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ABSTRACT 

The problem is to calculate the attenuation of plane sound waves 

passing through a viscous, heat-conducting fluid containing small spheri­

cal inhomogeneities. The attenuation is calculated by evaluating the rate 

of increase of entropy caused by two irreversible processes: (1) the me­

chanical work done by the viscous stresses in the presence of velocity gra­

dients, and (2) the flow of heat do\~ the thermal gradients. The method is 

first applied to a homogeneous fluid with no spheres and shown to give the 

classical Stokes-Kirchhoff expressions. The method is then used to calcu­

late the additional viscous and thermal attenuation when small spheres are 

present. The viscous attenuation agrees with Epstein's result obtained in 

1941 for a non-heat- conducting fluid. The thermal attenu~tion is found to 

be similar in form to the viscous attenuation and, for gases, of comparable 

magnitude. The general results are applied to the case of water drops in 

air and air bubbles in water. 

For water drops in air the viscous and thermal attenuations are cam­

parable; the thermal losses occur almost entirely in the air, the thermal 

dissipation in the water being negligible. The theoretical values are com­

pared with Knudsen's experimental data for fogs and found to agree in order 

of magnitude and dependence on frequency. For air bubbles in water the vis­

cous losses are negligible and the calculated attenuation is almost complete­

ly due to thermal losses occurring in the air inside the bubbles, the ther­

mal dissipation in the water being relatively small. (These results apply 

only to non-resonant bubbles whose radius changes but slightly during the 

acoustic cycle.) 
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SYMBOLS* 

• viscous wave potential 

• normal sound speed 

• phase velocity of thermal 
and shear waves 

~ specific heats 

• frequency 

• spherical Bessel and 
Hankel functions 

k
1 

k
2
.K • wave numbers of acoustic, 

thermal and viscous waves 

1
1
1

2
1.1. • damping lengths of acoustic, 

thermal and viscous waves 

n 

p 

Pmn 

r 

R 

s 

~ concentration of 
scatterers 

• pressure 

• total stress tensor 

• heat current 

• radial coordinate 

• radius of scatterers 

• entropy/unit mass 

• irreversible entropy 
density 

t • time 

T • temperature 

u • internal energy/unit mass 

T} 

-X 

• attenuation coefficient 

• coefficient of volume 
expansion 

• ratio of specific heats 
(c /c ) 

p v 

• coeff]cient of shear 
viscosity 

• polar angle 

• o/p c 
0 p 

., thermometric 
conductivity 

~ o/p c '"" '(af.. 
0 v 

~A2Al • wavelength of acoustic, 
thermal, and viscous waves 

• coefficient of dilata­
tional viscosity 

V• T)/p • kinematic viscosity 

p 

0 

• density 

• thermal conductivity 

• viscous stress tensor 

• acoustic and thermal 
wave potentials 

~ • azimuthal angle 

• viscous dissipat ion 
function 

• thermal dissipation 
function 

• 2nf • circular frequency 

*See Table I for values of the physical constants . 



1t • specific volume ( )0 • unperturbed quantities 

]!" • particle veloci ty ( )* • complex conj ugate 

( )Av ,.. time average 

~( ) • real part 

In Sections IV and V unprimed quantities (p, ~ , ••• ) refer to t he medium 

outside the small spheres; primed quantities (p', ~ 1 , ••• ) refer to the 

medium inside the spheres; primes on the Bessel and Hankel functions (j', 

h 1 ) indicate differentiation with respect to the argument. 
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I. INTRODUCTION 

When a plane sound wave passes through a homogeneous fluid it is 

attenuated by two types of irreversible processes which increase the 

internal energy of the fluid at the expense of the mechanical acoustic 

energy of the wave. The first of these is the irreversible mechanical 

work done by the viscous forces. The second is the irreversible flow 

of heat down the thermal gradients. 

If the fluid contains spherical inhomogeneities the primary sound 

wave is scattered and the secondary waves are then attenuated by visco-

sity and thermal conduction. In addition, the secondary waves carry off 

acoustic energy in all directions, so that the primary wave suffers an 

additional loss by scattering as well as by enhanced viscous and thermal 

dissipation. 

These dissipative processes lead to an expression for the average 

energy flux E (the acoustic intensity) of the wave having the form 

(0.1) 

where ~ is the attenuation constant (cm-1 ) and is the sum of the attenua-

tions due to viscosity, heat conduction, and scattering: 

(0.2) 

For a plane sound wave in a homogeneous medium Stokes (Ref. 1) first 

obtained the viscous attenuation 

Stokes (0.3) 
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Kirchhoff (Ref. 2) was the first to point out in 1866 that in gases the 

effects of thermal conductivity are of the same order of magnitude as 

those of viscosity and should be taken into account in accurate work. 

Kirchhoff's result for the thermal attenuation was 

Kirchhoff o(~= 
~w k 

= (l'-l) ~ I 

Here v is the kinematic viscosity, ;( the thermometric conductivity, c 

the velocity of sound, ~ the circular frequency and k
1 

• w/c the wave 

number. Thus, for a plane sound wave the attenuation due to viscosity 

and heat conduction is 

The scGttering of sound from small spheres was first calculated by 

Lord Rayleigh {Ret. 3) and for fixed rigid spheres his result (including 

zero- and first-order harmonics) is 

Rayleigh 

where the dimensionless quantity V is the total volume of the small 
p 

spheres per unit volume of the medium, ·R the radius of the spheres and 

A the wavelength of the sound. In the second form k
1 

• 2n~ is the wave 

number and a
1 

• k
1
R is very small since R<:< :A for small spheres. 

(0.4) 

(0.5) 

(0.6) 

In 1910 Sewell (Ref. 4) calculated the additional viscous dissipation 

suffered by a plane wave passing through a medium containing small rigid 

fixed spheres. Sewell's result was 
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Sewell (0.7) 

This result, while satisfactory at high frequencies, gives a finite 

attenuation at the low frequency limit W • o. The reason for this errone-

ous result lies in the assumption that the spheres are fixed; this is not 

the case in aerosols; as Lamb (Ref. 5) puts it, "Owing to its great inertia 

in comparison with that of an equal volume of air, a globule of water in 

suspension, if not too small, may remain practically at rest as the air 

waves beat upon it. If, however, the radius (R) be diminished, the inertia 

diminishes as R3 while the surface on which viscosity acts diminishes as R2, 

and it is to be expected that a stage will be reached when the globule will 

simply drift to and fro with the vibrating air, and so cause little or no 

loss in energy". In an addendum Sewell tried to correct his results for the 

oscillatory motion of the particles, but the treatment was not completely 

satisfactory. 

In 1941 Epstein (Ref. 6) published an important theoretical paper 

dealing with the_ viscous attenuation of sound by spherical particles sus-

pended in liquids or gases. Epstein employed a more general method than 

Sewell which automatically included the oscillations of the particles in 

the acoustic field . This step was partly necessitated by the experimental 

work of Hartman and Fock (Ref. 15) on aqueous suspensious, since in their 

work the density ratio of the medium to the particles was near unity, so , 

that Sewell's theory of fixed particles was not at all valid. Epstein con-

sidered three cases in which the spherical obstacles were (1) rigid, 
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(2) viscous fluids, (3) elastic solids, and showed that at sufficiently 

high frequencies so that the oscillations of the drops could be neglect-

ed, Sewell's equation was a close first approximation. In the case of 

fluid spheres in air Epstein's result was 

Epstein 

In view of the relative importance of the thermal effects it is of 

(0.8) 

theoretical interest to extend Epstein's treatment to include the attenu-

ation due to heat conduction. Recent experimental work by Knudsen (Ref. 7) 

on the attenuation of sound in fogs provides an additional reason for the 

inclusion of thermal effects. Finally, it may be pointed out that war re-

search on sound transmission in the sea showed that bubbles may contribute 
of 

strongly to the absorption/sound. As shown by Carstensen and Foldy (Ref. 8) 

this effect is strongest near the resonant frequency of the bubble; while 

resonant absorption is~ included in the present paper, it is still of 

considerable interest to examine the viscous and thermal absorption of 

bubbles for frequencies outside the resonant region. 

There are seen to be both theoretical and exper~ental reasons for 

investigating the present problem and we now turn to the development of 

the basic theory underlying the solution. 

The essence of the method employed was first given by Prof. P. S. Ep-

stein in his lectures on "Mechanics of Continuous l'ledia". An attempt to 

carry it through was made in the thesis of W. Garvin (California Institute 

of Technology 1948). However, Garvin used certain short cuts and simpli-

fications whose validity is not entirely above suspicion. Therefore, it 
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seemed desirable to reopen the problem and to carry it through in a com­

pletely systematic and rigorous manner. The essential point in the new 

approach lies in the use of the entropy associated with the irreversible 

processes. 
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II I THE BASIC THEORY 

In this chapter we shall discuss the fundamental conservation 

equations for. a compressible, viscous, heat-conducting fluid. From 

these equations an entropy equation is derived in which both reversi-

ble and irreversible processes are represented. The rate of increase 

of irreversible entropy depends on velocity and thermal gradients and 

leads to expressions for the rate of increase of the internal energy at 

the expense of the kinetic and potential energy of the fluid motion, It 

is thus possible to develop expressions for the viscous dissipation, cor­

responding to irreversible mechanical work done by viscous forces, and 

for the thermal dissipation, corresponding to the irreversible flow of 

heat down thermal gradients. 

Although the mass, momentum, and energy equations to be derived are 

found in the literature (c.f. Busemann, Ret. 14), the entropy equation is 

not usually given, and it seems useful to derive all four basic equations 

in a systematic way. The development will also present a number of rela­

tions of use in later sections, 

AssumRtions 

We shall make the following simplifying assumptions in developing 

the theory: 

(1) The viscosity~' thermal conductivity o, specific heats, etc., 

will be assumed constant, and in particular they will be con­

sidered independent of the temperature. 

(2) Because of recent work by Liebermann (Ref. 13) involving the 

role of the compressional (or "second") coefficient of visco­

sity in absorption of sound, we shall not make the usual assump-



tion that this coefficient vanishes, but instead shall retain 

it throughout our analysis. 

(3) We shall assume the medium to be in a 11pseudo"-steady state so 

that the gradual changes in the unperturbed temperature, pres-

sure, etc., brought about by the increasing internal energy (due 

to absorption) can be neglected over the time of interest for 

which the average dissipation is calculated. 

(4) We shall use the usual form of the Newtonian stress tensor, modi-

fied to include the second coefficient of viscosity (Ref. 14). 

This assumption is an approximation, since it excludes thermal 

stresses which a careful statistical-kinetic theoty would include 

in the stress tensor. For gases, however, the error is very small 

( ~ 1%), so that in view of the additional analytical complexity 

which would be introduced by the thermal stress terms, it seems en-

tirely reasonable to omit them. 

We now choose a Cartesian inertial system x < ~ • 1, 2, 3) with respect 
41( 

to which the fluid particle velocity is 1e with components 1f.c . The position 

of any fluid element at any time t will be given by its Eulerian coordinates 

x (t). To derive the basic equations in the simplest way we consider a vol-

ume V' of the fluid whose surface S' has at every point the velocity of the 

fluid at that point. Thus vr moves with the fluid and since no fluid crosses 

its surface, V• contains a constant mass of fluid. 
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1. Conservation of Mass (Continuity Equation), 

The total mass within V' is then 

M = J p dV' 

and the conservation law then assumes the form 

or 

dM 
dt 

::. - 0 

I!~ dV' +I fY:• dS' : 0 

The first term represents the rate of mass increases arising from the 

time dependence of p. The second term is the rate or mass increase due 

to the changing volume of integration. Using the divergence theorem we 

obtain 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

and since V1 is an arbitrary volume the integrand must vanish and we have 

the continuity equation 

= 0 . 
(1.5) 

We define the stream derivative 

~t () =.A...() + v.v() 
clt - - (1.6) 



and obtain a useful alternate form of the continuitv eguatiqn: 

np + r~·Y = o. 
l>t 

We note a useful relation following directly from (1.5): Iff is any 

scalar quantity 

2, Conservation of Momentum (Force Equation) 

The vector momentum of the fluid in the volume V' is 

M = s r~ dV' 

or, using Cartesian tensor notation, 

t-Il~ = f f~ dV' 

and thus the rate of change of momentum is 

::. 

In the last form (and hereafter) we use the Einstein convention and sum 

over doubled Greek subscripts only. We now use (1.8) with f = VE and 

obtain 

(1.7) 

(1.8) 

(2,1) 

(2.2) 

(2.;) 

(2.4) 

(2.5) 
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= If D1.r~ dV' 
])t: • 

The last equality is a particular example of a useful general 

theorem proved in the same manner as the derivation just made: 

Theorem If f is any scalar function and V1 is a volume moving 

with the fluid and containing a constant mass of fluid 

then 

~ s pf dV
1 

=-dt J Df ' f Dt dV . 

We must now formulate the force acting on the fluid in v•. We 

assume that there are no body forces so that only the stress forces are 

acting and the total force components are 

= 1 vet )?Go! E d v I J 

where 1'•e is the ~etric stress tensor. Then the force equation 

states that 

or using (2.8) and (2.6) 

d f'I\E 
d t 

J Dtr~ dV' = Jv dV 1 

f Dt Go! Pat~ 

and since V' is arbitrary we obtain 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 
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(2.ll) 

which is the equation of motion. 

Now the total stress tensor 1Pc~ for an isotropic homogeneous fluid 

is given by 

with 

the viscous stress tensor 

0 

1 

T-tE by 

and the velocity strain tensor eocE (in Cartesian coordinates) by 

(2.12) 

(£.13) 

(2.14) 

with~ the shear 90efficient of viscosity and ~ the compressional ("second") 

coefficient of viscosity. The components of the stress tensor are thus given 

by 

(2.15) 

= (2.16) 

where, in accordance with our summation convention, (2.16) is~ summed 
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on n. 

