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Abstract 

 The E‒H bond activation chemistry of tris-phosophino-iron and -cobalt metallaboratranes is 

discussed. The ferraboratrane complex (TPB)Fe(N2) heterolytically activates H‒H and the 

C‒H bonds of formaldehyde and arylacetylenes across an Fe‒B bond. In particular, H‒H bond 

cleavage at (TPB)Fe(N2) is reversible and affords the iron-hydride-borohydride complex 

(TPB)(μ‒H)Fe(L)(H) (L = H2, N2). (TPB)(μ‒H)Fe(L)(H) and (TPB)Fe(N2) are competent 

olefin and arylacetylene hydrogenation catalysts. Stoichiometric studies indicate that the B‒H 

unit is capable of acting as a hydride shuttle in the hydrogenation of olefin and arylacetylene 

substrates. The heterolytic cleavage of H2 by the (TPB)Fe system is distinct from the 

previously reported (TPB)Co(H2) complex, where H2 coordinates as a non-classical H2 adduct 

based on X-ray, spectroscopic, and reactivity data. The non-classical H2 ligand in 

(TPB)Co(H2) is confirmed in this work by single crystal neutron diffraction, which 

unequivocally shows an intact H‒H bond of 0.83 Å in the solid state. The neutron structure 

also shows that the H2 ligand is localized at two orientations on cobalt trans to the boron. This 

localization in the solid state contrasts with the results from ENDOR spectroscopy that show 

that the H2 ligand freely rotates about the Co‒H2 axis in frozen solution. Finally, the (TPB)Fe 

system, as well as related tris-phosphino-iron complexes that contain a different apical ligand 

unit (Si, PhB, C, and N) in place of the boron in (TPB)Fe, were studied for CO2 hydrogenation 

chemistry. The (TPB)Fe system is not catalytically competent, while the silicon, borate, 

carbon variants, (SiP
R

3)Fe, (PhBP
iPr

3)Fe, and (CP
iPr

3)Fe, respectively, are catalysts for the 

hydrogenation of CO2 to formate and methylformate. The hydricity of the CO2 reactive species 

in the silatrane system (SiP
iPr

3)Fe(N2)(H) has been experimentally estimated.  
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2 

1.1 Motivation 

Metal catalyzed bond forming and bond cleavage reactions have played a large role in the 

growth of organometallic chemistry for decades.
1
 These bond forming and bond breaking 

transformations require the formal transfer of multielectron equivalents. Noble metals, such as 

ruthenium, rhodium, iridium, palladium, and platinum, have proven to be particularly adept at 

catalyzing these reactions. This is in part due to the predisposition of noble metals to undergo 

controlled multielectron processes. The hydrogenation of unsaturated E=C bonds is the 

prototypical two-electron bond forming reaction catalyzed by organometallic complexes. Thus, 

the principles of hydrogenation chemistry can provide a framework by which to understand 

related metal-catalyzed bond forming and bond breaking reactions.  

The discovery of RhCl(PPh3)3 (Wilkinson’s catalyst)
2-3

 is one of the most important 

developments in hydrogenation chemistry. The catalyst can operate at ambient temperatures 

and pressures in the presence of ethanol as a co-solvent. It rapidly hydrogenates unconjugated 

olefins and acetylenes and is selective for the hydrogenation of olefins in the presence of ester, 

ketone , and nitroarene functional groups.
4
 The kinetics for olefin hydrogenation by the 

Wilkinson system has been extensively studied by Halpern.
5-6

 The core of the catalytic cycle 

deduced from Halpern’s studies is shown in Scheme 1.1A, and it illustrates some of the 

features of a classical (hydrogen-first) hydrogenation mechanism. Notable in the catalytic 

cycle are the controlled two electron steps that cycle the metal center between formal Rh
I
 and 

Rh
III

 oxidation states. The Rh
I
 species B oxidatively adds H2 to afford the Rh

III
-dihydride C. 

Subsequent olefin coordination followed by migratory insertion steps afford species D and E, 
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respectively. The product alkane is then released by reductive elimination from the Rh
III

 

species E to regenerate the Rh
I
 species B and closure of catalytic cycle. Analogous 

mechanisms involving the transfer of both hydride equivalents from a dihydride intermediate, 

as in the Wilkinson system, and the similar elementary steps have been discovered for related 

catalysts. 

Scheme 1.1 Catalytic cycles for olefin hydrogenation. 

 

(A) Core of the catalytic cycle for Wilkinson’s catalyst. (B) Catalytic cycle for 

Ru(PPh3)3(Cl)(H). L = PPh3, S = co-solvent. 

 Some other catalysts for olefin hydrogenation do not involve oxidative addition and 

reductive elimination processes.
7
 For example, the Ru(PPh3)3(H)(Cl) complex (also discovered 
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by Wilkinson) is a catalyst with selectivity for the hydrogenation of terminal over internal 

olefins.
8
 The proposed catalytic for hydrogenation by this Ru

II
 catalyst is shown in Scheme 

1.1B.
9-11

 The process involves olefin coordination to a metal-monohydride species (G to H) 

followed by insertion to afford a metal-alkyl species (I). H2 coordination affords J. Release of 

the alkane product from the Ru-alkyl intermediate J to afford G occurs through 

hydrogenolysis. By avoiding oxidative addition and reductive elimination steps in the catalytic 

cycle, the ruthenium center maintains a Ru
II 

oxidation state, in contrast to the rhodium system. 

Other mechanisms for olefin hydrogenation exist,
12-14

 but like the two mechanisms shown in 

Scheme 1.1 they rely on the stability of the catalyst to two-electron processes, both with and 

without formal oxidation state changes.  

The development of well-defined late first-row transition metal complexes based on iron, 

cobalt, and nickel for hydrogenation catalysis has lagged behind that of their second and third 

row counterparts such as ruthenium, rhodium, iridium, palladium, and platinum.
15

 Part of the 

reason for this is that these first-row transition metals tend to undergo undesirable one electron 

reactivity. Reflecting this challenge is the limited number of iron,
16-26

 cobalt,
25,27-34

 and 

nickel
32,34-39

 catalyzed hydrogenations reported in the literature. Among these example, redox-

active ligand and metal-ligand cooperativity strategies have emerged as two promising 

methods to engender catalytic reactivity for these first-row transition metal complexes under 

mild conditions. 

   Chirik reported in 2004 that ligand redox-noninnocent pyridyl-diimine-iron complex, 

(PDI)Fe(N2)2 (where PDI = 2,6-(ArNC(CH3)2)C5H3N), is a precatalyst for olefin 
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hydrogenation at ambient temperature and 1 atm H2.
16

 The proposed mechanism for the 

catalytic hydrogenation of olefins by (PDI)Fe(N2)2 (Scheme 1.2) is similar to the catalytic 

cycle presented for the Wilkinson catalyst. For (PDI)Fe(N2)2, the bound olefin of the iron-

dihydride intermediate (PDI)Fe(H)2(olefin) (M) inserts into one of the Fe‒H bonds to form the 

iron-alkyl-hydride intermediate (PDI)Fe(H)(alkyl) (N). Subsequent reductive elimination of 

the product alkane from N reforms the three-coordinate (PDI)Fe intermediate K and closes the 

catalytic cycle. The redox-noninnocence of the PDI ligand in this system is significant. 

Combined experimental and DFT studies suggest that redox changes occur on the PDI ligand 

rather than the iron center during catalysis. For example, for the series of sequentially one  

Scheme 1.2 Olefin hydrogenation by (PDI)Fe(N2)2, highlighting ligand redox non-

innocence.  
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electron reduced complexes (PDI)FeCl2, (PDI)FeCl, and (PDI)Fe(N2)2, the iron centers are all 

best formulated as Fe
II
 and the ligands as PDI, PDI

1-
, and PDI

2-
, respectively.

40
 By maintaining 

an Fe
II
 oxidation state throughout the catalytic cycle, the iron center avoids an Fe

IV
 state or an 

Fe
0
 state, which may not be supported by the PDI ligand by virtue of the oxidizing nature of 

the Fe
IV

 oxidation state and the mismatch between the hard nitrogen donors and soft, low 

valent iron center, respectively.     

 Milstein showed that the (PNP)Fe (PNP = 2,6-(
i
Pr2PCH2)2C5H3N) system heterolytically 

activates H2 and catalytically hydrogenates ketones through metal-ligand cooperativity
41

 at 

ambient temperature and a mild H2 pressure (4 atm).
23

 The proposed catalytic cycle for this  

Scheme 1.3 (PNP)Fe(CO)(Br)(H) for ketone  hydrogenation, highlighting metal-ligand 

cooperativity for H‒H bond activation and hydrogenation catalysis. 

 



 

 

7 

reaction is shown in Scheme 1.3.  The precatalyst (PNP)Fe(CO)(Br)(H) enters the catalytic 

cycle through deprotonation of a benzylic C‒H proton and bromide loss to afford the five-

coordinate Fe
II
 species, (PNP*)Fe(CO)(H) (O) (where PNP* is the dearomatized, deprotonated 

PNP ligand). The ketone subsequently pre-coordinates to the iron center (P) before it inserts 

into the cis Fe‒H bond to afford the five-coordinate iron-alkoxide intermediate Q. Dihydrogen 

then adds to intermediate Q to afford R, in which the ligand is re-aromatized. Elimination of 

the product alcohol from R closes the catalytic cycle. Notable in the catalytic cycle is the 

metal-ligand cooperativity in the H‒H bond cleavage step from Q to R; a hydride from H2 is 

formally transferred to the iron center while the proton is transferred to the unsaturated, 

benzylic carbon atom. In the final elimination step that releases the alcohol product, it is not 

known experimentally whether it is the hydrogen from the Fe‒H or the benzylic C‒H that is 

directly transferred to the product. However, given the trans arrangement of the alkoxide to the 

Fe‒H, transfer of the Fe‒H is unlikely. A previous study on the (PNP)Ir analogue showed that 

D2 addition to the dearomatized (PNP*)IrX species results in the formation of syn arranged Ir-

D and benzylic C-D bonds, and that E‒H (E = CH2C(O)CH3 or H) elimination involves syn 

arranged Ir‒E and benzylic C‒D units.
42

 The data collectively suggest that in the iron system 

the H atom from the benzylic C‒H position situated syn to the alkoxide ligand is the most 

likely source of the proton on the alcohol product.   
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Metallaboratranes
i
 are a promising alternative class of complexes for bond activation and 

catalysis. The Lewis acid BR3 unit in a metallaboratrane can stabilize low valent and/or Lewis 

basic metal centers through a retrodative MB interaction. These complexes may also activate 

small molecules (e.g., N2, CO, or H2) and E‒H (e.g., C‒H, H‒H, N‒H) bonds. In a (classical) 

scenario for the activation of H2, the Lewis basicity of the metal center may react with the π-

acidic H2 ligand to afford a nonclassical H2 adduct, classical dihydride, or an intermediate 

M‒H2 species intermediate of the two extremes (Scheme 1.4A top).
46

 Alternatively, the Lewis 

basic, low valent metal and the Lewis acidic borane units can in principle work in tandem to 

heterolytically cleave the H‒H bond to afford [R3B‒H]
-
 and M‒H linkages through the formal 

transfer of H
-
 to the borane and H

+
 to the metal (Scheme 1.4A bottom, Scheme 1.4B). This 

reactivity contrasts with traditional metal-ligand cooperative H‒H bond cleavage reactions, 

such as in the Milstein example presented above, where the Lewis acidic metal center accepts 

an H
-
 while a basic site on the ligand accepts H

+
 from H2 (Scheme 1.4C).

23
 This type of 

reaction can be thought of as the “normal polarity” for heterolytic H‒H bond cleavage. 

Heterolytic H2 cleavage using a metallaboratrane is therefore a formal inversion to the polarity 

(i.e., “inverse polarity”) of traditional metal-ligand facilitated H‒H bond cleavage reactions 

(Scheme 1.4B). This strategy is reminiscent of H‒H bond cleavage using frustrated Lewis 

acid-base pairs.
47

 Given the success of metal-ligand cooperativity for hydrogenation catalysis, 

                                                 

i  The metallaboratrane terminology has been used by Hill (see ref 43) to refer to a caged structure in which 
there exists a transannular dative metal-borane interaction and three supporting heterocylic bridges. 
Historically, the "atrane" terminology has also referred to transannular interactions supported by three 
heterocyclic bridges (see ref 44 and 45).  
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the cooperativity of the borane and metal in a metallaboratrane is a promising new strategy for 

hydrogenation catalysis. In fact, catalytic hydrogenation of alkenes and alkynes using 

metallaboratranes had not been reported prior to the start of my work on the ferraboratrane 

system discussed in this thesis. 

Scheme 1.4 Heterolytic H‒H bond cleavage and hydrogenation catalysis by a 

metallaboratranes. 

 

(A) H‒H bond cleavage to a metallaboratrane results in bond H‒H cleavage (bottom) or 

H2 addition to the metal center as an H2 adduct, dihydride, or an intermediate M‒H2 

species (top). (B) “Inverse polarity” H‒H bond cleavage. (C) “Normal polarity” H‒H 

bond cleavage. 

 The following chapters of this thesis will discuss my studies on metallaboratrane facilitated 

E‒H bond cleavage and hydrogenation catalysis. I will present my discoveries from my work 

on the (TPB)M system (TPB = (TPB = B(o-C6H4P
i
Pr2)3, M = Fe or Co) (Chart 1.1) for H2 

activation in Chapters 2 and 3. The olefin and arylacetylene hydrogenation chemistry of the  

(TPB)Fe system will also be discussed in Chapter 2. Chapter 4 will discuss the CO2 
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hydrogenation chemistry of the (TPB)Fe and related iron-systems. For the remainder of this 

chapter, I will discuss some relevant aspects metallaboratrane and iron-hydride chemistry. 

Chart 1.1 General forms of (TPB)MX and (
R
DPB

Ar
)MX complexes. 

  
   

1.2 X‒Y Bond Activation and Hydride Transfer Using Metallaboratranes 

1.2.1 Precedent for X‒Y Bond Activation  

 Examples of bond activation by metallaboratranes are limited. Parkin reported the first 

example of X‒Y bond cleavage across a M‒B interaction in a metallaboratrane.
48

 The 

ferraboratrane B(mim
tBu

)3Fe(CO)2 complex (B(mim
tBu

)3 = tris(2-mercapto-1-tert-butyl-

imidazolyl)-borane) undergoes a formal 1,2-addition of halogen containing X‒Y bonds to 

afford (XTm
tBu

)FeY (XTm
tBu

 = tris(2-mercapto-1-tert-butylimidazolyl)-X-borate) (Scheme 

1.5A). Notable for this transformation is the breaking of the Fe‒B bond. In contrast, Hill 

reported that the addition of halogens to the platinum analogue, B(mim
tBu

)3Pt(PPh3), do not 

result in Pt‒B bond breakage (Scheme 1.5B).
49

 Instead, oxidative addition of X2  occurs at the 

metal center to afford B(mim
tBu

)3Pt(X)2 with retention of the Pt‒B bond. The first reported 
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example of H2 addition across a M‒B interaction was from Owen for the rhodaboratrane 

B(NIn)3RhR (B(NIn)3 = tris(1H-pyrrolo-2-3-pyridin-1-yl)borane) (Scheme 1.5C).
50

 This 

system is the first example to show that alkyl ligand in a metallaboratranes can be 

hydrogenated to an alkane. It also shows that the M‒B bond can be broken to form a B‒H 

bond in metallaboratranes. However, the reaction is stoichiometric, and catalytic reactivity has 

not been reported.  

Scheme 1.5 Reactivity of metallaboratranes toward X‒Y substrates. 
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1.2.2 Background on (TPB)MX   

 Our group recently began to study the series of metallaboratranes (TPB)M
51-56,57

 and 

(
R
DPB

Ar
)M

39,58,59,60
 (

R
DPB

Ar
 = ArB(o-C6H4PR2)3; R = Ph or iPr; Ar = 2,4,6-(Me)3-Ph or Ph; 

M = Fe, Co, or Ni) (Chart 1.1). At the onset, we were focused on the coordination chemistry of 

π-acids such as N2 and CO and π-bases such as imides and nitrides trans to the boron in 

(TPB)Fe.
51-52

 In light of the limited precedent for bond activation reactivity by 

metallaboratranes, our group was motivated to study E‒H bond activations. The working 

hypothesis at the time was that the hemi-labile M‒B bond in the (TPB)MX scaffold may allow 

the boron and metal center to cleave E‒H bonds.  

The hemi-lability of the M‒B bond in (TPB)MX complexes was confirmed experimentally. 

The Fe‒B distance in (TPB)FeX extends from the DFT determined value of 2.2 Å in the iron-

dinitrogen adduct (TPB)Fe(N2) to 2.589 Å in the iron-imide (TPB)Fe(NAr).
51-52

 The Fe‒B 

bond in (TPB)FeX thus appears to be highly susceptible to the identity of the X ligand and the 

formal electron count of the {M-B}
n
 unit

ii
 ({Fe‒B}

8
 and {Fe‒B}

6
 for (TPB)Fe(N2) and 

(TPB)Fe(NAr), respectively). Between the isoelectronic (TPB)Ni
56

 and [(TPB)Cu](BAr
F

4)
55

 

complexes, the M‒B distances are also very different: 2.168 Å in (TPB)Ni and 2.495 Å in 

[(TPB)Cu](BAr
F

4). This pair of complexes shows that the Lewis basicity of the metal, by 

substitution of Ni
0
 for Cu

I
, and/or increasing the formal charge of the complex can disrupt the 

                                                 

ii  The {M‒E}n notation refers to the number of valence electrons that are formally assigned to the metal (e.g., Fe) and those 

shared with E (e.g., B). Since the M‒E bond may be covalent and the M‒E interaction is dictated in part by the ligand 

chelate and M‒E distance, the bonding electrons between M‒E are not reliably assigned to either atom. As such, the 

{M‒E}n notation tracks the number of valence electrons without assignment of valence or oxidation numbers. See ref 61 

and 62. 
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M‒B interaction. The M‒B bond distances in the (TPB)MX complexes are in contrast to the 

first row metallaboratrane complexes of B(mim
tBu

)MX (M = Fe(CO),
48

 Co,
63

 or Ni;
64-65

 L = 

CO, Cl, OAc, NCS, PPh3, N3), where the M‒B distances are consistently short (2.0 – 2.1 Å), 

regardless of the spin state and identity of M. They also contrast with the nearly static Fe‒Si 

distances in the (SiP
iPr

3)MX system,
66-67

 where the B in TPB is replaced by a Si atom in SiP
iPr

3, 

that has been extensively studied in our group. The rigid M‒Si distance in the (SiP
R

3)MX 

system reflects the stronger M‒Si bond compared to the M‒B bond. How this difference in 

M‒E (E = B or Si) bonding affects E‒H bond activation and catalysis for the (TPB)FeX and 

(SiP
iPr

3)FeX systems will be discussed in Chapters 2 and 4. 

1.2.3 E‒H Bond Activation by (
R
DPB

Ar
)MX 

 The 
R
DPB

Ar
 (Ar = Ph or Mes, R = 

i
Pr or Ph) ligand has one less phosphine donor unit 

compared to the three phosphine donor units on the TPB ligand. (
R
DPB

Ar
)MX complexes all 

show η
2
-arene or Cipso interactions between the metal and arene unit, as shown in Chart 

1.1.
39,60,68

 Compared to the M‒P bond, the M‒arene interaction is more labile. It appears that 

this lability engenders greater reactivity for (
R
DPB

Ar
)MX complexes towards E‒H bonds.  

 E‒H bond cleavage and catalysis by (
Ph

DPB
Mes

)Ni were discovered concurrently with the 

(TPB)Fe results presented in Chapter 2.  (
Ph

DPB
Mes

)Ni heterolytically cleaves the E‒H bonds 

of H‒H
39

 and R2HSi‒H
58

 to afford (
Ph

DPB
Mes

)(μ‒H)Ni(E) (E = H or R2HSi). The system is 

also competent olefin hydrogenation and ketone hydrosilation, respectively (Scheme 1.6A/B). 

The cleavage of the H‒H bond in H2 by (
Ph

DPB
Mes

)Ni is particularly noteworthy because it is 

the first well-defined example for the oxidative addition of H2 to a single nickel center. For 
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comparison, the isoelectronic (TPB)Ni does not react with H2 (Scheme 1.6C),
56

 suggesting that 

lability of one ligand arm is necessary for E‒H bond activation in these nickelaboratranes. 

 Two independent DFT studies support the cooperativity of the borane and nickel for H‒H 

bond cleavage.
59,69

 Calculations at the M06L/6-31+G* level for the model (
Me

DPB
Ph

)Ni 

system (the phenyls were replaced with methyls on the phosphines, and mesityl was replaced 

with phenyl) indicate that the lowest energy transition state (28.1 kcal/mol) for H‒H bond 

cleavage involves the formation of a B‒H bond in concert with H‒H bond cleavage (Figure 

1.1A).
59

 An alternative mechanism, where B‒H bond formation occurs after oxidative addition 

of H2 at nickel to afford a nickel-dihydride, is 9 kcal/mol higher in energy (Figure 1.1B). 

Scheme 1.6 H‒H and Si‒H bond activation reactions and catalysis by nickelaboratranes. 
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Figure 1.1 DFT calculated transition states for borane assisted and unassisted H‒H bond 

cleavage. Selected bond distances are in Å. (A) Borane assisted H‒H cleavage, ΔG
‡
 = 

28.1 kcal/mol. (B) Oxidative addition of H2 at nickel unassisted by the borane, ΔG
‡
 = 

36.9 kcal/mol. 

 E‒H bond activations by low coordinate iron
70

 and cobalt
71

 complexes are known in the 

literature. Iron and cobalt complexes of the 
R
DPB

Ar
 ligand can also activate various E‒H 

bonds. The C‒H bond activation of BZQ (BZQ = benzo[h]quinolin-10-yl) by the N2-bridged 

iron-dimer [(
iPr

DPB
Ph

)Fe]2(N2) affords the six-coordinate iron complex 

(
iPr

DPB
Ph

)(μ‒H)Fe(BZQ), which features a hydride ligand bridging the boron and iron atoms, 

as well as an interaction between the iron and ipso carbon atom of the phenyl arm of the ligand 

(Scheme 1.7A).
72

 The cobalt complex (
iPr

DPB
Ph

)Co(N2) also activates the C‒H bond of BZQ 

to afford (
iPr

DPB
Ph

)(μ‒H)Co(BZQ).
72

 In contrast to the iron-analogue, the cobalt-BZQ 

complex is pseudo-square pyramidal and does not have a Co‒Cipso interaction (Scheme 1.7B). 

It is thought that the pyridine group directs the C‒H group towards the metal center to facilitate 

bond activation. 
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Scheme 1.7 C‒H bond activation by [(
iPr

DPB
Ph

)Fe]2(N2) and (
iPr

DPB
Ph

)Co(N2). 

 

 

Scheme 1.8 Reactivity of [(
iPr

DPB
Ph

)Fe]2(N2) and (
iPr

DPB
Ph

)Co(N2) towards PhOH. 

 
 

 E‒H bond activation by [(
iPr

DPB
Ph

)Fe]2(N2) and (
iPr

DPB
Ph

)Co(N2) also extends to benzylic 

C‒H and N‒H bonds, as well as P‒H, O‒H, and S‒H bonds.
72

 Differences in their reactivity 

towards various E‒H bonds exist. One difference between the two systems is their reactivity 
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towards phenol. [(
iPr

DPB
Ph

)Fe]2(N2) reacts with 2 equiv of phenol to afford the iron-phenolate 

product (
iPr

DPB
Ph

)Fe(OPh) and 1 equiv of H2 (Scheme 1.8A). A B‒H linkage is not present in 

(
iPr

DPB
Ph

)Fe(OPh). For (
iPr

DPB
Ph

)Co(N2), O‒H activation does not occur, and phenol ligates 

through the O-atom as phenol-adduct to cobalt to give (
iPr

DPB
Ph

)Co(O(H)Ph) (Scheme 1.8B).   

 The activation of E‒H bonds has also been coupled to other bond-forming and bond-

breaking transformations. The reaction of PhSiH3 with the aminoimide 

(
Ph

DPB
Ph

)Fe(NN(SiR3)2) results in the hydrosilation of the Fe‒N bond with delivery of the 

PhH2Si group to the α-nitrogen of the imide and H to the boron atom, affording the iron-

hydrazido
1-

 species S (Scheme 1.9).
68

 The reaction of H2 with (
Ph

DPB
Ph

)Fe(NN(SiR3)2) results 

in H‒H bond cleavage, formation of B‒H and N‒H linkages, and rupture of the N‒N bond to 

afford T (Scheme 1.9).
68

  

Scheme 1.9 Hydrogenation and hydrosilation of an iron-aminoimide. 

 

 
 The reaction of H2 with the iron-dicarbyne species (

iPr
DPB

Ph
)Fe(COTMS)2 (TMS = 

(CH3)3Si) results in the reductive C‒C bond coupling and C‒H bond formation to afford the 

CO derived disiloxyethylene product (Scheme 1.10).
60

 The identity of iron containing product 

from this reaction is not known. Previous examples of reductive CO coupling by iron 
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complexes are rare, and the release of an olefin from hydrogenative CO reductive coupling is 

not known for iron. 

Scheme 1.10 C‒C coupling and C‒H coupling of an iron-dicarbyne. 

 
 

  In summary, the 
R
DPB

Ar
 ligand engenders unusual bond breaking and bond forming 

transformations, as well as catalytic reactivity, that are otherwise rarely observed or unknown 

for iron, cobalt, and nickel complexes. The reactivity is facilitated in part by cooperativity 

between the Lewis acidic borane and Lewis basic metal center, as well as the lability of the 

aryl unit of ligand. The latter point is notable because differences in hydrogenation catalysis 

and E‒H bond activation are observed between related (TPB)MX and (
R
DPB

Ar
)MX 

complexes.     
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Chapter 2.  Heterolytic H2 Cleavage and Catalytic Hydrogenation by an 

Iron Metallaboratrane 
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2.1 Preface  

This chapter describes the heterolytic cleavage of H‒H and C‒H bonds by the ferraboratrane 

(TPB)Fe(L) (L = N2, CO, 
t
BuNC), as well as catalytic olefin and arylacetylene hydrogenation 

by (TPB)Fe(N2). The data show that (TPB)Fe(N2) reversibly cleaves H2 to afford 

(TPB)(μ‒H)Fe(L)(H), which contains B‒H and Fe‒H linkages. The bond cleavage reaction 

contrasts with the H2 chemistry of the related silatrane (SiP
iPr

3)Fe scaffold, as well as the 

cobaltaboratrane (TPB)Co(H2) (see Chapter 3). (TPB)(μ‒H)Fe(L)(H) (L = N2 or H2) and 

(TPB)Fe(N2) are competent hydrogenation catalysts, and stoichiometric studies indicate that 

the B‒H unit in (TPB)(μ‒H)Fe(L)(H) is capable of H
-
 transfer to the olefin substrate. These 

findings are presented in the context of metal-borane cooperative bond activation and catalysis.  

I am the first author of an article published in Organometallics that describes this work. The 

other authors of this paper are Marc-Etienne Moret, Yunho Lee, and Jonas Peters. I performed 

all of the experiments for the (TPB)Fe system described in this chapter. Marc-Etienne, Jonas 

Peters, and I analyzed the results. Marc-Etienne Moret also assisted me with DFT calculations. 

Yunho Lee worked on the H2 chemistry of the (SiP
iPr

3)FeX system.   
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2.2 Introduction 

 Transition metal-catalyzed bond forming reactions often involve formal two-electron redox 

steps (e.g., oxidative addition and reductive elimination). Noble metal catalysts are commonly 

used in these reactions due, in part, to their propensity to facilitate multi-electron processes.
1
 

There is growing interest in developing catalysts for bond forming/cleavage reactions based on 

earth abundant mid-to-late first-row transition metals, a goal that presents a unique set of 

challenges.
2
 First-row transition metal catalysts that can circumvent undesirable one electron 

processes in favor of concerted two electron reaction steps present one plausible design 

criterion.
3
  

 Cooperative catalysis strategies that utilize ligands that operate in tandem with a coordinated 

metal center to activate substrates have shown promise in addressing this issue. 
4-9

 First-row 

metallaboratranes and related compounds that contain a retrodative M→B σ-interaction
10

 are 

appealing as catalysts
11-12

 because of the boron center’s ability to stabilize low valent metals.
13-

19
 Akin to frustrated Lewis pairs,

20
 it has also been recently demonstrated that the metal-boron 

interaction can cooperatively facilitate the activation of H2.
11,21

 For instance, our lab reported 

that the diphosphine-borane nickel (
Mes

DPB
Ph

)Ni complex (
Mes

DPB
Ph

  = MesB(o-C6H4PPh2)2)  

undergoes reversible oxidative addition of H2 to afford a nickel-borohydrido-hydride complex 

(Scheme 2.1).
22

  This nickel system is an efficient catalyst for olefin hydrogenation. Kameo  

and Nakazawa have also reported on the transfer hydrogenation of ketones catalyzed by a 

related rhodium diphosphine-borane complex.
23
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Scheme 2.1. Related H2 activation across a Ni‒B bond. 

 
 

This chapter describes studies on heterolytic H‒H bond cleavage at a ferraboratrane 

complex
24-25

 of a triphosphine-borane (TPB) ligand (TPB = B(o-C6H4P
i
Pr2)3).

26
 Dihydrogen is 

shown to add reversibly across the Fe‒B bond of (TPB)Fe(L) complexes to form 

corresponding iron-borohydrido-hydride complexes of the type (TPB)(µ‒H)Fe(L)(H). Like the 

nickel system reported previously, olefin hydrogenation catalysis is accessible, albeit much 

slower, thereby facilitating detailed studies. As discussed below, other E‒H bonds are also 

activated by the ferraboratanes described, including the terminal C‒H bonds of arylacetylenes 

and the C‒H bonds of formaldehyde. 

2.3 Results and Discussion 

2.3.1  Reversible H2 Addition 

 Exposing the previously reported (TPB)Fe(N2) complex
24

 in d6-benzene to H2 (1.2 equiv) at 

room temperature results in H2 addition across the Fe‒B bond to give a yellow solution of the 

six coordinate borohydride-hydride-N2 complex (TPB)(μ‒H)Fe(N2)(H) (Scheme 2.2).  The 
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XRD structure of (TPB)(μ‒H)Fe(N2)(H)  shows that the Fe‒B distance is significantly 

elongated relative to (TPB)Fe(N2) (2.604(3) Å in (TPB)(μ‒H)Fe(N2)(H) (Figure 2.1) versus  

the calculated distance of 2.2 Å in (TPB)Fe(N2)
25

. A terminal hydride ligand and a bridging 

hydride ligand located between the B and Fe atoms can be assigned from the electron density  

Scheme 2.2 H‒H and E‒H bond activations across Fe‒B bonds.  
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Figure 2.1 XRD structures of (TPB)(μ‒H)Fe(N2)(H) and (TPB)(µ‒H)Fe(CN
t
Bu)(H). 

