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ABSTRACT

The problem is to calculate the atténuation of plane sound waves
passing through a viscous, heat-conducting fluid containing small spheri-
cal inhomogeneities. The attenuation is calculated by evaluating the rate
of increase of entropy caused by two irreversible processes: (1) the me-
chanical work done by the viscous stresses in the presence of velocity gra-
dients, and (2) the flow of heat down the thermal gradients. The method is
first applied to a homogeneous fluid with no spheres and shown to give the
classical Stokes-Kirchhoff expressions. The method is then used to calcu-
late the additional viscous and thermal attenuztion when small spheres are
present, The viscous attenuation agrees with Epstein's result obtained in
1941 for a non-heat-conducting fluid. The thermal attenuation is found to
be similar in form to the viscous attenuation and, for gases, of comparable
magnitude. The general results are applied to the case of water drops in
air and air bubbles in water.

For water drops in air the viscous and thermal attenuations are com-
parable; the thermal losses occur almost entirely in the air, the thermal
dissipation in the water being negligible. The thecoretical values are com-
pared with Knudsen's experimental data for fogs and found to agree in order
of magnitude and dependence on frequency. For air bubbles in water the vis-
cous losses are negligible and the calculated attenuation is almost complete-
ly due to thermal losses occurring in the air inside the bubbles, the ther-
mal dissipation in the water being relatively small. (These results apply
only to non-resonant bubbles whose radius changes but slightly during the

acoustic cycle.)



SYMBOLS#*

A = viscous wave potential of = attenuation coefficient
c = normal sound speed olv = coefficient of volume
expansion
c2,c.L = phase velocity of thermal ¥ = ratio of specific heats
and shear waves (e /c)
P Vv
€ st - specific heats n = coefficient of shear
P viscosity
4 = frequency e = polar angle
Joh, = spherical Bessel and 2 = o/p c¢_ = thermometric
Hankel functions ¥ conductivity
k k,K = wave numbers of acoustic, € = a/;:.oc‘r = ¥3€

thermal and viscous waves

11.2211 = damping lengths of acoustic, }1)‘2)‘1 = wavelength of acoustic,

thermal and viscous waves thermal, and viscous waves
n = concentration of V] = coefficient of dilata-
scatterers tionel viscosity
P = pressure 7= n/p = kinematic viscosity
- = total stress tensor P = density
q = heat current o = thermal conductivity
r = radial coordinate Tmn = viscous stress tensor
R = radius of scatterers 4314:2 = acoustic and thermal
wave potentials
s = entropy/unit mass
|4 = azimuthal angle
Sipp < irreversible entropy
density ® = viscous dissipation
function
t = time
‘T = thermal dissipation
T = temperature function
u = internal energy/unit mass w = 2unf = circular frequency

#See Table I for values of the physical constants,



4 = specific volume ( )0 unperturbed quantities

v = particle velocity ( )* = complex conjugate
( )Av = time average
®( ) = real part

In Sections IV and V unprimed quantities (p,4 ,...) refer to the medium
outside the small spheres; primed quantities (p', ¢ ',...) refer to the
medium inside the spheres; primes on the Bessel and Hankel functions (j',

h') indicate differentiation with respect to the argument.
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I, INTRODUCTION

When a plane sound wave passes through a homogeneous fluid it is
attenuated by two types of irreversible processes which increase the
internal energy of the fluid at the expense of the mechanical acoustic
energy of the wave. The first of these is the irreversible mechanical
work done by the viscous forces. The second is the irreversible flow
of heat down the thermal gradients.,

If the fluid contains spherical inhomogeneities the primary sound
wave is scattered and the secondary waves are then attenuated by visco-
sity and thermal conduction. In addition, the secondary waves carry off
acoustic energy in all directions, so that the primary wave suffers an
additional loss by scattering as well as by enhanced viscous and thermal
dissipation.

These dissipative processes lead to an expression for the average

energy flux E (the acoustic intensity) of the wave having the form

E=E e (0.1)

where « is the attenuation constant (cm.l) and is the sum of the attenua-

tions due to viscosity, heat conduction, and scattering:
°L=°l,l+0(¢- + g . (0‘2)

For a plane sound wave in a homogeneous medium Stokes (Ref, 1) first

obtained the viscous attenuation

=
2
Stokes oLy = %_}’%3 = 4‘!'3— ;‘,’_ k, . (0.2)
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Kirchhoff (Ref. 2) was the first to point out in 1866 that in gases the
effects of thermal conductivity are of the same order of magnitude as
those of viscosity and should be taken into account in accurate worke

Kirchhoff's result for the thermal attenuation was

—

A
o B =k, . (0.4)

Kirchhoff o =
ST P,cpc3

= (¥-1)

o

Here 7/ is the kinematic viscosity, 2¢ the thermometric conductivity, c

the velocity of sound, w the circular frequency and k, =«/c the wave

¢
number. Thus, for a plane sound wave the attenuation due to viscosity
and heat conduction is

«-[3°3 +(v-h%]k“ (0.5)

The scattering of sound from small spheres was first calculated by
Lord Rayleigh (Ref. 3) and for fixed rigid spheres his result (including
zero- and first-order harmonics) is

7 =
Rayleigh X = |—-sz qu? = %VP Rg(_?:i‘r_r_) (0.6)

)

where the dimensionless quantity Vp is the total volume of the small
spheres per unit volume of the medium, R the radius of the spheres and
N\ the wavelength of the sound. In the second form kl = 2n/\ is the wave
number and & = klR is very small since R<<\ for small spheres.

In 1910 Sewell (Ref. 4) calculated the additional viscous dissipation

suffered by a plane wave passing through a medium containing small rigid

fixed spheres. Sewell's result was
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Sewell dSewell = -i-V, Po-—‘__é—,_[l + ( Zn = 2 VP k, yz (0.7)
91 = w Rt/Z'lJ v = n /f- .

This result, while satisfactory at high frequencies, gives a finite
attenuation at the low frequency limit w= 0, The reason for this errone-
ous result lies in the assumption that the spheres are fixed; this is not
the case in aerosols; as Lamb (Ref. 5) puts it, "Owing to its great inertia
in comparison with that of an equal volume of air, a globule of water in
suspension, if not too small, may remain practically at rest as the air
waves beat upon it. If, however, the radius (R) be diminished, the inertia
diminishes as RB while the surface on which viscosity acts diminishes as Rz,
and it is to be expected that a stage will be reached when the globule will
simply drift to and fro with the vibrating air, and so cause little or no
loss in energy". In an addendum Sewell tried to correct his results for the
oscillatory motion of the particles, but the treatment was not completely
satisfactory.

In 1941 Epstein (Ref. 6) published an important theoretical paper
dealing with the viscous attenuation of sound by spherical particles sus-
pended in liquids or gases. Epstein employed a more general method than
Sewell which automatically included the oscillations of the particles in
the accustic field. This step was partly necessitated by the experimental
work of Hartman and Fock (Ref. 15) on aqueous suspensious, since in their
work the,density ratio of the medium to the particles was near unity, so
that Sewell's theory of fixed particles was not at all valid. Epstein con-

sidered three cases in which the spherical obstacles were (1) rigid,
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(2) viscous fluids, (3) elastic solids, and showed that at sufficiently
high frequencies so that the oscillations of the drops could be neglect-
ed, Sewell's equation was a close first approximation. In the case of

fluid spheres in air Epstein's result was

9 1+y 16y

=fsteen %n = Tvl’k- gr [ 16y* + 728493 + 8l 6”!4-19*-?.3")} ] (0:8)

In view of the relative importance of the thermal effects it is of
theoretical interest to extend Epstein's treatment to include the attenu-
ation due to heat conduction. Recent experimental work by Knudsen (Ref. 7)
on the attenuation of sound in fogs provides an additional reason for the
inclusion of thermal effects. Finally, it may be pointed out that war re-
search on sound transmission in the sea showed that bubbles may contribute
strongly to the absorption/ggund. As shown by Carsiensen and Foldy (Ref. 8)
this effect is strongest near the resonant frequency of the bubble; while
resonant absorption is not included in the present paper, it is still of
considerable interest to examine the viscous and thermal absorption of
bubbles for freguencies outside the resonant region.

There are seen to be both theoretical and experimental reasons for
investigating the present problem and we now turn to the development of
the basic theory underlying the solution,

The essence of the method employed was first given by Prof. P. S. Ep-
stein in his lectures on "Mechanics of Continuous Media". An attempt to
carry it through was made in the thesis of W. Garvin (California Institute

of Technology 1948). However, Garvin used certain short cuts and simpli-

fications whose validity is not entirely above suspicion. Therefore, it
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seemed desirable to reopen the problem and to carry it through in a com=-
pletely systematic and rigorous manner. The essential point in the new

approach lies in the use of the entropy associated with the irreversible

processes,
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11, THE BASIC THEORY

In this chapter we shall discuss the fundamental conservation
equations for.a compressible, viscous, heat-conducting fluid. From
these equations an entropy equation is derived in which both reversi-
ble and irreversible processes are represented. The rate of increase
of irreversible entropy depends on velocity and thermal gradients and
leads to expressions for the rate of increase of the internal energy at
the expense of the kinetic and potential energy of the fluid motion, It
is thus possible to develop exﬁressions for the viscous dissipation, cor=-
responding to irreversible mechanical work done by viscous forces, and
for the thermal dissipation, corresponding to the irreversible flow of
heat down thermal gradients.

Although the mass, momentum, and energy equations to be derived are
found in the literature (c.f. Busemann, Ref. 14), the entropy eguation is
not usually given, and it seems useful to derive all four basic equations
in a systematic way. The development will also present a number of rela-
tions of use in later sections,

Assumptions

We shall make the following simplifying assumptions in developing
the theory:

(1) The viscosity n, thermal conductivity o, specific heats, etc.,
will be assumed constant, and in particuléf they will be con-
sidered independent of the temperature.

(2) Because of recent work by Liebermann (Ref. 13) involving the
role of the compressional (or "second") coefficient of visco-

sity in absorption of sound, we shall not make the usual assump-
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tion that this coefficient vanishes, but instead shall retain
it throughout our analysis.

(3) We shall assume the medium to be in a "pseudo"-steady state so
that the gradual changes in the unperturbed temperature, pres-
sure, etc., brought about by the increasing internal energy (due
to absorption) can be neglected over the time of interest for
which the average dissipation is calculated,

(4) We shall use the usual form of the Newtonian stress tensor, modi-

fied to include the second coefficient of viscosity (Ref. 14).

This assumption is an approximation, since it excludes thermal
stresses which a careful statistical-kinetic theory would include

in the stress tensor. For gases, however, the error is very small
(~1%), so that in view of the additional analytical complexity
which would be introduced by the thermal stress terms, it seems en-
tirely reasonable to omit them.

We now choose a Cartesian inertial system x;(« =1, 2, 3) with respect
to which the fluid particle velocity is v with components ur . The position
of any fluid element at any time t will be given by its Eulerian coordinates
x (t). To derive the basic equations in the simplest way we consider a vol-
ume V' of the fluid whose surface S' has at.every point the velocity of the

fluid at that point. Thus V! moves with the fluid and since no fluid crosses

its surface, V' contains a constant mass of fluid,
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1. Conservation of Mass (Continuity Equation),

The total mass within V' is then

M = jpdv’ (1.1)

and the conservation law then assumes the form

dM _ 4 -
5t = @y =0 (1.2)
or
f—a—edV' + v-dS' = 0
At frra= (1.3)
The first term represents the rate of mass increases arising from the
time dependence of p. The second term is the rate of mass increase due
to the changing volume of integration. Using the divergence theorem we
obtain
P !
J["ﬁ'*’l‘f‘!] dv' =0
(1.4)

and since V' is an arbitrary volume the integrand must vanish and we have

the continuity equation

.a_P.*._V_or! =o.

ot (1.5)

We define the stream derivative

()= 2() + xx()

D
Dt (1.6)
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and obtain a useful alternate form of the continuity equation:

Mass

P_E- V--Lr -
. T 0.

We note a useful relation following directly from (1.5):

scalar quantity

¥ _ 2pf £
f D S+ ¥ NVepty .

2, Conservation of Momentum (Force Equation)

The vector momentum of the fluid in the volume V' is
M = J- pY dv’
or, using Cartesian tensor notation,

M, = [ pudV'

€

and thus the rate of change of momentum is

oo
K4
m
I
ln.
—
-
o=
a
<‘

In the last form (and hereafter) we use the Einstein convention and sum

over doubled Greek subscripts only. We now use (1.8) with f = V¢ and

obtain

If £ is any

(1.7)

(1.8)

(2.1)

(2.2)

(2.2)

(2e4)

(2.5)



ot = e femav' = [pBe 8

The last equality is a particular example of a useful general
theorem proved in the same manner as the derivation just made:
Theorem If f is any scalar function and V' is a volume moving

with the fluid and containing a constant mass of fluid

then
d ' Df '
wfetav = [pRhav. (247)

We must now formulate the force acting on the fluid in V', We

assume that there are no body forces so that only the stress forces are

acting and the total force components are

jds;pde = jV..z Pue dV', (2.8)

where 'Fhe is the symmetric stress tensor. Then the force equation

states that

d Mg
d t (2.9)

E

or using (2.8) and (2.6)

ffD"‘ v' o= J-V,‘p“dV' . (2.10)

and since V' is arbitrary we obtain
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Dve

4 Pt Va'P«.e (2.11)

which is the equation of motion.
Now the total stress tensor 4P, for an isotropic homogenecus fluid

is given by

'Pue = T JPJ‘fG + T"e (2.12)
with Sue = o (o £e)
= 1 («=¢€)
the viscous stress temsor T, by
- 2 ~
Tae = -_3'('1'7")(2'-"!')6-(5 +2ne, , (2.13)
and the velocity strain tensor e€_, (in Cartesian coordinates) by
e = + (v +vw)
«e @ 2 < "€ € et (2.14)

with n the shear coefficient of viscosity and p the compressional ("second")
coefficient of viscosity. The components of the stress tensor are thus given

by
’\"mn =n (va;n"' vh'U'm) (Mi:n) (2.15)

g = =P~ %- (rl-,‘) (!_-g') + 29V, (2.16)

where, in accordance with our summation convention, (2.16) is not summed
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on nNe
Equation (2.11) with (2.12) now gives the usual force equation:
Dve _ - + Va1,
P-‘:DTI:' = E'P o 'ae - (2.17)
Substituting 7, from (2.13) and e_, from (2.14) we obtain
2
VeTue = ~ 5V (To) + qVu (Yt + Ve v) (2.18)
. = .
- ?('l-") vé(!'g)+ rlv UE +Y‘lve (‘;‘ 1_") (2.19)
and the equation of motion, written in vector form is
bY _ -2 (- . 2 :
f_n_t— = -¥p -3 '1#)!(!1!)+rzvt_r +n¥(vv) . (2.20)
Now using the vector relation
Vx¥x¥ = Y(v¥)-viyw
we obtain the force eguation in its final form:
Dy 4N
Momentum P3E = -¥p + 3 rz!(g,-!)—q!xgx'y_' (2.21)
where the constant N in the second term is defined by
(2422)

N = 1+ plag

so that when the second coefficient of viscosity vanishes we have N=1

and the force equation reduces to_the standard form usually given in the

literature.
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onservation of Ener First Law of Thermodynamics
To formulate the energy equation we assume that heat is added to
the volume V', the heat current g being given by

$ = —-6¢3V7T

= = (3.1)
Then the total rate of heat addition is
Q = f-c_z;-d§' = ja—yT-dS (3.2)
= [ e V2T dV'
(3.3)

Now the total energy of the fluid in V' is the sum of the total internmal

energy U and total kinetic energy K:
s 1 1 2 I
U+K = f,-.,u.dv + f;_—pzr dV : (3.4)
and using the theorem (2.7) we obtain the rate of increase of the total

energy of the fluid in Vr;

dt dt ff’ ff’mr/z " (3.5)

Finally, the rate at which the fluid inside V' does work on the outside

medium is
W = —J dS.: PueVe = —fvd(P-te"ey dv'. (3.6)

Then the conservation of energy requires that the rate at which energy
(heat) is added to V' be equal to the rate of energy increase of the fluid

in V' plus the rate at which this fluid does work:

- duU d K

or, using the above equations,

ARIEINE RN CRACHEAR (3-8)
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Now multiplying the force equation (2.11) by 4, and summing we get

2.
P2 L ()

and this together with (3.8) gives
Du
e VT = P ae Pue YU | (3.10)

Finally, using the definition of 1°4e we get the energy equation as usually
given in the literature:
cVIT = p3r v pYY -2 (3.11)
where the viscous dissipation function $ is defined by
& = T«e vivﬁ (3012)

and will be discussed later. A more useful form of the energy equation for

our purposes is obtained by defining the specific volume

|
U 5 «13
2 (3.13)
so that, using the continuity equation (1.7), we have
DU _ 1. D% _ v Dp _ .
P2t ~ ot = P Dt = ¥Yu . (3.14)

From (3.11) we then obtain the desired form of the energy eguation:

Energ! erT - _zai = f;";_:- +rP]:)—‘I£_ § ) (3-15)

Le Eguations of State and Internal Energy

We have now derived three basic conservation equations for mass momen-
tum, and energy: two scalar equations and one vector equation, or a total of
five scalar equations. Seven variables appear in these equations: p, Uy Uy
1r3, P, u, Te We therefore require two more equations to complete our set of

basic equations. These are furnished by the thermodynamic equation of state

and the specification of the internal energy (u) which we assume to be given
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in the form
/P = ‘F(F,T) (h.l)
and
w = w(pT), (4e2)
In the case of a perfect gas these become
49 - rQT = FCV("~|)T (14--3)
eyl , (4ob)

where R = cp - cv is the gas constant/gm, cp, cv the specific heats/gm
and X= c /C °
P Vv
It may be pointed out here that the entropy equation (derived in the
next section) does not provide another independent equation since it in-
volves the new variable s (entropy/gm). If we include the entropy equation

we then have eight variables and eight scalar equations which we summarize

schematically as follows:

p Continuity Equation (Scalar)
v Force Equation (Vector)
T Energy Equation (Scalar)

p —— State Equation (Scalar)
—~—— Internal Energy Function (Scalar)

Entropy Equation (Sczlar).

