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STMARY

Dust devils are small-scale atmospheric motions of instability
arising from the development of large thermal stratifications in the
lowest layers above the surface of the earth. A theory is proposed
in Part I to describe the conditions of formation of these motions
and depends on the new result that shear provides a powerful stabi-
lizing influence even in non-viscous fluid motions in which denser
fluid is situated above less dense, Those features of the flow which
can be predicted by the theory and compared with observations are
found to be in reasonably good agreement, and it is therefore indi-
cated that the theory, which is based on 2 highly simplified model
of flow, furnishes at least a qualitatively correct correlation of
the basic ideas involved in the stable flow of very slightly viscous
fluids containing density inversions. Applications to technically

interesting flows of this type, in large-scale atmosvheric motions
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as well as in high speed aerodynamic boundary layers, are indicated
but not analyzed in detail.
In Part IT the perfect fluid flow is determined for a turbomachine

of conical shape znd prescribed blade loading. On the bagis of the as-
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sumption that the stream surfaces are conical in shape, a linesr,

elliptic partial differential equation of the second corder is cbizained.

The associated boundary value problem is of the Sturm-Liouville type and

is solved completely. An asymptotic representation of the solution is

-

determined which is convenient for computational purposes.



I. ON DUST DEVILS

Recent developments in serodynamics and meteorology bave stimulated
interest in fluld flows of variable density with denser fluid above, Iun
aerodynamics the advent of high speed £light has introduced flows in
vhich boundary layer fluid is less dense than its overlying fres stream
{see, for example, Ref. 1) and similar configurations in wakes and jetls,
Research in connecltion with control of the North American potato blight
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recently revealed that on clear days lapse rates in the lowest five feet
above sgricultural land generally exceed the adisbatic value (which

represents the threshhold of static stability) by a factor commonly of

-

the order of one hundred, and consequently produce a similar stratific
tion (Ref. 2); observations of the same sort made at the bottom of the
atmosphere have been well known in meteorclogical cireles for many years
and have continued to defy explanztion. Further, there are indications
that the energy of tornadces is derived from the flow of masses of

')

cold air over warm and less dense air masses, bthough an insufficient
understanding of such flows has impeded general accertance of their
mmporTance ag a factor in meteorological dynanmics,

Attempting to account for the remarkable convsction patlerns

observed by Benard in liquids heated from below, Lord Rayleigh (Ref. 2)

o

in 1914 initisted a series of investigations of the convection flows

resulting from density defects in lower layers of liquids, and discovered
1 e IS

stability eriteria which depend on the molecular viscosity of the liguid.

& large amount of hydrodynamic resesrch, ﬂotquv including that of Low
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}, Southwell (Ref. &), Brunt (Ref. 7}, and

Sutton (Ref. 8), has been devoted to refinement of Rayleigh's analysis.
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Brunt (Ref. 9) analogously suggested that the existence and persistence
of superadiabatic lapse rates in the atmosphere is attributable tc an
effective turbulent viscosity.

In his investigation of the influence of heat stratification on
the development of turbulence in aerodynamic boundary layer flow,
Schlichting (Ref. 10) examined the hydrodynamic stability of such flows
to the extent of determining the dependence of the threshhold of
stability on the Reynolds number of the flow and the density difference.
By means of an elaborate numerical calculation it was thus indicated
that a flow containing a density inversion could be stable under distur-
bances of sufficiently short wave length and low Reynolds number. The
measurements made by Prendtl and Reichardt (Ref. 11) in the Gottingen
hot-cold wind tunnel, the results of which Schlichting compared with
his theory, do not include flows with density inversions, however. By
confining his interest to the indifference curves in the stability

diagrams, Schlichting made no distinction between the regions of very

weak instability and the regions in which the stability characteristics
could determine the course of an entire flow field at later instants of
time,

Numerous atmospheric phenomena suggest that viscosity may be largely
unessential to the stability of flow in fluids with greater density above.
This conjecture is confirmed in the following analysis, in which it is
shown thalt a simple transverse shearing motion furnishes a strong stabil-
izing influence even in the laminar motion of noneviscous fluids. The

specific problem discussed is the conditions of formation of those
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small-scale, vertical, atmospheric, whirling motions which are commonly
observed on hot days in the deserts of the scuthwest United States
(see, for example, Ref. 12) and in India% The spectacular, unpredict-
able, and destructive nature of these motions has earned for them the
name "dust devil" which is also their accepted meteorological designa-
tion. Dust devils are at times strongly developed for a height of a
hundred feet or more above the earth's surface, and are persistently
and characteristically violent disturbances in an otherwise abnormally
calm atmosphere containing onlyﬁvery gentle breezes. Dust devils in
the earliest stages of development are preferred for analysis rather
than other technically more important variable density flows of the
same fundamental character, partly on account of the apparent simplicity
of observational conditions in which they develop. Dust devils have
been carefully observed, and experimental evidence has long disproved
the fable that the earth's rotation is an essential feature of the motion,
as in the case of the much larger scale and geometrically similar major
(geostrophic) wind systéms of the earth. From the simplicity of the
atmospheric conditions which generate dust devils it is not to be inferred
that the motion itself is in all other respects also a simple one; in
some senses quite the opposite is true. Dust devils are unsteady and
unstable motions resﬁlting from a disturbance in a heterogeneocus, turbu-
lent, comprgssible, heat-conducting fluid in an initially rotational
motion. It is of further interestto note that in the present develop-

ment of fluid dynemics a flow which is described by any one of the

¥ Rudyard Kipling has immortalized the dust devil in India in his
"Ballad of the East and West'.
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adjectives of the previous sentence is beset with great analyticsl
difficulties; every one cof the seven plays an essential role in the
development of dust devils, as will be demonstrated. In view of the
extremely small number of flows which are well understood and involve
combinations of the featurss mentioned, any qualitative information
which can be obtained regarding flows involving all of them interacting
simultanecusly is of some interest entirely apart from its application.