Ellipsoids shown at 50% probability. Selected bond distances (Å): (left) 

(TPB)(µ‒H)Fe(N2)(H), Fe1‒H1 = 1.42(2), Fe1‒H2 = 1.49(2), B1‒H2 = 1.17(2), 

Fe1‒B1 = 2.604(3); (right) (TPB)(µ‒H)Fe(CN
t
Bu)(H), Fe1‒H42 = 1.35(2), Fe1‒H43 = 

1.52(2), B1‒H43 = 1.20(2), Fe1‒B1 = 2.673(2). 

difference map. This structure also prevails in solution. In the 
1
H NMR spectrum (d6-benzene), 

the terminal hydride ligand on iron is observed as a triplet-of-doublets at -9.6 ppm, and the 

bridging hydride is observed as a broad singlet at -30.4 ppm. Replacing H2 with D2 in the 

reaction gives the corresponding isotopologue (TPB)(µ‒D)Fe(N2)(D). Along with the 

expected deuteride signals in the 
2
H NMR spectrum, deuterium signals from the methine and 

terminal methyl positions of the isopropyl groups of the TPB ligand are observed. This 

observation establishes that facile scrambling of the hydridic ligands into the TPB isopropyl 

groups occurs, presumably via a reversible C‒H metalation process.  The dinitrogen ligand 

(νNN = 2070 cm
-1

) in (TPB)(μ‒H)Fe(N2)(H) is labile, and it can be substituted under excess H2 

to give the dihydrogen analogue (TPB)(μ‒H)Fe(H2)(H) (Scheme 2.2). Exposing (TPB)Fe(N2) 

to excess H2 (1 atm) also generates (TPB)(μ‒H)Fe(H2)(H). Its XRD structure again confirms  
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Figure 2.2 XRD and DFT optimized structures of (TPB)(μ‒H)Fe(H2)(H). Ellipsoids 

shown at 50% probability. Selected bond distances (Å) and angles (°): (left) XRD, 

Fe1‒H42 = 1.56(2), B1‒H42 = 1.21(2), Fe1‒B1, 2.63(2), P2‒Fe‒P3 = 136.54(2); (right) 

DFT predicted, Fe1‒H42 = 1.51, Fe1‒H43 = 1.50, Fe1‒H44 = 1.62, Fe1‒H45 = 1.59, 

B1‒H42 = 1.24, Fe1‒B1 = 2.63, H44‒H45 = 0.84, P2‒Fe1‒P3 = 140.63. 

the presence of a bridging hydride (Figure 2.2). Although electron density can be located in the 

difference map between a widened P‒Fe‒P angle (136.54(2)°) and in the apical position trans 

to the borohydride unit, the data do not allow us to reliably distinguish between classical and 

non-classical hydrides. We therefore turned to NMR spectroscopy to aid in the formulation of 

(TPB)(μ‒H)Fe(H2)(H). 

The 20 °C 
1
H NMR spectrum (d8-toluene) of (TPB)(μ‒H)Fe(H2)(H) (Figure 2.3) shows a 

broad singlet resonance at 15.1 ppm, indicative of hydridic protons. A broad deuteride signal 

is observed in the 
2
H NMR spectrum when D2 is used in place of H2, and, like in (TPB)(μ-

‒H)Fe(N2)(H), deuterium signals are also observed in the methyl and methine positions of the 

isopropyl groups of the TPB ligand. Cooling a d8-toluene solution of (TPB)(μ‒H)Fe(H2)(H) 

under an H2 atmosphere to -20 °C leads to sharpening of the resonance at -15.1 ppm, which 

integrates to three protons (3H). A second, broad hydridic resonance integrating to one proton  
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Figure 2.3 
1
H VT-NMR spectra of (TPB)(μ‒H)Fe(H2)(H) in d8-toluene under 1 atm of 

H2. 

is also observed at -24.9 ppm, and in analogy to (TPB)(μ‒H)Fe(N2)(H), this resonance is 

assigned to the bridging-borohydride (µ‒H). Cooling the temperature down to -90 °C leads to 

broadening of the 3H resonance without reaching decoalescence, suggesting that exchange of 

three hydrogenic ligands is fast on the NMR timescale. Compound (TPB)(μ‒H)Fe(H2)(H) can 

be heated to 50 °C before significant sample decomposition is observed (vide infra). At 50 °C, 

the 3H and µ‒H signals both broaden into the baseline, suggesting that exchange of all four 

hydrogens is facile at this temperature. 

 To further assign the 3H unit in (TPB)(μ‒H)Fe(H2)(H) (i.e., dihydrogen-hydride versus 

trihydride), we turned to minimal longitudinal relaxation (T1min) measurements.
i,27-29

 The T1min 

is 35 ms at -32 °C for the 3H resonance, which suggests that the 3H unit is best described as 

                                                 

i  The H‒D coupling constant (JH‒D) is also in principle an excellent distinguishing characteristic between the η
2
-

dihydrogen and dihydride ligands. Unfortunately, H‒D coupling cannot be resolved in (TPB)(μ‒H)Fe(H2)(H), 
likely due to fast exchange within the HnD3-n unit and H/D scrambling into the methine and terminal methyl 
positons on the isopropyl groups of the TPB ligand. 
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dihydrogen-hydride. This interpretation is additionally supported by DFT calculations 

(RB3LYP/6-31G(d)) that identify a dihydrogen-hydride structure (Figure 2.2 and Appendix 1) 

as the lowest energy isomer of (TPB)(μ‒H)Fe(H2)(H). A stereoisomer in which the H2 ligand 

occupies the equatorial position and the hydride ligand is in the axial position trans to boron is 

calculated to be 6.1 kcal/mol higher in energy. This geometric preference parallels that of the 

well-characterized iron-dihydrogen-dihydride complex merFe(H2)(H)2(PEt2Ph)3.
30

 The 

transition state for conversion of (TPB)(μ‒H)Fe(H2)(H)  into this higher energy stereoisomer 

involving H‒H scission is calculated to be 6.7 kcal/mol above the most stable isomer and is in 

line with the observed exchange behavior on the NMR timescale. 

 Analogous (TPB)(µ‒H)Fe(L)(H) complexes (L = CN
t
Bu or CO) can be synthesized 

(Scheme 2.2, Figure 2.1). To explore the effect of the apical ligand L on the H‒H bond 

activation process, (TPB)Fe(L) complexes were prepared. The previously reported carbonyl 

complex (TPB)Fe(CO) displays an η
3
interaction with a P‒CAr‒CAr unit of the TPB ligand,

24
 

whereas isocyanide adduct (TPB)Fe(CN
t
Bu), whose structure has been determined, does not: 

its Fe center is rigorously 5-coordinate. Complex (TPB)Fe(CO) is diamagnetic, whereas 

(TPB)Fe(CN
t
Bu) gives rise to a solution magnetic susceptibility (μeff = 1.7 μB) at room 

temperature in C6D6. The temperature dependence of the solution susceptibility suggests an S = 

0 ground state with a thermally accessible S = 1 state.  No reaction occurs between 

(TPB)Fe(CN
t
Bu) or the previously reported (TPB)Fe(CO) with H2 (1 atm) at room 

temperature over a period hours. Compound (TPB)Fe(CN
t
Bu) is fully consumed by H2 (1 atm) 

over the course of 3 days at 40 °C to generate (TPB)(µ‒H)Fe(CN
t
Bu)(H), while compound 
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(TPB)Fe(CO) is fully consumed by H2 (1 atm) over the course of 5 days at 80 °C to give 

(TPB)(µ‒H)Fe(CO)(H). The increase in temperature and reaction time compared to the facile 

room temperature reaction between (TPB)Fe(N2) and H2 is consistent with a scenario in which 

H2 substitution for L occurs prior to H2 addition across the Fe‒B bond. Complex 

(TPB)(µ‒H)Fe(CO)(H) can be alternatively synthesized from (TPB)Fe(N2) or 

(TPB)(µ‒H)Fe(N2)(H) and formaldehyde (Scheme 2.2). 

 Dihydrogen addition across the Fe‒B bond of (TPB)Fe(N2) is reversible. Conversion of 

(TPB)(µ‒H)Fe(H2)(H) to (TPB)(µ‒H)Fe(N2)(H) and subsequently back to (TPB)Fe(N2) can 

be effected by exposing (TPB)(µ‒H)Fe(H2)(H) to dynamic vacuum and then N2, or by 

repeated freeze-pump-thaw-N2 cycles. Reformation of the Fe‒B bond can also occur through 

hydride transfer to unsaturated substrates (vide infra). Dihydrogen elimination from 

(TPB)(µ‒H)Fe(CN
t
Bu)(H) and (TPB)(µ‒H)Fe(CO)(H) does not occur when treated similarly. 

 Worth underscoring is that cleavage of the Fe‒B bond in the present ferraboratrane system is 

distinct from the H2 chemistry observed for a structurally related (SiP
iPr

3)Fe silatrane system 

(SiP
iPr

3 = [Si(o-C6H4P
i
Pr2)3]

–
,) we have introduced elsewhere.

31-32
 For instance, the reaction  

between (SiP
iPr

3)Fe(N2) and H2 affords (SiP
iPr

3)Fe(H2), and that between [(SiP
iPr

3)Fe(N2)]
+
 

and H2 affords [(SiP
iPr

3)Fe(H2)]
+
. No disruption of the Fe‒Si bond is observed in either case, 

even if for instance isolated [(SiP
iPr

3)Fe(N2)]
+
 or [(SiP

iPr
3)Fe(H2)]

+
 is exposed to excess H2. 

Ligand substitution instead occurs. This sharply contrasts isoelectronic (TPB)Fe(N2), where H2 

addition readily affords the cleavage product (TPB)(µ‒H)Fe(N2)(H) or (TPB)(µ‒H)Fe(H2)(H).  

We also find (this report, Scheme 2.3) that hydrogenolysis of the iron(II) methyl complex 
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(SiP
iPr

3)Fe(Me)occurs slowly at 60 °C to give an H2/H product, but once again without 

disruption of the Fe‒Si bond. Addition of exogenous donor ligands such as H2, N2 and CO 

effects substitution of the coordinated H2 ligand, but the Fe‒Si bond is maintained. One factor 

contributing to the difference between the two systems is likely the more flexible Fe‒B bond in 

the (TPB)Fe system, as reflected in the variable Fe‒B bond distances (varying by ca. 0.5 Å)
25

 

versus more rigid Fe‒Si bond distances (varying by ca. 0.2 Å)
31-33

 in (SiP
iPr

3)Fe  that have 

been observed over several formal iron oxidation states. The rigidity of the Fe‒Si interaction 

presumably reflects an appreciably stronger Fe‒Si bond relative to Fe‒B. One can additionally 

consider the relative Lewis acidity of the Ar3B versus the Ar3Si
+
 subunit

33
 in these respective 

systems, and their propensity to serve as H
-
 acceptors, but one might then predict the Ar3Si

+
 to 

be the better acceptor, in contrast to the experimental observations. Indeed, this latter point 

may be the reason the Fe‒Si interaction is stronger than the Fe‒B interaction. 

Scheme 2.3 H2 chemistry of the related (SiP
iPr

3)Fe silatrane system. 
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2.3.2  Reaction with Unsaturated Substrates 

 The ability of the (TPB)Fe scaffold to reversibly cleave H2 prompted us to study if the 

transfer of hydrogen from (TPB)(µ‒H)Fe(L)(H) to substrates is possible. The reaction of  

(TPB)Fe(N2) with ethylene, styrene, and arylacetylenes was therefore probed. A degassed d6- 

Scheme 2.4 Ethylene coordination and arylacetylene C‒H bond activation by 

(TPB)Fe(N2). 

 

 

Figure 2.4 XRD structures of (TPB)Fe(C2H4) and (TPBH)Fe(C2Tol). Ellipsoids shown 

at 50% probability. Selected bond distances (Å) and angles (°): (right) (TPB)Fe(C2H4) 

(average for two molecules in the asymmetric unit cell), Fe1‒B1 = 2.491(1), Fe1‒C37 = 

2.103(1), Fe1‒C38 = 2.113(1), C37‒C38 = 1.397(2), ∑(P‒Fe‒P) = 338.76(3); (left) 

(TPBH)Fe(C2Tol)  (average for two molecules in the asymmetric unit cell), Fe1‒B1 = 

2.761(2), Fe1‒C37 = 1.918(2)  C37‒C38 = 1.169(3), ∑(P‒Fe‒P) = 345.07(2). 



 

 

37 

benzene solution of (TPB)Fe(N2) reacts with ethylene to give a light brown solution of the 

paramagnetic iron-ethylene adduct (TPB)Fe(C2H4) (µeff = 3.2 µB, S = 1) (Scheme 2.4). Brown 

XRD quality crystals of (TPB)Fe(C2H4) can be grown under an atmosphere of ethylene at 0 °C 

(Figure 2.4). Two molecules of (TPB)Fe(C2H4) were found in the asymmetric unit cell. The 

iron center is bound η
2
 to ethylene ((Fe‒C)avg = 2.108(1) Å) and lies above the plane defined 

by the phosphine donors by an average distance of 0.641 Å, with a corresponding elongation 

of the average Fe‒B distance to 2.491(2) Å (compared to 2.2 Å in (TPB)Fe(N2)). The average 

C‒C bond distance ((C‒C)avg = 1.397(2) Å) of the η
2
-coordinated ethylene molecule is 

significantly elongated from that in free ethylene  (1.337 Å).
34

 The data are consistent with 

πbackbonding from iron to ethylene, which confers significant ferracyclopropane character to 

(TPB)Fe(C2H4).
35

 Storing (TPB)Fe(C2H4) for two days under an atmosphere of N2 fully 

regenerates (TPB)Fe(N2). 

 Compound (TPB)Fe(N2) does not afford a detectable styrene adduct but reacts with both 

phenyl- and tolylacetylene with formal hydride transfer from the terminal C(sp)‒H of the 

arylacetylene to the boron, forming S = 2  iron-borohydrido-arylacetylide complexes 

(TPBH)Fe(C2Ar) (Ar = Ph, µeff = 5.1 µB; Ar = Tol, µeff = 5.2 µB) (Scheme 2.4). Two 

molecules of (TPBH)Fe(C2Tol) are found in the asymmetric unit, and the XRD structure 

shows the presence of a tolylacetylide ligand coordinated to a pyramidalized iron center 

(Figure 2.4). While the hydride on the boron cannot be reliably located by XRD, the IR spectra  

for both (TPBH)Fe(C2Ph)  and (TPBH)Fe(C2Tol)  show B‒H stretches at 2490 cm
-1

 and 2500 

cm
-1

, respectively, most consistent with a nonbridging B‒H unit. The vibrational bands shift 
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to 1826 cm
-1

 (predicted 1834 cm
-1

) for (TPBH)Fe(C2Ph)  and 1824 cm
-1

 (predicted 1841 cm
-1

) 

for (TPBH)Fe(C2Tol)  upon labeling with the monodeuterated arylacetylene (ArC≡CD).  

 The activation of the arylacetylene C(sp)‒H bond by (TPB)Fe(N2) is reversible. Mixing a 

d6-benzene solution of (TPBH)Fe(C2Ph)  with tolylacetylene (4 equiv) and, conversely, 

mixing a d6-benzene solution of (TPBH)Fe(C2Tol)  with phenylacetylene (4 equiv) both result 

in a mixture of (TPBH)Fe(C2Ph)  and (TPBH)Fe(C2Tol)  (Scheme 2.5). The corresponding  

exchange reactions with B‒D labelled isotopologues of (TPBD)Fe(C2Ph)  or (TPBD)Fe(C2Ar)  

and a different all-protio arylacetylene (Ar’C≡CH) result in the exclusive formation of free 

ArC≡CD, indicating that the arylacetylene unit is reductively eliminated from the iron-

borohydrido-arylacetylide complexes prior to activation of an incoming acetylene substrate, 

presumably by reversible hydride transfer from the boron to the arylacetylide to form 

intermediate π-adducts akin to (TPB)Fe(C2H4) (Scheme 2.5). 

Scheme 2.5 Reversible arylacetylene C‒H bond activation.  

 

See Scheme 2.2 for the detailed ligand representation. 
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2.3.3  Stoichiometric Hydrogenations 

 We also explored whether the transfer of hydrogen from (TPB)(μ‒H)Fe(L)(H) species to 

unsaturated substrates might be possible. Exposing (TPB)Fe(C2H4) to excess H2 (1 atm) 

results in complete conversion of ethylene to ethane and (TPB)(µ‒H)Fe(H2)(H) as the iron-

containing product (Scheme 2.6i) in less than 12 h. A paramagnetic intermediate (A) and 

(TPB)Fe(C2H4) can be observed by in situ 
1
H NMR spectroscopy. The same paramagnetic 

intermediate A and (TPB)Fe(C2H4) can also be observed by in situ 
1
H NMR spectroscopy if 

the same reaction is run under a mixture ethylene (1 atm) and H2 (1 atm). The IR spectrum of 

the reaction mixture shows a diagnostic terminal B‒H vibration at 2470 cm
-1

 that is attributed 

to A. Akin to the iron-borohydrido-alkynyl complexes (TPBH)Fe(C2Ar), A is assigned to the 

iron-borohydrido-ethyl complex (Scheme 2.6i).
36

 Using D2 in place of H2 in the ethylene 

hydrogenation reaction and monitoring leads to the observation of signals for both B‒D and  

Scheme 2.6 Stoichiometric hydrogenation reactions. 
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B‒H stretches in the IR spectrum, which is consistent with facile insertion/β-hydride 

elimination processes prior to ethane elimination from A. We note the similarity of A (and 

(TPBH)Fe(C2Ar)) to the well-characterized zwitterionic, tris(phosphino)borate-iron-ethyl 

complex (PhBP
iPr

3)Fe(Et) (PhBP
iPr

3 = [PhB(CH2P
i
Pr2)3]

-
) that was observed as an 

intermediate in ethylene hydrogenation with the previously reported iron (PhBP
iPr

3)Fe 

system.
3e 

 

 Complexes (TPB)Fe(N2), (TPB)(µ‒H)Fe(N2)(H), and (TPB)(µ‒H)Fe(H2)(H) hydrogenate 

both phenylacetylene (1 equiv) and styrene (1 equiv) to ethylbenzene (1 atm H2) with 

(TPB)(µ‒H)Fe(H2)(H) as the observable iron-containing product. The in situ 
1
H NMR 

spectrum of styrene hydrogenation reactions using (TPB)Fe(N2), (TPB)(µ‒H)Fe(N2)(H), or 

(TPB)(µ‒H)Fe(H2)(H) show styrene, ethylbenzene, and (TPB)(µ‒H)Fe(H2)(H) in solution 

during the reaction course. Furthermore, for styrene hydrogenation with D2 the 
2
H NMR 

spectrum and GCMS data of the reaction mixture show incorporation of deuterium onto both 

olefinic carbon atoms of free styrene, indicating that styrene coordination to the iron-center and 

insertion/β-hydride elimination processes are reversible. 

 Under stoichiometric conditions, the addition of 1 equiv of styrene to a solution of 

(TPB)(µ‒H)Fe(N2)(H) in d6-benzene and under N2 (1 atm) cleanly generates 1 equiv of 

ethylbenzene and (TPB)Fe(N2) (Scheme 2.6ii). In contrast, running the same reaction under a 

static vacuum yields a mixture of styrene, ethylbenzene, (TPB)Fe(N2), and 

(TPB)(µ‒H)Fe(N2)(H) (Scheme 2.6iii). These observations suggest that excess H2 or N2 is 



 

 

41 

required for the hydrogenations to proceed to completion. Moreover, the bridging hydride 

appears competent for transfer to a substrate.  

 Substrates including trans-stilbene, N-benzylideneaniline, acetone, and acetophenone were 

not hydrogenated under similar conditions. Compounds (TPB)(µ‒H)Fe(CN
t
Bu)(H) and 

(TPB)(µ‒H)Fe(CO)(H) also do not hydrogenate ethylene, styrene, or phenylacetylene under 

the same conditions. 

2.3.4  Catalytic Hydrogenations 

 Under the catalytic conditions of 0.01 M (TPB)Fe(N2), 1 atm of H2, and 30 equiv of the 

substrate in d6-benzene at room temperature, ethylene, styrene, and phenylacetylene are 

hydrogenated to ethane and ethylbenzene, respectively (Table 2.1). Compounds 

(TPB)(µ‒H)Fe(N2)(H) and (TPB)(µ‒H)Fe(H2)(H) can also be used as precatalysts. Ambient 

laboratory light does not affect the reaction, and the catalysis is not inhibited by elemental 

mercury; it appears to be a homogeneous process. Norbornene is hydrogenated to norbornane, 

and with an atmosphere of D2 in place of H2 the cis-addition product 

exo,exo2,3d2norbornane
37

 is exclusively observed, indicating the syn-addition of hydrogen 

and arguing against radical processes. 

 The hydrogenation catalysis was monitored by 
1
H NMR spectroscopy with ferrocene as an 

internal integration standard.  As with stoichiometric ethylene hydrogenation, the in situ 
1
H 

NMR spectra of the catalytic ethylene hydrogenation reaction indicate the presence of the 

ethylene adduct (TPB)Fe(C2H4) and the putative ethylborohydride intermediate A as the iron-

containing species during the course of the reaction. Complex (TPB)(µ‒H)Fe(H2)(H) is the  
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Table 2.1 Catalytic hydrogenations by (TPB)Fe(N2) with H2. 

Precatalyst Substrate Product TOF (h
-1

)
c
 

(TPB)Fe(N2) Ethylene
a
 Ethane 15 

(TPB)Fe(N2) Styrene
a
 Ethylbenzene 0.27 

(TPB)Fe(N2) Phenylacetylene
b
 Ethylbenzene 0.16 

Conditions: Room temperature, 0.01 M (TPB)Fe(N2), 1 atm H2, and 0.01 M ferrocene 

as an internal integration standard in d6-benzene. 
a
0.3 M substrate, 

b
0.29 M substrate. 

c
As determined by 

1
H NMR spectroscopy at > 95% product. 

iron-containing product at the completion of the reaction. For styrene hydrogenation, styrene, 

ethylbenzene, and (TPB)(µ‒H)Fe(H2)(H) are observed during catalysis, and scrambling of 

deuterium into the vinylic positions of styrene is observed under D2. In contrast, for 

phenylacetylene hydrogenation complex (TPBH)Fe(C2Ph) is the only observed iron-species 

early in the reaction when the phenylacetylene concentration is high. As phenylacetylene is 

consumed, styrene and (TPB)(µ‒H)Fe(H2)(H) form, and ethylbenzene begins to develop 

slowly thereafter.  

 Attempts to increase the rate of catalysis by elevating the reaction temperature resulted in 

catalyst decomposition. The decomposition product (D) can be synthesized independently in 

near quantitative yields by heating (TPB)(µ‒H)Fe(H2)(H) (80 °C) under H2 (1 atm) for 2 h. 

The XRD structure of D indicates that a B‒CAr bond is cleaved from the TPB ligand fragment 

(Figure 2.5). This result offers the cautionary note that B‒CAr bond cleavage to give 

metalborohydride products is a viable catalyst decomposition pathway. 
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Figure 2.5 Decomposition product of the (TPB)Fe system. Chemical line representation 

(left) and XRD structure (right) of D. Ellipsoids shown at 50% probability. Selected 

bond distances (Å): Fe1‒H1 = 1.59(1), Fe1‒H2 = 1.63(1), Fe1‒B1 = 2.0900(6), Fe1‒P1 

= 2.2481(2). 

 Based on the results from the stoichiometric and catalytic experiments, we propose a 

plausible mechanistic scenario to account for the observed catalytic styrene hydrogenation by 

(TPB)Fe(N2) (Scheme 2.7A), and in doing so underscore interesting aspects of the mechanism 

that remain unanswered. Starting from precatalyst (TPB)Fe(N2), addition of H2 generates 

(TPB)(µ‒H)Fe(H2)(H), a species that can be observed by 
1
H NMR spectroscopy during 

catalytic runs (resting state). Subsequent substitution of the apical H2 ligand for styrene forms 

the unobserved ironstyrenehydrideborohydride species B, and insertion into the terminal 

hydride affords the iron-alkyl intermediate A’. Intermediate A’ is analogous to the ethyl 

species A, and is also related to the structurally characterized acetylide-borohydride complex 

D. Olefin coordination and insertion appears to be reversible, as labeling studies show 

deuterium is exchanged into the vinylic positions of free styrene under a D2 atmosphere. 

Elimination of ethylbenzene in the presence of H2 regenerates the catalyst resting state. 
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Scheme 2.7 Mechanism and alkane elimination pathways. 

 

See Scheme 2.2 for the detailed ligand representation. 

 The conversion of (TPB)Fe(N2) to (TPB)(µ‒H)Fe(H2)(H) likely proceeds via the H2-adduct 

intermediate C depicted in Scheme 2.7B by H2-for-N2 ligand exchange. While we have not 

detected such a species in the present (TPB)Fe system, the cobalt analogue (TPB)Co(H2) can  

be isolated and has been thoroughly characterized (see Chapter 3),
38

 as has the isoelectronic 

iron complex [(SiP
iPr

3)Fe(H2)]
+
.
31

 N2/H2 exchange is facile in these well-defined Co and Fe 

systems, and by extension we infer that it would also be facile for (TPB)Fe(N2) to afford 
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(TPB)Fe(H2) C before additional reactions ensue. Since H2 reacts with (TPB)Fe(N2), but not 

with (TPB)(μ‒H)Fe(CN
t
Bu)(H) and (TPB)(μ‒H)Fe(CO)(H) at room temperature, the facile 

H2 substitution for N2 most likely occurs prior to H‒H bond cleavage. While this scenario is 

consistent with the data available, it is not demanded by the available data. For instance, it is 

alternatively possible that styrene substitution for the N2 ligand in (TPB)Fe(N2) precedes H2 

addition to form intermediate B. No direct evidence rules out this possibility. We prefer 

suggesting that the H2/dihydride species (TPB)(µ‒H)Fe(H2)(H) precedes styrene binding 

because of the observation that H2 addition/activation by other (TPB)Fe(L) adducts, for 

example (TPB)Fe(CN
t
Bu) and (TPB)Fe(CO), is very slow, and also because N2, and 

presumably therefore also H2, displaces ethylene from (TPB)Fe(C2H4) in solution 

(regenerating (TPB)Fe(N2) or (TPB)Fe(H2)). 

 The final ethylbenzene elimination step can be envisioned to occur through two plausible 

routes (Scheme 2.7B). One such pathway involves a reductive elimination step where hydride 

transfer directly from the borohydride subunit generates the alkane product to form 

(TPB)(µ‒H)Fe(H2)(H), likely via the dihydrogen adduct intermediate C. The other pathway 

proceeds through alkane elimination by hydrogenolysis of the phenylethyl group without 

hydride transfer from the borohydride subunit. 

 While the available data do not firmly distinguish between the two product elimination 

pathways shown in Scheme 2.7B, the stoichiometric hydrogenation studies described above 

show that 1 equiv of styrene is completely hydrogenated to ethylbenzene by 

(TPB)(µ‒H)Fe(N2)(H) under an N2 atm (Scheme 2.6ii). This observation implies that 
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(TPB)(µ‒H)Fe(N2)(H) can serve as the source of the two H-atom equivalents delivered to 

styrene. From complex (TPB)(µ‒H)Fe(N2)(H), substitution of the apical N2 ligand for styrene 

in (TPB)(µ‒H)Fe(N2)(H) would generate the styrene adduct intermediate B. Subsequent 

insertion of the bound styrene into the cis Fe‒H would afford intermediate A’, which, in the 

absence of H2 at least, eliminates ethylbenzene concomitant with N2 binding to reform 

(TPB)Fe(N2). The presence of exogenous N2 (or alternatively H2) facilitates the generation of 

ethylbenzene. As noted in Scheme 2.6iii, the stoichiometric reaction under static vacuum 

between (TPB)(µ‒H)Fe(N2)(H) and styrene is quite slow compared with the same reaction 

under N2 (Scheme 2.6ii). This observation can be explained by presuming the conversion of 

intermediate A’ to (TPB)Fe(N2) requires N2 association prior to elimination to generate 

ethylbenzene.  

2.4  Conclusions 

 In summary, the Fe‒B bond in ferraboratranes (TPB)Fe(L) (where L = N2, CN
t
Bu, or CO) 

can facilitate heterolytic cleavage of H2 and of the C(sp)‒H and C(sp
2
)‒H bonds of 

arylacetylenes and formaldehyde, respectively, resulting in Fe‒B bond rupture and formal 

hydride transfer to the boron of the ligand scaffold. The formal hydride transfer from the 

C(sp)‒H of arylacetylenes to give iron-acetylide complexes is distinct from traditional 

syntheses of metal-acetylide complexes in that a hydride equivalent is formally abstracted by 

the Lewis acidic borane unit in (TPB)Fe(N2) from a C(sp)‒H hydrogen
39-41

   

Dihydrogen addition across the Fe‒B bond is reversible, and the boron is also capable of 

shuttling the hydride equivalent derived from H2 to unsaturated substrates under stoichiometric 
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hydrogenation conditions. The hydrogen chemistry of this (TPB)Fe(N2) system contrasts with 

the related nickel
42

 and cobalt
38

 complexes of TPB, where the metal-boron bond remains intact 

under an H2 atmosphere. 

 An understanding of the factors that govern metal-boron bond cleavage will aid in the 

development of cooperative catalytic reactions in metallaboratranes. The direct role, if any, of 

the borane ligand in assisting the H2 cleavage step is an interesting question in this context for 

the present iron and recently reported diphosphine-borane-iron systems,
43

 and also 

conceptually related to the nickel system.
22

 Determining whether there is a cooperative 

interaction between the coordinated H2 ligand, the iron center, and the borane subunit en route 

to H‒H cleavage (and its microscopic reverse) in the (TPB)Fe system, akin to H‒H cleavage 

by frustrated Lewis pairs
20

 and by (
Mes

DPB
Ph

)Ni,
44

 calls for detailed theoretical studies. 

2.5  Experimental 

2.5.1  General Considerations  

 All manipulations were carried out using standard glovebox or Schlenk techniques under an 

N2 atmosphere. Unless otherwise noted, solvents were deoxygenated and dried by thoroughly 

sparging with N2 gas followed by passage through an activated alumina column in the solvent 

purification system by SG Water, USA LLC.  Deuterated solvents and D2 gas were purchased 

from Cambridge Isotope Laboratories, INC. The deuterated solvents were degassed and dried 

over activated 3 Å sieves prior to use. Unless otherwise noted, all compounds were purchased 

commercially and used without further purification. TPB,
26

 (SiP
iPr

3)Fe(Me),
32
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(SiP
iPr

3)Fe(N2)(H),
31

 and monodeuterated phenyl- and tolylacetylene (PhC2D and TolC2D) 
45

  

were synthesized by literature procedures. Elemental analyses were performed by Midwest 

Microlab, LLC., Indianapolis, IN.  

 NMR spectra were recorded on Varian 300 MHz, 400 MHz, and 500MHz spectrometers. 
1
H 

and 
13

C chemical shifts are reported in ppm relative to residual solvent as internal standards. 

31
P and 

11
B chemical shifts are reported in ppm relative to 85% aqueous H3PO4 and BF3∙Et2O, 

respectively. Multiplicities are indicated by br (broad), s (singlet), d (doublet), t (triplet), quart 

(quartet), quin (quintet), m (multiplet), d-d (doublet-of-doublets), and t-d (triplet-of-doublets).   

 FT-IR measurements were performed on samples prepared as KBr pellets or in solution 

using a Bio-Rad Excalibur FTS 300 spectrometer with Varian Resolutions Pro software at 4 

cm
-1

 resolution. The ATR-IR measurements were measured on a thin film of the complex 

obtained from evaporating a drop of the solution on the probe surface of a Bruker APLHA 

ATR-IR Spectrometer (Platinum Sampling Module, diamond, OPUS software package) at 2 

cm
-1

 resolution. IR intensities indicated by s (strong), m (medium), and w (weak). 

X-ray Crystallography. X-ray diffraction was measured on the Bruker Kappa Apex II 

diffractometer with Mo Kα radiation. Structures were solved using the SHELXS software and 

refined against F
2
 on all data sets by full matrix least squares with SHELXL.

 
The crystals were 

mounted on a glass fiber with Paratone oil. 

 Computational Methods. Geometry optimizations were performed using the Gaussian03 

package. B3LYP exchange-correlation functional was employed with a 6-31G(d) basis set. 

The GDIIS algorithm was used. A full frequency calculation was performed on each structure 
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to ensure that they were the true minima. A single negative vibrational frequency was observed 

for the transition state between (TPB)(µ‒H)Fe(H2)(H) and its equatorial-H2 isomer, 

confirming that this structure was the transition state.  

HD Gas Generation. D2O (1mL) was added to an evacuated, cooled sample (-78 °C) of 

solid lithium aluminum hydride (316 mg, 8.2 mmol) in a Schlenk flask. An evacuated Schlenk 

line was filled with the resulting HD gas (ca. 1 atm) as the Schlenk flask was warmed to room 

temperature. A J-Young NMR tube containing a freeze-pump-thawed solution of the 

respective complex was exposed to the HD gas.  