« Entro uation (Second Law of Thermodynamics
Following Eckart (11) and Tolman (12) we express the second law of

thermodynamics as an equality, using the concept of irreversible entropy:

lpsaV' = ~[rads + [op=av. .
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The left term is the rate of increase of the total entropy within V' ,

s being the entropy per unit mass of fluid. The right side is the sum

of (a) the rate of entropy increase due to the entropy current (1%-_3 )
flowing in through the surface, and (b) the rate of increase of entropy
throughout the volume due to irreversible processes, %%%yT being the rate
of production of "irreversible entropy" per unit volume of the fluid. 1In
accordance with the second law as usually stated we require this quantity
to be positive.

Using the theorem (2.7) on the left side and converting the surface

integral to a volume integral we have
= | l Ds; !
pRTav' = [-w{tq)av'« [Dsir gy’ (5.2)
and since the volume V' is arbitrary we obtain the entropy equation:

Entropy - Y- (3 %) + D (5.3)

Poe =
Now we substitute for the rate of change of the entropy density of the
fluid, as a consequence of its known dependence on the internal energy and

volume of the fluid, the expression

Ds _ )\ Du . 4 DU
Pt O T vt T T Dt (5.4)

But from the energy equation (3.15) the right side may be replaced and we

obtéin
r%%='?[fm+r1°m] e EL. (5.5)

Comparing this with (5.3) we then have an expression involving l)sarr/bt':
1).5.r - 5 e L b
ST = (T%) 20 A b

-'Fi %.ET s _f_& ! (5-7)
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and using the definition of the heat current q ,

g = =@l (5.8)

we obtain the desired expression for the rate of production of irreversi-

ble entropy per unit volume:

2
D5 v-r) |
=== = (L) + 2. (5.9)

The first term on the right is the rate of irreversible entropy pro-
duction associated with the thermal conduction due to the presence of tem-
perature gradients. Since o is positive, this term is clearly positive, so
that it is in accordance with the requirements of the second law as usually
stated, i.e., that the entropy associated:Y;reversible processes must always
increase.

The second term on the right is the rate of irreversible entropy pro-
duction associated with the work done by the viscous forces due to the pres-

ence of velocity gradients. Moreover it is easily shown from the definitions

of ® and € «e that
P = Tae Cue (5.10)
= Z'[[elté edf_ - %' ("l“}t‘(v_'!) aqe ed_e ] (5.11)

2 2 2
= 2ol rehlrdnldpediel] - By (512

or
2
E = 2ol (e s(enray+(ental s 2(ehvezver)]  (5u13)
with
‘e
a = %[()&/q) -'I] Vv (5.14)
V= €uu = Cutenteyy (5.15)

so that, since n and T are positive we see from (5.13) that the second term
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of (5.9) is also always positive.

It is to be noted that we have not proved the second law, but have
only shown that if we assume the above definition of the stress tensor
(2.12) and assume that o, n, T are positive, then the rate of production
of irréversible entropy Ds;,, / Dt is indeed positive. To prove the sec-
ond law we would have to justify the above assumptions regarding P¢€ s Oy
n, T, by a careful statistical-kinetic treatment, including also any effects

of thermal stresses.

6. The Viscous and Thermal Dissipation

From the results of the preceding section we have seen that the pres-
ence of velocity and thermal gradients in a viscous heat conducting fluid
leads to a rate of production of irreversible entropy per unit volume given
by Ds,,, /Dt in (5.9). From this we obtain the total rate of dissipation

of energy per unit volume dE/df due to irreversible processes:

dE . 7%t - §, P (6.1)
where g
"F - % (g1) (6.2)

and ® is given by (3.12),.

We shall call W _the thermal dissipation function and $ the viscous
dissipation function. ¥ and P represent respectively the rate of increase
of the internal energy per unit volume of the fluid due to (a) irreversible
heat flow in the presence of the thermal gradients and (b) irreversible me-
chanical work done by the viscous forces in the presence of the velocity
gradients. This increase in the internal energy is at the expense of the
ordered macroscopic energy of the heat currents and the mechanical flow energy

of the fluid; this fact justifies the use of the term "dissipation®,
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If we now consider a volume V fixed in space we obtain the rate of
dissipation of the acoustic energy of a sound wave sweeping over the vol-

ume:

J $dV (6.3)
I T dV (6ek)

n1n. 91
ﬂl e+

where dE.tldt is the total viscous dissipation and dE,./dt is the total
thermal dissipation, both in units of energy/sec. (We have dropped the
prime in the volume element dV since the volume of integration V is fixed
in space rather than moving with the fluid).

It is particﬁlarly to be noted that since ¥ and ¥ are quadratic,

we need only solve the first-order equations of the acoustic field in order

to obtain ¥ and ¥ to second order.

This completes our derivation of the general basic equation for a vis-

cous heat-conducting fluid. We now turn to the acoustic case and apply these

results,
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III, THE SOUND FIELD

In this chapter we shall consider the general acoustic equations,
obtained as the first-order approximations to the basic equations of
Chapter II. From these equations we shall derive the wave equations
for the acoustic, thermal, and shear waves and discuss their solutions,.
Finally we shall list some useful auxiliary relations relating the first-

order pressure and temperature with the velocity potentials.
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7. The Linearized Equations

The general first-order acoustic equations are obtained by lineariz-

ing the basic conservation equations for mass, momentum and energy. We

expand our variables to first order:

P = petp

YV = Yo+ U ( Yo = o)

- (7.1)
P = Pt P

T = Te® I

U = Uo + U,

where the o-subscript refers to the unperturbed quantities in the absence
of the sound field (v = 0), and the l-subscript denotes the first-order
quantities. We assume the fluid to be at rest in the unperturbed state so
that ¥ = 0. Substituting these guantities in the basic equations (1.7),
(2.21), and (3.15) and noting that to first order ® = 0 and D/pt= 3fat

(there are no transport phenomena since the term -V ( ) is second-order),

we obtain

Continuity Equation:

5 ¥ Pl =0 (7.2)

Force Eguation:
P"?{' = ~Vp+ T TTw) -n¥xTxw tes)

Ener uation:

- au, 3 ' °

o,vZT‘ = Po—t e fo.Po _5_1%: (7 l&)

State Equation:

. = (VT

(7.5)
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Internal Energy Equation:

w, = \u, (‘U’, ,T.) (7.6)

We now eliminate Py? u, Py from the eguations, to obtain two equations

|

in the two fundamental variables 4 and Tl.

To eliminate u, we differentiate (7.6) (using 4. to denote aul/at)

1
to obtain

Z _ ﬂ_ . 9__'-! .
By = ( aT)vT‘ * ( 31’)]-1}" (7.7)
and substitute this into the energy equation:

2 w\ = Bu r
oV*T, = g (BT + polpo+B3) 11 (Rt
To eliminate P, from the force equation we differentiate (7.5) and use the

continuity equation for Bl:

%, = (3}3 B+ %:F)fﬁ (7.9)
. 2 s
. e g3 va + (380 7.0

Now we differentiate the force equation with respect to t and substitute
(7.10) to obtain

pY = f.(g},T_(?_!\ (35,9t + Qauee) -atavan . (7.11)
Equations (7.8) and (7.11) are the two desired equations in % and T,.
We now note the definitions
U 12
('3—-.7)1, (7.12)
s 3_1_?) = sl ok
“ =35 (5% L= A “)r (7.13)

(%}3, = 3(%%)7 (7.14)
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for the specific heat at constant volume (c,), the volume coefficient
of expansion at constant pressure («,) and the adiabatic velocity of

sound (c). We then use the general thermodynamic relations

38, - (3%, - -(30), 3§, (7.15

. (3% » = et (%%)r 7.15)

and the above definitions to obtain

‘ar) i .2 (7017)
('a_-rf, = 7 C Pety
2 o8
por (3) = TF Spets (7.19)
Substituting these relations in equations (7.8) and (7.11) we obtain the
working forms of the velocity and energy equations:
2 1 . . .
o= Sulew) - S en + o ed) - v (7.19)
2
2 VT, = T+ S gy (7.20)
Ce
where %= C‘/P,cv , and = q/f:. is the kinematic viscosity, and we
have used fhit = Y.y, from (3.14).
We now introduce the periodic time dependence of all first order
quantities:
T
Pu =
v, = v e—u-lt
-twt 721
- e (7.21)
T; - T e—"-ut
vt

r
Ll
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Here p, v, p, T, u are pure space functions independent of time¥,
Noting that 23/fat = —iw  we obtain from (7.19) and (7.20) two space

ejuations for 4 and T:

- cuy, c? 4N )
Loy = % Ll # ( m T3 (T¥) -vIxUxy (7.22)
V3T = -iwT+ Toctety V.
T, 'Y (7.23)

Our problem is now to solve these two space equations for v and T. It may

be noted that the first-order quantities are all real; for convenience, how-
ever we have assumed them to be general complex functions in (7.21), so that
after (7.22) and (7.23) have been sclved for ¥ and T we must use for the first-

order quantities vl and 'I‘l the real part of the quantities in (7.21).

8, Derivation and Solution of Wave Equations for the Acoustic, Thermal

and Viscous Waves
In order to solve the two space equations (7.22) and (7.23) we assume

for ar the general vector field
V= -Y® +IxA (8.1)
where ¢ is a scalar potential and A a vector potential, and where we take

V:A=0 without loss of generality. The force equation (7.22) becomes

lwY¢ —iwTIxA = - -—‘_— 9T ::_r'- 4 JV(V"Q + VZx(v2A) (8.2)

or, equating the vector and scalar parts separately we get

*The use of these symbols for the amplitudes of the first-order quanti-
ties will cause no confusion with Chapter II since throughout the remain-
der of the work we shall use only the first-order quantities.
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= iwﬁ_ = Y VA
; 3 c* 4N
W = —c-—.r'l—'-'T +[m“"3—1’]vl¢ . (8.2)
The energy equation (7.23) becomes
2 . Czﬂv 2
2 VT = -iaT - T, E v . (8.4)

From (8.2) we obtain T as a function of the scalar velocity potential:

- o Lwi A _ 4N 2 (845)
i Croty * * (iud, ey, Ve

and by substituting this into (8.4) we eliminate T and obtain the biguad-

ratic or double wave equation in ¢ :

4 2 Y 2
¢ [4NvRwW + Hew . [4NDw %
._a[_a__cT_+g..x_ci]v4 E_i[l—"(3¢1. +__3‘:1W)]vl¢_¢_o (8 6)

We now make the substitutions

N vw . 2R w
e-4_.3_?<¢.l ~F-—c—.‘_-<.<l (8.7)

where for most fluids the magnitudes of the dimensionless quantities e and
f are generally very small for values of w( 106. (See Table I for the
values of the various constants for water and air.) We then have to solve

the biquadratic equation

4 2
i},[e{'-h'.f/l’]V‘é - %;_[I—i(eff)]vzda -¢ =0 (8.8)
Solution of Biguadratic Equation
A solution of (8.8) may be obtained in the form

where ¢a1 and ¢ , &re wave functions satisfying the equations
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]
vio + kid =0 | Vi, v Kp, =0 (8.10)

and where ki and k: are the two roots of an equation obtained from

(8.8) as follows: We substitute
Vi + ke =0 (8.11)

in (8.8) and get

{% k‘[efnf—lx] + :—t‘:['*i(ﬂ“] - '} ¢ =0.

(8.12)
Since ¢ is not identically zero the curly bracket must vanish, so that,
2 2
putting x = (ck/o) , we must solve the quadratic in « (or k):
. .13
x? [e{+ if/x] + x [l-u(c+{-)] i I - (8.13)

Since e and f are very small we see immediately that one root is ap-

proximately )41 = ], We therefore put

¥ = l"\'? (8011&)

where g<«<1 and solve for g, retaining only first-order terms in e, f, ge

The result is

g= ilerf-$/¥] (8.15)

so that one root is approximately

Xy = L iless-fA1. (8.16)

To obtzin the second root we note that if we divide (8.13) by the coefficient

2
of 2, the constant term gives the product of the two roots:

X ¥, = (ef+ Lf/ﬂ" . (8.17)
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Using (8.16) and again keeping only first-order terms we obtain

%y = La’/{- .

(8.18)
Replacing %, by (ck, /m)2 and %, by (t:kz/m)2 we finally obtain
= 2 Liei(erf-£/m] (2.19)
2
&= = [ik] (8.20)
or, replacing e and f we have
) {Hi SN s, uTgo.(.-.f,)]} (8.21)
K, = (Y22 | ' (8.22)

These are the desired values of the two roots of the quadratic in k2 inside
the curly bracket of (8.12),

Summary, We now collect our results: We have found that the velocity field
is given by two scalar potentials 4:1 and ¢2 and the vector potential 4 ,

all of which satisfy the wave equation:

Velocity v -Y$ -V, + UYxA (8.23)
Acoustic Wave vig, + K, $, =0 (842L)
Thermal Wave Vi, + k‘ld:,_ =0 (8.25)

I
o]

Viscous Wave VIA + KA (8426)
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where from (8.,2), (8.21) and 8.,22) the wave numbers are given by

K= 2o {\ vildze | ) ’i‘;’]} (8.27)
K= tw/i (8.28)
K= lw/v (8.29)

and where in place of 3¢ we have for convenience used the thermometric con-

ductivity & defined by

5 = o/pc, = /v .
e (8420)
(Siqce the imaginary part of the wave numbers gives rise to the damping
effect for the waves, it was necessary to retain the small terms in ](i
to exhibit this effect.) Taking the square roots we obtain
w 1 [4N @ ) Rw
ki = T{'* E[5R +6e c‘]} (8.31)
- Yy . a
ke = GeMwlaz@) = (e (wpocy /26) (8.32)
I/'_ \‘/’_
K = G ) (w/2v) = (I-I-‘.-)(“"P“ [2n ’ (8.33)

where in each case we use the root corresponding to damping of the wave

(i.e., positive imaginary part).

