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Abstract

This thesis aims at a simple one-parameter macroscopic model of distributed damage and

fracture of polymers that is amenable to a straightforward and efficient numerical imple-

mentation. The failure model is motivated by post-mortem fractographic observations of

void nucleation, growth and coalescence in polyurea stretched to failure [Weinberg and

Reppel, 2013], and accounts for the specific fracture energy per unit area attendant to

rupture of the material.

Furthermore, it is shown that the macroscopic model can be rigorously derived, in the

sense of optimal scaling, from a micromechanical model of chain elasticity and failure

regularized by means of fractional strain-gradient elasticity. Optimal scaling laws that

supply a link between the single parameter of the macroscopic model, namely the critical

energy-release rate of the material, and micromechanical parameters pertaining to the

elasticity and strength of the polymer chains, and to the strain-gradient elasticity regu-

larization, are derived. Based on optimal scaling laws, it is shown how the critical energy-

release rate of specific materials can be determined from test data. In addition, the scope

and fidelity of the model is demonstrated by means of an example of application, namely

Taylor-impact experiments of polyurea rods. Hereby, optimal transportation meshfree

approximation schemes using maximum-entropy interpolation functions are employed.

Finally, a different crazing model using full derivatives of the deformation gradient and a

core cut-off is presented, along with a numerical non-local regularization model. The nu-

merical model takes into account higher-order deformation gradients in a finite element

framework. It is shown how the introduction of non-locality into the model stabilizes the

effect of strain localization to small volumes in materials undergoing softening. From an

investigation of craze formation in the limit of large deformations, convergence studies

verifying scaling properties of both local- and non-local energy contributions are pre-

sented.
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Notation

The following table gives an overview of different symbols used in the present work.

In general, scalar quantities are denoted by lowercase letters, whereas bold lower- and

uppercase letters denote vector and tensor quantities, respectively.

A,a area in the undeformed and deformed configuration

x, X coordinates in the deformed and undeformed configuration

x,y,z Cartesian coordinates

C right Cauchy-Green deformation tensor

ei unit vectors in Cartesian coordinates

E Young’s modulus

F deformation gradient tensor

f vector of body or surface forces

fint,fext vector of internal and external forces

J Jacobian

L velocity gradient tensor

n unit normal vector

Ñi shape functions

Q heat

S entropy

t time

∆t time increment

t traction vector

T temperature

u displacement vector

v velocity vector

L Langevin function

kB Boltzmann constant

lt total polymer chain length

lm monomer length

β reciprocal absolute temperature

σ variance
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λr relative stretch

ν(N ) distribution of polymer chains with N monomers

ρ(lt,N ) probability distribution of chains with N monomers of total length lt

κ, µ, λ bulk modulus, shear modulus, Lamé parameter

H Hamiltonian of a system

Z partition function

L stochastic point process

T Delaunay tesselation

I second-order identity tensor

E Green-Lagrange strain tensor

ε linearized strain tensor

P first Piola-Kirchhoff stress tensor

σ Cauchy stress tensor

Ndim number of spatial dimensions

α∞ attenuation function

D(ζ) damage distribution function

Eb energetic cost of polymer chain failure

kl/ku lower/upper constants

l intrinsic length

Φ specific energy per unit area

Gc critical energy release rate
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1. Introduction

This section gives an overview of both application fields and current limitations of elas-

tomeric polymers and summarizes the main modeling approaches that have been put

forth in the literature. Furthermore, formulations of non-local damage in the framework

of elasticity are discussed.

1.1. Elastomeric polymers as structural materials

Elastomeric polymers have recently been identified as suitable structural materials in a

wide range of applications, including shock mitigation as well as blast protection [El Sayed

et al., 2009]. They have further been identified as promising in transparent armor appli-

cations, in which specific “ports” (transparent to visible and other wavelengths) need

protection against foreign object impact [Albrecht et al., 2012]. In the following, details

of the derivation and usage of one such elastomeric polymer, viz. polyurea, will be dis-

cussed. In addition, material failure characteristics and resulting current limitations will

be reviewed. These form a basis for subsequent material modeling approaches.

1.1.1. Derivation and usage

Elastomeric polymers mark a group of materials with a long-standing tradition in the

field of soft materials. Prime examples of their main characteristics include high damp-

ing capabilities as well as high stiffness-to-weight ratio. Moreover, lightweight mono-
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Figure 1.1.: Young’s modulus versus mass density plot for different groups of materials,
adapted from [Granta Design, 2014].

lithic coatings made of elastomeric polymers have also shown excellent mitigation prop-

erties in the event of powerful explosions, as well as the capability of retaining structural

fragments produced by blast impact. They can easily be applied via spray-on or cast-on

techniques, and different types of reinforcement and laminated designs have been inves-

tigated by several researchers [Colakoglu et al., 2007; Grujicic et al., 2006; Wambua et al.,

2007]. A solution methodology for projectile impact on such structures was developed

based on contact load duration, through-thickness and lateral transit times in [Lin and

Fatt, 2006]. From their typical application as a protective coating of concrete and steel

structures, it follows that such elastomeric coatings have to withstand rapid loadings such

as during impact, collisions or explosions up to total failure of the material. An example

of an elastomeric polymer used as a structural material is polyurea, an elastomer that

is derived from the chemical reaction of an isocyanate component and a synthetic resin

blend. Polyurea has been shown to exhibit beneficial properties for shock mitigation.

In particular, it is characterized by a high strain rate sensitivity, large maximum defor-

mations and good adhesion properties to many materials. These characteristics make it

suitable for protective coatings on structures and have motivated its experimental char-

acterization [Chakkarapani et al., 2006; Jiao et al., 2006, 2007, 2009; Knauss and Zhao,
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Figure 1.2.: Chemical reaction between an isocyanate component and a synthetic resin
blend forming polyurea.

Figure 1.3.: Surface profiles (height measured from the deepest point) of a polyurea spec-
imen tested in uniaxial tension Weinberg and Reppel [2013]. Left: Initial
profile showing initial porosity. Right: Profile after fracture showing prolif-
eration of voids.

2007; Roland and Casalini, 2007; Roland et al., 2007; Sarva et al., 2007].

With a quasistatic elastic modulus of about 70MPa [Knauss and Zhao, 2007], polyurea

lies in the range of elastomers shown in Figure 1.1. However, as investigated in [Jiao

et al., 2006, 2007, 2009], a ring-up in pressure due to wave propagation and reflection

in thin material samples under pressure shear-plate impact loading greatly increases the

material’s strength.

1.1.2. Limitations and failure

The use of polymers as structural materials is critically limited by their tendency to de-

grade by distributed damage or to fail by fracture, sometimes in a brittle manner (cf., e. g.,

Andrews [1968]; Argon [2013]; Bikales [1971]; Grellmann and Seidler [2001]; Kausch
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[1985]; Kinloch and Young [1983]; Williams [1984] for reviews). Damage in polymers de-

formed under tensile loading often takes the form of distributed voids [Jiao et al., 2006,

2007, 2009; Weinberg and Reppel, 2013], cf. Fig. 1.3. Voids nucleate heterogeneously

from flaws or inclusions, Fig. 1.3a, and subsequently grow under tension, Fig. 1.3b, re-

sulting in softening or loss of bearing capacity of the material (cf., e. g., Cho and Gent

[1988]; Gent [1973]; Gent and Wang [1991]). Likewise, fracture in polymers can often

be traced to the formation of crazes (cf., e. g., Donald and Kramer [1982]; Henkee and

Kramer [1986]; Kausch [1983]; Kramer and Berger [1990]; Sanderson and Pasch [2004]),

Fig. 1.4.

Crazes are thin layers of highly localized tensile deformation. Craze surfaces are bridged

by numerous fine fibrils, themselves consisting of highly oriented chains, separated by

connected voids. Crazes undergo several stages along their formation, including nucle-

ation, growth and final breakdown, resulting in the formation of a traction-free crack, or

fracture. Craze initiation is likely the result of heterogeneous cavitation at flaws loaded

under conditions of high triaxiality. Craze propagation has been linked to a meniscus

instability resulting in the formation of fibrils. This analogy is immediately suggestive of

some role played by surface energy or other similar physical properties not accounted for

by bulk behavior. Eventually, crazes break down to form cracks. Experimentally, crazes

are easily identified and observed fractographically by a variety of techniques including

optical interferometry, light reflectometry, dark-field electron microscopy, and others.

Owing to its engineering importance, polymer damage and fracture have been the fo-

cus of extensive modeling. A number of micromechanical and computational models,

ranging from atomistic to continuum, have been put forth (cf., e. g., Baljon and Rob-

bins [2001]; Basu et al. [2005]; Drozdov [2001]; Estevez et al. [2000a,b]; Krupenkin and

Fredrickson [1999a,b]; Leonov and Brown [1991]; Reina et al. [2013]; Rottler and Rob-

bins [2003, 2004]; Saad-Gouider et al. [2006]; Seelig and Van der Giessen [2009]; Socrate

et al. [2001]; Tijssens and van der Giessen [2002]; Tijssens et al. [2000a,b]; Zairi et al.
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Figure 1.4.: Crazing process in a steel/polyurea/steel sandwich specimen under opening
mode fracture [Yong et al., 2009].

[2008]). These models include consideration of nucleation and growth of voids, craze

nucleation, network hardening and disentanglement, chain strength, surface energy and

others, which account, to varying degrees, for the observational evidence and relate macro-

scopic properties to material structure and behavior at the microscale. In parallel, a large

mathematical literature has evolved, discussing the possibility of cavitation in local mod-

els and nonlocal extensions which may ensure existence of minimizers; see, for example,

Ball [1982]; Conti and DeLellis [2003]; Henao and Mora-Corral [2010]; James and Spector

[1991]; Müller and Spector [1995].

Despite these advances, the connection between micromechanical properties and poly-

mer fracture, and specifically any scaling laws thereof, has defied rigorous analytical

treatment and characterization. Of special interest is the identification of optimal scal-

ing laws relating the macroscopic behavior to micromechanical and loading parameters.

Such optimal scaling laws are established by producing upper and lower bounds of a

power-law type with matching exponents for all parameters in both bounds. Optimal

scaling methods were pioneered by Kohn and Müller [1992] as part of their seminal work

on branched structures in martensite, and have since been successfully applied to a num-

ber of related problems, including shape-memory alloys, micromagnetics, crystal plastic-

ity, and others [Choksi et al., 1999; Conti, 2000; Conti and Ortiz, 2005; Kohn and Müller,

1992, 1994].



1. Introduction 6

Fokoua et al. [2014a,b] have recently applied those analysis tools to ductile fracture of

metals. They specifically considered the deformation, ultimately leading to fracture, of

a slab of finite thickness subject to monotonically-increasing normal opening displace-

ments on its surfaces. In addition, they posited two competing constitutive properties,

namely sublinear energy growth and strain-gradient hardening. Sublinear growth (for

comparison, the energy of linear elasticity exhibits quadratic growth) is a reflection of

the work-hardening characteristics of conventional metallic specimens, and gives rise to

well-known geometric instabilities such as the necking of bars, sheet necking, strain lo-

calization and others (cf., e. g., McClintock and Argon [1966]). In metals undergoing

ductile fracture, this inherently unstable behavior is held in check by a second fundamen-

tal property of metals, namely strain-gradient hardening [Fleck and Hutchinson, 1993,

1997, 2001; Fleck et al., 1994]. Under these assumptions, Fokoua et al. [2014a,b] showed,

through rigorous mathematical proofs, that ductile fracture emerges as the net outcome

of two competing effects: while the sublinear growth of the energy in the large-body

limit promotes localization of deformation to failure planes, strain-gradient plasticity

stabilizes this localization process in its advanced stages, thus resulting in a well-defined

specific fracture energy.

1.2. Models of polymer elasticity

The mathematical description of polymeric materials commonly occurs on two different

scales. On the one hand, the framework of continuum mechanics (see Section A.2 for a

brief review) is used to describe hyperelastic materials in the finite deformation range;

on the other hand, an alternative approach derives from statistical mechanics by describ-

ing individual polymer chains. The latter approach for modeling polymers offers the

advantage of being able to derive the free energy of an individual polymer chain from

first principles only, whereas hyperelastic material models are more phenomenological

in nature Gloria et al. [2013].
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However, bridging these scales and relating energy densities in the continuum descrip-

tion to the energy of a network of polymer chains bears several difficulties. First and fore-

most, assumptions on the interactions between different chains are necessary to facilitate

the analysis and pass from individual polymer chains to a network of chains. Further-

more, the way in which the total energy decomposes into the different contributions from

the lower scales must be specified.

1.2.1. Macromolecular polymer models

Derived from their macromolecular structure, polymers can be modeled as ensembles of

chains with energy f (λ,T), where λ is the stretch of the relative position vector between

the chain ends and T is the absolute temperature. Prime examples of both uncorrelated

and correlated chain models are the freely jointed chain model (FJC) in a microcanon-

ical ensemble formulation for Gaussian and non-Gaussian statistical approximations as

well as the Kratky-Porod and wormlike chain (WLC) models as representatives of stiffer

polymer models, see e.g. [Weiner, 2002].

The freely jointed chain model

The freely jointed chain model approximates a polymeric structure of total length lt as an

ideal chain of monomers possessing equal lengths lm and directions that are uncorrelated

to the neighboring ones, cf. Figure 1.5.

Based on the large number of monomers N in a polymer, the probability density of the

relative endpoint position vector approaches a Gaussian distribution, which in three di-

mensions results in

pFJC(le) =
p0

(
√

2πσ )3
e
− l2e

2σ2 (1.1)
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with variance σ =
√
Nl2m/3 and normalizing constant p0. The total free energy of a single

chain then follows as

fFJC = −kBT lnΩ = f 0
FJC +

3
2
kBTNλ

2
r , (1.2)

where f 0
FJC denotes the free energy of the undisturbed freely jointed chain, kB and T are

the Boltzmann constant and absolute temperature, respectively, Ω stands for the proba-

bility of obtaining a certain endpoint position and λr is the relative stretch of the chain

as the end-to-end length le divided by lt. For a graphical interpretation of the differ-

ent lengths describing the polymeric structure, please refer to Figure 1.5. From Equa-

tion (1.2), the force-stretch relation of a single polymer chain can be calculated as

FFJC =
3kBT
lm

λr . (1.3)

This expression, however, is only valid in the small strain regime due to the Gaussian ap-

proximation with regard to changes in entropy [Weiner, 2002]. Following a non-Gaussian

statistical approach (Kuhn and Grün [1942]) with probability

ΩFJC(le) = Ω0 exp
(
−N

(
λrL

−1 + ln
L−1

sinh(L−1)

))
(1.4)

and recalling that λr = le/lt, the free energy of a single chain follows as

fFJC = f 0
FJC + kBTN (λrL

−1 + lnL−1 sinh(L−1)−1). (1.5)

Furthermore, the force-stretch relation of a polymer chain, which is not restricted to the

small strain regime, now specifies to

FFJC =
1
βlm

L−1(λr). (1.6)
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lt le= lt

lele

lt

lmlmlm

l lp« t l »lp t l lp» t

Figure 1.5.: Graphical interpretation of different length measures describing polymeric
structures.

In these expressions, β is the reciprocal thermodynamic temperature according to β =

1/kBT , and L−1 denotes the inverse Langevin function with

L(λr) = coth(λr)−λr . (1.7)

The inverse of Equation (1.7) can be restated using a Padé approximation [Miehe et al.,

2004] resulting in

L−1 =
3−λ2

r

1−λ2
r
λr , (1.8)

and it thus can be seen that in the small strain limit, the force-stretch relation based on

Gaussian and non-Gaussian statistics coincide.

The wormlike chain model

The freely jointed chain model oversimplifies the macromolecular structure, resulting,

e.g., in a non-existing stiffness against bond bending. Consequently, more elaborate mod-

els have been developed, which correlate the different chain segments.

The Kratky-Porod model for example introduces an energy dependency on the bonding

angle, and thus penalizes chain rotations [Cross, 2006]. The free energy and force-stretch
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relation of a single chain derived in this way take the forms, respectively,

fWLC = f 0
WLC +

kBT lt
lp

(
1
2
λ2
r +

1
4

1
1−λr

− 1
4
λr

)
and (1.9)

FWLC ≈ kBT
lp

(
λr +

1
4

1
(1−λr)2 −

1
4

)
, (1.10)

with lp denoting the persistence length as a measure of the stiffness of the tangled poly-

mer chains.

1.2.2. From macromolecular to continuum scales

Approaches for bridging the scales between single polymer chains and cross-linked chain

networks forming a continuum mainly differ by the set of assumptions on which they rely.

A first and common assumption is that the sum over all free energies of the individual

chains gives the total free energy of the polymer network [Gloria et al., 2013]. Further

assumptions concern the specification of how isolated chains interact with each other,

and different models are summarized below.

The Treloar model

First introduced by Treloar [1949], single chains are assumed to move in an affine manner

according to the global deformation gradient (also known as the affine assumption or

Cauchy-Born rule). The total strain energy density of the polymer network then follows

as

WTreloar(F) =
∫
R

+

∫
R

+

∫
S2
Wchain

(
lt,λζ,N

)
dσ (ζ)dρ(lt,N )dν(N ), (1.11)
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where ν(N ) specifies the distribution of polymer chains consisting of N monomers, and

ρ(lt,N ) describes the probability distribution of chains consisting of N monomers having

length lt in the undeformed configuration. Furthermore, S2 denotes the unit sphere and

ζ ∈ S2.

Simplifications to this model can be introduced by assuming that the number of monomers

of each polymer chain is constant and that the total chain length in the undeformed con-

figuration is given by lt =
√
Nlm [Flory, 1969]. Under these conditions, the total strain

energy density of the network may be written as

WTreloar(F) =
∫
S2
Wchain

(√
Nlm,λζ

)
dσ (ζ). (1.12)

The Arruda-Boyce model

In the large deformation limit, the Treloar model overestimates the energy stored in the

material upon deformation. In order to remedy this deficiency, different ways of relaxing

the affine assumption have been proposed in the literature. One of these models was in-

troduced by Arruda and Boyce [1993], which relaxes the affine assumption by evaluating

a representative volume element and its geometric response. Thereby, the representative

volume element is a cube consisting of eight individual polymer chains originating from

its center and connecting to each of its corners (see Figure 1.6 for reference).

The model rests upon the assumption that the representative volume element aligns it-

self based on the principal directions of the macroscopic deformation gradient and de-

forms according to its principal stretches (whereby no repulsion between polymer chains

is taken into account) [Gloria et al., 2013]. Following this assumption, the total strain

energy density is proportional to the energy of individual chains in the deformed rep-

resentative volume element. By noting that the deformation ratio of each chain may be
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calculated as

λchain

lt
=

√
λ2

1 +λ2
2 +λ2

3

3
=

√
I1
3

(1.13)

with total chain length lt =
√

3/2 in the undeformed configuration, the energy density of

the polymer network (assuming isochoric deformations) may be written as

WArruda-Boyce(F) =
n
β
N


√
I1
3

√
Nl
Nl

L−1


√
I1
3

√
Nl
Nl

 (1.14)

+ log


L−1

(√
I1
3

√
Nl
Nl

)
sinhL−1

(√
I1
3

√
Nl
Nl

)

. (1.15)

Here, n denotes the chain density and, as introduced above, β stands for the reciprocal ab-

solute temperature. In order to expand this energy and include volumetric effects, strain

energies modeling the volumetric material response upon deformation may be added,

such as the well-known Helmholtz volumetric energy [Weiner, 2002]

WHelmholtz(F) = κ
(
J2 − 1− 2log(J)

)
. (1.16)

The variational model

A different way of relaxing the affine assumption lies in the introduction of a minimiza-

tion principle (also known as the variational model) [Gloria et al., 2013], which rests

upon the idea that the total free energy of the polymer is minimized by the positions of

cross-linking points when the system reaches equilibrium. Starting from a macroscopic

sample Ω consisting of a network of cross-linked polymer chains (whereby cross-links

are assumed permanent and entanglements of chains are neglected), the Hamiltonian of
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φ
λ1

λ2

λ3

Figure 1.6.: Representative volume element used in the eight-chain-model [Arruda and
Boyce, 1993].

the system follows as

H(u,s) =Hvol(u,s) +
∑
i

Hi(u,si). (1.17)

Here, u denotes the positions of cross-links, and si are the positions of monomers associ-

ated with chain i. Furthermore, the additive decomposition of the Hamiltonian enables a

split into volumetric contributions Hvol and individual chain contributions Hi . The free

energy of the variational model can then be stated as

A(F) = −1
β

ln(Z), (1.18)

with Z being the partition function according to

Z =
∫
U

∫
S1(u)

∫
S2(u)

...

