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SUMMARY

Part I gives a short introduction end some physical inter=
pretation of von Kermin's Fourier integral method applied to the super=
sonic wing theory. A short review of other current contributions to

the linearized supersonic wing theory is alsc given.

Part II presents the general formulation of the von Kérman
method from the view-point of the elementary harmonic sources and
doublets, First, the disturbance potential and the velocity components
of a genersl flat body with symmetrical airfoil are derived. Next,
the disturbance potential of the lifting surfacg is presented. 1In
contrast to the well-known conieal flow method, the von Karmsn's
Fourier integral method can treat a complicated plén-foim as & whole,
without considering the detailed geometry, as long as the airfoil

sections are similer.

Part III‘applies the ﬁethod to the investigation of the
wave drag of the non-lifting wing in supersonic flight. A general
solution of the wave drag is obtained for the wing with a diamond-
shaped sirfoil, This solution allows a free choice of a number of
the important geometrical paremeters, For instance, the wing may be
swept forward or backward, tapered or reversed tapered to any ratio.
A numbervof the limiting cases are also investigated. For the prac-
tical aerodynamic problems, two useful femilies of'wing‘plan-form
with the fixed taper ratios 0.2 and 0.5, any swept angle, aspect
ratio and ¥Mach number are shown in the graphs. A particﬁlar'appli-

cation is demonstrated.



The reversed flow theorem on wave drag as shown by
von Karmen and Heyes checks well with the consequence of the general
solution. This method shows a certain elegence as no conical flow
assumption is needed, and the mathematics is powerful enough to
obtain a general solution covering all possible geometrical arrange-

ments without detailed considerations,

While in recent years, the direct problem of finding the
1ift distribution with given angle of attack on the wing has been
well solved by the method of conical flow and others, the present
treatment in Part IV, on the other hand, investigates the inverse
problem, i.¢., to find the downwash distribution in the plens of the
wing with a pre-assigned lift distribution. This is particularly
favorable with the present method. . The general solution of the
downwash of the tapéred swept wings is derived for the case that a
constant 1ift distribution on the wing is pre-assigned. Of course,
the method may be applied te any lift or pressure distribution along
the wing chord end span. The corresponding angle of attack on the wing
and the dowrwash cen be determined everywhere in the plane of the wing.
To demonstrate the downwash distribution as given by the general solu=-
tion, grephs ere given to show the downwash of a number of wings in-
cluding a swept~back tapered wing with supersonic treiling edge end a

delta wing.
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I. Introduction

In 1935 von Karmén first showed that the concept of Fourier
integral cen be adopted to explain the similarity of Prandtl-wing
theory end the theory of plemning surfaces (Ref. 1). 1In 1946, von
Kérman introduced the Fourier integral method to the supersonic wing
theory*, The pressent author under his guidance investigated this
problem to & certain extent and some of the results have been pub-
lished (Ref. 2, 20). This report may be considered as an extemsion
of the earlier worke As no published literature is available at this

/ / -
moment, some of Prof. von Kédrmén's work is repeated.

As far as the linearized theory on supersonic wings is concerned,

the conical flow method was originated by A. Buseman (Ref. 3) and
later reproduced and extended by Lagerstrom (Ref. 4), Hayes (Ref. 5)
and Stewart (Ref. 8), Laporte and Bartel (Ref. 7) and Snow (Ref. 8).
Bach of the later investigators approached the saﬁe method with slight-
ly different technigues but confirmed the essential results of Busemann,
Bsfore the conical flow method was known in this country, Jones
visualized the advantages of the cﬁnical flow and showed some of the
basic physical concepts (Ref., 9) in 1945, Later in 1946, with the
concept of conical flaw, Jones also showed the invariance of the
Lorentz trensformation and introduced the obligue coordinate in the

swept wing problem (Ref. 10).

*An unpublished report of Northrop Aircraft Company. There is
another unpublished report by H. R. Lawrence of the same company
on the same subjeet, which is not available to the author owing
to restriction,
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The chellenge of supersonic flight hes aroused the interest of
many other investigators. Puckett showed that the source integration
method could be applied to‘study'ths wave drag problem (Ref. 11).
lLater Evaard extended this method to solve the lift problem of a finite
wing of any planform (Refs. 12 and 13). Heaslet, Lomax and Jones
extended Volterrats and Hadamard's method to the supersonic wing probe
lem (Refs, 14 and 15). Gunn in England applied the operational ealeu=
lus to the same problem (Ref. 17), There ars many other works, all

of which cannot be mentioned in this paper.

On the other hand, the basic concept of the Fourier integral
method is quite different from the above methods, Instead of the
concept of conicel flow or simple sources and doublets, the preseat
method considers along the direction of flight infinitely long harmonic
source (or doublet) lines, the behaviour of which is quite equivalent
to the harmonic acoustic source (or doublet) in the sequence of time,
BEach of such source lines will send out a divergent eylindrical wave
in the radial dirsction. The poﬁential of such a wave can be expressed
by the product of the source=-strength function and the Hankel function
of the second kind., For each Eigen value or freéuency of the source
oscillation, there is a corresponding Eigen value in tﬁe argument of
the Hankel function. By means of the principle of superposition, sn
arbitrary distribution can be synthesized with such simple harmonic
sourceé of different frequencies, if the frequency spectrum is a con=
tinuous one. The most powerful technique to serve such & purpose is

the Fourier integral method.
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Now in the finite wing problem, the boundary is considered as a
source sheet rather than as source lines. Such a sheet can be built
up by integrating elements of a source strip which is equivalent to

a source line in behaviour,

The above simple physical interpretation may help to give some

insight into the mathematical theory to be discussed later,

The present peper first tries to give an introduction to von
Kérmén's method in terms of the physical rather then mathematical
approach., Then, the wave drag of a tapered swept-back wing is treated.
This work is not a duplication of some other concurrent investigators

(Refs. 18, 19, and 21), but rether a supplementary contribution.

The next step is the lift problem. For a given angle of attack,
on an arbitrary wing planform it is rather difficult to solve the in-
tegral equation analytically. But for a given lift distribution the

downwash angle can be evaluated anywhere in the plane of the wing.

The method has a certain elegance. The complete physical effect
of the arbitrary wing can be expressed in terms of one integral. The
finite number of discontinuous points of the Fourier-Bessel integral
gives exactly the right picture, This method is being applied at

present, and there are a number 6f aspects to be extended later.
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II. General Theory of the Fourier Integral Method

2.1 The Elementary Solutions.
In the three-dimensionsl, steady supersonic flow of & com=-
pressible non-viscous fluid, the differential equation of motion in

the linearized sense is

é’é‘ * 2z (r1%-1) étx
(2.1)
where the velocity potential ¢ is defined by grad. y5=7 X2
T ui o+ vy o+ whk  the disturbance velocity vector. It mey be
considered as a two-dimensional wave equation if x ‘is conceived as
time in the seguence of which the future can contribute nothing to the

present. This oen be shown clearly by introducing t = (Mxl) i.on

%yy * ¢Zz o 741:‘
(2.2)
with the dimension in the flow direction being equivalent to time t.
After this transformation, the velocity of propagation in (2.2) is
unity., In this sense, Eq. (2.2) becomes the potential problem of the
acoustic source and doublet in the (y, z) plane in the sequence of time
as pointed out by ven Kérmén (Ref. 2)s After this transformation, the
wing planform has to be readjusted so that the Mach waves are inclined
backward at 45° from the flow direction. As an example of transforma-
tion, Fig. 1 gives a swept-back wing in the physical and trensformed

plenes,
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For & simple time=-dependent harmonic source with strength cos A7
(where % is the frequency of oscillation) located at ( %, 0 )
in the (y, 2z) plane, the elementary solution of Eq. (2.1) as given

by Lamb p. 297, (Ref. 17) is

Sé(f,y,z; n,0) = Re [— é—e"/u/%w(lr)]

. | (2.3)
where r = \/ (.‘/‘7)2 +2z° and HO(Z)(/\T‘) is the Hankel function of
the second kind of zero order. It is easy to show that the solu'bioﬁ
satisfies both the differential eguation (2.2) and the given boundary
piAt |

condition cos \f = Re. . At very large Ar equation (2,3)

becomes ,
4 (4r) 2 -——~—3_n_’ﬁ cos [A(-7) - Z]

‘the amplitude of which is inversely proportional to the square root

of re

Physieally, this represents the potential at the point (v, 2) at‘
time t due to a harmonic source of strength cos ( Xt) et distance r
from it. Such disturbance potential is called a divergent wave, This
disturbance propagates from the point (7, 0 ) with a circular or
cylindrical symmetry.

