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Abstract

Light has long been used for the precise measurement of moving bodies, but the burgeoning field of

optomechanics is concerned with the interaction of light and matter in a regime where the typically

weak radiation pressure force of light is able to push back on the moving object. This field began

with the realization in the late 1960’s that the momentum imparted by a recoiling photon on a

mirror would place fundamental limits on the smallest measurable displacement of that mirror.

This coupling between the frequency of light and the motion of a mechanical object does much

more than simply add noise, however. It has been used to cool objects to their quantum ground

state, demonstrate electromagnetically-induced-transparency, and modify the damping and spring

constant of the resonator. Amazingly, these radiation pressure effects have now been demonstrated

in systems ranging 18 orders of magnitude in mass (kg↔fg).

In this work we will focus on three diverse experiments in three different optomechanical de-

vices which span the fields of inertial sensors, closed-loop feedback, and nonlinear dynamics. The

mechanical elements presented cover 6 orders of magnitude in mass (ng↔fg), but they all employ

nano-scale photonic crystals to trap light and resonantly enhance the light-matter interaction. In the

first experiment we take advantage of the sub-femtometer displacement resolution of our photonic

crystals to demonstrate a sensitive chip-scale optical accelerometer with a kHz-frequency mechanical

resonator. This sensor has a noise density of ≈ 10 µg/rt-Hz over a useable bandwidth of ≈ 20 kHz

and we demonstrate at least 50 dB of linear dynamic sensor range. We also discuss methods to

further improve performance of this device by a factor of 10.

In the second experiment, we used a closed-loop measurement and feedback system to damp and

cool a room-temperature MHz-frequency mechanical oscillator from a phonon occupation of 6.5×106

down to 66. At the time of the experiment, this represented a world-record result for the laser

cooling of a macroscopic mechanical element without the aid of cryogenic pre-cooling. Furthermore,

this closed-loop damping yields a high-resolution force sensor with a practical bandwidth of 200 kHZ

and the method has applications to other optomechanical sensors.

The final experiment contains results from a GHz-frequency mechanical resonator in a regime

where the nonlinearity of the radiation-pressure interaction dominates the system dynamics. In this

device we show self-oscillations of the mechanical element that are driven by multi-photon-phonon
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scattering. Control of the system allows us to initialize the mechanical oscillator into a stable

high-amplitude attractor which would otherwise be inaccessible.

To provide context, we begin this work by first presenting an intuitive overview of optomechanical

systems and then providing an extended discussion of the principles underlying the design and

fabrication of our optomechanical devices.
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Chapter 1

Classical Theory of
Optomechanical Systems

In this section, we will introduce a conceptual model of an optomechanical system and then derive

the governing equations and basic optomechanical relations. We will first do this in an intuitive

model typically used for experiments with low-frequency classical optomechanical systems. Then

we will present a second more complete formalism appropriate for optomechanics in nonlinear and

high-frequency systems. Experimental results employing both descriptions will be presented in this

thesis.

1.1 Introduction

The standard example of an optomechanical system is that of a Fabry-Pérot optical cavity consisting

of two opposing mirrors which trap light between them, but one of the mirrors is free to oscillate

(Fig. 1.1). Due to the boundary condition imposed by the mirrors, only an integer number of

wavelengths can fit inside the optical cavity, of total effective length, Leff. This causes the cavity

to have a series of optical resonances around the discreet frequencies where this integer condition

is met, ωj/2π = j c
2Leff

, where j is an integer, and c is the speed of light in free space. Since the

resonances are determined by the effective length, small changes in this length due to the moving

end-mirror change the optical resonance according to ωj = j πc
Leff+x(t) . This modulation changes the

light inside the cavity and thus modulates the amount of outgoing light from the optical cavity,

allowing one to detect the mirror’s motion. This simple effect is useful for sensitively measuring

displacements.

However, there is another effect to consider because the light inside the cavity also exerts a

radiation pressure force back onto the moveable mirror. Thus, if the mirror is small enough, or

there is enough light inside the cavity, the mirror can be pushed around by this optical photon

pressure. This additional effect causes optomechanical systems to be full of interesting dynamics
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because this force can change the mirror’s position, which then changes the amount of force on the

mirror, causing a change in the mirror’s motion, etc. etc. etc. These dynamics allow one to use the

light to effectively stiffen or soften the spring the mirror is attached to, as well as amplify or damp

the mirror’s motion [1].

Le�

me�

x̂

Figure 1.1: Fabry-Perot Cavity. The two mirrors trap the incoming resonant light (blue) between
them. The left mirror is slightly less reflective in order to allow light to couple into and out of the
optical cavity. The right mirror is free to oscillate with its energy stored in a simple spring (orange).
This motion, x, changes the effective length of the cavity, Leff, which modulates the light inside of
the cavity, and causes the outgoing light to be modulated.

In the following sections, we will dive into the details of this coupling, and in later chapters

present optomechanical systems that have little apparent resemblance to Fig. 1.1, but keep in mind

that nearly all of the relevant physics in these devices is contained within this simple model system

of mirrors and a spring.

1.2 Sideband Unresolved Optomechanics

The following formalism is most convenient when describing low-frequency systems where the me-

chanical frequency, ωm, is much slower than the optical energy decay rate, κ. When this is the case,

ωm � κ, light can enter and exit the optical cavity much faster than the mechanical mode undergoes

one oscillation. This allows some simplifications, and it is useful for the intuitive picture it provides,

but can lead to errors when considering systems with too-fast mechanical frequencies, ωm & κ (see

Section 1.3).

Starting from our equation for the resonance frequency in the Fabry-Pérot cavity, we consider

only one particular optical cavity resonance with bare frequency, ωc,0 ≡ k πc
Leff

, which is modified by

the mechanical motion to ωc (t) =
ωc,0

1+x(t)/Leff
. We can further assume that the displacement is small

relative to the effective length of the cavity, |x| � Leff, which is valid for every experiment presented
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here. This allows us to expand the changes to the optical frequency in a Taylor series:

ωc (t) = ωc,0 +
dωc,0

dx
x (t) +

1

2!

d2ωc,0

dx2
x2 (t) + . . . (1.1)

= ωc,0 −
ωc,0

Leff
x (t) +

1

2

ω2
c,0

L2
eff

+ . . . .

We have truncated the series after the first two terms because in practice these are the most ex-

perimentally relevant. All of the work presented here, including the nonlinear work discussed in

Chapter 5, is still well within the regime where the first term, linear in
ωc,0

Leff
, dominates. Engineering

systems where the linear term is absent or small compared to the x2 term is of recent interest for

quantum measurement applications, but will not be discussed here (see [2–10]).

Finally, we get this form for the coupling between the two systems, ωc = ωc,0 − gOMx (t), where

the frequency change per unit displacement of the optical cavity is defined by gOM =
dωc,0

dx =
ωc,0

Leff
.

This constant, g
OM

, is known as the optomechanical coupling strength and it is a critical parameter

because it sets the amount of information imparted on the optical field by the mechanical motion, as

well as the amount of radiation force transferred from the optical field to the mechanical resonator.

The connection between gOM and the optical force can be seen by considering the interaction

Hamiltonian of this system:

Hint = −~ncgOMx, (1.2)

where nc = a†a is the number of photons stored in the optical cavity, with a (a†) representing

the destruction (creation) operator of the optical field. Classically, then, the force on the oscillator

is given by Frp = −dHint

dx = ~ncgOM
. A single photon inside the optical cavity ‘pushes’ on the

mechanical element by an amount ~gOM , and thus displaces the mirror by an amount, ∆x =
~g

OM

k ,

where k is the system spring constant. From these relations, one can see that systems with large

optomechanical couplings and low mechanical stiffness will be ideal for observing effects of the light-

field acting on the mechanical resonator.

1.2.1 Equations of Motion

To derive these effects, we start with the standard equations of motion for the mechanical position,

x, and the optical field, a:
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ȧ(t) = −i (ωc − x (t) g
OM

) a(t)− κ

2
a(t) +

√
κinain(t) (1.3)

ẍ(t) = −γiẋ(t)− ω2
mx(t) +

Fth

meff
+

~g
OM

meff
nc(t) , (1.4)

where to describe the optical mode we have defined the bare optical resonance frequency ωc, the total

optical cavity field decay rate κ, the input coupling rate κin, and the input driving laser field ain.

For the mechanical mode, we have used γi as the intrinsic mechanical decay rate, ωm as the angular

resonance frequency, and meff as the effective motional mass of the mechanical mode (which is not,

in general, equal to the physical mass). Also, we account for thermal noise to drive the oscillator in

the term Fth. It is important to note here that the number of photons in the cavity is calculated

from the optical cavity field as nc(t) = |a(t)|2 because we are treating the system classically. Thus,

in general, the dynamics of the system are governed by two coupled differential equations which are

not linear in their interaction.

First, because the optical frequency is almost always much much larger than any other frequency

in the system (ωc/2π ≈ 200 THz), it is useful to solve for the slowly varying amplitude of the field

ã. To do this, we first note that if we are driving the system with a single laser at frequency ω`,

then the input field is given by ain(t) = aine
−iω`t, where the input rate of photons is ain =

√
Pin

~ω` ,

with Pin the laser power. So, we can solve for ã by making the substitution a(t) = ã(t) e−iω`t in

Eq. (1.3):

˙̃a(t)− iω`ã(t) = −i (ωc − x (t) g
OM

) ã(t)− κ

2
ã(t) +

√
κinain (1.5)

˙̃a = i (∆ + x (t) g
OM

) ã(t)− κ

2
ã(t) +

√
κinain, (1.6)

where we have defined the detuning of the laser from the cavity as ∆ = ω`−ωc, so that the detuning

is negative when the laser has a lower frequency than the optical resonance. Now, for simplicity, we

replace ã = a, with the implicit understanding, that we’re now solving the equations in a rotating

frame and we’ve just dropped the tildes. Here we restate these equations for clarity:

ȧ(t) = i (∆ + x(t) gOM) a(t)− κ

2
a(t) +

√
κinain(t) (1.7)

ẍ(t) = −γiẋ(t)− ω2
mx(t) + Fth/meff +

~gOM

meff
nc(t) . (1.8)
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1.2.2 Mechanical Mode Solution

In general, the coupled set of equations, (1.7) & (1.8), is nonlinear and cannot be solved analytically.

However, in practice, the optomechanical coupling gOM and the mechanical amplitudes x are small

enough that an iterative approach yields accurate results. First, then, we will drop the optical

coupling (g
OM

= 0), and solve for the behavior of the mechanical mode. We start by Fourier

transforming (1.8):

−ω2x(ω) = iγiωx(ω)− ω2
mx(ω) + Fth/meff, (1.9)

where we have used the property of the Fourier transform, F [ẋ(t)] = iωx(ω) (see Appendix A), and

defined F [Fth(t)] = Fth(ω). Now, solving for the displacement spectrum of x, we find:

x(ω) =
1

ω2 − ω2
m + iγiω

Fth

meff
= χ(ω)

Fth

meff
, (1.10)

where it is useful to define the oscillator’s susceptibility as χ(ω) =
(
ω2 − ω2

m + iγiω
)−1

. This function

has a standard Lorentzian shape near resonance, and has the other following notable properties:

χ (0) =
1

ω2
m

=
meff

k
, (1.11)

χ (ωm) = −iQm

ω2
m

= −iQmχ (0) , (1.12)

|χ (ω � ωm) | ∝ 1

ω2
m

. (1.13)

Here we have used the quality factor of the mechanical mode, Qm = ωm/γ. Obtaining mechanical

resonators with large Qm (i.e., good quality) will prove to be an important subject of this work.

Physically, it is related to the number of oscillations, #osc, that a resonator undergoes before its

energy decays to 1/e ≈ 37% of its initial value: Qm/2π = #osc. A diagram of the susceptibility

function is shown in Fig. 1.2.

The term Fth arises from the oscillator being in equilibrium with a heat bath and is thus subject

to thermal Brownian motion. The equipartition theorem tells us that the root-mean-square (RMS)

displacement of a harmonic oscillator subject to this noise must be

x2
rms =

kBTb

k
=

kBTb

meffω2
m

, (1.14)

where we have used the temperature of the thermal bath Tb and Boltzmann’s constant kB.



6

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

10
2

0.8 0.9 1 1.1 1.2
10

0

10
1

10
2

Figure 1.2: Resonator Susceptibility. (a) Widespan plot of the normalized magnitude of the
resonator susceptibility |χ(ω)ω2

m| with Qm = 100. (b) Plot of χ(ω) near resonance indicating that
the full-width-at-half-max of this curve is the mechanical damping rate γ.

Also, we have the additional relation that integrating this force noise over the susceptibility must

be equal to the RMS displacement,

x2
rms =

ˆ ∞
0

|χ(ω) |2Sth
ff , (1.15)

where we have denoted the spectral density of the thermal force noise as Sth
ff . We assume this

force noise to be spectrally-white (e.g., no frequency dependence). Equating Eqs. (1.14),(1.15) and

integrating over the susceptibility function, we find the magnitude of this thermal noise to be

Sth
ff =

4kBTbγi

meff
=

4kBTbωm

meffQm
. (1.16)

This spectral density has units of Force2/Hz and is related to the original force noise in the equation

of motion (Eq. (1.8)) via its autocorrelation, Sff (ω) =
´∞
−∞ dω′〈F∗th(ω)Fth(ω′)〉, where F∗th is the

complex conjugate of the thermal force noise spectrum Fth.

We now finally have an equation for the displacement spectrum of our thermally driven oscillator:

Sth
xx(ω) = Sth

ff /meff|χ(ω) |2 =
4kBTbωmmeff

Qm

1

(ω2 − ω2
m)

2
+ (γiω)

2 , (1.17)
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which has units of meters2/Hz.

This unavoidable thermal noise on the mechanical element will be relevant in our discussion of

an optomechanical accelerometer in Chapter 3 and our attempt to cool our mechanical object in

Chapter 4.

1.2.2.1 Quantum ‘Mechanics’

Although this thesis will not cover any experiments that observe quantum effects, reaching such

a regime is the motivation for the feedback cooling experiment in Chapter 4 and we will use the

language of quantum mechanics to discuss the results, so we briefly introduce it here. The starting

point for this analysis is to write the displacement operator in terms of the operators for creation

(b̂†) and annihilation (b̂) of the mechanical mode, x̂ = xzp

(
b̂† + b̂

)
, ehere the proper normalization

is that of the quantum zero-point (ground-state) amplitude xzp =
√

~
2meffωm

. Similar to photons

for the optical field, the quantum of mechanical excitations is the phonon and the number operator

is given by n̂b = b̂†b̂. A thermal state again is one which is in equilibrium with a bath at a given

temperature, and the phonons are described by a Maxwell-Boltzmann distribution:

〈n̂b〉 = 〈b̂†b̂〉 =
1

e
~ωm
kBTb − 1

≈ kBTb

~ωm
, (1.18)

where we have used in the final expression the high-temperature approximation, which is valid for

〈n̂b〉 � 1. It can be easily verified that this relation for 〈n̂b〉 leads to the same thermal displacement

as in the classical case, namely, 〈x̂〉 = xrms = kBTb/meffω
2
m. The quantum regime is typically defined

as one where 〈n̂b〉 < 1, which has recently been achieved in a number of optomechanical systems

[11–13].

1.2.3 Optical Mode Solution

Similar to the mechanical case, we start by first dropping the mechanics (g
OM

= 0) and solving for

the steady state of the optical field, ȧ = 0:

a =

√
κinain

κ
2 − i∆

(1.19)

nc = |a|2 = a∗a =
κina

2
in(

κ
2

)2
+ ∆2

=
κin(

κ
2

)2
+ ∆2

Pin

~ω`
. (1.20)

The intracavity field, a, typically cannot be directly observed, and so although the mechanical mode

experiences nc, the experimenter only has access to the transmitted or reflected outgoing optical

field aout. The form for this outgoing field in terms of the input field can be found from standard
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input-output theory [14] as

aout = ain −
√
κina (1.21)

= ain

(
1− κin

κ
2 − i∆

)
. (1.22)

But this light field is detected on a photodetector that is sensitive only to the incident optical power

so the detected signal is,

Tdet = ~ω`|aout|2 = ~ω`a2
in

(
1− κin (κ− κin)(

κ
2

)2
+ ∆2

)
. (1.23)

It is useful to note that |aout|2 and |ain|2 have units of photons/s, whereas |a|2 has only units of

photon number, so one must be careful switching between the intracavity field and the detected

signal.

Single-Sided Coupling Double-Sided Coupling

Figure 1.3: Single & Double-Sided Coupling. (a) Single-sided coupling showing a waveguide
(blue rectangle) that carries the input optical field ain and the reflected optical field aout. It couples
this light into the optical cavity (blue circle, a) at the extrinsic coupling rate κin = κe. The optical
cavity also has an intrinsic loss rate, κi. (b) In a double-sided coupling scheme, the input light is
coupled into the cavity at κe/2, and the output light aout is transmitted past the optical cavity.
The optical cavity can now couple to the waveguide in both forward and backward directions at
rate κe/2, so light is still lost from the cavity at the same total rate κ = κi + 2 ∗ κe/2. Half of the
intracavity light ends up being ‘lost’ when it is emitted in the backwards direction.

1.2.3.1 Single Sided and Double Sided Cavities

So far we have only stated that κ is the total decay rate of the optical cavity, but we have not

discussed what goes into this loss rate. This is because there are two distinct schemes, for coupling

light into the cavity, and it has a large effect on the observed transmission signal. The two coupling

schemes as shown in Fig. 1.3a, are called single and double-sided couplings because of the number of
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Figure 1.4: Cavity Transmission & Photon Number. (a) Plot of the normalized reflection
of light from a single-sided optical cavity using Eq. (1.23) with κin = κe, κe/κi = 0.6 (b) Plot
of the intracavity photon number for the same parameters as in (a), using Eq. (1.20) and setting
ain =

√
κin.

routes that light has to exit the cavity. The optical decay rate is typically split into two components.

The first is an intrinsic component, κi, which is the rate at which photons are inherently lost due to

imperfect mirrors, absorption, or defects. The second is the extrinsic component, κe, which is loss

rate intentionally added to couple laser light into and out of the optical cavity.

In both systems, κ = κi +κe, but the difference is the rate at which light couples into/out of the

system. In the single-sided cases, light leaving the optical cavity has only one direction to emit into

(reflection) see Fig. 1.3a, but in the double-sided case, the waveguide is coupled in such a way as to

allow light to leave either forward (transmission) or backward (reflection),see Fig. 1.3b. Thus, for

single-sided cavities, κin = κe, but for double-sided cavities, κin = κe/2.

An example of the reflection spectrum from a single-sided optical cavity is shown in Fig. 1.4a,

along with the intracavity photon number in Fig. 1.4b. A comparison of the transmitted and

reflected spectrum for the two types of coupling is presented in Fig. 1.5. For single-sided coupling,

the reflection directly on resonance is 0 for the special condition when κe/κi = 1, shown as the green

line in Fig. 1.4b. This indicates that all of the input power couples into the optical cavity. For

the double-sided cavity, this limit of complete power absorption only happens at κe/κi =∞, where

the cavity linewidth is also going to +∞. Results from a single-sided sideband unresolved cavity

experiment will be presented in Chapter 3 and experimental results using a single-sided cavity will

be discussed in Chapter 4, where the main difference is that in a double-sided cavity, half of the

information about the mechanical motion is lost to the backward direction. Explicitly, the upper-

limit on detection efficiency is the ratio of photons emitted into the waveguide compared to the total

photon loss rate, ηmax = κin/κ. It can easily be shown that for the double-sided case, ηmax cannot

be greater than 1
2 .
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Figure 1.5: Over and Under Coupled. Plot of the transmission/reflection spectrum for double-
sided (a) and single-sided (b) optical cavities for a wide range of the coupling ratio κe/κi. Note the
difference in the curves at the value κe/κi = 1 (green), whereas for single-sided coupling, there is no
reflected light.

The value of transmission (reflection) on resonance, T (∆ = 0), is commonly called the ’trans-

mission dip’ and is given by

Td =

(
κ
2 − κin

)2(
κ
2

)2 , (1.24)

=
(κi − κe)

2

κ2
, when κin = κe, (1.25)

=
κ2

i

κ2
, when κin =

κe

2
. (1.26)

Since experimentally it is difficult to measure κin, but simple to measure Td, this equation is usually

inverted to solve for κin. However, it should be noted that for single-sided cavities, κin = κe, the

resulting equation has two different solutions for κin for each Td, corresponding to the oscillator

being either over-coupled κe > κi or under-coupled κe < κi. Therefore, establishing κin from Td in

this situation requires some other additional information to determine which solution is valid. In

Chapter 4 we do this by measuring the total efficiency of the system.

1.2.3.2 Detecting Mechanical Motion

The effect of the mechanical motion on the transmitted signal is, to first order, proportional to the

derivative of the transmitted signal with respect to detuning:
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Figure 1.6: Mechanical Transduction Cartoon. Schematic diagram of the detection of mechan-
ical motion. An input mechanical displacement, x(t), causes a modulation of the cavity resonance
frequency (δωc = g

OM
x(t), orange) which, for laser detuned to the side of the optical resonance (blue

arrow), linearly modulates the transmission δT ∝ g
OM
x(t) /κ.

Tdet (t,∆) = Tdet (∆) +
dTdet

d∆

d∆

dx(t)
= Tdet (∆) +

dTdet

d∆
g

OM
x(t) (1.27)

dTdet

d∆
= 2~ω`|ain|2

κin (κ− κin) ∆((
κ
2

)2
+ ∆2

)2 , (1.28)

where, by definition, the mechanical motion causes a change in the detuning of ∆x(t) = g
OM
x(t),

and here we have ignored the possibility of the optical field influencing the mechanical motion,

which we’ll consider in Section 1.2.4. So, the first term is just the DC or steady-state value of the

transmission, as plotted in Fig. 1.4, and then it is the second term that contains information about

the mechanical motion. This transduction of mechanical motion is shown conceptually in Fig. 1.6.

The derivative component dTdet

d∆ is shown in Fig. 1.7 for the same parameters as were used to plot

the example reflection lineshape in Fig. 1.4.

We can now use this to calculate the total signal due to x(t):

Pm(t) =
dTdet

d∆
g

OM
x(t) (1.29)

= 2~gOMω`|ain|2
κin (κ− κin) ∆((

κ
2

)2
+ ∆2

)2 x(t) . (1.30)

Typically, for amplitude detection of the laser light (as opposed to phase detection as in Chapter 4),

the laser is positioned at ∆ = κ/2 because here the slope dTdet

d∆ is maximized. So, at this detuning
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Figure 1.7: Cavity Transmission Slope. Plot of the slope of the reflection from a single-sided
optical cavity using Eq. (1.28) with κin = κe, κe/κi = 0.6. Note the slope and detuning are both in
units of the intrinsic mechanical linewidth κi

we have

Pm(t) |
∆=κ

2
= 4g

OM
Pin

κin (κ− κin)

κ3
, (1.31)

where we used Pin = ~ω`|ain|2. This optical power is then measured on a photodetector, which yields

a detected voltage proportional to Vm = PmRiTig, where the detector responsivity in Amps/Watt is

Ri and the transimpedence gain of the detector in Volts/Amp is Tig. This is usually detected on a

spectrum analyzer as electrical power, Pe = V 2
m/R, where R is the effective electrical impedance of

the detector. Thus, in the spectral domain, our detected signal power is given by

Pe(ω) =

〈(
RiTig

dTdet

d∆
g

OM
x(ω)

)2
〉
/R,

=

(
RiTig

dTdet

d∆ g
OM

)2
R

〈x(ω)
2〉,

=

(
RiTig

dTdet

d∆ g
OM

)2
R

Sxx(ω) , (1.32)

where in the final expression we have related the expectation value and the spectral density via the

relation given in Appendix A.

When directly on resonance (∆ = 0) the derivative vanishes and to first order there is no detection

of the mechanical motion. However, the change in the phase of the outgoing light, dφ
d∆ , undergoes a

maximum at this detuning, so one can achieve detection sitting directly on resonance when using a

phase-sensitive method, such as homodyning with a second laser beam (see Appendix B).
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1.2.4 Radiation Pressure Back-Action

We now consider the effect of the optical radiation pressure on the mechanical element by taking

a perturbative approach. We start by taking the ansatz of the mechanical motion as sinusoidal,

x(t) = x0εx cosωmt, and expanding the optical mode in the small parameter εx as a(t) =
∑
n ε

n
xan(t).

The optics interacts with the mechanics via the forcing term on the RHS of Eq. (1.8), where we

need to solve for nc(t) = a∗(t) a(t). Plugging in our expansion gives

nc(t) = a∗(t)a(t) = a2
0 + εxa

∗
1a0 + εxa

∗
0a1, (1.33)

where we have considered terms up to first-order in εx. To obtain these terms, we next put our

ansatz into the equation of motion for the optical field (Eq. (1.7)), and collecting like powers in εx

yields two equations:

ȧ0 = i
(

∆
′
− κ

2

)
a0 +

√
κinain, (1.34)

ȧ1 = i
(

∆
′
− κ

2

)
a1 + ix1gOM

a0, (1.35)

(1.36)

where we have defined ∆
′

= ∆ + x0gOM , and x1(t) = cosωmt. By throwing our an-satz for x(t) into

our equation of motion, it’s simple to show that since x0 is a constant, ȧ0 = 0. This allows us to

solve for the steady state component of the optical field as:

a0 =

√
κinain

κ
2 − i∆

′ . (1.37)

To solve for the harmonic component of the field, a1, we compute the Fourier transform:

iωa1 =
(
i∆

′
− κ

2

)
a1 + ix1(ω) g

OM
a0,

→ a1 =
ix1(ω) g

OM
a0

i (ω −∆′) + κ
2

, a∗1 = − ix1(ω) g
OM
a∗0

i (ω + ∆′) + κ
2

. (1.38)

In this result we have used a property of the fourier transform listed in Appendix A, namely,

A∗(ω) = A(−ω). Also, we didn’t write it explicitly, but the fourier transform of the mechanical

motion is x(ω) = |x| (δ (ω − ωm) + δ (ω + ωm)) /2. Putting these two together, we have
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(a∗1a0 + a∗0a1) = ix1gOM
|a0|2

(
1

i (ω−∆′)+ κ
2

− 1

i (ω+∆′)+ κ
2

)
, (1.39)

=
g

OM
|a0|2

ω

(
κ
2

(ω−∆′)
2
+
(
κ
2

)2 − κ
2

(ω+∆′)
2
+
(
κ
2

)2
)
iωx1

− gOM |a0|2
(

∆
′
+ω

(ω+∆′)
2
+
(
κ
2

)2 +
∆

′−ω
(ω−∆′)

2
+
(
κ
2

)2
)
x1. (1.40)

In the final expression we have explicitly separated out the real and imaginary terms because when

we Fourier transform back to the time domain, we can use the fact that F−1[iωx1] = ẋ1. Explicitly,

after performing the inverse Fourier transform, we have in the time domain

(a∗1a0 + a∗0a1) =
g

OM
|a0|2

ωm

(
κ
2

(ωm−∆′)
2
+
(
κ
2

)2 − κ
2

(ωm+∆′)
2
+
(
κ
2

)2
)
ẋ1(t)

− g
OM
|a0|2

(
∆

′
+ωm

(ωm+∆′)
2
+
(
κ
2

)2 +
∆

′−ωm

(ωm−∆′)
2
+
(
κ
2

)2
)
x1(t) ,

= gOM |a0|2
(
ẋ1

ωm
A
(
∆

′
)
− x1B

(
∆

′
))

, (1.41)

where in the last step we have introduced the simpler notation A
(
∆

′
)

and B
(
∆

′
)

.

