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C h a p t e r  4  

MODELING 

4.1 Discrete particle model for the granular chain 

We model the granular crystal as an array of masses and springs coupled by a nonlinear 

Hertzian contact law22,93. The Hertzian contact law defines the force, 𝐹, needed to achieve a 

certain overlap, 𝛿, between two compressed spherical particles, 

𝐹 = 𝐴𝛿3/2. (4.1) 

The Hertzian contact factor, 𝐴, is a function of spheres radii, 𝑅𝑖, Youngs modulus, 𝐸𝑖, and 

Poissons ratio, 𝜈𝑖, for the materials of the two particles, 𝐴 =
4

3
(

1−𝜈𝑖
2

𝐸𝑖
+

1−𝜈𝑗
2

𝐸𝑗
)

−1

(
𝑅𝑖𝑅𝑗

𝑅𝑖+𝑅𝑗
)

1/2

. 

The exponent of 3/2 is caused by a geometric nonlinearity. At zero compression the spheres 

are in contact at a single point. However, as two particles are compressed, there is an increase 

in the contact surface area. This causes an increase in the incremental stiffness and results in 

the nonlinear force interaction22,94.  

4.1.1 Hamiltonian approximation 

The complex features of wave propagation in an array of spherical particles can be greatly 

simplified by considering a simple mass spring model. Nesterenko first used this model in 

granular media to predict solitary waves35, where the nonlinearity and dispersion necessary for 

the formation of these waves are provided by the nonlinear contact and the periodicity, 

respectively. Each point mass is equivalent to the mass of the spheres and the nonlinear 
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springs are described by the Hertzian force law. This allows us to write an equation of 

motion for each of the beads displacements (4.2), 𝑢𝑖 , using Newton’s second law for inertia, 

where each bead is subject to a force due to each adjacent bead35, 

𝑚𝑖𝑢̈𝑖 = 𝐴𝑖𝛿𝑖
3/2

− 𝐴𝑖+1𝛿𝑖+1
3 2⁄

, (4.2) 

where 𝛿𝑖 is the overlap of two adjacent beads and can be described in terms of their 

neighboring equilibrium positions and an initial static overlap, 𝛿0, 

𝛿𝑖 =  𝛿0 + 𝑢𝑖−1 − 𝑢𝑖 . (4.3) 

This discrete particle model seems like an oversimplification of the dynamics that occur in the 

real system but can be supported if each mass can be considered a point mass. The assumption 

is valid only as long as none of the internal resonances of the spheres are present. This is 

equivalent to having the spheres’ first structural resonance frequency high above the dynamic 

range of interest. Below this frequency, the sphere moves as a rigid body and can be 

considered a point mass. It is important to check this assumption. When the internal 

resonance frequency of the single particle is low enough the internal resonances of the particle 

cannot be ignored. Interest in metamaterials in granular systems is based on this concept, in 

which materials gain remarkable properties by designing each periodic unit to have an internal 

resonant structure49. In fact, our study of tunable localized modes in periodic media relies on 

an internal resonance which interacts with the normal extended modes of the system.  
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4.1.2 Nonconservative elements 

In our experiments the dynamics are not Hamiltonian, but are instead a driven damped system. 

This means that we need to add neoconservative terms to the Hamiltonian system presented 

above. To account for the damping that is inherently present in real systems we add a linear 

dissipative term, 𝑚𝑖𝑢̇𝑖/𝜏, where 𝜏 is a linear dissipation time constant. This linear dissipation 

time constant can also be measured through a non-dimensional quality factor, 𝑄 = 𝜔0𝜏, 

where 𝜔0 is the linear resonance frequency, or using the exponentially decaying envelope of 

the signal oscillation. In cases when there are mass defects and the dissipation of all the 

particles becomes important, it may be more appropriate to use a mass normalized dissipation, 

𝑏𝑢̇, where 𝑏 = 𝑚𝑖/𝜏. This leads to a modified equation of motion,  

𝑚𝑖𝑢̈𝑖 = 𝐴𝑖𝛿𝑖
3/2

− 𝐴𝑖+1𝛿𝑖+1
3 2⁄

+ 𝑚𝑖𝑢̇𝑖 𝜏⁄  . (4.4) 

