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Abstract

This thesis aims at a simple one-parameter macroscopic model of distributed damage and
fracture of polymers that is amenable to a straightforward and efficient numerical imple-
mentation. The failure model is motivated by post-mortem fractographic observations of
void nucleation, growth and coalescence in polyurea stretched to failure [Weinberg and
Reppel, |2013]], and accounts for the specific fracture energy per unit area attendant to

rupture of the material.

Furthermore, it is shown that the macroscopic model can be rigorously derived, in the
sense of optimal scaling, from a micromechanical model of chain elasticity and failure
regularized by means of fractional strain-gradient elasticity. Optimal scaling laws that
supply a link between the single parameter of the macroscopic model, namely the critical
energy-release rate of the material, and micromechanical parameters pertaining to the
elasticity and strength of the polymer chains, and to the strain-gradient elasticity regu-
larization, are derived. Based on optimal scaling laws, it is shown how the critical energy-
release rate of specific materials can be determined from test data. In addition, the scope
and fidelity of the model is demonstrated by means of an example of application, namely
Taylor-impact experiments of polyurea rods. Hereby, optimal transportation meshfree

approximation schemes using maximum-entropy interpolation functions are employed.

Finally, a different crazing model using full derivatives of the deformation gradient and a
core cut-off is presented, along with a numerical non-local regularization model. The nu-
merical model takes into account higher-order deformation gradients in a finite element
framework. It is shown how the introduction of non-locality into the model stabilizes the
effect of strain localization to small volumes in materials undergoing softening. From an
investigation of craze formation in the limit of large deformations, convergence studies
verifying scaling properties of both local- and non-local energy contributions are pre-

sented.
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Notation

The following table gives an overview of different symbols used in the present work.
In general, scalar quantities are denoted by lowercase letters, whereas bold lower- and

uppercase letters denote vector and tensor quantities, respectively.

Aa area in the undeformed and deformed configuration
x, X coordinates in the deformed and undeformed configuration
X0,z Cartesian coordinates

C right Cauchy-Green deformation tensor
e; unit vectors in Cartesian coordinates

E Young’s modulus

F deformation gradient tensor

f vector of body or surface forces

fint, fext vector of internal and external forces

i Jacobian

L velocity gradient tensor

n unit normal vector

N; shape functions

Q heat

S entropy

t time

At time increment

t traction vector

T temperature

u displacement vector

\4 velocity vector

L Langevin function

kg Boltzmann constant

I total polymer chain length

L monomer length

B reciprocal absolute temperature

variance



relative stretch

distribution of polymer chains with N monomers
probability distribution of chains with N monomers of total length /;

bulk modulus, shear modulus, Lamé parameter

Hamiltonian of a system
partition function

stochastic point process
Delaunay tesselation
second-order identity tensor
Green-Lagrange strain tensor
linearized strain tensor

first Piola-Kirchhoff stress tensor
Cauchy stress tensor

number of spatial dimensions
attenuation function

damage distribution function
energetic cost of polymer chain failure
lower/upper constants

intrinsic length

specific energy per unit area

critical energy release rate



1. Introduction

This section gives an overview of both application fields and current limitations of elas-
tomeric polymers and summarizes the main modeling approaches that have been put
forth in the literature. Furthermore, formulations of non-local damage in the framework

of elasticity are discussed.

1.1. Elastomeric polymers as structural materials

Elastomeric polymers have recently been identified as suitable structural materials in a
wide range of applications, including shock mitigation as well as blast protection [El Sayed
et al,2009]. They have further been identified as promising in transparent armor appli-
cations, in which specific “ports” (transparent to visible and other wavelengths) need
protection against foreign object impact [Albrecht et al., 2012]. In the following, details
of the derivation and usage of one such elastomeric polymer, viz. polyurea, will be dis-
cussed. In addition, material failure characteristics and resulting current limitations will

be reviewed. These form a basis for subsequent material modeling approaches.

1.1.1. Derivation and usage

Elastomeric polymers mark a group of materials with a long-standing tradition in the
field of soft materials. Prime examples of their main characteristics include high damp-

ing capabilities as well as high stiffness-to-weight ratio. Moreover, lightweight mono-
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Figure 1.1.: Young’s modulus versus mass density plot for different groups of materials,
adapted from [Granta Design, [2014].

lithic coatings made of elastomeric polymers have also shown excellent mitigation prop-
erties in the event of powerful explosions, as well as the capability of retaining structural
fragments produced by blast impact. They can easily be applied via spray-on or cast-on
techniques, and different types of reinforcement and laminated designs have been inves-
tigated by several researchers [Colakoglu et al.,[2007; Grujicic et al., 2006; Wambua et al.,
2007]]. A solution methodology for projectile impact on such structures was developed
based on contact load duration, through-thickness and lateral transit times in [Lin and
Fatt, 2006]. From their typical application as a protective coating of concrete and steel
structures, it follows that such elastomeric coatings have to withstand rapid loadings such
as during impact, collisions or explosions up to total failure of the material. An example
of an elastomeric polymer used as a structural material is polyurea, an elastomer that
is derived from the chemical reaction of an isocyanate component and a synthetic resin
blend. Polyurea has been shown to exhibit beneficial properties for shock mitigation.
In particular, it is characterized by a high strain rate sensitivity, large maximum defor-
mations and good adhesion properties to many materials. These characteristics make it
suitable for protective coatings on structures and have motivated its experimental char-

acterization [Chakkarapani et al., 2006 Jiao et al., 2006, 2007, 2009; [Knauss and Zhao),
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Figure 1.2.: Chemical reaction between an isocyanate component and a synthetic resin
blend forming polyurea.

height
3
<

Figure 1.3.: Surface profiles (height measured from the deepest point) of a polyurea spec-
imen tested in uniaxial tension Weinberg and Reppel [2013]]. Left: Initial
profile showing initial porosity. Right: Profile after fracture showing prolif-
eration of voids.

2007; |Roland and Casalini}, 2007} Roland et al., 2007 Sarva et al.,[2007].

With a quasistatic elastic modulus of about 70MPa [Knauss and Zhao, 2007|], polyurea

lies in the range of elastomers shown in Figure However, as investigated in [Jiao

et al., 2006, 2007, 2009], a ring-up in pressure due to wave propagation and reflection

in thin material samples under pressure shear-plate impact loading greatly increases the

material’s strength.

1.1.2. Limitations and failure

The use of polymers as structural materials is critically limited by their tendency to de-

grade by distributed damage or to fail by fracture, sometimes in a brittle manner (cf., e. g.,

'Andrews| [1968]]; Argon| [2013]; Bikales| [1971]]; Grellmann and Seidler| [2001]; Kausch|




1. INTRODUCTION 4

[1985]; Kinloch and Young| [1983];Williams| [[1984] for reviews). Damage in polymers de-
formed under tensile loading often takes the form of distributed voids [Jiao et al.,|2006,
2007, |2009; |Weinberg and Reppel, 2013|, cf. Fig. Voids nucleate heterogeneously
from flaws or inclusions, Fig. [1.3p, and subsequently grow under tension, Fig.[I.3b, re-
sulting in softening or loss of bearing capacity of the material (cf., e. g., Cho and Gent
[1988]; Gent [1973]; Gent and Wang| [1991]). Likewise, fracture in polymers can often
be traced to the formation of crazes (cf., e. g., Donald and Kramer| [1982]; Henkee and

Kramer| [1986[]; Kausch| [1983]]; Kramer and Berger|[1990]; Sanderson and Pasch|[2004]),
Fig.

Crazes are thin layers of highly localized tensile deformation. Craze surfaces are bridged
by numerous fine fibrils, themselves consisting of highly oriented chains, separated by
connected voids. Crazes undergo several stages along their formation, including nucle-
ation, growth and final breakdown, resulting in the formation of a traction-free crack, or
fracture. Craze initiation is likely the result of heterogeneous cavitation at flaws loaded
under conditions of high triaxiality. Craze propagation has been linked to a meniscus
instability resulting in the formation of fibrils. This analogy is immediately suggestive of
some role played by surface energy or other similar physical properties not accounted for
by bulk behavior. Eventually, crazes break down to form cracks. Experimentally, crazes
are easily identified and observed fractographically by a variety of techniques including

optical interferometry, light reflectometry, dark-field electron microscopy, and others.

Owing to its engineering importance, polymer damage and fracture have been the fo-
cus of extensive modeling. A number of micromechanical and computational models,
ranging from atomistic to continuum, have been put forth (cf., e. g., Baljon and Rob-
bins| [2001]; Basu et al. [2005]]; Drozdov| [2001]; [Estevez et al.|[2000a,b]]; Krupenkin and
Fredrickson| [[1999a,b]]; Leonov and Brown| [1991]; Reina et al.| [2013]; Rottler and Rob-
bins [2003}, [2004]]; |Saad-Gouider et al.|[2006]; Seelig and Van der Giessen [2009]];(Socrate
et al.|[2001]; Tijssens and van der Giessen| [2002]; Tijssens et al. [2000alb]; Zairi et al.
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Figure 1.4.: Crazing process in a steel/polyurea/steel sandwich specimen under opening
mode fracture [Yong et al.,2009).

[2008]]). These models include consideration of nucleation and growth of voids, craze
nucleation, network hardening and disentanglement, chain strength, surface energy and
others, which account, to varying degrees, for the observational evidence and relate macro-
scopic properties to material structure and behavior at the microscale. In parallel, a large
mathematical literature has evolved, discussing the possibility of cavitation in local mod-

els and nonlocal extensions which may ensure existence of minimizers; see, for example,

Ball|[[1982];/Conti and DeLellis|[2003]]; Henao and Mora-Corral/[2010]; James and Spector|

[1991]); Miiller and Spector|[1995].

Despite these advances, the connection between micromechanical properties and poly-
mer fracture, and specifically any scaling laws thereof, has defied rigorous analytical
treatment and characterization. Of special interest is the identification of optimal scal-
ing laws relating the macroscopic behavior to micromechanical and loading parameters.
Such optimal scaling laws are established by producing upper and lower bounds of a

power-law type with matching exponents for all parameters in both bounds. Optimal

scaling methods were pioneered by Kohn and Miiller| [1992] as part of their seminal work

on branched structures in martensite, and have since been successfully applied to a num-

ber of related problems, including shape-memory alloys, micromagnetics, crystal plastic-

ity, and others [Choksi et al.,|1999; Conti}, | 2000; Conti and Ortiz, 2005; Kohn and Miiller,

1992,1994].
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Fokoua et al. [2014a,b] have recently applied those analysis tools to ductile fracture of
metals. They specifically considered the deformation, ultimately leading to fracture, of
a slab of finite thickness subject to monotonically-increasing normal opening displace-
ments on its surfaces. In addition, they posited two competing constitutive properties,
namely sublinear energy growth and strain-gradient hardening. Sublinear growth (for
comparison, the energy of linear elasticity exhibits quadratic growth) is a reflection of
the work-hardening characteristics of conventional metallic specimens, and gives rise to
well-known geometric instabilities such as the necking of bars, sheet necking, strain lo-
calization and others (cf., e. g., McClintock and Argon| [1966]]). In metals undergoing
ductile fracture, this inherently unstable behavior is held in check by a second fundamen-
tal property of metals, namely strain-gradient hardening [Fleck and Hutchinson, 1993,
1997,,2001; [Fleck et al.,|1994]]. Under these assumptions, Fokoua et al./[2014a,b]| showed,
through rigorous mathematical proofs, that ductile fracture emerges as the net outcome
of two competing effects: while the sublinear growth of the energy in the large-body
limit promotes localization of deformation to failure planes, strain-gradient plasticity
stabilizes this localization process in its advanced stages, thus resulting in a well-defined

specific fracture energy.

1.2. Models of polymer elasticity

The mathematical description of polymeric materials commonly occurs on two different
scales. On the one hand, the framework of continuum mechanics (see Section for a
brief review) is used to describe hyperelastic materials in the finite deformation range;
on the other hand, an alternative approach derives from statistical mechanics by describ-
ing individual polymer chains. The latter approach for modeling polymers offers the
advantage of being able to derive the free energy of an individual polymer chain from
first principles only, whereas hyperelastic material models are more phenomenological

in nature Gloria et al.|[2013]].
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However, bridging these scales and relating energy densities in the continuum descrip-
tion to the energy of a network of polymer chains bears several difficulties. First and fore-
most, assumptions on the interactions between different chains are necessary to facilitate
the analysis and pass from individual polymer chains to a network of chains. Further-
more, the way in which the total energy decomposes into the different contributions from

the lower scales must be specified.

1.2.1. Macromolecular polymer models

Derived from their macromolecular structure, polymers can be modeled as ensembles of
chains with energy f(A,T), where A is the stretch of the relative position vector between
the chain ends and T is the absolute temperature. Prime examples of both uncorrelated
and correlated chain models are the freely jointed chain model (FJC) in a microcanon-
ical ensemble formulation for Gaussian and non-Gaussian statistical approximations as
well as the Kratky-Porod and wormlike chain (WLC) models as representatives of stiffer

polymer models, see e.g. [Weiner, 2002].

The freely jointed chain model

The freely jointed chain model approximates a polymeric structure of total length [; as an
ideal chain of monomers possessing equal lengths /,, and directions that are uncorrelated

to the neighboring ones, cf. Figure

Based on the large number of monomers N in a polymer, the probability density of the
relative endpoint position vector approaches a Gaussian distribution, which in three di-

mensions results in

po -l
l =— - ¢ 27? 1.1
pric(le) (V2ro)? (1.1)
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with variance o = YN12/3 and normalizing constant p,. The total free energy of a single

chain then follows as
0 3 2
fF]C :—kBTh'lQ :fF]C+§kBTN/\T’ (12)

where fF(}C denotes the free energy of the undisturbed freely jointed chain, kg and T are
the Boltzmann constant and absolute temperature, respectively, () stands for the proba-
bility of obtaining a certain endpoint position and A, is the relative stretch of the chain
as the end-to-end length I, divided by I;. For a graphical interpretation of the differ-
ent lengths describing the polymeric structure, please refer to Figure From Equa-

tion (1.2), the force-stretch relation of a single polymer chain can be calculated as

3kpT

PF]C = /\r. (13)

L

This expression, however, is only valid in the small strain regime due to the Gaussian ap-
proximation with regard to changes in entropy [Weiner}[2002]]. Following a non-Gaussian

statistical approach (Kuhn and Griin|[1942]]) with probability

_ L!
Qpye(ly) = Qoexp(—N(/\rL Ly 1nsinh—(L_1))) (1.4)

and recalling that A, = [,/];, the free energy of a single chain follows as
feie = fije +kgTN(A, L™ +1InL 7' sinh(L71) 7). (1.5)

Furthermore, the force-stretch relation of a polymer chain, which is not restricted to the

small strain regime, now specifies to

Fe = -7 (4) (1.6)



1. INTRODUCTION 9

Figure 1.5.: Graphical interpretation of different length measures describing polymeric
structures.

In these expressions, f is the reciprocal thermodynamic temperature according to =

1/kgT, and L™! denotes the inverse Langevin function with
L(A,) =coth(,)—A, . (1.7)

The inverse of Equation (1.7) can be restated using a Padé approximation [Miehe et al.|
2004] resulting in

3-)?
— LA
]._Ar

L (1.8)

and it thus can be seen that in the small strain limit, the force-stretch relation based on

Gaussian and non-Gaussian statistics coincide.

The wormlike chain model

The freely jointed chain model oversimplifies the macromolecular structure, resulting,
e.g., in a non-existing stiffness against bond bending. Consequently, more elaborate mod-

els have been developed, which correlate the different chain segments.

The Kratky-Porod model for example introduces an energy dependency on the bonding

angle, and thus penalizes chain rotations 2006]. The free energy and force-stretch
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relation of a single chain derived in this way take the forms, respectively,

kgTI, (1 1 1 1
0 plls 2
= — |5 - - 1.
fwic fwrc t+ L (2/\r + 11-0 4/\r) and (1.9)
kT 1 1 1
F ~ o eyl E 1.1
WLC lp (/\7’+ 4(1 _/\7)2 4) ( O)

with [, denoting the persistence length as a measure of the stiffness of the tangled poly-

mer chains.

1.2.2. From macromolecular to continuum scales

Approaches for bridging the scales between single polymer chains and cross-linked chain
networks forming a continuum mainly differ by the set of assumptions on which they rely.
A first and common assumption is that the sum over all free energies of the individual
chains gives the total free energy of the polymer network [Gloria et al.,|2013]. Further
assumptions concern the specification of how isolated chains interact with each other,

and different models are summarized below.

The Treloar model

First introduced by Treloar|[1949]], single chains are assumed to move in an affine manner
according to the global deformation gradient (also known as the affine assumption or
Cauchy-Born rule). The total strain energy density of the polymer network then follows

as

Wrton )= [ [ | Woria (112, N) do(@)dpt N) () (1)
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where v(N) specifies the distribution of polymer chains consisting of N monomers, and
p(l;, N) describes the probability distribution of chains consisting of N monomers having

length [, in the undeformed configuration. Furthermore, S? denotes the unit sphere and

CeS?.

Simplifications to this model can be introduced by assuming that the number of monomers
of each polymer chain is constant and that the total chain length in the undeformed con-
figuration is given by I; = \/Nlm [Flory, |1969]. Under these conditions, the total strain

energy density of the network may be written as

WTreloar(F) = Lz Wchain (Wlm' /\C) dO'(C) (1'12)

The Arruda-Boyce model

In the large deformation limit, the Treloar model overestimates the energy stored in the
material upon deformation. In order to remedy this deficiency, different ways of relaxing
the affine assumption have been proposed in the literature. One of these models was in-
troduced by |Arruda and Boyce|[1993], which relaxes the affine assumption by evaluating
a representative volume element and its geometric response. Thereby, the representative
volume element is a cube consisting of eight individual polymer chains originating from

its center and connecting to each of its corners (see Figure [1.6|for reference).

