
 

 

140 

APPENDIX 

1.1 Analytic modeling for extraordinary stiffness tunability 

This section follows chapter 6 and provides an analytic derivation to explain the tunable 

stiffness phenomena. The analysis was done primarily by Marc Serra-Garcia and demonstrates 

the broader applicability of this concept to other 1-D lattices.  

The system considered in chapter 6 consists of a chain of particles coupled through an 

anharmonic interaction potential (Fig A.1a). In order to get exact results, the motion of all 

particles needs to be accounted for. However, studying the dynamics of a large number of 

particles analytically is a difficult problem.  In our system we can avoid this complexity by 

realizing that most of the motion is concentrated around the defect. This is a consequence of 

the defect mode being highly localized.  This localization allows us to capture all of the 

essential dynamics of the system by considering a single oscillating particle and assuming that 

other particles in the lattice displace only quasi-statically (Fig A.1c,d). By using this 

simplification, we can qualitatively reproduce all of the effects that we have observed 

experimentally, such as the tuned force-displacement relationship of the lattice. In order to 

accomplish this, we consider the system at a prescribed total displacement, and then proceed 

to calculate the amplitude of vibration of the defect, as well as the static force at the boundary.   

At each fixed compression value, we model the defect as a point mass M, with a dynamic 

displacement from equilibrium, 𝑢𝑑 .  The defect is subject to a linear damping 𝐹𝑑 = −𝑏𝑢̇𝑑 and 

a periodic excitation force 𝐹(𝑡) = 𝐹𝑒 cos(𝜔𝑡).   As per our model approximation, we 
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consider the neighboring particles to have a constant displacement from equilibrium 

denoted by 𝛥. We also assume that the defect motion happens only at the excitation 

frequency, and is given by 𝑢𝑑 = 𝐴 cos(𝜔𝑡 + 𝜑). We replace the particles between the defect 

neighbors and the walls by a linear spring with a force relation 𝐹(Δ) = 𝐹0 + 𝐾𝐶𝛥, where 𝐹0 is 

the static force at equilibrium and 𝐾𝐶 is calculated by linearizing the interaction force of all the 

particles after the defect’s neighbors and lumping them into a single spring. 

 

Figure A.1: Analytical modeling of the system. a Initial lattice with no deformation. 
The lattice consists of a chain of particles, where the central particle is a defect 
having a mass M smaller than the rest of the particles. The defect interacts with the 

neighbors through a nonlinear force Fi(δt), where δt is the total distance separating 
the defect and the neighbors. b Deformed lattice. The lattice boundary has been 
displaced by an amount x. c Simplified system used in the analytical approximation. 
For each fixed displacement value x, the interaction potential between the defect 

and the neighbors is approximated by a third order polynomial 𝐹(𝛿), where δ = δt - 

δ0, δ0 being the equilibrium distance between the defect and the neighbors in the 
deformed lattice with no defect drive. All the other beads in the chain are 
approximated by two linear springs KC, with KC calculated independently for each 
deformation value x. d Simplified system with the defect in motion. The defect is 
displaced from equilibrium by an amount ud. The two neighboring beads are 
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statically pushed away from it by an amount Δ due to thermal expansion. 

 
We further simplify the system by performing a Taylor expansion of the nonlinear spring 

connecting the defect mode with the two half-lattices on each side. We take the Taylor 

expansion up to third degree, 𝐹(𝛿) = 𝐹0 + 𝑘𝛿 + 𝑘′𝛿2 + 𝑘′′𝛿3. Here, 𝐹𝑖(𝛿𝑡) is 

approximated by the 𝐹(𝛿). A force including terms up to third degree is able to capture static 

equilibrium, linear oscillation, thermal expansion, and resonance bending effects. The 

expansion is calculated around the inter-particle distance at rest, denoted by 𝛿0. At each 

deformation value, we calculate the coefficients in the Taylor expansion for the defect-

neighbor interaction and the linearized spring constant for the half-lattices.  

This model results in an equation of motion for the single defect particle and an equation for 

the static equilibrium of the defect’s neighbors. Note that, due to the symmetry of the system, 

we only need a single equilibrium equation for the two neighbors. 