Equation (2.11) with (2.12) now gives the usual force equation: 

(2.17) 

Substituting "l'•~ from (2.13) and ee(~ from (2.14) we obtain 

(2.18) 

(2.19) 

and the equation of motion, written in vector form is 

(2.20) 

Now using the vector relation 

Y X~ JC 1! : 'Y_ ( '!• ~) - V 2 '!! 

we obtain the force eguation in its final form: 

Momentum (2.21) 

where the constant N in the second term is defined by 

N =- \ + f"htt ( 2.22) 

so that when the second coefficient of viscosity vanishes we have N•l 

and the force equation reduces to. the standard form usually given in the 

literature. 
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3. Conservation of Energy (First Law of Thermodynamics) 

To formulate the energy equation we assume that heat is added to 

the volume V', the heat current g being given by 

(3.1) 

Then the total rate of heat addition is 

(3.2) 

= ~V T dV . f 2 I 

Now the total energy of the fluid in V' is the sum of the total internal 

energy U and total kinetic energy K: 

u + K = f f u. d v , + I ~ p 11'
2 d vI , (3.4) 

and using the theorem (2.7) we obtain the rate of increase of the total 

energy of the fluid in Vt: 

dU dK - J J)c.L. dV' f D1I'l.!z dV'. 
d t + d t - f Dt + F D t (3.5) 

Finally, the rate at which the fluid inside V' does work on the outside 

medium is 

(3.6) 

Then the conservation of energy requires that the rate at which energy 

(heat) is added to V' be equal to the rate of energy increase of the fluid 

in V' plus the rate at which this fluid does work: 

Q.= d u + 
dt 

or, using the above equations, 

dK 
dt +W (3.7) 

(3.8) 
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Now multiplying the force equation (2.11) by ~ and summing we get 

D v-'l.f2 
f ])t 

and this together with (3.8) gives 

(3.9) 

(3.10) 

Finally, using the definition of 1r~~ we get the energy equation as usually 

given in the literature: 

(3.11) 

where the viscous dissipation function i> is defined by 

(3.12) 

and wil l be discussed later. A more useful form of the energy equation for 

our purposes is obtained by defining the specific volume 

1J =_I 

f 
so that, using the continuity equation (1.7), we have 

I :Dp -- --
~ l>t 

From (3.11) we then obtain the desired form of the energy equation: 

Energy 

4. Equations of State and Internal Energr 

(3.13) 

(3.14) 

(3.15) 

We have now derived three basic conservation equations for mass momen-

tum,and energy: two scalar equations and one vector equation, or a total of 

five scalar equations. Seven variables appear in these equations: p, v 1 , v
2

, 

~3, p, u, T. We therefore require two more equations to complete our set of 

basic equations. These are furnished by the thermodynamic equation of state 

and the specification of the internal energy {u) which we assume to be given 
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in the form 

(4.1) 

and 

1).. = u. (p, T) I (4.2) 

In the case of a perfect gas these become 

(4.3) 

u. ~ c..., T I (4.4) 

where R • c - c is the gas constant/gm, c , c the specific heats/gm 
p v p v 

and '?I = c / c • 
p v 

It may be pointed out here that the entropy equation (derived in the 

next section) does not provide another independent equation since it in-

volves the new variable s (entropy/gm) . If we include the entropy equation 

we then have eight variables and eight scalar equations which we summarize 

schematically as follows: 

p 

'\}" 

T 

p 

u 

. s 

Continuity Equation (Scalar) 

Force Equation (Vector) 

Energy Equation (Scalar) 

State Equation (Scalar) 

Internal Energy Function (Scalar) 

Entropy Equation (Scalar) . 

5. Entropy Equation (Second Law of Thermodynamics) 

Following Eckart (11) and Tolman (12) we express the second law of 

thermodynamics as an eguality, using the concept of irreversible entropy: 

- ( j_ q,.. • dS' + f D Slrr d V' • J T- - Dt 
(5.1) 
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The left term is the rate of increase of t he total entropy within V' , 

s being the entropy per unit mass of fluid. The right side is the sum 

1 
of (a) the rate of entropy increase due to the entropy current <-r- s) 

flowing in through t~e surface, and (b) the rate of increase of entropy 

D5trr 
throughout the volume due to irreversible processes, Dt being the rate 

of production of "irreversible entropy" per unit volume of the fluid. In 

accordance with the second law as usually stated we require this quantity 

to be positive. 

Using the theorem (2.7) on the left side and converting the surface 

integral to a volume integral we have 

5 D 5 dV' = I- V•(_!_'tr \ dV' + s l>Skr d V' f Dt - T - J "Dt J 

and since the volume V• is arbitrary we obtain the entropy eguation: 

Entropx o '])s -
J Dt -

- ~ • (...!... '\) + n 5 irr • 
- T- ])t 

(5.2) 

(5.3) 

Now we substitute for the rate of change of the entropy density of the 

fluid, as a consequence of its known dependence on the internal energy and 

volume of the fluid, the expression 

Ds = _\ l>u. + -1' DV 
Dt T Dt T Dt (5.4) 

But from the energy equation (3.15) the right side may be replaced and we 

obtain 

f Ds __ I [fDu.+f~DlJJ = 1..(-V·Clr+ ~] 
Dt - T Dt' r Dt T - - , (5.5) 

Comparing this with ( 5.3) we then have an expression involving Ds,r,. /nt : 

Dsirr 

J>t 
v.(i. ct\ - -' '£·CL +- .l.~ 

- - T -J T £ T 

_ --' a..·VT +~.P 
- Tz. ..P. - T ' 

(5.6) 

(5.7) 
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and using the definition of the heat current~ , 

(5.8) 

we obtain the desired expression for the rate of production of irreversi-

ble entropy per unit volume: 

Dsi~r 
l)t 

( 
VT~2. I 

G"" - + -~ T T . (5.9) 

The first term on the right is the rate of irreversible entropy pro-

duction associated with the thermal conduction due to the presence of tem-

perature gradients. Since a ~s positive, this term is clearly positive, so 

that it is in accordance with the requirements of the second law as usually 
w ith 

stated, i . e., that the entropy associated ~irreversible processes must always 

increase. 

The second term on the right is the rate of irreversible entropy pro-

duction associated with the work done by the viscous forces due to the pres-

ence of velocity gradients. Mor eover it is easily shown from the definitions 

Of ~ and e ecE that 

~ = I aeE e«E. (5.10) 

= Ztt [e.~ e.E. - ; (tt-1"-){~::!) c5atE: ectE ] (5.11) 

: ZttLe~ .... e~1 + e:31 + 4"t[e~3+e!1+e~J- ~ (,-r)("Y:!!:)z (5.12) 

or 

~ ::. 2. rt L (e"+ct.Y +(en +o..")l + ( e33+a..)z. + 2 ( e~3 + e~, + e~2J] (5.1.3) 

with 

a.. = ' [ .,... ] 
3 (p-/~) - l "i.·1t (5.14) 

V·V -::: e .cat = e .. +€21 +e33 
(5.15) -- ' 

so that, since T) a.11d T are positive we see from (5.1.3) that the second term 
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of {5.9) is also always positive. 

It is to be noted that we have not proved the second law, but have 

only shown that if we assume the above definition of the stress tensor 

(2.12) and assume that o, ~' T are positive, then the rate of production 

of irr~versible entropy Dsirr /nt is indeed positive. To prove the sec-

ond law we would have to justify the above assumptions regarding P~E ' o, 

~' T, by a careful statistical-kinetic treatment, including also any effects 

of thermal stresses. 

6. The Viscous and Thermal Dissipation 

From the results of the preceding section we have seen that the pres-

ence of velocity and thermal gradients in a viscous heat conducting fluid 

leads to a rate of production of irreversible entropy per unit volume given 

by Dsirr /nt in (5.9) . From this we obtain the total rate of dissipation 

of energy per unit volume dE/dt due to irreversible processes: 

d E. ::. T D S i rr 

dt Dt 
(6.1) 

where 

(6.2) 

and ~ is given by (3.12). 

We shall call Y the thermal dissipation function and ~ the viscous 

dissipation function. 1r and ~ represent respectively the rate of increase 

of the internal energy per unit volume of the fluid due to (a) irreversible 

heat flow in the presence of the thermal gradients and (b) irreversible me-

chanical work done by the viscous forces in the presence of the velocity 

gradients. This increase in the internal energy is at the expense of the 

ordered macroscopic energy of the heat currents and the mechanical flow energy 

of the fluid; this fact justifies the use of the term "dissipation". 
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If we now consider a volume V fixed in space we obtain the rate of 

dissipation of the acoustic energy of a sound wave sweeping over the vol -

ume: 

(6.3) 

(6.4) 

where d E'1/dt is the total viscous dissipation and dE,../ dt is the total 

thermal dissipation, both in units of energy/sec. (We have dropped the 

prime in the volume element dV since the volume of integration V is fixed 

in space rather than moving with the fluid). 

It is particularly to be noted that since -f: and ~ are quadratic, 

we need only solve the first-order equations of the acoustic field in order 

to obtain Y and ~ to second order. 

This completes our derivation of the general basic equation for a vis-

cous heat-conducting fluid. We now turn to the acoustic case and apply these 

results. 
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III. THE SOUND FIELD 

In this chapter we shall consider the general acoustic equations, 

obtained as the first-order approximations to the basic equations of 

Chapter II. From these equations we shall derive the wave equations 

for the acoustic, thermal, and shear waves and discuss their solutions. 

Finally we shall list some useful auxiliary relations relating the first­

order pressure and temperature with the velocity potentials. 
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7. The Linearized Equations 

The general first-order acoustic equations are obtained by lineariz-

ing the basic conservation equations for mass, momentum and energy. We 

expand our variables to first order: 

f ;. fo + J>• 

'!! = Vo+ v-, ( Yo = 0) 
(7.1) 

t> = i=>o + 1'• 

T = To +T, 

u - Uo + U 1 

where the o-subscript refers to the unperturbed quantities in the absence 

of the sound field ~ - 0), and the 1-subscript denotes the first-order 

quantities. We assume the fluid to be at rest in the unperturbed state so 

that 1r • 0. Substituting these quantities in the basic equations (1.7), 
-o 

(2.21), and (3.15) and noting that to first order I = 0 and D/ot =a/at 

(there are no transport phenomena since the term 1!·~ ( ) is second-order), 

we obtain 

Continuity Equation: 
0 

P• V • 1.Y = 0 
dt + fo- -' (7.2) 

Force Equation: 

Energy Equation: 

(7.4) 

State Equation: 

--p, "'" --p, ( "\J', 'T,) 
(7.5) 
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Internal Energy Equation: 

We now eliminate p
1

, u
1

, p1 from the equations, to obtain two equations 

in the two fundamental variables 1:. and T
1

• 

To eliminate ~ we differentiate (7.6) (using u
1 

to denote o~/ot) 

to obtain 

and substitute this into the energy equation: 

(7.6) 

(7.7) 

(7. 8) 

To eliminate p
1 

from the force equation we differentiate (7. 5) and use the 

continuity equation for p1: 

80 

Now we differentiate the force equation with respect to t and substitute 

(7.10) to obtain 

P• Yo = fo ( ~)T !l(Y·~.)- ( *)f ~T, + \N '1! ('i·~·J- rt!~ !xy, • 

Equations (7.8) and (7.11) are the two desired equations in ~ and T1• 

We now note the definitions 

c.l. = ( .!f\ 
l7f ;, 

(7.9) 

(7.10) 

(7.11) 

(7.12) 

(7.13) 

(7.14) 



(22) 

for the specific heat at constant volume (cv ), the volume coefficient 

of expansion at constant pressure ( ~v) and the adiabatic velocity of 

sound (c). We then use the general thermodynamic relations 

and the above definitions to obtain 

I 2 
"f C fo olv 

Substituting these relations in equations (7.8) and (7.11) we obtain the 

working forms of the velocity and energy equations: 

. 
have used fo'lJ'. = ~· v, 

1 
ToG oiv = T. + ~·lr· c. .. 

v = ttff• is the kinematic viscosity, and we 

from (3.14). 

We now introduce the periodic time dependence of all first order 

quantities: 

-i.cwt 
f• = f e 

y, : 
-i.wt 

tre 

1· 
-~wt 

"' -pe. 

T; Te -i.wt 
~ 

t..l, -: 
-~wt l.le 

(7.15) 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

(7. 20) 

(7.21) 



(23) 

Here p, ~' p, T, u are pure space functions independent of time*. 

Noting that a /at = - ~ w we obtain from (7.19) and (7 . 20) two space 

e.1.uations for 3! and T: 

= - c\l.., VT + (-~ + ~ .)v 'v · 'll"\ -~V'x.Vx1T 
l - .:wr '3 ')-'--1 - -- (7.22) 

(7.23) 

Our problem is now to solve t hese two space equations for y and T. It may 

be noted that the first-order quantities are all real; for convenience, how-

ever we have assumed them to be general complex functions in (7. 21), so that 

after (7.22) and (7.23) have been solved for ~ and T we must use for the first­

order quantities 1r
1 

and T
1 

the real part of the quantities in (7.21) . 

8, Derivation and Solution of Wave Equations for the Acoustic, Thermal 

and Viscous Waves 

In order to solve the two space equations (7.22) and (7.23) we assume 

for ~ the general vector field 

(8.1) 

where 4> is a scalar potential and! a vector potential, and where we take 

"2.·~-o without loss of generality. The force equation (7.22) becomes 

(8.2) 

or, equating the vector and scalar parts separately we get 

~~he use of these symbols for the ampl itudes of the first-order quanti­
ties will cause no confusion with Chapter II since throughout the remain­
der of the work we shall use only the first- order quantities . 
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- ~w~ = ..,;v 4 A. 

t w<P :: - c;vr + [;~l- 4: JJ1 v'q, . 

The energy equation (7.23) becomes 

(8.4) 

From (8.3) we obtain T as a function of the scalar velocity potential: 

(8.5) 

and by substituting this into (8.4) we eliminate T and obtain the biguad-

ratic or double wave equation in f : 

(8.6) 

We now make the substitutions 

(8.7) 

where for most fluids the magnitudes of the dimensionless quantities e and 

6 
f are generally very small for values of w ~ 10 • (See Table I for the 

values of the various constants for water and air.) We then have to solve 

the biquadratic equation 

~4 [et-ttf/r1v4d> - ~~[t-He-tf)]v1<P -<P = o (8.e) 

Solution of Biquadratic Equation 

A solution of (8.e) may be obtained in the form 

(8.9) 

where ~ 
1 

and ~ 
2 

are wave functions satisfying the equations 
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(8.10) 

and where 
2 k
1 

and 
2 k
2 

are the two roots of an equation obtained from 

(8.8) as follows: We substitute 

(8.11) 

in (8.8) and get 

{ 
44 (.'1..1. 1 1"' ~ k [ef +.:f/r} + ;::;ik [•-de+-f) - t 't' = 0 . (8.12) 

Since ~ is not identically zero the curly br~cket must vanish, so that, 
,~ 2 

putting ?C.= (c k/C4>J , we must solve the quadratic in ~ (or k ): 

(8.13) 

Since e and f are very small we see immediately that one root is ap-

proximately -1.
1 

• 1. We therefore put 

x = l+<t- (8.14) 

where g <~ l and solve for g, retaining only first-order terms in e, f, g. 

The result is 

(8.15) 

so that one root is approximately 

:x:, = 1 + ~ [e+f-fh}. (8.16) 

To obtain the second root we note that if we divide (8.13) by the coefficient 

of 'I. 
2 

, the constant term gives the product of the two roots: 

{8.17) 
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Using (8.16) and again keeping only first-order terms we obtain 

x1 = t lf If 

Replacing ~l by {ek, /w)
2 

and ~2 by (c.kl/w)
2 

we finally obtain 

2. , _,l. [. ] 
k, ::. ~ 1 +- ~ ( e +- f - f !J) 

or, replacing e and f we have 

._2, ::. w1 {t + i. [ ~ ~ + ~ (•-•lr)J} 
~ c,1 3 c.~ c."-

{8.18) 

(8.19) 

(8.20) 

(8.21) 

(8.22) 

2 
These are the desired values of the two roots of the quadratic in k inside 

the curly bracket of (8.12). 

Summary. We now collect our results: We have found that the velocity field 

is given by two scalar potentials ~ 
1 

and cP 
2 

and the vector potential ! , 

all of which satisfy the wave equation: 

Velocity (8.23) 

Acoustic Wave "'\] 
1 4>, + k~ 4', = 0 (8.24) 

Thermal Wave (8.25) 

Viscous Wave (8.26) 
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where from (8.2), (8.21) and 8.22) the wave numbers are given by 

(8.27) 

,J- • I -
"1.:. c. w K (8.28) 

(8.29) 

and where in place of ~ we have for convenience used the thermometric con-

ductivity ;( defined by 

(Si~ce the imaginary part of the wave numbers gives rise to the damping 

2 
effect for the waves, it was necessary to retain the small terms in k

1 
to exhibit this effect. ) Taking the square roots we obtain 

where in each case we use the root corresponding to damping of the wave 

(i.e. , positive imaginary part). 