The model rests upon the assumption that the representative volume element aligns it-
self based on the principal directions of the macroscopic deformation gradient and de-
forms according to its principal stretches (whereby no repulsion between polymer chains
is taken into account) [Gloria et al) 2013]. Following this assumption, the total strain
energy density is proportional to the energy of individual chains in the deformed rep-

resentative volume element. By noting that the deformation ratio of each chain may be
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calculated as

/\chain — /\%+/\§+/\§ — I_l (1 13)
I, 3 V3 '

with total chain length I, = V/3/2 in the undeformed configuration, the energy density of

the polymer network (assuming isochoric deformations) may be written as

_ n Il \/ﬁl -1 Il \/ﬁl
WArruda—Boyce(F) —BN[ ?WL ( ?W (1.14)
()
+log . (1.15)
sinh L1 (/4 30Y) ]

Here, n denotes the chain density and, as introduced above,  stands for the reciprocal ab-
solute temperature. In order to expand this energy and include volumetric effects, strain
energies modeling the volumetric material response upon deformation may be added,

such as the well-known Helmholtz volumetric energy [Weiner, 2002

Wtelmholtz(F) = & (> = 1 = 21og(J) ). (1.16)

The variational model

A different way of relaxing the affine assumption lies in the introduction of a minimiza-
tion principle (also known as the variational model) [Gloria et al., 2013]], which rests
upon the idea that the total free energy of the polymer is minimized by the positions of
cross-linking points when the system reaches equilibrium. Starting from a macroscopic
sample () consisting of a network of cross-linked polymer chains (whereby cross-links

are assumed permanent and entanglements of chains are neglected), the Hamiltonian of
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Figure 1.6.: Representative volume element used in the eight-chain-model [Arruda and
Boyce), 1993|.

the system follows as
H(u,s) = Hyg(u,s) + ZH,-(u,si). (1.17)

Here, u denotes the positions of cross-links, and s; are the positions of monomers associ-
ated with chain i. Furthermore, the additive decomposition of the Hamiltonian enables a
split into volumetric contributions H,, and individual chain contributions H;. The free

energy of the variational model can then be stated as

A(F) = —%111(2), (1.18)

with Z being the partition function according to

zsz J J e PHWS) gs . dsydsy du. (1.19)
U Jsi(u)Jsyw)  Js,(u)

In this expression, U and S;(u) are the sets of admissible positions of cross-links and
monomers, respectively. Further simplifications introduced in the model are a restriction
of chain interactions via cross-links only, as well as the assumption that monomer po-

sitions s; are decoupled. These simplifications lead to a coarse-grained model that only
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depends on cross-link positions u:

A(F) = —%m(L exp PHFwp) du), (1.20)
where
HF(ufﬁ):Hvol(”)_len(J exp(BH;(u,s;))ds; |. (1.21)
—f \Jsiw)

The Treloar assumption of a polymer network deforming affinely according to the macro-
scopic deformation gradient may be interpreted in this context as restricting the integral
fU in Equation (1.20) to evaluations at u(x) = F-x only. In the variational model, however,
the affine assumption only restricts the admissible set of cross-link positions U on the
boundary, whereas the minimum of the coarse-grained Hamiltonian A(F) ~ inf,, Hg(u, )

(with Q — oo in the thermodynamic limit) gives the free energy in the interior.

In order to further specify Hg(u, 8), the notion of a discrete network is introduced, and its
main features and results for the variational model are summarized here (a more detailed
description can be found in (Gloria et al. [2013]). With a stochastic point process £ in R
as a sequence of random points in R?, and a Delaunay tesselation 7 of £ in R? specified

by the tetrahedral mesh associated with £, a scaling according to
Lo.=€eL and 7T.=€T (1.22)

can be introduced. The energy associated with a deformation field u, € S(7;) then follows

as

luc(eeq) —uc(eer)|
A(u_, D)= 3§ W —e,), 1.23
e(ue ) € L nn(lel €2| €|61_62| ( )
+ E leT|W,,i(detVu,), (1.24)

TeT
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where e = (eq,e;), W,,,, and W, denote the edge between vertices, energy of the deformed

edges and volumetric energy, respectively.

Now, only W,,,, remains to be specified. By introducing N, as the number of monomers

per edge, and after some simplifications, the energy of the deformed edges follows as

)
W(lel, 1) = 2N, irl(i)uog . (1.25)

B 7| VNe VN, sinhL—l( A ) ’

which completes the model.

The B6l-Reese model

A similar approach to the variational model may be found in [Bol and Reese, 2005], in
which both volumetric and polymer chain energies are considered. In this model, a tetra-

hedral mesh of a macroscopic sample Q is generated.

Subsequently, the volumetric material response is associated with each tetrahedron of the
mesh, whereas the edges of each element represent polymer bundles and thus introduce

discrete energies associated with individual polymer chains.

For simplicity, the energies of polymer bundles are taken to be multiples of the energy of
a single polymer chain. These energies can thus be written as a function Wegge(Aedge) =
Ledge

Wedge( fedge ), whereby Legge and leqge denote edge lengths in the reference and deformed

configurations, respectively.

With decreasing mesh size, the Bol-Reese model converges to a continuum model. How-
ever, it is important to note that the resulting model highly depends on the details of the

tetrahedral mesh, as discussed further in B6l and Reese|[2005]].
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Network theory of entropic elasticity

In a different framework originating from statistical mechanics, a standard description
to go from single polymer chains to a network description is purely based on entropic
contributions. Here, an amorphous network of cross-linked long-chain molecules is con-
sidered, and the undeformed configuration is given by a unit volume comprising a total
of v=1,...,,N cross-linked long-chain molecules, with respective numbers of links 7, and
link lengths b. Under the assumptions of sufficiently long chains which are far away from
the fully extended limit, as well as a motion of cross-linking points according to superim-
posed deformations (neglecting thermal motion), the change in entropy of the amorphous

network upon deformation can be written as [Weiner, 2002]

3k

AS, = -
Vo 2m,b?

(P(v)-R*()). (1.26)

In this expression, R(v) and r(v) denote the end-to-end vector of the vth chain before and
after deformation, respectively (see Figure for reference), and R and r denote their
lengths, respectively. By further assuming the same affine transformation described in
terms of the strain tensor Ej; = %(CH —Ijj) for all cross-linking points (which is the affine
assumption used in Treloar’s model) and using the relation r(v)?>—R(v)? = 2E R (V)R;(v),

the total entropy of the system evaluates to

) (1.27)

N
e =2 3+ RO

v=1 v

where the entropy of the undeformed network is taken as a reference point. A material

tensor describing the undeformed configuration may be introduced as

, (1.28)
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which in the case of an homogeneous and isotropic undeformed network results in Kj; =

KéU Wlth

N
K:isz(V), (1.29)

2

oy

For both Ej; and Kjj, the subscripts in uppercase letters refer to components of tensors in
the reference configuration (as opposed to lowercase letters, which denote the deformed
configuration as further described in Section[A.2). Details regarding the evaluation of K
and its dependence on the cross-linking process may be found in [Weiner}, 2002], and the
main results and assumptions are summarized below. Based on the observation that K
describes the undeformed network of polymer chains, it can be seen that its value can
only be specified further by details describing the cross-linking process. For simplicity,
all cross-links between polymer chains are assumed to occur simultaneously and form at
adjacent points of different chains. The total of N chains is furthermore subdivided into
m groups, whereby each group consists of ¢, chains having n, links (a = 1,...,m). With

an end-to-end chain distance expressed by R(p, a) with p =1, ...,¢,, it follows that

1 &1 ¢
a=1 ap:l

Assuming a random cross-linking process, R?(p, a) may be calculated via a Gaussian dis-

tribution with variance n,b? so that

Ca
sz(p,a):canabz, (1.31)
p=1

and thus K = N. Using these simplifications, Equation (1.27)) may be restated as

S(EU) :_kBNELLl (132)
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Figure 1.7.: Network of cross-linked polymer chains upon deformation (adapted from
Weiner|[2002]).

which can be reformulated in principal stretches as

3
S(Ay, Ax A3) = _kgN Z(Ai—l). (1.33)

Finally, the Helmholtz free energy F of the full unit volume network subject to an arbi-
trary deformation requires the addition of an energy component U (v, T), which depends

on volumetric changes. The free energy of the amorphous network then follows as

ksTN
2

3
Z(A,%—n, with v=21;1,1;5. (1.34)
L=1

F(/\l, /\2, /\3, T) = U(V, T) +

In strain energy density form, and with an exemplary volumetric contribution W(J, T)

added, we arrive at

kTN
2

. kT .
W(F, T) = W(], T) + TKUEII = W(], T) + 6I]EU (135)

This energy density is the basic representation of a Neo-Hookean solid, and it is further-
more the three-dimensional extension of Equation (1.2). Here and in the following, F
denotes the deformation gradient tensor, and the Jacobian | = detF represents the rela-

tive volumetric change.
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1.3. Formulations of non-local damage

A number of non-local regularization models have been put forth in the literature in an
attempt to overcome ill-posed boundary value problems arising in continuum damage
models. Due to the presence of softening in these models, the governing field equations
loose ellipticity, and a unique solution to the resulting algebraic system does not exist (as
shown analytically for the case of wave propagation in a strain-softening bar in [Bazant
and Belytschko, 1985]]). As a result, deformations are observed to localize in narrow

bands, with band widths restricted by the spatial discretization size.

Solution approaches to stabilize this process introduce an internal material length scale
as well as non-local terms. Two main strategies can be distinguished in the introduction
of non-local terms, which are of integral and gradient type. Prime examples of both
approaches will be reviewed in this section. For a comprehensive review, see, e.g., [Bazant

and Jirasek, 2002]], which forms the basis for the following brief review.

1.3.1. Motivation

Nonpolar materials as discussed in [Noll,|1972] constitute a class of materials, for which
the stress value at a given point depends on the deformation and temperature evaluated
at this point only (and, in some cases, also the history of deformation). The underlying
assumption that the material can be treated as a continuum even at an arbitrarily small
scale implies the possibility of decomposing a finite body into infinitesimal material vol-
umes whose interactions are restricted to the level of balance equations. This assumption,
however, is an idealization, and neglects any internal material structure or microstruc-
tural details. Microstructural details may be described by spatial variations of material
properties, yet their size range over different orders of magnitude renders this approach
expensive in practical applications. More importantly, the continuum assumption breaks

down at smaller scales and is hence no longer applicable . Therefore, it is important to



1. INTRODUCTION 20

choose a resolution level below which the details of the internal structure are only indi-
rectly taken into account as effective material properties. This continuum assumption is
justified if the characteristic wave length of the deformation field does not lie below the
material model’s resolution level. For static applications, the characteristic wave length
may be viewed as the minimum region size into which strain is able to localize. One way
of avoiding the need for resolution refinement in the case of characteristic wave lengths

below resolution level is to introduce generalized continuum formulations.

The first generalized continuum formulation can be found in [Cosserat and Cosserat,
1909]], in which material particles have not only translational but also rotational de-
grees of freedom. These additional degrees of freedom are defined by rotations of a
rigid frame of mutually orthogonal unit vectors. In the time that followed, generaliza-
tions of Cosserat’s original theory were developed using additional fields independent of
the displacement field. An example can be found in the continuum with microstructure
[Mindlin, 1974], in which a microscopic deformation gradient is introduced (which gives,
in the special case of orthogonal tensors, the previously described Cosserat micropolar

continuum).

A different group of enriched continua (also known as higher-grade materials or gradient
theories) is formed by constitutive models incorporating gradients of strain, thus keep-
ing the displacement field as the only independent kinematic field. First, gradients of
rotations were considered, which are the strain gradient components corresponding to
curvature (see, e.g., [Grioli, 1960]]). Afterwards, gradients of stretch were included into

the theory [Toupin, |1962], as well as higher-order gradients [Green and Rivlin, [1964].

In addition to deviations from local constitutive models at small scales, which are based
on microstructural heterogeneities on the characteristic length scale, different motiva-
tions of non-locality were proposed in the 1970s. The second main motivation was the
strain-softening character of distributed damage. In the case of a local inelastic consti-

tutive law with strain-softening damage, numerical as well as analytical results showed
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localization of damage into a zone of zero volume [Bazant, [1976|]. As a result, the nu-
merical solution becomes unobjective with regard to the chosen mesh and converges, for
decreasing mesh size, to a solution characterized by zero energy dissipation during fail-
ure. Two different reasonings can be given for this behavior, and for a one-dimensional

dynamic problem, these reasons can be explained as follows:

* In the case of negative tangential stiffness, materials are characterized by an imagi-
nary wave speed, and thus lose (apart from special cases of materials) the ability to

propagate waves.

* The initial boundary value problem becomes ill-posed, and transitions from a hy-
perbolic to an elliptic type. Owing to this change in type, finite changes in the

dynamic solution can result from infinitesimal changes in the initial conditions.

For multidimensional tangential stiffness tensors lacking positive definiteness, materi-
als can still possess some real wave speeds and therefore propagate stress waves. The
direction of stress propagation however is no longer arbitrary, resulting in ill-posed ini-
tial boundary value problems that are not necessarily of elliptic type. It has been shown
in later investigations (please refer to [Bazant, (1976, [1984; Bazant and Cedolin, 1979;
Bazant and Oh) (1983 |Bazant et al., |1984; |Cedolin and Bazant, |1980; [Pietruszczak and
Mroz, [1981] for details) that by introducing a characteristic length in order to model
non-local strain softening behavior, the localization of damage can be prevented by regu-
larizing the boundary value problem and making it well-posed. As a result, convergence

to physically meaningful solutions is achieved.

A final motivation for the introduction of non-locality into constitutive theories is given
by size effects. Here, the term size effects denotes the dependence of nominal strength
on structure size. For purely local material behavior independent of a characteristic ma-
terial length, size effects may be described by power laws (e.g. in linear elastic fracture

mechanics). In case of non-locality on the other hand, size effects are of transitional
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type, and different power laws are needed in order to describe size effects at scales much

smaller/larger than the characteristic length.

The different motivations leading to an introduction of non-local behavior into constitu-

tive theories can hence be summarized as follows:

* material heterogeneities leading to small-scale deviations from local continuum

models,

* ill-posed initial boundary value problems, which arise in strain-softening damage

formulations and lead to unobjective numerical solutions,

* size effects observed in experiments and discrete simulations.

1.3.2. Strong and weak non-locality

Two main strategies can be distinguished in the field of non-local regularization models,
which are of integral and gradient type. The former category describes models in which
non-local terms are included by introducing weighted averages of local internal variables,
whereby averaging is performed over a set of neighboring points close to the point under
consideration. In gradient-type approaches, on the other hand, the introduction of non-
locality relies on higher-order gradients of non-local variables. Differential equations
then describe the evolution of control variables, which allows for different ways for the

non-local representation.

Following a mathematical description of non-locality [Rogula,|1982], an abstract form of

the fundamental equations governing any physical theory can be expressed as

Au=f, (1.36)

whereby f is a given excitation, u denotes the unknown response, and A is the corre-
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sponding operator which characterizes the system and may possibly be non-linear. Since
A characterizes the system, it also determines its locality properties. For A to be local, the

following property must be satisfied:

Definition 1. If two functions u and v are identical in an open set O, then their images Au

and Av are also identical in O.

In other words, whenever the identity u(x) = v(x) holds for all points x in a neighborhood
of x(, then it also follows that Au(xg) = Av(x). This condition is satisfied for differential
operators, and we may hence define local theories as those being fully described by differ-
ential equations. Non-local theories, on the other hand, are based on integrodifferential

equations.

However, this definition of locality is of a somewhat narrow nature, and a different de-
scription relating to the absence or presence of a characteristic length can be given. In
theories in which a characteristic length is absent, the fundamental equations are in-
variant under scaling of the spatial coordinates [Rogula, [1982]. Local theories satisfying
this property are denoted strictly local, whereas local theories not invariant under spa-
tial scaling are called weakly non-local. Typically, theories of the weakly non-local group
contain differential equations with derivatives of different orders. By taking the ratio
of coefficients multiplying these terms of different order (which have different physical

dimensions), it is then possible to find a characteristic length.

As a simple example of weakly non-local theories, we may look at a Timoshenko beam,
which relates to the previously mentioned Cosserat continuum as a specific one-dimensional
version. In this case, the characteristic length is given by the ratio of the square roots of
the bending and shear stiffness values of a cross-section. Under the assumption of a
fixed cross-sectional shape, it follows that the characteristic length is proportional to the
depth of a Timoshenko beam. Hence, only the beam span remains as an actual geomet-

ric dimension of the model, whereas the depth is described by means of a generalized
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material model and given in terms of moment-curvature (or shear force to shear distor-
tion) relations. Therefore, in this example the material length scale can be traced back
to a geometric dimension that is not explicitly resolved anymore, viz. the beam’s depth.
Similarly, characteristic lengths in generalized continuum models are the result of a ho-
mogenization procedure; they thus represent characteristics of the heterogeneity, which

are not explicitly resolved anymore.

In summary, continuum models may be classified according to:
* strictly local models (non-polar simple materials),
» weakly non-local models (polar and gradient theories),

e strongly non-local materials (models of integral type).

1.3.3. Non-local models of integral type
Non-local elasticity

As introduced in [Edelen and Laws, 1971} Eringen, [1972]], non-local elasticity theories
involve many different fields of non-local character (e.g. body forces, mass or internal
energy), which made their application to real problems a challenging task. In further de-
velopments, theories of non-locality were reduced to only include a non-local character
in their stress-strain relations, while keeping the local character of equilibrium and kine-
matic equations, as well as of the corresponding boundary conditions [Eringen and Kim,
1974]]. More recently, a variational model has been developed [Polizzotto, 2001]], which

introduces the quadratic energy functional

1
W= EJ;/ J;/ e(x)Cj(x,Q)e(x)dxdT (1.37)



1. INTRODUCTION 25

under the assumptions of small strains and linear elasticity. Here, &(x) denotes the strain
field and C(x,C) is the elastic stiffness in a generalized form. In this form, locality is

recovered for

Ci(x,0) = C(x)6(x - C). (1.38)

In the following, it is assumed that the generalized stiffness matrix satisfies the symmetry
relations C; = ClT as well as C;(x,C) = C/(C,x). Furthermore, a macroscopically homoge-
neous body is considered, and stiffness coefficients as well as interactions between points
x and C are assumed to decay with increasing distance between them (also known as
the attenuating neighborhood hypothesis). Due to these decaying properties, a modified

generalized stiffness may be introduced as
CI(X;C) :Cla(X,C), (139)

where a denotes an attenuation function. Under the assumption of an infinite and isotropic

body, « is only a function of the distance between points x and C and hence follows from

a(x,C) = ag(|x—Cf)). (1.40)

The attenuation function a,,, which is also known as the non-local averaging function
or non-local weight function, may further be assumed as a Gauss distribution function

according to

aeo(r) = (lx/ﬁ)_N‘”’“ exp(—;—;) (1.41)

with number of spatial dimensions Ny;,, and length parameter . In order to increase

computational efficiency, attenuation functions with finite support may be chosen, such
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as a polynomial bell-shaped function

2
aoo(r)=6<1 —r—> ) (1.42)

where the Macaulay brackets denote the positive part according to (x) = max(0, x).

Non-local averaging operator

The integral approach includes non-local terms by introducing weighted averages of local
internal variables, whereby averaging is performed over a set of neighboring points close
to the point under consideration [Dimitrijevic and Hackl, 2007]. An example of this

approach can be found in [Cervenka et al.,2005]]. Here, a non-local field is defined as

Flx) = La(x,C)f(C)dc, (1.43)

whereby f(x) is an arbitrary local field, and a(x, C) is the chosen non-local weight func-
tion. Since non-local operators in softening materials should not influence a uniform

field, the weight function is expected to comply with the normalization condition

Ja(x,C)dCzl vV xeV. (1.44)
v

As introduced in Section[1.3.3] the weight function only depends on the distance between
two points x and C under the assumptions of isotropy and homogeneity of an infinite
sample. Here, x is also denoted as a receiver point, whereas C is called the source point.
A non-negative bell function is then usually chosen for a,(r) in Equation (1.40). It is
now possible to define a minimum distance r characterized by vanishing or negligible
interaction weights, which is known as the non-local interaction radius R. The resulting
region of radius R (centered at x) gives the domain of influence of point x. Cases for

which this definition does not hold are locations in the vicinity of a boundary. Under these
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circumstances, averaging is restricted to sections of the domain of influence that lie inside
the body. Furthermore, a way of satisfying normalization conditions is a modification of

weight function a(x, C) according to

_ awllix=al)
) ekl dc

a (1.45)

With regard to numerical implementations, the non-local average at x is computed as a
weighted sum over values at all integration points C that lie within R. Furthermore, as a
main penalty of non-local models of integral type, the increased bandwidth of the stiff-
ness matrix has to be taken into account. Linearization of the resulting set of equations
is hence complicated, and computational efficiency impaired. The following section is
therefore aimed at giving an overview of different approaches to the introduction of non-

locality, viz. non-local models of gradient type.

