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C h a p t e r  7  

WEAKLY NONLINEAR DYNAMIC REGIME: NONLINEAR RESONANCES AND 

ENERGY TRANSFER IN FINITE GRANULAR CHAINS  

Abstract – In the present work we test experimentally and compute numerically the stability 

and dynamics of harmonically driven monoatomic granular chains composed of an increasing 

number of particles N (N=1-50). In particular, we investigate the inherent effects of 

dissipation and finite size on the evolution of bifurcation instabilities in the statically 

compressed case. The findings of the study suggest that the nonlinear bifurcation phenomena, 

which arise due to finite size, can be useful for efficient energy transfer away from the drive 

frequency in transmitted waves.  

 
7.1 Introduction 

Acoustic imaging, sensing, energy harvesting, and communication all rely on a firm 

understanding of the physics of wave propagation and energy transport. To advance these and 

other applications and to create new materials with enhanced acoustic properties, phononic 

crystals and acoustic metamaterials have been extensively studied122,123.  These are a class of 

engineered/structured materials that allow control over wave propagation properties by 

exploiting geometry and periodicity of sub-wavelength structures. One important consequence 

of periodicity in an infinite material is the presence of frequency band gaps, which results in 

the complete reflection of excitations with frequencies in the band gap. In reality, all materials 

are inherently finite, dissipative, and not completely periodic. In systems with finite size, 

nonlinear instabilities become increasingly more important, even for relatively small dynamic 
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excitations. In this work, we study the nonlinear dynamic phenomena that result from finite 

size, while considering dissipation.  The presence of these nonlinear effects in a finite system 

could be very useful in the design of phononic crystals and metamaterials for practical 

applications.  

To further advance the development of acoustic materials, the complex behavior of nonlinear 

media offers enhanced (i.e., amplitude and frequency dependent) control over the wave 

propagation. By introducing nonlinear responses in the design of materials, it is possible to 

control acoustic propagation properties, achieve greater tunability on the acoustic response of 

given systems, and observe new physical phenomena. For example, nonlinear systems have a 

distinct advantage over linear systems in their ability to transfer energy between frequencies. 

Common examples of energy transfer in the frequency domain are subharmonic and 

superharmonic bifurcations52. While these bifurcations can be destructive and are oftentimes 

avoided (as suggested by von Karman in the design of parts in an airplane124), they are also 

frequently engineered into systems, e.g., sum-frequency and second harmonic generation in 

nonlinear optics devices125. In acoustics, this nonlinear transfer of energy resulted in the 

development of rectification devices32,126 and has been used in non-destructive evaluation and 

imaging techniques.127  

In this work, we study the propagation of energy in finite periodic systems that results from 

similar nonlinear processes, in which energy is exchanged between different frequencies of the 

system. As mentioned above, in linear periodic materials excitations in the band gap are 

completely reflected. However, the presence of nonlinearity allows energy to propagate down 

the chain. This can occur through nonlinear supratransmission in which the energy of a signal 



 

 

89 
in the frequency band gap is transmitted by means of nonlinear modes24,128,129. This is shown 

in a series of papers investigating nonlinear supratransmission in sine-Gordon and Klein-

Gordon23, Josephson ladders24, and Fermi-Pasta-Ulam chains128. Here, we explore similar 

nonlinear phenomena in systems of finite size.   We accomplish this by studying granular 

chains of particles as fundamental models for nonlinear periodic structures. We study the 

bifurcations arising in these systems, and we explore the transition regime bridging the 

response of finite systems with theoretical predictions based on infinite periodic assumptions.   