𝑀𝑢̈𝑑 + 𝑏𝑢̇𝑑 − 𝐹(−𝑢𝑑 − 𝛥) + 𝐹(𝑢𝑑 − 𝛥) = 𝐹𝑒 cos 𝜔𝑡 

𝐾𝐶𝛥 + 𝐹0 = 𝐹(𝑢𝑑 − 𝛥) 

(A.1) 

(A.2) 

To solve for the amplitude and static force, we perform a harmonic balanceS8  including only 

components at the excitation frequency, and discarding terms containing powers of 𝐴2 above 

3. We neglect higher frequency components because they are significantly lower in the 

frequency spectrum of the defect’s vibration. For the neighbor’s equation, we neglect all the 

harmonic terms and take only the zero-frequency component force. This procedure results in 

the following condition for the amplitude of the defect: 
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𝐴2 [(2𝑘 +
3

4
[2𝑘′′ −

8

3
(

𝑘′2

𝐾𝑐 + 𝑘
) ] 𝐴2  − 𝑀 𝜔2)

2

+ (𝑏𝜔)2] − 𝐹𝑒
2 = 0 (A.3) 

The harmonic balance condition allows us to determine the vibration amplitude of the defect, 

since all other variables are known: the parameters 𝑘, 𝑘′, 𝑘′′ and 𝐾𝑐 depend on the total 

deformation of the lattice, which is prescribed. 𝐹𝑒 and 𝜔 describe the defect excitation and are 

also prescribed. The defect’s mass 𝑀 and damping 𝑏 are fixed parameters of the system.  

We can get further insight on the properties of this system by realizing that the amplitude 

condition (Eq. A.3) is identical to the one that is obtained by performing the same harmonic 

balance procedure on a Duffing oscillator. A Duffing oscillator is a single degree of freedom 

dynamical system described by the equation 𝑥̈ +
1

𝜏
𝑥̇ + 𝜔𝑜

2𝑥 + 𝛼𝑥3 = 𝐹𝑑 𝑀⁄ , and is an 

extremely well studied system. In order to transform our system into a Duffing oscillator, we 

use the equations: 

𝜔0
2 =

2𝑘

𝑀
 

𝛼 =
1

𝑀
(2𝑘′′ −

8

3

𝑘′2

𝐾𝑐
) . 

(A.4) 

(A.5) 

Knowing the vibration amplitude of the defect, it is possible to determine the thermal 

expansion, and therefore the force at the boundary. To do so we use the defect neighbor’s 

equilibrium equation, and the fact that the force on the linearized spring, 𝐾𝐶 , that connects the 

defect’s neighbors to the boundary is the same on both ends of the spring. 
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𝐹𝑏 = 𝐹0 +
1

2
(

𝑘′

1 +
𝑘
𝑘𝑐

) 𝐴2 (A.6) 

As expected, the force at the boundary is the sum of the force without any defect drive, and a 

thermal expansion term that increases with increasing defect motion. The thermal expansion is 

a consequence of the asymmetric terms in the interaction potential. During a period of the 

defect oscillation around an equilibrium point, symmetric terms result in an equal amount of 

attractive and repulsive force. In contrast, asymmetric terms introduce different amounts of 

attractive and repulsive force, and therefore produce a net effect in the force at the boundary.    

Since the analytical model allows us to predict the static force at each displacement value, we 

can differentiate this prediction with respect to the displacement in order to obtain the 

stiffness (Eq. A.7). This equation contains the original stiffness of the lattice, a term relating 

changes in force at the boundary to changes in the vibration amplitude of the defect, and a 

term due to the change in the thermal expansion coefficient as the lattice is compressed. 