1.3.4. Non-local models of gradient type

Gradient-type approaches to non-locality utilize higher-order gradients of the non-local
variables. Differential equations then describe the evolution of said control variables,
whereby different ways of the non-local representation can be chosen. One possibility
lies in the introduction of an equivalent strain measure as shown in [Simone et al., 2003].
Following this strategy, calculations of the state of damage are based on the strain mea-
sure’s non-local part. The resulting differential equation to be solved involves Laplacians
of non-local variables, and integration can be performed by resorting to the principle of

virtual work.

Alternatively, as in the works of [Nedjar| [2001]] and [Makowski et al.,|2006], a Laplacian
term may also be introduced directly in the differential equation describing the evolution

of the damage variable. Integration of the resulting system of equations then follows
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from the principle of virtual power.

A different way of gradient-type enhancement of the free-energy functional is presented
in [Dimitrijevic and Hackl, 2007], in which C? interpolation of the variables is preserved.
In general, C! interpolation of the displacements is required if damage variable gradients
are introduced, leading to cumbersome numerical implementations. However, by intro-
ducing a new variable serving the purpose of transporting values of inelastic variables
across finite element boundaries, C? interpolation order of the variables can be preserved
while introducing non-locality into the model [Dimitrijevic and Hackl,|2007]). As a result,
an additional set of equations must be solved on the structural level. Under the assump-
tions of isotropy and scalar damage, the enhanced free energy function of this approach

follows as

Ba

o c
Y= f(d)eijCijren + éi”V(PH2 +5 (- nd)?, (1.46)

where ¢ represents the non-local variable, and f(d) is an appropriate function of scalar
variable d measuring the state of damage. Furthermore, f; penalizes the difference be-
tween non-local and local field, and c; defines the degree of gradient regularization and

internal length scale. Taking variations of the potential functional

H:J—QgﬁdV—J;)u'(pb)dV—J;qu-tdA (1.47)

with external loading per unit surface t and force per unit volume pb then gives, by fur-
ther applying natural boundary conditions of vanishing non-local flux across boundaries,

a second-order differential equation for the evolution of ¢ according to

Ba(@—y1d)—ciVip =0. (1.48)
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2. Analytical description of crazing mechanisms

This section describes a simple local model for the bulk behavior as introduced in [Hey-
den et al.,|2014], which is based on the classical statistical mechanical treatment of freely-
jointed polymer chains presented in Section extended to account for chain failure.
Furthermore, a model of nonlocal energy based on the assumption of isotropy and of lin-
ear growth of the strain-gradient elastic energy density is introduced, based on the use of
fractional derivatives. Evidently, more elaborate statistical-mechanical models of poly-
mer elasticity, failure and strain-gradient elasticity can be considered within the general
framework developed here. However, models such as the ones described below suffice to

illustrate the general framework. Further enhancements will be discussed in Section @

2.1. Competing constitutive effects

neo As introduced in Section the modeling of competing constitutive properties in
the form of sublinear energy growth and strain-gradient hardening was recently applied
to the analysis of ductile fracture of metals Fokoua et al.| [2014a,b|]. The present section
follows a similar strategy for polymers. Thus, it is posited that fracture in polymers
results from a competition between distributed damage, due to progressive chain failure,
and fractional strain-gradient elasticity. Moreover, the material behavior is assumed to
have two components, local and nonlocal. The local behavior is characteristic of large
material samples deforming uniformly, and it represents the configurational statistics of

a polymeric chain network in the thermodynamic limit (cf., e. g., Flory| [1989]; Weiner
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[2002]).

We note that in general, damage is a time-dependent process governed by equations of
evolution. In particular, for arbitrary loading paths, the rate of damage can be zero below
a certain threshold, and non-zero when the threshold is attained. In order to simplify
the analysis, the present analysis is restricted to monotonic and proportional loading

processes for which damage accumulates continuously.

The classical network theory (for details, please refer to Section[1.2]and references therein)
is thus extended by assuming that the chain bonds have a finite strength. When the
strength of the chain is reached, the chain is assumed to fail and to subsequently have
no load-bearing capacity. In this case, the behavior of the solid is characterized by an
effective strain-energy density referred to as “deformation-theoretical” (an extensive ac-
count of deformation theory, as it applies to general inelastic solids, may be found in
Martin|[[1975]). Therefore, this effective free energy combines the chain elasticity and the
dissipation due to chain failure. As shown in the following, for large deformations, the
deformation-theoretical free energy has zero growth; i. e., it is bounded from above and

below by a constant.

Energies with sublinear growth relax to zero, i. e., they allow the material to fracture with
zero expenditure of energy and thus fail to supply useful information about the fracture
properties. As a way to hold this inherently unstable behavior in polymers undergoing
fracture in check, a second fundamental property, viz. fractional strain-gradient elas-
ticity, may be applied. Fractional strain-gradient elasticity refers to a generalization of
conventional strain-gradient elasticity (cf., e. g., Hermann|[1974]; Kroner| [[1968]]; Maugin
and Metrikine| [2010]]) in which the strain-energy density depends on fractional deriva-

tives (cf., e. g., [Adams)} 1975]) of the deformation gradient.

The need to consider fractional derivatives in the definition of the energy stems from the

fact that conventional strain-gradient elasticity is too rigid to enable the type of deforma-
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tions involving in the crazing mechanism and, hence, is incompatible with experimental
observation. Thus, if the strain-energy density has at least linear growth in the second
deformation gradient V?y, then, for all configurations of finite energy, V?y is necessarily
integrable and, hence, the deformation mapping p is continuous on almost every plane
by Sobolev embedding (cf., e. g., [Adams| [1975])). This continuity of p, in turn, precludes
the formation of fibrils characteristic of the crazing mechanism, which necessarily entails
discontinuous deformation mappings (hence leading to discontinuous displacements).
By contrast, as shown in the following sections, the use of fractional derivatives removes
sufficient rigidity from conventional strain-gradient elasticity to allow for crazing defor-

mations, thus bringing the theory within the realm of experimental observation.

In the present context, fractional strain-gradient elasticity encodes key aspects of poly-
mer behavior, such as surface and interfacial energy, not accounted for in the local model.
The fractional strain-gradient elasticity of the polymer results in deviations from volume
scaling, i. e., in nonlocal behavior and size dependency, in sufficiently small material sam-
ples. Under these conditions, polymer fracture emerges as the net result of two competing
effects: while the zero growth of the local energy promotes localization of deformation
to failure planes, or crazes, fractional strain-gradient elasticity stabilizes this process of
localization, thus resulting in an orderly progression towards failure and a well-defined

specific fracture energy.

2.2. Local behavior

One of the simplest models of the thermoelasticity of polymers, known as the network
theory of rubber elasticity [Flory, |1989; Weiner, 2002] (as introduced in Section , re-
gards the polymer as an amorphous network of cross-linked long-chain molecules. The
chains are freely-jointed, long and far from full extension. In order to connect the be-

havior of the chains to the deformation of the continuum, the cross-linking points are
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assumed to move affinely according to the local macroscopic deformation. In addition,
the polymer is assumed to be ostensibly incompressible at the macroscale. The standard
analysis (cf., e. g., Weiner| [2002])) then gives the free-energy density per unit volume of

the undamaged material as

I’lkBTKUCU, if det(P) = 1,
Aloc(P) = (2.1)

+00, otherwise,

where n is the number of chains per unit volume, F is the local deformation gradient,
C = FTF is the right Cauchy-Green deformation tensor, kg is Boltzmann’s constant, T is
the absolute temperature, and incompressibility (i. e. det(F) = 1) is enforced through a

hard constraint.

In addition, the structure tensor K follows as

Ky = WLZP(E)&@CZQ, (2.2)

where b is the link length, I is the end-to-end distance of the chains, £ is the chain end-to-
end unit vector, p(&) is the fraction of chains in the ensemble having a chain end-to-end

unit vector &, S? is the unit sphere and dQ) is the element of solid angle.

The density p(&) is subject to the normalization condition

sz(é)dQ - 1. (2.3)

For an isotropic distribution of chains, p = ﬁ, we have

1
L2P(5)5151 dQ) = 35111 (2.4)
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and Equation [2.2]reduces to

l2
Ky = 3701 (2.5)

whence Equation (2.1)) in turn reduces to the polyconvex strain-energy density of a Neo-

Hookean solid. In principal directions, C = diag(/\%, /\%, /\g) and

KjjCry = KiAT + KpAS + K343, (2.6)
where
30 240 2
Ky = 7 2P(§)51 : (2.7)
S

Furthermore, application of the arithmetic mean-geometric inequality and incompress-

ibility gives
2 2 2 2 2 2\14 1
Kl/\l + Kz/\z + K3/\3 > 3[(K1/\1)(K2/\2)(K3/\3)]3 = 3(K1K2K3)3. (28)
Combining these inequalities leads to
1
AlOC(P) > 3(K1K2K3)§1’lkBT = Ao. (29)

For an isotropic polymer, we additionally have K; = K, = K3 = I2/b? and

Ag=—5— = Aloc D). (2.10)

The classical model of polymer elasticity just described can be extended to account for
damage in the form of broken chains. Suppose that chains break when the end-to-end

vector attains a critical stretch A. > 1, and that the failure of one chain costs energy in
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the amount E;,. Thus, according to this criterion, a previously intact chain of end-to-end

direction & fails when

The state of damage of the network can be described by means of the damage distribution

function

0, if the chains of end-to-end direction & are broken,
D(&) = (2.12)

1, if the chains of end-to-end direction & are unbroken.

The corresponding structure constant now depends on the state of damage via

12
Ky (D) = E;J—ZJ p(&)D(&)&1&,dQ, (2.13)

SZ

and the free-energy density takes the form

I’IkBTKU(D)CU + Tlf(D), if det(P) = 1,

Aloc(FlD) = (2.14)
+00, otherwise,
where
3E,I?
F(D)= 2 | pen-Digydo (2.15)

is the total energy dissipated through chain-breaking. This dissipative term accumulates
during deformation due to contributions from all polymer chains stretched beyond their

critical limit.

For arbitrary local deformation histories C(t), the corresponding evolution D(¢,t) of the
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damage distribution function is governed by the rate-independent kinetics

1, ifETC)E<A? VvV t'<t,
D(&,t) = (2.16)

0, otherwise.

However, for the present purpose, it suffices to confine attention to monotonic deforma-
tion processes such that the stretch /&7 C(t)& is monotonically increasing (or monoton-
ically decreasing) in all directions. Of course, for practical applications, an extension to
account for arbitrary load histories is desirable, but goes beyond the scope of the investi-

gation here.

Also, in polymers undergoing crazing under predominantly tensile loading, the defor-
mations leading to failure may be reasonably approximated as being monotonic. Under
these conditions, the damage distribution function is determined as a function of the

right Cauchy-Green deformation tensor C, namely

1, ifETCE<A?,
D(,C) = (2.17)

0, otherwise.

The structure tensor Kj;(C) and the dissipated energy f(C) follow likewise as a direct

function of C, namely

2
Ky(C) = %LZP(E)D(&C)&EMQ (2.18)
and
2
f(€)= 235 | ptera-pie,cpac. 219)
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The corresponding free energy density takes on the deformation-theoretical form

I/VIOC(P) _ nkBTKU(C)CI] + Tlf(C), if det(F) =1, (220)

+00, otherwise.

Thus, as long as the deformation history remains monotonic, the free energy density of

the polymer is indistinguishable from that of a thermoelastic solid.

2.3. Growth properties of the deformation-theoretical strain energy

density

In order to make contact with macroscopic fracture properties, the growth properties of
the deformation-theoretical free energy density Wi,.(F), Equation (2.20), are of critical
importance, cf. Section |3} Therefore, it is necessary to investigate the growth characteris-

tics of Wjy.(F) for large C.

2.3.1. Upper bound

An upper bound can be constructed as follows. The estimate

312
Ky (C)Cpy = 7 jz p(&)D(E,C)ETCEAQ
312 S ) 31272 (2.21)
S5z SZP(E)/\C dQ) = 7

supplies a bound for the first term in W,.(F), which represents the strain energy term.

In order to estimate the damage energy, it is noted that

_ 3E,l?
==

f(C)

12 12
sz(i)(l -D(&,C))dQ < 312’; L2p(£)dQ = 3?; . (2.22)
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Combining the above estimates finally gives the constant upper bound

2

!
Wioe(F) < 3(E, +kBT/\f)ﬁ. (2.23)

2.3.2. Lower bound

The next step is to bound Wj,.(F) from below for large F. Evidently, W,.(F) is, at least,

the damage energy, i. e.,
Wio(F) = nf (C). (2.24)

In terms of the principal stretches (with A? being the eigenvalues of C) Equation (2.17)
leads to
1, if A2824+ 038240282 > 02,

1-D(E,C)= (2.25)
0, otherwise,

where (11, A,, A3) are the principal stretches. Suppose now that A; > A, > A3 and |F| =
JAZ+ A3+ A2 — +oo while A1 1,13 = 1 for incompressibility. Suppose, in addition, that

essinf(p) > pmin > 0, i. e., the chain density is positive in all chain directions. Then,

1, ifAf&EF > A2,
1-D(&,C) > g(&,C) = (2.26)

0, otherwise

and

3E,l?
fer2= 200 | pengie.crio =24 [ p(E) 0, (2.27)
S2 SA\{IE1>Ac/ A}
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and as A; — +oo,

3E,I?
Wioc(F) 2 ATPimint— 5 (2.28)
which establishes a constant lower bound for the deformation-theoretical strain energy

density. The bound simply expresses the fact that, in the limit under consideration, all

chains are likely to be broken under sufficiently large deformations.

2.3.3. lllustrative examples

The preceding bounds show that the deformation-theoretical strain energy density W,.(F)
has zero growth, i. e., it saturates to a constant for sufficiently large deformations. Corre-
spondingly, the first Piola-Kirchhoff stress decays to zero in the same limit. This behavior
is illustrated in Fig. through the example of a polymer deformed in uniaxial tension
with F = diag(A™V2, 1712, 1).

In the examples, the polymer is assumed isotropic, p = ﬁ, and the chains fail at a critical
stretch A, = 2. Two different examples of bond-binding energies are considered. Fig.
corresponds to a bond-binding energy kEB—’JT = 2, or strong chains, whereas Fig. corre-

sponds to a bond-binding energy kEB_bT = 0.2, or weak chains.

The zero growth of the deformation-theoretical strain energy for large deformations is

evident in both cases. However, the saturation value of the energy is attained from below

in the case of strong chains, and from above in the case of weak chains. This difference of

behavior is expected, as strong chains (respectively, weak chains) dissipate large (respec-

tively, small) amounts of energy upon failure. We note that the strong chain condition
Ep

,i—’”T > 1 (respectively, weak chain condition BT < 1) corresponds to the range E, > A

(respectively, E, < Ag), with Ay from Equation (2.10).
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Figure 2.1.: a) Deformation-theoretical strain energy density W,.(F) for an isotropic poly-
mer deforming in uniaxial extension. The strong and weak chains both fail

at a critical stretch A, = 2 and have bond-binding energies of ,i—’} =2 and

Ii_bT = 0.2, respectively. b) Schematic of functions with linear, sublinear and

superlinear growth (reproduced from [Heyden et al., 2014]) .

2.4. Nonlocal regularization

Mathematically, energies exhibiting sublinear growth may be expected to relax to zero via
strain localization to small volumes, a degenerate limit that provides no useful informa-

tion about fracture properties (for a more detailed discussion, please refer to Section|1.3).

The present model rests on the assumption that this unstable behavior is stabilized by
nonlocal or strain-gradient effects. For metals, this property has been extensively inves-
tigated and demonstrated by means of torsion tests in wires [Fleck et al.,|1994], nanoin-
dentation [Huang et al.,|2000; Nix and Gao, |1998; Xue et al.,2000]], and by other means.
Specifically, for fixed local deformation, the energy density of solids is often observed to
be an increasing function of the local strain gradient, or the second deformation gradient.
This property results in deviations from volume scaling, i. e., in nonlocal behavior and

size dependency, in sufficiently small material samples.

A first candidate means of accounting for strain-gradient effects, along the lines of Fok-
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oua et al.|[2014alb], is provided by strain-gradient elasticity (cf., e. g., Hermann|[1974];
Kroner [1968]; [Maugin and Metrikine| [2010]]). This framework assumes an extended
deformation-theoretical free energy density of the form W(F,VF) with the limiting prop-

erty that

W(F,0) = Wi (F), (2.29)

i. e., the local deformation-theoretical free energy density Wi, (F) is recovered for uni-
form deformations. The precise form of W(F,VF) is unknown for most polymers. Con-
veniently, for purposes of optimal scaling only the growth properties of W(F,-) are re-
quired. A hint at the likely growth properties of W(F,-) is provided by observations of
sharp twin interfaces in crystalline polymers deformed in shear [Agar et al. [1959; Al-
cazar et al., 2006} |Geil, 1963} Keller| |1968; [Kiho et al., [1964; Kovacs et al.,|1969; Pradeére
et al.,|[1988;|Reneker and Geil,|1960; Wittmann and Kovacs, |1970]. Atomistic simulations
of shear deformation in polymers also provide evidence of lamination and of the devel-
opment of sharp interfaces (cf., e. g., Fortunelli and Ortiz| [2007]; [Fortunelli et al.|[2004]
and references therein). Mathematically, sharp interfaces can only arise in strain-gradient

elasticity if W(F, VF) exhibits linear growth with respect to VF.

However, the strain-gradient framework just described has the deficiency of not allowing
for crazing and, hence, is incompatible with experimental observation. Thus, if W(F, VF)
has linear growth in VF, then, for a configuration of finite energy, V?y is integrable and,
hence,  is continuous [Adams)|, [1975|]. The continuity of y, in turn, precludes the forma-
tion of the fibrils characteristic of the crazing mechanism. It should be noted that, by
contrast, the void-sheet mechanism characteristic of ductile fracture in metals is compat-

ible with strain-gradient plasticity (cf.|[Fokoua et al./[2014a}b]).

