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Abstract

Light has long been used for the precise measurement of moving bodies, but the burgeoning field of
optomechanics is concerned with the interaction of light and matter in a regime where the typically
weak radiation pressure force of light is able to push back on the moving object. This field began
with the realization in the late 1960’s that the momentum imparted by a recoiling photon on a
mirror would place fundamental limits on the smallest measurable displacement of that mirror.
This coupling between the frequency of light and the motion of a mechanical object does much
more than simply add noise, however. It has been used to cool objects to their quantum ground
state, demonstrate electromagnetically-induced-transparency, and modify the damping and spring
constant of the resonator. Amazingly, these radiation pressure effects have now been demonstrated
in systems ranging 18 orders of magnitude in mass (kg«fg).

In this work we will focus on three diverse experiments in three different optomechanical de-
vices which span the fields of inertial sensors, closed-loop feedback, and nonlinear dynamics. The
mechanical elements presented cover 6 orders of magnitude in mass (ng<>fg), but they all employ
nano-scale photonic crystals to trap light and resonantly enhance the light-matter interaction. In the
first experiment we take advantage of the sub-femtometer displacement resolution of our photonic
crystals to demonstrate a sensitive chip-scale optical accelerometer with a kHz-frequency mechanical
resonator. This sensor has a noise density of ~ 10 ug/rt-Hz over a useable bandwidth of ~ 20 kHz
and we demonstrate at least 50 dB of linear dynamic sensor range. We also discuss methods to
further improve performance of this device by a factor of 10.

In the second experiment, we used a closed-loop measurement and feedback system to damp and
cool a room-temperature MHz-frequency mechanical oscillator from a phonon occupation of 6.5x105
down to 66. At the time of the experiment, this represented a world-record result for the laser
cooling of a macroscopic mechanical element without the aid of cryogenic pre-cooling. Furthermore,
this closed-loop damping yields a high-resolution force sensor with a practical bandwidth of 200 kHZ
and the method has applications to other optomechanical sensors.

The final experiment contains results from a GHz-frequency mechanical resonator in a regime
where the nonlinearity of the radiation-pressure interaction dominates the system dynamics. In this

device we show self-oscillations of the mechanical element that are driven by multi-photon-phonon



vii
scattering. Control of the system allows us to initialize the mechanical oscillator into a stable
high-amplitude attractor which would otherwise be inaccessible.
To provide context, we begin this work by first presenting an intuitive overview of optomechanical
systems and then providing an extended discussion of the principles underlying the design and

fabrication of our optomechanical devices.
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Chapter 1

Classical Theory of
Optomechanical Systems

In this section, we will introduce a conceptual model of an optomechanical system and then derive
the governing equations and basic optomechanical relations. We will first do this in an intuitive
model typically used for experiments with low-frequency classical optomechanical systems. Then
we will present a second more complete formalism appropriate for optomechanics in nonlinear and
high-frequency systems. Experimental results employing both descriptions will be presented in this

thesis.

1.1 Introduction

The standard example of an optomechanical system is that of a Fabry-Pérot optical cavity consisting
of two opposing mirrors which trap light between them, but one of the mirrors is free to oscillate
(Fig. 1.1). Due to the boundary condition imposed by the mirrors, only an integer number of
wavelengths can fit inside the optical cavity, of total effective length, Leg. This causes the cavity
to have a series of optical resonances around the discreet frequencies where this integer condition
is met, w;/2m = jﬁ, where j is an integer, and c is the speed of light in free space. Since the
resonances are determined by the effective length, small changes in this length due to the moving
end-mirror change the optical resonance according to wj = jﬁ‘;(t). This modulation changes the
light inside the cavity and thus modulates the amount of outgoing light from the optical cavity,
allowing one to detect the mirror’s motion. This simple effect is useful for sensitively measuring
displacements.

However, there is another effect to consider because the light inside the cavity also exerts a
radiation pressure force back onto the moveable mirror. Thus, if the mirror is small enough, or

there is enough light inside the cavity, the mirror can be pushed around by this optical photon

pressure. This additional effect causes optomechanical systems to be full of interesting dynamics
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because this force can change the mirror’s position, which then changes the amount of force on the
mirror, causing a change in the mirror’s motion, etc. etc. etc. These dynamics allow one to use the
light to effectively stiffen or soften the spring the mirror is attached to, as well as amplify or damp

the mirror’s motion [1].

V-

A

iRl X

Y

L

[

Figure 1.1: Fabry-Perot Cavity. The two mirrors trap the incoming resonant light (blue) between
them. The left mirror is slightly less reflective in order to allow light to couple into and out of the
optical cavity. The right mirror is free to oscillate with its energy stored in a simple spring (orange).
This motion, x, changes the effective length of the cavity, Leg, which modulates the light inside of
the cavity, and causes the outgoing light to be modulated.

In the following sections, we will dive into the details of this coupling, and in later chapters
present optomechanical systems that have little apparent resemblance to Fig. 1.1, but keep in mind
that nearly all of the relevant physics in these devices is contained within this simple model system

of mirrors and a spring.

1.2 Sideband Unresolved Optomechanics

The following formalism is most convenient when describing low-frequency systems where the me-
chanical frequency, wy,, is much slower than the optical energy decay rate, k. When this is the case,
wm K K, light can enter and exit the optical cavity much faster than the mechanical mode undergoes
one oscillation. This allows some simplifications, and it is useful for the intuitive picture it provides,
but can lead to errors when considering systems with too-fast mechanical frequencies, wy, 2 k (see
Section 1.3).

Starting from our equation for the resonance frequency in the Fabry-Pérot cavity, we consider

only one particular optical cavity resonance with bare frequency, we o = kﬁ“—i{, which is modified by

We,0
1+Cc(t)/Leff

relative to the effective length of the cavity, |z| < Leg, which is valid for every experiment presented

the mechanical motion to w. (t) = . We can further assume that the displacement is small
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here. This allows us to expand the changes to the optical frequency in a Taylor series:

2
ld wc70 2

d
we (t) = weo + dx7 x(t)+2' 72 L t)+... (1.1)
2
We,0 lweo
= - = t P
We,0 Leffx( )+2Lzﬁ +

We have truncated the series after the first two terms because in practice these are the most ex-

perimentally relevant. All of the work presented here, including the nonlinear work discussed in

We,0
Tott ’

Chapter 5, is still well within the regime where the first term, linear in dominates. Engineering

systems where the linear term is absent or small compared to the x? term is of recent interest for
quantum measurement applications, but will not be discussed here (see [2-10]).

Finally, we get this form for the coupling between the two systems, we = we o — gy (1), where
dwc,() __ Wc,0

dz Loegr *

the frequency change per unit displacement of the optical cavity is defined by g¢,,, =
This constant, g,,,, is known as the optomechanical coupling strength and it is a critical parameter
because it sets the amount of information imparted on the optical field by the mechanical motion, as
well as the amount of radiation force transferred from the optical field to the mechanical resonator.

The connection between g,,, and the optical force can be seen by considering the interaction

Hamiltonian of this system:

Hing = —hncgoy s (1.2)

where n, = afa is the number of photons stored in the optical cavity, with a (af) representing

the destruction (creation) operator of the optical field. Classically, then, the force on the oscillator

is given by Fi, = —% = hne¢gyy- A single photon inside the optical cavity ‘pushes’ on the
mechanical element by an amount hg,,,, and thus displaces the mirror by an amount, Az = @,
where k is the system spring constant. From these relations, one can see that systems with large
optomechanical couplings and low mechanical stiffness will be ideal for observing effects of the light-

field acting on the mechanical resonator.

1.2.1 Equations of Motion

To derive these effects, we start with the standard equations of motion for the mechanical position,

x, and the optical field, a:



a’(t) =—1 (wC - (t) gOM) CL(t) - ga(t) + \/ﬁain(t) (13)
() = i (t) — wa(t) + L0 4 Mon ) (1.4)

Meft Meft

where to describe the optical mode we have defined the bare optical resonance frequency we, the total
optical cavity field decay rate k, the input coupling rate k;,, and the input driving laser field a;,.
For the mechanical mode, we have used «; as the intrinsic mechanical decay rate, wy, as the angular
resonance frequency, and meg as the effective motional mass of the mechanical mode (which is not,
in general, equal to the physical mass). Also, we account for thermal noise to drive the oscillator in
the term Fiy. It is important to note here that the number of photons in the cavity is calculated
from the optical cavity field as n(t) = |a(t)|* because we are treating the system classically. Thus,
in general, the dynamics of the system are governed by two coupled differential equations which are
not linear in their interaction.

First, because the optical frequency is almost always much much larger than any other frequency
in the system (w./2m & 200 THz), it is useful to solve for the slowly varying amplitude of the field
a. To do this, we first note that if we are driving the system with a single laser at frequency wy,
then the input field is given by ai,(t) = ae™***, where the input rate of photons is a;, = }%’;,
with P, the laser power. So, we can solve for a by making the substitution a(t) = a(t) e~ in

Eq. (1.3):

a(t) — iwpa(t) = i (we — (1) gou) a(t) —

gd(t) + /Fmtin (1.5)

6= (A + 2 (t) gor) alt) = Sa(t) + v/Finain, (1.6)

where we have defined the detuning of the laser from the cavity as A = wy —wc, so that the detuning
is negative when the laser has a lower frequency than the optical resonance. Now, for simplicity, we
replace a = a, with the implicit understanding, that we’re now solving the equations in a rotating

frame and we’ve just dropped the tildes. Here we restate these equations for clarity:

a(t) = i (A + 2(t) gou,) alt) = alt) + VA1) (L.7)
#(t) = —ma(t) — w2 2(t) + Fin/Meg + %"C(t) . (1.8)



1.2.2 Mechanical Mode Solution

In general, the coupled set of equations, (1.7) & (1.8), is nonlinear and cannot be solved analytically.
However, in practice, the optomechanical coupling g,,, and the mechanical amplitudes x are small
enough that an iterative approach yields accurate results. First, then, we will drop the optical
coupling (g,,, = 0), and solve for the behavior of the mechanical mode. We start by Fourier

transforming (1.8):

—wr(w) = ifwr(w) — w2 2(w) + Fon/Mes, (1.9)
where we have used the property of the Fourier transform, F [£(t)] = iwz(w) (see Appendix A), and
defined F [Fy(t)] = Fin(w). Now, solving for the displacement spectrum of x, we find:

()—;fth— )
T _wQ—w?n—i—i’yiwmeff_Xw

]:th
?
Meff

(1.10)

where it is useful to define the oscillator’s susceptibility as x(w) = (w? — w2 + iyw) ~'. This function

has a standard Lorentzian shape near resonance, and has the other following notable properties:

1 e
X(0)=—= mkﬂ, (1.11)
_ OQm
X (wm) = —i 5 = —iQmx (0), (1.12)
1
IX (W >> wn) | o o2 (1.13)

Here we have used the quality factor of the mechanical mode, Qn, = wp /7. Obtaining mechanical
resonators with large @, (i-e., good quality) will prove to be an important subject of this work.
Physically, it is related to the number of oscillations, #.s., that a resonator undergoes before its
energy decays to 1/e &~ 37% of its initial value: Qu/2m = #ose- A diagram of the susceptibility
function is shown in Fig. 1.2.