Armed with this final result, we can substitute this expression into our x equation of motion,

ẍ = −γiẋ− ω2
mx+ Fth/meff +

~g2
OM
|a0|2

meff

(
ẋ

ωm
A− xB

)
,

= −γOM ẋ− ω2
OM
x+ Fth/meff, (1.42)

where we have introduced the optomechanically-modified damping rate and mechanical frequency:

γOM = γi −
~g2

OM
|a0|2

meffωm
A

= γi −
~g2

OM
κ

2meffωm

κin|ain|2(
κ
2

)2
+∆′2

4ωm∆
′[

(ωm−∆′)
2
+
(
κ
2

)2] [
(ωm+∆′)

2
+
(
κ
2

)2] , (1.43)

ωOM =

√
ω2

m +
~g2

OM
|a0|2

meff
B

=

√√√√ω2
m +

~g2
OM

meff

κin|ain|2(
κ
2

)2
+∆′2

(
ωm+∆′

(ωm+∆′)
2
+
(
κ
2

)2 − ωm−∆′

(ωm−∆′)
2
+
(
κ
2

)2
)
. (1.44)
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Here we have written out the full terms explicitly. We can see that, to first order, the effect of the

radiation pressure back-action on the mechanical oscillator is to modify both its damping rate and its

oscillation frequency. These terms are quite complicated, but a few general features can be observed.

The first is that both modifications are 0 for ∆
′

= 0, i.e., when the laser is directly on resonance with

the optical cavity. Also, the effect switches sign with the sign of ∆
′
, so detuning the laser to the lower

frequency side, ∆
′
< 0, increases the damping, γ

OM
> γi, but decreases the frequency, ω

OM
< ωm.

Detuning the laser to higher-frequencies ∆
′
> 0 has the opposite effect. This simple linearized theory

breaks down when the damping or frequency becomes negative γ
OM
, ω

OM
< 0, when the mechanical

amplitude, εx, is too large, or when the steady-state displacement due to the radiation pressure, x0,

is too large. A full description of these effects can be found in Ref. [15].

In the sideband unresolved regime, ωm � κ, we can simplify these equations a bit:

γ
OM

= γi −
~g2

OM
κ

meff

κin|ain|2(
κ
2

)2
+∆′2

2∆
′(

∆′2+
(
κ
2

)2)2 ,

= γi −
~g2

OM
κ

meff
nc(∆

′
)

2∆
′(

∆′2+
(
κ
2

)2)2 , (1.45)

= γi

[
1−

(
2κ/γi

∆′2+
(
κ
2

)2
)(

~g2
OM

meff

∆
′
nc(∆

′
)

∆′2+
(
κ
2

)2
)]

, (1.46)

ω
OM

=

√
ω2

m +
~g2

OM

meff

κin|ain|2(
κ
2

)2
+∆′2

2∆′

∆′2+
(
κ
2

)2 ,
≈ ωm +

~g2
OM

meffωm
nc(∆

′
)

∆
′

∆′2+
(
κ
2

)2 , (1.47)

= ωm

[
1 +

(
1

ω2
m

)(
~g2

OM

meff

∆
′
nc(∆

′
)

∆′2+
(
κ
2

)2
)]

, (1.48)

where we have used our formula for the intracavity photon number, nc(∆), in Eq. (1.20), and the

approximation in the final expression for ω
OM

holds for small frequency shifts: |ω
OM
− ωm| � ωm.

Finally, we note that, in principle, the static shift, x0, must be iteratively solved for in terms of

|a0|2 because the extra detuning changes the static intracavity field and vice-versa. However, in

practice, this shift is very small or easily corrected, and so we will ignore it and use ∆
′ → ∆. For

some systems, this radiation pressure displacement is non-negligible and yields interesting nonlinear

effects [16].

In Fig. 1.8 we have plotted an example of the frequency shift and damping as the laser is swept

across the optical cavity, assuming the mechanical element frequency is much less than the optical

loss rate of the cavity, i.e., the regime where Eqs. 1.46 and 1.48 are valid. The specific parameters
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used (detailed in the figure caption) are very similar to that of the device in the feedback-cooling

experiment detailed in Chapter 4.
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Figure 1.8: Frequency and Damping; Sideband Unresolved. Plot of the frequency shift
(ωOM−ωm, blue) and change in the damping rate (γOM−γi, green) versus normalized laser detuning
in the regime where Eqs. 1.46 & 1.48 are valid: ωm/κ = 1.2×10−5. Parameters used: Pin = 150 µW,
g

OM
/2π = 100 GHz/nm, ωm/2π = 1 MHz, κ/2π = 80 GHz, κin = 3

8κ, meff = 90 femto-kg.
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Figure 1.9: Frequency and Damping; Sideband Resolved. Plot of the frequency shift (ω
OM
−

ωm, blue) and change in the damping rate (γ
OM
− γi, green) versus normalized laser detuning in

the regime where the full form of the optomechanical backaction, Eqs. 1.43 and 1.44, must be
used: ωm/κ = 6.25. Grey dashed lines indicate a detuning from the optical cavity equal to one
mechanical frequency. Parameters used: Pin = 150 nW, g

OM
/2π = 100 GHz/nm, ωm/2π = 4 GHz,

κ/2π = 640 MHz, κin = 3
8κ, meff = 50 atto-kg.

In Fig. 1.9 we have plotted an example of the frequency shift and damping when the device is in
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the sideband resolved regime, i.e., ωm/κ = 6.25. The specific parameters used (detailed in the figure

caption) are similar to that of the device used in the nonlinear multistability experiment detailed in

Chapter 5. It can be seen immediately that this regime can lead to more complicated interactions

between the mechanical element and optical field. The additional peaked regions on either side of

the optical resonance occur at precisely ∆ = ±ωm. This regime will be discussed in more detail in

Section 1.3.

1.3 Sideband Resolved Optomechanics

This section introduces the optomechanical equations in a method more suitable for tackling high-

frequency systems, and going beyond the linear approximation used in Section 1.2. The mechanical

modulation of the laser light generates two sidebands at frequencies (ω` − ωm) and (ω` + ωm). The

regime where ωm � κ is known as sideband ‘resolved’ because, since optical linewidth is narrower

than the frequency spread in these two sidebands, the optical cavity can be used to filter out just one

of the sidebands, as shown in Fig. 1.10. This regime is very useful for quantum physics experiments,

where one of the sidebands is useful, but the unwanted second sideband (if not filtered by the

optical cavity) adds additional noise to the system. This additional noise can act to obscure any

quantumness. This filtering property was necessary in two of the experiments I worked on: to cool

a resonator to its quantum ground-state [11], and to observe the quantum nature of the mechanical

resonator [17]. This thesis will not cover these quantum aspects in detail, but for an authoritative

review of these experiments and this regime, see the thesis of Dr. Amir Safavi-Naeini [18] and Dr.

Jeff Hill [2], as well as these reviews from the literature [15, 19, 20].

A second interesting feature of the sideband-resolved regime is that these distinct sidebands

lead to very interesting behavior when the mechanical amplitude is large enough that the linear

approximation used earlier no longer holds. The theory for this situation is presented here, and our

experiment in this regime is discussed in Chapter 5. The starting point for the analysis is, of course,

the equations of motion for the system [15]:

ẍ(t) = −γiẋ(t)− ω2
mx(t) + 2ωmg0xzp|a(t)|2, (1.49)

ȧ(t) =

[
−κ

2
+ i

(
∆ +

g0

xzp
x(t)

)]
a(t) +

√
κinain, (1.50)

where we have defined g0 = g
OM
xzp, with the quantum zero-point fluctuation amplitude being given

by xzp =
√

~
2meffωm

. Following the derivation given in Ref. [21], we again start by assuming that

the motion is sinusoidal, x(t) = A sinωmt, and we seek to find the homogenous, ah, and then the

particular, ap, form of the solution to the differential equation for the optical field, where our final
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Figure 1.10: Sideband Resolved System. (a) With the laser (thick black arrow) sitting directly
on resonance with the optical cavity (grey) at ∆ = 0, there are two optical sidebands generated by
the mechanical motion that show up at ∆ = ±ωm. The lower (higher) frequency sideband is denoted
with a red (blue) arrow. With the laser directly on resonance there is (to first order) no back-action
of the laser onto the mechanical mode, because the red and blue sidebands are of equal magnitude
and offset each other. (b) With the laser ‘blue-detuned’ at ∆ = +ωm, the lower-frequency red
sideband is significantly enhanced because it overlaps with the response of the optical cavity. The
higher-frequency blue sideband is suppressed because it is far off-resonance with the optical mode. It
can be seen that photons in the red optical sideband have less energy than the incoming photons, and
thus from energy conservation they have transferred energy into the mechanical resonator. Thus,
since this is the dominant sideband, the mechanical amplitude is amplified. (c) With the laser
‘red-detuned’ at ∆ = −ωm, the higher-frequency blue sideband is significantly enhanced because it
overlaps with the response of the optical cavity, and similarly the lower-frequency red sideband is
suppressed. Now, since photons in the blue optical sideband have more energy than the incoming
photons the laser tends to extract energy from the mechanical resonator. This damps and cools the
mechanical mode.

solution will be of the form a(t) = ap(t) + ah(t). First, the homogenous solution is easily found:

ȧh(t) =

[
−κ

2
+ i

(
∆ +

g0

xzp
A sinωmt

)]
ah(t) ,

→ ah = C0e
(−κ2 +i∆)t−i g0A

xzpωm
cosωmt. (1.51)

Note that in integrating to obtain Eq. (1.51) we have taken care to integrate the mechanical motion

component as well. We can see that without the laser driving term, the particular solution is

damped exponentially at rate κ/2, and thus the solution converges to a(t) = ap(t). So, now we find
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the particular solution by noting that it can take the form ap = C(t) ah(t), where,

Ċ(t) =
1

ah(t)

√
κinain =

√
κinain

C0
e(

κ
2−i∆)t+i g0A

xzpωm
cosωmt. (1.52)

This differential equation can be directly integrated if we use the Jacobi-Anger expansion,

eiβ cos θ =

∞∑
n=−∞

inJn (β) einθ, (1.53)

where Jn is the Bessel function of the first kind, n-th order, and β is known as the modulation index.

Making this substitution and integrating gives for C,

C(t) =
√
κinaine

(κ2−i∆)t
∑

n

inJn (βm)
κ
2 + i (nωm −∆)

einωmt, (1.54)

where we have identified the unitless optomechanical modulation index, βm = A g0

xzpωm
. Finally, we

obtain the steady-state solution for our optical field:

a(t) = ap(t) = C(t) ah(t)

=
√
κinaine

−iβmcosωmt
∑

n

inJn (βm)
κ
2 + i (nωm −∆)

einωmt. (1.55)

Here, each of the n terms in the sum is a mechanical sideband of the optical field oscillating at

frequency nωm. For relatively small mechanical amplitudes this system can be linearized to obtain

simpler expressions for the field because the Bessel functions have the property that J0 (βm�1) ≈ 1,

Jn 6=0 (βm�1) ∝ β|n|m . However, in the large-modulation regime, βm & 1, the relative amplitudes of

the Bessel functions have a non-trivial dependence on βm. For practical calculations, a good rule

of thumb is to sum over at least n = ±2βm. The presence of so many interacting sidebands means

that the system is highly nonlinear in this regime, and the dynamics can be very complicated. It

is this nonlinearity that many quantum experiments seek to exploit [22]. However, this is difficult

because it requires the system to be both sideband resolved, and nonlinear at the ground-state

amplitude (A = xzp). Thus, it requires that βm = g0/ωm & 1, which has not yet been achieved in

an optomechanical system. We will focus on the classical effects of these multiple sidebands on the

mechanical oscillator and the optical transmission in the experiment presented in Chapter 5.
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Chapter 2

Design and Fabrication of
Optomechanical Devices

In this chapter we will discuss the full life-cycle of making an optomechanical device. First we will

focus in detail on the process for the stoichiometric silicon nitride (Si3N4) devices used in Chapter 3

and 4. Then we will briefly discuss the (similar) design and fabrication process for the optomechan-

ical crystals used in Chapter 5. The primary design consideration for both of these systems is to

simultaneously maximize the coupling, g
OM

, while maintaining large optical and mechanical quality

factors. However, the differences in the material and in the desired mechanical frequency lead to

differences in the designs and methods.

2.1 Device Design: Silicon Nitride Beam Resonators

Material Si3N4 (LPCVD)

Structure Glass

Density

Speci�c Heat

3100 kg/m3

Young’s Modulus

Tensile Stress 

Index (@ 1550nm)

Electrical Resistivity

Thermal Conductivity290 GPa

900 MPa

0.7 J/g/K

30 W/m/K

2

>1014 Ω-m

Hardness 35 GPa

Layer Thickness 420 nm

Table 2.1: Si3N4 Properties.

In our research group we tend to try to answer the question of what can be achieved using
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Figure 2.1: Cleaved Optomechanical Device. (a) False-color SEM image where a Si3N4 photonic
crystal consisting of two 1D photonic crystal cavities side-by-side (a ‘zipper’ cavity) supported on
thin tethers is shown in green with the undercut and cleaved silicon sitting below.

widely-available and standard fabrication methods by employing smart design and engineering. As

such, we use commercially grown material silicon nitride in many of our investigations. This material

is used as an advanced ceramic because of its strength and high-heat handling capability in many

industrial applications [23] such as bearings [24], cutting tools [25], and rocket nozzles [26]. Its

stability, low-friction, and bio-compatibility even allow it to be used for joint-replacements [27, 28].

However, for its use as an optomechanical resonator we care primarily that it has high optical index

(n = 2 @ 1550 nm), low optical loss [29], and large mechanical Qm at room temperature [30, 31]. In

Table 2.1 we have collected some of the relevant properties of this material.

The silicon nitride that we use is stoichiometric, Si3N4, and consists of a thin-layer, tSiN = 420 nm,

deposited by a process known as low-pressure chemical vapor deposition (LPCVD) onto a much

thicker silicon handle wafer, tSi = 0.5 mm, as shown schematically (but not to scale) in the first

panel of Fig. 2.9. This method of fabricating Si3N4 makes a glassy material with a large electronic

band-gap, ≈ 5 eV which means that the material is transparent and low-loss over a wide wavelength

span from visible to telecom frequencies. This deposition technique is also important because it

leaves the film with an extremely large in-plane tensile (pulling) stress [32] of σ = 0.8 − 1 GPa,

which, as we will discuss, is a critical component of the good mechanical quality factor of resonators

made from this material. Finally, it’s useful that it is deposited onto Silicon because this material is

readily available, and easy to selectively etch away to release our structures (as in Fig. 2.9), allowing
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them to freely move. Fig. 2.1 shows a false-color scanning electron microscope (SEM) image of a

finished device that has been cleaved in half and shows two side-by-side Si3N4 photonic crystals

supported on thin tethers (green overlay) extending off the broken edge of the silicon chip. In the

following sections we will discuss the design of such devices.

2.1.1 Si3N4 Optics

In contrast to the cartoon sketched in Fig. 1.1 we do not trap light using standard bulk mirrors, but

rather confine it using engineered 1D photonic crystals. This allows us to trap light on-chip while

still allowing for devices with good optical quality, Qo = ωo/κi. These structures rely on periodic

patterning of the dielectric constant to create band-gaps for light similar to those for electrons

traveling in an atomic crystal lattice. Our method of fabrication only allows for drilling straight

air-holes through our thin layer of material and thus the periodic patterning consists of regions of

nair = 1 and nSiN = 2. In Fig. 2.2a we show a top-view SEM of one such photonic crystal, and

below it is the same photonic crystal with the simulated energy density of the first-order optical

mode that it confines.

a

b

5 μm

5 μm

Figure 2.2: ‘Zipper’ Photonic Crystal. (a) SEM image of Si3N4 photonic crystal consisting of
two 1D cavities side-by-side (a ‘zipper’ cavity) as used in Chapter 3. (b) Same image as (a) with
the simulated energy density of the first-order optical mode overlaid where red corresponds to the
highest energy density and blue to the lowest. Because of the high concentration of energy in the
slot between the beams, the resonance frequency is strongly modified by motion of the gap between
the beams.

The method of trapping light in these structures can be understood by first considering an infinite

beam that has been periodically patterned with holes, as in the inset of Fig. 2.3a. In Fig. 2.3a we

show the bandstructure for this simple 1D crystal and note that at the band-edge there is a range

of wavelengths that cannot propagate in the structure. Thus, this pattern has a bandgap (BG)

for light. By placing two such crystals next to each other (Fig. 2.3b) it is possible to get a similar

(but typically smaller) bandgap between bands that have a different symmetry about the axis of

the beams (for a full discussion of optical symmetries see [33]). We are interested in the ‘bonded’

symmetry where the field is maximized in the gap, as in Fig. 2.3(iii), because the strong localization

of field within the gap means that the optical frequency of this band is more strongly modified by
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relative motion of the beams than for the band in (iv). We will go into the method of calculating

this coupling in more detail in Section 2.1.3.

Finally, armed with this zipper crystal, we make a localized optical resonance by perturbing the

lattice constant of the crystal in a central region. This change of the crystal parameters modifies

the frequency (wavelength) of light at the band-edge in this region such that it is different from the

surrounding unchanged crystal. If done correctly, the new wavelength lies inside the bandgap of the

outside periodic crystal and thus light in this region cannot propagate in the rest of the beam. It is

thus trapped between the ends, which act effectively as mirrors. The first few such trapped optical

modes of the fully-designed structure are shown in Fig. 2.3c.

Conceptually, this is the full process by which we design/imagineer our photonic crystals, but

in practice there are many parameters to vary that can effect the mode profile, optical quality

factor, and feasibility of fabrication. This is why we employ the COMSOL multiphysics simulation

environment to numerically solve for the resonant mode profiles and test out our photonic crystal

designs. It is from these simulations that we have obtained the fields shown in Fig. 2.2b and Fig. 2.3c.

We refer the reader to these theses from other members of Oskar Painter’s group as a reference

for performing such simulations: [34, 35]. After discussing the motivationg for the design of our

mechanical elements in Section 2.1.2 we will discuss how these simulated optical fields are used to

estimate the optomechnical coupling, g
OM

, and briefly discuss the design of one particular photonic

crystal that was used in the feedback cooling experiment presented in Chapter 4.
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Figure 2.3: Photonic Crystals 101. This figure is adapted from the wonderful thesis of Dr. Matt
Eichenfield [34]. (a) Band structure for the 1D photonic crystal with rectangular holes as shown in
the inset, where black indicates silicon nitride and white indicates air holes. The band structure is
plotted for a given wavevector of light along the direction of the lattice, k||, in units of π/a, where, a,
is the periodicity of the lattice and a/λ0 is the normalized frequency of the the allowed optical modes
at each wavevector. The light cone is denoted by the shaded grey region, which is the area where
light can freely radiate away. Optical modes in this region are not well-confined to the photonic
crystal because in this region there exist an infinite number of free-space modes it can propagate
into. As denoted by the teal region, there is a band-gap (BG) region where light at this k-vector
and frequency cannot propagate within the structure. The two images below, (i) and (ii), show the
simulated optical energy density for the correspondingly-labeled bands in the plot above where the
outline of the photonic crystal is shown in white. (b) Band structure diagram for two 1D photonic
crystals separated by a small slot-gap, as shown in the inset, known as a ‘zipper’ photonic crystal.
Here the bands are colored with respect to their symmetry along the axis between the two beams.
(iii) The blue bands correspond to the electric field maximized in the center of the slot-gap, which is
known as the bonded symmetry. (iv) The red bands correspond to the higher-energy optical mode
solution where there is a zero-crossing of the field at the center of the gap, which is known as the
anti-bonded symmetry. (c) An optical cavity to trap light is formed by slightly modifying the lattice
constant in some central region of the crystal. If this change in the lattice constant is sufficiently
smooth, it smoothly changes the wavelength λ of the bonded optical mode from its original value
(solid blue line). This generates a potential well for light in this region and so there exist discrete
optical mode solutions at different wavelengths (dashed blue lines). At the bottom of this potential
well (shortest wavelength) is the 0th order optical mode. A simulation of the energy density mode-
profile is shown to the right. Similarly, we show the mode-profiles of the 1st and 2nd order optical
modes. Modification of the central region could also consist of changing the hole size and shape as
well.
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2.1.2 Si3N4 Mechanics

Stress: the pain and the promise

As indicated by the title of this section, the large in-plane stress of silicon nitride can be both useful

and frustrating. A tensile stress of 0.8 GPa means that the thin film is being isotropically pulled in

the X-Y plane as if it were a drum-head pulled taught across the silicon below. This corresponds

to an in-plane pressure of ≈ 8,000 atmospheres on the material! Therefore it is not too surprising

that at an only slightly higher stress of ≈ 5-8 GPa, the material begins to spontaneously crack and

facture. If one is not careful, certain designs or fabrication methods can cause the stress to locally

exceed this fracture threshold. In Fig. 2.4 we show a small gallery of such stressful failures.

Figure 2.4: Stress-Fractured Silicon Nitride Devices. Various SEM images of devices broken
and cracked by poorly-managed stress in Si3N4.

We can start to understand the mechanics of Si3N4 by considering the Euler equation for the

frequency of a double-clamped rectangular beam:

fm =
π

2L2

√
EI

ρA

√
1 +

σAL2

EIπ2
, (2.1)

where L is the beam length, E is the Young’s modulus, I is the beam’s moment of inertia about the

direction of motion, ρ is the material’s density, A is the beam’s cross-sectional area, and σ is the
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tensile (positive) or compressive (negative) stress. However, instead of dwelling on the details, we’ll

first consider the final term underneath the square root. For a rectangular beam made out of our

thin nitride layer (420 nm × 420 nm) and using the parameters in Table 2.1, we find

σAL2

EIπ2
= 4.6×109L2, (2.2)

which means that for L > 15 µm this term is greater than 1. Since the typical beam lengths we’ll be

considering for our devices are L > 50 µm, we can consider this term to be always � 1. Dropping

the 1+ in Eq. (2.1) allows us to simplify the formula as

fm =
1

2L

√
σ

ρ
, (2.3)

which can be recognized as the equation for the frequency of a string. Thus, our stress-dominated

beams can be thought of simply as taught vibrating strings. The fact that this simplification is valid

indicates that the beam’s stiffness, k, is dominated by the stress, and thus that the energy of the

beam’s motion, ∝ 1
2k(∆x)

2
, is also dominated by the stress.

An example of the simple first-order motions of such string-like beams is shown in Fig. 2.5. It is

the in-plane differential motion between the two beams presented in Fig. 2.5b that has the highest

g
OM

and is thus the one of most interest. The thicker section in the center of these beams is where

the photonic crystal would be placed. For clarity, the tethers shown here are only ≈ 20 µm, which is

shorter than typically used. The small pinning tether between the two beams near their connection

to the frame couples the motion of the two beams. Without it, the beams resonate independently

instead of being composed of common and differential pairs.

One of the first explanations of the improvements this stress has on the mechanical quality factor

of such a beam was laid out in the wonderfully-titled paper “Stress and Silicon Nitride: A Crack in

the Universal Dissipation of Glasses” [30]. In this work, they showed that despite being a glass, the

presence of stress caused the quality factor to be nearly 3 orders of magnitude larger than un-stressed

Si3N4. This was in contrast to previous experimental and theoretical work showing that glasses

exhibit near-universal (large) mechanical losses [36, 37]. There is still debate in the literature about

the precise microscopic mechanism that limits the quality-factors in these stressed materials [38–41],

but there is now wide agreement that the stress is the origin of the improvement [31, 42].

This stress-enhancement can be analytically modeled by considering that the material has two

different quality factors. One is the quality factor corresponding to energy lost due to the beam

undergoing bending, Qbend, and the other is that due to the string undergoing elongation which

is related to the stress, Qσ. Empirically, Qbend � Qσ, which means that the loss due to Qσ is
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a

b

c

Figure 2.5: Example Beam Motion. (a) Fundamental in-plane common motion of two beams. (b)
Fundamental in-plane differential motion. (c) Fundamental out-of-plane differential motion. This is
the structure used in the experiment presented in Chapter 4.

negligible and so the effective quality factor of a beam is Qm = Ebend

Eσ
Qbend, where Ebend is the

bending energy and Eσ is the stress (or flexural) energy of the beam. For a rectangular beam these

quantities can be calculated analytically and explicitly give [42]:

Qm =

[
(nπ)

2

12

E

σ

(w
L

)2

+

√
E

σ

w

L

]−1

Qbend (2.4)

≈
√
σ

E

L

w
Qbend, (2.5)

where w is the beam width and n indicates the n-th harmonic mode of the beam. However, for a Si3N4

string of width, w = 450 nm, the approximation made in the final step is valid for L � 6µm × n2.

Which will always be satisfied since we will only be considering the fundamental string mode, n = 1,

of very long strings, L > 50 µm. Measuring several such beams, we have observed this very simple

relation of the Qm varying linearly with the length (Fig. 2.6). However, since there is not currently

a good microscopic theory for the origin (and thus magnitude) of Qbend, this must be determined

empirically (and may vary depending on material quality and growth). In our experiments we find

that Qbend ≈ 14, 000 in reasonable agreement with the Qbend = 17, 000 reported in Ref. [42].
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Figure 2.6: Mechanical Q vs. Device Length. Plot of the average measured mechanical quality
factor versus total device length for devices consisting of 36 µm long photonic crystals supported on
either side by 200 nm wide tethers of varying length similar to those shown in Fig. 2.7 (blue dots).
The numbers next to each point show how many devices were measured at each length and error bars
show the standard deviation of the Qm measurement. The best fit linear slope is Qm ∝ 2, 565/µm
(red curve).

Thus, guided by this insight, all of the photonic crystal structures we fabricate are suspended on

long, thin strings, as shown in Fig. 2.7. As can be seen in Fig. 2.7c-d, the extreme aspect ratios of

these devices make it difficult to image them in a single field of view.

2.1.3 Si3N4 Optomechanical Coupling – g
OM

In silicon nitride devices, the primary coupling between the beam motion (Fig. 2.5) is due to the

index contrast between moving Si3N4 and air. For small displacements of the beams, perturbation

theory can be used to calculate the exact optical frequency shift that a given vector displacement

field (Q(r)) will have on a given optical field (E(r)) [43]. It essentially amounts to calculating the

change in the stored energy of the optical resonance mode due to forcing components of the optical

field that lie at the interface of the moving material to be moved into or out of the beam. This

is called the moving boundary contribution to the coupling, g
OM,MB

. It can be calculated explictly

with this formula that looks intimidating, but is easily implemented in COMSOL for simulation of

our coupling rates [18, 43, 44]:

g
OM,MB

= −ωc

2

´
(Q(r) ·n) (∆ε|E|||2 −∆(ε−1)|D⊥|2)dA

max (Q)
´
ε(r) |E(r)|2d3r

, (2.6)

where the index contrast at the boundary is given by ∆ε = εSi3N4
−εair, and similarly ∆(ε−1) = ε−1

Si3N4
− ε−1

air ,
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Figure 2.7: Tethered Photonic Crystals. (a) Photonic crystals suspended on 20 µm tethers
of width ≈ 150 nm. (b) Photonic crystals suspended on 40 µm tethers of width ≈ 150 nm. (c)
Photonic crystals suspended on 500 µm tethers of width ≈ 150 nm. (d) Photonic crystals suspended
on 120 µm tethers of width ≈ 150 nm.

n is the surface normal vector of unit length, the electric displacement vector is given by D, and the

|| and ⊥ marks indicate values that are parallel or perpendicular to the boundary surface, respec-

tively. The integral in the numerator is over the surface area of all the the moving boundaries and

represents the energy change in the field due to the motion, and the denominator values provide the

suitable normalizations.

