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C h a p t e r  9  

APPLICATIONS: ENERGY HARVESTING 

Nonlinear systems have been shown to outperform linear systems for energy harvesting under 

certain conditions135 (see section 2.4). These methods can outperform linear systems due to the 

ability of a nonlinear system to transfer energy between frequencies. However, nonlinear 

energy harvesting systems utilize their multi-stability as an advantage over linear systems, and 

this means that dissipative mechanisms become important. Therefore the influence of the 

electrical circuit on the mechanical response is essential to more efficient energy harvesting 

systems. In current vibrational energy harvesting systems based on nonlinearity, the effect of 

electromechanical damping on the system is either ignored or so small that its effect is 

negligible. The following two examples present nonlinear mechanical systems that are driven 

to instability. This instability can only be stabilized by adding a dissipation. In this way, we use 

the electrical circuit to beneficially stabilize the nonlinear dynamics rather than adversely affect 

the state and performance of the system.   

9.1 Energy harvesting inspired by thermal machines 

We propose an energy harvesting system inspired by classic thermal machines. Natural energy 

sources present themselves as “random” or heat energy sources that must be converted to 

usable work energy. For the example of a steam engine, hot gas expands against a piston, 

transferring energy to a piston, the gas is cooled and contracts. This contraction is at a lower 

temperature than the expansion, and therefore when the system returns to its original state, 

making one full cycle, energy is transferred to the piston. This cyclical process is often 
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expressed in a pressure volume (PV) diagram, in which the area enclosed is the work done 

through a single cycle (Figure 9.1). We could also look at work done in a force-displacement  

cycle. We can replace the steam engine or other thermal machine, which extracts energy from 

the temperature difference of a hot and cold gas, with a nonlinear hysteretic spring.  

 

Figure 9.1: (Left) PV diagram for a traditional thermal machine such as a steam 
engine. (Right) We propose an energy harvesting system inspired by a thermal 
machine, in which the constituent harvesting is now a nonlinear hysteretic spring.  

This hysteresis response is very similar to the hysteresis response that we observed in the 

tunable stiffness experiment, except that the cycle goes in the other direction. In the 

extraordinary tunable stiffness experiment, we demonstrate a damping response where the 

hysteresis originates from the two state solution of the nonlinear system past the bifurcation. If 

we can engineer a system with a hysteretic loop that goes in the opposite direction to the 

granular crystals, then the system acts as an energy harvester or “nonlinear thermal machine” 

(Figure 9.1).  
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Figure 9.2: (Left) Force-displacement for the hysteretic damping mechanism 
observed in a granular crystal. (Right) The nonlinear amplitude response of the 
defect mode that results in the force-displacement relation to the left.  

We propose a nonlinear energy harvesting system based on a nonlinear spring with bifurcation 

dynamics similar to the granular chain. In the granular example with hysteretic damping, the 

force interaction of the nonlinear defect mode can be approximated by a Taylor expansion, 

𝐹 ~𝑘𝑥 + 𝛼𝑥2 + 𝛽𝑥3. The term with alpha describes the thermal expansion of the defect 

mode causing an extra force at the boundary. This results in a dependence of the force-

displacement response on the amplitude-displacement response. This means a bi-stability in 

the amplitude response also causes a hysteresis. However, this particular system follows the 

low amplitude solution in compression and the high amplitude solution in extension, exactly 

the opposite of what we need for an energy harvester.  

By changing the directionality of the bistable amplitude response, we can also change the 

hysteresis to go from damping to harvesting. In nonlinear dynamical systems, such as the 
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Duffing oscillator, it is well known that changing the sign of the cubic term, 𝛽, also 

changes the direction of the softening or hardening response of the resonance. In the granular 

crystal, the cubic term is negative, resulting in a softening potential. However, if the cubic term 

were positive, the potential would be hardening, and the amplitude loop could be reversed. We 

therefore search for a model system that has a hardening nonlinearity to demonstrate this idea 

of energy harvesting inspired by thermal machines.  