In order to include the non-conservative inputs signals, we consider the nature of the 

excitations. In our system all the excitations are provided by piezoelectric elements that are 

nearly two orders of magnitude stiffer than the Hertzian contact interaction. Therefore we 

assume that the piezoelectric actuator can expand freely, and that the excitation is a 

displacement controlled signal. To model this we modify the local overlap of the contacts,  

𝛿𝑖 =  Bi cos 𝜔𝑑𝑡 + 𝛿0 + 𝑢𝑖−1 − 𝑢𝑖 . (4.5) 

This notation can be used to represent a moving wall or an expanding piezoelectric actuator 

between two particles, and has the effect of adding or removing energy from the system 

depending on the relative phases of the drive and particle motion.  
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4.2 Linear eigenanalysis and state space 

Most of the dynamics that we explore are weakly nonlinear. It is therefore good to start by 

understanding the linearized system. By taking an appropriate linearization of the equations of 

motion (4.2), assuming oscillatory solutions for the particles, 𝑢𝑖 = 𝑒𝑖𝜔𝑡, and ignoring 

dissipation, we can formulate an eigenvalue problem70,95, 

−𝑖𝜔2𝑀𝒖 = 𝐾𝒖, (4.6) 

where omega is the frequency of the oscillation, M is the diagonal mass matrix describing the 

system, and K is stiffness matrix describing the coupling between masses in the system.  We 

can then solve this for the eigenvectors (normal modes) and eigenvalues (resonant frequencies) 

of the system. The extended normal modes of crystal are responsible for propagating wave 

energy at each of the frequencies. In the infinite system the solution can be found using Bloch 

conditions, which results in continuous frequency bands95.  The linearized equations of motion 

for the granular crystal (4.6) are the same form of equations used to model the acoustic and 

optical bands for phonons in materials95.  In finite systems the frequency bands are no longer 

continuous, but instead there are finite numbers of modes that lie along the continuous 

dispersion relation.  

If dissipation and an excitation are included in the model we can also find a linear transfer 

function using state space analysis31. This numerical technique is a particularly fast and 

computationally inexpensive route to obtaining the linear response that corresponds to a 

particular experimental excitation and measurement arrangement. This allows us to 

numerically observe the band gaps that occur as a result of the periodicity of the lattice. In 
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addition, because our system has more than one degree of freedom and possibly different 

dissipation for each particle, fitting the dissipation of a single mode may not accurately 

represent the dissipation across the lattice. State space analysis can provide a powerful 

mechanism to fitting to different linear dissipation models. 

4.3 Nonlinear modeling: integration and perturbation analysis 

4.3.1 Integration  

The equations of motion are inherently nonlinear, and therefore must be integrated if we want 

to predict any of the nonlinear dynamical phenomena. To integrate the equations of motion 

for n beads, we must transform the 𝑛 2nd order ODEs into a system of 2𝑛 first order ODEs96. 

The integration allows us to observe and predict bifurcation phenomena, transient dynamics, 

and mode bending. We use two integration schemes, either a 4th order Runge Kutta or the 

MATLAB ode45 function. For both integration schemes, it is essential to choose tolerances or 

time-steps that are small enough, ensuring that energy is conserved and/or that the integration 

captures the interested dynamics.  Generally  we use a time step of 50 ns in the 4th order Runge 

Kutta. In the matlab solvers, we use a relative tolerance of 1e-4 and an absolute tolerance of 

1e-14. As solutions get close to bifurcation points, it may be necessary to significantly increase 

the accuracy by reducing the tolerance or integration time step.  