Now if the strength of the source is the real part of F( )e‘./w

At
instead of just e”1 s the potential must be also written as



é(é!{, z;7, 0) = Re [—‘4‘{/:'(/\) e‘./]{'%(z)(/\r)}

(2.4)

whers

F(A) = F(/U +E(A)

(2.5)
with Fg (=A) = Fo (L) being even and Fj (=A) = = P ( X) being odde
It is understood that F () is a function representing the strength,

amplitude and location of the source line,

If two such harmonic lines source of squal but opposite strength =
the negative one located at ( 77, —;;) and the positive one at ( 7 ,—‘—g;)
respectively « approach each other, a harmonic doublet line can be

obtained if ]éinz F(L)-§ = G(X) is considered as a finite quantity.
> .

#;{ll Zz; ’7;0) ?+o{¢(fylzJ7’§) ¢({y: 17;?)}

l/m a¢o g_.,kez{ I'A'G(A.)EU\{/?/ (J\} }

?90 3§
(2.8)
where the doublet is defined as positive, and
G(A) = G, (A) +4 G, (1)
(2.7)

with Gy (=A) = Gy (A) being even and Gy (=A) =-G; () being odd.
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It is very interesting to see that this potential of the doublet no
longer has cylindrical symmetry, but is antie-symmetrical with respect
to the (t, y) plane. The harmonic doublet line will be used for the

wing 1ift problenm.

2.2, The Boundary Conditions in the Supersonic Wing Problem.

Let a flat body or wing occupy a regionm in the (x, y) plane
and o/, and & ere the slopes of the upper and lower wing surfaces at
(x, y) respectively. Both are smell in comparison to unity and ars zero
outside the finite region occupied by the wiﬁg. Within the approxima-‘
tion of the linearized theory, the wing may be considered equivalent to
the superposition of a symmetrical body and a mean=-cambered surface,
The slope of the symmetrical body is

Q(o = E/' (o s - o)

(2.8)

and the slope of the cambered surface is

« = 24 (ep + )

(2.9)
where 05., and 05, are considered at the (x, y) plane, In other words,
the eoffect of exact location of o, end &, in the z direction is en~
tirely neglected in the future treatment which has been shown by von
Karmén to be consistent with the linearized theory for the flat body.
From the sbove, the required boundary condition of the potential is the

normal velocity to the wing surface which is zero, 1.8,



(2.10)

In this case of a flat body, where the vertical velocity component

predominates, equation (2.10) can be approximetely expressed by

#
M T /Sz}z=+0 =V
(2.11)
w_ = /-;—j)z:—o = - o
(2.12)

where w, and w_ represent vertical velocity components on the top and

bottom of wing surfaces respectively.

Besides; et a distance far eway from the wing in the upper stream,
a=v = w = 0 if there is no other disturbance generated in the upper

stream,

2.3+ Supersonic Flow about a Flat Symmetriecal Body.
If & source line at ( 7, 0) is of any arbitrary strength with
finite time ¢t the potential can be built up with Eq. (2.4) by means of
a Fourier integral as
[ =]
¢,(f Z):Re d/\ /__ UL-F ) t'A{H(Z}(Ar)}
° ’y’ Z (A)V = ©

20
(2.13)

where U is the free stream velocity, The insertion of U in the source

strength function is purely for future convenience.
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The above integral and its first derivatives exist if the Lebesgue
integral .

/ A}F(x,»,)h{,‘z’o»)}d,t < oo

The above condition is automatically satisfied, if the source with
finite strength is in action for a finite time interval. Actually, the
equation (2,13) can be considered as the potential of & body of revolue
tion. Sometimes, in conforming with the convention of the complex

Fourier integral the above equation may be conveniently written as

oo

S (ty,z) = = ?" dx F(An) e"'“‘//o‘”ur)

(2.14)
with the understanding that the path of integration of A is slightly
above or below the origin in the complex '\ plane so that the singu=

larity at A= 0 can be detoured. It can be verified easily because

Fl-ay) =5 n)-iF(y) = F(Ly)
,/7,012)(_)'_): /7{’(2);//\,‘6/7!} = //0(2){)*' e“"”} = 4P (2r)

where the ‘'bar'represents the complex congugate of the original funetion.
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Now, the above source line may be considered as an elementary strip of
a source sheet in the (t, y) plane of width &% with the above strength
as the strength demsity per unit area. It is clear then that the

potential due to a source sheet built up by such strips is

9?,(4%2)"'/5’5,'47

to 80
= = g‘]d»y /;A £, n) e‘.’w/;(,(z)(z) r)
-0 - a0

(2.152)
For the convenience of the later development, we introduce
FlA,n) = ‘Z/- F (2 ;7) into equation (2.15a), and then
Uc .
é(ziy,ﬂ—“é/“’z dx Fan) eAEHP )
® - (2.15b)

One thing should be pointed out. Owing to the structure of the integral,
the source sheet may be composed of & number of discontinuous portions
in the y direction, and the source strength function £ (A, %) may be
different in different discontinuous portions, but it must bé the same
within one comtinuous portion of the source sheet. Of course, in that
case, the integration with ggspect to 77 has to be broken up accord=-
ingly. Physically, this integral can give the potential not only due

to one wing but a number of wings or flat bodies in (t, y) plane.

Thersfore, it can be used to study the interaction between wings.
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The above equation will be the disturbance potential of the wing,
if we can identify the relation of the source strength function
Fe 10X, n) €} with «®, or the thickness distribution of the
symmetrical flat body., This can be obtained from the boundary condi-

tion. Differentiating Eq. (2.15) with respect to z we have

e .
2% _ . L{a'/ d»,/ua £, e 1 %0 2
oz 2 :

- o0 - 0o

(2.18)
Now as z - O the integrand goes to zero except in the neighborhood of
=y, = Zon 6 ; dy = 20 = Zon™! A
=Y. Lot y=YtZion & y =2 sec"0 46 where @ = Zox Z

Besides /;f(z)fﬂl r) =

ZaAr when Ar or r — Q0.

Thus Eq. (2.18) becomes

7
- _ (% e
(w)z=+o 22)2=+0 y ]
<
bin =UZ : .
= 2 >t0 _}—i A eM{ /lf().}y'fzzldna)”—af lzseclada
- 80 ..E
z
. . Z
Sim Y da et ) FlA ysztanb) o6
Z-»+o0 7T
~%0 -
z
LY ' ) A
= — [dd eA f1a,y) [do = U/o’-l Fl,y) e
. I3 :
-o0 .-%Z —~a

(2.17)
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From Eq. (2.10)

oo

(w) ={- (a,) = U flay) e
Z =+0

Z=+0

£

-6

4y (4,40 = [ O 0 e
~oa

or

:2/[7{(),5) casdt +£ () sin At ] A
0

(2.18)
From the theory of complex Fourier transform,
X o
-/ -iAf
Flay) = 557 | «lty)e ot
"% (2.19)

This means, that if we choose the source distribution f (1,y) to be
the Fourier transform of the distribution of thq angle of attack, the
potential ,do will represent the flow about the wing autometically,
Since the angls of attack is zero ahead of the wing, it can be shown
easily that equation (2.15) satisfies the second boundary coﬁdition of

equation (2.12).



2.4 Supersonic Flow about a Lifting Surface
By means of the same argument as in the last section, we can
fornmulate the potential for a doublet shest of strength
Re G(A 1) e")‘f from equation (2.6).

vl T |
Z /d»; ﬁﬂi G (ay) &M HP0n.Z
—60 o .

é(ég/)z) = Re

(2+20)
whore & constant, free stream velocity U is introduced., In order to.

simplify the later development, we further introduce

'L G (47) .

9(Am) = = - LA 3, (An) g, (4)

e

(2.21)
where with equation (2.7)

(A
3,(39) = -’l-%—f;—ﬂ (even)
gl,m= i_%_(__{"’) (oda) (2.22)

n .

Then equation (2.20) ean be written

. v [-%) o
#(Lyz) = Re [ —2m'z/am //»L g0,2) €M HP (2r). 5 }
Twe ¢ (2423)
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We cen write the above equation entirely in the complex form

: (z
Pty z) =-m ﬁ»{/a’k 9(2,%) ey - 2
-0 —o0o

(2.24)
if the path of )\ is restricted to be chosen below A=0 in the
A =complex plane, This is necessary because
9/‘/\,7]) =-70 {A')”) 44‘-9,//\;7) = g(/]; '7}
(2.25)

on the other hand, we cannot choose the path of A with Re A > O

in order to detour A=0, In that case,

#5ar) 2B 0re ™) <= KB ) -2 7, 00) # 4, (2r)

it is impossible to reduce back to the original equation (2.23),
In order to find out whether equation (2.24) for the doublet sheet
satisfies all the boundary conditions of the wing or not, we first

differentiate it with respect to t.

