
Nonlinear Effects in Granular Crystals with 

Broken Periodicity 

 

 

 

Thesis by 

Joseph John Lydon II 

 

In Partial Fulfillment of the Requirements for the degree 

of 

Doctor of Philosophy 

 

 

 

 

 

CALIFORNIA INSTITUTE OF TECHNOLOGY 

Pasadena, California 

2015 

(Defended  December, 17
th
 2014)



 ii 
 

 

 

To my family and friends 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2015 

Joseph John Lydon II 

All Rights Reserved



 iii 

ACKNOWLEDGEMENTS 

I would like to first and foremost acknowledge and thank my advisor, Chiara Daraio. She has 

supported me through each step of my graduate research. When I was unsure or disappointed with 

my research direction, she supported me with much needed guidance. Her feedback and discussions 

on each of the research projects were invaluable. She gave me a tremendous amount of freedom in 

pursuing research problems that interested me. I especially would like to thank her for offering me 

an unparalleled graduate research experience.  

I thank all the members of my thesis committee: William Johnson, Brent Fultz, Keith Schwab, and 

Austin Minnich. Professor Fultz, thank you for all of your guidance and support, specifically 

regarding our first few conversations on your perspectives and passions in materials science.    

I would like to thank my mother, father, brother and sister. I love you all. Thank you mom for 

having complete and total faith and believing in me no matter what I do. Dad, thank you for helping 

me keep focus and greater perspective. I cherish all of our conversations.  

To Ana Bucic, I am blessed to have met you.  

To Marc Serra Garcia, discussing physics with you has been truly a pleasure and made this all fun. I 

thank you for our discussions, for you challenging me constantly, and for sharing your passion for 

science with me.  

To Georgios Theocharis, I am lucky to have had your guidance. You have been an incredible 

mentor.  

I would like to thank my good friends Andrew Morrison and Andrew Guichet. Thank you for all of 

the support. I could not ask for better friends.  



 iv 

ABSTRACT 

When studying physical systems, it is common to make approximations: the contact 

interaction is linear, the crystal is periodic, the variations occurs slowly, the mass of a particle is 

constant with velocity, or the position of a particle is exactly known are just a few examples. 

These approximations help us simplify complex systems to make them more comprehensible 

while still demonstrating interesting physics. But what happens when these assumptions break 

down? This question becomes particularly interesting in the materials science community in 

designing new materials structures with exotic properties  In this thesis, we study the 

mechanical response and dynamics in granular crystals, in which the approximation of linearity 

and infinite size break down. The system is inherently finite, and contact interaction can be 

tuned to access different nonlinear regimes. When the assumptions of linearity and perfect 

periodicity are no longer valid, a host of interesting physical phenomena presents itself. The 

advantage of using a granular crystal is in its experimental feasibility and its similarity to many 

other materials systems. This allows us to both leverage past experience in the condensed 

matter physics and materials science communities while also presenting results with 

implications beyond the narrower granular physics community. In addition, we bring tools 

from the nonlinear systems community to study the dynamics in finite lattices, where there are 

inherently more degrees of freedom. This approach leads to the major contributions of this 

thesis in broken periodic systems. We demonstrate the first defect mode whose spatial profile 

can be tuned from highly localized to completely delocalized by simply tuning an external 

parameter. Using the sensitive dynamics near bifurcation points, we present a completely new 

approach to modifying the incremental stiffness of a lattice to arbitrary values. We show how 
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using nonlinear defect modes, the incremental stiffness can be tuned to anywhere in the 

force-displacement relation. Other contributions include demonstrating nonlinear breakdown 

of mechanical filters as a result of finite size, and the presents of frequency attenuation bands 

in essentially nonlinear materials. We finish by presenting two new energy harvesting systems 

based on our experience with instabilities in weakly nonlinear systems.  
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