The corresponding phase velocities and wavelengths for the acoustic,

thermal and viscous waves are¥

¥ The subscript L denotes the "traverse" character of the wviscous or shear
Wave.
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c= “/k, A, = 2w /K,
& = wlR (k) = (i) Ar = 2w/R (k) = 2w (25 /) (8.34)
¢, = w/®(K) = (zw0)? A, = 2w (R (K)= 2w (awla) ™,

The velocity and wave length of the thermal and viscous waves are seen to
be frequency-dependent. Values for these quantities at various frequencies
for water and air are listed in Table I at the end of the text. The imag-
inary part of the wave numbers k2 and K give rise to the "damping lengths"
diseussed in Sec. 10,

We have called ¢ 1 the accustic wave because it is propagated with
the normal sound speed c; ¢2 is called the thermal wave since its character
is determined by the thermal conductivity; finally A is the viscous or shear
wave since its properties depend on the viscosity,

To examine the physical nature of the three waves and their effects in
dissipating acoustic energy we shall treat the one dimensional plane wave in
the following chapter., Before doing this however, we consider briefly the
manner in which the first-order temperature and pressure depend on the velo-
city potentials, and derive a useful expression for the viscous and thermal
dissipation in terms of the first-order acoustic quantities,

9, Expressions for First-Order Temperature and Pressure and for the Viscous

and Thermal Dissipation
First-Order Temperature

Substituting our expression for w from (8.23) into the temperature

equation (8.5) we obtain

T = ot.é. T+ d;d’; (901)
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where the constants o . and «_ are given by

1 2
o, = =iw@Mcv, = -iwT,x,/c, (942)
oy = — ("‘V 52)—‘ . (9.2)

Thus the space part of the first-order temperature T, =T o St

linear function of the two scalar potentials ¢1 and ¢2. The same result

is a

is reached if we substitute (9.1) in the energy equation (7.23) and equate
the coefficients of 4>1 and ¢2 to obtain e(l and « 2° The reductions above

are facilitated by the useful relation
Toclad = c,(¥-) (9.4)

which is easily proved from the definitions of o, and c2 in (7.12) and
(7.14), together with the familiar thermodynamic relation for the specific

heats:

>
ey = To (35), (57), . (9.5)

First-Order Pressure

To derive the pressure dependence on ¢

-tat
1 and ¢2 we write U,= Ve

in the linear force equation (7.3) to obtain

-lwp, ¥ = -V_p*-“’—,"*n!(‘l-!\-q!x_"*l[- (9.6)

We then substitute v from (8,23) and separate the vector (curl) and scalar

(divergence) parts, the latter giving

Luf;, v (lbla-d),) = —EP - 4—:-'12 (Vztb.+ Vzﬁz\ (9.7)



or
(wpo (b4 6,) = —p — N (934 v28) |
and using the wave equations (8.24) and (8.25) we obtain

4 = -iwpo (8|¢|+‘1¢1J

where the constants 81 and ‘62 are given by

N Y
b’,=|+l—+3 ct

_ 4N v
31"“ 3 5= "

We drop the small imaginary term in § 1 but retain the second term in

b 5 since in genersl it is of order 1 for fluids. Thus the space part

(p) of the first-order pressure P, =P e-iwt , like the temperature, is
a linear function of the two scalar potentials ¢l and & 5°

The Viscous Dissipation

We have seen in Sec. 6 that the total viscous dissipation is given

by the volume integral

2= [zav .

It is in general a tedious process to evaluate this integral and a great

(9.8)

(9.9)

(9.10)

(9.11)

(9.12)

simplification in introduced by converting part of the integral to a sur-

face integral. This we now proceed to do.

The dissipation function & is defined by (3.12):
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e TeeW Y (9.13)

= Pue YV + POuc YuVe (9.14)

= VY ( pucve) - Ve Vupue + pLY - (9.15)

So 2 = a(puete) - p 22 e | by (9.16)

where we have used the definition of the total stress tensor P e from
(2.12) and the relation (3.9) for the kinetic energy. From (9.16) we

then obtain the desired general form:

qu - Jpe(eu CIS +IPV." ay= IFDU e dV ] (9.17)

where the first volume integral has been converted to a surface integral
over the surface S bounding the fixed volume V,

For the acoustic case we expand the stress to first order terms

Pdc = = Po ‘Sue * Piue (9.18)
where

Pld‘ = = b Sue + Tiae (9.19)

and use the previous expansions in p, v and p from (7.1)

p=peth U= U P=P+br . (9.20)
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These give for & in (9.16)

€= Y, ( Puevné) = Po%ﬁt/—l + P Yy (9.21)

so that © is determined by products of the first-order acoustic quanti-
ties each of which is periodic in time. Since we are interested in the
average rate of dissipation we take the time average of §) using the rela-

tiops in Appendix I, and obtain

8, = TR[%W(pL ) -ty + plyw] . (9:22)

The second term in (9.22) may be dropped since it is pure imaginary

(p.iw'y_'.*-g. ) and its time average is zero (see Appendix I). Here®
denotes the real part of the expression following and the star ¥ denotes
complex conjugate. As before we write the first-order quantities in the

form

-ttt -t ‘

-lwt
PI = Pe v,=VYe Piae= Pdee (9.23)

where p, ¥, Py e (the amplitudes of the corresponding first-order quanti-

ties) are complex space functions only and do not depend on the time, Thus
- | * ¥
EA,, - Eﬁ»[v.t( Pae Ve) + P Y"‘_"] . (9+24)

so that, integrating this we have

den = (5, v = 4R [prev dSy + 1R [prew av, (9.25)
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and this is our general computational form for the viscous dissipation

in an acoustic field.

Thermal Dissipation

The thermal dissipation is given by

_;-_ f T4V (9.26)

This can also be transformed to a surface integral and a simpler volume in-

tegral for computation., We have

¥ = {-( T.97T) © (9427)

S(wlren -Tvir] | (9.28)

Now V2T is given by the energy equation (7.20):

. clu

] v
VZT L ;(Tﬂ’ ° CP MYew f, (9929)

We therefore have for ¥

2
¥ = T(ren)- (TT+T.‘C—“;T1-E), (9.30)

and TAV is

T - .‘,;—:;Q[Y-(T*zﬂ] B P°°°"’62[ T*9 g] (9.31)

Av

where the '1":' being pure imaginary has been dropped, since its real part

is zero, and we have used the definition 2€ = "/Pa‘-v to obtain the new
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form for the coefficient of the last term. Integrating this we have for

the thermal dissipation

dEs - I"I' dv = °}°Q[(T*2ﬂ-d§— f.)_;-.c_';i.'RfT*!.ng’ (9.32)

and this is the desired general computational form. The surface integral

is extended over the closed surface S bounding the volume of_integration Ve

10, Plane Wave Solutions

We now apply the foregoing theory to the case of a one-dimensional
plane wave moving in the positive x-direction. The appropriate solution of
the scalar wave equations is

¢=d,+d, = Ae + Be (10.1)

where A and B are constants. Since k1 and k2 are complex the amplitudes

will diminish exponentially. Using (8.31) and (8.32) for l<l and l<2,

b= Aenplifz - 52 (9324 2500)] (10.2)
$,= B e.qLP[Lz(ub.:’aV‘- 2Culazm)™] ’ (10.3)

so that if 4 is the absorption length, i.e., the distance in which the

wave amplitude declines to 1/e of its initial value, we have
2¢ [ 4N v 5w
4 = [4ze, g0 E2] (1044)

L.= (23:/s). (10.5)
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Since I,%‘wz, L, @ * » the absorption lengths both decrease with

frequency, and the absorption increases with frequency, the increase be-
ing faster for ¢ 1 than for 4:2. The absorption lengths for air and water
are tabulated in Table I at the end of the thesis. It is apparent from
Table I that 1.1 and .12 are of entirely different orders of magnitude,jhl
being damped only slightly over distances of the order of centimeters, while
¢2 is very strongly damped.

For air 7 and #€ are about equal so that the thermal absorpt}on is
comparable to the viscous absorption for the acoustic wave ¢1, a result pre-
viously obtained by Kirchhoff,

While we have no viscous shear wave in a one-dimensional sound field,
we see from the wave equation that the wave number K (8.33) gives an absorp-

tion length for this transverse (1) wave of

1y
2, = (2v/0) (10.6)

in the same way as the thermal wave number ‘(2 (8.32). As is seen from
Table I, the viscous wave is also rapidly damped, the absorption of the vis-
cous and thermal waves being comparable in magnitude,

It therefore appears that the main source of attenuation of the incident
plane wave on small spherical obstacles is due to the conversion of acoustic
waves into thermal and viscous waves which are rapidly absorbed within small
distances from the spheres.

To obtain the attenuation o we first proceed in the usual way to de-
rive the acoustic intensity in the form E = E_ e~ *". We consider only ¢,

since 4)2 is rapidly damped in any case, and note that if we neglect small

transport and conduction terms, the energy flux is given by the average rate
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at which work is done by the stresses on unit area normal to the wave:

E=(pw),, = 2R (p*v) (10.7)

and using (9.9) for the pressure and (10.2) for the potential we have

o(k -k*)-z

L . * $, * ' '

E B EQ[_(H‘J'P9¢| )(-?a_‘)-l = l?_ wPok; AA € (10.8)

or E=E, e (10.9)

where ol = 12#-' = %‘ [4?” 23’; + (¥-0) 5%0 (10.10)

is obtained from the real part of ik, in (10.2)s This is then the at-
tenuation desired and it is seen to consist of the viscous attenuation ob-
tained by Stokes (but modified by N to include the effects of the compres-
sional viscosity), together with the Kirchhoff thermal attenuation. For
future use we note that over distances small compared to 11 the wave is

attenuated negligibly and the intensity is

E=E, = 7 kwpe AR (10.11)

3 k.
for a plane wave whose velocity potential is 4;1 =Ae s .

A second method of obtaining the attenuation is to evaluate the average

viscous and thermal dissipation integrals (6.3) and (6.4):

:En f§ dV (10.12)

f‘if dV . (10.13)
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For the one-dimensional case & is found from (5.12) to be

= 4N 2\
2 ="n ( 2x

or B, = TR ig )(av*’)l
= %Eq-“g AA* .

for a volume of integration of unit cross section normal to the wave and

(10.14)

(10.15)

(10.16)

(10.17)

length L, where L<< ‘ﬂl’ so that the attenuation of ¢ , is negligible over

the volume.,

For the thermal dissipation we have from 6.2)

ik ='|z"2-[

v

s
4
-

L]
<

-‘
—d

Using our temperature relation (9.1)
'T = oL, ¢|
this becomes

¥, = +< () (kil)AN

(10.18)

(10.19)

(10.20)
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From (10.13) we then have the thermal dissipation:

x0T, ot
dE¢ _ _1;'.‘1._. [ i___‘_]% ARTL (10.21)

t cicy
where (9.2) has been used for (otldl*) and again S is a unit area normal
to the direction of the wave and L is the length of the volume of integra-
tion. To obtain the attenuation o« per unit length we divide the total

dissipation Per unit length by the incident energy flux Eo from (10.11):

L [\ dEn .'_d_Ef)
< = E.(-L-.E-t- * L at (10.22)
or
« = D[ A2, ) EL] (10.23)

Since this agrees with our previous result, we have thus verified that the

two methods of obtaining the attenuation are consistent.



IV. ATTENUATION OF PLANF SOUND WAVES BY SMALL SPHERES

We now attack our main problem of calculating the attenuation of '
sound waves by small uniform spherical inhomogeneities embedded in an in-
finite fluid medium. We shall start by considering a single sphere of
radius R and finding the velocity potentials. Knowing these we can then
calculate the additional viscous and thermal dissipation caused by the pres-
ence of the sphere. Finally, from the dissipation we shall compute the at-

tenuation for a number of such spheres.

11, Assumptions

The problem will be solved under the following assumptions, the first
three being the assumptions made in the development of the general theory
of Part II:

(1) The viscosity, thermal conductivity specific heats, etc., will be
assumed to be constants, in particular, they do not depend on the tempera-
ture,

(2) The coefficient of compressional viscosity will be retained and
will not be assumed to vanish,

(3) The medium will be assumed to be in a pseudo-steady state so that
the imperturbed temperature, pressure, etc., are constant.

(4) We shall assume that over the region occupied by the small spheres
the attenuation is so small that the intensity of the incident wave may be
considered constant (See Sec. 15).

(5) The spheres, of radius R, will be assumed very small compared to

the acoustic wave length ml.
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(6) We shall assume the deformation of the spheres by the stress
variations to be negligible so that in applying the boundary conditions
at the surface we shall put the radial coordinate r = R,

(7) We shall not include the attenuation caused by scattering. As
shown by Epstein (Ref. 6) this effect is very small compared to the vis-
cous and thermal attenuation because of assumption (4). (Compare < with
3 . and oca in the Introductiony If the scattering term is required it
can easily be calculated,

(8) The spheres will be assumed to be sparsely and randomly distri-
buted so that the interaction effects between spheres (secondary scatter—

ing, collisions, aggregation, etc.) can be neglected.

12, Velocity Potentials

Consider a plane sound wave propagating in an infinite fluid medium
and impinging on a fluid sphere. We shall denote quantities relating to
the outer medium by unprimed letters and those pertaining to the interior
by primed letters. COutside the sphere we have the incident wave represent-
ed by a potential ¢ N and the scattered wave, represented by the acoustic
and thermal scalar potentials #1 and 1:2 and the shear vector potential A,
Inside the sphere we have two scalar potentials 4)1'. and ¢ ; and a vector
potential A'. We thus have seven potentials.

We choose a spherical coordinate system (r, O, y) with origin at the
center of the sphere and polar axis in the direction of propagation of the
incident wave., Because of the axial symmetry two components of the vector
potential vanish (Ar oF 0) and only the azimuithal component Ay is dif-

ferent from zero. Again, because of the axial symmetry, there is no depend-

ence on ¢ . Under these conditions the appropriate solutions of the wave
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equations
V"(hi»b)-a-kz.(d‘;w,) =0 v’ﬁi-l;&:o VA+KIA=O
5 . (12.1)
V"cb.’ + k, ¢: =0 Vg + Kb, =0 <3 + K't&'= o
can be written in the form
. o0
¢i. = e;k.rcase = "Z Mlaned P,.(Cosa\j“(k.h)
¢, = Z i"(2ned R(cos) Boh, (kin)
=0
é, = 2 Ulane) Rleose) C, ha (k)
n:=o (12.2)
Ap= A = 2 i"2ne) P) (ws6) Doh (Ka)

J

o
"
Mg

" (2ne) P.(use\ g.‘j. (k, )

nze

P
"

2 (2ne) R Ceord) Chju (hn)

ww:=o

od

A= A Eu " (2ne) Py (cosd) D:.j.. (K'a)

Here the form for ¢ 1 is the standard expansion for a plane wave
in spherical coordinates; the remaining expressions are convenient forms
of the wave functions in spherical coordinates, with the six constants
BnCnDnB'nC'nD'n to be determined from the boundary conditions. The radial
functions Jn and hn are the spherical Bessel Hankel functions discussed in
Appendix II. The choice of hn (Hankel function of the first kind) for the
outside scattered potentials insures that the 492 and A waves decline ex-
ponentially at large distances. Inside the sphere we use the Bessel func-

tions which are the solutions reguler at r = 0. The functions Pn(COS e)

and Pnl(cos ©) are Legendre functions and are discussed in Appendix III,
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13, Velocity, Temperature, Pressure, and Stresses

The velocity in the outside medium is given by (8.23):

v= -3¢+

Yx A (13.1)
where ¢ = ¢i + cbl - ¢2. Writing A = Ay we have the velocity compo-
nents:

- = 0 \ d
Ty = ?‘; 4o it _a—a(ASu\a)
(13.2)
- _ La% v\ 2
A B e ZxlAa)
U“.’ = O

with corresponding expressions for v,:,\r; ,v\r,'P °

From Sec. 9 we obtain the expressions for the temperature and pressure:

T = o (6;+0) + 16, T'= ol § ¢ oeh b

(13.3)

and

'p 2 'lWPo[‘t(¢;"‘¢) +iz¢,_'] JP‘= —LWP;[‘:Q;:-& '; b;_] + (13‘h)

We now obtain the radial stress components from (2.15), (2.16), and
(13.2) using standard tensor methods (Ref. 9):

= nfg2 (136 ¢\ _ (A _2A). L3 fn..
tre = a2 (25 - %) m‘F)*:as’a[ma—a(A““ﬂ} (3.5}

o= € ptenenn] anf- S5 (e o)

(13.6)

‘Pf'f = 8 (13.7)



where
P N+
V= 1+2(N—°X% 1=|_2’— i
e = ¢ e (13.8)