% oo
P-] : ;
——ff- =m' —a-ié- =m'u= —m’Ut'/dyf\ oA j/@,ﬂ)eu’f/'"w{) "‘)';‘.?
ot ox Z e

(2.26)
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The above equation is identical in form with equation (2.16)
if we replace £ ( A, n) by g-'g (A7) Therefore‘, with the same
technique, we can show that as 2 —> 0, 7>y

6o
(%’F - ”/4/\ £ 9009)

-0

(2.27)
Now in the linearized theory, the pressure coefficient on

the wing surfece is

to) = = ¢,
G (4 9,40) = (52
(2428)
Thus with équation (2.27)
G (4, 9,+9) :/0’/‘6’"“\9(2,5')
(2.29)

With the Fourier trensferm, we can find
oo
/ ('/)Z(
9(/\) ) :Z_/_"Z 0/2[6’ C}(tz;yl+oj

- 60

(2.20)
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Therefore, if the pressure distribution aleng the wing chord
is given, the doublet distribution function g (X, y) of frequency
2—)7;— cen be obteined with equation (2.36). g (X, y) is independent
of the pressure distribution of the neighboring chord. Furthermore

if A—>0 in equation (2.30), we have

50
gl =L lal G g, +)

-a0

o (2431)
On the right side, /a't‘ G (£,4,40) 1is equal to one-half of the
)

G
1lift coefficient distribution, -2—’ (;7‘ at yo Thus, g(0, y) is

_ 7 [0 ‘ .
equivalent to pr ( 57 at y which has e physical meaningf

Unfortunately, the equation (2.23) of doublet sheet potentisl
satisfies one of the boundary conditions on the wing, but does not
satisfy the other required boundary condition, that the potential
and its derivetives must Ba gzero far ahead of the body. In other
words, the correct potential must be zero as t -2, Let us

investigate the potential of the doublet sheet at large 4 t.

Introduce »=A¢f{ into equation (2.23)

bo oo
' ] /, 047 " 4
b0 f-2mitfar [ R 502 ) e )2
60 -89

(2.32)
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- 0 (Bry > 21T
For very large t we can write /4 (7': ) ——
end
g(Z,2) = 90y
‘ - =)
livn _ Lim Re{—4M/UL/Z d (0 /e‘.zJ
= —_— = 0%9) | S——dV
¢ > a0 9é/éjgz) ¢ — Zeo 2 773 v
—o o
6o
—z‘—>fo~= /4”‘[{/2 473(0)7)/5mu
- -}
P4
;Z(f_w z)= X = 1 2m U\/‘;E"’?ﬂ(@’?)
-
(2433)

where the negative sign corresponds to t=-¢o and positive sign

*
corresponds to ¢t = + ¢ X ( 4,4) being independent of t satisfies
ox? 2y*
the doublet shest potential, without an effect on the pressure distri-

the Laplace equation = 0, and can be added to f,
bution. It should be noted that the value of potential function as
t—> +o0 is Z'X* » Hence X*' may be interpreted physically as the
potential function of the downwash in the Treffts plane,

Thus, from equations (2.24) and (2.33) the complete solution of

our problem on supersoniec wing lift is

oo

oo
Bliyz)=F+X*= m’z{/fzay 29(89)- | rdd g(3,) e""%‘"’mr)}

- 8o - 00

(2.34)
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In the case that Cp is given, the above equation can be written

with equation (2.30) and (2.31),

) oo oo

. m;U )H—t

Bt 4,2) =:2—7—T—/;z;a»,ﬁr q,{g,,),w);(z-[»dze‘ )/7/,(2)(/17-)}
- 0o Zao ~do

(2435)
If we let Ar=2 , we have
[~} oo o0 4 .
2/ f [ =
Plty,2)= — Z 4y [dr Gtz 9,401 2 —ﬁu &2 17 )H,’”(»)}
—e0 - o (2.36)

With refersnce 19 pe. 4U5, we can evaluate the last integral in
the bracket

oo o

T
2—/49 ew( » )/;f (2)(u)=

—bo

(£E<7)
4

S (5w

Thus, if we take the vertex of the foremost Mach Cone as origin, we

can write

(2.37)

-7
2m'U [ 2 (¢-7) Co(, 9,+0)
= —Zdn [dT e
¢{z‘,y)z) T re <7 |/(2‘-l‘)2—r~2
7o ’o

(2.38)

which is the equation of the potential in terms of the pressure

coefficient on the wing. cp is zero outside the wing. Since the

radical must be positive, [Zf is zero outside the foremost Mech cone,

as predicated by other theories,.
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ITII. Aerodynamiec Behavior of Symmetrical Flat Bodies
in Supersonic Flow.

As the disturbance potential for the symmetrical flat body in
supersonic flow has been given in equation (2.15b), with the Fourier
integral method, the present section will show the expression for
the pressure coefficient and wave drag of various types of wing

planforms and airfoil sections,

3,1 Derivation of the Expression of Wave Drag of a Wing.
To the order of approximation of the linsarized thsory, the

increment of pressure 44 eanywhere within the disturbance area

is

(3.1)
, Mz % 3 3
where the relations x = (M « 1)* ¢t = m't, and u =3 are used,
p is the local pressure at the point (x, y, £ 2) and p,, £,
are the free stream pressure and density respectively.
3,

To find j{_i , we can differsntiate equation (2.,15b) as

oo oo

« 3% U / AL ,,(2)

X =Y [

kil Ko dA Flhy) e H,7(Ar)
- 80 o0

(3.2)

o
where '5?2 is an even function with respect to 2.

Substituting equation (3.2) into equation (3.1), we find

Zm

,,UZ . 2
Ap(x,4,z) = % ,,/d;] //\.d/lff/\,p) € M"%»()(A")
o T (3.3)
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If we want the pressure increment on the wing surface which

is located equivalently at 2= + 0, we have » —> |y-7]| and

© oo
RV At @y,
Ab/f,y,to#z—, dy [xo FlAn) et HZ (Aly-nl)
m

-00 -~ 00

(3.4)

If wo are interested in the wave drag distribution along the

» W must sum up all the horizontal components of the

span
pan, Y
pressure increment along x or t direction on both the top and bottom

surfaces over a unit span width. Mathematically

3D
;;g) =2/4ﬁ-0<.,42

T e (3.5)

where o(, is the surface slope of the airfoil along the line of
constant y és given in equation (2.18), With the expression of
o, (t, y, 10) and 45 (t, y, O) in equation (3.4), we can find

the drag distribution pei' unit span as

-] (%S o] do
D » ()7
3 P u%xv [m AP0 /y-a/)-fcx,u)ﬁzf /44 e O 1y
. -do  -do T -0

(3.6)
where )\’ and y correspond to , ¢ To evaluate the last double
integral, let us write X=- A,” and the double integral can be

written as



@ <

© -0
l ’ ¢ -2 »
/a’fﬁx’e‘au){fajy] =%rf//-4x') et A U-f(—/t,,)
—s0 =90 ~ag teo
oo S
“ _lll
=ﬁfﬁwea RTw
—ag 00

FONy) = A g) i g) = £ g) i h (2 y)

(3.7)

whers

= F(X" g)

is introduced becauss of f; being even, 7€ » being odd. From the

eomplex Fourier integral theorem,

-] 8o
27T fAy) =/a9ﬁ)1”e‘a'“f- £13y)
0 -0

(3.8)
. (-~
if the Lebesgue integral / dX' | £ y)| < oo exists or it F(X)y)
-0

I
is of bounded variation, in the neighborhood of A=A

(See theorem 23 reference 18, p. 42).
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Substituting equation (8.8) into equation (3.6) we have

o0 ‘o
oD —_—
(—a—‘;)y: ZEﬂUf/jv/l‘{A/_/olzf (/\fg—-»yl )'76()1’7)'#[‘1' y)

=zrEpl %7 /m [ AN ) g-n] HOF0 ) + P8y FOFO, q)/
= 27f U%/v /Ad/\ 2/ VA (Aly-nl)[ﬁ(%v)f(u) P+ £ 000,45 ]

# X(/\la-'ﬂ)/;f@v)ﬁ(fby) ~ 75(/\,»7)75(2,9)]}

(3.9)

where & few relations are used

HE (2] yenl) = B2l gl) =T, (\ly=21)=1 Y, O] 9=l

Fp)-f-2,y) = FOun)F (0,y)

so that the integration limit changes from O to s« insteed of - 0o
to +00 s The imaginary part automatically cancels out,
Now if we want D, the wave drag of the whole wing system, we

can integrete equation (3.9) with respect to y,



D= /{ag)dy ZTfU'Ay//r;/a/). HZ01y- ) Fam)£io,g)

-0 o

= 47gU ﬁy /;7 [m {2 0lsd) [ O 0,00 +E o (0]