∫
Sn(u)

e−βH(u,s)dsn . . .ds2ds1du. (1.19)

In this expression, U and Si(u) are the sets of admissible positions of cross-links and

monomers, respectively. Further simplifications introduced in the model are a restriction

of chain interactions via cross-links only, as well as the assumption that monomer po-

sitions si are decoupled. These simplifications lead to a coarse-grained model that only
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depends on cross-link positions u:

A(F) = −1
β

ln
(∫

U
exp−βHF(u,β) du

)
, (1.20)

where

HF(u,β) =Hvol(u)−
∑
i

1
β

ln
(∫

Si(u)
exp(βHi(u,si))dsi

)
. (1.21)

The Treloar assumption of a polymer network deforming affinely according to the macro-

scopic deformation gradient may be interpreted in this context as restricting the integral∫
U

in Equation (1.20) to evaluations at u(x) = F ·x only. In the variational model, however,

the affine assumption only restricts the admissible set of cross-link positions U on the

boundary, whereas the minimum of the coarse-grained Hamiltonian A(F) ' infuHF(u,β)

(with Ω→∞ in the thermodynamic limit) gives the free energy in the interior.

In order to further specifyHF(u,β), the notion of a discrete network is introduced, and its

main features and results for the variational model are summarized here (a more detailed

description can be found in Gloria et al. [2013]). With a stochastic point process L in R
3

as a sequence of random points in R
3, and a Delaunay tesselation T of L in R

3 specified

by the tetrahedral mesh associated with L, a scaling according to

Lε = εL and Tε = εT (1.22)

can be introduced. The energy associated with a deformation field uε ∈ S(Tε) then follows

as

Aε(uε,D) =ε3
∑
e∈E

Wnn

(
|e1 − e2|,

|uε(εe1)−uε(εe2)|
ε|e1 − e2|

)
(1.23)

+
∑
T ∈T
|εT |Wvol(det∇uε), (1.24)
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where e = (e1, e2), Wnn andWvol denote the edge between vertices, energy of the deformed

edges and volumetric energy, respectively.

Now, only Wnn remains to be specified. By introducing Ne as the number of monomers

per edge, and after some simplifications, the energy of the deformed edges follows as

Wnn(|e|,λ) =
n
β
Ne

 λ
√
Ne
L−1

(
λ
√
Ne

)
+ log

L−1
(
λ√
Ne

)
sinhL−1

(
λ√
Ne

)
 , (1.25)

which completes the model.

The Böl-Reese model

A similar approach to the variational model may be found in [Böl and Reese, 2005], in

which both volumetric and polymer chain energies are considered. In this model, a tetra-

hedral mesh of a macroscopic sample Ω is generated.

Subsequently, the volumetric material response is associated with each tetrahedron of the

mesh, whereas the edges of each element represent polymer bundles and thus introduce

discrete energies associated with individual polymer chains.

For simplicity, the energies of polymer bundles are taken to be multiples of the energy of

a single polymer chain. These energies can thus be written as a function Wedge(λedge) =

Wedge

(
ledge
Ledge

)
, whereby Ledge and ledge denote edge lengths in the reference and deformed

configurations, respectively.

With decreasing mesh size, the Böl-Reese model converges to a continuum model. How-

ever, it is important to note that the resulting model highly depends on the details of the

tetrahedral mesh, as discussed further in Böl and Reese [2005].
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Network theory of entropic elasticity

In a different framework originating from statistical mechanics, a standard description

to go from single polymer chains to a network description is purely based on entropic

contributions. Here, an amorphous network of cross-linked long-chain molecules is con-

sidered, and the undeformed configuration is given by a unit volume comprising a total

of ν = 1, ...,N cross-linked long-chain molecules, with respective numbers of links nν and

link lengths b. Under the assumptions of sufficiently long chains which are far away from

the fully extended limit, as well as a motion of cross-linking points according to superim-

posed deformations (neglecting thermal motion), the change in entropy of the amorphous

network upon deformation can be written as [Weiner, 2002]

∆Sν = − 3kB
2nνb2

(
r2(ν)−R2(ν)

)
. (1.26)

In this expression, R(ν) and r(ν) denote the end-to-end vector of the νth chain before and

after deformation, respectively (see Figure 1.7 for reference), and R and r denote their

lengths, respectively. By further assuming the same affine transformation described in

terms of the strain tensor EIJ = 1
2(CIJ − IIJ ) for all cross-linking points (which is the affine

assumption used in Treloar’s model) and using the relation r(ν)2−R(ν)2 = 2EIJRI (ν)RJ (ν),

the total entropy of the system evaluates to

S(EIJ ) = −
3kEIJ
b2

N∑
ν=1

RI (ν)RJ (ν)
nν

, (1.27)

where the entropy of the undeformed network is taken as a reference point. A material

tensor describing the undeformed configuration may be introduced as

KIJ =
3
b2

N∑
ν=1

RI (ν)RJ (ν)
nν

, (1.28)
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which in the case of an homogeneous and isotropic undeformed network results in KIJ =

KδIJ with

K =
1
b2

N∑
ν=1

R2(ν)
nν

. (1.29)

For both EIJ and KIJ , the subscripts in uppercase letters refer to components of tensors in

the reference configuration (as opposed to lowercase letters, which denote the deformed

configuration as further described in Section A.2). Details regarding the evaluation of K

and its dependence on the cross-linking process may be found in [Weiner, 2002], and the

main results and assumptions are summarized below. Based on the observation that K

describes the undeformed network of polymer chains, it can be seen that its value can

only be specified further by details describing the cross-linking process. For simplicity,

all cross-links between polymer chains are assumed to occur simultaneously and form at

adjacent points of different chains. The total of N chains is furthermore subdivided into

m groups, whereby each group consists of cα chains having nα links (α = 1, ...,m). With

an end-to-end chain distance expressed by R(p,α) with p = 1, ..., cα, it follows that

K =
1
b2

m∑
α=1

1
nα

cα∑
p=1

R2(p,α). (1.30)

Assuming a random cross-linking process, R2(p,α) may be calculated via a Gaussian dis-

tribution with variance nαb2 so that

cα∑
p=1

R2(p,α) = cαnαb
2, (1.31)

and thus K =N . Using these simplifications, Equation (1.27) may be restated as

S(EIJ ) = −kBNELL, (1.32)
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φ

R(ν) r(ν)

Figure 1.7.: Network of cross-linked polymer chains upon deformation (adapted from
Weiner [2002]).

which can be reformulated in principal stretches as

S(λ1,λ2,λ3) = −kBN
2

3∑
L=1

(λ2
L − 1). (1.33)

Finally, the Helmholtz free energy F of the full unit volume network subject to an arbi-

trary deformation requires the addition of an energy component U (v,T ), which depends

on volumetric changes. The free energy of the amorphous network then follows as

F(λ1,λ2,λ3,T ) =U (v,T ) +
kBTN

2

3∑
L=1

(λ2
L − 1), with v = λ1λ2λ3. (1.34)

In strain energy density form, and with an exemplary volumetric contribution Ŵ (J,T )

added, we arrive at

W (F,T ) = Ŵ (J,T ) +
kT
2
KIJEIJ = Ŵ (J,T ) +

kTN
2

δIJEIJ . (1.35)

This energy density is the basic representation of a Neo-Hookean solid, and it is further-

more the three-dimensional extension of Equation (1.2). Here and in the following, F

denotes the deformation gradient tensor, and the Jacobian J = detF represents the rela-

tive volumetric change.
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1.3. Formulations of non-local damage

A number of non-local regularization models have been put forth in the literature in an

attempt to overcome ill-posed boundary value problems arising in continuum damage

models. Due to the presence of softening in these models, the governing field equations

loose ellipticity, and a unique solution to the resulting algebraic system does not exist (as

shown analytically for the case of wave propagation in a strain-softening bar in [Bažant

and Belytschko, 1985]). As a result, deformations are observed to localize in narrow

bands, with band widths restricted by the spatial discretization size.

Solution approaches to stabilize this process introduce an internal material length scale

as well as non-local terms. Two main strategies can be distinguished in the introduction

of non-local terms, which are of integral and gradient type. Prime examples of both

approaches will be reviewed in this section. For a comprehensive review, see, e.g., [Bažant

and Jirásek, 2002], which forms the basis for the following brief review.

1.3.1. Motivation

Nonpolar materials as discussed in [Noll, 1972] constitute a class of materials, for which

the stress value at a given point depends on the deformation and temperature evaluated

at this point only (and, in some cases, also the history of deformation). The underlying

assumption that the material can be treated as a continuum even at an arbitrarily small

scale implies the possibility of decomposing a finite body into infinitesimal material vol-

umes whose interactions are restricted to the level of balance equations. This assumption,

however, is an idealization, and neglects any internal material structure or microstruc-

tural details. Microstructural details may be described by spatial variations of material

properties, yet their size range over different orders of magnitude renders this approach

expensive in practical applications. More importantly, the continuum assumption breaks

down at smaller scales and is hence no longer applicable . Therefore, it is important to
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choose a resolution level below which the details of the internal structure are only indi-

rectly taken into account as effective material properties. This continuum assumption is

justified if the characteristic wave length of the deformation field does not lie below the

material model’s resolution level. For static applications, the characteristic wave length

may be viewed as the minimum region size into which strain is able to localize. One way

of avoiding the need for resolution refinement in the case of characteristic wave lengths

below resolution level is to introduce generalized continuum formulations.

The first generalized continuum formulation can be found in [Cosserat and Cosserat,

1909], in which material particles have not only translational but also rotational de-

grees of freedom. These additional degrees of freedom are defined by rotations of a

rigid frame of mutually orthogonal unit vectors. In the time that followed, generaliza-

tions of Cosserat’s original theory were developed using additional fields independent of

the displacement field. An example can be found in the continuum with microstructure

[Mindlin, 1974], in which a microscopic deformation gradient is introduced (which gives,

in the special case of orthogonal tensors, the previously described Cosserat micropolar

continuum).

A different group of enriched continua (also known as higher-grade materials or gradient

theories) is formed by constitutive models incorporating gradients of strain, thus keep-

ing the displacement field as the only independent kinematic field. First, gradients of

rotations were considered, which are the strain gradient components corresponding to

curvature (see, e.g., [Grioli, 1960]). Afterwards, gradients of stretch were included into

the theory [Toupin, 1962], as well as higher-order gradients [Green and Rivlin, 1964].

In addition to deviations from local constitutive models at small scales, which are based

on microstructural heterogeneities on the characteristic length scale, different motiva-

tions of non-locality were proposed in the 1970s. The second main motivation was the

strain-softening character of distributed damage. In the case of a local inelastic consti-

tutive law with strain-softening damage, numerical as well as analytical results showed



1. Introduction 21

localization of damage into a zone of zero volume [Bažant, 1976]. As a result, the nu-

merical solution becomes unobjective with regard to the chosen mesh and converges, for

decreasing mesh size, to a solution characterized by zero energy dissipation during fail-

ure. Two different reasonings can be given for this behavior, and for a one-dimensional

dynamic problem, these reasons can be explained as follows:

• In the case of negative tangential stiffness, materials are characterized by an imagi-

nary wave speed, and thus lose (apart from special cases of materials) the ability to

propagate waves.

• The initial boundary value problem becomes ill-posed, and transitions from a hy-

perbolic to an elliptic type. Owing to this change in type, finite changes in the

dynamic solution can result from infinitesimal changes in the initial conditions.

For multidimensional tangential stiffness tensors lacking positive definiteness, materi-

als can still possess some real wave speeds and therefore propagate stress waves. The

direction of stress propagation however is no longer arbitrary, resulting in ill-posed ini-

tial boundary value problems that are not necessarily of elliptic type. It has been shown

in later investigations (please refer to [Bažant, 1976, 1984; Bažant and Cedolin, 1979;

Bažant and Oh, 1983; Bažant et al., 1984; Cedolin and Bažant, 1980; Pietruszczak and

Mròz, 1981] for details) that by introducing a characteristic length in order to model

non-local strain softening behavior, the localization of damage can be prevented by regu-

larizing the boundary value problem and making it well-posed. As a result, convergence

to physically meaningful solutions is achieved.

A final motivation for the introduction of non-locality into constitutive theories is given

by size effects. Here, the term size effects denotes the dependence of nominal strength

on structure size. For purely local material behavior independent of a characteristic ma-

terial length, size effects may be described by power laws (e.g. in linear elastic fracture

mechanics). In case of non-locality on the other hand, size effects are of transitional
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type, and different power laws are needed in order to describe size effects at scales much

smaller/larger than the characteristic length.

The different motivations leading to an introduction of non-local behavior into constitu-

tive theories can hence be summarized as follows:

• material heterogeneities leading to small-scale deviations from local continuum

models,

• ill-posed initial boundary value problems, which arise in strain-softening damage

formulations and lead to unobjective numerical solutions,

• size effects observed in experiments and discrete simulations.

1.3.2. Strong and weak non-locality

Two main strategies can be distinguished in the field of non-local regularization models,

which are of integral and gradient type. The former category describes models in which

non-local terms are included by introducing weighted averages of local internal variables,

whereby averaging is performed over a set of neighboring points close to the point under

consideration. In gradient-type approaches, on the other hand, the introduction of non-

locality relies on higher-order gradients of non-local variables. Differential equations

then describe the evolution of control variables, which allows for different ways for the

non-local representation.

Following a mathematical description of non-locality [Rogula, 1982], an abstract form of

the fundamental equations governing any physical theory can be expressed as

Au = f , (1.36)

whereby f is a given excitation, u denotes the unknown response, and A is the corre-
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sponding operator which characterizes the system and may possibly be non-linear. Since

A characterizes the system, it also determines its locality properties. For A to be local, the

following property must be satisfied:

Definition 1. If two functions u and v are identical in an open set O, then their images Au

and Av are also identical in O.

In other words, whenever the identity u(x) = v(x) holds for all points x in a neighborhood

of x0, then it also follows that Au(x0) = Av(x0). This condition is satisfied for differential

operators, and we may hence define local theories as those being fully described by differ-

ential equations. Non-local theories, on the other hand, are based on integrodifferential

equations.

However, this definition of locality is of a somewhat narrow nature, and a different de-

scription relating to the absence or presence of a characteristic length can be given. In

theories in which a characteristic length is absent, the fundamental equations are in-

variant under scaling of the spatial coordinates [Rogula, 1982]. Local theories satisfying

this property are denoted strictly local, whereas local theories not invariant under spa-

tial scaling are called weakly non-local. Typically, theories of the weakly non-local group

contain differential equations with derivatives of different orders. By taking the ratio

of coefficients multiplying these terms of different order (which have different physical

dimensions), it is then possible to find a characteristic length.

As a simple example of weakly non-local theories, we may look at a Timoshenko beam,

which relates to the previously mentioned Cosserat continuum as a specific one-dimensional

version. In this case, the characteristic length is given by the ratio of the square roots of

the bending and shear stiffness values of a cross-section. Under the assumption of a

fixed cross-sectional shape, it follows that the characteristic length is proportional to the

depth of a Timoshenko beam. Hence, only the beam span remains as an actual geomet-

ric dimension of the model, whereas the depth is described by means of a generalized
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material model and given in terms of moment–curvature (or shear force to shear distor-

tion) relations. Therefore, in this example the material length scale can be traced back

to a geometric dimension that is not explicitly resolved anymore, viz. the beam’s depth.

Similarly, characteristic lengths in generalized continuum models are the result of a ho-

mogenization procedure; they thus represent characteristics of the heterogeneity, which

are not explicitly resolved anymore.

In summary, continuum models may be classified according to:

• strictly local models (non-polar simple materials),

• weakly non-local models (polar and gradient theories),

• strongly non-local materials (models of integral type).

1.3.3. Non-local models of integral type

Non-local elasticity

As introduced in [Edelen and Laws, 1971; Eringen, 1972], non-local elasticity theories

involve many different fields of non-local character (e.g. body forces, mass or internal

energy), which made their application to real problems a challenging task. In further de-

velopments, theories of non-locality were reduced to only include a non-local character

in their stress-strain relations, while keeping the local character of equilibrium and kine-

matic equations, as well as of the corresponding boundary conditions [Eringen and Kim,

1974]. More recently, a variational model has been developed [Polizzotto, 2001], which

introduces the quadratic energy functional

W =
1
2

∫
V

∫
V
ε(x)Cl(x,ζ)ε(x)dxdζ (1.37)
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under the assumptions of small strains and linear elasticity. Here, ε(x) denotes the strain

field and Cl(x,ζ) is the elastic stiffness in a generalized form. In this form, locality is

recovered for

Cl(x,ζ) = Cl(x)δ(x−ζ). (1.38)

In the following, it is assumed that the generalized stiffness matrix satisfies the symmetry

relations Cl = CT
l as well as Cl(x,ζ) = Cl(ζ,x). Furthermore, a macroscopically homoge-

neous body is considered, and stiffness coefficients as well as interactions between points

x and ζ are assumed to decay with increasing distance between them (also known as

the attenuating neighborhood hypothesis). Due to these decaying properties, a modified

generalized stiffness may be introduced as

Cl(x,ζ) = Cl α(x,ζ), (1.39)

where α denotes an attenuation function. Under the assumption of an infinite and isotropic

body, α is only a function of the distance between points x and ζ and hence follows from

α(x,ζ) = α∞(‖x−ζ‖). (1.40)

The attenuation function α∞, which is also known as the non-local averaging function

or non-local weight function, may further be assumed as a Gauss distribution function

according to

α∞(r) =
(
l
√

2π
)−Ndim exp

(
− r

2

2l2

)
(1.41)

with number of spatial dimensions Ndim and length parameter l. In order to increase

computational efficiency, attenuation functions with finite support may be chosen, such
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as a polynomial bell-shaped function

α∞(r) = c
〈
1− r

2

R2

〉2

, (1.42)

where the Macaulay brackets denote the positive part according to 〈x〉 =max(0,x).

Non-local averaging operator

The integral approach includes non-local terms by introducing weighted averages of local

internal variables, whereby averaging is performed over a set of neighboring points close

to the point under consideration [Dimitrijevic and Hackl, 2007]. An example of this

approach can be found in [Červenka et al., 2005]. Here, a non-local field is defined as

f̃ (x) =
∫
V
α(x,ζ)f (ζ)dζ, (1.43)

whereby f (x) is an arbitrary local field, and α(x,ζ) is the chosen non-local weight func-

tion. Since non-local operators in softening materials should not influence a uniform

field, the weight function is expected to comply with the normalization condition

∫
V
α(x,ζ)dζ = 1 ∀ x ∈ V . (1.44)

As introduced in Section 1.3.3, the weight function only depends on the distance between

two points x and ζ under the assumptions of isotropy and homogeneity of an infinite

sample. Here, x is also denoted as a receiver point, whereas ζ is called the source point.

A non-negative bell function is then usually chosen for α∞(r) in Equation (1.40). It is

now possible to define a minimum distance r characterized by vanishing or negligible

interaction weights, which is known as the non-local interaction radius R. The resulting

region of radius R (centered at x) gives the domain of influence of point x. Cases for

which this definition does not hold are locations in the vicinity of a boundary. Under these
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circumstances, averaging is restricted to sections of the domain of influence that lie inside

the body. Furthermore, a way of satisfying normalization conditions is a modification of

weight function α(x,ζ) according to

α(x,ζ) =
α∞ (‖x−ζ‖)∫

V
α∞ (‖x−ζ‖) dζ

. (1.45)

With regard to numerical implementations, the non-local average at x is computed as a

weighted sum over values at all integration points ζ that lie within R. Furthermore, as a

main penalty of non-local models of integral type, the increased bandwidth of the stiff-

ness matrix has to be taken into account. Linearization of the resulting set of equations

is hence complicated, and computational efficiency impaired. The following section is

therefore aimed at giving an overview of different approaches to the introduction of non-

locality, viz. non-local models of gradient type.

1.3.4. Non-local models of gradient type

Gradient-type approaches to non-locality utilize higher-order gradients of the non-local

variables. Differential equations then describe the evolution of said control variables,

whereby different ways of the non-local representation can be chosen. One possibility

lies in the introduction of an equivalent strain measure as shown in [Simone et al., 2003].

Following this strategy, calculations of the state of damage are based on the strain mea-

sure’s non-local part. The resulting differential equation to be solved involves Laplacians

of non-local variables, and integration can be performed by resorting to the principle of

virtual work.

Alternatively, as in the works of [Nedjar, 2001] and [Makowski et al., 2006], a Laplacian

term may also be introduced directly in the differential equation describing the evolution

of the damage variable. Integration of the resulting system of equations then follows
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from the principle of virtual power.

A different way of gradient-type enhancement of the free-energy functional is presented

in [Dimitrijevic and Hackl, 2007], in which C0 interpolation of the variables is preserved.