Granular chains are a class of nonlinear periodic media governed by a highly tunable Hertzian 

contact interaction between particles130: this allows the system to access near-linear, weakly 

nonlinear, and strongly nonlinear dynamic behavior.35 In weakly nonlinear regime, the granular 

chains’ dynamics are similar to Fermi-Pasta-Ulam systems, and they have demonstrated defect 

energy localization,70 discrete breathers,29,68 higher order harmonic wave generation,131 as well as 

chaotic dynamics.69  In the highly nonlinear regime, coherent travelling waves were predicted 

to exist such as highly localized solitary waves35 and periodic traveling waves.132 Granular 

chains have been suggested for application in tunable mechanical filtering30 and acoustic 

rectification.32 In the field of dense granular materials, frequency-mixing processes have been 

reported for elastic waves133. Their experimental tractability makes granular chains excellent 

platforms for studying lattice dynamics with highly dependent amplitude and frequency 

behavior. In addition, the granular chain is an ideal model to study phenomena that occur 

across different dynamical regimes. When the dynamics are weakly nonlinear and smooth the 

granular interaction potential can be approximated by a polynomial expansion. This extends 

the applicability of the results in this regime to similar lattice systems with weak nonlinearities. 
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We demonstrate that the bifurcations presented occur both in the smooth weakly nonlinear 

regime and also the strongly nonlinear regime, in which gaps open between beads. 

 

Figure 7.1: (a) Schematic of the experimental setup where the chain’s length is varied 
between 1 and 50 beads. For 1 and 2 bead systems there was no embedded sensor. 
(b-d) The experimental bifurcation dynamics in a 15 bead chain statically 
compressed at 8 N and driven at 7.3 kHz. (b) The linear transfer function measured 
using a white noise excitation. The dotted line at 6.8 kHz indicates the band cutoff 
frequency measured at the half power point of the last peak. The drive frequency 
(7.3 kHz) for the force time series in (c) is therefore in the band gap. (c) The force 
time series measured at the end of the chain shows how the bifurcation results in 
the amplitude growth and stabilization. (d) The power spectral density (PSD) of the 
red portion of the force signal in c) shows that energy is transferred from the drive 
frequency, fd = 7.3 kHz, to two new frequencies, fN. We study how this bifurcation 
results from the finite size of a 1-d system.  

In this paper, we explore the nonlinear bifurcations that result from a system’s finite size. We 

motivate the research by showing a typical bifurcation in a chain of 15 beads in Fig. 7.1(b-d). 

Figure 7.1b shows the linear transmission band and the frequency band cutoff as a dotted line 

at 6.8 kHz. When driving the system at 7.3 kHz above a threshold amplitude, the oscillations 
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grow and energy is transferred from the drive frequency to new frequencies. A stable 

quasiperiodic state is reached. The new frequencies and amplitudes depend sensitively on the 

drive frequency. Even though the system is driven in the stop band, energy can still propagate 

through the lower frequency modes. Because the dynamics for systems with many degrees of 

freedom are quite complex, we observe a slightly different result (i.e., the stable amplitudes and 

frequencies) for each experimental run. This means that the amplitude of the bifurcation and 

the newly generated frequencies depend sensitively on the initial compression. To understand 

the bifurcation structure governing this energy transfer, we start by studying smaller systems, 

i.e., a single bead oscillator and a two-bead system, and then proceed to larger chains. The goal 

of this study is to understand the energy transfer of signals above the band gap to lower 

frequency modes that result from bifurcations. The systems of one and two beads illustrate the 

fundamental physics of the bifurcations and explain the dynamics present in larger systems. 

Therefore we build up from these two specific systems.  

7.2 Results and discussion 

At small drive amplitudes, 𝐵/𝛿𝑎𝑐𝑡 ≪ 1, the system’s nonlinearity can be ignored and the 

response is nearly harmonic. However, as the drive amplitude increases, the system becomes 

nonlinear. The nonlinearity of a system can be described as either softening or stiffening 

depending on whether the maximum frequency response moves down or up as the drive 

amplitude is increased. Figure 7.2a shows the experimental nonlinear softening of the mode of 

a single bead. As the amplitude of the drive is increased the response becomes asymmetric, 

bending to lower frequencies (i.e., a softening nonlinear potential), deviating from the classic 

linear Lorentzian response. The amplitude dependent mode profile that we observe here is a 
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property of nonlinear oscillators commonly studied in the driven damped Duffing 

oscillator52. Figure 7.2b shows experimental data demonstrating a similar nonlinear softening 

response for each of the modes of a two-bead system. This mode softening is important to the 

dynamics at higher amplitudes after the bifurcation occurs. It illustrates the nonlinear behavior 

of the system and explains asymmetry seen later in Fig. 7.5. The numerical counterparts to Fig. 