(8.30) 

(8.31) 

(8.32) 

(8.33) 

The corresponding phase velocities and wavelengths for the acoustic, 

thermal and viscous waves are* 

* The subscript J.. denotes the "traverse" character of the viscous or shear 
wave. 
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'I. 
c = w/<R(K) c (2wv) 1 

1. 

The velocity and wave length of the thermal and viscous waves are seen to 

be frequency-dependent. Values for these quantities at various frequencies 

for water and air are listed in Table I at the end of the text. The imag-

inary part of the wave numbers k
2 

and K give rise to the "damping lengths" 

diseussed in Sec. 10. 

We have called ~ 
1 

the acoustic wave because it is propagated with 

the normal sound speed c; ~2 is called the thermal wave since its character 

is determined by the thermal conductivity; finally A is the viscous or shear 

wave since its properties depend on the viscosity. 

To examine the physical nature of the three waves and their effects in 

dissipating acoustic energy we shall treat the one dimensional plane wave in 

the following chapter. Before doing this however, we consider briefly the 

manner in which the first- order temperature and pressure depend on the velo-

city potentials, and derive a useful expression for the viscous and thermal 

dissipation in terms of the first-order acoustic quantities, 

9, Expressions for First-Order Temperature and Pressure and for the Viscous 

and Thermal Dissipation 

First-Order Temperature 

Substituting our expression tor 2! from (8.23) into the temperature 

equation (8.5) we obtain 

(9.1) 
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where the constants o£ 
1 

and o£2 are given by 

(9.2) 

-iwt Thus the space part of the first-order temperature T
1 

• T e is a 

linear !unction of the two scalar potentials ~ l and +2• The same result 

is reached if we substitute (9.1) in the energy equation (7.23) and equate 

the coefficients of 4>
1 

and ~ 
2 

to obtain o< 
1 

and <li 
2

• The reductions above 

are facilitated by the useful relation 

(9.4) 

which is easily proved from the definitions of ol..v and c
2 

in (7 .13) and 

(7.14), together with the familiar thermodynamic relation for the specific 

heats: 

(9.5) 

First-Order Pressure 
-~wt 

To derive the pressure dependence on 4> 
1 

and ~ 
2 

we write ~. -= 1l e 

in the linear force equation (7.3) to obtain 

(9.6) 

We then substitute ~ from (8.23) and separate the vector (curl) and scalar 

(divergence) parts, the latter giving 

(9.7) 



or 

and using the wave equations (8.24) and (8.25) we obtain 

where the constants ~ 1 and '6' 2 are given by 

4N v 
~'l.: 1- T ~ 

We drop the small imaginary term in ~ 
1 

but retain the second term in 

~ 2 since in general it is of order 1 for fluids. Thus the space part 

- l.'Ot {p) of the first-order pressure p1 • p e , like the temperature, is 

a linear function of the two scalar potentials f 1 and ~ 
2

• 

The Viscous Dissipation 

We have seen in Sec . 6 that the total viscous dissipation is given 

by the volume integral 

d.E'l. = s~dV. 
dt 

It is in general a tedious process to evaluate this integral and a great 

(9.8) 

(9. 9) 

(9.10) 

(9.11) 

(9.12) 

simplification in introduced by converting part of the integral to a sur-

face integral. This we now proceed to do. 

The dissipation function i is defined by (3.12): 



-31-

= 

So = 

where we have used the definition of the total stress tensor P«e from 

(2.12) and the relation (3.9) for the kinetic energy. From (9.16) we 

then obtain the desired general form: 

(9.13) 

(9.14) 

(9.15) 

(9.16) 

(9.17) 

where the first volume integral has been converted to a surface integral 

over the surface S bounding the fixed volume v. 
For the acoustic case we expand the stress to first order terms 

(9.18) 

where 

(9.19) 

and use the previous expansions in p, 3l and p from ( 7.1) 

f :- r~ + F• (9.20) 
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These give for i in (9.16) 

(9.21) 

so that ~ is determined by products of the first-order acoustic quanti-

ties each of which is periodic in time. Since we are interested in the 

average rate of dissipation we take the time average of i
1 

using the rela­

tioQs in Appendix I, and obtain 

The second term in (9.22) may be dropped since it is pure imaginary 

) and its time average is zero (see Appendix I). Here ~ 

denotes the real part of the expression following and the sta~* denotes 

complex conjugate. As before we write the first-order quantities in the 

form 

-i.wt p,:. p e 

(9.22) 

(9.23) 

where p, 3r , P«€ (the amplitudes of the corresponding first-order quanti­

ties) are complex space functions only and do not depend on the time. Thus 

so that, integrating this we have 

(9.25) 
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and this is our general computational form for the viscous dissipation 

in an acoustic field. 

Thermal Dissipa\ion 

The thermal dissipation is given by 

(9.26) 

This can also be transformed to a surface integral and a simpler volume in-

tegral for computation. We have 

. (9.27) 

(9. 28) 

2 Now 'V T i s given by the energy equation ( 7. 20) : 

(9.29) 

We therefore have for if 

C"" ~ tr • ( 
1
ot., 

-ur = -T V.fTVT - -(TT+T.-c. TV•\1") 
Y. o - \ - T0~ p - - > 

(9.30) 

and ~Avis 

(9.31) 

' where the tT being pure imaginary has been dropped, since its real part 

is zero, and we have used the definition ;e. = ~/poC.v to obtain the new 
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form for the coefficient of the last term. Integrating this we have for 

the thermal dissipation 

(9.32) 

and this is the desired general computational form. The surface integral 

is extended over the closed surfaceS bounding the volume of_integration V. 

10. Plane Wave Solutions 

We now apply the foregoing theory to the case of a one-dimensional 

plane wave moving in the positive x-direction. The appropriate solution of 

the scalar wave equations is 

(10.1) 

where A and B are constants. Since k
1 

and k
2 

are complex the amplitudes 

will diminish exponentially. Using (8o31) and (8.32) for k 
1 

and k 
2

, 

(10.2) 

(10.3) 

so that if ~ is the absorption length, i.e., the distance in which the 

wave amplitude declines to 1/e of its initial value, we have 

.1, = 2 c [ 4N vc..:> ,..., ,i) s:e w }-
1 

- - - +~- 'L 
c..,) 3 c."- '-

(10.4) 

(10.5) 
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i - l -•/'2. 
Since ,ac w , .e. "'. ce w , the absorption lengths both decrease with 

frequency, and the absorption increases with frequency, the increase be-

ing faster for ~ 
1 

than for ~ 2• The absorption lengths for air and water 

are tabulated in Table I at the end of the thesis. It is apparent from 

Table I that 1. 1 and 1
2 

are of entirely different orders of magnitude, .¢1 

being damped only slightly over distances of the order of centimeters, while 

4> 
2 

is very strongly damped. 

For air v and it are about equal so that the themal absorpti on is 
• 

comparable to the viscous absorption for the acoustic wave <P
1

, a result pre­

viously obtained by Kirchhoff. 

While we have no viscous shear wave in a one-dimensional sound field, 

we see from the wave equation that the wave number K (8.33) gives an absorp-

tion length for this transverse (i ) wave of 

(10.6) 

in the same way as the thermal wave number k 
2 

(8.32). As is seen from 

Table I, the viscous wave is also rapidly damped, the absorption of the vis-

cous and thermal waves being comparable in magnitude. 

It therefore appears that the main source of attenuation of the incident 

plane wave on small spherical obstacles is due to the conversion of acoustic 

waves into thermal and viscous waves which are rapidly absorbed within small 

distances from the spheres. 

To obtain the attenuation ol we first proceed in the usual way to de­

rive the acoustic intensity in the form E c E 
0 

- Q£t 
e • We consider only 4> 1 

since <f> 
2 

is rapidly damped in any case, and note that if we neglect small 

transport and conduction terms, the energy flux is given by the average rate 



-36-

at which work is done by the stresses on unit area normal to the wave: 

(10.7) 

and using (9.9) for the pressure and (10.2) for the potential we have 

(10.8) 

or (10.9) 

where (10.10) 
J 

is obtained from the real part of ~k.~ in (10.2) . This is then the at-

tenuation desired and it is seen to consist of the viscous attenuation ob-

tained by Stokes (but modified by N to include the effects of the compres­

sional viscosity), together with the Kirchhoff thermal attenuation. For 

future use we note that over distances small compared to 1.
1 

the wave is 

attenuated negligibly and the intensity is 

(10.11) 

1 A.. A i. k,'t for a p ane wave whose velocity potential is ~l a e • 

A second method of obtaining the attenuation is to evaluate the average 

viscous and thermal dissipation integrals (6.3) and (6.4): 

dEl\ = fi d\/ 
dt 

(10.12) 

(10.13) 
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For the one-dimensional case i is found from ( 5 .12) to be 

£ : 4~ 'l l ~~') l. 

or 

From (10.11) this gives 

dE" = 
c!.t 

for a volume of integration of unit cross section normal to the wave and 

(10.14) 

(10.15) 

(10.16) 

(10.17) 

length L, where L <~ 11, so that the attenuation of ct 
1 

is negligible over 

the volume. 

For the thermal dissipation we have from 6.2) 

(10.18) 

Using our temperature relation (9.1) 

(10.19) 

this becomes 

(10.20) 
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From (10.13) we then have the thermal dissipation: 

d Er = ...!:.... r w'l.(t -i)To] (,.)1. 1\A'If; L 
d t '2.To l c1 Cp c.1 (10.21) 

* where (9.2) has been used for (~1~1 ) and again S is a unit area normal 

to the direction of the wave and L is the length of the volume of integra-

tion. To obtain the attenuation o<. per unit length we divide the total 

dissipation per unit length by the incident energy flux E from (10.11): 
0 

or 

(10.22) 

(10. 23) 

Since t his agrees with our previous result, we have thus verified that the 

two methods of obtaining the attenuation are consistent. 
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IV. ATTENUATION OF P~~ SOUND ~AVES BY SMALL SPHERES 

We now attack our main problem of calculating the attenuation of 

sound waves by small uniform spherical inhomogeneiti es embedded in an in­

finite fluid medium. We shall start by considering a single sphere of 

radius R and finding the velocity potentials. Knowing these we can then 

calculate the additional viscous and thermal di ssipation caused by the pres­

ence of the sphere. Finally, from the dissipation we shall compute the at­

tenuation for a number of such spheres. 

11, Assumptions 

The problem will be solved under the following assumptions, the first 

three being the assumptions made in the development of the general theory 

of Part II: 

(1) The viscosity, thermal conductivity specific heats, etc., will be 

assumed to be constants, in particular, they do not depend on the tempera­

ture. 

(2) The coefficient of compressional viscosity will be retained and 

will not be assumed to vanish. 

(3) The medium will be assumed to be in a pseudo-steady state so that 

the imperturbed temperature, pressure , etc., are constant. 

(4) We shall assume that over the region occupied by the small spheres 

the attenuation is so small that the intensity of the incident wave may be 

considered constant (See Sec. 15). 

(5) The spheres, of r adius R, will be assumed very small compared to 

the acoustic wave length~· 
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(6) We shall assume the deformation of the spheres by the stress 

variations to be negltgible so that in applying the boundary conditi ons 

at the surface we shall put the radial coordinate r • R. 

(7) We shall not include the attenuation caused by scattering. As 

shown by Epstein (Ref. 6) this effect is very small compared to the vis-

cous and thermal attenuation because of assumption (4). (Compare o( with 
s 

~ ~ and ~0 in the Introductio~ If the scattering term is required it 

can easily be calculated. 

(8) The spheres will be assumed to be sparsely and randomly distri-

buted so that the interaction effects between spheres (secondary scatter-

ing, collisions, aggregation, etc.) can be neglected. 

12. Velocity Potentials 

Consider a plane sound wave propagating in an infinite fluid medium 

and impinging on a fluid sphere. We shall denote quantities relating to 

the outer medium by unprimed letters and those pertaining to the interior 

by primed letters. Outside the sphere we have the incident wave represent-

ed by a potential c:p i and the scattered wave, represented by the acoustic 

and thennal scalar potentials q, 
1 

and f 
2 

and the shear 
t 

Inside the sphere we have two scalar potentials ~ land 

potential!'· We thus have seven potentials. 

vector potential A• 

' 4> 
2 

and a vector 

We choose a spherical coordinate ~stem (r, Q, y ) with origin at the 

center of the sphere and polar axis in the direction of propagation of the 

incident wave. Because of the axial symmetry two components of the vector 

potential vanish (Ar • AQ .. 0) and only the azimu'i_thal component A~ is dif­

ferent from zero. Again, because of the axial symmetry, there is no depend-

ence on ~ • Under these conditions the appropriate soluti ons of the wave 
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equations 

~ I I l. I 

'V cP. + k , '· :: 0 

can be written in the form 
00 

4>. = 
L 

:. ~. ~"(1.n+t) P..(cos&~ } .. (k,h.) 

~ 

: 2 i 11 (2.M;) P .. (c:.ose) S .. h .. (k,h) 
h:o 

eo " 
<P ... : L l. b"'t;'\ P,.(G.Os&~ C..,h" (k1 A.l 

tuo .. 
A-p = A = L i." b.nt~ P! (CDse) 'D .. h .. (K ""~ 

fttl 

eo 

IP: -= ~ l." (lM;) P .. ( c.ose) ~ .. j .. ( k,ll) 
n:o 

eo 
q,' : ?: o (' ( 2 ... ~ ~ .. ((.OS e) c~ j .. ("~"") ... 

~w: A 
.. , 

: Z \" h ... :'l P! (CA.S~ D .. j .. (K A.) 
h~ • 

Here the form for ~ i is the standard expansion for a plane wave 

in spherical coordinates; the remaining expressions ar e convenient forms 

of the wave functions in spherical coordinates, with the six constants 

(12.1) 

(12.2) 

B C D B' C' D1 to be determined from the boundary conditions. The radial nnnnnn ~ 

functions j 
n 

Appendix II. 

and h are the spherical Bessel Hankel functions discussed in 
n 

The choice of h (Hankel function of the first kind) for the 
n 

outside scattered potentials insures that the ~ 2 and A waves decline ex­

ponentially at large distances. Inside the sphere we use the Bessel func-

tions which are the solutions regular 

and P 1 (cos Q) are Legendre functions 
n 

at r • 0. The functions P {cos Q) 
n 

and are discussed in Appendix III. 
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131 Velocity, Temperature, Pressure, and Stresses 

The velocity in the outside medium is given by (8.23): 

(13.1) 

where + ., • i + 4>
1 

+ <!> 
2

1 rlri ting A ., A 'I 'lte have the velocity compo­

nents: 

1\1' ... = - 'acSI + ~e c~'ii"&) a~ 1\. Sit\8 
(13.2) 

1\te= I ~cb ' ;~ (,..~a.) ----h ae "" 
fir 'I :. 0 

I f I 
wi. th corresponding expressions for '\1'._, 1 \t8 1 '\Scp 1 

From Sec. 9 we obtain the expressions for the temperature and pressure: 

T' =- ot' J..l I ,j.l 
I ..... + e(.'+''- (1.3 • .3) 

and 

We now obtain the radial stress components from (2.15), (2.16), and 

(1.3.2) using standard tensor methods (Ref. 9): 

tre = rt{-l:e t:;~- ~~)-t;~~-~)~~~:&[~;1._ 9 ;e(As;"e)1} (13. 5) 

(13.6) 

(13.7) 
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where 

~'2.= 1-2 ~ 
(13.8) 

14• Boundary Conditions 

The boundary conditions at the surface of the sphere are obtained 

from the physical requirements that the velocity, temperature, radial heat 

c·.u·rent, and nonnal (radial) stress components all be continuous across 

the surface r • R. We tt-.us have the six boundary conditions 

(1) ' (4) cr-Vr T r' V~T' ""A. ~ i\1""" = 
(2) • (5) 

I 

""e : '\Te Pre ,., Pre 

(3) T' (6) I 
T • PH ~ r~~ 

and these are sufficient to solve for the six coefficients forthe paten-

tials. For simplicity we introduce the abbreviations 

CL,,k. ,f' 

I I 
o., c. lc.,R a' = ... 

b ~ K R. 

b: K.'R. 