Strings are systems with known hardening nonlinear responses136. Therefore we study a guitar 

string clamped between a cantilever and a fixed wall (Fig. 9.3). In our simplified model there is 

an energy source that drives the vibration of the string, which transfers energy to the 

cantilever. We start by considering a harmonic driving source, and although this is a gross 

approximation to sources in real systems, it provides intuition into the phenomenology. 

When the string is driven with a harmonic excitation, it reaches a steady state amplitude. This 

vibration amplitude causes an increase of the average length of the string. This results in an 

increased tension on the string, causing two effects. The first is the hardening, or stiffening, 

nonlinearity that causes the third order nonlinear term to be positive, 𝛽 > 0. The second is the 

additional tension on the cantilever which causes it to displace. This is schematically 

represented in the right panel of Figure 9.3. The displacement of the cantilever also has a back 

action on the string by causing a detuning, or softening. These two effects happen at different 

speeds and together result in the energy harvesting response of the nonlinear string-cantilever 

system.  
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Figure 9.3: The string-cantilever system. (Left) The vibration coordinate of the 
string is defined as z(t). (Right) The coordinate of the cantilever is defined as x(t). As 
the amplitude of the string vibration increases there is an additional tension pulling 
on the cantilever.  

In order to support the qualitative argument above, we begin with a partial differential 

equation describing the motion of a beam137 of which a string is a limiting case and attempt to 

reduce this to a more manageable second order ordinary differential equation. We follow a 

derivation similar to Postma et al.137  
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The equation includes a term for bending, tension, inertia, and the excitation applied to the 

beam, where 𝐸, 𝐼, 𝐴, 𝐿, 𝑋, 𝜌, 𝑖, and 𝐵 are the Young’s modulus, moment of inertia, cross 

sectional area, length, initial tension, density, current through the beam, and perpendicular 

magnetic field. Using a Galerkin method, we apply a test function, 
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𝜙(𝑥) = (√
2

3
) [1 − 𝑐𝑜𝑠 (

2𝜋𝑥

𝐿
)] , (9.2) 

and reduce the PDE to a second order ode,  

𝑚𝑧𝑧̈ + 𝑏𝑧𝑧̇ + (𝑘𝑧 + 2𝛼𝑥)𝑧 + 𝛽𝑧𝑧3 = 𝐹(𝑡), (9.3) 

where each of the parameters listed depend on the material constants chosen in (Eq. 9.1), and 

where 𝑚𝑧 = 𝜌𝐴𝐿, 𝑘𝑧 = (2𝜋)4 𝐸𝐼 (3𝐿3)⁄ , 𝛼 = 2𝜋2𝐸𝐴 (3𝐿2)⁄ , 𝛽𝑧 = (2𝜋)4 𝐸𝐴 (18𝐿3)⁄ , 

and 𝑏𝑧 is a viscous dissipation added to the system to reflect the dissipation in the real system. 

The equation is the same as a for a driven-damped Duffing oscillator8. Note that in this 

equation 𝛽𝑧 > 0, which means that the dynamics are stiffening instead of softening, as in the 

case of the granular chain. As the string starts to vibrate to larger amplitudes the increase in 

time-averaged length is also accompanied by an increase in the average tension on the string. 

This also causes a detuning to higher frequencies when the string is driven to higher 

amplitudes, hence the stiffening nature of the string. When the equation is driven to higher 

amplitudes around the natural resonance of the system, the amplitude response for the 

Duffing oscillator is hysteretic. The detuning of the system, i.e., the difference of the drive 

frequency from the natural frequency of the system controls the amplitude of the response. 

Equation (9.3) also includes a coupling between the string and cantilever element. As the 

cantilever relaxes, this affects the linear resonant frequency. We can model the cantilever as a 

linear oscillator driven by the amplitude of the string,  
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𝑚𝑥𝑥̈ + 𝑏𝑥 𝑥̇ + 𝑘𝑥𝑥 = −𝛼𝑧2, (9.4) 

where 𝑘𝑥, 𝑏𝑥, and 𝑚𝑥 are the bending stiffness, damping, and effective mass of the cantilever 

beam, respectively. In addition, the cantilevers mass and stiffness must be designed so that the 

motion is slow compared to the string, allowing the string to remain on the steady state 

solution. The cantilever’s motion has the effect of modulating the strings frequency. This 

allows us to move the bifurcated string system around the hysteretic loop through the motion 

of the cantilever (Fig. 9.4). 