7.2a and 7.2b are shown in Fig. 7.2c and 7.2d. The nonlinear softening of the system is 

qualitatively similar in these plots. We notice a significant difference in the quantitative 

amplitudes observed for the nonlinear softening. We believe the quantitative difference in the 

measured and computed values could be due to one or a combination of many effects. Some 

of these could include the variation of the surface roughness of the sphere, frictional 

nonlinearities that become important at low amplitudes, or inaccuracy in measurement and 

excitation techniques at these extremely low amplitudes. A further investigation of this 

deviation from the Hertzian contact law at low drive amplitudes would be an interesting future 

study. However, the key result for our study is the observation that the dynamics are nonlinear, 

and that there is a softening of the resonance, i.e., the maximum of the frequency moves to 

lower values as the drive amplitude is increased. We discuss later how this softening could 

account for the asymmetry bifurcations in frequency.  
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Figure  7.2: Color maps of the experimentally measured RMS velocity [mm/s] of 
single bead (a) and two bead (b) systems as a function of the drive amplitude and 
frequency. The velocity is measured in the second bead for the two bead system. 
The dotted line in (a) indicates the maximum at each drive amplitude. This clearly 
displays the mode softening to lower frequencies as the amplitude of the excitation 
increases. The insets show cross sections at increasing drive amplitudes. The 
asymmetry and the mode softening is a result of the nonlinear Hertzian contact 
interaction. The measurements are taking using a lock in amplifier to reduce noise. 
In addition, the low amplitude response is used to estimate the dissipation 
coefficients used in the one and two bead computational results. Panels (c) and (d) 
are the computational counterparts to (a) and (b). The system depends sensitively on 
the initial compression, F0, and the diagrams are fit to have the same linear (low 
amplitude) frequency as the experimental plots. This corresponds to a 8.67 N static 
compression for the single bead and 4.36N for two beads.  

We are interested in changes of the wave dynamics before and after the bifurcation. Figure 7.3 

shows an experimentally measured bifurcation in a single bead system when the particle is 

driven at approximately twice the natural frequency. Initially, a stable harmonic solution 

develops (Fig. 7.3a), but as the drive amplitude is increased, the velocity sharply increases and 
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the dynamic response changes (Fig. 7.3b). The data in Fig. 7.3c shows a sudden jump in the 

dynamic response at a critical drive amplitude, 𝐵𝑐𝑟𝑖𝑡 = 0.07 𝜇𝑚. The power spectral density 

(PSD) (see Fig. 7.3d and 7.3f) shows that this solution went from being composed of the 

single drive frequency to being dominated by a subharmonic, 𝑓𝑑/2. Figure 7.3e shows the 

Poincaré section change from a single grouping of points to two distinct groups, indicative of a 

subharmonic bifurcation55.  After the bifurcation, approximately 20 times more energy is 

transferred to the bead, indicating much more efficient coupling between the particle chain 

and the actuator. In addition, the increase in the oscillation amplitude of the bead, as a result of 

the bifurcation, depends on the drive frequency. Figure 7.3g shows the computationally 

calculated hysteresis diagram that corresponds to the experiment. The disagreement observed 

in the predicted and measured velocity amplitudes can be explained by uncertainty in 

measurements of the static compression applied to the chain, even though all qualitative 

