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C h a p t e r  2  

BACKGROUND INFORMATION 

Periodic structure is found in many materials and systems. It is the regular arrangement of 

atoms, particles, or unit cells which results in both dispersion and band gaps. Due to the 

possibility of enhanced control over wave propagation, these remarkable properties have fed 

the growth of fields such as photonics11,38,39 and phononics40,41. In addition, it is the periodic 

structure that allows scientists in photonics, phononics, and semiconductors to take inspiration 

from each other’s previous work.  

As a mathematical construct, periodicity continues ad infinitum. However, real world systems 

are not infinite, and the spatial periodicity of a lattice ends at some point. In atomic systems, 

the idea of periodicity can only be maintained if the grain size of a crystal is significantly large 

enough. In macroscopic systems, there is a similar problem.  How big is big enough? Can we 

consider a system of 2, 3, or 4, or even a hundred repeating units as periodic? This finite size 

has a significant effect on the frequency band structure that originates from periodicity.  

Granular crystals are an example of a nonlinear periodic mechanical structure, which is 

inherently finite and may have defects. In the following sections I present a review on media 

with broken periodicities, focusing on the literature for granular crystals and proceeding from 

nearly linear to strongly nonlinear.  

2.1 Linear 
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Wave dispersion, in which the wave velocity depends on frequency10, is a result of the 

discreteness of a periodic system. This is in direct contrast with most continuous media waves 

which are typically non-dispersive, meaning the wave speed is constant and the frequency and 

wavelength are determined by the well-known relationship, 𝑐 = 𝜆𝑓. In discrete media long 

wavelengths do not ‘sense’ the discrete nature of the media. However, when the wavelength 

grows shorter and begins to approach the size of the lattice spacing, the discreteness becomes 

extremely important. This dispersion causes wave packets with finite bandwidth to spread out 

spatially.  

In addition, periodic media does not support wave propagation at all frequency ranges. Bands 

of frequencies that are exponentially attenuated and reflected are called band gaps. In 1987, the 

idea of a band gap inspired the field of photonics, where the original interest lay in using 

periodic dielectric materials for localizing and trapping light11,38. In 1993 Kushwaha et al. 

presented the concept of acoustic bands in periodic composites42 and in 2000 Lui et al. 

demonstrated this in a sonic crystal as a method to reflect propagating sound17. In addition, 

phononic crystals are being used to enhance control over high frequency sound and heat43.  In 

periodic mechanical systems, such as the granular crystal, frequency band gaps have been 

introduced as a passive filtering mechanism30,31.  

In a monoatomic or homogenous 1D system, in which all particles are identical, there is a 

single acoustic band. Figure 2.1a shows a schematic of the acoustic band, indicated in red, for a 

homogenous granular crystal. The acoustic band rises up to a frequency that depends on the 

coupling stiffness and masses in the lattice. Above this cutoff frequency waves are reflected 

and do not propagate. The phase velocity, defined as the velocity of each frequency 
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component, 𝑣𝑝 = 𝜔(𝑘)/𝑘, decreases for increasing frequency, a consequence of 

dispersion. The speed of sound of the discrete media is defined by the long-wavelength 

approximation. 

 

Figure 2.1: a) Schematic for the acoustic band (red) of a monoatomic granular 
crystal. Effects of broken periodicity, finite size, and a defect mode are shown in 
blue. The long wavelength speed of sound is shown as the tangent as the 
wavenumber approaches zero (black). b) Setup by Man et al.27 to measure (c) the 
linear acoustic band and localized defect mode in a finite,  20 particle long, chain. 
Reprinted pending permission from American Physical Society27, copyright (2012). 

Broken periodic symmetry affects the frequency bands primarily in two ways: through finite 

size and defects. Finite size limits the number of degrees of freedom, so what previously was 

an acoustic band with an infinite number of modes becomes a collection of a finite number of 

modes with frequencies up to the acoustic band edge. This is schematically shown in Figure 

2.1a. Because the system is no longer infinitely periodic, all waves are not completely reflected. 

Instead the system filtering rolls off, with the imaginary component of the wavenumber also 

affected. As the lattice gets smaller the filtering effects are reduced, and the discreetness play a 

larger role. While Man et al. explored defect modes in a linear finite granular crystal, they also 
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presented the finite size effects in the linear monoatomic chain. The transfer function in 

Figure 2.1c shows the individual resonant peaks, and the localized defect mode. 