It is well known that of all possible hydrcdynamicsl motions of
real fluids, those which have been satisfactorily explained in terms
of fundamental dynamical principles form a very smgll fraction of the
whole. Essential features of dust devils are that they are unsteady,
rotational, and three-dimensional motions in a heterogeneous medium.
These facts alone present insuperable technical difficulties if one
attempts a complete analysis of the hydrodynemics of the motion - -
other important features of the flow would complicate the analysis
even further. If any progress is tp be made toward understanding the
physical mechanisms of the motion, therefore, one must be content with
examining separately different aspects of the problem, and considering
drastically idealized models of the real motions and processes. Follow-
ing this procedure sufficient deductions have been made to constitute
a more or less complete picture of the circumstances under which dust
devils can develop, and of the motion in its earliest stages. From
the fact that dust devils are unstable motions invelving the release
of relatively large amounts of energy, it appears that there must be a

storage of energy preceding the development of one of these motions.
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lapse rates in the lowest layers of the atmosphere have repeatedly
been observed which are so large that stratifications exist with density
significantly greater above than below. In the sense that under some
circumstances a negative amount of work would be required to be supplied
externally in order to effect an overturning, there is then a static
instability associated with such a stratification; but the mere fact

that these stratifications are not immediately destroyed, but rather do
persist and intensify, indicates that they must in fact possess some
degree of stability. A logical first step would then appear to be to
determine the stabilizing influence in such configurations. If stability
criteria can also be found, thess may delineate the parameters which are
decisive in creating the unstable motions. It will be shown that shear-
ing action furnishes the stabilizing effect and a criterion is found
thereby which suggests several important features of the mechanism of
dust devils,.

For this purpose a highly idealized model of the undisturbed flow
is considered. It involves several arbitrary simplifying assumptions
based on the real flow, but does retain its most essential features.

The reasons for making these assumptions will be plain from the analysis
which follows, and their é postiori justification will be indicated.

The method of small perturbations is applied to the basic flow
which 1s steady and two-dimensional motion of two incompressible and
homogeneous fluids, one in a layer of finite thickness above a plane
boundary which represents the earth's surface, the second a semi-infinite

sea of denser homogeneous liquid above the first. The interface is the
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plane z = 0, above which there is a uniform motion with speed U parallel
to the positive direction of the x~axis, below which the shear velocity
decreases linearly from the value U at z = O to nothing at the plane
boundary at z = =h.

The flow considered is indicated in Fig. 1, in which the shear

Z=-4
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Fig. 1

velocity profile is indicated, as well as the density discontinuity at
the plane z = 0. Greater density in the upper fluid corresponds to a
positive increment & > O.

It is convenient for later purposes first to write the hydrodynamic
equations in a form slightly more general than is required for the flow
just described; continuous density variations and non-vanishing shear
velocity profile curvatures will not be excluded from consideration for
the present,

Taking»the origin of coordinates at h units of height above the
surface, the z-axis directed upward, and the x-axis in the direction

of the loecal wind, the undisturbed motion is governed by the equations



of momentum which reduce to

z 94

3

——

o

(oW

in the usual notation where the subscript zero denotes values in the
undisturbed state, and g is the gravity force per unit mass. The
equation of continuity is identically satisfied, as is also the equation
which expresses the assumed incompressibility.

The stability of the flow pattern described is investigated by
examining the consequences of a small perturbation of the flow which is
assumed to be such that the resulting total flow obeys the dynamical
equations. Denoting small disturbance quantities by lower case letters

with no subscript or superscript, the equations of momentum become

{i

90(’0 +U'b')( +sz>+’%$ O (l)

e
?o(%%* U®¥)+%§+9% (2)

when products of small quantities are neglectsd in the usual manner.

The equations of continuity and incompressibility likewise become

U M:O
ox * ot (3)
% 98 _
’Q% U'?)‘(.'i'Wﬁ—O. (4)

The last four equations contain four unknowns, viz,, the velocity com-

ponents u and w, and the perturbation density 9 and pressure p. The
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coefficients of all unknowns are independent of time t and coordinate
X, 80 that dependence on these variables can be written in the form

wt + 2%
. In this notation O is the (possibly complex)
frequency and A\ the wave number corresponding to a single harmonie
component; it is well known that disturbances of a more general nature
can be resolved into components in this manner. Thus the principle
of superposition of solutions of linear differential equations permits
the consideration of more general motions by compounding different
harmonic components. Eliminating the velocity component w and the
pressure and density from the Equations (2), (3), and (4), and using

the assumed dependence on the x and t variables, a single equation is

obtained for the remaining velocity component:

d*W | 1 dGdW_ (2 1 dgaVE) | aX PUAC) -0,
a * ¢, d2 Zﬁf"{ +?oE[w+>.U +@+x0)‘]+w+)\u w=0

(5)
This equation, which will be fundamental in the analysis which follows,
reduces to the equation considered by Love in 1891, when U = 0 and the
notation is slightly modified (Ref. 13).

Bach fluid element is required to satisfy the dynamical and conserva-
tion principles implied in Equation (5). 1In addition it is assumed that
the vertical component of velocity w is continuous at all points includ-
ing, in particular, those at the interface between one fluid and another,
and at solid boundaries. The same requirement is imposed on the pressure
perturbation p, and these requirements together suffice to determine the
flow. The condition on the pressure can be expressed in tefms of w by

requiring the continuity of the quantity
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A boundary value problem in the mathematical sense is determined by
Equation (5) and the two auxiliary conditions Just mentioned.

It is clear that in certain cases the requirement (6) of pressure
continuity reduces to requiring continuity of the derivative gg.

Returning to consideration of the particular flow model already
described, it is seen that Equation (5) is greatly simplified for each
region of flow, and becomes

2
%—*Wzo (5a)

since in both the upper fluid and the lower the density has been assumed
constant and the wind shear has been chosen to contain zero curvature.
Finiteness of disturbances at great distances from the origin requires

the solution of Equation (5) in the upper region to be simply

2%
W=C\e

while the condition of zero normal velocity at the solid boundary
requires
W = C, sinh Az +4)

in the lower fluid. Continuity of w at the interface requires, within

the present approximation, that
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Cy
C.= sioh A

The pressure continuity condition then reducss to an equation for the

determination of the frequency which becomes

U %-— 4 \ge(+e+coth )v&)

WXV =R 7)

2 (1+ € + coth A 4&)

and furnishes stability criteria. The frequency is a reai quantity
when the expression under the radiecal sign is greater than zero, and
the disturbance is then said to be stable with respect to small distur-
bances of wave length L = 2£1. If the quantity under the radical sign
is less than zero, however, the frequency has a non-vanishing imaginary
part which indicates a motion which is inecreasing in amplitude expon-
entially with time and therefore represents an instability with respect
to small perturbations.