1 μm

Figure 2.8: Zipper Mark II Design. The optical energy density for the first-order bonded optical
mode of the designed photonic crystal where the regions of high (low) field are indicated by red
(blue). The outline of the Si3N4 material is shown in white. The calculated gOM for this device is
g

OM
/2π = 64 GHz/nm for a gap of 100 nm between the two beams.

For the systems considered here where the mechanical displacement profile, Q, has variation
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over a scale much larger than the ≈ 5 µm extent of the confined optical mode, it’s typically a good

approximation to replace the full vector form of Q with a suitable unit-vector norm displacement

such as Q = 1x̂. This approximation amounts to saying that every boundary is moving in the

same direction and by the same amount. This allows us to estimate the g
OM

of a designed optical

cavity without also explicitly simulating the mechanical displacement vector in COMSOL. This

approximation is accurate to the percent level for the very-long fundamental mechanical modes of

the beams shown in Fig. 2.7c-d. This is not valid for calculating the coupling of smaller localized

mechanical modes such as those discussed in Section 2.3.2, where the full COMSOL simulated

solution, Q, must be used.

To give an insight into the methods for maximizing this coupling, we will discuss briefly the

motivations and method behind our design of the photonic crystal used in the feedback cooling ex-

periment of Section 4. Previous designs for the photonic crystals had required that the two photonic

crystal beams that compose the zipper be identical, and that the holes lie always in the center of

each respective beam. We sought to determine if the g
OM

could be enhanced by allowing the beams

to have more complicated hole placement profiles. As such, we modified the algorithmic optimiza-

tion code developed in the group by Jasper Chan [35] to design a new zipper cavity. The algorithm

uses Matlab’s native nonlinear maximization functions to evaluate different photonic crystal designs

and determine which is the best according to the fit function F = g2
OM
· min (Qo, 2×106). This fit

function was chosen because the goal is to maximize the coupling strength, but to guarantee that

the optical Q is maintained in the process. We applied a ceiling of Qo = 2×106 on the optical

quality factor, because this is larger than the highest ever achieved in our Si3N4 photonic crystal

devices, max(Qo,Si3N4
) ≈ 0.3×106. If the optical quality component of the fit function is allowed

to be un-bounded, the algorithm tends to get stuck finding solutions with only moderate gOM , but

unreasonably large optical quality of Qo ≈ 50×106.

Employing this code, we found that more optical field could be concentrated toward the center

of the beams by displacing the holes towards the outer edge and by making the holes more elliptical

along the axis of the beams. Intuitively this makes sense because the optical field has lower energy

when it lies inside the dielectric material, and higher energy when it is forced into the air. Thus,

the optical field ‘likes’ to live inside the beam to minimize its total energy cost, and thus it tends to

avoid the holes. So, as the holes move outward, the field moves inward to escape. The final designed

photonic crystal and the simulated optical field for a gap of 100 nm between the two beams is shown

in Fig. 2.8 and has a simulated g
OM
/2π = 64 GHz/nm, which is larger than that of a simpler zipper

without any lateral modification of the holes, which yields only g
OM
/2π ≈ 50 GHz/nm. This is

not the design that we found to maximize the fit function (which had a larger coupling strength,

gOM/2π ≈ 83 GHz/nm), because that design was unsuitable due to the way the stresses relaxed in

that structure caused the beams to bow away from each other, which made it impossible to achieve
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gaps between the two beams of less than ≈ 200 nm.

2.2 Si3N4 Device Fabrication

Figure 2.9: Fabrication Process for Si3N4 Optomechanical Resonators. See text for details.
(f) Two colors of impinging atoms represent different molecule species present in the SF6/C4F8

plasma. In (h),(i) one of the photonic crystal beams has been removed to more easily see the
undercut trench below released devices.

Here we are going to cover the relatively simple fabrication process for our silicon nitride devices.

We describe the fabrication as simple not because it is easy, but because the devices are single-layer

and, with a little elbow grease, can be fabricated in a single day. This is in stark contrast to the mul-
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tilayer and (at least) week-long turn-around times required to fabricate chip-scale ‘optomechanical’

devices, which utilize microwave instead of optical light [45]. A simplified version of our fabrication

process is shown in Fig. 2.9, and this section will consist of providing details behind each step of

this process. Two great references for further details on our methods of fabrication can be found in

the theses of Dr. Jeff Hill [2] and Dr. Richard Norte [46].

2.2.1 Pattern Writing

a

b c

Action Composition

Developer

EB resist

Rinse

Remover

Name

ZEP-520A Proprietary

ZED-N50 n-Amyl acetate

ZMD-D Methyl isobutyle
ketone

ZDMAC Dimethylacetamide

Cost

25,000$/L

88$/L

240$/L

88$/L

Vol/use

0.6 mL

40 mL

40 mL

40 mL

Cost/use

15$

3.5$/L

9.6$/L

3.5$/L

Figure 2.10: Electron Beam Resist Properties. (a) Table of the ZEON chemical family used to
electron beam pattern our chips before etching and their approximate costs. Note that the sensitive
resist is extremely expensive but this is offset by the typically small volume per use (i.e., what is
needed to cover a 1cm x 1cm chip). (b) Approximate resulting thickness of ZEP520 films after 120 s
spins at given speeds. (c) Plot showing electron dose needed to fully expose (clear) the ZEP520A
resist as a function of bake temperature, indicating that precise pre-bake temperature is not critical.
Note that the total magnitude of the dose we use differs greatly from that reported in this chart
because of the differences between the EBL tool used to take this data compared to the machine we
use. All data taken from Ref. [47], except the pricing information comes from a quote from ZEON
received on 11/14/2013.

After the design of the optomechanical device is finished, the desired pattern must be etched into

the layer of silicon nitride. Due to the small scales (≈ 100 nm) of our Si3N4 optomechanical devices,

we use Electron Beam Lithography (EBL) to define our structures, which is able to expose patterns

with ≈ 5 nm resolution and 2.5 nm precision. In this process a stream of electrons is accelerated

towards a sample using high voltages (100 kV) and the beam is steered to write the desired pattern
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into an electron-sensitive resist in an “Etch-a-Sketch” raster pattern. Limitations of the resist layer’s

sensitivity and the subsequent processing steps cause the effective smallest-feature-size to be slightly

larger at & 30 nm. Although state-of-the-art optical lithography techniques can create features on

the order of 10-20nm, this requires very expensive and complicated masking technologies typically

only available in wafer-scale commercial fabrication facilities. At CalTech, the optical lithography

equipment we have access to is limited to feature sizes of & 800 nm. The key reason that (EBL)

is able to directly write (i.e., without using any mask) such small structures is that the wavelength

of the UV light used for lithography is about 365 nm, but the Compton wavelength for an electron

particle is negligible at 2.4 pm.

To prepare our sample for writing, we first spin-on a sensitive electron-beam resist (Fig. 2.9b).

In the group we use the resist ZEP520A (see Fig. 2.10), which is useful for its high sensitivity to

exposure (i.e., it requires low doses of electrons, ≈ 175 µC/cm
2
), which significantly reduces the time

it takes to write a chip. Even more importantly, it is very good at withstanding the dry-etching

process used to transfer our mask into the Si3N4. To create a thin and uniform layer of this resist,

the sample chip (1 cm× 1 cm) is secured onto the vacuum-chuck of a spinner (Fig. 2.11) and then

3-4 small drops of the resist are deposited onto the surface of the chip. The spinner then ramps up

to a high rotation speed for 60 s. As plotted in Fig. 2.10b, the resulting layer thickness is a function

of the rotation speed used. The silicon nitride is very tough to etch and so we use spin rates of

2,000 rpm to create a relatively thick layer, which due to differences in our setup from the data

provided in Fig. 2.10b yields a resist thickness of ≈ 400 nm. After spinning, the resist is baked on

a hot-plate at 180o C for 4 min to harden the resist and bake off any excess solvent dissolved in the

polymer.

The next step is to expose this chip in the EBL tool (which, at CalTech, is a Leica EBPG 5000+).

This machine doses the resist layer in the desired pattern (see Fig. 2.9d). The ZEP520a is a positive

resist, which means that the exposed area is the material that gets removed upon application of the

developer, and so we write the negative of the desired mask (Fig. 2.9c). It usually does a very good

job of faithfully reproducing the desired pattern, but occasionally has difficulties, typically due to

failures of its driving electronics. A surprisingly-heartfelt error pattern is shown in Fig. 2.12.

After exposure, the mask is developed by submerging it in ZED-N50 for 2.5 min and then rinsing

the chip in ZMD-D for 30 s. The chip is then blow-dried using clean, filtered nitrogen. After this

step, the resist has taken on the physical shape that we wish to transfer in to the Si3N4 layer. This

is shown schematically in Fig. 2.9e and an actual image is shown in Fig. 2.13.

2.2.2 Etching

We then use dry-etching to transfer the resist pattern into the underlying silicon nitride layer. To

do this, we use inductively-coupled plasma reactive ion etching (ICP-RIE) whereby a gas of atoms
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Figure 2.11: Resist Deposition and Spinning. Image of device used to spin resist layer on our
chips (‘spinner’) showing someone in the act of pipetting small droplets of ZEP520A onto a 1cm×
1cm chip.

Figure 2.12: Electron Lithography Failure. An example of what occurs when the driving elec-
tronics of the electron beam gun fail. Although the pattern file contained circles, what has instead
been drawn are inexplicably modified shapes.
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Figure 2.13: Developed Resist. (a) Image showing electron-beam resist after exposure and de-
velopment sitting atop the Si3N4-on-Si wafer. The pattern written consists of a zipper cavity with
two photonic crystals separated by a small gap. Note that the holes in the resist are wider at the
bottom than the top (dashed black lines are a guide to the eye). In the etching step this can cause
the holes in the Si3N4 to have tilted side-walls as well. The chip has been cleaved in half to allow for
this on-edge image to be taken. (b) This cleaving process can damage the relatively soft polymer of
the resist as shown here.

is excited into a plasma above the chip and then this plasma is accelerated vertically downward into

the chip to etch straight down into it (Fig. 2.9f). The gas chemistry we use consists of a ratio of

SF6 and C4F8. The SF6 is the dominant material etchant because the gas dissociates into SFx and

Fy. The heavy SFx ions impact the material and vertically mill downwards, while the lighter Fy

ions chemically etch the material in an isotropic fashion. The ideal etch would be perfectly vertical,

and so to prevent the chemical etching from the free fluorine atoms, the C4F8 is added. This gas

dissociates primarily into CF2 and Cz species. Instead of contributing to the etching process, the

CF2 ions tend to deposit on the surface of the material (and everywhere else) and form a cross-linked

Teflon-like polymer that inhibits the chemical etching of fluorine. However, the heavy SFx ions can

punch through this forming layer, and therefore the etch is very vertical. This is known as a pseudo

Bosch etch [48–51], because the better-known Bosch etching process uses these same gases, but

alternates between SF6 and then C4F8 instead of using them simultaneously in a continuous fashion.

A series of devices with a range of etching quality are shown in Fig. 2.14.

The primary issue with this etch is that it etches the ZEP mask at approximately the same rate

as it etches the Si3N4 below it. This means that etching our 400 nm thick nitride layer requires a

400 nm thick layer of resist, and for such a thick layer of resist, it is difficult to expose in a way

that leave vertical sidewalls in the resist (as in Fig. 2.13a). Also, even when using such a thick

masking layer, there is a relatively narrow window in the (large) parameter space for the etching,

over which we are able to cut all the way through the Si3N4 without also eroding all of the mask

away (Fig. 2.14a-e). This is because the high strength of the Si3N4 makes it difficult to etch. The
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Figure 2.14: Etching Guide. (a) Image showing a significantly under-etched sample. The ideal
etched pattern of steps is shown in green in the bottom left inset. There is a significant layer of
resist left on top of the nitride layer, but there is still a lot of material left in the gaps between
the steps. (b) A sample slightly more etched than that in (a), but still very under-etched. (c)
Image showing a sample with very small bits of Si3N4 left in between the steps. (d) A sample that
is etched reasonably well showing nearly-straight sidewalls in the SiN layer. The remaining debris
between the beams is unevenly etched Silicon. The very thin remaining layer of resist is highlighted
in red. This shows that we don’t have good selectivity of our etch between the device layer and the
resist layer. (e) Different pattern than in (a-d), but showing clearly an over-etched sample. Note
the rounding of the top corners of the nitride layer (black dashed line is a guide to the eye) and
the unnecessarily-deep etching of the silicon layer underneath. The resist layer has been completely
etched away at this point.

silicon layer underneath is much softer and etches at a significantly faster rate, requiring significantly

thinner resist layers (≈ 200 nm, see Section 2.4). There exist other, possibly better, etch chemistries

for silicon nitride (such as CHF3 and O2) but we have not attempted to use them.
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2.2.3 Wet Chemistry and Final Release

The first step after finishing an etch is to image it in the SEM to determine the quality of the

etch and decide whether the parameters need adjusting. Then we clean off most of the remaining

resist layer in a strong solvent such as trichloroethylene (TCE). To remove the last vestiges of the

resist and anything else on the chip we place the chip in a very strong cleaning solution known

as piranha (Fig. 2.9g). This solution consist of a 3:1 mixture of sulfuric acid (H2SO4) and 30%

hydrogen peroxide solution (H2O2). Either substance by itself is dangerous, and combining them

yields a rapid exothermic reaction that can bubble violently and even explode if mixed incorrectly.

Contrary to most other solutions, when making piranha, the acid should be poured first and then

the hydrogen peroxide is later added. The benefit to this danger is that it is a very strong oxidizer

and in 10 minutes is able to remove nearly all organic material, even very stable elemental carbon

allotropes (i.e., soot). The piranha clean is followed by several rinses in filtered de-ionized water

(DI) to ensure there is no lingering acidity.

After cleaning, we release the Si3N4 from the underlying Si layer by dipping the chip into a

solution of 30% potassium-hydroxide (KOH) heated to ≈ 70◦ for 10 min (Fig. 2.9h). At this

temperature, the KOH removes silicon at a rate of nearly 1 µm/min while etching the Si3N4 at an

imperceptibly slow rate. It should be noted that the KOH etch proceeds quickly only along specific

crystal planes of silicon [52–54] with a selectivity approaching 100:1 for the 〈100〉 direction compared

to the 〈110〉 direction. The resulting undercut etch profile resembles a ‘V’ or inverted pyramid shape

with the walls inclined at 54.74◦ from the plane of the chip, as shown in Fig. 2.9h-i. We don’t take

advantage of this fact in the experiments presented here, but our colleagues have used it to design

self-aligned couplers for getting light efficiently onto and off of the chip [55], and this coupling scheme

could prove to be an enabling technology for more practical versions of the optical accelerometer

presented in Chapter 3.

The final wet chemical step is to again piranha clean the sample to remove any debris present

after the KOH undercut.

2.2.4 Critical Point Drying

Unlike in the previous steps, now that the devices have been released and are able to flexibly move,

we cannot simply blow-dry the sample in nitrogen. For our nanoscale devices, the capillary and

surface tension forces imparted to our devices from this drying action are very significant. If the

devices are dried in the presence of these forces, the narrow gaps between the two sides of the zipper

photonic crystal are pulled towards each other and result in the devices being permanently stuck

together by van der Waals forces. To avoid this we employ a critical point dryer (CPD), which

takes a fluid (usually CO2) around its phase-diagram critical point through a mix of temperature
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Figure 2.15: Going Around the Critical Point. The phase diagram of CO2 showing schematically
the path taken by simply air-drying the sample (blue arrow) and the path taken by the CPD around
the critical point (green arrow).

control and high-pressures. This works because, for a fluid past its critical point, there is no longer

a meaningful difference between the liquid and gaseous phases. It is at the interface between liquid

and gas where the surface tension forces are present, so such a path through the supercritical region

avoids these forces.

a b

beam scan pattern

Figure 2.16: SEM Excitation of Mechanical Motion. (a) SEM image of the top of the ‘zipper’
photonic crystal where the left side is attached to a low-frequency (fm = 27 kHz) high-quality
Qm ≈ 1×106 mechanical oscillator. Blurring and aliasing of image on the left hand side indicates
rapid motion of that beam induced by the scanning electron beam. Scanning pattern of electrons is
shown in bottom left inset. (b) Same as (a) but of the bottom section of the photonic crystal again
displaying motion. Note that rotating the photonic crystal by ≈ 90 degrees so that the photonic
crystal axis is along the scanning direction of the electron beam can prevent this problem.
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The sample is first removed from the KOH etchant into several DI water rinses, which must be

done carefully and quickly to avoid the samples drying while in between the liquid baths. Then

the sample is immersed in filtered isopropyl alcohol (IPA) and transferred into the CPD chamber

containing filtered IPA. The machine cools down, then slowly displaces the IPA with liquid CO2,

and begins the path through the supercritical phase region, as illustrated in Fig. 2.15.

One of the most important aspects of this process is avoiding any contamination of the CPD

chamber. If the sample gets dirty during this drying step one cannot clean the chip without again

introducing it to a liquid piranha solution (or strong solvent), which then requires using the possibly

contaminated CPD chamber. The most common source of dirt at this stage is due to residual

chemicals in the chamber other than CO2, such as small volumes of piranha trapped in parts of

whatever chip-holder one is using. Also, if the purging of IPA does not proceed slowly enough there

will still be some in the chamber when the cycle begins, and due to its much higher critical point

(= 235◦ C, 53 atm) the IPA will just pass directly from liquid to gas. However, if operated properly

and with care, one rarely encounters problems at this stage.

Finally, one should always check the finished device in both the optical microscope and the SEM

to ensure there is no unwanted dirt/debris or other issues with the finished chip. However, one

must be careful when doing this, because the fabricated devices can be very fragile. One unexpected

problem we encountered when fabricating our low-frequency optomechanical accelerometer devices

(Chapter 3) was that we would occasionally collapse the two sides of the photonic crystal together.

We found that the raster-scanning of the SEM’s electrons imparted a small lateral force to the

insulating Si3N4 layer, which would tend to ring-up the mechanical element to very large oscillation

amplitudes until, often, it slammed into and then stuck to the other half of the photonic crystal.

In Fig. 2.16 we show a couple images taken while the SEM was inducing oscillations in one such

released mechanical resonator.

Now armed with a finished set of devices, the next step is to determine the optical and mechanical

characteristics of the fabricated devices as laid out in the experiments of Chapter 3 and Chapter 4.

2.3 Device Design: Silicon Optomechanical Crystals

In this section we will go through all of the steps required to design and fabricate a silicon optome-

chanical crystal. However, having just covered these topics in detail in the context of Si3N4, we

will focus primarily on the differences between the two systems. For a full account of the process

we recommend reading the corresponding sections for Si3N4 as well (also, the thesis of Dr. Matt

Eichenfield [34] and Dr. Jasper Chan [35]).

Silicon is an exciting optomechanical material because it is one of the most commonly-used

materials in standard electronics and MEMs applications, so it is compatible with many existing
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Material Si (undoped)

Structure Crystal 
(interpenetrated fcc)

Density 2330 kg/m3

Young’s Modulus 160 GPa

Speci�c Heat

Index (@ 1550nm)

Electrical Resistivity

Thermal Conductivity

 0.7 J/g/K

 149 W/m/K

3.4

 1400 Ω-m

Hardness 10 GPa

Layer Thickness 220 nm

Table 2.2: Si Properties.

processes for real-world devices. It is also better than Si3N4 in that it has a much higher optical index,

nSi = 3.4, is a crystalline material with high thermal conductivity, and as discussed in Section 2.3.3,

silicon has a second additional contribution to the coupling strength (gOM). The main drawback of

silicon is that its room-temperature mechanical quality factors are typically low (Qm < 5, 000), but

because it is a crystalline material, as it gets cooled down to cryogenic temperatures, these quality

factors improve significantly to Qm > 1×105 − 106. In contrast, silicon nitride improves by only a

factor of 2 while going from 295 K to 20 K. This difference leads us to typically employ silicon in

sufficiently scientifically valuable experiments where the use of expensive cryogenic equipment can

be justified [11, 17, 56, 57] (Chapter 5), but we choose Si3N4 for more practical applications [55, 58]

(Chapters 3 and 4).

Finally, because of the higher index and secondary coupling mechanism present in Si, this ma-

terial is much better for doing experiments with high-frequency, fm & 1 GHz, side-band resolved

optomechanical systems. Using Si3N4, it is simply extremely difficult to get the large g
OM

’s that

these challenging experiments require. The devices in this section are referred to as ‘optomechanical

crystals’ (OMC) because in the same way that the modified periodicity of the holes traps optical

waves of certain frequencies of ≈ 200 THz, it simultaneously traps mechanical waves of frequencies

in the GHz band.

2.3.1 Silicon: Optics

At the telecom wavelengths that we use (λ ≈ 1550 nm), silicon has very low loss and photonic

crystals have been realized with Qo > 1×106 [59, 60]. These large quality factors can be achieved in

part because silicon’s higher index allows for more optical field to be localized in the material, and
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also this higher index leads to larger and more robust optical bandgaps (as in Fig. 2.3). The most

significant drawback of silicon as an optical material originates from its status as a semiconductor

with a small electronic bandgap of 1.1 eV (compared to that of Si3N4 at 5 eV). A photon at

1550 nm (= 0.8 eV) does not have enough energy to excite free carriers across this bandgap, but the

small mode-volumes of our photonic crystals lead to non-negligible two-photon absorption processes

capable of delivering enough energy (= 1.6 eV) to span this bandgap and excite free electrons (and

holes) in the material. This process can cause the photonic crystal to heat up and can degrade both

the optical and mechanical quality factors [11].
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Figure 2.17: Silicon OMC. (a) SEM image of the central cavity region of a silicon optomechanical
crystal similar to that used in Chapter 5. (b) Chart of the change in the lattice constant (a, blue), hole
height (red, hy), and hole width (green, hx), in units of the nominal lattice constant in the periodic
mirror region, a

nominal
. Unit cell figure on the right demonstrates what each parameter corresponds

to in the crystal. (c) Simulated normalized electric field component, Ey, of the fundamental optical
mode. (d) Simulated normalized motion of the fundamental mechanical mode (displacement greatly
exaggerated). (e) Density color plot of the moving boundary component of the optomechanical
coupling gOM,MB corresponding to the integrand of Eq. (2.6). (e) Density color plot of the photo-
elastic component of the optomechanical coupling g

OM,PE
corresponding to the integrand of Eq. (2.7).

(g) SEM showing the entire device and surrounding phonon radiation shield (green overlay). Figure
adapted from Ref. [61].

Design of silicon photonic crystals follows the same principles of band-gap engineering and small

modulations of a periodic structure as described previously (Fig. 2.3). In Fig. 2.17 we show a single

1D photonic crystal that is designed for coupling to a colocalized mechanical mode [61]. This op-

tomechanical crystal was designed in our group using an algorithmic optimization process developed

by Dr. Jasper Chan, and this was the inspiration for re-designing the zipper photonic crystal as
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described in Section 2.1.3. Realizations of this photonic crystal in our group have demonstrated

Qo > 1×106, but the most interesting components of this design are the mechanical and optome-

chanical properties.

2.3.2 Silicon: Mechanics

As indicated by the ‘breathing’ motion shown in Fig. 2.17d, the mechanical modes of interest that

we are going to focus on are very different from the whole-beam modes of Fig. 2.5. This mechanical

mode exists because it is trapped by the phononic crystal created by the same periodicity of the

holes. These mechanical modes are very useful because their high-frequencies allow us to enter the

regime of sideband resolved optomechanics where ωm > κ/2 (see Section 1.3). Secondly, by using the

same crystal to trap both fields, they naturally tend to have large overlap, and thus large coupling to

each other. The mechanical design principles behind this structure are laid out clearly in Ref. [61].

One significant difference of these mechanical modes is that their wavelengths are so small (≈

2 µm) that it is feasible to prevent emission of energy into the bulk substrate using a ‘radiation shield’

as shown in Fig. 2.17g (green overlay). The unit cell of this cross structure is shown in the bottom

right inset. The series of small bridges connecting large masses leads to a structure that has a very

large band-gap (∆f
BG
≈ 800 MHz) and so mechanical waves emitted from the center of the beam

are unable to propagate in this shield, and are thus trapped in the beam. At room-temperature the

quality factors of these high-frequency modes are limited by thermo-elastic damping (TED) effects

and so the shield has little effect. However, as the structure is cooled down to cryogenic temperatures

of . 100 K the quality factor begins to be limited instead by radiation into the bulk, and here the

phononic shield is necessary to achieve Qm ≈ 600, 000 as measured in these devices [35].

2.3.3 Silicon: Optomechanical Coupling

The optomechanical coupling in silicon crystals is composed primarily of a moving boundaries com-

ponent (g
OM,MB

) and a component due to the photo-elastic effect (g
OM,PE

). Due to its higher optical

index, the moving boundaries component, gOM,MB , tends to be larger for a given moving face element

than for that in Si3N4. However, the colocalized nature of the optical and mechanical modes often

causes there to be just as many faces moving towards regions of higher electric field density (posi-

tive contribution to g
OM,MB

) as there are faces moving towards lower electric field density (negative

contribution to gOM,MB), as shown in both the positive and negative components in Fig. 2.17f. When

integrated over the entire surface of the beam, these effects tend to cancel each other out, and the

g
OM,MB

component can be smaller than expected.

Instead, the dominant optomechanical coupling in these devices is the photo-elastic component

whereby a local strain of the material causes a change in the material’s index. It can be calculated
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using first-order perturbation theory as [35]

gOM,PE = −ωo

2

〈E| ∂ε∂α |E〉´
E ·DdV

, (2.7)

where α is a generalized coordinate for the amplitude of the mechanical deformation vector, Q.

The form of the photo-elastic contribution can be quite complicated, but for an isotropic medium

with a given index n, it can be written as ∂ε
∂α = −ε0n4pijklSkl, where p is the material’s rank-four

photo-elastic tensor and S is the strain tensor (which is determined along with the simulation of

the mechanical mode, Q). The normalized contribution of this component to the g
OM

is shown in

Fig. 2.17f, where it should be noted that it has the same sign nearly everywhere (positive, red). The

reason we do not need to consider this coupling in Si3N4 is the n4 dependence of this term means

that we would expect this effect to be much smaller (the components of pijkl are smaller as well).

The device presented here has g
OM,MB

/2π = −33 GHz/nm and g
OM,PE

/2π = +306 GHz/nm. In

practice it is extremely difficult to design a structure where these two components add together with

the same sign instead of subtracting (and thus lowering the overall gOM). The measured coupling

in this device is actually larger than expected, gOM/2π = 354 GHz/nm, which we attribute to

imprecision in our knowledge of silicon’s photo-elastic tensor values at λ = 1550 nm.

2.4 Silicon: Device Fabrication

The creation of our silicon optomechanical crystals is laid out schematically in Fig. 2.18 and explained

in the following sections.

2.4.1 Pattern Writing

We first spin-on electron beam resist to evenly cover the 220 nm silicon top layer of the chip

(Fig. 2.18b). The silicon layer is nearly half as thick as our Si3N4 layer because the higher index of

Si requires a correspondingly thinner photonic crystal to achieve the same resonant wavelength (all

else being equal). Due to this fact, we spin-on resist at a much faster 5,000 rpm rate, which yields

a ZEP520A layer of approximately 200 nm. We then bake it at 180◦ C to harden the resist.

After the subsequent electron beam exposure (Fig. 2.18d) we develop and rinse the resist again

in ZED-N50 and ZMD-D respectively (Fig. 2.18e) .

2.4.2 Etching

We use the same C4F8/SF6 gas chemistry to etch the silicon. The etching of silicon is significantly

easier than that of silicon nitride, because it etches at a rate ≈ 4 times faster than the masking ZEP
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Figure 2.18: Fabrication Process for Si Optomechanical Crystals. See text for details. (f)
Two colors of impinging atoms represent different molecule species present in the SF6/C4F8 plasma.

layer. This means that, if done correctly, the sample can be fully etched through with very little

erosion of the mask (see Fig. 2.19). The thesis of Dr. Jeff Hill covers etch optimization processes for

both silicon and silicon nitride in fantastic detail [2].