In general, C1 interpolation of the displacements is required if damage variable gradients

are introduced, leading to cumbersome numerical implementations. However, by intro-

ducing a new variable serving the purpose of transporting values of inelastic variables

across finite element boundaries, C0 interpolation order of the variables can be preserved

while introducing non-locality into the model [Dimitrijevic and Hackl, 2007]. As a result,

an additional set of equations must be solved on the structural level. Under the assump-

tions of isotropy and scalar damage, the enhanced free energy function of this approach

follows as

ψ̃ =
1
2
f (d)εijCijklεkl +

cd
2
‖∇ϕ‖2 +

βd
2

(ϕ −γ1d)2 , (1.46)

where ϕ represents the non-local variable, and f (d) is an appropriate function of scalar

variable d measuring the state of damage. Furthermore, βd penalizes the difference be-

tween non-local and local field, and cd defines the degree of gradient regularization and

internal length scale. Taking variations of the potential functional

Π =
∫
Ω

ψ̃ dV −
∫
Ω

u · (ρb)dV −
∫
∂Ωσ

u · tdA (1.47)

with external loading per unit surface t and force per unit volume ρb then gives, by fur-

ther applying natural boundary conditions of vanishing non-local flux across boundaries,

a second-order differential equation for the evolution of ϕ according to

βd (ϕ −γ1d)− cd∇2ϕ = 0. (1.48)
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2. Analytical description of crazing mechanisms

This section describes a simple local model for the bulk behavior as introduced in [Hey-

den et al., 2014], which is based on the classical statistical mechanical treatment of freely-

jointed polymer chains presented in Section 1.2, extended to account for chain failure.

Furthermore, a model of nonlocal energy based on the assumption of isotropy and of lin-

ear growth of the strain-gradient elastic energy density is introduced, based on the use of

fractional derivatives. Evidently, more elaborate statistical-mechanical models of poly-

mer elasticity, failure and strain-gradient elasticity can be considered within the general

framework developed here. However, models such as the ones described below suffice to

illustrate the general framework. Further enhancements will be discussed in Section 6.

2.1. Competing constitutive effects

neo As introduced in Section 1.1.2, the modeling of competing constitutive properties in

the form of sublinear energy growth and strain-gradient hardening was recently applied

to the analysis of ductile fracture of metals Fokoua et al. [2014a,b]. The present section

follows a similar strategy for polymers. Thus, it is posited that fracture in polymers

results from a competition between distributed damage, due to progressive chain failure,

and fractional strain-gradient elasticity. Moreover, the material behavior is assumed to

have two components, local and nonlocal. The local behavior is characteristic of large

material samples deforming uniformly, and it represents the configurational statistics of

a polymeric chain network in the thermodynamic limit (cf., e. g., Flory [1989]; Weiner
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[2002]).

We note that in general, damage is a time-dependent process governed by equations of

evolution. In particular, for arbitrary loading paths, the rate of damage can be zero below

a certain threshold, and non-zero when the threshold is attained. In order to simplify

the analysis, the present analysis is restricted to monotonic and proportional loading

processes for which damage accumulates continuously.

The classical network theory (for details, please refer to Section 1.2 and references therein)

is thus extended by assuming that the chain bonds have a finite strength. When the

strength of the chain is reached, the chain is assumed to fail and to subsequently have

no load-bearing capacity. In this case, the behavior of the solid is characterized by an

effective strain-energy density referred to as “deformation-theoretical” (an extensive ac-

count of deformation theory, as it applies to general inelastic solids, may be found in

Martin [1975]). Therefore, this effective free energy combines the chain elasticity and the

dissipation due to chain failure. As shown in the following, for large deformations, the

deformation-theoretical free energy has zero growth; i. e., it is bounded from above and

below by a constant.

Energies with sublinear growth relax to zero, i. e., they allow the material to fracture with

zero expenditure of energy and thus fail to supply useful information about the fracture

properties. As a way to hold this inherently unstable behavior in polymers undergoing

fracture in check, a second fundamental property, viz. fractional strain-gradient elas-

ticity, may be applied. Fractional strain-gradient elasticity refers to a generalization of

conventional strain-gradient elasticity (cf., e. g., Hermann [1974]; Kröner [1968]; Maugin

and Metrikine [2010]) in which the strain-energy density depends on fractional deriva-

tives (cf., e. g., [Adams, 1975]) of the deformation gradient.

The need to consider fractional derivatives in the definition of the energy stems from the

fact that conventional strain-gradient elasticity is too rigid to enable the type of deforma-
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tions involving in the crazing mechanism and, hence, is incompatible with experimental

observation. Thus, if the strain-energy density has at least linear growth in the second

deformation gradient ∇2y, then, for all configurations of finite energy, ∇2y is necessarily

integrable and, hence, the deformation mapping y is continuous on almost every plane

by Sobolev embedding (cf., e. g., [Adams, 1975]). This continuity of y, in turn, precludes

the formation of fibrils characteristic of the crazing mechanism, which necessarily entails

discontinuous deformation mappings (hence leading to discontinuous displacements).

By contrast, as shown in the following sections, the use of fractional derivatives removes

sufficient rigidity from conventional strain-gradient elasticity to allow for crazing defor-

mations, thus bringing the theory within the realm of experimental observation.

In the present context, fractional strain-gradient elasticity encodes key aspects of poly-

mer behavior, such as surface and interfacial energy, not accounted for in the local model.

The fractional strain-gradient elasticity of the polymer results in deviations from volume

scaling, i. e., in nonlocal behavior and size dependency, in sufficiently small material sam-

ples. Under these conditions, polymer fracture emerges as the net result of two competing

effects: while the zero growth of the local energy promotes localization of deformation

to failure planes, or crazes, fractional strain-gradient elasticity stabilizes this process of

localization, thus resulting in an orderly progression towards failure and a well-defined

specific fracture energy.

2.2. Local behavior

One of the simplest models of the thermoelasticity of polymers, known as the network

theory of rubber elasticity [Flory, 1989; Weiner, 2002] (as introduced in Section 1.2), re-

gards the polymer as an amorphous network of cross-linked long-chain molecules. The

chains are freely-jointed, long and far from full extension. In order to connect the be-

havior of the chains to the deformation of the continuum, the cross-linking points are
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assumed to move affinely according to the local macroscopic deformation. In addition,

the polymer is assumed to be ostensibly incompressible at the macroscale. The standard

analysis (cf., e. g., Weiner [2002]) then gives the free-energy density per unit volume of

the undamaged material as

Aloc(F ) =

 nkBTKIJCIJ , if det(F ) = 1,

+∞, otherwise,
(2.1)

where n is the number of chains per unit volume, F is the local deformation gradient,

C = F T F is the right Cauchy-Green deformation tensor, kB is Boltzmann’s constant, T is

the absolute temperature, and incompressibility (i. e. det(F ) = 1) is enforced through a

hard constraint.

In addition, the structure tensor K follows as

KIJ =
3l2

b2

∫
S2
p(ξ)ξIξJ dΩ, (2.2)

where b is the link length, l is the end-to-end distance of the chains, ξ is the chain end-to-

end unit vector, p(ξ) is the fraction of chains in the ensemble having a chain end-to-end

unit vector ξ, S2 is the unit sphere and dΩ is the element of solid angle.

The density p(ξ) is subject to the normalization condition

∫
S2
p(ξ)dΩ = 1. (2.3)

For an isotropic distribution of chains, p = 1
4π , we have

∫
S2
p(ξ)ξIξJ dΩ =

1
3
δIJ , (2.4)
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and Equation 2.2 reduces to

KIJ =
l2

b2δIJ , (2.5)

whence Equation (2.1) in turn reduces to the polyconvex strain-energy density of a Neo-

Hookean solid. In principal directions, C = diag(λ2
1,λ

2
2,λ

2
3) and

KIJCIJ = K1λ
2
1 +K2λ

2
2 +K3λ

2
3, (2.6)

where

KI =
3l2

b2

∫
S2
p(ξ)ξ2

I dΩ. (2.7)

Furthermore, application of the arithmetic mean-geometric inequality and incompress-

ibility gives

K1λ
2
1 +K2λ

2
2 +K3λ

2
3 ≥ 3[(K1λ

2
1)(K2λ

2
2)(K3λ

2
3)]

1
3 = 3(K1K2K3)

1
3 . (2.8)

Combining these inequalities leads to

Aloc(F ) ≥ 3(K1K2K3)
1
3nkBT ≡ A0. (2.9)

For an isotropic polymer, we additionally have K1 = K2 = K3 = l2/b2 and

A0 =
3nkBT l2

b2 = Aloc(I ). (2.10)

The classical model of polymer elasticity just described can be extended to account for

damage in the form of broken chains. Suppose that chains break when the end-to-end

vector attains a critical stretch λc > 1, and that the failure of one chain costs energy in
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the amount Eb. Thus, according to this criterion, a previously intact chain of end-to-end

direction ξ fails when

ξTCξ = λ2
c . (2.11)

The state of damage of the network can be described by means of the damage distribution

function

D(ξ) =


0, if the chains of end-to-end direction ξ are broken,

1, if the chains of end-to-end direction ξ are unbroken.
(2.12)

The corresponding structure constant now depends on the state of damage via

KIJ (D) =
3l2

b2

∫
S2
p(ξ)D(ξ)ξIξJ dΩ, (2.13)

and the free-energy density takes the form

Aloc(F ,D) =

 nkBTKIJ (D)CIJ +nf (D), if det(F ) = 1,

+∞, otherwise,
(2.14)

where

f (D) =
3Ebl2

b2

∫
S2
p(ξ)(1−D(ξ))dΩ (2.15)

is the total energy dissipated through chain-breaking. This dissipative term accumulates

during deformation due to contributions from all polymer chains stretched beyond their

critical limit.

For arbitrary local deformation histories C(t), the corresponding evolution D(ξ, t) of the
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damage distribution function is governed by the rate-independent kinetics

D(ξ, t) =


1, if ξTC(t′)ξ ≤ λ2

c ∀ t′ ≤ t,

0, otherwise.
(2.16)

However, for the present purpose, it suffices to confine attention to monotonic deforma-

tion processes such that the stretch
√
ξTC(t)ξ is monotonically increasing (or monoton-

ically decreasing) in all directions. Of course, for practical applications, an extension to

account for arbitrary load histories is desirable, but goes beyond the scope of the investi-

gation here.

Also, in polymers undergoing crazing under predominantly tensile loading, the defor-

mations leading to failure may be reasonably approximated as being monotonic. Under

these conditions, the damage distribution function is determined as a function of the

right Cauchy-Green deformation tensor C, namely

D(ξ,C) =


1, if ξTCξ ≤ λ2

c ,

0, otherwise.
(2.17)

The structure tensor KIJ (C) and the dissipated energy f (C) follow likewise as a direct

function of C, namely

KIJ (C) =
3l2

b2

∫
S2
p(ξ)D(ξ,C)ξIξJ dΩ (2.18)

and

f (C) =
3Ebl2

b2

∫
S2
p(ξ)(1−D(ξ,C))dΩ. (2.19)
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The corresponding free energy density takes on the deformation-theoretical form

Wloc(F ) =

 nkBTKIJ (C)CIJ +nf (C), if det(F ) = 1,

+∞, otherwise.
(2.20)

Thus, as long as the deformation history remains monotonic, the free energy density of

the polymer is indistinguishable from that of a thermoelastic solid.

2.3. Growth properties of the deformation-theoretical strain energy

density

In order to make contact with macroscopic fracture properties, the growth properties of

the deformation-theoretical free energy density Wloc(F ), Equation (2.20), are of critical

importance, cf. Section 3. Therefore, it is necessary to investigate the growth characteris-

tics of Wloc(F ) for large C.

2.3.1. Upper bound

An upper bound can be constructed as follows. The estimate

KIJ (C)CIJ =
3l2

b2

∫
S2
p(ξ)D(ξ,C)ξTCξ dΩ

≤ 3l2

b2

∫
S2
p(ξ)λ2

c dΩ =
3l2λ2

c

b2

(2.21)

supplies a bound for the first term in Wloc(F ), which represents the strain energy term.

In order to estimate the damage energy, it is noted that

f (C) =
3Ebl2

b2

∫
S2
p(ξ)(1−D(ξ,C))dΩ ≤ 3Ebl2

b2

∫
S2
p(ξ)dΩ =

3Ebl2

b2 . (2.22)
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Combining the above estimates finally gives the constant upper bound

Wloc(F ) ≤ 3(Eb + kBT λ
2
c )
l2

b2 . (2.23)

2.3.2. Lower bound

The next step is to bound Wloc(F ) from below for large F . Evidently, Wloc(F ) is, at least,

the damage energy, i. e.,

Wloc(F ) ≥ nf (C). (2.24)

In terms of the principal stretches (with λ2
i being the eigenvalues of C) Equation (2.17)

leads to

1−D(ξ,C) =


1, if λ2

1ξ
2
1 +λ2

2ξ
2
2 +λ2

3ξ
2
3 ≥ λ2

c ,

0, otherwise,
(2.25)

where (λ1,λ2,λ3) are the principal stretches. Suppose now that λ1 ≥ λ2 ≥ λ3 and |F | =√
λ2

1 +λ2
2 +λ2

3 → +∞ while λ1λ2λ3 = 1 for incompressibility. Suppose, in addition, that

essinf(p) ≥ pmin > 0, i. e., the chain density is positive in all chain directions. Then,

1−D(ξ,C) ≥ g(ξ,C) =


1, if λ2

1ξ
2
1 ≥ λ2

c ,

0, otherwise
(2.26)

and

f (C) ≥=
3Ebl2

b2

∫
S2
p(ξ)g(ξ,C)dΩ =

3Ebl2

b2

∫
S2\{|ξ1|≥λc/λ1}

p(ξ)dΩ, (2.27)
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and as λ1→ +∞,

Wloc(F ) ≥ 4πpminn
3Ebl2

b2 , (2.28)

which establishes a constant lower bound for the deformation-theoretical strain energy

density. The bound simply expresses the fact that, in the limit under consideration, all

chains are likely to be broken under sufficiently large deformations.

2.3.3. Illustrative examples

The preceding bounds show that the deformation-theoretical strain energy densityWloc(F )

has zero growth, i. e., it saturates to a constant for sufficiently large deformations. Corre-

spondingly, the first Piola-Kirchhoff stress decays to zero in the same limit. This behavior

is illustrated in Fig. 2.1 through the example of a polymer deformed in uniaxial tension

with F = diag(λ−1/2,λ−1/2,λ).

In the examples, the polymer is assumed isotropic, p = 1
4π , and the chains fail at a critical

stretch λc = 2. Two different examples of bond-binding energies are considered. Fig. 2.1a

corresponds to a bond-binding energy Eb
kBT

= 2, or strong chains, whereas Fig. 2.1b corre-

sponds to a bond-binding energy Eb
kBT

= 0.2, or weak chains.

The zero growth of the deformation-theoretical strain energy for large deformations is

evident in both cases. However, the saturation value of the energy is attained from below

in the case of strong chains, and from above in the case of weak chains. This difference of

behavior is expected, as strong chains (respectively, weak chains) dissipate large (respec-

tively, small) amounts of energy upon failure. We note that the strong chain condition
Eb
kBT

> 1 (respectively, weak chain condition Eb
kBT

< 1) corresponds to the range Eb > A0

(respectively, Eb < A0), with A0 from Equation (2.10).
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Figure 2.1.: a) Deformation-theoretical strain energy densityWloc(F) for an isotropic poly-
mer deforming in uniaxial extension. The strong and weak chains both fail
at a critical stretch λc = 2 and have bond-binding energies of Eb

kBT
= 2 and

Eb
kBT

= 0.2, respectively. b) Schematic of functions with linear, sublinear and
superlinear growth (reproduced from [Heyden et al., 2014]) .

2.4. Nonlocal regularization

Mathematically, energies exhibiting sublinear growth may be expected to relax to zero via

strain localization to small volumes, a degenerate limit that provides no useful informa-

tion about fracture properties (for a more detailed discussion, please refer to Section 1.3).

The present model rests on the assumption that this unstable behavior is stabilized by

nonlocal or strain-gradient effects. For metals, this property has been extensively inves-

tigated and demonstrated by means of torsion tests in wires [Fleck et al., 1994], nanoin-

dentation [Huang et al., 2000; Nix and Gao, 1998; Xue et al., 2000], and by other means.

Specifically, for fixed local deformation, the energy density of solids is often observed to

be an increasing function of the local strain gradient, or the second deformation gradient.

This property results in deviations from volume scaling, i. e., in nonlocal behavior and

size dependency, in sufficiently small material samples.

A first candidate means of accounting for strain-gradient effects, along the lines of Fok-
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oua et al. [2014a,b], is provided by strain-gradient elasticity (cf., e. g., Hermann [1974];

Kröner [1968]; Maugin and Metrikine [2010]). This framework assumes an extended

deformation-theoretical free energy density of the formW (F ,∇F ) with the limiting prop-

erty that

W (F ,0) =Wloc(F ), (2.29)

i. e., the local deformation-theoretical free energy density Wloc(F ) is recovered for uni-

form deformations. The precise form of W (F ,∇F ) is unknown for most polymers. Con-

veniently, for purposes of optimal scaling only the growth properties of W (F , ·) are re-

quired. A hint at the likely growth properties of W (F , ·) is provided by observations of

sharp twin interfaces in crystalline polymers deformed in shear [Agar et al., 1959; Al-

cazar et al., 2006; Geil, 1963; Keller, 1968; Kiho et al., 1964; Kovacs et al., 1969; Pradère

et al., 1988; Reneker and Geil, 1960; Wittmann and Kovacs, 1970]. Atomistic simulations

of shear deformation in polymers also provide evidence of lamination and of the devel-

opment of sharp interfaces (cf., e. g., Fortunelli and Ortiz [2007]; Fortunelli et al. [2004]

and references therein). Mathematically, sharp interfaces can only arise in strain-gradient

elasticity if W (F ,∇F ) exhibits linear growth with respect to ∇F .

However, the strain-gradient framework just described has the deficiency of not allowing

for crazing and, hence, is incompatible with experimental observation. Thus, if W (F ,∇F )

has linear growth in ∇F , then, for a configuration of finite energy, ∇2y is integrable and,

hence, y is continuous [Adams, 1975]. The continuity of y, in turn, precludes the forma-

tion of the fibrils characteristic of the crazing mechanism. It should be noted that, by

contrast, the void-sheet mechanism characteristic of ductile fracture in metals is compat-

ible with strain-gradient plasticity (cf. Fokoua et al. [2014a,b]).

The deficiency of conventional strain-gradient elasticity can be remedied by assuming

instead an extended deformation-theoretical free energy density with growth controlled
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by a fractional Sobolev seminorm |Dy|W σ,1(Ω) of the deformation gradient, with 0 < σ < 1

(cf. Adams [1975] for a discussion of fractional Sobolev spaces, and for explicit formulas

for the computation of the corresponding norms). Hereby, |Dy|W σ,1(Ω) still implies linear

growth of the nonlocal energy density, but may be regarded as the integral of a fractional

derivative |D1+σy| of the deformation gradient Dy. This assumption effectively weakens

the strain-gradient effect sufficiently to allow for crazing deformations. In particular, it

is shown in the sequel that, in fractional strain-gradient solids, the crazing mechanism

indeed delivers an optimal bound of the energy in the sense of optimal scaling.
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3. Optimal scaling and specific fracture energy

The goal of this section is to derive rigorous optimal scaling laws for the macroscopic

fracture energy from the micromechanical model just described. Such optimal scaling

laws are established by producing upper and lower bounds of a power-law type with

matching exponents for all parameters in both bounds. In order to facilitate the analysis,

it is assumed that the effective deformation-theoretical energy is additive in the first and

second deformation gradients, with zero growth of the former and linear growth of the

latter.

Consider the specific problem of a material sample in the form of an infinite slab of

finite thickness subjected to prescribed opening displacements on its two surfaces. Under

these conditions, optimal scaling laws for the dependence of the effective energy on cross-

sectional area, micromechanical parameters, opening displacement and intrinsic length

of the material are derived. In particular, the upper bound is obtained by means of a

construction that mimics, in a particular simple manner, the crazing mechanism. The

scaling laws thus derived supply a rigorous link between micromechanical properties

and macroscopic fracture properties of polymers. In particular, they reveal the relative

role that surface energy, chain elasticity, and damage play as contributors to the specific

fracture energy of the material.

In addition, it is important to note that the optimal scaling laws derived in the sequel,

which effectively bridge the micro and macroscales, do not depend on the fine details of

the energy density but only on its growth properties for large deformations and defor-

mation gradients. In this sense, the optimal scaling laws apply uniformly to classes of
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material models having identical growth properties, and the fine details of the models

can be conveniently ignored.