Defects have an enormous effect on material properties: electrical conductivity in  

semiconductors12, thermal conductivity13, and mechanical strength14,15 are just a few examples. 

These effects may be due to a strain the defect imposes on the lattice, impurity scattering, or 

even defect-defect interactions.  In otherwise periodic materials, defects destroy the lattice’s 

translational symmetry and alter the fundamental modes of the system, which carry 

propagating wave information. Localized modes may result from a defect in an otherwise 

periodic media44-47. As briefly mentioned above, periodicity leads to frequency band gaps that 

do not support propagating waves. Therefore, if a mode exists in this forbidden frequency 

range, it will be spatially confined, i.e., any energy at this frequency cannot travel in either 

direction and will be locally trapped. In granular crystals, when a mass defect is smaller than 

the other particles in the lattice it may result in a defect mode, where the mode frequency and 

spatial profile depend only on the mass ratio between the defect and the rest of the lattice27.  

Man et al. provides an approximation to finding the frequency of the localized mode using a 

reduced three particle model. In our analysis for local to extended transitions using resonant 

defects37, we provide an analytic approach to finding the frequency and spatial profiles for 

weakly localized waves, in which the three particle approximation breaks down.  

Acoustic and mechanical metamaterials have been proposed for protecting structures against 

low frequency waves, by engineering sub-wavelength structures as local resonances. In these 

materials the locally resonant structure can be approximated as a frequency dependent 

effective mass48. At certain frequencies the effective mass appears negative and this causes a 
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low frequency band gap to open. This was designed in granular crystals as a proof of 

concept and has also been shown in other structures with local resonances as a means to 

control wave speed19,49-51.  

2.2 Weakly nonlinear 

Nonlinearity affects a broad range of disciplines and describes the response of real systems, for 

example, the amplitude dependence of a simple pendulum52, the reaction-diffusion in 

biological systems53, the butterfly effect in weather systems54, the synchronization between 

fireflies55, and the contact law for spheres compressed against each other22. Frequently in 

applications nonlinearity is either essential to how a device works or how it breaks down. Here 

we look at nonlinear effects and then at how they manifest themselves in nonlinear lattices. 

2.2.1 Introduction to nonlinear phenomena 

Almost all systems have some sort of frequency dependence. In linear system theory, this is 

embodied in the transfer function of a system, and in materials science this frequency 

dependence presents itself in variety of ways: two examples are the band gaps in periodic 

materials or the plasma frequency of a metal. But until now we have disregarded any notion of 

a dependence on amplitude. This is where nonlinearity becomes essential.  

Nonlinearity describes how a system, e.g., a material’s force response, a child’s swinging, or a 

stress wave, depends on amplitude8. This is in direct contrast with a linear response, in which 

the force-displacement, or stress-strain relationship, is amplitude independent. However, when 
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the incremental change in spring constant, stiffness, or modulus are no longer constant but 

depend on the excitation amplitude, the system is characterized as nonlinear.  

The idea of nonlinearity should be somewhat familiar. In mechanics we typically think of this 

as originating from one of two sources, either a constitutive nonlinear response or a geometric 

nonlinearity. Rubbers, foams, and carbon nanotube foams56 present examples of materials with 

constitutive nonlinear responses. In these examples the material microstructure results in the 

nonlinearity, and the material does not follow Hooke’s Law under compression or tension. For 

example, a foam’s densification causes an overall increase in the stiffness of the material.  For 

contrast, a geometric nonlinearity develops through a change in the geometry. An example of 

this occurs for a beam in axial compression. As the compression is increased, there is a point 

where the boundaries can no longer be ignored and the beam would rather bend than undergo 

further compressive strain55. This causes a change in the incremental stiffness. Granular 

crystals present a geometric nonlinearity when two spheres come into contact22. Initially the 

contact is a point. As the beads are compressed the contact area grows and the stiffness 

correspondingly increases22. Due to either geometric or constitutive effects, nearly all 

mechanical responses becomes nonlinear at high enough amplitudes. Therefore nonlinear 

systems and their dynamics are an essential part of our physical world. 