The term Fyy, arises from the oscillator being in equilibrium with a heat bath and is thus subject
to thermal Brownian motion. The equipartition theorem tells us that the root-mean-square (RMS)

displacement of a harmonic oscillator subject to this noise must be

kT, kT,

2

‘ — 1.14
xrms k Mo 2 ( )

where we have used the temperature of the thermal bath T}, and Boltzmann’s constant kg.
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Figure 1.2: Resonator Susceptibility. (a) Widespan plot of the normalized magnitude of the
resonator susceptibility |x(w)w? | with Q. = 100. (b) Plot of x(w) near resonance indicating that
the full-width-at-half-max of this curve is the mechanical damping rate ~.

Also, we have the additional relation that integrating this force noise over the susceptibility must

be equal to the RMS displacement,

P = [ ) P (115
0

where we have denoted the spectral density of the thermal force noise as S}fh. We assume this
force noise to be spectrally-white (e.g., no frequency dependence). Equating Eqgs. (1.14),(1.15) and

integrating over the susceptibility function, we find the magnitude of this thermal noise to be

_ 4kgTyyi  4kpThwm

Meff Mef@m ’

Sih (1.16)

This spectral density has units of Force? /Hz and is related to the original force noise in the equation
of motion (Eq. (1.8)) via its autocorrelation, Sys(w) = [*_ dw'(F (w) Fen(w')), where Fy is the
complex conjugate of the thermal force noise spectrum Fiy,.

We now finally have an equation for the displacement spectrum of our thermally driven oscillator:

9 _ 4]€Bwammeff 1

th __ qth
Sxx(w) = Sff /meff|X(w) | Qm (w2 _ w12n)2 + (’Yiw)27

(1.17)



which has units of meters? /Hz.
This unavoidable thermal noise on the mechanical element will be relevant in our discussion of
an optomechanical accelerometer in Chapter 3 and our attempt to cool our mechanical object in

Chapter 4.

1.2.2.1 Quantum ‘Mechanics’

Although this thesis will not cover any experiments that observe quantum effects, reaching such
a regime is the motivation for the feedback cooling experiment in Chapter 4 and we will use the
language of quantum mechanics to discuss the results, so we briefly introduce it here. The starting
point for this analysis is to write the displacement operator in terms of the operators for creation

(b") and annihilation (b) of the mechanical mode, # = Zap (l;T + IS), ehere the proper normalization

h

2MeffWm

is that of the quantum zero-point (ground-state) amplitude x,, = Similar to photons
for the optical field, the quantum of mechanical excitations is the phonon and the number operator
is given by ny = bih. A thermal state again is one which is in equilibrium with a bath at a given
temperature, and the phonons are described by a Maxwell-Boltzmann distribution:

) S 1 ksTh,
fp) = (bTh) = ~ :
(fp) = (b'b) 1 um

(1.18)

where we have used in the final expression the high-temperature approximation, which is valid for
(fp) > 1. Tt can be easily verified that this relation for (7;) leads to the same thermal displacement
as in the classical case, namely, (2) = Ty = kgTh/Mmegw?,. The quantum regime is typically defined
as one where (7p) < 1, which has recently been achieved in a number of optomechanical systems

[11-13].

1.2.3 Optical Mode Solution

Similar to the mechanical case, we start by first dropping the mechanics (g,,,, = 0) and solving for

the steady state of the optical field, @ = 0:

Rin@in
— VinGin 1.19
“TETA (1.19)
KinG3, kin P

()7 a2 (5) +azha

ne = |a* = a'a = (1.20)
The intracavity field, a, typically cannot be directly observed, and so although the mechanical mode
experiences n., the experimenter only has access to the transmitted or reflected outgoing optical

field aoyut. The form for this outgoing field in terms of the input field can be found from standard



input-output theory [14] as

Gout = Gin — \/KinQ (1.21)
Rin

=ain | 1 - - . 1.22

o (1-5%%) 1)

But this light field is detected on a photodetector that is sensitive only to the incident optical power

so the detected signal is,
Taet = hwl|aout|2 = mla?n 1- w . (123)
(5)"+42

It is useful to note that |aout|? and |ai,|? have units of photons/s, whereas |a|? has only units of

photon number, so one must be careful switching between the intracavity field and the detected

signal.
Single-Sided Coupling Double-Sided Coupling
Ain Qj Q
1n out
—_— e —
|
— Xy

{reo/2

Qout Ke 7‘2‘* F&e/é\'
o Ki

Fin = fe Kin = Ke/2 'LLV
K = Kj + Ke K= Ki + Fe Kj

Figure 1.3: Single & Double-Sided Coupling. (a) Single-sided coupling showing a waveguide
(blue rectangle) that carries the input optical field a;, and the reflected optical field aoyt. It couples
this light into the optical cavity (blue circle, a) at the extrinsic coupling rate ki, = k.. The optical
cavity also has an intrinsic loss rate, ;. (b) In a double-sided coupling scheme, the input light is
coupled into the cavity at k./2, and the output light aoyt is transmitted past the optical cavity.
The optical cavity can now couple to the waveguide in both forward and backward directions at
rate ko/2, so light is still lost from the cavity at the same total rate Kk = k; + 2 * ko/2. Half of the
intracavity light ends up being ‘lost’ when it is emitted in the backwards direction.

1.2.3.1 Single Sided and Double Sided Cavities

So far we have only stated that x is the total decay rate of the optical cavity, but we have not
discussed what goes into this loss rate. This is because there are two distinct schemes, for coupling
light into the cavity, and it has a large effect on the observed transmission signal. The two coupling

schemes as shown in Fig. 1.3a, are called single and double-sided couplings because of the number of
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Figure 1.4: Cavity Transmission & Photon Number. (a) Plot of the normalized reflection
of light from a single-sided optical cavity using Eq. (1.23) with kin = Ko, ke/ki = 0.6 (b) Plot
of the intracavity photon number for the same parameters as in (a), using Eq. (1.20) and setting
Qin = 4/Kin-

routes that light has to exit the cavity. The optical decay rate is typically split into two components.
The first is an intrinsic component, «;, which is the rate at which photons are inherently lost due to
imperfect mirrors, absorption, or defects. The second is the extrinsic component, k., which is loss
rate intentionally added to couple laser light into and out of the optical cavity.

In both systems, k = k; + ke, but the difference is the rate at which light couples into/out of the
system. In the single-sided cases, light leaving the optical cavity has only one direction to emit into
(reflection) see Fig. 1.3a, but in the double-sided case, the waveguide is coupled in such a way as to
allow light to leave either forward (transmission) or backward (reflection),see Fig. 1.3b. Thus, for
single-sided cavities, ki, = ke, but for double-sided cavities, ki, = Ke/2.

An example of the reflection spectrum from a single-sided optical cavity is shown in Fig. 1.4a,
along with the intracavity photon number in Fig. 1.4b. A comparison of the transmitted and
reflected spectrum for the two types of coupling is presented in Fig. 1.5. For single-sided coupling,
the reflection directly on resonance is 0 for the special condition when ke/k; = 1, shown as the green
line in Fig. 1.4b. This indicates that all of the input power couples into the optical cavity. For
the double-sided cavity, this limit of complete power absorption only happens at x./x; = 00, where
the cavity linewidth is also going to +oco. Results from a single-sided sideband unresolved cavity
experiment will be presented in Chapter 3 and experimental results using a single-sided cavity will
be discussed in Chapter 4, where the main difference is that in a double-sided cavity, half of the
information about the mechanical motion is lost to the backward direction. Explicitly, the upper-
limit on detection efficiency is the ratio of photons emitted into the waveguide compared to the total
photon loss rate, Nmax = Kin/k. It can easily be shown that for the double-sided case, Nmax cannot

be greater than 3.
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Figure 1.5: Over and Under Coupled. Plot of the transmission/reflection spectrum for double-
sided (a) and single-sided (b) optical cavities for a wide range of the coupling ratio x./x;. Note the
difference in the curves at the value k./k; = 1 (green), whereas for single-sided coupling, there is no
reflected light.

The value of transmission (reflection) on resonance, T (A = 0), is commonly called the ’trans-

mission dip’ and is given by

(5 = in)”
Tq = 5 (1.24)
(5)
(i 56)2
= /‘62 ) when Rin = Ke, (125)
K2 Ke
=3 when ki, = 5 (1.26)

Since experimentally it is difficult to measure x;,, but simple to measure Ty, this equation is usually
inverted to solve for k;,. However, it should be noted that for single-sided cavities, ki, = ke, the
resulting equation has two different solutions for ki, for each Ty, corresponding to the oscillator
being either over-coupled k. > k; or under-coupled k. < k;. Therefore, establishing x;, from T4 in
this situation requires some other additional information to determine which solution is valid. In

Chapter 4 we do this by measuring the total efficiency of the system.

1.2.3.2 Detecting Mechanical Motion

The effect of the mechanical motion on the transmitted signal is, to first order, proportional to the

derivative of the transmitted signal with respect to detuning:



WC/K

c
9]
G
Q
€
wv
c
E —~
- =
3
=
o
D
|
o
3
S
Wavelength

Figure 1.6: Mechanical Transduction Cartoon. Schematic diagram of the detection of mechan-
ical motion. An input mechanical displacement, x(t), causes a modulation of the cavity resonance
frequency (dwe = go,,x(t), orange) which, for laser detuned to the side of the optical resonance (blue
arrow), linearly modulates the transmission 6T o g, z(¢) /K.

dTgey dA dTge
Taer (8:8) = Taer () + =3 s = Taer (8) + S g (1) (1.27)
dT qe Kin (K — Kin) A
dZt = 2%£|ain|2 ( 2 ) 2 (128)
()7 +22)

where, by definition, the mechanical motion causes a change in the detuning of A, (t) = g, 2(t),
and here we have ignored the possibility of the optical field influencing the mechanical motion,
which we’ll consider in Section 1.2.4. So, the first term is just the DC or steady-state value of the
transmission, as plotted in Fig. 1.4, and then it is the second term that contains information about
the mechanical motion. This transduction of mechanical motion is shown conceptually in Fig. 1.6.

The derivative component dgg“ is shown in Fig. 1.7 for the same parameters as were used to plot

the example reflection lineshape in Fig. 1.4.

We can now use this to calculate the total signal due to x(t):

dT qe
Palt) = T g r(r) (1.29)
Kin (K — Kin) A
= 2thng|am|2(2—)2x(t) . (1.30)
(5)"+42)

Typically, for amplitude detection of the laser light (as opposed to phase detection as in Chapter 4),

the laser is positioned at A = k/2 because here the slope dgget is maximized. So, at this detuning
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Figure 1.7: Cavity Transmission Slope. Plot of the slope of the reflection from a single-sided
optical cavity using Eq. (1.28) with ki, = Ke, ke/ki = 0.6. Note the slope and detuning are both in
units of the intrinsic mechanical linewidth &;

we have

Kin (K — Kin)

LROIN —

= Z]:-g()l\/I‘Pin ? (1'31)

K
2

where we used Py, = hwy|a;,|?. This optical power is then measured on a photodetector, which yields
a detected voltage proportional to Vi, = Py R;iTig, where the detector responsivity in Amps/Watt is
R; and the transimpedence gain of the detector in Volts/Amp is Tj,. This is usually detected on a
spectrum analyzer as electrical power, P, = V2 /R, where R is the effective electrical impedance of

the detector. Thus, in the spectral domain, our detected signal power is given by

Pw) = <<ngfgﬁgmx<w>) > /R,

dT got 2
(RiTig d(Aetgom

_ ) 2
= D ond (4%,

Rij_'i dect 2
(~iTiy i o) Sex(w), (1.32)

where in the final expression we have related the expectation value and the spectral density via the
relation given in Appendix A.