2.4.3 Wet Chemistry and Final Release

It is in these final steps that the fabrication process really diverges from that of Si3N4. After removing

the resist layer in a piranha clean, we undercut the glass layer below using 48% hydrofluoric acid

(HF) for 90 sec (Fig. 2.18h). Unlike the KOH attacking silicon, this HF acid etch removes the SiO2
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Figure 2.19: Etched Silicon. SEM image of a silicon device after etching showing a thick resist
layer remaining.

layer in an isotropic fashion and so one must be careful not to leave the chip in too long, or else

the released structure will be weakly supported and may start to sag or buckle. A SEM image of

a completed device is shown in Fig. 2.20, where the lighter regions indicate where the HF acid has

etched away the underlying glass layer.

Note: HF is an extremely dangerous acid and should never be handled without the proper safety

precautions. Whereas a typical acid burns the skin on contact (alerting the user to a problem), HF

does no immediate damage to the user. Instead, it painlessly absorbs through the skin until reaching

the bones where the it begins to leach them of calcium. At this point, extreme pain begins, but

this can often be too late for useful medical intervention. Possible exposure should be reported and

treated immediately regardless of symptoms.

2.4.4 Surface Passivation

In principle, the device processing is finished after the previous stage and the sample could be

safely dried at this point. In practice, we find that stopping at this stage leads to devices with

significantly worse optical and mechanical properties [35, 62]. So, the group has developed a series

of quick cleans/etches that remove dangling (lossy) OH bonds at the surface of the material and

also smooths out small imperfections in the Si surface left by the ion etching step. This process

consists of performing a piranha clean (10 min) followed by a dip in dilute 20:1 HF:H2O acid for 60

s. This clean/etch combination is repeated 3 times, always ending with the dilute acid step. If a

chip is accidentally dirtied during use, this 3× process is effective at cleaning the sample and often

returns the chip to previous levels of performance. However, each application strips a small bit of Si
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Figure 2.20: Undercut Silicon Device. SEM image of a silicon device after the HF undercut.
Lighter region surrounding the device indicates area where the SiO2 layer has been removed.

material from the edges, so this ‘magic cleaning’ cycle can only be performed 3-4 times (i.e., 10-12

piranha/HF dips) before the optical and mechanical properties shift too much for the device to be

useful.

2.4.5 Non-Critical Drying

The best part of making these 1D silicon optomechanical crystals is that they usually do not require

the use of a CPD. In this single-beam design there is no small gap that could be collapsed by forces

in the drying stage. Thus, after appropriate rinses in DI water (at least 2× 30 s), the sample can

simply be blow-dried using clean nitrogen (Fig. 2.18i). If the silicon chip does have small gaps or

flexible components it may still require a CPD step.

Finally, the chip is ready to be tested and characterized, as in the experiment in Chapter 5.
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Chapter 3

Demonstration of an
Optomechanical Accelerometer [58]

3.1 Introduction

The monitoring of accelerations is essential for a variety of applications ranging from inertial naviga-

tion to consumer electronics [63] (see Fig. 3.1). The basic operation principle of an accelerometer is to

measure the displacement of a flexibly mounted test mass; sensitive displacement measurement can

be realised using capacitive [64, 65], piezo-electric [66], tunnel-current [67], or optical [68–71] meth-

ods (see Fig. 3.2). While optical readout provides superior displacement resolution and resilience to

electromagnetic interference, current optical accelerometers either do not allow for chip-scale integra-

tion [68] or require bulky test masses [69, 70]. Here we demonstrate an optomechanical accelerometer

that employs ultra-sensitive all-optical displacement read-out using a planar photonic crystal cav-

ity [72] monolithically integrated with a nano-tethered test mass of high mechanical Q-factor [31].

This device architecture allows for full on-chip integration and achieves a broadband acceleration

resolution of 10 µg/
√

Hz, a bandwidth greater than 20 kHz, and a dynamic range of 50 dB with

sub-milliwatt optical power requirements. Moreover, the nano-gram test masses used here allow

for optomechanical back-action [73] in the form of cooling [74] or the optical spring effect [75, 76],

setting the stage for a new class of motional sensors.

Due to the rapid development of silicon micro machining technology, MEMS accelerometers have

become exceedingly popular over the last two decades [63]. Evolving from airbag deployment sensors

in automobiles to tilt-sensors in cameras and consumer electronics products, they can now be found

in a large variety of technological applications with very diverse requirements of their performance

metrics. While sensors for inertial navigation systems require low noise levels and superior bias sta-

bility [77], large bandwidth is crucial for sensors in acoustics and vibrometry applications. However,

there is a fundamental tradeoff between noise performance and bandwidth which can be understood

from the basic operation principle of an accelerometer, illustrated in Fig. 3.3a. When subjected
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to an acceleration a(ω) at frequency ω, a mechanically compliant test mass experiences a displace-

ment x(ω) = χ(ω)a(ω) proportional to the mechanical susceptibility χ−1(ω) = ω2
m − ω2 + iωωm

Qm
.

Here, ωm = 2πfm =
√
k/meff is the (angular) resonance frequency of the oscillator and Qm is its

mechanical Q-factor (see the plot of |χ(ω)| in Fig. 3.3b for Qm = 10). Usually, accelerometers are

operated below their fundamental resonance frequency ωm, where χ(ω) ≈ 1/ω2
m exhibits an almost

flat frequency response. This naturally leads to a tradeoff between resolution and bandwidth, since

the large resonance frequency required for high-speed operation results in vanishingly small displace-

ments. As a result, the performance of the displacement sensor constitutes a central figure of merit

of an accelerometer. For example, resolving an acceleration of 1 µg (where g = 9.81 m/s2) with an

oscillator at fm = 10 kHz requires a displacement resolution of 2.5 fm/
√

Hz.

Figure 3.1: Accelerometer Application Ranges. Re-printed from Ref. [68].

In a cavity optomechanical system, a mechanically compliant electromagnetic cavity is used to

resonantly-enhance read-out of mechanical motion [79]. Such systems have enabled motion detection

measurements with an imprecision at or below the standard quantum limit (SQL) [80–82], corre-

sponding to the position uncertainty in the quantum ground-state of the mechanical object. Clever

quantum back-action evading techniques [83] aside, only for an ideal cavity system (no parasitic

losses) can the actual displacement sensitivity reach the SQL due to fluctuating radiation pressure

forces arising from shot noise of the probe light [6]. The average radiation pressure force, on the oth-

erhand, can be quite large in micro- and nano-scale optomechanical devices, and offers the unique

capability to control the sensor bandwidth via the optical spring effect [75, 76] and the sensor’s
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Proton Radius

Figure 3.2: Common Sensor Resolutions. Plot of several accelerometer’s displacement resolution
density versus operation bandwidth, adapted from Ref. [78]. The red-star point corresponds to the
resolution demonstrated with one of our optomechanical accelerometers, similar to that presented
in this chapter. For a scale reference we have indicated the charge radius of a proton ≈ 0.8 fm.

effective temperature via passive damping [73] or feedback cold-damping [74, 84].

In this work, we utilize an integrated silicon-nitride (SiN) zipper photonic crystal optome-

chanical cavity [72] (see Section 2.1.1) to provide shot-noise-limited read-out of mechanical mo-

tion with imprecision near the SQL, enabling high-bandwidth and high-resolution acceleration

sensing. The resolution of an accelerometer can be quantified by a noise-equivalent acceleration,

NEA =
√
a2

th + a2
det + a2

add, in units of g/
√

Hz. The first term in the NEA is due to thermal Brow-

nian motion of the test mass [85](ath, Section 3.1.1) while the remaining two terms arise from the

aforementioned displacement readout noise (adet, Section 3.1.2) and added noise (back-action) onto

the test mass due to the act of measurement (aadd, Section 3.1.3).

3.1.1 Noise from thermal Brownian motion (ath)

In contact with a heat-bath at room temperature, the test-mass oscillator is subjected to thermal

Brownian motion. From the equipartition theorem, the root-mean-square displacement of a harmonic

oscillator is given by

xrms =

√
kBT

k
. (3.1)
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If we assume the acceleration-noise exerted by the bath to be white, i.e., frequency-independent, its

power-spectral density Sthaa has to obey

x2
rms =

ˆ ∞
0

|χ(ω)|2 Sthaa, (3.2)

such that thermal test-mass motion corresponds to an NEA of

ath =
√
Sthaa =

√
4kBTωm

meffQm
=

√
4kBTγ

meff
. (3.3)

In the device presented in this work, we have ωm = 2π×27.5 kHz, meff = 10−11 kg, Qm = 1.4×106,

T = 295 K, and therefore ath = 1.4 µg/
√

Hz.

Driving the harmonic oscillator with susceptibility χ(ω), this NEA translates into frequency-

dependent displacement noise according to

Sthxx(ω) =
4kBTωm

meffQm

1

(ω2 − ω2
m)

2
+
(
ωωm
Qm

)2 . (3.4)

Thus we see that fundamental to minimizing the NEA is a reduction in the intrinsic thermal

noise, ath, which according to equation (3.3) requires one to maximize the mass-Q product at a

given ωm. In most commercial accelerometers, the Q-factor is relatively low, which demands large

test masses for high resolution. In contrast, in the zipper cavity devices presented here, we use nano-

tether suspension of a nano-gram test mass to yield high intrinsic mechanical Q-factors (1−2×106),

and strong thermo-optomechanical back-action to damp and cool the thermal motion of the test

mass (Section 3.3.2.1).

3.1.2 Detector noise (adet)

The electronic detector noise is usually quantified by its noise-equivalent-power (NEP), which for the

Newport 2117 detector and the transimpedance gain setting we use is on the order of 2.8 pW/
√

Hz.

The optical noise power-spectral-density is then

SNEPPP (ω) = NEP2. (3.5)

Employing Eq. 3.13, the NEA corresponding to electronic detector noise can be derived as

aNEP =
ωo

(1− Td)QogOM
ηinPin

1

|χ(ω)|
NEP. (3.6)

Here, this is found to be aNEP = 4.1 µg/
√

Hz for our system parameters.
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3.1.3 Backaction noise (aadd)

The extra noise, aadd, added by the optical field arises from optical noise that exerts a random force

on the mechanical oscillator via radiation pressure. The optical noise arises from classical amplitude

noise and from intrinsic shot noise. In the following, we consider only quantum back-action noise,

aBA, arising from optical shot noise. With ~g
OM

being the force exerted per photon and for ncav

photons in the cavity, the random acceleration created by optomechanical back-action has a power

spectral density of [86]

SBAaa = 2
(~gOM)2

m2
eff

ncav
4

κ
, (3.7)

resulting in a noise-equivalent acceleration of aBA =
√
SBAaa = 5.6 ng/

√
Hz. Here, owing to the low

quality factor of the optical cavity and the low mechanical frequency, the shot noise radiation pressure

force is approximately white noise for frequencies of relevance near the mechanical frequency. Note

also that we are using single-sided PSDs, hence double the value of the (approximately) symmetric

double-sided PSD. This value is much smaller than the acceleration noise created by the other sources

discussed previously. The frequency-dependent displacement noise created by quantum back-action

is

SBAxx (ω) = 2

(
2~gOM

meff

)2
ncav

κ
|χ(ω)|2. (3.8)

On the peak of the mechanical resonance, this yields

SBAxx (ωm) = 2

(
2~g

OM
Qm

mω2
m

)2
1−
√

Td

κ2

Pin

~ωc
, (3.9)

resulting in
√
SBAxx (ωm) = 23 fm/

√
Hz for the device and experimental conditions described in Figs.

3.4 and 3.8 (Pin = 116 µW). This should be compared to the fundamental standard quantum limited

displacement noise given by

SSQLxx (ω) = SSQLaa |χ(ω)|2 (3.10)

=
2~ωmγm

m
|χ(ω)|2, (3.11)

which on resonance has the simple form

SSQLxx (ωm) = x2
zp

4

γm
. (3.12)

For the device and experimental conditions described in Figs. 3.4 and 3.8, this yields an on-resonance

SQL of
√
SSQLxx = 2.8 fm/

√
Hz.

Note that although our back-action noise is above the SQL, our shot-noise imprecision is not

below the SQL due to optical losses and the additional shot noise contribution from our balanced



52

detection scheme. Only if single-sided coupling is employed and no photons are lost in the optical

path can detection at the standard quantum limit be achieved. Here, optical losses arise both

from taper losses and the inherent two-sided nature of our coupling scheme via the fiber taper (see

Section 1.2.3.1).

3.2 Device Design

Figure 3.3c shows a scanning-electron microscope image of the device studied here, with the test

mass structure and nano-tethers highlighted in green. The fundamental in-plane mechanical mode

of this structure is depicted in Fig. 3.3e and is measured to have a frequency of fm = 27.5 kHz,

in good agreement with finite-element-method simulations from which we also extract an effective

motional mass of meff = 10 × 10−12 kg. The measured mechanical Q-factor is Qm = 1.4 × 106 in

vacuum (see Section 3.3.2). The region highlighted in pink corresponds to the zipper optical cavity

used for monitoring test mass motion, a zoom-in of which can be seen in Figure 3.3d. The cavity

consists of two patterned photonic crystal nanobeams, one attached to the test mass (bottom) and

one anchored to the bulk (top). The device in Fig. 3.3c is designed to operate in the telecom band,

with a measured optical mode resonance at λo = 1537 nm and an optical Q-factor of Qo = 9, 500.

With the optical cavity field being largely confined to the slot between the nanobeams, the optical

resonance frequency is sensitively coupled to relative motion of the nanobeams in the plane of

the device (the x̂-direction in Fig. 3.3c). A displacement of the test mass caused by an in-plane

acceleration of the supporting microchip can then be read-out optically using the setup shown in

Fig. 3.4a, where the optical transmission through the photonic crystal cavity is monitored via an

evanescently-coupled fibre taper waveguide [87] resting on the rigid side of the cavity.

3.3 Characterization

Utilizing a narrow bandwidth (< 300 kHz) laser source, with laser frequency detuned to the red

side of the cavity resonance, fluctuations of the resonance frequency due to motion of the test

mass are translated linearly into amplitude-fluctuations of the transmitted laser light field (see inset

in Fig. 3.4a, Section 1.2.3.2). A balanced detection scheme allows for efficient rejection of laser

amplitude noise, yielding shot-noise limited detection for frequencies above ∼ 1 kHz.

Figure 3.4b shows the electronic power spectral density (PSD) of the optically transduced sig-

nal obtained from the device in Fig. 3.3c. The cavity was driven with an incident laser power of

Pin = 116 µW, yielding an intracavity photon-number of ≈ 430. The two peaks around 27.5 kHz

arise from thermal Brownian motion of the fundamental in- and out-of-plane mechanical eigenmodes

of the suspended test mass. The transduced signal level of the fundamental in-plane resonance,
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Figure 3.3: Overview of accelerometer design. (a) Canonical example of an accelerometer.
When the device (blue frame) experiences a constant acceleration a, a test mass m undergoes a
displacement of x = ma/k. (b) Frequency response |χ(ω)| of an accelerometer on a log-log plot
featuring a resonance at fm =

√
k/m/2π with Qm = 10 and showing a mainly flat response for

low frequencies. (c) False-coloured SEM-image of a typical optomechanical accelerometer. A test
mass of size 150 µm × 60 µm × 400 nm (green) is suspended on highly stressed 150 nm wide and
560 µm long SiN nano-tethers, which allow for high oscillator frequencies (> 27 kHz) and high
mechanical Q-factors (> 106). On the upper edge of the test mass, we implement a zipper photonic
crystal nanocavity (pink). The cross-shaped cuts on the test mass facilitate undercutting the device.
(d) Zoom-in of the optical cavity region showing the magnitude of the electric field |E(r)| for the
fundamental bonded mode of the zipper cavity. The top beam is mechanically anchored to the bulk
SiN and the bottom beam is attached to the test mass. Relative motion of the beams changes the
gap size and thereby shifts the cavity resonance frequency. (e) Schematic displacement profile (not
to scale) of the fundamental in-plane mechanical mode used for acceleration sensing. The structure
can be well described as a mass-on-a-spring system. (f) SEM-image of an array of devices with
different test mass sizes.

the mode used for acceleration sensing, is consistent with an optomechanical coupling constant of

g
OM
/2π = 5.5 GHz/nm. The dotted green line depicts the theoretical thermal noise background of

this mode. The series of sharp features between zero frequency (DC) and 15 kHz are due to mechan-

ical resonances of the anchored fibre-taper. The noise background level of Fig. 3.4b is dominated by

photon shot-noise, an estimate of which is indicated by the red dotted line. The cyan dotted line in

Fig. 3.4b corresponds to the electronic photodetector noise, and the purple dashed line represents

the sum of all noise terms. The broad noise at lower frequencies arises from fibre taper motion and

acoustic pick-up from the environment. The right-hand axis in Fig. 3.4b quantifies the optically

transduced PSD in units of an equivalent transduced displacement amplitude of the fundamental

in-plane mode of the test mass, showing a measured shot-noise-dominated displacement imprecision

of 4 fm/
√

Hz (the estimated on-resonance quantum-back-action displacement noise is 23 fm/
√

Hz,

and the corresponding on-resonance SQL is 2.8 fm/
√

Hz; see Section 3.1.3).

At this optical power the observed linewidth of the mechanical mode is ≈ 2 Hz, roughly 100

times larger than the low power linewidth. As modeled in Section 3.3.2.1, the measured mechanical

damping is a result of radiation pressure dynamical back-action, enhanced by slow thermo-optical
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Figure 3.4: Balanced Detection Experimental Setup. (a) Laser light is split with a fibre
beamsplitter, the signal arm is sent through a fibre polarization controller (FPC) and a fibre taper,
which is coupled to the optical cavity, while the other arm is sent directly to a balanced photo-
detector (BPD). We use variable optical attenuators (VOA) in each arm to balance the powers, and
a power meter (PM) for calibrations. The BPD signal is sent to a proportional-integral controller
(PI) – locking the laser to the side of the optical resonance. The sample is mounted on a shake table
comprised of a shear piezo which can be driven by a function generator. We monitor transduced
accelerations using either an electronic spectrum analyzer (ESA) or a lock-in amplifier. (b), The
left axes show an optical power spectral density (PSD) plot of the BPD signal showing mechanical
modes at 27.5kHz (green). The right axis shows the equivalent displacement noise. The tone at
26 kHz (orange) is transduction of a tone applied to the shear piezo corresponding to an acceleration
of 38.9 mg. The series of sharp features for lower frequencies arises from motion of the fibre taper.
The dashed and dotted lines are theoretical noise levels for shot noise (red), detector noise (cyan),
thermal noise (green), and the total of all noise contributions (purple). The inset is a time trace of
the transduction of an applied acceleration of 35.6 mg at 25 kHz.

tuning of the cavity, which provides the necessary phase-lag for efficient velocity damping. Damping

of the mechanical resonance is typically used to reduce the ringing transient response of the sensor

when subjected to a shock input [88]. In contrast to conventional gas-damping employed in MEMS

sensors [89], optomechanical back-action damping also cools the mechanical resonator [74]. The

measured effective temperature of the fundamental in-plane mode of the test mass, as determined
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from the area under the 27 kHz resonance line in Fig. 3.4b, is Teff ≈ 1 K. This combination of

damping and cooling keeps the ratio of Teff/Qm fixed, and does not degrade the thermally-limited

acceleration resolution of the sensor.

3.3.1 Optical Spectroscopy

The sample is optically coupled via a near-field probe consisting of a tapered optical fibre. The

tapered fibre is brought in optical contact with the device using attocube nanopositioners. Aligned

in parallel to the zipper nano-beams, the fibre taper is mechanically anchored on the struts attached

to the rigid side of the zipper cavity. Launching light from a NewFocus Velocity tunable external-

cavity diode laser into the fibre taper and monitoring the taper transmission then allows us to do

resonant coherent spectroscopy of the cavity mode. Technical amplitude noise of the laser (∼ 10 dB

above the shot-noise level) is suppressed by a balanced detection scheme using a Newport 2117

balanced photodetector that features ∼ 20 dB common-mode noise rejection.

Using Eqs. 1.31 and 1.25 it can be shown that the power in the mechanical sideband is

Pm(∆ = κ/2) = (1− Td)
Qo

ωo
g

OM
ηinPin x, (3.13)

where ωo is the optical resonance frequency, the optical Q-factor is given by Qo = ωo/κ, Td is the

relative cavity transmission dip on resonance, ηin accounts for the system detection efficiency, and

the laser is half a linewidth detuned ∆ = κ/2.

This optical power is measured on a Newport 2117 balanced photo-detector with switchable

transimpedance gain (in these experiments we use gti = 49,600 V/W), generating a voltage output

of Vm = gtiPm. An electronic spectrum analyzer (ESA) calculates the electrical power spectral

density of this optical sideband in units of V 2
m/Z with Z = 50 Ω and expresses it in dBm/Hz. The

conversion follows the relation

PSDESA(ω) = 10 · log

[
(gtiPm(ω))

2

Z
· 1,000

]
. (3.14)

Careful calibration of the parameters in Eq. (3.13) and Eq. (3.14), as well as the optical in-

put power, allows one to calculate the optomechanical coupling g
OM

from the magnitude of the

(known) thermal Brownian motion noise of the mechanical oscillator. In the device presented here,

we have Td = 0.87, Qo = 9,500, ωo = 2π × 195 THz, and ηin = 0.57. At low optical input

power, where negligible back-action cooling is being performed on the fundamental in-plane me-

chanical mode of the suspended test mass and the mode’s effective temperature is the temperature

of the room temperature bath (T ∼ 300K), the optomechanical coupling constant is estimated to

be g
OM
/2π = 5.5 GHz/nm from the area under the Lorentzian centered at 27 kHz of the opti-
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cally transduced displacement noise PSD. This corresponds to an optical displacement sensitivity

of Pm/x = 3.7 nW/pm for the fundamental in-plane mechanical mode of the suspended test mass.

From electromagnetic finite-elements simulations we calculate gOM/2π = 13.5 GHz/nm for dimen-

sions of the zipper cavity as measured with a scanning electron microscope, in good agreement with

the measured value.

3.3.2 Determining Mechanical Quality
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Figure 3.5: Investigation of Mechanical Q-factors. (a), Autocorrelation trace of the thermal
noise driven mechanical amplitude. The signal was obtained from computing the autocorrelation of
the slowly varying magnitude of the mechanical motion returned from a lock-in amplifier, using the
experimental set up of Fig. 3.4. Fitting the trace with an exponential decay yields the time constant
and thereby the mechanical Q-factor of the mode (Qm = 1.4 × 106). (b), Pressure-dependence of
the mechanical Q-factor of a control device with meff = 10−11 kg and 70 nano-tethers showing an
increase from Qm ≈ 53 at ambient pressure to Qm ≈ 2.5× 106 in high vacuum.

The sub-Hz linewidths of our mechanical modes make establishing the quality factor from a

measurement of the power spectral density on a spectrum analyzer infeasible because it requires a

fractional stability of the frequency to greater than the quality factor, � 1/Qm ≈ 5× 10−7, over a

period much longer than the decay time, Qm/ωm > 10 s. However, since the system is driven by a

Gaussian thermal noise process, the autocorrelation of the amplitude 〈X(t)X(t+ τ)〉 can be shown

to decay as e−t/τ from which the quality factor can be obtained as Qm = τωm (see Ref. [90]). The

slowly-varying envelope of 〈X(t)〉 is obtained from the magnitude channel of a lock-in amplifier tuned

to the mechanical resonance frequency with a bandwidth (≈ 100 Hz) much larger than the linewidth

which ensures that small frequency diffusion does not affect the measurement of the envelope. To

obtain the bare mechanical Q-factors the measurement is made at an optical power low enough to

ensure there is no backaction. The autocorrelation is numerically computed and the decay is fit to

an exponential curve with a constant (noise) offset. In Fig. 3.5a we show an autocorrelation trace
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of the device calculated from ≈ 3000 s of data sampled at 100 Hz and fit it to find τ = 7.85 s and

for ωm = 2π × 27.5 kHz that Qm = 1.4 × 106. For lower-Q structures, it was confirmed that this

technique agrees with a direct measurement of the linewidth from a spectrum analyzer.

Since gas damping severely limits the mechanical Q-factor of our oscillator, measurements were

carried out in vacuum. Figure 3.5b shows pressure-dependent mechanical Q-factors using a device

of equal mass as that presented in Fig. 3.5a, but with 70 tethers, resulting in an eigenfrequency of

ωm = 2π × 110 kHz. We find that the device exhibits a Q-factor of 53 at ambient pressure, which

strongly increases when reducing the pressure in the vacuum chamber. In particular, for pressures

below 10−3 mbar – the regime in which we carried out the accelerometry measurements – we observe

Q-factors above 106. These pressures are within range of modern packaging techniques for MEMS

structures [91].

3.3.2.1 Thermo-Opto-Mechanical Cooling

The relatively small test mass makes the device studied in this work highly susceptible to op-

tomechanical and thermo-optical back-action effects. Such dispersive couplings are well known to

renormalize the frequency and damping rate of the mechanical oscillator. In particular, thermo-

optical coupling that arises from a refractive index change of the material upon the absorption of

cavity photons plays a significant role in these devices due to the efficient thermal isolation of our

nano-tethered test-masses in vacuum.

In the parameter regime of our devices, purely optomechanical back-action is a relatively weak

effect due to the low optical Q-factor. For the parameters given above and for a pump laser with an

incident power of Pin = 116 µW half a linewidth red-detuned from the cavity resonance, optome-

chanical back-action alone predicts a frequency shift of merely ω′m − ωm = −2π × 35.9 Hz and a

damping factor of γ′/γ = 1.01.

The Supplementary Information of Ref. [72] gives a detailed derivation of the renormalized oscilla-

tor frequency and damping rate under the influence of optomechanical and thermo-optical coupling.

The system of differential equations that describes the time evolution of the intra-cavity field a, the

oscillator position x, and the cavity temperature shift ∆T is given by

ȧ = − [i∆− (g
OM
x+ gth∆T )] a− κ

2
a+

√
κe
2
ain (3.15)

ẍ = −γẋ− ω2
mx−

~g
OM

meff
|a|2 (3.16)

∆̇T = −γth∆T + κabscth~ωc |a|2 , (3.17)

where gth = −(dn/dT )(ωc/n) is the thermo-optical tuning coefficient, dn/dT is the thermo-optic

coefficient of the material, κabs is the optical loss rate due to material absorption, cth is the thermal
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heat capacity, and γth is the decay rate of the temperature. Linearizing these equations yields the

static solutions

a0 =

√
κe
2

1

i∆′ + κ/2
, x0 =

~gOM

meffω2
m

|a0|2 , ∆T0 =
κabs

γth
cth~ωc |a0|2 , (3.18)

with the renormalized detuning ∆′ = ∆ − g
OM
x0 − gth∆T0 arising from the static optomechanical

and thermo-optical shift. Using a perturbation ansatz x(t) = x0 + ε cos(ωmt), one arrives after

some algebraic manipulation at a modified harmonic oscillator equation for x with a renormalized

frequency ω′m and damping rate γ′ given by

ω′2m = ω2
m −

~ωcncg
2
OM

ωcmeff
Im [g(ωm)] , (3.19)

γ′ = γ +
~ωcncg

2
OM

ωmωcmeff
Re [g(ωm)] , (3.20)

where the transfer function g(ω) is defined as

g(ω) = f
1 + f ′∗f∗

|1 + f ′f |2
(3.21)

with

f(ω) =
1

i(ω + ∆′) + κ/2
− 1

i(ω −∆′) + κ/2
(3.22)

and

f ′(ω) = −i ∆thγth

iω + γth
, (3.23)

and ∆th = gth∆T0 is the static thermo-optical shift of the cavity resonance frequency. In the side-

band unresolved regime where ωm � κ and for thermal decay rates γth smaller than the mechanical

frequency, an approximation of g(ω) yields

ω′2 = ω2 +
2~ncg

2
OM

meff

∆′

∆′2 + κ2/4

[
1 +W

1 + s

]
, (3.24)

γ′ = γ +
2~ncg

2
OM

meff

κ∆′

(∆′2 + κ2/4)2

[
1 + V

1 + s

]
, (3.25)

with the correction factors

W = −
(

2∆th

κ

)(
γth

ωm

)2(
κ∆′

∆′2 + κ2/4

)
, (3.26)

V =

(
2∆th

κ

)(
γth

ωm

)2(
∆′

γth

)
(3.27)

(3.28)
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and the saturation parameter

s =

(
2γth∆th~ωcnc

ωm

∆′

∆′2 + κ2/4

)2(
1 +

1

∆th

(
∆′2 + κ2/4

∆′2
− ω2

mκ

∆′γth

))
. (3.29)
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Figure 3.6: Demonstration of Thermo-Optomechanical Damping and Cooling. The green
bullets show measured Q-factors of the mechanical mode as a function of the optical power, yielding
thermo-optomechanical damping by a factor of ≈ 280. The blue bullets show the corresponding
optical power in the sideband generated by mechanical motion, proportional to the effective mode
temperature. We observe cooling to Teff ≈ 1 K. The dashed green curve corresponds to a theoretical
model that includes optomechanical and thermo-optical back-action.