The deficiency of conventional strain-gradient elasticity can be remedied by assuming

instead an extended deformation-theoretical free energy density with growth controlled
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by a fractional Sobolev seminorm |Dy|yo.1(q) of the deformation gradient, with 0 <o <1
(cf.|Adams|[1975] for a discussion of fractional Sobolev spaces, and for explicit formulas
for the computation of the corresponding norms). Hereby, |Dy|yo.1(q) still implies linear
growth of the nonlocal energy density, but may be regarded as the integral of a fractional
derivative |[D!*9y| of the deformation gradient Dy. This assumption effectively weakens
the strain-gradient effect sufficiently to allow for crazing deformations. In particular, it
is shown in the sequel that, in fractional strain-gradient solids, the crazing mechanism

indeed delivers an optimal bound of the energy in the sense of optimal scaling.
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3. Optimal scaling and specific fracture energy

The goal of this section is to derive rigorous optimal scaling laws for the macroscopic
fracture energy from the micromechanical model just described. Such optimal scaling
laws are established by producing upper and lower bounds of a power-law type with
matching exponents for all parameters in both bounds. In order to facilitate the analysis,
it is assumed that the effective deformation-theoretical energy is additive in the first and
second deformation gradients, with zero growth of the former and linear growth of the

latter.

Consider the specific problem of a material sample in the form of an infinite slab of
finite thickness subjected to prescribed opening displacements on its two surfaces. Under
these conditions, optimal scaling laws for the dependence of the effective energy on cross-
sectional area, micromechanical parameters, opening displacement and intrinsic length
of the material are derived. In particular, the upper bound is obtained by means of a
construction that mimics, in a particular simple manner, the crazing mechanism. The
scaling laws thus derived supply a rigorous link between micromechanical properties
and macroscopic fracture properties of polymers. In particular, they reveal the relative
role that surface energy, chain elasticity, and damage play as contributors to the specific

fracture energy of the material.

In addition, it is important to note that the optimal scaling laws derived in the sequel,
which effectively bridge the micro and macroscales, do not depend on the fine details of
the energy density but only on its growth properties for large deformations and defor-

mation gradients. In this sense, the optimal scaling laws apply uniformly to classes of
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material models having identical growth properties, and the fine details of the models

can be conveniently ignored.

We recall that an energy functional E(-, €1,...,€y), depending on N parameters (€q,...,€n),
is said to exhibit optimal scaling if it satisfies matching upper and lower bounds of the

form [Choksi et al.,[1999; Kohn and Miiller, (1992, 1994]
Crei'...eny <infE(,€y,...,eN) < Cyel'...ex", (3.1)

where C; > 0 and C; > 0 are constants, and the exponents (a,...,ay) are identical in both
the lower and the upper bounds. The constants C; and Cy; appearing in Equation (3.1}
provide rigorous lower and upper bounds and are not uniquely determined. Their pre-
cise values depend on the chosen strategy of the proof, and there is often a tradeoff be-
tween simplicity of the argument and the distance between C; and Cy;. By contrast, the
exponents (ay,...,ay) are uniquely determined and represent intrinsic properties of the

problem considered.

Rigorous optimal scaling laws for fractional strain-gradient solids with constant-linear
energy growth of the type described in the foregoing have been derived by Conti et al.
[2014]. In the following, the main arguments pertaining to the derivation of the optimal
scaling laws are summarized, and their connection to fracture is discussed. The opti-
mal scaling laws show that the materials under consideration do indeed fail by fracture,
i. e., by localization of deformation to a plane, and that the fracture process requires the

expenditure of a well-defined fracture energy, or critical energy-release rate, G..
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3.1. Problem formulation

Based on the considerations in the preceding section, it is assumed that the deformation-

theoretical free energy E(y) obeys the growth properties

J;) Wi (Vy)dx + k€7 |Dylwoerq) < E(®), (3.2a)

E(})) < JQ WU(V}))CIX-FkUgalD}llwa,l(Q), (32b)
where 0 < k; < kpy < +oo are constants,

min{kL, nkBTKUCU}, if det(P) = 1,
WL(F) = (3.3)
+00, otherwise,

and

min{kU,nkBTKUCU}, if det(F) = ].,
Wy (F) = (3.4)
+00, otherwise,
are truncated local energy densities, £ > 0 is an intrinsic or characteristic length, and
|Dy|wo1(q) is a fractional Sobolev seminorm. Here, the structure tensor Kj; corresponds
to the undamaged material, as was defined in Equation (2.2). In addition, the density

p(&) is assumed to be such that the minimum of Wy, and W is attained at the identity.

The free energy of the polymer network is then denoted as

AO = min WU = min WL = WU(I) = WL(I) (35)

For example, the isotropic density p(&) = 1/47 has the property described in Equation (3.5,
and A, is given by Equation (2.10). However, it is important to note that the analy-
sis is meaningful only if the truncated energy densities are not constant, resulting in

the constraint Ay < k; < ky on the parameters. It should also be emphasized that the
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deformation-theoretical free energy E(p) itself does not have to be of the form expressed

by the bounds in Equation (3.2), which merely define the growth properties of the energy.

In order to make connection with fracture, periodic deformations of a slab of thickness
2H occupying the domain {|x3| < H} and subject to prescribed opening displacements 6 on
its surfaces are considered. A periodic unit cell Q = [0,L]? x (~H, H) is identified, and the
deformation of the slab is described by means of a [0, L]-periodic deformation mapping
v : QO — R subject to the constraint of volume conservation in Q and to displacement

boundary conditions

y3(X1,X2, —H) =-H- 6, (36&)

y3(X1,X2,H):H+6, (36b)

with (xq,x,) € [0, L]z. The aim of the analysis is to derive optimal, or matching, upper and

lower bounds for the energy of the slab as functions of L, £ and 6.

3.2. Upper bound

Owing to the minimum principle which governs the deformation theory of plasticity, an
upper bound can be obtained simply by direct evaluation of the energy for an admissible
test mapping. A deformation mapping that describes, in a simple manner, the process
of crazing is considered here and shown schematically in Figure The deformation
is localized to the layer (O,L)2 X (-a,a) C Q) and, elsewhere, the slab undergoes a rigid
translation through the prescribed opening displacement +6. The layer (0,L)? x (—a, a) is
then subdivided into ~ (L/a)? identical cubes of size a. Figure specifically depicts the

deformation in one of the cubes.

The deformation is volume preserving and results in the formation of a fibril along the

vertical axis of the cube by means of cavitation from the four boundary segments on the
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symmetry plane of the cube. Furthermore, the deformation mapping Vy is integrable,
though the second deformation gradient V?y is not, as expected from the discontinuous
nature of crazing on almost every plane. As noted above, this lack of integrability results
in infinite energies in solids obeying strain-gradient elasticity. We relax this excessive
rigidity of strain-gradient elasticity by assuming that the solid obeys fractional strain-

gradient elasticity instead.

Figure 3.1.: Schematic of the crazing construction showing a slab divided into unit cells
under prescribed opening displacements 0.

As mentioned above, the test deformation mapping outside the crazing region (0,L)? x

(—a,a) C Q) is chosen as a rigid translation, namely,
y=x+0e3, forx3>a, and y =x—-0oe;, for x3<—qg, (3.7)

where ej is the transverse unit vector. The local term can be immediately estimated to
give A( on the entire volume plus a quantity bounded by k;; on the central region, totaling
2L%AyH + 2ky;L?a. This gives the first two terms in . It can be remarked that, since
the energy has zero growth, the details of the mapping are not needed to estimate the

local part of the energy.
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Figure 3.2.: Schematic of the deformation mapping (as shown for one periodic unit cell)
used in the upper bound construction.

In order to estimate the nonlocal term, the mapping in (0, L)% x(~a,a) must be constructed
in detail. First, the layer is subdivided into ~ L?/a? cubes of side length 2a. It is then pos-
sible to focus on a single cube C = (—a,a)?, the others being identical up to translations.
Additionally, attention is confined to the prism P = {x; > 0, —x; < x, < xy,—a < x3 < a},
and the deformation mapping is extended to the remainder of the cube by symmetry.
Specifically, the aim is to construct a volume-preserving mapping that opens a cavity
around the segment x; = a, x3 = 0, through the composition of three elementary map-

pings. Each of these mappings is defined in the following.

X;

2a

2a| |~ X,

Figure 3.3.: Schematic of the first mapping f used in the upper bound construction.
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To define a constant-determinant mapping f that collapses the half-cube H = CN{x; > 0}
into P (see Fig.[3.3), the class of mappings

fil)=hx),  fE)=Zhx),  fix)=x, (3.8)

subject to the ancillary conditions #(0) = 0 and h(a) = a is considered. This class of map-

pings transforms planes x; = constant to planes y; = constant. Furthermore, with

W

det(Vf) = —=C, (3.9)

where C is a constant, integrating once gives

h=+2Cax,, (3.10)

where the condition h(0) = 0 was used. From the second condition, h(a) = a,

det(Vf):C:% (3.11)

can be obtained and

X

fi(x) = +axy, flx) = x24/=, f3(x) = x3. (3.12)

a
This mapping is readily inverted to give

=2  fFleo=d2 5@ =y (3.13)

Next, a second constant-determinant mapping is constructed, which opens up a prismatic

cavity around the segment x; = 4, x3 = 0. To this end, attention is restricted to the sub-
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X, X,

2a| L X, 2a

Figure 3.4.: Schematic of the second mapping g used in the upper bound construction.

domain 0 < x3 < a—x; and subsequently, the resulting mapping is extended to the region
x3 > a—x; by exchanging x; and a — x;. Finally, the mapping is extended to the entire
half-plane x; > 0 by reflection about the plane x3 = 0. The specific class of mappings

considered is

_a—k(x))

X3, (314:)
a—XxXq

g1(x) = k(xy), 2(x) = x, g3(x)

subject to the ancillary condition k(0) = 0. This class of mappings transforms planes x; =

constant into planes y; = constant. It follows that

a-kp_L (3.15)

det(Vg) =
et(Vg) P 1

where A > 1 is a constant. Integrating once and using the condition k(0) = 0 gives

2 2
ak—k—:l(axl—x—l). (3.16)

Solving for k gives, explicitly,

2
k(xl):a—\/ﬂ—%(axl—%). (3.17)
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For a — x; < x5 <a, the mappings used are

a—k(a—xz)

gi(x)=a- (a=x1), &(x)=x3, g(x)=a-k(a—x3) (3.18)

X3

with the same function k. Finally, a volume-preserving deformation mapping that de-
scribes the formation of a fibril around the x3-axis and that reduces to the identity on the

planes x3 = +a can be defined through the composition of mappings

v1=AEFT®), v2=HESF T X)), vs=AkEF (%) (3.19)

where the factor A represents a uniform extension in the x5 direction. This operation

completes the definition of the test deformation mapping. A direct computation gives,

explicitly,
v = \/a2 - \/a4 - A"1(2a%x7 - xf‘),
(3.20)
Yy = V1%2 Vs = ?\(az—l’lz)xs
27 x > a2 -x? '
over the domain P N {a|x;| + x% < a?}, and
2.2
Y= \/aZ— i \/1 — A 1(a2 - x2)
1 X 3/
3 (3.21)
X :
Yy = y;_f, y3 = Asign(xsz) \/a2 — A~ 1(a? —x%),

over the domain P N {ax; + xf > a?).

It is readily verified that det Vy = 1 everywhere, that the deformation mapping v satisfies
the boundary conditions (3.7), that the two expressions match continuously at |x3| + x} =
a, and that y maps the planes x; = +x, and the plane x; = a onto themselves and can
therefore be extended to the rest of the slab by symmetry. It only remains to estimate the

fractional norm. For the homogeneous W?1(Q) seminorm of a function u : R®> — R", the
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definition based on traces is used, viz.

luly 1 = inf{jo(><J J}RS W&Zt 1 f(0,-) = u} ; (3.22)

see, for example, [Adams, 1975; Lunardi, 2009; Tartar, 2007]. Here, f : [0, 00) X R3 —
IR™ is an extension of u, Df represents its distributional spatial derivative, and o;f its

distributional derivative in the new variable .

Starting with the set P, = PN{alx3|+x? < a?}, where y is defined by , a straightforward

computation shows that in this set,

cal

IDyl(x) < et (3.23)
By setting

f(x,t) = DY(x) X[0,a-x,](t) X P, (%), (3.24)
it can be estimated from (3.22), after lengthy calculations, that

IDYxplls1 < Lm J}RSdedts cAa>™. (3.25)

Computation of the integral of |D f| can be performed using the fact that Dy can be writ-
ten as a sum of a finite number of terms, each of which is monotonic in each variable and
obeys a bound of the type (3.23). In addition, the volume integrals are evaluated using

Gauss’ theorem, as done in |Fokoua et al. [2014a,b|.

Now, the remaining set, P, = P N {ax3 + x% > a?}, is considered. The estimate (3.23) is

replaced by

ca?

IDylix) < x391(x)

, (3.26)
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complemented by

(x)> mi ax3+x%—a2 az—x§ (3.27)
min , ) )
Jrx) = x3/d 21

We define

f(x,t) = Dy(x)x[0,7(x))(t) X P, (%), T(x)= \/x3(x3 +x7/a—a). (3.28)

A careful treatment along analogous lines as above leads to an estimate similar to (3.25|.

Summing over the L%/a® cubes leads to the conclusion that

IDYlwo1 () < cL*Aa' ™. (3.29)

Recalling that A = 1 + ¢/a finally gives the second term in (3.30). Therefore, by inserting

the deformation mapping from Equations (3.20) and (3.21) into Equation (3.2), the above

calculations give an energy bound dependenton L, ¢, 6 and 4,
)
E(y) <2L?A¢H + 2kyL%a + ckUL2€(’a—o, (3.30)

where ¢ is a positive constant that depends on the details of the construction. Further
minimizing the bound with respect to a results in a ~ 5/(179)¢9/(1+9) ‘and gives an upper

bound of the form

E-20%AyH < cyky L2015 555 (3.31)

It can be noted that the bound takes the form of a power law in the variables L, £ and ¢.
The constant 2A,L?H is an inconsequential datum that reflects the normalization of the

energy density.
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3.3. Lower bound

Evidently, every choice of test deformation mapping produces an upper bound of the
energy via Equation (3.2). However, Conti et al|[2014] showed, through arguments of
mathematical analysis of a somewhat technical nature, that the upper bound given by
Equation (3.31) is indeed optimal, in the sense that there exists a matching lower bound

of the form
c kL2015 5T < E—2L%ApH, (3.32)

with identical exponents of L, € and 6. The key idea is to combine the fact that the local
energy can only be small if the deformation is concentrated on a small part of the domain
with a Poincaré inequality to control the L! norm of Dy by its W! norm. It should be
noted that, while the constants ¢; and cy may be lax, owing, e. g., to the simplicity of the
test deformation mapping used in the upper bound construction, the scaling exponents
are hard and precise predictions of the theory. Furthermore, for the topological reasons
discussed earlier, the constants necessarily blow up as o approaches 1 from below, i. e.,

in the limit of conventional strain-gradient elasticity.

3.4. Relation to fracture

Considered jointly, the bounds in Equations (3.31)) and (3.32) yield the optimal scaling

law

e kg L20T5 5T < Epip — 2A0L2H < cpkyL20T5 575, (3.33)

We note that the bounds in Equation (3.33)) scale with the in-plane area L?, and are inde-

pendent of the thickness 2H of the slab. This type of scaling is characteristic of fracture
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processes, in which the deformation is concentrated in the neighborhood of a fracture
surface, and the energy scales with the area of the surface. In particular, the specific
energy per unit area

Epin — 2A0L*H

D = B

(3.34)

is bounded and independent of the thickness 2H of the slab. The bounds (3.33) can be

recast in terms of this specific energy per unit area as
o) 1 o 1
CLkL€m5m <d<L CUkUgm(Sm. (335)

Now, for fixed ¢ and for the specific energy per unit area regarded as a function ®(9) of
the opening displacement, the corresponding applied normal traction then follows by the

work-energy theorem as

dd

=22 =o(5). (3.36)

o

This relation may be regarded as a cohesive law that relates opening displacement ¢ and
traction 0. We recall that the attainment of a critical value of Rice’s J-integral [Rice},1968]
provides a standard and widely used non-linear fracture criterion with several attractive
properties (cf., e. g., [Hutchison| [1979]]; Kanninen and Popelar [1985] for reviews): i) For
linear elastic materials, | coincides with G, the elastic energy release rate; ii) for power-
law small-strain plastic behavior, | determines the strength of the HRR singular field
[Hutchinson, 1968} Rice and Rosengren) |1968]|] at the crack tip; and iii) it can be evalu-
ated experimentally in a convenient manner. For an otherwise elastic material obeying
a cohesive fracture law, an application of Rice’s J-integral [Rice, 1968| gives the plane-

strain critical energy release rate at crack growth initiation as

G, = J+wa(6)d6 = D(+00) — D(0). (3.37)
0
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Inserting the upper bound into we find that the integral is indeed conver-
gent at the origin, and a void nucleation model is not required in order to ensure the
boundedness of G.. By contrast, when inserting the lower bound into (3.37), the
same integral diverges at infinity; i. e., it predicts an infinite G,. In order to eliminate this
divergence, a cut-off 6, can be introduced, representing a critical opening displacement

at crack-growth initiation, and thus

¢
G, = f 5 (8)ds = D(5,) — D(0). (3.38)
0

In the present context, 6, may conveniently be identified with the chain length of the

polymer, on the grounds that failure must occur when the chains are stretched beyond

their fully-stretched length. Inserting the bound (3.35) into (3.38) leads to
o = o
CLkLnggﬂ7 < Gc < CUkU€m5C“", (339)

which supplies bounds for G, as a function of the internal length ¢, the critical opening
displacement o, and the material constants k; and ky. The bounds (3.39) supply a link
between independently measurable material and fracture properties, and thus open the

theory to experimental calibration.
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4. Simulation of Taylor impact experiments

4.1. Numerical implementation

This section summarizes some algorithmic aspects of the solid mechanics solver used in
the presented calculations. A full account of the theoretical foundations of the method
and a number of convergence tests can be found in [Li et al.,|2010, 2012; Pandolfi and
Ortiz, 2012]. Some of the functional solver requirements in the investigation of materi-
als under high impact loading conditions are the ability to transport mass efficiently, as
well as having the capability of accounting for complex contact, deformation and failure
patterns. To meet these requirements, the presented simulations in this work make use
of the Optimal Transportation Meshfree (OTM) approximation schemes introduced by
Li et al. [2010]. Furthermore, the OTM method is extended to account for fracture and
failure by resorting to material point eigenerosion schemes [Li et al.,|2010, 201 2; Pandolfi

and Ortiz, 2012].

4.1.1. Optimal transportation meshfree approximation

The optimal transportation meshfree (OTM) approximation schemes combine concepts
of spatial and temporal discretization into a new method that is applicable to complex
simulations meeting the requirements outlined above. On the one hand, concepts from
optimal transportation theory (for example, the Wasserstein distance between consecu-

tive mass densities) are used for the temporal discretization of the action integral. With
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regard to spatial discretizations, on the other hand, maximum-entropy meshfree interpo-
lation schemes from a nodal point set [Arroyo and Ortiz,[2006] are applied, which enables
the simulation of unconstrained flows by avoiding continuous remeshing. It also prevents
mesh entanglements, which will be beneficial for the simulations presented here. Finally,
the OTM method uses material point sampling as a way of storing local state data and

performing constitutive updates.