Two features of the stability criteria thus obtained from Equation
(7) must be realized, and these are limitations of the criteria. It
must be understood, first, that no information is provided concerning
the response to a large disturbance; stratifications which appear to be
stable from the criteria Equation (7) may behave quite differently under
larger perturbations than can be considered by the present analysis,
Conversely, a prediction of instability based on Equation (7) offers
no assurance that the motion remains unstable when perturbations reach

finite values. In short one may say that instability criteria deduced

from Equation (7) are necessary but not sufficient conditions for the
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The presence of s irrelevant in guarartesing

In the absence of wind shesr when denser fIluild s above (i7u however,

disturbances corresponding to all wave lengthg are unstakle. is a fa-

miliar result and displays the chavacteristic that instebi’

-

sturbances of smell wave lengtlhs

The presence of wind shear wodifies the instability, weakening i

all wave lengths, and presenting the possibility of repressing the insta~
bility of disturbances of wave lengths grester than z critical value.
This oceurs whenever ithe shear is sufficiently grest sc that the condi-
tion (8) is satisfied. This demonstrates that shearing motion stabilizes
a statically wnsitable configuration in which more dense fluld overlies



that
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is sufficiently great:
2 €
e S
In other words, it is verified that the condition that sufficient shear
stabilizes the motion continues to apply to long wave components, i.e.,
when Z§==L.77 2mh . Tt is doubtful if this 1limit is of great
importance in dust devil formation, since instabilities caused by de-
struction of shear and action of long wave components represents a very
weak instability, whereas disturbances of smaller wave length and
correspondingly greater time factor of instability determine the growth
of the complete motion.

It remains to consider the opposite limit; when anomalous behavior
of the criterion (8) for small wave lengths has been clarified it will
be seen to be possible to describe a more or less complete mechanism of
the formation of a dust devil. In this connection it is evident from
(8) for any values of the shear parameter and for any € 7 0, that for
sufficiently small wave lengths (i.e., for sufficiently large values
of the wave number )\ , or for Aol ), an instebility is always
indicated. In view of the ubiquity of very short wave length distur-
bances in nature, this fact seems to require further investigation. In
this connection it will be demonstrated next that on account of friction
the criterion is invalid for extremely large wave number components of a
disturbance and that, in fact, these produce an effect opposite to that
indicated in (8) by providing a measure of positive stability. It will

be seen that the creation of stratifications of denser fluid above can
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be explained in terms of these components, thereby completing the
suggested mechanism for dust devil formation.

The action of very small scale eddies differs essentially from
that of larger eddies on account of the fact that temperature and ve-
locity gradients in the former are of greater importance than in the
latter. The smaller dimensions increase gradients and therefore also
friction and heat conduction effects. In the absence of definite
knowledge about the form of turbulent eddies of small dimension, it
is impossible to specify a critical dimension below which the effect
may not be neglected. The argument which follows, however, appears
to be plausible for "sufficiently" small eddies and it may be supposed
that for somewhat larger eddies the effecis found are of lesser
strength and so on for larger and larger eddies, so that a continuous
state of affairs exists for all eddy sizes. The real justification of
the assumptions which follow, however, is the agreement of the conclu=
sion with observations which will be cited.

It is assumed that the kinetic energy acquired by a warmeddy as a
result of the action of buoyant forces is entirely transformed to inter-
nal energy as a result of the action of friction and heat conduction,
The bubyant force on unit mass of fluid element is §§4} where §¢
is the excess of the density of the surroundings over that of the ele-
nment. For small eddies the density variation can be taken to be
proportional to the temperature variation, since the accompanying
pressure variations, while sufficient to create motions, are entirely

negligible in their thermodynamic effects. This is Boussinesq's
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celebrated "hydrostatic assumption", (Ref. 15). Then
S o &1 _ dT
T X T T 4 4
where 1| 4is a characteristic mixing length for the motion. The work
dore by the buoyant force 1s then proportional to lz %%j and this
term is then also proportional to the kinetic energy %? acquired by
unit mass of the eddy. The turbulent heat conduction coefficient is
a7
Wi and the heat flux through unit horizontal surface is W 1 aFE -
When equilibrium of heat flow is established this quantity is constant;

i.e.,

T 2 T 2 V2
WG WEAE - L) et O

If the mixing length is given by the von Kérman law L=x(+ zo) in
terms of the universal constant k and characteristic roughness length

Z,, then integration of (9) leads at once to

Tec (& + zo)-vs_ (10)

When the ground surface is hot, as in cloudless desert calm at high sun,
with conservative estimates of the roughness parameter Zg9 the tempers-
ture law (10) results in extreme gradients in the lowest layers, greatly
exceeding the adiabatic lapse rate and thereby creating a stratification
containing less dense air at low levels beneath layers of greater density
air,

The above argument was first pointed out to the author by Professor

W. D. Hayes, in private communication. Professor Hayes also stated that
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Dr. Prandtl made a similar deduction in about 1946. Measurements made
by Johnson and Heywood in England have subsequently confirmed the
qualitative result (10) to a high degree of accuracy (Ref. 16).