When directly on resonance (A = 0) the derivative vanishes and to first order there is no detection
of the mechanical motion. However, the change in the phase of the outgoing light, %, undergoes a
maximum at this detuning, so one can achieve detection sitting directly on resonance when using a

phase-sensitive method, such as homodyning with a second laser beam (see Appendix B).
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1.2.4 Radiation Pressure Back-Action

We now consider the effect of the optical radiation pressure on the mechanical element by taking
a perturbative approach. We start by taking the ansatz of the mechanical motion as sinusoidal,
x(t) = xo€, coswmt, and expanding the optical mode in the small parameter €, as a(t) = >, €Zan(t).
The optics interacts with the mechanics via the forcing term on the RHS of Eq. (1.8), where we

need to solve for n.(t) = a*(t) a(t). Plugging in our expansion gives

ne(t) = a*(t)a(t) = a2 + eyalag + e alay, (1.33)

where we have considered terms up to first-order in €,. To obtain these terms, we next put our
ansatz into the equation of motion for the optical field (Eq. (1.7)), and collecting like powers in €,

yields two equations:

G0 =i (A’ - g) a0 + v/Finin, (1.34)
. / R .
=1 (A - 5) a1 + 11 9o 00, (1.35)

(1.36)

where we have defined A = A + 2g,,,, and z1(t) = coswmt. By throwing our an-satz for z(t) into
our equation of motion, it’s simple to show that since x( is a constant, ag = 0. This allows us to

solve for the steady state component of the optical field as:

— Vlinin, (1.37)

To solve for the harmonic component of the field, a;, we compute the Fourier transform:

wa, = (ZA — g) a1 + 121(w) Gop o,

121(W) gop @0 . i21(w) Gor a5 (1.38)

—>a=7/l{, a:—ﬁ.
w8 L7 iw+ Xyt

In this result we have used a property of the fourier transform listed in Appendix A, namely,
AXw) = A(—w). Also, we didn’t write it explicitly, but the fourier transform of the mechanical

motion is z(w) = |z| (§ (w — wim) + 0 (w + wy)) /2. Putting these two together, we have
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1
* * _ 2 — 1.39
(a’la’o +a0a1) legOM|a0‘ (Z(WA/)+S z(w+A’)+§> ) ( )

_ 90M|a0|2 ( % _ 2 ) iwry
W\ (=X (5) () (5)°

A+w A—w
_QOM‘GO‘Z ( , 5 + - " 2) 1. (1.40)
WX+ (5)"  (w—X)*+(%)

In the final expression we have explicitly separated out the real and imaginary terms because when
we Fourier transform back to the time domain, we can use the fact that F~![iwz;] = ;. Explicitly,

after performing the inverse Fourier transform, we have in the time domain

Wm

2 K
(afa0+ ajar) = $21%! ( :

— goulaol? <:2]A<A' _ xlB(A')> , (1.41)

where in the last step we have introduced the simpler notation A(A/) and B (A)

Armed with this final result, we can substitute this expression into our = equation of motion,

hg? |aol? i
&= —mi — wiax + Fi/meg + 90M7|0| (IA - IB) ,
Meff Wm
= _’YOM‘i_WCZ)Mx""‘Fth/meHa (1.42)

where we have introduced the optomechanically-modified damping rate and mechanical frequency:

592 |a0|2
Yom =N — ﬁA
A hg(Z)MH K“in|ain‘2 4wmAl
- nT 2 / / / !
2meomn ()" +22 [ — &)+ (5)°] [@n+£)P+(5)°]
hg? |agl?
Wom = \/wr2n+ gOM| o B

Mefr

(1.43)

(1.44)

w|x

) hg?., Kinl@in|? wm+A W — A
= wm+ k)2 / /\2 2 /\2 K\ 2 '
e (5)7 80 \ Gt 7 (5 (o K745)
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Here we have written out the full terms explicitly. We can see that, to first order, the effect of the
radiation pressure back-action on the mechanical oscillator is to modify both its damping rate and its
oscillation frequency. These terms are quite complicated, but a few general features can be observed.
The first is that both modifications are 0 for A = 0, i.e., when the laser is directly on resonance with
the optical cavity. Also, the effect switches sign with the sign of A, so detuning the laser to the lower

frequency side, A < 0, increases the damping, v,,, > 7, but decreases the frequency, w,,, < wm-

om
Detuning the laser to higher-frequencies A > 0 has the opposite effect. This simple linearized theory
breaks down when the damping or frequency becomes negative 7,,,,woy < 0, when the mechanical
amplitude, €., is too large, or when the steady-state displacement due to the radiation pressure, z,
is too large. A full description of these effects can be found in Ref. [15].

In the sideband unresolved regime, w,, < k, we can simplify these equations a bit:

~ = — hg?)M"i Klin|ain|2 QA/
om — i 2 o
e ()2 (e (9)°)
2 ’
LN .
MefF (AIZ‘F(%) )
=7 [1—- 2'%/’% hg?)M A/nc(A/) (146)
K24-(5)" ) \ men K24 (5)”
w — w2 + hgc2)M Hin‘ain|2 2A,
OM m Meft (%)2+A/2 A,2+(g)27
2 ’
N Wm t+ thM Ne A = PR (1.47)
MeffWm A/2+(%)
= wm |1+ <1> hgdn Ane®) (1.48)
“h/ \ mer 824 (5)) ]

where we have used our formula for the intracavity photon number, n.(Q), in Eq. (1.20), and the
approximation in the final expression for w,,, holds for small frequency shifts: |w,,, — wm| < Wmn.
Finally, we note that, in principle, the static shift, zg, must be iteratively solved for in terms of
lao|? because the extra detuning changes the static intracavity field and vice-versa. However, in
practice, this shift is very small or easily corrected, and so we will ignore it and use A — A. For
some systems, this radiation pressure displacement is non-negligible and yields interesting nonlinear
effects [16].

In Fig. 1.8 we have plotted an example of the frequency shift and damping as the laser is swept
across the optical cavity, assuming the mechanical element frequency is much less than the optical

loss rate of the cavity, i.e., the regime where Eqs. 1.46 and 1.48 are valid. The specific parameters
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used (detailed in the figure caption) are very similar to that of the device in the feedback-cooling

experiment detailed in Chapter 4.
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Figure 1.8: Frequency and Damping; Sideband Unresolved. Plot of the frequency shift
(Wop —Wm, blue) and change in the damping rate (v,,, — ¥, green) versus normalized laser detuning
in the regime where Eqgs. 1.46 & 1.48 are valid: wy,/k = 1.2x107°. Parameters used: P,, = 150 uW,

Jont /2™ =100 GHz/nm, wy, /27 = 1 MHz, £/2m = 80 GHz, kin = 3K, meg = 90 femto-kg.
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Figure 1.9: Frequency and Damping; Sideband Resolved. Plot of the frequency shift (w,,, —
wm, blue) and change in the damping rate (v,,, — ¥, green) versus normalized laser detuning in
the regime where the full form of the optomechanical backaction, Eqs. 1.43 and 1.44, must be
used: wp/k = 6.25. Grey dashed lines indicate a detuning from the optical cavity equal to one
mechanical frequency. Parameters used: P, = 150 nW, g.,,,/27 = 100 GHz/nm, wy, /27 = 4 GHz,
k/2m = 640 MHz, ki, = %Ii, meg = H0 atto-kg.

In Fig. 1.9 we have plotted an example of the frequency shift and damping when the device is in
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the sideband resolved regime, i.e., wy,/k = 6.25. The specific parameters used (detailed in the figure
caption) are similar to that of the device used in the nonlinear multistability experiment detailed in
Chapter 5. It can be seen immediately that this regime can lead to more complicated interactions
between the mechanical element and optical field. The additional peaked regions on either side of
the optical resonance occur at precisely A = +w,,. This regime will be discussed in more detail in

Section 1.3.

1.3 Sideband Resolved Optomechanics

This section introduces the optomechanical equations in a method more suitable for tackling high-
frequency systems, and going beyond the linear approximation used in Section 1.2. The mechanical
modulation of the laser light generates two sidebands at frequencies (w; — wy,) and (wg + wy,). The
regime where wy, > & is known as sideband ‘resolved’ because, since optical linewidth is narrower
than the frequency spread in these two sidebands, the optical cavity can be used to filter out just one
of the sidebands, as shown in Fig. 1.10. This regime is very useful for quantum physics experiments,
where one of the sidebands is useful, but the unwanted second sideband (if not filtered by the
optical cavity) adds additional noise to the system. This additional noise can act to obscure any
quantumness. This filtering property was necessary in two of the experiments I worked on: to cool
a resonator to its quantum ground-state [11], and to observe the quantum nature of the mechanical
resonator [17]. This thesis will not cover these quantum aspects in detail, but for an authoritative
review of these experiments and this regime, see the thesis of Dr. Amir Safavi-Naeini [18] and Dr.
Jeff Hill [2], as well as these reviews from the literature [15, 19, 20].

A second interesting feature of the sideband-resolved regime is that these distinct sidebands
lead to very interesting behavior when the mechanical amplitude is large enough that the linear
approximation used earlier no longer holds. The theory for this situation is presented here, and our
experiment in this regime is discussed in Chapter 5. The starting point for the analysis is, of course,

the equations of motion for the system [15]:

i(t) = —yi(t) — wia(t) + 2wmgoT.pla(t)?, (1.49)
. K . g0
a(t) = [—2 +i (A + x(t))] a(t) + /KinQin, (1.50)
Zap
where we have defined gy = g, Zzp, With the quantum zero-point fluctuation amplitude being given
by x,, = /5. wa ~. Following the derivation given in Ref. [21], we again start by assuming that

the motion is sinusoidal, x(t) = A sinwy,t, and we seek to find the homogenous, ay, and then the

particular, ap, form of the solution to the differential equation for the optical field, where our final
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Figure 1.10: Sideband Resolved System. (a) With the laser (thick black arrow) sitting directly
on resonance with the optical cavity (grey) at A = 0, there are two optical sidebands generated by
the mechanical motion that show up at A = +w,,. The lower (higher) frequency sideband is denoted
with a red (blue) arrow. With the laser directly on resonance there is (to first order) no back-action
of the laser onto the mechanical mode, because the red and blue sidebands are of equal magnitude
and offset each other. (b) With the laser ‘blue-detuned’ at A = +wy,, the lower-frequency red
sideband is significantly enhanced because it overlaps with the response of the optical cavity. The
higher-frequency blue sideband is suppressed because it is far off-resonance with the optical mode. It
can be seen that photons in the red optical sideband have less energy than the incoming photons, and
thus from energy conservation they have transferred energy into the mechanical resonator. Thus,
since this is the dominant sideband, the mechanical amplitude is amplified. (c) With the laser
‘red-detuned’ at A = —wy,, the higher-frequency blue sideband is significantly enhanced because it
overlaps with the response of the optical cavity, and similarly the lower-frequency red sideband is
suppressed. Now, since photons in the blue optical sideband have more energy than the incoming
photons the laser tends to extract energy from the mechanical resonator. This damps and cools the
mechanical mode.

solution will be of the form a(t) = ap(t) + an(t). First, the homogenous solution is easily found:

ap(t) = [—; +i (A + xgo Asinwmtﬂ ap(t),
zp

K _i_90A
(—2+zA)t [eitn coswmt'

— ap = Coe (1.51)

Note that in integrating to obtain Eq. (1.51) we have taken care to integrate the mechanical motion
component as well. We can see that without the laser driving term, the particular solution is

damped exponentially at rate /2, and thus the solution converges to a(t) = a,(t). So, now we find
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the particular solution by noting that it can take the form a, = C(t) ay(t), where,

- 1 indin (&—4 i—90A w
Ct) = —— g, = Y omdin o (§—i8)eHizlin cosumt (1.52)
ah(t) C()

This differential equation can be directly integrated if we use the Jacobi-Anger expansion,

eiﬁcos@ _ Z ", (ﬂ) eine’ (153)
where J,, is the Bessel function of the first kind, n-th order, and 3 is known as the modulation index.