Overall, the method may hence be viewed as a way of restricting the optimal transport
problem to mass densities, which are concentrated in material points and undergo mo-
tions in the form of piecewise linear trajectories (see Figure for reference) [Pandolfi
et al.,|2014]. A detailed description of the OTM method may be found in [Li et al.,[2010],
and its main features and characteristics will be summarized (under the assumption of
nonlinear elasticity) in the following. For extensions to general materials, variational

constitutive updates may be applied.

The temporal discretization is based on discrete times f(,tq,...,t;_1, for which a semi-

discrete action sum S; can be written as

~

-1 2
1 diy (Pkr Pr+1)
Sa(@1yer @r1) = lzm

1

o~
Il

0

(U(@0)+ U@isn))| (b1 1), (41)

N | =

where deformation mapping and density at time f; are denoted by ¢y and py, respectively.
With d%v(pk, Pk+1) defined as the Wasserstein distance between mass densities py and py,1,

a measure of inertial action in the time interval f;, — #; is introduced in the form of

1dy (P prs1)

2 (tger —t)? (4.2)

in Equation (4.1).
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The Wasserstein distance is defined by

Bylpropro) =inf [ 1702 i), (4.3)

with T representing the optimal transference mass of py into py,;. Furthermore, U de-

notes the material’s total internal energy according to

Ulp) = L[p(f (Vo) — )~ tr(1)] dx, (4.4)

with isothermal local free energy density f (V¢), self-equilibrated stress field 7 acting on

the body and scalar body force potential u. In equilibrium, the relations

V.-tr=0 inB (4.5)
and

Tmn=q ond,B (4.6)

between self-equilibrated stress field T and applied tractions q holds. This approach to
time discretization used in the OTM method enables geometrically exact updates of mass
densities and local volumes. It is thus not necessary to solve a numerically cumbersome
Poisson equation for pressure and, at the same time, mass conservation errors arising in

Eulerian formulations are eliminated.

For the spatial discretization, all local state data is stored in a material point set, which
evolves over time and also serves as the location of constitutive computations (see Fig-
ure for reference). Material points are fix points of the body with designated mass
and volume, which are convected via applied deformations. They furthermore represent
integration points for the purpose of calculating effective nodal forces and masses. In

order to define the spatial discretization approach, mass densities are approximated as
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point masses via

Pnk(X)= ) mpo(x—x,), (4.7)

1P

with index h denoting discretized quantities, x,x is the position of a material point of
mass m, at time #, and o(x — x, x) being the Dirac-delta function centered at x,;. For
the remaining part of the spatial discretization, the incremental deformation mapping is

approximated as

N
Phkots1 ()= ) Xgpr1Noi(x), (4.8)

a=1

where N, (x) denote conforming shape functions defined at time t;, and (x, 41,4 =1,...,N)

represents the nodal coordinate array at time f;,4.

xp,AH

Figure 4.1.: Spatial discretization used in the optimal transportation meshfree approxi-
mation schemes (adapted from [Li et al.,[2010]]). Material points are shown
in red, whereas nodal points are shown in white. An exemplary circular local
neighborhood of nodal points is shown at time #.

In the presented calculations, maximum entropy (max-ent) shape functions are used and
re-evaluated at every time step, which leads to a dynamic reconnection of material points
and nodes. A further advantage of max-ent shape functions lies in their strong local-
ization property [Arroyo and Ortiz, |2006], based on which shape function calculations

at a material point x,; only involve a small neighborhood of nodes N, . These local
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neighborhoods of nodal points are dynamically updated via range searches in order to
take relative motion between nodes and material points into account. As a result, there
is no cost associated with remapping local states carried by material points, which is
particularly useful in the case of inelastic solids involving local material states defined by
internal variables. Furthermore, max-ent interpolation schemes are mesh-free and satisfy
a Kronecker-delta property on the boundary. This spatial discretization feature simplifies
the enforcement of essential boundary conditions, as well as offering good convergence,

accuracy and monotonicity conditions.

By making use of the above approximations, a fully discrete action S;, follows as

-1 M 2
m, |X —X
p| pk+1 p,k|
3h=§ E (tk+1—fk)[—2 —_——

2
k=0 p=1 (tkr1 — te)
1
- E [mp (fp,k+1 —Upk+1 ) - tr(Tp,k+1)vp,k+1
+ mp(fp,k - up,k) - tr(Tp,k)Vp,k] ]; (4.9)

with abbreviations 7, = T(x,x), f,x = f(Vgoh’k(xp,k)) and u,; = u(x,x). Hamilton’s prin-

ciple of stationary action finally gives the discrete trajectories

5S, = 0. (4.10)

The OTM scheme is solved in a forward-explicit fashion following the usual structure
of updated-Lagrangian schemes and using forward time integration. Similar to other
material point methods, optimal transportation meshfree approximation schemes offer
the advantage of allowing nodal points of different bodies to be members of the same
local neighborhood of a material point. Based on the cancellation of linear momentum,
this feature of the OTM method automatically enables dynamic contact interactions of

seizing type.
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continuous curve q(t)

density configurational
space

Figure 4.2.: Time discrete Lagrangian dynamics (adapted from [Li,[{2009]).

4.1.2. Material failure

In the sequel, material failure will be modeled for a viscoelastic body occupying a three-
dimensional domain B. The boundary 0B of the body consists of an exterior boundary S,
corresponding to the boundary of the uncracked body, and a collection of cracks, voids
and tears jointly defining a crack set C. In addition, S partitions in the usual manner into
a displacement boundary §; and a traction boundary S,. The body undergoes deforma-
tions under the action of body forces, displacements prescribed over S, and tractions T

applied over S,. Under these conditions, the total potential energy of the body is

E(p,t)= B\CW(Vgo(x,t),t)dV—J; T(x,t)-@dS (4.11)

where B\C denotes the domain of the body with the crack set excluded, 4V and dS are

the elements of volume and area, respectively. Function
W(Ve,t) = W(E,e(t),...,ek(t)) (4.12)

is the free energy density of the body (to be specified in the following), T is the applied

traction, and ¢ : B\C — IR is the deformation mapping.
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In addition, we must have

px,t)=@xt) V xe§, (4.13)

where @ is the prescribed value of the deformation mapping over the displacement bound-
ary. The explicit dependence of E on t in (4.11) implies the evolution of inelastic strains
as well as the time dependence of forcing terms, which are the prescribed displacements
and forces. The equilibrium displacement field for a crack set C at time t may then be

found by minimizing energy (4.11) over an appropriate space of functions.

If the material is not only allowed to deform viscoelastically but may also fail by extend-
ing the crack set C, a monotonicity constraint representing the irreversible character of

material failure is introduced as

C(t) C C(t + At). (4.14)

Hereby, the monotonicity constraint merely describes the fact that later crack sets must
contain earlier crack sets. Furthermore, crack extension follows unilateral contact con-

straints, and the crack set (or parts of it) are allowed to be closed at any given time.

Since the implementation of unilateral contact constraints is numerically challenging,
calculations presented in the following are based on assuming the erosion of material
points in a state of volumetric expansion only. Furthermore, previously eroded material
points can be reinstantiated if a state of volumetric compression is attained, leading to

crack closure.

Crack propagation then results from two competing material properties, viz. viscoelas-
ticity and critical energy release rate G.. The former promotes fracture in order to release
energy, whereas the latter penalizes fracture (proportional to the area of the crack set).

The competition between material failure and viscoelasticity for energy supplied by ex-



4. SIMULATION OF TAYLOR IMPACT EXPERIMENTS 63

ternal forces is modeled via an energy-dissipation functional

F(p,C,t)=E(@,t)+ GC|. (4.15)

Here, |C| denotes the crack set area. By minimization of the energy-dissipation functional
(4.15) at every time, while taking the kinetic equations of the internal processes and and
monotonicity constraints (4.14) into account, the state of deformation and failure can be

calculated.

Unfortunately, minimization of the energy-dissipation functional F(p,C,t) with re-
spect to the crack set C is numerically challenging. We therefore resort to the variational
eigenfracture scheme introduced by Schmidt et al.| [2009] and its extension to eigenero-
sion of material points [Pandolfi and Ortiz, [2012]. The theory of eigenfracture uses an

arbitrary eigendeformation field €* in order to define the crack set

C={e #0). (4.16)

By introducing eigendeformations into the kinematics of crack propagation, the energy
is relaxed locally, and the displacement field can include jumps without any cost of local
elastic energy [Pandolfi et al,,|2014]]. For all material points at a distance € or less away
from the crack set C (whereby € is a small length parameter) an e-neighborhood of C

may be defined. With e-neighborhood volume |{e* # 0}.|, a surface measure of the crack

follows as
[
Cle = 7 Ile” # Ol (4.17)
Here, 7! is a scaling factor that acts as a penalty factor for the crack set volume, converg-

ing to a surface in the limit [Pandolfi et al., 2014]. As shown in [Schmidt et al., 2009],

the eigenfracture scheme converges to Griffith fracture solutions for the limiting case of
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C={e*#0}

&

{e*F 0}

Figure 4.3.: Left: Advancing crack showing a zoom of the crack front propagating in the
direction of crack front velocity v (adapted from [Pandolfi and Ortiz, 2012]).
C(t) and C(t + At) are the original and extended crack set, respectively. Right:
Set of eroded material points forming a crack and respective e-neighborhood.

infinitesimal mesh sizes. For an arbitrary eigendeformation field taken as piecewise con-
stant over the set of elements or material points under consideration, eigendeformations
may either be zero (and thus minimize the attendant fracture energy), or cancel any lo-
cal deformations (which in turn renders the elastic energy zero). Fig. illustrates an

advancing crack set and the e-neighborhood.

The material point eigenerosion scheme uses a local energy-averaging procedure in order
to approximate the necessary energy release rate for material point failure. For cases in
which the estimated energy release rate exceeds the material’s specific fracture energy,
material points are eroded, and the collection of eroded material points in turn repre-
sents the crack set. Therefore, the material point eigenerosion scheme reduces the dis-
crete crack-tracking problem to a successive failure of material points for cases in which
a positive net gain in energy can be achieved, viz. cases with lower cost in fracture energy
compared to the attendant elastic energy release. The algorithm used in the implementa-

tion of the material point eigenerosion scheme is summarized in Algorithm

At every OTM step, the determination of the next material points to be eroded follows

from sorting material points experiencing tensile states p in a priority queue based on the
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Algorithm 1 Crack-tracking scheme for material point discretization [Pandolfi and Ortiz,
2012]
Require: Crack set Cy at the end of time step #;
Require: Material state at all material points at the end of OTM time step t,4
Require: Priority queue PQ of real numbers ordered from largest (highest priority) to
smallest (lowest priority).
Set PQ = empty.
Set Cr,1 = Cy.
for all material points p not in Cy,1 and in tensile stress state do
Compute elastic energy release —AE,,.
Compute effective crack area increment: AA,.
Compute net energy gain: —AF, = -AE, — G.AA,.
If -AF, > 0, push p into PQ.
if PQ # empty then
| Pull all material points K with net energy gain —AFg > 0 from PQ, add to Cg,;.

else
L Exit.

energetic difference
—-AF, =-AE, - G.AA, >0, (4.18)

where —AE,, is the corresponding elastic energy release, and G.AA, denotes the fracture
energy cost. In order to approximate the energy release rate related to material point
erosion, first-order asymptotic formulae for notches are used, and the energy release rate

is calculated as the elastic energy stored in the material point [Pandolfi et al., 2014].

Figure shows a two-dimensional example of the e-neighborhood construction. Each
neighborhood V¢ contains all material points that lie inside a circular region of radius e
centered at the material point under consideration. For a propagating crack set C = {e* =
0} consisting of eroded material points, the spherical neighborhood V! of each newly-
failed material point is therefore included in the e-neighborhood of C, i.e., {€* # 0}.. The
crack advance AA,, for a single material point p may then be computed as

1, . . 1
AAp = ——(Ife” = O}’ —[{e” = 0})) = AV, (4.19)
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Figure 4.4.: Visualization of the material point eigenerosion approach (adapted from
[Pandolfi et al.,[2014]). Black dots denote members of the crack set ({e* = 0}),
whereas gray dots belong to the e-neighborhoods of failed material points
({e” # 0}¢). The thickness of the e-neighborhood is 2e and, after crack propa-
gation, the increment in the crack’s e-neighborhood is AV .

whereby |{€* = 0}.|F is the e-neighborhood of C after inclusion of VP. The choice of the
regularization parameter € must be such that its value tends to zero more slowly than the
mesh size. One possibility is therefore to use a regularization parameter proportional to

the minimum mesh size according to
€= Cl hmin, (420)

where C; > 0 is a constant.

4.2. Supporting microscopy and experimental calibration

The macroscopic fracture model that results from the optimal scaling analysis is solely
characterized by the critical energy-release rate G.. This parameter is well-known from
Griffith’s theory of linear-elastic fracture and correlates the free-surface energy of a prop-
agating crack to the elastic energy stored in the bulk of the material. Rivlin and Thomas

[1953]] extended Griffith’s concept to determine the tear resistance of highly stretched
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Figure 4.5.: Uniaxial tension test of polyurea 1000 with feed of 2mm/s [Reppel et al.
2012|]. Left: Thin-strip specimen stretched quasistatically up to failure.
Right: Determination of the elastic strain energy density by data reduction.

rubbery material. Here, the critical energy release rate follows from

G.=1.W(A,), (4.21)

where [, is the crack length and W(A) is the elastic-strain energy density as a function of
the applied stretch A. The specific fracture energy W, = W(A = A.) follows as the area

under the elastic stress-strain curve from beginning until rupture at A = A..

Typically, the specimens used to determine G, are dog-bone-shaped thin strips or thick-
waist sheets tested in tension. To analyze crack growth in moderate but cyclic loading,
these specimens are pre-cut. Moreover, the crack length in corresponds to the
increase in cut length. In a monotonous loading regime, the width of the specimen defines

the maximal amount of elastic strain energy density at rupture.

In order to determine G, for PU 1000, uniaxial tension tests using thin-strip specimens

were performed by Reppel et al.|[2012]. Since the tear resistance after monotonous load-

ing was investigated, the specimens were not preconditioned against the Mullins effect.
Instead, the amount of permanent set within the teared specimen was accounted for,
which was determined by stepwise loading and unloading of several samples. Figure

illustrates the approach. Here, specimens were stretched to 150% and to 350%, both
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Figure 4.6.: Micrograph of the fracture surface of a polyurea specimen after failure in
uniaxial tension (adapted from [Reppel et al.,|2012]]), whereby shaded areas
represent voids.

followed by a full relaxation, and subsequently re-stretched to rupture. Based on the
recorded loading-unloading data, the relative extent of material dissipation was calcu-
lated. The remaining energy density is the maximal amount of elastic strain energy upon

failure, i.e., the specific fracture energy.

Finally, this data reduction procedure yielded a value of W, = 38.2 MPa for PU 1000 spec-
imens with width [, = 1.15mm. The critical energy release rate follows from Figure [4.5|as
G, = 44kJ/m?. This value is employed in the numerical Taylor-anvil test simulations
presented in Section Compared to typical values for polymers (which are around
1-10kJ/m? ), the obtained value of G, is relatively high. This may be ex-
plained by the remarkable stretchability of polyurea 1000 and also by the monotonically-
loaded, not-preconditioned specimen. The close agreement between the numerical re-
sults of Section and experimental observations thereof lend a modicum of support to
the data reduction procedure just described as a means for determining the tear resistance

of stretched polyurea.

Additionally, a virgin and post-mortem fractographic analysis of the failure surface re-
veals insight into the micromechanisms of fracture. The polyurea, in its as received state,
had a porosity of about 50 voids/mm? with diameters in the range of 1030 um, see Fig-

ure . Upon deformation, the voids grow, fibrils rupture and a large number of new
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Table 4.1.: Elastic material parameters of a Neo-Hookean solid for polyurea used in OTM-
simulations of Taylor-impact experiments.
Ao [MPa] 133.793
po [MPa]  5.759

voids nucleate. The void multiplication is clearly evident in post-mortem fractographs of
failure planes, which show considerable dimpling. Counting the density of dimples gives
a porosity of 97 voids/mm?, with some dimple diameters in excess of 200 ym, as shown
in Figure[1.3b. The complex interplay between void nucleation and growth, failed fibrils

and rupture is clearly evident.

4.3. Static and viscoelastic behavior of polyurea

In this section, the static and viscoelastic material behavior of polyurea is discussed. Ex-
perimental data sets from the literature (see, e.g., [Knauss and Zhao, 2007; Reppel et al.,
2012]]) are used to fit the different material models, and the resulting material parameters
are presented. Polyurea is highly elastic and deforms in a reversible way, but as most elas-
tomers it also shows retardation and time dependence. Thus, a rheological generalized
Maxwell model [Ortiz, |[2012], i.e., an entropy-elastic spring in parallel with a number of

spring-dashpot elements, is suitable for material characterization.

Typical stress-strain curves of polyurea are indicative of ostensibly-elastic behavior up to
elongations of the order of 700%. Consequently, the elastic branch of the material stress-
strain relationship may be adapted to low-strain rate experimental data and quasistatic
experiments (see, e.g., |Sarva et al. [2007] and Reppel et al.|[2012]]). A prime example of
such elastic material models is the Neo-Hookean solid, which was derived in the context

of macromolecular polymer models in Section In its compressible extension, the
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Figure 4.7.: Comparison of different elastic material models shown in (b) fitted to low-
strain rate experimental data of Sarva et al.|[2007] at é = 0.0016s7! as de-
picted in (a).

strain energy density of a Neo-Hookean solid takes the form
1 ) 1
Wo(F) = SAglog]” — polog] + S puo [tr(C) - 3], (4.22)

where C = FTF denotes the right Cauchy-Green tensor. The material parameters A, and
pip may be obtained by subsequent fitting to experimental data, and are given in Table[4.1]

Figure |4.7|furthermore shows a comparison of different elastic material models.

The viscous response of polyurea is commonly assumed to be isochoric, with F = J=1/3F,
The dissipation potential of this particular material may be modeled by extending a
Prony-series [Ortiz, [2012] to the finite-deformation range. Introducing the tensor of de-
viatoric logarithmic strains, e = log VC, where C = FTE, the formulation of N Maxwell

elements in parallel follows as

N
$=) pale—ehl?. (4.23)
a=1

Here, the e’ form the set of internal variables accounting for the N relaxation mechanisms

and p, are the corresponding material constants. The evolution of the inelastic strains is
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Table 4.2.: Moduli and relaxation times for polyurea (units are [MPa] and [s]) obtained
from fitting [Knauss and Zhao, 2007].
Ho 5.164 5.400 2.529 2525 1.451 1.101 0.299 0.332 0.578
7, 1.0e-5 1.0e-4 1.0e-3 1.0e-2 1.0e-1 1.0 10.0 100.0 1000.0

assumed to be governed by linear kinetics, viz.
el = —(e—eg), (4.24)

where 7, are viscoelastic relaxation times. This model can be cast into an incremental
variational framework by recourse to variational constitutive updates [Ortiz and Stainier,
1999]. Consequently, the state of the body (i. e., the internal variables and the primary
kinematic quantities) at each time increment can be obtained by minimization of a total
power potential with respect to the viscous strains, e, for each relaxation mechanism,
a =1,...,N. The first Piola-Kirchhoff stress tensor then follows as the sum of elastic and

viscous contributions according to

oW

P=3F

(Cel,...,eY). (4.25)

Elastic moduli and relaxation times for polyurea have been determined by Knauss and
Zhao [2007] for small strains. By setting u, = E,/3 for nearly incompressible polymeric
materials, these data can be expressed in terms of the Lamé parameters. The resulting
numerical values are summarized in Table By specifying the above model to the
incompressible uniaxial state and integrating the viscous strains for fixed strain rates, the
model can be compared to large-deformation experiments. Figure[4.8shows that the high

strain rate data of [Sarva et al. [2007|] can be recovered with good accuracy in this way.
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Figure 4.8.: Left: Cauchy stress o versus true strain € = log A for polyurea at different true
strain rates €; data collected from Roland et al. [2007], [Sarva et al. [2007]],
Yi et al.|[2006], Zhao et al. [2007]], Amirkhizi et al. [2006] and Reppel et al.
[2012]. Right: Results for fittings of a Prony series formulation as introduced
in Section to the experimental data set.