 

𝑘 =
𝑑𝐹𝑏

𝑑𝑥
=

𝑑𝐹0

𝑑𝑥
+ (

𝑘′

1 +
𝑘

𝐾𝑐

) 𝐴
𝑑𝐴

𝑑𝑥
+

1

2
𝐴2

𝑑

𝑑𝑥
(

𝑘′

1 +
𝑘

𝐾𝑐

) (A.7) 

The term 𝑑𝐴 𝑑𝑥⁄  can be found implicitly from the harmonic balance. This is done by thinking 

of the balance condition (Eq. A.3) as a function of the amplitude and displacement, and noting 

that the amplitude itself depends on the displacement: 
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𝜓(𝐴(𝑥), 𝑥) = 𝐴2 [(2𝑘(𝑥)  +
3

4
[2𝑘′′(𝑑) −

8

3
(

𝑘′(𝑥)2

𝐾𝑐(𝑥) + 𝑘(𝑥)
) ] 𝐴2  − 𝑀 𝜔2)

2

+ (𝑏𝜔)2]

− 𝐹𝑒
2 . 

(A.8) 

Since this function must stay constant at zero for all displacements, its total derivative with 

respect to the displacement must also be zero: 

𝑑𝜓

𝑑𝑥
=

𝜕𝜓

𝜕𝐴

𝑑𝐴

𝑑𝑥
+

𝜕𝜓

𝜕𝑥
= 0 . (A.9) 

From the previous equation, it is possible to obtain a closed expression for 𝑑𝐴 𝑑𝑥⁄ , provided 

that the amplitude of oscillation is known: 

𝑑𝐴

𝑑𝑥
= −

(
𝜕𝜓
𝜕𝑥

)
𝐴

(
𝜕𝜓
𝜕𝐴

)
𝑥

 . (A.10) 

  

 

Figure A.2: Analytical predictions and comparison to numerical results. a Defect 
response obtained by numerically integrating the equations of motion for the full 
system. b Defect response predicted by the analytical model c Force- displacement 
relation of the material obtained through numerical integration d Force-
displacement relation obtained analytically. All panels are calculated for an excitation 
frequency of 10.5 KHz at increasing excitation amplitudes. 
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We have created a simplified model that captures the tuning of the incremental stiffness 

through the excitation of local defect modes. We use the model to engineer the nonlinear 

interaction potential so it allows us to tune the stiffness to arbitrarily positive values. This is 

accomplished by looking at the stiffness equation (Eq. A.7). When the changes in the stiffness 

are very large, the term 𝑘′𝐴 𝜕𝐴 𝜕𝑥⁄  is always dominant. This is because 𝜕𝐴 𝜕𝑥⁄  can grow 

arbitrarily large, while the other terms in the equation are bounded. The term’s contribution to 

the stiffness of the chain, 𝐾, is given by: 

𝛥𝐾 = −
𝐴

1 +
𝑘

𝐾𝑐

𝑘′ (
𝜕𝜓
𝜕𝑥

)
𝐴

(
𝜕𝜓
𝜕𝐴

)
𝑥

 . (A.11) 

This contribution is large when the system approaches a bifurcation. When that happens, 

𝜕𝜓 𝜕𝑥⁄  tends to zero. Depending on the sign of the numerator −𝑘′(𝜕𝜓 𝜕𝑥⁄ ), the stiffness 

will grow arbitrarily positive or arbitrarily negative. We study this value for a power law 

potential, 𝐹 = 𝐴𝑥𝑝 (Fig. A.3a). When the exponent p is between 0 and 1, the numerator is 

positive. In lattices with this kind of interaction force law, the stiffness can be tuned to 

arbitrarily positive values (Figs. A.3b and A.3c). Recently proposed theoretical workS141 

combined with novel microfabrication techniquesS142 should enable the design of mechanical 

lattices with tailored interaction potentials. Therefore, it should be possible to create materials 

with stiffness that can be tuned over a broad range to positive or negative values. 
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Figure A.3: Stiffness tuning to positive infinity. a Stiffness numerator 

corresponding to a power law potential 𝐹 =
1

𝑝
𝛿𝑡

𝑝
 as a function of the exponent. 