The result (10) is of importance in the present problem in demonstrate
ing that very small eddies provide the mechanism for producing a density
inversion and, therefore, a stratification which is statically unstable.
This transformation of energy from a thermal form to gravitational
potential energy, in transferring heat upward and increasing the supply
of energy which drives the unsteble motion, can, however, be regarded as
a stabilizing influence on the dynemical configuration. Dynamic insta-
bility, which represents a further conversion troducing kinetic energy
at the expense of the density inversion, then proceeds at a rate deter-
mined by the sirength of longer wave components for which the criterion
(8) is expected to apply. While it would be difficult to estimate
precisely an upper limit to the size of the smell eddies which are thus
viewed as stebilizing in their influence and for which (8), derived by
neglecting fricticnal effects, is nolt a valid dynamical criterion, it
seems plausible that some such limit does exist. Schlichting's findings,
cited above, may be taken as a confirmaticn of this conjecture.

Refinements of the argument leading to (10) and of this result
itself can be made but are nct needed for the presernt problem. It is
of interest -to calculate numericel values from (10) for conditions in
which dust devils are known to develop. Taking cne inch as g conserva-
tive value of the roughness parametér (see, for example, Ref. 9, p. 248),

and the tempersture one inch from the surface to be 125° F, then the



17

lapse rate at one fool above the surface exceeds the adiabatic value
by a factor of about 17,000. This may be compared with the rate of
2,000 measured by Best (Ref. 17) above grassland in England. While the
drastic assumptions used ir deriving the result (10) above may exaggerate
the lapse rates which actually exist, the extreme intensity of the sun's
rays in the desert may represent a greater energy source than is found
elsevhere and hence produce lapse rates sufficiently much greater than
those cbserved by Best so that dust devils are formed in one place but
not the other.

Returning to consideration of the criterion (&), the results
deduced above concerning the effects of eddies of small scale permit
the mechanism of formation of motions of the dust devil type to be
described in the following manner.

When the desert sun shines on flat land containing sparse foliage
which exists only in the lowest few feet above the surface of the
earth, that surface is heated very intensely. The layers of air imme-
distely above the surface are heated by conduction, with irregularities
of temperature from one point to another which depend on surface
conditions. The Reynolds number of the atmosphere being sufficiently
great even in the presence of the gentlest breezes, motion on the smalle
est scale is turbulent, so that small snd relatively warm and expanded
elements of air are readily lifted by bucyant forces and carry heat
upward. Short wave length components of ubiguitous smell digturbances
thus tend to creste steep lapse rates which are strongly superadisbatic

in the lowest layers and therefore statically unstable. In the absence
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of s sufficiently strong transverse shearing motion, some components
of intermediate length are also dynamically unstable, according to

(8) and overturning results through motions of instability which are
of greater intensity for relatively shorter wave lengths. This prevents

the development of density inversions or destroys them more or less as
quickly as they are created. If a gentle breeze is blowing, friction

at the surface produces a convex shearing profile (and therefore a
rotational main flow). The presence of the shearing flow represses the
instebility of disturbances on that flow in such a manner thai some dis-
turbance components become steble. This mesns that density inversions
mey be produced, corresvonding to the law (10) or possibly milder forms.
Greater shears produce the possgibility for development of stronger
density inversions, the existence of which represents a storage of gravi-
tational potential energy. When such a stratified flow is disturbed,
its response differs according to the strength of the different wave
lengths which are present. Relatively long wave lengths ( A small)

are relatively ineffective in violating the condition (8) by diminshing
the term under the radical sign. Very small wave components were: shown
to result in an intensification of the density inversion, when friction
and heat conduction effects were considered. In contrast with instebi=-
lities of greater wave lengths which will be seen to destroy the density
inversion, these small wave components actually develop it. For
intermediately long wave components of a disturbance, the criterion (8)

indicates that if the shear is sufficiently great, they produce no
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instability. For some smaller values of the shear, componente of
length greater than a critical value are stable, while smaller wave
lengths are unstable. The instability is more intense (the negstive
of the imaginary part of W , which is the time scale of the insta-
bility, being greater) for the shorter wave length components. When
the shear is locally reduced by an obstacle or gust, ssy, if it is
reduced sufficiently sc that some wave lengths which are present,
creste an instability, then vertical motions occur and this further
reduces the shear. Then longer wave lengths, if present, also become
unstable causing even greater reduction of shesr. If it should ensue
that the shear is entirely destroyed in this manner, then more wave
length components of an initial disturbance become unstable, and
ultimately all greater than some small value are unstable, each with
a time facter proﬁortional to the square root of the wave number. For
a given amplitude, the relatively shorter unstable wave components are
more influential in determining the rate of growth of the motion, since
they correspond to greater time factors.

It has been shown that when no wind is blowing, or when it is too
weak, instabilities are sufficiently great to prevent the development
of strong density inversions. For somewhat greater values of the wind
shear, density inversions may be stable and this leads to the possibili-
ty of subsequent sustained unstable motions. For still stronger winds,
it appears plausible that vertical mixing is increased by the turbulent
shear itself, and prevents the initial development of density inversions

and subsequent instability. Hence it appears that a gentle breeze may
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be necessary for the develcopment of a dust devil, but both more calm
and also more strong winds are unsuitable for its develomment. This
accords with observations (Ref. 12).

In the intermediate case when sustained unstable motions become
possible, il seems credible that the motions which develop should have
the form actuaslly observed in dust devils. The destruction of shear
being a local effect, the resulting motion should be of limited hori-
zontal extent, rather than of significantly greater extent in one
horizontal direction than in another. Unstable motion proceeds at
the expense of a store of energy, which in the present case is gravi-
tational potential energy depletion by ascent of less dense air in a
chimney=-like motion and its replacement by subsiding air surrounding
the ascending column. The rotation about a vertical axis appears as
a consequence of the principle of conservation of moment of momentum,

and the whirling motion becomes more intense as air is sucked in from

larger and larger distances from the axis of motion. The direction of
the whirling motion depends on the form of the initial flow obstruction
or other disturbance which creates the motion; there is no preferred
direction, as in the case of the geostrophic winds. The inherent limita-
tions of the linearized dynamical theory which has been employed in
formulating the mechanism suggested prevents the detailed analysis of
later phases of the motion just described. The early stages have been
described qualitatively in detail by means of the results (8) and (10),
but the mechanism described so far lacks that convineing aspect which is

only obtained by verifying quantitatively the correctness of the



21
description which has been given. Thils can and will be congidered next,
before an attempt is made to evaluate the assumpticns which have been
made.