-0 0

+ ):[Aly-yl)[{/l,v)fﬁ,y) -1 (3,7)7,[/'\,9)_/}

| (3.10)
Now the wave drag D being independent of y and , should be independent
of the order of integration or of the interchange of y with 7 e

In carrying out such en interchange we have

—m,o(/’%@/;’y/c’i /J (r|n- y[)[f(,\,g)%’m ,7)+1l’/) 3)7"/1\,97}

—-0Q =& o

+ (Al 7—yl)[7,[/¢\,y)£{/\,7) -ﬁlﬁ,y)ﬁ@n}]}

This shows that the necessary condition D = D’ is

/d?ﬁﬂ/;dA{Y(/1}7 g0 )£ D h O ,7)]} -o

-~ao

(3.11)
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This is one of the important relations that has been developed by
Professor von Karmén. There is another way of evaluating the wave
drag as pointed out by Professor von Kerman, The totel momentum
transfer through & cylindrical surfece of very large redius R which
contains the wing in the flight direction must be equal to the wave

drag, by means of Newton's lews. Thus

-“f/dz‘/f?dﬁ ;—7?5225-

which is the same as equation (3.10)s Applying eguation (3.11) we

(3.12)

can write equation (3.10) as

D=4ng U%{y %/7 ﬁw g Iy-»;l)[ EOME(,9)+40un)E 0, 9)]

o -
(3.13)

In case of swept-beck wing which is symmetrical with respect
to the (x, ) plane, fo (), y) end £3 (1, y) are even functions with

respect to yo To teke care of this point, we can write

D= 4”/’0.//’/ /:V’U(“j 7’/1}(3/’7/)1‘0\&/)4 AL ) E 19 ]

~0o0 o P4

I %@%7 /:ldl[l', Qly-n)+T, 0 (yﬂ;})]k(%q}fo’@ Iyl)—/-;,(’(/\,);)ﬁ//\,lyl)]

: *'87{/30/0}?//;/‘\4/)\[7(/\19 7/)+J'(A/y+n/)}[/(z\ W) HE O, r;)?f(/\,y)]

(3.14)
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where the limits of # and y change as shown, Equation (3.14) will
be used in the next section very often. If the spen is finite (say
thet b = semispan) and the airfoil sections are similar everywhere,

we can write equation (3.14)
6 & =
D =a7z,guj dy / Iy [ AdA [JZW-W) *L(JIMU]L‘«D, Vo0 d) +h D) A, My)}
-} [} -0

(3.15)

3.2 Wave Drag of a Tapered Swept-Back Wing
If we take the double-wedge profile as the airfoil section of
the wing a8 shown in Appendix A, end introduce Equation (A=-8) into

equation (3.15), we have

6 b o
D=&np U%/y/aa,/,u/t fj; (ly-np) + (2 {5“7})} X

%

04)'2 (/ ~-cosA a.‘;) (/— Cos./ia%) Cd.i‘)/ﬂ( ; g-—-v . )

72-2

6 b o
2 /2 '
: w/’y/‘@/% ]fJo (A {y-n}) + T (1lywn)) | X
- ‘
-} o a

(/- cos2a)(1-cosAayy) cos AB( 4 — 7’ )

(3.16)
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Define
b Yy 2
A’= — /= Z ‘= L v’:_y_
ao, J Qu’ 7 M o
a, = q (/-v'y’)
Y Y R (O
ay = a, (/-v’) (3.17)

For details of the notation refer to Fig. 1 and Appendix C.

We can write the wave drag equation in another form
{"41[/- caﬂaa’{2 +8(n"y') ‘UI/’7'+.V')}] - Z/[/-Ca.szaa’fz-/&/q'-y’)-v'/q'fy)}]
- lreosral gl )] - - cosagl oy 5 )]
o4 [ ot frsptats-0T] + § [renieirspot0-0)]
-.tl’-coA’{H(’.')-u’/ +L 18l ") -2l
7| /- cos AR/ [l s )0y }] +2 [1-canalfrpty's) o] (3.18)

- [ /- cosBAa)( 7/-5’)]}
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With the known infinite integrals of Bessel functions as shown

in Appendix B, we can carry out the integration in equation (3.18),

-/ 2+,3(7) ') v(v’+y’) / -1 244(y"5')-0'(y'4 g)
3% uzac'z . / /"” [ g cosh cosh 7g

L osh” ZBOS IO oyt 2080 0 4y
4 77,"9/ 4 7/,,,://

e BIy) I gy o
4—-(:05/:. _—-—’-7-7;?——— —Zco.;/!- /ﬂi-u)—zlws/c CB »')

"—/-co.sA—’M + L cosh -/ 180 ) - ”.9 “-I-IM
-}7/4_51 2 7, y z ,’ *y

+ —éCO.S'/I-—/ Myl,,_ cos -I /-/3/’7 -,‘/')—Dy + -—cos/u -/ /*/9/’}-,9’/—:) 7]
2 vy < 7"y 2 A

/ml‘/u,e(v-y)—vv o Leash” 1BOT 3) v’ /C”A-/ 1-Bly-y?)-v 7

'7’*? 2 .7 y ’7/"'5
—cosh! BL179) _ ca,df’/a} (3.19)

74y’
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In all cosk (A) terms, A must be positive, In order to
carry out the integration, a transformation of the coordinate system

mey be introduceds

Let u'=7’+y’ » v/ = »'-g! Then
;o 57’)
dy'dy’ = CICAAN c/u’a/v'_—.-z—/a'u’dv’

Iu'v?)

4'=0 , n=0 —> u’=o , v’'=o
4 ’ ’
$=0, n=b——> u'=6, v=é

9'=8F p=0o—> w4, vy’
9=y pebd—> u=24", v'=o

With this transformation, the square domain in (y', % ) plane will
transform to a diemond shaped domain (of twice the area) in (u', v*)

plane,
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a;cubx-"“'z - - ,3/2{4_/ cosh (8] +f cosh/ (g-0") + coshp )

/a’u/;’v Lcosh (2 v’ )——-Co.sé/"’*ﬂy-v) cusé(zv /6 to:/:{——ﬁ")

4—//54-2))\1 /Co_,,{’ Z))VJ [ (a,A(z-zuéwu mA/i’”ﬂ /)

24"-u’

26 u’ 25~ u’

_,é cash /(z—zvén)a )——caéfzf_-u)"—c“‘w ”Aﬁ_‘_‘_’_},"_ J

7/ s 2 ; ~/ sy 7 , -7 ; 7
/ z-0% I LA, -2k’ legs-ol
_fZ[Ca'SA/ZV' 1843 )4-5'454 L% +casA/_27;.7g42!)+Casé( =+Z)
w’ 2

2-2 5 e’ 2+{28+v
+ 7 [Co.r/z / v ,t/8+ V) + cosh /W_Z(Zé_‘_‘—}L )

+ cash /_2__2_”_&1‘. 24 cwzfii‘ﬂ'f 2)

-/ ’ -7 ’ , ) Ny ,
#cash(ZIe’ g 2 1 cosh (220001 2, mA/%g‘.ff/g-;)msA/z—ﬁ_ﬂ.gJ

~1f2-29 190’ 24{2, u}v - 7-2 A Ve .
# ook (22 g B ook [ZEBY L 5] cosk (22 )

4 ca.sé-l/_f__{_zﬁf_}: _Zj + —ca_sA_._é_i,l - ca.sA-/_.Jg_v
: z {zj’ u} z « 24’
(3+20)
The details of the integratien are too complicated to be given

here, The result can be summarized in equation (3.21),
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where

Bo=p+v’s ,B,:le-u’, o=/v8;5 sl A = (sign4).Z if /A/>/’-
the upper line with /-/9‘ should be used, if B</ 3
the lower line with B/ should be used, if B>/ 3
the signs of all cosh” terms should be reversed if pB<-7 3
the above rules should be also applied for S, and S, |
a, b, ¢, &, B, C, etce represent the expressions in the respective
bracketse
Therefore the above equation (3.21) covers sll cases except a

few limiting cases 3 - +/ , Bo =12 /!, /5,=f/, vto ana’ﬂ”“ﬂ'ﬁ/l’/»-/)

These limiting cases will be shown in the next section.

For & given swept-back wing, /30>/,=/ or </ means the Mach
line ahead, on or behind the leading edge respectively. /3/>/, =/ or </
means the Mach line éhead, on or behind the treiling edge. With a fixed
teper ratio, the trailing edge may be swept forwarde ,5/ =-/ meens - the
swepteforward trailing edge coincides with the Mach line, Similarly ﬁ
refers to the middle-chord line or the line of the maximum thickness.