14. Boundary Conditions

The boundary conditions at the surface of the sphere are obtzined

from the physical requirements that the velocity, temperature, radial heat
current, and normal (radial) stress components all be continuous across

the surface r = R, We thus have the six boundary conditions

(1) ara= ase (L) «¥T= 97’
(2) wg = v, (5) pre = Pre (14.1)
2 T =71 (6)  pve = Prr

and these are sufficient to solve for the six coefficients forthe poten-

tials. For simplicity we introduce the abbreviations

ek, & = kiR b= KR
a B L. S (11“2)
a', = kiR aL = kR b= KR
Using the standard relations for the Legendre functions (Appendix III):
- 3._.(5' a'Pl\ = ﬂ(hﬁa P | P—P—" = - P:'
Sng BT ® " 20 (14.2)

and indicating differentiation of the Bessel and Hankel functions with
respect to their arguments by primes, we obtain from (14.1) and the pre-

vious section the six equations:
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) Baahda) - Bna\ja@ +Caahala) - Chaijilay)
1 . ] - ot (]l;.l.)
- nn(n-rbh,,(b) + D, h(htajn(h) = "ﬂ-ujn(ﬂo‘
(W:  Buhfa) - Bhjufa)  + Cohoa) = Chja(a) (14.5)
- D lbh,(D+h®)] + DLLEHE) +ju®)] = = jala)
(T):  Bpha(a) - S:,at:j“(a:‘ + Cotaha(a) -—C'..d',j,.(q‘.) = —N-jn(d.) (Ls-0)
CE Byliah{a) — Bidijala) + Crfetaagh, (a) ~Coryay )y (a)) = -feta,jna) (14.7)
(bre):  Bus Lahnla) -k a)] - 8, [d,jula) - julad)
+Cpela ha(a) - hala) - C'..[n'.j!.(a;\ "j-(“s] (14.8)
-0, S1BH0) e (Db + Dui L) ¢ (a2, (8]
= GEG.J‘L(Q.\ -j..(c.\l
(p): BeelBahlad-23m@)]  — enlEaju(a) - 2450 (D) (Lee9)
+ CnelBp el -2a2halad] = ChLE(sLjalar) - 2] ji(ad)]
+ Doe 2l bhi(B) - h (b)) -m.‘.z..(ma[uj;,(u)-]..(u\] = -e[8,, j,‘(.;-mj;(.,\]
where oy L= el |, (14.10)

For n=0 there is no vector potential (Do = Dé = 0) and no ©-dependence,
so that the Yo and prO equations do not appear, In this case there are

four equations in Bo’ B'o, C,C'" . Forn2l all six ecuations are needed

o’ "o
for the six unknown coefficients B , B' , C ,C' , D, D' .
n n’ n n" n n
15. Approximations
The problem has thus far been completely general; we have made no ap-

proximations and have not used our condition that R is small compared to }slo
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We now introduce assumptions (4) and (5) and make various approximations.
Assumption (4) states that the acoustic waves are not appreciably
damped over the region occupied by the scattering spheres, This means

that we neglect the imaginary part of kl:

e P{eis[§ze c0aBe]} ~ 2

which amounts to neglecting the extremely small quantities

4N v 3¢

3 e g %<l (15.1)
compared to unity as was done in the derivation of kl and k2 (Sec. 8).
Physically we are making the very reasonable assumption that the extent

of the region occupied by the spheres is very small compared to the damp-

ing wavelength _Ql.of the acoustic waves. The same assumption is even

more valid inside the spheres. Thus from this point on we assume that the

acoustic wave numbers kl and ki are real:

e

W w
k, = . k, = = ° (15.2)
Our assumption (5) that R<<}ﬁ_then leads to

a, = KR << | a = K,R<<1. (15.2)

We shall make no assumptions regarding the magnitudes of the quantities
a, aé, b, b! in obtaining the general expressions for the attenuation.
Using our values of k2 and K from Sec. 8 we have

a.= kR = (n‘.)(ua‘/z;c)vz b= KR = (10i)(wrM2w)

v 1/
ay = kl,Rr- (1+4) (mn"/zi') : b =k'R= (+)(wrRM) ", (15.4)
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Finally using the approximations (15.1) we have the following relations

for the constants appearing in the temperature, stress, and pressure ex-
pressions of Sec. 13:

«, = —iw(i-b/dv e oy = — (dv 9-'-5)-|
P' = |1 p’_ = |""1N1),9-é (1505)
1| = Xa = |- 4N1J/35-C

i 1
-l 1y

ﬁ\‘,.. |~ ANDe |, w®Rh o
kg oy 3(.'-1 =

(15.6)
with similar relations for the primed quantities,
16, Values of Potential Coefficient
It is shown in Appendices IV and V that with the above approxima-
tions the potential coefficients for n=0 and n=l1 are as follows:
3
For n=0 B, = i%‘-[&(— -—l]-l- l)u.a. odlh (q) (16.1)
B:,: § (1642).
“\
aly (8:5-— |) 6.7
e et "‘0(‘1)("’%2:) (l ‘J)
d; dz"! (..‘l
cin A2 C e

where in C

_ jo(‘;\ . ag“l(ﬂg\
Z - 4';j.(40 ho(as)

| -ta,

l_ ﬂ-‘tcad"_ (16.5)
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The last form is easily verified from Appendix II and will be used later,
For n=1
3 3
v ay (o _ ea) Noo + N, + N,o + Ny
0, = ‘.3_(I J)G‘ - t?(l-S) Doo+ Doy + D,y + D, (16.6)
\ Q. I a,
B, =26 = - 386 (16.7)
o B (24326 +2(-9)0-3)6]j,(@) +[F¢ -1-(-8)6]a julad) o
iy 2(4-0j adhad + @} jo(adhia) - 7 j(at)azhala,) )
] ]
| e, e [0+202€-34]0@) + L[1(-D6-F 6] ahole)
C' == ? ;";- (16| 9)

2(£-03. () h(a) + dy jol@) b)) - £ ji(a3) asholan)

For G the numerator and denominator terms (N's and D's) are given by

Noo= [1-€1 Bjo(8)- bh,(b)

N,, = 3(e-) - Teb1bjdk)-h.(b)
Nyo=[3eN+ 58'T j.(8)-bh,(b)
N, = [90-6)+ T8 (6-)] () h(s)

Dop = LU-1(2+)] Bju(&): bhy(b)

Do, = [95(ed- 5 €b(8+2] Bjo¥)-h.(b)
Dro= (3 (@) + 1 (84)] ji(6)- bhab)
D, = [215G-€) + %_-ebz(é'-tﬂ j,(b‘) h(b).

and the various constants satisfy the relations

T

€=q/vl' f:r/r’ 3= Po/f; sb=ch .

For later use we note that a simpler expression for B, may be de=

1.
rived using the last relation (16.11) and the relations

B, (8) = 3h.(8) - bha(b) bj(6) = 3,(8) - bjo(E)

and

(2+2) in Appendix II.

from

(16.10)

(16.11)

Using the above values for the N's and D's we find
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NagtNoit N, +N, = bhe0-ak}, ) -] -(£58)j(E)h (o)

Do+ Do = -(2+4) bh.(b\[(i-e)l;j,(ﬁ) = -'{sz.(lé)]
D+ Du = 95k, (L(-B}0)- $E ]+ Gs)Gr Bk @) (16+12)
from which
. bh®L0-ja06)- 8 juB)] = (148785 (6) b (1) )
B=i3 (1-8) (16.13)
[-(Hﬂ'oh.(Q*—%h.(b\][(l-e)b'j‘(ﬂ)-';b‘} B)] + @ed) (5547 Bjul8) h(b) _l

It is interesting to note that while the amplitude B, of the zero-~
order scattered acoustic wave depends on the thermal conductivity o (in

the a, term), the first order amplitude B, is independent of o and agrees

1
with Epstein's result (0.8) in which the conductivity was ignored (o = 0).
It is useful for later calculations to list the general order of magni-

tude of the coefficients

3 3 2 3
Bo" a, B, ~ «, Co ™~ &, Ci~ a,

(16.14)

! 1 : r ' 3
Bo~ & B, ~ ) Co™ &, c, ~a,

Interpreting these results physically we see that for an incident acoustic
wave of unit amplitude, the scattered acoustic wave outside has an ampli-
tude of the order of a13<< 1, and the inside acoustic wave has an amplitude
proportional to the density ratio § of the outside to the inside medium,
The scattered thermal waves inside and outside are of comparable magnitude
but those of first order (C1 and Ci) are smaller than the zero-order ampli-
tudes (C° and C;) by the factor al<<14 Thus the principal thermal waves
are of order zero and are consequently purely radial waves., This result




wliGe

is of great importance in evaluating the thermal dissipation. It can also
be shown that the shear waves of first order (there are none of zero order)

are of magnitude D ~'al, Dia at, so that the scattered shear waves outside

i | L .1
and inside the obstacle are of order al.

Because of the smallness of al and ai the coefficients Bn and Cn de-

crease so rapidly with n that to order ai we need retain only Bo B1 C° C1

given above., In evaluating the attenuation inside the sphere the contribu-

tions of the terms involving Bé C; Bi Ci appear in volume integrals over

the sphere, and since the volume is o< 33 we again obtain terms of the

3
1

n=l terms in the potential expansions. This rapid convergence of the series

order aiﬂaaia. Thus for results of order a; we require only the n=0 and
(12.2) is a characteristic feature of diffraction by small obstacles.

We have thus found the velocity potentials from which the accustic
field quantities are completely determined to our order of approximation.

We now turn to the calculation of the wviscous and thermal dissipation.

17, Calculation of Viscous Dissipation

To calculate the dissipation caused by viscous forces we use the com-

putational form (9.25):

el %RJFI& dS, + ¥R [P ww dv. (17.1)

For our fixed volume of integration we choose a large sphere of radius 1
concentric with the small scattering sphere. More precisely we wish R to
be (1) much larger than the thermal and viscous damping lengths £ , and

4,, (2) much smaller than the acoustic damping length .21) and (3) much

larger than the acoustic wavelength ml. The requirement (1) insures that,
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due to the rapid exponential damping of the thermal and viscous waves with
distance, the potentials ¢ 5 and A may be neglected at the surface of the
large sphere of integration, This is easily seen by writing the Hankel

functions for the two waves at large distances. Using Appendix II and the

values of k, and K in terms of 12 and I_L (Sec. 10) we find
kR = (1+R /2, KR = (1+0R /2, (17.2)

so that for kzﬁ <<1, KR <1,

_'ﬁ,/_gl
bl Bl —= —— ®
|k.Rl
; _wle, (17.3)
\h..(KR)l —> I_K;K.‘\’ e

and ¢ o and A are seen to be negligible,

The second requirement that R << _!1 insures that the acoustic wave is
not damped appreciably over the sphere of integration, in accordance with
our assumption that k) is real (Sec. 15). The requirement (3) that klﬁ>->1
allows us to use the asymptotic forms of jn(klﬁ) and hn(klﬁ) for the acous-
tic wave in evaluating the surface integrel. We thus have the chain of in-

equalities between the radius R, the acoustic wavelength 2y and the three

damping lengths 11, 12, Ayt
11)11 << XA, << R << l, (17.4)

Examination of Table I shows that this inequality can always be satisfied.

For definiteness we may take



™

k' —::l— ) (1705)

where we have omitted absolute magnitude signs and have used the relation
Ji 1k1~ki/kf >>1 obtained from the definition of § (Sec. 10) and the ap-

proximate equalities (15.6). We then find the approximate magnitude rela-
tion

(k.l—ﬂ(k.ﬂ ~ KR = a, (17.6)

which we shall use later in determining the order of magnitude of expres-

IR'

We now write the viscous dissipation (17.1) as the sum of one surface

sions involving k

and two volume integrals: (see note on page 60)

_i.%.’t = Is = Iv * I:l
where
I, = $R [ unds, A=
I, = 3R [ erav REALE (17.7)
*
I, = %_azf p' Lu'dV ot n &R

Iv is the volume integrsl outside the small sphere and I; is the

volume integral inside the small sphere. These preliminaries being under-

stood we now proceed to the evaluation of the integrals,

Evaluation of Surface Integral

The surface integral Is on our sphere of radius R assumes the form

5= LZRJ(F:-"F + P:e"'a) LR (27.8}
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From the previous discussion we see that only ¢ 1 and cbl need be con-
sidered in calculating the stresses and velocities, The general stress

and velocity equations of Sec. 13 then give (911 =1):

v, = - g—ﬂ_(tucﬂ U = “%35(4'&63

e = K (0+0) — 2035 (&+4) (17.9)
= —2p 2 -‘—3—~(¢-+¢3——‘—c¢>-+¢31
Pre = ~fn3@ L v oa \Hir®) 7t s

Using the asymptotic forms of jn(klrQ and hn(klx') for large arguments it
is easily found that Vg and P, are negligible compared to 'u; and Prp
and that the second term in P.. is negligible compared to the first. Our

surface integral then becomes (with nK2 = iu)po):

*
: 2
I, = £ ® [Liwplert)] [ 200 45, . (17.10)
This integral is evaluated in Appendix VI; the result is

I, = —2wp,e hz_o(z,.“\ R LB+ B,8% | (17.11)

or, retaining only the terms for n=0, n=1,

I, = -2wp,c RLB.+3B, +8,85 +3B,8"] . (17.12)

Using the magnitudes of the coefficients from Sec. 16 the last two terms

are seen to be of order ai while the first two are of order ai; hence to
3

order 2] the surface integral is

I, = -2wp.c RB,+3B.] . (17.13)
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These results are in agreement®* with Epstein's evaluation of the same in-
tegral. (Ref. 6, Eq. 59).

It should be pointed out that in evaluating the various dissipation
integrals we do not include any contributions arising from products ¢itbi*
which are due solely to the incident wave, The reason for this is that these
terms represent the dissipation in the absence of the scattering sphere,
whereas we are interested not in the total dissipation (given by the integral
including the ¢i.¢i* terms), but only in the additional dissipation due to
the presence of the spheres, so that the ¢j_¢1f terms must be excluded.

In our integrals this question does not arise because we have assumed
k) = w/c to be real, so that there is no attenuation, and the ¢i«b1* terms
contribute nothing. In Is’ for example, the term drops out because we take
the real part of the product which turns out to be imaginary (See Eq. (6.7)

in Appendix VI).

Evaluation of Volume Integrals

The two volume integrals Iv and I; are evaluated in Appendix VII, where
it is shown that the dominant part of each integral is of the same order of

magnitude as the surface integral Isz

I, = -2wp.c RLia,C, a,h ()] (17.14)
Iy = ~2wpec RL-2Z taCoahlan], (17.15)

where the second integral has been expressed in terms of Co instead of

3#*
Bé Cé for reasons which will be clear in the next paragraph. From the

*
# A factor 3 should be supplied in the Bl Bl term of Epstein's Eq. (59).
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derivations in Appendix VII it is clear that the dominant part of the
outside integral Iv represents the interference effects between the in-
cident acoustic wave ¢ 1 and the scattered thermal wave ¢2, while the
inside integral represents the interference effects between the scattered

t '
acoustic wave ¢ g and the scattered thermal wave d;2.

Final Result for Viscous Dissipation

3 '
Combining Is’ Iv’ and Iv we have

, i
dEn = —2mpe R{3B 48+ (-1 5 10Conhlen ] (17.16)
But now we reach a surprising result: from the value of Bo in Sec. 16
we see that the C° terms in (17.16) arising from the volume integral of

p* ¥ exactly cancel the second term of Bo’ so that

3 2
48n = —2wpe R{3B, +iL(6/a) —il} ) (17.17)

a result which agrees exactly with Epstein's derivation of the viscous
dissipation ignoring thermal conductivity., Since the second term is pure

imaginary our final result for the viscous dissipation is

dE .
F" = —2wp,c R[3B.] . (17.18)

in agreement with Epstein. Thus we see that only the first order (n=1)

scattered waves contribute to the dominant part of the viscous dissipa=-

tion; the terms for n=0 do not contribute significantly.
This result can be checked by a direct calculation of the volume in-
tegral of the viscous dissipation function €, Using the expression (5.12)

for & we easily find for the case n=0 (in which the velocity depends only
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on r and is independent of ¢ and @) the result
2
2=tplee)+4q(-1) . (17.19)

The time average of & in the acoustic case is then

*
B, - $R[Lpleae’) + 4 (3-D)3E-F)] (17.20)

and using the expressions for the potentials of Sec. 12 for n=0 it can

be shown that

\
dtq = =2 J' hso\d\l

is of higher order in ay and ai than the first order result (17.18) and
may therefore be neglected,

It was pointed out in Sec. 15 that B, does not depend on o, the ther-

1
mal conductivity. Thus even in a heat conducting medium the viscous dissi-

.pation (17.18) is completely independent of the thermal effects. This re-

sult would not be true if the Bo and Co terms of dEn/dt, had not cancelled,

since these terms depend on o, It follows that the only way in which the

effects of heat flow enter into the dissipation, either directly or indirect-

ly is through the thermal dissipation term dEa/dt, to which we now turn.

18, Calculation of Thermal Dissipation
The thermal dissipation within a volume V bounded by the closed surface

S is given by the general computational form (9.32).

dE 4 Ca *
dEs _ o T*er _ PoCuy ] (18.1)
dt ZT,QI( )-ds 27 RJ‘ Ve dV.