Using the standard relations for the Legendre fQnctions (Appendix III) : 

1. 
:. - P., 

and indicating differentiation of the Bessel and Hankel functions with 

respect to their arguments by primes, we obtain from (14.1) and the pre-

vious section the six equations: 

(14.1) 

(14.2) 
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1 ( \ 1 1 • I ( 1\ I I ( \ I t • I ( r) 
B" &,li,. 4" - Bn 6., j n 4 11 + C." c:t"n" a~1 - C"~ j" Q~. 

Dn"'("'-t~hn(b) • :I>! ~lnt;)j"{b') = -Q.,j~(ct ,) (14.4) 

(ve): B"h"(Q~ - B~j"(Q:) + c.,h"(q,J C~j"(Q~) (14.5) 

:D,J b~"(b) +h.,( b)) + l>~[~j~(,)+j"(~)1 :. - jn (ct,) 

(T) : Bntt,h,.(Q) 8~at:jn(Q:' + C.,ot2\,"(a..J I I . c D - ~.jnCa,) - - c.,.,..lJ" q : 
(14.6) 

lfre) : ~' lA,hn(q)- h,(q,)] - '8~ [d,j~(q:) - j.,(ct•,)1 

+C11 ((41hn(~-h,.(•~1 - C~(A',j~(~- j .. (~J (14.8) 

-Dn~ib~~~(b) +(h~n-t)h,.(b) + l>~'i[~j:C~)+( .. ' .. ,-l)j.,(b)1 

= € ( 4, j~(tl:'\ - j .. (Cl,) 1 

( l 1. I \1 I(~' ' ( o\ '!- · 11
( ')1 (14.9) t?rrl: anE' l-ip.h .. (Q~-24,h~fa" - ~" !irt•J" Cl,, - 24,Jh •• 

r 2. 1 " '1 • r '
1 

, • • , -,. ·" ( •'1 ~ C,.ElDp1 h"(q,)-2a,hn(tlaJ - CnLiifS,Jn(Ql.J- 2¢a.jn 4,1 

+-l>"E2n(~t+;)(l.h~(b)- h"(b)1 -~zn("*~[~j~(~)-jn(~)): -E[~p.jttC•)-l•~:(•,)1 

where 

For n-0 there is no vector potential (D c D' • 0) and no Q-dependence, 
0 0 

(14.10) 

so that the ~g and prQ equations do not appear. In this case there are 

four equations in B, B' , C, C' • For n ~ l all six equations are needed 
0 0 0 0 

for the six unknown coefficients B , B' , C , C' , D , D' • · n n n n n n 

15. Approximations 

The problem has thus far been completely general; we have made no ap-

proximations and have not used our condition that R is small compared to~· 
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We now introduce assumptions (4) and (5) and make various approximations. 

Assumption (4) states that the acoustic waves are not appreciably 

damped over the region occupied by the scattering spheres. This means 

that we neglect the imaginary part of k1 : 

k, ... ~$I+ L. -1
1 

( 
4 "' ~ + (¥-•) ;<.'"'11 ~ ~ c l 3 c_'&. <:~ c. 

which amounts to neglecting the extremely small quantities 

compared to unity as was done in the derivation of k
1 

and k
2 

(Sec. 8). 

Physically we are making the very reasonable assumption that the extent 

(15.1) 

of the region occupied by the spheres is very small compared to the damp­

ing wavelength ..e 
1 

of the acoustic waves. The same assumption is eTen 

more valid inside the spheres. Thus from this point on we assume that the 

acoustic wave numbers k1 and k{ are real: 

l.o) I 
&.) 

k,= - k, = -, c. c.. 

Our asstmlption {5) that R<<.~ then leads to 

I I 

tl, = k, R. <. <.. \ o.., = k, R<<. I . 

We shall make no assumptions regarding the magnitudes of the quantities 

a
2 

a2, b, b1 in obtaining the general expressions for the attenuation. 

Using our values of k2 and K from Sec. 8 we have 

. '1./ - ,.,1 l)z_ 
G\.~~ k"~:: (I+L)(wR ~KJ b= KR = (t+i)(wR4/z~} 

''z. I ":\ ''2. 4.~:: k1.R~ (t+i.)(wR.l./:z.~') b':: K'R.= (t+i.)(c,.,R.1. -z.11"J • 

(15.2) 

(15.3) 

(15. 4) 



Finally using the approximations (15.1) we have the following relations 

for the constants appearing in the temperature, stress, and pressure ex-

pressions of Sec. 13: 

el, = - i. w (t-~ /-'-v c., 2. o/.1 ::. c -r' - ol.v K 

~. 'C (31. = 1-'l.N..J/.;(. 

t, .,. I i,. -:: I- 4th) /3iii.. 

< < ' 

with similar relations for the primed quantities. 

168 Values of Potential Coefficients 

It is shown in Appendices IV and V that with the above approxima-

tiona the potential coefficients for n-o and n•l are as follows: 

For n-o Bo = i ~~ t~ (~,Y-\} + ( ~ ~~-0 L.o.,Coa~h,(Q~) 

where in C
0 

z = 
jo(4~) 

A'&j• (q~) 
= - L Q.'1 

(15.5) 

(15.6) 

(16.1) 

(16.2). 

(16.3) 

(16.4) 

(16.5) 
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The last form is easily verified from Appendix II and will be used later. 

For n•l 

B,= • ~~ ( ~\. ,._ l• Q.~ (I-<\ Noo + ~., + ~.o + Nn 
L- 1-o J t.:r :::. oJ 

3 3 :Ooo + 'Do, + 1>,. + D .. 

s' = ~ &' 4., 3b& 
I c.', : 0..'. 

I I 

C~ = _ o.., o1: ((•+2~)~Gf-3~)h.Cca~ + i[H(a-~)&- ~G] a,_h.(ct1) 

3 «1. 2.(-/.-•)j.C~~)h,(c.)+ 4'1.jof•'l.)h,(ct .. '\-,l j.(Q~)4 .. \,o(~ 

For G the numerator and denominator terms (N's and D's) are given by 

w •• = [t-E.] ~j.(~) · bh.(b) 

N = [3(E.-~- ~E.b,J bj·.l~) -h,(b) 
01 

1 
l'-l 10 ::[?s(E-~+-ib] j,(b) · bh.(b) 

N .. = [ 9(•-E) + i b1.(li-•)] j ,(b) . h.(b) 

l>
00 

= ha-Ec)(H!)) b j.(\,'). bh.(b) 

D., .. [scS(E-~- ~ ~ ~(!+21 bjo(~). h.(b) 

D,
0
= [3(~-;)(o ... l.)t-i~\.S+2)1 j.<~). bh.(b) 

D
11 

= (17Mt-E) ... tEb2(o-~1 j.C\;) . h,(b). 

and the various constants satisfy the relations 

€ • "-''1.' 
'l. 

db = E b1 
• 

For later use we note that a simpler expressi on !or B
1 

may be de­

rived using the last relation (16.11) and the relations 

and from 

(16.6) 

(16.7) 

(16.8) 

(16.9) 

(].6.10) 

(16.11) 

(2.3) in Appendix II. Using the above values for the N's and D's we find 
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Noo+ N., i" N,., + tJ 11 = bh£b)(t•- £)bj~Lb) -~bJ,(~)] - ( t ~b) b j .. (b) h. lb) 

Doo + D,o = - (H&) bh.(b)[Ct -~) bj~(l:i) - -t~
1

j,h~)] 

Do, .._ Ou = 9cS h 1 (b)[ (I - E.) ~j1(~)- ~bj,(t:J)] + ( ~~ ~2)(11- ~) b1jl.(~)h, (b) (16.12) 

!rom which 

&,=ill~ (I-~) ( bh1{l,)[(I-E-)bia(~)-i\:
1

j,(b)] - (tcib
1

)~j"'h:) . h,(b) 
3 [-(ab)hh.l~1-9~h.(b)]Rt-E:)bj~<~)- ~bj, W)] + (H~)(~cS~,_) bj,_C~) h.( b) 

(16.13) 

It is interesting to note that while the amplitude B
0 

of the zero­

order scattered acoustic wave depends on the thermal conductivity o (in 

the a
2 

term), the first order amplitude s
1 

is independent of o and agrees 

with Epstein's result (0.8) in which the conductivity was ignored (o c 0). 

It is useful for later calculations to list the general order of magni-

tude of the coefficients 

3 3 l. 3 B ,., a., a,- a., Co,._ a., c,-o., 0 

(16.14) 
'2. ,3 8~ ... ~ e'- ~ 

I I I 
I Co"'" 4., c, """ a. , 

Interpreting these results physically we see that for an incident acoustic 

wave of unit amplitude, the scattered acoustic wave outside has an ampli­

tude of the order of a13<~ 1, and the inside acoustic wave has an amplitude 

proportional to the density ratio 6 of the outside to the inside medium. 

The scattered thermal waves inside and outside are of comparable magnitude 

but those of first order (c1 and Ci) are smaller than the . zero-order ampli­

tudes (C and C') by the factor a
1

<< 1. Thus the principal thermal waves 
0 0 

are of order zero and are conseguently purely radial waves. This result 
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is of great importance in evaluating the thermal dissipation. It can also 

be shown that the shear waves of first order (there are none of zero order) 

are of magnitude o1~ a1, Di~ ai, so that the scattered shear waves outside 

and inside the obstacle are of order a1• 

Because of the smallness of a1 and ai the coefficients Bn and en de­

crease so rapidly with n that to order ai we need retain only B
0 

B1 C
0 

c
1 

given above. In evaluating the attenuation inside the sphere the contribu­

tions of the terms involving B' c• B• C' appear in volume integrals over 
0 0 1 1 

the sphere, and since the volume is oe a3 we again obtain terms of the 

order ai'V ai3• Thus for results of order ai we require only the naQ and 

n•l terms in the potential expansions. This rapid convergence of the series 

(12.2) is a characteristic feature of diffraction by small obstacles. 

We have thus found the velocity potentials from which the acoustic 

field quantities are completely determined to our order of approximation. 

We now turn to the calculation of the viscous and thermal dissipation. 

17. Calculation of Viscous Dissipation 

To calculate the dissipation caused by viscous forces we use the cam-

putational form (9. 25): 

!!n = ~ R J r:" "'E dS"' + ~ R J p* v.~ d V. (17.1) 

For our fixed volume of integration we choose a large sphere of radius i 

concentric with the small scattering sphere. More precisely we wish R to 

be (1) much larger than the thermal and viscous damping lengths 1. 
2 

and 

l.l. , (2) much smaller than the acoustic damping length .i
1

, and (3) much 

larger than the acoustic wavelength Al• The requirement (1) insures that, 
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due to the rapid exponential damping of the thermal and viscous waves with 

distance, the potentials ~ 2 and A may be neglected at the surface of the 

large sphere of integration. This is easily seen by writing the Hankel 

functions for the two waves at large distances. Using Appendix II ~~d the 

values of k2 and K in terms of 1
2 

and ..2.1. (Sec. 10) we find 

k~R. = (l+i.)R./1.1 KR= (l+ .:)R /..l.L (17.2) 

so that fork R << l Iffi <<.1, 
2 ' 

\ \,., (kl.R.)\ 
I - i.h"l.. 

~ e 
I k1. R.\ 

- ii/.RJ. 
(17.3) 

\ h., (K R.)\ ~ e 
I KR\ 

and <f> 
2 

and A are seen to be negligible. 

The second requirement that R <<11 insures that the acoustic wave is 

~damped appreciably over the sphere of integration, in accordance with 

our assumption that k1 is real (Sec. 15). The requirement (3) that ~ib·> l 

allows us to use the asymptotic forms of jn(k1~) and hn(k
1
R) for the acous­

tic wave in evaluating the surface integral. We thus have the chain of in-

-equalities between the radius R, the acoustic wavelength Al' and the three 

damping lengths .2 1 , Jl. 2, .l.l: 

(17.4) 

Examination of Table I shows that this inequality can always be satisfied. 

For definiteness we may take 
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- ( \

1

/t. I ( )'/'1.. I k'1.. R. :. j I AI) ,...,. -k J, k, ......, - - ) 
1 k, 1<., (17. 5) 

where we have omit ted absolute magnitude signs and have used the relation 

1 1k1"- k~k~ )'> l obtained from t he def inition of ..Q1 (Sec . 10) and the ap­

proximate equalities (15o6). We then find the approximate magnitude rela-

tion 

(17.6) 

which we shall use later in determining the order of magnitude of expres­

sions involving k
1

R. 
We now write the viscous dissipation (17.1) as the sum of one surface 

and two volume integrals: (see note on page 6o) 

where 

Is = ~ d<_ j p:~ ~ dSCOL A=R 

Iv = ~ R. I r * ~·'!! d v R,.6A~R. (17.7) 

* r' = ..!..6<_ f ~1 V•v' dV 0 L. h. f:. R.. v 2. --

I is the volume integral outside the small sphere and I' is the 
v v 

volume integral inside the small sphere. These preliminaries being under-

stood we now proceed to the evaluation of the integrals. 

Evaluation of Surface Integral 

The surface integral I on our sphere of radius R assumes the form s 

(17. 8) 
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From the previous discussion we see that only q, i and 4> 1 need be con­

sidered in calculating t he stresses and velocities. The general stress 

and velocity equations of Sec. 13 then give ( ~ 
1 

• 1): 

'lT' ... ::. --' ~ (~ . + ci1 '\ .. "' ae ~ •J 

(17.9) 

Using the asymptotic fonns of jn (k1 r) and hn (k
1 

r) for large arguments it 

is easily found that V I'\ and p·- are negligible compared to 11' and p 
"" re r rr 

and that the second term in p is negligible compared to the first. Our 
rr 

surface integral then becomes (with T}K2 • i w p ) : 
0 

This integral is evaluated in Appendix VI; the result is 

oO 

I 5 = - 2:trf.,c. Z, ( '-n+•) 6<. l ~"' + Bn B~] 
h:o 

or, retaining only the terms for n-o, n•l, 

Using the magnitudes of the coefficients from Sec. 16 the last two terms 

6 
are seen to be of order a1 while the 

order ai the surface integral is 

first two are of order a3• hence to 
1' 

• 

(17.11) 

(17.12) 

(17.13) 
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These results are in agreement* with Epsteints evaluation of the same in-

tegral. (Ref. 6, Eq. 59). 