4.3.2 Perturbation analysis for limit cycle solutions 
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A significant portion of this research involves studying the phenomena close to instability 

points or when dynamics are unstable and go through a bifurcation. In general the equations 

of motion can be recast into a system of 1st order ordinary differential equations of the form, 

𝒙̇ = 𝒉(𝒙, 𝒙̇, 𝑡) (4.7) 

where 𝒉 is a vector function describing the dynamics of the evolution and 𝒙 is the solution. In 

our case the equations depends on time because there is an external forcing. In the limit of 

small excitations, far from any bifurcations, the solution to our system is periodic with the 

same period of the excitation. Dissipation will cause any of the transient signals to decay and 

the steady state response will be at the excitation frequency. Therefore our system settles to a 

periodic orbit. Limit cycles are a closed periodic orbit in a systems phase space, and  Floquet 

analysis is a tool that enables the study of the stability of limit cycle orbits. As the system’s 

amplitude grows beyond the linear limit, nonlinearity grows in importance. The nonlinearity 

can cause the stable periodic solution to suddenly become unstable and result in a wealth of 

new dynamics. Floquet analysis can tell us the stability of the limit cycles and when a limit cycle 

becomes unstable, what new dynamics may appear. This tool is a linear perturbation analysis 

tool from the periodic limit cycle. It therefore also gives us insight into how fast the system 

reacts to perturbations8,28.  

Algorithm 

Floquet analysis has been used in damped driven systems28,29,97 and in granular crystals. 

Normally, one searches for both the period of the limit cycle and the limit cycle itself in phase 

space. One option to finding the a periodic orbit is to simply integrate the system for long 

times and wait for the system to approach a periodic attractor97. However this does not allow 
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convergence to the desired attractor and may take a long time. Since in a driven damped 

system the period may be known beforehand, we can also solve for the limit cycle (see Applied 

Nonlinear Dynamics Ch. 6.5.2 section on Nonautonomous Systems)97. A limit cycle can is 

defined as close periodic orbit, or equivalently, 

𝒙(𝑇) = 𝒙0, (4.8) 

where 𝑥0 is the initial condition and T is the period. In Floquet Analysis, we are looking for a 

matrix that describes the perturbations to the initial condition that satisfies this relation. That 

is, we are looking to see how the solution one period later responds to a small change in the 

initial condition,𝑥0. This idea is embodied in a variational matrix, which describes how the 

sensitivity of the orbit on the choice of initial condition, 

𝑽(𝑡) =
𝜕𝒙(𝑡)

𝜕𝒙𝟎
. (4.9) 

When time equals that for a single period 𝑡 = 𝑇, the variational matrix  describes the deviation 

of the solution at full period later. This can be more easily envisioned in a two-dimensional 

system, schematically shown in Fig 4.1, in which the small deviation in the initial condition 

leads to a non-closed orbit after one period, 𝑇. 
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Figure 4.1: A schematic representation of a periodic orbit in a system with two 
degrees of freedom, position, and velocity. The solid line indicates a closed limit 
cycle orbit while the dotted line shows that changing the initial condition to a point 
slightly off the orbit results in a orbit that is not closed. The variational matrix, V, 
describes this sensitivity. 

Since every orbit is not necessarily a closed orbit, and we do not know the initial condition that 

will provide a closed orbit, we must search for a closed orbit solution. This means finding a 

solution of map, 

𝒇(𝒙0) = 𝒙0 − 𝒙(𝑇) = 0. (4.10) 

The value 𝑥(𝑇) depends on the integration from the initial condition 𝑥0. We begin with an 

initial guess and then modify that initial guess using Newton’s Method until we find the 

solution that provides a closed orbit,  
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𝒙𝑖+1 
0 − 𝒙𝑖

0 = (𝑱𝒏(𝒙𝑖
0))

−1

𝒇(𝒙𝑖
0), (4.11) 

where 𝑥𝑖
0 is the approximation of the initial condition 𝑥0 after 𝑖 iterations. The Jacobian 

matrix, 𝐽𝑛, is for the defined for the function, 𝑓, and is 

𝑱𝒏 =
𝜕𝒇

𝜕𝒙0
=  

𝜕

𝜕𝒙0
[𝒙0 − 𝒙(𝑇)] =  [𝑰 −

𝜕𝒙(𝑇)

𝜕𝒙0
] = 𝑰 − 𝑽(𝑇). 