features of the bifurcation are maintained. 
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Figure 7.3: The experimental nonlinear resonance and bifurcation behavior of a 
single bead driven at 6.85kHz. (a,b) The velocity of the bead (a) before and (b) after 
the bifurcation. (c) The maximum velocity measured at each drive amplitude. (d) 
The corresponding PSD of two time series, showing the dominant subharmonic 
frequency at fd/2.  (e) the Poincaré section of the dynamics of the bead before (red, 
central points) and after (blue, side points) the bifurcation. The splitting of the 
section from one point to two points is characteristic of a period doubling 
subharmonic bifurcation. Panels (f) and (g) are the computational plots that 
correspond to the experimental panels (c) and (d).  (g) The PSD clearly shows that a 
sub-harmonic bifurcation occurs after the critical amplitude is crossed.  

In longer chains, there is more than one natural frequency, and therefore the system can 

undergo bifurcations resulting in both subharmonic or quasiperiodic dynamics. When the 

drive frequency is a multiple of a linear mode’s frequency, a subharmonic bifurcation emerges, 
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and the dynamics are qualitatively similar to the results shown for a single bead. However, 

when the drive frequency is near the sum of the system’s two natural frequencies, 

quasiperiodic dynamics may arise. Fig. 7.4 shows the response of a two-bead system that goes 

from a sinusoidal response (Fig. 7.4a) to a solution that is quasi-periodic (Fig 7.4b). 

Quasiperiodic dynamics occur because the ratios between the drive frequency 𝑓𝑑 and new 

frequencies 𝑓𝑁1 and 𝑓𝑁2 are not necessarily rational. Figure 7.4c shows the PSDs of the signals, 

and illustrates the transfer of energy to the two lower modes. Figure 7.4d shows the Poincaré 

section of the second bead. It contains points forming a closed curve coming from the 

intersection of the torus flow in phase space (characteristic of quasiperiodic dynamics) with a 

plane. In summary, the system goes through a bifurcation in which the dynamics drastically 

change. There is an order of magnitude change in the amplitude, the total energy transferred to 

the system, and fraction of energy localized around the drive frequency. To confirm the 

quasiperiodic behavior, we also performed a computational integration using the same 

parameters as in the experiment. Figure 7.4e shows the power spectral density before and after 

the critical amplitude of the bifurcation. The values are shown in the hysteresis plot of Fig. 

7.4f. The dynamics agree quite well, and the qualitative disagreements can be attributed to 

uncertainty in the static compression and reconfigurations of the system coming from 

misalignment of the spheres during each experimental run.  
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Figure 7.4: Experimental nonlinear resonance and quasiperiodic bifurcation 
behavior in a system of 2 beads driven at 6.94kHz. (a,b) The velocity of the second 
bead (a) before and (b) after the bifurcation. (c) The corresponding PSD of two 
time series, showing the new frequencies fN1 and fN2 supported by the nonlinearity 
of the system, where fN1 + fN1 = fd. The PSD of the time series clearly show that 
energy is transferred from the drive frequency, fd, to the two new frequencies.  (d) 
Poincaré sections of the dynamics of the second bead before (red, central point) and 
after (blue, surrounding points) the bifurcation. This Poincaré shows the classic 
intersection of a torus and a plane for quasiperiodic dynamics. The finite number of 
points is due to the finite length of the signal. (e) The PSD of the computational 
time series taken at the drive amplitudes indicated in (f) and using the same 
parameters as measured during the experimental runs.   

The analysis for one and two bead systems illustrates the two fundamental types of 

bifurcations that occur in granular chains. Figure 7.5 shows how the bifurcations depend on 

the different parameters of the system, i.e., drive amplitude and drive frequency. We observed 
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that these bifurcations occur in certain areas of the parameter space and call these regions 

tongues, due to their similarity with parametric tongues. This region indicates that, where a 

sharp transition in the dynamics occurs, the stable solution goes from sinusoidal to either 

subharmonic or quasiperiodic. The tongues are centered around the multiples and sums of the 

linear mode frequencies in each system. Numerically we can determine where to sweep these 

frequencies by solving the eigenvalue problem associated with the equations of motion (1), and 

experimentally we measure the linear mode frequencies using a broad range frequency sweep. 