It should be pointed out that in evaluating the various dissipation 

* integrals we do !!2!:, include any contributions arising from products 4>i cP i 

which are due solely to the incident wave. The reason for this is that these 

terms represent the dissipation in the absence of the scattering sphere, 

whereas we are interested not in the total dissipation (given by the integral 

* including the ~i ~i terms), but only in the additional dissipation due to 

* the presence of the spheres, so that the ~ i ~i terms must be excluded. 

In our integrals this question does not arise because we have assumed 

* kl • w/c to be real, so that there is no attenuation, and the ~i ~i terms 

contribute nothing. In I , for example, the term drops out because we take 
s 

the real part of the product which turns out to be imaginary (See ~q. (6.7) 

in Appendix VI). 

Evaluation of Volume Integrals 

The two volume integrals I and ! 1 are evaluated in Appendix VII, where 
v v 

it is shown that the dominant part of each integral is of the same order of 

magnitude as the surface integral I : s 

where the second integral has been expressed in terms of C instead of 
0 

* B' C' for reasons which will be clear in the next paragraph. From the 
0 0 

* *A factor .3 should be supplied in the B1 B1 term of Epstein's Eq. (59). 
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derivations in Appendix VII it i s clear that t he domi nant part of t he 

outside integral I represents the interference effects between the in­v 

cident acoustic wave 4> i and the scattered thermal wave q,
2

, whi le the 

inside integral represents the interference effects between the scattered 

f ' acoustic wave 4> i and the scattered thermal wave q,
2

• 

Final Result for Viscous Dissipation 

Combi ning I , I , and I' we have s v v 

But now we reach a surprising result: from the value of B in Sec. 16 
0 

we see that the C terms in (17.16) arising from the volume integral of 
0 

P*~~ exactly cancel the second term of B , so that 
0 

a result which agrees exactly with Epstein's derivation of the viscous 

(17.16) 

(17.17) 

dissipation ignoring thermal conductivity. Since the second term is pure 

tmaginary our final result for the viscous dissipation is 

(17.18) 

in agreement with Epstein. Thus we see that only the first order (n=l) 

scattered waves contribute to the dominant part of the viscous dissipa-

tion; the terms for n-o do not contribute significantly. 

This result can be checked by a direct calculation of the volume in­

tegral of the viscous dissipation function ~ • Using the expression (5.12) 

for i we easily find for the case ncO (in which t he velocity depends only 
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on r and is independent of ~ and Q) the result 

The time average of i in the acoustic case is then 

and using the expressions for the potentials of Sec. 12 for n=O it can 

be shown that 

is of higher order in ~ and ar than the first order result (17.18) and 

may therefore be neglected. 

(17.19) 

(17.20) 

It was pointed out in Sec. 16 thnt B
1 

does not depend on o, the ther­

mal conductivity. Thus even in a heat conducting medium the visco11S dissi-

. pation (17.18) is completely independent of the thermal effects. This re­

sult would not be true if the B and C terms of dE /dt, had not cancelled, 
0 0 ~ 

since these terms depend on o. It follows that the only way in which the 

effects of heat flow enter into the dissipation, either directly or indirect­

ly is through the thermal dissipation term dE~dt, to which we now turn. 

18, Calculation of Thermal Dissipation 

The thermal dissipation within a volume V bounded by the closed surface 

S is given by the general computational form (9. 32). 

d E.cr 
dt 

(18.1) 

Just as in the case of the viscous dissipation the volume integral splits 

into two integrals J and J' taken over the volumes outside and inside the v v 
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small sphere. Moreover putting a inside the integral sign the integrand 

of the surface integral can be writ ten T*a ! T = -T* q , so that since both 

the temperature and the heat current s_ are continuous on the boundary of 

the small sphere, the integrand is also, and the surface integrals at this 

boundary cancel, leaving only the surface integral over the large sphere 

r • R. The thermal dissipation for our problem is therefere 

where 

dE 
a 

dt • J + J + J' s v v 

t ,l. I 

-r I Po C. ol Y f ~ I V 
Uy = - 2. 'lf' 5?. T' ~·~ d 

Evaluation of Surface Integral 

As before, the thermal potential ~2 is negligible on the surface 

(18.2) 

r • R so that only ct>
1 

+ 4>
1 

need be considered. From (13.3) the tempera­

ture is then 

(18.3) 

and 

(18.4) 

Comparing this with the corresponding integral I for the viscous dissipa­
s 

tion (17.10) we see that 

(Y-t) eSC c..> <: < \ 
- e,..'l. J (18.5) 
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So that J is negligible compared to the terms of order I which we are 
s s 

retaining in our treatment. J contributes negligibly to the thermal dis­
s 

sipation and will therefore be dropped, 

Evaluation of Volume Integrals 

The two volume integrals J and J' are evaluated in Appendix VIII, 
V T 

where it is shown that they are of the same order as I : The volume in­
s 

tegrals J and J' give a thermal dissipation which is of the same order 
v v 

as the viscous dissipation. The results are 

Substituting C , C' and B'* from Sec. 16 we find, after reducing the o o' o 

coefficients, 

I 

(~~) j •• v 

~ being given by (16.5). 

(18.6) 

(18.7) 

(18.8) 

(1!3.9) 

(18.10) 

(18.11) 
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Final Results for Thennal Dissipation 

Combining J and J 1 we have 
v v 

(18.12) 

This is our desired result for the thermal dissipation of a plane sound 

wave by a small sphere. The bracket can be simplified by using the gen­

eral relations a h (a )/h (a ) .. 1 - ia and a' j (a 1 )/j (a') • 1-a.' cot a 1 ; 
2 1 2 1 2 2 2 1 2 0 2 2 2 

this gives 

clEr 
-= 
dt 

(1$.12) 

as an alternate form for dE~dt. We shall not attempt further reduction 

for these general forms, since the algebra, while straightforward, leads 

to very complicated expressions. 

This concludes our calculation of the thermal and viscous dissipation, 

We now turn to the evaluation of the attenuation coefficient. 

19, The Attenuation Coefficient 

The attenuation coefficient « for a plane sound wave traversing a 

medium containing n small scattering spheres per unit volume, the energy 

loss per unit time due to each sphere being dE/dt, is defined as the ratio 

of the total energy ndE/dt lost per unit time to the energy flux E of the 
0 

plene wave: 

n dE 
~=- - -­

Eo dt 

Since dE/dt is the sum of the viscous and thermal dissipati ons 

(19.1) 
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(19.2) 

we have from (19.1) 

o(.. :: ol. 'l + oJ. r (19.3) 

where 

(19.4) 

1 
From (10.11) we have E

0 
"' T k1 p

0 
w , and using dE

11
/dt and d.Ejdt from 

the previous sections we obtain the general expressions for the viscous 

and thermal attenuat ions: 

(19.5) 

4-Tn 3( ) 6{ ol .. -a, 1-S 
... k~ 

r . b hl.(b)lt·-~)~i~<")-t~\(~)1- (t~bl.) l:!h(\!) h.(b) J 
[l [-(2+&)bhotb) +9Sh,(b)][(t-t)~j1(~)-tbj\Cb)] + l-i~~1)(u~)bjl.(~)h,(b) 

(19.6) 

and 

41TnR iC ( ~ -~ (I _ b : '• )1 I(_ [ 4,h,(.,) !h.( G,) J (19.7) ol.r ':: 

c. 
I 1-"'Z 

where 

z j 0 (a~) a1 h,(aJ 1-l.ct1. (19o8) = = 
Cl 11. j. ( G\!a.) h 0 (41) I c:..ot I I - a.1 a.:t.. 
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The explicit general expressions (19.6) and (19.7) for Ol and 
~ 

a{ conclude our main objective; together they give the additional 
a 

attenuation of a plane sound wave due to small fluid spheres in a fluid 

medium. We shall apply these general results in the following chapter 

to calculate the attenuation by water drops in air and by air bubbles in 

water. 

(Note: Both factors in t he integrand of the surface integral 

in (17.1) are continuous at the surface of the small sphere ; 

the two surface integrals (bounding the inside and outside 

media) therefore cancel at this boundary, leaving only the out-

side surface integral in (17.7) at the boundary of the large 

sphere.) 
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V. APPUCATIONS TO WATER DROPS I N AIR AND AIR BUBBLES I N WATER 

In this chapter we shall apply our general results to two limit-

ing cases o! great practical importance, For water drops in air the den-

sity, viscosity, and thermal conductivity of the drops are large compared 

to the outside medium; for air bubbles in water the reverse is true. In 

each case the general expressions for the viscous ~~d thermal attenuati on 

simplify considerably. 

20, Attenuation by Water Drops in Air 

In this section we shall reduce our theoretical results for compari-

son with Knudsen's data on the attenuation of sound in fogs (Ref, 7). 
_'l 

Since the average drop radius is about 10 am we see that our assumption 

a
1 

• tUcR .£<. 1 will be reasonably valid up to ..u -= 106 sec -l (for which 

a
1
""' O, OJ), 

Since water is denser, more viscous, and a better thermal conductor 

than air we see that the outside-to-inside density ratio d , viscosity 

ratio € , and conductivity ratio f- are all small. The actual values 

appropriate to Knudsen's data are 

~ ., 0. 00117, £ • 0.0167 (20.1) 

It is shown in Appendix IX that for small tS , e. , f. 

sion (19.6) for ol. reduces to 

the general expres-

, 
41T"r'\ 3 0 [ . b h1.(b) ] 

ol."' ::. -- O., "'- - L - -------
-~ k1., -lbh0 (b) + 9~h,(b) 

(20.2) 

(20.3) 
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The second form is obtained in Appendix IX by substituting the explicit 

expressions for the h's and defining the dimensionless real variable y 

by 

In the third form the dimensionless quantity V is the total volume of 
p 

the water drops per unit volume of air: 

In both (20.3) and (20.4) the coefficient before the bracket is Sewell's 

attenuation discussed in the introduction (0.7): 

The expression (20.4) for o1.. agrees with Knudsen's reduction 
11 

(Ref. 7) of Epstein's result (Ref. 6), and since y --:.roo as (-.) ) co 

(20.4) 

(20.5) 

(20.7) 

the bracket approaches unity and ~ is seen to reduce to Sewell's result 
11 

at high frequencies. At low frequencies y ~ 0 and the bracket approaches 

zero as y4 , so that « vanishes, as it should for zero frequency, in con-
T} 

trast to Sewell's result which is finite at w .. 0. The physical reasons 

for this were discussed in the introduction and we thus see that the correct 

expression (20.4), originally obtained by Epstein is also valid in our prob-

lem which includes thermal conduction. 

Turning to the thermal attenuation and imposing the condition that d , 

E , f. be small we have from (19. 7): 
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since c:X. i/o( 10.014 so that cf«i/ot1<<1. In passing we note that, using 

(18.11), the last inequality shows that J' ~< J, i.e., that the thermal 
v v 

dissipation inside the drops is negligible compared to that outside. 

It is shown in Appendix IX that for small i the real part of the 

bracket reduces to 

where the dimensionless variable z is defined by 

~ ~ / • nl./ -~ = d~ 2.t = w ~ z. ~ 

and we finally have for the thermal attenuation the results 

which correspond to the expressions for o(. in (20.3) and (20.4). 
T) 

We note that at low frequencies ol. 
0

oe z4~o as it should, there 

(20.8) 

(20.9) 

(20.10) 

(20.11) 

being no reason for any thermal losses at zero frequency. Thus the rigor-

ous present treatment avoids the anomaly of a constant thermal attenuation 

at W • 0, corresponding to Sewell's values of Oi. 0 

T) 
The limiting values 

of the attenuations at low frequencies are 
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= 41rn R .!!..._ (w R'1Y 
c. st s~,.~ 

and the ratio of the thermal to the viscous attenuation is 

At high frequencies ~ approaches the value 
a 

4-TnR.. - '( ) v x(t-t) [ I ':\111..] 
c ~(l-IJ l+~ = 3 r c1 R. I+ (w.r 2.U} ) 

corresponding to Sewell's result (20.7) for ol. 0 

11 
Finally we note that 

the ratio of ot 
0 

to ~ at high frequencies is asymptotic to the value 
11 

From (20.10) and (20.12) we see that at low frequencies the thermal 

attenuation of water drops in air dominates the viscous attenuation by a 

factor of seven, while at high frequencies the viscous attenuation dorni-

nates by a factor of three. 

A convenient way to show the dependence of the attenuation on fre-

quency ~ and radius R of the drop is to plot the quantities 

(20.12) 

(20.13) 

(20.14) 

(20.16) 
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and 

ola-C 
-4lrnR (20.17 ) 

against wR2. (which is a factor of y2 and z2
) and thus obtai n general 

curves for all GV and R. In addition we define 

(20.18) 

corresponding to the total attenuation and 

(20.19) 

corresponding to Sewell's value. 

These quantities are plotted against uJ R2 
in Fig. 1. It is seen 

that the ~ and l.. curves are quite similar throughout the entire 
L... TJ a 

range. At high frequencies L ""' 3 ~ as remarked above, and both 
TJ a 

are proportional to (14>R
2

)
1

/
2

• At low frequencies L: ,..._ 7 E • The 
a TJ 

critical frequency separating the high and low frequency regions is de-

termined by the point at which • This is seen to be 

2 -4 wR ..v 6 x 10 , so that 

W • 6 x 10-4jR2 (20.20 ) 
crit 

where R is the drop radius in em and ~ • 2nf is the circular frequency 

-1 in sec • 

The overall curve ~ has the same asymptotic dependence at high and 

low frequencies as L TJ and ~a have. The Sewell curve L S is seen ew 
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to level off to a constant value: 2:.
5 

• 0.23 as w---''>~ 0, cor­
ew 

responding to the constant value of ~ S at low frequencies already 
ew 

discussed. Finally, it should perhaps be emphasized that the expres-

sions for a{ and ol.. refer to a fog consisting of water drops all 
1) (J 

having the ~ radius R. 

21. Comparison with Knudsen's Data 

The absorption of sound in fogs has been observed by many workers 

but in most cases no analysis of drop size was made and this precludes 

any close comparison with the theory. Recently, however, Knudsen (Ref. 7) 

carried out absorption measurements in an artifically produced fog, using 

the reverberation chamber technique, and in this work the distribution in 

drop-size was determined. The experimental results and the calculated at-

tenuations (see below) are given in Table 21.1, together with the corre-

sponding physical data. 
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Table 21.1 - Comparison of Observed and Calculated Attenuation 

! 