But nonlinear systems are also quite difficult to study. Many of the mathematical tools used to 

study linear systems are no longer available: linear superposition of states does not apply, tools 

from Fourier analysis which rely on linear transnationally invariant systems are no longer 

accessible, and in some cases multiple solutions to the same problem exist. Nonlinear systems 

are relatively difficult to fully characterize and even more difficult to use in an engineering 



 

 

14 
application. However, nonlinearity presents dynamics that are not accessible in linear 

systems that could allow for new applications and designs.  

One particular advantage of nonlinear systems over their linear counterparts is the ability to 

transfer energy between modes at different frequencies52,57 . In optical systems this led to sum 

frequency generation57 and is used today in mechanical systems for nondestructive evaluation 

techniques and failure prediction58,59. The nonlinearity communication between modes allows 

them to exchange energy52, and nonlinear wave mixing has been used for granular crystals for 

acoustic logic elements60. We show how energy transfer between modes can lead to the 

breakdown of finite size periodic mechanical filters.  

Weakly nonlinear dynamics are characterized by a smooth transition from linear dynamics in 

which a perturbation scheme presents an appropriate method to solving the problem. In 

dynamical nonlinear systems, such as the classic nonlinear Duffing oscillator or a granular 

crystal, this can be seen as a slow transition away from the linear dynamics. The system is 

initially linearized at some point, but as the amplitude of oscillations grow, the potential is not 

strictly harmonic  (i.e., not linear) and higher order terms become important. As oscillation 

amplitudes grow resonance responses become asymmetric and the amplitude can change 

rapidly due to small system changes.   

2.2.2 Weakly nonlinear lattices 

Up until know I have presented nonlinearity and periodicity as two separate phenomena. 

However in a granular chain, the lattice we study, these two phenomena meet. Before 

introducing a granular chain, it is important to present a brief overview of the different 
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nonlinear lattices that have been studied, influential problems and results, as well as the 

approaches to solving these problems, and follow up with a discussion of how our research in 

granular crystals fits in among these other mechanical lattices.   

Initially, interest in nonlinear lattices primarily grew from two distinct events: the first 

observation of a soliton in 1834 by John Scott Russell, and a surprising computational 

experiment by Fermi, Pasta, and Ulam more than a hundred years later61,62. A soliton is a type 

nonlinear wave that travels at a constant velocity, maintaining a constant spatial profile61. John 

Scott Russell first observed this type of wave in a shallow water channel and followed the pulse 

for miles before he finally lost it. This inspired some of the initial work on nonlinear waves63. 

The constant spatial profile of the wave is achieved through a system that has both 

nonlinearity and dispersion64. Because nonlinear lattices contain both these properties they can 

also support this class of unique waves. The nonlinearity has a tendency for higher amplitude 

waves to travel faster, causing a steepening of the wave, while dispersion, due to the discreet 

nature of the lattice, tends to spread out a wave packet. When these two phenomena balance a 

soliton results. In granular crystals, solitary waves have been extensively studied and were first 

proposed by Nesterenko using a long wavelength approximation for the discrete granular 

chain35. 

The computational result by E. Fermi, J. Pasta, and S. Ulam in 1955 examines the energy 

transferred between the modes of a simple mass spring lattice, with a weakly nonlinear nearest 

neighbor coupling. They initialized the system with a long-wavelength oscillation, and expected 

the system to effectively thermalize by distributing its energy over all modes, a consequence of 

ergodicity. Instead, they found energy transferred to the other modes of the system, but 
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periodically returned back to the initial mode. This was later explained in the context of 

solitons breaking up and coming back together by Zabusky and Kruskal in 196565. Together, 

the discovery of solitons and this computational result inspired significant interest in the 

dynamics of 1-D discrete lattice systems. Important for our purposes, the granular lattice can 

be approximated by dynamics in a the weakly nonlinear FPU type lattice66.  