2.5.2 Synthetic Protocols 

 Synthesis of (TPB)(µ‒H)Fe(N2)(H). A J-Young NMR tube containing a brown-red 

solution (TPB)Fe(N2) (20.3 mg, 31.1 mmol) in C6H6 (0.8 mL) was subjected to freeze-pump-

thaw cycles (3x) and, with the J-Young tube frozen with liquid nitrogen, exposed to H2 (1.2 

equiv). The solution was thawed and mixed, giving a yellow solution. An atmosphere of N2 

was subsequently introduced and the reaction was mixed for 2 h to yield 

(TPB)(µ‒H)Fe(N2)(H) (100% yield by 
1
H NMR spectroscopy with a ferrocene integration 

standard). Alternatively, (TPB)(µ‒H)Fe(N2)(H) could be synthesized from 

(TPB)(µ‒H)Fe(H2)(H) by degassing a solution of (TPB)(µ‒H)Fe(H2)(H) of free H2 by freeze-

pump-thaw (3x), exposing it to an N2 atmosphere, and mixing the solution overnight (100 % 

yield by 
1
H NMR spectroscopy with a ferrocene integration standard). Yields could not be 

determined by mass because (TPB)(µ‒H)Fe(N2)(H) was unstable to prolonged exposure to 

dynamic vacuum. Yellow-orange XRD quality crystals were grown in a concentrated solution 
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of pentane:THF  (10:1) at -30 
o
C.  

1
H NMR (C6D6, 300 MHz): δ 7.9 (2H, d, 

3
JH-H = 6 Hz, Ar-

H), δ 7.7 (1H, br s, Ar-H), δ 7.3 (3H, d, 
3
JH-H = 6 Hz, Ar-H), δ 7.0 (3H, t, 

3
JH-H = 9 Hz, Ar-H), 

δ 2.7 (4H, d, 
2
JP-H = 18 Hz, PCH), δ 2.4 (2H, br s, PCH), δ 1.4 (6H, d,

 3
JH-H = 6 Hz, CH3), δ 1.3 

(12H, br s,
 
CH3), δ 1.1 (6H, d-d,

 3
JP-H = 15 Hz,

 3
JH-H = 6 Hz,

 
CH3), δ 0.8 (6H, d, 

3
JP-H = 9 Hz, 

CH3), δ -9.6 (1H, d-t,
 2
JH-Pcis = 81 Hz, 

 2
JH-Ptrans = 36 Hz,

 
Fe-H), δ -30.4 (1H, s,

 
Fe(µ-H)B). 

2
H 

NMR (C6H6/C6D6, 76 MHz): δ -9.5 (1D, br s), δ -30.3 (1D, br s). 
31

P NMR (C6D6, 121 MHz): 

δ 73.6 (2P, s), δ 64.2 (1P, s). 
13

C NMR (C6D6, 125 MHz): δ 161.9 (s, C
Ar

), δ 143.5 (s, C
Ar

), δ 

141.0 (s, C
Ar

), δ 132.3 (s, C
Ar

), δ 131.8 (s, C
Ar

), δ 131.3 (s, C
Ar

), δ 130.3 (s, C
Ar

), δ 124.6 (s, 

C
Ar

), δ 124.0 (s, C
Ar

), δ 32.0 (s, PCH), δ 29.4 (s, PCH), δ 28.5 (s, PCH), δ 22.8 (s, CH3), δ 20.1 

(s, CH3), δ 19.7 (s, CH3), δ 18.9 (s, CH3). 
11

B NMR (C6D6, 128 MHz): δ 8.2 (br). IR (KBr, cm
-

1
): 2071 (s, N≡N), 1960 (w) 1934 (w). UV-vis (THF, nm {M

-1
 cm

-1
}): 328 {shoulder, 500}, 

280 {shoulder, 11250}. Anal.: Elemental analysis could not be obtained because of the 

instability of the compound to dynamic vacuum. 

 Synthesis of (TPB)(µ‒H)Fe(H2)(H). A J-Young NMR tube containing a brown-red 

solution (TPB)Fe(N2) (21 mg, 31.1 mmol) in C6D6 (0.8 mL) was subjected to freeze-pump-

thaw cycles (3x). Upon warming to room temperature, the sample was exposed to H2 (1 atm), 

resulting in a clear yellow solution. The reaction was mixed for 24 h to give 

(TPB)(µ‒H)Fe(H2)(H) (100 % by 
1
H NMR spectroscopy with a ferrocene integration 

standard). The yield could not be determined by weight because (TPB)(µ‒H)Fe(H2)(H) was 

unstable during prolonged exposure to dynamic vacuum. Yellow-orange XRD quality crystals 

were grown under 1 atm of H2 in a concentrated solution of pentane:THF  (10:1) at -78 
o
C. 

1
H 
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NMR (C6D6, 300 MHz): δ 8.0 (3H, d, 
3
JH-H = 6 Hz, Ar-H), δ 7.3 (3H, t, 

3
JH-H = 9 Hz, Ar-H), δ 

7.2 (3H, t, 
3
JH-H = 9 Hz, Ar-H), δ 7.0 (3H, d, 

3
JH-H = 6 Hz, Ar-H), δ 4.47 (s, free H2), δ 2.3 (6H, 

m, PCH), δ 1.0 (18H, d-d,
 3
JH-P = 15 Hz, 

3
JH-H = 6 Hz, CH3), δ 0.8 (18H, d-d,

 3
JH-P = 15 Hz, 

3
JH-H = 6 Hz, CH3), δ -15.1 (br s,

 
2H). T1min (d8-toluene): 35 ms (δ -15.1, -32 

o
C). 

2
H NMR 

(C6H6/C6D6, 76 MHz): δ –15.4 (1D, br s).
 31

P NMR (C6D6, 121 MHz): δ 90.0 (3P, s). 
13

C NMR 

(C6D6, 125 MHz): δ 163.5 (s, C
Ar

), δ 144.6 (s, C
Ar

), δ 144.1 (s, C
Ar

), δ 130.9 (d, JP-C = 23 Hz, 

C
Ar

), δ 124.5 (s, C
Ar

), δ 123.9 (s, C
Ar

), δ 28.6 (s, PCH), δ 21.2 (s, CH3), δ 19.9 (s, CH3). 
11

B 

NMR (C6D6, 128 MHz): δ 7.5 (br). IR (KBr, cm
-1

): 2278 (w), 19618 (w), 1845 (w). UV-vis 

(THF, nm {M
-1

 cm
-1

}): 377 {shoulder, 1532}, 275 {14532}. Anal.: Elemental analysis could 

not be obtained because of the instability of the compound to dynamic vacuum. 

 Synthesis of (TPB)Fe(CN
t
Bu). Tert-butyl isocyanide (20 mg, 0.24 mmol) was added to a 

brown solution of (TPB)Fe(N2) (40 mg, 59 μmol) in benzene (2 mL), causing an instantaneous 

darkening upon gentle shaking. The volatiles were removed by lyophilization and the residue 

was extracted with tetramethylsilane (2 mL). The resulting dark brown solution was slowly 

concentrated down to ca. 0.2 mL by vapor diffusion into hexamethyldisiloxane. Removal of 

the mother liquor by decantation, washing with cold tetramethylsilane (2 × 0.1 mL), and 

drying in vacuo afforded (TPB)Fe(CN
t
Bu) as brown crystals (33 mg, 77 %). 

1
H NMR (C6D6, 

300 MHz): δ 11.2 (3H), δ 9.2 (3H), δ 8.6 (3H), δ 8.5 (9H), δ 6.4 (3H), δ 5.2 (9H), δ 3.7 (12H), 

δ 2.9 (9H), δ -1.5 (9H), δ -2.3 (3H). IR (KBr, cm
-1

): 1972 (C≡N). UV-Vis (THF, nm {cm
–1

M
–

1
}): 600 {shoulder, 428}, 910 {70}. μeff (C6D6, method of Evans, 20 °C): 1.7 μB. Anal.: Calc’d 

for C41H64BFeNP3: C 67.50, H 8.70, N 1.92; found: C 67.20, H 8.54, N 1.72. 
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 Synthesis of (TPB)(µ‒H)Fe(CN
t
Bu)(H). A heavy-walled Schlenk tube containing a 

yellow-brown solution of (TPB) Fe(CN
t
Bu) (16.4 mg, 22.4 mmol) in C6H6 (10 mL) was 

subjected to freeze-pump-thaw cycles (3x). Upon warming to room temperature, the sample 

was exposed to H2 (1 atm) for a few minutes. The Schlenk tube was sealed and heated under 

vigorous mixing at 40 
o
C for 85 h. Removal of the solvent in vacuo, extraction with C6H6, and 

lyophilization yielded a solid of (TPB)(μ‒H)Fe(CN
t
Bu)(H) (17.3 mg, 98 %). Room 

temperature evaporation of a solution of (TPB)(μ‒H)Fe(CN
t
Bu)(H) in a diethyl ether:pentane 

(2 mL to 1 mL) mixture yielded yellow crystals suitable for XRD analysis. 
1
H NMR (C6D6, 

300 MHz): δ 8.1 (1H, d, 
3
JH-H = 9 Hz, Ar-H), δ 7.4 (3H, d, 

3
JH-H = 9 Hz, Ar-H), δ 7.2 (3H, d, 

3
JH-H = 6 Hz, Ar-H), δ 7.1 (3H, d, 

3
JH-H = 9 Hz, Ar-H), δ 2.7 (2H, br s, PCH), δ 2.5 (2H, br s, 

PCH), δ 2.2 (2H, t, 
2
JH-P = 9 Hz, PCH), δ 1.3 (16H, m, CH3), δ 1.1 (9H, s, C(CH3)3), δ 1.0 (6H, 

d,
 3
JH-H = 6 Hz, CH3), δ 0.8 (6H, d-d,

 3
JH-P = 15 Hz, 

3
JH-H = 6 Hz, CH3), δ 0.7 (6H, br s,

 
CH3), δ 

-11.7 (1H, t-d,
 2

JH-Pcis = 87 Hz, 
 2

JH-Ptrans = 27 Hz,
 
Fe-H), δ -23.9 (1H, br s,

 
Fe-(µ-H)-B). 

13
C 

NMR (C6D6, 125 MHz): δ 176.9 (quart, 
2
JC-P = 8 Hz, CN

t
Bu), δ 163.5 (br s, C

Ar
), δ 163.0 (br s, 

C
Ar

), δ 144.9 (m, C
Ar

), δ 143.0 (d, JC-P = 20 Hz, C
Ar

), δ 131.9 (d, 
2
JC-P = 7.5 Hz, C

Ar
), δ 130.6 

(d,
 
JC-P = 3.2 H, C

Ar
), δ 130.5 (d,

 
JC-P = 2.5 H, C

Ar
), δ 128.6 (s, C

Ar
), δ 127.5 (s, C

Ar
), δ 124.2 (s, 

C
Ar

), δ 123.6 (s, C
Ar

), δ 55.3 (s, C(CH3)3), δ 31.6 (s, PCH), δ 30.9 (s, PCH), δ 29.2 (m, PCH), δ 

28.5 (d, 
2
JC-P = 7.5 Hz, PCH), δ 23.8 (s, CH3), δ 20.4 (s, CH3), δ 20.3 (m, CH3), δ 20.2 (s, CH3), 

δ 19.9 (s, CH3), δ 19.7 (s, CH3). 
31

P NMR (C6D6, 121 MHz): δ 81.3 (2P, d, 
2
JP-P = 63 Hz), δ 

72.4 (1P, s). IR (KBr, cm
-1

): 2027 (s, C≡N), 1942 (w, Fe-H). UV-Vis (THF, nm {cm
–1 

M
–1

}): 

205 {5530}, 224 {15437}, 245 {17142}, 255 {16635}, 285 {4117}, 335 {shoulder, 2166}, 
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400 {1830}. Anal: Calc’d for C41H66BFeNP3: C 67.32, H 8.96, N 1.91; found: C 66.59, H 

8.61, N 1.30. 

 Synthesis of (TPB)(µ‒H)Fe(CO)(H) from (TPB)Fe(CO) and H2. In a J-Young NMR 

tube, (TPB)Fe(CO) (6.0 mg, 8.9 µmol) was dissolved in C6H6 (0.7 mL) to give a brown-red 

solution. The solution was subjected to freeze-pump-thaw cycles (3x) and subsequently 

exposed to H2 (1 atm) for ca. 5 min. The reaction was then heated at 80 
o
C for 5 days, during 

which time a clear yellow solution developed. Removal of the solvent in vacuo, extraction with 

C6H6, and lyophilization yielded a yellow solid of (TPB)(μ‒H)Fe(CO)(H) (5.9 mg, 98 %). 

Room temperature evaporation of a solution of (TPB)(μ‒H)Fe(CO)(H) in a diethyl 

ether:pentane (1 mL to 0.5 mL) mixture yielded yellow analytically pure 

(TPB)(μ‒H)Fe(CO)(H). 
1
H NMR (C6D6, 300 MHz): δ 8.1 (2H, d, 

3
JH-H = 6 Hz, Ar-H), δ 7.9 

(1H, d, 
2
JP-H = 9 Hz, Ar-H), δ 7.2 (4H, m, Ar-H), δ 7.0 (4H, m, Ar-H), δ 2.6 (2H, t, 

2
JH-P = 3 

Hz, PCH), δ 2.4 (2H, q, 
2
JH-P = 6 Hz, PCH), δ 2.2 (2H, t, 

2
JH-P = 6 Hz, PCH), δ 1.4 (6H, d, 

3
JH-P 

= 6 Hz, CH3), δ 1.2 (12H, m, CH3), δ 0.9 (6H, d, 
3
JH-P = 6 Hz, CH3), δ 0.8 (6H, d-d, 

3
JH-P = 8 

Hz, 
3
JH-H = 6 Hz, CH3), δ 0.6 (6H, d, 

3
JH-P = 6 Hz, CH3). δ -11.6 (1H, t-d,

 2
JH-Pcis = 81 Hz, 

 2
JH-

Ptrans = 21 Hz,
 
Fe-H), δ -20.0 (1H, br s,

 
Fe-(µ-H)-B). 

2
H NMR (C6H6, 76 Hz): δ -12.3 (1D, t, 

2
JP-D = 10 Hz), δ -20.8 (1D, br s). 

13
C NMR (THF with 1 drop of C6D6, 125 MHz): δ 222.7 (br 

s, CO), δ 161.8 (br s, C
Ar

), δ 142.9 (br s, 
1
JC-P = 19 Hz, C

Ar
), δ 140.8 (br s, 

2
JC-P = 16 Hz, C

Ar
), 

δ 131.0 (s, C
Ar

), δ 129.8 (s, C
Ar

), δ 128.5 (s, C
Ar

), δ 128.0 (s, C
Ar

), δ 124.0 (s, C
Ar

), δ 123.4 (s, 

C
Ar

), δ 30.8 (s, PCH), δ 28.3 (s, PCH), δ 27.7 (s, PCH), δ 22.3 (s, CH3), δ 19.1 (s, CH3), δ 18.8 

(s, CH3), δ 18.1 (s, CH3). 
31

P NMR (C6D6, 121 MHz): δ 83.4 (2P, d, 
2
JP-H = 21 Hz), δ 72.8 (1P, 
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s). IR (KBr, cm
-1

): 1898 (s, C≡O), 1967 (w, Fe-H). UV-Vis (THF, nm {cm
–1

M
–1

}): 270 

{4333}, 280 {4111}, 390 {1400}. Anal.: Calc’d for C37H56BFeOP3: C 65.70, H 8.34; found: C 

65.64, H 8.08. 

 Synthesis of (TPB)(µ‒H)Fe(CO)(H) from Formaldehyde. Compound (TPB)Fe(N2) (8 

mg, 11.8 µmol) or (TPB)(µ‒H)Fe(N2)(H) (6 mg, 8.9 µmol) was mixed with excess 

paraformaldehyde in C6H6 for 3 h to give a turbid, light yellow solution. The excess 

paraformaldehyde was filtered away and the solution was pumped down to give 

(TPB)(μ‒H)Fe(CO)(H) as a yellow solid (from (TPB)Fe(N2), 8 mg, 100 %; from 

(TPB)(µ‒H)Fe(N2)(H), 7 mg, 100 %). Spectroscopic data is identical to those listed above.  

Synthesis of (TPB)Fe(C2H4). A J-Young NMR tube containing an orange solution of 

(TPB)(µ‒H)Fe(H2)(H) (8.4 mg, 12.5 µmol) in C6H6 (0.8 mL) was subjected to freeze-pump-

thaw cycles (3x) and exposed to ethylene gas (1 atm) for ca. 1 minute. Mixing immediately 

gave a brown solution of (TPB)Fe(C2H4). Removal of solvent in vacuo yielded a brown solid 

(8.3 mg, 99 %) of (TPB)Fe(C2H4). Dissolution of this solid under N2 atmosphere gave mostly 

(TPB)Fe(C2H4) and small amounts of (TPB)Fe(N2). Over time, (TPB)Fe(C2H4) in solution 

converted to (TPB)Fe(N2). Crystals suitable for XRD were grown in a saturated, cold 

pentane:diethyl ether (2:1) solution under an ethylene atmosphere. 
1
H NMR (C6D6, 300 MHz): 

δ 33.1 (1H), δ 28.8 (1H), δ 18.7 (4H), δ 13.3 (1H), δ 5.25 (s, free C2H4), δ 4.9 (3H), δ 4.1 (1H), 

δ 1.9 (2H), δ -3.0 (10H), δ -6.2 (11H), δ -9.2 (11H), δ -10.0 (3H). UV-Vis (THF, nm {cm
–1

M
–

1
}): 309 {shoulder, 6032}, 553 {1804}, 938 {418}. μeff (C6D6, method of Evans, 20 °C): 3.2 μB 
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(S = 1). Anal.: Elemental analysis could not be obtained because of the instability of the 

compound to dynamic vacuum. 

 Synthesis of (TPBH)Fe(C2Ph). Phenylacetylene (40.8 mg, 400 µmol) was added to a C6H6 

solution (5 mL) of (TPB)(µ‒H)Fe(H2)(H) (9.0 mg, 13 µmol), immediately giving a gray 

solution. Removal of the solvent in vacuo yielded a black powder of (TPBH)Fe(C2Ph) (10 mg, 

100 %). 
1
H NMR (C6D6, 300 MHz): δ 28.8 (3H), δ 13.1 (4H), δ 4.7 (18H), δ 2.6 (2H), δ 2.3 

(4H), δ 1.2 (2H), δ -29.3 (1H), δ -30.9 (5H). μeff (C6D6, method of Evans, 20 °C): 5.1 μB (S = 

2). UV-Vis (THF, nm {cm
–1

M
–1

}): 325 {20670}, 439 {1051}, 479 {971}, 522 {955}, 601 (br 

abs extending from 400 to 700 nm, 930}, 883 {1466}. IR (KBr, cm
-1

): 2040 (s, C≡C), 2490 

(m, B-H). Anal.: Calc’d for C44H60FeP3B: C, 70.60; H, 8.08.  Found: C, 70.39; H, 7.89. 

 Synthesis of (TPBD)Fe(C2Ph). The B-D labeled isotopologue (TPBD)Fe(C2Ph) was 

generated by the same method described for (TPBH)Fe(C2Ph), except that PhC2H was 

replaced with PhC2D. The 
1
H NMR spectrum was identical to (TPBD)Fe(C2Ar). IR (thin film, 

cm
-1

): 1826 (br m, B-D; predicted 1832). 

 Synthesis of (TPBH)Fe(C2Tol). Tolylacetylene (16.1 mg, 138 μmol) was added to a C6H6 

solution (5 mL) of 3 (22.9 mg, 33.0 μmol), immediately giving a gray solution. Removal of the 

solvent in vacuo yielded a black powder of (TPBH)Fe(C2Tol) (24.0 mg 100 %). Black XRD 

quality crystals of (TPBH)Fe(C2Tol) were grown by layering hexamethyldisiloxane on top of 

a concentrated THF solution of (TPBH)Fe(C2Tol) and allowing the solution to sit overnight. 

1
H NMR (C6D6, 300 MHz): δ 44.1 (1H), δ 29.4 (1H), δ 13.3 (1H), δ 4.6 (2H), δ 3.3 (1H), δ 2.7 

(2H), δ 2.3 (4H), δ 1.8 (2H), δ -32.3 (1H). μeff (C6D6, method of Evans, 20 °C): 5.2 μB (S = 2). 
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UV-Vis (THF, nm {cm
–1

M
–1

}): 326 {24476}, 444 {1243}, 486 {1138}, 527 {shoulder, 975}, 

624 (915}, 887 {1575}. IR (KBr, cm
-1

): 2039 (s, C≡C), 2500 (m, B-H). Anal.: Calc’d for 

C45H62FeP3B: C, 70.88; H, 8.20. Found: C, 70.44; H, 7.80. 

 Synthesis of (TPBD)Fe(C2Tol). The B-D labeled isotopologue (TPBD)Fe(C2Tol) was 

generated by the same method described for (TPBH)Fe(C2Tol), except that TolC2H was 

replaced with TolC2D. The 
1
H NMR spectrum was identical to (TPBH)Fe(C2Tol). IR (thin 

film, cm
-1

): 1824 (br m, B-D; predicted 1841). 

 Synthesis of D. A yellow, C6H6 solution of (TPB)Fe(N2) (18.2 mg, 27 µmol) was heated in 

a J-Young NMR tube under H2 (1 atm) at 80 °C for 2 h, giving a turbid red-purple solution. 

The solvent was removed in vacuo, and the dark crude material was redissolved in 

hexamethyldisiloxane (3 mL) and filtered through a glass frit to remove a black solid 

(presumably iron metal). Removal of the solvent in vacuo gave a purple solid that is a mixture 

of D (1 equiv) and diisopropyl-phosphino-benzene (
iPr2PPh, 1 equiv). Orange XRD quality 

crystals of D can be grown from slow evaporation of a concentrated hexamethyldisiloxane 

solution of 11 at room temperature (5.1 mg, 18 %). Dissolution of these crystals by heating in 

benzene or THF results in decomposition. Therefore, spectral data is reported on the mixture of 

D with 
iPr2PPh. Compound D appears to be fluxional at RT. 

1
H NMR (C6D6, 300 MHz): δ 8.4 

(4H, s, Ar-H), δ 7.6 (4H, s, Ar-H), δ 7.5 (3H, d, 
2
JH-P = 6 Hz, Ar-H), δ 2.7 (1H, d,

 2
JH-P = 6 Hz, 

PCH), δ 2.5 (1H, s, PCH), δ 1.9 (1H, quart, 
3
JH-H = 6 Hz, PCH), δ 1.3 (6H, d-d, 

3
JP-H = 4 Hz, 

3
JH-H = 2 Hz, CH3), δ 1.2 (6H, d, 

3
JH-H = 3 Hz, CH3), δ 1.1 (6H, quart, 

3
JP-H = 4 Hz, 

3
JH-H = 2 

Hz, CH3), 0.9 (12H, m, CH3), -17.0 (0.25H, t, 
2
JH-P = 36 Hz, B-H). 

13
C NMR (C6D6, 125 
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MHz): δ 157.4 (br s, C
Ar

), δ 144.2 (br s, C
Ar

), δ 134.9 (d, 
2
JC-P = 19 Hz, C

Ar
), δ 130.5 (s, C

Ar
), δ 

129.3 (s, C
Ar

), δ 125.7 (d, 
2
JC-P = 23 Hz, C

Ar
), δ 25.5 (br s, PCH), δ 24.9 (br s, PCH), δ 24.4 (br 

s, PCH), δ 23.7 (br s, PCH), δ 23.1 (br s, PCH), δ 20.0 (m, CH3), δ 19.4 (m, CH3), δ 18.2 (m, 

CH3). 
31

P NMR (C6D6, 121 MHz): δ 99.1 (4P, s), δ 9.5 (2P, s). 
11

B NMR (C6D6, 128 MHz): δ 

41.0 (br). UV-Vis (THF, nm {cm
–1

M
–1

}): 264 {shoulder, 31650}, 520 {826}. IR (KBr, cm
-1

): 

2088 (s, B-H), 1838 (m, B-H). Anal.: Calc’d for C51H86FeP4B2Si (i.e., 11 + Me3SiH): C, 65.96; 

H, 9.33.  Found: C, 65.70; H, 9.16. 

 Synthesis of (SiP
iPr

3)Fe(H2)(H). In a 100 mL Schlenk tube a red solution of (SiP
iPr

3)Fe(Me) 

(1.05 g, 1.547 mmol) in C6H6 (50 mL) was degassed by freeze-pump-thaw (3x).  H2 gas (1 

atm) was charged into the reaction mixture. The reaction was heated at 60 °C for over a week. 

The reaction solution was then quickly filtered through Celite and volatiles were removed in 

vacuo to give a light yellow powder. The solid was collected on a glass-frit and washed with 

pentane (3 mL x 2). The resulting product (SiP
iPr

3)Fe(H2)(H) (950 mg, 1.425 mmol, 92%) was 

obtained as a light yellow powder after drying under vacuum. 
1
H NMR (C6D6, 300 MHz): δ 

8.3 (3H, d, 
3
JH-P = 6.8 Hz, Ar-H), δ 7.3 (3H, m, Ar-H), δ 7.2 (3H, t, 

3
JH-H = 7.2 Hz, Ar-H), δ 

7.1 (3H, t, 
3
JH-H = 7 Hz, Ar-H), δ 4.5 (s, free H2), δ 2.2 (6H, m, PCH), δ 1.0 (18H, m, CH3), δ 

0.8 (18H, br s, CH3), δ 0.16 (s, free CH4), δ –10.0 (3H, quin, 
2
JP-H = 18.4 Hz, Fe-H). T1min (d8-

toluene): 32 ms (δ -10.0, -30 
o
C).  

31
P NMR (C6D6, 121 MHz): δ 100 (br); (d8-Tol, 121 MHz, -

80 °C): δ 117.9 (d, 
3
JP-P = 43.5 Hz), δ 94.7 (bs), δ 84.7 (d, 

3
JP-P = 43.5 Hz). 

13
C NMR (THF 

with 1 drop of C6D6, 125 MHz): δ 157.3 (d, JC-P = 22.5 Hz, C
Ar

), δ 150.5 (d, JC-P = 21.3 Hz, 

C
Ar

), δ 130.1 (d, JC-P = 9.3 Hz, C
Ar

), δ 128.6 (s, C
Ar

), δ 127.4 (s C
Ar

), δ 126.0 (d, JC-P = 2.5 Hz, 



 

 

58 

C
Ar

), δ 29.0 (br s, PCH), δ 20.4 (br s, CH3), δ 19.2 (br s, CH3), UV-Vis (THF, nm {cm
–1

M
–1

}): 

353 {3040}. IR (KBr pellet; cm
1

): 1941 (w, Fe-H). Anal.: Elemental analysis could not be 

obtained because of the instability of the compound under prolonged exposure to N2. 

 Isotopomers of (SiP
iPr

3)Fe(H2)(H): (SiP
iPr

3)Fe(H2)(H), (SiP
iPr

3)Fe(HD)(H), 

(SiP
iPr

3)Fe(H2)(D), (SiP
iPr

3)Fe(D2)(H), (SiP
iPr

3)Fe(HD)(D), and (SiP
iPr

3)Fe(D2)(D). HD gas 

was generated by the method described above and charged into a J-young tube containing a 

degassed solution of (SiP
iPr

3)Fe(Me) in C6D6. The solution was heated at 60 
o
C for over a 

week. Monitoring the progress of the reaction by 
1
H NMR revealed the gradual disappearance 

of (SiP
iPr

3)Fe(Me) and formation of diamagnetic isotopomers (SiP
iPr

3)Fe(H2)(H). 

Spectroscopic features in the 
1
H NMR spectrum were identical to (SiP

iPr
3)Fe(H2)(H) except for 

the hydridic proton resonances, where isotopologues were observed. 
1
H{

31
P} NMR (C6D6, 300 

MHz): δ -10.0 (3H, quart, 
2
JP-H = 18.4 Hz, H3), δ -10.0 (t, 

1
JH-D = 9.5 Hz, H2D), δ -10.2 (quin, 

1
JH-D = 9.3 Hz, HD2). 

 Synthesis of (SiP
iPr

3)Fe(CO)(H).  In a 50 mL Schlenk tube a yellow solution of 

(SiP
iPr

3)Fe(H2)(H) (330 mg, 0.495 mmol) in C6H6 (20 mL) was subjected to freeze-pump-thaw 

cycles (3x). The solution was charged with CO (1 atm). The reaction was mixed overnight at 

RT and then for 1 h at 60 
o
C, resulting in a light yellow solution. After completion, the solution 

was degassed by freeze-pump-thaw (3x). The solution was filtered through Celite, and the 

volatiles were removed in vacuo to give a light yellow powder. The solid was collected on a 

glass-frit and washed with pentane (5 mL x 3). Removal of the solvent in vacuo yields 

(SiP
iPr

3)Fe(CO)(H) (266 mg, 0.384 mmol, 78 %) as a light yellow powder. Crystals suitable 
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for X-ray diffraction were obtained by RT evaporation of a pentane solution of 

(SiP
iPr

3)Fe(CO)(H). 
1
H NMR (d8-toluene, 300 MHz): δ 8.2 (2H, d, 

3
JH-H = 7.2 Hz), δ 8.1 (1H, 

d, 
3
JH-H = 7.2 Hz), δ 7.3 (3H, m), δ 7. 2 (3H, m), δ 7.1 (3H, m), δ 2.7 (2H, m), δ 2.4 (2H, m), δ 

2.2 (2H, m), δ 1.5 (6H, d-d, 
3
JH-P = 15.2 Hz, 

3
JH-P = 6.8 Hz), δ 1.3 (6H, m), δ 1.1 (6H, d-d, 

3
JH-P 

= 12.6 Hz, 
3
JH-H = 6.6 Hz), δ 0.8 (12H, m), δ 0.5 (6H, s), δ -14.9 (1H, t-d, 

3
JH-Pcis = 81.0 Hz, 

3
JH-Ptrans = 14.1 Hz). 

31
P NMR (C6D6, 121 MHz, RT): δ 88.0 (br), δ 90.0 (s); (d8-toluene, 121 

MHz, –80 °C): δ 109.9 (t, 
3
JP-P = 65 Hz, 

3
JP-H = 80 Hz), δ 90.0 (s), δ 77.9 (t, 

3
JP-P = 65 Hz, 

3
JP-H 

= 80 Hz). 
13

C NMR (THF with 1 drop of C6D6, 125 MHz): δ 223.0 (d, 
2
JC-P = 6.3 Hz, CO), δ 

157.2 (d, JC-P = 8.8 Hz, C
Ar

), δ 155.2 (d, JC-P = 10.6 Hz, C
Ar

), δ 150.5 (d, JC-P = 11.3 Hz, C
Ar

), δ 

150.2 (d, JC-P = 8.8 Hz, C
Ar

), δ 148.6 (d, JC-P = 18.1 Hz, C
Ar

), δ 132.4 (d, JC-P = 9.4 Hz, C
Ar

), δ 

131.9 (d, JC-P = 8.8 Hz, C
Ar

), δ 130.9 (s, C
Ar

), δ 128.3 (s, C
Ar

), δ 128.5 (s, C
Ar

), δ 127.1 (s, C
Ar

), 

δ 126.8 (s, C
Ar

), δ 126.4 (s, C
Ar

), δ 125.8 (s, C
Ar

), δ 124.7 (s, C
Ar

), δ 32.4 (s, PCH), δ 30.7 (s, 

PCH), δ 30.0 (s, PCH), δ 29.6 (s, PCH), δ 28.7 (s, PCH), δ 22.8 (s, CH3), δ 22.1 (s, CH3), δ 

20.2 (s, CH3), δ 19.5 (s, CH3), δ 19.2 (s, CH3), δ 19.1 (s, CH3), δ 18.9 (s, CH3), δ 18.0 (s, CH3). 