4.4. Taylor-anvil tests

The macroscopic fracture model that results from the optimal scaling analysis is char-
acterized by a single parameter, namely the critical energy-release rate G.. This simple
structure greatly simplifies material characterization. By way of illustration, and in order
to calibrate subsequent calculations, G, for polyurea 1000 is estimated from the uniaxial-

tension test data of [Weinberg and Reppel [2013].

Another appealing aspect of the macroscopic fracture model is that it is amenable to
a straightforward numerical implementation based on material-point erosion [Li et al.,
2012; Pandolfi and Ortiz, [2012; Schmidt et al., 2009]. The scope of the resulting numer-
ical model is demonstrated by means of an example of application: the Taylor-impact
experiments of Mock and Drotar|[2006] on polyurea 1000 specimens. These simulations
additionally furnish a modicum of validation of the fidelity of the failure and fracture

model.

The tests of Mock and Drotar| [2006] were performed at the Research Gas Gun Facil-
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Table 4.3.: Specifics of the three different Taylor-anvil test cases.
Velocity [m/s] Initial length [mm] Initial diameter [mm]

Case I 245.759 25.73528 12.59205
Case II 332.047 25.60828 12.61491
Case III 424.413 25.76068 12.61745

ity at the Naval Surface Warfare Center (Dahlgren Division). Cylindrical specimens of
polyurea 1000 were driven into a metal anvil at different impact speeds, cf. Table
Figure |4.9|shows a sequence of specimen snapshots during impact for an impact velocity
of v = 245 m/s. The large deformations undergone by the specimen are evident from
the figure. At sufficiently large impact velocities, the specimen is observed to petal as a
result of the development of radial cracks or tears. Post-mortem examination of the speci-
mens also reveals extensive distributed damage in the vicinity of the contact surface. The
Taylor-impact experiments thus furnish a representative example of application as well

as an exacting validation of the theory.

Figure 4.9.: Taylor-anvil test of polyurea 1000 rod; experiments have been performed by
Mock and Drotar|[2006]] at NSWC. Rj = 6.29603 mm, L, = 25.7353 mm, and
v =245m/s.

In calculations, the viscoelastic behavior of polyurea is accounted for by means of a stan-
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dard Prony series as characterized experimentally by [Knauss and Zhao,|2007; Zhao et al.,
2007] and described in more detail in Section[4.3] The quasistatic response of the material
is additionally described by a Neo-Hookean model. In the presence of viscoelastic and
other dissipative mechanisms, the variational formulation underpinning the derivation of
the optimal scaling laws, and the corresponding micro-to-macro transition formulated in
Section |3} is recovered through time-discretization using variational constitutive updates
[Ortiz and Stainier, 1999|. These updates effectively reduce the incremental problem to
the minimization of an effective energy that accounts for both elastic energy and dissipa-

tion.

The integration of the equations of motion is carried out by means of the Optimal Trans-
portation Meshfree (OTM) method [Li et al., 2010|] described in Section Further-
more, damage and fracture are accounted for by means of material-point eigenerosion as

described in Section

Figures[4.10]to[4.12]show snapshots from simulations at the three different impact speeds
of Table At the smallest impact velocity of v = 245 m/s, the specimen undergoes
large deformations before rebounding, but no radial cracks or tears develop. By contrast,
incipient radial tearing is clearly evident at the intermediate impact velocity of v = 332
m/s, Fig. whereas extensive petalling is predicted at the highest impact velocity of
v =424 m/s, Fig. Remarkably, the radial tears retract almost entirely upon rebound

and the specimens appear outwardly intact, as observed experimentally.

Figures[4.13|to ?? depict the state of damage in the recovered specimens at the three differ-
ent speeds as computed and as observed post-mortem in experiments. The experimental
pictures show the recovered specimens after impact, wherein the extent and distribution
of damage can be clearly discerned optically. The pictures from simulations map the fi-
nal state of damage by showing the failed material points as black dots in the reference

configuration.
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Figure 4.10.: Snapshots of the simulated deformation at v = 245 m/s impact velocity.
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Figure 4.11.: Snapshots of the simulated deformation at v = 332 m/s impact velocity.
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Figure 4.12.: Snapshots of the simulated deformation at v = 424 m/s impact velocity.

In all three comparisons, the simulations qualitatively capture the damage distribution
within the specimen. At the lowest speed, Figure the specimen is predicted to un-
dergo limited damage and cracking in the vicinity of the impact surface, in keeping with
experimental observation. At the intermediate speed, Figure ??, the simulations predict
significant distributed damage near the impact surface, in good agreement with exper-
iments. In the simulations, the impact surface additionally undergoes incipient radial
cracking, also in agreement with observation. Finally, at the largest speed, Figure ??, both
experiments and simulations reveal severe distributed damage over a large fraction of
the specimen, and the impact surface splits into well-defined radial cracks or tears. The
ability of a simple single-parameter (namely the critical energy release rate G.) model to
qualitatively capture both patterns of distributed damage and cracking over a range of

impact velocities is remarkable.

In addition, Figure 4.14a shows the measured and computed normalized rod lengths
as functions of time for all three velocities under consideration, by way of quantitative

validation. By this metric, the results of the simulations match the observed trends and
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Figure 4.13.: Comparison of the recovered target after shot between experiments and sim-
ulations with impact speeds v = 245m/s (a), v = 332m/s (b) and v = 424m/s

(c).
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Figure 4.14.: a) Normalized specimen height versus time at impact speeds v = 245 m/s,
v = 332 m/s and v = 424 m/s. b) Logarithmic convergence plot showing
total accumulated specimen length over time for different mesh sizes.

are in fair agreement with experimental measurements.

It bears emphasis that the model employed in the simulations is remarkable for its sim-
plicity, both with regard to the bulk behavior of the material and its fracture properties,
and that no effort has been made to enhance the model in order to improve the fit to

experiments.

Given the simplicity of the model, the quantitative agreement shown in Figure
may be regarded as furnishing a modicum of validation of the overall framework. For
completeness, Figure additionally shows the variation of the computed specimen
length with mesh size to demonstrate convergence. A clear trend towards convergence is

evidenced by the figure with a superlinear convergence rate o = 1.27.
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5. Crazing model using full derivatives and a core cut-off

The non-local regularization approach of the previous Section requires the computation
of fractional derivatives, which is inconvenient for numerical implementations. Using
full derivatives, in contrast, is favorable for practical purposes, yet it presents a new
challenge because the energy may produce singularities in the presence of voids as those
studied here. In this Section, we therefore consider a modified regularization approach

based on the introduction of a core cut-off as presented in [Heyden et al.,[2015].

5.1. Problem formulation

As a conventional device applied in the theory of linear-elastic dislocations, introducing
a core cut-off enables the elimination of logarithmic divergence of the energy. In the

present context, the core-cutoff regularization may be introduced as follows.

We begin by noting that crazing is characterized by the topology schematically shown in
Fig.[5.1p, consisting of a distribution of fibrils bridging the flanks of the crack. This topol-
ogy is defined by the property that circuits such as shown in Fig. cannot be reduced
to a point without exiting the material. For continuous — hence, topology preserving —
deformations, the crazing topology must set in immediately following nucleation and
remain invariant thenceforth. Thus, the nucleation geometry must have the structure
shown in Fig. 5.1, i. e., it must consist of a network of boreholes contained on the in-
cipient fracture plane. Upon further deformation, the boreholes expand and eventually

attain the geometry characteristic of crazing.
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Figure 5.1.: Schematic of the topology of fibril nucleation and growth. Left: Planar net-
work of cylindrical cavities that provide the nucleation sites for fibrils. The
inscribed circuit cannot be reduced continuously to a point, which illustrates
the topological transition undergone by the body as a result of nucleation.
Right: Distribution of fibrils resulting from the expansion of the nucleation
sites under transverse uniaxial deformation. Since the deformation after nu-
cleation is continuous outside the boreholes, the topology of the body does
not change upon deformation. In particular, the structure of irreducible cir-
cuits such as inscribed remains unchanged.

In the vicinity of one borehole, the early stages of nucleation may be approximated as
the expansion of a concentric cylinder with the borehole along its axis. The resulting

deformation mapping is fully determined by incompressibility condition
n(az—rz):n<A2—R2), (5.1)

where A (a) is the outer radius of the undeformed (deformed) configuration, B (b) is the
radius of the borehole in the undeformed (deformed) configuration, R is polar radius in
the undeformed configuration and r is the corresponding polar radius in the deformed
configuration. The corresponding nonzero components of the deformation gradient fol-

low as

R

Frr= ———, Frr = 1/Fgg, Fzz =1, (5.2)
Va2 _AZ1 R
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where (R, T, Z) denotes a system of cylindrical coordinates over the the undeformed con-

figuration.

A straightforward calculation further gives the norm of the second deformation gradient

as

2_A2)? (304 + 642 (R2 — A2) + 3A% — 6A2R2 + 4R4

R*(a? - A2+ R2)?

Assuming p-growth, p > 1, at large deformations the nonlocal energy per unit unde-

formed length of the cylinder follows as

A
Epon ~ J C|VF(R)]P 2t RdR. (5.4)
B

For a/A > 1, a straightforward asymptotic analysis gives

2

IVE(R)] ~ @Ri, (5.5)

which substituted into Equation (5.4) in turn gives

3P2rC (1 1
non ™~ ( T _ )aP’ (5.6)
p—1 \B2p-1) A2(p-1)
if p>1,and
A
Eyon ~ 2V31Calog 5 (5.7)

for linear growth p = 1. We see that, in call cases, the energy diverges as the core-cutoff
radius B tends to zero, logarithmically so in the case of linear growth of the nonlocal

energy.

In order to avert this divergence and obtain finite energies, we simply assume that the

nucleation boreholes have an initial radius commensurate with a characteristic length of
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Figure 5.2.: Expansion of borehole in a concentric incompressible cylinder.

the chain distribution in the polymer network. Thus, in view of the network structure of
polymers, we may think of the initial boreholes as spanning intervening space between

chains and their diameter to be of the order of the mean-free path between chains.

5.2. Crazing and scaling

S

T

2H

—> —»

Figure 5.3.: Infinite slab of thickness 2H subject to prescribed opening displacements o
on its surface.

A principal aim of the present work is to ascertain such scaling laws as may be obeyed
by the macroscopic fracture energy resulting from the micromechanical model just de-
scribed. In order to make connection with such macroscopic fracture properties, we
specifically consider periodic deformations of a slab of thickness 2H occupying the do-

main {|x3| < H} subject to prescribed opening displacements 6 on its surfaces, Fig.

We identify a periodic unit cell QQ = [0,L]? x (~H,H) and describe the deformation of

the slab by means of a [0, L]-periodic deformation mapping ¢ : QO — R® subject to the
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\

Figure 5.4.: Assumed deformation pattern describing the process of crazing. The defor-
mation is assumed to localize to a thin layer of thickness a and, elsewhere, the
slab is assumed to undergo a rigid translation through the prescribed opening
displacement +6. The layer is then further subdivided into identical cubes of
size a, each of which undergoes the deformation illustrated above. The void
region arises from the equator of the cube as shown on the right.

constraint of volume conservation in () and to displacement boundary conditions

(p3(X1,X2, —H) =—-H-9, (58&)

(P3(X1,X2,H) :H+5, (58b)

with (xq,x;) € [O,L]z. The aim of the analysis is to derive optimal, or matching, upper
and lower bounds for the energy of the slab as a function of the parameters entering the

energy.

5.2.1. Some heuristics

A deformation mapping which describes, in a simple manner, the process of crazing is
shown schematically in Figures and The deformation is localized to the layer
(0,L)? x (—a,a) C Q and, elsewhere, the slab undergoes a rigid translation through the
prescribed opening displacement 6. The layer (0,L)? x (—a,a) is then subdivided into ~

(L/a)? identical cubes of size a.
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The deformation is everywhere volume preserving and results in the formation of a fibril
along the vertical axis of the cube by means a process of cavitation from the four boundary
segments on the symmetry plane of the cube. As noted above, the process of cavitation
from a line results in infinite energies in solids obeying strain-gradient elasticity. We
relax this excessive rigidity by assuming availability of nucleation boreholes of a small

but finite radius.

We proceed to argue heuristically the expected scaling properties of the deformation just
described. For definiteness, we assume linear scaling of the nonlocal energy. As noted in
Section [2}, the local part of the energy density saturates to a constant W, when all chains
in the polymer network are stretched to failure. In this state, the local energy of a cube

scales as
Eloc ~ Wooa3- (59)

Suppose, in addition, that for large deformations the non-local energy density behaves as
W.¢|VF|, where ¢ is a microstructural length scale. As noted in the foregoing, to leading
order the energy is dominated by a logarithmic divergence at the core of the nucleation

boreholes. Under these conditions, we have
a
Eon ~ Weatdlog > (5.10)

where, here and subsequently, b denotes the core-cutoff radius. The total energy of a cube

therefore goes as
E=Ep, +Eyop ~ Woa® + Wooafélog%. (5.11)

Next, we optimize the size of the cubes. To this end, we note that energy per unit area

of slab, or fracture energy, is given by G = E/a’. Minimizing this fracture energy with
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respect to the cube size gives

49

G 9 E ¢ B
E ==

0 a
Woo — Wm—zlogg + Woo

Friie P p 0. (5.12)

After simplification, we obtain the condition

a2

a
75 logg—l, (5.13)

whence we obtain the optimal cell size a*(6/b,¢/b). For large 6, the optimality condition

simplifies to
+\1/2 172
at~ (V2512 (log%) ~ (12512 (log i—i) (5.14)

and the fracture energy to

8 )1/2

G~ W, 2512 (logﬁ (5.15)

which to leading order is proportional to the square root of the opening displacement 6.

The specific fracture energy of the material follows from by additionally assuming

that the fibrils break at a critical opening displacement 6., with the result

1/2
55‘3) . (5.16)

1/2¢1/2
GC ~ Woo€ 5C (lOg ?
The structure of this specific fracture energy is noteworthy. Thus, G, is proportional
to W, the saturation value of the local energy density at failure. The parameter W,
provides a measure of the strength of the material and, thus, it is reasonable to expect

that the specific fracture energy be in proportion to W,,.

We also observe that G, is to leading order in direct proportion to the geometric mean of
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the intrinsic length ¢ and the critical opening displacement 6.. The core cutoff radius b
enters only through the logarithmic term. These dependences are also expected since ¢
sets the scale for the non-local regularization, o, provides a measure of the strength of

the fibrils, and b sets the scale of the logarithmic energy barrier for nucleation.

It is also instructive to compare with the fractional derivative regularization proposed
by Heyden et al. [2014]]. In that model the boreholes were absent, b = 0, but the term
f€|VF| was replaced by the softer term J€‘7|V“Fl, with o smaller than 1. Therefore the
b — 0 limit of the present model should correspond to the 0 — 1 limit of the fractional-

derivative model.

Indeed, Conti et al.|[2014] derived a scaling of the energy proportional to £/(1+0)51/(1+0),

which reduces to the present scaling £/26'/? as ¢ — 1. The prefactor arising from the
fibril construction was however proportional to 1/(1 — ¢) and diverges in the limit, much

as the logarithmic term in the present model diverges as b — 0.

5.2.2. Local constitutive damage model

In order to facilitate computations, cubature formulas as derived in [Cools, [2003|] have
been used for an approximation of the surface integral in Equations and (2.19). A
total of 14 cubature points was chosen in computations, whereby marginally modifying
their respective location on the unit sphere enables the attainment of a fully damaged

state in the limit of large deformations.

Figure[5.5]illustrates that under uniaxial loading conditions, cubature points aligned with
the principal axes of loading result in a small subset of cubature points whose fiber ori-
entation will never lead to complete damage due to the chosen number of finite cubature

points. The set of cubature points is therefore rotated by an intrinsic rotation (see Fig-

ure5.6).
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Figure 5.5.: Subset of cubature points on the unit sphere for which fiber orientation (;
under uniaxial loading in the direction of A lies in a purely compressive zone
(and hence will not fail in the limit of large deformations).

Figure 5.6.: Cubature points on the unit sphere before (left) and after rotation (right).

The local strain energy density contribution then follows as

47h?

W(F) = Wf(],fz)

- wi(yaicyQ)eicq]
i=1
+;—;gw,~[l—D(1/Q}'CUQ}')], (5.17)

whereby Q' and w; are quadrature point locations and weights, respectively. Further-

more, volumetric energy contributions are modeled using a Mooney-Rivlin material ac-
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cording to

fU L) = f(l) + £(])

(1;—3). wiD(,/Q}'CUQ}')+§(]—1)2, (5.18)

i=1

N =

with a modified second invariant I, = % [(tr (Cde,,))2 —tr (Cdedeev)] (where Cy,,, = F;edeev

and F,,, = FJ~1/3),

It should be noted that the damage distribution function D (A(Q;)) does not enter volu-

metric contributions f(J) = 5(J -1 2 in order to not weaken incompressibility. Introduc-
2 p Y.

ing constants Ef and c as

41b?
Ef= % - 5.19
e e Ve e (5.19)
leads to first Piola-Kirchhoff stresses of the form
W . i i i 1 i i 1
=5 = ;wiFQ ®Q [2D(/\ )+ 5QCQ ~Ef
+1<(]—1)]F—T+m with (5.20)
JF
If(l) prl - i o i
2 IZ"“E [;(12 _3)FQ'®Q (5.21)
D(/\i)(—é ]3P Ttr(C)% + 2] *3tr(C)F (5.22)
+ %]“mtr(CC)F‘T - 2]‘4/3F)]. (5.23)

from where it can be seen that the material is not stress-free in its reference configuration,

which may be associated with eigenstrains of the polymer chains.
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5.2.3. Numerical non-local regularization model

For an energy functional of the general form

I :f W(F,VF)dV—f T -5¢dS (5.24)
Q 20,

with tractions T and deformation mapping ¢, taking first variations and enforcing sta-

tionarity gives

ol = f [(Pi] ity k) N) = Ti]5<Pid3
a0,
+J ni]kNjégoi,k as
a0,

—JQ (Pi]—nik],k)’]égoidV =0. (5.25)

Here, P;j = gTVY], Nitk = ;P_ka and 6@ = 0 on JQ,, are used. While the first and last terms in-
vite to the definition of an effective stress tensor in the presence of higher-gradient terms,
the second (surface) term is numerically challenging. The numerical implementation of
such gradient theories requires not only higher-order elements that accurately interpolate

the higher gradients required in the model.