& verificaticn of the qualitative correctness of the mechanism
described above for the genesis of dust devil motions can be obtained
by examining the criterion (8) in the following manner. For a given
ground temperature and an assumed superadiabatic lapse rate in a layer
above the earth's surface, as well as an assumed wave length, that value
of the wind shear can be calculated which corresponds to neutral
stability, by considering (8) with the equality sign. The perameter
values chosen are necessarily arbitrary, and on this account it seems
well to indicate in detail the reason for the perticular choices which
are made.

In an atmosphere in which there is a constant temperature lapse
rate n times greater than the adiabatic value r1=§§!%§ = 0.98 °0/100 n.,
the density p(z) at height z meters above the surface is related to the

value at the surface, ¢, , and the surface temperature To’ by the

formula
IR
T.-nlz niy-1)
9(*):‘?0( T ) (12)

where, as usual, 0 is the ratio of specific heats, equal to 1.4 for
air. One d?duces (11) from the equations of state and of hydrostatic
equilibrium. The density increment can be calculated from (11), or,
since this quantity is very small compared with unity in cases of

interest to the present problem, it can be approximated very well by
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retaining only the first two terms of the binomial expansion, as

% = (- )T

— 12)
S (

from which it is apparent that density inversions, corresponding to

?(§)> S>° result when the lapse rate nl' exceeds the so~called auto-
3 ;

convective value g:ﬂ—' =351 . If the lapse rate exceeds the adia~-

batic value by a factor of n = 10 in the lowest ten feet with a ground

temperature To 125° F = 325° K, then the density increment at ten

feet above the surface is 2932353 nlO:: 040006. The seme value
obtains if a layer 19 feet thick is c;nsidered in which the lapse rate
factor n = 7, or for other combinations which can be easily calculated
from (11) or its approximetion (12). In the model considered in deduce-
ing (8) the lower layer was assumed homogeneous, which suggests that
for the atmospheric conditions indicated just above, a reascnable mean
value is obtained by taking one half the value calculated above,

€ = 0.0003, say. If the thickness of the lower layer is taken to be
ten feet, the required wind shear depends only on the wave number.
Remembering that the smallest wave numbers present in appreciable
strength in an initial disturbance correspond tc most rapid unstable
growths, 1t seems reasonable that these will be the most important ones.
If, then, following the suggestion of von Kérmin's similarity hypothesis,
we take the wave length to be four tenths of the thickness of the lower
Jayer, the wave number A = 0.64/ft. and the required wind speed is

3.5 ft./sec. This represents a gentle breeze and seems to be at least

of the seme order of magnitude as the observed gentle breezes which have
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been reported when dust devils have been observed. Recognizing that
the wind speed value just obtained may have an appreciable quantitative
error, it is of interest, nevertheless, to continue calculations using
this value for want of a better one. If the wind were this strong then,
or stronger, a density inversion corresponding to a lapse rate ten times
greater than the adiabatic value would be stable with respect to small
disturbance components of wave number smaller then \= 0.6L/ft., i.e.,
for relatively longer wave lengths. If a flow obstruction diminished
the cross wind, an instability would appear for the seme wave length.
The strength of the instability, given by the time factor from (8),
clearly depends on the extent of the wind diminution. In the limiting
case in which the wind is entirely destrcyed by the supposed flow

obgtruction and subsequent unstable motion, the time factor is then

[w)= 1— eq>(1+e+co+h>\ﬁ= ,%\l: 0.36 /sec.

This indicates that the amplitude of a disturbance would increase by a
factor of € = 2.7 in approximately 2.8 seconds. This value, repre~
senting an upper limit as it does, also seems to be in reascnable agree-
ment with the observed slowness of dust devil growth in earliest stages.
A very much smaller value, corresponding to much larger time, would be
less acceptable, since other flow irregularities might then be expected
to predomindte.

Similar calculations could be made for either steeper or less steep
temperature gradients, for different thicknesses of the rarefied layer,

and for various supposed wave lengths, but for two reasons such
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caleulations would seem to be unjustified. In the first place it
would be difficull to state which wvalues might be more representative
of actual conditions which prevail in the atmosphere when dust devil
motions begin - such values are, furthermore, of little importance.
In the second place, the special nature of the assumptions made in
deducing the criterion (8) may have an important influence on quantita-
tive conclusions obtained from it. It seems alt any rate to be satis-
factorily established by the numerical calculations above that the
resulting mechanism which has been suggested for the formation of dust
devils is not in error by entire orders of magnitude —= further
information is not desired of numerical calculations at present. The
general character of the criterion (8) can be displayed, however, by
plotting it in dimensionless form for one value of the dimensionless
density parameter € and for the case of neutral stability in which
the quantity under the radical in (8) vanishes. This is dore in
Fig. 2 in which the ratio of kinetic to potential energies, gg (which is
the square of a Froude Number), is plotted against the dimensionless
wave length parameter %. The solid line then‘separates a stable region
above the curve from an unstable region below. The curve cannot be
continued to the origin of the abscissa for reasons discussed previously
Further, on account of the smallness of the parameter &<< 1 in atmos-
pheric density inversions, it is apparent that the curves corresponding
to different values of this parameter are essentially parallel to each

other, and it suffices to plot only one curve.
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The significance of several of the assumptions made in the flow
model which has been analyzed can now be discussed and evaluated.