-1 sec 

300 

1000 

2000 

4000 

6000 

8000 

Water Drops: 

p 1 -= 1 gm/cm3 
0 

c 1 .. 1 cal/oA 
p 

(db/em) 

observed 

(1.4 ,! 0.2) X 10 -5 

(2.0 ,! 0.3) X 10 -5 

(2.7,! 0.4) X 10-5 

(2.9 ,! 0.4) X 10-5 

(3.5 ,! 0.4) X 10-5 

(3.8 ,! 0.4) X 10-5 

p • 755 mm Hg 
0 

Air 

(db/em) 

calculated 

1.32 X 10-5 

l. 71._ X 10 -5 

1.89 X 10-5 

2.07 X 10 -5 

2.19 X 10-5 

2.27 X 10-5 

-6 V • (2.00 + 0.10) X 10 
p 

p
0 

• 1.17 x 10-3 gm/cm3 

dl r = 1.43 x 10-3 cm2/sec 

~ • 1.82 x 10-4 gram/em sec 

~ -= ~/p = 0.156 cm
2
/sec 

~ · .. 0.011 cm
2
/sec 

c' • 1.45 x 105 em/sec. 

~ = o/pc • 0 .206 cm2/sec 
p 

c • 0.24 cal/oA. 
p 

c .. 3.44 x 104 em/sec 

The drops were grouped into five size classes and the mean radius and 

fractional volume (6V /V ) for each class calculated. The results are 
p p 

summarized in Table 21.2. 
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Table 21.2 - Drop Size Data 

No. drops Fracti onal Fract.Vol. ll.ean Radius 
Number tNrfVp (em) 

(1) 102 0.121 0.005 3.75 X 10-4 

(2) 375 0.445 0.084 6.25 X 10 -4 

(3) 230 0.272 0.211 10.0 X 10-4 

(4) 93 0.110 0.298 15.0 X 10-4 

(5) 43 0.052 0.402 21.5 X 10-4 

843 

The attenuation oc in decibels per centimeter (db/em) is given by 

( -1 where o{ em ) and 
T) 

( -1 
~ em ) are given by (20.4) and (20.11). 

a 
At each 

(21.1) 

frequency the attenuation ~ was calculated for each class, and the « 1 s 

for each class were then added after weighing them by the fractional vol-

ume factor. The calculated and observed attenuations are plotted against 

frequency in Fig. 2. The agreement is seen to be fair, the calculated and 

measured values having the same order of magnitude and the same frequency 

dependence, but with the calculated values lying below the observed values. 

The reason for this is not clear. It is known that the results would be 

strongly affected by changes in the drop-size distribution but whether more 

accurate size distribution data would remove the discrepancy is doubtful. 

A careful analysis of the experimental methods would be required to assess 
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other factors affecting the attenuation, and this would be out of place 

in the present work. 

22, Attenuation by Air Bubbles in Water 

Turning to the attenuation by air bubbles in water we have the oppo-

site case in which the outside-to-inside density, viscosity and conductivity 

ratios are large: 

t 1: 855 , e- - 60 ' /. = 25 • (22.1) 

It is shown in Appendix X that for large tS , e , -/ the general ex-

pression (19.6) for «. reduces to 
T) 

or 

4-rrn 

kz.. 
I 

4lln R 2 [ 
ol't == v c 

Zy +12y +6y 1 G S ] 

For the thermal attenuation we note that now 

(22.2) 

(22.3) 

so that J <~ J'; i.e., the thermal dissipation in the water is negligible 
v v 

compared to that in the air inside the bubbles. The attenuation is given 

by {19. 7): 

4 R z If) [ a~h , (a~) /ho(a1) j 
= ~ cit (~-1)( 6a~:/~.J V\. ( ) 

C 1 _ -/ jo ai_ . ~ h,(G\1) 

0.~ j,(<l~) ho(G1) 

(22.4) 

Since I>> 1 we see that for both low and high frequencies (a2, a2~ 0 

or oo) the second term in the denominator dominates the first. Neglecting 

the first term we can then cancel the common factor a2bi(a2)/h
0

(a2), and 

after rearranging the constants with the aid of ( o1. i/ o~. 1 ) 2 = (l~~c~P/<t-~c'~p) 
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(22.4) reduces to 

ol.a' = 4rr; R ~·(~I_~ ( poc.2./p~/) {(_ [ - a.'1. j , (a~) /j o (a~) ] (22.5) 

or 

41rn R _ , , :'\ ( 1. I 1 •' ) 0 [ 1 __ .._ 1 1 J 
o/..0" = --.)t(l-11 f •'-lp.c:. 11\.. a.l.c.a.\.Q't- • 

c (22.6) 

Again introducing the real dimensionless z' 

2. 11: 
i!' = o.~ Zi. ... w r<'/z ~~ a.~ -= ( '+ i.) z ' (22.7) 

we find, after expanding the cotangent and taking the real part, 

ol _ 4rrnR -'(,1 :'\ ( z./ 1 ,1.)[ , s.im.J..2.i + ~2.=!:' 
rr - -- 4! o-IJ Po'-1 poC j! 

c ~ z~· - c.o-s z~· 
(22.8) 

This is the final desired form for the thermal attenuation by air bubbles 

in water. Numerical comparison of o< and 
TJ 

« shows that for all values 
" 2 of y and z 1 (or of wR ), 

this result being primarily due to the large factor 

-4-
1.5 x I 0 • (22.9) 

Thus the thermal dissipation inside the air bubbles completely domi-

nates the viscous dissipation. This is an important and interesting re-

sult. Rewriting (22.8) we have for the attenuation 

4TnR 

G 
(22.10) oL - oL~ -

and for the quantity 

= (22.11) 
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~ z.~· + ~2.~' 
G~ 2. ~· - G44i 2. i!' 

2. 

- 1 

L against 
0 

w R is shown in Fig. 3. The function 

X(z') lies close to its asymptotic values 

X ----~ 

z' - o 

__i_ 
45 

z' 
4 , X ----------~ zr - 1. 

Z 1 ---+ CD 

except in a small region near z' • 2. 

At the high and low frequency limits 

asymptotic forms (light lines in Fig. 3): 

~ has the corresponding 
0 

4-
4 ( w R?·) 2a-- A±- r:.' == A 45 Z~' oC (I.I.J R'J2 

W~o 45 

2_. A~' ( w R' ) •J.z. oG c 2')''2. - A 2~' wR . c.>- 00 

(22.12) 

(22.13) 

(22.14) 

Since we do not have experimental data on both absorption by bubbles 

~ bubble size distribution we shall not attempt to discuss the corre-

spondence between theory and experiment . 

We must note in conclusion that the results obtained here are valid 

only for bubbles whose radius varies only slightly during the passage of 

the primary sound wave. Our value of the attenuation is therefore not 

valid in the neighborhood of the resonance peak where large oscillations 

occur (Ref. 9). 
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PART II 

Part II contains the various mathematical 

appendices referred to in the text; as well as 

the References, Table I (Physical Constants), and 

the Figures. 
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APPENDIX I 

Time Average of Products of First-Order Quantities 

We wish to list several useful expressions involving the time 

averages of products of two first-order quantities A1 and B1 of the 

form (see Sec. 7): 

B - Be-C:. wt .-
where A and B are complex space functions independent of time and having 

absolute values A and B 

A= IAI e~at B =I Bl e ~~ 

I I 
-<.( ~-wt) 

6 1 2 Be 
so 

(1.1) 

(1.2) 

Now as pointed out in Sec. 7, the first-order quantities are all real; for 

convenience however we represent t hem as complex quantities. Consequently, 

only the real parts 6( (A
1
), ~ (B1 ) are to be used in evaluati ng the products. 

Thus the time average of ~ B
1 

is 

(A,B,)Av = [R(A.,)R(B,J1A,., 

so that from (1 . 2) 

(A, B\., = \ Al·l B\ [ C.o5 («-wt) cos(~- "'-'t) J 

=- ~ IA\·IB\ [ t.os(o<+~-2.wtJ + <:.os («-~) 1 
= ~IAI · IBI c..os(K-(3), 

since the time average of the first quantity in the bracket of (1.5) is 

zero . But now, using (1.2) 

(1.3) 

(1.4) 

(1. 5) 

(1.6) 
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(1.7) 

: IA.l ·IBI G-06(ot-f3) (1.8) 

so that (1.6) becomes 

(A, B~Av = ~ (A61t+BA*J (1.9) 

We now use 

-L(AB~+A*B) =- d<.(A•B) = R(t-.B*) 
2. (1.10) 

to obtain our final result 

(1.11) 

which may also be written 

(1.12) 

Two special cases of interest are 

(1.13) 

(1.14) 

(1 . 14) follows from the fact that the quantity in the last bracket is 

pure imaginary, so that its real part vanishes. 
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APPENDIX II 

Spherical Bessel and Hankel Functions 

The radial part R(kr) of the wave function satisfies the spherical 

Bessel Equation 

or (2.1) 

or 

where p .., kr , k being the co;nplex wave number, and R 1 "" dR/dp etc. The 

solutions of this equation are the spherical Bessel functions j (p) (regu­
n 

lar at p-o), the spherical Neumann functions y (p) (singular at p=o), and 
n 

the first and second spherical Hankel functions h (p) and~ (p), defined 
n n 

by 
•!, 

jn(f) = (-rr/z.f} Jn+'/1 (fl 

'h 
~" C .. ) -= C 1r I 2 t I Y n ... ~,. (f) 

(2.2) 

where J fl+-'/z. and Y n+- •/z. are the ordinary cylindrical Bessel functlons 

of half-odd-integer order. Letting R (p) denote any solution of (2.1), 
n 

the following relations are satisfied by j , y , h , and 11 for n ~ 0: 
n n n n 
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p Rni-• (p) = (z.., .... ,) R"'Cr) -rR.n_,C,.) (2. 3) 

p R~ (f) = f"J<I'I-I(.rJ - (.., .. ,) R..,(p) (2.4) 

fl 12.'1'1 (p) - n R .... (f') - f R..,+,(r) (2.5) 

zR'' ( ) 
P " r = Z f R .... i",(p) ~ n(,.,-~R"Cr) - _p

2 
Rn(r) (2.6) 

1. R'' ( ) r " r = Cn+ll(Ml)Rn(f) - f 2 Rn(f)- 2.f R"_,(f) (2.7) 

For n-=q terms of the form R",_. ( r) can be evaluated by using the 

general relations 

(2.8) 

to obtain y and j for negative orders. 

Explicit expressi ons for the first three j's, y's and h's are 

(2.9) 

(2.10) 

(2.11) 

For small arguments the following expansions are valid for n ~0: 

(2.12) 
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1·1· 1 ··· (2.n- r) 

f"~· 

The general series expansion for h (p) is 
n 

-n-1 i P [ , I • ( ) 1 1. ] hn(p) =- i. ~ I+ ( n.-~, . (z.tp) + I'I+Z . (L) + ... ·+ (ln)'. { _L)" 
p ll'l-r)! l! (n-t)~2.! lf n ! \2f 

.-tt-1 eip 
- l -

f lt=o 

ln+Jt.)! 

( 11-J'\.) ~ h. ! 

For large values of p the asymptotic expansions are 

1 
i. [ f - t r1+ 1) ~ ] 

-e 
F 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

We also note that since j and y are real functions of p, the complex 

conjugates of j, y, and h, are given by 

(2.19) 

so that int~~ase of h (p), the complex conjugate h~(kh.) = 1i (kA) is 
.. n 

als0 a solution of the differential equation, with the complex conjugate 

wave number, a fact we shall use later. 
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Finally we list several useful integrals. All are easily derived 

from the differential equations for the two spherical Bessel functions 

in the integrand, or they may be obtained from the corresponding inte-

grals for the cylindrical functions, using t~e definitions (2 . 2). (See 

Ref. 16). Let "R"(kll) and R"(ll'l.) be any two spher:ical Bessel f unctions , 

k and l being general complex wave numbers and r the real radial coordi-

nate. Then 

3 

= : [R.!(kl'l.)- Rn_,{kA) R., • • (kA)J 1 

'l 

J Rn(kn.)~n(kA) t\~dr 

= ~ l'l.?> [ ZJ~n (k~a.) R,.,(l<.,.,) - Rn)k~a.) 2.nt 1(kt~.) - R11+1 (kll.) Rn-r (k/\) 1 

" f R"(k~~.)"R"(l~L) ~dl'l. 
2. 

= k.~!z.. [1Rn_,(h .} Rn(kA)- kRI'\_,(k~~.) R,.,(.iA)J 
k*.t 

= 

A useful special case of (2.23) is the following integral, obtained 

by use of (2.19): 

2. 

k~k*'l kh"+'(kl'l.)h:(k~t)- k''"h.,.,Ckl\)h.,(k~t)J. 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

The above integrals are all valid for n ~ O where again, for the case n=O, 

the relations (2.8) are to be used to evaluate j ··· or y· in the R 
1 

termso 
-1 -1 n-
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APPENDIX III 

Legendre Functions 

The Legendre polynomial P (cos Q) satisfies the Q-part of the 
n 

wave equation: 

__ _L (-sine d?,.,\ + h(n-t-•J P"' -= 0 
sine de de"J 

and the associated Lengendre function P m(cos Q) • P m(~) may be defined 
n n 

by 

where ~ • cos Q. For nzl we have from (3.2) 

dP,., 
de 

so that (3 .1) gives the relation 

I d ( · P.i) ---- Stn9 11 = 
sine de 

which is used in the boundary equations involving the vector potential A 

in Sec. 14. 

The orthogonality property of the Legendre functions requires that 

the integral of the product P m P msin Q d Q vanish unless n-r, when it 
n r 

has the value 

J 
11' 2. 2. (n -t- rn) ~ 
(P~ ( tDse)] sin8cl9 = ~ (n-rn)~ 

Q 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 
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APPENDIX IV 

Calculation of the Potential Coefficients for n=O 

We wish to determine the potential coefficients B B' C C' from 
0 0 0 0 

the six general boundary-condition equations in Sec . 14 for n=O, under 

the assumptions that a
1 
~< 1, and that the order of magnitude relations 

of Sec . 15 hold: 

(3• '= I . 

and where we impose no restriction on the magnitudes of a
2 

and b. Similar 

relations hold for the corresponding primed quantities. 

We shall indicate the general procedure for the B coefficient and 
0 

tten indicate only the main steps for the remaining quantities . 

For n-o the general equations in Sec. 14 reduce to the following 

four equations (the V8 and prQ equations do not appear for n=q and 

D • D' "' 0) : 
0 0 

C' ' "'( ') - o C41.jo Qz. 

B0 €[ b1r, h0(a,)-2a~ h~ (ctJ 1 + C0 c [ b'" ~l.ho(a~.J - 2o.~ h~(~)] 

(4.1) 

(4.2) 

(4.3) 

' [ 7- \ 1. )] -Co' [ '-''"a~J· .(a'\ - 2atj·o"(g~\} (4.4) -Bo J:;p:j·Ja:J-2~'.j:(a; P
1

• v 2) • ,.) 

= -~ [~~.j.Ca;) -la.~jHo.,)}. 
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These equations are exact. We now write the array of coeffici ents 

of the unknowns B B1 C C1 and the constants on the right symbolically 
0 0 0 0 

as 

(B ) 
0 

(B') 
0 

(C ) 
0 

(C') 
0 

Al A2 A3 A4 A? 

cl c2 c3 c4 - c? 

Dl D2 D3 D4 D? 