UV-Vis (THF, nm {cm
–1

M
–1

}): 340 {2,050}, 400 {1,500}. IR (KBr pellet; cm
–1

): 1882 (s, 

C≡O), 1944 (m, Fe-H). Anal.: Calc’d for C37H57FeOP3Si: C, 64.16; H, 8.00.  Found: C, 64.15; 

H, 8.13. 

 Synthesis of (SiP
iPr

3)Fe(
13

CO)(H). In a J-Young NMR tube an orange C6D6 solution of 

(SiP
iPr

3)Fe(H2)(H) was degassed by three freeze-pump-thaw (3x). Subsequently, 
13

CO (1 atm) 

was added and the reaction was allowed to mix overnight at RT. The 
1
H NMR spectrum was 

identical to (SiP
iPr

3)Fe(CO)(H). IR (KBr; cm
–1

): 1836 (s, 
13

C≡O).  
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 Generation of (TPBH)Fe(Et) (A). Compound A was observed as an intermediate of 

catalytic ethylene hydrogenation under the reaction conditions described below (“Catalytic 

hydrogen studies”). Complex A can also be generated starting from complex (TPB)Fe(C2H4). 

The procedure described below is more amendable to observing A spectroscopically. A dark 

yellow C6D6 solution (0.5 mL) of (TPB)Fe(C2H4) (2.8 mg, 4.2 μmol) under ethylene (1 atm) in 

a J-Young tube was frozen (-196 °C) and H2 was added (1 atm). The reaction was thawed and 

quickly mixed only immediately prior to measuring the 
1
H NMR spectrum, revealing a mixture 

of (TPB)Fe(C2H4) and A. Further mixing of the solution for ca. 45 min yielded a purple 

solution of A with a small residual amount of (TPB)Fe(C2H4) by 
1
H NMR spectroscopy. Free 

C2H4, C2H6, and H2 were also observed in the 
1
H NMR spectrum. Compound A could not be 

isolated as a solid due to its instability. For example, an ATR-IR spectrum of a thin film of the 

reaction mixture obtained by solvent evaporation under an N2 atmosphere over a period less 

than 30 sec gave vibrational bands diagnostic of (TPB)Fe(N2), (TPB)(µ‒H)Fe(N2)(H), and A. 

1
H NMR (C6D6, 300 MHz): δ 17.3 (1H), δ 6.6 (1H), δ 5.26 (s, free C2H4), δ 4.4 (1H), δ 4.47 

(br s, free H2), δ 3.3 (2H), 0.80 (s, free C2H6), δ -1.9 (8H), δ -5.5 (6H). IR (thin film; cm
-1

): 

2470 (br s, B‒H of A), 2069 (m, N≡N of (TPB)(μ‒H)Fe(N2)(H)), 2009 (s, N≡N of 

(TPB)Fe(N2)).   UV-Vis, obtained 45 min after exposing A under 1 atm of ethylene to 1 atm of 

H2 (THF, nm {cm
–1

M
–1

}): 325 {20670}, 439 {1051}, 479 {971}, 522 {955}, 601 (br abs 

extending from 400 to 600 nm, 930}, 883 {1466}. Magnetic data could not be obtained due to 

the presence of multiple iron species in the reaction mixture. Anal.: Elemental analysis could 

not be obtained because of the instability of the compound to dynamic vacuum. 
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 Catalytic hydrogenation studies. Compound (TPB)Fe(N2) (0.045 g, 0.07 mmol) and 

ferrocene (0.012 g, 0.07 mmol) were dissolved in 1.5 mL of C6D6, giving a 0.045 M 

precatalyst stock solution. Ferrocene was used as an internal 
1
H NMR integration standard, and 

it did not affect the rates of hydrogenation. For a catalytic run, 0.1 mL of the stock solution 

was taken and mixed with 0.35 mL of C6D6, and 30 equiv of substrate in a J-Young NMR tube 

(3.2 mL capacity). For styrene hydrogenation, this equates to 0.01 M (TPB)Fe(N2) and 0.3 M 

styrene. For phenylacetylene hydrogenation, this equates to 0.01 M (TPB)Fe(N2) and 0.29 M 

phenylacetylene. For ethylene hydrogenation, this equates to 0.01 M (TPB)Fe(N2) and 0.30 M 

ethylene. The sample in the J-Young NMR tube was subsequently degassed by freeze-pump-

thaw cycles (3x) and backfilled with 1 atm H2 (0.11 mmol). The J-Young NMR tube was 

continually rotated (12 min
-1

) to ensure adequate mass transfer. The tube was periodically 

refilled with H2 to maintain 1 atm of H2. All reactions were monitored periodically by 
1
H 

NMR spectroscopy until >95% completion. All reactions resulted in clean conversion of the 

substrate to the corresponding product. Catalytic runs in the presence of a drop of mercury or 

in the absence of ambient laboratory light had no affect on the reactions. Catalytic 

hydrogenations could also be cleanly effected by pre-generating (TPB)(µ‒H)Fe(N2)(H) or 

(TPB)(µ‒H)Fe(H2)(H) before the addition of the substrate.  
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Chapter 3. Neutron Diffraction Structure of an S = ½ Co‒H2 Adduct 
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3.1 Preface  

This chapter describes the single crystal neutron diffraction structure of a cobalt-dihydrogen 

complex, (TPB)Co(H2). The structure is presented in the context of frozen solution ENDOR 

studies on (TPB)Co(H2), as well as the previously reported iron-dihydrogen complex 

(SiP
iPr

3)Fe(H2).
1
  The neutron structure clearly shows that (TPB)Co(H2) is a nonclassical 

dihydrogen adduct, and that the H2 ligand adopts two preferred orientations in the solid state. 

This is in contrast to the ENDOR data, which suggest that the H2 ligand is freely rotating about 

the Co‒H2 axis. 

 I am a third author on an article published in Journal of the American Chemical Society that 

describes this work. The other authors are William A. Gunderson, George E. Cutsail III, and 

Brian M. Hoffman of Northwestern University, Xiaoping Wang and Christina M. Hoffmann of 

Oak Ridge National Laboratory (ORNL), and Daniel L. M. Suess and Jonas C. Peters of 

Caltech.  Daniel Suess prepared the first set of (TPB)Co(H2) and (TPB)Co(D2) samples for the 

ENDOR experiments. I was responsible for writing the proposal to secure instrument time at 

ORNL for single crystal neutron diffraction, synthesizing and growing single crystals for 

neutron diffraction, and preparing two sets of samples of (TPB)Co(H2), (TPB)Co(D2), and 

(TPB)Co(HD) for ENDOR studies. Xiaoping Wang and I, with assistance from Helen He 

from ORNL, performed the neutron diffraction experiment and solved the structure, and the 

two of us along with Christina Hoffmann, Daniel Suess, Jonas Peters, and Brian Hoffman 

analyzed the neutron structure. William Gunderson and George Cutsail performed the ENDOR 
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experiments. William Gunderson, George Cutsail, and Brian Hoffman analyzed the ENDOR 

data. 

 In this chapter I made a distinction between the ENDOR studies and the neutron structure in 

order to better reflect my contribution to this topic. In this regard, I have summarized the 

ENDOR study in the introductory portion of this chapter (section 3.2.1) before presenting the 

neutron data in the Results and Discussion section 3.3.   
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3.2 Introduction 

Since Kubas’s discovery
2
 that transition metals can bind dihydrogen (so-called 

“nonclassical” behavior in contrast to the formation of a “classical” dihydride), there has been 

extensive work on the structural and electronic features of a number of closed-shell dihydrogen 

complexes.
3
 The binding properties of the dihydrogen ligand, the degree of H‒H bond 

activation, and its propensity to oxidatively add to a metal center are critical features of 

intermediate steps in a number of important industrial and biological catalytic cycles. For 

example, an iron center in the cofactor of the molybdenum-containing nitrogenase enzyme is 

believed to be the site of N2 binding.
4
 It is proposed that prior to N2 coordination at this iron 

center two protons are reduced to H2 as an obligatory component of the catalytic cycle; 

however, the coordination chemistry and spectroscopic properties of putative intermediate 

iron-hydride(s) (or -dihydrogen) species remain of interest.
5
 Furthermore, there has been great 

interest in using cobalt complexes as electrocatalytic proton reduction catalysts, but the 

putative Co
II‒H2 intermediate proposed in two of the three competing mechanistic hypotheses 

has never been observed.
6
 Both these iron- and cobalt-dihydrogen intermediates are open-shell, 

which are not amenable to the standard NMR techniques used to characterize closed-shell 

metal-dihydrogen complexes. Whereas a number of diamagnetic closed-shell dihydrogen 

complexes have been characterized through combined neutron diffraction/scattering, X-ray 

diffraction (XRD), NMR, and IR studies, examples of open-shell dihydrogen adducts are rare.
7
 

Thus, the properties and reactivity of thoroughly characterized open-shell transition metal-
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dihydrogen complexes are of significant interest in the context of both synthetic and biological 

chemistry.   

Our group recently reported three open-shell metal-dihydrogen complexes. Based on their 

reactivity, similarities to isoelectronic N2 and/or CO adducts, as well as spectroscopic and 

XRD data, these complexes were formulated as nonclassical dihydrogen adducts: S = ½ 

(TPB)Co(H2)
8
 (TPB = B (o-C6H4P

i
Pr2)3), S = ½ (SiP

iPr
3)Fe(H2)

1
 (SiP

iPr
3 = [Si(o-C6H4P

i
Pr2)3]

-
), 

and S = 1 [(SiP
iPr

3)Fe(H2)][BAr
F

4]
1
 (BAr

F
4 = [B(3,5-(CF3)2-C6H3)4]

-
) (Chart 3.1). Although the 

hydrogenic ligands in the high quality XRD structures of (SiP
iPr

3)Fe(H2) and (TPB)Co(H2) 

cannot be reliably assigned, residual electronic density situated trans to the E atom (E = B or 

Si) was observed in the respective electron density difference map. For the related 

[(SiP
iPr

3)Fe(H2)][BAr
F

4], a solid state XRD structure has not been successfully obtained. A 

method for definitive assignment of the hydrogenic ligands is to use single crystal neutron 

diffraction. 

Chart 3.1 Open-shell M‒H2 adducts of Fe and Co of interest. 
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Neutron diffraction, which relies on the scattering cross section of nuclei rather than the 

scattering by electrons exploited by XRD, is ideal for determining the atomic distances 

between light atoms such as hydrogen. Single crystal neutron diffraction was critical in 

confirming the assignment of Kubas’s nonclassical W‒H2 complex, (CO)3(PCy3)2W(H2) 

(Figure 3.1),
9-10

 and the technique has been used to characterize many other dihydrogen, 

dihydride, and polyhydride complexes since.
3,11

 In the decades since Kubas’s discovery, 
1
H 

NMR spectroscopy
12-14

 has been an important spectroscopic technique for characterizing and 

definitively assigning M‒H2 adducts, making neutron diffraction largely unnecessary. 

However, the NMR techniques are only amenable to diamagnetic species and not suitable for 

paramagnets such as (TPB)Co(H2), (SiP
iPr

3)Fe(H2), and [(SiP
iPr

3)Fe(H2)][BAr
F

4]. Other pieces 

of data such as vibrational spectroscopy and reactivity, while informative, are not diagnostic. 

This leaves neutron diffraction as one of the few techniques for unequivocal assignment of 

M‒H2 adducts in paramagnetic complexes. Prior to this study, the neutron diffraction structure 

of a paramagnetic M‒H2 species had never been reported. 

 

Figure 3.1 Nonclassical W‒H2 adduct (CO)3(PCy3)2W(H2). 

For non-integer spin species, ENDOR (electron nuclear double resonance) spectroscopy can 

also be used to study M‒H2 species. This is because ENDOR spectroscopy, which is a 

combined EPR-NMR technique, can resolve coupling between the unpaired electron and the 
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hydrogenic ligands, providing valuable information about the bonding and structure of these 

complexes.
15

 For the S = ½ species (SiP
iPr

3)Fe(H2) and (TPB)Co(H2), this technique can 

therefore provide informative data on the nature of the hydrogenic ligand (H2 versus 

dihydride), as well as on the dynamics of the hydrogenic ligand. Indeed, an ENDOR study on 

(SiP
iPr

3)Fe(H2) by our collaborators in the Hoffman group at Northwestern University 

corroborated the assignment of (SiP
iPr

3)Fe(H2) as a nonclassical H2 adduct in frozen solution at 

2 K.
1
 Furthermore, the 2-D field-frequency ENDOR data suggested that the H2 ligand 

tunnels/“hops” among localized states that are each parallel to the Fe‒P bond vectors (see 

section 3.2.1).  

ENDOR spectroscopy is complementary to single crystal neutron diffraction for the study of 

non-integer spin M‒H2 species. Whereas neutron diffraction probes static solid state molecular 

structures, ENDOR spectroscopy probes molecular structure and dynamics, such as the 

rotation of an H2 ligand. In this study, our collaborators at Northwestern studied (TPB)Co(H2) 

with ENDOR spectroscopy. The results show that the dihydrogen ligand is a free-rotor, with 

nearly unhindered rotation about the Co‒H2 axis in solution. This is in contrast to the localized 

H2 orientations found in the solid state, single crystal neutron diffraction structure, and also 

differs from the tunneling behavior of the H2 ligand in (SiP
iPr

3)Fe(H2).  

This chapter will first summarize the findings and conclusions from the ENDOR studies.
i
 

The single crystal neutron diffraction structure for (TPB)Co(H2) will then be presented and 

discussed in the context of the ENDOR results. Neutron diffraction data for (SiP
iPr

3)Fe(H2) has 

                                                 

i  For a thorough discussion of the ENDOR results, including a quantum mechanical description of H2 rotation, see ref 21. 
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also been collected, but due to the presence of a significant amount of impurities, conclusions 

regarding the H2 ligand in this complex cannot be reliably drawn.  

3.2.1 Collaborative ENDOR Studies 

 (TPB)Co(H2) and (SiP
iPr

3)Fe(H2) have the same orbitally degenerate 
2
E ground state, both 

having triply occupied, degenerate dxy/dx2-y2 frontier orbitals (Figure 3.2). Yet the H2 ligands in 

(TPB)Co(H2) and (SiP
iPr

3)Fe(H2) exhibit distinct behavior—the H2 ligand undergoes nearly 

free rotation in (TPB)Co(H2), whereas the H2 ligand in (SiP
iPr

3)Fe(H2) tunnels among local 

energy minima.
1
 As the following discussion will show, these differences are attributed to i) 

structural distortions of the two complexes arising from the pseudo-Jahn-Teller effect, ii) π-

backbonding, and iii) crystal-packing forces and/or the molecular environment. 

 

Figure 3.2 Frontier molecular orbital diagram for (SiP
iPr

3)Fe(H2) and (TPB)Fe(H2). The 

relative ordering of the fully-occupied orbitals may vary. 
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1
H and 

2
H ENDOR spectra were collected at 2 K on frozen solution samples of 

(TPB)Co(H2), (TPB)Co(D2), and (TPB)Co(HD). The Q-band (35 GHz) pulsed 
1
H ENDOR 

spectrum of (TPB)Co(H2) is markedly different from the 
1
H and

 2
H ENDOR spectra of 

(TPB)Co(D2) and (TPB)Co(HD) (Figure 3.3C). Whereas (TPB)Co(D2) exhibits a hyperfine 

feature in the 
2
H ENDOR spectrum that is due to coupling to the D2 ligand, and (TPB)Co(HD) 

exhibits the same coupling associated with the HD ligand in both the 
1
H and 

2
H ENDOR 

spectra, the all 
1
H2 isotopologue (TPB)Co(H2) does not exhibit a hyperfine feature associated 

with coupling to the H2 ligand. By appropriately adjusting for the different gyromagnetic ratios 

of 
2
H and 

1
H, the 

2
H ENDOR signal corresponds to a hyperfine feature of A(

1
H) = 20.8 MHz, 

which is the same hyperfine coupling frequency observed in the 
1
H ENDOR spectrum for 

(TPB)Co(HD) (A(
1
H) = 20.8 MHz).  

The presence of 
1
H ENDOR signals for the HD ligand in (TPB)Co(HD), the presence of 

2
H 

ENDOR signals for the respective HD and D2 ligands in (TPB)Co(HD) and (TPB)Co(D2), but 

the absence of 
1
H ENDOR signals for the H2 ligand in (TPB)Co(H2), are suggestive of 

exchange of the two H atoms of the H2 ligand through rotation about the Co‒H2 axis in 

(TPB)Co(H2). This exchange is subject to constraints on the nuclear wave function imposed by 

the Pauli exclusion principle.
16-17

 For a homodiatomic molecule such as H2, the Pauli exclusion 

principle requires that the total nuclear spin state (Itot), which is a product of spatial rotational 

(Rot) and spin wave functions, must have definite parity with respect to exchange. For 

hydrogen (
1
H), which is a ferimon (I = ½), the total nuclear wave function must be 

antisymmetric (AS) to exchange. For deuterium (
2
H) which is a boson (I = 1), the total nuclear 
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wave function must be symmetric (S) to exchange. The Rot ground state for homodiatomic 

such as H2 is symmetric to exchange (S in Figure 3.3A), and therefore, the spin functions of 

the 
1
H in H2 must be antisymmetric with antiparallel nuclear spins (i.e., I = ½ and -½) and Itot = 

0. This state does not have allowed ENDOR transitions, which is in agreement with the 

absence of 
1
H ENDOR signals for (TPB)Co(H2). For a homodiatomic such as D2, the Rot 

ground state is also symmetric (S, Figure 3.3B). The total nuclear wave function for D2 (I = 1 

for 
2
H) is Itot = 0,1, or 2. Only Itot = 2 is symmetric to exchange, and it therefore must be 

associated with the symmetric rotational ground state. This spin state does have allowed  

 

Figure 3.3 Q-band pulsed ENDOR spectra and rotational and nuclear spin states. (A) 

and (B) Spatial rotational (Rot) energy levels and corresponding total nuclear spin (Itot) 

for (TPB)Co(H2) and (TPB)Co(D2), respectively. (C) 
1
H ENDOR spectra for 

(TPB)Co(H2) (red) and (TPB)Co(HD) (black), and 
2
H ENDOR spectra for 

(TPB)Co(D2) (blue) at 2 K . The 
1
H hyperfine of 20.8 MHz is marked. The frequency 

scale of the 
2
H (TPB)Co(D2) spectra has been scaled to match the 

1
H frequency.  

C 

B 

A 
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ENDOR transitions, which is in agreement with the observation of 
2
H ENDOR signals for 

(TPB)Co(D2). Because 
2
H and 

1
H in HD are inequivalent, HD rotation in (TPB)Co(HD) is not 

subject to Pauli principle constraints; both 
1
H and 

2
H ENDOR transitions are allowed. 

The excited Rot state (Figure 3.3A)of (TPB)Co(H2) can exhibit an 
1
H ENDOR response, 

because it must correspondingly have a symmetric nuclear spin state with Itot = 1. However, the 

absence of a 
1
H ENDOR signal at (TPB)Co(H2) indicates that this state is negligibly occupied 

at 2 K and that the energy difference (Δ) between the ground and this first excited state must be 

greater than 7 cm
-1

.  

The quantum mechanical model for H2 rotation in a three-fold symmetric complex such as 

(TPB)Co(H2) predicts that the H2 ligand will rotate about the M‒H2 axis nearly unhindered. 

This is because for H2 rotation in a C3 symmetric environment, the rotation occurs on a 

potential energy surface of C6 symmetry (Figure 3.4B). In this symmetry, calculations show 

that the rotational barriers have little influence on H2 rotation. This is in contrast to H2 rotation 

about an axis with two-fold symmetry such as (CO)3(PCy3)2W(H2) (Figure 3.4A), wherein the 

H2 rotation is hindered by potential energy barriers and results in the preferential localization 

of the H2 ligand.  

An alternative way to explain the free rotation of the H2 ligand in (TPB)Co(H2) and 

hindered rotation in (CO)3(PCy3)2W(H2) is to consider the effects of symmetry on π-

backbonding to the π-acidic H2 ligand. π-Backbonding can create a rotational barrier, and the 

H2 ligand can favor a particular orientation(s). In (CO)3(PCy3)2W(H2), the axes of the filled 

(dπ)
4
 of dxz and dyz are parallel to the W‒E bond vectors (E = P or C). Because CO is a better 
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π-acceptor than PCy3 (and H2), the π-acidic H2 ligand favors aligning parallel to the W‒P bond 

vectors where it can better compete for π-backbonding with the slightly π-acidic phosphines. 

This is illustrated on the potential energy surface in Figure 3.4A, where H2 favors alignment in 

parallel to the W‒P bond vectors. The H atoms of the H2 ligand tunnel among the two 

positions along the W‒P bond vectors.
18-19

 In C3 symmetry, the electron density of the e2 set of 

degenerate orbitals that participate in π-backbonding are cylindrically symmetric, and therefore 

π-backbonding cannot generate a rotational barrier. This leads to unhindered rotation of H2 in 

(TPB)Co(H2). 

 

Figure 3.4 Potential energy surfaces for H2 rotation. (A) H2 rotation in C2 symmetric 

(CO)3(PCy3)2W(H2). (B) Representation of H2 rotation on a C6 potential energy surface, 

wherein the MP3 plane forms an equilateral triangle, e.g., in (TPB)Co(H2) in frozen 

solution. (C) Distortion of the MP3 triangle to an acute isosceles triangle results in 

potential barrier along one M‒P bond vector (red P*) and localization of the H2 ligand 

along the two remaining M‒P vectors, e.g., in the crystalline state of (TPB)Co(H2) and 

in (SiP
iPr

3)Fe(H2). 
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While the discussion above explains the ENDOR response and free rotor behavior of H2 in 

(TPB)Co(H2), it does not explain why (SiP
iPr

3)Fe(H2) exhibits a 
1
H ENDOR response, and 

why the H2 ligand tunnels among energy minima in (SiP
iPr

3)Fe(H2) rather that freely rotate. 

Both complexes have 
2
E ground states that are subject to symmetry lowering structural 

distortions through vibronic coupling from the pseudo-Jahn-Teller effect.
20

 An analysis of the 

g-tensors from the EPR spectra of (SiP
iPr

3)Fe(H2) (g = [2.275, 2.064, 2.015]) and 

(TPB)Co(H2) (g = [2.457, 2.123, 2.029]) through the lens of the pseudo-Jahn-Teller effect 

shows that (SiP
iPr

3)Fe(H2) is subject to larger vibronic coupling than (TPB)Co(H2).
21

 This 

difference has a large effect on the structural distortions and, therefore, the degree to which H2 

can freely rotate.  

The structural distortion, as shown in Figure 3.4, can be envisioned to occur through 

distortion of the C3 symmetric MP3 plane. In an idealized C3 symmetry, the MP3 plane can be 

thought of as an equilateral triangle. In the case of (TPB)Co(H2), it is proposed that a dynamic 

Jahn-Teller effect would maintain free rotation of the H2 ligand because the distortion of the 

MP3 plane is “pseudo-rotating” around the symmetry axis.
20

 The coupling of H2 ligand to this 

dynamic distortion through π-backbonding would maintain free rotation of the H2 ligand. In 

contrast, static Jahn-Teller distortion of the MP3 plane in (SiP
iPr

3)Fe(H2) generates a barrier to 

rotation. As the neutron structure will illustrate in section 3.3, one possible distortion results in 

an acute isosceles triangle for the MP3 plane, which generates a potential energy surface that 

contains a single barrier to rotation along the M‒P* bond vector (Figure 3.4C). In this scenario, 

free rotation of the H2 ligand is quenched, and the energy surface contains two energy minima 
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for the H2 ligand. Each of the energy minima are parallel to a M‒P bond vector. The hindrance 

to free rotation of the H2 ligand means that the ENDOR response is no longer subject to Pauli 

principle selection rules, thereby allowing for both 
1
H and 

2
H ENDOR responses, as was 

observed in (SiP
iPr

3)Fe(H2).
1
 The distortion of the MP3 plane in (SiP

iPr
3)Fe(H2) to an isosceles 

triangle can be seen in the solid state X-ray structure, which shows that the P1‒Fe‒P3 angle is 

contracted from the idealized 120 ° to 113 ° (see Table 3.1 in section 3.3.1). 

This distortion of the MP3 plane away from C3 symmetry also affects the π-backbonding to 

H2 from the cylindrically symmetric (in C3 symmetry) e2 set of orbitals. The distortion away 

from C3 symmetry as described above orients one of the two dπ orbitals (either dxz or dyz) 

towards the “open” M‒P* bond vector, enhancing π-backbonding to this P* donor arm. This 

outcome of this distortion and enhanced M‒P* π-backbonding, according to calculations, 

forces the H2 ligand along the two other M‒P bond vectors (Figure 3.4C). 

The stronger π-backbonding abilities for the iron complex compared to the cobalt complexes 

can also explain the differences in H2 rotation between (TPB)Co(H2) and (SiP
iPr

3)Fe(H2). The 

differences in π-backbonding abilities can be seen in the previously reported (SiP
iPr

3)Fe(N2)
22

 

and (TPB)Co(N2)
8
 complexes, which are isoelectronic to (SiP

iPr
3)Fe(H2) and (TPB)Co(H2), 

respectively. The substantial differences in the N‒N stretching frequencies (2008 cm
-1

 for 

(SiP
iPr

3)Fe(N2) versus 2089 cm
-1

 for (TPB)Co(N2)) and N‒N bond lengths (1.125 Å for 

(SiP
iPr

3)Fe(N2) versus 1.062 Å for (TPB)Co(N2)) indicate that the M‒N2 π-backbonding is 

greater, and thus the N‒N bond more activated, in (SiP
iPr

3)Fe(N2) than (TPB)Co(N2). The 
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similar π-accepting abilities of N2 and H2
23

 mean that these trends should extend to 

(SiP
iPr

3)Fe(H2) and (TPB)Co(H2) as well. 

Thus, the structural distortion and greater π-backbonding abilities for the (SiP
iPr

3)Fe(H2) 

complex compared to (TPB)Co(H2) explain why the H2 ligand in (SiP
iPr

3)Fe(H2) tunnels/hops 

between potential energy minima, while the H2 ligand in (TPB)Co(H2) freely rotates in frozen 

solution at 2 K. To probe the structure of (TPB)Co(H2) in the solid state, I collected the single 

crystal neutron diffraction structure of (TPB)Co(H2). The neutron structure of (TPB)Co(H2) 

confirms the intact H‒H bond of the H2 ligand and corroborates the conclusion that structural 

distortions quench free rotor behavior.  

3.3 Results and Discussion 

3.3.1 Neutron Structure of (TPB)Co(H2) 

The single crystal neutron diffraction structure of (TPB)Co(H2) has been determined at 100 

K, at which temperature any structural changes upon cooling in general have produced a 

limiting low-temperature structure that is appropriate for comparisons with the ENDOR 

measurement at still lower temperature. The high-resolution neutron structure of (TPB)Co(H2) 

clearly resolves the presence of a side-on bound H2 ligand to Co that is positioned trans to 

boron (Figure 3.5). Thus, the structure confirms the initial assignment,
8
 and the assignment 

based on the ENDOR data discussed above, of (TPB)Co(H2) as a cobalt-dihydrogen adduct  
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Figure 3.5. Single crystal neutron diffraction structure of (TPB)Co(H2). (left) The 

disordered H2 ligand is shown in red and blue for the major and minor components, 

respectively. (right) View down the Co1‒B1 vector emphasizing the near parallel 

orientations of the disordered H2 ligand with the B1-C26 (associated with the major 

component of the disordered H2 ligand) and P1-Co1 bond (associated with the minor 

component of the disordered H2 ligand). Ellipsoids are shown at the 50 % probability 

level. Hydrogen atoms on the isopropyl and phenyl groups are omitted for clarity.  

rather than a cobalt-dihydride complex. The H2 ligand is disordered over two positions—the 

major component of disorder has a 68.2 % site occupancy. A second component of the 

disordered H2 was refined to a site occupancy of 25.2 %.
ii
 The two orientations of the H2 

ligand can be described as each being associated with a Co‒P bond vector, presumably a 

reflection of π-backbonding from filled d orbitals of Co to the empty σ* orbital of H2,
3,24-25

 

although being somewhat skewed with respect to them, by ca. 21.2° and ca. 8° for the major 

                                                 

ii  The remaining 6.8 % nuclear density was modeled as a bromide ligand at 2.383(13) Å away from the Co center, 
situated trans to B atom, and is attributed to residual Co‒Br starting material. 
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and minor disordered components, respectively. The large degree of skewing of the major 

component of the H2 ligand (H1 and H2) from the Co1‒P3 places it in near parallel alignment 

with the B1-C26 bond vector (skewed by 5.7°). The H‒H bond distances for both H2 moieties 

are identical (0.834(6) and 0.83(2) Å) and elongated from the 0.74 Å bond length
3
 of free H2. 

These distances are similar to those found in other metal-dihydrogen complexes characterized 

by neutron diffraction (0.81 – 0.92 Å)
3,11,18

 and closely match those for two iron-dihydrogen 

adducts (0.81 - 0.82 Å).
26-27

 

Table 3.1 Selected bond angles and distances for (SiP
iPr

3)Fe(H2) and (TPB)Co(H2) 

determined by X-ray and neutron diffraction. 

 
X-ray Neutron 

 
(SiP

iPr
3)Fe(H2)

a
 (TPB)Co(H2)

b
 (TPB)Co(H2) 

H1‒H2 (Å)  
 

0.834(6) / 0.83(2)
c
 

M‒H1 (Å)  
 

1.659(4) / 1.672(7)
c
 

M‒H2 (Å)  
 

1.664(4) / 1.671(7)
c
 

M‒P1 (Å) 2.2442(9) 2.2412(3) 2.241(3) 

M‒P2 (Å) 2.260(1) 2.2650(3) 2.280(3) 

M‒P3 (Å) 2.2631(1) 2.2750(3) 2.262(3) 

M‒E (Å) 2.254(1) 2.2800(1) 2.287(2) 

H1‒M‒H2 (°)  
 

29.03(11) / 28.91(14)
c
 

P1‒M‒P3 (°) 113.31(3) 119.00(1) 119.40(12) 

P1‒M‒P2 (°) 118.07(3) 110.97(1) 111.92(11) 

P2‒M‒P3 (°) 122.36(4) 124.97(1) 123.93(11) 

E = Si or B 
a
See ref 1. 

b
See ref 8. 

c
Metrics for the major and minor components, 

respectively, of the disordered H2 ligand. 
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The neutron structure shows a deviation of the P‒Co‒P angles away from the 120° of the 

idealized C3 symmetry of the Co‒P plane (Table 3.1), as was also observed in the X-ray 

diffraction structures of (TPB)Co(H2) and the closely related complex, (TPB)Co(N2)
8
: the 

P1‒Co‒P3 angle is more acute than the other two P‒Co‒P angles, leaving P2 as the unique P*-

atom at the apex of the isosceles triangle (c.f. Figure 3.4).  The same type of structural  

distortion was seen in the solid state X-ray diffraction structure of (SiP
iPr

3)Fe(H2). The 

distortion can be attributed to Jahn-Teller distortion in the solid state as well as crystal packing 

and other inter- and intramolecular forces, as is illustrated in the electron density isosurface of 

the solid state structure of Co‒H2 (Figure 3.6).
28

  

The isosurface shows that the disordered H2 ligand is located in the blue-colored triangular 

cavity and is in close contact with three separate methyl hydrogen atoms from three isopropyl 

groups on the TPB ligand (Figure 3.6).  The H2 orientation with higher occupancy may be 

favored because it has longer H ∙∙∙ H interactions between the H2 ligand and hydrogen atoms of  

adjacent methyl groups: the closest H ∙∙∙ H contacts from the neutron structure are 2.174(6) Å 

and 2.096(14) Å for the major and minor components of the H2 ligand, respectively. These  

close contacts are likely not present in frozen solutions, where packing forces are not in play. 

Such crystal-packing influences on H2 rotation have been discussed elsewhere.
iii,19

 

A single crystal neutron diffraction experiment for (SiP
iPr

3)Fe(H2) was also performed. 