𝑱𝒏 = 𝑰 − 𝑽(𝑇) 

(4.12) 

The Newtons method then becomes,  

𝒙𝑖+1 
0 = 𝒙𝑖

0 + (𝑰 − 𝑽(𝑇))
−1

(𝒙0 − 𝒙(𝑇)) (4.13) 

which depends on both the solution of the system, 𝒙(𝑇), and the variational matrix, 𝑽(𝑇), 

after integrating for a full period. The equations to integrate for the system are defined by 𝒉. 

However, we need to define the evolution of the variational matrix,  

𝑽̇ =
𝜕

𝜕𝑡

𝜕𝒙(𝑡)

𝜕𝒙𝟎
=

𝜕

𝜕𝒙𝟎

𝜕𝒙(𝑡)

𝜕𝑡
=

𝜕

𝜕𝒙𝟎
𝒉(𝒙(𝒕), 𝒙̇, 𝒕). (4.14) 

Since the system of ODE’s 𝒉 depend on 𝒙(𝑡), which definitely depends on the initial guess, 

we must apply chain rule,  

𝑽̇ = (
𝜕

𝜕𝒙
𝒉(𝒙(𝒕), 𝒙̇, 𝒕))

𝜕𝒙

𝜕𝒙𝟎
 , (4.15) 
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and the first factor in the product is simply the Jacobian of the system 𝒉, and the second 

factor in the product is the variational matrix itself. Therefore the time evolution of the 

variational matrix is  

𝑑

𝑑𝑡
𝑽 = 𝑱𝑠𝑦𝑠𝑽 . (4.16) 

Using this we can now perform the Newton method after integrating each initial guess for one 

full period.  

Comments on the resolution and the algorithm tolerance  

We integrate the ODE and search for the following condition numerically. However, there is 

inherently an error to the Newton method in solving this problem. Therefore, we stop the 

algorithm when the condition for the Newton method is below some tolerance.  

𝒇(𝒙0) = 𝒙0 − 𝒙(𝑇) < 𝑡𝑜𝑙. (4.17) 

This defines the resolution and accuracy of the time periodic solution for which we are 

searching. When we are far from a bifurcation this tolerance can be relatively large since the 

system itself is stable. However, near a bifurcation the system is less stable, and perturbations 

have the tendency to grow. This means that for the algorithm to converge the tolerance of the 

integrator may need to be reduced. We typically look for solutions with a tolerance, 𝑡𝑜𝑙 =

10−14, which should be compared with the static overlap of the system, 𝛿0 ≈ 10−7.   

Comments on the variational matrix 

After integrating the variational matrix for a full period we find,  
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𝑽(𝑇) =
𝜕𝒙(𝑇)

𝜕𝒙𝟎
. (4.18) 

When the system is on a limit cycle the initial condition and final state of the system are 

equivalent, 𝒙(𝑇) = 𝒙0. This means that the matrix tells us the linear sensitivity that a 

perturbation has on the final state, where the eigenvalues, 𝜆𝑖, of 𝑽 describe the growth of a 

perturbation in the associated eigenvector direction. The eigenvalues of the matrix are complex 

and give us information both about the stability of the limit cycle and when the limit cycle is 

stable, i.e., the speed of the system8,97. The magnitude of the eigenvalue, |𝜆𝑖|, dictates the 

growth rate of the perturbation, and the argument  tells the frequency of the growing 

perturbation, 𝑓𝑁 = 𝐴𝑟𝑔(𝜆𝑖)/(2𝜋𝑇).  When the system is Hamiltonian, multipliers sit on the 

unit circle in the complex plane. However, when the system is damped, as in our case, the 

multipliers lie on a circle of with a radius dependent upon the linear dissipation, 𝑒−𝑇/(2𝜏), 

where 𝜏 is a linear dissipation time constant28. This reflects the notion that transients decay in a 

dissipative system, and the rate of decay is dictated by this value. A perturbation acts as a small 

transient. Therefore, when the magnitudes of the multipliers are less than one, perturbations 

die, and the rate of the exponential approach back to the limit cycle is dictated by the 

magnitude of the Floquet multiplier. As the magnitude of this multiplier approaches unity, the 

time constant to return to the limit cycle approaches infinity. At the bifurcation point the time 

is infinite and the system is sitting on top of a saddle node. A small perturbation does not 

decay. Finally, when the magnitude is greater than one the perturbation grows exponentially 

and the limit cycle is not stable.  
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4.4 Modeling specific tools 