Making this substitution and integrating gives for C,

= N 1 N G R
C(t) = VFmaine ngmm_ Ay (1.54)

n

where we have identified the unitless optomechanical modulation index, 3, = Awiﬁ' Finally, we

obtain the steady-state solution for our optical field:

a(t) = ap(t) = C(t) an(t)

= v/ KinQi eiiBmCOSUJmt E .an (Bm) iNWmt
- m+*in
n

i
B . 1.
%—l—i(nwm—A)e (1.55)

Here, each of the n terms in the sum is a mechanical sideband of the optical field oscillating at
frequency nwy,. For relatively small mechanical amplitudes this system can be linearized to obtain
simpler expressions for the field because the Bessel functions have the property that Jo (8 < 1) &~ 1,
Inz£0 (B < 1) 6&1 ) However, in the large-modulation regime, £, 2 1, the relative amplitudes of
the Bessel functions have a non-trivial dependence on [,,. For practical calculations, a good rule
of thumb is to sum over at least n = +205,,. The presence of so many interacting sidebands means
that the system is highly nonlinear in this regime, and the dynamics can be very complicated. It
is this nonlinearity that many quantum experiments seek to exploit [22]. However, this is difficult
because it requires the system to be both sideband resolved, and nonlinear at the ground-state
amplitude (A = z,;,). Thus, it requires that Sy = go/wm 2 1, which has not yet been achieved in
an optomechanical system. We will focus on the classical effects of these multiple sidebands on the

mechanical oscillator and the optical transmission in the experiment presented in Chapter 5.
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Chapter 2

Design and Fabrication of
Optomechanical Devices

In this chapter we will discuss the full life-cycle of making an optomechanical device. First we will
focus in detail on the process for the stoichiometric silicon nitride (SizNy4) devices used in Chapter 3
and 4. Then we will briefly discuss the (similar) design and fabrication process for the optomechan-
ical crystals used in Chapter 5. The primary design consideration for both of these systems is to
simultaneously maximize the coupling, g,,, while maintaining large optical and mechanical quality
factors. However, the differences in the material and in the desired mechanical frequency lead to

differences in the designs and methods.

2.1 Device Design: Silicon Nitride Beam Resonators

Material Si,N, (LPCVD)
Structure Glass Tensile Stress 900 MPa
Layer Thickness 420 nm Index (@ 1550nm) 2
Density 3100 kg/m? Electrical Resistivity >10" Q-m
Young's Modulus 290 GPa Thermal Conductivity 30 W/m/K
Hardness 35 GPa Specific Heat 0.7 J/g/K

Table 2.1: SisIN4 Properties.

In our research group we tend to try to answer the question of what can be achieved using
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B 4

Figure 2.1: Cleaved Optomechanical Device. (a) False-color SEM image where a SizN4 photonic
crystal consisting of two 1D photonic crystal cavities side-by-side (a ‘zipper’ cavity) supported on
thin tethers is shown in green with the undercut and cleaved silicon sitting below.

widely-available and standard fabrication methods by employing smart design and engineering. As
such, we use commercially grown material silicon nitride in many of our investigations. This material
is used as an advanced ceramic because of its strength and high-heat handling capability in many
industrial applications [23] such as bearings [24], cutting tools [25], and rocket nozzles [26]. Its
stability, low-friction, and bio-compatibility even allow it to be used for joint-replacements [27, 28].
However, for its use as an optomechanical resonator we care primarily that it has high optical index
(n =2 @ 1550 nm), low optical loss [29], and large mechanical @y, at room temperature [30, 31]. In
Table 2.1 we have collected some of the relevant properties of this material.

The silicon nitride that we use is stoichiometric, SigNy, and consists of a thin-layer, tg;y = 420 nm,
deposited by a process known as low-pressure chemical vapor deposition (LPCVD) onto a much
thicker silicon handle wafer, ts; = 0.5 mm, as shown schematically (but not to scale) in the first
panel of Fig. 2.9. This method of fabricating SizN, makes a glassy material with a large electronic
band-gap, ~ 5 eV which means that the material is transparent and low-loss over a wide wavelength
span from visible to telecom frequencies. This deposition technique is also important because it
leaves the film with an extremely large in-plane tensile (pulling) stress [32] of o = 0.8 — 1 GPa,
which, as we will discuss, is a critical component of the good mechanical quality factor of resonators
made from this material. Finally, it’s useful that it is deposited onto Silicon because this material is

readily available, and easy to selectively etch away to release our structures (as in Fig. 2.9), allowing
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them to freely move. Fig. 2.1 shows a false-color scanning electron microscope (SEM) image of a
finished device that has been cleaved in half and shows two side-by-side SizN, photonic crystals
supported on thin tethers (green overlay) extending off the broken edge of the silicon chip. In the

following sections we will discuss the design of such devices.

2.1.1 SizN,; Optics

In contrast to the cartoon sketched in Fig. 1.1 we do not trap light using standard bulk mirrors, but
rather confine it using engineered 1D photonic crystals. This allows us to trap light on-chip while
still allowing for devices with good optical quality, @}, = w,/k;. These structures rely on periodic
patterning of the dielectric constant to create band-gaps for light similar to those for electrons
traveling in an atomic crystal lattice. Our method of fabrication only allows for drilling straight
air-holes through our thin layer of material and thus the periodic patterning consists of regions of
ngr = 1 and ng;y = 2. In Fig. 2.2a we show a top-view SEM of one such photonic crystal, and
below it is the same photonic crystal with the simulated energy density of the first-order optical

mode that it confines.

a

Figure 2.2: ‘Zipper’ Photonic Crystal. (a) SEM image of SizN4 photonic crystal consisting of
two 1D cavities side-by-side (a ‘zipper’ cavity) as used in Chapter 3. (b) Same image as (a) with
the simulated energy density of the first-order optical mode overlaid where red corresponds to the
highest energy density and blue to the lowest. Because of the high concentration of energy in the
slot between the beams, the resonance frequency is strongly modified by motion of the gap between
the beams.

The method of trapping light in these structures can be understood by first considering an infinite
beam that has been periodically patterned with holes, as in the inset of Fig. 2.3a. In Fig. 2.3a we
show the bandstructure for this simple 1D crystal and note that at the band-edge there is a range
of wavelengths that cannot propagate in the structure. Thus, this pattern has a bandgap (BG)
for light. By placing two such crystals next to each other (Fig. 2.3b) it is possible to get a similar
(but typically smaller) bandgap between bands that have a different symmetry about the axis of
the beams (for a full discussion of optical symmetries see [33]). We are interested in the ‘bonded’
symmetry where the field is maximized in the gap, as in Fig. 2.3(iii), because the strong localization

of field within the gap means that the optical frequency of this band is more strongly modified by
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relative motion of the beams than for the band in (iv). We will go into the method of calculating
this coupling in more detail in Section 2.1.3.

Finally, armed with this zipper crystal, we make a localized optical resonance by perturbing the
lattice constant of the crystal in a central region. This change of the crystal parameters modifies
the frequency (wavelength) of light at the band-edge in this region such that it is different from the
surrounding unchanged crystal. If done correctly, the new wavelength lies inside the bandgap of the
outside periodic crystal and thus light in this region cannot propagate in the rest of the beam. It is
thus trapped between the ends, which act effectively as mirrors. The first few such trapped optical
modes of the fully-designed structure are shown in Fig. 2.3c.

Conceptually, this is the full process by which we design/imagineer our photonic crystals, but
in practice there are many parameters to vary that can effect the mode profile, optical quality
factor, and feasibility of fabrication. This is why we employ the COMSOL multiphysics simulation
environment to numerically solve for the resonant mode profiles and test out our photonic crystal
designs. It is from these simulations that we have obtained the fields shown in Fig. 2.2b and Fig. 2.3c.
We refer the reader to these theses from other members of Oskar Painter’s group as a reference
for performing such simulations: [34, 35]. After discussing the motivationg for the design of our
mechanical elements in Section 2.1.2 we will discuss how these simulated optical fields are used to
estimate the optomechnical coupling, ¢.,,, and briefly discuss the design of one particular photonic

crystal that was used in the feedback cooling experiment presented in Chapter 4.
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Figure 2.3: Photonic Crystals 101. This figure is adapted from the wonderful thesis of Dr. Matt
Eichenfield [34]. (a) Band structure for the 1D photonic crystal with rectangular holes as shown in
the inset, where black indicates silicon nitride and white indicates air holes. The band structure is
plotted for a given wavevector of light along the direction of the lattice, k|, in units of w/a, where, a,
is the periodicity of the lattice and a/\g is the normalized frequency of the the allowed optical modes
at each wavevector. The light cone is denoted by the shaded grey region, which is the area where
light can freely radiate away. Optical modes in this region are not well-confined to the photonic
crystal because in this region there exist an infinite number of free-space modes it can propagate
into. As denoted by the teal region, there is a band-gap (BG) region where light at this k-vector
and frequency cannot propagate within the structure. The two images below, (i) and (ii), show the
simulated optical energy density for the correspondingly-labeled bands in the plot above where the
outline of the photonic crystal is shown in white. (b) Band structure diagram for two 1D photonic
crystals separated by a small slot-gap, as shown in the inset, known as a ‘zipper’ photonic crystal.
Here the bands are colored with respect to their symmetry along the axis between the two beams.
(iii) The blue bands correspond to the electric field maximized in the center of the slot-gap, which is
known as the bonded symmetry. (iv) The red bands correspond to the higher-energy optical mode
solution where there is a zero-crossing of the field at the center of the gap, which is known as the
anti-bonded symmetry. (¢) An optical cavity to trap light is formed by slightly modifying the lattice
constant in some central region of the crystal. If this change in the lattice constant is sufficiently
smooth, it smoothly changes the wavelength A of the bonded optical mode from its original value
(solid blue line). This generates a potential well for light in this region and so there exist discrete
optical mode solutions at different wavelengths (dashed blue lines). At the bottom of this potential
well (shortest wavelength) is the Oth order optical mode. A simulation of the energy density mode-
profile is shown to the right. Similarly, we show the mode-profiles of the 1st and 2nd order optical
modes. Modification of the central region could also consist of changing the hole size and shape as
well.
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2.1.2 Si3N,; Mechanics

Stress: the pain and the promise

As indicated by the title of this section, the large in-plane stress of silicon nitride can be both useful
and frustrating. A tensile stress of 0.8 GPa means that the thin film is being isotropically pulled in
the X-Y plane as if it were a drum-head pulled taught across the silicon below. This corresponds
to an in-plane pressure of ~ 8,000 atmospheres on the materiall Therefore it is not too surprising
that at an only slightly higher stress of ~ 5-8 GPa, the material begins to spontaneously crack and
facture. If one is not careful, certain designs or fabrication methods can cause the stress to locally

exceed this fracture threshold. In Fig. 2.4 we show a small gallery of such stressful failures.