  

Figure 9.4: The displacement of the cantilever modulates the resonance frequency of 
the string. (Left) This results in a amplitude response for the string that is modulated 
by the cantilevers displacement, and (Right) a force-displacement relation for the 
cantilever that has a similar hysteresis to a thermal machine.   

As the cantilever increases its displacement, 𝑥(𝑡), the amplitude of the string, 𝑧(𝑡), follows the 

high amplitude solution until the system falls over the bifurcation. As the displacement of the 

cantilever decreases, the amplitude force response follows the low amplitude solution. 

Equation (9.4) shows that the cantilever is driven by the strings amplitude. This results in a 

hysteretic force displacement curve for the cantilever, in which the string transfers energy to 

the cantilever through each cycle. To verify this we simulate the coupled system with no 

dissipation for the cantilever, 𝑏𝑥=0 (Fig. 9.5). 
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Figure 9.5: Cantilever (Top Left) time series and string (Top Right) time series. The 
string is driven by a harmonic signal, while the cantilever causes a slow variation of 
the resonance frequency. (Bottom Left) String time series for the high amplitude 
solution. (Bottom Middle) String time series for the low amplitude solution. 
(Bottom Right) String time series showing the transient dynamics.. 

In Figure 9.5 we simulate the coupled spring cantilever system with the cantilever given an 

initial potential energy in the form of a nonzero starting displacement. The string is driven 

harmonically with its frequency modulated by the slow movement of the cantilever. Figure 9.5 

shows how the string’s displacement cyclically moves from a high amplitude to a low 

amplitude solution, following the position of the cantilever. Each time through this cycle, the 

string transfers energy to the cantilever system. This can be seen in the growing amplitude of 

the cantilever.  

What makes this nonlinear energy harvesting system different from many other solutions is the 

effect of electrical coupling. Without the electrical coupling the amplitude of the cantilever will 

grow, and the system is not stable. It is only the additional presence of damping that stabilizes 

the system. In this example the electrical coupling is a necessary component instead of having 

a detrimental effect.  
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9.1.1 Conclusion and outlook 

While these results are preliminary and present a paradigm for developing energy harvesting 

materials, there are a few things that we have learned. The first is that we have demonstrated 

energy transfer between two different frequency modes of completely arbitrary frequency. The 

energy is transferred from high to low frequencies, where the frequencies are determined by 

the natural frequencies of the two structures. Second is that the energy transfer is synchronous. 

This means that if we attached a second string to the cantilever it can be pushed through its 

own hysteresis in phase with the other string. This is because the modulation of each string is 

determined by the cantilever itself.   

9.2 Parametrically driven energy harvesting  

The second approach that we present for an energy harvesting system is based on the 

parametric type resonances observed in the finite granular chains. We look to use these 

instabilities as an instance in which the mechanical dissipation does not balance the energy 

injected into the system through excitations. By introducing a coupled electrical circuit, we 

propose a mechanism to stabilize the mechanical system and more efficiently harvest energy.  

9.2.1 Project goal 

We propose a novel concept for energy harvesting based on nonlinear dynamical systems that 

will more efficiently harvest energy from both small and large mechanical excitations. The 

design approach we propose relies on creating mechanical systems that are both nonlinear and 

parametric, a combination that leads to a host of advantages over traditional energy harvesting 

approaches. 
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There are  three primary objectives of this project: (i) to develop a theoretical model for 

energy harvesting in a parametric nonlinear system that will be compared with results from 

traditional linear systems; (ii) implement a prototype device, a sphere in contact with a 

vibrating surface, to harvest mechanical energy through electromechanical coupling; and (iii) to 

use Finite Element Methods design nonlinear geometries that also contain parametric 

resonances, and can implement the theory across a range of power and size scales.  