However, even in perfectly periodic systems many of the dynamics depend on the underlying 

lattice. One way nonlinear lattices can differ is due to different coupling potentials, e.g., the 6-

12 Lennard Jones Potential, the Morse Potential, or the potential from a magnetic dipole 

interaction. In the weakly nonlinear limit this results in Taylor expansions with different 

coefficients. An additional significant differentiating factor is how the nonlinearity enters. In a 

lattice of pendulums coupled through torsional springs, the nonlinearity appears as a geometric 

nonlinearity at each pendulum site. As the pendulum swings to larger amplitudes the linear 

approximation breaks down. The nonlinearity is not in the coupling, but in an onsite potential 

introduced at each lattice point. This type of lattice can be characterized as a Klein-Gordon 

lattice and can be written as,  

𝑢̈𝑖 = 𝑘(𝑢𝑖−1 + 𝑢𝑖+1 − 2𝑢𝑖) + 𝑉′(𝑢𝑖). (2.1) 

Other lattices, such as the Fermi-Pasta-Ulam(FPU) lattices or the Toda lattice, may have no 

onsite potential but instead the lattice is coupled through nonlinear springs.  The granular 

lattice that we study fits into this second category. These can be written as, 

𝑢̈𝑖 = 𝑉′(𝑢𝑖+1 − 𝑢𝑖) − 𝑉′(𝑢𝑖 − 𝑢𝑖−1), (2.2) 
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Where 𝑢𝑖 represents the displacement of the particle at lattice site i, k is a coupling 

parameter, and 𝑉 is either the onsite potential for the Klein Gordon lattice or the coupling 

potential for the FPU lattices.  

In driven weakly nonlinear crystals, there has been extensive study of physics previously 

predicted in FPU lattices, including phenomena related to broken lattice periodicity67. Marin et 

al. discuss the effects of finite size on discrete breather instabilities, a type of localized 

modulation instability in diatomic chains28,29. They discuss how shorter lattices increased the 

magnitude of the instability. Boechler et al. demonstrated discrete breathers in a diatomic 

granular chain68, and explored stability in the different dynamical regimes66. In diatomic 

granular chains Hoogeboom et al looked at the hysteresis loop that occurs when driving the 

system past a bifurcation69. Theocharis et al. looked at the stability of nonlinear localized 

impurity modes that resulted from mass defects70. Finally, Boechler et al. used a granular crystal 

with a local defect mode and broken mirror symmetry to engineer an acoustic rectifier32. This 

design was based on using local resonances to transfer energy to lower frequency propagating 

modes (Figure 2.2). These dynamics are for the granular crystal in the weakly nonlinear regime 

with a broken periodicity due to either defects or finite size. 
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Figure 2.2: Acoustic rectification by Boechler et al.32 in the weakly nonlinear regime. 
The nonlinear resonance of a localized defect mode is only excited in one direction 
due to the broken mirror symmetry. Energy is transferred through nonlinearity to 
lower frequency propagating modes when the defect mode is excited. Reprinted by 
permission from Macmillan Publishers Ltd: Nature Materials32 , copyright (2011). 

  

2.3 Strongly nonlinear  

In weakly nonlinear systems, a common approach is to initially linearize the system and then 

use a perturbation analysis to study the effect of increasing amplitude when nonlinear terms 

cannot be ignored. In contrast, strongly nonlinear systems cannot be studied through a 

perturbation scheme. The dynamics are drastically different from the linear case and must be 

approached differently. In the granular crystal this can easily be seen when the system has no 

initial pre-compression. The Hertz law is piecewise continuous at this point and is essentially 

nonlinear. The granular crystal in the absence of pre-compression has no speed of sound, i.e., a 

sonic vacuum33. Nesterenko shows how this leads to the inability for acoustic waves to 

propagate, but instead energy propagates as highly localized pulses71,72.   

One key advantage of granular crystals is that they present both weak and strong nonlinear 

dynamic responses35. The granular crystal can be tuned to have an effectively linear response 

(at high pre-compressions), weakly nonlinear response (at intermediate pre-compressions), or 

essentially strongly nonlinear response (in the absence of pre-compression). This tunability, i.e., 

the variability of their dynamic response, has attracted significant interest to the granular crystal 

system, especially in its ability to propagate solitary waves35,73 and be used as a shock absorbing 
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protection74. This has been extended to two dimensional granular crystals as a mechanism 

for controlling the directionality of wave fronts75.  