In order to study the influence of thermo-optical back-action, we measured the Q-factor of the

mechanical mode as a function of the optical power launched into the cavity, shown as the green

bullets in Fig. 3.6. When increasing the optical power to Pin ≈ 300 µW, which corresponds to an

intracavity photon number of nc ≈ 1, 100, the Q-factor shows strong damping and is reduced by a

factor of ≈ 200. Similarly, we measure the area of the mechanical resonance peak from the optically

transduced thermal noise PSD for a series of optical powers, and plot the inferred effective mode

temperature as blue bullets in Fig. 3.6. Clear in Fig. 3.6 is that the effective mode temperature

drops along with the measured mechanical Q-factor.

The observed mechanical damping is much larger than the value predicted by pure optome-

chanical back-action and can be explained when including thermo-optical tuning. The green line
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in Fig. 3.6 was obtained by calculating the modified Q-factor Q′m = ωm/γ
′ using eq. (3.20) with

∆th = −0.05κ and γth = 2π × 9.2 kHz. The latter value is in good agreement with the one from

Ref. [72] (γth = 2π × 10 kHz), which suggests that the time constant of thermo-optical tuning is

dominated by heat-flow from the zipper cavity region to the reservoir formed by the test-mass (or

the bulk in the case of Ref. [72], respectively).

The obtained values for ∆th and γth result in correction factors of V = 12,400, W = −0.011,

and a saturation parameter of s ≈ 3 × 10−36. Accordingly, we expect a significant thermo-optical

correction to damping, as observed, but only a minor modification of the optomechanical spring:

ω′−ω = 2π× 36.2 Hz for the pump power used in the experiment. Indeed, we observed a frequency

shift of 101 Hz, in reasonable agreement with the theoretical value.

3.3.3 Calibration

In order to carefully calibrate the accelerometric performance of the device, the sample is mounted

onto a shake table driven by a shear piezo actuator. Applying a sinusoidal voltage to the piezo

results in a harmonic acceleration a(ω), and thereby a modulation of the transmitted optical power.

The narrow tone at 26 kHz in Fig. 3.4b (orange) arises from an applied rms-acceleration of

arms = 38.9 mg, calibrated using two commercial accelerometers mounted on the shake table. From

the signal-to-noise-ratio of this calibration tone we estimate ath = 2.0 µg/
√

Hz, comparable to the

theoretical value of ath = 1.4 µg/
√

Hz. For a driving tone at 10 kHz, we measure amin ≈ 10 µg/
√

Hz,

limited in this case by photon shot noise.

3.3.4 Linear Dynamic Range

A key requirement for any inertial sensor is linear response over a reasonable range. To check the

linearity of the response of the accelerometer presented in Fig. 3.4b, we varied the amplitude of

a sinusoidal signal sent to the shear piezo at 9.92 kHz and recorded the voltage corresponding

to the peak height of the transduced modulation tone — shown in blue bullets in Fig. 3.7. The

sensor behaves linearly over a dynamic range of 41 dB, with the tone vanishing into the shot noise

floor for an applied acceleration of ≈ 10 µg at a resolution bandwidth of 1 Hz. The green bullets in

Fig. 3.7 show data from a different device with similar geometry but lower mechanical Q-factor (with

relevant parameters g
OM
/2π = 6.36 GHz/nm, ωm/2π = 27.5 kHz, λo = 1539 nm, Qo = 3000, and

Qm = 13,000), which exhibits a linear response over 49 dB. This particular measurement was limited

by the maximum output voltage of the function generator. Ultimately, however, the linear dynamic

range ends when motion of the test mass shifts the optical resonance by a magnitude comparable to

the optical cavity linewidth. For drive frequencies substantially below the resonance frequency, an

acceleration of ∼ 30 g moves the cavity resonance over one linewidth, κ. Thus we predict that the
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full linear range of the sensor presented in Fig. 3.4b should be ≈ 60 dB if we had shaken it to higher

accelerations. For this device, we stopped at 0.1 g for fear of breaking/harming the device. A fear

that was, in retrospect, unfounded.
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Figure 3.7: Demonstration of Linear Dynamic Range. While varying the amplitude of the
acceleration applied with the calibrated shake table at 9.92 kHz, we measure the optical signal
transduced via the mechanical mode. The blue bullets show the transduced signal of the device
presented in the text using the voltage corresponding to the peak height of the modulation tone on
the ESA spectrum, which exhibits linear response over 40 dB. The inset shows the corresponding
PSD spectra from the ESA for modulation tones between 0.1 g and 12.8 µg, taken at a resolution
bandwidth of 1 Hz. The green bullets show data obtained from a different device (with relevant
parameters g

OM
/2π = 6.36 GHz/nm, ωm/2π = 27.5 kHz, λo = 1539 nm, Qo = 3000, and Qm =

13,000) with a larger thermal noise background but very similar optomechanical coupling using
the lock-in scheme depicted in Fig. 3.4, which exhibits linear response over 49 dB, limited by the
maximum voltage output of our function generator, which corresponds to an acceleration of 8 g.
The black lines are linear fits to the data.

3.3.4.1 Acceleration Sensitivity Measurement

For applying AC accelerations to our device, we constructed a shake table comprising a sample

holder plate glued on a shear piezo actuator. Applying a sinusoidal AC-voltage to the piezo creates a

displacement, x0 sin(ωdt), which results in an applied acceleration of −x0ω
2
d sin(ωdt). For calibration

of the shake table assembly, we use commercial accelerometers from Analog Devices of 5.5 kHz

(ADXL103) and 22 kHz (ADXL001) bandwidth. In order to measure the frequency response of

our optomechanical accelerometer, we apply a constant-voltage drive to the piezo and tune its

frequency, while measuring the photodetector output on a lock-in amplifier. After normalizing for

the ωd-dependence of the applied acceleration, this yields the frequency-dependent sensitivity of
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the device. Normalizing an optical noise PSD then allows us to calibrate the noise-floor of the

accelerometer in terms of a noise-equivalent acceleration.

3.3.5 Resolution

Figure 3.8a shows the demodulated photodiode signal normalized to the applied acceleration as

a function of drive frequency, corresponding to the frequency dependent acceleration sensitivity

of the zipper cavity (the inset of Fig. 3.8a shows data from the commercial accelerometers used to

calibrate the applied acceleration). The dashed red line is the theoretical calculation of the sensitivity

without fit parameters and shows excellent agreement. The sharp Fano-shaped features near the

lower frequencies can again be attributed to mechanical resonances of the fibre-taper waveguide.

The broad region of apparent higher-sensitivity around 15 kHz is due to an underestimate of the

applied acceleration arising from an acoustic resonance of the shake table.

The calibrated frequency-dependent NEA, shown in Fig. 3.8b, is obtained by normalizing the

ESA noise spectrum (Fig. 3.4b) by the sensitivity curve (Fig. 3.8a). Between 25–30 kHz the reso-

lution is limited by the thermal noise of the oscillator, while from 5–25 kHz shot-noise limits the

resolution to ≈ 10 µg/
√

Hz. For frequencies lower than 5 kHz, motion of the fibre-taper waveguide

and the environment contribute extra noise. The sharp Fano-shaped feature at 27 kHz arises from

interference with the fundamental out-of-plane mode of the test mass. The dashed red curve corre-

sponds to a theoretical estimate of the NEA which shows good agreement. The dashed green line is

the fundamental thermal sensing limit (ath).

3.4 Breaking 1µg

The device platform demonstrated here straightforwardly allows for further reduction of the NEA.

For instance, ath can be reduced further by increasing the test mass m. In a preliminary study, we

have fabricated a series of devices with test masses ranging from 100 × 10−15 kg to 35 × 10−12 kg

and recorded their mechanical frequency and Q-factor. Figure 3.9a depicts the calculated ath versus

the mechanical frequency of the studied devices, which roughly scales with ath ∝ ω
3/2
m (green line).

Adding mass alone also results in a reduction of the sensor bandwidth; however, by scaling the

number of nano-tether suspensions with the test mass size (see Figures 3.9b and c) the bandwidth

can be kept constant. Moreover, as shown in the inset of Fig. 3.9a, we have found that adding

nano-tethers does not result in a degradation of the mechanical Q-factor. Simultaneously scaling

the width of the test mass and the number of nano-tethers by a factor of 100 from the device shown

in Fig. 3.3c to a mass of meff = 10−9 kg should reduce the thermal NEA to ∼ 150 ng/
√

Hz while

maintaining a sensor bandwidth of 25 kHz. Critically, for g
OM
/2π = 100 GHz/nm as measured in

previous zipper cavity structures [72], the optical input power required to reach this resolution across
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Figure 3.8: Frequency-Dependence of Sensitivity and Resolution. (a) Sensitivity curve as
function of frequency. This curve is obtained by driving the shear piezo with a sinusoidal voltage
and measuring the amplitude of the resulting voltage modulation of the BPD signal using a lock-in
amplifier. The sensitivity curve is obtained by sweeping the frequency and normalising the lock-in
output by the applied acceleration. The dashed red line corresponds to the theoretical expectation
for the sensitivity without fit parameters. The inset shows data from commercial accelerometers
also attached to the shake table (blue and green curves), which are used for calibrating the applied
acceleration. The dashed line is an ω2 fit and extrapolation to frequencies beyond the mechanical
resonances of the commercial accelerometers. (b) Frequency-dependent noise-equivalent acceleration
(NEA) of the device quantifying its broadband-resolution. The plot is obtained by taking the PSD
in Fig. 3.4b and normalising it by the sensitivity curve in (a). The dashed red line depicts the
theoretical expectation for the NEA. The green dashed curve corresponds to the thermal noise ath,
which sets the fundamental sensing limit of the device.

the entire sensor bandwidth is still sub-milliwatt (∼ 850 µW).

3.5 Summary

With a demonstrated acceleration resolution on the order of a few µg/
√

Hz and a bandwidth above

25 kHz, the zipper cavity device presented here shows performance metrics orders of magnitude

better than other optical accelerometers [68, 69] and comparable to the best commercial sensors [92].

These devices, formed from a silicon chip, also allow for the integration of electrostatic tuning-

capacitors [93], fibre-coupled on-chip waveguides [70], and on-chip electronics, all of which enables

convenient, small form-factor packaging, and eliminates the need for expensive tunable lasers. In

addition, nanoscale optomechanical cavities such as the zipper cavity studied here offer the unique

resource of strong radiation-pressure back-action. The optical spring effect, for example, allows

for dynamic tuning of the mechanical resonance frequency, which can increase the low-frequency

displacement response (inverse quadratically with frequency) and decrease thermal noise (with the

square root of frequency). Similar zipper cavity devices have shown low power (sub-mW) optical

tuning of the mechanical resonance frequency over 10’s of MHz (> 200% of ωm) into a regime

where the mechanical structure is almost entirely suspended by the optical field [72]. Also, as
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Figure 3.9: Independent Tuning of Bandwidth and Resolution. (a) Calculated thermal
acceleration noise density of measured devices (green and cyan data points). The starred device is
presented in the text. The green line is that traversed for adding mass with fixed Qm and k, while
the cyan line is obtained for varying k while keeping Qm and meff fixed. Varying both m and k allows
for independent control of bandwidth and resolution, for example along the orange line, where k/m
is constant. The orange square represents theoretical device performance for 100 times increased
test mass as compared to that in the text. The inset shows Qm for the devices corresponding to the
cyan circles in a versus number of nano-tethers attached to the test mass. Changing the number of
nano-tethers from 4 → 42 does not degrade Qm, and allows for a three-fold increase in bandwidth
with only slight increase in thermal acceleration noise. (b–c) False-colour SEM images of devices
with 12 (42) nano-tethers and fm = 46 kHz (83 kHz), while maintaining high quality factors, Qm,
of 1.9×106 (2×106).

demonstrated here, back-action cooling provides a resource to damp the response of the oscillator

without compromising the resolution. Combining all of these attributes should allow not only for a

new class of chip-scale accelerometers, but other precision displacement-based sensors of, for example,

mass, force, and rotation.
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Chapter 4

Room-Temperature Feedback
Cooling of a Mechanical
Oscillator [94]

Optical measurement of the motion of a 940 kHz resonant mode of a silicon nitride nanobeam

optomechanical resonator is demonstrated with a read-out noise (imprecision) reaching 37 dB below

that of the zero-point fluctuation noise of the resonator (the standard quantum limit). Via intensity

modulation of the optical probe laser, radiation pressure feedback is used to cool and damp the

mechanical mode from an initial room temperature occupancy of n̄b = 6.5× 106 (Tb = 295K) down

to a phonon occupation of 〈n〉 = 66 representing a mode temperature of Tm = 3 mK. The five

decades of cooling is enabled by the system’s large single-photon cooperativity (C1 = 4) and high

quantum efficiency of optical detection of motion (ηt = 0.27).

4.1 Introduction

Cavity-optomechanical systems utilize multi-pass scattering of light within a cavity to perform sensi-

tive measurement of mechanical motion, with applications ranging from inertial microsensors [95, 96]

to transducers for interfacing disparate quantum systems [97, 98]. In this work, we integrate a sili-

con nitride nanostring mechanical resonator of motional mass meff = 90 × 10−15 kg and frequency

ωm/2π = 940 kHz, with a 1.5 µm wavelength photonic crystal nanocavity. The strength of the

optomechanical coupling in this structure is characterized by a per photon measurement rate of the

nanostring motion, which is four times that of its intrinsic damping rate. Combined with an over-

all optical detection efficiency of ηt = 0.27, this enables a measurement imprecision which reaches

37 dB below that of the zero-point fluctuation noise of the bare mechanical resonator. Active cancel-

lation of the mechanical thermal motion through feedback on the read-out laser’s intensity realizes

cooling from room temperature down to a phonon occupancy of 〈n〉 = 66± 10. This chip-scale mi-

croresonator, operating in a room temperature environment yet close to its quantum ground-state
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Figure 4.1: Pictorial Description of Feedback Experiment. (a) Laser emits into an optical
fiber which narrows into a fiber taper, where it evanescently couples into the photonic crystal of an
optomechanical device (green). This laser light light is modulated by the motion of the mechanical
resonator and converted to a signal voltage (orange) at the detector. This mechanical signal appears
as a lorentzian peak on an electronic spectrum analyzer (ESA). (b) Same setup as (a) with the
addition of a feedback loop where the detected signal is sent through a derivative circuit and then
drives an electro-optic-modulator (EOM), which modulates the amplitude of the incident laser light.
If the feedback is sufficiently fast, the incoming modulated laser light provides velocity-damping of
the mechanical motion via the radiation pressure force. This is observed as a smaller detected signal
on the ESA.

of motion, has a thermal-noise-limited force sensitivity of 125 aN/Hz1/2, a bandwidth of 200 kHz

around resonance, and a linear dynamic range at one second integration time of greater than 60 dB.

Resolved-sideband radiation pressure cooling has been recently demonstrated [11, 13] as an ef-

fective means to cool a targeted mechanical mode close to its quantum mechanical ground-state of

motion. This technique, sharing similar physics to the resolved-sideband cooling of trapped ions [99],

requires spectral filtering of the upper (anti-Stokes) motional sideband from the lower (Stokes) mo-

tional sideband by a high-Q cavity in which the cavity linewidth (κ) is narrower than the mechanical

resonances frequency (ωm). Demonstrations to date of resolved-sideband cooling of micro- and nano-

mechanical resonators into their quantum ground-state have all required cryogenic pre-cooling. In

the microwave regime [13], bath temperatures Tb . 100 mK have been utilized to enable high-Q

superconducting cavities, whereas in the optical domain [11] more modest bath temperatures of

1-20 K in a helium cryostat have been employed to, among other things, reduce intrinsic mechanical

damping and thermorefractive noise of the optical cavity.

An alternative method of radiation pressure cooling, one which is less restrictive and more

amenable to lower frequency mechanical resonators, relies on low noise optical read-out of mechan-
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ical displacement combined with active feedback of the optical probe intensity [74, 100]. Previous

optomechanical feedback cooling experiments [101–105] have demonstrated the ability to cool a wide

range of mechanical resonators, from suspended large scale kilogram mass mirrors [105] to optically

leviated microspheres [102, 103]. In Fig. 4.1 we sketch the basic elements of a radiation pressure

feedback cooling experiment as performed in this work.

The method of cooling by derivative feedback can be understood by considering the harmonic

oscillator equation of motion with an additional feedback force term:

ẍ+ γiẋ+ ω2
mx =

Fth

meff
− gγiẋme

iθfb , (4.1)

where x(t) is the amplitude of motion of the mechanical resonator, meff is the motional mass of the

mechanical resonator, ωm is the mechanical resonance frequency, γi the intrinsic mechanical energy

decay rate of the resonator, and Fth is the classical thermal noise force. The final term on the

right-hand side of Eq. (4.1) is the feedback forcing term, where g is the unitless gain of the feedback

loop, θfb the phase of the feedback, xm(t) = x(t)+xn(t) is the estimated resonator’s amplitude from

measurement, and xn(t) is the noise of the amplitude measurement of the resonator. As detailed

in Section 4.2, for θfb = 0 and when xn(t) is negligible, this term leads to viscous damping and

cooling of the mechanical resonance, with the mechanical Q-factor and phonon occupancy scaling as

Qm = Qm,i/(1 + g) and 〈n〉 = n̄b/(1 + g), respectively. Here, Qm,i is the intrinsic mechanical quality

factor due to the coupling rate γi to the resonator’s thermal environment, n̄b is the thermal bath

occupancy at ωm, and 〈n〉 is the resulting average phonon occupancy of the mechanical mode. For

the room temperature measurements of this work, n̄b ≈ kBTb/~ωm ≈ 6.5× 106, where Tb ≈ 295 K

is the bath temperature, kB is Boltzmann’s constant, and ~ is Planck’s constant over 2π.

4.2 General Feedback Cooling

We start with the equation of motion for a simple harmonic oscillator, with a general forcing term

on the right-hand-side determined by F(t). Later in the derivation we’ll consider the specifc case of

ideal derivative feedback (F(t) ∗ x = ẋ(t)):

meffẍ+meffγiẋ+meffω
2
mx = Fth − gmeffγiωm (F(t) ∗ (x (t) + xn (t))) eiθfb , (4.2)

ẍ+ γiẋ+ ω2
mx = Fth/meff − gγiωm (F(t) ∗ (x(t) + xn(t))) eiθfb . (4.3)

Here x is the actual position coordinate of the resonator, xn is the measurement noise of the position

coordinate of the resonator, meff is the motional mass, γi is the intrinsic mechanical angular damping

rate, ωm is the intrinsic mechanical angular frequency, Fth is the stochastic thermal force, and θfb
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is an overall phase of the feedback force. Because our experimental results are not limited by our

measurement noise floor, we will drop the discussion of xn(t); its effects can be seen when the cooled

mechanical motion approaches the noise floor [104]. We can Fourier transform Eq. (4.3) into

−ω2x(ω) + iγiωx(ω) + ω2
mx(ω) = Fth(ω)/meff − gγiωm (F(ω)x(ω)) eiθfb . (4.4)

Solving Eq. 4.4 for x(ω) leads to

x(ω) =
Fth(ω)/meff

(ω2
m − ω2) + iγiω + gγiωmF(ω)eiθfb

. (4.5)

In general, the feedback function F(ω) is a complex value (magnitude and phase) and we also include

an overall phase term in the eiθfb . We can separate this into its two components to see how this

feedback modifies the dynamics:

x(ω) =
Fth(ω)/meff

(ω2
m − ω2) + gγiωmRe [F(ω)eiθfb ] + i (γiω + gγiωmIm [F(ω)eiθfb ])

.

(4.6)

And we can now write the modifications to the frequency and damping factor:

ωm =
√
ω2

m + gγiωmRe [F (ω) eiθfb ],

≈ ωm + g
1

2
γiRe

[
F (ω) eiθfb

]
, (4.7)

γ = γi + g
ωm

ω
γiIm

[
F(ω)eiθfb

]
,

= γi

(
1 + g

ωm

ω
Im
[
F(ω)eiθfb

])
. (4.8)

Since under Fourier Transform ẋ(t) → iωx(ω), pure derivative feedback corresponds to F(ω) =

iω/ωm and θfb = 0. Plugging this in, we obtain a feedback force that only modifies the damping:

ωm = ωm, (4.9)

γ = γi (1 + g) . (4.10)

Using these simplifications obtained for pure derivative feedback, we can rewrite Eq. 4.5 as follows:
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x(ω) =
Fth(ω)/meff

(ω2
m − ω2) + iγω

, (4.11)

Sxx =

∞̂

0

dω′〈x∗ (ω)x (ω′)〉 =
Sff/m

2
eff

(ω2
m − ω2)

2
+ (γω)

2 , (4.12)

where Sxx is the power spectral density of the oscillator’s displacement x (ω) with units of meters2/Hz.

Here, the thermal noise force density that drives the oscillator is given by the fluctuation-dissipation

theorem as Sff = 4γikBTb, where Tb is the temperature of the thermal bath and kB is Boltzmann’s

constant. Eq. 4.12 is the form of the mechanical displacement spectral density, Sxx, as measured on

a spectrum analyzer and shown in Fig. 4.9. This can be understood by looking back at Eq. (1.32)

and the surrounding discussion.

We can then see that this modification of γ leads to effective cooling of the mechanical mode’s

temperature, Tm, through a relation from the equipartition theorem:

1

2
kBTm =

1

2
meffω

2
m〈x2〉, (4.13)

Tm =
meffω

2
m〈x2〉
kB

. (4.14)

The expectation value of the squared displacement is given as follows, again assuming pure derivative

feedback:

〈x2〉 =
1

2π

∞̂

0

Sxxdω =

∞̂

0

Sff/m
2
eff

(ω2
m − ω2)

2
+ (γω)

2 dω. (4.15)

Performing the integral in Eq. 4.15 and plugging in for Sff , we find

〈x2〉 =
4γikBTb

meff

∞̂

0

1

(ω2
m − ω2)

2
+ (γω)

2 dω =
4γikBTb

meff

1

4γω2
m

=
γikBTb

meffγω2
m

. (4.16)

If we now insert this into our relation for the mode temperature, Eq. 4.14, and use Eq. 4.10 for the

effective mechanical damping rate, we find that this damping cools the mode as well:

Tm =
meffω

2
m

kB

γikBTb

meffγω2
m

=
γiTb

γ
=

γiTb

γi (1 + g)
=

Tb

1 + g
. (4.17)

This reduced temperature leads naturally to a reduction in the phonon occupation of the mode,
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〈n〉 = 〈b̂†b̂〉, where b̂ is the annihilation operator for the mechanical harmonic oscillator. The key

result is the reduction of this occupation because 〈n〉 ≤ 1 is considered the quantum regime. The

reduction in occupation follows the temperature, since for a thermal sate the phonon occupation is

given by

〈n〉 =
1

e
~ωm
kBTm − 1

≈ kBTm

~ωm
. (4.18)

where we have used an approximation in the final expression that holds when 〈n〉 � 1, which is true

in this work. Finally, this linear relationship between 〈n〉 and Tm yields the following relation:

〈n〉 =
n̄b

1 + g
, (4.19)

where n̄b is the uncooled thermal occupation at the bath temperature, which, again, for ωm/2π =

940 kHz and Tb = 295, is n̄b = 6.5×106.

b d
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67μm 25μm

Figure 4.2: Silicon Nitride Device. (a) False colour SEM image of a device as used in the exper-
iment, made from highly stressed, 415nm thick, stoichiometric silicon nitride released from a silicon
wafer. The device consists of an optical cavity suspended on either side by high aspect ratio tethers
(115 µm×130 nm) tethers. The green and blue overlay regions indicate the optomechanical cavity
and optical coupling waveguide, respectively. (b) Zoomed-in SEM image of the photonic crystal sec-
tion (green) and the adiabatically tapered on-chip coupling waveguide (blue). (c) FEM-simulated
electromagnetic energy density of the fundamental optical mode used in the experiment, with the
outline of the SiN beam shown in white. (d) FEM-simulated first-order differential mechanical mode
profile (displacement exaggerated) of a beam similar to that used in the experiment, but with much
shorter tethers for clarity. In (c) the colorscale bar indicates large (red) and small (blue) energy
density, whereas in (d) the scale bare indicates large (red) and small (blue) displacement amplitude.

This derivation is sufficient to understand the basic physics of the feedback cooling. However,

as discussed more fully in Section 4.11, a more rigorous derivation of radiation pressure feedback

cooling including quantum noise [74] shows that in the limit of large feedback gain (g � 1) the

cooled phonon occupancy is approximately given by
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(
〈n〉+

1

2

)
≈
(
n̄b

g

)
+

(
gnimp +

n
BA

g

)
. (4.20)

Here nimp is the open-loop optical vacuum-noise-limited imprecision in units of phonon number for

the undamped oscillator, and n
BA

is the open-loop quantum back-action noise of the optical position

measurement. The first term on the right hand side of Eq. (4.20)) represents the damped thermal

noise from the bath, and is limited by the achievable feedback gain. The quantum fluctuations of the

probe laser light manifest as shot noise, imposing a relation between the imprecision and back-action

noise sources, n
BA

= 1/(16ηtnimp), where ηt is the quantum efficiency of detection of light that enters

into the optomechanical cavity and is scattered by the mechanical resonator. The last two terms on

the right hand side of Eq. (4.20)) thus represent a measurement limit to the attainable cooling. The

optimal feedback gain is gopt =
√

(n̄b + nBA) /nimp, which yields the minimum attainable resonator

occupancy, (〈n〉min + 1/2) = 2
√
nimpn̄b + 1/16ηt. Thus, we find that two fundamental requirements

for achieving 〈n〉 < 1 are nimp < 1/2n̄b and ηt > 1/9. As discussed further later, broadening of

the mechanical linewidth due to the feedback damping (γ ≈ gγi) also plays a role, and additional

fundamental [74] and technical constraints may limit the maximum attainable feedback gain and

cooling.