Figure 2.4: Stress-Fractured Silicon Nitride Devices. Various SEM images of devices broken
and cracked by poorly-managed stress in SigNy.

We can start to understand the mechanics of SizN4 by considering the Euler equation for the

frequency of a double-clamped rectangular beam:

T EI ocAL?
fm =573 p—A\/1+—Eh2, (2.1)

where L is the beam length, F is the Young’s modulus, I is the beam’s moment of inertia about the

direction of motion, p is the material’s density, A is the beam’s cross-sectional area, and o is the
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tensile (positive) or compressive (negative) stress. However, instead of dwelling on the details, we’ll
first consider the final term underneath the square root. For a rectangular beam made out of our

thin nitride layer (420 nm x 420 nm) and using the parameters in Table 2.1, we find

cAL?

73 =4.6x10°L?, (2.2)
™

which means that for L > 15 pum this term is greater than 1. Since the typical beam lengths we’ll be
considering for our devices are L > 50 um, we can consider this term to be always > 1. Dropping

the 1+ in Eq. (2.1) allows us to simplify the formula as

1 o
Jm = 2L\/;’ (2.3)

which can be recognized as the equation for the frequency of a string. Thus, our stress-dominated
beams can be thought of simply as taught vibrating strings. The fact that this simplification is valid
indicates that the beam’s stiffness, k, is dominated by the stress, and thus that the energy of the
beam’s motion, o %k(Am)2, is also dominated by the stress.

An example of the simple first-order motions of such string-like beams is shown in Fig. 2.5. It is
the in-plane differential motion between the two beams presented in Fig. 2.5b that has the highest
Jgoum and is thus the one of most interest. The thicker section in the center of these beams is where
the photonic crystal would be placed. For clarity, the tethers shown here are only ~ 20 pum, which is
shorter than typically used. The small pinning tether between the two beams near their connection
to the frame couples the motion of the two beams. Without it, the beams resonate independently
instead of being composed of common and differential pairs.

One of the first explanations of the improvements this stress has on the mechanical quality factor
of such a beam was laid out in the wonderfully-titled paper “Stress and Silicon Nitride: A Crack in
the Universal Dissipation of Glasses” [30]. In this work, they showed that despite being a glass, the
presence of stress caused the quality factor to be nearly 3 orders of magnitude larger than un-stressed
SigN4. This was in contrast to previous experimental and theoretical work showing that glasses
exhibit near-universal (large) mechanical losses [36, 37]. There is still debate in the literature about
the precise microscopic mechanism that limits the quality-factors in these stressed materials [38—41],
but there is now wide agreement that the stress is the origin of the improvement [31, 42].

This stress-enhancement can be analytically modeled by considering that the material has two
different quality factors. One is the quality factor corresponding to energy lost due to the beam
undergoing bending, Qpend, and the other is that due to the string undergoing elongation which

is related to the stress, Q),. Empirically, Qpenqa < @», which means that the loss due to Q. is
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Figure 2.5: Example Beam Motion. (a) Fundamental in-plane common motion of two beams. (b)
Fundamental in-plane differential motion. (¢) Fundamental out-of-plane differential motion. This is
the structure used in the experiment presented in Chapter 4.

negligible and so the effective quality factor of a beam is @, = E%ea“d Qbend, where Epeng is the

bending energy and E, is the stress (or flexural) energy of the beam. For a rectangular beam these

quantities can be calculated analytically and explicitly give [42]:

-1

B (n)® E w2 \/Ew
Qm = lT; (Z> + 5L @vend (2.4)

o L
~ EEQbenda (25)

where w is the beam width and n indicates the n-th harmonic mode of the beam. However, for a SigNy

string of width, w = 450 nm, the approximation made in the final step is valid for L > 6um x n2.

Which will always be satisfied since we will only be considering the fundamental string mode, n = 1,
of very long strings, L > 50 pm. Measuring several such beams, we have observed this very simple
relation of the @y, varying linearly with the length (Fig. 2.6). However, since there is not currently
a good microscopic theory for the origin (and thus magnitude) of Qpend, this must be determined
empirically (and may vary depending on material quality and growth). In our experiments we find

that Qpena = 14,000 in reasonable agreement with the Queng = 17,000 reported in Ref. [42].
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Figure 2.6: Mechanical Q vs. Device Length. Plot of the average measured mechanical quality
factor versus total device length for devices consisting of 36 um long photonic crystals supported on
either side by 200 nm wide tethers of varying length similar to those shown in Fig. 2.7 (blue dots).
The numbers next to each point show how many devices were measured at each length and error bars
show the standard deviation of the @, measurement. The best fit linear slope is Qy,  2,565/um
(red curve).

Thus, guided by this insight, all of the photonic crystal structures we fabricate are suspended on
long, thin strings, as shown in Fig. 2.7. As can be seen in Fig. 2.7c-d, the extreme aspect ratios of

these devices make it difficult to image them in a single field of view.

2.1.3 SisN; Optomechanical Coupling — g,,,

In silicon nitride devices, the primary coupling between the beam motion (Fig. 2.5) is due to the
index contrast between moving SizN4 and air. For small displacements of the beams, perturbation
theory can be used to calculate the exact optical frequency shift that a given vector displacement
field (Q(r)) will have on a given optical field (E(r)) [43]. It essentially amounts to calculating the
change in the stored energy of the optical resonance mode due to forcing components of the optical
field that lie at the interface of the moving material to be moved into or out of the beam. This
is called the moving boundary contribution to the coupling, g, \p- It can be calculated explictly
with this formula that looks intimidating, but is easily implemented in COMSOL for simulation of
our coupling rates [18, 43, 44]:

we [ (Q(r) - m) (Ae|Eyj|* — A(e™!)|Dy[?*)dA

Jomms = _? max (Q) fe(r) |E(T)|2d3T y (26)

where the index contrast at the boundary is given by Ae = €g;, N, —€air, and similarly A(e™!) = €s_iiN4 — ea_ii,
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Figure 2.7: Tethered Photonic Crystals. (a) Photonic crystals suspended on 20 pm tethers
of width ~ 150 nm. (b) Photonic crystals suspended on 40 pm tethers of width ~ 150 nm. (c)
Photonic crystals suspended on 500 pum tethers of width ~ 150 nm. (d) Photonic crystals suspended
on 120 pum tethers of width ~ 150 nm.

n is the surface normal vector of unit length, the electric displacement vector is given by D, and the
|| and L marks indicate values that are parallel or perpendicular to the boundary surface, respec-
tively. The integral in the numerator is over the surface area of all the the moving boundaries and
represents the energy change in the field due to the motion, and the denominator values provide the
suitable normalizations.
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Figure 2.8: Zipper Mark IT Design. The optical energy density for the first-order bonded optical
mode of the designed photonic crystal where the regions of high (low) field are indicated by red
(blue). The outline of the SigN4 material is shown in white. The calculated g,,, for this device is
Jon /27 = 64 GHz/nm for a gap of 100 nm between the two beams.

For the systems considered here where the mechanical displacement profile, @, has variation
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over a scale much larger than the ~ 5 pum extent of the confined optical mode, it’s typically a good
approximation to replace the full vector form of @ with a suitable unit-vector norm displacement
such as Q = 1z. This approximation amounts to saying that every boundary is moving in the
same direction and by the same amount. This allows us to estimate the g,,, of a designed optical
cavity without also explicitly simulating the mechanical displacement vector in COMSOL. This
approximation is accurate to the percent level for the very-long fundamental mechanical modes of
the beams shown in Fig. 2.7c-d. This is not valid for calculating the coupling of smaller localized
mechanical modes such as those discussed in Section 2.3.2, where the full COMSOL simulated
solution, @, must be used.

To give an insight into the methods for maximizing this coupling, we will discuss briefly the
motivations and method behind our design of the photonic crystal used in the feedback cooling ex-
periment of Section 4. Previous designs for the photonic crystals had required that the two photonic
crystal beams that compose the zipper be identical, and that the holes lie always in the center of
each respective beam. We sought to determine if the g, could be enhanced by allowing the beams
to have more complicated hole placement profiles. As such, we modified the algorithmic optimiza-
tion code developed in the group by Jasper Chan [35] to design a new zipper cavity. The algorithm
uses Matlab’s native nonlinear maximization functions to evaluate different photonic crystal designs
and determine which is the best according to the fit function F' = 9(2)M - min (Q,,2x10%). This fit
function was chosen because the goal is to maximize the coupling strength, but to guarantee that
the optical  is maintained in the process. We applied a ceiling of Q, = 2x 10° on the optical
quality factor, because this is larger than the highest ever achieved in our SigN4 photonic crystal
devices, max(Q,si;N,) ~ 0.3x10%. If the optical quality component of the fit function is allowed
to be un-bounded, the algorithm tends to get stuck finding solutions with only moderate g,,, but
unreasonably large optical quality of Q, ~ 50 x 106,

Employing this code, we found that more optical field could be concentrated toward the center
of the beams by displacing the holes towards the outer edge and by making the holes more elliptical
along the axis of the beams. Intuitively this makes sense because the optical field has lower energy
when it lies inside the dielectric material, and higher energy when it is forced into the air. Thus,
the optical field ‘likes’ to live inside the beam to minimize its total energy cost, and thus it tends to
avoid the holes. So, as the holes move outward, the field moves inward to escape. The final designed
photonic crystal and the simulated optical field for a gap of 100 nm between the two beams is shown
in Fig. 2.8 and has a simulated g,,/27m = 64 GHz/nm, which is larger than that of a simpler zipper
without any lateral modification of the holes, which yields only g¢,,,/27 ~ 50 GHz/nm. This is
not the design that we found to maximize the fit function (which had a larger coupling strength,
Jon /27 = 83 GHz/nm), because that design was unsuitable due to the way the stresses relaxed in

that structure caused the beams to bow away from each other, which made it impossible to achieve
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gaps between the two beams of less than ~ 200 nm.

2.2 Si3N; Device Fabrication

(g

420nm Si;N, on both sides of Spin electron beam resist onto Positive (desired) mask, and its
500 um Si sample complementary negative
(written) mask

Expose resist using 100kV Develop and rinse resist

X Transfer mask into Si,N, layer
electron beam writer

using plasma ion etcher

Clean resist off using piranha Undercut silicon layer in 30% Use critical point dryer to
potassium hydroxide solution safely bring sample to air
(KOH)

Figure 2.9: Fabrication Process for SisIN; Optomechanical Resonators. See text for details.
(f) Two colors of impinging atoms represent different molecule species present in the SFg/CyFg
plasma. In (h),(i) one of the photonic crystal beams has been removed to more easily see the
undercut trench below released devices.

Here we are going to cover the relatively simple fabrication process for our silicon nitride devices.
We describe the fabrication as simple not because it is easy, but because the devices are single-layer

and, with a little elbow grease, can be fabricated in a single day. This is in stark contrast to the mul-
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tilayer and (at least) week-long turn-around times required to fabricate chip-scale ‘optomechanical’
devices, which utilize microwave instead of optical light [45]. A simplified version of our fabrication
process is shown in Fig. 2.9, and this section will consist of providing details behind each step of
this process. Two great references for further details on our methods of fabrication can be found in

the theses of Dr. Jeff Hill [2] and Dr. Richard Norte [46].