However, the neutron structure exhibited significant disorder arising from multiple impurities  

                                                 

iii  The unequal occupation of H2 at the two sites is also predicted by applying an additional, small out-of-registry potential in 

the modeling of the potential energy surface.  
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Figure 3.6 Plot of the isosurface of the promolecule electron density of (TPB)Co(H2). 

(left) Isosurface of electron density of (TPB)Co(H2) with the dihydrogen ligand 

removed. The isovalue of 0.0020e au
-3

 used in the plot is comparable to the expected 

van der Waals radii.  (right)  A translucent view of the same isosurface showing the 

disordered dihydrogen ligand located in the blue colored triangular cavity. 

in the crystal: the desired (SiP
iPr

3)Fe(H2) accounted for ca. 45 % and the previously reported 

Fe
II
-hydride-dihydrogen complex (SiP

iPr
3)Fe(H2)(H)

29
 accounted for another ca. 20 %. The 

remaining 35 % impurity was assigned to chloride from the (SiP
iPr

3)FeCl starting material. The 

significant amounts of impurities, particularly of the (SiP
iPr

3)Fe(H2)(H), wherein the H2 ligand 

residues in the same coordination site as the H2 ligand in (SiP
iPr

3)Fe(H2), rendered this 

structure inconclusive with respect to the nature of the H2 ligand in (SiP
iPr

3)Fe(H2). For a 

figure of the structure, see Figure A2.1 in Appendix 2. 
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3.3.2 Comparisons with the ENDOR Data 

The localization of the H2 ligand among two preferred orientations in the solid state neutron 

structure of (TPB)Co(H2) is distinct from the free rotor behavior of the H2 ligand suggested by 

the frozen solution ENDOR data, but it agrees with the predicted localization for the H2 ligand 

upon distortion of the MP3 plane. The ENDOR results presented in section 3.2.1 showed that 

static distortions of the MP3 plane and competitive π-backbonding between the π-acidic 

phosphines and H2 ligand can lead to preferential alignment of the H2 ligand along two M‒P 

bond vectors (Figure 3.4C), as was suggested by ENDOR results for the frozen solution 

samples of (SiP
iPr

3)Fe(H2). It is evident from the neutron structure for (TPB)Co(H2) that in the 

solid, crystalline state the MP3 plane is also distorted similarly to the frozen solution structure 

of (SiP
iPr

3)Fe(H2) (Table 3.1). Such a distortion in the solid state, as well as additional forces 

created by the solid, crystalline state molecular environment about the H2 ligand’s coordination 

sphere, serve to quench free rotation of the H2 ligand. 

 The P1‒Co1‒P2 angle in the solid state structure of (TPB)Co(H2) is contracted from the 

120° of an idealized C3 symmetric MP3 core to 111° (Table 3.1), with the MP3 core best 

described as an acute, isosceles triangle, as shown in Figure 3.4. It was predicted that this 

geometric distortion quenches free rotor behavior and localizes the H2 ligand among two 

preferred orientations, where each H2 unit of the disorder lies in parallel with a M‒P bond 

vector, leaving the third M‒P* bond vector as a non-preferred orientation. Indeed, this is 

observed in the neutron structure of (TPB)Co(H2). The H2 ligand is localized in two 

orientations that are each associated with the Co‒P3 and Co‒P1 bond vectors, respectively. 
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The Co‒P2 bond vector is the non-preferred orientation. To illustrate the correspondence 

between the neutron structure and the potential energy surface, the core of the structure of 

(TPB)Co(H2) can be overlaid with the potential energy surface, which was originally 

presented in Figure 3.4C, to give Figure 3.7. The potential energy surface is oriented so as to 

maximize the overlap of the two H2 orientations with energy minima. The figure illustrates the 

correspondence between the potential energy surface predicted by quantum mechanics and the 

neutron diffraction determined localization of the H2 ligand within these potential energy 

minima.  

 

Figure 3.7 Overlay of the core of the (TPB)Co(H2) neutron structure with the potential 

energy surface for H2 rotation upon distortion of the MP3 core, emphasizing the two 

preferred orientations of the H2 ligand. 

The H2 ligand also does not occupy each of the two preferred orientation equally: H1‒H2 

has occupancy of 68.2 %, while the H1B‒H2B has occupancy of 25.2 %. H1‒H2 and 

H1B‒H1B are skewed from the M‒P bond vectors by ca. 21° and ca. 8°, respectively. The 

deviation from the predicted structure can be explained in part with the isosurface shown in 
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Figure 3.6, which shows that the H2 ligand is in close contact with three separate methyl 

hydrogen atoms from the three isopropyl group of the TPB ligand. The higher occupancy of 

H1‒H2 may be favored because it has the longest H ∙∙∙ H close-contact distance of 2.174 Å, 

compared to the to the significantly shorter H ∙∙∙ H close-contact distance of 2.096 Å for the 

lower occupancy H1B‒H2B. These close contacts are likely not present in frozen solution, 

where packing forces are not in play and also contribute to quenching of the free rotation of the 

H2 ligand.   

3.4  Conclusions 

The neutron diffraction determined H‒H distance of 0.83 Å is evidence that (TPB)Co(H2) is 

a nonclassical H2 adduct. Comparison of the solid state neutron structure to frozen solution 

ENDOR data reveals that the rotational dynamics of the H2 ligand are very different in the 

solid state versus frozen solutions. Whereas the H2 ligand is a free-rotor in frozen solution, 

arising from H2 residing in an environment of C3 symmetry, the solid state structure reveals 

that H2 is localized among two preferred orientations. The quenching of free-rotation for the H2 

ligand in the solid state is attributed to structural distortions and crystal packing forces that 

generate barriers to free rotation of the H2 ligand. The neutron structure of (TPB)Co(H2) 

exhibits exactly what is observed by ENDOR for frozen solution samples of (SiP
iPr

3)Fe(H2). 

The contrast between the solid state data and frozen solution data illustrates how single crystal 

neutron diffraction and ENDOR can be used as complementary tools for the study of 

molecular dihydrogen complexes in the solid and solution states, respectively. 
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3.5  Experimental Section 

3.5.1 Sample Preparation 

Samples for EPR/ENDOR studies were prepared using a standard glovebox or Schlenk 

techniques. (TPB)Co(H2), (TPB)Co(D2), and (TPB)Co(HD) were prepared according to 

literature procedures.
8
  THF, 2-Me-THF, toluene, HMDSO, and methylcyclohexane were 

rigorously dried by stirring over Na metal for several days, followed by filtration through a pad 

of activated alumina. HD gas was generated by the slow addition of D2O into LiAlH4. Q-band 

ENDOR tubes were charged with the (TPB)Co(H2), (TPB)Co(D2), and (TPB)Co(HD) 

solutions under an atmosphere of the respective dihydrogen isotopomer. 

(TPB)Co(H2) crystals of suitable size for single crystal neutron diffraction were grown 

under 1 atm of H2 in a J-Young NMR tube according to the following procedure. A suspension 

of (TPB)Co(H2) in 2:1 HMDSO:methylcyclohexane at room temperature (RT) was dissolved 

by heating to 90 °C in an oil bath. Homogeneity of the solution is critical to growing large 

crystals suitable for neutron diffraction. The sample was then allowed to cool to RT in the oil 

bath, which was left undisturbed for three days, yielding large yellow crystals of (TPB)Co(H2). 

3.5.2 Neutron Diffraction 

Single crystal neutron diffraction data were measured on the TOPAZ instrument at the 

Spallation Neutron Source at Oak Ridge National Laboratory, in the wavelength-resolved 

time-of-flight Laue diffraction mode using wavelengths in the range 0.4 – 3.5 Å.
30

 A rod-

shaped crystal of (TPB)Co(H2) with the dimensions of 0.42  0.60  1.20 mm
3
 was mounted 

onto the tip of a polyimide capillary with fluorinated grease in a nitrogen glove box, and 
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transferred onto the TOPAZ goniometer for data collection at 100 K. To ensure good coverage 

and redundancy, data were collected using 26 crystal orientations optimized with CrystalPlan 

software.
31

 Each orientation was measured for approximately 5.9 h. 

The integrated raw Bragg intensities were obtained using the 3-D reciprocal Q-space 

integration method in Mantid,
32

 where Q = 2π/d = 4π(sinθ)/λ. The peaks from (TPB)Co(H2) 

were found to be triplets in Q-space within less than 0.15 Å
-1

 radii. Bragg peaks from the major 

component were used for determination of orientation matrix for the (TPB)Co(H2) crystal. 

Peak integration was performed accordingly using a radius of 0.15 Å
-1

 to include contributions 

from all three components. Data reduction for each sample, including neutron TOF spectrum, 

detector efficiency, and absorption corrections, was carried out with the ANVRED2 program.
33

 

The reduced data were saved in SHELX HKLF2 format in which the wavelength is recorded 

separately for each individual reflection, and not merged as a consequence of this saved 

format. The initial structural model used the unit cell parameters and non-hydrogen atom 

positions from the single-crystal XRD experiment measured at 100 K. The hydrogen atoms 

were found from nuclear difference Fourier map of the neutron data, and refined 

anisotropically using SHELXL-97
34

 in WinGX.
35

 

The dihydrogen ligand was found to be disordered in two positions with the site occupancy 

factors refined to 68.2 % and 25.2 %, respectively, for the major and minor components. The 

remaining 6.6 % nuclear density was modeled as a bromide ligand at 2.383(13) Å away from 

the Co center (trans to the boron) and is attributed to residual (TPB)CoBr starting material. 

The neutron structure was validated with Platon and the IUCr online checkcif program. The 
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following is a list of programs used: orientation matrix from live neutron event data, ISAW 

Event Viewer; data collection strategy, CrystalPlan; Data collection, SNS PyDas; data 

reductions, Mantid; absorption correction, ANVRED2; structural refinement, SHELXL-97;
34

 

promolecule isosurface plots, CrystalExplore.
36
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Chapter 4. Hydricity of an Fe‒H Species and Catalytic CO2 

Hydrogenation 
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4.1 Preface  

This chapter describes the CO2 hydrogenation chemistry of a series of tris-phosphino-iron-

hydride complexes. In Chapter 2, I showed that the (TPB)Fe scaffold is a competent for 

catalytic olefin and arylacetylene hydrogenation and that the hydrogenative reactivity was due 

in part to iron-borane cooperativity. In this chapter, I will show that the iron-borane 

cooperativity does not facilitate catalytic CO2 hydrogenation for the (TPB)Fe system. I also 

studied the CO2 hydrogenation chemistry of a series of structurally related tris-phosphino-iron 

complexes, and experimentally estimated the hydricity of the iron-hydride species 

(SiP
iPr

3)Fe(N2)(H). 

I am the first author of a paper published in Inorganic Chemistry that describes this work. 

The other author is Jonas Peters. I performed all of the experiments described in the 

manuscript, and Jonas Peters and I analyzed the results. Nathan Dalleska of the Environmental 

Analysis Center at Caltech assisted me in developing a method for the GC-FID measurements.     
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4.2 Introduction 

 The reduction of carbon dioxide into value-added chemicals and liquid fuels has received 

considerable attention recently due to increasing interest in the development of carbon neutral 

energy sources.
1
 The production of liquid fuels such as methanol

2
 or formic acid

3
 from CO2 

and H2 (or its formal equivalents) is particularly attractive. However, selective production of 

these products using heterogeneous catalysts remains challenging.
4-6

 One interesting approach 

towards CO2 reduction is to use molecular catalysis, where product selectivity may be better 

controlled than heterogeneous systems.
7
 The catalytically active species in molecular systems 

can often be probed either directly or indirectly, thereby offering opportunities to understand 

the catalytic mechanism and synthetically tune systems in a well-defined manner.
8
  

 One of the simplest CO2 reduction reactions is its hydrogenation to formic acid.
3 
 While a 

number of noble-metal catalysts for the hydrogenation of CO2 to formic acid exist,
9-17

 there are 

only a handful of examples using first-row transition metals such as iron
18-24

 and cobalt,
25-28

 

and information about their thermodynamic properties and elementary reaction steps is 

needed.
29-34

 For example, the hydricity (ΔGH-), which is the heterolytic dissociation energy of 

an [M‒H]
n+

 into M
n+1

 and H
- 
(equation 4.1), has only been experimentally determined for one 

iron-hydride complex FpH
35

 (FpH = (C5H5)Fe(CO)2(H)) despite recent reports of iron-

catalyzed CO2 hydrogenation.
18-24

 Knowledge of the hydricities of hydrogenation catalysts can 

aid the design of new catalysts. This is highlighted by the recent work of Linehan and 

coworkers on a cobalt-hydride catalyst,
26-27

 in which the design of this efficient CO2-to-
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formate hydrogenation system was achieved in part by using a cobalt-hydride that was more 

hydridic (i.e., < 43 kcal/mol) than the hydricity of formate
36

 (equation 4.2).   

[M‒H]
n+

      M
n+1

  +  H
-                   

ΔGH-                (4.1) 

OCHO
-
     CO2  +  H

- 
              ΔGH- = 43 kca/mol     (4.2) 

 As part of our exploratory research of phosphine-supported iron complexes in small 

molecule activation reactions
37-42

 I were interested in studying the catalytic CO2 hydrogenation 

chemistry of a series of tris-phosphino-iron species (Chart 4.1): (SiP
R

3)Fe(L)(H) (L = H2 or 

N2; SiP
R

3 = [Si(o-C6H4PR2)3]
-
, R = 

i
Pr or Ph),

37,43-44
  (PhBP

iPr
3)Fe(H)3(PMe3) (PhBP

iPr
3 = 

PhB(CH2P
i
Pr2)3),

45
 [(NP

iPr
3)Fe(N2)(H)](PF6) (NP

iPr
3 = N(CH2CH2P

i
Pr2)3),

46 

(TPB)(μ‒H)Fe(L)(H) (L = N2 or H2, TPB = B(o-C6H4P
i
Pr3)3),

44
 (CP

iPr
3)FeCl (CP

iPr
3 = [C(o-

C6H4P
i
Pr2)3]

-
),

42
 and (C

Si
P

Ph
3)FeCl (C

Si
P

Ph
3 = [C(Si(CH3)2CH2PPh2)3]

-
).

47
 These systems are 

structurally related to two tetra-phosphino-iron-hydride CO2 hydrogenation catalysts 

([(PP3)Fe(H2)(H)](BF4)
19,48

 and (tetraphos)Fe(H2)(H)](BF4),
20

 where PP3 = P(CH2CH2PPh2)3 

and tetraphos = P(o-C6H4PPh2)3), studied in a similar context by the groups of Beller and 

Laurenczy (Chart 4.1). A distinguishing feature of the present series of tris-phosphino-iron 

complexes is that each of the present ligand scaffolds possesses a different apical unit. These 

include an X-type silyl in SiP
R

3, an X-type alkyl in CP
iPr

3 and C
Si

P
Ph

3, a non-coordinating 

borate in PhBP
iPr

3, an L-type amine in NP
iPr

3, and a Z-type borane in TPB. Each of these apical 

units can confer different (i) geometries at iron, (ii) formal oxidation states at iron, and (iii) 

reactivity patterns for otherwise structurally similar species, as we have studied previously 

with respect to N2 activation chemistry.
37-42
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Chart 4.1 Select phosphine-metal complexes of relevance to catalytic CO2 

hydrogenation. 

 
 

This chapter presents the experimentally determined pKa and hydricity values for the 

(SiP
iPr

3)Fe system as well as the catalytic and stoichiometric hydrogenation of CO2 in this and 

related tris-phosphino-iron species shown in Chart 4.1. Under elevated temperatures and 

pressures of CO2 and H2 and with triethylamine as base, the (SiP
iPr

3)Fe, (SiP
Ph

3)Fe, 

(PhBP
iPr

3)Fe, and (CP
iPr

3)Fe systems catalytically hydrogenate CO2 to triethylammonium 

formate and methylformate, while (NP
iPr

3)Fe, (TPB)Fe, and (C
Si

P
Ph

3)Fe did not catalyze CO2 
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hydrogenation. We also show that despite a low hydricity (i.e., large ΔGH- value) for the 

complex (SiP
iPr

3)Fe(H2)(H) (ΔGH- = 54.3 ± 0.9 kcal/mol) coordination of the formate product 

to the iron-center following hydride transfer to CO2 provides enough driving force to make the 

reaction thermally accessible.    

4.3 Results and Discussion  

4.3.1 pKa and Hydricity for (SiP
iPr

3)Fe 

Since Fe‒H species have been invoked as intermediates for CO2 hydrogenation, we were 

curious if (SiP
iPr

3)Fe(H2)(H) was sufficiently hydridic to react with CO2. One method for 

determining hydricities is to use a thermochemical cycle that involves deprotonating the 

conjugate acid of the metal-hydride of interest.  We previously reported the dihydrogen 

chemistry of the (SiP
iPr

3)Fe system,
44

 including the deprotonation of the cationic iron-

dihydrogen complex [(SiP
iPr

3)Fe(H2)](BAr
F

4) (BAr
F

4 = [B(3,5-CF3-C6H3)4]
-
) by Hünig’s base 

under H2 to afford (SiP
iPr

3)Fe(H2)(H).
43

 This motivated us to use this deprotonation reaction to 

experimentally determine the hydricity of (SiP
iPr

3)Fe(H2)(H) using the series of equations in 

Scheme 4.1. The equilibrium in equation 4.3 was followed by 
1
H NMR spectroscopy 

independently with 1,8-bis(dimethylamino)naphthalene (proton sponge, Keq = 4.3), 2,6-lutidine 

(Keq = 3.3 x 10
-5

), and 2,4,6-trimethylpyridine (Keq = 5.1 x 10
-5

) in d8-THF.
i
 The reverse 

protonation of (SiP
iPr

3)Fe(H2)(H) with the BAr
F

4-salt of 1,8-

                                                 

i  THF is known to bind competitively with H2 on [(SiP
iPr

3)Fe(L)](BAr
F

4] (where L = THF or H2), and the 
THF/H2 binding equilibrium was taken into account in the calculations; see Appendix 3. 
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bis(dimethylammonium)naphthalene (Keq = 2.6) was also followed by 
1
H NMR spectroscopy 

in d8-THF.  

Scheme 4.1 Reactions relevant to the determination of the pKa and hydricity of 

(SiP
iPr

3)Fe.

 

See Chart 4.1 for the detailed ligand representation. B = base. 

 Note that the pKa of the dihydrogen ligand in [(SiP
iPr

3)Fe(H2)](BAr
F

4) can be estimated 

using equations 4.3 and 4.4. The experimentally determined pKa in THF using this method is 

pKa
THF

 = 10.8 ± 0.6 for [(SiP
iPr

3)Fe(H2)](BAr
F

4). Notably, the pKa
THF

 agrees very well with the 

predicted value of 10.2 obtained from the ligand acidity constants method recently developed 

by Morris.
ii,49

 It should be cautioned that this is only a rough estimate of the pKa of 

                                                 

ii  The pKa of [(SiP
iPr

3)Fe(H2)](BAr
F

4) was estimated using the Morris ligand acidity constants method. These 
calculations rely on ligand acidity constants for each of the ligands of the conjugate base metal complex, which 
in this case is the deprotonation product (SiP

iPr
3)Fe(H2)(H). We note that the ligand acidity constants for H2 and 

the formally Si
-
 ligands of the conjugate base complex are not known. Therefore, the reported ligand acidity 
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[(SiP
iPr

3)Fe(H2)](BAr
F

4), because the pKa of [(SiP
iPr

3)Fe(H2)](BAr
F

4) is a measure of the 

removal of a proton to afford “(SiP
iPr

3)Fe(H)”, whereas in the observed deprotonation reaction 

dihydrogen coordinates to this species to afford the (SiP
iPr

3)Fe(H2)(H) and contributes to the 

equilibrium depicted in equation 4.3. 

 With the equilibrium of equation 4.3 in hand, the hydricity of the conjugate base 

(SiP
iPr

3)Fe(H2)(H) can be determined by the summation of equations 4.3-4.5 to give equation 

4.6.
50-51

 Most hydricity values have been reported in acetonitrile due in part to the known 

heterolytic dissociation energy of H2 in acetonitrile (equation 4.5). However, irreversible 

coordination of acetonitrile to [(SiP
iPr

3)Fe precluded the use of this solvent. An empirical 

relationship relates the pKa
THF

 of a metal complex to the pKa in acetonitrile (pKa
MeCN

).
52

 Using 

this relationship, the pKa
MeCN

 of [(SiP
iPr

3)Fe(H2)](BAr
F

4) is 15.9 ± 0.7. Combining the pKa
MeCN

 

of [(SiP
iPr

3)Fe(H2)](BAr
F

4) with equation 4.5, the hydricity of (SiP
iPr

3)Fe(H2)(H) in MeCN is 

54.3 ± 0.9 kcal/mol. This is only the second experimentally estimated hydricity value of an 

iron-hydride complex.
35

 

 Formal hydride transfer from phosphine ligated iron-hydride complexes to CO2 to give 

formate is known in the literature.
29-34,53

  A comparison of the hydricity of (SiP
iPr

3)Fe(H2)(H) 

to that of formate (equation 4.2) indicates that the reaction for hydride transfer from 

(SiP
iPr

3)Fe(H2)(H) to CO2 to afford formate is endergonic by over 10 kcal/mol. Yet, as will 

                                                                                                                                                 

constants for C2H4 as a model for the H2 ligand and CH3
-
/H

-
 as a model for the Si

-
 ligand unit were used for 

these calculations. For the Morris acidity constant method, see ref 49. 
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be shown below, (SiP
iPr

3)Fe(H2)(H) can still react with CO2 both stoichiometrically and 

catalytically to afford formate.  

Scheme 4.2 Stoichiometric CO2 hydrogenation to triethylammonium formate. 

  

See Chart 4.1 for the detailed representations of the ligands indicated. 

4.3.2 Stoichiometric Reactivity of Fe‒H Species with CO2 

 In addition to (SiP
iPr

3)Fe(L)(H)
43-44

 (where L = N2 or H2), our group has previously reported 

the synthesis and characterization of three other related tris-phosphino-iron-hydride 
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complexes, (PhBP
iPr

3)Fe(H)3(PMe3),
45

 [(NP
iPr

3)Fe(N2)(H)](PF6),
46

 and 

(TPB)(μ‒H)Fe(N2)(H)
44

 (Chart 4.1), and demonstrated that the two former complexes, 

(PhBP
iPr

3)Fe(H)3(PMe3) and (TPB)(μ‒H)Fe(N2)(H), are olefin hydrogenation catalysts. The 

iron-hydride species of the tris(diphenyl-phosphino)silyl ligand, (SiP
Ph

3)Fe(N2)(H), had not 

previously been reported, but it has now been synthesized in an analogous manner to the 

preparation of the isopropyl-analogue (SiP
iPr

3)Fe(N2)(H) (vide infra). The reactivity of these 

iron-hydrides to CO2 was probed. 

 Synthesis of iron-formate species. A yellow solution of (SiP
Ph

3)Fe(N2)(H) reacted with CO2 

(1 atm) at 50 °C over 1 h to afford the orange insertion product (SiP
Ph

3)Fe(OCHO) (Scheme 

4.2a). Consistent with the  κ
1
-bound formate ligand,

54
 ATR-IR spectroscopy showed two 

signature vibrational features at 1618 cm
-1

 and 1316 cm
-1

 (
13

CO2: 1587 and 1254 cm
-1

) with a 

Δν(O‒C‒O) of 302 cm
-1

 (Table 4.1). As expected for a five-coordinate (SiP
R

3)Fe
II
 complex,

55
  

Table 4.1 IR stretching frequencies and solution magnetic moments for iron-formate 

complexes. 

 μeff 

(μB)
a
 

νasym(O‒C‒O) 

(cm
-1

)
b
 

νsym(O‒C‒O) 

(cm
-1

)
b
 Δνasym (O‒C‒O) 

(cm
-1

)
b
 

 CO2 
13

CO2 CO2 
13

CO2 

(SiP
Ph

3)Fe(OCHO) 2.7 1618 1587 1316 1254 302 

(SiP
iPr

3)Fe(OCHO) 2.8 1623 1583 --- --- --- 

(PhBP
iPr

3)Fe(OCHO) 5.0 1595 1546 1362 1355 233 

[(NP
iPr

3)Fe(OCHO)][PF6] 5.1 1613 1579 --- --- --- 

(TPB)Fe(OCHO) 4.2 1627 1588 1291 1269 336 

a
Solution magnetic moments at RT. 

b
ATR-IR data of solution thin films. 

c
Difference 

between νasym(O‒C‒O) and νsym(O-C‒O). 
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(SiP
Ph

3)Fe(OCHO) is S = 1 (2.7 μB in C6D6 at RT). (SiP
iPr

3)Fe(N2)(H) reacted with CO2 

similarly to afford (SiP
iPr

3)Fe(OCHO). The ATR-IR spectrum showed an asymmetric O‒C‒O 

stretch at 1623 cm
-1

 (
13

CO2: 1583 cm
-1

). While the symmetric O‒C‒O stretch could not be 

reliably discerned (Table 4.1), its S = 1 spin state (2.8 μB in C6D6 at RT) and yellow colour 

indicate a five coordinate (SiP
iPr

3)Fe(OCHO) complex. 

 Exposing a yellow THF solution of (PhBP
iPr

3)Fe(H)3(PMe3) to CO2 (1 atm) for 12 h at 

room temperature afforded the κ2
-bound formate adduct (PhBP

iPr
3)Fe(OCHO) (Scheme 4.2b) 

as a light yellow solution. The ATR-IR spectrum of this S = 2 species (5.0 μB, C6D6 at RT) 

exhibited features of a formate ligand at 1595 cm
-1

 and 1362 cm
-1

 (
13

CO2: 1546 and 1355 cm
-1

) 

with a Δν(O‒C‒O) = 233 cm
-1

 that is consistent with the κ2
-bound formate assignment.

54
 The 

formate coordination mode is in contrast to the κ1
-bound formate ligands in (SiP

R
3)Fe(OCHO), 

[(NP
iPr

3)Fe(OCHO)](PF6), and (TPB)Fe(OCHO). Presumably, this arises because of the lower 

coordination number in (PhBP
iPr

3)Fe.  

 A yellow THF solution of [(NP
iPr

3)Fe(N2)(H)](PF6) reacted with CO2 (1 atm) at room 

temperature over 3 h to afford the formate adduct [(NP
iPr

3)Fe(OCHO)](PF6) (Scheme 4.2c) as 

a colorless solution. [(NP
iPr

3)Fe(OCHO)](PF6) is S = 2 (5.1 μB, C6D6 at RT), analogous to 

[(NP
iPr

3)FeCl](PF6).
46

  Consistent with the iron-formate formulation, ATR-IR spectroscopy 

showed a diagnostic νasym(O‒C‒O) vibrational feature at 1613 cm
-1

 that shifts to 1579 cm
-1

 

with 
13

CO2. However, the accompanying lower energy νsym(O‒C‒O) vibrational feature could 

not be reliably assigned due to overlapping ligand vibrational modes in the 1200 – 1300 cm
-1
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region. The obscured νsym(O‒C‒O) feature prevented assignment of the formate binding mode, 

but the νasym(O‒C‒O) most closely matches κ1
-bound formate ligands (Table 4.1).

54
 

 Mixing a benzene solution of (TPB)(μ‒H)Fe(N2)(H) with CO2 (1 atm) at room temperature 

afforded the κ1
-formate complex (TPB)Fe(OCHO) (Scheme 4.2d) as a yellow solution. The 

color, 
1
H NMR spectrum, and solution magnetic moment (4.2 μB, S = 3/2 in C6D6 at RT) are 

consistent with the formulation of (TPB)Fe(OCHO) as a  {Fe‒B}
7 

species.
iii,58

 As for 

(SiP
R

3)Fe(OCHO), (TPB)Fe(OCHO) exhibited diagnostic κ1
-formate ligand vibrational modes 

at 1627 cm
-1

 and 1291 cm
-1

 (
13

CO2: 1588 and 1269 cm
-1

) with a Δν(O‒C‒O) of 336 cm
-1

 

(Table 4.1).
54

 The IR spectrum of (TPB)Fe(OCHO) lacks any feature that is diagnostic for a 

B‒H unit.
59

 For comparison, in the related S = 2 (TPBH)Fe(CCAr) (Ar = phenyl or tolyl) 

complex, where a terminal B‒H is present, the IR spectra exhibits diagnostic B‒H vibrations at 

2490 cm
-1

 for Ar = phenyl and 2500 cm
-1

 for Ar = tolyl.
44

 

 The formation of (TPB)Fe(OCHO) from the reaction of (TPB)(μ‒H)Fe(N2)(H) with CO2 (1 

atm) is notable in that there is a formal loss of an H-atom (Scheme 4.3). The loss of 0.5 equiv 

of H2 (relative to the starting iron complex) was confirmed by gas-chromatography (GC-TCD; 

0.44 equiv of H2 quantified). The reaction between the previously reported (TPB)Fe(N2)
58

 with 

formic acid also formed (TPB)Fe(OCHO), with 0.42 equiv of H2 detected by GC-TCD as a  

product (Scheme 4.3). 

                                                 

iii  The {M‒E}
n
 notation refers to the number of valence electrons that are formally assigned to the metal (e.g., Fe) 

and those shared with E (e.g., B). Since the M‒E bond may be covalent and the M‒E interaction is dictated in 
part by the ligand chelate and M‒E distance, the bonding electrons between M‒E are not reliably assigned to 
either atom. As such, the {M‒E}

n
 notation tracks the number of valence electrons without assignment of 

valence or oxidation numbers. See ref 56 and 57. 



 

 

107 

Scheme 4.3 Reactivity of (TPB)Fe complexes with CO2 and formic acid. 

 

See Chart 4.1 for the detailed ligand representation. 

 Reactivity of Fe‒OCHO species. The formate ligands in all five of the aforementioned iron-

formate complexes are substitutionally labile. The addition of triethylammonium chloride (10 

equiv) into either benzene or methanol solutions of these complexes resulted in the formation 

of the respective iron-chloride complexes and triethylammonium formate (Scheme 4.2). 

Furthermore, the iron-chloride products from these metathesis reactions are synthons for the 

respective iron-hydride complexes. 

 With this metathesis reaction and known reaction chemistry for the (SiP
iPr

3)Fe scaffold, we 

can construct a synthetic cycle for CO2 hydrogenation, which may inform the catalytic CO2 

hydrogenation reaction (vide infra). Starting from the Fe‒Cl species, (SiP
iPr

3)FeCl reacts with 

MeMgCl (1 equiv) to afford the iron-methyl complex (SiP
iPr

3)FeMe (this work, Scheme 4.4a). 

Subsequent reaction with H2 affords (SiP
iPr

3)Fe(N2)(H) (Scheme 4.4b).
43

 Alternatively, the 

iron-methyl complex (SiP
iPr

3)FeMe can be converted into cationic dihydrogen complex 

[(SiP
iPr

3)Fe(H2)](BAr
F

4)
43

  (Scheme 4.4c-d).  The dihydrogen ligand in the latter complex can 

be deprotonated by triethylamine (this work) to generate (SiP
iPr

3)Fe(L)(H) (where L = N2 or 

H2) (Scheme 4.4e). As shown above, (SiP
iPr

3)Fe(N2)(H) reacts with CO2 to afford the 
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(SiP
iPr

3)Fe(OCHO) (Scheme 4.4f), which can undergo metathesis with (Et3NH)Cl to afford the 

starting iron-chloride complex (Scheme 4.4g).  

Reaction of (SiP
iPr

3)FeCl with H2 is also possible. A CD3OD:d8-THF (10:1) solution of 

(SiP
iPr

3)FeCl with excess triethylamine in the presence of H2 and D2 (ca. 1 atm : 1 atm) gives 

HD (Scheme 4.4h). Related, the cationic dihydrogen adduct [(SiP
iPr

3)Fe(H2)][BAr
F

4], a model 

for [(SiP
iPr

3)Fe(H2)]
+
, scrambles a mixture of H2 and D2 (ca. 1 atm : 1 atm) to HD in a 

CD3OD:d8-THF solution (10:1). (SiP
iPr

3)FeCl is the sole observed iron-containing species by 

1
H NMR spectroscopy in the former experiment, indicating that the equilibrium with the 

putative [(SiP
iPr

3)Fe(H2)]
+
 responsible for scrambling H2/D2 heavily favors (SiP

iPr
3)FeCl.  