4.4.1 Lock-in amplifier 

We frequently connect the measureable experimental parameters to a lock-in amplifier. The 

measured variable could be the velocity of particle 𝑖, the force at the boundary, or the force in 

the middle of a bead. The lock-in amplifier multiplies the measured variable by the sine and 

cosine at the reference frequency, low pass filters the signal, and outputs the Fourier 

component of the measured variable at the reference frequency.  This process can be modeled 

using a system of 𝑛 first order ODEs, where 𝑛 is the order of the low pass filter and 𝜏 is the 

time constant of the low pass filter of the lock-in amplifier. The ODE for measuring a 

variable, 𝑥𝑖𝑛𝑝𝑢𝑡, can be written as, 

𝑦̇1 = 𝑥𝑖𝑛𝑝𝑢𝑡 ∗ cos(𝜔𝑟𝑒𝑓𝑡) − 𝑦1 

𝑦̇2 = (𝑦1 − 𝑦2)/𝜏 

… 

𝑦̇𝑛 = (𝑦𝑛−1 − 𝑦𝑛)/𝜏 
 

𝑦̇𝑛+1 = 𝑥𝑖𝑛𝑝𝑢𝑡 ∗ sin(𝜔𝑟𝑒𝑓𝑡) − 𝑦𝑛+1 

𝑦̇𝑛+2 = (𝑦𝑛+1 − 𝑦𝑛+2)/𝜏 

… 

𝑦̇2𝑛 = (𝑦2𝑛−1 − 𝑦2𝑛)/𝜏. 
 

(4.19) 

This amplitude, 𝐴, and phase with respect to the excitation signal, 𝜙, of the measured variable 

are described by the equations, 

𝐴 =  2√𝑦𝑛
2 + 𝑦2𝑛

2  

𝜙 = tan−1 (
𝑦2𝑛

𝑦𝑛
) 

(4.20) 
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4.4.2 Embedded piezoelectric sensor 

There has been extensive use of an embedded piezoelectric element for sensing 

purposes31,32,68,77. Two important considerations when using embedded piezoelectric sensors 

are the input impedance of the measurement device and the frequency of operation. When the 

impedance between the terminals is relatively large compared to the impedance of the piezo, 

the force and voltage can be proportionally related. The time constant of the piezoelectric 

measuring circuit is also important.  When using the piezo as a sensing device, the 

measurement frequency should always be well above the reciprocal of the time constant. If a 

low resistance is placed in parallel with the pizeo, this affects the time constant and accurate 

sensing is pushed to a higher frequency regime.  

Studies on granular crystals have proposed their potential application in energy harvesting 

devices98. For this, the associated circuit and configuration becomes extremely important, and 

has previously been ignored. The goal is to convert mechanical energy into electrical energy, 

and therefore the electro mechanical coupling must be incorporated in the equations of 

motion for the mechanical and electrical systems. I present here equations of motion for the 

piezoelectric disk embedded in a sphere. These are more generally and do not make 

assumptions about small strains on the piezo, flat frequency response, or rigid body motion. 

These equations (or similarly derived depending on differing geometries) need to be checked 

when considering energy harvesting in a granular chain.  
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We use a Lagrangian approach, which allows us to derive equations of motion from the 

constitutive response of a piezoelectric disc and use generalized coordinates, so that the 

approach can be easily adopted for different circuits or mechanical geometries. The approach 

closely follows that presented by A. Preumon99. The constitutive laws of a piezoelectric disk  

(
𝐷
𝑆

) = [
𝜀𝑇 𝑑33

𝑑33 𝑠𝐸 ] (
𝐸
𝑇

), (4.21) 

can be integrated over the volume, inverted, and then used to define a coenergy function,  

𝑊𝑒
∗(Δ, 𝜆̇) =

𝐶(1 − 𝑘2)

2
𝜆̇2 + 𝑛𝑑33𝐾𝑎𝜆̇Δ −

𝐾𝑎

2
Δ2 , (4.22) 

where 𝜆 is the generalized coordinate, chosen as the flux linkage across the piezo. The other 

parameters follow correspond to coefficients as in Preumont’s derivation99 and the IEEE 

standards for piezoelectricity100. They are defined in the table. 

