not change over this concentration gradient, 
confirming that it is an obligate dimer at concentrations as low as 740 nM. 
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Figure 3 – The deviation of (A) quantum yield (Φ), (B) extinction 
coefficient (ε), and (C) brightness between measured and reported values. 
Values seemed to cluster around equality, with reported values showing errors 
in both directions. 
  



 

 

118 

 
Figure 4 – Spectra of fluorescent proteins measured in a fluorometer and 
corrected for the decreased sensitivity of the photomultiplier tube at 
longer wavelengths. 
  

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

500" 525" 550" 575" 600" 625" 650" 675" 700" 725"

mCherry"ex"

mCherry"500"em"

mRaspberry"ex"

mRaspberry"500"em"

mPlum"E16P"ex"

mPlum"E16P"500"em"

mCardinal"ex"

mCardinal"500"em"

HcRed7"ex"

HcRed7"500"em"

HcRed76ac114s8"ex"

HcRed76ac114s8"500"
em"



 

 

119 

 
Figure 4 – There is a positive correlation between Φ and apparent Tm. 
(A) We plot this relationship for dimeric and monomeric variants of DsRed 
and eqFP578. (B) DsRed (bright tetrameric point), a native tetramer and 
DsRmCh (thermostable tetrameric point), an engineered tetramer are added to 
the plot. DsRed clearly breaks out of the Tm to Φ correlation. 
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