Scheme 4.4 Synthetic cycle for CO2 hydrogenation to formate by (SiP
iPr

3)Fe. 

 

See Chart 4.1 for the detailed ligand representation. Conditions: a) MeMgCl, THF; b) 

H2, THF (plus N2 workup for L = N2); c) (HBAr
F

4)(Et2O)2, C6H6; d) H2 (forward), N2 

(reverse), THF; e) Et3N, THF (plus N2 workup for L = N2); f) CO2, MeOH, THF or 

C6H6; g) (Et3NH)Cl, C6H6 or MeOH; h) 1:1 atm H2:D2, Et3N, 10:1 CD3OD:d8-THF (HD 

is produced); i) for L = N2, Et3NHCl, 10:1 CD3OD:d8-THF. 
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4.3.3 Catalytic Hydrogenation 

Having realized a synthetic cycle for CO2 hydrogenation to formate, the next step was to 

explore if the process could be made catalytic. Following literature precedent, the tris-

phosphino-iron-chloride complexes were tested in an initial screen for catalysis,
9-16,18-26,28

 and 

triethylamine was added to serve as a base.
60 1

H NMR spectroscopy with DMF added as an 

integration standard was used to quantify triethylammonium formate yields. Other known 

products of CO2 hydrogenation are formate esters such as methylformate obtained from the 

esterification of formate with methanol.
19-20

 Due to the volatility and low yields of MeOCHO, 

GC-FID was used to quantify this product.  

 Under the standardized reaction conditions of 29 atm of CO2 and 29 atm of H2 in methanol 

solvent with triethylamine, (SiP
iPr

3)FeCl, (SiP
Ph

3)FeCl, and (PhBP
iPr

3)FeCl are precatalysts 

for the hydrogenation of CO2 to triethylammonium formate and methylformate (Table 4.2, 

entries 1-3). (SiP
Ph

3)FeCl is the most active, having an average turnover number of 200. These 

three systems are also more selective for (Et3NH)(OCHO) than MeOCHO, with 

(PhBP
iPr

3)FeCl being the most selective of the three with a 10:1 (Et3NH)(OCHO) to 

MeOCHO product ratio. It is also worth noting that the primary coordination sphere of the 

zwiterionic (PhBP
iPr

3)Fe system is structurally similar to a known cationic ruthenium system 

(triphos)Ru (triphos = CH3C(CH2PPh2)3) that hydrogenates CO2 to methanol
61

 and also 

dehydrogenates formic acid
62

 (Chart 4.1). We have also reported the reduction of CO2 to 

oxalate by (PhBP
iPr

3)Fe.
63

   

 



 

 

110 

 Table 4.2 Tris-phosphino-iron catalyzed CO2 hydrogenation. 

 

Entry Precatalyst TON
a
 

(Et3NH)(OCHO):MeOCHO 

ratio
e
 

1 (SiP
iPr

3)FeCl 53 3:1 

2 (SiP
Ph

3)FeCl 200 2:1 

3 (PhBP
iPr

3)FeCl 27 10:1 

4 [(NP
iPr

3)FeCl](PF6) 0 0 

5 (TPB)FeCl 0 0 

6 (CP
iPr

3)FeCl 27 6:1 

7 (C
Si

P
Ph

3)FeCl 0 0 

8 PP3/Fe(BF4)2
b,c

 486 3:1 

9 [(tetraphos)FeF]BF4
b,d

 1661 1:1 

10 FeCl2 0 0 

11 FeCl2/4 PPh3 0 0 

12 no iron 0 0 

Conditions: 0.1 mol % (0.7 mM)  iron-precatalyst (relative to Et3N), methanol, 651 mM 

Et3N, 29 atm CO2 (RT), 29 atm H2 (RT), 100 °C, 20 h. 
a
Turnover number: combined 

yield (moles) of (Et3NH)(OCHO) and MeOCHO divided by moles of precatalyst. 

b
Previously studied under slightly different conditions. 

c
See ref 19. 

d
See ref 20. 

e
Ratio of 

the amount of (Et3NH)(OCHO) product to the amount of MeOCHO product. 

Under the standard conditions, [(NP
iPr

3)FeCl](PF6) and (TPB)FeCl are not precatalysts for 

the reaction (Table 4.2, entries 4 and 5). The recently reported (CP
iPr

3)FeCl complex (Chart 

4.1),
42

 where the silicon atom in (SiP
iPr

3)FeCl is substituted by a carbon atom, is also 

catalytically competent (Table 4.2, entry 6) but is significantly less active than (SiP
Ph

3)FeCl. 
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Another carbon variant of the tris-phosphino-iron series of complexes, (C
Si

P
Ph

3)FeCl
47

 

(Chart 4.1), is not catalytically competent (Table 4.2, entry 7).  

 For a direct comparison with known iron CO2 hydrogenation catalysts and as a benchmark 

of the method employed, we subjected the (PP3)Fe
19

 and (tetraphos)Fe
20

 systems to our 

standardized conditions. Beller and Laurenczy reported that a mixture of the PP3 ligand with 

Fe(BF4)2 is one of the more active conditions for CO2 hydrogenation in the PP3 system. Under 

the standard conditions of this study, a 1:1 mixture of PP3 and Fe(BF4)2 hydrogenates CO2 to 

triethylammonium formate and methylformate, as well, at a total TON of 486 (Table 4.2, entry 

8). The (tetraphos)Fe(F)(BF4)2 complex also catalyzes CO2 hydrogenation to the same 

products at a total TON of 1661 (Table 4.2, entry 9). These values are in near agreement with 

the respective literature reports. The (tetraphos)Fe(F)(BF4)2 complex is the least selective of 

the series in Table 4.2 for formate production. 

 A series of control experiments were performed to probe the homogeneity of the reaction. 

The catalytic reaction is uninhibited by the addition of elemental mercury (see Appendix 3). 

Also, CO2 hydrogenation does not occur with the iron salt FeCl2 (Table 4.2, entry 10) or with a 

1:4 mixture of FeCl2 and triphenylphosphine (Table 4.2, entry 11), nor does it proceed in the 

absence of an iron source (Table 4.2, entry 12). These experiments do not preclude a role for 

heterogeneous species, but provide evidence consistent with a homogeneous process.  

 To gain insight into the reaction, we chose to study the hydrogenation catalysis by the 

(SiP
iPr

3)Fe system further, as it is more active than (PhBP
iPr

3)FeCl, and because its 
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coordination chemistry has been studied in greater detail than that of its phenyl-analogue 

(SiP
Ph

3)Fe.
43-44

  

 Under standard conditions but in the absence of H2, triethylammonium formate and 

methylformate were not detected (Table 4.3, entry 1). When the reaction was run in CD3OD 

instead of CH3OH, (Et3NH)(OCHO) was detected by 
1
H NMR spectroscopy at the conclusion 

of the reaction, while (Et3ND)(OCDO) was not detected by 
2
H NMR spectroscopy (Table 4.3, 

entry 2). The data collectively indicate that H2 is the source of the H-atom equivalents. 

High pressures of CO2 and H2 are critical, as the reaction does not proceed at or near 

atmospheric pressures of H2 and CO2, in agreement with most literature examples (see 

Appendix 3).
3,9-16,18-26,28

 Reducing the CO2 pressure to 5.5 atm while keeping the H2 pressure at 

29 atm only modestly decreases the overall TON (Table 4.3, entry 13), but significantly 

increases the selectivity for formate. Reducing the H2 pressure to 5.5 atm while keeping the 

CO2 pressure at 29 atm stops catalysis (Table 4.3, entry 14). Also critical is methanol, as 

catalytic activity does not occur in THF under any pressures of CO2 and H2 studied here (see 

Appendix 3), highlighting the importance of polar, protic solvents in phosphine-iron CO2 

hydrogenation catalysis.
60

 

 It was determined that 100 °C and 20 h are optimal for the catalytic reaction under the 

conditions studied here. Running the reaction at 150 °C slightly reduces the turnover relative to 

the standard conditions (Table 4.3, entry 3), which is likely a result of catalyst decomposition 

(vide infra). At 20 °C no reaction occurs (Table 4.3, entry 4), and the starting precatalyst, 

(SiP
iPr

3)FeCl, is the only iron-containing species at the end of the reaction. Decreasing the 
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Table 4.3 (SiP
iPr

3)FeCl catalyzed CO2 hydrogenation under varied conditions. 

 

Entry 
Deviation from Standard 

Conditions
a
 

TON
b
 

(Et3NH)(OCHO):MeOCHO 

ratio
f
 

0 none 53 3:1 

1 0 atm H2 0 0 

2
c
 CD3OD 32 2:1 

3 150 °C 40 2:1 

4 20 °C 0 0 

5 2 h 16 1:0 

6 0.5 equiv (Et3NH)Cl
d
 41 5:1 

7 0.5 equiv NaBF4
d
 93 6:1 

8 0.5 equiv NaBAr
F

4
d
 69 2:1 

9 0.5 equiv NaF
d
 45 8:1 

10 0.5 equiv TBAF
d,e

 33 12:1 

11 0.5 equiv CsF
d
 26 9:1 

12 0.5 equiv K2CO3
d
 57 21:1 

13 5.5 atm CO2 47 14:1 

14 5.5 atm H2 0 0 

a
Standard conditions: 0.1 mol % (0.7 mM)  iron-precatalyst (relative to Et3N), methanol, 

651 mM Et3N, 29 atm CO2 (RT), 29 atm H2 (RT), 100 °C, 20 h. 
b
Turnover number: 

combined yield (moles) of (Et3NH)(OCHO) and MeOCHO divided by moles of 

precatalyst. 
c
(Et3NH)(OCHO) was detected by 1H NMR spectroscopy, but neither 

(Et3ND)(OCDO), (Et3NH)(OCDO), nor (Et3ND)(OCHO) was detected by 
2
H NMR 

spectroscopy. 
d
Relative to moles of (SiP

iPr
3)FeCl. 

e
TBAF = tetrabutylammonium 

fluoride. 
f
Ratio of the amount of (Et3NH)(OCHO) product to the amount of MeOCHO 

product. 
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reaction time to 2 h at 100 °C reduces the TON by a factor of three (Table 4.3, entry 5) 

compared to the standard conditions.  

 Using the stoichiometric reactions as a guide, the effects of additives and precatalysts on the 

catalysis was also probed. The stoichiometric metathesis reaction for the transformation of 

(SiP
iPr

3)Fe(OCHO) to (SiP
iPr

3)FeCl suggests that chloride substitution for formate may be a 

route for formate release. However, the addition of 0.5 equiv of (Et3NH)Cl (relative to iron) 

into the reaction reduces the TON, although the selectivity for (Et3NH)(OCHO) over 

MeOCHO slightly increases to 5:1 (Table 4.3, entry 6). It appears that while chloride may 

substitute for formate, excess chloride may also slow dihydrogen substitution at iron (vide 

infra) and reduces the overall TON. The addition of a non-coordinating anion in the form of 

NaBF4 to the catalytic mixture is beneficial, yielding a TON of 93 and 6:1 selectivity for 

(Et3NH)(OCHO) (Table 4.3, entry 7), while the addition of Na(BAr
F

4) (BAr
F

4 = B(3,5-(CF3)2-

C6H3)4) only modestly increases the TON to 69 and without significantly affecting selectivity 

(Table 4.3, entry 8).  The origin of the effect from the Na
+
 and/or borate anion is not 

understood, but one effect may be that the Na
+
 facilitates the removal of the inner-sphere 

chloride as NaCl. Additionally, alkali metals are known to facilitate CO2 coordination to cobalt 

centres.
64 

It is also noteworthy that BF4
-
 is the counter anion of the highly active 

tetraphosphine-iron (PP3)Fe
19

 and (tetraphos)Fe
20

 systems and also beneficial for iron 

catalyzed formic acid dehydrogenation.
65

 It is unlikely that fluoride, which may be a 

decomposition product of BF4
-
, is the source of the positive response, as fluoride-salts decrease 

the TON but increase the selectivity for (Et3NH)(OCHO) (Table 4.3, entries 9-11). Finally, the 
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addition of K2CO3, which has been reported to enhance CO2 hydrogenation catalysis for some 

noble- and non-noble metal systems,
66

 has no effect on the TON but most significantly 

increases selectivity for (Et3NH)(OCHO) compared to the other additives (Table 4.3, entry 12). 

The additives containing coordinating anions are more selective for (Et3NH)(OCHO) over 

MeOCHO, presumably as a result of anion coordination inhibiting iron-catalyzed esterification 

of formate to methylformate.
67

 However, it should be cautioned that these results are 

qualitative. A systematic study of the effects of these and other additives on catalysis would be 

warranted to draw quantitative conclusions.  

 Other important factors known to affect catalysis are the base identity
26

 and base 

concentrations.
60

 A careful study of the effect of different bases and concentrations on catalysis 

in the present series is beyond the scope of this report, but note that the pKa of triethylamine is 

suitably matched to the pKa of [(SiP
iPr

3)Fe(H2)]
+
 (vide supra), an intermediate in the catalytic 

cycle of the (SiP
iPr

3)Fe system (Scheme 4.5; vide infra). 

 Other (SiP
iPr

3)Fe species are also competent precatalyst. The iron-formate 

(SiP
iPr

3)Fe(OCHO) and iron-hydride complex (SiP
iPr

3)Fe(N2)(H) are each catalytically 

competent precatalyst (Scheme 4.4, entries 1 and 2), with TON’s comparable to (SiP
iPr

)FeCl. 

The cationic dinitrogen complex [(SiP
iPr

3)Fe(N2)](BAr
F

4), which is a synthon for 

(SiP
iPr

3)Fe(N2)(H) in the presence of H2 and triethylamine (Scheme 4.4),  is also a catalytically  

competent precatalyst (Scheme 4.4, entry 3). Finally, a mixture of the 1:1 free ligand HSiP
iPr

3 

and FeCl2 is significantly less catalytically competent than the synthesized iron complex 
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(SiP
iPr

3)FeCl (Scheme 4.4, entry 4). All four of these precatalysts are more selective than 

(SiP
iPr

3)FeCl for (Et3NH)(OCHO). 

Table 4.4 CO2 hydrogenation catalyzed by various (SiP
iPr

3)Fe species. 

 

Entry Precatalyst TON
a
 

(Et3NH)(OCHO):MeOCHO 

ratio
c
 

0 (SiP
iPr

3)FeCl 53 3:1 

1 (SiP
iPr

3)Fe(OCHO) 52 15:1 

2 (SiP
iPr

3)Fe(N2)(H) 47 3:1 

3 [(SiP
iPr

3)Fe(N2)](BAr
F

4) 18 8:1 

4 HSiP
iPr

3/FeCl2 (1:1)
b
 12 4:1 

Conditions: 0.1 mol % (0.7 mM)  iron-precatalyst (relative to Et3N), methanol, 651 mM 

Et3N, 29 atm CO2 (RT), 29 atm H2 (RT), 100 °C, 20 h. 
a
Turnover number: combined 

yield (moles) of (Et3NH)(OCHO) and MeOCHO divided by moles of precatalyst. 
b
1:1 

mixture of HSiP
iPr

3:FeCl2 (0.7 mM) was used as the precatalyst in place of 

(SiP
iPr

3)FeCl. 
c
Ratio of the amount of (Et3NH)(OCHO) product to the amount of 

MeOCHO product. 

 The fate of the iron precatalyst (SiP
iPr

3)FeCl under the reaction conditions was also probed. 

At the end of the reaction under standard conditions, the 
31

P NMR spectrum showed a mixture 

of phosphorous-containing material, including significant quantities of free ligand (HSiP
iPr

3). If 

the reaction was run at room temperature, only the starting precatalyst (SiP
iPr

3)FeCl was 

observed by 
1
H NMR spectroscopy. These observations indicate that while the catalysis 

requires heating, elevated temperatures lead to eventual catalyst decomposition. 
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Scheme 4.5 Proposed catalytic cycle for (SiP
iPr

3)Fe in MeOH. 

 

See Chart 4.1 for detailed ligand representation. 

 A possible catalytic cycle based in part on the observed stoichiometric reactions discussed in 

Scheme 4.4 is proposed in Scheme 4.5 for the (SiP
iPr

3)Fe system. Starting from precatalyst 

(SiP
iPr

3)FeCl in Scheme 4.5, dihydrogen substitution forms the cationic dihydrogen adduct 

[(SiP
iPr

3)Fe(H2)]
+
. The viability of this H2 for Cl

-
 substitution step is demonstrated by H/D 

scrambling experiments discussed above. The cationic dihydrogen adduct [(SiP
iPr

3)Fe(H2)]
+
 in 

the catalytic cycle  can be deprotonated by triethylamine to give (SiP
iPr

3)Fe(H2)(H), as was 

observed in the stoichiometric reaction (Scheme 4.4e). The reverse of this reaction is also 

possible: a 1:1 mixture of (Et3NH)Cl and (SiP
iPr

3)Fe(H2)(H) reacts to afford (SiP
iPr

3)FeCl 

(Scheme 4.4i).  

 The iron-hydride intermediate (SiP
iPr

3)Fe(H2)(H) can then react with CO2 to form the iron-

formate complex (SiP
iPr

3)Fe(OCHO), which can subsequently react with (Et3NH)Cl and 
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reform (SiP
iPr

3)FeCl and release (Et3NH)(OCHO). The direct conversion of 

(SiP
iPr

3)Fe(OCHO) to [(SiP
iPr

3)Fe(H2)]
+ 

may also be a viable pathway, as chloride-

free[(SiP
iPr

3)Fe(N2)](BAr
F

4), (SiP
iPr

3)Fe(N2)(H), and (SiP
iPr

3)Fe(OCHO) are catalytically 

competent. An alternative mechanism involving an iron-dihydride species cannot be ruled out 

but is unlikely for the (SiP
iPr

3)Fe system (Scheme 4.6a). A similar mechanism was proposed 

by Beller et al. for the cationic (tetraphos)Fe catalyst based on in situ NMR data, where the 

intermediate [(tetraphos)Fe(H2)(H)]
+
 was deprotonated by Et3N to give (tetraphos)Fe(H)2 

(Scheme 4.6b).
20

 This iron-dihydride intermediate was suggested to react with CO2 to give the 

iron-hydrido-formate intermediate (tetraphos)Fe(H)(OCHO). However, note that a dihydride 

intermediate in the (SiP
iPr

3)Fe system would be unlikely because the analogous deprotonaton 

of (SiP
iPr

3)Fe(H2)(H) would form an anionic iron-dihydride species “[(SiP
iPr

3)Fe(H)2]
-
”, which 

is likely to be thermodynamically inaccessible. For example, a solution of (SiP
iPr

3)Fe(H2)(H) 

with excess triethylamine is stable for hours at 90 °C. While this does not rule out the 

possibility of an equilibrium mixture of (SiP
iPr

3)Fe(H2)(H) and [(SiP
iPr

3)Fe(H)2]
-
, heavily 

favoring the neutral monohydride species, and note that the estimated pKa of the H2 and H
-
 

ligands in (SiP
iPr

3)Fe(H2)(H)  is greater than 45 in THF,
49

 vastly higher than for triethylamine 

([Et3NH]
+
 pKa = 12.5 in THF).

68
   

It is of interest to compare the (SiP
R

3)Fe system to the catalytically incompetent (TPB)Fe 

system, since (TPB)(μ‒H)Fe(N2)(H) is an olefin hydrogenation catalyst.
44

 A key step that may 

be required for catalysis is the substitution of Cl
-
 by H2 in (SiP

iPr
3)FeCl to give the cationic 

dihydrogen adduct [(SiP
iPr

3)Fe(H2)]
+
. Deprotonation of the dihydrogen ligand in a C6D6:d8- 
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Scheme 4.6 Dihydride pathways for catalytic CO2 hydrogenation. 

 

See Chart 4.1 for detailed representation of the ligands indicated. 

THF mixture by triethylamine leads to the CO2 reactive iron-hydride complex 

(SiP
iPr

3)Fe(H2)(H). The initial H2 substitution step, therefore, is critical towards forming 

(SiP
iPr

3)Fe(H2)(H). However, the {Fe‒B}
7
 complexes (TPB)Fe(OCHO) and (TPB)FeCl do 

not react with H2 (4 atm). Related, the previously reported {Fe‒B}
7
 [(TPB)Fe](BAr

F
4) 

complex,
41

 which has a vacant fifth coordination site, does not react with H2 in the presence of 

excess triethylamine under 1 atm of H2 at 90 °C for 12 h. Furthermore, [(TPB)Fe](BAr
F

4) does 

not hydrogenate CO2 under the catalytic conditions (see Appendix 3). [(NP
iPr

3)FeCl](PF6) is 

not a hydrogenation precatalyst for possibly the same reason. Qualitatively, it appears that the 

inability of these latter systems to coordinate H2, presumably a reflection of their weaker 
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ligand-field (LF) strengths by comparison to the SiP
R

3 system and hence their tendency to 

populate high spin configurations ([(NP
iPr

3)FeCl](PF6), S = 2;
46

 (TPB)FeCl, S = 3/2
58

), limits 

their efficacy towards CO2 hydrogenation by comparison with the (SiP
R

3)Fe system 

((SiP
iPr

3)FeCl, S = 1
55

). An additional factor preventing catalysis in the (TPB)Fe system is the 

unproductive loss of 0.5 equiv of H2 following the reaction of (TPB)(μ‒H)Fe(N2)(H) with 

CO2, which generates the catalytically incompetent (TPB)Fe(OCHO) (Scheme 4.3).  

4.3.4 Influence of Hydricity on the Reaction with CO2 

Based only on the hydricity (54.3 ± 0.9 kcal/mol), the reaction of (SiP
iPr

3)Fe(H2)(H) with 

CO2 to afford formate (ΔGH- = 43 kcal/mol) is endergonic by over 10 kcal/mol. However, 

comparisons of only the hydricities of the iron-hydride and formate neglect to take into 

account the observed formate coordination to iron (Scheme 4.2). To estimate the free energy 

afforded by formate coordination to iron, the formate binding constant was determined by UV-

vis titration for the reaction of [(SiP
iPr

3)Fe(N2)](BAr
F

4) and  Li(OCHO) to (SiP
iPr

3)Fe(OCHO) 

(Scheme 4.7, equation 4.7). The titration in THF indicates that the binding constant of formate 

to the iron complex is on the order of 10
6
 M

-1
. This is equivalent to ΔG < -8 kcal/mol for 

formate binding. Thus, the added driving force from formate coordination brings the free 

energy change for the reaction of (SiP
iPr

3)Fe(H2)(H) and CO2 to form (SiP
iPr

3)Fe(OCHO) to 

about 3 kcal/mol (Scheme 4.7, equation 4.10; from the sum of equations 4.7-4.9). This is 

thermally accessible at the elevated temperatures at which the stoichiometric and catalytic 

reactions are run. 
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Scheme 4.7 Gibbs free energies for the reactions of relevance to CO2 hydrogenation by 

(SiP
iPr

3)Fe(H2)(H). 

 

See Chart 4.1 for the detailed ligand representation. 

 It should be cautioned that (SiP
iPr

3)Fe(H2)(H) may not be the actual iron-hydride 

intermediate that reacts with CO2, i.e., an intermediate elementary step may occur prior to CO2 

reacting with the iron complex.  The hydricity of such a species is likely different than 

(SiP
iPr

3)Fe(H2)(H) owing to the trans-influencing Si
-
. Also note that these hydricity values are 

for acetonitrile, while the catalytic reactions were run in methanol. The magnitude of the 

difference in hydricities between formate and metal-hydrides is known to decrease upon 

changing from acetonitrile to water.
69

 A similar phenomenon may be occurring in methanol, 

where the difference in hydricity between (SiP
iPr

3)Fe(H2)(H) and formate may not be as large 



 

 

122 

as the values in acetonitrile. This, combined with formate coordination to iron (Scheme 4.7, 

equation 4.7), may in fact make this formal CO2 insertion step exergonic in methanol.  

4.4 Conclusions 

In summary, a series of tris-phosphino-iron-hydride complexes, including (SiP
R

3)Fe(L)(H), 

(PhBP
iPr

3)Fe(H)3(PMe3), [(NP
iPr

3)Fe(N2)(H)](PF6), and (TPB)(μ‒H)Fe(N2)(H), have been 

studied in the context of CO2 hydrogenation. These iron-hydride complexes react with CO2 to 

afford iron-formate complexes which can undergo metathesis with triethylammonium chloride 

to release triethylammonium formate and well-defined iron-chloride complexes, which are 

themselves synthons for the CO2-reactive iron-hydride complexes (Scheme 4.2).  Under the 

catalytic conditions under elevated pressures of H2 and CO2, (SiP
iPr

3)FeCl, (SiP
Ph

3)FeCl,  and 

(PhBP
iPr

3)FeCl are precatalysts for catalytic CO2 hydrogenation to formate and methylformate 

(Scheme 4.2). (CP
iPr

3)FeCl, in which carbon replaces the silicon-atom in (SiP
iPr

3)FeCl, was 

also a competent catalyst. The catalytic reactions proceeded in methanol but not in THF, 

highlighting the importance of solvent in the catalytic reaction. 
60

 

 As depicted in Scheme 4.5, dihydrogen substitution into (SiP
iPr

3)FeCl or 

(SiP
iPr

3)Fe(OCHO) to form [(SiP
iPr

3)Fe(H2)]
+
 followed by deprotonation to form the CO2-

reactive (SiP
iPr

3)Fe(H2)(H) are key steps in the catalytic cycle and determine catalytic 

competency. The proposed mechanism for (SiP
iPr

3)Fe also differs from the mechanism for the 

highly active (tetraphos)Fe system, which proceeds through a dihydride intermediate.  

 Finally, the hydricity value of an iron-hydride species has also been experimentally 

determined. The hydricity of (SiP
iPr

3)Fe(H2)(H) is 54.3 ± 0.9 kcal/mol in acetonitrile, and the 
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estimated pKa
MeCN

 of the related conjugate acid [(SiP
iPr

3)Fe(H2)](BAr
F

4) is 15.9 ± 0.7. Despite 

the low hydricity, (SiP
iPr

3)Fe(H2)(H) hydrogenates CO2 to formate, and part of the driving 

force for the reaction is coordination of formate to the iron center. Thus, the free energy change 

for the reaction between (SiP
iPr

3)Fe(H2)(H) and CO2 to (SiP
iPr

3)Fe(OCHO) is only slightly 

uphill at 3 kcal/mol, and accessible under the reactions conditions. It will be of interest to 

measure the hydricities of other iron-hydrides, including within the present series of 

complexes, in the context of CO2 hydrogenation to better understand the factors that may lead 

to improved catalytic activity.  

4.5 Experimental 

4.5.1 General Considerations  

All manipulations were carried out using standard glovebox or Schlenk techniques under an 

N2 atmosphere. Unless otherwise noted, solvents were deoxygenated and dried by thoroughly 

sparging with N2 gas followed by passage through an activated alumina column in the solvent 

purification system by SG Water, USA LLC.  Deuterated solvents and 
13

CO2 gas were 

purchased from Cambridge Isotope Laboratories, INC. The deuterated solvents were degassed 

and dried over activated 3 Å sieves prior to use. Unless otherwise noted, all compounds were 

purchased commercially and used without further purification. (SiP
iPr

3)Fe(N2)(H),
43

 

(SiP
iPr

3)FeCl,
55

 [(SiP
iPr

3)Fe(N2)](BAr
F

4),
37

 (SiP
Ph

3)FeCl,
55

 (SiP
Ph

3)FeMe,
55

 

(PhBP
iPr

3)Fe(H)3(PMe3),
45

 (PhBP
iPr

3)FeCl,
38

 [(NP
iPr

3)Fe(N2)(H)](PF6),
46

 

[(NP
iPr

3)FeCl](PF6),
46

 (TPB)(μ‒H)Fe(N2)(H),
44

 (CP
iPr

3)FeCl,
42

 and (C
Si

P
Ph

3)FeCl
47

 were 
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synthesized by literature procedures. Elemental analyses were performed by Robertson 

Microlit Laboratories, Ledgewood, NJ.  

 NMR spectra were recorded on Varian 300 MHz, 400 MHz, and 500 MHz spectrometers. 

1
H and 

13
C chemical shifts are reported in ppm relative to residual solvent as internal standards. 

31
P and 

11
B chemical shifts are reported in ppm relative to 85 % aqueous H3PO4 and BF3∙Et2O, 

respectively. Multiplicities are indicated by br (broad), s (singlet), d (doublet), t (triplet), quart 

(quart), quin (quintet), m (multiplet), d-d (doublet-of-doublets), and t-d (triplet-of-doublets).   

 The ATR-IR measurements were performed in a glovebox on a thin film of the complex 

obtained from evaporating a drop of the solution on the probe surface of a Bruker APLHA 

ATR-IR Spectrometer (Platinum Sampling Module, diamond, OPUS software package) at 2 

cm
-1

 resolution. IR intensities indicated by s (strong), m (medium), and w (weak). 

 UV-vis spectra were collected on a Cary 60 UV-Vis Spectrophotometer. The titration 

experiments were performed in a glovebox using an Ocean Optics HR4000CG Spectrometer.  

 H2 quantification by GC-TCD: H2 was quantified on an Agilent 7890A gas 

chromotograph (HP-PLOT U, 30 m, 0.32 mm i.d.; 30 °C isothermal; 1 mL/min flow rate; He 

carrier gas) using a thermal conductivity detector. The total amount of H2 produced was 

determined as the sum of H2 in the headspace plus dissolved H2 in the solution calculated by 

Henry’s law with a constant of 328 MPa.
70

 

 Methylformate quantification by GC-FID: Methylformate quantification was performed 

on a 1.2 mL aliquot of the crude reaction mixture by GC-FID against a methylformate 

calibration curve.  GC-FID instrument: Hewlett Packard 5890 with a 57 m Restek RTX-VRX 
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column (0.32 mm inner diameter, 1.8 μm films). Method parameters: He carrier gas, 1 μL 

injection volume, 200 °C inlet temperature, 250 °C detector temperature, 7:1 split ratio, 2.9 

mL/min flow rate, 20 psi pressure, 35 cm/s velocity. Ramp rate: 35 °C initial temperature held 

for 8 min, followed by 10 °C/min steps up to 100 °C, then immediately followed by 25 °C/min 

steps up to 230 °C, which was held for 4 min.  

4.5.2 Synthetic Protocols 

 Synthesis of (SiP
iPr

3)FeMe from (SiP
iPr

3)FeCl. A yellow solution of (SiP
iPr

3)FeCl (44.4 

mg, 73 μmol) in THF (10 mL) was cooled to -78 °C. A solution of MeMgCl (24 μL of a 3 M 

THF solution, 73 μmol) was diluted with THF (1 mL) and then added dropwise to the stirring 

reaction, causing a gradual change to a red solution. The stirring solution was allowed to warm 

to room temperature overnight. The crude mixture was filtered through a glass frit to remove 

black precipitate, and the volatiles were removed in vacuo to reveal a red solid. The material 

was taken up in a minimal amount of pentane and allowed to sit at -35 °C overnight, revealing 

red crystals of (SiP
iPr

3)FeMe (11.3 mg, 22 %). The 
1
H and 

31
P NMR spectra of this material 

were identical to the reported spectra.
55

 

 Synthesis of (SiP
iPr

3)Fe(OCHO). A yellow THF solution (10 mL) of (SiP
iPr

3)Fe(N2)(H) 

(50 mg, 72 μmol) was degassed by freeze-pump-thaw cycles (3x). Subsequently, CO2 (1 atm) 

was introduced to the thawed solution. The reaction was sealed and then heated for 1 h at 50 

°C to give a yellow solution. The volatiles were removed in vacuo to give a yellow solid. The 

material was extracted with C6H6, and lyophilized to give (SiP
iPr

3)Fe(OCHO) as a yellow solid 

(46 mg, 90 %).  Analytically pure material was obtained by layering a concentrated solution of 
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(SiP
iPr

3)Fe(OCHO) in THF (1 mL) under HMDSO (5 mL) and allowing the solution to sit at -

35 °C for 3 days. 
1
H NMR (C6D6, 400 MHz): δ 12.2, δ 12.1, δ 4.7, δ 4.6, δ 1.3, δ 0.2, δ -2.0, δ -

2.2, δ -4.9. μeff (C6D6, method of Evans, 20 °C): 2.8 μB (S = 1). IR (thin film, cm
-1

) 1623 (m, 

νasym (O‒C‒O)). UV-vis (THF, nm {M
-1 

cm
-1

}) 357 {shoulder, 3247}, 426 {2243}, 478 {253}, 

963 {br abs starting at 884 nm, 451}. Anal.: Calc’d for C37H55FeO2P3Si: C, 62.71; H, 7.82.  