We start by showing the experimental and computational bifurcation tongues of a one and two 

bead system and then proceed to larger systems. The edge of the tongue shows the edge of a 

stable harmonic solution. Above the critical drive amplitude the system exhibits either 

subharmonic or quasiperiodic dynamics. 

Figure 7.5a shows the experimentally observed nonlinear tongue for a single bead oscillator. 

Here, the entire tongue is characterized as subharmonic. The minimum of this region 

corresponds to twice the frequency of the linear mode. The disagreement between the 

minimum of the tongue in Fig. 7.5a (7.4 kHz) and twice the linear frequency, 4.0 kHz shown 

in Fig. 7.2a, is due to different static compressions between runs. The linear frequency 

measurements were taken at approximately 8 N compression, while the bifurcation is 

measured at approximately 4 N. On top of the experimental results, we also plot the 

computationally computed tongue edge, as a black dotted line.  The tongue is asymmetric due 

to the modes softening to lower frequencies (Fig 7.2). As amplitudes of the oscillations 

increase, the natural frequencies decrease. This causes the tongue in Fig. 7.5a to bend towards 

lower frequencies. In addition, the color scale shows that the bifurcation becomes more drastic 
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as the mode bends further from its linear natural frequency. Figure 7.5c shows the 

computationally calculated bifurcation tongue for a single bead (with the experimentally 

investigated region indicated with the dashed blue rectangle). The quantity, 𝑓0, used to non-

dimensionalize the frequency is the linear mode frequency. Here it is clear that the minimum is 

at 2, or twice this frequency. This is because the drive frequency determines how far apart the 

nonlinear modes must move in frequency. If the minimum is chosen the drive frequency is 

already a multiple of the linear mode frequency. In the context of the Floquet multipliers, the 

multipliers start on top of each other. If a frequency slightly lower or above the minimum is 

chosen, the nonlinear modes decrease or increase in frequency to be a multiple of the drive 

frequency. The Floquet multipliers must first move before colliding. Therefore the bifurcation 

occurs most easily at a multiple of the linear mode frequency, leading to a minimum at this 

point.  The solid points in Fig. 7.5(a-d) are computed using a parameter continuation, and they 

correspond to the pairs of the driving frequency and amplitude at which FMs leave the unit 

circle, an indicator of the existence of bifurcations. In these plots, the asymmetry becomes 

clear. Points in red indicate that gaps are opening, which explains why the shape of the tongue 

changes; the dynamics at this point goes from weakly to strongly nonlinear. The units are 

shown in nondimensional units to stress that the onset of this nonlinear bifurcation may occur 

at seemingly small drive amplitudes, at a fraction of the static overlap of the chain.  

For two beads (Fig. 7.5 b and d) we see two tongues: one at the sum of the two mode 

frequencies, 7kHz, and one at twice the higher mode’s frequency, 9.8kHz. The tongue 

associated with the sum is characterized by quasiperiodic bifurcation dynamics, whereas the 

tongue at twice the modes frequency is subharmonic. A single slice from the quasiperiodic 
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tongue was previously shown in Fig. 7.4, where the frequency is fixed and the drive 

amplitude is quasistatically increased.  In addition, it is important to note that our 

computations predict high amplitude subharmonic and quasiperiodic stable solutions exist 

despite gaps opening, i.e., gaps openings do not directly lead to chaotic dynamics. In this case, 

the dynamics are non-smooth yet still periodic. While this is somewhat surprising, the 

possibility of such dynamics is supported by the non-smooth periodic solutions that have 

previously been observed in granular chains at the uncompressed limit26,132. Figures 7.5(e-g) 

show a representative of the FMs calculated for each tongue. If the FMs leave the unit circle 

on the negative real axis, it indicates a subharmonic bifurcation, and otherwise quasi-periodic 