Calculated for a chain of 9 particles with 𝛿𝑇 = 1. Parameters are M = 1 and b = 
0.025. b Force-displacement curves for a 9-particle lattice with a power law 

interaction force exponent 𝐹 = 𝐴𝑝0.5, A = 5600. The exponent 0.5 is indicated 
as a red dot in a. The curves correspond to an excitation frequency of 10.5 KHz 
and increasing excitation forces. c Map relating the applied excitation frequency 
and amplitude to the stiffness, for the same system as b. In all panels the 
interaction force law is assumed to be equal between all neighboring particles. 
For b and c, the defect’s mass and damping are the same as in Fig A.2. 

1.2 Analysis for strongly nonlinear frequency bands 

This section follows the experimental results from chapter 8. The analysis examines the 

extension from a system of two beads to frequency bands in the infinite limit. This analysis 

was done principally by K.R. Jayaprakash. 

In this section, we analytically study the weakly nonlinear dynamics in the AB (attenuation 

band). The induced permanent compression leads to a linearizable system suitable for 

analytical techniques. We extend the previous results by considering a homogeneous crystal of 

N  beads. Similar to the setup explained in section 3.34 for two beads, the first bead is 

harmonically driven and the N-th bead is constrained by a fixed wall. All the beads interact 

with their nearest neighbors through Hertzian interaction law. We incorporate linear viscous 

damping (coefficient ) between interacting beads to simulate dissipative effects in the 
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experimental system and to suppress transient dynamics. Here, we account for the 

damping force only when the beads are in contact and thus incorporate the Heaviside function 

( ) on the relative displacement of the beads. In our analytical approach we non-

dimensionalize the equations of motion so that the results are of general applicability.  We 

therefore begin with presenting the equations of motion of the theoretical model of an N bead 

chain with right end fixed and the left end harmonically excited: 

       

 

       

2
3/2 3/21

1 1* 1 * 1 22

1 1 1 2 1 2

2
3/2 3/2

* 1 12

1 1 1 1

2

* 12

(4 / 3) ( ( ) ) (4 / 3) ( )
2

( ) ( )

(4 / 3) ( ) ( )
2

(4 / 3)
2

i
i i i i i

i i i i i i i i

N
N N

d u R
m E R F t u E u u

dt

f t u f t u u u u u

d u R
m E u u u u

dt
u u u u u u u u

d u R
m E u

dt

 

 

 

   

   



    

      

    

      



       

3/2 3/2

2*

1 1

) (4 / 3) ( )

,

N N

N N N N Ni N

u E R u

u u u u u u 

 

 

  

    

  

 

(A.12) 

where 2,3,...( 1)i N   are the bead subscripts and ( ) sin( )F t A t  is the harmonic base 

excitation. The appropriate non-dimensionalization leads to the set of normalized equations of 

motion, 
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 

        

 
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d
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X
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
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






   
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  



       

          

    

         

   

       1 ,N N N N NX X X X X
     

 (A.13) 

where *E  is the effective stiffness between the interacting beads, and /i iX u A , 

 
1/2

*4 / 3E AR m t t   ,

 
1* */E E  , 2* */E E  , /   , and / m    are 

non-dimensional variables relating (3) and (4). Without loss of generality, we consider 1   

and 1   denoting that the dynamic sensor, actuator, and beads are made of the same 

material. This does not affect the validity of the resulting dynamics. Recalling the material and 

experimental data from section 3.3.4, we obtain  2

* / 2 1S SE E   
 

, 
73.5 10A m  , and 

8500 Hz  ; moreover, the non-dimensional quantities are computed as 3.1742  , 

41.6825 10   , and 0.5  .  

As a second step, and in view of the fact that a sustained compression is experienced by the 

beads in the AB, we decompose the bead displacements into ‘static’ (permanent constant 

compression) and ‘dynamic’ (oscillatory) components. For high frequency excitations in the 

AB, experiment and simulation indicate that small amplitude oscillations about a permanent 

compressed state occur, and this decomposition is in line with this observation. This motivates 
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us to introduce new translated coordinates ( ) ( )j j jX x    , where the j-th bead’s 

displacement is expressed as a combination of its static, 0j  , and dynamic, ( )jx t , 

components. In simulations we observed that 1j j   , i.e., that the permanent compression 

experienced by each bead decreases as we move away from the actuator and the standing wave 

oscillation in the AB becomes spatially localized (Fig. A.4). The axes in Fig. A4-A8 denote the 

non-dimensional units derived above. From the previously shown results it can be deduced 

that no separation occurs between beads once the dynamics enters the AB, i.e., the dynamics is 

smooth between interacting beads. Therefore the subscript ‘+’ can be eliminated from the 

equations of motion (Eq. A.13), which greatly facilitates the asymptotic analysis. The only 

exception is the contact between the actuator and first bead.  