𝜀𝑇 Permittivity  
𝑘 =  

𝑑33
2

𝑠𝐸𝜀𝑇
 

Electromechanical 
coupling factor 

𝑑33 Piezoelectric 
Constant 𝐾𝑎 =

𝐴

𝑠𝐸𝑡
 

Short circuit stiffness 

𝑠𝐸 Compliance 𝑡 Thickness 

𝐴 Area 𝑄 = 𝐴𝐷 Charge 

𝐷 Charge Displacement Δ = 𝑆𝑡 Total Displacement 

𝑆 Strain 𝑓 = 𝑇𝐴 Force 

𝑇 Stress 𝑉 = 𝐸𝑡 Voltage 

𝐸 Electric Field 
𝐶 =

𝜀𝑇𝐴

𝑡
 

Capacitance 

 
 Table 4.1: IEEE Notation for derivation of the electromechanical coupling for 
piezoelectric disks embedded between two half spheres. 

The coenergy function can be included in the Lagrangian for the system as, 



 

 

47 

𝐿 = 𝑇 − 𝑉 + 𝑊𝑒
∗, (4.23) 

where 𝑇 is Kinetic energy and 𝑉 is the Potential energy of the system. By defining a kinetic 

energy and a potential energy of the system presented in the figure below, we can then derive 

the equations of motion using Lagrange’s equations.  

 

Figure 4.2: A schematic of the embedded piezoelectric element and connected 
circuit. Under certain conditions the electromechanical coupling can be ignored and 
we can assume voltage is proportional to the applied force34. However, in many 
applications such as energy harvesting, the dynamics of the electrical circuit 
becomes essential.  

The figure shows two beads in contact with the central bead with the embedded piezoelectric 

disk. The coordinates of the two neighboring beads only enter in the equations of the potential 

of the system, since the equations of motion for these particles can be easily derived from 

Newtonian mechanics. This leads us to define the kinetic minus potential energy of the system 

as,  

𝑇 − 𝑉 =
1

2
𝑢̇2𝐿

2 +
1

2
𝑢̇2𝑅

2 −
2

5
𝐴(𝛿0 − 𝑢2𝐿 + 𝑢1)

5
2 −

2

5
𝐴(𝛿0 − 𝑢3 + 𝑢2𝑅)

5
2, (4.24) 

where 𝑢1 and 𝑢3 are the equilibrium positions of the two neighboring beads and 𝑢2𝐿 and 𝑢2𝑅 

are the equilibrium position for the two half beads that are attached to the piezoelectric sensor. 



 

 

48 
The coenergy function for the piezo is defined above, and all that must be added is a 

dissipation function for the non-conservative elements, 

𝐷 =
𝑏

2
𝑢̇2𝐿

2 +
𝑏

2
𝑢̇2𝑅

2 +
1

2𝑅
𝜆̇2, (4.25) 

where 𝑏 is the dissipation constant for the mechanical system and 𝑅 is the electrical resistance. 

By taking the various derivatives for the Lagranges equations, we can write the full equations 

of motion describing the electromechanical coupling between the piezoelectric circuit and the 

two half beads,  

𝑚𝑢̈2𝐿 + 𝑏𝑢̇2𝐿 = −𝑛𝑑33𝐾𝑎𝜆̇ + 𝐾𝑎(𝑢2𝑅 − 𝑢2𝐿) + 𝐴(𝛿0 − 𝑢2𝐿 + 𝑢1)
3
2

+ 𝑏𝑢̇2𝐿 

𝑚𝑢̈2𝑅 + 𝑏𝑢̇2𝑅 =  𝑛𝑑33𝐾𝑎𝜆̇ − 𝐾𝑎(𝑢2𝑅 − 𝑢2𝐿) − 𝐴(𝛿0 − 𝑢3 + 𝑢2𝑅)
3
2

+ 𝑏𝑢̇2𝑅 

𝐶(1 − 𝑘2)𝜆̈ +  𝑛𝑑33𝐾𝑎(𝑢̇2𝑅 − 𝑢̇2𝐿) +
𝜆̇

𝑅
= 0. 