In addition, the surface term (which accounts for tractions conjugate to the second-order
deformation gradient) necessitates the implementation of special boundary elements. In
order to circumvent these and related difficulties, we introduce the following approxima-

tion.

Non-local energy contributions, as introduced in the optimal scaling laws in Equation (3.2),
are in the following specified via a jump regularization model. The model takes into ac-
count interface element contributions depending on the jump in deformation across in-
terfaces, and thus approximates gradient regularization terms in a finite element setting

with linear elements.
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Figure 5.7.: Examples of different sets of interface energy contributions between tetrahe-
dral element 1 and its neighbors.

As a starting example, consider a one-dimensional chain of n nodes and n—1 simplicial el-
ements that therefore have constant deformation gradients F; = (p;,; —@;)/Ax (i =1,...,n)
with Ax being the (constant) element length. As an approximation to the gradient energy,

let us introduce

n
Winterface = k ZlAFilu Aj (5.26)

i=1
where A; denotes the cross-sectional area of each element and AF; = F;,; — F; is the jump
in the displacement gradient across an element interface. In the limit of an infinitely-fine

discretization, we thus see that fora=1,

Fis1—F;

Z; AXAZ'

n n
Jim, Woertace = Jim k )_AFi| A=K lim )
i=1 i=1

= J k|VF|dx.
L

Note that if a # 1, energy (5.26) should be modified as follows in order to maintain the

(5.27)
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correct limit:

n

W —kZ AR, 5.28
interface — W i ( . )
i=1

In a three-dimensional setting, the interfacial energy contributions introduced above can

be defined as
Winterface(AF) = A Wjump (AF), (5.29)
with interface area Ay (see Figure|5.7|for reference) and jump regularization model
Wiump(AF) = k||AF||*. (5.30)

Here, k serves as a non-local stiffness parameter, whereas a is a measure of growth. For
polymers undergoing crazing mechanisms, linear growth of the non-local energy with
respect fractional derivatives of the deformation gradient is expected. Our investigation
therefore focuses on the limiting case a = 1 (for implications on numerical stability with

regard to the cusp-like regularization energies, please refer to Section|5.2.4).

5.2.4. Simulation of craze formation

In this section, we aim to verify numerically the preceding heuristic scaling relations for
crazing. To this end, we employ a finite-element discretization of the boundary value
problem defined in Section By periodicity, we restrict the analysis to one in-plane
periodic unit cell of the slab. In addition, we exploit symmetry in order to further restrict

the analysis to one eighth of the unit cell.

A schematic of the domain of analysis and the tetrahedral 8,766-element mesh used in

calculations is shown in Fig. We note that the computational domain includes a small
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groove along the perimeter of the unit cell simulating the initial nucleation borehole.
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Figure 5.8.: a) Schematic of the domain of analysis spanning one quarter of the cubic peri-
odic unit cell. b) Initial tetrahedral 8,766-element mesh used in calculations.

We enforce the incompressibility constraint by means of a penalty method consisting
of adding to the unconstrained local energy a very high bulk or volumetric energy. In
order to avoid locking, we employ quadratic interpolation in the discretization of the local
energy. By contrast, we employ linear interpolation in the discretization of the nonlocal
energy. By virtue of this choice, the second deformation gradient VF vanishes in the

interior of the elements and is concentrated on the interfaces between adjacent elements.

The energy contributed by each such interface is then evaluated as Wm€A|||F|

, where A

is the area of the interface, and ||F|| is the jump of the deformation gradient across the
interface. The corresponding equilibrium problem is solved by means of an iterative

nonlinear conjugate-gradient solver.

A sequence of equilibrium configurations under increasing prescribed opening displace-
ment is shown in Figure As may be seen from the figure, the initial borehole expands
greatly upon deformation, resulting in the formation of an elongated fibril. The remain-
der of the cell remains relatively undeformed. The figure also shows the volumetric de-

formation det(F). We observe, by way of verification, that the volumetric deformation
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Figure 5.9.: Sequence of equilibrium configurations under increasing prescribed opening
displacement. Superimposed on the figure are level contours of volumetric
deformation det(F).

remains ostensibly close to 1 over most of the domain, with the exception of small con-

centrated regions where the material undergoes modest volumetric deformations.

With a view to verifying the heuristic scaling relations (5.9) and (5.10)), Figs. [5.10a and
5.10b show the dependence of the local, normalized by W43, and the nonlocal energy,

normalized by W a?¢, respectively, as a function of the normalized opening displace-
ment 6/a. The local energy thus normalized increases monotonically with the normal-

ized opening displacement and exhibits a clear trend towards saturation at a maximum

energy of value W a3, in agreement with (5.9), Fig.|5.10a.

In addition, the normalized nonlocal energy exhibits an ostensibly linear dependence
on the normalized opening displacement, in agreement with (5.10), Fig. [5.10p. Finally,
Fig. depicts the logarithmic dependence of the normalized nonlocal energy E,,,,,/ Wo,a%¢
on the normalized core-cutoff radius b/a for fixed 6 and a and 6 > a. We note that, for
each value of the core-cutoff radius b, the energy is converged with respect to the mesh
size. The linear dependency of the normalized nonlocal energy on the normalized core-

cutoff is clearly evident from the figure.
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Figure 5.10.: a) Normalized local energy W;,./Wsa® vs. normalized opening displace-
ment 6/a. b) Normalized nonlocal energy W, on/W,,a?¢ vs. normalized open-

ing displacement 6/a.
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ized core cutoff radius b/a for fixed 6 and a and 6 > a.
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We may thus conclude that the heuristic scaling relations (5.9) and (5.10)) are indeed born

out by the finite-element calculations. By extension, the finite-element calculations thus

lend support to the scaling of the fracture energy (5.15) and the critical energy-release
rate (5.16)).
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6. Concluding remarks and future work

In this work, a simple one-parameter macroscopic model of distributed damage and frac-
ture of polymers was derived. A first underlying assumption is given by the fact that the
material behavior has two components, local and nonlocal. The local component char-
acterizes the behavior of large material samples deforming uniformly, and it represents
the configurational statistics of a polymeric chain network in the thermodynamic limit.
In order to account for damage, the classical network theory was extended by assuming
that the chain bonds have a finite strength. It was shown that, for large deformations, the
corresponding deformation-theoretical free energy has zero growth, i. e., it is bounded
above and below by a constant. In polymers undergoing fracture, it was assumed that
this inherently unstable behavior is held in check by a second fundamental property,
viz. the fractional strain-gradient elasticity. A further assumption is that the non-local
component of the material behavior is characterized by fractional strain-gradient elastic-
ity with linear growth in the strain gradient. This latter growth assumption allows for
deformation jumps across sharp interfaces. Under these conditions, it was shown that
fracture emerges as the net result of two competing effects: localization of deformation
to failure planes promoted by the zero-growth of the local energy, and the stabilizing
effect of fractional strain-gradient elasticity. We specifically derive optimal scaling laws
for the macroscopic fracture energy in the form of matching upper and lower bounds.
The macroscopic fracture model that results from the optimal scaling analysis is char-
acterized by a single parameter, namely the critical energy-release rate. Conveniently,
such a model is amenable to a straightforward numerical implementation by recourse to

material-point eigenerosion, an averaged material-point erosion scheme that is known to
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converge in the limit of zero mesh size. The range and fidelity of the damage and fracture
criterion formulated in the foregoing was demonstrated by means of an example of ap-
plication: Taylor-impact experiments of Mock and Drotar| [2006] on polyurea specimens.
Remarkably, despite its simplicity, the model captures qualitatively both patterns of dis-
tributed damage and cracking or tearing over the experimental range of impact velocities.
The simulations are also in fair agreement with quantitative metrics such as the specimen

length, and exhibit robust convergence with respect to mesh size.

The essential role of the intrinsic length ¢ in determining the optimal scaling behavior is
particularly noteworthy. Thus, if € = 0, i. e., if the material is local, then it can be seen
from that the energy is bounded above by a bound that is linear in a, the fibril spac-
ing. Evidently, the least upper bound is then zero, and is attained for a = 0, in agreement
with (3.30), i. e., the energy relaxes to zero as a result of localization of deformations to a
negligibly thin band. Thus, in the absence of an internal length scale the fracture energy
degenerates to zero, as expected from the sublinear growth of the energy, and the solid
can fracture spontaneously at no energy cost. This unstable and pathological behavior
of the local energy is stabilized by the non-local energy. Indeed, the lower bound
shows that, with ¢ > 0, fracture indeed requires a well-defined energy per unit area, or
specific fracture energy. The antagonistic roles of sublinear energy growth, characteristic
of polymers undergoing damage, and fractional strain-gradient elasticity in shaping the

effective fracture properties of the material are remarkable.

Furthermore, a different cazing model using full derivatives of the deformation gradient
and a core cut-off was presented. By means of the simple example of the expansion of a
hollow cylinder in an incompressible material, it was shown that strain-gradient elasticity
regularization is feasible provided that a core of a small but finite radius is assumed along
the nucleation sites of the fibrils. Based on heuristic arguments, scaling relations for the
local and nonlocal energies attendant to crazing were derived, as well as for the specific

fracture energy thereof. Finally, finite-element calculations were presented that bear out
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the heuristic scaling relations, whereby numerical implementation was achieved via a
jump regularization model taking into account the jumps in deformation gradients across
element interfaces. By means of uniaxial tensile simulations, it was shown how the non-
local regularization model stabilizes the effect of localization to failure planes. Moreover,
based on a simulation of craze formation, scaling properties of both local- and nonlocal

energy contributions were verified.

A main value of the theory and the scaling analysis presented here resides in the concep-
tual framework that they set forth as regards the dependence of the macroscopic fracture
properties of polymers on micromechanical parameters. Thus, we find that the critical
energy-release rate G, is in direct proportion to the saturation local energy density W,
the square root of the intrinsic length ¢ of strain-gradient elasticity and to the square root
of the critical opening displacement 6, for fibril failure, and it diverges logarithmically
if the core cut-off radius b tends to zero. These dependences stand to reason since W,
measures the extent of energy dissipation attendant to damage, ¢ sets the scale for the
non-local regularization, 6. provides a measure of the ultimate strength of the fibrils,
and b sets the scale of the logarithmic energy barrier for nucleation. Thus, the scaling
laws supply a valuable link between micromechanical properties and macroscopic frac-
ture properties of polymers. In particular, they reveal insight into the relative roles that
surface energy, chain elasticity, and damage play as contributors to the specific fracture

energy of polymers.

The experimental validation presented here suggests that a very simple model of bulk
behavior and fracture suffices to characterize qualitatively, and to a fair quantitative de-
gree, complex aspects of the dynamic behavior and failure of polymers, including large
deformations, patterns of distributed damage, and fracture patterns. It should be re-
marked that the preponderance of fracture mechanics pertains to materials that undergo
small overall deformations, be they elastic or plastic. Thus, the ability of the model to

characterize fracture in solids undergoing exceedingly large deformations, including the
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retraction of cracks upon unloading, is remarkable. The ability of tensile tests to supply
estimates of the critical energy-release rate, also in the context of very large deformations,
is also noteworthy. While its qualitative predictiveness and micromechanical foundations
lend strong support to the overall modeling framework, further modeling enhancements

may be desirable with a view to improving its quantitative fidelity.

In order to further elucidate desirable properties of elastomeric polymers, e.g., the high-
pressure strength of polyurea, future work will include investigations below the scale of
the continuum level. Hereby, for example a maximum-entropy approach could be used
in a molecular dynamics framework. Its capability for the study of the long-term macro-
scopic behavior of complex multi-species systems mediated by slow, coupled, thermal-
mechanical-chemical processes at atomistic scales enables the simulation of isentropic
deformations of polymers at high pressures. Hereby, the max-ent approach will enable
consideration of a much broader range of strain rates, from quasistatic to high-strain be-
havior, and temperatures, including isentropic temperature excursions, entropic effects
and dissipation due to heat conduction at the nanoscale, than currently accessible to con-
ventional molecular dynamics. These simulations could elucidate a number of funda-
mental aspects of the pressure-dependence of strength in polymers, including the role of
free volume, dynamic atomic bond formation and breaking, local thermal relaxation, and
others. Furthermore, the simulations represent a powerful tool for developing advanced

constitutive models for use in computational mechanics codes.

Future work in the field of mathematical analysis lies in the derivation of a full model of
fracture, which goes beyond the methods of optimal scaling presented in this thesis. As
described in Section |3} the current analysis focuses on a specific example of deformation,
viz., a slab divided into unit cells under opening displacements. A further development
would be the description of fracture under general loading conditions (e.g., mode I/II
loading, to name prime examples of loading conditions in fracture mechanics). Gener-

alizing the analysis from specific cases to arbitrary loading conditions would thereby, in
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the mathematical description, correspond to the derivation of a full I'-limit.

With regard to the area of constitutive modeling, enhancements of the current material
model for polyurea may be achieved by including the material’s temperature dependence
as well as a consideration of more elaborate chain models for the polymer’s free energy.
However, from the standpoint of fracture mechanics, the exploration of different chain

models is expected to merely influence optimal scaling constants.

Finally, future directions in the area of numerical modeling include the implementation
of fractional strain-gradient elasticity models based on mathematical representations of
fractional norms. Such implementations would open the field to numerical calibrations

of the optimal scaling constants analytically derived in Section
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A. Preliminaries

In this appendix, the basics of tensor algebra and analysis as well as the fundamentals of
continuum mechanics are reviewed. This provides a brief overview of the mathematical
and physical framework on which this thesis is based. For more details, the reader is

refered to, e.g., [Fliigge, |1972]] and [Holzapfel|, 2000].

A.1l. Vector and tensor fundamentals

A.1.1. Basis representation and summation convention

In this thesis, vector and tensor quantities are denoted by bold symbols, where lowercase
letters are used for the former and uppercase letters are used for the latter. Furthermore,
a restriction to an orthonormal and time-invariant basis in the three-dimensional Eu-
clidean vector space R3, described by a Cartesian coordinate system, will be employed for

simplicity. The collection of basis vectors
B ={G1, G, Gs} (A.1)

hence enables the representation of a vector v with components v; in three dimensions as

3
V= ZviGi = viGi. (AZ)
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Throughout this thesis, Einstein’s summation convention is assumed [Fliigge}, [1972], stat-
ing that repeated indices that appear twice in a term are to be summed (where the upper

summation bound is set by the number of dimensions).

These repeated indices (called dummy indices) are to be distinguished from free indices,
which only appear once in a single term and whose total number determines the order of
a tensor. A term containing no free index denotes a scalar, whereas one and = free indices

represent vectors and tensors of order n, respectively.

A.1.2. Vector and tensor operations

The Kronecker delta, defined by

1, ifi=j
6;i=G;-G; = (A.3)
0, otherwise,

admits the definition of the inner product of two vectors (also known as scalar product)

via

u-v= uivj(Gi-Gj):uivi. (A4)

The outer product of two vectors (often referred to as tensor or dyadic product) is defined

by

(uv)w=u(v-w) (A.5)

and results in a second-order tensor

T:u®V:Mi7}]‘GZ‘®G]':TZ']‘Gi®G]‘- (A.6)
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The action of a second-order tensor onto a vector defines a linear mapping via

Tu= (TijGi ®G]')uka = TijGi(Gj : uka) = TijukéjkGi = Ti]-ujGi. (A.7)

Analogously, the multiplication (or composition) of two second-order tensors

ST = (SikG; ® G)(T1;G; ® Gj) = Sik 1101 (G; ® G) = i1 T1(G; ® G;) (A.8)

defines a composition of two mappings, i. e.

STu=So(Tu). (A.9)

By exploiting the properties of the aforementioned linear mapping, the individual com-

ponents of a second-order tensor are obtained via

T;; = G; - TG;. (A.10)

Consequently, tensor components T;; depend on the chosen basis, whereas tensor T is

invariant and therefore constant under coordinate transformations.

Altogether, these rules define the most common relations between tensors T and S, vec-

tors u and v, and scalar m:

distributive law T(u+v)=Tu+Tyv,
associative law T(mu) = m(Tu),
associative law (TS)u =T(Su),
distributive law (T+S)u =Tu+ Su,
commutative law T+S=S+T,
distributive law T(S+V)=TS+TV,
associative law T(SV)=(TS)V,

and in general TS = ST.
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The relation u - Tv = vITu defines the transpose TT of a tensor T with components
p P

)T:T~-

(T' ji

i )7 =uv;, (A.11)

or (Ml"l)]' j

from which the following rules can be deduced:

(Tij+Sij)" =T, +S) = Tji + Sy,

(T,;))" =Ty,
(T;;Sjk)" =Tx;Si- (A.12)
Symmetric and antisymmetric second-order tensors are defined by
T;j = Tj; if T is symmetric (A.13)
T;j =-T; if T is antisymmetric.

Furthermore, one abbreviates the symmetric and skew-symmetric parts of a tensor T as,

respectively,

1
(symT);; = E(Tij +T), (A.14)

1
(SkWT)l] = E(T -

ij Tji);

If the linear mapping associated with tensor tensor T is injective, the inverse T~! is intro-

duced such that
TT=TT"! =1, (A.15)
so that the inverse of a composition of mappings follows as

(TS)t =s7i171, (A.16)
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In addition, special relations hold for rotation tensors R € SO(d) (i. e., tensors that belong

to the special orthogonal group) since

RR!=RRT =1 (A.17)

A special tensor quantity (which is also a tensor invariant), denoted as the trace of a tensor,

is defined according to
trT =T;, (A.18)
along with the relations

tl'(ll ®V) = 1/[1'7/]'51']' =u;v;=u-v,
trT=trTT =T; and

tr(T+S)=trT +trS. (A.19)

By recourse to the Kronecker delta defined above, the inner product of two second-order

tensors (also known as double contraction) can be introduced as
T-S=(T;;Gi®G;) (SkGk®Gy) = T;;Sxi(G; - Gi)(G - Gy) = T;Sk16i0j1 = Ty Skr, (A-20)
which leads to the following relations:

tr(ATB) = tr(AB;j) = Ak B;joxj = A;jBij,
(u®v) - (W®z)=(u-w)(v-z) = u;w;vjz; and

(u@Vv)T(Ww®z) = (vi Tyw)u;v;. (A.21)

As a special case, the norm of a tensor of arbitrary order (including vectors and tensors)
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is defined via
IT|=VT-T, (A.22)

which for a vector v yields |v| = 4\/v;v;, and for a second-order tensor T we have [T| =

The definition of the cross product of two vectors (also known as vector product) requires

the introduction of the permutation symbol

1, ifi,j,kis a cyclic (even) sequence

€ijk =\—-1, 1ifi,j,k is an anticyclic (odd) sequence

0, ifi,j,kis an acyclic sequence.