Fl F2 F3 F4 F7 

where, using the relations in Appendix II and imposing the conditions 

that a
1

4<- 1, ai << 1, f 
1 

• ~ i • 1, we find for the values of the above 

constants (putting j
0

(a
1

) = 1): 

C - -oL' 
l. - I 

D I 1 • ( ') 1-:. «,a.,J, 4, 

1)7"' i«,a..j.(q,,) 

F. !'- - b'z. 
'1. 

(4.5) 

(4.6) 
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Then the unknown B is given by 
0 

B • ll(B )/ll 
0 0 0 

(4.7) 

where 6 is the dete~nant of the coefficients on the left of (4.5) and 
0 

ll(B ) is the same determinant with tbe first column replaced by the column 
0 

on the right of (4.5). 

We now evaluate ll • Since the first two columns contain small quanti­
o 

ties while the second two are of arbitrary magnitude , we shall write only 

the first two columns explicitely in order to see which elements are negli-

gible: 

-1 aijl(ai) A3 A4 

o{ l/o<2 -<tj/« 2 ~ c4 
« 2 d2 

2 
i-~/ol.2 

od D3 D4 
(4.8) A • oe. h (a

1
) . - a'j (a') 

0 2 0 o{2 1 1 1 o{2 ot2 

c (b
2-4) -b'2 F3 F4 

where we have divided out h
0

(a
1

) . from the first column and ~ 
2 from the 

second and third rows. Now consider the magnitudes of the elements in 

the first two columns: In the first column the top and bottom elements 

are of order unity and the other three are of order a~ since € ( =TJ/11') , 

f.. (=a/a') and b
2 

are unrestricted and ci
1
/ot

2 
is of order a~ <.<. l. Simi-

2 
larly, in the second column the first two elements are of order ai <<. 1, 

the third is of order ai3<< 1, while the fourth (-b 12 ) being unrestricted 

may be considered of order unity. 
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It follows that if the deterimant is expanded by second-order 

determinants in the first two columns, only the (-l)(-b12) product is 

of order unity. Since this product represents the A
1

F2 term we see that 

l:l can be expanded as 
0 

(4.9) 

After some algebra we then find 

(4.10) 

Following the same procedure for l:l(B ) we find 
0 

A7 A2 A3 Ah a.,j.(ca~ I • ( 'J a.,J, ~ . A.3 A4 

c7 c2 c3 c4 = ci..2 
- ol,/oll -ol.'./"'1. c3/o{l. c~./o{1 

l:l(B ) "' 
0 

D7 D2 D3 D4 
2 -~-~l a,j.(q~ i I' ( J D3/ol.,_ 04 /ol'l. -.!. <l,J r Q: 

o(l. 

(4.11) 

F7 F2 F3 F4 -~ bz. - b2 F~ F4 

2 If we now indicate elements of order unity by 1 and order a
1 

by 

x ~ < 1 we have 

X X A3 A4 

= r:/..2 
X X C3/ol2 C4/ol2 

l:l(B ) (4.12) 
0 2 2 2 

D3/o(2 D4k2 X X 

1 1 F3 F4 

vie see that in the first two columns only two determinants are of order x: 

~ A2 
and 

c7 c2 

F7 F2 F7 F 
2 
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the rest being of order x2 3 Expanding 6(B ) in this manner we or x • 
0 

therefore have 

A7 A2 c3 c4 F7 F2 A3 A4 
6(B ) -= • + • (4.13) 

0 
F7 F2 D3 D4 c7 c2 D3 D4 

In evaluating the determinants we use the relation 

and find 

A7 A2 
~2. ( & o.~ j.(o.';\ - Q.-jo(o.,)) -

F7 F2 

c3 c4 
oL1c< [a~ j,(a~) ho(at) - -/- jo(a~) · a 1 h1 (az.l 1 & 

D3 D4 
(4.14) 

-

.. 

Finally, with 6(B) from (4.13) and 6 from (4.10) we find B , !rom 
0 0 0 

(4.7) 

or 

(4.15) 
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, . ( 1\ Q.'Z.jl 0'1.) 

(4.16) 

and C is given below. 
0 

In the reduction we have again used Appendix II 

to evaluate j
1

(a
1
), h

0
(a

1
), etc. 

It may be noted that for zero thermal conductivjty o • 0, ~ = 0, 

-1 
so that <X2 K - (otvie. ) ---+ oo and the second tenn in (4.14) vanishes; 

the remaining first te~ then agrees with Epstein's corresponding coeffi-

cient, given by his Eq. (47) in Ref. 6 for the case o ~ 0. Unlike the 

first term which is pure imaginary and contributes nothing to the viscous 

dissipation (see (17.12) in Sec. 17), the second term has a real part, and 

this later plays an important role in our results for the viscous dissipa-

tion (Sec. 17). 

Turning now to B' ~ 6(B')/6 , we proceed the same way as before to 
0 0 0 

evaluate 6(B~); we find 

Al A7 A3 A4 1 X A3 A4 

cl c7 c3 c4 X X c3 c4 
A(B') = ""'-/ 

2 
(4.17) 

0 
Dl D7 D3 D4 D3 D4 X X 

Fl F7 F3 F4 1 1 F3 F4 

Clearly A
1

F
7 

is the dominant product in the first two columns; hence we 

have 

6(B 1 ) • (LF) · 
0 --1 7 (4.13) 
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and using 

B' = ll(B' )/fl = b . 
0 0 0 

(4.19) 

For C = fl(C )/fl we have 
0 0 0 

~ A2 A7 A4 1 X X A4 

cl c2 c7 c4 X X X c4 
ll(C ) .. ,......_, 2 2 0 

Dl D2 D7 D4 X X X D4 

(4.20) 

Fl F2 F7 F4 1 1 1 F4 

and we see that the dominant term in the expansion will be of order x 

and is 

(4.21) 

so that 

(4.22) 

where Z is given above in (4.16). 

Similarly, for C1 = ll(C')/fl we have 
0 0 0 

Al A2 A3 A7 1 X A3 X 

cl c2 c3 c7 X X c3 X 

ll(C') "' ~ 2 2 0 
Dl D2 D3 D7 X X D3 X 

(4.23) 

Fl F2 F3 F7 1 1 F3 1 



or 

A(C') = tLD 
0 ~~ 3 

and finally 

c' 0 
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2. 

) b ol,_ ( 0o1:-oLJ ho(a.~ · o.,'n,(a .. ) J 

This completes the calculation of the coefficients for ncO. 

(4.24) 

(4.25) 
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APPENDI X V 

Calculation of the Potential Coefficients for n=l 

Setting n=l in the general boundary condition equations of Sec. 

we may write , in the same way as for n=O, the symbolic equation 

(Bl) (B ' ) 1 (C1) (C ' ) 1 (D1) (D') 
1 

A1 A2 A.3 A4 A5 A6 ~ 

B1 B2 B.3 B4 B5 B6 '97 

c1 c2 c.3 c4 0 0 c7 
• 

D1 D2 D3 n· 
4 

0 0 D7 

~ E2 E.3 E4 E5 E6 E7 

F1 F2 F.3 F4 F5 F6 F7 

for the six unknown coeff icients B1 Bl c1 Cl D1 Dl . Putting a1<< 1, 

ai .(. <. 1 et c., as before, the constants A
1 

• • • F 
7 

ar e given by 

A,= - Z h.(~,) 

A2. = - j,(Cl',) 

A,= -j· (o..) 

B, = h,(o.;) 

B, = - j. (o.',) 

B7 :::. - j.Cct~ 

c, .. o£,h,(o.,) 

c - I' ( t) z.- -..t,J, a, 

83 = h, (o.'l.) 

84 = - j. (a.',) 

As c -Zh,(b) 

A6:: 2 j I (b) 

85 = h,(b)- bho(b) 

BG = -j,(b) + b jo(~) 

14 

(5. 1) 

(5 . 2) 



D,:. -2.-fQ(,h,(Q~ 

D
7 

=- -f. oi,j',(a,) 

E
1

::. - 3e.h,(Q,) 

Fl:. E.(b
4-IZ)h,(QJ 

,'1., ( ') Fz=- -bi j 1 a, 

F7 : -E ~v<l~ 
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D3 = i«z.0..1\,o(Q.2) - Z,loi1 h,(o.1) 

0 I I • ( I) z I · ( r) 
4 = - ol10.1jo 0.1. + olljt o.l. 

E. 5 = -i e(,-!l)h,(b).Hbh0(b) 

E6 : -fCG-~1)J·,(~)- b jo(b) 

F3 ::. E~tz.h.(a4)+Uaih.(a.~- 4ea.~.hia1) 

~ = -~4~
2

j.Co.~)- za.fj.Ca~) +4a.~j,Ca.~) 

Fs -= - 4eb h,(b) 

F6 :: 4bj1(5) 

(5.2) 

We first calculate the determinant ~1 of the coefficients, i.e., 

the determinant on the left of (5.1). Factoring out h
1

(a
1

) from the first 

column, j
1

(ai) from the second, and writing x for quantities of order a~ in 

the first two columns we have as in Appendix IV 

-2 -1 

1 -1 

X -x 0 (5.3) 

-x -x 0 0 

-3E. X 

2 E: (b -12) 

Neglecting elements of order x or smaller vre see that in the second and 

third rows only c
3
c
4 

and o
3
o
4 

survive; expanding by these rows we have 
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-2 -1 A5 A6 

c3 c4 \· 1 -1 B5 B6 
61 = hl(al)jl(al) 

03 D4 
( 5.4) 

-3~ 0 E5 E6 

2 
(b -12)€ b'2 F5 F6 

After tedious but straightforward algebra the fourth-order deter~inant 

is found to be 

with 

1[1 2 ( :"\ ,2] /::,. = -E.b i:Eb+9t-€1+1:i 
01 

(5.5) 

(5 . 6) 

Using the relation tb2 
c 6bt 2 we can factor b•2 out of each 6 and re-

write the fourth-order determinent as 

where 

D zr (Ct-E.)(L-to)1 bi 0(~) · bh.(b) 
00 .J 

D
10 

= [ 3(E-t) + ~b2] (l+ cS) j,{b) ·bh.(b) 

DOl= ( 96(e-t)-~€~(2+~)1 bjoCb). h,(b) 

D,
1 
= (27J(t-e)+iol)\cf-t)] j,(g). h,(b) . 

Thus we finally have for the determinent of the coefficients 

(5.7) 

(5.8) 

A • b'2h_ (a ) . j (a') C3 D4 (D + DOl + DlO + 011) . (5. 9) 
1 ·~ 1 1 1 o

3 
D
4 

00 

We now calculate B
1

• It is given by 
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Bl • 6(B1)/61 (5.10) 

where 

~ A2 A3 A4 A5 A6 1 1 A3 A4 A5 A6 

B7 B2 B3 B4 B5 B6 1 1 B3 B4 B5 B6 

c
7 

c
2 

c
3 

c
4 

o 0 X X c3 c4 0 0 
6(B1) = • jl{~) jl{a{1 x (5 .11) 

D? D2 DJ D4 0 0 X D3 D4 0 0 

E7 E2 E3 E4 E5 E6 
-x -x E3 D4 E5 E6 

F7 F2 F3 F4 F5 F6 ~b2 +b 12 F 
3 F4 F5 F6 

The second order determinants of order unity in the fjrst two columns 

(5.12) 

where we have used the fact that B
7 

• A
7 

, B
2 

• A
2 

to elirrinate B
7 

and B
2

• 

After carrying out the algebra and using E b2 = 6 b r2 we find for the 

quantity L~ the parenthesis the value 

where the N1 s are given by 

N
00 

= [1-e) ~jo(b) . bh.(b) 

N = [3(~-~--i'ebz:] bJ)b)·h,(b) 
01 

N10 = [3(~-r)+'ib2.] j,(l1)·bh.(b) 

N11 ~ [~(1-£)+~~\s-o]j.(b)·h.{b) 

(5.13) 

(5.14) 
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(5.15) 

and with t.
1 

we obtain B
1 

from (5.10) 

B _ . 0..~ ( ) [ Noo +No,+ N,o + N,, J 
,- L.- 1-6 -

3 Doo +- 'Do, .,. D,o+ D,, 
(5.16) 

1 ~ 
after canceling j 1(ai) in t.(B

1
) and t.

1 
and using h

1
(a

1
)/j(a

1
) = i:3 al 

from Appendix II. G is a useful abbreviation for the quantity in the 

bracket. 

The coefficient Bi is found in an exactly similar manner . We re­

place column two in the determinant on the left of (5.1) by column seven 

and obtain exactly the same order-of-magnitude scheme as for t.1 (5.3) ex-

2 2 
cept that j

1
(ai) is replaced by j 1(a

1
) and b' by cb o It follows that 

t.(Bi) can be written in the form (5.4) with the same replacements. We 

then expand the fourth-order determinant; after the algebra has died down 

there finally emerges a form similar to (5.13) above in which each N is 

2 2 .3 ~ b = .3 ~ b' times the co:-responding N of s
1 

in (5.14). This gives for 

t.(Bl) the result 

so that using t.
1 

we finally get Bi: 

B' = 
I 

(5.17) 

3JG (5.18) 
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after canceling h
1

(a
1

) in A(Bi) and A
1 

and writing j
1

(a
1
)/j

1
(ai) = a1/ai• 

Having found B
1 

and Bl we can now obtain c
1 

and Cl_ from (1.4.6) and 

(14.7) of Sec. 14 expressing the continuity of temperature and normal heat 

flow at the surface of the scatter~ng sphere, since these equations do not 

involve n1 and Di· We write these equations for n=l in the form 

(5.19) 

Q., (5.20) 

where 

(5.21) 

(5.22) 

Here t he approximate relations aiji(a
1

) ~ j
1

(a
1

) and a
1
hi(a

1
) c -2h

1
(a

1
) 

for small arguments have been used in the Q
1 

expression. Substituting 

the values of B1 and Bi we find, again using the small argument relations 

of Appendix II: 

P. = ~a1 ci,[~>;.'-l-(1-6)&] 

Q,,. + o., ol. I l :: G' - -J - 2 -J (I- $) G] 

(5 . 23 ) 

Now we use (2 .4) from Appendix II to obtain h1 and ji in (5 . 20) above 

and find 
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I 

t::. = -otlo(~~~/<o.~)h,(4t.) + o(:zol~ f jll~~) · o."l.h , (o.~.) 

= - oo!z. "'~ [2. ( )l- i) j 1 (a~) h,(o.2} ... a!1. j,(o.~) h, (o.l) - f. e~.,_h.(o.~) -j. (a~)) 

( \ P. I 1 · I ( ') Q 1 
• ( 1'\ 

1:::. C:o1 = - I «1 0.,_ Jl Q.1. + I o{1.} ~) 

= - -k «,t>t~ ct, { j,(a~) [ (z+]L) -3 ~:' c;.' + Z (•-~)(,- J') Gr] 

+ o.~ joC"~) [ ~:. &' -1- (t-S) G] } 

I 

~(c:) = Q., ot,h,Co.~.) - P.-{ .x,_a."Lh, Co.l.) 

= ~ ""· "• o., { h, (4~ [ (,. z ~) :·>=)-3;£] + a.,h.< •• l[, •<•-~)6 <: G 1} 
Combining these equations we find 

the expressions given in (16. 8) and (16.9) of Sec. 16. 