 

(4.26) 

These equations of motion fully define the electromechanical coupling. By looking at the 

mechanical equations of motion it is clear that the circuit acts as an energy sink. When this 

damping is on the order of the mechanical damping then it may have a significant effect. 

Inductive damping occurs when there is an additional inductor placed in series with the 

resistance99. This leads to a modified Lagrangian, 𝐿 = 𝑇 − 𝑉 + 𝑊𝑒
∗ − 𝑊𝑚, where 𝑊𝑚 =

𝜆2/2𝐿 is the energy stored in the inductor. The resulting RCL circuit (and equations of 

motion) now has its own resonance and can be tuned to couple more or less with the 

mechanical system.  
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4.5 Modeling for specific experiments 

4.5.1 Local to extended transitions of resonant defect modes  

This modeling is for the experimental setup described in section 3.3.1. The results are shown 

in chapter 5. We model our system as masses coupled by springs with a single defect site. All 

particles other than the defect are spherical with 𝑅 = 9.525 𝑚𝑚 and a mass, 𝑚𝑠 = 28.8 𝑔. 

The equations of motion are, 

𝑚𝑠𝑢̈𝑖 = 𝑘𝑐(𝑢𝑖+1 + 𝑢𝑖−1 − 2𝑢𝑖);     𝑖 ≠ 0 

𝑚0𝑢̈0 = 𝑘𝑐(𝑢1 + 𝑢−1 − 2𝑢0) + 𝑘𝑅(𝑢𝑟 − 𝑢0) 

𝑚𝑟𝑢̈𝑟 = 𝑘𝑟(𝑢0 − 𝑢𝑟) , 
(4.27) 

where 𝑢𝑖 is the displacement of the 𝑖th sphere around its equilibrium position.  The equations 

represent a one-dimensional lattice with a local resonance at the defect site. The defect’s 

dynamics are contained in the second two equations, and the rest of the lattice in the first. The 

defect has a mass located in the chain array, which is 𝑚0 = 47.8 𝑔, and has a displacement 

from equilibrium, 𝑢0. The defect’s resonant mass, 𝑚𝑟 = 0.18 𝑔, is coupled with a stiffness, 

𝑘𝑟 =  2.64 × 105 𝑁/𝑚, to this particle and has a displacement, 𝑢𝑟. This displacement is the 

additional degree of freedom for the resonator. We define the characteristic frequency of the 

resonator, 𝑓𝑟 = √𝑘𝑟 𝑚𝑟⁄ , which is totally independent of the lattice, and we stress that this is 

not equal to the defect mode’s frequency.  The stiffness coupling of all other particles within 

the chain is found by linearizing the Hertzian contact law, 𝑘𝑐 =
3

2
𝐴2/3𝐹0

1/3
 [

𝑁2/3

𝜇𝑚
], where 𝐹0 

is the compression, 𝐴 =
4

3
√

𝑅

2
(

𝐸

2(1−𝜈2)
), 𝐸 = 193 𝐺𝑃𝑎, and 𝜈 =  0.3. This is where the 
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nonlinear nature of our lattice is important. This allows a change in the coupling  stiffness 

between adjacent particles through compression, while the resonant coupling stiffness, 𝑘𝑟, 

stays constant. Finally, the boundary conditions are modeled as fixed walls with 𝑢−16 = 𝑢16 =

0.  

The dynamics we are interested in are linear, and therefore we solve the eigenvalue problem 

that results from assuming oscillatory solutions. In section 5.4 we show our analytical 

derivation, which is used to fit for experiments and demonstrates that boundary conditions do 

not become important until just before the mode transitions from local to extended dynamics.  