The vector product is then obtained as

uxXv= MinGi X G] = eijkuiijk,

for which helpful relations include

€ijk€imn = 5jm6kn - 6jn6kml
(WX V); = €jxujvg = —€jxjujvx = —€;jxurv; = —(veu); and

(uxv)-w=u-(Vvow).

Furthermore, the determinant of a second-order tensor T can be defined by

detT =€k Ti1 Tj2 Ty3

(A.23)

(A.24)

(A.25)

(A.26)
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with relations

detTS =detTdetS,

detTT =detT,

det(u®v)=0. (A.27)

A.1.3. Tensor analysis

Finally, let us review rules of differentiation with respect to vector and tensor quantities.

To this end, the Gateaux derivative
d
D(®)v = d—@(x+ev) (A.28)

is introduced as the slope of @ at point x into the direction of v. A formal definition of

the gradient of a scalar field is then given by
grad®(x)-v = D(D)v, (A.29)

which leads to the components of the gradient

(grad®); = acapf), (A.30)
with

8xi

% :51']' :xi’]'. (A31)

]

Here and in the following, a comma in an index implies differentiation with respect to

the coordinates following the comma. Generalizing the gradient to arbitrary tensors and
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furthermore introducing the divergence and curl operators for arbitrary (continuously dif-

ferentiable) fields, we have

grad(-)=(-); ®G;,
div()=(-);-G; and

curl(-) = =(+) ; x G,

(A.32)

(A.33)

in which (-) denotes tensors of any order. The del and Laplace operators are then intro-

duced as

del operator: Vo()=5=0G,,

Laplace operator: A(-) = div(grad(:)) = (*) kk-

General tensor derivatives then follow as

() _ _90)
JT aTz]n

For second-order tensors we thus have

aAii 8trA
A oA

and

IT;T,

‘ Jtr(TTT)
L= 0ik0j1Tij + T;joir0j1 = 2Ty or — 7 =D2T.

Without proof it should also be mentioned that

ddetT
T

=T 'detT = cof T.

. oT, ‘
®G;®G;®..0G,  with DBl = §4iOpjeOdn-

(A.34)

(A.35)

(A.36)

(A.37)

(A.38)
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A.2. Review of continuum mechanics

Application of the theory of continuum mechanics rests upon the basic assumption that
a body can be treated as a continuum (described by a continuous position vector x) with
material properties described by continuous functions (except at a finite number of inte-
rior surfaces). Although this theory is a simplification of the underlying discrete nature
of matter, such an approximation is valid if the length scale of interest L is significantly
larger that the largest scale I describing the material discreteness so that L >> [. In this
case, a continuous body may be assumed, whose properties at a material point are un-
derstood as averages over length scales [ with [ << I << L. Under the assumption of a
continuous body with material properties defined by continuous functions, mathemati-
cal laws governing the kinematics of deformation can be derived. In the following, both
cases of large (finite) and small (linearized) deformations will be considered, whereby
linearized kinematics are derived as a special case of the general theory of finite kine-
matics. The following gives a brief summary of the governing equations of continuum

mechanics; for a detailed review the reader is referred to [Ortiz, [2012].

A.2.1. Finite kinematics

A body (), whose state is changing from an undeformed reference configuration into its
deformed configuration (), is shown in Figure whereby ¢ denotes the deforma-

tion mapping
p: Q>R (A.39)

Here and in the following, upper-/lower-case letters are used to denote quantities in the
reference/deformed configuration, respectively. Material points X in the reference and

spatial points x in the deformed configuration are thus connected via the mapping x =
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Figure A.1.: Deformation mapping ¢ between a body in the reference configuration Q
and its deformed configuration ¢((2).

@(X), which is required to be injective so that two different points in (2 do not map onto

the same point in ¢(Q). It is furthermore required that ¢! : p(Q) — Q exits.

Velocity and acceleration fields in both the material (Lagrangian) and spatial (Eulerian)

framework can then be written as

J
V(X,t) = a—‘f(x, ),
IV
A(X, t) = E(X, t),

Lagrangian framework

and

v(x,t) = V( _1(x, t))=Vo _1(x, t),
¢ ¢ Eulerian framework

a(x,t)=A(p l(x, 1) = Ao @l (x1),

In keeping with our previous definition, uppercase letters are used for the material and
lowercase letters are used for the spatial description. It is furthermore desirable to de-
fine the material time derivative for a general time-dependent spatial function f(-,t) :

@(B,t) > R?, t € [t1,1,] as

Df of of

E = E + a—xj'l/]', (A40)

which denotes the rate of change of f at a fixed X and thus enables the calculation of,
e. g., the spatial acceleration in fluid mechanics without the introduction of a reference

configuration, viz. a = Dv/Dt.
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Following the principle of local action, any nonlinear deformation can locally be regarded
as being affine, and thus as a transformation that preserves points, straight lines, and
planes. An expansion of the position vector within an infinitesimal neighborhood of X
gives

_ Ip;
dx; = a—X](X)dX,. (A.41)

The deformation gradient F(X) [Ortiz, 2012] at X can now be introduced as

0Q:
Fip(X) = agg; (%) (A.42)

and will subsequently be used to calculate metric changes. For changes in length, stretch

ratios A in the direction of N follow from
A%(N)=N-CN, (A.43)

where C = FTF denotes the right Cauchy-Green deformation tensor. Furthermore, the

Green-Lagrange strain tensor E and extensional strains €(N) are introduced as
1
E= E(C_I) (A.44)
and

e(N)= VN-CN-1. (A.45)

In addition, changes of angle, volume and area are given by, respectively,

_ M-CN dv 3 lda| /7=
COS(P(N,M) = W’ W =detF = ] and |dA| = ] N-C N, (A46)
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with N being the unit normal vector on the oriented infinitesimal area segment dA.

Rotations define a special class of linear mappings that preserve local metrics (such as
lengths and angles). Rotations in R? are defined by the angle of rotation, whereas rota-
tions in R? can be described by an angle as well as an axis of rotation. For the former,

rotation matrices assume the form

cos —sin
R= ¢ ¢ (A.47)
sing cos@

and for the latter case, rotation matrices are defined by components
R;jj =ejej +(0;; —ejej)cos p + €;j 1 sin (A.48)
with angle of rotation
1
cosQ = E(trR -1), (A.49)

while the axis of rotation e has components

_R3p—123
=
2sing
ey = Ris =Ry and
2 2sing
Ry —-R
€3 = M (ASO)
2sing

The deformation gradient F thus contains all information necessary to describe the local
state of deformation. However, the existence of a corresponding deformation mapping ¢
is only guaranteed if certain compatibility conditions are satisfied. In general, any tensor
field F is compatible over a domain U if there exists a mapping ¢ : U — B® such that

F = Grad @ and F;; = d¢;/dX;. Here and in the following, the capital letter of the gradient
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operator (and analogously all differential operators) denotes that derivatives are taken
with respect to coordinates in the reference configuration. As a necessary (pointwise)

condition of compatibility, the deformation gradient must satisfy
curl F=0. (A.51)
The sufficient (domainwise) condition of compatibility requires that

curlF=0 in U. (A.52)

In case of discontinuities across material interfaces, the deformation gradient must satisfy
compatibility in the sense of Hadamard (also known as rank-1-compatibility). The jump
in F across an interface S (written as “Pi}” = a;Nj, whereby Nj is the unit normal onto

the interface) must satisfy

[Fs]| T =aiNyTy=0 v Tes. (A.53)

A.2.2. Linearized kinematics

The theory of finite kinematics as outlined in can be simplified for cases of small
deformation by linearizing the relations derived above. Most generally, material points

in the deformed configuration are described by the position vector
x(X) = X+ u(X), (A.54)

where u denotes the displacement field and strains are small (gradu ~ Gradu « 1). For a

general field G(¢), we can introduce the linearization

G(p +u) =G(@)+DG(@)u+h.o.t. (A.55)
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and neglect all higher-order terms. The Gateaux derivative DG(¢)u is defined by

G(p+u)=G(@)+DG(p)u=G(p)+ %G((p+€u) N (A.56)

Application of this linearization procedure to the deformation gradient F about the un-

deformed configuration now gives

FxI+gradu (A.57)
and the right Cauchy-Green tensor follows as

Cx~I+2e=1I+2(gradu+ graduT), (A.58)

so that linearization of the Green-Lagrange strain tensor E = 3(C-I) ~ ¢ yields the small-
strain tensor €. For cases in which &€ = 0, linearized rotational deformations continue
to be rotations (which implies that the perturbed spatial deformation gradient is skew-

symmetric, i. e. F = —FT).

Metric changes such as changes of length, angle and volume now follow as, respectively,

€(N)=N-eN,
y(N,M) = 2N - eM (A.59)
and
j—; =1+tre. (A.60)

Finally, it is desirable to find compatibility conditions analogous to CurlF = 0 in the

linearized framework. Compatibility requires the existence of a field u such that ¢;; =
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Linearized kinematics Rates
Displacement u; Spatial velocity V;
Displacement gradient uij = Bij Spatial velocity gradient lij=vi;
Strain = %(ﬁ” +Bji) Rate of deformation dij = %(li]- +1;;)
Rotation = %(ﬁl] Bii) Spin w;j = %(lij ~1;;)

Table A.1.: Deformation measures in linearized kinematics and corresponding deforma-
tion rates.

%(ul j +u;,i). The infinitesimal rotation tensor w is introduced as

1

a)i]' = E(ui,j—uj’i) (A61)
so that
gradu = w + €. (A.62)

From the Schwarz integrability condition [Ortiz, 2012], small-strain compatibility follows

as

curl (curle) = 0. (A.63)

A.2.3. Rates of deformation

For any deformation measure G(¢) moving with velocity v, the associated deformation

rates are given by

. d
Glp,) = EG((Pt) =DG(g,)¢, =DG(@,)v;. (A.64)

Deformation measures previously derived in the linearized kinematics framework can

thus be used to find their corresponding rates as shown in Table
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A.2.4. Conservation laws

In the preceding sections, motions of solids and fluids were described in purely kinemati-
cal terms and without taking into account that these motions must obey the fundamental
laws of thermodynamics. The following sections are therefore dedicated to establishing
conservation laws, which will for the purpose of generality be formulated in both Eule-

rian as well as Lagrangian frameworks.

Let the Lagrangian and Eulerian mass densities per unit undeformed and deformed vol-
ume, respectively, be denoted as R: B— R and p: ¢(B) — IR, respectively. Enforcing that

the mass of a body B remains constant throughout the deformation gives the condition

m(B,t):JRdV:J pdv:fp]dV = R=p]. (A.65)
B @(B,t) B

Furthermore, conservation of mass in Lagrangian form requires that

dm d ) )
E(B,t)_EJBRdV_LRdV_O = R=0, (A.66)

whereas the local statement of mass conservation in spatial form evaluates to

p+pdivv=0. (A.67)

With linear momentum of a simple body defined by

L(V)= J RVAV = J pvdv, (A.68)
v p(V)

its change with time must equal the resultant force F(V) of all forces acting on V, such

that linear momentum balance requires

dL

— (V) =E(V), (A.69)
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Here, the resultant force F(V) includes body forces as well as surface tractions according

to

F(V):J RBdV+J T(N)dS:J pbdv+f t(n)ds, (A.70)
v A% (V) dp(V)

whereby RB and pb denote body forces per unit mass in the material and spatial config-
urations, respectively, and similarly T(N) and t(n) denote tractions in the material and
spatial configurations. In Lagrangian form, the local statement of conservation of linear

momentum therefore follows as
RA =RB +DivP, (A.71)

with acceleration A, traction components T;(N) = P;;N;, and P,; denoting the components
of the first Piola-Kirchhoff stress tensor P representing forces in the deformed configura-
tion normalized by the undeformed area on which they are acting. In Eulerian form, in

contrast, the local statement of conservation of linear momentum reads
pa=pb+divo, (A.72)

where o is the Cauchy-stress tensor, which comprises tractions in the deformed configu-
ration (¢; = 0;;n;) acting on areas in the deformed configuration. The first Piola-Kirchhoff

and the Cauchy stress tensor are related via

o =] 'PF’, (A.73)

Analogously, the angular momentum G and the resultant moment M of all forces can be

defined (in the deformed configuration) as

G(v) = J xxpvdv, (A.74)
¢)
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and

M(v) :j xprdv+J xxt(n)ds (A.75)
P(v) dp(v)

respectively. The change in angular momentum over time must satisfy

%G(v) =M(v), (A.76)

which after some algebraic manipulations leads to the requirement that the Cauchy stress
tensor for simple bodies must be symmetric (this excludes special continua such as e.g.

Cosserat materials whose microrotations are taken into account):

o=ol. (A.77)

In general, one distinguishes extensive variables, whose values are added when two iden-
tical systems are combined (e.g. mass m), and intensive variables, whose values remain
constant when two identical systems are combined (e.g. temperature T). Important ex-
tensive variables in the derivation of conservation laws are the kinetic energy K of a

simple continuum V (without any rotational inertia)

K(V)= J lR|V|2 dV = J lp|v|2 dv, (A.78)
v2 (V) 2

where V and v denote mean material and spatial velocity fields, as well as heat Q, whose
change over time results from heat flux H(N) (or equivalently h(n) in the Eulerian frame-

work) and heat sources, i. e.

H(N)dS = f

Q(V) = f RS,dV —
v ¢

OSh dv—j h(n)ds (A.79)
A% (V) P(dV)

with heat source density S;, in material form, and s;, being its spatial counterpart. Fur-
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thermore, the external power as the sum of body forces and tractions is
PE(V):f RB-VdV+J T(N)-VdS:J pb-vdv+j t(n)-vds. (A.80)
14 v (V) dp(V)
The deformation power is defined by
PP(vy=PE(V)-K(V) (A.81)

and denotes the amount of externally applied power that does not lead to a change in

kinetic energy. The integral form of PP(V) in a Lagrangian framework gives
PD(V):J P-FdvV, (A.82)
1%
which implies that P and F form a work-conjugate pair. Similarly, the spatial form
PPw) = f o-ddv (A.83)
(V)

shows that the Cauchy stress tensor o and the rate-of-deformation tensor d are work-
conjugate. An overview of work-conjugate pairs can be found in Table and a sum-
mary of stress measures is given in Table

Stress P|S|o
Rate of deformation | F | E | d

Table A.2.: Overview of work-conjugate pairs.

Stress Name Configurational space Symmetry
0ij Cauchy % symmetric
Py First Piola-Kirchhoff m - not symmetric
Sy Second Piola-Kirchhoff | foree (mapped ;nggﬁg:ij configuration) symmetric

Table A.3.: Summary of stress measures.
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With the previously-defined deformation power, the first law of thermodynamics can be
stated as an exact conversion from external power and heat input into internal or kinetic

energy according to

E(V)+K(V)=PE(V)+Q(V). (A.84)

From Equation it follows that the internal energy E(V) is an extensive variable,
which leads to defining an internal energy density per unit mass (denoted as U and u in

the material and spatial configuration, respectively), viz.

E(V):J RUdV:j pudv. (A.85)
|4 P(V)

Similarly to the cases of conservation of mass and linear momentum, the conservation of
energy can also be expressed in local form. To this end, a combination of Equations
and [A.85|together with the definitions of external and deformation powers gives

4 RUdV:f PFdV+J RS, dV — (N)dS. (A.86)
dt Jy 1% 1% v

In analogy to the previous derivations of local conservation laws, the use of stress/traction
relations, Cauchy’s tetrahedron law, and the divergence theorem leads to the local state-

ment of energy balance in material and spatial forms as, respectively,
RU =P-F+RS,-DivH (A.87)
and

pti =0 -d+ps,—divh. (A.88)
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The introduction of the second law of thermodynamics requires a number of additional
preliminaries such as a definition of thermodynamic systems and their respective equi-
librium states. A thermodynamic system denotes a collection of matter characterized by a
constant chemical decomposition, and a closed thermodynamic system is one that does not
exchange matter with its exterior. Such a system is in uniform thermodynamic equilibrium
if its intensive properties are independent of position and, furthermore, all properties of
the system are independent of time. Internal variables Q are required to define the state
of a thermo-mechanical system in addition to F describing kinematics and E describing
the energy of a system. Examples include microstructural information or deformation
history. A system is in thermal equilibrium it two different initially equilibrated systems

remain in equilibrium after being placed in contact.

With these definitions at hand, the zeroth law of thermodynamics states that if two systems
A and B are both in thermodynamic equilibrium with a third system C, then it follows
that system A is in thermal equilibrium with system B. Introducing the empirical tem-

perature © as a state variable, the zeroth law of thermodynamics may be written as

O(A)=O(C)AO(B)=0O(C) = ©(A)=0O(B) (A.89)

The state of a system can thus be defined by a collection of state variables {F,©,Q},
whereby their transition over time {F(t),©(t),Q(t)} for t; <t < t, defines a thermodynamic
process. A thermodynamic process is reversible if its internal variables do not change with
time, the process is quasistatic (so that no kinetic energy is turned into heat by dissipa-
tion), and each state during the process denotes a uniform thermodynamic equilibrium.
It has furthermore been shown via empirical observations that there exists an absolute
temperature T(©) that can be uniquely defined up to a constant, so that

2
Sz = Sl +J d—Q (A90)
1 T
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along arbitrary reversible paths 1 — 2, and dS = dTQ denotes a total differential. As a
result, S must be a state variable that is known as the entropy of a thermodynamic system.
The foregoing can also be generalized to irreversible processes according to

Q

gint —g_ < A.91
T ( )

where $, S and % are the internal entropy production rate, the rate of entropy increase
in the system, and the external entropy supply, respectively. It follows that for reversible
processes, S = 0. For irreversible processes (including e.g. heat conduction and viscous
flows), empirical observations have shown that Sint > (), based upon which the second law

of thermodynamics for irreversible processes can be expressed as

§int =58t >, (A.92)

Viscosity is an important example that must be taken into account when modeling mate-
rials whose state of stress does not only depend on {F,®,Q}, but also on F; polymers are
prime examples for materials that display pronounced viscous effects. Equilibrium stress

P¢ and viscous stress P? are defined by, respectively,

P‘(F,0,Q)=P(F =0,F,0,Q) (A.93)
and

P'(F,F,0,Q) =P -P°, (A.94)

The second law of thermodynamics (in local form) applied to viscous materials implies

that

P"-F>0. (A.95)
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In order to derive a continuum description of entropy, temperature and the second law
of thermodynamics, each material point may be defined as a thermodynamical system.
The absolute temperature in Lagrangian and Eulerian form is thus given by T(X,t) and
O = T(p(X,t),t), and entropy densities are described as N(X,t) and n = N(@(X,t),t) in
material and spatial configurations, respectively. Following the definition of the external

entropy input by Truesell and Noll, we define

. RS H-N h
gext(y f Soh gy - J =N s = J ﬂdy—J 20 s, (A.96)
T ov © spv ©
which yields the Clausius-Duhem inequality in Lagrangian form,
RS H-N
—JRNdV J —hav o+ f —— 520 (A.97)

and in Eulerian form,

d

L ndv - Pk gy + honeso (A.98)
d P 0 0

tdev) P(V) I(V)
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