We recall that an energy functional E(·,ε1, . . . ,εN ), depending onN parameters (ε1, . . . ,εN ),

is said to exhibit optimal scaling if it satisfies matching upper and lower bounds of the

form [Choksi et al., 1999; Kohn and Müller, 1992, 1994]

CLε
α1
1 . . .εαNN ≤ infE(·,ε1, . . . ,εN ) ≤ CUε

α1
1 . . .εαNN , (3.1)

whereCL > 0 andCU > 0 are constants, and the exponents (α1, . . . ,αN ) are identical in both

the lower and the upper bounds. The constants CL and CU appearing in Equation (3.1)

provide rigorous lower and upper bounds and are not uniquely determined. Their pre-

cise values depend on the chosen strategy of the proof, and there is often a tradeoff be-

tween simplicity of the argument and the distance between CL and CU . By contrast, the

exponents (α1, . . . ,αN ) are uniquely determined and represent intrinsic properties of the

problem considered.

Rigorous optimal scaling laws for fractional strain-gradient solids with constant-linear

energy growth of the type described in the foregoing have been derived by Conti et al.

[2014]. In the following, the main arguments pertaining to the derivation of the optimal

scaling laws are summarized, and their connection to fracture is discussed. The opti-

mal scaling laws show that the materials under consideration do indeed fail by fracture,

i. e., by localization of deformation to a plane, and that the fracture process requires the

expenditure of a well-defined fracture energy, or critical energy-release rate, Gc.
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3.1. Problem formulation

Based on the considerations in the preceding section, it is assumed that the deformation-

theoretical free energy E(y) obeys the growth properties

∫
Ω

WL(∇y)dx+ kL`
σ |Dy|W σ,1(Ω) ≤ E(y), (3.2a)

E(y) ≤
∫
Ω

WU (∇y)dx+ kU`
σ |Dy|W σ,1(Ω), (3.2b)

where 0 < kL ≤ kU < +∞ are constants,

WL(F ) =

 min{kL,nkBTKIJCIJ }, if det(F ) = 1,

+∞, otherwise,
(3.3)

and

WU (F ) =

 min{kU ,nkBTKIJCIJ }, if det(F ) = 1,

+∞, otherwise,
(3.4)

are truncated local energy densities, ` > 0 is an intrinsic or characteristic length, and

|Dy|W σ,1(Ω) is a fractional Sobolev seminorm. Here, the structure tensor KIJ corresponds

to the undamaged material, as was defined in Equation (2.2). In addition, the density

p(ξ) is assumed to be such that the minimum of WU and WL is attained at the identity.

The free energy of the polymer network is then denoted as

A0 = minWU = minWL =WU (I ) =WL(I ). (3.5)

For example, the isotropic density p(ξ) = 1/4π has the property described in Equation (3.5),

and A0 is given by Equation (2.10). However, it is important to note that the analy-

sis is meaningful only if the truncated energy densities are not constant, resulting in

the constraint A0 < kL ≤ kU on the parameters. It should also be emphasized that the
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deformation-theoretical free energy E(y) itself does not have to be of the form expressed

by the bounds in Equation (3.2), which merely define the growth properties of the energy.

In order to make connection with fracture, periodic deformations of a slab of thickness

2H occupying the domain {|x3| ≤H} and subject to prescribed opening displacements δ on

its surfaces are considered. A periodic unit cell Ω = [0,L]2 × (−H,H) is identified, and the

deformation of the slab is described by means of a [0,L]-periodic deformation mapping

y : Ω → R
3 subject to the constraint of volume conservation in Ω and to displacement

boundary conditions

y3(x1,x2,−H) = −H − δ, (3.6a)

y3(x1,x2,H) =H + δ, (3.6b)

with (x1,x2) ∈ [0,L]2. The aim of the analysis is to derive optimal, or matching, upper and

lower bounds for the energy of the slab as functions of L, ` and δ.

3.2. Upper bound

Owing to the minimum principle which governs the deformation theory of plasticity, an

upper bound can be obtained simply by direct evaluation of the energy for an admissible

test mapping. A deformation mapping that describes, in a simple manner, the process

of crazing is considered here and shown schematically in Figure 3.2. The deformation

is localized to the layer (0,L)2 × (−a,a) ⊂ Ω and, elsewhere, the slab undergoes a rigid

translation through the prescribed opening displacement ±δ. The layer (0,L)2 × (−a,a) is

then subdivided into ∼ (L/a)2 identical cubes of size a. Figure 3.2 specifically depicts the

deformation in one of the cubes.

The deformation is volume preserving and results in the formation of a fibril along the

vertical axis of the cube by means of cavitation from the four boundary segments on the
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symmetry plane of the cube. Furthermore, the deformation mapping ∇y is integrable,

though the second deformation gradient ∇2y is not, as expected from the discontinuous

nature of crazing on almost every plane. As noted above, this lack of integrability results

in infinite energies in solids obeying strain-gradient elasticity. We relax this excessive

rigidity of strain-gradient elasticity by assuming that the solid obeys fractional strain-

gradient elasticity instead.

a

δ

δ

L
L

H

Figure 3.1.: Schematic of the crazing construction showing a slab divided into unit cells
under prescribed opening displacements δ.

As mentioned above, the test deformation mapping outside the crazing region (0,L)2 ×

(−a,a) ⊂Ω is chosen as a rigid translation, namely,

y = x+ δe3, for x3 ≥ a, and y = x − δe3, for x3 ≤ −a, (3.7)

where e3 is the transverse unit vector. The local term can be immediately estimated to

giveA0 on the entire volume plus a quantity bounded by kU on the central region, totaling

2L2A0H + 2kUL2a. This gives the first two terms in (3.30). It can be remarked that, since

the energy has zero growth, the details of the mapping are not needed to estimate the

local part of the energy.
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a

a
a

a

a
a

a

a

a

λa

Figure 3.2.: Schematic of the deformation mapping (as shown for one periodic unit cell)
used in the upper bound construction.

In order to estimate the nonlocal term, the mapping in (0,L)2×(−a,a) must be constructed

in detail. First, the layer is subdivided into ∼ L2/a2 cubes of side length 2a. It is then pos-

sible to focus on a single cube C = (−a,a)3, the others being identical up to translations.

Additionally, attention is confined to the prism P = {x1 ≥ 0, −x1 ≤ x2 ≤ x1,−a ≤ x3 ≤ a},

and the deformation mapping is extended to the remainder of the cube by symmetry.

Specifically, the aim is to construct a volume-preserving mapping that opens a cavity

around the segment x1 = a, x3 = 0, through the composition of three elementary map-

pings. Each of these mappings is defined in the following.

x1

x2

x3

2a

x2

x1

2a

Figure 3.3.: Schematic of the first mapping f used in the upper bound construction.
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To define a constant-determinant mapping f that collapses the half-cube H = C∩{x1 ≥ 0}

into P (see Fig. 3.3), the class of mappings

f1(x) = h(x1), f2(x) =
x2

a
h(x1), f3(x) = x3, (3.8)

subject to the ancillary conditions h(0) = 0 and h(a) = a is considered. This class of map-

pings transforms planes x1 = constant to planes y1 = constant. Furthermore, with

det(∇f ) =
hh′

a
= C, (3.9)

where C is a constant, integrating once gives

h =
√

2Cax1, (3.10)

where the condition h(0) = 0 was used. From the second condition, h(a) = a,

det(∇f ) = C =
1
2

(3.11)

can be obtained and

f1(x) =
√
ax1, f2(x) = x2

√
x1

a
, f3(x) = x3. (3.12)

This mapping is readily inverted to give

f −1
1 (y) =

y2
1

a
, f −1

2 (y) = a
y2

y1
, f −1

3 (y) = y3. (3.13)

Next, a second constant-determinant mapping is constructed, which opens up a prismatic

cavity around the segment x1 = a, x3 = 0. To this end, attention is restricted to the sub-
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x1

x2

x3

2a

x3

2a
x1

Figure 3.4.: Schematic of the second mapping g used in the upper bound construction.

domain 0 ≤ x3 ≤ a−x1 and subsequently, the resulting mapping is extended to the region

x3 ≥ a − x1 by exchanging x3 and a − x1. Finally, the mapping is extended to the entire

half-plane x1 ≥ 0 by reflection about the plane x3 = 0. The specific class of mappings

considered is

g1(x) = k(x1), g2(x) = x2, g3(x) =
a− k(x1)
a− x1

x3, (3.14)

subject to the ancillary condition k(0) = 0. This class of mappings transforms planes x1 =

constant into planes y1 = constant. It follows that

det(∇g) =
a− k
a− x1

k′ =
1
λ
, (3.15)

where λ ≥ 1 is a constant. Integrating once and using the condition k(0) = 0 gives

ak − k
2

2
=

1
λ

(
ax1 −

x2
1

2

)
. (3.16)

Solving for k gives, explicitly,

k(x1) = a−

√
a2 − 2

λ

(
ax1 −

x2
1

2

)
. (3.17)
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For a− x1 ≤ x3 ≤ a, the mappings used are

g1(x) = a− a− k(a− x3)
x3

(a− x1), g2(x) = x2, g3(x) = a− k(a− x3) (3.18)

with the same function k. Finally, a volume-preserving deformation mapping that de-

scribes the formation of a fibril around the x3-axis and that reduces to the identity on the

planes x3 = ±a can be defined through the composition of mappings

y1 = f1(g(f −1(x))), y2 = f2(g(f −1(x))), y3 = λf3(g(f −1(x))), (3.19)

where the factor λ represents a uniform extension in the x3 direction. This operation

completes the definition of the test deformation mapping. A direct computation gives,

explicitly,

y1 =

√
a2 −

√
a4 −λ−1(2a2x2

1 − x
4
1),

y2 =
y1x2

x1
, y3 =

λ(a2 − y2
1 )x3

a2 − x2
1

,

(3.20)

over the domain P ∩ {a|x3|+ x2
1 ≤ a2}, and

y1 =

√
a2 −

a2 − x2
1

x3

√
1−λ−1(a2 − x2

3),

y2 =
y1x2

x1
, y3 = λsign(x3)

√
a2 −λ−1(a2 − x2

3),

(3.21)

over the domain P ∩ {ax3 + x2
1 ≥ a2}.

It is readily verified that det∇y = 1 everywhere, that the deformation mapping y satisfies

the boundary conditions (3.7), that the two expressions match continuously at |x3|+ x2
1 =

a, and that y maps the planes x1 = ±x2 and the plane x1 = a onto themselves and can

therefore be extended to the rest of the slab by symmetry. It only remains to estimate the

fractional norm. For the homogeneous W σ,1(Ω) seminorm of a function u : R3→R
m, the
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definition based on traces is used, viz.

|u|σ,1 = inf
{∫ ∞

0

∫
R

3

|∂tf |+ |Df |
tσ

dt : f (0, ·) = u
}

; (3.22)

see, for example, [Adams, 1975; Lunardi, 2009; Tartar, 2007]. Here, f : [0,∞) × R3 →

R
m is an extension of u, Df represents its distributional spatial derivative, and ∂tf its

distributional derivative in the new variable t.

Starting with the set Pa = P∩{a|x3|+x2
1 ≤ a2}, where y is defined by (3.20), a straightforward

computation shows that in this set,

|Dy|(x) ≤ caλ
a− x1

. (3.23)

By setting

f (x, t) =Dy(x)χ[0,a−x1](t)χPa(x), (3.24)

it can be estimated from (3.22), after lengthy calculations, that

‖DyχPa‖σ,1 ≤
∫ ∞

0

∫
R

3

|∂tf |+ |Df |
tσ

dxdt ≤ cλa3−σ . (3.25)

Computation of the integral of |Df | can be performed using the fact that Dy can be writ-

ten as a sum of a finite number of terms, each of which is monotonic in each variable and

obeys a bound of the type (3.23). In addition, the volume integrals are evaluated using

Gauss’ theorem, as done in Fokoua et al. [2014a,b].

Now, the remaining set, Pb = P ∩ {ax3 + x2
1 ≥ a2}, is considered. The estimate (3.23) is

replaced by

|Dy|(x) ≤ ca2

x3y1(x)
, (3.26)
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complemented by

y1(x) ≥min


√
ax3 + x2

1 − a2

x3/a
,

√
a2 − x2

3

2λ

 . (3.27)

We define

f (x, t) =Dy(x)χ[0,T (x)](t)χPa(x) , T (x) =
√
x3(x3 + x2

1/a− a) . (3.28)

A careful treatment along analogous lines as above leads to an estimate similar to (3.25).

Summing over the L2/a2 cubes leads to the conclusion that

‖Dy‖W σ,1(Ω) ≤ cL2λa1−σ . (3.29)

Recalling that λ = 1 + δ/a finally gives the second term in (3.30). Therefore, by inserting

the deformation mapping from Equations (3.20) and (3.21) into Equation (3.2), the above

calculations give an energy bound dependent on L, `, δ and a,

E(y) ≤ 2L2A0H + 2kUL
2a+ ckUL

2`σ
δ
aσ
, (3.30)

where c is a positive constant that depends on the details of the construction. Further

minimizing the bound with respect to a results in a ∼ δ1/(1+σ )`σ/(1+σ ), and gives an upper

bound of the form

E − 2L2A0H ≤ cUkUL2`
σ

1+σ δ
1

1+σ . (3.31)

It can be noted that the bound takes the form of a power law in the variables L, ` and δ.

The constant 2A0L
2H is an inconsequential datum that reflects the normalization of the

energy density.
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3.3. Lower bound

Evidently, every choice of test deformation mapping produces an upper bound of the

energy via Equation (3.2). However, Conti et al. [2014] showed, through arguments of

mathematical analysis of a somewhat technical nature, that the upper bound given by

Equation (3.31) is indeed optimal, in the sense that there exists a matching lower bound

of the form

cLkLL
2`

σ
1+σ δ

1
1+σ ≤ E − 2L2A0H, (3.32)

with identical exponents of L, ` and δ. The key idea is to combine the fact that the local

energy can only be small if the deformation is concentrated on a small part of the domain

with a Poincaré inequality to control the L1 norm of Dy by its W σ,1 norm. It should be

noted that, while the constants cL and cU may be lax, owing, e. g., to the simplicity of the

test deformation mapping used in the upper bound construction, the scaling exponents

are hard and precise predictions of the theory. Furthermore, for the topological reasons

discussed earlier, the constants necessarily blow up as σ approaches 1 from below, i. e.,

in the limit of conventional strain-gradient elasticity.

3.4. Relation to fracture

Considered jointly, the bounds in Equations (3.31) and (3.32) yield the optimal scaling

law

cLkLL
2`

σ
1+σ δ

1
1+σ ≤ Emin − 2A0L

2H ≤ cUkUL2`
σ

1+σ δ
1

1+σ . (3.33)

We note that the bounds in Equation (3.33) scale with the in-plane area L2, and are inde-

pendent of the thickness 2H of the slab. This type of scaling is characteristic of fracture
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processes, in which the deformation is concentrated in the neighborhood of a fracture

surface, and the energy scales with the area of the surface. In particular, the specific

energy per unit area

Φ =
Emin − 2A0L

2H

L2 (3.34)

is bounded and independent of the thickness 2H of the slab. The bounds (3.33) can be

recast in terms of this specific energy per unit area as

cLkL`
σ

1+σ δ
1

1+σ ≤ Φ ≤ cUkU`
σ

1+σ δ
1

1+σ . (3.35)

Now, for fixed ` and for the specific energy per unit area regarded as a function Φ(δ) of

the opening displacement, the corresponding applied normal traction then follows by the

work-energy theorem as

σ =
∂Φ
∂δ

= σ (δ). (3.36)

This relation may be regarded as a cohesive law that relates opening displacement δ and

traction σ . We recall that the attainment of a critical value of Rice’s J-integral [Rice, 1968]

provides a standard and widely used non-linear fracture criterion with several attractive

properties (cf., e. g., Hutchison [1979]; Kanninen and Popelar [1985] for reviews): i) For

linear elastic materials, J coincides with G, the elastic energy release rate; ii) for power-

law small-strain plastic behavior, J determines the strength of the HRR singular field

[Hutchinson, 1968; Rice and Rosengren, 1968] at the crack tip; and iii) it can be evalu-

ated experimentally in a convenient manner. For an otherwise elastic material obeying

a cohesive fracture law, an application of Rice’s J-integral [Rice, 1968] gives the plane-

strain critical energy release rate at crack growth initiation as

Gc =
∫ +∞

0
σ (δ)dδ = Φ(+∞)−Φ(0). (3.37)
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Inserting the upper bound (3.35) into (3.37) we find that the integral is indeed conver-

gent at the origin, and a void nucleation model is not required in order to ensure the

boundedness of Gc. By contrast, when inserting the lower bound (3.35) into (3.37), the

same integral diverges at infinity; i. e., it predicts an infinite Gc. In order to eliminate this

divergence, a cut-off δc can be introduced, representing a critical opening displacement

at crack-growth initiation, and thus

Gc =
∫ δc

0
σ (δ)dδ = Φ(δc)−Φ(0). (3.38)

In the present context, δc may conveniently be identified with the chain length of the

polymer, on the grounds that failure must occur when the chains are stretched beyond

their fully-stretched length. Inserting the bound (3.35) into (3.38) leads to

cLkL`
σ

1+σ δ
1

1+σ
c ≤ Gc ≤ cUkU`

σ
1+σ δ

1
1+σ
c , (3.39)

which supplies bounds for Gc as a function of the internal length `, the critical opening

displacement δc and the material constants kL and kU . The bounds (3.39) supply a link

between independently measurable material and fracture properties, and thus open the

theory to experimental calibration.
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4. Simulation of Taylor impact experiments

4.1. Numerical implementation

This section summarizes some algorithmic aspects of the solid mechanics solver used in

the presented calculations. A full account of the theoretical foundations of the method

and a number of convergence tests can be found in [Li et al., 2010, 2012; Pandolfi and

Ortiz, 2012]. Some of the functional solver requirements in the investigation of materi-

als under high impact loading conditions are the ability to transport mass efficiently, as

well as having the capability of accounting for complex contact, deformation and failure

patterns. To meet these requirements, the presented simulations in this work make use

of the Optimal Transportation Meshfree (OTM) approximation schemes introduced by

Li et al. [2010]. Furthermore, the OTM method is extended to account for fracture and

failure by resorting to material point eigenerosion schemes [Li et al., 2010, 2012; Pandolfi

and Ortiz, 2012].

4.1.1. Optimal transportation meshfree approximation

The optimal transportation meshfree (OTM) approximation schemes combine concepts

of spatial and temporal discretization into a new method that is applicable to complex

simulations meeting the requirements outlined above. On the one hand, concepts from

optimal transportation theory (for example, the Wasserstein distance between consecu-

tive mass densities) are used for the temporal discretization of the action integral. With
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regard to spatial discretizations, on the other hand, maximum-entropy meshfree interpo-

lation schemes from a nodal point set [Arroyo and Ortiz, 2006] are applied, which enables

the simulation of unconstrained flows by avoiding continuous remeshing. It also prevents

mesh entanglements, which will be beneficial for the simulations presented here. Finally,

the OTM method uses material point sampling as a way of storing local state data and

performing constitutive updates.

Overall, the method may hence be viewed as a way of restricting the optimal transport

problem to mass densities, which are concentrated in material points and undergo mo-

tions in the form of piecewise linear trajectories (see Figure 4.2 for reference) [Pandolfi

et al., 2014]. A detailed description of the OTM method may be found in [Li et al., 2010],

and its main features and characteristics will be summarized (under the assumption of

nonlinear elasticity) in the following. For extensions to general materials, variational

constitutive updates may be applied.

The temporal discretization is based on discrete times t0, t1, ..., tL−1, for which a semi-

discrete action sum Sd can be written as

Sd(ϕ1, ...,ϕL−1) =
L−1∑
k=0

[
1
2
d2
W (ρk ,ρk+1)
(tk+1 − tk)2

− 1
2

(U (ϕk) +U (ϕk+1))
]
(tk+1 − tk) , (4.1)

where deformation mapping and density at time tk are denoted byϕk and ρk, respectively.