9.2.2 Introduction 

Mechanical resonances are basic physical phenomena, present in all engineering systems and 

structures. Resonance occurs when a structure experiences a periodic force at one of its natural 

frequencies, which depends on the design geometry and constituent materials. When a 

structure is at resonance there is a buildup of energy, and it generally undergoes large 

oscillations and deformations. In most design efforts, resonances are commonly avoided due 

to their potential to cause catastrophic failure of infrastructures, for example the Tacoma 

Narrows Bridge collapse in 1940. The Taipei 101 building, the tallest in the world until 2010, 

uses a tunable mass damper to protect the structure against resonances that can arise from 

wind or earthquakes. In this proposed work, we look at resonances as a means to achieve large 

oscillations for renewable energy conversion.  Initially, we planned to explore a proof-of-

concept device that will harvest energy from ambient sources (see Table 1). Then, since the 

approach would only rely on fundamental physical principles, the design would be 

appropriately modified to produce energy on a larger scale. 

Mechanical energy conversion and production typically falls into one of two categories 

depending on the scale. (i) For power sources that are more than a few watts, e.g., wind or 
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hydrodynamic power, conventional turbine technology is used.  (ii) When power levels are 

less than a watt, the process is typically considered energy harvesting or scavenging. For this, 

one of the most prolific designs is a cantilever-based piezoelectric device. The efficiency of 

such cantilever-designs is limited by the piezoelectric materials, which can harvest only a small 

fraction of energy dispersed over the whole structure138, and only work over a small frequency 

bandwidth. In this proposal, we are interested in designing new and improved approaches for 

harvesting energy from small ambient mechanical excitations, using nonlinear dynamical 

systems. The fundamental concepts proposed here as a proof-of-principle could be extended 

to designing energy production solutions also for large power sources. 

Nonlinear dynamical systems, for example simple pendula, bending beams, and many optical 

materials, have an amplitude dependent response. The dynamic response of these systems is 

different for small and large mechanical excitations.  The design approach we propose relies on 

creating mechanical systems that are both nonlinear and parametric, a combination that leads 

to a host of advantages over traditional linear dynamical systems. For example, nonlinear 

parametric systems can be driven at resonance to amplify their mechanical deformation, and 

subsequently their oscillation can be accurately stabilized through geometric nonlinearities. The 

simplest example of a nonlinear parametric system is a spherical particle confined by rigid walls 

and driven by a mechanical vibration. This system is highly tunable, from weakly to strongly 

nonlinear, and is extremely easy to implement. We will use this simple toy-model to provide a 

theoretical and experimental proof of concept for new energy harvesting approaches, evaluate 

their efficiency, and propose scalable designs for practical engineering solutions. We will design 

and test an energy harvesting system based on a single spherical particle confined between rigid 
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boundaries. We will then demonstrate how its dynamic response can provide a completely 

new approach to localizing and harvesting mechanical energy. In the last few months of the 

planned work, we will propose designs adaptable to larger mechanical sources and different 

ambient conditions.  

Vibration source Peak frequency  (𝑯𝒛) 
Acceleration amplitude 

(𝒎/𝒔𝟐) 
Washing machine 109 0.5 

External windows 100 0.7 

Car engine compartment 200 12 

Vehicles 5-2000 0.5-110 

Refrigerator 240 0.1 

 
Table 9.1: Example of common mechanical energy sources for small energy 
harvesting/scavenging. Source: "Piezoelectric Energy Harvesting Devices for Low 
Frequency Vibration Applications" Dongna Shen, PhD Thesis, Auburn University 
(2009) 

9.2.3 Theoretical investigation 

 

Figure 9.6: Experimental setup for a Spherical Bead Compressed Against a 
Piezoelectric Actuator. (a) A prototype schematic for the proof of concept energy 
harvesting device. This is mathematically represented in eq. 1. (b)  An embedded 
piezoelectric sensor acts as a high impedence voltage source. 