Just as in the case of the viscous dissipation the volume integral splits

into two integrals Jv and J; taken over the volumes outside and inside the
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small sphere. Moreover putting o inside the integral sign the integrand
of the surface integral can be written T¥g VT = -T¥ q, so that since both
the temperature and the heat current g are continuous on the boundary of
the small sphere, the integrand is also, and the surface integrals at this
boundary cancel, leaving only the surface integral over the large sphere

r = Re The thermal dissipation for our problem is therefere

dEa
dt = Js * Jv * J;
where
LR () 4s, Az®
J'-P“C“' IT*v«rdV Rt ER (18.2)
"=_P‘Dc"°‘; ,*- I é. .[___'2.
Jv —ZT-—R,IT \1-1:_-&\/ o ~r

Evaluation of Surface Integral

As before, the thermal potential ¢2 is negligible on the surface
r =R so that only ¢i + ¢1 need be considered. From (12.3) the tempera-
ture is then

T = ) (6+4) (18.3)

and

Js = ?.": ol d. I(Q ’) (¢;"¢)ds - (lgoh)

Comparing this with the corresponding integral Is for the viscous dissipa-

tion (17.10) we see that

* e
G ol oL, e w
Js/ls s —1_;—:; = (Y-l\‘?_" << | " (18.5)
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So that Js is negligible compared to the terms of order Is which we are

retaining in our treatment. Js contributes negligibly to the thermal dis-

sipation and will therefore be dropped,

Evaluation of Volume Integrals

The two volume integrals Jv and J; are evaluated in Appendix VIII,

where it is shown that they are of the same order as Is: The volume in-

tegrals Jv and J; give a thermal dissipation which is of the same order

as the viscous dissipation. The results are

R FE,,

R I(@p&-bh*d)zdv (12.6)

J4y =%

P

2
. w R[_ 4R
T2 k3

‘1-(“1)] (18.7)

e
?:l\" N

QJ’ &' ¢' Y, (18.8)

<
||

1,2 *
TR TR Bcla@] . (12.9)

’-—cl
1

Substituting C_, C!, and Bé* from Sec. 16 we find, after reducing the

coefficients,

(18.10)

dy = 4'2(1&“ ) 3 (3-) (1~ 5.;.) R‘[ = (a“:l/;. e ]

= -(5%)y, | (18.11)

Z being given by (16.5)
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Final Results for Thermal Dissipation

Combining Jv and J; we have

| ah@ /@
%e = 4rR(5pR)FEN(-32) R | \1Z @ arhita) (18.12)
a jn (@3) holay)

This is our desired result for the thermal dissipation of a plane sound
wave by a small sphere. The bracket can be simplified by using the gen-

i = - 1 1 t) = Joa?t 1
eral relztions azhl(a2)/h1(a?) 1 - ia, and a2j1(a2)/jo(a2) 1 sjcotal;

2
this gives
A [—tia,y
2\ — \
:i‘" = 4TR(|§P.kl)u(“|)(l—6T‘) & \_‘J |“qu1 (18‘12)
I- aycotal,

as an alternate form for dEo/Ht. We shall not attempt further reduction
for these general forms, since the algebra, while straightforward, leads
to very complicated expressions.

This concludes our calculation of the thermal and viscous dissipation,

We now turn to the evaluation of the attenuation coefficient.

19, The Attenuation Coefficient

The attenuation coefficient o¢ for a plane sound wave traversing a
medium containing n small scattering spheres per unit volume, the energy
loss per unit time due to each sphere being dE/dt, is defined as the ratio
of the total energy ndE/dt lost per unit time to the energy flux E° of the

plene wave:

dE

n
of = —E-o dt (19.1)

Since dE/dt is the sum of the viscous and thermal dissipations



dE dE dEs (19.2)
dt o d

we have from (19.1)

ol = d'l + 0‘-‘- (1903)
where
_ n dE, n dE, (19.4)
0‘.1— Eo d n(d_=E- _t a

1 :
From (10.11) we have kl P, «w » and using dEn/dt and dEo/dt from
the previous sections we obtain the general expressions for the viscous

and thermal attenuations:

o7 ___41rnR[ 3B]

(19.5)
4_1'103“ 5) R [ Lh,_(b\{(l—&\b'j\(b’)—%‘b}j&sﬂ - (-'585'1) l:'_],_(lﬂ h.(b)
(G 8)bhols) + 98h (0] (-0 Bjy(8) - £ 6,180 + (58872 bjol) b (1)
(19.6)
and
g = OB g (3-)(i- s ) Q[ oxhan) (e ] (19.7)
|-+ Z

where

jo(ali) ) ath.(az\ o I—ta, . (19.2)

N a.zjt(q;) "\o(ﬂa) a | — O.;Co't a_"_
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The explicit general expressions (19,6) and (19.7) for e . and
odo conclude our main objective§ together they give the additional
attenuation of a plane sound wave due to small fluid spheres in a fluid
medium. We shall apply these general results in the following chapter
to calculate the attenuation by water drops in air and by air bubbles in

water,

(Note: Both factors in the integrand F:;ﬁQ of the surface integrsal
in (17.1) are continuous at the surface of the small sphere;
the two surface integrals (bounding the inside and outside
media) therefore cancel at this boundary, leaving only the out-
side surface integral in (17.7) at the boundary of the large

sphere.)



V. APPLICATIONS TO WATER DROPS IN ATR AND AIR BUBBLES IN WATER

In this chapter we shall apply our general results to two limit-
ing cases of great practical importance. For water drops in air the den~
sity, viscosity, and thermal conductivity of the drops are large compared
to the outside medium; for air bubbles in water the reverse is true. In
each case the general expressions for the viscous and thermal attenuation

simplify considerably,

20, Attenuation by Water Drops in Air

In this section we shall reduce our theoretical results for compari-
son with Knudsen's data on the attenuation of sound in fogs (Ref. 7).
Since the average drop radius is about 10'gm we see that our assumption
a, = icfi‘-«l will be reasonably valid up to w= 106 sec-:L (for which
a,~ 0.03).

Since water is denser, more viscous, and a better thermal conductor

than air we see that the outside-to-inside density ratio 4 , viscosity
ratic € , and conductivity ratio ‘ﬂ are all small. The actual values
appropriate to Knudsen's data are

$ = 0,00117, € = 0,0167 2 = 0,040 (20.1)
It is shown in Appendix IX that for small &, € ,1{ the general expres-

sion (19.6) for o . reduces to

oty = 4“-,_" P [-L blr{l) ] (20.2)
kl =i, bl“lutb\ + 93 hu(b)
= 41rnR-__3..d(n-9)[ Liw ] N
« 2 16y* + T28y3 + 8182 vy +247)
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4
o —9— (1 +y) [ ey ] . (20.4)
1 2' |Gg4 + '17.&._‘3 + 8l 5ltl+7.nj+7.ljl)

The second form is obtained in Appendix IX by substituting the explicit
expressions for the h's and defining the dimensionless real variable y
by

= bli = wRf2v b=(i+dy . (20.5)

In the third form the dimensionless quantity Vp is the total volume of

the water drops per unit volume of air:

4 3
VP = -S-'ITI'IR (2006)

In both (20.3) and (20.4) the coefficient before the bracket is Sewell's

attenuation discussed in the introduction (0.7):

o - 41|'I'IR- (2007)

Sew = ©

%v(ug) = %V,. :_?‘E'x [I+ (mlz‘/z:)).Il] .

The expression (20.4) for oL, agrees with Knudsen's reduction
(Ref. 7) of Epstein's result (Ref. 6), and since y—300 as w—> ®
the bracket approaches unity and an is seen to reduce to Sewell's result
at high frequencies. At low frequencies y ——— 0 and the bracket approaches
Zero as ya, so that of . vanishes, as it should for zerc frequency, in con-
trast to Sewell's result which is finite at «wW= 0. The physical reasons
for this were discussed in the introduction and we thus see that the correct
expression (20.4), originally obtained by Epstein is also valid in our prob-
lem which includes thermal conduction,

Turning to the thermal attenuation and imposing the condition that &,

€ , s be small we have from (15.7):
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2, = 2ENE E(Y—DQ[ “l“-(«z\/hutad]
|-+ Z

(20.8)

since O(i/n( 7-0.014 so that d'ol]'_/ol1<<1. In passing we note that, using
(18.11), the last inequality shows that J1<<d_, i.e., that the thermal
dissipation inside the drops is negligible compared to that outside.

It is shown in Appendix IX that for small o the real part of the

bracket reduces to

2 -1
Gea) 1+ 30eple) s + 2 (cphtY 2 ] (20.9)

where the dimensionless variable z is defined by

2?=ad/2i = wRY23 a,=0+dz

and we finally have for the thermal attenuation the results

4R _ 4%‘
o = ¥-
- = 9(.( ')(H’z')[ 4324, Il(&.rlci,)£3+ 9(8cr[cl‘,)l ] (20.10)
7 (3-0) [ 4 24
= 3\ BV 5 <0.
VP Y Kz ( *!-) 4*44' |z(scrlclr)*a+ S(JCFIC'P 2 ] ( 0 ll)

which correspond to the expressions for oLn in (20.3) and (20.4).

We note that at low frequencies a{ooc zh——yo as it should, there
being no reason for any thermal losses at zero frequency. Thus the rigor-
ous present treatment avoids the anomaly of a constant thermal attenuation

at w= 0, corresponding to Sewell's values of o . The limiting values

of the attenuations at low frequencies are
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£, —> AxuR 30 “":!4 - 4wnR { (c.JR")
Tl w—so 3 2 g3 < 81 g1y
. (20.12)
2
oA ——> 4wnR _— 50 _.\ ‘F_p_) _ 4wnR () (u:ﬂ_) (cp)
w >0 c 25 < 2 &z <p
and the ratio of the thermal to the viscous attenuation is
o 3 W rcp\ (20.13)
> s Jamere—— — 1;2. .
ol wro (8 n 2 Je (CP
R
At high frequencies o approaches the value
4w R - e (¥-1) v
ol sty - (i-l)(li-!) 3V ( [I + (ul?."/?_u) z] (20.14)
N
corresponding to Sewell's result (20.7) for oLn. Finally we note that
the ratio of otd to eLn at high frequencies is asymptotic to the value
o 2 v ]'/7-
L o (- = Z@-)(3e/v) ~vos . (20.15)

dq @w-»oe

From (20.10) and (20.12) we see that at low frequencies the thermal
attenuation of water drops in air dominates the viscous attenuation by a
factor of seven, while at high frequencies the viscous attenuation domi-
nates by a factor of three.

A convenient way to show the dependence of the attenuation on fre-

quency @« and radius R of the drop is to plot the quantities

4
.. LA _,)(H.,)[ 16y ] (20.16)
1 4mnR |6lj4 + 1281’3 +9|62(l+25+251)
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and

Zr = :: CR = 3(¥-)G+2) [ 4=* ]
" 42012 (8cple)2® + 9 (Sepley)” (20.17)

against sz (which is a factor of y2 and zg) and thus obtain general

curves for all ¢ and R. In addition we define

L=2Z,+Z, = 5 (8015

corresponding to the total attenuation and

= O"Sﬂvelt .

= 3 20.19
Sewell 4wnR 2 ol (“'9) ( )

corresponding to Sewell's value,

These gquantities are plotted against r.uR2 in Fig. 1. It is seen
that the Z‘n and 2‘,0 curves are quite similar throughout the entire
range. At high frequencies Zn—\- 3 = , s remarked above, and both

are proportional to (mRz)l/ "

o At low frequencies b . 7 2, 3 The
critical freguency separating the high and low frequency regions is de-
termined by the point at which Z.o = Zn' This is seen to be

wR2~6 x 10-", so that

- =l 42
Cerit “OXW0 /R (20.20)

where R is the drop radius in em and w = 2nf is the circular frequency
in sec”r.
The overall curve Z has the same asymptotic dependence at high and

low frequencies as ZT) and Z'a have. The Sewell curve Z Seat is seen



by

to level off to a constant value: ZSew = 0.23 as w———>0, cor-

responding to the constant value of o¢ at low freguencies already

Sew
discussed. Finally, it should perhaps be emphasized that the expres-
sions for e{n and °€u refer to a fog consisting of water drops all

having the same radius R.

21, Comparison with Knudsen's Data

The absorption of sound in fogs has been observed by many workers
but in most cases no analysis of drop size was made and this precludes
any close comparison with the theory. Recently, however, Knudsen (Ref. 7)
carried out absorption measurements in an artifically produced fog, using
the reverberation chamber technigue, and in this work the distribution in
drop-size was determined. The experimental results and the calculated at-
tenuations (see below) are given in Table 21.1, together with the corre-

sponding physical data.
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Table 21,1 - Comparison of Observed and Calculated Attenuation
e |

£ (db/cm) (db/em)
sec-1 observed calculated
200 (1.4 + 0.2) x 107 1.32 x 1077
1000 (2.0 + 0.3) x 10~ 1.74 x 10~
2000 (2.7 + 0.4) x 1077 1.89 x 10™°
1,000 (2.9 + 0.4) x 107° 2.07 x 10~
6000 (345 + 0.4) x 107 2.19 x 10~
8000 (3.8 + 0.4) x 107° 2.27 x 1077
T =22°C = 295°A  p_ = 755 mm Hg v, = (2.00 £0.10) x 107
Water Drops: Air
o'y = 1 gn/en’ by = 1.17 x 107 gu/en’
cé = 1 cal/oA n=1.82 x 1074 gram/cm sec
! = 1,43 x 1072 cmz/sec Y =n/p = 0.156 cmz/sec
J' = 0.011 cm’/sec 2 = o/pcp = 0,206 cnz/sec
c' =1.45 x 10° cm/sec. ¢ = 0.24 cal/oA.

c = 344 x 10* cm/sec

The drops were grouped into five size classes and the mean radius and
fractional volume (AVp/Vp) for each class calculated. The results are

sumnarized in Table 21.2.
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Table 21,2 - Drop Size Data

No. drops Fractional Fract.Vol. Mean Radius
Number AVp/Vp (em)
(1) 102 0.121 0.005 3,75 x 1074
(2) 375 0.LL5 0.084 6.25 x 107
(3) 230 0.272 0.211 10.0 x 1074
(&) 93 0.110 0.298 15.0 x 107
(5) 43 0.052 0.402 21.5 x 107
843

where .xn(cm‘l) and aco(cm'l) are given by (20.4) and (20.11). At each

The attenuation o in decibels per centimeter (db/cm) is given by

& = 434« = 434(«ge,)

{71.1)

frequency the attenuation « was calculated for each class, and the x's

for each class were then added after weighing them by the fractional vol-

ume factor.

frequency in Fig. 2.

The calculated and observed attenuations are plotted against

The agreement is seen to be fair, the calculated and

measured values having the same order of magnitude and the same frequency

dependence, but with the calculated values lying below the observed values.

The reason for this is not clear.

It is known that the results would be

strongly affected by changes in the drop-size distribution but whether more

accurate size distribution data would remove the discrepancy is doubtful.

A careful analysis of the experimental methods would be required to assess
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other factors affecting the attenuation, and this would be out of place

in the present work.

22, Attenuation by Air Bubbles in Water

Turning to the attenuation by air bubbles in water we have the oppo-
site case in which the outside-to-inside density, viscosity and conductivity

ratios are large:
d = 855 , € =60, L =25, (22.1)

It is shown in Appendix X that for large d, e , 7/ the general ex-

pression (19.6) for o " reduces to

dww & . bh(b)+ % b h,(b)
ot, = = a, =y ~ {22.2)
k: bhe(b) - 9h,(b) + £ B h,(b)
or
L o ATnR 2y'+12¢°+ 64° (22.3)
nE T 24¢ +64"+ 9yt + 364>+ 1624 v 162y + BI

For the thermal attenuation we note that now & o(i/ocl'vé x 10“» 1

so that Jv<< J\'r; i.e., the thermal dissipation in the water is negligible
compared to that in the air inside the bubbles. The attenuation is given
by (19.7):

2 azh-(":) /ho(ﬂﬂ

4TNR _
ey = 7 (4-0) (8ol /as) '
’ N R | = of dolan) anhi(as) (22.4)
a1ji@)  holey
Since 7[>>1 we see that for both low and high frequencies (aé’ 32 a0

or @) the second term in the denominator dominates the first. Neglecting
the first term we can then cancel the common factor azhi(az)/ho(a,z), and

2
after rearranging the constants with the aid of (« i/dl)z - (Jil)cgcp/(l-l)c'c;,
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(22.4) reduces to

o, = R 2 (pfpic) R [ -aji@d/jlen] (22.5)
or
cp = YR g (pud ) R [aratay -11 . (22.6)

Again introducing the real dimensionless z!