With d2
W (ρk ,ρk+1) defined as the Wasserstein distance between mass densities ρk and ρk+1,

a measure of inertial action in the time interval tk+1 − tk is introduced in the form of

1
2
d2
W (ρk ,ρk+1)
(tk+1 − tk)2 (4.2)

in Equation (4.1).
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The Wasserstein distance is defined by

d2
W (ρk ,ρk+1) = inf

∫
|T (x)− x|2ρk(x)dx, (4.3)

with T representing the optimal transference mass of ρk into ρk+1. Furthermore, U de-

notes the material’s total internal energy according to

U (ϕ) =
∫
B

[ρ (f (∇ϕ)−u)− tr(τ)] dx, (4.4)

with isothermal local free energy density f (∇ϕ), self-equilibrated stress field τ acting on

the body and scalar body force potential u. In equilibrium, the relations

∇ · τ = 0 in B (4.5)

and

τn = q on ∂2B (4.6)

between self-equilibrated stress field τ and applied tractions q holds. This approach to

time discretization used in the OTM method enables geometrically exact updates of mass

densities and local volumes. It is thus not necessary to solve a numerically cumbersome

Poisson equation for pressure and, at the same time, mass conservation errors arising in

Eulerian formulations are eliminated.

For the spatial discretization, all local state data is stored in a material point set, which

evolves over time and also serves as the location of constitutive computations (see Fig-

ure 4.1 for reference). Material points are fix points of the body with designated mass

and volume, which are convected via applied deformations. They furthermore represent

integration points for the purpose of calculating effective nodal forces and masses. In

order to define the spatial discretization approach, mass densities are approximated as
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point masses via

ρh,k(x) =
M∑
p=1

mpδ(x− xp,k), (4.7)

with index h denoting discretized quantities, xp,k is the position of a material point of

mass mp at time tk, and δ(x − xp,k) being the Dirac-delta function centered at xp,k. For

the remaining part of the spatial discretization, the incremental deformation mapping is

approximated as

ϕh,k→k+1(x) =
N∑
a=1

xa,k+1Na,k(x), (4.8)

whereNa,k(x) denote conforming shape functions defined at time tk, and
(
xa,k+1, a = 1, ...,N

)
represents the nodal coordinate array at time tk+1.

xa,k

xp,k

Bk Bk+1

φk→k+1

xa,k+1

xp,k+1

Figure 4.1.: Spatial discretization used in the optimal transportation meshfree approxi-
mation schemes (adapted from [Li et al., 2010]). Material points are shown
in red, whereas nodal points are shown in white. An exemplary circular local
neighborhood of nodal points is shown at time tk.

In the presented calculations, maximum entropy (max-ent) shape functions are used and

re-evaluated at every time step, which leads to a dynamic reconnection of material points

and nodes. A further advantage of max-ent shape functions lies in their strong local-

ization property [Arroyo and Ortiz, 2006], based on which shape function calculations

at a material point xp,k only involve a small neighborhood of nodes Np,k. These local
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neighborhoods of nodal points are dynamically updated via range searches in order to

take relative motion between nodes and material points into account. As a result, there

is no cost associated with remapping local states carried by material points, which is

particularly useful in the case of inelastic solids involving local material states defined by

internal variables. Furthermore, max-ent interpolation schemes are mesh-free and satisfy

a Kronecker-delta property on the boundary. This spatial discretization feature simplifies

the enforcement of essential boundary conditions, as well as offering good convergence,

accuracy and monotonicity conditions.

By making use of the above approximations, a fully discrete action Sh follows as

Sh =
L−1∑
k=0

M∑
p=1

(tk+1 − tk)
mp2

∣∣∣xp,k+1 − xp,k
∣∣∣2

(tk+1 − tk)2

− 1
2

[
mp

(
fp,k+1 −up,k+1

)
− tr(τp,k+1)νp,k+1

+ mp(fp,k −up,k)− tr(τp,k)νp,k
], (4.9)

with abbreviations τp,k = τ(xp,k), fp,k = f
(
∇ϕh,k(xp,k)

)
and up,k = u(xp,k). Hamilton’s prin-

ciple of stationary action finally gives the discrete trajectories

δSh = 0. (4.10)

The OTM scheme is solved in a forward-explicit fashion following the usual structure

of updated-Lagrangian schemes and using forward time integration. Similar to other

material point methods, optimal transportation meshfree approximation schemes offer

the advantage of allowing nodal points of different bodies to be members of the same

local neighborhood of a material point. Based on the cancellation of linear momentum,

this feature of the OTM method automatically enables dynamic contact interactions of

seizing type.
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(q,0)
(q,T)

continuous curve q(t)

varied discrete curves {q}k

density configurational 
space

Figure 4.2.: Time discrete Lagrangian dynamics (adapted from [Li, 2009]).

4.1.2. Material failure

In the sequel, material failure will be modeled for a viscoelastic body occupying a three-

dimensional domain B. The boundary ∂B of the body consists of an exterior boundary S ,

corresponding to the boundary of the uncracked body, and a collection of cracks, voids

and tears jointly defining a crack set C. In addition, S partitions in the usual manner into

a displacement boundary S1 and a traction boundary S2. The body undergoes deforma-

tions under the action of body forces, displacements prescribed over S1, and tractions T̄

applied over S2. Under these conditions, the total potential energy of the body is

E(ϕ , t) =
∫
B\C

W (∇ϕ(x, t), t) dV −
∫
S2

T̄(x, t) ·ϕ dS (4.11)

where B\C denotes the domain of the body with the crack set excluded, dV and dS are

the elements of volume and area, respectively. Function

W (∇ϕ , t) =W (F,ei1(t), . . . ,eiN (t)) (4.12)

is the free energy density of the body (to be specified in the following), T̄ is the applied

traction, and ϕ : B\C →R
3 is the deformation mapping.
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In addition, we must have

ϕ(x, t) = ϕ̄(x, t) ∀ x ∈ S1, (4.13)

where ϕ̄ is the prescribed value of the deformation mapping over the displacement bound-

ary. The explicit dependence of E on t in (4.11) implies the evolution of inelastic strains

as well as the time dependence of forcing terms, which are the prescribed displacements

and forces. The equilibrium displacement field for a crack set C at time t may then be

found by minimizing energy (4.11) over an appropriate space of functions.

If the material is not only allowed to deform viscoelastically but may also fail by extend-

ing the crack set C, a monotonicity constraint representing the irreversible character of

material failure is introduced as

C(t) ⊂ C(t +∆t). (4.14)

Hereby, the monotonicity constraint merely describes the fact that later crack sets must

contain earlier crack sets. Furthermore, crack extension follows unilateral contact con-

straints, and the crack set (or parts of it) are allowed to be closed at any given time.

Since the implementation of unilateral contact constraints is numerically challenging,

calculations presented in the following are based on assuming the erosion of material

points in a state of volumetric expansion only. Furthermore, previously eroded material

points can be reinstantiated if a state of volumetric compression is attained, leading to

crack closure.

Crack propagation then results from two competing material properties, viz. viscoelas-

ticity and critical energy release rate Gc. The former promotes fracture in order to release

energy, whereas the latter penalizes fracture (proportional to the area of the crack set).

The competition between material failure and viscoelasticity for energy supplied by ex-
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ternal forces is modeled via an energy-dissipation functional

F(ϕ ,C, t) = E(ϕ , t) +Gc|C|. (4.15)

Here, |C| denotes the crack set area. By minimization of the energy-dissipation functional

(4.15) at every time, while taking the kinetic equations of the internal processes and and

monotonicity constraints (4.14) into account, the state of deformation and failure can be

calculated.

Unfortunately, minimization of the energy-dissipation functional (4.15) F(ϕ ,C, t) with re-

spect to the crack set C is numerically challenging. We therefore resort to the variational

eigenfracture scheme introduced by Schmidt et al. [2009] and its extension to eigenero-

sion of material points [Pandolfi and Ortiz, 2012]. The theory of eigenfracture uses an

arbitrary eigendeformation field ε∗ in order to define the crack set

C = {ε∗ , 0}. (4.16)

By introducing eigendeformations into the kinematics of crack propagation, the energy

is relaxed locally, and the displacement field can include jumps without any cost of local

elastic energy [Pandolfi et al., 2014]. For all material points at a distance ε or less away

from the crack set C (whereby ε is a small length parameter) an ε-neighborhood of C

may be defined. With ε-neighborhood volume |{ε∗ , 0}ε|, a surface measure of the crack

follows as

|C|ε =
1

2ε
|{ε∗ , 0}ε| . (4.17)

Here, ε−1 is a scaling factor that acts as a penalty factor for the crack set volume, converg-

ing to a surface in the limit [Pandolfi et al., 2014]. As shown in [Schmidt et al., 2009],

the eigenfracture scheme converges to Griffith fracture solutions for the limiting case of
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ε

ε

{ε*≠0}

C={ε*≠0}

Ct

n

ΔC

F(t)

v(Δt)

Ct+Δt

Figure 4.3.: Left: Advancing crack showing a zoom of the crack front propagating in the
direction of crack front velocity v (adapted from [Pandolfi and Ortiz, 2012]).
C(t) and C(t +∆t) are the original and extended crack set, respectively. Right:
Set of eroded material points forming a crack and respective ε-neighborhood.

infinitesimal mesh sizes. For an arbitrary eigendeformation field taken as piecewise con-

stant over the set of elements or material points under consideration, eigendeformations

may either be zero (and thus minimize the attendant fracture energy), or cancel any lo-

cal deformations (which in turn renders the elastic energy zero). Fig. 4.3 illustrates an

advancing crack set and the ε-neighborhood.

The material point eigenerosion scheme uses a local energy-averaging procedure in order

to approximate the necessary energy release rate for material point failure. For cases in

which the estimated energy release rate exceeds the material’s specific fracture energy,

material points are eroded, and the collection of eroded material points in turn repre-

sents the crack set. Therefore, the material point eigenerosion scheme reduces the dis-

crete crack-tracking problem to a successive failure of material points for cases in which

a positive net gain in energy can be achieved, viz. cases with lower cost in fracture energy

compared to the attendant elastic energy release. The algorithm used in the implementa-

tion of the material point eigenerosion scheme is summarized in Algorithm 1.

At every OTM step, the determination of the next material points to be eroded follows

from sorting material points experiencing tensile states p in a priority queue based on the
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Algorithm 1 Crack-tracking scheme for material point discretization [Pandolfi and Ortiz,
2012]
Require: Crack set Ck at the end of time step tk
Require: Material state at all material points at the end of OTM time step tk+1
Require: Priority queue PQ of real numbers ordered from largest (highest priority) to

smallest (lowest priority).
Set PQ = empty.
Set Ck+1 = Ck.
for all material points p not in Ck+1 and in tensile stress state do
Compute elastic energy release −∆Ep.
Compute effective crack area increment: ∆Ap.
Compute net energy gain: −∆Fp = −∆Ep −Gc∆Ap.
If −∆Fp ≥ 0, push p into PQ.

if PQ , empty then
Pull all material points K with net energy gain −∆FK > 0 from PQ, add to Ck+1.

else
Exit.

energetic difference

−∆Fp = −∆Ep −Gc∆Ap > 0, (4.18)

where −∆Ep is the corresponding elastic energy release, and Gc∆Ap denotes the fracture

energy cost. In order to approximate the energy release rate related to material point

erosion, first-order asymptotic formulae for notches are used, and the energy release rate

is calculated as the elastic energy stored in the material point [Pandolfi et al., 2014].

Figure 4.4 shows a two-dimensional example of the ε-neighborhood construction. Each

neighborhood V p
ε contains all material points that lie inside a circular region of radius ε

centered at the material point under consideration. For a propagating crack set C = {ε∗ ,

0} consisting of eroded material points, the spherical neighborhood V
p
ε of each newly-

failed material point is therefore included in the ε-neighborhood of C, i.e., {ε∗ , 0}ε. The

crack advance ∆Ap for a single material point p may then be computed as

∆Ap =
1

2ε
(|{ε∗ , 0}ε|p − |{ε∗ , 0}ε|) =

1
2
∆V

p
ε , (4.19)
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{ε*=0}

{ε*=0}ε
p{ε*=0}ε

2ε

pΔVε

Figure 4.4.: Visualization of the material point eigenerosion approach (adapted from
[Pandolfi et al., 2014]). Black dots denote members of the crack set ({ε∗ , 0}),
whereas gray dots belong to the ε-neighborhoods of failed material points
({ε∗ , 0}ε). The thickness of the ε-neighborhood is 2ε and, after crack propa-
gation, the increment in the crack’s ε-neighborhood is ∆V p

ε .

whereby |{ε∗ , 0}ε|p is the ε-neighborhood of C after inclusion of V p
ε . The choice of the

regularization parameter ε must be such that its value tends to zero more slowly than the

mesh size. One possibility is therefore to use a regularization parameter proportional to

the minimum mesh size according to

ε = C1hmin, (4.20)

where C1 > 0 is a constant.

4.2. Supporting microscopy and experimental calibration

The macroscopic fracture model that results from the optimal scaling analysis is solely

characterized by the critical energy-release rate Gc. This parameter is well-known from

Griffith’s theory of linear-elastic fracture and correlates the free-surface energy of a prop-

agating crack to the elastic energy stored in the bulk of the material. Rivlin and Thomas

[1953] extended Griffith’s concept to determine the tear resistance of highly stretched
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λ-1

P

Wc

0 1 2 3 4 5 6

10

Figure 4.5.: Uniaxial tension test of polyurea 1000 with feed of 2mm/s [Reppel et al.,
2012]. Left: Thin-strip specimen stretched quasistatically up to failure.
Right: Determination of the elastic strain energy density by data reduction.

rubbery material. Here, the critical energy release rate follows from

Gc = lcW (λc), (4.21)

where lc is the crack length and W (λ) is the elastic-strain energy density as a function of

the applied stretch λ. The specific fracture energy Wc ≡ W (λ = λc) follows as the area

under the elastic stress-strain curve from beginning until rupture at λ = λc.

Typically, the specimens used to determine Gc are dog-bone-shaped thin strips or thick-

waist sheets tested in tension. To analyze crack growth in moderate but cyclic loading,

these specimens are pre-cut. Moreover, the crack length in (4.21) corresponds to the

increase in cut length. In a monotonous loading regime, the width of the specimen defines

the maximal amount of elastic strain energy density at rupture.

In order to determine Gc for PU 1000, uniaxial tension tests using thin-strip specimens

were performed by Reppel et al. [2012]. Since the tear resistance after monotonous load-

ing was investigated, the specimens were not preconditioned against the Mullins effect.

Instead, the amount of permanent set within the teared specimen was accounted for,

which was determined by stepwise loading and unloading of several samples. Figure 4.5

illustrates the approach. Here, specimens were stretched to 150% and to 350%, both
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Figure 4.6.: Micrograph of the fracture surface of a polyurea specimen after failure in
uniaxial tension (adapted from [Reppel et al., 2012]), whereby shaded areas
represent voids.

followed by a full relaxation, and subsequently re-stretched to rupture. Based on the

recorded loading-unloading data, the relative extent of material dissipation was calcu-

lated. The remaining energy density is the maximal amount of elastic strain energy upon

failure, i.e., the specific fracture energy.

Finally, this data reduction procedure yielded a value ofWc = 38.2MPa for PU 1000 spec-

imens with width lc = 1.15mm. The critical energy release rate follows from Figure 4.5 as

Gc = 44kJ/m2. This value is employed in the numerical Taylor-anvil test simulations

presented in Section 4. Compared to typical values for polymers (which are around

1 − 10kJ/m2 [Alger, 1997]), the obtained value of Gc is relatively high. This may be ex-

plained by the remarkable stretchability of polyurea 1000 and also by the monotonically-

loaded, not-preconditioned specimen. The close agreement between the numerical re-

sults of Section 4.4 and experimental observations thereof lend a modicum of support to

the data reduction procedure just described as a means for determining the tear resistance

of stretched polyurea.

Additionally, a virgin and post-mortem fractographic analysis of the failure surface re-

veals insight into the micromechanisms of fracture. The polyurea, in its as received state,

had a porosity of about 50 voids/mm2 with diameters in the range of 10−30 µm, see Fig-

ure 1.3a. Upon deformation, the voids grow, fibrils rupture and a large number of new
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Table 4.1.: Elastic material parameters of a Neo-Hookean solid for polyurea used in OTM-
simulations of Taylor-impact experiments.

λ0 [MPa] 133.793
µ0 [MPa] 5.759

voids nucleate. The void multiplication is clearly evident in post-mortem fractographs of

failure planes, which show considerable dimpling. Counting the density of dimples gives

a porosity of 97 voids/mm2, with some dimple diameters in excess of 200 µm, as shown

in Figure 1.3b. The complex interplay between void nucleation and growth, failed fibrils

and rupture is clearly evident.

4.3. Static and viscoelastic behavior of polyurea

In this section, the static and viscoelastic material behavior of polyurea is discussed. Ex-

perimental data sets from the literature (see, e.g., [Knauss and Zhao, 2007; Reppel et al.,

2012]) are used to fit the different material models, and the resulting material parameters

are presented. Polyurea is highly elastic and deforms in a reversible way, but as most elas-

tomers it also shows retardation and time dependence. Thus, a rheological generalized

Maxwell model [Ortiz, 2012], i.e., an entropy-elastic spring in parallel with a number of

spring-dashpot elements, is suitable for material characterization.

Typical stress-strain curves of polyurea are indicative of ostensibly-elastic behavior up to

elongations of the order of 700%. Consequently, the elastic branch of the material stress-

strain relationship may be adapted to low-strain rate experimental data and quasistatic

experiments (see, e.g., Sarva et al. [2007] and Reppel et al. [2012]). A prime example of

such elastic material models is the Neo-Hookean solid, which was derived in the context

of macromolecular polymer models in Section 1.2.1. In its compressible extension, the
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Figure 4.7.: Comparison of different elastic material models shown in (b) fitted to low-
strain rate experimental data of Sarva et al. [2007] at ε̇ = 0.0016s−1 as de-
picted in (a).

strain energy density of a Neo-Hookean solid takes the form

W0(F) =
1
2
λ0 log J2 −µ0 log J +

1
2
µ0 [tr(C)− 3] , (4.22)

where C = FT F denotes the right Cauchy-Green tensor. The material parameters λ0 and

µ0 may be obtained by subsequent fitting to experimental data, and are given in Table 4.1.

Figure 4.7 furthermore shows a comparison of different elastic material models.

The viscous response of polyurea is commonly assumed to be isochoric, with F̄ = J−1/3F.

The dissipation potential of this particular material may be modeled by extending a

Prony-series [Ortiz, 2012] to the finite-deformation range. Introducing the tensor of de-

viatoric logarithmic strains, e = log
√

C̄, where C̄ = F̄T F̄, the formulation of N Maxwell

elements in parallel follows as

φ =
N∑
α=1

µα |e− eiα |2 . (4.23)

Here, the ei form the set of internal variables accounting for theN relaxation mechanisms

and µα are the corresponding material constants. The evolution of the inelastic strains is
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Table 4.2.: Moduli and relaxation times for polyurea (units are [MPa] and [s]) obtained
from fitting [Knauss and Zhao, 2007].

µα 5.164 5.400 2.529 2.525 1.451 1.101 0.299 0.332 0.578
τα 1.0e-5 1.0e-4 1.0e-3 1.0e-2 1.0e-1 1.0 10.0 100.0 1000.0

assumed to be governed by linear kinetics, viz.

ėiα =
1
τα

(
e− eiα

)
, (4.24)

where τα are viscoelastic relaxation times. This model can be cast into an incremental

variational framework by recourse to variational constitutive updates [Ortiz and Stainier,

1999]. Consequently, the state of the body (i. e., the internal variables and the primary

kinematic quantities) at each time increment can be obtained by minimization of a total

power potential with respect to the viscous strains, eiα, for each relaxation mechanism,

α = 1, . . . ,N . The first Piola-Kirchhoff stress tensor then follows as the sum of elastic and

viscous contributions according to

P =
∂W
∂F

(C,ei1, . . . ,e
i
N ). (4.25)

Elastic moduli and relaxation times for polyurea have been determined by Knauss and

Zhao [2007] for small strains. By setting µα = Eα/3 for nearly incompressible polymeric

materials, these data can be expressed in terms of the Lamé parameters. The resulting

numerical values are summarized in Table 4.2. By specifying the above model to the

incompressible uniaxial state and integrating the viscous strains for fixed strain rates, the

model can be compared to large-deformation experiments. Figure 4.8 shows that the high

strain rate data of Sarva et al. [2007] can be recovered with good accuracy in this way.
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Figure 4.8.: Left: Cauchy stress σ versus true strain ε = logλ for polyurea at different true
strain rates ε̇; data collected from Roland et al. [2007], Sarva et al. [2007],
Yi et al. [2006], Zhao et al. [2007], Amirkhizi et al. [2006] and Reppel et al.
[2012]. Right: Results for fittings of a Prony series formulation as introduced
in Section 4.3 to the experimental data set.

4.4. Taylor-anvil tests

The macroscopic fracture model that results from the optimal scaling analysis is char-

acterized by a single parameter, namely the critical energy-release rate Gc. This simple

structure greatly simplifies material characterization. By way of illustration, and in order

to calibrate subsequent calculations, Gc for polyurea 1000 is estimated from the uniaxial-

tension test data of Weinberg and Reppel [2013].