 

Figure. A.4: The displacement response of 1st, 3rd, 5th, and 7th beads of a 10 bead 
homogeneous chain under harmonic excitation with frequency in the attenuation 
zone. All units are non-dimensional. 
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When the dynamics is well inside the AB it holds that   1 1sin ( )x   , except in 

the close neighborhood of points ‘a’ and ‘b’ as shown in Fig. A.5a. Thus, it can be assumed 

that  1 1sin( ) 0x     in the region between points ‘a’ and ‘b’ where the actuator 

displacement exceeds the permanent compression of the first bead 𝛿1, and 

 1 1sin( ) 0x     when the actuator displacement is less than 𝛿1.  

 

Figure A.5: The displacement response of the 10-bead homogeneous chain under 
harmonic excitation with frequency in the attenuation zone: (a) Response of the first 
bead superimposed to the excitation, and (b) detail of (a). All units are non-
dimensional. 

Figure A.5b shows a detailed view of the region between points ‘a’ and ‘b’. It follows that we 

can modify (4) by decomposing the responses in terms of static and dynamic components and 

incorporating the observations mentioned above. This leads to the following modified 

equations: 
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   

      

2
3/2 1/2

1
1 1 12

3/2 1/2

1 2 1 2 1 2

1 1 1 2 1 2

3
sin sin

2

1 3
( ) ( ) ( )

2 2 2

         cos sin ( )p q

d x
x

d

x x

x H x x O x x

     


   

     

 
          

    

        

 

 

2
3/2 1/2 3/2 1/2

1 1 1 1 1 12

1 1 1 1

1 3 3
( ) ( ) ( ) ( ) ( ) ( )

2 22

        2 ( ) ( )

i
i i i i i i i i i i i i

p q r s

i i i i i i i

d x
x x x x

d

x x x O x x O x x

       




     

   

 
           

 
     

 

2
3/2 1/2 3/2 1/2

1 1 12

1 1

1 3 3
( ) ( ) ( ) ( ) ( )

22 2 2

           2 ( ) ( )

2,3,..., ( 1),  2,  2,  2.

N
N N N N N N N N N

p q z

N N N N N

d x
x x x

d

x x O x x O x

i N p q r s z

       




  

 

      

    

      

 

(A.14) 

As in the previous discussion, the only non-smooth component is in the first equation of (Eq. 

A.14), modeling the separation of the actuator and first bead. 

We observe that there are two terms on the right hand side of (Eq. A.14) resulting from the 

interaction between beads; namely static components dependent only on j , and dynamic 

components involving ( )jx  . We account for the non-smooth terms in (Eq. A.14) by 

expanding the harmonic excitation term   3/2

1sin( ) 


  in Fourier series to obtain ‘static’ 

and ‘dynamic’ components as follows: 
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1 0

1 1
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with the coefficients defined as: 
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 (A.16) 

Now, by balancing the static components in all (smooth) equations (Eq. A.14), we obtain the 

following recursive relation that can be used for computing the permanent compression 

between beads: 

3/2 3/2

1 1

3/2 3/2

1

( ) ( ) 0

1
( ) ( ) 0.

2

j j j j

N N N

   

   

 



   

  

 (A.17) 

where 2,3,...( 1)j N  . A trivial algebraic manipulation yields, 
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N N
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(A.18) 

(A.19) 
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 
 
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where 
1/3 2/32  . The only unknown in the above set of equations is the permanent 

compression of the first bead, 1 . Once this is evaluated the compression of all the other 

beads can be expressed in terms of 1 . The compression 1  can be obtained by balancing the 

static force components in the first equation of (Eq. A.14), i.e., balancing the constant term 

from the Fourier series (Eq. A.15) with the constant force interaction between the first and the 

second beads. Then, we obtain an implicit relation of the form, 

 
/

3/2 3/2

1 1 2

/

1
sin( ) ( ) 0.