dynamics. These simulations confirms the subharmonic and quasiperiodic dynamics observed 

experimentally for each tongue in Figures 7.3 and 7.4, in which we increase the amplitude 

entering the nonlinear tongue region. The critical driving amplitude for bifurcation shows a 

good agreement in the experimental and computational results for one and two beads.  
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Figure 7.5: The experimentally measured bifurcation tongues observed in (a) one 
bead and (b) two bead systems. The color scale corresponds to maximum velocity 
amplitude (dB), and it demonstrates that as the mode moves further from its linear 
frequency, the change in dynamics becomes more drastic. The numerically 
calculated tongue edge is plotted directly on top of the experimental data as a black 
dotted line.  c) and d) show the computational results for 1 and 2 bead chains, 
respectively (the units are non-dimensional). The solid points indicate where a 
bifurcation has occurred (i.e., a FM has left the unit circle).  Red points indicate that 
gaps have opened between beads. The dashed rectangles indicate the parameter 
range for which the experimental measurements in (a) and (b). The vertical dashed 
lines correspond to the Floquet diagrams in (e-g). We show the unit circle to guide 
the eye.  
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The results from one and two beads help us understanding the dynamics that can take 

place in larger systems. Any linear combination or multiple of the mode frequencies can result 

in a bifurcation tongue, and for slightly larger systems the number of combinations quickly 

grows and so do the number of tongues. In lattices of longer length, the attenuation band that 

forms prevents the propagation of signals above a certain frequency. However, the previous 

study of a one and two bead system shows that energy can be transferred through lower 

frequencies. When this happens in longer chains, the attenuation band will no longer reflect all 

the incident signal, but instead energy will be transferred to lower frequencies that can still 

propagate.  

In Fig. 7.6, we study the effect of the size of the system and the losses of the system on the 

existence and the structure of these bifurcation tongues. In particular, Fig. 7.6a shows the 

effect of increasing the size of the system for a given amount of losses that correspond to the 

non-dimensional quality factor (Q  = 27) of the single bead system. For five beads there are 

already many more tongues, but they can still be distinguished. For 15 beads the tongues can 

no longer be distinguished and the amplitude at which the bifurcations happen is larger. This 

explains the sensitivity of the bifurcation that we observed for 15 beads shown and discussed 

in Fig. 7.1. Finally, for 25 beads we barely see the tongue structure, while for systems of 40 and 

50 beads we observe no bifurcations even when driving up to 1.5 times the static overlap. Fig. 

7.6b shows the effect of the losses for a given chain length (N=15). As the dissipation is 

decreased (increasing quality factor) the system can much more easily bifurcate. In both panels, 

we also observe that as the driving frequency increases, the appearance of bifurcations happens 

at larger driving amplitudes. In conclusion, as the system gets longer and/or more lossy, the 
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bifurcations happens at larger driving amplitude and at some point they are no longer 

present. Thus, there is an important interplay between the losses and the length of the system 

that leads to the existence or not of bifurcations and thus to the nonlinear energy transfer 

between phonon modes.  

This could be explained from the perspective of FM as follows:  The bifurcations are 

associated with what is called oscillatory instability, which arises from the collision of two 

Floquet multipliers and the associated spatially extended eigenvectors, a well-known finite-size 

effect. When this collision occurs, if a FM leaves the unit circle, then the solution is unstable 

and grows. The magnitude of this multiplier is also a measure of the strength of the instability 

and how quickly it grows. As discussed in Ref [17], the strength of such instabilities depends 

on the system size. In particular, when the size of the system is increased, the magnitude of 

such instabilities weakens uniformly. In other words, the unstable FMs become smaller in 

magnitude as the system size grows. Simultaneously, the number of such instabilities increases 

with system size due to the increasing density of colliding Floquet multipliers. Eventually, these 

instabilities vanish in the limit of an infinitely large system. Since in Hamiltonian lattices, all the 