Another appealing aspect of the macroscopic fracture model is that it is amenable to

a straightforward numerical implementation based on material-point erosion [Li et al.,

2012; Pandolfi and Ortiz, 2012; Schmidt et al., 2009]. The scope of the resulting numer-

ical model is demonstrated by means of an example of application: the Taylor-impact

experiments of Mock and Drotar [2006] on polyurea 1000 specimens. These simulations

additionally furnish a modicum of validation of the fidelity of the failure and fracture

model.

The tests of Mock and Drotar [2006] were performed at the Research Gas Gun Facil-
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Table 4.3.: Specifics of the three different Taylor-anvil test cases.
Velocity [m/s] Initial length [mm] Initial diameter [mm]

Case I 245.759 25.73528 12.59205
Case II 332.047 25.60828 12.61491
Case III 424.413 25.76068 12.61745

ity at the Naval Surface Warfare Center (Dahlgren Division). Cylindrical specimens of

polyurea 1000 were driven into a metal anvil at different impact speeds, cf. Table 4.3.

Figure 4.9 shows a sequence of specimen snapshots during impact for an impact velocity

of v = 245 m/s. The large deformations undergone by the specimen are evident from

the figure. At sufficiently large impact velocities, the specimen is observed to petal as a

result of the development of radial cracks or tears. Post-mortem examination of the speci-

mens also reveals extensive distributed damage in the vicinity of the contact surface. The

Taylor-impact experiments thus furnish a representative example of application as well

as an exacting validation of the theory.

2 C. REINA, K. WEINBERG AND M. ORTIZ

In the first part of this section, the experiments simulated in the present study are described.
This is followed by a careful material model of the polyurea used in the experiments (polyurea
1000). It is of note that depending on the actual composition, the properties of a polyurea
sample can vary significantly, motivating the development of a material model, rather than
making use of existent ones in the literature [? ? ? ]. The resulting model is then validated
against the experiments, showing a very good prediction, and is used as test case for the
multiscale porous model.

3.1. Experiments

The experiments used in this section were performed by Mock et al. at the Naval Surface
Warfare Center. They consist of the impact of a polyurea bar of initial length L0 = 25.7353 mm
and initial radius R0 = 6.29603 mm by an anvil of high stiffness at speeds of v = 245 m/s and
v = 332 m/s. The bar deforms significantly and then bounces back. Fig. 1 shows a sequence
of captions of the deformation during the impact for the lower velocity. The recovered bars,
for the two cases, with different void damage on the lower part, can be observed in Fig. 2.

Figure 1. Taylor anvil test of polyurea rod. Experiments performed by Mock et al. at NSWC.
R0 = 6.29603 mm, L0 = 25.7353 mm and v = 245 m/s.

3.2. Material modeling without porosity

The model employed for the polyurea 1000 is based on its uniaxial characterization under
compression at a wide range of strain rates made by [? ]. The model is then generalized to
multiaxial conditions by fixing a value for the Poisson’s ratio. Due to its almost incompressible
behavior, a value close to 0.5 is chosen.

The experiments show that polyurea stress-strain relation is strongly dependent on the

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 00:1–24
Prepared using nmeauth.cls

Figure 4.9.: Taylor-anvil test of polyurea 1000 rod; experiments have been performed by
Mock and Drotar [2006] at NSWC. R0 = 6.29603 mm, L0 = 25.7353 mm, and
v = 245 m/s.

In calculations, the viscoelastic behavior of polyurea is accounted for by means of a stan-
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dard Prony series as characterized experimentally by [Knauss and Zhao, 2007; Zhao et al.,

2007] and described in more detail in Section 4.3. The quasistatic response of the material

is additionally described by a Neo-Hookean model. In the presence of viscoelastic and

other dissipative mechanisms, the variational formulation underpinning the derivation of

the optimal scaling laws, and the corresponding micro-to-macro transition formulated in

Section 3, is recovered through time-discretization using variational constitutive updates

[Ortiz and Stainier, 1999]. These updates effectively reduce the incremental problem to

the minimization of an effective energy that accounts for both elastic energy and dissipa-

tion.

The integration of the equations of motion is carried out by means of the Optimal Trans-

portation Meshfree (OTM) method [Li et al., 2010] described in Section 4.1.2. Further-

more, damage and fracture are accounted for by means of material-point eigenerosion as

described in Section 4.1.2.

Figures 4.10 to 4.12 show snapshots from simulations at the three different impact speeds

of Table 4.3. At the smallest impact velocity of v = 245 m/s, the specimen undergoes

large deformations before rebounding, but no radial cracks or tears develop. By contrast,

incipient radial tearing is clearly evident at the intermediate impact velocity of v = 332

m/s, Fig. 4.11, whereas extensive petalling is predicted at the highest impact velocity of

v = 424 m/s, Fig. 4.12. Remarkably, the radial tears retract almost entirely upon rebound

and the specimens appear outwardly intact, as observed experimentally.

Figures 4.13 to ?? depict the state of damage in the recovered specimens at the three differ-

ent speeds as computed and as observed post-mortem in experiments. The experimental

pictures show the recovered specimens after impact, wherein the extent and distribution

of damage can be clearly discerned optically. The pictures from simulations map the fi-

nal state of damage by showing the failed material points as black dots in the reference

configuration.
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Figure 4.10.: Snapshots of the simulated deformation at v = 245 m/s impact velocity.
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Figure 4.11.: Snapshots of the simulated deformation at v = 332 m/s impact velocity.
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Figure 4.12.: Snapshots of the simulated deformation at v = 424 m/s impact velocity.

In all three comparisons, the simulations qualitatively capture the damage distribution

within the specimen. At the lowest speed, Figure 4.13, the specimen is predicted to un-

dergo limited damage and cracking in the vicinity of the impact surface, in keeping with

experimental observation. At the intermediate speed, Figure ??, the simulations predict

significant distributed damage near the impact surface, in good agreement with exper-

iments. In the simulations, the impact surface additionally undergoes incipient radial

cracking, also in agreement with observation. Finally, at the largest speed, Figure ??, both

experiments and simulations reveal severe distributed damage over a large fraction of

the specimen, and the impact surface splits into well-defined radial cracks or tears. The

ability of a simple single-parameter (namely the critical energy release rate Gc) model to

qualitatively capture both patterns of distributed damage and cracking over a range of

impact velocities is remarkable.

In addition, Figure 4.14a shows the measured and computed normalized rod lengths

as functions of time for all three velocities under consideration, by way of quantitative

validation. By this metric, the results of the simulations match the observed trends and
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v = 245 m/s

Experiments Simulation

(a)

v = 332 m/s

Experiments Simulation

(b)

v = 424 m/s

Experiments Simulation

(c)

Figure 4.13.: Comparison of the recovered target after shot between experiments and sim-
ulations with impact speeds v = 245m/s (a), v = 332m/s (b) and v = 424m/s
(c).
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Figure 4.14.: a) Normalized specimen height versus time at impact speeds v = 245 m/s,
v = 332 m/s and v = 424 m/s. b) Logarithmic convergence plot showing
total accumulated specimen length over time for different mesh sizes.

are in fair agreement with experimental measurements.

It bears emphasis that the model employed in the simulations is remarkable for its sim-

plicity, both with regard to the bulk behavior of the material and its fracture properties,

and that no effort has been made to enhance the model in order to improve the fit to

experiments.

Given the simplicity of the model, the quantitative agreement shown in Figure 4.14a

may be regarded as furnishing a modicum of validation of the overall framework. For

completeness, Figure 4.14b additionally shows the variation of the computed specimen

length with mesh size to demonstrate convergence. A clear trend towards convergence is

evidenced by the figure with a superlinear convergence rate α = 1.27.
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5. Crazing model using full derivatives and a core cut-off

The non-local regularization approach of the previous Section requires the computation

of fractional derivatives, which is inconvenient for numerical implementations. Using

full derivatives, in contrast, is favorable for practical purposes, yet it presents a new

challenge because the energy may produce singularities in the presence of voids as those

studied here. In this Section, we therefore consider a modified regularization approach

based on the introduction of a core cut-off as presented in [Heyden et al., 2015].

5.1. Problem formulation

As a conventional device applied in the theory of linear-elastic dislocations, introducing

a core cut-off enables the elimination of logarithmic divergence of the energy. In the

present context, the core-cutoff regularization may be introduced as follows.

We begin by noting that crazing is characterized by the topology schematically shown in

Fig. 5.1b, consisting of a distribution of fibrils bridging the flanks of the crack. This topol-

ogy is defined by the property that circuits such as shown in Fig. 5.1b cannot be reduced

to a point without exiting the material. For continuous – hence, topology preserving –

deformations, the crazing topology must set in immediately following nucleation and

remain invariant thenceforth. Thus, the nucleation geometry must have the structure

shown in Fig. 5.1a, i. e., it must consist of a network of boreholes contained on the in-

cipient fracture plane. Upon further deformation, the boreholes expand and eventually

attain the geometry characteristic of crazing.
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φ

Figure 5.1.: Schematic of the topology of fibril nucleation and growth. Left: Planar net-
work of cylindrical cavities that provide the nucleation sites for fibrils. The
inscribed circuit cannot be reduced continuously to a point, which illustrates
the topological transition undergone by the body as a result of nucleation.
Right: Distribution of fibrils resulting from the expansion of the nucleation
sites under transverse uniaxial deformation. Since the deformation after nu-
cleation is continuous outside the boreholes, the topology of the body does
not change upon deformation. In particular, the structure of irreducible cir-
cuits such as inscribed remains unchanged.

In the vicinity of one borehole, the early stages of nucleation may be approximated as

the expansion of a concentric cylinder with the borehole along its axis. The resulting

deformation mapping is fully determined by incompressibility condition

π
(
a2 − r2

)
= π

(
A2 −R2

)
, (5.1)

where A (a) is the outer radius of the undeformed (deformed) configuration, B (b) is the

radius of the borehole in the undeformed (deformed) configuration, R is polar radius in

the undeformed configuration and r is the corresponding polar radius in the deformed

configuration. The corresponding nonzero components of the deformation gradient fol-

low as

FRR =
R

√
a2 −A2 +R2

, FT T = 1/FRR, FZZ = 1, (5.2)
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where (R,T ,Z) denotes a system of cylindrical coordinates over the the undeformed con-

figuration.

A straightforward calculation further gives the norm of the second deformation gradient

as

|∇F| =

√
(a2 −A2)2 (3a4 + 6a2 (R2 −A2) + 3A4 − 6A2R2 + 4R4)

R4 (a2 −A2 +R2)3 . (5.3)

Assuming p-growth, p ≥ 1, at large deformations the nonlocal energy per unit unde-

formed length of the cylinder follows as

Enon ∼
∫ A

B
C |∇F(R)|p 2πRdR. (5.4)

For a/A� 1, a straightforward asymptotic analysis gives

|∇F(R)| ∼
√

3
a

R2 , (5.5)

which substituted into Equation (5.4) in turn gives

Enon ∼
3p/2πC
p − 1

( 1
B2(p−1)

− 1
A2(p−1)

)
ap, (5.6)

if p > 1, and

Enon ∼ 2
√

3πCa log
A
B
, (5.7)

for linear growth p = 1. We see that, in call cases, the energy diverges as the core-cutoff

radius B tends to zero, logarithmically so in the case of linear growth of the nonlocal

energy.

In order to avert this divergence and obtain finite energies, we simply assume that the

nucleation boreholes have an initial radius commensurate with a characteristic length of
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Figure 5.2.: Expansion of borehole in a concentric incompressible cylinder.

the chain distribution in the polymer network. Thus, in view of the network structure of

polymers, we may think of the initial boreholes as spanning intervening space between

chains and their diameter to be of the order of the mean-free path between chains.

5.2. Crazing and scaling

L

L

2H

L
L

δ

δ

φ

Figure 5.3.: Infinite slab of thickness 2H subject to prescribed opening displacements δ
on its surface.

A principal aim of the present work is to ascertain such scaling laws as may be obeyed

by the macroscopic fracture energy resulting from the micromechanical model just de-

scribed. In order to make connection with such macroscopic fracture properties, we

specifically consider periodic deformations of a slab of thickness 2H occupying the do-

main {|x3| ≤H} subject to prescribed opening displacements δ on its surfaces, Fig. 5.3.

We identify a periodic unit cell Ω = [0,L]2 × (−H,H) and describe the deformation of

the slab by means of a [0,L]-periodic deformation mapping ϕ : Ω → R
3 subject to the
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ϕ

Figure 5.4.: Assumed deformation pattern describing the process of crazing. The defor-
mation is assumed to localize to a thin layer of thickness a and, elsewhere, the
slab is assumed to undergo a rigid translation through the prescribed opening
displacement ±δ. The layer is then further subdivided into identical cubes of
size a, each of which undergoes the deformation illustrated above. The void
region arises from the equator of the cube as shown on the right.

constraint of volume conservation in Ω and to displacement boundary conditions

ϕ3(x1,x2,−H) = −H − δ, (5.8a)

ϕ3(x1,x2,H) =H + δ, (5.8b)

with (x1,x2) ∈ [0,L]2. The aim of the analysis is to derive optimal, or matching, upper

and lower bounds for the energy of the slab as a function of the parameters entering the

energy.

5.2.1. Some heuristics

A deformation mapping which describes, in a simple manner, the process of crazing is

shown schematically in Figures 5.3 and 5.4. The deformation is localized to the layer

(0,L)2 × (−a,a) ⊂ Ω and, elsewhere, the slab undergoes a rigid translation through the

prescribed opening displacement δ. The layer (0,L)2 × (−a,a) is then subdivided into ∼

(L/a)2 identical cubes of size a.
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The deformation is everywhere volume preserving and results in the formation of a fibril

along the vertical axis of the cube by means a process of cavitation from the four boundary

segments on the symmetry plane of the cube. As noted above, the process of cavitation

from a line results in infinite energies in solids obeying strain-gradient elasticity. We

relax this excessive rigidity by assuming availability of nucleation boreholes of a small

but finite radius.

We proceed to argue heuristically the expected scaling properties of the deformation just

described. For definiteness, we assume linear scaling of the nonlocal energy. As noted in

Section 2, the local part of the energy density saturates to a constant W∞ when all chains

in the polymer network are stretched to failure. In this state, the local energy of a cube

scales as

Eloc ∼W∞a3. (5.9)

Suppose, in addition, that for large deformations the non-local energy density behaves as

W∞`|∇F|, where ` is a microstructural length scale. As noted in the foregoing, to leading

order the energy is dominated by a logarithmic divergence at the core of the nucleation

boreholes. Under these conditions, we have

Enon ∼W∞a`δ log
a
b
, (5.10)

where, here and subsequently, b denotes the core-cutoff radius. The total energy of a cube

therefore goes as

E = Eloc +Enon ∼W∞a3 +W∞a`δ log
a
b
. (5.11)

Next, we optimize the size of the cubes. To this end, we note that energy per unit area

of slab, or fracture energy, is given by G = E/a2. Minimizing this fracture energy with
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respect to the cube size gives

∂G
∂a

=
∂
∂a

E

a2 =W∞ −W∞
`δ

a2 log
a
b

+W∞
`δ

a2 = 0. (5.12)

After simplification, we obtain the condition

a2

`δ
= log

a
b
− 1, (5.13)

whence we obtain the optimal cell size a∗(δ/b,`/b). For large δ, the optimality condition

simplifies to

a∗ ∼ `1/2δ1/2
(
log

a∗

b

)1/2
∼ `1/2δ1/2

(
log

`δ

b2

)1/2

(5.14)

and the fracture energy to

G ∼W∞`1/2δ1/2
(
log

`δ

b2

)1/2

, (5.15)

which to leading order is proportional to the square root of the opening displacement δ.

The specific fracture energy of the material follows from (5.15) by additionally assuming

that the fibrils break at a critical opening displacement δc, with the result

Gc ∼W∞`1/2δ1/2
c

(
log

`δc
b2

)1/2

. (5.16)

The structure of this specific fracture energy is noteworthy. Thus, Gc is proportional

to W∞, the saturation value of the local energy density at failure. The parameter W∞

provides a measure of the strength of the material and, thus, it is reasonable to expect

that the specific fracture energy be in proportion to W∞.

We also observe that Gc is to leading order in direct proportion to the geometric mean of
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the intrinsic length ` and the critical opening displacement δc. The core cutoff radius b

enters only through the logarithmic term. These dependences are also expected since `

sets the scale for the non-local regularization, δc provides a measure of the strength of

the fibrils, and b sets the scale of the logarithmic energy barrier for nucleation.

It is also instructive to compare with the fractional derivative regularization proposed

by Heyden et al. [2014]. In that model the boreholes were absent, b = 0, but the term∫
`|∇F| was replaced by the softer term

∫
`σ |∇σF|, with σ smaller than 1. Therefore the

b→ 0 limit of the present model should correspond to the σ → 1 limit of the fractional-

derivative model.

Indeed, Conti et al. [2014] derived a scaling of the energy proportional to `σ/(1+σ )δ1/(1+σ ),

which reduces to the present scaling `1/2δ1/2 as σ → 1. The prefactor arising from the

fibril construction was however proportional to 1/(1− σ ) and diverges in the limit, much

as the logarithmic term in the present model diverges as b→ 0.

5.2.2. Local constitutive damage model

In order to facilitate computations, cubature formulas as derived in [Cools, 2003] have

been used for an approximation of the surface integral in Equations (2.18) and (2.19). A

total of 14 cubature points was chosen in computations, whereby marginally modifying

their respective location on the unit sphere enables the attainment of a fully damaged

state in the limit of large deformations.

Figure 5.5 illustrates that under uniaxial loading conditions, cubature points aligned with

the principal axes of loading result in a small subset of cubature points whose fiber ori-

entation will never lead to complete damage due to the chosen number of finite cubature

points. The set of cubature points is therefore rotated by an intrinsic rotation (see Fig-

ure 5.6).
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ζi

ζi

λλ

Figure 5.5.: Subset of cubature points on the unit sphere for which fiber orientation ζi
under uniaxial loading in the direction of λ lies in a purely compressive zone
(and hence will not fail in the limit of large deformations).

D=2

x1

x2

x3

Figure 5.6.: Cubature points on the unit sphere before (left) and after rotation (right).

The local strain energy density contribution then follows as

W (F) =
4πb2

3kBT l2n
f (J, I2)

+
n∑
i=1

wiD
(√
QiICIJQ

i
J

)
QiICIJQ

i
J

+
Eb
kBT

n∑
i=1

wi

[
1−D

(√
QiICIJQ

i
J

)]
, (5.17)

whereby Qi and wi are quadrature point locations and weights, respectively. Further-

more, volumetric energy contributions are modeled using a Mooney-Rivlin material ac-
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cording to

f (J, I2) = f (I2) + f (J)

=
µ

2

(
Ĩ2 − 3

) n∑
i=1

wiD
(√
QiICIJQ

i
J

)
+
κ
2

(J − 1)2 , (5.18)

with a modified second invariant Ĩ2 = 1
2

[
(tr (Cdev))2 − tr (CdevCdev)

]
(where Cdev = FTdevFdev

and Fdev = FJ−1/3).

It should be noted that the damage distribution function D (λ(Qi)) does not enter volu-

metric contributions f (J) = κ
2 (J − 1)2 in order to not weaken incompressibility. Introduc-

ing constants Ef and c as

Ef =
Eb
kBT

and c =
4πb2

3kBT l2n
(5.19)

leads to first Piola-Kirchhoff stresses of the form

∂W
∂F

=
n∑
i=1

wiFQi ⊗Qi
[
2D(λi) +

1
λi

QiCQi −Ef
1
λi

]
+κ (J − 1) JF−T +

∂f (I2)
∂F

with (5.20)

∂f (I2)
∂F

=
∑
i

wi
µ

2

[ 1
λi

(Ĩ2 − 3)FQi ⊗Qi (5.21)

+ D(λi)
(
−2

3
J−4/3F−T tr(C)2 + 2J−4/3tr(C)F (5.22)

+
2
3
J−4/3tr(CC)F−T − 2J−4/3F

)]
. (5.23)

from where it can be seen that the material is not stress-free in its reference configuration,

which may be associated with eigenstrains of the polymer chains.