The fluids involved have been assumed incompressible, whereas
the compressibility of a fluld element is essential for the thermal
expansion which is basic for the formation of a density inversion., The
neglect of compressibility in dynamical equations is justified for the
present problem, however. Just as in high speed aerodynamic flows in
which compressibility is negligible when the Mach number is small com-
pared with unity, likewise the neglect of compressibility in the present
problem depends on the smallness of a corresponding dimensionless ratio.
The phase velocity %% is the quantity which requires compariscn with
the local sound speed ¢, which is the measure of compressibility. The

phase velocity is appropriate as the comparison quantity since it is
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the only ratio of the same dimension as sound speed which can be formed
from the intrinsic flow parameters which occur in the analysis. Con-
pressibility is negligible when
@
X

where the sound speed ¢ = 1200 ft./sec. at the assumed surface tempera-

K C

ture of 125° F. TFor the assumed wave number X\ = 0.64/ft., then,

compressibility can be neglected for frequencies
|l << Ne = 170/seg;

the frequency which was found in the calculated example P&\ = 0.36/sec.,
certainly satisfies this condition. Alternatively, the assumption is
justified for frequencies of the order of %/éec. whenever the wave number

)

A —

or, equivalently, whenever the wave length

L = 2TC = 473 miles;

|w]

ag it appears very unlikely thal such large wave lengths are of any
importance in the formation of dust devils, the assumption of incom-
pressibility appears to be completely justified in the dynamical
analysis. It is apparent, also, that in the study of longer atmos-
pheric vaves one may not neglect compressibility, and indeed classiecal
formulations of the analysis are frequently in terms of the divergence
of the velocity, sometimes called the condensation, which is a measure
of the compressibility of a gas. A formulation of the present problem

in terms of the condensation, would therefore appear to be inappropriate.
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The novelty of the result that a density inversion is not unstable
with respsct to distuwrbances of all wave lengths, which is concluded
from (8), is clearly a consequence of the assumed shear pattern. Undis-
turbed flow with less simple wind shears are well known in hydrodynamics
and are in many cases unstable. In the absence of a shearing wind,
U = 0 and density inversions { € > 0) are unstable with respect to
disturbances of all wave lengths, the shortest wave lengths displaying
the strongest instabilitiss, in the usual manner. Less dense fluid
above more dense { € < 0) is of course stable, but even this situation
is radically modified by shear. It is shown by lamb, for example
(Ref. 14, p. 373), that if the two fluids are moving each with a uniform
but different speed from that of the other, then disturbances of
sufficiently smell wave length are unstable, and this is true regardless
of whether the upper fluid is more dense than the lower or less, In
either case there is a sheet of vorticity st the interface. In reality,
the discontinuity, if it could ever be originated, would be immediately
abolished by viscosity, and the vortex-sheet replaced by a film of
vorticity. From this point of view, the conclusion drawn from (8) can
be expressed as follows: If a fluid is moving with uniform velocity
with respect to and over a less dense layer of fluid, then any small
disturbance precipitates an initially unstable motion. As transverse
momentum is exchanged and vorticity diffuses from the discontinuity
surface, the shear profile created by the early instability becomes a
smoother one. If this continues, a convex pattern forms, which may

reserble the polygonal one which has been considered in deducing (8).
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In this case the unstable motion continues until a stable flow regime
is established, and this may involve the continued storage of stati-
cally unstable gravitational potential energy: the dynamic instability
is held in sbeyance by the shear pattern. Destruction of this shear

pattern then would unharness a further unstable motion (of the dust

devil type, perbaps). The mechanism just described is of interest as
a description of the later and greatly altered stages of a classical
hydrodynamic instability, with possibly important applications in
meteorology and elsewhere, bubt not in the genesis of dust devils

since the assumed initial wind discontinuity is of course not realized
in the atmosphere.

The simple polygonal velocity profile which was chosen for analysis
in the model considered was selected for the resulting simplicity of the
differential equation. If a curved profile were considered, the Equation
(5) would no longer have constant coefficients and simple exponential
solutions. While the more complex equation can readily be solved, yielde
ing hypergeometric functions for solutions, it also would entail a
secular equation which would furnish the frequency as a transcendental
funetion of the wave length, rather than the extremely simple algebraic
form (8) which is obtained by neglecting profile curvature and continuous
density variations, It appears reasonable from the form of (5) that
shear profile curvature would involve drastic changes in the stability
properties only if sufficiently great negative curvatures were present
so that the coefficient of w experienced a change in sign. As wind

profiles are characteristically not sharply curved in the lowest layers,
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this possibility can be excluded from consideration in the present
problem. Alternatively, we can accept Schlichting'!s results as an
indication that profile curvature does not nullify the conclusions
drawn.

By reason of the form of Equation (5) it is difficult to examine
rigorously the consequences of the assumption of uniform density in
each of the two layers of fluid considered and a density discontinuity
at the interface. This results from the fact that when continuous
density variations are admitted in addition to a variable shear, the
coefficients in Equation (5) are no longer constants and solutions are
not simple exponential functions. Solutions, instead, are then hypgr-
geometric functions the parameters of which depend on the frequency.
The resulting frequency equation obtained from the pressure condition
(6) is then = transcendental function of the frequency, the properties
of which are not nearly so transparent as those of the quadratic equa-
tion which led to the solutions (7). Consequently, although solutions
and a frequency equation can be obtained in the case of continuously
varying density, comparison of the result with Equation (7) would be
more difficult in practice than circumstances justify, and the calcula-
tion has not been carried out. The effect of the assumption of a
density discontinuity can be estimated in another manner, however,
which is on;y slightly less satisfactory. By specializing the result,

Equation (7) to the case with no shear, U = 0, the familiar result

is obtained that
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. —E%X
W™= rerwth\h (12)

' which represents an instability for density inversions ¢ > 0, and of
strength which is greatest for small wave lengths (large wave numbers

N ). The instability represented by (12) is a classical one, and is
discussed by Lamb (Ref. 14, p. 372). The result (8) then shows how
shear stabilizes this flow. It seems reasonable therefore to compare
(12) with the instability obtained by neglecting shear in Equation (5),
but by considering exponential density variations. The resulting
equation then has constant coefficients and exponential solutions which
depend on the frequency ) . The frequency equation resulting from
the pressure condition (6) is then a transcendental equation for the
frequency, but one which an involved calculation shows to possess the
simple solution

~€

A (+ )

in which & denotes the dimensionless density surplus at z = O over

w* = (13)

that at z = =h and the other symbols retain their former meanings. TFor
purposes of comparison with (12) it seems reasonable to agsign, as an
appropriate mean value for g the valuwe = , since, |¢'|«1l inal1

cases of practical interest. Then (13) becomes

2 = ~E(} TZ
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and it is therefore clear that the instability of a continuously vary-
ing density stratification, for fixed values of & is of the same
general form as in the case (12) and even of almosti precisely the same
" strength when the depth h in one case has the same value as the reci-
procal of the wave number )\ in the other. In other words, the
instability is of the same form in both cases, whenever the depth of

the lower layer is of the same order of magnitude as the wave length
- 2T
= 5.
of the instability depends more sensitively on the depth of the lower

L In the case of continuously varying density, the strength
layer than in the case of a density discontinuity in which the wave
numpber is the more important quantity. If one supposes, as seems
reasonable, that the stabilizing influence of shear is not greatly
different in the two cases, then it appears that the result (8) for
the density discontinuity is not greatly influenced by this assumption,
at least for wave lengths of the same order of magnitude as the depth
of the lower layer. The inadequacy of (8) for much longer and for much
shorter wave lengths has already been discussed.