2.2.1 Pattern Writing

a
Action Name | Composition Cost | Vol/use |Cost/use
EB resist ZEP-520A Proprietary 25,0008/L | 0.6mL 15$
Developer ZED-N50 n-Amyl acetate 88S/L 40 mL 3.5%/L
Rinse zwp-p | Methvlisobutyle -} 5500 | aomL | aesi
ketone
Remover ZDMAC | Dimethylacetamide 883%/L 40 mL 3.55/L
b 6000 | <
E
< 5000 » —e ZEPS20A | 945 [ ] il
Z 4000 \ + ZEPS520A-7 g gg = =
w0 =1 b e i B e, )
) =30
£ 3000 \\\ 5%
= 2000 — z ig | j
e | | | |
1000 g > | J
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0 Prebake Temperature (°C)
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Figure 2.10: Electron Beam Resist Properties. (a) Table of the ZEON chemical family used to
electron beam pattern our chips before etching and their approximate costs. Note that the sensitive
resist is extremely expensive but this is offset by the typically small volume per use (i.e., what is
needed to cover a lem x lem chip). (b) Approximate resulting thickness of ZEP520 films after 120 s
spins at given speeds. (c) Plot showing electron dose needed to fully expose (clear) the ZEP520A
resist as a function of bake temperature, indicating that precise pre-bake temperature is not critical.
Note that the total magnitude of the dose we use differs greatly from that reported in this chart
because of the differences between the EBL tool used to take this data compared to the machine we
use. All data taken from Ref. [47], except the pricing information comes from a quote from ZEON
received on 11/14/2013.

After the design of the optomechanical device is finished, the desired pattern must be etched into
the layer of silicon nitride. Due to the small scales (= 100 nm) of our Si3N, optomechanical devices,
we use Electron Beam Lithography (EBL) to define our structures, which is able to expose patterns
with ~ 5 nm resolution and 2.5 nm precision. In this process a stream of electrons is accelerated

towards a sample using high voltages (100 kV) and the beam is steered to write the desired pattern
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into an electron-sensitive resist in an “Etch-a-Sketch” raster pattern. Limitations of the resist layer’s
sensitivity and the subsequent processing steps cause the effective smallest-feature-size to be slightly
larger at = 30 nm. Although state-of-the-art optical lithography techniques can create features on
the order of 10-20nm, this requires very expensive and complicated masking technologies typically
only available in wafer-scale commercial fabrication facilities. At CalTech, the optical lithography
equipment we have access to is limited to feature sizes of 2 800 nm. The key reason that (EBL)
is able to directly write (i.e., without using any mask) such small structures is that the wavelength
of the UV light used for lithography is about 365 nm, but the Compton wavelength for an electron
particle is negligible at 2.4 pm.

To prepare our sample for writing, we first spin-on a sensitive electron-beam resist (Fig. 2.9b).
In the group we use the resist ZEP520A (see Fig. 2.10), which is useful for its high sensitivity to
exposure (i.e., it requires low doses of electrons, = 175 uC/ cn12)7 which significantly reduces the time
it takes to write a chip. Even more importantly, it is very good at withstanding the dry-etching
process used to transfer our mask into the SigNy. To create a thin and uniform layer of this resist,
the sample chip (1 cm x 1 c¢m) is secured onto the vacuum-chuck of a spinner (Fig. 2.11) and then
3-4 small drops of the resist are deposited onto the surface of the chip. The spinner then ramps up
to a high rotation speed for 60 s. As plotted in Fig. 2.10b, the resulting layer thickness is a function
of the rotation speed used. The silicon nitride is very tough to etch and so we use spin rates of
2,000 rpm to create a relatively thick layer, which due to differences in our setup from the data
provided in Fig. 2.10b yields a resist thickness of ~ 400 nm. After spinning, the resist is baked on
a hot-plate at 180° C for 4 min to harden the resist and bake off any excess solvent dissolved in the
polymer.

The next step is to expose this chip in the EBL tool (which, at CalTech, is a Leica EBPG 5000+ ).
This machine doses the resist layer in the desired pattern (see Fig. 2.9d). The ZEP520a is a positive
resist, which means that the exposed area is the material that gets removed upon application of the
developer, and so we write the negative of the desired mask (Fig. 2.9¢). It usually does a very good
job of faithfully reproducing the desired pattern, but occasionally has difficulties, typically due to
failures of its driving electronics. A surprisingly-heartfelt error pattern is shown in Fig. 2.12.

After exposure, the mask is developed by submerging it in ZED-N50 for 2.5 min and then rinsing
the chip in ZMD-D for 30 s. The chip is then blow-dried using clean, filtered nitrogen. After this
step, the resist has taken on the physical shape that we wish to transfer in to the SigN,4 layer. This

is shown schematically in Fig. 2.9e and an actual image is shown in Fig. 2.13.

2.2.2 Etching

We then use dry-etching to transfer the resist pattern into the underlying silicon nitride layer. To

do this, we use inductively-coupled plasma reactive ion etching (ICP-RIE) whereby a gas of atoms
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Figure 2.11: Resist Deposition and Spinning. Image of device used to spin resist layer on our
chips (‘spinner’) showing someone in the act of pipetting small droplets of ZEP520A onto a lcm x
lem chip.

Figure 2.12: Electron Lithography Failure. An example of what occurs when the driving elec-
tronics of the electron beam gun fail. Although the pattern file contained circles, what has instead
been drawn are inexplicably modified shapes.
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Figure 2.13: Developed Resist. (a) Image showing electron-beam resist after exposure and de-
velopment sitting atop the SigsN4-on-Si wafer. The pattern written consists of a zipper cavity with
two photonic crystals separated by a small gap. Note that the holes in the resist are wider at the
bottom than the top (dashed black lines are a guide to the eye). In the etching step this can cause
the holes in the SigNy to have tilted side-walls as well. The chip has been cleaved in half to allow for
this on-edge image to be taken. (b) This cleaving process can damage the relatively soft polymer of
the resist as shown here.

is excited into a plasma above the chip and then this plasma is accelerated vertically downward into
the chip to etch straight down into it (Fig. 2.9f). The gas chemistry we use consists of a ratio of
SFg and C4Fg. The SFg is the dominant material etchant because the gas dissociates into SF, and
F,. The heavy SF, ions impact the material and vertically mill downwards, while the lighter F,
ions chemically etch the material in an isotropic fashion. The ideal etch would be perfectly vertical,
and so to prevent the chemical etching from the free fluorine atoms, the C4Fg is added. This gas
dissociates primarily into CFy and C, species. Instead of contributing to the etching process, the
CF ions tend to deposit on the surface of the material (and everywhere else) and form a cross-linked
Teflon-like polymer that inhibits the chemical etching of fluorine. However, the heavy SF, ions can
punch through this forming layer, and therefore the etch is very vertical. This is known as a pseudo
Bosch etch [48-51], because the better-known Bosch etching process uses these same gases, but
alternates between SFg and then C4Fg instead of using them simultaneously in a continuous fashion.
A series of devices with a range of etching quality are shown in Fig. 2.14.

The primary issue with this etch is that it etches the ZEP mask at approximately the same rate
as it etches the SigN, below it. This means that etching our 400 nm thick nitride layer requires a
400 nm thick layer of resist, and for such a thick layer of resist, it is difficult to expose in a way
that leave vertical sidewalls in the resist (as in Fig. 2.13a). Also, even when using such a thick
masking layer, there is a relatively narrow window in the (large) parameter space for the etching,
over which we are able to cut all the way through the SigN, without also eroding all of the mask

away (Fig. 2.14a-e). This is because the high strength of the SizN4 makes it difficult to etch. The
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Figure 2.14: Etching Guide. (a) Image showing a significantly under-etched sample. The ideal
etched pattern of steps is shown in green in the bottom left inset. There is a significant layer of
resist left on top of the nitride layer, but there is still a lot of material left in the gaps between
the steps. (b) A sample slightly more etched than that in (a), but still very under-etched. (c)
Image showing a sample with very small bits of Si3Ny left in between the steps. (d) A sample that
is etched reasonably well showing nearly-straight sidewalls in the SiN layer. The remaining debris
between the beams is unevenly etched Silicon. The very thin remaining layer of resist is highlighted
in red. This shows that we don’t have good selectivity of our etch between the device layer and the
resist layer. (e) Different pattern than in (a-d), but showing clearly an over-etched sample. Note
the rounding of the top corners of the nitride layer (black dashed line is a guide to the eye) and
the unnecessarily-deep etching of the silicon layer underneath. The resist layer has been completely
etched away at this point.

silicon layer underneath is much softer and etches at a significantly faster rate, requiring significantly
thinner resist layers (~ 200 nm, see Section 2.4). There exist other, possibly better, etch chemistries

for silicon nitride (such as CHF3 and Oz) but we have not attempted to use them.
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2.2.3 Wet Chemistry and Final Release

The first step after finishing an etch is to image it in the SEM to determine the quality of the
etch and decide whether the parameters need adjusting. Then we clean off most of the remaining
resist layer in a strong solvent such as trichloroethylene (TCE). To remove the last vestiges of the
resist and anything else on the chip we place the chip in a very strong cleaning solution known
as piranha (Fig. 2.9g). This solution consist of a 3:1 mixture of sulfuric acid (H2SO4) and 30%
hydrogen peroxide solution (H3O2). Either substance by itself is dangerous, and combining them
yields a rapid exothermic reaction that can bubble violently and even explode if mixed incorrectly.
Contrary to most other solutions, when making piranha, the acid should be poured first and then
the hydrogen peroxide is later added. The benefit to this danger is that it is a very strong oxidizer
and in 10 minutes is able to remove nearly all organic material, even very stable elemental carbon
allotropes (i.e., soot). The piranha clean is followed by several rinses in filtered de-ionized water
(DI) to ensure there is no lingering acidity.

After cleaning, we release the SigN, from the underlying Si layer by dipping the chip into a
solution of 30% potassium-hydroxide (KOH) heated to ~ 70° for 10 min (Fig. 2.9h). At this
temperature, the KOH removes silicon at a rate of nearly 1 gm/min while etching the Si3sNy at an
imperceptibly slow rate. It should be noted that the KOH etch proceeds quickly only along specific
crystal planes of silicon [52-54] with a selectivity approaching 100:1 for the (100) direction compared
to the (110) direction. The resulting undercut etch profile resembles a ‘V’ or inverted pyramid shape
with the walls inclined at 54.74° from the plane of the chip, as shown in Fig. 2.9h-i. We don’t take
advantage of this fact in the experiments presented here, but our colleagues have used it to design
self-aligned couplers for getting light efficiently onto and off of the chip [55], and this coupling scheme
could prove to be an enabling technology for more practical versions of the optical accelerometer
presented in Chapter 3.

The final wet chemical step is to again piranha clean the sample to remove any debris present

after the KOH undercut.