2 2
d

 

 


    

 



     (A.20) 

Substituting for 2  in terms of 1  and rescaling time   , we derive the final form for the 

equation governing the permanent compression of the first bead, 

 
1

1

2/3
/2

3/2

1 1

sin ( )

1
sin( ) ,

1 ( 1)
d

N






   

 

    
    

    
  (A.21) 

where the ‘+’ sign is removed from (Eq. A.19) since  
3/2

1sin( ) 0    within the limits of 

integration. 

The above equation is evaluated numerically to obtain 1 . This analysis predicts that the static 

compression 1  of the first bead (and therefore of any other bead) is independent of the 
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excitation frequency when the dynamics is well inside the AB (i.e., for relatively high 

frequencies). This is verified through numerical simulations (Fig. A.6), where we depict the 

response of the first bead for a homogeneous chain with N=10 at various excitation 

frequencies 𝛽 inside the AB. The static component of the response is independent of the 

excitation frequency. This analysis assumes weakly nonlinear behavior, and these predictions 

are not valid at lower frequencies as the dynamics makes the transition from the PB 

(propagation band) to the AB (attenuation band). 

 

Figure A.6 (Color online) the displacement response of first bead of a 10-bead 
homogeneous chain with varying normalized excitation frequency and fixed 
normalized excitation amplitude equaling unity (dynamics deep inside the 
attenuation zone). All units are non-dimensional. 

The static overlap of each bead in the granular chain is evaluated using (Eq. A.18, A.19, and 

A.20) and is compared to the results derived from numerical simulation for a 20 bead crystal, 

N=20 (Fig. A.7). The numerical simulations show good correspondence with the analytical 

estimates and confirm that the spatial variation of the static overlap is nearly linear. As the 

length of the crystal is increased the static component of the first bead’s displacement reaches 
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unity asymptotically, whereas the static offset of the last bead approaches zero. Hence, the 

resulting standing wave oscillations executed by the beads become spatially localized well 

inside the AB of the harmonically forced system. In essence, for a sufficiently large number of 

beads, the chain detaches from the exciter and the energy input to the chain approaches zero 

asymptotically. 

 

Figure A.7: Spatial variation of permanent precompression (δi) in a 20 bead chain 
when the dynamics is deep in the attenuation zone. All units are non-dimensional. 

Finally, we obtain analytic estimates of the individual oscillatory responses of the beads by 

considering the dynamic components of the bead displacements in (Eq. A.14). We arrive at 

reduced dynamic equations for each ( )jx   by removing the static components of (Eq. A.14). 

These reduced equations depend on the dynamic components of the Fourier series expansion 

(Eq. A.15). We then find analytic approximations for the oscillatory components of the bead 

responses for an N  degree of freedom linear damped oscillator system with periodically 

varying forcing frequency. The presence of damping terms leads to steady state periodic 

responses. Due to the presence of damping, the amplitudes of the dynamic components of the 
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bead responses (i.e., the oscillations about the beads’ static offsets) decrease with increasing 

frequency. For a particular fixed frequency these amplitudes decrease away from the site of the 

actuator, i.e.,
 1( ) ( )j jx x  , confirming the attenuatory nature of the dynamics, as described 

above.  

The agreement between numerical and analytical response for the forced two-bead system is 

presented in Fig. A.8. The analytical responses closely match the numerical ones, and both 

1 2( ) ( )x x   and 1 2  . Although the transient dynamics is not captured by our analytic 

study, the steady state dynamics shows good correspondence between analytical prediction and 

numerical simulation.  

 

Figure A.8: Correspondence between analytical and numerical response of the 2-
bead system when the dynamics is in the attenuation zone. All units are non-
dimensional. 
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