Z 7
2= aif2i = wR/ 23 az = (1+)z (22.7)
we find, after expanding the cotangent and taking the real part,
4wnR _,, , 2 simh 27 + sin 22
o = # (80 (p, ol )| 2 -1 (22.8)
. c P /Pc) cosh 22' — cos 2% ;

This is the final desired form for the thermal attenuation by air bubbles
in water. Numerical comparison of o(n and ‘io shows that for all values

of y and z' (or of wRZ),

5

o(_n/o(o 10 "£L] ,

this result being primarily due to the large factor
Pt /pic® = 15 10t . (22.9)

Thus the thermal dissipation inside the air bubbles completely domi-

nates the viscous dissipation. This is an important and interesting re-

sult. Rewriting (22.8) we have for the attenuation

4 R
® = o, = T: A X(2) (22.10)
and for the quantity
e - dd‘c -— .
La= 3 = g5 = ARl (52.11)
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where
A= ﬁ'(XL')(PuCz/‘FLc't) = 1.27 » 10* em®/sec

X(2) = R [ /j@)] = RLdwtal-1] (22.12)

z' sivh 22 4+ s 22’ . 1
cosh 22 — cas2z’

2
A general plot of b2 o against wBR is shown in Fig. 3. The function

X(z') lies close to its asymptotic values

L &
X 4 I - S Y ————>z' - 1, (22.13)
z! —s 0 Z2!' —— o

except in a small region near z' = 2,
At the high and low frequency limits 250 has the corresponding

asymptotic forms (light lines in Fig. 3):

S, A - A% (3E) < (R

@~ w—>o 45 ‘23’
¥ U Y (22.14)
Zr © —» oo A= = A (h-;,—ec) o< (mz‘) z .

Since we do not have experimental data on both absorption by bubbles
and bubble size distribution we shall not attempt to discuss the corre-
spondence between theory and experiment.

We must note in conclusion that the results obtained here are valid
only for bubbles whose radius varies only slightly during the passage of
the primary sound wave. Our value of the attenuation is therefore not
valid in the neighborhood of the resonance peak where large oscillations

occur (Ref. 9).
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PART 11

Part II contains the various mathematical
appendices referred to in the text; as well as
the References, Table I (Physical Constants), and

the Figures.
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APPENDIX I

Time Aversge of Products of First-Order Quantities

We wish to list several useful expressions involving the time
averages of products of two first-order quantities Al and B1 of the

form (see Sec. 7):

Al - Ae-i.u)t B e Be—-iwt (1.1)

where A and B are complex space functions independent of time and having

absolute values A and B :

A= |Ale™ B=lgle'f (1.2)

S0

L(at-wt) | e-'c(p—ut)

A= lale B,= |B

Now as pointed out in Sec. 7, the first-order quantities are all real; for
convenience however we represent them as complex quantities. Consequently,
only the real parts JZ(AI), Jl(Bl) are to be used in evaluating the products.

Thus the time average of Al B1 is

(a8), = [R(RIR(BI], (1.2)

so that from (1.2)
(A,B), = IAl-18] [ cos (x-%t) cos(p-wt)) (1.4)
- §IA8] [ conCanp-ze) + cos ()] @

= $1AllBl cos(x-p) , (1.6)

since the time average of the first quantity in the bracket of (1.5) is

zero. But now, using (1.2)
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5 (AB*+ A%8) = %lAl-18) [ei(-f-p)+ o L) ]

so that (1.6) becomes

(nB),, = %(AB Xy BAY)

|

We now use

L(ag"a'8) = R(A*8) = R(AB¥)
to obtain our final result
(A.B), = LR (A'8) = ¥R (ABY)
v

which may also be written

(A B), = FR(K®) - L R (a8¥)

Two special cases of interest are

2

(AA),, = £R(Aa%) = 1al" = Flal?,
LA'A')A. . [(-a..;A.)A.']A‘= L RIGMA*] =0 ;

(1.14) follows from the fact that the quantity in the last bracket is

pure imaginary, so that its real part vanishes.

1.7)

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)
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APPENDIX II

Spherical Bessel and Hankel Functions

The radial part R(kr) of the wave function satisfies the spherical

Bessel Equation

1L (248) 4 (- 2l R < O

, d dR nine)) o _
or % :F(sz;_) o (I _ T) R =0 (2.1)
or R +2pR +[p'-nl(ned]IR =0

where p = kr , kbeing the complex wave number, and R' = dR/dp etc. The
solutions of this equation are the spherical Bessel functions jn(p) (regu-
lar at p=0), the spherical Neumann functions yn(p) (singular at p=o0), and
the first and second spherical Hankel functions hn(p) and hn(p), defined

by
1y
jJﬂ =(Wh£) Jmﬁ(ﬁ

Hn(f‘\ (W/2f) Ym,q,_(f‘)

(2.2)

ha(p = Julp) + iy (p)
Bl = julp) = igalp)

where Jn+ql and ‘(n,qz are the ordinary cylindrical Bessel functions
of half-odd-integer order. Letting Rn(p) denote any solution of (2.1,

the following relations are satisfied by jn’ Y, hn’ and ﬁn for n20:
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pRLLp = (2ar) Ru(E) -p R, (p) (2.3)
pRA(G) = pR(p) - (ne) R, (p) (2.4)
p Rulp) = nR,(p) =pRu(p (2.5)
FRu(R) = 2pRp () +nla-DR(p) = p*Rulp) (2.6)
r‘a’,’,(f) = (nel(ne2) R (p) = p*Ralp) = 2p Rpr, (p) (2.7)

For n=0, terms of the form R,_(p) can be evaluated by using the

general relztions

4P =0 (p) g (p) = 875 (p) (2.8)

to obtain y and j for negative orders.

Explicit expressions for the first three j's, y's and h's are

()= NP ()= SHP _ corp (2.9)
JO(P) f J' P) fl F
() = (2 - ) sing - 3.
jale) = (f” f) sinp - 2, cos p
2.10
Yolp) =‘°°:P d(p)= - @52 - sinp (2.10)
'j,_(f): —(-sf;—a—;:‘)cosF - -;-2 sinp
. eLP _ pr Lo L 2.
no(p) < -i & nw__e(fﬁf) (2.11)
‘i3l 3 |
i = =87 (22 5)
For small arguments the following expansions are valid for n =0:
£ £ i
Ja() pro 13520 {| T Z(@ne®) | 24Gned(anes) ] R}
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4

2
Py e [ S S ] L e

f—>o P 2(2n-0 2-4(2n-)(2n-3) *

The general series expansion for hn(p) is
-n-1 P . 1 . .
w r (ned! 7\, (e2dt i N2 @ (i \"
halp) = 1 ra [' METEYET (lp)+ (H-l)‘.Z'.(zf) SR (?.p) (2.14)

a i.-M eiP nZ (n+n)! (L )"

P S eatar \2p

For large values of p the asymptotic expansions are

Jn(f\ —i -#—cos[f-(m-a;] (2.15)
s

Hn(F) —_— Lf’- sin[f—(nw)lf] (2.16)
|

hn () ——— = . (2.17)

We also note that since j and y are real functions of p, the complex

conjugates of j, y, and h, are given by

n(F) = jalet) 9o (p) = yn (p")
(2.19)
h:(r) = j:(r)ﬁ.*lj:(p) = _]n(p*)-ig,,(p*) - hn(p*)
so that inf:'éase of hn(p), the complex conjugate h,:(kn\ =% (k*n.) is

alse a solution of the differential equation, with the complex conjugate

wave number, a fact we shall use later.



-78-

Finally we list several useful integrals. All are easily derived
from the differential equations for the two spherical Bessel functions
in the integrand, or they may be obtained from the corresponding inte-
grals for the cylindrical functions, using the definitions (2.2). (See
Ref. 16). Let R,,(kn.) and En(ln) be any two sphericzl Bessel function's,
k and £ being general complex wave numbers and r the real radizl coordi-

nate. Then

A 3

f R: (k)Adr = -f‘i— [R2(kA) - Ry (ka) R,m(kn)] ‘ (2.20)
« —

J R, (k) R (ka) X dr

=52 [lE,,(kn) R, (kn) - R (kR (ka) = R (ka) En_l(k,n] (2.21)

A 2

[ Rl dn = T [1R, ()R (h) KR, (ka) ’é,,(m] (2.22)

k#2

5 (2.23)

- S [kR, (07, (0 - 2R, , (20) & (kA)] "

A useful special case of (2.22) is the following integral, obtained

by use of (2.19):

J h (kA (kA dr = I kh,, (ka) b (kn) = K'h_, (ka) hn(kn)] B

kz- k* 3

The above integrals are all valid for n =20 where again, for the case n=0,

the relations (2.82) are to be used tc evaluate jq: ory., in the Rn- terms,

1
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APPENDIX III

Legendre Functions

The Legendre polynomial Pn(cos ©) satisfies the @-part of the

wave equation:

| d (.. .dPR
< d¥n P =0 . D% |
sin@ de (sine ) Pl 2

and the associated Lengendre function an(cos Q) = an(u) may be defined

by

Prip = (op)* —————":P':.,(" : i)
,J

where u = cos ©. For n=1 we have from (3.2)

P (os®) = - 2P (3.3)
n 48

so that (3.1) gives the relzstion

e ) o e o

sin®

which is used in the boundary equations involving the vector potential A
in Sec. 14.

The orthogonality property of the Legendre functions recuires that

m

the integral of the product an P "sin © d © vanish unless n=r, when it

has the value

™

J [P:‘n(“’se)]zﬁnedg__. 2 (h+m)!

Zn#r (n-m)!

(2.5)
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APPENDIX IV

Calculation of the Potential Coefficients for n=0

We wish to determine the potential coefficients Bo Bé Co Cé from
the six general boundery-condition equations in Sec. 14 for n=0, under
the assumptions that ;1<< 1, and that the order of magnitude relations
of Sec. 15 hold:

i 8 r 4
(i‘.}m(:‘—'ﬂ)tm(—k—'- N:L-L < & 1, F.=‘-
A‘, b k-._ dl
and where we impose no restriction on the magnitudes of 2, and b, Similar

relations hold for the corresponding primed quantities.

We shall indicate the general procedure for the B° coefficient and
then indicate only the main steps for the remaining quantities.

For n=0 the general equations in Sec. 14 reduce to the following
four equations (the vV, and Prg equations do not appear for n=0 and

Do - Dé =0):
Boaha) - Blalji(a) Coarhyla) = C;n.';j.',(aﬂ = - ajola) (h.-l)
B, hola) - B.',d:j.(a‘.) + Coeyh,(a) - Cia‘;j,(a'-)= - o jo(a) (Le2)
Bofusaiha) - Boojd)ji(a) + Cofwpashy(ay) - Comjarjiad = -Fuiajola)  (4.3)
Boe[ b hila)-2aiHo ()] * Coe[Fpihla)-2diholay) ]

-8, [ -2d o] - calpl ) - 22 2 (a)]
= -e[bpjlad -2aljiad].

(Lek)
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These equations are exact. We now write the array of coefficients
of the unknowns Bo Bé Co Cé and the constants on the right symbolically

as

() (8 (c) ()

T Ay
T
b, D, D, D, D, (4.5)
n T, B ¥,

where, using the relations in Appendix IT and imposing the conditions

L = I =
that aj ¢ 1, aj « /él (51 1, we find for the values of the above

constants (putting jo(al) =1):

A= —hola) Ay = aiji(a)) A,= -azh,(a) A,=ay)(a))
A = a.j.(a.)

C,= o hgla) C,= -« G = thola)  Ca= —otjo(a)
Cy == ot

Dl = -%dlhﬂ(al\ Dz= °‘I| a-'ljc(‘:) D3= -idzdih.(ﬂz) D4= d':-a‘!j.(a;)

D, = Zaa,)(e) (4.6)
= e(@-dhl) F=-8" F=€p. B'helas) + 2 ak holas) -4€ashy(a,)

F - el F= = Fi Jolo) - 2alj, (o) + 4aij,(ap)
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Then the unknown Bo is given by
BO = A(BO)/AO (ho?)

where &, is the determinant of the coefficients on the left of (4.5) and
A(Bo) is the same determinant with the first column replaced by the column
on the right of (4.5).

We now evaluate Ao' Since the first two columns contain small quanti-
ties while the second two are of arbitrary magnitude, we shall write only

the first two columns explicitely in order tc see which elements are negli-

gible:
3 aty, (al) Ay Ay
o foty  =di/, ;ﬁ- :—z;—
s, = oPh(a) - e /o, S%-apl(ai) ?-3—2 Ziz (4.8)
€(b>-4) b2 r, ¥

where we have divided out ho(al).from the first column and 2 from the
second and third rows. Now consider the magnitudes of the elements in

the first two columns: In the first column the top and bottom elements
are of order unity and the other three are of order ai since €(=n/n') ,

#(=o/o') and b2 are unrestricted and t:ll/o(2 is of order ai<< l. Simi-

larly, in the second column the first two elements are of order ai2<<1,
the third is of order a'3<< 1, while the fourth (-b'z) being unrestricted

1
may be considered of order unity.
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It follows that if the deterimant is expanded by second-order
determinants in the first two columns, only the (-l)(-b'z) product is
of order unity. Since this product represents the A1F2 term we see that

Ao can be expanded as

8, = &F, D. D (4.9)

After some algebra we then find

Cs Ca

D, Da| — h"(“‘wz(‘“"g hola,) “:aj-(o'ﬂ " (4.10)

A, = h(a) B

Following the same procedure for A(Bo) we find

Ay Ay Ay A a,j,(a) aljia}) As A,
07 02 03 Cl} 2 ) l“’:, "‘4||/°(1. Cs/dz C4,/°‘1.
A(BO) = = d2 ol . Mrs (holl)
D, D, D, D, 72 aj)  %djla) Dalwn Daley
F, F, Fy F ~¢}E e Fa Fa
If we now indicate elements of order unity by 1 and order ai by
X << 1 we have
x x A3 Ah
x x C,lu, ©Clu
8B ) =a =8 Wl (4.12)
2 2 x2 x2 D./. D /
¥¥2 W2
F
1 1 F3 L

We see that in the first two columns only two determinants are of order x:

A C, C
I
F ¥

F7 F2 F7 5



T

2
the rest being of order < or x”+ Expanding A(Bo) in this manner we

therefore have

A(B ) = . * . ([h].3)
)
F7 F2 D3 Dh C7 C2 D3 Dh
In evaluating the determinants we use the relation 5tﬂ2 = eb2
and find
4, 2
A7 = S [8 dj!(al\\ = 0~|j|(“)]
F7 F2
C3 Ch
. dﬂ{[o'..].(n'ﬂho(nt) = £ jol@)- ah (aﬂ]
D3 Dh :
(L.14)
F F
7 2 2
= B (5 -u)
C7 02
A A
3 [
= ( '{"; = d;) C\'zj\(“'z\ . thl(qt\
By Y

Finally, with A(Bo) from (4.13) and 4, from (4.10) we find B from

(4.7)

: Ny ' a ola
e B [o(3] (e [65) SO |

or

3 1
Box L [6(2)-1] + (42 1) i Co ashilal) (4.15)



where 7 = jolat) . a, h.(a.) (4.16)

“"le (0’1) ho(a'l)

and Co is given below. In the reduction we have again used Appendix II
to evaluate jl(al), ho(al)’ etc.

It may be noted that for zero thermal conductivity o =0, ® = 0,
so that o, = = (ava'-'e)-l-—>oo and the second term in (4.l4) vanishes;
the remaining first term then agrees with Epstein's corresponding coeffi-
cient, given by his Eq. (47) in Ref. 6 for the case o = 0. Unlike the
first term which is pure imaginary and contributes nothing to the viscous
dissipation (see (17.12) in Sec. 17), the second term has a real part, and
this later plays an important role in our results for the viscous dissipa-
tion (Sec. 17).