2.2.4 Critical Point Drying

Unlike in the previous steps, now that the devices have been released and are able to flexibly move,
we cannot simply blow-dry the sample in nitrogen. For our nanoscale devices, the capillary and
surface tension forces imparted to our devices from this drying action are very significant. If the
devices are dried in the presence of these forces, the narrow gaps between the two sides of the zipper
photonic crystal are pulled towards each other and result in the devices being permanently stuck
together by van der Waals forces. To avoid this we employ a critical point dryer (CPD), which

takes a fluid (usually COs) around its phase-diagram critical point through a mix of temperature
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Figure 2.15: Going Around the Critical Point. The phase diagram of CO5 showing schematically
the path taken by simply air-drying the sample (blue arrow) and the path taken by the CPD around
the critical point (green arrow).

control and high-pressures. This works because, for a fluid past its critical point, there is no longer
a meaningful difference between the liquid and gaseous phases. It is at the interface between liquid

and gas where the surface tension forces are present, so such a path through the supercritical region

avoids these forces.
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Figure 2.16: SEM Excitation of Mechanical Motion. (a) SEM image of the top of the ‘zipper’
photonic crystal where the left side is attached to a low-frequency (fm = 27 kHz) high-quality
Qm ~ 1x10° mechanical oscillator. Blurring and aliasing of image on the left hand side indicates
rapid motion of that beam induced by the scanning electron beam. Scanning pattern of electrons is
shown in bottom left inset. (b) Same as (a) but of the bottom section of the photonic crystal again
displaying motion. Note that rotating the photonic crystal by ~ 90 degrees so that the photonic
crystal axis is along the scanning direction of the electron beam can prevent this problem.
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The sample is first removed from the KOH etchant into several DI water rinses, which must be
done carefully and quickly to avoid the samples drying while in between the liquid baths. Then
the sample is immersed in filtered isopropyl alcohol (IPA) and transferred into the CPD chamber
containing filtered TPA. The machine cools down, then slowly displaces the IPA with liquid COa,
and begins the path through the supercritical phase region, as illustrated in Fig. 2.15.

One of the most important aspects of this process is avoiding any contamination of the CPD
chamber. If the sample gets dirty during this drying step one cannot clean the chip without again
introducing it to a liquid piranha solution (or strong solvent), which then requires using the possibly
contaminated CPD chamber. The most common source of dirt at this stage is due to residual
chemicals in the chamber other than COs, such as small volumes of piranha trapped in parts of
whatever chip-holder one is using. Also, if the purging of IPA does not proceed slowly enough there
will still be some in the chamber when the cycle begins, and due to its much higher critical point
(= 235° C, 53 atm) the IPA will just pass directly from liquid to gas. However, if operated properly
and with care, one rarely encounters problems at this stage.

Finally, one should always check the finished device in both the optical microscope and the SEM
to ensure there is no unwanted dirt/debris or other issues with the finished chip. However, one
must be careful when doing this, because the fabricated devices can be very fragile. One unexpected
problem we encountered when fabricating our low-frequency optomechanical accelerometer devices
(Chapter 3) was that we would occasionally collapse the two sides of the photonic crystal together.
We found that the raster-scanning of the SEM’s electrons imparted a small lateral force to the
insulating SigNy layer, which would tend to ring-up the mechanical element to very large oscillation
amplitudes until, often, it slammed into and then stuck to the other half of the photonic crystal.
In Fig. 2.16 we show a couple images taken while the SEM was inducing oscillations in one such
released mechanical resonator.

Now armed with a finished set of devices, the next step is to determine the optical and mechanical

characteristics of the fabricated devices as laid out in the experiments of Chapter 3 and Chapter 4.

2.3 Device Design: Silicon Optomechanical Crystals

In this section we will go through all of the steps required to design and fabricate a silicon optome-
chanical crystal. However, having just covered these topics in detail in the context of SizNy4, we
will focus primarily on the differences between the two systems. For a full account of the process
we recommend reading the corresponding sections for SizNy as well (also, the thesis of Dr. Matt
Eichenfield [34] and Dr. Jasper Chan [35]).

Silicon is an exciting optomechanical material because it is one of the most commonly-used

materials in standard electronics and MEMSs applications, so it is compatible with many existing
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Material Si (undoped)
I (interpg:\):ttrzlted fcc)
Layer Thickness 220 nm Index (@ 1550nm) 34
Density 2330 kg/m? Electrical Resistivity 1400 Q-m
Young's Modulus 160 GPa Thermal Conductivity 149 W/m/K
Hardness 10 GPa Specific Heat 0.7 J/g/K

Table 2.2: Si Properties.

processes for real-world devices. It is also better than SisNy in that it has a much higher optical index,
ng; = 3.4, is a crystalline material with high thermal conductivity, and as discussed in Section 2.3.3,
silicon has a second additional contribution to the coupling strength (g,,,). The main drawback of
silicon is that its room-temperature mechanical quality factors are typically low (Q., < 5,000), but
because it is a crystalline material, as it gets cooled down to cryogenic temperatures, these quality
factors improve significantly to Q,, > 1x10°> — 10°. In contrast, silicon nitride improves by only a
factor of 2 while going from 295 K to 20 K. This difference leads us to typically employ silicon in
sufficiently scientifically valuable experiments where the use of expensive cryogenic equipment can
be justified [11, 17, 56, 57] (Chapter 5), but we choose SizN4 for more practical applications [55, 58]
(Chapters 3 and 4).

Finally, because of the higher index and secondary coupling mechanism present in Si, this ma-
terial is much better for doing experiments with high-frequency, f, 2 1 GHz, side-band resolved
optomechanical systems. Using SigNy, it is simply extremely difficult to get the large g,,,’s that
these challenging experiments require. The devices in this section are referred to as ‘optomechanical
crystals’ (OMC) because in the same way that the modified periodicity of the holes traps optical
waves of certain frequencies of ~ 200 THz, it simultaneously traps mechanical waves of frequencies

in the GHz band.

2.3.1 Silicon: Optics

At the telecom wavelengths that we use (A &= 1550 nm), silicon has very low loss and photonic
crystals have been realized with Q, > 1x10° [59, 60]. These large quality factors can be achieved in

part because silicon’s higher index allows for more optical field to be localized in the material, and
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also this higher index leads to larger and more robust optical bandgaps (as in Fig. 2.3). The most
significant drawback of silicon as an optical material originates from its status as a semiconductor
with a small electronic bandgap of 1.1 eV (compared to that of SisN4 at 5 eV). A photon at
1550 nm (= 0.8 V) does not have enough energy to excite free carriers across this bandgap, but the
small mode-volumes of our photonic crystals lead to non-negligible two-photon absorption processes
capable of delivering enough energy (= 1.6 eV) to span this bandgap and excite free electrons (and
holes) in the material. This process can cause the photonic crystal to heat up and can degrade both

the optical and mechanical quality factors [11].

a 1 um

unit cell 0"
N

Figure 2.17: Silicon OMC. (a) SEM image of the central cavity region of a silicon optomechanical
crystal similar to that used in Chapter 5. (b) Chart of the change in the lattice constant (a, blue), hole
height (red, hy), and hole width (green, hy), in units of the nominal lattice constant in the periodic
mirror region, a___. ... Unit cell figure on the right demonstrates what each parameter corresponds
to in the crystal. (c) Simulated normalized electric field component, Ey, of the fundamental optical
mode. (d) Simulated normalized motion of the fundamental mechanical mode (displacement greatly
exaggerated). (e) Density color plot of the moving boundary component of the optomechanical
coupling g, iz corresponding to the integrand of Eq. (2.6). (e) Density color plot of the photo-
elastic component of the optomechanical coupling g, p corresponding to the integrand of Eq. (2.7).
(g) SEM showing the entire device and surrounding phonon radiation shield (green overlay). Figure
adapted from Ref. [61].

Design of silicon photonic crystals follows the same principles of band-gap engineering and small
modulations of a periodic structure as described previously (Fig. 2.3). In Fig. 2.17 we show a single
1D photonic crystal that is designed for coupling to a colocalized mechanical mode [61]. This op-
tomechanical crystal was designed in our group using an algorithmic optimization process developed

by Dr. Jasper Chan, and this was the inspiration for re-designing the zipper photonic crystal as
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described in Section 2.1.3. Realizations of this photonic crystal in our group have demonstrated
Qo > 1x108, but the most interesting components of this design are the mechanical and optome-

chanical properties.

2.3.2 Silicon: Mechanics

As indicated by the ‘breathing’ motion shown in Fig. 2.17d, the mechanical modes of interest that
we are going to focus on are very different from the whole-beam modes of Fig. 2.5. This mechanical
mode exists because it is trapped by the phononic crystal created by the same periodicity of the
holes. These mechanical modes are very useful because their high-frequencies allow us to enter the
regime of sideband resolved optomechanics where wy, > /2 (see Section 1.3). Secondly, by using the
same crystal to trap both fields, they naturally tend to have large overlap, and thus large coupling to
each other. The mechanical design principles behind this structure are laid out clearly in Ref. [61].

One significant difference of these mechanical modes is that their wavelengths are so small (=
2 pum) that it is feasible to prevent emission of energy into the bulk substrate using a ‘radiation shield’
as shown in Fig. 2.17g (green overlay). The unit cell of this cross structure is shown in the bottom
right inset. The series of small bridges connecting large masses leads to a structure that has a very
large band-gap (Af,. ~ 800 MHz) and so mechanical waves emitted from the center of the beam
are unable to propagate in this shield, and are thus trapped in the beam. At room-temperature the
quality factors of these high-frequency modes are limited by thermo-elastic damping (TED) effects
and so the shield has little effect. However, as the structure is cooled down to cryogenic temperatures
of <100 K the quality factor begins to be limited instead by radiation into the bulk, and here the

phononic shield is necessary to achieve Qy, =~ 600,000 as measured in these devices [35].

2.3.3 Silicon: Optomechanical Coupling

The optomechanical coupling in silicon crystals is composed primarily of a moving boundaries com-
ponent (goy p) and a component due to the photo-elastic effect (g, p). Due to its higher optical
index, the moving boundaries component, g, s, tends to be larger for a given moving face element
than for that in SigN4. However, the colocalized nature of the optical and mechanical modes often
causes there to be just as many faces moving towards regions of higher electric field density (posi-
tive contribution to g, \;5) as there are faces moving towards lower electric field density (negative
contribution to g,y ), as shown in both the positive and negative components in Fig. 2.17f. When
integrated over the entire surface of the beam, these effects tend to cancel each other out, and the
Jomme COmponent can be smaller than expected.

Instead, the dominant optomechanical coupling in these devices is the photo-elastic component

whereby a local strain of the material causes a change in the material’s index. It can be calculated
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using first-order perturbation theory as [35]

Wo <E|36‘E>
= ——__ & 7 2'
Yom,pE D) fE-DdV’ (2.7)

where « is a generalized coordinate for the amplitude of the mechanical deformation vector, Q.
The form of the photo-elastic contribution can be quite complicated, but for an isotropic medium
with a given index n, it can be written as g—; = —eon4pijklskl7 where p is the material’s rank-four
photo-elastic tensor and S is the strain tensor (which is determined along with the simulation of
the mechanical mode, Q). The normalized contribution of this component to the g,,, is shown in
Fig. 2.17f, where it should be noted that it has the same sign nearly everywhere (positive, red). The
reason we do not need to consider this coupling in Si3Ny is the n* dependence of this term means
that we would expect this effect to be much smaller (the components of p;;x; are smaller as well).
The device presented here has g /27 = —33 GHz/nm and g,,; 1 /27 = +306 GHz/nm. In
practice it is extremely difficult to design a structure where these two components add together with
the same sign instead of subtracting (and thus lowering the overall g,,). The measured coupling
in this device is actually larger than expected, g, /27 = 354 GHz/nm, which we attribute to

imprecision in our knowledge of silicon’s photo-elastic tensor values at A = 1550 nm.