Found: C, 61.81; H, 7.24. 

 Synthesis of (SiP
iPr

3)Fe(O
13

CHO). The procedures used to synthesize (SiP
iPr

3)Fe(OCHO) 

were used here, except that 
13

CO2 was used in place of CO2. The 
1
H NMR spectrum was 

identical to (SiP
iPr

3)Fe(OCHO). IR (thin film, cm
-1

): 1583 (m, νasym(O‒
13

C‒O)). 

 Synthesis of (SiP
Ph

3)Fe(N2)(H). A procedure nearly identical to that used to synthesize 

(SiP
iPr

3)Fe(N2)(H) was used to synthesize (SiP
Ph

3)Fe(N2)(H). In a 100 mL Schlenk tube a red 

solution of (SiP
Ph

3)FeMe (26.3 mg, 30 μmol) in THF (20 mL) was degassed by freeze-pump-

thaw cycles (3x).  H2 gas (1 atm) was charged into the thawed solution. The reaction was then 

sealed and heated to 60 °C for over a week. The reaction was then filtered through Celite and 

volatiles were removed in vacuo to give a light yellow powder. The solid was collected on a 

glass-frit and washed with pentane (3 mL x 2). The resulting product (SiP
Ph

3)Fe(N2)(H) (24.4 

mg, 91 %) was obtained as a light yellow powder after drying under vacuum. Layering a THF 

solution of (SiP
Ph

3)Fe(N2)(H) under Et2O and letting the solution stand for 2 days yields 

analytically pure powder of (SiP
Ph

3)Fe(N2)(H). 
1
H NMR (C6D6, 300 MHz): δ 8.55 (2H, d, 

2
JH-

H = 6 Hz, Ar-H), δ 8.32 (2H, d, 
2
JH-H = 3 Hz, Ar-H), δ 7.62 (3H, br s, Ar-H), δ 7.45 (2H, br s, 

Ar-H), δ 7.34 (4H, d, 
2
JH-H = 6 Hz, Ar-H), δ 6.85 (2H, t, 

2
JH-H = 6 Hz, Ar-H), δ 6.69 (3H, q, 

2
JH-



 

 

127 

H = 3 Hz, Ar-H), δ 6.52 (2H, q, 
2
JH-H = 3 Hz, Ar-H), δ -11.88 (1H, t-d, 

2
JPcis-H

 = 54 Hz, 
2
JPtrans-H

 

= 12 Hz, Fe-H). 
31

P NMR (C6D6, 121 MHz): 85.3 (2P, s), 78.7 (1P, s).  
13

C NMR (THF with 1 

drop of C6D6, 125 MHz): δ 156.3 (d, JC-P = 38 Hz, C
Ar

), δ 155.8 (d, JC-P = 35 Hz, C
Ar

), δ 150.7 

(d, JC-P = 5 Hz, C
Ar

), δ 150.4 (s, C
Ar

), δ 150.2 (s, C
Ar

), δ 143.0 (s, C
Ar

), δ 141.6 (d, J = 23 Hz, 

C
Ar

), δ 141.0 (s, C
Ar

), δ 139.6 (d, J = 28 Hz, C
Ar

), δ 138.6 (d, J = 10, C
Ar

), δ 133.8 (s, C
Ar

) δ 

132.6 (s, C
Ar

), δ 132.3 (s, C
Ar

), δ 129.5 (s, C
Ar

), δ 128.4 (s, C
Ar

), δ 128.2 (s, C
Ar

), δ 128.1 (s, 

C
Ar

), 127.5 (d, J = 5 Hz, C
Ar

). IR (thin film, cm
-1

): 2073 (s, ν(N≡N)), 1889 (w, ν(Fe‒H)). UV-

vis (THF, nm {M
-1 

cm
-1

}) 335 {shoulder, 8125}, 437 {shoulder, 4500}. Anal.: Calc’d for 

C54H43FeN2P3Si: C, 72.32; H, 4.83; N, 3.12.  Found: C, 72.94; H, 5.22; N, 2.83. 

 Synthesis of (SiP
Ph

3)Fe(OCHO). A yellow THF solution (10 mL) of (SiP
Ph

3)Fe(N2)(H) (51 

mg, 57 μmol) was degassed by freeze-pump-thaw cycles (3x). CO2 (1 atm) was introduced to 

the thawed solution. The reaction was sealed and then heated for 1 h at 50 °C to give a yellow 

solution. The volatiles were removed in vacuo to give a yellow solid. The material was 

redissolved in C6H6 and filtered through a pipet filter to remove a small amount of black 

material. The filtrate was lyophilized in vacuo to give (SiP
Ph

3)Fe(OCHO) as a yellow solid (41 

mg, 79 %). Analytically pure material was obtained by layering a concentrated THF solution 

of (SiP
Ph

3)Fe(OCHO) (3 mL) under pentane (5 mL) and allowing it to stand for 2 days at RT. 

1
H NMR (3:2 mixture of C6D6:d8-THF, 300 MHz): δ 12.2, δ  6.5, δ 5.7, δ 4.8, δ -2.1, δ -4.7. 

μeff (d8-THF, method of Evans, 20 °C): 2.7 μB (S = 1). IR (thin film, cm
-1

) 1618 (m, 

νasym(O‒C‒O)), 1316 (m, νsym(O‒C‒O)).  UV-vis (THF, nm {M
-1 

cm
-1

}) 325 {shoulder, 4775}, 
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415 {4100}, 474 {3700}, 995 {br abs starting at 900 nm, 263}. Anal.: Calc’d for 

C55H43FeO2P3Si: C, 72.37; H, 4.75.  Found: C, 73.21; H, 5.48. 

 Synthesis of (SiP
Ph

3)Fe(O
13

CHO). The same procedures used to synthesize 

(SiP
Ph

3)Fe(OCHO) were used here, except that 
13

CO2 was used in place of CO2. The 
1
H NMR 

spectrum of (SiP
Ph

3)Fe(O
13

CHO) was identical to (SiP
Ph

3)Fe(OCHO). IR (thin film, cm
-1

): 

1587 (m, νasym(O‒
13

C‒O)), 1254 (m, νsym(O‒
13

C‒O)).  

 Synthesis of (PhBP
iPr

3)Fe(OCHO). A yellow THF solution (1 mL) of 

(PhBP
iPr

3)Fe(H)3(PMe3) (6.7 mg, 12 μmol) was degassed by freeze-pump-thaw cycles (3x). 

Subsequently, CO2 (1 atm) was introduced to the thawed solution. The reaction was sealed and 

then stirred for 12 h at room temperature to give a light yellow solution. The volatiles were 

removed in vacuo to give an light yellow solid. The material was triterated with pentane, and 

the solvent was removed in vacuo. The material was then redissolved in C6H6 (3 mL) and 

filtered through a glass frit to remove a black solid. Removal of the solvent in vacuo gave 

(PhBP
iPr

3)Fe(OCHO) (4.7 mg, 70 %) as a light yellow solid. Analytically pure material was 

obtained by layering HDMSO on top of a THF solution of (PhBP
iPr

3)Fe(OCHO) and allowing 

it to stand overnight. 
1
H NMR (C6D6, 300 MHz): δ 41.1, δ 19.9, δ 18.6, δ 13.5, δ 9.2, δ 4.5, δ 

3.6, δ 1.6, δ -1.2, δ -11.2, δ -12.1, δ -32.6, δ -37.7. μeff (C6D6, method of Evans, 20 °C): 5.0 μB 

(S = 2). IR (thin film, cm
-1

) 1595 (m, νasym(O‒C‒O)), 1362 (m, νsym(O‒C‒O)). UV-vis (THF, 

nm {M
-1 

cm
-1

}) 298 {1173}, 410 {274}. Anal.: Calc’d for C28H54FeO2P3: C, 57.75; H, 9.35.  

Found: C, 58.12; H, 9.67. 
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 Synthesis of (PhBP
iPr

3)Fe(O
13

CHO).  The same procedures used to synthesize 

(PhBP
iPr

3)Fe(OCHO) were used here, except that 
13

CO2 was used in place of CO2. The 
1
H 

NMR spectrum of (PhBP
iPr

3)Fe(O
13

CHO) was identical to (PhBP
iPr

3)Fe(OCHO). IR (thin 

film, cm
-1

): 1546 (m, νasym(O‒
13

C‒O)), 1355 (m, νsym(O‒
13

C‒O)).  

 Synthesis of [(NP
iPr

3)Fe(OCHO)](PF6). A yellow THF solution (10 mL) of 

[(NP
iPr

3)Fe(N2)(H)](PF6) (29 mg, 40 μmol) was degassed by freeze-pump-thaw cycles (3x). 

Subsequently, CO2 (1 atm) was introduced. The reaction was then sealed and stirred for 3 h at 

room temperature to give a colorless solution. The solvent was removed in vacuo to give a 

colorless solid. The material was triturated with pentane, and the solvent was removed in 

vacuo. The solid was washed with diethyl ether (3 x 1 mL) to give [(NP
iPr

3)Fe(OCHO)](PF6) 

(29 mg, 97 %) as a white solid. Analytically pure material was obtained by layering Et2O on 

top of a THF solution of [(NP
iPr

3)Fe(OCHO)](PF6) and allowing it to stand overnight at -35 

°C. 
1
H NMR (3:2 mixture of C6D6:d8-THF, 300 MHz): δ 27.6, δ 9.4, δ 8.9, δ 6.4, δ 2.1, δ 1.9, δ 

0.4, δ -8.3. 
31

P NMR (3:2 mixture of C6D6:d8-THF, 121 MHz): δ -144.4 (h, 
1
JP-F = 708 Hz, 

PF6). 
19

F NMR (3:2 mixture of C6D6:d8-THF, 282 MHz): -73.4 (d, 
1
JP-F = 710 Hz, PF6). μeff 

(C6D6, method of Evans, 20 °C): 5.1 μB (S = 2). IR (thin film, cm
-1

) 1613 (m, νasym(O‒C‒O)). 

UV-vis (THF, nm {M
-1 

cm
-1

}) 311 {shoulder, 660}, 379 {shoulder, 249}. Anal.: Calc’d for 

C25H55F6FeNO2P4: C, 43.18; H, 7.97; N, 2.01.  Found: C, 44.10; H, 8.25; N, 1.86. 

 Synthesis of [(NP
iPr

3)Fe(O
13

CHO)](PF6). The same procedures used to synthesize 

[(NP
iPr

3)Fe(OCHO)](PF6) were used here, except that 
13

CO2 was used in place of CO2. The 
1
H 
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NMR spectrum of [(NP
iPr

3)Fe(O
13

CHO)](PF6) was identical to [(NP
iPr

3)Fe(OCHO)](PF6). IR 

(thin film, cm
-1

): 1579 (m, νasym(O‒
13

C‒O)).  

 Synthesis of (TPB)FeCl. The procedures used to synthesize (TPB)FeBr
58

 were used to 

synthesize (TPB)FeCl, except that FeCl2 was used in place of FeBr2. A Schlenk tube was 

charged with TPB (117 mg, 172 μmol), FeCl2 (26 mg, 200 μmol), Fe powder (113 mg, 2000 

μmol), and THF (20 mL). The reaction was heated to 90 °C for 3 days with vigorous stirring, 

resulting in a color change of the liquid phase from light yellow to dark green-brown. The 

remaining iron powder was removed by filtration, and the solvent was removed in vacuo. The 

residue was taken up in toluene (5 mL), and the solvent was removed in vacuo. Pentane (200 

mL) was added, and the mixture was stirred for 3 h and filtered. Removal of the solvent in 

vacuo yielded a yellow-brown powder of (TPB)FeCl (123 mg, 91 %). 
1
H NMR (C6D6, 300 

MHz): δ 97.6, δ 35.1, δ 23.6, δ 9.6, δ 5.8, δ 3.4, δ 1.9, δ -0.2 δ -2.3, δ -22.5. μeff (C6D6, method 

of Evans, 20 °C): 4.1 μB (S = 2). UV-vis (THF, nm {M
-1 

cm
-1

}) 275 {14086}, 317 {10385}, 

556 {sh, 80}, 774 {66}, 897 {91}. Anal.: Calc’d for C36H54BClFeP3: C, 63.41; H, 7.98.  

Found: C, 64.06; H, 8.89. 

 Synthesis of (TPB)Fe(OCHO). A yellow benzene solution (6 mL) of 

(TPB)(μ‒H)Fe(N2)(H) (20.7 mg, 31 μmol) was degassed by freeze-pump-thaw cycles (3x). 

Subsequently, CO2 (1 atm) was introduced. The reaction was then sealed and the yellow 

solution was mixed for 1 h at room temperature. The solvent was lyophilized in vacuo to give 

(TPB)Fe(OCHO) as a dark yellow solid (21.0 mg, 99 %). Analytically pure material was 

obtained by cooling a concentrated pentane solution of (TPB)Fe(OCHO) to -35 °C overnight. 
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1
H NMR (C6D6, 300 MHz): δ 86.1, δ 66.3, δ 38.5, δ 26.3, δ 15.5, δ 4.3, δ 2.7, δ  1.4, δ 1.0, δ -

0.7, δ -2.6, δ -3.5, δ -24.1. μeff (C6D6, method of Evans, 20 °C): 4.2 μB (S = 2). IR (thin film, 

cm
-1

): 1627 (m, νasym(O‒C‒O)), 1291 (m, νsym(O‒C‒O)). UV-vis (THF, nm {M
-1 

cm
-1

}) 278 

{16400}, 317 {12800}, 773 {br abs, 98}, 958 {127}. Anal.: Calc’d for C37H55BFeO2P3: C, 

64.27; H, 8.02.  Found: C, 63.16; H, 7.75. 

 Synthesis of (TPB)Fe(O
13

CHO). The same procedures used to synthesize 

(TPB)Fe(OCHO) were used, except that 
13

CO2 was used in place of CO2. The 
1
H NMR 

spectrum was identical to (TPB)Fe(OCHO). IR (thin film, cm
-1

): 1588 (m, νasym(O‒
13

C‒O)), 

1269 (m, νsym(O‒
13

C‒O)). 

 Reaction of (TPB)Fe(N2) with formic acid. (TPB)Fe(N2) (8.2 mg, 12.1 μmol) in 2 mL of 

THF was charged into a round bottom flask, and the flask was sealed with a rubber septum. 

Formic acid (3 μL, 80.3 μmol) was added by syringe through the septum, immediately 

resulting in effervescence of H2 and a yellow-brown solution. The solution was allowed to stir 

for a few minutes before the volatiles were removed in vacuo to reveal a brown solid. The 

material was redissolved in benzene and filtered. Removal of the volatiles in vacuo revealed a 

brown powder of (TPB)Fe(OCHO) (8.1 mg, 96 %). NMR and IR spectral data for this 

material were identical to (TPB)Fe(OCHO).  

 Deprotonation of [(SiP
iPr

3)Fe(H2)](BAr
F

4) with Et3N. [(SiP
iPr

3)Fe(N2)](BAr
F

4) (14.6 mg, 

9.4 µmol) and triethylamine (1.7 µL, 9.7 µmol) were charged into an NMR tube with a J-

young valve with C6D6 and d8-THF (ca. 0.4 mL and 0.1 mL, respectively), yielding a green 

solution. The solution was degassed by freeze-pump-thaw cycles (3x), revealing an orange 
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solution consistent with [(SiP
iPr

3)Fe(THF)](BAr
F

4). H2 (1 atm) was charged into the reaction 

mixture, yielding a transient gray solution (consistent with [(SiP
iPr

3)Fe(H2)](BAr
F

4) that 

immediately changed to orange-yellow upon mixing. The reaction was mixed overnight. The 

NMR data of the iron-species in this reaction mixture were identical to (SiP
iPr

3)Fe(H2)(H).
43

 

The volatiles were removed in vacuo, and the resulting yellow solid was extracted with 

pentane. The pentane was removed in vacuo to yield a yellow solid of (SiP
iPr

3)Fe(N2)(H) (5.1 

mg, 88 %). The 
1
H and 

31
P NMR spectra of this material are identical to (SiP

iPr
3)Fe(N2)(H). 

 Quantifying H2 loss from the reaction of (TPB)(μ‒H)Fe(N2)(H) with CO2.  Procedures 

similar to the synthesis of (TPB)Fe(OCHO) were followed. (TPB)(μ‒H)Fe(N2)(H)  (20.0 mg, 

31 μmol) was dissolved in 6 mL of benzene and charged into a calibrated 200 mL Schlenk 

tube that had a Teflon valve and 24/40 side joint. The solution was degassed by freeze-pump-

thaw cycles (3x), opened to CO2 (1 atm), and agitated for ca. 5 sec to ensure adequate 

dissolution of CO2 into the solution. The reaction was then sealed at the Teflon valve joint and 

also with a rubber septum at the 24/40 joint. The reaction was stirred vigorously for 30 min, 

the Teflon valve was opened, and the headspace was sampled through the rubber septum with 

a 10 mL gastight syringe, being careful to ensure adequate mixing of the gases from reaction 

headspace into the 24/40 joint’s headspace by repeated extraction and reinjection (3x) of the 

headspace gas with the gas-tight syringe before a final aliquot was taken for analysis by GC-

TCD. 0.44 equiv of H2 (relative to (TPB)(μ‒H)Fe(N2)(H)) found. 

 Quantifying H2 loss from the reaction of (TPB)Fe(N2) with formic acid. Procedures 

similar to the synthesis of (TPB)Fe(OCHO) from formic acid and (TPB)Fe(N2) were 
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followed. (TPB)Fe(N2) (24.5 mg, 36 μmol) in benzene (3 mL) was charged into a calibrated 

100 mL round-bottomed flask and sealed with a rubber septum. Formic acid (1.3 μL, 36 μmol) 

was added by syringe. Effervescence was immediately visible. The reaction was allowed to stir 

for a few minutes before the headspace was sampled through the rubber septum with a 10 mL 

gastight syringe for analysis by GC-TCD. 0.42 equiv of H2 (relative to (TPB)Fe(N2)) found. 

 Metathesis reactions of iron-formate complexes with (Et3NH)Cl. (Et3NH)Cl (10 equiv) 

was charged into a methanol or benzene solution of (SiP
iPr

3)Fe(OCHO), (SiP
Ph

3)Fe(OCHO), 

(PhBP
iPr

3)Fe(OCHO), [(NP
iPr

3)Fe(OCHO)](PF6), or (TPB)Fe(OCHO). The resulting 

suspension was stirred overnight and then filtered through a glass frit. The filtrate was 

concentrated in vacuo into a solid and then extracted. For (SiP
iPr

3)Fe(OCHO), 

(SiP
Ph

3)Fe(OCHO), (PhBP
iPr

3)Fe(OCHO), and (TPB)Fe(OCHO), pentane (3 x 1 mL) was 

used for extraction, while a 4:1 C6H6:THF mixture (3 x 1 mL) was used for 

[(NP
iPr

3)Fe(OCHO)](PF6)).   The respective 
1
H NMR spectra and IR spectra of the extract 

showed conversion to (SiP
iPr

3)FeCl, (SiP
Ph

3)FeCl, (PhBP
iPr

3)FeCl, [(NP
iPr

3)FeCl](PF6), or 

(TPB)FeCl. 

4.5.3 CO2 Hydrogenation Catalysis Protocols.  

High pressure hydrogenation reactions were run in a Parr Instruments Company 4590 Micro 

Bench Top Reactor, with a 20 mL reaction vessel, controlled by a Parr Instruments Company 

4834 Controller. In a typical catalytic run, iron precatalyst in 0.1 mL of THF (to solubilize iron 

precatalyst), 10 mL methanol, and 1 mL triethylamine was charged into the Parr reactor. The 

reactor was sealed, stirred with the attached mechanical stirrer (100 rpm), and charged with 
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CO2 until the desired pressure at equilibrium was achieved (ca. 10 min). H2 was subsequently 

added into the reactor. The gas inlet port was closed, and the reactor was then heated at 100 °C 

for 20 h. Changes to these conditions were made as described in Tables 4.2, 4.3, and 4.4 and 

Table A3.1 in Appendix 3. At the conclusion of the reaction, the reactor was cooled to 10 °C 

with an ice bath over ca. 1.5 h, and the pressure was slowly released through a needle valve. 

An aliquot of the crude solution was immediately taken for methylformate quantification by 

GC-FID. The aliquot was then recombined with the crude solution, DMF was added (1 mmol), 

and 25 μL of this solution was taken into 0.5 mL of CD2Cl2 for triethylammonium formate 

quantification by 
1
H NMR spectroscopy.  

 Similar procedures were followed for the low pressure reactions (1 atm CO2, 1-4 atm H2), 

which were run in a 15 mL Schlenk tube having a Teflon valve. The solution was degassed by 

freeze-pump-thaw cycles (3x), and CO2 (1 atm) was introduced into the vessel at room 

temperature. For the reactions requiring 4 atm of H2, the entire body of the Schlenk tube was 

then cooled in a liquid-N2 bath and 1 atm (RT) of H2 was introduced. For reactions requiring 1 

atm of H2, the Schlenk tube was cooled with liquid-N2 up to the solution level, and 1 atm (RT) 

of H2 was introduced.   

 Analysis of iron-content post catalytic reaction. The reaction was worked up similar to 

the procedures described above for the hydrogenation runs. After depressurizing the reactor, it 

was brought into the glovebox for workup. The crude solution was transferred to a scintillation 

vial, and the volatiles were removed in vacuo. The resulting light yellow solid was dissolved in 

C6D6 and analyzed by 
1
H and 

31
P NMR spectroscopy. 
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4.5.4 Hydricity Determination 

The hydricity was experimentally determined using the method present by DuBois.
50-51

 The 

equilibrium of equation 4.3 (Scheme 4.2) with a given base (proton sponge, 2,6-lutidine, or 

2,4,6-trimethylpyridine) was measured in d8-THF. With proton sponge as base, 

[(SiP
iPr

3)Fe(N2)](BAr
F

4) (8.0 mg, 5.1 μmol) was mixed with proton sponge (1.1 mg, 5.1 μmol) 

and the integration standard 1,3,5-trimethoxybenzene (1.2 mg, 7.1 μmol) in d8-THF (0.5 mL). 

With 2,6-lutidine as base, [(SiP
iPr

3)Fe(N2)](BAr
F

4) (8.7 mg, 5.6 μmol) was mixed with 2,6-

lutidine (34 μL, 292 μmol) and the integration standard 1,3,5-trimethoxybenzene (1.1 mg, 6.5 

μmol) in d8-THF (0.5 mL). With 2,4,6-trimethylpyridine as base, [(SiP
iPr

3)Fe(N2)](BAr
F

4) (8.3 

mg, 5.3 μmol) was mixed with 2,4,6-trimethylpyridine (1.6 μL, 19.8 μmol) and the integration 

standard 1,3,5-trimethoxybenzene (1.3 mg, 7.7 μmol) with d8-THF (0.5 mL). The solutions 

were degassed by freeze-pump-thaw cycles (3x) and H2 (1 atm) was introduced. The solutions 

were mixed using a mechanical rotator at a rate of ca. 12 min
-1

, and the reaction was monitored 

by 
1
H NMR spectroscopy until equilibration: proton sponge, 6 days; 2,6-lutidine, 5 days; 2,4,6-

trimethylpyridine, 5 days. Equations 4.3-4.5 were used to calculate ΔGH-. The equilibrium 

between [(SiP
iPr

3)Fe(H2)](BAr
F

4) and its THF-adduct [(SiP
iPr

3)Fe(H2)](BAr
F

4) was also taken 

into account in the calculations (see Appendix 3). 

4.5.5 UV-vis Titration of Formate Binding 

The UV-vis titration experiments of [(SiP
iPr

3)Fe(N2)](BAr
F

4) (4.8 mM) with Li(OCHO) (48 

mM) in THF was performed by adding aliquots of the formate solution to a solution of the iron 

complex. The decay of [(SiP
iPr

3)Fe(N2)](BAr
F

4) was monitored, with the absorbance at 752 nm 
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used for fitting to a quadratic equation against Keq. After the addition of 1 eqv of Li(OCHO), a 

spectrum corresponding to (SiP
iPr

3)Fe(OCHO) was observed. 
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Appendix 1.  Supplementary Data for Chapter 2 
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Table A1.5 Crystal data and structure refinement for (TPB)(μ‒H)Fe(N2)(H). 

Identification code Mem123a_cut 
 

Empirical formula C36 H56 B Fe N2 P3 

Formula weight 676.40 
 

Temperature (K) 100(2)  
 

Wavelength (Å) 0.71073  
 

Crystal system Monoclinic 
 

Space group P2(1)/c 
 

Unit cell dimensions a = 10.9690(10) α = 90.00 

 
b = 15.8820(14) β = 102.446(4) 

 
c = 120.7040(18) γ = 90.00 

Volume 3522.1(5) 
 

Z 4 
 

Density (Mg/m
3
; calculated)  1.276 

 
Absorption coefficient 0.592 

 
F(000) 1444 

 
Crystal size (mm) 0.42 x 0.17 x 0.04 

Theta range for data collection 

(degrees) 
1.63 to 28.27 

 

Index ranges -14 ≤ h ≤ 14, -21 ≤ k ≤ 21, -27 ≤ l ≤ 26 

Reflections collected 64963 
 

Independent reflections 8699 
 

Completeness to theta = 28.27° 99.6 % 
 

Absorption correction Multi-scan 
 

Max. and min transmission 0.7890 to 0.8767 

Refinement method Full-matrix least squares on F
2
 

Data/restraints/parameters 8699/0/406 
 

Goodness-of-fit on F
2
 1.035 

 
Final R indices [I > 2sigma(I)] R = 0.0505, wR2 = 0.1111 

R indices (all data) R = 0.0865, wR2 = 0.1264 

Largest diff. peak and hole 0.086 and -0.619 eÅ
-3
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Table A1.6 Crystal data and structure refinement for (TPB)(μ‒H)Fe(H2)(H). 

Identification code hf12 
 

Empirical formula C36 H56 B Fe N2 P3 

Formula weight 676.40 
 

Temperature (K) 100(2)  
 

Wavelength (Å) 0.71073  
 

Crystal system Monoclinic 
 

Space group P2(1)/n 
 

Unit cell dimensions a = 10.6196(6) α = 90.00 

 
b = 21.3418(13) β = 94.019(4) 

 
c = 15.6111(9) γ = 90.00 

Volume 3529.4(4) 
 

Z 4 
 

Density (Mg/m
3
; calculated)  1.218 

 
Absorption coefficient 0.586 

 
F(000) 1388 

 
Crystal size (mm) 0.28 x 0.16 x 0.15 

Theta range for data collection 

(degrees) 
1.91 to 39.27 

 

Index ranges -17 ≤ h ≤ 18, -37 ≤ k ≤ 37, -26 ≤ l ≤ 27 

Reflections collected 187522 
 

Independent reflections 20034 
 

Completeness to theta = 25.00° 95.9 % 
 

Absorption correction Multi-scan 
 

Max. and min transmission 0.8530 to 0.9157 

Refinement method Full-matrix least squares on F
2
 

Data/restraints/parameters 20034/0/286 
 

Goodness-of-fit on F
2
 1.056 

 
Final R indices [I > 2sigma(I)] R = 0.0548, wR2 = 0.1270 

R indices (all data) R = 0.1021, wR2 = 0.1511 

Largest diff. peak and hole 1.822 and -1.288 eÅ
-3
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Table A1.7 Crystal data and structure refinement for (TPB)Fe(CN
t
Bu). 

Identification code Mem129 
 

Empirical formula C43 H69 B Fe N P3 Si0.5 

Formula weight 774.61 
 

Temperature (K) 100(2) 
 

Wavelength (Å) 0.71073 
 

Crystal system Rhombohedral 
 

Space group R-3 
 

Unit cell dimensions a = 11.2415(3) α = 90.00 

 
b = 11.2415(3) β = 90.00 

 
c = 59.3261(18) γ = 120.00 

Volume 6492.7(3) 
 

Z 6 
 

Density (Mg/m
3
; calculated) 1.187 

 
Absorption coefficient 0.503 

 
F(000) 2502 

 
Crystal size (mm) 0.37 x 0.22 x 0.05 

Theta range for data collection 

(degrees) 
2.06 to 30.04 

 

Index ranges -15 ≤ h ≤ 15, -14 ≤ k ≤ 15, -83 ≤ l ≤ 83 

Reflections collected 46175 
 

Independent reflections 4245 
 

Completeness to theta = 30.04° 99.9 % 
 

Absorption correction Multi-scan 
 

Max. and min transmission 0.8359 to 0.9753 

Refinement method Full-matrix least squares on F
2
 

Data/restraints/parameters 4225/88/257 
 

Goodness-of-fit on F
2
 1.082 

 
Final R indices [I > 2sigma(I)] R = 0.0611, wR2 = 0.1562 

R indices (all data) R = 0.0771, wR2 = 0.1683 

Largest diff. peak and hole 0.079 and -1.970 eÅ
-3
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Figure A1.1 XRD structure of (TPB)Fe(CN
t
Bu). Ellipsoids shown at 50 % probability. 

The CN
t
Bu unit is disordered over three positions, and therefore the Fe‒C13 and 

C13‒N1 bond distance are reported as an average of the three Fe‒C13 and three 

C13‒N1 positions, respectively. Selected bond distances (Å) and angles (°): Fe1‒P1 = 

2.3193(7), Fe‒P2 = 2.3193(7), Fe‒P3 = 2.3194(7), 2.320(4), Fe‒C13(avg) = 1.861(7), 

C13‒N1(avg) = 1.179(9), Fe1‒B1 = 2.340(4), ∑(P‒Fe‒P) = 345.03(1). 
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Table A1.8 Crystal data and structure refinement for (TPB)(μ‒H)Fe(CN
t
Bu)(H). 

Identification code Hf15 
 

Empirical formula C41 H65 B Fe N P3 

Formula weight 731.51 
 

Temperature (K) 100(2) 
 

Wavelength (Å) 0.71073 
 

Crystal system Orthorhombic 
 

Space group Pna2(1) 
 

Unit cell dimensions a = 28.1082(11) α = 90.00 

 
b = 11.7188(5) β = 90.00 

 
c = 12.0896(5) γ = 90.00 

Volume 3982.2(3) 
 

Z 4 
 

Density (Mg/m
3
; calculated) 1.220 

 
Absorption coefficient 0.528 

 
F(000) 1576 

 
Crystal size (mm) 0.27 x 0.25 x 0.12 

Theta range for data collection 

(degrees) 
2.22 to 35.72 

 

Index ranges -45 ≤ h ≤ 45, -19 ≤ k ≤ 18, -19 ≤ l ≤ 19 

Reflections collected 125477 
 

Independent reflections 17351 
 

Completeness to theta = 25.00° 99.9 % 
 

Absorption correction Multi-scan 
 

Max. and min transmission 0.8705 to 0.9393 

Refinement method Full-matrix least squares on F
2
 

Data/restraints/parameters 17351/1/447 
 

Goodness-of-fit on F
2
 1.441 

 
Final R indices [I > 2sigma(I)] R = 0.0369, wR2 = 0.0807 

R indices (all data) R = 0.0531, wR2 = 0.0878 

Largest diff. peak and hole 0.799 and -0.297 eÅ
-3
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Table A1.9 Crystal data and structure refinement for (TPB)Fe(C2H4). 