At all P:s = }//. there occurs a discontinuity of the slope of the
curve of the wave drags In other words, ﬁ .; ‘-‘I/ / curves are the

G
envelopes of cusps of the ——C—e- curves at constent ﬁ ™
) Do
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To demonstrate the use of thess results, thg wave dreg coeffi-
cients of two families of swept=back wings have been calculeted es
shown in Figs, 2 and 3 with taper ratio o =0.2 and 0= 0.6 respec=~

tively. The essential parsmeters are —gg—a , AR ten)” and B o

The effect of the Mach mmber is comteined in g3 - ,_{1:‘;3” :,z_‘_a.ff_
dz Y M _/
and CDO = #Xo » the twoewdimensional wave drag coeffieient of

VAri-/

Ackert, To use these curves, first we fix the swept-beck angle Ve

and the aspect ratios Of course, we have to choose 0 = 0.2 or 0.6

in order to use these graphs. Then with a fixed AR tan/J” , read

off 2": at verious B along the fixed abscissa. Replotting
(<]
g” vs p s the exemple shown in Fig. 4, actually gives a family
Do

swept wings of the fixed AR tan 2’" s The curve Cp vs Mech number

cen be plotted from the reletion M =)/ ﬂ”l‘gr)?—i / o+ This is not

given in this repoz;t.

It is very interesting to note that /—(_%")mx occur when the
o] 7

Mach line coincides with the leading edge, [Bo= / , or the line

@

of maximum thickmess B =/ , 1In Fig. 2, (0-0,2), o ocours

)maxc

at (B =/ for AR tan 4 > 7.5 approximately, and et Bo=/ for
¢
AR ten )’4 7+5 1In Fige 3, (0= 0.8), (—a%) mex, OCCUTrS always at

- 2 C
Po = 1 except AR tan ) < %, Also T)"I'L increases monotonically
o

with AR tan f at ﬁf 1, P’l or P71, but decreases monotonw

ically with AR ten/  for [3/ % wle



Figs 5 shows p’ corresponding to f5,-1 end 3, =1 ageinst

AR ten /~ . This is needed for locating the cusp of gD ve /3
Do

as shown in Fig. 4., These curves are obtained from the relations;

2//—0‘)
IB’:/B))/—(/*(Y')/?-/GI‘L}

2 (/-¢)

P’°=/3{ /*m}

A number of interesting facts can be shown in Figs. 2 and 3,
(a) The lines Bo=1, f:=/ and B = -1 are the loci of the cusps

C
of the curves, -C-g- ve AR tand at various/B + Specifically,
o

the line /3°=1 is the locus of cusps of those curves with 2 <1,
and the lines @ , =1/ are the loci of cusps of those curves with
> 1.

(b) When [ is negative, there are two possible cases: (i) the
flow direction is reversed or (ii) the wing is swept forward. In

case (i), the curves -g-g—w vs = AR ten |f| are actually the mirror

(-]
images of the curves shown in the graphs, reflected on the vertical

axis with the following changes:



I8 e

where the old leading edge changes into the new trailing edge and the
old trailing edge into the new leading edge, if the flow direction

is reversed,

In cese (ii), the curves shown can be used with the following

changess

Therefore, these graphs can be used to find _g%__ atkvarious
values of AR ten [/ and /16 | for the wing swept f:rward or beckward
or for the same wing flying forward or backward, as long as the taper
ratio is kept constant as specified. Therefore, the wave drag
depends only on the absolute values of AR tan ) and /5 This

confirmms the reverse flow theorem in reference 2 and 5,

(¢) When B =0 (/6 "["”2 )

» there are two possible ceses:
(1) M>0 if (¥) +0 , or (11) J=0 s if Af>/ « In these grephs,

(3: o corresponds to .@_ = la
CDO

In other words, the wave drag
coefficient is the seme as that of the two-dimensional case. Actually,
when M >>1, the assumptions of the linearized theory become unrelisble,

Besides case (i) has no physical reality. In case (ii), J =0

corresponds to AR tan J” = O, These graphs can not be used to
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detormine the wave drag in such a case. The investigation for [ =o

is rather easy, and is omitted in this paper., Although the line

b—ﬁ-— of 'B = 0 e&s shown above is only theoretically possible, it
o

serves two purposes. First, all curves of E_D__ ve AR tend” for
Do

0 < ﬂ < 1 are essentially parsllel to it, for very large AR tend’
Second, it ean be considered as a standard to measure the wave dreg
for different wing plenforms at different Mach numbers,

(d) 1In the renge of 0 < ﬁ < 1, the middle chord line (i.e.

the maximum thickness line) along the span is supersonic. The wave
dreg in genersal is higher than the two-dimensiénal case, if AR tan

is at the right of the line of cusps f,=1, Cp curves are nearly
Cp

o

‘ C
parallel to -é-g- =1 line ( (3=0) when AR ten y > 25, Therefore,
o

for the preliminary investigations, it is possible to extrapolate

T for AR ten J” beyond the given range. Also, == increases

o Do
’ c
with p for the same AR tean r o Theory shows .GP... —> 30 gg
. | Do

AR ten § —>oc0 . In this range O </3 <1, .gP.</is possible only
, Do

at every small values of AR tan & .
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(e) At f =1, the right characteristic or Mach line coincides with
the middle chord line on the right half span. For the teper retioc

0 = 0.2, and the AR tan I (>7.6), the D_ . £ =1 1s the highest
p

of all drag curves. But at AR ten J~ < /2, the drsg coefficient

can be lower than that of the two=dimensionsl case,

c
For the taper ratio 0 = 0,5, 'c’g" at =1 is not the highest
(¢

c .
of all _2_ 4t various values of /3» for a fixed AR ten 4~
CDO
(f) When @ >1, the middle chord line is subsonice This family of
drag curves changes slope twice, once at the line p, = =1 and again

et the line F,: le 1In the region to the right of the line f, =1,

c
E—g—- curves drop quickly at first, and then are asymptotic to the
o

resl axis as AR tan J —> 1. It has been shown in reference 2,
based on the writer's invéstigation, that the total wave drag for an
infinite wing with subsonic leeding and trailing edges §, =(B -—-p, >
is finite although the wing area is infinite, Therefore, Cp —> o
as AR tan )7 —> o© as long as /3 >/ « Besides, the larger the

values of 3 (>/) , the smaller the wave dreg. In both graphs,

Cp
T <1 for F >// o As f9~>/ » the wave drag rises very quickly
o

with larger values of AR ten 4" .
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As [ —>oc , there are two possible cases (1) J~>~90°
if M > 1 but finite, and (ii) M —1 if /) [< 90% According to

the equetion, °D
o

S —~—>0 a8 p——-?Oo e Case (i) is purely

¢

theoreticale Case (ii) gives Cpg—=o° a8 M—>1le Therefore,

wee —> 0 a8 M —> 1 doeg not necessarily meen Cp = Qs Actually, as

M —> 1 the linearized theory gives a finite value of wave drag as

shown by the writer in reference 2.

According to these graphs, if IB’I:;’: 0, Cp—> 0 for all

values of /8 as the aspect ratio goes to zero.
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3.3 Special Cases of the Wave Drag Equation
Most of these special cases are required in calculating the
curves shown in Figs. 2 and 3. Therefore, we have to write them down
one by one. These special cases are based upon the taper retio that
is between O and l.
(a) As B —1 expressions A and D in equation (3+21) ’caice on the
following limiting values while the rest of the equation

steys the same except the expressions, a=b =c=0,
PG / 1-9%-4 ) (L /-0'% ’/2]
2(v»"-7) 2’6 +4’ /-06'+4’
(1-08s28')*[ [1-9'6-24' / ) ]
2(v"-2) /-ob426Yy /- ”5”‘25

D=Z/)‘—{ [{/ vé+é) (/~ué+zé)] 20° /(/ b)

/ - / 7 ’
22 i) s } (3.22)

(0L1)(»"-2)
Thie case occurs when the right characteristic coincides with the
leading edge on the right side,

(b) Similarly for 4 = 1 expressions B and E become

_ (%4 44)° / Lol b VB 11 b\ (/z?/—zé) »Aaza /- z)’é’)]
= 20w) [ /o874 /vé’—é’ 2[7)42) ( ué’zé vAZA

f [{/vé’é) (/- ’Azé)] %(/+57Z

2(2), V4 »’ |
* V42 (1+24)" + (7)4/)/,;42)} (3.23)
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The expression b = Q. All the other terms remain the same as shown
in equation (3.,21). This case occurs when the right characteristic
coincides with the trailing edge on the right side.