In the preceding analysis consideration has been confined to a
two-dimensional basic flow and to disturbances in the same itwo-dimen-
sions. It is not difficult to extend the argument and to show, thereby,

that the possibility of a stable shearing motion in a density inversion
is preserved. The minor modification resulting from the admission of
variations in the third dimension is also put in evidence in a simple

manner.
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By choosing the x-axis again in the direction of the loeal wind,
the z-axis vertical upward, and the y-axis perpendicular to both, the
undisturbed motion remains two-dimensional. Adding to the previous
"notation the symbel v for the component of disturbance velocity in the
y direction, a third equation of momentum is obtained in addition to
Equations (1) and (2), and an additional term is introduced into the
continuity Equation (3). The coefficients in the resulting system of
equations are independent of y, and it is therefore appropriate to
assume a dependence of all disturbance quantities on y in the form
e}jx% , in the usual manner., Formulating the problem in terms of

the vertical component of disturbance velocity, the equation is

replaced by

d*w 150 aW _ {_)‘1+}17~+§—°—/§i(x'+ﬂz) 2O AV ]W-—‘-O

07 So 4% % Lw+20F “weNU) XU (15)

and the condition of continuity of pressure disturbance requires the
continuity of
% z@_/,% Xou) £ M UV w

W[@*)‘w 5%~ {g Orws) . (16)
It is clear that the two-dimensional case is subsumed under Equations
(15) and (16) by letting the wave number [{ approach zero, or equiva-
lently, by requiring infinitely large wave lengths in the y direction.
In the case of zero shear, U= O, it is also apperent that the three-
dimensional formulation is obtained from that in two-dimensions by

replacing N by ‘)3+}f , 80 that the only asymmetry of the motion
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arises from differences between U and X\ .
Assuming the same density variations and shear patierns which were
previously considered, it follows that a disturbance is not unstable if

- the condition

VU geng (e £VE AT E) 2 0
¥ edg (%) (14 e + co “) -

is satisfied. The condition (17) thus replaces the condition (8), and

of course reduces to it when M vanishes. The difference between the
two eriteria can be expressed in the following manner: the shear which

is required to stebilize a density inversion subject to three-dimensional
disturbances is increased, as compared to the two-dimensional case,
according to the smallness of the wave lengths in the y direction. More
importantly, however, it is apparent that the two-dimensional analysis

is not essentially modified in its principsl conclusions by the consider-

ation of two dimensions only.
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II., LINEARIZED THRECHY OF CONICAL TURBOMACEINES

The flow of a perfect fluid through an axial turbomachine with

j7)

rescribed blade loading has been analyzed by means of a linearized

theory by Marble (Ref. 1). In order to estimate the influence of
radial flow compcnents in turbomschines, s similar analysis can be
carried out.. Taking the walls of the turbomachine to consist of por-
tiong of two coaxial cones with a common vertex, the flow problem

can be linearized by assuming that the stresm surfzces consist of
conical surfaces.

To discuss the flew in detail, it is convenient to write the

partial differential equation of the stream function ¢/ in srheriecal

¢lar coordinates R, 6, ¢ with corresponding velocity components U,

e

. .

Y bt
v, W and vorticity components = , N, Z. Letting jf= cos <,b, the

equation becomes
7_0)2 (VRU#
8+ 2 e I 0T )
P (wRv =A%)

Un oY 7V (1)
. ) \ W
Here the stream function has the properties U= ﬁ;;;;‘ §5$‘7

-1 2y
W= ~— and the symbels Fy, H , and W represent, respectively,
Rsing TR * o M Tor ® * ’ : v

the force component exerted by the blade row in the ¢> {or Y ) directioh,

the total head per unit mass of fluid, snd blade angular velocity. The

-

right side of this equation is linearized by considering UO(R} as the

basic flow corresponding to 2 source or sink at the origin R = 0, on

(e}

slightly perturbed by the action of the blade row. Then on the right



side of Bguation (1) choose
a¥ = U_(R) R sing ¢ = -U_(R) R du

and consequenitly the linearized equaltion becomes

Y | o ¥ (R \—M"') 2 \J‘_ﬁ) RF
oot on 1 | O R
2 T RT 4 M “ Us(R) 'zs,u(\’ w Uo(ﬂ)

+@—&3+——(va00 "Ul)} (2)

QM 2

If the radial velocity HG(R) has a value of U (R) at a reference radius

Ro’ it follows that st any other radius,

Nacs®

)

b= ) wew. <
The houndary conditions to be satisfied by the streanm function‘P are
those of vanishing tangential derivative at the inner and outer cone
angles, sayuxil and /12, vanishing disturbances in the J{ direction hoth
for upstream and downstream, and certain ccnditions at the blsde depend-
ing upon whether the blade shape, blade loading, or angulér momentum
distribution is prescribed. These conditions may be given analytically:

At  the inner and outer boundaries,

V® HK) =0 |
VR, M) = U RIR (U - My). (4)

As R —» 6 and R > the flow becomes conical, and therefore

;;iﬁo(%/é%%> - 3;?( g =

(]
——~
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LY
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The values of ED and v_ars sssumed to be known al some stetion upstreanm