5. Crazing model using full derivatives and a core cut-off 89

5.2.3. Numerical non-local regularization model

For an energy functional of the general form

I =
∫
Ω

W (F,∇F)dV −
∫
∂Ωt

T · δϕ dS (5.24)

with tractions T and deformation mapping ϕ , taking first variations and enforcing sta-

tionarity gives

δI =
∫
∂Ωt

[(
PiJ − ηikJ,k

)
NJ − Ti

]
δϕi dS

+
∫
∂Ωt

ηiJkNJδϕi,k dS

−
∫
Ω

(
PiJ − ηikJ,k

)
,J
δϕi dV = 0. (5.25)

Here, PiJ = ∂W
∂FiJ

, ηiJk = ∂W
∂FiJ,k

and δϕ = 0 on ∂Ωu are used. While the first and last terms in-

vite to the definition of an effective stress tensor in the presence of higher-gradient terms,

the second (surface) term is numerically challenging. The numerical implementation of

such gradient theories requires not only higher-order elements that accurately interpolate

the higher gradients required in the model.

In addition, the surface term (which accounts for tractions conjugate to the second-order

deformation gradient) necessitates the implementation of special boundary elements. In

order to circumvent these and related difficulties, we introduce the following approxima-

tion.

Non-local energy contributions, as introduced in the optimal scaling laws in Equation (3.2),

are in the following specified via a jump regularization model. The model takes into ac-

count interface element contributions depending on the jump in deformation across in-

terfaces, and thus approximates gradient regularization terms in a finite element setting

with linear elements.
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Figure 5.7.: Examples of different sets of interface energy contributions between tetrahe-
dral element 1 and its neighbors.

As a starting example, consider a one-dimensional chain of n nodes and n−1 simplicial el-

ements that therefore have constant deformation gradients Fi = (ϕi+1−ϕi)/∆x (i = 1, . . . ,n)

with ∆x being the (constant) element length. As an approximation to the gradient energy,

let us introduce

Winterface = k
n∑
i=1

|∆Fi |a Ai (5.26)

where Ai denotes the cross-sectional area of each element and ∆Fi = Fi+1 −Fi is the jump

in the displacement gradient across an element interface. In the limit of an infinitely-fine

discretization, we thus see that for a = 1,

lim
n→∞

Winterface = lim
n→∞

k
n∑
i=1

|∆Fi | Ai = k lim
n→∞

n∑
i=1

∣∣∣∣∣Fi+1 −Fi
∆x

∣∣∣∣∣ ∆xAi
=

∫
L
k|∇F|dx.

(5.27)

Note that if a , 1, energy (5.26) should be modified as follows in order to maintain the
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correct limit:

Winterface = k
n∑
i=1

|∆Fi |a

(∆x)a−1 Ai . (5.28)

In a three-dimensional setting, the interfacial energy contributions introduced above can

be defined as

Winterface(∆F) = AfWjump(∆F), (5.29)

with interface area Af (see Figure 5.7 for reference) and jump regularization model

Wjump(∆F) = k ‖∆F‖a . (5.30)

Here, k serves as a non-local stiffness parameter, whereas a is a measure of growth. For

polymers undergoing crazing mechanisms, linear growth of the non-local energy with

respect fractional derivatives of the deformation gradient is expected. Our investigation

therefore focuses on the limiting case a = 1 (for implications on numerical stability with

regard to the cusp-like regularization energies, please refer to Section 5.2.4).

5.2.4. Simulation of craze formation

In this section, we aim to verify numerically the preceding heuristic scaling relations for

crazing. To this end, we employ a finite-element discretization of the boundary value

problem defined in Section 5.2. By periodicity, we restrict the analysis to one in-plane

periodic unit cell of the slab. In addition, we exploit symmetry in order to further restrict

the analysis to one eighth of the unit cell.

A schematic of the domain of analysis and the tetrahedral 8,766-element mesh used in

calculations is shown in Fig. 5.8. We note that the computational domain includes a small
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groove along the perimeter of the unit cell simulating the initial nucleation borehole.

(a) (b)

Figure 5.8.: a) Schematic of the domain of analysis spanning one quarter of the cubic peri-
odic unit cell. b) Initial tetrahedral 8,766-element mesh used in calculations.

We enforce the incompressibility constraint by means of a penalty method consisting

of adding to the unconstrained local energy a very high bulk or volumetric energy. In

order to avoid locking, we employ quadratic interpolation in the discretization of the local

energy. By contrast, we employ linear interpolation in the discretization of the nonlocal

energy. By virtue of this choice, the second deformation gradient ∇F vanishes in the

interior of the elements and is concentrated on the interfaces between adjacent elements.

The energy contributed by each such interface is then evaluated as W∞`A
∣∣∣‖F|∣∣∣, where A

is the area of the interface, and ‖F‖ is the jump of the deformation gradient across the

interface. The corresponding equilibrium problem is solved by means of an iterative

nonlinear conjugate-gradient solver.

A sequence of equilibrium configurations under increasing prescribed opening displace-

ment is shown in Figure 5.9. As may be seen from the figure, the initial borehole expands

greatly upon deformation, resulting in the formation of an elongated fibril. The remain-

der of the cell remains relatively undeformed. The figure also shows the volumetric de-

formation det(F). We observe, by way of verification, that the volumetric deformation
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Det(F)

Figure 5.9.: Sequence of equilibrium configurations under increasing prescribed opening
displacement. Superimposed on the figure are level contours of volumetric
deformation det(F).

remains ostensibly close to 1 over most of the domain, with the exception of small con-

centrated regions where the material undergoes modest volumetric deformations.

With a view to verifying the heuristic scaling relations (5.9) and (5.10), Figs. 5.10a and

5.10b show the dependence of the local, normalized by W∞a3, and the nonlocal energy,

normalized by W∞a2`, respectively, as a function of the normalized opening displace-

ment δ/a. The local energy thus normalized increases monotonically with the normal-

ized opening displacement and exhibits a clear trend towards saturation at a maximum

energy of value W∞a3, in agreement with (5.9), Fig. 5.10a.

In addition, the normalized nonlocal energy exhibits an ostensibly linear dependence

on the normalized opening displacement, in agreement with (5.10), Fig. 5.10b. Finally,

Fig. 5.11 depicts the logarithmic dependence of the normalized nonlocal energy Enon/W∞a2`

on the normalized core-cutoff radius b/a for fixed δ and a and δ � a. We note that, for

each value of the core-cutoff radius b, the energy is converged with respect to the mesh

size. The linear dependency of the normalized nonlocal energy on the normalized core-

cutoff is clearly evident from the figure.
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Figure 5.10.: a) Normalized local energy Wloc/W∞a
3 vs. normalized opening displace-

ment δ/a. b) Normalized nonlocal energyWnon/W∞a
2` vs. normalized open-

ing displacement δ/a.
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Figure 5.11.: Dependence of the normalized nonlocal energy Enon/W∞a2` on the normal-
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We may thus conclude that the heuristic scaling relations (5.9) and (5.10) are indeed born

out by the finite-element calculations. By extension, the finite-element calculations thus

lend support to the scaling of the fracture energy (5.15) and the critical energy-release

rate (5.16).
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6. Concluding remarks and future work

In this work, a simple one-parameter macroscopic model of distributed damage and frac-

ture of polymers was derived. A first underlying assumption is given by the fact that the

material behavior has two components, local and nonlocal. The local component char-

acterizes the behavior of large material samples deforming uniformly, and it represents

the configurational statistics of a polymeric chain network in the thermodynamic limit.

In order to account for damage, the classical network theory was extended by assuming

that the chain bonds have a finite strength. It was shown that, for large deformations, the

corresponding deformation-theoretical free energy has zero growth, i. e., it is bounded

above and below by a constant. In polymers undergoing fracture, it was assumed that

this inherently unstable behavior is held in check by a second fundamental property,

viz. the fractional strain-gradient elasticity. A further assumption is that the non-local

component of the material behavior is characterized by fractional strain-gradient elastic-

ity with linear growth in the strain gradient. This latter growth assumption allows for

deformation jumps across sharp interfaces. Under these conditions, it was shown that

fracture emerges as the net result of two competing effects: localization of deformation

to failure planes promoted by the zero-growth of the local energy, and the stabilizing

effect of fractional strain-gradient elasticity. We specifically derive optimal scaling laws

for the macroscopic fracture energy in the form of matching upper and lower bounds.

The macroscopic fracture model that results from the optimal scaling analysis is char-

acterized by a single parameter, namely the critical energy-release rate. Conveniently,

such a model is amenable to a straightforward numerical implementation by recourse to

material-point eigenerosion, an averaged material-point erosion scheme that is known to



6. Concluding remarks and future work 97

converge in the limit of zero mesh size. The range and fidelity of the damage and fracture

criterion formulated in the foregoing was demonstrated by means of an example of ap-

plication: Taylor-impact experiments of Mock and Drotar [2006] on polyurea specimens.

Remarkably, despite its simplicity, the model captures qualitatively both patterns of dis-

tributed damage and cracking or tearing over the experimental range of impact velocities.

The simulations are also in fair agreement with quantitative metrics such as the specimen

length, and exhibit robust convergence with respect to mesh size.

The essential role of the intrinsic length ` in determining the optimal scaling behavior is

particularly noteworthy. Thus, if ` = 0, i. e., if the material is local, then it can be seen

from (3.31) that the energy is bounded above by a bound that is linear in a, the fibril spac-

ing. Evidently, the least upper bound is then zero, and is attained for a = 0, in agreement

with (3.30), i. e., the energy relaxes to zero as a result of localization of deformations to a

negligibly thin band. Thus, in the absence of an internal length scale the fracture energy

degenerates to zero, as expected from the sublinear growth of the energy, and the solid

can fracture spontaneously at no energy cost. This unstable and pathological behavior

of the local energy is stabilized by the non-local energy. Indeed, the lower bound (3.32)

shows that, with ` > 0, fracture indeed requires a well-defined energy per unit area, or

specific fracture energy. The antagonistic roles of sublinear energy growth, characteristic

of polymers undergoing damage, and fractional strain-gradient elasticity in shaping the

effective fracture properties of the material are remarkable.

Furthermore, a different cazing model using full derivatives of the deformation gradient

and a core cut-off was presented. By means of the simple example of the expansion of a

hollow cylinder in an incompressible material, it was shown that strain-gradient elasticity

regularization is feasible provided that a core of a small but finite radius is assumed along

the nucleation sites of the fibrils. Based on heuristic arguments, scaling relations for the

local and nonlocal energies attendant to crazing were derived, as well as for the specific

fracture energy thereof. Finally, finite-element calculations were presented that bear out
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the heuristic scaling relations, whereby numerical implementation was achieved via a

jump regularization model taking into account the jumps in deformation gradients across

element interfaces. By means of uniaxial tensile simulations, it was shown how the non-

local regularization model stabilizes the effect of localization to failure planes. Moreover,

based on a simulation of craze formation, scaling properties of both local- and nonlocal

energy contributions were verified.

A main value of the theory and the scaling analysis presented here resides in the concep-

tual framework that they set forth as regards the dependence of the macroscopic fracture

properties of polymers on micromechanical parameters. Thus, we find that the critical

energy-release rate Gc is in direct proportion to the saturation local energy density W∞,

the square root of the intrinsic length ` of strain-gradient elasticity and to the square root

of the critical opening displacement δc for fibril failure, and it diverges logarithmically

if the core cut-off radius b tends to zero. These dependences stand to reason since W∞

measures the extent of energy dissipation attendant to damage, ` sets the scale for the

non-local regularization, δc provides a measure of the ultimate strength of the fibrils,

and b sets the scale of the logarithmic energy barrier for nucleation. Thus, the scaling

laws supply a valuable link between micromechanical properties and macroscopic frac-

ture properties of polymers. In particular, they reveal insight into the relative roles that

surface energy, chain elasticity, and damage play as contributors to the specific fracture

energy of polymers.

The experimental validation presented here suggests that a very simple model of bulk

behavior and fracture suffices to characterize qualitatively, and to a fair quantitative de-

gree, complex aspects of the dynamic behavior and failure of polymers, including large

deformations, patterns of distributed damage, and fracture patterns. It should be re-

marked that the preponderance of fracture mechanics pertains to materials that undergo

small overall deformations, be they elastic or plastic. Thus, the ability of the model to

characterize fracture in solids undergoing exceedingly large deformations, including the
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retraction of cracks upon unloading, is remarkable. The ability of tensile tests to supply

estimates of the critical energy-release rate, also in the context of very large deformations,

is also noteworthy. While its qualitative predictiveness and micromechanical foundations

lend strong support to the overall modeling framework, further modeling enhancements

may be desirable with a view to improving its quantitative fidelity.

In order to further elucidate desirable properties of elastomeric polymers, e.g., the high-

pressure strength of polyurea, future work will include investigations below the scale of

the continuum level. Hereby, for example a maximum-entropy approach could be used

in a molecular dynamics framework. Its capability for the study of the long-term macro-

scopic behavior of complex multi-species systems mediated by slow, coupled, thermal-

mechanical-chemical processes at atomistic scales enables the simulation of isentropic

deformations of polymers at high pressures. Hereby, the max-ent approach will enable

consideration of a much broader range of strain rates, from quasistatic to high-strain be-

havior, and temperatures, including isentropic temperature excursions, entropic effects

and dissipation due to heat conduction at the nanoscale, than currently accessible to con-

ventional molecular dynamics. These simulations could elucidate a number of funda-

mental aspects of the pressure-dependence of strength in polymers, including the role of

free volume, dynamic atomic bond formation and breaking, local thermal relaxation, and

others. Furthermore, the simulations represent a powerful tool for developing advanced

constitutive models for use in computational mechanics codes.

Future work in the field of mathematical analysis lies in the derivation of a full model of

fracture, which goes beyond the methods of optimal scaling presented in this thesis. As

described in Section 3, the current analysis focuses on a specific example of deformation,

viz., a slab divided into unit cells under opening displacements. A further development

would be the description of fracture under general loading conditions (e.g., mode I/II

loading, to name prime examples of loading conditions in fracture mechanics). Gener-

alizing the analysis from specific cases to arbitrary loading conditions would thereby, in
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the mathematical description, correspond to the derivation of a full Γ -limit.

With regard to the area of constitutive modeling, enhancements of the current material

model for polyurea may be achieved by including the material’s temperature dependence

as well as a consideration of more elaborate chain models for the polymer’s free energy.

However, from the standpoint of fracture mechanics, the exploration of different chain

models is expected to merely influence optimal scaling constants.

Finally, future directions in the area of numerical modeling include the implementation

of fractional strain-gradient elasticity models based on mathematical representations of

fractional norms. Such implementations would open the field to numerical calibrations

of the optimal scaling constants analytically derived in Section 3.
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A. Preliminaries

In this appendix, the basics of tensor algebra and analysis as well as the fundamentals of

continuum mechanics are reviewed. This provides a brief overview of the mathematical

and physical framework on which this thesis is based. For more details, the reader is

refered to, e.g., [Flügge, 1972] and [Holzapfel, 2000].

A.1. Vector and tensor fundamentals

A.1.1. Basis representation and summation convention

In this thesis, vector and tensor quantities are denoted by bold symbols, where lowercase

letters are used for the former and uppercase letters are used for the latter. Furthermore,

a restriction to an orthonormal and time-invariant basis in the three-dimensional Eu-

clidean vector space R
3, described by a Cartesian coordinate system, will be employed for

simplicity. The collection of basis vectors

B = {G1,G2,G3} (A.1)

hence enables the representation of a vector v with components vi in three dimensions as

v =
3∑
i=1

viGi = viGi . (A.2)
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Throughout this thesis, Einstein’s summation convention is assumed [Flügge, 1972], stat-

ing that repeated indices that appear twice in a term are to be summed (where the upper

summation bound is set by the number of dimensions).

These repeated indices (called dummy indices) are to be distinguished from free indices,

which only appear once in a single term and whose total number determines the order of

a tensor. A term containing no free index denotes a scalar, whereas one and n free indices

represent vectors and tensors of order n, respectively.

A.1.2. Vector and tensor operations

The Kronecker delta, defined by

δij = Gi ·Gj =


1, if i = j

0, otherwise,
(A.3)

admits the definition of the inner product of two vectors (also known as scalar product)

via

u · v = uivj(Gi ·Gj) = uivi . (A.4)

The outer product of two vectors (often referred to as tensor or dyadic product) is defined

by

(u⊗ v)w = u (v ·w) (A.5)

and results in a second-order tensor

T = u⊗ v = uivjGi ⊗Gj = TijGi ⊗Gj . (A.6)
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The action of a second-order tensor onto a vector defines a linear mapping via

Tu = (TijGi ⊗Gj)ukGk = TijGi(Gj ·ukGk) = TijukδjkGi = TijujGi . (A.7)

Analogously, the multiplication (or composition) of two second-order tensors

ST = (SikGi ⊗Gk)(TljGl ⊗Gj) = SikTljδkl(Gi ⊗Gj) = SilTlj(Gi ⊗Gj) (A.8)

defines a composition of two mappings, i. e.

STu = S ◦ (Tu). (A.9)

By exploiting the properties of the aforementioned linear mapping, the individual com-

ponents of a second-order tensor are obtained via

Tij = Gi ·TGj . (A.10)

Consequently, tensor components Tij depend on the chosen basis, whereas tensor T is

invariant and therefore constant under coordinate transformations.

Altogether, these rules define the most common relations between tensors T and S, vec-

tors u and v, and scalar m:

distributive law T(u + v) = Tu + Tv,
associative law T(mu) =m(Tu),
associative law (TS)u = T(Su),
distributive law (T + S)u = Tu + Su,
commutative law T + S = S + T,
distributive law T(S + V) = TS + TV,
associative law T(SV) = (TS)V,
and in general TS , ST.
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The relation u ·Tv = vTTu defines the transpose TT of a tensor T with components

(Tij)
T = Tji or (uivj)

T = ujvi , (A.11)

from which the following rules can be deduced:

(Tij + Sij)
T = T Tij + STij = Tji + Sji ,

(T Tij )T = Tij ,

(TijSjk)
T =TkjSji . (A.12)

Symmetric and antisymmetric second-order tensors are defined by

Tij = Tji if T is symmetric (A.13)

Tij = −Tji if T is antisymmetric.

Furthermore, one abbreviates the symmetric and skew-symmetric parts of a tensor T as,

respectively,

(symT)ij =
1
2

(Tij + Tji), (A.14)

(skwT)ij =
1
2

(Tij − Tji),

If the linear mapping associated with tensor tensor T is injective, the inverse T−1 is intro-

duced such that

T−1T = TT−1 = I, (A.15)

so that the inverse of a composition of mappings follows as

(TS)−1 = S−1T−1. (A.16)
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In addition, special relations hold for rotation tensors R ∈ SO(d) (i. e., tensors that belong

to the special orthogonal group) since

RR−1 = RRT = I. (A.17)

A special tensor quantity (which is also a tensor invariant), denoted as the trace of a tensor,

is defined according to

trT = Tii , (A.18)

along with the relations

tr(u⊗ v) = uivjδij = uivi = u · v,

trT = trTT = Tii and

tr(T + S) = trT + trS. (A.19)

By recourse to the Kronecker delta defined above, the inner product of two second-order

tensors (also known as double contraction) can be introduced as

T ·S = (TijGi ⊗Gj) · (SklGk ⊗Gl) = TijSkl(Gi ·Gk)(Gj ·Gl) = TijSklδikδjl = TklSkl , (A.20)

which leads to the following relations:

tr(ATB) = tr(AikBij) = AikBijδkj = AijBij ,

(u⊗ v) · (w⊗ z) = (u ·w)(v · z) = uiwivjzj and

(u⊗ v)T(w⊗ z) = (vkTklwl)uivj . (A.21)

As a special case, the norm of a tensor of arbitrary order (including vectors and tensors)
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is defined via

|T| =
√

T ·T, (A.22)

which for a vector v yields |v| = √vivi , and for a second-order tensor T we have |T| =√
TijTji .

The definition of the cross product of two vectors (also known as vector product) requires

the introduction of the permutation symbol

εijk =


1, if i, j,k is a cyclic (even) sequence

−1, if i, j,k is an anticyclic (odd) sequence

0, if i, j,k is an acyclic sequence.

(A.23)

The vector product is then obtained as

u× v = uivjGi ×Gj = εijkuivjGk , (A.24)

for which helpful relations include

εijkεimn = δjmδkn − δjnδkm,

(u× v)i = εijkujvk = −εikjujvk = −εijkukvj = −(v⊗u)i and

(u× v) ·w = u · (v⊗w). (A.25)

Furthermore, the determinant of a second-order tensor T can be defined by

detT = εijkTi1Tj2Tk3 (A.26)
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with relations

detTS = detTdetS,

detTT = detT,

detT−1 =
1

detT
and

det(u⊗ v) = 0. (A.27)

A.1.3. Tensor analysis

Finally, let us review rules of differentiation with respect to vector and tensor quantities.