2.4 Silicon: Device Fabrication

The creation of our silicon optomechanical crystals is laid out schematically in Fig. 2.18 and explained

in the following sections.

2.4.1 Pattern Writing

We first spin-on electron beam resist to evenly cover the 220 nm silicon top layer of the chip
(Fig. 2.18b). The silicon layer is nearly half as thick as our SizNy layer because the higher index of
Si requires a correspondingly thinner photonic crystal to achieve the same resonant wavelength (all
else being equal). Due to this fact, we spin-on resist at a much faster 5,000 rpm rate, which yields
a ZEP520A layer of approximately 200 nm. We then bake it at 180° C to harden the resist.

After the subsequent electron beam exposure (Fig. 2.18d) we develop and rinse the resist again

in ZED-N50 and ZMD-D respectively (Fig. 2.18¢) .

2.4.2 Etching

We use the same C4Fs/SFg gas chemistry to etch the silicon. The etching of silicon is significantly

easier than that of silicon nitride, because it etches at a rate ~ 4 times faster than the masking ZEP
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220nm Si layer on 2pum SiO, on Spin electron beam resist onto Positive (desired) mask, and
silicon handle wafer sample it's complementary negative
(written) mask

Expose resist using 100kV Develop and rinse resist
electron beam writer

Transfer mask into Silayer
using plasma ion etcher

Clean resist off using piranha Undercut SiO, layer in 48% Blow-dry sample
hydrofluoric acid

Figure 2.18: Fabrication Process for Si Optomechanical Crystals. See text for details. (f)
Two colors of impinging atoms represent different molecule species present in the SFg/C4Fg plasma.

layer. This means that, if done correctly, the sample can be fully etched through with very little
erosion of the mask (see Fig. 2.19). The thesis of Dr. Jeff Hill covers etch optimization processes for

both silicon and silicon nitride in fantastic detail [2].

2.4.3 Wet Chemistry and Final Release

It is in these final steps that the fabrication process really diverges from that of SigNy4. After removing
the resist layer in a piranha clean, we undercut the glass layer below using 48% hydrofluoric acid

(HF) for 90 sec (Fig. 2.18h). Unlike the KOH attacking silicon, this HF acid etch removes the SiOq
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Figure 2.19: Etched Silicon. SEM image of a silicon device after etching showing a thick resist
layer remaining.

layer in an isotropic fashion and so one must be careful not to leave the chip in too long, or else
the released structure will be weakly supported and may start to sag or buckle. A SEM image of
a completed device is shown in Fig. 2.20, where the lighter regions indicate where the HF acid has
etched away the underlying glass layer.

Note: HF is an extremely dangerous acid and should never be handled without the proper safety
precautions. Whereas a typical acid burns the skin on contact (alerting the user to a problem), HF
does no immediate damage to the user. Instead, it painlessly absorbs through the skin until reaching
the bones where the it begins to leach them of calcium. At this point, extreme pain begins, but
this can often be too late for useful medical intervention. Possible exposure should be reported and

treated immediately regardless of symptoms.

2.4.4 Surface Passivation

In principle, the device processing is finished after the previous stage and the sample could be
safely dried at this point. In practice, we find that stopping at this stage leads to devices with
significantly worse optical and mechanical properties [35, 62]. So, the group has developed a series
of quick cleans/etches that remove dangling (lossy) OH bonds at the surface of the material and
also smooths out small imperfections in the Si surface left by the ion etching step. This process
consists of performing a piranha clean (10 min) followed by a dip in dilute 20:1 HF:H5O acid for 60
s. This clean/etch combination is repeated 3 times, always ending with the dilute acid step. If a
chip is accidentally dirtied during use, this 3x process is effective at cleaning the sample and often

returns the chip to previous levels of performance. However, each application strips a small bit of Si
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Figure 2.20: Undercut Silicon Device. SEM image of a silicon device after the HF undercut.
Lighter region surrounding the device indicates area where the SiOs layer has been removed.

material from the edges, so this ‘magic cleaning’ cycle can only be performed 3-4 times (i.e., 10-12
piranha/HF dips) before the optical and mechanical properties shift too much for the device to be

useful.

2.4.5 Non-Critical Drying

The best part of making these 1D silicon optomechanical crystals is that they usually do not require
the use of a CPD. In this single-beam design there is no small gap that could be collapsed by forces
in the drying stage. Thus, after appropriate rinses in DI water (at least 2x 30 s), the sample can
simply be blow-dried using clean nitrogen (Fig. 2.18i). If the silicon chip does have small gaps or
flexible components it may still require a CPD step.

Finally, the chip is ready to be tested and characterized, as in the experiment in Chapter 5.



47

Chapter 3

Demonstration of an
Optomechanical Accelerometer [58]

3.1 Introduction

The monitoring of accelerations is essential for a variety of applications ranging from inertial naviga-
tion to consumer electronics [63] (see Fig. 3.1). The basic operation principle of an accelerometer is to
measure the displacement of a flexibly mounted test mass; sensitive displacement measurement can
be realised using capacitive [64, 65], piezo-electric [66], tunnel-current [67], or optical [68-71] meth-
ods (see Fig. 3.2). While optical readout provides superior displacement resolution and resilience to
electromagnetic interference, current optical accelerometers either do not allow for chip-scale integra-
tion [68] or require bulky test masses [69, 70]. Here we demonstrate an optomechanical accelerometer
that employs ultra-sensitive all-optical displacement read-out using a planar photonic crystal cav-
ity [72] monolithically integrated with a nano-tethered test mass of high mechanical Q-factor [31].
This device architecture allows for full on-chip integration and achieves a broadband acceleration
resolution of 10 ug/ VHz, a bandwidth greater than 20 kHz, and a dynamic range of 50 dB with
sub-milliwatt optical power requirements. Moreover, the nano-gram test masses used here allow
for optomechanical back-action [73] in the form of cooling [74] or the optical spring effect [75, 76],
setting the stage for a new class of motional sensors.

Due to the rapid development of silicon micro machining technology, MEMS accelerometers have
become exceedingly popular over the last two decades [63]. Evolving from airbag deployment sensors
in automobiles to tilt-sensors in cameras and consumer electronics products, they can now be found
in a large variety of technological applications with very diverse requirements of their performance
metrics. While sensors for inertial navigation systems require low noise levels and superior bias sta-
bility [77], large bandwidth is crucial for sensors in acoustics and vibrometry applications. However,
there is a fundamental tradeoff between noise performance and bandwidth which can be understood

from the basic operation principle of an accelerometer, illustrated in Fig. 3.3a. When subjected
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to an acceleration a(w) at frequency w, a mechanically compliant test mass experiences a displace-
ment z(w) = x(w)a(w) proportional to the mechanical susceptibility x ' (w) = wp, — w?® +i%5™.
Here, wy, = 27 fn, = \/k/Teﬂr is the (angular) resonance frequency of the oscillator and @, is its
mechanical Q-factor (see the plot of |x(w)| in Fig. 3.3b for @, = 10). Usually, accelerometers are
operated below their fundamental resonance frequency wy,, where x(w) &~ 1/w?2, exhibits an almost
flat frequency response. This naturally leads to a tradeoff between resolution and bandwidth, since
the large resonance frequency required for high-speed operation results in vanishingly small displace-
ments. As a result, the performance of the displacement sensor constitutes a central figure of merit

of an accelerometer. For example, resolving an acceleration of 1 pg (where g = 9.81 m/s?) with an

oscillator at f;,, = 10 kHz requires a displacement resolution of 2.5 fm/+/Hz.
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Figure 3.1: Accelerometer Application Ranges. Re-printed from Ref. [68].

In a cavity optomechanical system, a mechanically compliant electromagnetic cavity is used to
resonantly-enhance read-out of mechanical motion [79]. Such systems have enabled motion detection
measurements with an imprecision at or below the standard quantum limit (SQL) [80-82], corre-
sponding to the position uncertainty in the quantum ground-state of the mechanical object. Clever
quantum back-action evading techniques [83] aside, only for an ideal cavity system (no parasitic
losses) can the actual displacement sensitivity reach the SQL due to fluctuating radiation pressure
forces arising from shot noise of the probe light [6]. The average radiation pressure force, on the oth-
erhand, can be quite large in micro- and nano-scale optomechanical devices, and offers the unique

capability to control the sensor bandwidth via the optical spring effect [75, 76] and the sensor’s
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Figure 3.2: Common Sensor Resolutions. Plot of several accelerometer’s displacement resolution
density versus operation bandwidth, adapted from Ref. [78]. The red-star point corresponds to the
resolution demonstrated with one of our optomechanical accelerometers, similar to that presented
in this chapter. For a scale reference we have indicated the charge radius of a proton ~ 0.8 fm.

effective temperature via passive damping [73] or feedback cold-damping [74, 84].

In this work, we utilize an integrated silicon-nitride (SiN) zipper photonic crystal optome-
chanical cavity [72] (see Section 2.1.1) to provide shot-noise-limited read-out of mechanical mo-
tion with imprecision near the SQL, enabling high-bandwidth and high-resolution acceleration
sensing. The resolution of an accelerometer can be quantified by a noise-equivalent acceleration,

NEA = /a? + a3, + a2,y in units of g/v/Hz. The first term in the NEA is due to thermal Brow-

nian motion of the test mass [85](atn, Section 3.1.1) while the remaining two terms arise from the
aforementioned displacement readout noise (aqet, Section 3.1.2) and added noise (back-action) onto

the test mass due to the act of measurement (a,qq, Section 3.1.3).

3.1.1 Noise from thermal Brownian motion (ay,)

In contact with a heat-bath at room temperature, the test-mass oscillator is subjected to thermal

Brownian motion. From the equipartition theorem, the root-mean-square displacement of a harmonic

[kgT
s = —. 1
Lrms A (3 )

oscillator is given by
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If we assume the acceleration-noise exerted by the bath to be white, i.e., frequency-independent, its

power-spectral density S has to obey
> 2
2 h
s = [ @ S (32)
0
such that thermal test-mass motion corresponds to an NEA of

4kBTUJm 4kBT’y
=/Sth =/ =4/ . 3.3
Qth aa mefom Meft ( )

In the device presented in this work, we have wy, = 27 x 27.5 kHz, meg = 1071 kg, Qu = 1.4 x 10,
T =295 K, and therefore ay, = 1.4 ug/vHz.

Driving the harmonic oscillator with susceptibility x(w), this NEA translates into frequency-

dependent displacement noise according to

 4kpTwn, 1
_ 5
MefOm (2 — ) + ()

Sth (w) (3.4)

m

Thus we see that fundamental to minimizing the NEA is a reduction in the intrinsic thermal
noise, ayn, which according to equation (3.3) requires one to maximize the mass-Q) product at a
given wy,. In most commercial accelerometers, the Q-factor is relatively low, which demands large
test masses for high resolution. In contrast, in the zipper cavity devices presented here, we use nano-
tether suspension of a nano-gram test mass to yield high intrinsic mechanical Q-factors (1 —2 x 10°),
and strong thermo-optomechanical back-action to damp and cool the thermal motion of the test

mass (Section 3.3.2.1).

3.1.2 Detector noise (aqet)

The electronic detector noise is usually quantified by its noise-equivalent-power (NEP), which for the
Newport 2117 detector and the transimpedance gain setting we use is on the order of 2.8 pW /v/Hz.

The optical noise power-spect