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ABSTRACT 

When studying physical systems, it is common to make approximations: the contact 

interaction is linear, the crystal is periodic, the variations occurs slowly, the mass of a particle is 

constant with velocity, or the position of a particle is exactly known are just a few examples. 

These approximations help us simplify complex systems to make them more comprehensible 

while still demonstrating interesting physics. But what happens when these assumptions break 

down? This question becomes particularly interesting in the materials science community in 

designing new materials structures with exotic properties  In this thesis, we study the 

mechanical response and dynamics in granular crystals, in which the approximation of linearity 

and infinite size break down. The system is inherently finite, and contact interaction can be 

tuned to access different nonlinear regimes. When the assumptions of linearity and perfect 

periodicity are no longer valid, a host of interesting physical phenomena presents itself. The 

advantage of using a granular crystal is in its experimental feasibility and its similarity to many 

other materials systems. This allows us to both leverage past experience in the condensed 

matter physics and materials science communities while also presenting results with 

implications beyond the narrower granular physics community. In addition, we bring tools 

from the nonlinear systems community to study the dynamics in finite lattices, where there are 

inherently more degrees of freedom. This approach leads to the major contributions of this 

thesis in broken periodic systems. We demonstrate the first defect mode whose spatial profile 

can be tuned from highly localized to completely delocalized by simply tuning an external 

parameter. Using the sensitive dynamics near bifurcation points, we present a completely new 

approach to modifying the incremental stiffness of a lattice to arbitrary values. We show how 



 v 
using nonlinear defect modes, the incremental stiffness can be tuned to anywhere in the 

force-displacement relation. Other contributions include demonstrating nonlinear breakdown 

of mechanical filters as a result of finite size, and the presents of frequency attenuation bands 

in essentially nonlinear materials. We finish by presenting two new energy harvesting systems 

based on our experience with instabilities in weakly nonlinear systems.  
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