(¢) When S=1, the expressions C and F are
{d‘+2é) 624 / (0'—2&)[ 0+2b /ZJ
) z(z-u')/ / +26 /d'+26) 2(z+9)) /a‘ ) ( 0'2.6)

F=-L / { /2[ (a+zé') +(0- 25)/] 2 “’)(/ 25)/2

2v'

2(1+27) % 4o’
————-—7"(/-#249 2 - ————T}
240 (<-2"%) (3.24)

b=¢ =0, All the rest remein the same as shown in equetion (3.21)
This occurs when the Mach line coincides with the maximum thickness
line,
() When B,= =1, A and D become

Ak = B in equation (3.23) where 3, =/

D= E in equation (3.23)
(3.25)

Here a = O, The rest of the terms in equation (3.21) remain the
same. This case occurs when the left characteristic coincides with
the leading edge on the right side, This conforms with the reversed
flow theorem, ﬁc =-/ —>73=

if the flow direction is reversed.
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When g, = =1, B and E become
B = A in equation (3.22) where (3, =/

E =D in equation (3.22) (3.26)

The terms & = b= ¢ = O The rest of the terms remain the seme

as given in equation (3.21)

When /B = =1, C and F are the same as given sbove for g = 1 with

some rearrengement of terms. a= ¢ = O,



(¢) When »2’=0 , or there is no taper G = 4 =4,

equation’ {3.21). ‘beé:omes

7L'1> ,/663//)5’,/2 /:’//3/6} co A/é /+4Cos/z} 2}}
(1488)’ { -2 .-/[ (-)4] } (14286')° { et
{ e R T T g /
7485)° I B+ - d +
z/gflfé/)’/{ A//szl AI{/B Zy(f/e)j}/} ‘?/{ng)){; cosh *7;;’ IIB/(:;?A‘}}

{ /e(/(f;-jz; i ,aﬁ;s'”-[/g‘z//-/—,aw]f i//;/zﬁg;j’/ " ;i ' /%67}
! ) ;! >/ -2
2(/;53%’“’4/7%7} “"A//Bz/ ,ﬂé)} (_7,@)7/ A%f ok | P/z,eé ol

{zpf/

P

Vz %
i(//)/{h{zq%)é) {{z,eé)zé)/ /(/*/aé) é‘/ ((/,eé) 247 )/}

~

1 s [pr0p) e o LB - 5 -0

{[a.s/n—}[(a I-p 7+Cas/an+{Il3)$} CosAJIB Q—M}— c«sélﬁ (/ﬁ)ﬁ}

flﬁ’)/f/ [wB -L&é] sm@ ___A——] 257 aéﬂi-(/f)éj 25,,_,? p/g) 6]}

[Co.s/l /fi w/ﬂoﬁ” U-EZ—I Zcosk }/g+(//9) 1,"+Zwk//@ -(-8) ¥l ;

(g™ /)’/’

A 7 %
ol (e ) e (re) - T |

The above equation is in accord with the results given in reference 2,
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(£) 1If M ﬁl,ﬁ —> + oo as | is positive or negative,

Define

= Zzé' , 6 =vu , @ =putand”, w,=putond; , ao/=/t2(anj,"

77l /2 N\ /oM, Sy w Ly B g 2
’5;25(?'“")’31"5 otz 9, 2 les T

/R fou)_  [2F20-D)) . / /-ou /#0,
’L‘Zf ( Z{H) / /"fz(ﬁ?a") g /rw / 5 /a)ua, )I] S [‘V/fa)ﬂc?a }

) ot b L) o o)

+ wwo(/ww)/l /—/wdﬁ, //70_:5} A )[/" - ‘”’/"z(/ co),}

+ o {[‘[/2(/1)/4]%5{’ /ay)}J’ z(/»;/g{ log (H755) oy (1= ,&u)}

* roua,
+ B g1 ol Pl O 20 (552 e )

dvuw

ey ~IU [ 4D+ VU
+ZV/‘“’ { T wrg /) byl w)+/ W+ e ) &s (144) - (wfw,)(wwo)}

e b

i

,l{_____.}
R law(w+a,)

There are & number of other limiting cases such asﬂ—fﬁr—‘o ();:—-)')

and ﬁ—fﬁ =0 (97 = ”r) which are alsc required in celculation, If

the teper ratio 0°=C and B =9 equation (3.21) will give the wave
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drag of the delta wing which checks with Puckett's results. Owing

to limited space, they are all omitted.

IV. Aerodynamic Behavior of a Wing with a Given Lift Distribution

From equation (2.30)

to

it
g(Xy) = :2—/7; e Gliy +o)

-0

(2.30)

Thus, when the pressure coefficient distribution Colt,y, + o)

is given on the wing planform, g (A, y) cen be obtained with this

equation, Let us consider a tapered swepteback wing with a& constant

1ift distribution

IN

Cplty) = Cp -6 £ gy £ 6

Ay~

[N

£ glyl+a,

where /J‘o,ﬁ, are defined in Figure 1, Thus at any y within the

span, we have

Sl4l+
sz == | g e M at
ﬁoly,-aa’

-—

¢ Che { A (glyl+af)_ - (Al -a;)
2TA € "€ }
(4.1)
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As \—>0 we can evaluate g (0, y) as

9("?)’—7;{ —ﬁlyl}

(4.2)

Substituting the above equation in equation (2.42), we have
b

o’ G,
Wity U/fwz)’-{ =4 —ﬁM’)

-6

o0

. Cpo [-A(BIWIHR) - [B1YI-2)) ;
+ l—i—w 5/12-;[1;(3 pronel G4, )elz""ﬁ(z)(flly'v/) }

- o0

b
—m'UCo 1 [Po /T
= A —-—ﬂ-—z—/-j-l’?')

(y-n)? / %

26
sl /A[«www A4, "”f’(z/y :)}

(4.3)
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With the aid of Appendix B, we can evaluate the infinite

integrals and can show

b
— CPD mIU d’? , /90 _/9,
W(IL,H,"O): 77 (4 (a,- 7—"7})
-6
_H-Al 4,-81n1 <lyyl)
19“71{ i (A =1y
7 2 2
L-gInl JGE-BIV=l4-) (44l
e L Vie R Y 2 _al) = ly-9l)
CE IR prtrs =17
%Al (4o- Pl £ ly-n))
_ Lﬂ} lg—VI
2
do-faln] S GBI | o-pomy 2 l9n])
EET ER1 (4.4)
where t, = ¢ + el » t3 = t = al. Only one of the two expressions

holds for the rangé specified in the bracket.
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If we write the integration of 3 from O tc b only, we have

b
-G WU ,
w (4 y,+0)= i / a’:y{ ey (B )1, 2a Bif)n 24 (A
s (4-n)* (g#a) (g-nR
L 2R 2 Epal by 2 Sl tgan)*
(47)* (g% (9#)2
L 2 l-priteal | 2 Vlpar-teen®
(4-71 (4+9)*
4
%Y /d;; { [ g% l0*_ [Cg)= Gn)
<7 (9-7)* (5-2)*
e L . }
(547)% (9+7)*
(4.5)
where to = t3 = 2a) is used so thet the first terms cancel oute

How cerrying out the integration wit.hv respect to 7

W(Zag,-,so): CZ’::U{— (A—B) t (C—D)}

(4.6)



where

b

4=

A= [oy Vpin)-tg-n)°

o

4

(4-7)%

B= [ay VEBP-ty)?

(2]

6

C=

o

4
D=—/0’7

(4-7)?

- 2
iy ;/(z‘a/?av) ~(g+n)

(y#7)*

J (g (y0)?

(y+n)*

(See Table A)

(8es Table B)

(See Table C)

(Ses Table D)

(447)

(4.8)

(4.9)

(4410)



The present treatment is equivalent to comsidering two hypo-
thetical wings. The first one is of constant positive lift dis=-
tribﬁtion (CPo is en assigned constant) starting at the leading edge
extending downstreem to infinity with semi-spen = bs The second wing
is of constant negative 1ift distribution (CPo is assigned negative
constant) starting at the trailing edge and alsc extending down-
stream to infinity with semiwspan b. The superposition of both
hypothetical wings gives the aerodynamical behavior of the actual
winge |

Integral A, equation (4.7), gives the contribution of downwash
due to righteside area of the first hypotheticel wing in the fore
ward Mach cone of the point P (t, y)s Similarly, Integral C, equa-

tion (4.9), gives the contribution for the area on the left side.

On the other hand, integral B, equation (4.8), gives the con=-
tribution of the right side of the second hypothetical winge
Similarly integral D, equstion (4.10), gives the left side

contribution.

As far as the limits of integrals are concerned, each holds for
within the limit O to b, whenever the integrand is a positive real
quantity., However, for meny lccations of P (t, y), the iﬁtegranﬂ
is positive only in a much narrower range of % than the interval
(0, b)e In order to determine the valid range of the integrsls and
their respective values for all possible locations of P, Tables A,

B, C, and D are tabulated. The corresponding values of the integrals
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for the different cases are given in the right-hand columns of the
Tables,

Take Table A as an example. If the leading edge is subsonie
( ﬁL > 1), the lower limit of » is always zero because the forward
Mech cone at P always intersects the wing center line within the wing
area, When /60 > 1 the upper limit of » 1is given in the upper |
half of Table A, Condition 1 concerns the location of the point P,
which may be ahead, on or behind the leading edge, while condition 2
concerns the right intsrsection of the forward Mach come of P with
the leading edge, or side edge. Under both conditions 1 and 2, we
heve 6 possible cases. The upper limit of »7 is given in each case,

and the valus of the integral A is also given accordingly.