4.3 Feedback Cooling with Photons

In this section, we more fully explore the origin and magnitude of the damping factor ‘g’ in our

experiment. We do this by considering the feedback force imparted by the feedback-modulated

photons in the cavity (nmod) given by Ffb = nmod~gOM , and comparing it to the applied force term

on the right-hand side of Eq. 4.4:

Ffb = nmod~gOM = gmeffγiωmF(ω)x(ω)eiθ. (4.21)

To get an intuitive understanding, we now assume ideal derivative feedback and consider only the

magnitude of the feedback (|F(ω)eiθ| = ω/ωm), which for frequencies near the mechanical frequency

(ω ≈ ωm) is simply ≈ 1. Solving Eq. 4.21 for g, we get

g =
nmod~gOM

meffγiωmx (ω)
. (4.22)

And finally, we plug in our expression for nmod in our setup, obtained after a lengthy derivation,
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which has been moved to Appendix B for readability. For simplicity, we leave out the overall gain

pre-factor terms of our full expression for nmod (Eq. (B.20)), which depend on the specifics of the

detection and electronic feedback circuit. This yields the following form for our gain parameter:

g ∝
g2

OM

meffγiωm
n3/2

c . (4.23)

This shows that in our balanced homodyne setup, we expect the gain to increase as n
3/2
c , and thus

the phonon occupation to decrease as n
−3/2
c . Fitting the data shown later in this chapter (Fig. 4.9b),

we find the phonon occupation indeed follows npc , where p = −1.48 ± 0.02 with R2 = 0.9991. This

simple relation should hold until g reaches the limits of cooling for the system, set by the finite

bandwidth of the mechanical mode, measurement imprecision, and the system detection efficiency

as discussed fully in Section 4.11.

4.4 Optomechanical Device

Having thoroughly explored the physics of this feedback, we now consider our particular implemen-

tation of the feedback. The optomechanical device used in this work, shown in Fig. 4.2(a), consists

of a zipper photonic crystal optical cavity [72] supported by nanoscale tethers (see Section 2.1.3).

The structure is fabricated using standard electron beam lithography and plasma etching techniques,

and formed out of a 400 nm thick layer of stoichiometric silicon nitride (Si3N4) deposited on a sil-

icon (Si) handle wafer. The zipper optical cavity (green shaded region of Fig. 4.2(b)) consists of

two micron-wide beams with linear hole patterning, separated by a small gap of s = 150 nm, and

attached to the bulk by 115 µm long nanotethers of width w = 130 nm. The optical cavity design

was simulated and algorithmically optimized [61] using the COMSOL finite-element-method (FEM)

mode solver. The optical cavity mode of interest is the fundamental even mode with electric field

polarization predominantly in the plane of the thin film Si3N4. The central modification of the hole

shape and location strongly confines the electromagnetic energy in the gap between the beams of

the optical cavity (see Fig. 4.2(c)), which results in a large shift in the optical mode frequency (ωc)

with relative in-plane displacement of the beams. Therefore, the mechanical mode of interest is

the fundamental in-plane differential motion of the beams, depicted in Fig. 4.2(d). For the geom-

etry considered here, the optical mode wavelength is in the 1500 nm band (ωc ∼ 190 THz), and

the mechanical mode frequency is ωm/2π = 940 kHz due to the large tensile stress in the Si3N4

film. The simulated motional mass and zero-point motion amplitude of the mechanical mode are

meff = 90×10−15 kg and xzp = 9.7 fm, respectively. The linear optomechanical coupling between the

optical and mechanical modes is quantified by gOM ≡ ∂ωc/∂x, where the generalized coordinate of
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mechanical motion, x(t), is chosen to be the point of maximum in-plane displacement of the beams.

This coupling causes mechanical motion to imprint itself linearly on the phase of light reflected from

the cavity (see Appendix B).

The system dynamics are governed by the interaction Hamiltonian, Hint = ~ncgOM
x̂, where nc

is the number of photons in the cavity. This leads to a radiation pressure force given by Frp =

−∂Hint/∂x = ~g
OM
nc. By modulating the laser intensity input to the optical cavity proportional to

the oscillator’s velocity, −ẋ, we can create a feedback cooling force as in Eq. (4.1). Thus the gOM is

a critical parameter that determines the system’s ability to both detect and damp the mechanical

mode. In principle, small g
OM

can be overcome with higher photon number, but laser power is

typically limited by a host of other issues such as heating, laser noise, and optical cavity stability.

For the optical mode of Fig. 4.2(c) and the mechanical motion shown in Fig. 4.2(b) this coupling

is simulated to be as large as g
OM

= 41 GHz/nm. Normalized by the zero-point motion amplitude,

this corresponds to a vacuum coupling rate of g0 = g
OM
xzp = 358 kHz.

4.5 Experimental Setup

The experimental setup used to characterize the optical and mechanical properties of the zipper

cavity is shown in Fig. 4.3(a). The device is mounted inside a vacuum chamber that reaches a

pressure of 2.5 × 10−5 Pa, sufficient to eliminate the effects of gas-damping of the mechanics. A

tunable external cavity semiconductor diode laser (New Focus Velocity series) is used to provide

both the signal beam on-resonance with the zipper cavity and the local oscillator beam (LO) for

homodyne detection. Laser light is efficiently coupled into and out of the zipper cavity using an

optical fiber taper [87] in combination with an on-chip tapered waveguide (blue shaded region of

Fig. 4.2a,b). Tapering the width of the on-chip waveguide allows for adiabatic mode-conversion

between the waveguide and the tapered fiber placed upon it, as in Ref. [106]. The reflected signal

beam from the zipper cavity, containing x(t), is separated using an optical circulator and sent to a

balanced homodyne detector (BHD). A low-pass filtered (LPF, < 200 kHz) version of the detected

signal is sent to a control circuit (PID), which drives a fiber stretcher (FS) to lock the relative phase

between LO and signal beam, θh, and sets the phase quadrature of the homodyne detected signal. A

band-pass filtered (BPF, 0.2-1.9 MHz) version of the detected signal is sent to an electronic spectrum

analyzer (ESA) to measure the mechanical noise spectrum. In the case of optical feedback, the band-

pass filtered signal is also sent to an analog differentiator circuit (Toptica mFALC), whose output

is sent through a variable phase shifter, ∆φ, and finally onto an electro-optic intensity modulator

(IM), which closes the feedback loop and modulates the signal beam intensity.
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Figure 4.3: Device Characterization and Experimental Setup. (a) Schematic of the optical
and electrical set-up used to characterize and feedback-cool the mechanical resonator. Additional
acronym: fiber polarization controller (FPC). (b) Plot of the laser reflection spectrum when scanned
across the optical mode used in the experiment (blue) and fit (red). Dashed grey line indicates
on-resonance laser position during measurements. The measured loaded optical Q-factor is Qo =
2.5×103, with a waveguide loading to total cavity loss rate ratio of κe/κ = 0.63. (c) Power spectral
density (PSD) of the mechanical resonator’s thermal noise near 940kHz, transduced using the setup
in (a) with the laser on resonance, ∆` = 0, and at low power nc . 1.

4.6 Optical Characterization

This section describes the optical spectrum of our device and its theoretical fit. Fig. 4.4 shows

the full reflection spectrum of our device with three optical modes of our structure in the 1550 nm

telecom band. Of the these modes, the one of highest quality factor at 1561 nm is the one used

for feedback cooling. Considering the fano-lineshapes of the resonances, we fit the wide optical scan

(blue data, Fig. 4.4) to a model consisting of three optical modes and a background, including a

relative phase between each, and find good agreement (red curve). The fit to the mode of interest

at 1561 nm results in ωc/2π = 192 THz, Qo = 2500, κ/2π = 77 GHz, and κe/κ = 0.63, where ωc is

the angular frequency of the optical cavity, Qo is the quality factor, κ is the total angular loss rate,

and κe is the angular coupling rate to the waveguide.
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The photonic crystal used in this work exhibits a series of optical resonances of different symme-

tries and orders. A detailed description of a photonic crystal with a similar structure can be found

in [107]. The main symmetry of interest is that about a plane which runs parallel to the length of

the beams and is situated in the center of the gap between them. The optical field can be either

even (E) or odd (0) about this symmetry plane, where E modes have their fields concentrated in the

gap and the field of O modes experience a node at the center of the gap. Due to their higher field

concentrations in the gap, the resonance frequencies of E modes are more sensitive to the relative

motion of the two beams, x, than the O modes are - i.e., E modes tend to have larger optomechanical

couplings, g
OM
≡ dωc/dx, than O modes. Thus, by measuring how well an optical mode transduces

mechanical motion, we can determine its symmetry. Accordingly, we determined that the modes

at 1551 nm and 1568 nm were of odd symmetry and the mode of interest at 1561 nm was of even

symmetry.

Additionally, there is a symmetry about a plane that runs perpendicular to the length of the

beams and centered at the middle of the two beams. The order of this symmetry was determined for

each mode by comparing the measured optical frequency to that found from COMSOL Multiphysics

simulation [108]. While absolute mode frequency agreement is difficult to obtain due to fabrication

imperfections, relative mode spacings agreed very well between experiment and simulation. The

order of this symmetry is designated by a 1, 2, or 3 next to the symmetry indication (E,O) in

Fig. 4.4. Below the recorded reflection spectra are plots of the simulated energy densities for each

identified optical mode.

From the depth and Fano-like shape of the resonance dip, the coupling rate of the cavity to the

on-chip waveguide is estimated to be κe/2π = 49 GHz. This low Qo was engineered to reduce thermo-

refractive noise, thermal bistabilities, and optomechanical nonlinearities. Importantly, κ � ωm,

which means the cavity field reacts relatively instantaneously to mechanical motion and enables

feedback using cavity photons. Measurement of the mechanical motion, x(t), is performed by setting

the laser frequency (ω`) to the resonance frequency (ωc) of the optical mode (dashed grey line in

Fig. 4.3(c)), and monitoring the phase quadrature (θh = π/2) on the balanced homodyne detector

(see Appendix B). The measured noise power spectral density (NPSD) of the mechanical motion,

Sx(ω), is plotted in Fig. 4.3(c), showing the optically transduced thermal Brownian motion of the

mechanical resonance.

4.6.1 Determination and Locking of Homodyne Phase

As shown in Appendix B our ability to detect mechanical motion is proportional to sin θh, so any

deviation from an angle of, θh = π/2, between the signal and local oscillator arms is effectively

a loss. This sections describes the experimental details behind stabilizing this relative homodyne

phase. This phase angle is set by the relative path lengths of the two arms, and slow thermal drifts
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Figure 4.4: Device Optical Spectrum. Full calibrated reflected device spectrum (blue) with the
fit overlaid (red). The signal level is the ratio of the measured reflected power to the optical power
incident at the optical cavity. Figures below are simulations of the energy density of the identified
optical modes. We use subscripts underneath each λ to indicate the symmetry and order of the
optical mode. Note the difference in optical mode symmetry across the center of the gap between
the beams for the even (E) and odd (O) modes.

or acoustic noise can cause changes in the relative length, thus changing the phase. As shown in

Fig. 4.3a, the low-frequency components of the detected signal (f < 200 kHz) are fed to a digital

feedback system (Toptica DigiLock) that has a high-voltage output panel (Vout ≤ 150 V) which

drives a voltage-controlled fiber stretcher (Optiphase PZ1). This fiber stretcher (FS) consists of a

long distance of optical fiber (∼ 10 m) wrapped around a bulk piezo element. When a voltage is

applied, the piezo stretches and lengthens the fiber, thereby changing the path length of one arm of

the interferometer and thus changing θh.

Shown in Fig. 4.5, we set the proper lock-point of this feedback loop by monitoring the homodyne

output while linearly driving the FS. This voltage sweep (green) modulates the phase, which we

detect as a sinusoidally modulated voltage output proportional to cos θh. The mechanical modulation

at fm = 940 kHz is evident in the blue curve as increased noise on the signal, which decreases
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Figure 4.5: Locking the Homodyne. Plot of a balanced homodyne signal (blue) as the fiber
stretcher voltage is swept (green), with the laser on-resonance with the optical cavity.

rapidly at the maximum/minimum of the curves, where the homodyne setup is insensitive to phase

fluctuations (see Appendix B). By observing this curve, we can measure the voltage that corresponds

to (θh = π/2) as the average voltage between the peak and trough and set this as the lock point

(grey dashed line).

4.7 Measurement of Mechanical Quality

The approximately 1 Hz linewidths of our mechanical modes combined with the minimum resolution

bandwidth of our spectrum analyzer (1 Hz) makes measuring mechanical quality factors from their

spectral density difficult. However, the amplitude of a thermally-driven resonator will be correlated

with itself over a time-scale dictated by the mechanical damping rate corresponding to the coupling

of the resonator to the thermal bath. Formally, it can be shown that the autocorrelation of the

amplitude, 〈|x(t)||x(t + τ)|〉, will decay as e−t/τm , where τm = Qm,i/ωm, and where ωm is the

intrinsic mechanical angular frequency [90]. The measurements of x(t) are made with the laser

on-resonance with the optical cavity and the feedback off. The slowly-varying envelope of 〈|x(t)|〉

is obtained from the magnitude channel of a lock-in amplifier tuned to the mechanical resonance

frequency. We use a bandwidth of ≈ 100 Hz, much larger than the mechanical linewidth, which

ensures that frequency diffusion does not affect the measurement. In Fig. 4.6, we have numerically

computed the autocorrelation and fit the decay to an exponential curve with a constant (noise)

offset and we find τm = 90 ms or equivalently, γi/2π = 1.76 Hz, which for ωm/2π = 940 kHz yields
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Figure 4.6: Mechanical Autocorrelation. Measurement of the intrinsic mechanical quality factor
at low optical power and low pressures using temporal amplitude autocorrelation of the mechanical
resonator’s thermal noise, 〈|x(t)||x(t + τ)|〉, (blue data). An exponential fit (red curve) yields an
intrinsic mechanical damping rate γi/2π = 1.76 Hz and quality factor Qm,i = 5.3× 105.

Qm,i = 5.3 × 105. Furthermore, to be sure that we are not doing significant dynamic back-action

(and thus that we have obtained the intrinsic quality factor, Qm,i) we measured the Qm,i with the

laser on-resonance with the cavity and at low optical powers where such effects are negligible.

4.8 Calibrating Optomechanical Coupling Strength

We perform the calibration of our optomechanical coupling, gOM , by measuring the optomechanically-

induced spring shift for a sweep of laser-cavity detunings (∆ = ω`−ωc), where ω`(ωc) is the frequency

of the laser (optical cavity). The curves are fit to the standard optomechanical frequency shift

equation [72] as derived in Section 1.2.4:

ωm =

√
ω2

m +

(
2~g2

OM
nc

meff

)
∆

∆2 +
(
κ
2

)2 , (4.24)

where ωm is the bare mechanical frequency, nc is the number of intracavity photons, meff is the effec-

tive motional mass, κ is the total optical cavity angular loss rate. This, again for small mechanical

frequency shifts, reduces to:
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ωm = ωm

√
1 +

(
2~g2

OM
nc

meffω2
m

)
∆

∆2 +
(
κ
2

)2
≈ ωm +

(
~g2

OM
nc

meffωm

)
∆

∆2 +
(
κ
2

)2 . (4.25)

A hallmark of this spring shift is that it is anti-symmetric about the center of the optical cavity

(∆ = 0). In Fig. 4.7 we show the measurement of the spring shift (blue data) and the fit curve (red

line), from which, using the other known parameters of our system, we find g
OM
/2π = 36 GHz/nm.

This agrees well with the simulated value from COMSOL [108] of g
OM
/2π = 41 GHz/nm.
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Figure 4.7: Determination of Optomechanical Coupling. Measurement of the mechanical
spring shift for a range of laser-cavity detunings (blue data) with our theoretical curve (red) corre-
sponding to a coupling of gOM/2π = 36 GHz/nm or a vacuum coupling rate of g0/2π = 358 kHz.
This is close to our simulated value of 41 GHZ/nm.

4.9 Verifying Quantum Efficiency

In Fig. 4.3b we plot the reflected optical power normalized by the input power at the device as

the laser frequency is scanned across the optical resonance. The background level of this normal-

ized plot, ηr = 0.43, determines the overall detection efficiency of light emitted from the cavity,

including collection by the optical fiber, optical loss between the collection fiber and photodetector,

and quantum efficiency of the photodetector. This combined with the cavity-coupling ratio (κe/κ)

determines the total detection efficiency of input light that enters the cavity and interacts with the
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Figure 4.8: Measurement Imprecision. (a) Measured wideband power spectral density (PSD)
plotted in units of phonon quanta of the dominant mechanical mode at 940 kHz for nc = 0.17
(blue) and with the signal beam blocked (nc = 0; grey curve). The insets of (a) are simulated
mechanical mode displacement profiles for the two mechanical resonances visible in the spectrum.
The mode at 740 kHz is the poorly transduced in-plane common motion. Frequencies below 200 kHz
are attenuated by a high-pass filter and the small slope of the background noise level is a result of
the frequency-dependent gain of the balanced photodetectors. (b) Plot of the measured imprecision
noise in units of quanta (grey dots), including theoretical prediction (solid cyan curve), theoretical
quantum back-action (solid red curve), and their sum (solid green curve) for the measured ηT = 0.27
with no fit parameters. Corresponding dashed curves are that expected for an ideal continuous
position measurement with ηT = 1. The inset of (b) shows a recorded mechanical spectra at
nc = 0.17 and indicates the imprecision measurement procedure, where nimp = 〈n〉/SNR.

mechanical resonator, ηt = ηrκe/κ = 0.27. Figure 4.8a shows a wideband spectrum of the measured

NPSD (θh = π/2) at an intracavity photon number of nc = 0.17 (blue curve) and with the signal

light off, nc = 0 (grey curve). Measurement of the noise level with the signal light off corresponds

to the signal vacuum-noise level; the agreement of the background levels of the blue and grey curves

indicates the detection is vacuum-noise-limited at a signal power corresponding to nc = 0.17. In

the inset of Fig. 4.8b, we replot the measured NPSD at nc = 0.17 about the thermal noise peak of

the in-plane differential mode. Here we have plotted the NPSD in units of phonon quanta using the

known room temperature phonon occupation. In these units the thermal mode occupancy (n̄b) and

the phonon imprecision level (nimp) can be simply read off from the peak height and the background

level, respectively [55]. A plot of the measured nimp versus nc is shown in Fig. 4.8b as grey circles.

The expected imprecision due to vacuum noise of the signal beam is given by nimp = κγi/(64ncg
2
0ηt),

which is plotted in Fig. 4.8b with no free parameters for the measured ηt = 0.27 (solid cyan curve).

Also plotted are the theoretical quantum back-action due to the shot noise of the signal beam (solid
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red curve) and the estimated total added noise (solid green curve). The minimum total added noise

occurs at a signal power corresponding to nc = 0.12, and represents the standard quantum limit

(SQL) for our measurement set-up, nSQL = 1/(2
√
ηt) = 0.96 [55]. The imprecision is vacuum noise

limited for all but the highest powers, nc & 500, reaching a value 37 dB below the ideal-detection

SQL level.

4.10 Feedback Cooling

We now implement feedback cooling of the main 940 kHz mode as shown in Fig. 4.9a. The laser

is tuned on resonance with the optical mode, while the BHD signal proportional to x(t), is fed

to an electronic feedback circuit, which modulates the intensity of the light incident on the cavity

approximately proportional to −ẋ. At constant electrical gain, optimized for our highest nc, the

number of photons in the cavity is increased, increasing the total loop-gain, and thereby increasing

the observed cooling and damping. In Fig. 4.9a, we demonstrate cooled mechanical spectra at

chosen nc with the fit curves (black) used to extract the area and quality factor. The phonon number

(plotted as blue circles in Fig. 4.9b) and temperature of the mechanical mode are proportional to the

transduced area of the mechanical spectra normalized by nc (see Section B). Therefore, the relative

change in occupation was measured by comparing the normalized transduced mechanical area. In

order to get an absolute calibration, the point at lowest nc in Fig. 4.9b is taken with the feedback

off and at a power low enough that dynamic back-action effects are negligible and thus assumed to

be at room-temperature (295 K) and occupation (〈n〉 = 6.5×106). Of crucial importance to the

interpretation of the data presented in Fig. 4.9 is the fact that the change in the mechanical quality

factor (green dots) follows the change in the measured occupation, which, as discussed earlier, is

a hallmark of feedback cooling. We quantify the agreement by plotting in the inset of Fig. 4.9b

our measured 〈n〉 against Qm (blue points) and find that a linear fit line (red) matches the data

with R-squared value of 0.9988. We determine that the lowest occupation achieved in this feedback

experiment is 〈n〉 = 66± 10, where the linewidth of the resonator has been broadened to 190 kHz.

The uncertainty in 〈n〉 of ±15% is smaller than the data points and is dominated by the 95%

confidence interval of the fits to the spectra.

Our current cooling is limited primarily by two sources. An extra time delay of ≈ 1 µs in our

feedback loop modifies the broadband phase response of the system away from the ideal value of

θfb = 0, which becomes an issue for Qm ≈ 1 (see Section 4.10.2). At our highest experimental

power, nc = 734, we were also nearing the power handling capabilities of our device, limited by

thermally-induced shifts of the optical cavity that prevent stable locking. However, due to our large

initial bath temperature, this heating was not sufficient to cause an observable excess occupation of

the mechanical mode. In the following section we go into the limiting imperfections of our feed-back
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Figure 4.9: Room Temperature Laser Cooling. (a) Plots of the transduced mechanical spec-
tra with the optical feedback engaged for increasing nc, showing the damping and cooling of the
dominant mechanical mode. Color scale indicates photon number of each mechanical scan. The
black curves are the fits to the measured spectra used to extract the damped mechanial Q-factor
(Qm) and phonon occupation (〈n〉). Spectral peaks at 710 kHz and 910 kHz are weakly transduced
mechanical modes, while that at 1 MHz is extraneous electronic noise. Inset: room-temperature
mechanical spectra taken with the feedback off for calibration. (b) Plot of the inferred 〈n〉 (blue
circles; left axis) and Qm (green solid circles; right axis) extracted from the fits to spectra shown
in (a). The first data point (square), at lowest nc, is taken from the data in the inset of (a) with
the feedback off and is used as a room-temperature calibration. The y-axes scales are normalized
such that ideal cold-damping would result in the blue and green data points lying directly on top
of each other. Error bars of ±15% are smaller than data points. Solid black curve is theoretical
prediction of cooling with no fit parameters and the dashed line is minimum possible cooling for our
system if the circuit gain is optimized at each nc(see Section 4.10.3) for full model). Inset shows
the phonon occupation versus mechanical quality factor during cooling run (blue points), and linear
best fit curve (red) with R2 = 0.9988, indicating high correlation.

loop.

4.10.1 System Response and Delay Times

In Fig. 4.10 we present the measured amplitude, phase response, and time delay of the analog circuit,

mFALC110, used to perform the derivative feedback. The cyan dashed line in Fig. 4.10a indicates the
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amplitude response for purely derivative feedback, which is proportional to ω. Over the frequency

range used for this experiment (0.7 MHz - 1.2 MHz), the amplitude response deviates from the ideal

slope by ≈ 0.5 dB and the phase changes by ≈ 1o. The time delay from the mFALC110 circuit,

shown in Fig. 4.10b, is negligible when compared to the mechanical period.
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Figure 4.10: Feedback Circuit Response. (a) Magnitude (blue) and phase (green) response of
the mFALC110 for the settings used in the experiment. Vertical grey dashed line indicates the
mechanical frequency and the cyan dashed line indicates the amplitude response for ideal derivative
feedback, proportional to ω. (b) Total time delay (red) as measured by the network analyzer.
Horizontal grey dashed line indicates one mechanical period.

In Fig. 4.11, we present the amplitude and phase response of the entire feedback loop. It is

important to note that this data was taken off-resonance from the optical cavity so that the highly-

transduced mechanical motion would not dominate the response. However, we still see a trace

of the mechanical response in the jitter of the curve near the mechanical frequency (vertical grey

dashed line). Additionally, the homodyne phase was set to be most sensitive to phase fluctuations

(θh = π/2), as in the experiment. Since the Intensity Modulator (IM) changes amplitude, at this

homodyne phase the detected amplitude response is attenuated and should be considered in arbitrary

units. Nonetheless, in the frequency range of interest, the amplitude response is qualitatively similar

to the response of the mFALC110 alone (see Fig. 4.10a). Of notable difference, however, is that the

overall delay time is now comparable to the mechanical period (see horizontal grey dashed line in

Fig. 4.11b). This delay time was measured to have the following components: ∼ 200 ns from the

optical detector, ∼ 400 ns from the band pass filtering of the feedback circuit, ∼ 180 ns from the

phase-shifter, and the remainder is dominated by the total signal path length. The non-negligible

delay in the rest of the feedback loop requires the inclusion of the phase shifter, which allows us

to apply a feedback force that purely damps with little spring shift. A consequence of this nearly

constant time delay is that the phase of the feedback signal varies linearly near the mechanical

frequency. This becomes important when considering the feedback loop noise in the next section.
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Figure 4.11: Feedback Loop Response. (a) Magnitude (blue) and phase (green) response of the
entire feedback system including electronics and optical train, with the laser off resonance from the
optical cavity. The grey dashed line indicates the mechanical frequency. The jitter centered at the
mechanical frequency is simply a result of residual mechanical transduction and is not indicative of a
rapidly changing response of the circuit. (b) Total time delay as measured by the Network Analyzer
(red). A single mechanical period is indicated by the horizontal grey dashed line.

4.10.2 Wide Span Excess Feedback Loop Noise

This section shows the wide span excess noise (above vacuum noise) observed in our measurement

setup at high optical power. It also describes how the excess time delay in the feedback loop from

the previous section manifests itself as excess noise in the optical power spectral density at high

optical powers. In Fig. 4.12a, we show the wide span NPSD of our device with the lock engaged.

At low optical signal power (nc . 100), the noise floor is set by the vacuum noise of the signal arm

(amplified by the large local oscillator power) and the Lorentzian mechanical response dominates the

signal. At higher signal powers (nc = 734, green) there is ∼3 dB additional broadband noise above

vacuum noise that drops off with increasing frequency, but the mechanical response near 940 kHz

still dominates. This broadband noise is also seen with the feedback lock off (Fig. 4.12b). With a

separate measurement, we have eliminated laser amplitude noise as a possible source. Additionally,

by measuring the same broadband noise off resonance with the optical cavity, we have also eliminated

the dispersive nature of the optical cavity and thermorefractive effects as sources of this excess

broadband noise. Thus, the noise is likely due to residual phase fluctuations in our homodyne setup.

The phase fluctuations likely arise from either the phase noise of the laser, or changes in the relative

signal and local oscillator path lengths due to thermal or acoustic noise. In principle, homodyne

detection is insensitive to frequency fluctuations of the laser since the laser is interfered with itself.

But, in practice, the two arms of the interferometer are never the exact same length, so this relative

path length difference causes the laser in the shorter arm to be interfered with light at an earlier

time from the longer arm.

It is not this broadband noise which limits our cooling, however. At increased laser power
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Figure 4.12: Widespan Noise. (a) The wide-span noise spectra for a series of experimental powers
with the feedback lock engaged and the laser tuned on resonance with the optical cavity. The noise
floor at the lowest photon number shown is due to vacuum noise of the signal arm. (b) The wide-
span noise spectra for a series of experimental powers with the feedback off and the laser tuned on
resonance with the optical cavity. The noise floor at the lowest photon number shown is due to
vacuum noise and its slight downward slope is from the detector’s response. Please note that the
discrepancy between the absolute noise levels between the two plots is because the data were taken
at different detector gain and local oscillator powers.