In granular crystals with broken periodicity the work can be separated into either driven 

dynamics or solitary wave propagation interacting with defect or boundaries. Jayaprakash et al. 

examined the time periodic nonlinear normal modes in finite size, essentially nonlinear 

granular chains76. The exploration of solitary waves interacting with broken periodicity began 

with Nesterenko studying the breakup of a solitary wave at the boundary between two 

different essentially nonlinear media72. Daraio et al. experimentally investigated this in an array 

of granular chains adjacent to an array of stainless steel spheres74,77.  Job et al. have studied how 

solitary waves in essentially nonlinear granular chains interact with boundaries78 and localized 

mass defects79. Especially interesting in this case of the mass defect is that because the 

interactions are strongly nonlinear, the mass defect can oscillate at frequencies higher than the 

incident wave spectrum.  

2.4 Energy harvesting 

The nonlinear phenomena that we just explained present a host of advantages over linear 

systems. They have the ability to transfer energy between frequencies, to show amplitude 

dependent behavior, and to go through sharp bifurcation transitions. In many energy 

harvesting these differences could mean new paradigms for harvesting systems with 

significantly greater efficiency.  

Energy harvesting is the practice of converting ambient energy, i.e., energy sources that are 

nonconventional, small, and or broadband, into a more usable form. In vibrational energy 
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harvesting, ambient vibrations are typically converted into electrical energy by using coupled 

piezoelectric devices or some other electromechanical coupling80,81. While linear systems have 

been a good first step, recent nonlinear designs suggest leveraging nonlinearity could lead to 

greater efficiencies.   

The traditional approach is to enhance the total energy harvested by matching the linear 

resonant frequency of the piezoelectric mass system with the resonance of the mechanical 

structure. This then causes an increase in the strain on the piezoelectric, a voltage across the 

terminals, and the possibility for energy to be transferred. In this approach the dynamics are 

completely linear. This allows for easy implementation, but does not necessarily address some 

of the inherent differences of energy harvesting, for which a linear system is not ideally suited. 

Roundy talks about the general approach of defining efficiency in electromechanical harvesting 

systems81, while Anton and Sodano review the application and implementation of piezoelectric 

energy harvesting82. 

A main issue in energy harvesting is that sources are not ideal energy sources; they are both not 

harmonic and not infinite in size. Linear systems are inherently limited by a quality factor 

bandwidth relationship. When the damping of the system is high the harvesting occurs better 

over a broader frequency range, but also now has more internal damping. When the damping 

is low, the energy harvester harvests only from a narrow range of frequencies83.  

Nonlinear systems have the possibility of overcoming this limitation, since in nonlinear 

systems energy can be transferred between frequencies. This has inspired a broad range of 

interest in the field of nonlinear energy harvesting. For highly broadband signals, Cottone, 
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Vocca, and Gammaitoni presented an seminal approached based on a bistable duffing 

oscillator in which noise is converted to higher amplitude motion as the system jumps between 

two stable minima84,85. Here the authors show that this bistable system has the possibility to 

effectively convert energy from a noise signal to a resonance through stochastic resonance.  

Although the authors include electromechanical coupling in the equation, the effect is 

negligible for the parameters chosen. The nonlinear mechanics of similar systems have been 

subsequently studied86-89. A different approach is based on driving a Duffing oscillator into its 

high amplitude state90. This approach relies on tuning the device to follow the resonant 

frequency of excitation and requires that the electrical coupling be small enough to stay in the 

high amplitude state.  

In general in the nonlinear energy harvesting community, the energy sink that is introduced by 

electrically coupling the electrical system to the mechanical is swept to the side or ignored. 

However, this is inherently one of the most important pieces to the problem; damping affects 

amplitude, and in nonlinear systems, the amplitude affects the state of the device operation 

and solution. In addition, by ignoring electromechanical coupling, or choosing poor weak back 

coupling, the energy harvesting device is doing inherently bad. In this case the energy in the 

mechanical system is not being effectively transferred to the electrical load.  

We present two nonlinear mechanical systems to address some of the limitations and problems 

in vibrational energy harvesting. Both ideas are based on pushing a system into an instability in 

order to create transient dynamics. When the dynamics of the system are transient and the 

amplitude of the solution grows, there is a mismatch between the neoconservative forces. This 
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allows us to use electrical dissipation to move the system from an unstable state to a stable 

one and harvest this additional energy. This is presented in chapter 10. 
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