If the leading edge is supersonic ( G, </ ), the integral A
exists only when the point P is behind the leading edge. In partice
ular, both the upper and the lower limit mey vary within the interval
(O=b). The condition for the lower limit depends on the intersection
of the loft side of the forward Mach cone of P, It is zéro when and
only when the intersection is on the center line of the wing in the

wing arsa. If the intersection is on the right side leading edge,

the lower limit is ‘_3[":":‘3 as indicated, The condition on the ﬁpper
o

limit depgnds on the right hand inte:section of the forward Mach cone

of P, If the right side of forward Mach cone cuts the leading edge

within the span, the upper limit is ’?‘}‘% 3 otherwise, the upper

limit of 7 is b.
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The other 3 tables cen be expleined similarly. Figure 6 shows 4
typical cases concerning the integral limits. Figurs 6 (a) shows the
forward Mach cone of a point P (t, y) that lies only in the right
side ares of the wing, Therefore only integral A exists and all ‘the
other three integrals are zero, Since the leading edge is supersonic
( Bo <! )» the upper integral limit is §2f;.ﬁ% . It belongs to
A-9 as indicated, according to Teble A. Figure 6 (b) shows the for-
ward Mach cone covering both the left and right side area of the winge
Thus, only integrals A and C exist, The integrals are indicated,

Figure 6(c) and 6(4) can be similarly explained,
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TABLE C

Integration Limits of 7 and the Corresponding Values of the Integral C

B, >/
Upper
Condition |Limit ¢
-y b=y | Jt2 4 L ) ~(944%4)
7z < 4 Y 7 + £, cosh 2 _ //5, / cosh —_—-—éa-fﬂo
NaTa _/{ e = (yifets)
4,8C05A—9——/5/C5/l——_/—-;—/20—;—
-9 (22 B,6)* (¢+4)> ! b
/+/60 >4 b - f ﬂy+é ‘/3 cos: Tyrb
- 2 /) b-(y+8.1)
=V ﬁoz-'/ CasA/ /ﬁ )Z{o+/9i9/8
fo <!
Upper.
Condition |Limit c
fo'y é"f T ‘/2‘ _ o Y+ Z‘o
H_ﬁo,gé e | 7 /6 + 2= +/gc4 - //35, v
42 0t [ror .. 1Yt b
-/O _’_ﬂ Cos5. “"""’ //@ Sin :/aga
Z/a'y //faz-/«’,b)z—/y45)2 _ 05 A, t- B, b
/4, 26 6 |- 9+6 a g+6
- é//' a)‘f‘/j"ﬁa a)
. /
3 \//-ﬁ "y *ﬁy

The integral C exists only when é>y. The lower limit is always zero,

Teble D may be obteined from Table C by substituting A4 for S

and {I for £.



Although the 1lift distribution of the wing with supsrsonic
trailing edge is well known, the dowmwash may be interesting to
explore, Figure 7 shows three infinite half 'wings with trailing
edge at 15°, 30°, and 45° from the leading edge which is normel to
the direction of flight, This is shown in the (t, y) plane, or the

(x, y) plane with Mach number =V 2+ A negative infinite downwash

27T w(g/t‘)
2% ! Cpo U

As we know Cp, = ., Where o, = angle of attack of the wing, we

always occurs at the tips The curves are plotied as

ZZ vE % + DBetwsen the tip cons and the wing, the
/

downwash is constant but increases with inecreasing trailing edge

can write

engls, Owing to the conical flow, the downwash is identically the
same along the radial lines expressed in the conical coordinate %..
The above curves were calculated with equation (4.6) and Tables A

end B by setting [30=0 R ﬂ, = tan 150, tan 30°, tan 45° respectively

and a! = 0. (Here £t =1t, = %3)e

Figure 8 shows a wing fip of unit chord with raked angle = 30°,
At t = 0.5, it behaves exactly the same as the 30° case of Figure 7,
but at t = 1.5, it is quite different., Two infinite downwashes occur,
ons at the center of the leading edge tip cone, and the other at the
ecenter of the trailing edge iip cons, The former remeins negative,
the latter positive, Outside the two tip Mech cones, the downwash
is identicelly zorc as predicted by the two-dimensional theory.
The above can be calculated from equation (4.6) and Tables 4, B, and

C by letting B, = (3, = tan 30%, al = o5 (Here t = %, = o5 = t31 .5)
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As another interesting example, the downwash distribution near
the nose of an infinite constant chord swept=-back wing is calculated
(Fig. 9)s The leading edge is swept=back at 30° but is still super-

sonic, The downwash at different locations on the span are plotted

Ny

along te In this case, the curves are plotted with ‘= __ X
o,
wity) vs. t at different values of y where Cp = 2%

7

is introduced.

'\ 1-B%

At y = 0, the downwash angle reaches the maximum value (0,8165)
at & single nose point and remeins zero along the chord up to the
trailing edge. Thers the downwash angle is negative and equal to the
maximum value in megnitude and recovers to zero downwash downstream,
For instance at y = 0.4, the downwash angle is constant in the super-
sonic region, and drops down under the influsnce of the nose Mach cone.
At the trailing edge, the downwash angle drops to a negative value
abruptly and continues to decrease until the trailing mach cone is
reéchad. The drop of downwash at the trailing edge is ezactly equal
to the downwash angle at the supersonic leading edge. Further along
t, £hs downwash angle rises up again and becomes asymptotic to O as
t—>c0 , The same can be gpplied at any y until the nose Mach conse

is off the trailing edge.
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As another example, the downwash of a finite delta wing with 60°
swept-back angle is calculated. Figure 10 shows the downwash distri-
butions at different y., Figure 1l shows the downwash distribution
of a tapered swept-back wing. The taper ratio is ¢ = //6 « Figure
12 shows the downwash of the same swept-back wing far downstream,

It is very interesting to examine the effect of different Mach cones
on the downwash., One important featurs of the subsonic leading edge
is the infinite downwash angle. As before, the above are calculated

with equation (4.6) and Tables A, B, C, and D,

The present approach on calculating downwash of a wing with
constant 1ift distribution cannot be applied to wings with subsonie
trailing edge, because the Joukowsky=Kutte condition must be satisfied
at such trailing edge. In order to investigate the case with subsonic
trailing edge, it is necessary to assume the distribution of the

pressure coefficient drops to zero at the trailing edge.

Similarly, with the given pressure distribution, it is easy %o

calculate the side wash; the details are omitted,

The above gives just & case with simple pressurs distribution
along the chord to demonstrate the application of the method. O0Of
course, the method is not limited to this case alone, At present,
some investigation is under way for the roof-type pressure

distribution along the chord,
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Appendix A

Fourier Transform of the Slope Distribution on an Airfoil

As an example, the
Pourier transform of the
slope on a double~wodge
airfoil is calculated.

Pig, A=l shows the shape
and slope of a double
wedge airfoil on a swepte
back wing at a distance y
from the center of the wing
span. The slope distribu-

t¢ion is as followsg

it y)=0

= o (y)

-]

14

-0 (y)

1

il

o

1]

W
«—a'— > — a
.bo
ul
\
¥
/
0 % y
t
. +
e & a
to
Fige A=l

Z<?,(y)-dly)

4(y)-dly) < ¢ < 2,

L, £t < £ (y)+dly)

4 >4 (y)+dly)

(a-1)
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where «, d,’, £ and g’are functions of y in general,

the equation (A-l) into the equation (2.19) it yields

F0,4) = £ (Xg) + i (hy)

/ -cAt
-go

%,
:.O_éf. e""lz‘dz‘ - _ofi e
27T 27T

Z,-a

27

-’

where t = t,+ 7 is used in substitution.

fir,9)= 'ai‘i Ao (- cosid)

I

-[ (A g)-' Y .S‘/n),‘f [/-Cosﬂ-a.,)

£ 22 cosdd, (1- cosh)

4
o, . -
= e-uu‘,, lj / ‘A'Tdr

Substituting
t,+a
-LAt oy
al
/ e"’ltdr} (a-2)
o

It is easy to show that

(4=3)

(even with respect to A )

(a-4)

(0dd with respect to X )