(nc = 925, red data in Fig. 4.12) there is a noise hump centered near ∼ 800 kHz that dominates our

mechanics and prevents further cooling. We measure the NPSD with the laser off-resonance and the

feedback engaged in Fig. 4.13. Note that because the data was taken off-resonance, there is very

little intracavity power, but for direct comparison we have taken the data at neff
c = 500, which is the

number of photons that would be in the cavity at the same detected optical power with the laser

directly on resonance (∆ = 0). The feedback loop has excess noise humps at ≈ 800 kHz, 1.5 MHz,

and 2.2 MHz. The semi-periodic peaks in Fig. 4.13 correspond in frequency to where the phase of

the entire feedback loop (Fig. 4.11a) is between 0o and 180o modulo 360o, which corresponds to

the regions where the feedback loop has positive gain, amplifying fluctuations rather than damping

them.

As can be seen in Fig. 4.13, detection of this extra amplitude noise can be suppressed by ac-

curately setting the lock point of the homodyne phase. If the homodyne phase is locked to the

phase quadrature (θh = π/2), the detection system is very insensitive to amplitude fluctuations (see

Eq. (B.6)). If we lock to a homodyne phase away from θh = π/2, we begin to detect the amplitude

modulation in the feedback loop, and the noise humps are visible.

However, when we are on resonance with the optical cavity, the mechanical oscillator acts as an

element which can convert amplitude modulation of the light into phase modulation. Even at the

ideal homodyne phase, the amplitude modulated light exerts a force on the mechanical oscillator,

and the resulting displacement of the mechanical oscillator modulates the phase of the light via
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its modulation of the optical cavity resonance frequency (δωc = g
OM
δx). Thus, the extra noise

peaks seen in the off-resonance spectra in Fig. 4.13 get colored by the mechanical response function

(Eq. (4.5)) in the on-resonance cooling data presented in Fig. 4.12a. This explains why in the red

data curve of Fig. 4.12a we see the ∼ 800 kHz peak much larger than the ∼ 1.5 MHz peak. Thus, the

excess delay of ∼ 1 mechanical period, can explain these noise ‘humps’ and why we cannot reliably

damp the mode below Qm ≈ 5. Past a certain power, the gain due to the non-ideal phase of the

circuit becomes too large. As noted in Section 4.11, though, despite this extra time-delay we are

close to the expected cooling from an ideal feedback circuit at this optical power.
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Figure 4.13: Feedback Loop Noise. Examples of the wide-span noise spectra for different homo-
dyne phase, θh, lock points with the feedback lock engaged and the laser far blue detuned from the
optical resonance (∆� κ). Measurement taken at neff

c = 500, which is the number of photons that
would need to be in the cavity to yield the same power at the detector if the laser were on resonance
∆ = 0. The blue data is taken with the homodyne lock point set to the middle of a fringe, i.e.,
θh = π/2 = 90o, making detection insensitive to the amplitude fluctuations. The other data sets are
taken below the mid-fringe point, allowing detection of the amplitude fluctuations.

4.10.3 Theoretical Cooling Results

In this section, we extend the rigorous radiation pressure feedback cooling results from Section 4.11

to our measured feedback response function as seen in Fig. 4.11. The analytical results given in

Eq. (4.35) and Eq. (4.36) do not exactly hold at the highest intracavity photon numbers in our

experiment because of our non-ideal response function. We can accurately estimate our expected

cooling using the spectral response of our system shown in Fig. 4.11 and our calculated magnitude of

the gain at the mechanical frequency given by Eq. (4.22) and Eq. (B.20). We do this by calculating

the mechanical displacement spectrum Sxx (ω) using, again, a formula from Ref. [74] (Eq. 43):
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Sxx = |χ
eff

(ω) |2 [Sth (ω) + Srp (ω) + Sfb (ω)] . (4.26)

Here, Sth is the thermal noise contribution, Srp is the contribution from bare radiation pressure, Sfb

is the feedback noise driving the system, and χ
eff

is the effective mechanical susceptibility, modified

by the feedback gain. They are given by

Sth =
γω

ωm
coth

(
~ω

2kBTb

)
≈ γ 2kBTb

~ωm
≈ γ (2〈n〉+ 1) , (4.27)

Srp =
G2κ

[
∆2 + κ2 + ω2

][
κ2 + (ω −∆)

2
] [
κ2 + (ω + ∆)

2
] , (4.28)

Sfb =
|g (ω) |2

4κηt
, (4.29)

χ
eff

= ωm

[
ω2

m − ω2 − iωγ +
g (ω) G2ωm

κ− iω

]−1

, (4.30)

where G is defined in Eq. (4.33). We calculate the effective phonon occupancy of the mode using

the relation in Eq. (4.41), and calculating the variances in position and momentum with these

integrals over the position spectrum, noting that the spectral density conventions of Ref. [74] requires

integration from −∞ to ∞:

〈q2〉 =

ˆ ∞
−∞

dω

2π
Sxx (ω) (4.31)

〈p2〉 =

ˆ ∞
−∞

dω

2π

ω2

ω2
m

Sxx (ω) . (4.32)

Using these formulas and our known gains produces the solid black line in Fig. 4.9, and reproduced

here in Fig. 4.14. If we allow the gain to be a free parameter, and find the maximum cooling at each

nc, we get the dashed black curve. For comparison, we plot in solid red the theoretical cooling for an

ideal derivative circuit using using our total gain at each nc. In the dashed red, we again allow gain to

be a free parameter, and find the minimum. We see that except for deviations at the highest powers,

these two results are in close agreement. We do not plot the expected phonon occupation for our

system past nc > 5, 000, because at these large gains/photon numbers the calculated displacement

spectrum of the oscillator is highly non-Lorentzian, due to the added phase delay in the system.

Thus, we do not feel confident in assigning an effective temperature to the mode since it is no longer

well-modeled as a simple mechanical mode.

So, as observed, we calculate that our modified response function helps marginally at the powers
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presented in our experiment, but that at higher powers it is a limitation.
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Figure 4.14: Cooling Compared to Calculations. Plot of the cooling results as in Fig. 4.9,
but with our theoretical curves plotted out to higher powers. The open blue symbols indicate the
estimated phonon occupancy, and the green points indicate the measured mechanical Q. Square
points indicate initial calibration points taken with the feedback off. The solid lines are our the-
oretical expectation using our known, fixed, system response function (black) and that expected
for ideal derivative feedback circuit with fixed gain (red). The dashed lines are the minimum ex-
pected phonon number achievable when the gain is a free parameter for our system (black) and ideal
derivative feedback (red).

4.11 Radiation Pressure Feedback Fundamental Cooling Lim-

its

In this section we present, without derivation, the final results from Ref. [74] (Eq. 61-62) for the

variances of the position and momentum of a harmonic oscillator in a derivative feedback loop, with

an on-resonant quantum noise limited laser and the resultant cooling limits. First, though, we define

the terms used:

g0 = g
OM
xzp, G = g0

√
nc, nimp =

κγi

64G2ηt
, n

BA
=

4G2

κγi
, g =

4gcdGωm

κγi
, (4.33)

where xzp =
√
~/2meffωm is the zero-point fluctuation amplitude, G is the coupling rate between

the optics and the mechanics, nc is the intracavity photon number as defined in Eq. (1.20), nimp is

the shot noise imprecision in phonon number, nBA is the quantum back-action of the shot noise in

phonon number, ηt is the total quantum detection efficiency [55], g is a normalized unitless coupling

strength, equivalent to that used in the Section 4.10.3, and gcd is a unitless gain term accounting

for the feedback circuit response.
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The feedback function is taken to be a standard derivative high-pass filter with cut-off frequency,

ωfb:

F(ω) =
−iωgcd

1− iω/ωfb
. (4.34)

Including this, the variances of the two quadratures of the mechanical mode are given by (under

certain assumptions valid in this work, see Ref. [74])

〈δq2〉 =

[
g2nimp +

(
n̄b +

1

2
+ n

BA

)(
1 +

ω2
m

ω2
fb

)](
1 + g +

ω2
m

ω2
fb

)−1

(4.35)

〈δp2〉 =

[
g2nimp

(
1 +

gγiωfb

ω2
m

)
+

(
n̄b +

1

2
+ n

BA

)(
1 +

ω2
m

ω2
fb

+
gγi

ωfb

)](
1 + g +

ω2
m

ω2
fb

)−1

. (4.36)

To determine the fundamental cooling limits from these equations we take the limit of high-bandwidth

(ωm/ωfb)
2 � 1 and g � 1, which allows us to drop some terms, and write a simpler formula for the

position fluctuations:

〈δq2〉 = gnimp +
n

BA

g
+
n̄b

g
. (4.37)

Taking the same limits for the momentum variance, we find

〈δp2〉 = gnimp

(
1 +

gγiωfb

ω2
m

)
+
n

BA

g
+
n̄b

g
+

γi

ωfb
(n̄b + n

BA
) ,

=

[
gnimp +

n
BA

g
+
n̄b

g

]
+ γi

[
g2nimpωfb

ω2
m

+
1

ωfb
(n̄b + n

BA
)

]
. (4.38)

Here we note that the first bracketed term on the RHS of the formula for the momentum variance

looks the same as that for the position variance in Eq. (4.37). For now we will assume that the

second bracketed term on the RHS is small and ignore it. We will revisit this assumption at a later

point and determine when this assumption is valid. To be explicit, our working assumption is stated

below:

γi

[
g2nimpωfb

ω2
m

+
1

ωfb
(n̄b + n

BA
)

]
< 1. (4.39)

This leaves us with the expected form of the momentum variance,
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〈δp2〉 = gnimp +
n

BA

g
+
n̄b

g
.. (4.40)

In order to relate these variances to a phonon occupation number, we equate the total energy of

the oscillator to the sum of its variances:

U =
~ωm

2

[
〈δq2〉+ 〈δp2〉

]
= ~ωm

(
〈n〉+

1

2

)
, (4.41)

where the final term of 1/2 on the right hand side is due to the ground-state (or zero-point) amplitude.

We solve for the occupation as:

〈n〉+
1

2
=

1

2

[
〈δq2〉+ 〈δp2〉

]
. (4.42)

And plugging in our simplified formulas for the variances (Eq. (4.37) and Eq. (4.40)) yields Eq. (4.20):

〈n〉+
1

2
= gnimp +

n
BA

g
+
n̄b

g
. (4.43)

Solving for the optimal g that minimizes 〈n〉, we find

gopt =

√
n̄b + nBA

nimp
, (4.44)

and plugging back in yields

〈n〉+
1

2
= 2
√
nimp (n̄b + n

BA
) = 2

√
nimpn̄b +

1

16ηt
. (4.45)

Where in the final expression we have used the relation n
BA

= 1/(16ηtnimp). From these final results,

we can establish two requirements for reaching 〈n〉 < 1:

ηt >
1

9
(at nimpn̄b = 0), (4.46)

nimp <
1

16n̄b

(
9− 1

ηt

)
. (4.47)

Of course, one needs the technical ability to reach large enough g and low enough nimp, which can
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be achieved with strong enough optomechanical coupling, or high enough laser power. Furthermore,

we must be in a parameter regime that satisfies the assumption we made in Eq. (4.39). Plugging in

gopt into Eq. (4.39) yields the following:

Qm,i > (n̄b + n
BA

)

(
ωfb

ωm

)
, (4.48)

where we have again used
(
ωm

ωfb

)2

� 1. This relation can be further simplified by saturating the

inequality in Eq. (4.47) and relating nimp to n
BA

to yield the following:

Qm,i >

(
n̄b +

n̄b

9ηt − 1

)(
ωfb

ωm

)
. (4.49)

We can simplify further by assuming ηt = 1 and using ωfb ≈ 3ωm, which is numerically found to be

the optimal feedback bandwidth in most cases [74], and this yields the requirement

Qm,i & 3n̄b. (4.50)

This is the approximate intrinsic mechanical quality factor needed to reach the ground state with

this ideal radiation pressure feedback control.

We can also use the full formulas, Eq. (4.35) and Eq. (4.36), to predict the maximum cooling for

a given set of parameters. The theoretical results are plotted for our system parameters, with the

measured detection efficiency (ηt = 0.27) in Fig. 4.15a and for perfect detection efficiency (ηt = 1)

in Fig. 4.15b. At our detection efficiency, the minimum achievable occupation is 〈n〉 ∼= 8, and for

perfect detection efficiency 〈n〉min
∼= 6. However, achieving this level of cooling requires using very

high intracavity photon numbers, which would cause thermal instabilities in our system. For our

system at a maximum intracavity photon number, nc
∼= 734, the best achievable result is 〈n〉

min
∼= 64.

With perfect detection efficiency, at this photon number one could obtain 〈n〉
min
∼= 38. Thus, we can

see that the cooling result presented, 〈n〉 = 66, is very close to that of a system with ideal quantum

noise limits and an ideal derivative feedback circuit at this optical power.

4.12 Conclusion

Cooling to the ground-state (〈n〉 . 1) from room temperature remains a possibility, but requires

improvement to our device and experimental setup. With an ideal derivative feedback circuit and

quantum-limited imprecision, we calculate that we need to modestly increase the detection effi-
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Figure 4.15: Minimum Feedback Cooling Surfaces. (a) Color density plot of 〈n〉 for ideal
radiation-pressure derivative feedback cooling using the measured device parameters, versus nor-
malized gain and photon number. Black line is a contour at 〈n〉 = 66, the minimum phonon number
achieved in the experiment. The white dashed line denotes nc = 734, which is near the maximum
number of photons that can stably occupy the cavity. The minimum occupation is 〈n〉

min
∼= 64 for

nc = 734. The global minimum at the ideal power and gain is 〈n〉min
∼= 8. (b) Same as (a) except

with perfect detection efficiency ηt = 1. The minimum occupation is 〈n〉min
∼= 38 for nc = 734. The

global minimum at the ideal power and gain is 〈n〉
min
∼= 6.

ciency (ηt = 0.5) but primarily require better mechanical quality factor Qm = 30×106 [74]. This

improved quality factor could be achieved by modifying the structure to minimize losses at the

clamp points [42], engineering Silicon Nitride with fewer bulk defects and higher stress [41], or pos-

sibly moving to stressed crystalline thin-films [109]. However, reaching the ground-state with our

demonstrated coupling strength would still require a prohibitively large intracavity photon num-

ber nc ≈ 46, 000. By increasing the coupling to that previously demonstrated in similar devices

(g
OM

= 200 GHz/nm) [107] this can be lowered to a more realistic nc ≈ 1, 400.

Most interesting quantum applications require that the rate at which measurement information

is gained about the mechanics, Γmeas = 4nc(gOMxzp)2/κ, be greater than the rate at which infor-

mation is lost to the thermal bath Γth = γin̄b, a regime recently approached in optomechanical

systems at liquid helium temperatures [110]. Improvements upon the work shown here, by ob-

viating the need for cryogenic equipment, would enable simpler utilization of mechanical systems

for quantum measurement protocols [19]. Futhermore, advanced pulsed measurement schemes are

a promising alternative method to observe non-gaussian distributions such as squeezing [111] or

superpositions [112] at elevated temperatures. But, achieving even modest phonon occupations

(〈n〉 = 5− 10) may allow observation of the quantum asymmetry in the oscillator’s absorption and

emission of phonons [17, 45].

These results have direct application to the field of inertial sensors. Feedback control is useful to
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change the response, bandwidth, and dynamic range of the mechanical systems commonly employed

in sensors of force, mass, acceleration, and rotation [113]. Our results show that a high-quality

resonator can be cooled, damped, and stabilized by 50 dB solely with radiation pressure feedback.

This improves the bandwidth of the resonator’s response from 1.7 Hz to 200 kHz, reducing the

system ring-down time from 0.6 s to 5 µs, while preserving the un-damped thermal noise resolution,

125 aN/Hz1/2. When applied to the field of atomic force microscopy, these results could improve

imaging resolution by reducing thermal noise [114], and the increased sensor bandwidth would allow

monitoring of molecular motion with ∼ µs time resolution [115].
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Chapter 5

Controlling Nonlinear Dynamics in
an Optomechanical Crystal [116]

5.1 Introduction

Utilizing a 1D silicon optomechanical crystal, we investigate the attractor diagram arising from the

radiation pressure interaction. We observe highly-nonlinear driving of mechanical self-oscillations.

We then introduce time-dependent control of the nonlinear dynamics to steer the system towards

an otherwise inaccessible dynamically stable attractor. We find good agreement between our results

and an analytical model. This opens up the door to precision metrology via latching measurements,

as well as providing an accessible method to understanding optomechanics in the nonlinear regime.

The field of optomechanics, concerned with the interaction of an optical cavity and a mechanical

resonator [1], has been of recent interest for its promise for use in sensors [95, 117], nonlinear

optics [56, 118], and demonstrations of macroscopic quantum mechanics [19, 119]. Typically, the

mechanical displacement linearly modulates the frequency of the optical resonance, but this gives

rise to an inherently nonlinear phase modulation, and, through radiation-pressure backaction on

the mechanical element, yields complicated system dynamics [120]. Much of the previous work has

focused on the linearized regime where the interaction with the optical field still gives rise to a host

of interesting phenomena such as a modified spring constant [72], damping or amplification of the

mechanics [76], and EIT-like slow-light effects [57, 121]. Recently, several groups have pushed into

the quantum regime using optomechanical laser cooling to damp a resonator to near its quantum

ground state amplitude [11, 13].

In this work, we instead demonstrate new features and tools in the nonlinear regime of large me-

chanical oscillation amplitudes. Previous experimental works have shown that a blue-detuned laser

drive can lead to stable mechanical self-oscillations [122–125], or even chaotic motion [126]. Theoret-

ical predictions of an intricate multistable attractor diagram [120] have so far eluded experimental

observation, except for the elementary demonstration of dynamical bistability in a photothermally
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driven system [127]. In the present work, we are able to verify the predicted attractor diagram and

further utilize a modulated laser drive to steer the system into an isolated high-amplitude attractor.

This introduces pulsed control of nonlinear dynamics in optomechanical systems dominated by radi-

ation pressure backaction, in analogy to what has been shown recently for a system with an intrinsic

mechanical nonlinearity [128].

5.2 Device and Setup Exposition

We employ a 1D optomechanical crystal (OMC) designed to have strongly interacting optical and

mechanical resonances [61]. We fabricate this nano-scale structure from a free-standing silicon beam

by etching into it a periodic array of holes which act as bragg mirrors for both acoustic and optical

waves [129]. By perturbing this periodicity, a central defect region is created which co-localizes

optical modes designed to fall in the telecommunications band (λc≈1550 nm), and acoustic modes

in the microwave band (ωm ≈ 4 GHz). A scanning electron micrograph (SEM) of the beam is

shown in Fig. 5.1a along with finite element method (FEM) simulations of the optical (Fig. 5.1b)

and mechanical (Fig. 5.1c) modes. To reduce radiation of the mechanical energy into the bulk, the

OMC is surrounded by a periodic ‘cross’ structure which has a full acoustic bandgap around the

mechanical frequency (Fig. 5.1a, green overlay) [130].

The experimental setup is shown schematically in Fig. 5.1d. The silicon chip containing the device

is placed into a helium flow cryostat where it rests on a cold finger at T ≈ 4 K. Input laser light is

sent into the device via a tapered optical fiber, which, when placed in the near-field of the device,

evanescently couples to the optical resonance of the OMC [87]. The transmitted light is detected on a

high-frequency photodiode (D1) connected to a real-time spectrum analyzer (RSA). We also employ

an electro-optic modulator (EOM) in the laser’s path to resonantly drive the mechanical resonator.

Finally, we can send in a low-power, counter-propagating probe laser whose detected spectrum (D2)

is fit to independently measure the mechanical amplitude and the pump-cavity detuning.

Utilizing this setup, we determine that the optical resonance is at λc = 1542 nm with intrinsic

damping rate κi/2π = 580 MHz, giving Qc,i = 3.3×105. However, due to the large coupling to the

taper, the total decay rate is κ/2π = 1.7 GHz, with Qc = 1.2×105. The mechanical mode is found to

be at ωm/2π = 3.72 GHz damped at rate γ/2π = 24 kHz, with Qm = 1.55×105. For this experiment

cryogenic temperatures are needed because the room-temperature mechanical quality-factor is much

lower (Qm ≈ 2×103), requiring such high optical powers that heating effects would obscure the

signatures of the radiation-pressure nonlinearity.
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Figure 5.1: 1D OMC and Experimental Setup. (a) SEM of the optomechanical nanobeam
surrounded by phononic shield (green). (b) FEM-simulated electromagnetic energy density of first-
order optical mode; white outline denotes edges of photonic crystal. (c) FEM-simulated mechanical
mode profile (displacement exaggerated). In (b) the colorscale bar indicates large (red) and small
(blue) energy density, whereas in (c) the scale bar indicates large (red) and small (blue) displacement
amplitude. (d) Simplified schematic of experimental setup. WM: wavemeter, ∆φ: electro-optic
phase modulator, OMC: optomechanical crystal, D1: pump light detector, D2: probe detector,
VOA: variable optical attenuator, PM: power meter.

5.3 Theoretical Treatment

The coupling of the optical resonance frequency to the mechanical displacement yields the interaction

Hamiltonian, Hint = ~g0â
†̂ax̂, where â (x̂) is the optical (mechanical) field amplitude, g0 is the bare

coupling rate, and ~ is Planck’s constant over 2π. The physical mechanical displacement is related

to the field operator by x = xzp〈x̂〉, where the zero-point amplitude of the resonator is xzp = 2.7 fm,

using the effective motional mass as determined through FEM-simulation, meff = 311 fg. Utilizing

a calibration of the per-photon cooling power [11] we find that g0/2π = 941 kHz. These device

parameters put our system well into the sideband resolved regime κ/ωm � 1, but far from that of

single-photon strong-coupling, g0/κ & 1, which has not yet been achieved in optomechanics but is

necessary for many quantum protocols.
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The classical nonlinear optomechanical equations of motion for the mechanical displacement, x,

and the optical amplitude, a = 〈â〉, read [15]:

ẍ(t) = −γẋ(t)− ω2
mx (t) + 2ωmg0xzp|a(t)|2 (5.1)

ȧ(t) =

[
−κ

2
+ i∆

L
+ i

g0

xzp
x(t)

]
a(t) +

√
κe

2
ain, (5.2)

where the strength of the input drive laser at frequency ω` with total power Pin is given by ain =√
Pin/~ω`, which is coupled in at rate κe/2, and detuned relative to the cavity frequency, ωc, by

∆L = ω` − ωc.

Since we are interested in the regime of self-sustained oscillations, where the oscillator is coherent

on time scales much longer than the cavity lifetime, we can take the mechanical motion to be

sinusoidal with amplitude A: x(t) = A sinωmt. As shown in detail in Section 1.3, this allows us to

solve for the optical field:

a (t) =

√
κe

2
aine

iΦ(t)
∑

n

inαne
inωmt, (5.3)

in which we have defined the terms

Φ (t) = −βm cosωmt, (5.4)

αn =
Jn (βm)

κ
2 + i (nωm −∆L)

. (5.5)

Here Jn is the Bessel function of the first kind, n-th order, and its argument is the unitless modu-

lation strength βm = A g0

xzpωm
. This modulation strength β is equivalent to that commonly used to

characterize the strength of phase-modulation in commercial devices such as the EOM used in our

setup (∆φ in Fig. 5.1b). For βm � 1 only the terms oscillating at the mechanical frequency, ωm, are

appreciable, so the interaction can be linearized, and only the first-order radiation pressure terms

are present. However, for β ≥ 1 the higher harmonic terms at each nωm have significant amplitude

and also exert backaction forces which can dominate the first-order component.

The thermal amplitude is too small to observe these effects (βth ≈ 0.01), but a laser posi-

tively detuned from the cavity, or external laser modulation, can provide amplification to drive the

mechanics into the high-β regime. This leads to a rich amplitude and detuning dependent gain

spectrum, which can be solved for [120] by calculating the energy lost in one mechanical cycle from

friction Pfric = meffγ
〈
ẋ2
〉

and comparing it to that gained (or lost) from the optical radiation force

Prad = ~ g0

xzp

〈
|â|2ẋ

〉
across a sweep of amplitude/detuning pairs (βm,∆L

).
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Figure 5.2: OMC Gain Diagram and Transmission Spectra. (a) Calculated gain spectrum
for the OMC in the amplitude-detuning plane. Color scale indicates ratio of power input to that
lost from friction (Prad/Pfric − 1) at Pin = 151 µW. Positive values are regions of mechanical self-
oscillation. Curves indicate power-conserving solution contours at selected input powers: 0.65 µW
(white), 6.5 µW (grey), 151 µW (black). (b) same as (a), with contours now shifted by estimated
thermo-optic effects, where solid lines indicate the path taken by the mechanical oscillator during
laser sweep for same powers as in (a). Dashed lines are contours which are either unstable or
unreachable by a slow sweep of laser detuning. Red arrows indicate direction of laser scan. (c) Plot
of device transmission spectrum for a series of laser powers. Scans are scaled at each power to span
the range 0− 1. Stair-step shape indicates onset of self-oscillation due to progressively higher-order
sidebands. (d) Theoretical calculation of (c), with the optical cavity shift per-photon, cto, as the only
free parameter. (e) Plots of normalized transmission scans as in (c) at Pin = 0.12 µW (top), 0.65 µW
(center), 151 µW (bottom), (blue data) with theoretical curve overlaid (red). (f) Power spectral
density of detected signal near the mechanical frequency for Pin = 151 µW, showing frequency shifts
of the mechanical mode, ∆m, from its bare frequency, ωm/2π = 3.72 GHz. Color scale is detected
power density in dBm/Hz. (g) Total integrated power of spectra in (f), green circles, with theoretical
model (red curve). An over-all scale-factor is the only free parameter. Due to a small drift in the
center frequency of the optical cavity, the highest power scan in (e) and corresponding scans in
(f)-(g) are red-shifted relative to the same power in (c)-(d).

This calculation for our system parameters generates the plot shown in Fig. 5.2a, where the

color indicates the ratio of these terms (more precisely, Prad/Pfric − 1) at a laser input power of

Pin =151 µW. Finally, imposing energy conservation, Prad/Pfric = +1, allows us to solve for the

steady-state solution contours as shown in Fig. 5.2a. Although the entire contour is a physical solu-

tion, the equilibrium is only stable when the power ratio decreases upon increasing the mechanical

amplitude, ∂
∂β

Prad

Pfric
< 0 (i.e., stability is found at the ‘tops’ of the contours) [120]. It is seen that at

the highest powers (Fig. 5.2a, black curve) for most detunings there are multiple possible mechanical

amplitude solutions, βm.

In our device, there is also a small frequency shift of the optical cavity caused by heating due to

material absorption of the intracavity photons. This heating is slow relative to the other time-scales

in the system, but fast compared to our laser scan speed, so we can model it as an effective blue-shift
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of our detuning proportional to ∆
L,0

=∆
L
−cton̄a, where the per photon thermo-optic frequency shift

of the optical cavity is measured to be cto/2π = −216 kHz, and n̄a is the estimated average photon

number [11] for each (βm,∆L). Including this effect, the shifted contours are shown in Fig. 5.2b for

their respective input powers. The solid lines with arrows indicate the expected path traversed by

the mechanical resonator during a slow (adiabatic) laser scan from lower to higher laser frequency

(left to right) at each power. The dashed lines are contours that are either unstable, or unreachable

by this adiabatic laser sweep.

5.4 Main Results

5.4.1 Traversing the Lowest Contour

We first explore the attractor diagram by measuring the system dynamics as the oscillator traverses

this lowest-lying contour for a range of powers. Since we are monitoring the transmission of a

double-sided optical cavity, a dip in transmission is seen when scanning through the cavity resonance,

indicating that light is entering the cavity and being lost to absorption or scattering. At low powers

one sees a single dip (Pin < 0.3 µW, in Fig. 5.2c and top plot in Fig. 5.2e). Upon increasing the

laser power, optomechanical dynamical backaction effects start to drive the system, and beyond

threshold there is self-oscillation of the mechanical element. When this occurs, a large fraction of

the optical photons are now scattered, which results in a second dip of the transmission near the

first mechanical sideband (∆
L,0
/ωm = 1) in Fig. 5.2c. As the power is increased, the self-oscillation

threshold is achieved for detunings at progressively higher mechanical sidebands, ∆ = nωm, resulting

in the stair-step behavior observed in the transmission. Physically, mechanical oscillations at the n-th

sideband detuning are generated by a gain process involving n photon-phonon scattering events. As

mentioned, the overall red-shift of the curves at the highest powers is due to the thermo-optic effect.