The fundamental response of both nonlinear and parametrically driven systems is well 

understood and has been extensively studied52. However, these phenomena have not yet been 

combined and investigated to design structures for enhanced energy harvesting and 

production. A sphere compressed with a force, 𝐹0, against a vibrating surface (Fig. 9.6), is 
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characterized by both a nonlinear mechanical response (deriving from the geometry of the 

contact between the sphere and the vibrating surface) and a parametric excitation (the ambient 

vibration). These physical phenomena and the response of this simple system can be described 

by the following model35: 

𝑚𝑢̈ = 𝐹0 [1 − 𝑢 + (
𝐴

𝐹0
)

2
3

𝐵 cos(𝜔𝑡)]

+

3/2

− 𝐹0 − 𝛾𝑢̇ , (9.5) 

where 𝑚 is the mass of the sphere, 𝑢 is the displacement of the bead, 𝛾 is the bead’s 

dissipation coefficient, and 𝐴 is the Hertzian spring constant. 𝐵 and 𝜔 are the vibration 

source’s amplitude and frequency, respectively. The bracket , [𝑥]+ = max (0, 𝑥), indicates a 

tensionless behavior in which there is no force attracting the bead to the vibrating surface after 

they separate. 

The most important part of this model is the exponent of 3/2. It results in two important 

physical phenomena for our proposed approach. First, the vibrating surface does not just 

provide acceleration to the sphere, but also acts as a parametric drive periodically varying the 

spring constant of the system. Second, the force between the spherical bead and flat vibrating 

surface is nonlinear, meaning that the effective spring constant of the system also depends on 

the amplitude of the vibration.  

A common example of a parametric drive is a child on a swing, where the child periodically 

adjusts his position to increase the amplitude of his swinging. In certain frequency bands, 

called parametric tongues, the dynamics leads to oscillations that grow exponentially in 
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amplitude, even in the presence of dissipation. This phenomena is very exciting, especially 

in the context of energy harvesting. The structure continues to gain energy until the system 

collapses or is stabilized. This type of oscillator is oftentimes referred to as a self-exciting 

oscillation and was identified as the source that led to the ultimate collapse of the Tacoma 

Narrows Bridge139. Figure 9.7a shows a parametric tongue observed in a driven single spherical 

particle. There is sudden discontinuous change in the dynamics above a threshold driving 

amplitude, a bifurcation, in which the oscillation amplitude of the bead is clearly larger. In fact, 

after this sudden change, as much as 21 times more energy is being transferred from the 

vibrating surface to the bead.   

 

Figure 9.7: Nonlinear Detuning and Parametric Energy Harvesting. a, The 
parametric tongue separating regions of low and high amplitude oscillations for a 
single sphere particle. We would like to test the indicated cycle as a mechanism to 
collect mechanical energy. Initially the system would start at (1). By removing energy 
the system loses amplitude (2), causing the system to retune (3). This causes the 
amplitude to increase (4) until the nonlinearity again detunes the system (upper 
dotted arrow). b, The detuning of the natural frequency of the nonlinear spherical 
particle serves to stabilize and the dynamics. At higher amplitudes, the natural 
frequency decreases. (colorbar units are in dBs) 

In addition, Figure 9.7a shows that the dynamics are stable above the cutoff drive amplitude.  

This means there is not a collapse or destructive deformation due to an exponentially 

increasing amplitude. Instead nonlinearity acts to prevent catastrophic events. Figure 9.7b 
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shows the dependence of the natural frequency of the system on amplitude. As the 

amplitude increases, the natural frequency decreases. This pushes the system to the edge of the 

parametric tongue frequency band, and prevents continuous growth in amplitude. 

Using this proven fundamental physics, we will design systems that self-correct, balance, and 

protect themselves as a new approach for efficient energy harvesting. 

9.3 Author contributions 

The concept for the string-cantilever energy conversion system was developed by Joseph 

Lydon and Marc Serra-Garcia together. The parametrically driven system was developed by  

Joseph Lydon, and Chiara Daraio contributed to the writing of the manuscript. 
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