4.5.1.1 Modeling the resonant defect 

The resonant defect is essential to our investigation of actively controlled localization, and the 

defect itself is modeled as two separate parts. To characterize the defect’s behavior, we 

perform a separate experimental and numerical analysis. A portion of the defect particle’s 

mass, 𝑚0, is localized in the lattice array and coupled to the other particles through the same 

nonlinear Hertzian Contact. Another part of the mass, 𝑚𝑟, is in the resonating ring. This mass 

is determined using Finite Element simulations in Comsol Multiphysics®. The spring 

constant, 𝑘𝑟 = 𝑚𝑟𝑓𝑟
2, coupling the masses is calculated using the linear mode’s frequency, 𝑓𝑟. 

This frequency is found by measuring the transmission properties of a single resonator where 

the frequency 𝑓𝑟 is the anti-resonance. A schematic of the experimental setup is shown in Fig 

4.3a, with the transmission spectra shown in Fig 4.3b. The blue curve plots the experimental 

results, and the red curve is the corresponding numerical results from a linear state space 

analysis. 
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Figure 4.3: Experimental Analysis of the Resonant Defect Particle. (a) The 
schematic of the experimental characterization system. (b) A comparison between 
the theoretical and experimental transmission spectra for the system in (a). 

4.5.2 Extraordinary stiffness tunability 

This modeling is for the experimental setup described in section 3.3.2. The results are shown 

in chapter 6. We use a discrete particle model to simulate the dynamics. The table below lists 

the values used in the simulations, which are either measured experimentally or fit for. We fit 

for two parameters in our model.  

The first is the lattice’s Hertzian contacts at the ends. We found that the experimental support 

expands slightly as a result of its finite stiffness. We include this by modifying the contacts at 

the edges of the chain, 𝐴1 and 𝐴10. This does not affect the dynamics at the defect site. Figure 

4.4 shows the Hertzian fit used to find the total stiffness of the chain and supporting 

structure,. 

𝐴𝑓𝑖𝑡
−2/3

= ∑ 𝐴𝑖

𝑖

−2/3

. (4.28) 
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Figure 4.4: Experimental Fits to determine Numerical Parameters. (Left) Fit of the 
static response of the chain to Hertzian Force Law. (Right) Fit of the linear 
amplitude response of the defect to a Lorentzian to determine the linear dissipation 
of the chain. 

 
The second we fit for is the linear dissipation of the particles. To find this we perform a 

frequency sweep at low amplitude drive excitations in the experiment and fit the measured 

amplitude response to a Lorentzian.  We measure the quality factor of the mode and then 

choose a dissipation time constant for the numeric that results in the same quality factor for 

the defect mode. 

The contacts at the excitation particle are modified to include the sinusoidal expansion of the 

chain. Because the stiffness of the piezoelectric disk is much larger than the Hertzian contacts, 

the piezo expands in proportion to the voltage applied, and the assembled structure can be 

assumed to move as a single expanding bead. 

𝐴𝑖 = 9.7576 𝑁/𝜇𝑚3 2⁄ , 𝑖 ≠ 1,5,7,10 Sphere – sphere contact stiffness 

𝐴1 = 𝐴10 = 1.7106 𝑁 𝜇𝑚3 2⁄⁄ ,
𝑖 = 1,10 

Boundaries contacts stiffness 

𝐴5 = 7.9670 𝑁 𝜇𝑚3 2⁄⁄   Defect sphere contact stiffness 

𝐴7 = 13.799 𝑁 𝜇𝑚3 2⁄⁄  Excitation particle – sphere contact stiffness 

𝑚𝑖 = 28.4 𝑔, 𝑖 ≠ 6,7 Sphere mass 

𝑚6 = 3.6𝑔, 𝑚7 = 20.2𝑔 Defect mass, and excitation particle mass 
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𝛿𝑖 = (
𝐹0

𝐶𝑖
)

2/3

 , 𝑖 ≠ 6,7 Equilibrium spatial overlap 

𝛿𝑖 = (
𝐹0

𝐶𝑖
)

2/3

+ 
𝐵

2
cos (2𝜋𝑓𝑑𝑡) ,

𝑖 = 6,7 

Spatial overlap including the harmonic signal 
applied to the excitation particle 

𝜏 = 0.275𝑚𝑠 Dissipation time constant 

 
Table 4.2: Model Parameters (A1, A10, masses, τ are experimentally measured). 
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