We present our theoretically expected transmission spectra in Fig. 5.2d and find good agreement.

More information about the state of the mechanical oscillator can be gained by recording the

spectrum of the signal near the mechanical frequency, as shown in Fig. 5.2f, for the highest power

transmission scan of Fig. 5.2e. We note that backaction effects blue-shift the resonator frequency by

an appreciable amount of about 2 MHz from its intrinsic value of ωm/2π = 3.7 GHz. This frequency

shift (∆m) depends on the laser detuning in a more intricate fashion than a linear calculation of

the optical spring effect would suggest. A measure of oscillation amplitude can be extracted from

the total power in this mechanical sideband, and its dependence on detuning is shown in Fig. 5.2f.

Although the mechanical amplitude βm increases monotonically with detuning, we observe that

the total transduced power oscillates due to the nonlinearity of the detection process. All of these

observations are nicely captured by our theoretical prediction (Fig. 5.2g, red curve). This has been

obtained without fit parameters, except for an over-all scale factor in Fig. 5.2g. This agreement
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allows us to conclude that the oscillator is indeed traveling along the predicted paths through the

attractor diagram shown in Fig. 5.2b.

5.4.2 Time Domain Switching

We have also investigated the time domain behavior of the system near one of the transition points

in the highest power transmission scan of Fig. 5.2e. At this power, due to the thermo-optic shift of

the optical cavity, there exist two stable solution amplitudes on the same contour line (black contour,

Fig. 5.2b) near ∆
L,0

= 0. In Fig. 5.3a we show a quick transmission scan across the optical cavity

taken at Pin = 152 µW (blue curve). Overlaid upon that quick scan we show the DC transmission

(red curve) in the region over which we stepped the laser and recorded 2.5 s of time domain data

at each point. We use our RSA to record both quadratures (I & Q) of the time-varying voltage

coming from the detector. The instrument measures these quadratures by mixing the incoming

signal with carrier at ωcar/2π = 3.727 GHz and filtering the resulting signal over a bandwidth of

∆BW = 2.56 MHz. This has the effect of shifting frequencies at ω down to ω − ωcar. Thus, by

setting ωcar ≈ ωm we are able to record the time domain transmission amplitude of signal near the

mechanical frequency with a sampling frequency significantly less than the mechanical frequency

∆
BW
� ωm. Thus, we represent the amplitude of this mixed down signal as T|ωm

in the y-axis of

Fig. 5.3b.

In the color plot of Fig. 5.3b we show the amplitude distribution (histogram) of the recorded

signal T|ωm
at each detuning point over the range shown in red in Fig. 5.3a. The distribution is

normalized at each detuning such that the sum of the elements is unity. Of interest is the range

∆L,0/ωm = 1.15− 1.21 where there are two distinct maxima. This indicates that in this region the

oscillator is switching between two distinct amplitude states.

We can gain more knowledge of the behavior of the system by considering the amplitude distri-

bution of the two quadratures of the detected signal. This data is shown for a range of detunings in

Fig. 5.4. A coherent state is one with a well-defined non-zero amplitude, but a varying phase, and

thus would show up in this I.Q. plot as a ring. In contrast, a thermal state would show up on the

plot as a 2D gaussian distribution with its maximum centered at the origin. From these plots, then,

it is clear that the two states which the amplitude is vacillating between are both coherently driven

states and not simply thermal states of different amplitude (i.e., different temperatures). The width

of the rings indicates the relative amplitude noise on each state. Interestingly, this amplitude noise

does not seem to be significanytly different in the bistable regime as in the single-state regime.

An example of the telegraph-like switching behavior of the mechanical oscillator is shown in

the temporal signal in Fig. 5.5a (blue curve). At this detuning, it is seen that the oscillator is

spending most of its time in the higher-amplitude state and only dropping into the lower state for

brief periods. For reference, we have included in this plot a normalized plot of the state switching
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Figure 5.3: Bistable Hopping. (a) Normalized transmisison spectrum of the device at Pin =
152 µW (blue data), with region over which time domain data was recorded shown as red curve. (b)
Histogram of total transmitted signal near the mechanical frequency T|ωm

in mV, versus detuning
in the indicated region of (a). Color scale indicates in dB-scale the fractional occupation time
during approximately 2.5s of recorded temporal data (i.e., sum of all probabilities is unity). Bistable
switching region is indicated by two distinct amplitude peaks (near ∆

L,0
/ωm = 1.2).

events, extracted from the blue curve with a thresholding algorithm (red curve). Taking the fourier

transform of this signal yields the spectral content as shown in Fig. 5.5b. The dominant peak near

18kHz (and its harmonics) indicates this is the approximate switching frequency of the oscillator.

However, there is significant variance on this rate which shows up as sidebands around the main

peak. The way the signal harmonics repeat at each n × 18 kHz is characteristic of ‘telegraph’

switching noise. Although we have not done this analysis, it would in principle be possible to use

this switching rate to estimate the noise in the optomechanical system given the known potential

well-depth of the two distinct states (see [120]).

5.4.3 Reaching the Lonely Island

It is readily apparent from Fig. 5.2a that at large optical powers (black contour) there are a large

number of isolated attractor contours at higher oscillation amplitudes. These attractors cannot be

reached by slowly sweeping the detuning of the laser because the contours do not reach down to

zero amplitude, nor can they be reached by noise, since the potential barriers are too high for the

present parameters. However, external time-dependent driving of the mechanical mode allows us to

access and explore the lowest-lying isolated attractor on the red side of the optical cavity (∆
L
< 0),

where the linearized theory predicts only damping of the mechanical mode.

To access this higher island, we use our EOM to phase-modulate the incoming light field. The

resulting oscillating force inside the cavity drives the mechanical resonator towards higher amplitudes
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Figure 5.4: Quadrature Plots. Phase-space density plots of the I(t) , Q(t) quadratures of the
detected signal near the mechanical frequency, T|ωm

, with laser detuning indicated above each
plot. Color scale indicates in dB-scale the fractional occupation time during approximately 2.5s of
recorded temporal data (i.e., sum of all probabilities is unity), as in Fig. 5.3. The distinct reduction
in probability density near I,Q = 0 indicates a non-thermal driven state.

(βm > 1). In this driven regime, the external forcing induces injection-locking, i.e., the mechanical

oscillator becomes synchronized to that of the drive. The resulting increase of oscillation amplitude

can be exploited for control of the system dynamics.

The experimental procedure is displayed in Fig. 5.6a and the corresponding gain spectrum with

its stable contours at the power used (Pin = 43 µW) is shown in Fig. 5.6b. We start with the

pump laser switched on, but the phase modulation off (β
EOM

= 0) at a detuning on the red side of

the cavity resonance. Here, the laser acts to damp the mechanical resonator into a low-amplitude

(cooled) thermal state: βm ≈ 0. Then, we switch on the EOM phase modulation, which rings up

the mechanical resonator (shown in time domain inset of Fig. 5.6a). We now sweep the detuning to

some starting value, ∆
L
, completing the initialization sequence. Finally, we switch off the modulation

(β
EOM
→ 0) and record what final stable state the system relaxes into.

To get a measure of the initial/final mechanical oscillation amplitude, βm, we send in an additional

counter-propagating weak probe beam and scan it across the optical cavity to measure the cavity

transmission spectrum during each period of the sequence, as shown in the panels of Fig. 5.6d.

When the mechanical amplitude is large (βm & 1) the standard single-dip optical cavity is modified

to a multi-featured spectrum symmetric about the cavity center with dips of varying sizes near

each mechanical sideband at ∆p = ±nωm. The varying relative amplitudes of these peaks allow us
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Figure 5.5: Time Domain Data and Switching. (a) time domain of signal amplitude detected
at the mechanical frequency T|ωm (blue curve) showing bi-stable switching behavior at a detuning
of ∆

L,0
/ωm = 1.21 (see top center panel of Fig. 5.4). For clarity, red curve shows a reconstructed

signal of on/off switching events. Time axis is in units of the mechanical period indicating that these
switches are slow relative to the mechanical oscillation frequency. (b) Fourier-transform on all 2.5s
of recorded data at this detuning, main signal peak near 18kHz indicates switching rate, however
the noise on this rate causes many additional sidebands to be present. Telegraph-signal harmonics
of main peak are evident at 18kHz intervals.

to precisely infer βm without relying on calibration of the total detected power. We thus fit this

spectrum to a theoretical curve calculated using Eq. (5.3) with βm and ωc as the free parameters

(Fig. 5.6d, red curves). With our wavemeter independently establishing ω`, from this fit we also

know the true detuning of the drive laser, ∆L (as opposed to using ∆L,0 as in Fig. 5.2).

We repeated this experimental procedure several times for different initial (βm,∆L) states and

recorded the resulting final states, which reveal the flow in the underlying attractor diagram. We

have plotted a representative subset of our results in Fig. 5.6f. We find that after the modulation is

switched off, for a narrow range of initial conditions the system remains trapped close to the predicted

top of the higher amplitude attractor at (βm≈3.5,∆L/2π≈0.7). For more negative initial detunings

or lower initial mechanical amplitudes, the system relaxes into the trivial low-amplitude state, or

gets caught on the lowest-lying contour explored in Fig. 5.2. For detunings beyond ∆
L
/ωm > −0.5,

the system could not be stably initialized due to thermo-optic effects.

5.5 Conclusion

An understanding of these effects as presented here paves the way to exploiting them for use in

metrology experiments. The dynamics that govern whether the oscillator stably latches into an
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Figure 5.6: Initializing into Isolated Attractor. (a) Schematic of state preparation scheme
including change in the two control parameters, modulation drive strength (β

EOM
), and laser-cavity

detuning (∆L), along with the resulting oscillator amplitude (βm). (b) Time-signal of one quadrature
of detected mechanical amplitude during the turn-on of the EOM drive at t = 0, showing amplitude
ring-up. For clarity, the signal is mixed down from the mechanical frequency carrier at 3.7 GHz to
150 kHz. (c) same as (b) with modulation turned off at t = 0 for a case where the system remained
trapped in high-amplitude state; carrier mixed down to 500 kHz. (d) Transmission scans of the low-
power probe laser (blue data points) with with the fit curves (red) used to extract (βm,∆L

) during
each period of sequence, ∆p = ωp−ωc with ωp the probe frequency. (e) Mechanical power spectrum
(green data) near the mechanical frequency during these periods. In the left panel the resonator is
in a cooled thermal state and the red-line is a fit used to extract mechanical parameters. (f) Plot of
the normalized gain spectrum in the detuning-amplitude plane with overlaid stable solution contour
(black solid curve) at Pin = 43 µW. Color scale is (Prad/Pfric − 1). Dashed black curve indicates
unstable portion of contour. Red data points indicate initial (βm,∆L

) and grey data points indicate
the final values, for selected instances of the experimental sequence as shown in (a). White arrows
connect initial/final pairs but do not indicate the actual path taken by the system.

attractor can be a very sensitive function of the oscillator’s displacement [120], thus yielding a precise

measurement of the oscillator’s environment or state. This latching also allows for systems with

memory due to the hysteretic nature of the nonlinearity, as in Ref. [128]. Such latching behavior has

also been predicted [131] and observed in Josephson junctions [132, 133] and arrays of SQUIDs [134].

These results represent the first exploration of the nonlinear attractor diagram observed in an

optomechanical system where the dominant nonlinearity is that of the radiation pressure interaction.

Here, we used external control to initialize the oscillator into an otherwise isolated stable attractor.

We were limited to exploring only this particular red-side attractor by our driving EOM, which could

only achieve β
EOM

. 3.5. With the ability to apply larger drives, or to rapidly detune our laser,

it should be possible to reach higher-lying islands, and more fully explore the attractor diagram

shown in Fig. 5.2a. Since the intracavity photon number is lower in these higher-order attractors,

experiments in this regime would be less affected by the unwanted thermo-optic shifts observed here.
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In future devices where the optomechanical coupling rate is larger, these same nonlinearities can

lead to exciting quantum effects which have been explored theoretically [135].
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Appendix A

Mathematical Definitions

A.1 Fourier Transforms and Spectral Densities

Â(t) =
1√
2π

ˆ ∞
−∞

dωe−iωtÂ(ω)

Â(ω) =
1√
2π

ˆ ∞
−∞

dteiωtÂ(t)

Â†(ω) =
1√
2π

ˆ ∞
−∞

dteiωtÂ†(t)(
Â(ω)

)†
= Â†(−ω)

SAA(ω) =

ˆ ∞
−∞

dτeiωτ 〈Â†(t+ τ)Â(t)〉

SAA(ω) =

ˆ ∞
−∞

dω′〈Â†(ω)Â(ω′)〉

(A.1)
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Appendix B

Homodyne Reflection
Optomechanical Spectroscopy

In this section we derive the relevant equations for balanced homodyne detection [136] and at the

end derive the form and magnitude of our feedback modulated photon number. We start by writing

down the field quadratures of both our signal (s) and our local oscillator (LO) laser beams:

αs(t) = Xs(t) + iYs(t) (B.1)

α
LO

(t) = [|α
LO
|+ δX

LO
(t) + iδY

LO
(t)] eiθh , (B.2)

where we have written the local oscillator as a large steady state value |αLO | with small modulations in

its two quadratures (where |α
LO
|2 = PLO/~ω`) and Xs(t), Ys(t), δXLO

(t), δY
LO

(t) are all real valued.

We have also included an overall phase factor θh between the LO and signal arms because we will see

this is a critical parameter in measuring the mechanical displacements. These two beams are mixed

on a beamsplitter and the output is sent to two detectors whose voltage outputs are subtracted.

The reflected path of the beamsplitter picks up an extra π phase shift due to the reflection:

αD1 =

√
1

2
α

LO
(t) +

√
1

2
αs(t), (B.3)

αD2 =

√
1

2
α

LO
(t)−

√
1

2
αs(t). (B.4)

The detected voltage is proportional to the difference of the measured output currents I1,2 = |αD1,2|2,

which after multiplying out and subtracting, gives

I− = I1(t)− I2(t) = α
LO

(t)α∗s (t) + α∗
LO

(t)αs(t). (B.5)
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Plugging in the quadratures for α
LO

and αs, using Eqs. B.1 and B.2, and taking |α
LO
|2 � |αs|2, we

find

I−(t) = |α
LO
|eiθh (Xs(t)− iYs(t)) + |α

LO
|e−iθh (Xs(t) + iYs(t))

= 2|α
LO
| [cos θhXs(t) + sin θhYs(t)] . (B.6)

And now we plug into the signal field our solution of the optical reflected field in steady state

αs ⇒ âss
out from Eq. (1.19):

αs = ass
out = ain

(
1− κe

κ
2 − i∆

)
= ain

1− κeκ

2
(

∆2 +
(
κ
2

)2) +
−i∆κe

∆2 +
(
κ
2

)2
 , (B.7)

where we have dropped the hats (ˆ) to indicate this treatment of the optical field is classical. Now,

we separate the signal field into its quadratures:

Xs = ain

1− κeκ

2
(

∆2 +
(
κ
2

)2)
 , (B.8)

Ys = ain
−∆κe

∆2 +
(
κ
2

)2 . (B.9)

These are the phase and amplitude quadratures of the light field, not to be confused with the

quadratures of our mechanics. The mechanical resonator modulates the cavity frequency to first

order as ωc,0(t) = ωc,0 + x(t)gOM , which means that we can find the modulation of our light field

quadratures by taking derivatives with respect to the detuning, ∆, defined previously,

dXs

d∆
= ain

κeκ∆(
∆2 +

(
κ
2

)2)2 , (B.10)

dYs

d∆
= ain

 −κe(
∆2 +

(
κ
2

)2) +
2κe∆2(

∆2 +
(
κ
2

)2)2

 . (B.11)

If one sets the laser directly on the center of the optical cavity, ∆ = 0, one finds,
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dXs

d∆
= 0 (B.12)

dYs

d∆
= ain

−4κe

κ2
. (B.13)

So, to first order, only the Ys quadrature contains the mechanical motion, and looking at Eq. (B.6),

we see this detection is maximized at θh = π/2. Our detected signal is then,

dI−
d∆
|∆=0 = −2 |α

LO
| ain

4κe

κ2
. (B.14)

Note that maintaining the optimal phase, θh = π/2, between the arms of the homodyne setup is

an important experimental concern (see Section 4.6.1 for more details). Also, note that in a direct

detection scheme, the detected signal would be proportional to |ain|2, thus we can think of the

homodyne detection scheme as providing amplification proportional to
|α

LO
|

|ain| . This is an important

technique which allows signals to be amplified until the vacuum noise of the signal port dominates

the noise floor of the detector as done in this work. From here, we can substitute the number of

photons in the optical cavity, nc into Eq. (B.14). The number of photons in the optical cavity is

given by

nc = 〈â†ssâss〉 =
κe

∆2 + κ2

4

|ain|2. (B.15)

Now the magnitude of the signal field can be solved for in terms of nc and plugged into Eq. (B.14):

|ain| =
√
nc|∆=0

√
κ2

4κe
, (B.16)∣∣∣∣dI−d∆

∣∣∣∣
∆=0

= −2 |α
LO
|
√
nc

√
4κe

κ2
, (B.17)

where we have simplified, nc ≡ nc|∆=0 . The transduced optical power from the mechanical motion

is given by

Pm(ω) = ~ω`
∣∣∣∣dI−dx

∣∣∣∣√ηx(ω) = ~ω`
∣∣∣∣dI−d∆

∣∣∣∣ ∣∣∣∣d∆

dx

∣∣∣∣√ηx(ω) = ~ω`
∣∣∣∣dI−d∆

∣∣∣∣ gOM

√
η〈x(ω)〉. (B.18)

Here, η, is the loss in the signal arm from the cavity to the detector. From this detected mechanical
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power with the laser on resonance, (∆ = 0), we can get the magnitude of the voltage output of

the derivative feedback circuit, Vfb, which is proportional to ω and includes some electrical circuit

response, ge = |ge(ω)|, in units of V/W:

|Vfb(ω)| = gePm(ω) = 2ge~ω` |αLO
|
√
nc

√
4κe

κ2
g

OM

√
η〈x(ω)〉. (B.19)

This feedback voltage is sent to an intensity modulator which, as long as the applied voltages are

not too large, linearly changes the optical power. For a given input voltage, the intensity modulator

changes the optical power emitted by the fraction Vinπ/Vπ, where Vπ is the voltage needed to go

from maximum transmision to total extinction of the outgoing light in the electro-optic modulator.

The number of photons in the cavity will change by the same fraction. Therefore, we can write the

following expression for nmod:

|nmod| = nc|Vfb(ω)| π
Vπ

=
2ge~ω` |αLO |

√
4κe

κ2 gOM

√
ηπ

Vπ
〈x(ω)〉n

3
2
c . (B.20)

This expression is employed in (Section 4.3) to show that for fixed loop-gain, we expect our homodyne

feedback cooling to increases with n
3
2
c (as observed in Fig. 4.9).
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optomechanical accelerometer,” Nature Photonics 6, 768–772 (2012).
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(2012).
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[56] A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter,

“Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).

[57] A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill,

D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with

optomechanics,” Nature 472, 69–73 (2011).

[58] A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip

optomechanical accelerometer,” Nature Photon. 6, 768–772 (2012).

[59] A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an

ultrahigh-Q two-dimensional photonic crystal cavity,” Applied Physics Letters 97, 181106

(2010).

[60] Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, and S. Noda, “Statistical studies of photonic

heterostructure nanocavities with an average Q factor of three million,” Optics Express 19,

11916–11921 (2011).



117

[61] J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optome-

chanical crystal cavity with acoustic radiation shield,” Applied Physics Letters 101, 081115

(2012).

[62] M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon

microphotonics,” Applied Physics Letters 88, 131114 (2006).

[63] G. Krishnan, C. U. Kshirsagar, G. K. Ananthasuresh, and N. Bhat, “REVIEWS Microma-

chined High-Resolution Accelerometers,” Journal of the Indian Institute of Science 87, 333–

361 (2007).

[64] C. Acar and A. M. Shkel, “Experimental evaluation and comparative analysis of commercial

variable-capacitance MEMS accelerometers,” Journal of Micromechanics and Microengineer-

ing 13, 634–645 (2003).

[65] H. Kulah, J. Chae, N. Yazdi, and K. Najafi, “Noise analysis and characterization of a sigma-

delta capacitive microaccelerometer,” IEEE Journal of Solid-State Circuits 41, 352– 361

(2006).

[66] S. Tadigadapa and K. Mateti, “Piezoelectric MEMS sensors: state-of-the-art and perspectives,”

Measurement Science and Technology 20, 092001 (2009).

[67] C. Liu, A. M. Barzilai, J. K. Reynolds, A. Partridge, T. W. Kenny, J. D. Grade, and H. K.

Rockstad, “Characterization of a high-sensitivity micromachined tunneling accelerometer with

micro-g resolution,” Journal of Microelectromechanical Systems 7, 235–244 (1998).

[68] U. Krishnamoorthy, R. Olsson III, G. Bogart, M. Baker, D. Carr, T. Swiler, and P. Clews,

“In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor,”

Sensors and Actuators A: Physical 145146, 283–290 (2008).

[69] K. Zandi, B. Wong, J. Zou, R. V. Kruzelecky, W. Jamroz, and Y. A. Peter, “In-plane silicon-

on-insulator optical MEMS accelerometer using waveguide fabry-perot microcavity with sil-

icon/air bragg mirrors,” in 2010 IEEE 23rd International Conference on Micro Electro Me-

chanical Systems (MEMS) pp. 839–842 (2010).

[70] W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer,

K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,”

IEEE Journal of Selected Topics in Quantum Electronics 8, 148–154 (2002).

[71] T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating ac-

celerometer,” IEEE Photonics Technology Letters 8, 1677–1679 (1996).



118

[72] M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and

nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).

[73] T. J. Kippenberg and K. J. Vahala, “Cavity Opto-Mechanics,” Optics Express 15, 17172–17205

(2007).

[74] C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a

micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,”

Physical Review A 77, 033804 (2008).

[75] T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, and N. Maval-

vala, “Optical Dilution and Feedback Cooling of a Gram-Scale Oscillator to 6.9 mK,” Physical

Review Letters 99, 160801 (2007).

[76] Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical Oscillation and

Cooling Actuated by the Optical Gradient Force,” Physical Review Letters 103, 103601 (2009).

[77] P. Zwahlen, A. M. Nguyen, Y. Dong, F. Rudolf, M. Pastre, and H. Schmid, “Navigation

grade MEMS accelerometer,” in 2010 IEEE 23rd International Conference on Micro Electro

Mechanical Systems (MEMS) pp. 631–634 (2010).

[78] X. Jiang, F. Wang, M. Kraft, and B. E. Boser, “An Integrated Surface Micromachined Ca-

pacitive Lateral Accelerometer with 2 µG/rt-Hz resolution,” Solid-State Sensor, Actuator and

Microsystems Workshop, Hilton Head Island 2, 2–6 (2002).

[79] V. B. Braginskii and A. B. Manukin, Measurement of weak forces in physics experiments

(Chicago, University of Chicago Press, 1977).

[80] I. Tittonen, G. Breitenbach, T. Kalkbrenner, T. Mller, R. Conradt, S. Schiller, E. Steinsland,

N. Blanc, and N. F. de Rooij, “Interferometric measurements of the position of a macroscopic

body: Towards observation of quantum limits,” Physical Review A 59, 1038–1044 (1999).

[81] G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky,

J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision

below the standard quantum limit,” Physical Review A 82, 061804 (2010).

[82] C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring nanomechanical motion with a

microwave cavity interferometer,” Nature Physics 4, 555–560 (2008).

[83] J. B. Hertzberg, T. Rocheleau, T. Ndukum, M. Savva, A. A. Clerk, and K. C. Schwab, “Back-

action-evading measurements of nanomechanical motion,” Nature Physics 6, 213–217 (2009).



119

[84] D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,”

Nature 444, 75–78 (2006).

[85] K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and

D. Rugar, “Quality factors in micron- and submicron-thick cantilevers,” Journal of Microelec-

tromechanical Systems 9, 117–125 (2000).

[86] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, “Introduction to

quantum noise, measurement, and amplification,” Reviews of Modern Physics 82, 1155–1208

(2010).

[87] C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, “An optical fiber-taper

probe for wafer-scale microphotonic device characterization,” Optics Express 15, 4745–4752

(2007).

[88] Y. T. Li, S. Y. Lee, and H. L. Pastan, “Air Damped Capacitance Accelerometers and Velocime-

ters,” IEEE Transactions on Industrial Electronics and Control Instrumentation IECI-17,

44–48 (1970).

[89] H. V. Allen, S. C. Terry, and D. W. De Bruin, “Accelerometer systems with self-testable

features,” Sensors and Actuators 20, 153–161 (1989).

[90] B. C. Stipe, H. J. Mamin, T. D. Stowe, T. W. Kenny, and D. Rugar, “Noncontact Friction

and Force Fluctuations between Closely Spaced Bodies,” Physical Review Letters 87, 096801

(2001).

[91] D. Sparks, S. Massoud-Ansari, and N. Najafi, “Chip-level vacuum packaging of micromachines

using NanoGetters,” Advanced Packaging, IEEE Transactions on 26, 277 – 282 (2003).

[92] Honeywell, Q-Flex datasheet (2011).

[93] M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen,

S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,”

Optics Express 19, 24905–24921 (2011).

[94] A. G. Krause, T. D. Blasius, and O. Painter, “Optical feedback cooling of a photonic crystal

optomechanical resonator,” In preparation (TBD).

[95] A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip

optomechanical accelerometer,” Nature Photonics 6, 768–772 (2012).

[96] E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer

for ultrasensitive force measurements,” Nature Nanotechnology 7, 509–514 (2012).



120

[97] R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and

K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,”

Nature Physics 10, 321–326 (2014).

[98] A. Joeckel, A. Faber, T. Kampschulte, M. Korppi, M. T. Rakher, and P. Treutlein,

“Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system,”

arXiv:1407.6820 (2014).

[99] C. Monroe, D. M. Meekhof, B. King, S. Jefferts, W. M. Itano, and D. Wineland, “Resolved-

Sideband Raman Cooling of a Bound Atom to the 3D Zero-Point Energy,” Phys. Rev. Lett.

75, 4011–4014 (1995).

[100] S. Mancini, D. Vitali, and P. Tombesi, “Optomechanical Cooling of a Macroscopic Oscillator

by Homodyne Feedback,” Phys. Rev. Lett. 80, 688–691 (1998).

[101] P.-F. Cohadon, A. Heidmann, and M. Pinard, “Cooling of a Mirror by Radiation Pressure,”

Phys. Rev. Lett. 83, 3174–3177 (1999).

[102] T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere

in vacuum,” Nature Physics 7, 527–530 (2011).

[103] J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin Parametric Feedback Cooling

of a Laser-Trapped Nanoparticle,” Physical Review Letters 109, 103603 (2012).

[104] M. Poggio, C. L. Degen, H. J. Mamin, and D. Rugar, “Feedback Cooling of a Cantilevers

Fundamental Mode below 5 mK,” Physical Review Letters 99, 017201 (2007).

[105] LIGO Scientific Collaboration, “Observation of a kilogram-scale oscillator near its quantum

ground state,” New Journal of Physics 11, 073032 (2009).
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