FMs must lie on the unit circle, collisions result in their departure from the unit circle and are 

directly associated with instabilities. However, this is not the case for the driven-damped 

lattices. As we mentioned above, for a linearly stable periodic solution all the FMs lie on a 

circle of radius, 𝑒−1/(2𝜏𝑓𝑑), which is smaller than one. As the dissipation increases, the Floquet 

multipliers have a smaller magnitude and the instability must be strong enough to allow the 

FM to completely leave the unit circle. Thus, it is possible for FMs to collide but still not exit 

the unit circle. This is due to the weak strength of the oscillatory instabilities, which becomes 
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weaker as the size of the lattice becomes larger. Therefore, at longer lengths there is no 

manifestation of bifurcations and thus no nonlinear energy transfer to the lower frequency 

phonon modes. This means that in shorter “periodic” systems, even relatively weak 

nonlinearities may become important. The bifurcations in our system occur at much lower 

drive amplitudes than we had previously thought, and at amplitudes where the dynamics are 

still weakly nonlinear and smooth. When the dynamics are weakly nonlinear the Hertzian 

potential can be expressed as a polynomial expansion. Therefore, periodic materials with a 

coupling interaction that is not strictly linear, but instead has an asymmetric or nonlinear 

content, may exhibit similar bifurcation dynamics. This could lead to the failure of linear 

approximations in other finite length systems due to weak nonlinearities.  

Furthermore, we observe that at higher frequencies the bifurcations happen at higher 

amplitudes. This could be explained in two ways. First, the linear on-site damping in a lattice 

results in an increased effective damping of the higher frequency phonon modes. This is 

evident in our experiments for example by Fig 7.1.b, where one can see that close to the band 

edge, the linear response flattens out into a low pass filter and there are no longer distinct 

resonances. As a result, bifurcations at higher drive frequencies, which are due to the excitation 

of a pair of high frequency phonon modes, are less likely to appear. Second, this can also be 

interpreted as a consequence of the evanescent wave breaking down25. The further the 

excitation frequency is above the band edge, the more the evanescent wave corresponding to 

this frequency is localized. The evanescent wave does not penetrate as deeply into the lattice at 

higher frequencies and the interaction between the evanescent wave and the extended modes 

of the crystal become increasingly smaller. This interaction becomes smaller as the chain length 
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increases (longer extended modes) and as the dissipation increases (weaker evanescent 

waves in amplitude). Correspondingly, the bifurcation instabilities occur at larger amplitudes.  

 

 

Figure 7.6: The interplay between finite size and dissipation. The points indicate a 
critical bifurcation amplitude, calculated using numeric. In (a) we hold the 
dissipation of the system constant (Q=27) and vary the size of the system. The 
individual tongues begin to overlap and the bifurcations begin to occur at higher 
amplitudes. In (b) the finite size (N=15) is held constant and the dissipation is 
varied. For lower dissipations the bifurcation tongues start at lower amplitude.  All 
units shown are non-dimensional. 

7.3 Conclusion 

We have experimentally and computationally investigated the nonlinear resonance phenomena 

and the resulting bifurcation instabilities in finite, monodisperse harmonically driven one-

dimensional granular chains, taking into account losses. The nonlinear bifurcation tongues 

arise from the finite size of the discrete system, and the tongues’ shapes depend on the type of 

nonlinear coupling in the lattice. This dynamic response demonstrates how energy can be 

transferred from a single excitation signal to other frequencies fundamental to a material 

lattice. The nonlinear interactions in granular chains provide a completely passive mechanical 
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mechanism to control the transmitted frequency spectrum. The structural stability and 

nonlinear bifurcation dynamics of homogenous granular chains may be used in multifunctional 

material design where previous solutions were limited to actively controlled mechanical 

systems. The findings of this paper should be considered in the design of new devices 

consisting of nonlinear finite lattices, for example, for amplitude dependent filtering 

applications or for mechanical structures aiming at an enhanced frequency control of 

propagating waves. 
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