To this end, the Gateaux derivative

D(Φ)v =
d
dε

Φ(x + εv)
∣∣∣∣∣
ε=0

(A.28)

is introduced as the slope of Φ at point x into the direction of v. A formal definition of

the gradient of a scalar field is then given by

gradΦ(x) · v =D(Φ)v, (A.29)

which leads to the components of the gradient

(gradΦ)i =
∂Φ(x)
∂xi

, (A.30)

with

∂xi
∂xj

= δij = xi,j . (A.31)

Here and in the following, a comma in an index implies differentiation with respect to

the coordinates following the comma. Generalizing the gradient to arbitrary tensors and
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furthermore introducing the divergence and curl operators for arbitrary (continuously dif-

ferentiable) fields, we have

grad(·) = (·),i ⊗Gi , (A.32)

div(·) = (·),i ·Gi and

curl(·) = −(·),i ×Gi ,

(A.33)

in which (·) denotes tensors of any order. The del and Laplace operators are then intro-

duced as

del operator: ∇◦ (·) =
∂(·)
∂xi
◦Gi , (A.34)

Laplace operator: ∆(·) = div(grad(·)) = (·),kk .

General tensor derivatives then follow as

∂(·)
∂T

=
∂(·)
∂Tij...n

⊗Gi ⊗Gj ⊗ ...⊗Gn with
∂Tab...d
∂Tij...n

= δaiδbj ...δdn. (A.35)

For second-order tensors we thus have

∂Aii
∂Akl

= δjk = I =
∂ trA
∂A

(A.36)

and

∂TijTij
∂Tkl

= δikδjlTij + Tijδikδjl = 2Tkl or
∂ tr(TTT)
∂T

= 2T. (A.37)

Without proof it should also be mentioned that

∂detT
T

= T−1 detT = cofT. (A.38)
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A.2. Review of continuum mechanics

Application of the theory of continuum mechanics rests upon the basic assumption that

a body can be treated as a continuum (described by a continuous position vector x) with

material properties described by continuous functions (except at a finite number of inte-

rior surfaces). Although this theory is a simplification of the underlying discrete nature

of matter, such an approximation is valid if the length scale of interest L is significantly

larger that the largest scale l describing the material discreteness so that L >> l. In this

case, a continuous body may be assumed, whose properties at a material point are un-

derstood as averages over length scales l with l << l << L. Under the assumption of a

continuous body with material properties defined by continuous functions, mathemati-

cal laws governing the kinematics of deformation can be derived. In the following, both

cases of large (finite) and small (linearized) deformations will be considered, whereby

linearized kinematics are derived as a special case of the general theory of finite kine-

matics. The following gives a brief summary of the governing equations of continuum

mechanics; for a detailed review the reader is referred to [Ortiz, 2012].

A.2.1. Finite kinematics

A body Ω, whose state is changing from an undeformed reference configuration into its

deformed configuration ϕ(Ω), is shown in Figure A.1, whereby ϕ denotes the deforma-

tion mapping

ϕ : Ω→R
d . (A.39)

Here and in the following, upper-/lower-case letters are used to denote quantities in the

reference/deformed configuration, respectively. Material points X in the reference and

spatial points x in the deformed configuration are thus connected via the mapping x =



A. Preliminaries 110

Figure A.1.: Deformation mapping ϕ between a body in the reference configuration Ω

and its deformed configuration ϕ(Ω).

ϕ(X), which is required to be injective so that two different points in Ω do not map onto

the same point in ϕ(Ω). It is furthermore required that ϕ−1 : ϕ(Ω)→Ω exits.

Velocity and acceleration fields in both the material (Lagrangian) and spatial (Eulerian)

framework can then be written as

V(X, t) =
∂ϕ
∂t

(X, t),

A(X, t) =
∂V
∂t

(X, t),

 Lagrangian framework

and

v(x, t) = V(ϕ−1(x, t)) = V ◦ϕ−1(x, t),

a(x, t) = A(ϕ−1(x, t)) = A ◦ϕ−1(x, t),

 Eulerian framework

In keeping with our previous definition, uppercase letters are used for the material and

lowercase letters are used for the spatial description. It is furthermore desirable to de-

fine the material time derivative for a general time-dependent spatial function f(·, t) :

ϕ(B,t)→R
d , t ∈ [t1, t2] as

Df
Dt

=
∂f
∂t

+
∂f
∂xj

vj , (A.40)

which denotes the rate of change of f at a fixed X and thus enables the calculation of,

e. g., the spatial acceleration in fluid mechanics without the introduction of a reference

configuration, viz. a =Dv/Dt.
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Following the principle of local action, any nonlinear deformation can locally be regarded

as being affine, and thus as a transformation that preserves points, straight lines, and

planes. An expansion of the position vector within an infinitesimal neighborhood of X

gives

dxi =
∂ϕi
∂XJ

(X)dXJ . (A.41)

The deformation gradient F(X) [Ortiz, 2012] at X can now be introduced as

FiJ (X) =
∂ϕi
∂XJ

(X) (A.42)

and will subsequently be used to calculate metric changes. For changes in length, stretch

ratios λ in the direction of N follow from

λ2(N) = N ·CN, (A.43)

where C = FT F denotes the right Cauchy-Green deformation tensor. Furthermore, the

Green-Lagrange strain tensor E and extensional strains ε(N) are introduced as

E =
1
2

(C− I) (A.44)

and

ε(N) =
√

N ·CN− 1. (A.45)

In addition, changes of angle, volume and area are given by, respectively,

cosϕ (N,M) =
M ·CN

λ(N)λ(M)
,

dv
dV

= detF = J and
|da|
|dA|

= J
√

N ·C−1N, (A.46)
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with N being the unit normal vector on the oriented infinitesimal area segment dA.

Rotations define a special class of linear mappings that preserve local metrics (such as

lengths and angles). Rotations in R
2 are defined by the angle of rotation, whereas rota-

tions in R
3 can be described by an angle as well as an axis of rotation. For the former,

rotation matrices assume the form

R =

 cosϕ −sinϕ

sinϕ cosϕ

 (A.47)

and for the latter case, rotation matrices are defined by components

Rij = eiej + (δij − eiej)cosϕ + εijlel sinϕ (A.48)

with angle of rotation

cosϕ =
1
2

(trR− 1), (A.49)

while the axis of rotation e has components

e1 =
R32 − r23

2sinϕ
,

e2 =
R13 −R31

2sinϕ
and

e3 =
R21 −R12

2sinϕ
. (A.50)

The deformation gradient F thus contains all information necessary to describe the local

state of deformation. However, the existence of a corresponding deformation mapping ϕ

is only guaranteed if certain compatibility conditions are satisfied. In general, any tensor

field F is compatible over a domain U if there exists a mapping ϕ : U → B
3 such that

F = Gradϕ and FiJ = ∂ϕi/∂XJ . Here and in the following, the capital letter of the gradient
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operator (and analogously all differential operators) denotes that derivatives are taken

with respect to coordinates in the reference configuration. As a necessary (pointwise)

condition of compatibility, the deformation gradient must satisfy

curlF = 0. (A.51)

The sufficient (domainwise) condition of compatibility requires that

curlF = 0 in U. (A.52)

In case of discontinuities across material interfaces, the deformation gradient must satisfy

compatibility in the sense of Hadamard (also known as rank-1-compatibility). The jump

in F across an interface S (written as
[[
FiJ

]]
= aiNJ , whereby NJ is the unit normal onto

the interface) must satisfy

[[
FiJ

]]
TJ = aiNJTJ = 0 ∀ T ∈ S. (A.53)

A.2.2. Linearized kinematics

The theory of finite kinematics as outlined in A.2.1 can be simplified for cases of small

deformation by linearizing the relations derived above. Most generally, material points

in the deformed configuration are described by the position vector

x(X) = X + u(X), (A.54)

where u denotes the displacement field and strains are small (gradu ≈Gradu� 1). For a

general field G(ϕ), we can introduce the linearization

G(ϕ + u) = G(ϕ) +DG(ϕ)u + h.o.t. (A.55)
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and neglect all higher-order terms. The Gateaux derivative DG(ϕ)u is defined by

G(ϕ + u) = G(ϕ) +DG(ϕ)u = G(ϕ) +
d
dε

G(ϕ + εu)
∣∣∣∣∣
ε=0

. (A.56)

Application of this linearization procedure to the deformation gradient F about the un-

deformed configuration now gives

F ≈ I + gradu (A.57)

and the right Cauchy-Green tensor follows as

C ≈ I + 2ε = I + 2(gradu + graduT ), (A.58)

so that linearization of the Green-Lagrange strain tensor E = 1
2(C− I) ≈ ε yields the small-

strain tensor ε. For cases in which ε = 0, linearized rotational deformations continue

to be rotations (which implies that the perturbed spatial deformation gradient is skew-

symmetric, i. e. F = −FT ).

Metric changes such as changes of length, angle and volume now follow as, respectively,

ε(N) = N · εN,

γ(N,M) = 2N · εM (A.59)

and

dv
dV

= 1 + trε. (A.60)

Finally, it is desirable to find compatibility conditions analogous to CurlF = 0 in the

linearized framework. Compatibility requires the existence of a field u such that εij =
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Linearized kinematics Rates
Displacement ui Spatial velocity vi

Displacement gradient ui,j = βij Spatial velocity gradient lij = vi,j
Strain εij = 1

2(βi,j + βj,i) Rate of deformation dij = 1
2(lij + lji)

Rotation ωij = 1
2(βij − βji) Spin wij = 1

2(lij − lji)

Table A.1.: Deformation measures in linearized kinematics and corresponding deforma-
tion rates.

1
2(ui,j +uj,i). The infinitesimal rotation tensor ω is introduced as

ωij =
1
2

(ui,j −uj,i) (A.61)

so that

gradu = ω + ε. (A.62)

From the Schwarz integrability condition [Ortiz, 2012], small-strain compatibility follows

as

curl (curlε) = 0. (A.63)

A.2.3. Rates of deformation

For any deformation measure G(ϕ) moving with velocity v, the associated deformation

rates are given by

Ġ(ϕ t) =
d
dt
G(ϕ t) =DG(ϕ t)ϕ̇ t =DG(ϕ t)vt. (A.64)

Deformation measures previously derived in the linearized kinematics framework can

thus be used to find their corresponding rates as shown in Table A.2.3.
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A.2.4. Conservation laws

In the preceding sections, motions of solids and fluids were described in purely kinemati-

cal terms and without taking into account that these motions must obey the fundamental

laws of thermodynamics. The following sections are therefore dedicated to establishing

conservation laws, which will for the purpose of generality be formulated in both Eule-

rian as well as Lagrangian frameworks.

Let the Lagrangian and Eulerian mass densities per unit undeformed and deformed vol-

ume, respectively, be denoted as R : B→R and ρ : ϕ(B)→R, respectively. Enforcing that

the mass of a body B remains constant throughout the deformation gives the condition

m(B,t) =
∫
B
RdV =

∫
ϕ(B,t)

ρdv =
∫
B
ρJ dV ⇒ R = ρJ. (A.65)

Furthermore, conservation of mass in Lagrangian form requires that

dm
dt

(B,t) =
d
dt

∫
B
RdV =

∫
B
ṘdV = 0 ⇒ Ṙ = 0, (A.66)

whereas the local statement of mass conservation in spatial form evaluates to

ρ̇+ ρdivv = 0. (A.67)

With linear momentum of a simple body defined by

L(V) =
∫
V
RVdV =

∫
ϕ(V )

ρvdv, (A.68)

its change with time must equal the resultant force F(V) of all forces acting on V , such

that linear momentum balance requires

dL
dt

(V ) = F(V ). (A.69)



A. Preliminaries 117

Here, the resultant force F(V ) includes body forces as well as surface tractions according

to

F(V ) =
∫
V
RBdV +

∫
∂V

T(N)dS =
∫
ϕ(V )

ρbdv +
∫
∂ϕ(V )

t(n)ds, (A.70)

whereby RB and ρb denote body forces per unit mass in the material and spatial config-

urations, respectively, and similarly T(N) and t(n) denote tractions in the material and

spatial configurations. In Lagrangian form, the local statement of conservation of linear

momentum therefore follows as

RA = RB + DivP, (A.71)

with acceleration A, traction components Ti(N) = PiINI , and PiI denoting the components

of the first Piola-Kirchhoff stress tensor P representing forces in the deformed configura-

tion normalized by the undeformed area on which they are acting. In Eulerian form, in

contrast, the local statement of conservation of linear momentum reads

ρa = ρb + divσ , (A.72)

where σ is the Cauchy-stress tensor, which comprises tractions in the deformed configu-

ration (ti = σijnj) acting on areas in the deformed configuration. The first Piola-Kirchhoff

and the Cauchy stress tensor are related via

σ = J−1PFT . (A.73)

Analogously, the angular momentum G and the resultant moment M of all forces can be

defined (in the deformed configuration) as

G(v) =
∫
ϕ(v)

x× ρvdv, (A.74)
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and

M(v) =
∫
ϕ(v)

x× ρbdv +
∫
∂ϕ(v)

x× t(n)ds (A.75)

respectively. The change in angular momentum over time must satisfy

d
dt

G(v) = M(v), (A.76)

which after some algebraic manipulations leads to the requirement that the Cauchy stress

tensor for simple bodies must be symmetric (this excludes special continua such as e.g.

Cosserat materials whose microrotations are taken into account):

σ = σT . (A.77)

In general, one distinguishes extensive variables, whose values are added when two iden-

tical systems are combined (e.g. mass m), and intensive variables, whose values remain

constant when two identical systems are combined (e.g. temperature T ). Important ex-

tensive variables in the derivation of conservation laws are the kinetic energy K of a

simple continuum V (without any rotational inertia)

K(V ) =
∫
V

1
2
R |V|2 dV =

∫
ϕ(V )

1
2
ρ |v|2 dv, (A.78)

where V and v denote mean material and spatial velocity fields, as well as heat Q, whose

change over time results from heat flux H(N) (or equivalently h(n) in the Eulerian frame-

work) and heat sources, i. e.

Q̇(V ) =
∫
V
RShdV −

∫
∂V
H(N)dS =

∫
ϕ(V )

ρshdv −
∫
ϕ(∂V )

h(n)ds (A.79)

with heat source density Sh in material form, and sh being its spatial counterpart. Fur-
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thermore, the external power as the sum of body forces and tractions is

P E(V ) =
∫
V
RB ·VdV +

∫
∂V

T(N) ·VdS =
∫
ϕ(V )

ρb · vdv +
∫
∂ϕ(V )

t(n) · vds. (A.80)

The deformation power is defined by

P D(V ) = P E(V )− K̇(V ) (A.81)

and denotes the amount of externally applied power that does not lead to a change in

kinetic energy. The integral form of P D(V ) in a Lagrangian framework gives

P D(V ) =
∫
V

P · ḞdV , (A.82)

which implies that P and Ḟ form a work-conjugate pair. Similarly, the spatial form

P D(v) =
∫
ϕ(V )

σ ·ddv (A.83)

shows that the Cauchy stress tensor σ and the rate-of-deformation tensor d are work-

conjugate. An overview of work-conjugate pairs can be found in Table A.2.4, and a sum-

mary of stress measures is given in Table A.2.4.

Stress P S σ
Rate of deformation Ḟ Ė d

Table A.2.: Overview of work-conjugate pairs.

Stress Name Configurational space Symmetry
σij Cauchy force

deformed area symmetric
PiJ First Piola-Kirchhoff force

undeformed area not symmetric

SIJ Second Piola-Kirchhoff force (mapped into undeformed configuration)
undeformed area symmetric

Table A.3.: Summary of stress measures.
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With the previously-defined deformation power, the first law of thermodynamics can be

stated as an exact conversion from external power and heat input into internal or kinetic

energy according to

Ė(V ) + K̇(V ) = P E(V ) + Q̇(V ). (A.84)

From Equation A.84 it follows that the internal energy E(V ) is an extensive variable,

which leads to defining an internal energy density per unit mass (denoted as U and u in

the material and spatial configuration, respectively), viz.

E(V ) =
∫
V
RU dV =

∫
ϕ(V )

ρudv. (A.85)

Similarly to the cases of conservation of mass and linear momentum, the conservation of

energy can also be expressed in local form. To this end, a combination of Equations A.84

and A.85 together with the definitions of external and deformation powers gives

d
dt

∫
V
RU dV =

∫
V

PḞdV +
∫
V
RShdV −

∫
∂V
H(N)dS. (A.86)

In analogy to the previous derivations of local conservation laws, the use of stress/traction

relations, Cauchy’s tetrahedron law, and the divergence theorem leads to the local state-

ment of energy balance in material and spatial forms as, respectively,

RU̇ = P · Ḟ +RSh −DivH (A.87)

and

ρu̇ = σ ·d + ρsh −divh. (A.88)
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The introduction of the second law of thermodynamics requires a number of additional

preliminaries such as a definition of thermodynamic systems and their respective equi-

librium states. A thermodynamic system denotes a collection of matter characterized by a

constant chemical decomposition, and a closed thermodynamic system is one that does not

exchange matter with its exterior. Such a system is in uniform thermodynamic equilibrium

if its intensive properties are independent of position and, furthermore, all properties of

the system are independent of time. Internal variables Q are required to define the state

of a thermo-mechanical system in addition to F describing kinematics and E describing

the energy of a system. Examples include microstructural information or deformation

history. A system is in thermal equilibrium it two different initially equilibrated systems

remain in equilibrium after being placed in contact.

With these definitions at hand, the zeroth law of thermodynamics states that if two systems

A and B are both in thermodynamic equilibrium with a third system C, then it follows

that system A is in thermal equilibrium with system B. Introducing the empirical tem-

perature Θ as a state variable, the zeroth law of thermodynamics may be written as

Θ(A) = Θ(C)∧Θ(B) = Θ(C) ⇒ Θ(A) = Θ(B). (A.89)

The state of a system can thus be defined by a collection of state variables {F,Θ,Q},

whereby their transition over time {F(t),Θ(t),Q(t)} for t1 < t < t2 defines a thermodynamic

process. A thermodynamic process is reversible if its internal variables do not change with

time, the process is quasistatic (so that no kinetic energy is turned into heat by dissipa-

tion), and each state during the process denotes a uniform thermodynamic equilibrium.

It has furthermore been shown via empirical observations that there exists an absolute

temperature T (Θ) that can be uniquely defined up to a constant, so that

S2 = S1 +
∫ 2

1

dQ
T

(A.90)
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along arbitrary reversible paths 1 → 2, and dS = dQ
T denotes a total differential. As a

result, S must be a state variable that is known as the entropy of a thermodynamic system.

The foregoing can also be generalized to irreversible processes according to

Ṡ int = Ṡ − Q̇
T
, (A.91)

where Ṡ int, Ṡ and Q̇
T are the internal entropy production rate, the rate of entropy increase

in the system, and the external entropy supply, respectively. It follows that for reversible

processes, Ṡ int = 0. For irreversible processes (including e.g. heat conduction and viscous

flows), empirical observations have shown that Ṡ int ≥ 0, based upon which the second law

of thermodynamics for irreversible processes can be expressed as

Ṡ int = Ṡ − Ṡext ≥ 0. (A.92)

Viscosity is an important example that must be taken into account when modeling mate-

rials whose state of stress does not only depend on {F,Θ,Q}, but also on Ḟ; polymers are

prime examples for materials that display pronounced viscous effects. Equilibrium stress

Pe and viscous stress Pv are defined by, respectively,

Pe(F,Θ,Q) = P(Ḟ = 0,F,Θ,Q) (A.93)

and

Pv(Ḟ,F,Θ,Q) = P−Pe. (A.94)

The second law of thermodynamics (in local form) applied to viscous materials implies

that

Pv · Ḟ ≥ 0. (A.95)
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In order to derive a continuum description of entropy, temperature and the second law

of thermodynamics, each material point may be defined as a thermodynamical system.

The absolute temperature in Lagrangian and Eulerian form is thus given by T (X, t) and

Θ = T (ϕ(X, t), t), and entropy densities are described as N (X, t) and η = N (ϕ(X, t), t) in

material and spatial configurations, respectively. Following the definition of the external

entropy input by Truesell and Noll, we define

Ṡext(V ) =
∫
V

RSh
T

dV −
∫
∂V

H ·N
T

dS =
∫
ϕV

ρsh
Θ
dv −

∫
∂ϕV

h ·n
Θ

ds, (A.96)

which yields the Clausius-Duhem inequality in Lagrangian form,

d
dt

∫
V
RN dV −

∫
V

RSh
T

dV +
∫
∂V

H ·N
T

dS ≥ 0 (A.97)

and in Eulerian form,

d
dt

∫
ϕ(V )

ρndv −
∫
ϕ(V )

ρsh
θ
dv +

∫
∂ϕ(V )

h ·n
θ

ds ≥ 0. (A.98)
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