(4-5)
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For a rectangular wing with constant airfoil section, where .,
t, and a' are independent of y in the span, equations (A~4)

and (A-5) reduce to

ﬁ(l)y)=0

/

o,
l = — —-co A'a/'
7‘; (3,4) 1 (/-cosa))

if we choose tg, = O

For the case of straight tapered swepteback wing,és shown in Fig. 1,
woe have

aa-vlyll

ml

a'ty) =
L= Byl

®/(y) = «;  independent of y

For the details of the definitions of the different parameters

refer to the figure, We have

’

d 4
fik0= 2 lap ) - )

(4-6)
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Now, we can write

0,070 = { :). P s JH= % 1 cone 5}

oy’ i1yl -1nl)

Iy ( cosAa, )/ -cosﬂ.qy)

A

% ’ ’
= :,"t?'x'z //- ca.s)-?)[/-ca:ls) {Cof)-ﬂ(l yl-Inl) ~isin )-/B/l{j/ - I’7/)}

={£Qpfo,m+awfom |+ oy fin-10,91 (lm)}

(8=7)
Therefore separating the real and imaginary parts, we have
T f, (A,9)+F (A, 9)f (,9)
,2
— ao
= ;EIZ [/- cosla.;}{/-cw‘).a;) wA/a( lyl - /7]/)
(a=8)

~F)f ) +£ Ay (A7)

,Z

2/12 [/-cosia’ }// cosAa’ /sm ,;a(ly/ /7/)

(4-9)
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Appendix B

The following are the integrals which are used so often in the

text and many of which are not availeable in the ordinary handbook.

cash B8+(r- ) &
/dw,,, r,a)—usm’( )+ {(/,e)’/ Ip }
R A A
(_/%,6_974 cash'{ (189 %28 }
F P Ep

T e (18YE]
/ ducash | ;«'/5) weosh {“*/)4 { 4 ) ) 3
65")/‘ cosh {fd () }

\/d(t.s‘l}z_,(]ﬁ?“f") = 5,,;’(/3;-_5) +

7/%7 s { (1) 46}

/ Hu ca;é'//,ﬂ ¥ —5—): 72 co.;é’gg;é_‘} {
/)A cosh [68')“ /B}

(ff
udasilzEp) =L sm™ i 1-,6
Z(F /)3/3 F-’m F?(P QFJW}

/aza_jn(tg )__;, ‘/()B"k)* {37/—_“'{}5 o.sA”[”/U iﬁ]W}
sl P Pokep] 2/ oz pT]

*In all these formulas, the upper line corresponds to A < /,

and the lower line to p >/,
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2(g* ,)3/2 Pco.s/; [(B+(p ))F]W}

/ A ( ) 2 A /(/6 “'k) [ {/ )3/3 (I ) .] / 1(/ ﬁ) :l',@ f
% COS (F.;' = 5. F ‘ l /‘ K'tP e =

L PR )
Tl e L+ = pr oA |

mfli-ptp] [lpokp)r - ok Up2%p]

\/{a /uz_ ( uT-k)z { [,/8)3/{ ] }

- F‘- ol o8] [ Flpokapl+ = pv# s

/ w/ (e 7p4)° / 2_5;_;’2{[?11'799%2//—[#(/-% H+ i [pepIE])
2, £FiBu —ut = y

e e - ot lprpl

o A e el
T@Lf’“/ o5 T - [pvtsp)

/LJ“[({F/@)C”A-Z}KIIBJT /{E";;@)‘-/)Ir:{kf é—‘—‘) ucaA."{zf?f)
/‘;7’%,‘;—;75/}," [?f{/-pj;ﬁ-‘] + ‘%;57/2 /7 —[F:f ] ‘
, Z(P /)’/5 aL/[F:r(P )K] 2(/9 % /}ig;—'—(Fz_u% 2_/

ﬁc du cosﬂ-l(fiﬁ) =E‘£ zt:o.sé._l( -:-:- ;:[6) + {




o

/J;(at‘) (/- cosé i)
z(

o

ZL =

oo

/J; (at) sinbdt
e

Q

/J; (ad) (1- cosbt) =%

o

df

[

o

o

/ (ad) (1- cos 4) 55

SR

N e (97
(F+7)*

-An) - (4-)°
(#-2)*

t

£

/);(ay sinbd _@’Zf = {
73
/d){(azy (/- casbd) _;__z‘_:/l
T

A@?‘v

{ il % (a>8)
cash™ 2 (6>a)
I/ é’—; (a >4)
b -V éz_a‘z (6 )‘9
Q.
2 (>4
/ 2
= 2 cosh” lﬁ * 55 (A /62-ay) (6>a)
0 (a.>6)
"Caﬁé-lé (6>a)
—l[‘sni"a.é)z (e =4)
E (cash?2)’] G2
{ (4>6}
G >a)

‘-/casé ‘@ )H*-V—é 4
7 J -I-/Gcw%' '4 ! .;/ % /9
] 57 it P90 19p7
Ip 7B
/3% o LU Opt)
g+ /BC 4;';7 {[/3 N
7 "/'/‘gfa .57;‘:’@ “J7- &*/4{)
1//7‘,5'9

*Use upper line if 2 >/, lower line if B < 1., Similar integrals

for (3, are cbtained by substituting to for t1, fBo for B,
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Appendix C

Nomenclaturse

velocity of sound
half root chord

89
mt
hélf tip chord

et

m
half chord at y, ag = » (y)

-t

agpect ratio, a?ﬁ-aé
helf span
b 1+ 0

—_ = -—-""""‘AZ tand”

a, 298
chord

wave drag coefficient
2

' 4
2=dimensional wave drag coefficient, ;i?

1lift coefficient
moment coefficient
pressure coefficient

2«dimensional pressure coefficient or assigned pressure
coefficient

wave drag

distribution function of the harmonic source (complex),
See Eq. (2.5) '

~Z FlA,n)
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G(_A’V) doublet distribution function (complex) See Eq. (2.7)
g( A ,7) ‘A G(A7)

P

Hc(l) Hankel function of the first kind of zero order

Hb(z) Hankel function of the second kind of zero order

1 (1) Hankel function of the first kind of first order

Hl(z) Hankel function of the second kind of first order

Hl(—_é-s J( )+iY,( ) =conjugate of HE0)

Jo Besselkfunction of zero order

Jq Bessel function of first order

M Mach number

! M3/

P pressure

P, . free stream static pressure

t --’;;,-, longitudinal coordinate in transformed plane
(equivalent to time in supersonic eass),

to £+ a,

£ Z -a;'

U - free stream velocity

u velocity component in x (or t) direction

v velooity component in y direction

w velocity component in z direction

b 4 longitudinal axis



S X ST Y

hY

-G9m

spanwise axis

q

a’
2,

Bessel funchtion of the second kind of zero order

Bessel function of the second kind of first order
vertical axis

angle of attack

angle of attack of upper surface of airfoil
angle of attack of lower surface of airfoil
slope of upper surface on symmetrical airfoil

angle of attack of cambered wing

tand”

'j;;‘==i%n3'l

/34-v’
g’
angle between mid-chord line and y-axis (x, y plane)

angle between mid-chord line and y-axis (t, y plane)

leading edge sweep~back angle (x, y plane)

trailing edge sweep-back angle (x, y plans)

source location along y-axi-
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& source location along x-axis (t-axis)
JA free stream demsity
a at‘/ a, taper ratio

§

~

Y
9{ velocity potential
w M Zéan-r
@, /LL -b“');
K ptandy
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LIST OF FIGURES

Relations between physical plane (x, y) and the trans=
formed plane (%, y) of a tapered swepteback wing.

Co tand
_C‘: vse AR tan) at various/a (: m%) for the

o

family of wings with the fixed taper ratio ¢~=0.2

Same as Fig, 2 except the taper ratio °=0.4

The wave drag behavior vs /3 for a family of

o,
swepteback wings with AR tand = 10 and taper ratio

O = 0424

The location of cusps (/60 = 1 and /6, = 1 ) of the wave

C
drag parameter —C—-?- in terns of /3 and AR tand” at
)

taper ratics 0 = 0.2 and G.5e

Typical examples of the types of limits with P at
different 1ocat§.ons in the wing plane, (Refer to

Tables A, B, C and D).

The downwesh on and behind a tip of a semi-infinite wing
with supersonic trailing edge at 15°, 30° and 45°,
Downwash on and behind & raked tip of a semi-infinite

wing with unit chord.



Fig.

Fig.

Fig.

Fig.

10

11

12
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The downwash distribution on and behind the swept~back
wing at the nose (swept-back angle = 30° and the chord is
unity) with assigned constent pressure coefficient Cpo
on the'wing.

The downwash distribution in the plane of the Delta wing
at different locations along the span with assigned
constant pressure coeffieisrt cPo on the wing,

The downwash distribution in the plane of a tapgred
swept-back wing with supersonic trailing edgs and
assigned constant pressure coefficient CP°

on the wing.

Thersamo a8 Fige 11 except showing downwash far

downstream,
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