Turning now to B! = A(Bé)/ao, we proceed the same way as before to

evaluate A(Bé); we find

Al A,? A3 A‘+ 1 x A3 Ah
Cl C7 C3 Ch X X C3 Ch
A(B ;) = ~ 5 ) (4.17)
Dl D7 D3 Dh X X D3 Dh
F1 F7 F3 FA 1 1 F3 l’-‘!+

Clearly A1F7 is the dominant product in the first two columns; hence we

have

8(82) = (AF,) - - v°n (a;) (4.13)
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and using eb2 = 6b'2 and Ao we obtain
1 = f =
B! = a(B!)/a, S. (4.19)

For C_ = A(CO)/AO we have

Al A2 A7 Ah 1 X % AL
Cl 02 C7 CL X X x Ch
a(C,) = " B o s 2 (4.20)
Dl 227 By X X x Dh
Fl F2 l"7 Fh 1 1 3 Fh

and we see that the dominant term in the expansion will be of order x

and is
a(c) = - 4D, ;2 27 = Ulu,'_(fsd.’~a.\ he(a)) aij.(a‘ﬂ, (4.21)
279
so that
G Ry A =

where Z is given above in (4.16).

Similarly, for Cé - A(Cé)/Ao we have

A Ay Ay A, 1 x 4, x
Cl 02 C3 07 x Xx C3 x

8(Gg) = D, D, D, D, xR D, % sl
F) F, Fy Fy 1 1 Fy 1




or
A(Cé) = 4,0,

and finally

~87-

02 07 2
Il L by (Seti-st) holad: ahilay) |

' - oly a-‘l.hl(az)
CO % d—; e

Cl;_ J.l (a‘!l.)

This completes the calculation of the coefficients for n=0,

(4.204)

(4e25)
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APPENDIX V

Calculation of the Potential Coefficients for n=1

Setting n=1 in the general boundary condition equations of Sec. 14

we may write, in the same way as for n=0, the symbolic equation

(8) () () () @) O

Al A2 A3 AL) A5 A6 A7
B1 B2 B3 Bh BS Bé 37
Cl C2 03 Ch 0 ) ; C7 (5.1)
Dl D2 D3 D'h 0 0 D7
El E2 E3 E‘!+ ES Eé E7
Fl F2 F3 Fh F‘5 F6 F7

for the six unknown coefficients 131 Bi Cl C]'_ Dl Di. Putting a1<< 1,
ai<<l etc., as before, the constants A]_...F7 are given by
A,= —Zh,(a) As= ahula) - 2h,(a,) As= —Zh(b) 1
A= - ja) A= - ajla) +2ji(a)) Ae= 2j.(k)
Aq s @)
B, = hia) By= h,(a) Bg = h.(b- bh.(b)
B, = - jia) By= - ji(a) Bg = -ji(B)+ Bjo(¥)
B, = -ja) | 45,2
C, = oh,(a) Cy= ayh.(a,)
Cz = ~aji(al) Ca =-otz jy(a2)
Cr = —etjifa)
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D,= -2¢«h(a) D, = ;(ot,_b.,_ha(qa) —Zjlqlh.(aﬂ
D= ~eujlal) Dy = - o0 jo(ay) + 2 j(al)
D, = ~£u«,j(a) > (5.2)

E,= -3eh,(a) Ey= €a,h,(a,) - 3€h,(ay) Eg= -3 e(-bMh(b)+ebh,(b)
E, = -5'—0,'1J', @)  Ey=-ahj, (el «3ja}) Eg™ %(e-u‘)j.(s) - I:':j,(lé)
E,= 5ed),(a)

F=e(6-iDha) F= elg"elh.(aﬂ-o-Zeaih.(a.) - 4eah,(ay) = —4ebh,(b)

g
Re-b(@)  F= g - 2alji(a) + 4y la)  F= 4bj(8)

F, = -€ sz.(a.\

We first calculate the determinent Al of the coefficients, i.e.,

the determinent on the left of (5.1)., Factoring out hl(al) from the first

column, jl(ai) from the second, and writing x for quantities of order a.i in

the first two columns we have as in Appendix IV

-2 Y S R
1 -1 By B B B
a, = hy(a;)J(a]) x x €3 C 0 O (5.3)
-X -x D3 DL 0 0
-3¢ x E, E E  E
e(v*-12) 12 P, F, F F

Neglecting elements of order x or smaller we see that in the second and

third rows only CBCh and DBD?-» survive; expanding by these rows we have
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5 6
Cq Ch 1 -1 B5 B6

4, = h (a))3,(ay) 0,2, || s, 0 5w, (5.4)
62—12)5 pr2 P Fy

After tedious but straightforward algebra the fourth-order determinant

is found to be

B BjolB) bhl) + B, Bj{B)-h(B) + By ji(E)Bhyll) + B, ji(E)-h.(b) (5.5)
with
Ao = [i-el[eb*+2E%]) A, = —eb'[feb’+ 9(|—e)+b'l]
8, =[6-6-al[B% seb] A, = 3eB[5(eB-8)+ 20-0)] (5.6)
2

Using the relation ¢€b" = 8b'2 we can factor b'z out of each A and re-

write the fourth-order determinent as

; (oo * D1 * P10 * P11 (5.7)
where
D,,~ [(-2+a)] bj(8)-bh.(b) D, = [98(e-)-§eB 2+8)] B (1) h(b)
D, = [3(e-)+55°] (2+8) JORTXC) D"=[21J(.-e)+%at'>‘(a-u)] J(E)-h ) . (5.8)

Thus we finally have for the determinent of the coefficients

C D

.b'hl(a)j(a) (D + D + D +D ). (5-9)

00 01 10 11

3
.}

We now calculate Bl' It is given by



B » A(Bl)/Al (5.10)
where
A A A A
A7231+A56 1 1 AB Ah A5 by
137 82B3 Bl4 B5 Bé 1 1 B3 Bh 135 86
B G B G B D x c. € 0 ©
aB) = |7 234 = 3,(a;) 3, (a!) P (5.11)
1 D D.D.D O O 11" "1V = D3 DAO 0
77273 4
o -x -x E_ D E_ E
Ep Bp B3 By B5 B A
2 ik
; F
F7 F2 F3 Fh F5 F6 b +b F3 FI; FS 6
The second order determinants of order unity in the first two columns
arise from the AF and BF products; expanding A(Bl) we get
A c,C B_B A_A
(8.) A72‘.316 576[_|5 6 (5.12)
4 — ¢
F D, D E_E E_E
07 T2l 173 Pl \ %5 "el s B
where we have used the fact that B7 = A7 ’ 32 = A2 to eliminate B7 and 32.

After carrying out the algebra and using €b2 = 5b12 we find for the

quantity in the parenthesis the value

2
Noo * Nop * Mo * Ny (5.12)

where the N's are given by

Noo = [1~€] Bjolt): bhu(b) Nio= [3(e-0+58%] j,()-bh,(b)
Noi = [3(‘;-! ""Eebt]gj.(g)'hatb) Ny = [9(“‘G)*'%Bl(s-h]ju(g)'h-(b) S
A7 A2 2
Since = bt (1 - 6)j1(a1)j1(ai), we finally find

Fo Fp
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c,C

- 3k
s e PR e T e

and with 4, we obtain By from (5.10)
3
. Oy Noo + Noy + Nyo + Ny . q,g (5.16)
= L—(i- = — —:S)G »
B, La(l £) [D°°+Do.+D.°+D,,] b ¢

after canceling j.(a!) in a(B,) and A_ and using h_(a.)/j(a.) = 1la
1'% 1 N | 1 3

1
from Appendix II. G is a useful abbtreviation for the quantity in the

bracket.

The coefficient Bi is found in an exactly similar manner. We re-

place column two in the determinant on the left of (5.1) by column seven
and obtain exactly the same order-of-magnitude scheme as for 8y (5.3) ex-
cept that jl(ai) is replaced by jl(al) and b'* by eb2. It follows that
A(Bi) can be written in the form (5.4) with the same replacements. We
then expand the fourth-order determinant; after the algebra has died down
there finally emerges a form similar to (5.,13) above in which each N is

3 eb2 = 3'Sb'2 times the corresponding N of B, in (5.14). This gives for

;
A(Bi) the result

C3 CL

Dy B

\
(Noo * Vo * Nyg * Nyqp) (5.17)

a(B]) = 35b%h (a2, (a))

we finally get B!:

so that using & 1

1

B, = = 35[”“*’““’“'”““] = 235G = & ¢ (5.18)

f D,o+ D, +D,,+D, o, ah
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ft - L] B' - 3 - 3 ' = '.

after canceling hl(al) in A( l) and A, and writing Jl(al)/jl(al) al/a1
Having found B, and Bi we can now obtain Cl and Ci from (14.6) and

(14.7) of Sec. 14 expressing the continuity of temperature and normal heat

flow at the surface of the scattering sphere, since these equations do not

involve Dl and Di. We write these equations for n=1 in the form

Chlan) - Cuijlan) = B (5.15)

C fenashfa) = Clegj () = Q. (5.20)
where

P = Bu\j) - aj(a) - Biaihi(al) (5.21)

Q= B',u:j,(n',) = o ojia) + 28,4 ,h(a) . (5.22)

i 15t = d 1 T -
Here the approximate relations aljl(al) jl(al) an alhl(al) 2hl(a1)
for small arguments have been used in the Ql expression, Substituting
the values of Bl and Bi we find, again using the small argument relations
of Appendix II:

S [:11 ¢-1-0-86] (5.23)

L

Q- taw[2e -4 -220-5)6] .

Now we use (2.4) from Appendix II to obtain h:'L and ji in (5.20) above
and find



..

A= —epulayjlah(a) + saoty ¥ (o)) ash, (a)

= dl'l':. [Z('}l‘nj.(dnh,(th\ * ﬂ'a.jo(aa)h-(lﬂ = ')l ‘zh-(%)'j.(a'n}

Ale) = —Rd',a.',_]'.(u;) + a.«ij.la-‘&

- Sty '1‘{ J@) [ (2+) -35-:' G + 2(1-0)0-9) G]
+ ay jo(az) [%—{-G’—l *(I-S)G] }

H(5.24)

n

A(c)

1

Q, dih‘(a-.) - R ‘i °‘1a-1.h: (“z)
%d.dla. { h,(a,) [(I v24f) 43": G- 3}{] + azh, (a,)‘_'-*(l's)G‘g:'G']}

o

Combining these equations we find

c, = A(Cl)/A ct = A(ci)/a. s

the expressions given in (16.8) and (16.9) of Sec. 16.

Since we do not need D1 or Di we do not calculate them but merely

note that by the same method as above it is easily found that both are of
order a,- This completes our calculation of the potential coefficients

for n=1, As will be seen in Secs. 17 and 18, only B1 is required expli-

citely; however the order of magnitudes of Bi, Cl, Ci are reguired and

the full expressions are given since they were worked out and may be of

interest in connection with other problenms,
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7

APPENDIX VI

Calculation of Viscous Dissipation Surface Integral

We wish to calculate the surface integral Is of Sec. 17:

over a sphere of radius R for which klﬁ >>1., Here we have written

b= + b3

L

Z (" (2n+) T’,,(cose) (‘J“( P) + B, hn(f’)] (6.2)

with Py = klr >>1. For the derivative of ¢ we have

o =

22k < 3 aankl i)+ Bk (p)] (6.3)

where the prime signifies differentiation with respect to Py* From

Appendix II, with ‘Sn = (n + l)—g—, we have the asymptotic forms for
large arguments:

jnlp) = 5 cos(pm80)

I
|
8
q

ju:(f’-)= *}!—S-i»-(p.—aﬂ :

’ —-’-;.‘-»w.é"

(644)
ha(p) ‘}-f.ei(f"s“) = L'

{ i |_5n L L
ha(p)) L SR

"
[}

1
m

—_—

P

|
l
®

where o is real and we have taken the "phase derivative" only, since the

derivative of l/p1 is negligible compared to l/pl. We now use the
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orthogonality property of the Legendre functions of different orders
(Appendix III) in the surface integral to conclude that only products
of the same order will survive in the integration,

Thus the integrand evaluated at the surface is

(wpd22) = Z tapelanad (8T Ljalp) + B, (] Lintpd+ Bl ] (645)

8

;m},‘(h,,{(g,f% [-4sins + i8,ET0s6 -8 Tnr +iB,8) ] (646)

3
"

o

where (6.4) has been used. Putting the i inside the bracket we get

2 k, L. L6
';'.'&-(twf.#*::) Z “f‘o(%ﬂz(?w X, l [' §n2e - Bre cose
- . (6.7)
—iﬁ*r"e s‘;ﬂ\tr - Bth :]
But for any complex number A we have R(A) = R(A%*); applying this to the
third term, R(-i Bﬁ e-iasin o) = R(iBn eiosin o) and (6,7) reduces to
L]

LR (iuop*2?) - zm,,(zm.\(pw zizﬁa[-xax,,-ss;,,a,‘:] , (6.8)

where the first term in the bracket in (6.7) has been dropped since it
is pure imaginary. Putting Py = klﬁ, integrating over the surface and

using the Legendre product integral we obtain
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< ¥ Ky
5 zo(ln ,,Dz{ L(a}zzn(ﬁ\"wede (—;E‘);_ “P“ITR[‘B,.- B, B: ]

o0

x> 41
Z°(2n+D { Zn+l
ns=s

=
il

@ *
j2e Lg -8, -nl],

or, using kl = w/c

Is = =-2mwp,c Z,CZnH)R[Bh+B"B:] . (6.9)

which is the desired result.
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APPENDIX VII

Calculation of Viscous Dissipation Volume Integrals

Outside Integral

The outside volume integral of Sec. 17 to be evaluated is

I = %Zdz j&?wibg;d\/ Rent B
where, from Secs. 8, 9, 15 we have
T = -V = K(o+b)+Kab,
po= twpe (0 +o) 1ty ] }

T
2 i _4NY S Y 1
a|(<l) er-.l) 31-‘——3—i \ |=<.z' kl—ta s -‘:li<<|

Thus

LR(FEs) = 4 op ] 1Elherleon) + B Cone)
Pl K (0, +8) + 10K, 4,0 ]

Ufo R[“:1¢1(¢1+¢3¥ + a.zl:l bld’.:- ]

L.
z

(7.1)

(7.2)

(7.3)

(7.4)

(7.5)

since in (7.4) the first term is pure imaginary and the third term is

negligible compared to the second.

We now integrate the first term in (7.5) using the potentials of

Sec. 12, and recalling the orthogonality of the wave functions:



-9G-

de i [,'_"(zn fn)ﬁ,cnh,,(k,_n)] [i-h(zmb F,.(j:(k.:.\ +B: ‘n:(k,n))]

n=0

fd v ¢z( b, +¢D*

0 R
2 4vned[C, [ 20, 0e) 20n

h=o

I

. R (7.6)
« BC J b (k) by (k) A2 d 2 ]
R
The first integral in the bracket has the value (Appendix II):
- R
ax .
J K (k)b () dn = [ 2 1[k. Junn by (i) = koh, () 5n(km\]} (7.7)
R k."‘ k: R
R y .
= “-Jm.(“-)l"n(“b -a.lh,m(aﬂ)n(a.\ A (7.8)
where we have used the facts that k, is real so that j:(klr) = Jn(klr),
that ki << kg, and that the Hankel functions are negligibly small at the

upper limit R, as discussed in Sec. 17. Moreover since 4.)M‘l4.\/j“(a.)~°f“ b
the second term dominates the first in (7.8) so that the first integral

in (7.6) is

R
CnJ j:(k.n)\\“(klﬂrf‘da = —Ch%jn(a,\a}nnﬂ(aﬁ = (7.9)

R

Evaluating the second integral of (7.6) in the same way we find
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: ’ _
B bl dottn = Jm— Tt o fiea) ~ i et i) }
L {ka-."k‘z [ } . (7.10)
- = . %)
B k:: [Q hnﬂ(‘“‘n(ab - thnw(dﬂ hn(ﬁ.)] (7 )

where now both terms in the bracket are of the same order so that

..