9

of the blade vow, and the angular veloelily of the hilsde is giwven. Con-

cerning the conditions prescribed at the blade vow, only the case vwhere
the angular momentum is prescribed will be treated. The extension to

the other cases may be effected in =z manner znalogous to that used for

The mathematical rroblen to be considered is therefore the partiasl
differential equation
Vela —uz Y 2 1
,géﬁzfl-‘i 2 RM) + |55t WRY, T ey A

SNERART RE
Q(&U\:W{ ;)o(@) o (VR LN
PR U)=0 PR, =0 (Re) Re (k= M)

o~
(o))
S”

Y / . . Y
The funetions v(R, y), HOQM}, v {i) are given. Tt is convenient to

chooge the stream function to be the sum of two partial stresm functions
(1 (z
VAR (7)
. (‘) . L1 + =3 '3 - 4 . A T 2 .2 .
where Y corresponds to the flow which would exlist for the same initial
and boundary conditions, buit with the blade removed.
is then the perturbation stream funcltion corresy oné‘ag to the effect of

the blade row on the U and W velocity components,

.»J

guadrabure,

l-‘:i

- (‘)
Clearly o = 0 so that ‘P is found by a simpl

o~
22
S
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\P" (R M) =0
\P(\\ (R M) = \)O(Ro> Ruz (M\"M:}

- .

N ) (
deltermines ‘P( (R,M) completely. Then the sir fxmﬁum*a\P )sansf‘.les:

&
the homogeneous problsm

(o) It ‘D)
J Mb\p—‘p(R)M)

’ TR DM (9)
¥ = 9%, = P00 =9%ww - o
Solution of the corresponding homogeneous equastion may be wriltien in
the form Rn"HHni (M),R_ iHni( M) whers Hn‘- ( M) are linear combina-

tions of associated legendre Functions (Ref. 2) of order 1, degree n_,
i

of both first snd second kinds

(n 0 0} )
Hi, = By, (0 Q,,L. (W)= By, ) Q). (10)
This clearly vanishes identically when M = [A) . The characteristic
functions of the problem are thus determined by finding those values

of the degree n, such that

HN(MJE Mz)Q(l ( E) ,)Qm W) =0, (1)

The resulting infinite set of values n, are the characteristic numbers
. ER
which range betwsen «00 and +o0o . However, it is possible to restrict

the necessary values of n, by noting (Ref. 2) that

P, )= ) . (W)

M, sinleYT 0 Tes KR (0
—nﬁ( ) sip -0 Qm( ) sin (0;-DTC ( )

and therefore the value of H-n (M) is simply
3
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— sin(n+0T
H-ﬂ,‘-k (M\ T & (“r\“\' H L(M) *

Consagquently it is not necessary to consider wvalues of ny for which n,

< =1. The coryespond

complete and possesses orthogonality properties common to functlions

satiafying a2 Sturm-Liouville problsnm,

A& solution to the inhomogensous partial differential equation {9)

et

-0
is obtained from solutions R HY\,; (M) and R L‘-\ni(,u) of the homogenscus

. / . .
egquation, If I\o(,i—,) is an impuwlse funciion with properties

¢ o€ €« R<KX+E

)
T(,8) = 0; O%REo-E; Ry«+e

the contribution to the soliution of the funciion f(RM, in the range

x-¢ < R < o+€ may be found to be

Ma Hm(ﬂ) H'\,,(M {— M Rmﬂ
L T b Z T ) | o 4 R<

(12)

U 2 Hy () ta, (W [ R™™
g I(‘*a%(c(\}‘) Z -l)n (an‘*.\) L~ {5 ok—nml dﬁ R 70(
whera tne choice of the solubions is determined by

-a

he boundary conditions

. 2 ,
at R = 0and R = oo . The numbers ‘Un_ are norms of the H () Punc-
(2 2

tions

. My
Y, = S Hy (p)dp (13)

v

Jutions

'y

The complets solution to the problem is simply the sum of the so

of type (12) for each element of the range where f£(R,M) £ 0. Con-

&

atly 1f we define the function L(R, U; X, p) to be



o

P

S H“c@“m(}ﬂ 1= Uz RV‘CH
Z 2 @n+) | n
% Qo) (1=
L (R)M)(’(‘ﬁ) = N

D ni
5 Buiplalo {7 R -

\ ﬂ (&nﬂ'“ l"ﬁ —V).,‘l

R< o

The complete solution is
- o0 M
2
\P (R)m—_— H""F)L(RWW‘:@ dx dﬁ

o /u\ ! (15)

so long as the Puiction £{X ,ﬁ ) is integrable,
% -

A.,“z,;t'ric:ugh this pz*asedu‘re is Pormall Ly ﬂii,f’w QLnE le for any Aistri-

bution of angular momentum {or for any other manner of prescribing
1 1,

. . AY 1 P f . . .
informetion at the hlade row) the details of the calculations invelving

the Legendre functions ars somewhat cumbersome. The

principally Iin the lack of exbtensive tabulations., Therefore it is
appropriate, and usually sufficiently accurate, to use an asymptotie

H (\.=Y)3m(n +z)(¢ b)) o
n W17 Tsing sing;’ (36)

sin (nﬁ‘s) (¢.-4)=0

[}
~3
g

’

| L
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Therefore , except for impractical included angles (§b2 - ﬁl), only
positive values of ng will enter into the problam., The norms of the

functions are easily calculated

¢-:. 2 cinl \ n?-
7)7. = NS sin (n¢;+i)(¢'¢ ()S) ) y
K gq&l (sin ¢ sin )* d(eos @n; +N sind, (28)

Then in the asymptotic represantation, the Green's function becomes

ZS\“(na +5)( ¢- é)sm(na— (¢ ¢) R“‘“ S_\M Re
L )T e «W sinp RS
(R, Mol B) = (19)
_% shcr-fomict) (3-8) R™ o
‘ Vsing sing L sing

R>=A

whers 45 s the variable of integration corresponding to ¢ s that is,
cos )6 = ﬂ . By means of these results, the perturbation stream func-
IC) s ey e e

tion (R, M) may be evaluated directly from equation (15). The integra-

tions offer no essential difficulty.
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