Identification code Hf16 
 

Empirical formula C38 H58 B Fe P3 

Formula weight 731.51 
 

Temperature (K) 100(2) 
 

Wavelength (Å) 0.71073 
 

Crystal system Triclinic 
 

Space group P-1 
 

Unit cell dimensions a = 11.7652(5) α = 112.296(2) 

 
b = 18.1293(8) β = 90.626(2) 

 
c = 18.8179(8) γ = 105.264(3) 

Volume 3555.0(3) 
 

Z 4 
 

Density (Mg/m
3
; calculated) 1.260 

 
Absorption coefficient 0.585 

 
F(000) 1448 

 
Crystal size (mm) 0.29 x 0.24 x 0.22 

Theta range for data collection 

(degrees) 
1.88 to 44.33 

 

Index ranges -22 ≤ h ≤ 22, -35 ≤ k ≤ 35, -36 ≤ l ≤ 36 

Reflections collected 285706 
 

Independent reflections 55462 
 

Completeness to theta = 44.33° 98.0 % 
 

Absorption correction Multi-scan 
 

Max. and min transmission 0.8487 to 0.8821 

Refinement method Full-matrix least squares on F
2
 

Data/restraints/parameters 55462/0/831 
 

Goodness-of-fit on F
2
 1.030 

 
Final R indices [I > 2sigma(I)] R = 0.0428, wR2 = 0.1232 

R indices (all data) R = 0.0761, wR2 = 0.1475 

Largest diff. peak and hole 2.925 and -0.791 eÅ
-3
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Table A1.10 Crystal data and structure refinement for (TPBH)Fe(C2Tol). 

Identification code Hf36 
 

Empirical formula C45 H62 B Fe N P3 

Formula weight 761.51 
 

Temperature (K) 100(2) 
 

Wavelength (Å) 0.71073 
 

Crystal system Monoclinic 
 

Space group P2(1)/c 
 

Unit cell dimensions a = 25.3343(11) α = 90.00 

 
b = 15.1553(6) β = 113.176(2) 

 
c = 23.4782(1) γ = 90.00 

Volume 8287.0(6) 
 

Z 8 
 

Density (Mg/m
3
; calculated) 1.222 

 
Absorption coefficient 0.510 

 
F(000) 3264 

 
Crystal size (mm) 0.41 x 0.30 x 0.18 

Theta range for data collection 

(degrees) 
1.60 to 37.28 

 

Index ranges -43 ≤ h ≤ 42, -25 ≤ k ≤ 25, -39 ≤ l ≤ 38 

Reflections collected 256649 
 

Independent reflections 41264 
 

Completeness to theta = 25.00° 96.0 % 
 

Absorption correction Multi-scan 
 

Max. and min transmission 0.8182 to 0.9138 

Refinement method Full-matrix least squares on F
2
 

Data/restraints/parameters 41264/0/927 
 

Goodness-of-fit on F
2
 1.239 

 
Final R indices [I > 2sigma(I)] R = 0.0671, wR2 = 0.1565 

R indices (all data) R = 0.1171, wR2 = 0.1824 

Largest diff. peak and hole 4.308 and -0.756 eÅ
-3
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Table A1.11 Crystal data and structure refinement for D. 

Identification code Hf31 
 

Empirical formula C48 H81 B Fe P4 

Formula weight 854.44 
 

Temperature (K) 100(2) 
 

Wavelength (Å) 0.71073 
 

Crystal system Monoclinic 
 

Space group C2/c 
 

Unit cell dimensions a = 14.7183(8) α = 90.00 

 
b = 22.2944(13) β = 103.864(3) 

 
c = 14.8410(9) γ = 90.00 

Volume 4728.0(5) 
 

Z 8 
 

Density (Mg/m
3
; calculated) 1.200 

 
Absorption coefficient 0.486 

 
F(000) 1840 

 
Crystal size (mm) 0.33 x 0.30 x 0.24 

Theta range for data collection 

(degrees) 
1.69 to 48.29 

 

Index ranges -30 ≤ h ≤ 30, -46 ≤ k ≤ 46, -30 ≤ l ≤ 30 

Reflections collected 143163 
 

Independent reflections 22688 
 

Completeness to theta = 48.29° 98.9 % 
 

Absorption correction Multi-scan 
 

Max. and min transmission 0.8561 to 0.8923 

Refinement method Full-matrix least squares on F
2
 

Data/restraints/parameters 22688/0/265 
 

Goodness-of-fit on F
2
 0.928 

 
Final R indices [I > 2sigma(I)] R = 0.0373, wR2 = 0.0885 

R indices (all data) R = 0.0668, wR2 = 0.1027 

Largest diff. peak and hole 1.332 and -0.854 eÅ
-3
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Table A1.12 Crystal data and structure refinement for (SiP
iPr

3)Fe(CO(H). 

Identification code D8_08027_0m 
 

Empirical formula C27 H55 Fe P3 Si 

Formula weight 692.66 
 

Temperature (K) 100(2) 
 

Wavelength (Å) 1.54178 
 

Crystal system Monoclinic 
 

Space group C2/c 
 

Unit cell dimensions a = 36.5798(8) α = 90.00 

 
b = 11.7777(3) β = 104.2430(1) 

 
c = 17.1309(4) γ = 90.00 

Volume 7153.6(3) 
 

Z 8 
 

Density (Mg/m
3
; calculated) 1.286 

 
Absorption coefficient 5.715 

 
F(000) 2960 

 
Crystal size (mm) 0.25 x 0.20 x 0.15 

Theta range for data collection 

(degrees) 
2.49 to 68.95 

 

Index ranges -43 ≤ h ≤ 44, -13 ≤ k ≤ 14, -20 ≤ l ≤ 20 

Reflections collected 50397 
 

Independent reflections 6480 
 

Completeness to theta = 68.95° 98.8 % 
 

Absorption correction Multi-scan 
 

Max. and min transmission 0.3578 to 0.5107 

Refinement method Full-matrix least squares on F
2
 

Data/restraints/parameters 6580/0/44 
 

Goodness-of-fit on F
2
 1.046 

 
Final R indices [I > 2sigma(I)] R = 0.0273, wR2 = 0.0693 

R indices (all data) R = 0.0290, wR2 = 0.0703 

Largest diff. peak and hole 0.439 and -0.287 eÅ
-3
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Figure A1.2 XRD structure of (SiP
iPr

3)Fe(CO)(H). Ellipsoids shown at 50 % 

probability. Selected bond distances (Å) and angles (°): Fe1‒P1 = 2.2559(4), Fe1‒P2 = 

2.2495(4), Fe1‒P3 = 2.2214(4), Fe1‒H1 = 1.43(2), Fe1‒C11 = 1.768(2), Fe1‒Si1 = 

2.2567(4), P3‒Fe1‒P1 = 106.05(2), P1‒Fe1‒P2 = 110.27(2), P2‒Fe1‒H1 = 66.4(1), 

P3‒Fe1‒H1 = 73.4(1). 
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Figure A1.3 Stacked 
1
H NMR spectra of the reaction of (TPB)Fe(C2H4) with H2 (1 

atm) and C2H4 (1 atm) in C6D6. (I) Compound (TPB)Fe(C2H4) under a C2H4 

atmosphere. (II) Mixture of compounds (TPB)Fe(C2H4) and A immediately following 

H2 addition. (III) Compound A was formed after mixing the reaction for ca. 45 min; H2 

was added to replenish the consumed H2. (IV) Compound (TPB)(μ‒H)Fe(H2)(H) was 

formed at the conclusion of the reaction. (inset V) Zoom out of spectra. (inset VI) Zoom 

in to show the H2 resonance. *Residual pentane. 
+
Residual silicon grease. 
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Figure A1.4 Elimination of H2 from (TPB)(µ-H)Fe(N2)(H). Iterative freeze-pump-

thaw-N2 cycles were performed to promote H2 release and reformation of (TPB)Fe(N2). 

Ferrocence (δ 4.0) was used as an integration standard. 
+
Residual (TPB)FeBr 

(previously reported). *(TPB)FeCl, known decomposition product from (TPB)Fe(N2). 
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Figure A1.5  T1 values for (TPB)(µ‒H)Fe(H2)(H) (d8-toulene). T1min is 35 ms at -32 
o
C. 

 

Figure A1.6 T1 values for (SiP
iPr

3)Fe(H2)(H) (d8-toluene). T1min is 32 ms at -30 C.  
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Figure A1.7 Variable temperature magnetic susceptibility measurements (method of 

Evans) of (TPB)Fe(CN
t
Bu).  
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Figure A1.8 ATR-IR (THF thin film) of A, (TPBH)Fe(Et), (blue) and labeled 

(TPBD)Fe(Et) (red) generated from reaction of (TPB)Fe(C2H4) with H2 or D2, 

respectively. In the (TPBD)Fe(Et) spectrum, the 2470 cm
-1

 signal assigned to the B‒H 

stretch of (TPBH)Fe(Et) is attributed to facile scrambling of B‒D with the hydrogen 

atoms of the isopropyl groups from the ligand. The 2009 cm
-1

 signal is assigned to the 

N‒N stretch of (TPB)Fe(N2) is attributed to  the decomposition of the (TPBH)Fe(Et) 

and (TPBD)Fe(Et) to ethane and (TPB)Fe(N2).   
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Figure A1.9 Catalytic hydrogenation of styrene with (TPB)Fe(N2). Amounts of styrene 

and ethylbenzene were determined by 
1
H NMR spectroscopy with ferrocene as an 

integration standard. 

 

Figure A1.10 Catalytic hydrogenation of phenylacetylene with (TPB)Fe(N2). Amounts of 

phenylacetylene, styrene, and ethylbenzene were determined by 
1
H NMR spectroscopy 

with ferrocene as an integration standard. 
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Appendix 2.  Supplementary Data for Chapter 3 
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Table A2.1 Crystal data and neutron structure refinement for (TPB)Co(H2). 

Identification code tpbcoh2 
 

Empirical formula C36 H55.86 B Br0.07 Co P3 

Formula weight 656.96 
 

Temperature (K) 100(2)  
 

Wavelength (Å) 0.4 - 3.5  
 

Crystal system Triclinic 
 

Space group P-1 
 

Unit cell dimensions a = 10.8535(2) α = 91.474(2) 

 
b = 11.2160(2) β = 101.653(2) 

 
c = 16.7367(3) γ = 118.930(2) 

Volume 1728.21(7) 
 

Z 2 
 

Density (Mg/m
3
; calculated)  1.264 

 

Absorption coefficient 

The linear absorption coefficient is wavelength 

dependent and is calculated as: μ = 1.543 + 1.718 * λ  

[cm
-1

] 

F(000) 108 
 

Crystal size (mm) 1.50 x 1.00 x 0.75 

Theta range for data collection 

(degrees) 
7.48 to 79.21 

 

Index ranges -19 ≤ h ≤ 19, -20 ≤ k ≤ 20, -30 ≤ l ≤ 30 

Reflections collected 26012 
 

Independent reflections 26004 
 

Completeness to theta = 78.21° 13.60 % 
 

Absorption correction sphere 
 

Max. and min transmission 0.4574 to 0.7915 

Refinement method Full-matrix least squares on F
2
 

Data/restraints/parameters 26012/912/11 
 

Goodness-of-fit on F
2
 1.115 

 
Final R indices [I > 2sigma(I)] R = 0.0664, wR2 = 0.1288 

R indices (all data) R = 0.0664, wR2 = 0.1288 

Largest diff. peak and hole 0.946 and -0.927 eÅ
-3
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Table A2.2 Crystal data and neutron structure refinement for (SiP
iPr

3)Fe(H2). 

Identification code sip3feh2 
 

Empirical formula C36 H55.52 C10.35 Fe P3 Si 

Formula weight 677.44 
 

Temperature (K) 100(2)  
 

Wavelength (Å) 0.4 - 3.5  
 

Crystal system Triclinic 
 

Space group P-1 
 

Unit cell dimensions a = 11.0481(1) α = 92.332(1) 

 
b = 11.3328(1) β = 100.440(1) 

 
c = 16.8023(2) γ = 119.636(2) 

Volume 1777.26(3) 
 

Z 2 
 

Density (Mg/m
3
; calculated)  1.266 

 

Absorption coefficient 

The linear absorption coefficient is wavelength 

dependent and is calculated as: μ = 1.543 + 1.718 * λ  

[cm
-1

] 

F(000) 128.0 
 

Crystal size (mm) 1.20 x 0.60 x 0.42 

Theta range for data collection 

(degrees) 
7.48 to 79.21 

 

Index ranges -19 ≤ h ≤ 20, -20 ≤ k ≤ 20, -31 ≤ l ≤ 30 

Reflections collected 26367 
 

Independent reflections 26352 
 

Completeness to theta = 25.00° 76.8 % 
 

Absorption correction sphere 
 

Max. and min transmission 0.7837 to 0.9157 

Refinement method Full-matrix least squares on F
2
 

Data/restraints/parameters 26367/949/19 
 

Goodness-of-fit on F
2
 1.072 

 
Final R indices [I > 2sigma(I)] R = 0.0548, wR2 = 0.1148 

R indices (all data) R = 0.0548, wR2 = 0.1148 

Largest diff. peak and hole 0.848 and -0.818 eÅ
-3
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Figure A2.1 Solid state neutron diffraction structure of (SiP
iPr

3)Fe(H2). The structure is 

disordered. The hydride and H2 ligands of the disordered components are shown. The 

majority component (45 %) is the (SiP
iPr

3)Fe(H2) (blue H atoms). The remaining 

components are (SiP
iPr

3)Fe(H2)(H) (red H atom) and (SiP
iPr

3)FeCl (not shown). 
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Appendix 3.  Supplementary Data for Chapter 4
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Table A3.1 Catalytic hydrogenation results for (SiP
R

3)Fe, (PhBP
iPr

3)Fe, (NP
iPr

3)Fe, (TPB)Fe, (CP
iPr

3)Fe, (C
Si

P
Ph

3)Fe, PP3/Fe(BF4)2, 

and [(tetraphos)FeF](BF4). 

Entry Precatalyst 
(Et3NH)(OCHO) 
Yield (mmol) 

MeOCHO 
Yield 

(mmol)
 

Total 
Yield 

(mmol)
 

(Et3NH)(OCHO) 
TON

a
 

MeOCHO 
TON

a 
Total 
TON

a
 

Solvent 
PCO2

/PH2
 

(atm) 
Additive

b
 

Time 
(h) 

Temp. 
(°C) 

S1 (SiP
IPr

3)FeCl 0.00 0.00 0.00 0.00 0.00 0.00 THF 1/1 
 

50 100 

S2 (SiP
IPr

3)FeCl 0.00 0.00 0.00 0.00 0.00 0.00 THF 1/4 
 

21 100 

S3 (SiP
IPr

3)FeCl 0.00 0.00 0.00 0.00 0.00 0.00 MeOH 1/4 
 

40 60 

S4 (SiP
IPr

3)FeCl 0.00 0.00 0.00 0.00 0.00 0.00 THF 29/29 
 

20 100 

S5 (SiP
IPr

3)FeCl 0.31 0.14 0.45 39.60 18.20 57.80 MeOH 29/29 
 

20 100 

S6 (SiP
IPr

3)FeCl 0.31 0.13 0.44 37.90 15.30 53.20 MeOH 29/29 
 

20 100 

S7 (SiP
IPr

3)FeCl 0.31 0.08 0.40 37.90 10.55 48.45 MeOH 29/29 
 

20 100 

S8 (SiP
IPr

3)FeCl 0.14 0.00 0.14 17.40 0.00 17.40 MeOH 29/29 
 

2 100 

S9 (SiP
IPr

3)FeCl 0.12 0.00 0.12 15.25 0.00 15.25 MeOH 29/29 
 

2 100 

S10 (SiP
IPr

3)FeCl 0.26 0.10 0.35 32.54 12.20 44.74 MeOH 29/29 
 

20 150 

S11 (SiP
IPr

3)FeCl 0.18 0.11 0.29 22.63 13.98 36.61 MeOH 29/29 
 

20 150 

S12 (SiP
IPr

3)FeCl 0 0 0 0 0 0 MeOH 29/29 
 

20 20 

S13 (SiP
IPr

3)FeCl 0 0 0 0 0 0 MeOH 29/29 
 

20 20 

S14
c
 (SiP

IPr
3)FeCl 0.15 0.12 0.27 18.73 14.98 33.71 CD3OD 29/29 

 
20 100 
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Entry Precatalyst 
(Et3NH)(OCHO) 
Yield (mmol) 

MeOCHO 
Yield 

(mmol)
 

Total 
Yield 

(mmol)
 

(Et3NH)(OCHO) 
TON

a
 

MeOCHO 
TON

a 
Total 
TON

a
 

Solvent 
PCO2

/PH2
 

(atm) 
Additive

b
 

Time 
(h) 

Temp. 
(°C) 

S15
c
 (SiP

IPr
3)FeCl 0.16 0.08 0.24 19.40 10.10 29.50 CD3OD 29/29 

 
20 100 

S16 (SiP
IPr

3)FeCl 0.27 0.05 0.32 34.90 6.36 41.26 MeOH 29/29 
0.5 equiv 
(Et3NH)Cl 

20 100 

S17 (SiP
IPr

3)FeCl 0.26 0.06 0.32 33.30 7.28 40.58 MeOH 29/29 
0.5 equiv 
(Et3NH)Cl 

20 100 

S18 (SiP
IPr

3)FeCl 0.68 0.15 0.83 86.31 18.90 105.21 MeOH 29/29 
0.5 equiv 

NaBF4 
20 100 

S19 (SiP
IPr

3)FeCl 0.59 0.05 0.64 75.12 6.26 81.38 MeOH 29/29 
0.5 equiv 

NaBF4 
20 100 

S20 (SiP
IPr

3)FeCl 0.31 0.28 0.59 38.1 34.6 72.7 MeOH 29/29 
0.5 equiv 
NaBAr

F
4 

20 100 

S21 (SiP
IPr

3)FeCl 0.37 0.17 0.54 45.1 20.6 65.7 MeOH 29/29 
0.5 equiv 
NaBAr

F
4 

20 100 

S22 (SiP
IPr

3)FeCl 0.31 0.03 0.34 39.0 4.3 44.3 MeOH 29/29 
0.5 equiv 

NaF 
20 100 

S23 (SiP
IPr

3)FeCl 0.31 0.05 0.35 39.0 6.4 45.4 MeOH 29/29 
0.5 equiv 

NaF 
20 100 

S24 (SiP
IPr

3)FeCl 0.16 0.02 0.18 20.4 2.9 23.3 MeOH 29/29 
0.5 equiv 

CsF 
20 100 

S25 (SiP
IPr

3)FeCl 0.19 0.02 0.21 25.0 2.9 27.9 MeOH 29/29 
0.5 equiv 

CsF 
20 100 

S26
d
 (SiP

IPr
3)FeCl 0.22 0.01 0.23 28.5 1.4 29.9 MeOH 29/29 

0.5 equiv 
TBAF 

20 100 

S27
d
 (SiP

IPr
3)FeCl 0.24 0.03 0.27 31.1 3.9 35.0 MeOH 29/29 

0.5 equiv 
TBAF 

20 100 

S28 (SiP
IPr

3)FeCl 0.39 0.03 0.42 50.2 4.4 54.6 MeOH 29/29 
0.5 equiv 

K2CO3 
20 100 

S29 (SiP
IPr

3)FeCl 0.45 0.01 0.46 58.3 1.7 60.0 MeOH 29/29 
0.5 equiv 

K2CO3 
20 100 

S30 (SiP
IPr

3)FeCl 0.00 0.00 0.007 0.00 0.0 0.00 MeOH 29/0 
 

20 100 



 

 

   

1
6
6
 

Entry Precatalyst 
(Et3NH)(OCHO) 
Yield (mmol) 

MeOCHO 
Yield 

(mmol)
 

Total 
Yield 

(mmol)
 

(Et3NH)(OCHO) 
TON

a
 

MeOCHO 
TON

a 
Total 
TON

a
 

Solvent 
PCO2

/PH2
 

(atm) 
Additive

b
 

Time 
(h) 

Temp. 
(°C) 

S31 (SiP
IPr

3)Fe(N2)(H) 0.32 0.08 0.40 41.53 9.74 51.27 MeOH 29/29 
 

20 100 

S32 (SiP
IPr

3)Fe(N2)(H) 0.25 0.09 0.34 31.79 11.83 43.62 MeOH 29/29 
 

20 100 

S33 (SiP
IPr

3)Fe(OCHO) 0.39 0.02 0.41 51.66 2.43 54.09 MeOH 29/29 
 

20 100 

S34 (SiP
IPr

3)Fe(OCHO) 0.36 0.03 0.39 46.98 3.22 50.20 MeOH 29/29 
 

20 100 

S35 (SiP
Ph

3)FeCl 0.94 0.56 1.51 121.55 72.71 194.26 MeOH 29/29 
 

20 100 

S36 (SiP
Ph

3)FeCl 1.08 0.52 1.59 139.36 66.44 205.44 MeOH 29/29 
 

20 100 

S37 [(SiP
iPr

3)Fe](BAr
F

4) 0.10 0.03 0.13 12.72 3.82 16.54 MeOH 29/29 
 

20 100 

S38 [(SiP
iPr

3)Fe](BAr
F

4) 0.13 0.00 0.15 16.30 2.80 19.10 MeOH 29/29 
 

20 100 

S39 (SiP
iPr

3)FeCl 0.39 0.03 0.42 48.69 3.75 52.44 MeOH 29/29 Hg 20 100 

S40 (SiP
iPr

3)FeCl 0.33 0.00 0.38 41.00 6.24 47.24 MeOH 29/29 Hg 20 100 

S41 HSiP
iPr

3/FeCl2 (1:1) 0.08 0.03 0.11 9.68 3.10 12.78 MeOH 29/29 
 

20 100 

S42 HSiP
iPr

3/FeCl2 (1:1) 0.10 0.02 0.12 11.98 1.82 13.80 MeOH 29/29 
 

20 100 

S43 (PhBP
iPr

3)FeCl 0.24 0.02 0.26 29.00 3.10 32.10 MeOH 29/29 
 

20 100 

S44 (PhBP
iPr

3)FeCl 0.15 0.02 0.17 19.00 2.40 21.40 MeOH 29/29 
 

20 100 

S45 [(NP
iPr

3)FeCl](PF6) 0.00 0.00 0.00 0.00 0.00 0.00 MeOH 29/29 
 

20 100 

S46 (TPB)FeCl 0.00 0.00 0.00 0.00 0.00 0.00 MeOH 29/29 
 

20 100 
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Entry Precatalyst 
(Et3NH)(OCHO) 
Yield (mmol) 

MeOCHO 
Yield 

(mmol)
 

Total 
Yield 

(mmol)
 

(Et3NH)(OCHO) 
TON

a
 

MeOCHO 
TON

a 
Total 
TON

a
 

Solvent 
PCO2

/PH2
 

(atm) 
Additive

b
 

Time 
(h) 

Temp. 
(°C) 

S47 [(TPB)Fe](BAr
F
4) 0.00 0.00 0.00 0.00 0.00 0.00 MeOH 29/29 

 
20 100 

S48 (TPB)μ‒H)Fe(N2)(H) 0.00 0.00 0.00 0.00 0.00 0.00 MeOH 29/29 
 

20 100 

S49 PP3/Fe(BF4)2 3.30 0.91 4.21 395.70 108.50 504.20 MeOH 29/29 
 

20 100 

S50 PP3/Fe(BF4)2 2.69 0.98 3.67 342.24 124.68 466.92 MeOH 29/29 
 

20 100 

S51 [(tetraphos)-Fe(F)](BF4) 6.06 7.68 13.74 771.30 976.50 1747.80 MeOH 29/29 
 

20 100 

S52 [(tetraphos)-Fe(F)](BF4) 5.15 7.23 12.38 655.22 919.85 1575.07 MeOH 29/29 
 

20 100 

S53 FeCl2 0.00 0.00 0.00 0.00 0.00 0.00 MeOH 29/29 
 

20 100 

S54 FeCl2/4 PPh3 0.00 0.00 0.00 0.00 0.00 0.00 MeOH 29/29 
 

20 100 

S55 no iron 0.00 0.00 0.00 0.00 0.00 0.00 MeOH 29/29 
 

20 100 

S56 (SiP
IPr

3)Fe(N2)(H) 0.00 0.00 0.00 0.00 0.00 0.00 THF 1/1 
 

20 60 

S57 (SiP
IPr

3)Fe(N2)(H) 0.00 0.00 0.00 0.00 0.00 0.00 THF 1/4 
 

20 60 

S58 (SiP
IPr

3)Fe(N2)(H) 0.00 0.00 0.00 0.00 0.00 0.00 C6D6 1/4 
 

20 90 

S59 (SiP
IPr

3)Fe(N2)(H) 0.00 0.00 0.00 0.00 0.00 0.00 THF 29/29 
 

20 100 

S60 (SiP
Ph

3)Fe(N2)(H) 0.00 0.00 0.00 0.00 0.00 0.00 THF 29/29 
 

20 100 

S61 (PhBP
iPr

3)FeCl 0.00 0.00 0.00 0.00 0.00 0.00 THF 29/29 
 

20 100 

S62 [(NP
iPr

3)Fe(N2)(H)](PF6) 0.00 0.00 0.00 0.00 0.00 0.00 THF 29/29 
 

20 100 
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Entry Precatalyst 
(Et3NH)(OCHO) 
Yield (mmol) 

MeOCHO 
Yield 

(mmol)
 

Total 
Yield 

(mmol)
 

(Et3NH)(OCHO) 
TON

a
 

MeOCHO 
TON

a 
Total 
TON

a
 

Solvent 
PCO2

/PH2
 

(atm) 
Additive

b
 

Time 
(h) 

Temp. 
(°C) 

S63 (TPB)(μ‒H)Fe(N2)(H) 0.00 0.00 0.00 0.00 0.00 0.00 THF 29/29 
 

20 100 

S64 (TPB)(μ‒H)Fe(N2)(H) 0.00 0.00 0.00 0.00 0.00 0.00 C6D6 1/4 
 

20 100 

S65 (CP
iPr

3)FeCl 0.20 0.03 0.23 24.71 3.43 28.13 MeOH 29/29 
 

20 100 

S66 (CP
iPr

3)FeCl 0.18 0.03 0.21 23.15 2.95 26.11 MeOH 29/29 
 

20 100 

S67 (C
Si

P
Ph

3)FeCl 0.00 0.00 0.00 0.00 0.00 0.00 MeOH 29/29 
 

20 100 

S68 (SiP
iPr

3)FeCl 0.36 0.02 0.38 46.68 3.14 49.82 MeOH 5.5/29 
 

20 100 

S69 (SiP
iPr

3)FeCl 0.32 0.02 0.34 41.30 3.15 44.45 MeOH 5.5/29 
 

20 100 

S70 (SiP
iPr

3)FeCl 0.00 0.00 0.00 0.00 0.00 0.00 MeOH 29/5.5 
 

20 100 

Unless otherwise noted, reactions were performed under the standard conditions of 0.7 mM precatalyst, 651 mM of triethylamine, 

methanol (10 mL), 20 h, 100 °C, 29 atm of CO2, and 29 atm of H2. 
a
Turnover number (TON) is the yield of product divided by the 

amount of added precatalyst. 
c
(Et3NH)(OCHO) was detected by 

1
H NMR spectroscopy, but (Et3ND)(OCDO), (Et3NH)(OCDO), and 

(Et3ND)(OCHO) were not detected by 
2
H NMR spectroscopy. 

b
BAr

F
4 = [B(3,5-(CF3-C6H3)4)]

-
; TBAF = tetrabutylammonium fluoride.
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A3.1 Hydricity Determination 

Reactions relevant to determination of hydricity for (SiP
iPr

3)Fe(H2)(H) (Fe(H2)(H))with a 

base (B), equation A3.1-A3.3. The sum of equations A3.1-A3.3 (ΣG, Scheme A3.1) represents 

the reverse reaction, where hydride is added to Fe(H2)
+
. Therefore, reversing the reaction and 

taking negative ΣG (-ΣG, equation A3.4) represents the hydricity (ΔGH-) of Fe(H2)(H). 

Scheme A3.1 Reactions and equations relevant to hydricity determination for 

(SiP
iPr

3)Fe(H2)(H).  

 

See Chart 4.1 for detailed ligand representation. 
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 Experimentally, the deprotonation reaction of equation A3.1 was run in d8-THF. However, 

THF is known to coordinate competitively to the cationic Fe
II
 complex to give Fe(THF)

+
.
1
 

This must be taken into account. The equilibrium constant for the competitive coordination of 

H2 and THF (equation A3.5) has been previously reported (K1 = 1900 M
-1

, equation A3.5).  

Scheme A3.2 Equilibrium reaction for competitive THF/H2 coordination by 

[(SiP
iPr

3)Fe(L)]
+

. 

 

 
 

Therefore, the overall reaction of equations A3.1 and A3.5 is: 

 

 
 

And the total concentration of iron species in solution is: 

 
 

Experimentally, the equilibrium between the iron-species and base in d8-THF was monitored 

by 
1
H NMR spectroscopy with 1,3,5-trimethoxybenzene as an integration standard. The proton 

resonances from the Fe(H2)(H), base, and conjugate acid of the base were well-resolved and  
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reliably integrated in the 
1
H NMR spectra, but the paramagnetic Fe(H2)

+
 and Fe(THF)

+
 could 

not be reliably integrated. Therefore, equation A3.7 and K1 were used to determine the 

respective concentrations of Fe(H2)
+
 and Fe(THF)

+
 in order to determine the equilibrium 

value K2. The activity of hydrogen at 1.0 atm was taken as unity in K2, as this is the reference 

state of hydrogen for the normal hydrogen electrode.
2
  

Table A3.2 Experimentally determined ΔGH- for (SiP
iPr

3)Fe(H2)(H) and pKa values for 

[(SiP
iPr

3)Fe(H2)](BAr
F

4) using three different bases. 

 
Entry Acid Base K2 (M

-1
) 

(SiP
iPr

3)Fe(H2)(H) [(SiP
iPr

3)Fe(H2)](BAr
F

4) 

ΔGH- (kcal/mol) pKa
THF

 pKa
MeCN

 

1 [(SiP
iPr

3)Fe(H2)](BAr
F

4) 
Proton Sponge 
(pKa

THF
 = 11.1)

a
 

4.31
b
 54.8 10.5 15.5 

2 [(SiP
iPr

3)Fe(H2)](BAr
F

4) 
2,6-Lutidine 

(pKa
THF

 = 7.2)
a
 

3.3 x 10
-5 c

 52.9 11.7 16.9 

3 [(SiP
iPr

3)Fe(H2)](BAr
F

4) 
2,4,6-Trimethyl-

pyridine 
(pKa

THF
 = 8.1)

a
 

5.1 x 10
-3 d

 54.9 10.4 15.4 

4 [Proton Sponge-H](BAr
F

4) (SiP
iPr

3)Fe(H2)(H) 2.6 54.5 10.7 15.8 

a
pKa of conjugate acid, see ref 3. 

b
1 equiv of proton sponge used. 

c
292 equiv of 2,6-

lutidine used. 
d
20 equiv of 2,4,6-trimethyl-pyridine used. 
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A3.2 UV-vis Titration 

 

Figure A3.1 UV-vis spectra of the titration of [(SiP
iPr

3)Fe(N2)](BAr
F

4) with Li(OCHO) 

in THF. 

 

Figure A3.2 Fit of the UV-vis titration data. Absorbance at 752 nm as a function of the 

equivalents of Li(OCHO) added (blue diamond). The best fit of the data using Keq = 3.5 

x 10
6
 M

-1
 is in red.  



 

 

173 

A3.3 Cited References 

(1) Lee, Y.; Kinney, R. A.; Hoffman, B. M.; Peters, J. C. J. Am. Chem. Soc. 2011, 133, 16366-

16369. 

(2) Ciancanelli, R.; Noll, B. C.; DuBois, D. L.; DuBois, M. R. J. Am. Chem. Soc. 2002, 124, 

2984-2992. 

(3) Kaljurand, I.; Kütt, A.; Sooväli, L.; Rodima, T.; Mäemets, V.; Leito, I.; Koppel, I. A. J. 

Org. Chem. 2005, 70, 1019-1028. 

 

 

 