Jh (kb k) dn = B C =7 - [a.h".;.(a.)h,(«,)—uh,+.(«aht(th] . (7.12)
Thus the integral of the first term in (7.5) is

IJV ¢1(¢;+¢$ = hz=°41r(7‘“+0 {— Cn% ih(a')athﬂh(qi)

B C"l k'l. {a|h.:-h(°)l'\n(az - a:.hnﬂ (Q,) ‘1*; (d.‘)] . (7.13)

Turning to the integral of the second term of (7.,5) we have in

the same way, using the expression in Sec. 12 for ‘#2:

Jdv4’1¢: Z 47r(zan) C,, C Jh (k.Ln)h (kp0) Adr (7.14)

= * A_z * =
= z 4-1'\'(2!11—0 Cncn {—-2——*—2 [kz‘nnu (k,_rn In: (k,_':) i k,_ "ln,,(kzﬂ) L\n(kz"b]}
n=o kq__"kz R (7'15)

hz- 4T(Znﬂ) CHC [a‘lhn-}l(ai) ht (Q:) - “:. “\tﬂ(di) hn(“l)—_\ . (7.16)

.
n "Zk:
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In (7.14) we have used (2.24) of Appendix II to evaluate the integral;

in (7.15) kg - k%z = 2k§ since kg is pure imaginary, and the minus sign

appears because the bracket is evaluated only at the lower limit as above
in (7.8).
Collecting our results we finally have from (7.5), (7.13), and (7.16):

—
I

L = Lup, {Lk Jd\lg(cbiw.)* - tlzﬁjdebf} (7.17)

I

Zmiop,R 62{2 (20 {=CC (@) a3 0 +
+ 1 B: C‘n [alh:ﬂ(‘l)h,‘(aa) -a:.h,.,“(“,) ht(ll.‘ ]

O Ao o a.lhnﬂ(qhh:(u,)—qthnﬂ(a‘}h“(a‘)l} } (7.18)

We now wish to evaluate this for n=0, n=1l. Using the approximations

of Appendix II for the small argument a_ in the j's and h's and the order-

2
1,Cl'»Bf»B a)
we easily find that for n=0 the C, term in (7.18) is of order ai , while

Moreover, for n=l, the Cl and

: |
of-magnitude results for the coefficients from Sec. 15 (C ~a

the B¥C and C C¥ terms are of order ah.
oo o0 1

Biic1 terms are of order ai and the Clpi term of order ai. Thus only the
Cn term for n=0 is significant, and we finally obtain for the outside vol-

ume integral (with jo(a1)=IJ:

I, = ~2rpe R[iaConhnlad] (7.19)

v

Since the surviving term represents the product ¢§ ¢1 in (7.17), the

significant contribution to the volume integral of p¥V.w arises from the
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interference effects between the incident acoustic wave ¢ $ and the
scattered thermal wave ¢ o As we shall now see, a similar result
holds for the inside integral, taken over the interior of the scatter-

ing sphere.

Inside Integral

The inside volume integral of Sec. 17 is
! 1 R ;* 1 L
Iv = 5 + v-u' dV 0Lnt R . (7.20)

In the same way as before we find

g ¥, T z
LR (Few) = Fupl R[ilem) (g + )] (7.21)
* 2 * *
- Lup Ri6Y +ilael v e el ] o2
* 2 ’ ’*
R T A A (7.23)

where again the first term in the bracket of (7,22 is pure imaginary and
the third term negligible compared to the second. Integrating the first

term of (7.23) we get

* - n o o) ~h l* ’
Joveal = [av) [0andnc, ju(da) [Ten) BB, 6] (7.24)
= *
- ,,Z,, 4w (2ae) B G, LR}:(H.QJ'..(H;Q Al dn (7.25)

2

R
= Z 41 (2n+n) B':C',, { —:— [k'.:‘m(l k'.n\j..(k'lu) - k'ljn’l(k;a)ju(lz,n\] }

== ? ’7.
=0 kn-kl

(7.26)
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£ 4l el Tz L e - jontad 0 | Sl

o0 * R
= Z 4“’(2!\{—0 B, C,

— nCn gz o () fn(a) (7.28)

)

since in (7.27) the first term is of order aizsmaller than the second.

Integrating the second term of (7.23) we have

Jdv d’:_.{;:* = J',;IV Z; (z""'\I(PﬂlcnC:j“(l':'m\j:(kftk) (7.29)
s R
= hZ“w(znmc’,cf j jn(n!..aj'f(uza dn (7.30)
i4 (2ne)C, ¢ -‘-/E[z' (Kan) ¥ (k) (7.31)
£ T\2n+) L4 3 Jn 2 jh n e .
R CORIICSY j:.( k;,g] }
g°4w(2n+)c Cn4R3[ZJ,,(’4D () _Jn G)J (a}) —_]rn IL,)J.. (l\] (7.32)

Collecting our results (7.28) and (7.22) and using (7.23) in (7.20) we

find for the inside integral the general result:

T

I = sup R faves + kY Javes] ]

(zmp'.km{

(7.33)

> Gamd {LBLChal, (o0 julal) +

h=o

4 LCHCE AL [200D)}Aa) - jasla)j () - ,-wcanj:g«g]} } (7.38)

To evaluate this for n=C and n=1 we use the order of magnitude re-

P 2 .
lations from Sec. 15 (Bc',-JB]'-f“l » C'~a]'_ 5 Ci«/aiB) and Jn(a]'_)rvain. For n=0
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we see that the Bé* Cé term is of order aizand the COC;* term of order
aih; for n=1 the terms are of order aih and ai6. Thus we keep only the

B Cé term for n=0 and get (jn(ai) =1)
r* '
T = (zrop ) RUBLCL G @D ] (7.35)

but B; =g = po/pé so, after multiplying numerator and denominator by kl

we get
e s R[—iq.cgqijl(aﬂl : (7.36)

We now note from Appendix IV that C; is given by

6 = e Salileal o
%z ay jl(“z\

so thet we finally obtain for the inside volume integral of the viscous

dissipation the result

I; = _Z“foc R[‘?Zi% ta,C, alh.(“z\] . (7.37)

which is in a more convenient form than (7.35).

As pointed out before, the dominant contribution to this integral
arises from the 4>é ‘Pi* term in (7.23), which represents the interfer-
ence between the scattered acoustic and thermal waves in the interior of

the small scattering spheres
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APPENDIX VIIT

From Sec. 18 we have the two volume integrals Jv and J; to

evaluate:
-C"ﬁv
Jy = P (EJ T Cw dV (8.1)
; P.,C'o(v

These integrals are easily reduced to the corresponding integrals of
I, and IT in Appendix VII (with integrand p* v.+ instead of T* ¥:v),

Using the general relations of Secs. 8 and 9

T*Q_’-ng_- = —T*Vz(tb,-o- #.) = T*(k:b."’ktéa.\ (8.2)
B (.c.q“téj( K 4+ Kb, (8.4)
o bl el AL sl bl (8.5)

We have used d>1 for the acoustic wave ( ¢>i - d>1 outside, dbi inside).

. 2 2
Now kl ’ 0(2 are real and k2 ’ c(l

last terms are pure imaginary with zero real parts and may be dropped.

are imaginary. Hence the first and

We also have the relation

o ke = (#-Dtyk (8.6)
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as is easily verified. Thus we have

RIr*es] = R[ak0-)4+ 48 ]

-k R[(3-)a%d + &4, ]

) (8.7)
«y ki ¥ Q[‘b‘*‘i’z] "

*
The corresponding expression with primes holds for Q[T' V-U}

v-u' , and
the integrals thus become
J Pociuty ( 2 )& E( * dV
v © o k¥ o b +d) ¢, (8.8)
) R
i P°c'°“' 1 /" t j‘-
Go= = EER ) R | 6 ey (8.9)

The coefficient in Jv is easily reduced to (-]2'— P wz/ #¢) and the integral

is given by (7.13) of Appendix VII. Similar remarks hold for J'; the in-
tegral is given by (7.27) of Appendix VII. Thus the exact expressions are

Lz w Z ‘n'(?.nﬂ){ Cn kl](a.)a;h.m(m +

h * Cn k"[ hm.(d\h (a,)—a, mﬂ(“ﬁh (d)]}

d, =

(8.10)

and

L 3
Po
;_'CI

|
Jv__z—

PR Ty oo
&2 '\Z:é“-"r(lr\-n) Bn Cn T‘_(:—:. [%Jm(.ﬂ:\Jn(a?) - a"j"'l".(“"l\]n(a:)] (8.11)

As in Appendix VII, we evaluate the terms for n=0C, 1 and using the order
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of magnitude of the coefficients and the asymptotic forms for the j's and
h's, it is easily shown that in Jv only the first term, for n=0, is im-

portant, while for J;, the second term in the bracket dominates:

p,aoz ‘4 R.
b= 5 R[- 55 Couhian] L
! Po 4Tk R *
o=+ B ] TR, (8.12)

These are the desired expressions for Jv and J; in Sec. 18.
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APPENDIX IX

Calculation of Attenuation by Water Drops in Air

é-_MxLion_OL_dn

From (19.6) the general expression for o(n is

v =R L) (i-€) b j,(ﬁ\-("il:?) W8] - Ga) 15,06 h ) (9.1)
vk [-(2+3)bhal) +35h, )] [(1-0Bj(6) - (387 (B)] + (4689 (s Bja(6) b (b)

For § , € << 1 this may be reduced as follows, We first note that for
small arguments h (b)eC l/b2 = == —> 0 as W=—> 0, so that even
1 “,RZ

though h., is multiplied by & in the last terms of the numerator and de-

1
nominator, it cannot be dropped without further examination. Using the

small argument approximations however, it is found that the last numerator
term is of order <5b'3 smaller than the first and is therefore completely
negligible for all values of b'. A similar result is found for the secend

term in the denominator so that it may also be neglected. Canceling a com-

mon factor we then have

n

_ 4wn 3 & bha(b) ] (9.2)
By N R[ " ~2bho(b) +98h,(b)

where we have dropped d in the (1 -&) and (2 + § ) terms. The attenua-
tion is seen to be independent of b' and hence also of n', the viscosity

of the medium inside the scattering sphere,
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We now substitute for the Hankel functions their explicit expres-~

sions from Appendix II and make the change of variable

b": z;.j‘ b= (|+n‘.)t5 y = (mﬁz/?_-ﬂ)lh (9.3)
where y is real, to obtain:
s 0 g L RSl ] -
k, (4-17'+953) % i.95(|+5)
Tk M L eyt w1283 4816 (142y 02y )
or
ty = 218 2 0] e (9:6)
" & s 6yt + 728§ +818 (1+2y4+24?) ’

Equation (9.6) is the desired form for the viscous attenuation of water

drops in air.

b. Reduction of OCO

To evaluate X given in (20.8) we must calculate the real part

of the expression:

Q 01'"'-(“1.)/"\ 0(01) | —ta,y
| -4Z - ¥Z

I
N

(9.7)
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where from (19.8) we have Z :

Z _ Ju(aa ﬂzhs(dt) _ l-—i_a,_ (9.8)

ﬁlz.j‘(a',) h°(az) | = a} cot a}

Now since '% is small we see that 7[Z.udll be small except at low fre-

quencies where a_——> 0, a'=—>0; in this case Z has the limiting

2 2
form
,Z | =L,
> 3 .
w —> o a.’,_z d,'_4. (9 9)
3 Y 75

where the numerator is exact and in the denominator we have retained the

first two terms of the expansion for 1 - a} cot a} for small aé. (Since

aéz is pure imaginary it is necessary to retain the first two terms in or-

der to have a real part in the expansion). Now define the dimensionless

real quantities = and =' by

5 1/2

- a,=(1+1)= z = (wR%/ 22) (9.10)

a2 =212

1/2

2 ay = (L+i)g' ' = (wBR%/23' ) . (9.11)

2 .
] = t
a 5 2:11

Substituting these into Z and keeping only the largest real and imaginary

parts in both numerator and denominator we find

(1+2) - (2 o
Z w —>o = s R f" a 4 > _2 E'Z ) (9'12)
L3 2 —Ei

so that (9.7) becomes
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]—l..CLz + -t
‘R[ |—¢Z] T ”2[(' ﬂ__? . ] (9.13)

I+ 17.'){ 1+z2 2'*
= (1+2)

(9.14)

but since ;{ is small, the second term in the numerator is negligible
compared to the first for all =z, z' ; similarly the third denominator
term is negligible compared to the fourth. Dropping these terms and put-

ting
7[/2‘1 = { Sc,,/c;.)/ez (9.15)

into (9.14) we finally have

|—tay . g
R[ -7 l e (1+3) [l+3(5c'/c;)'lg+ %(5:,/&,) -;11 . (9.16)

But now we see that this expression is also valid at higher fre-

uencies, for although our low-frequency approximations ( =z, 2'—> 0)
in Z are of course no longer valid, the whole term £ Z is small com=

pared to unity anyway, so that the exact form of Z is unimportant, Thus

achu(a)/ha(ad
& [ |- L4

is the final desired result (20.9) of Sec. 20.

-1
jl = (l+ﬂl:l+ 3@5:,/4.)% + %—(&:PICD ‘:,:4 ] (9.17)
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APPENDIX X

Calculation of Attenuation b r Bubbles in Water

a8, Reduction of X

n
From (19.6) we have the general expression for « T‘:
4R i bha(e) (-8 1 (8)- 5 858)] - (585) Bjul8) b, (B)
3 [ (v&)bh.,(b\+96h.(l:)] [(-0bj,(8)-557%(8)] + (188" X2+8) B}, (8) b (b)

(10.1)

For & >> 1, € >>1 the bracket reduces to

. b (B (- () — (£¢B)bj() (1)
ik (10.2)
& [bho(d) + (D] [-€ 81, ()] + ($eb) 8k}, () hCe)

where we have used & b'2 = € b2. Canceling common factors and replacing

(L=-8) by =3 in (10.1) we obtain

2
” =4mn s |1 bh,(b) + 5 b h,(b) ] e
1 bhelb) - 9h,(b) + & Eh,(b) )
or
R e s =6k
«, - R Eoels —|  ow
n k., 18b - +180 -3Lb

We now change to the variable y defined by (9.3) in Appendix IX and obtain

2 i 2
T (R N (\j”*‘j“"a‘ﬂ) + L(\j 35 3) (10.5)
ol = T B - 3
1 K, (nja+3\jl+9\j)+L(—lj “'9‘_1'*'9)
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After taking the real part we finally have

1 4 s
4 3 2y + 12y + by
k. Y 234—6\1 "'9‘j + 36y + I6237‘+|G13+ 8l

or

4mn KR
O('I‘: m 2-'\') [
C

5
2y + 124"+ by (10.7)
24"+ by*+ 9yt 4 3643 +1624" 4 162y + B

the desired result (22.3) of Sec. 22 for the viscous attenuation by air

bubbles in water.
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Table I - Physical Constants
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Air Water
£ osect 10° 10* 10° 10° 10° 10% 10° 108
W  geet 6.28 x 10° | 6.28 x 10" | 6.28 x 10° | 6.28 x 10°| 6.28 x 10 | 6.28 x 10*| 6.28 x 10° | 6.28 x 10°
c_cm/sec 3.30 ,xrlol‘ 1&;__195
o by em> 1.29 x 107> 1,00
% p°c2 g/cn sec” 1.41 x 10° 2.10 x 10™°
§:= 2 ot 0.19 1.90 19.0 190 0.043 0.43 L3 L3,
g M cm 33.0 3.30 0.33 0.033 145 14.5 1.45 0.145
y ca 7x10° | 7x10* 7 x 10° 7 101° 10° 10° 10
| B e pee 1.82 x 107% 1.10 x 1072
2 em/sec 0.141 0.011
wv fe? 8.1 x1077 | 8.1x120° | 81x107 | 8.1x10% [ 3.3x10° | 3.3x1083.3x107 | 3.3 x 10
HPS 21x10° | 6.6x10° | 21x10° | 66x10° | 7.5x10° | 2.4x10° |7.5x10° | 2.4 x 10
3, om 42x102 [ 1,3x107 | 42x207 | 13x107 | 122107 | 3.7x107| 1.2x1207 | 3.7 x 207
21 6,7x107 | 21x107 | 67x207™ | 2.1 x10™ | 1.9x107 | 5.9 x107*| 1.9 x 107 | 5.9 x 107
c cm/sec 42 133 420 1330 1.7 37 117 370
o cal/em sec’C 5.8 x 10~ 1.43 x 107
Y 1.4 1.00336 (15°C) (Ref. 10)
:Lcal/goc 0.24 1.0
Ly (fg)-l 3.66 x 107 1.4 x 107% (15°C) (Ref. 10)
% cm’/sec 0.187 1.43 x 107>
2lwie s 1.1x120° [ 112207 | 11210 [ 112207 | .3 x 20°| 4.3 x107%] 4.3 x 20 | 4.3 x 1077
; kK, e 1.8x10° | 5.8x10° | 1.8x10° | 5.28x10° |21x10° | 6.6x10° |2.1x10* | 6.6 x 10
E A, om 4.8 x107% [ 1.5x107° | 4,.8x107 | 1.5 x10™ | 4.2x10™> | 1.3 x 1207 | 4.2 x 107% | 1.3 x 107
B 1, o 76 x102 | 2.4, x1073 | 7.6 x 10 | 2. x 107% | 6.7 x 1074 | 2.1 x 1074 6.7 x 1070 | 2.1 x 1079
_t:.g cm/sec L8.5 150 L8.5 1500 L2 13 42 133
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Fig. 3. Theoretical attenuation function for air bubbles in water
(Sec. 22).