(5 . 24) 

Since we do not need o
1 

or Dl we do not calculate them but merely 

note that by the same method as above it is easily found that both are of 

order a
1

• This completes our calculation of the potential coefficients 

for n=l. As will be seen in Sees. 17 and 18, only a
1 

is required expli­

citely; however the order of magnitudes of Bi, c
1

, Cl ar e required and 

the full expressions are given since they were worked out and may be of 

interest in connection with other problems. 
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APPENDIX VI 

Calculation of Viscous Dissipation Surface Integral 

We wish to calculate the surface integral I 
s 

of Sec. 17: 

over a sphere of radius R for which k1R ~> 1. Here we have written 

QO 

4> = L ltl(2n+•)~(c:o!>e) [jn( p,) + Bnhn(p,l] 
11:o 

with p
1 

c k
1

r > > l. For the derivative of cp we have 

where the prime signifies differentiation with respect to p
1

• From 

Appendix II, with o n= (n + 1) ~, we have the asymptotic forms for 

large arguments: 

I . = --~o 
f'• 

I lG"'" 
=- e 

f• 
i.. ~~ 

= -e p, 

(6.1) 

(6. 2) 

(6.3) 

(6.4) 

where a is real and we have taken the "phase derivative" only, since the 

derivative of l /p
1 

is negligible compared to l/p
1

• We now use the 
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orthogonality property of the Legendre functions of different orders 

(Appendix III) in the sur face integral to conclude that only products 

of the same order will survive in the integration. 

Thus the integrand evaluated at the surface is 

~ ~ 

Ctwp)~~~) ~ L l«Jfo\2.n~~Z.(PJk,(jnlp.)+B,hn(p)1 [j~(fJ-+" B,hn(,o)} 
n=o 

( 6. 5) 

(6.6) 

wher e (6. 4) has been used. Putting the i inside the bracket we get 

(6.7) 

But f or any complex number A we have R(A) • R(A*); applying this t o the 

- icr icr third term, R( - i B* e sin o) • R(iB e sin cr) and (6.7) reduces to n n 

' 
(6.8) 

~nere the first term in the bracket in (6.7) has been dropped since it 

is pure imaginary. Putting p1 = k1R, integrating over the surface and 

using the Legendre product integral we obtain 
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Is = I C'ln +-02
{ J~ r;,)\n( Rl~8d9} (k,_ )2. cufot6< [-B.,- Bn B:] 

n; o G k., R. 

oiJ 

L 'l.{ 411 } wpo 1 nl 'If] = (2nt0 - - -\}\_ - B - 6 B 
2n-t-1 k 2. "' n n J 

n~o • 

or, using k1 • w/c 

ao 

I.S '= - 2TT' p.,c. I. (2.n +i)6( L~ + Bn B~] 
n~o 

(6. 9) 

which is the desired result. 
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APPENDIX VII 

Calculation of Viscous Dissipation Volume Integrals 

Outside Integral 

The outside volume integral of Sec. 17 to be evaluated is 

where, from Sees. 8, 9, 15 we have 

Thus 

:z. z. 1.. ,I.. 
V·-y: ::. - ~ q. = k, ( ~Pi. +~J + k2. '+'z 

4-N -cJ 
t,_=l-3..e \ 

1 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

since in (7.4) the first term is pure imaginary and the third term is 

negligible compared to the second. 

We now integrate the first term in (7.5) using the potenti als of 

Sec . 12, and recalling the orthogonality of the wave functions: 
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~ ~. 4 .. (, ••• )(c. J~:c•,.)h.tk,•l~d. 
R R. 

+ B: Cn J h:(k,~~.)h11 (kz.hJ 11.
1 d11. J 

R 

(7.6) 

The first integral in the bracket has the value (Appendix II) : 

R 

J j!(k,IL)h,(kl~t)~dA. (7 .7) 
li! 

(7.8) 

where we have used the facts that k
1 

is real so that j~(k1r) c j
0

(k
1
r), 

t hat k~ <-< k~, and that the Hankel functions are negligibly small at the 

upper limit R, as discussed in Sec. 17. Moreover since ll,j'*~4~~~~(a;')"' GI~{<.IJ 

the second term dominates the first in {7.8) so that the first integral 

in (7 .6) is 

Cn f\:(k,n)h.(k,•)A'.L. = (7. 9) 
R. 

Evaluating the second integral of (7.6) in the same way we find 
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R 
f h:(k,~t)h"(k~ll)~d.Jt 
R 

(7.10) 

R 
:. - (7.11) 

k~ 

where now both terms in the bracket are of the same order so that 

(7.12) 

Thus the integral of the first term in (7.5) is 

(7.13) 

Turning to the integral of the second term of (7.5) we have in 

the same way, using the expression in Sec. 12 for ~2 : 

(7.14) 

(7.15) 

(7.16) 
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In (7.14) we have used (2.24) of Appendix II to evaluate the integral; 

i (7 15) k2 t-2 2k2 . k2 . . i d th . i n • 
2 

- A2 • 
2 

s1nce 2 1s pure 1mag nary, an e m1nus s gn 

appears because the bracket is evaluated only at the lower limit as above 

in (7.8). 

Collecting our results we finally have from (7.5), (7.13), and (7.16) : 

(7.17) 

= brwpoR 0<.{~0 (Zn+l) {-l.Chj,.(a;)o.1.h,~ 1 (o.~) + 

+ i. B~C.n[o.,h:t ,(l,)h,(o. ... ) -a.:a.l,n+l(t. .. )h:(Cl,) 1 
- 1- i t,c. c: [..h • .,t .. ) h: lo,.)- .~h • ., t•.l h.(.,) 1 } } (7.18) 

We now wish to evaluate this for n=O, n=l. Using the approximations 

of Appendix II for the small argument a
1 

in the j 1 s and h 1 s and the order-

2 3 of-magnitude results for the coefficients from Sec. 15 (C0-a1,c1~B~B~a1) 

we easily find that for n=O the C
0 

term in (7.1S) is of order af , whjle 

the B*C and C C* terms are of order a4
1

• l{oreover, for ncl, the c
1 

and 
0 0 0 0 

B!Cl terms are of order a~ and the c
1
c1 term of order a~. Thus only the 

C term for ncO is significant, and we finally obtain for the outside vol­
n 

ume integral (with j
0

(a
1

) = 1): 

(7.19) 

Since the surviving term represent s the product ~~ ~l in (7.17), the 

significant contribution to the volume integral of P*~·~ arises from the 
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interference effects between the incident acoustic wave ~ i and the 

scattered thermal wave ¢ 
2

• As we shall now see, a similar result 

holds for the inside integral, taken over the interior of the scatter-

ing sphere. 

Inside Integral 

The inside volume int egral of Sec. 17 is 

(7.20) 

I n the same way as before we fina 

(7. 21) 

= I I .() r · 11 .J.' J.l • I~ .L.' .L.' • ¥1 
I I J.1 l! · t 11 .1.

1 
,4..1 l.* 2. ~ 1. *' 2. *l 

2:Wf0 lK..llK1 q.,'t', +I..K'l.'l'>..'~-'o + l l.K 1 'f1 1¥2 +t2.K~q.l.'f'>.. (7.22) 

I 1 J0 f . 1 ~'1J..1 J.'* · ~I 12 l 1 ..l.1*] :: z w fo U\. l l Kl..'f~ If', + l 2.\<2. 'f2. Y't 
(7 . 23) 

where again the first term in the bracket of ~.2~ is pure imaginary and 

the third term negligible compared to the second. Integrating the first 

term of (7.23) we get 

(7.24) 

oo tt R 
: L 4-lf(Zni-•l B~C~ J j:(k,ll)jJ~~Il) lt.,_M 

1'\:0 0 

(7 . 25) 

(7.26) 
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(7.27) 

I, ( t\ , ( ') 
a~j.,+ • o.~l Jn c:t, J 

(7.28) 

since in (7.27) the first term is of order ai2smaller than the second. 

Integrating the second term of (7.2.3) we have 

QO 

Jdv(~r = Jdv ~(z.,+,)\p,.)l.c'"c~j"(k~tt)j:(k',_~) 

~ %. 41r(2"' 0 c~ c.~ { ~ ,: [ <j,( ~ •• J j: ( ~. 0 "-
-j._\k,•lj:,(~,.)- j.~(k,.) j:.<~ •• )]} • 

Collecting our results (7. 28) and (7.32) and using (7.2.3) in 

find for the inside integral the general result: 

I~ : 1~F~ ~I ~k: fdVcf>~<t>: + ~k:~ J dV 4>~ 4( 1 
= (2rr~p'oRJ 6({ ib~~t~{i.B:C~<t~j,Sa~'l j.,(a:) + 

n:o 

(7.29) 

(7 • .30) 

(7 • .31) 

(7. 32) 

(7. 20) we 

(7. 33) 

' ·'f'c' c;ttn?[2.· r ').ltC ') . ( ')· " ( ,\ . C ') ·*c )~l} +4Lo, n n-J. j"\~a. )n al. -j"'-' a1j.,., Clz J -}.,. , al.j.,_,II{~J (7.34) 

To evaluate this for ncO and n=l we use the order of magnitude re­

l ations from Sec. 15 (B~~ai~l , C~~ai2 , Ci~ai3) and jn(ai)~ain• For nzO 
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we see that the B'* C' 
0 0 

term is of order a
1
t
2and the C C'* term of order 

0 0 

ai4 ; for n=l the terms are of order aiL~ and ~i 6• Thus we keep only the 

(7.35) 

but B~ = d = p0/p~ so, after multiplying numerator and denominator by k
1 

we get 

We now note from Appendix IV that C' is given by 
0 

c'= _/~ o..,h,(Q ... l c 
o r oL' , • c ') o 

2. ll.2. J• G\~ 

(7.36) 

so that we finally obtain for the inside volume integral of the viscous 

dissipation the result 

(7.37) 

which is in a more convenient form than (7.35) . 

As pointed out before, the dominant contribution to this integral 

arises from the ~ 2 <P i* term in (7 . 33), which represents the interfer­

ence between the scattered acoustic and thermal waves in the interior of 

the small scattering sphere. 
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APPENDIX VIII 

Calcu1ation of Thermal Dissipation Volume Integrals 

From Sec. 18 we have the two volume integrals J and J' to 
v v 

evaluate: 

J' = v 

l. 
f• C ol.v 

I '1. I ~ 
fo c.' olv f * 

R 0 T' "\!• ~· d.V • 
2. J' 

These integrals are easily reduced to the corresponding integrals of 

I and I' in Appendix VII (with integrand P* V· v instead of T* -~ · ~_) . 
v v --

Using the general relations of Sees. 8 and 9 

= 

(8.1) 

(8.2) 

( 8 . ;) 

(8.4) 

(8.5) 

We have used 

2 Now k
1 

, o1.. 
2 

<P
1 

for the acoustic wave ( <Pi+ q,
1 

outside, <P i inside). 

2 are real and k
2 

, ot
1 

are imaginary. Hence the first and 

last terms are pure imaginary with zero real parts and may be dropped. 

We also have the relati on 

(8.6) 
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as is easily verified. Thus we have 

(8.7) 

~ 

The corresponding expression with primes holds for 6< [ T' V· y'] , and 

the integrals thus become 

(8.8) 

1 ,'Lt ~R -lt-oCol.v 'L 
p (~' k ~·) 6(. ,h' ,L' dV 

2._ 'j I 'L I O 'f't '+'~ (8. 9) 

The coefficient in J is easily reduced to ( 
1
2 

p <N
2j K) and the integral 

v 0 

is given by (7.13) of Appendix VII . Similar remarks hold for J 1 , the in­v' 
tegral is given by (7.27) of Appendix VII. Thus the exact expressions are 

(8.10) 

and 

As in Appendix VII, we evaluate the terms for n-=0, 1 and using the order 
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of magnitude of the coefficients and the asymptotic forms for the j's and 

h 1s, it is easily shown that in J only the first term, for n-o, is im­
v 

portant, while for J 1 , the second term in the bracket dominates: 
v 

I =--
2. 

These are the desired expressions for J and J' in Sec. 18. v v 

(8.12) 

(8.13) 
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APPENDIX IX 

Calculation of Attenuation by Water Drops in Air 

a, Reduction of o( 
T'J 

From (19.6) the general expressi on for a( is 
T'J 

For ~ , E < <. 1 this may be reduced as follows. We first note that for 
2 2 -v 

small arguments h1 (b) oC 1/b s ~ ~oo as to)~ 0, so that ever. 
~R 

though h
1 

is multiplied by d in the last terms of the numerator and de-

nominator, it cannot be dropped without further examination. Using the 

small argument approximations however, it is found that the last numerator 

term is of order c5 b'.3 smaller than the first and is therefore completely 

negligible for all values of b'. A similar result is found for the second 

term in the denominator so that it may also be neglected. Canceling a com-

mon factor we then have 

(9.2) 

where we have dropped a in the (1 - o ) and (2 + c:5 ) terms. The attenua-

tion is seen to be i ndependent of b' and hence also of T'J', the viscosity 

of the medium inside the scattering sphere, 
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We now substitute for the Hankel functions their explicit expres-

sions from Appendix II and make the change of variable 

l_l. - 2. . l. 
tl - • ~ 

where y is real, to obtain: 

or 

'/ '\ t/-a. ~j=(wR. Z.v J 

(9.4) 

(9. 5) 

(9. 6) 

Equation (9.6) is the desired form for the viscous att enuation of water 

drops in air. 

b. Reduction of o<. 
0 

To evaluate C( given in ( 20. 8) we must calculate the real part 
0 

of the expression: 

(9.7) 
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where from (19.8) we have Z : 

I - i.. a., (9.8) 
I - ai c.et a~ 

Now since -/ is small we see that f Z will be small except at low fre­

quencies where a2~ 0, a2---+0; in this case Z has the limiting 

form 

z 1- L O..z. 

a_l l. I 4. 
l. az. 

- +-3 45 

(9.9) 

where the numerator is exact and in the denominator we have retained the 

first two terms of the expansion for 1 - a2 cot a2 for small a2• (Since 

a2
2 

is pure imaginary it is necessary to retain the first ~ terms in or­

der to have a real part in the expansion). Now define the dimensionless 

real quantities z. and i! ' by 

a • (1 + i) ~ 
2 

at • (1 + i) ~ t 
2 

2 1/2 
( w R / 2 ~) 

1/2 
:z' • ( w R2/2 ;it ) 

(9.10) 

• (9.11) 

Substituting these into 2: and keeping only the largest real and imaginary 

parts in both numerator and denominator we find 

z ----'r - 3 i!. +L 
2. r:' 2. 

(9.12) 

so that (9.7) becomes 
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o<_ [ ( l+e) - L r . ] 

I+-{._ l_ c+L 
z. e' '1 

= ( l+l) [ _'_+ _;. _f-_,:~_ --~· 1---] 

"l 9 2. ~1. 9 ~1 \ I +'3J- T _J- +- --
.,.._ ~'L 4 ,. ~· · 4 2.'4 

(9.13) 

(9.14) 

but since / is small, the second term in the numerator is negligible 

compared to the first for all ~ , :c. ' ; similarly the third denominator 

term is negligible compared to the fourth. Dropping these terms and put-

ting 

(9.15) 

into (9.14) we finally have 

(9.16) 

But now we see that this expression is also valid at higher fre­

quencies, for although our low-frequency approximations ( e ' & '~ 0) 

in Z are of course no longer valid, the whole term f. Z is small com­

pared to unity anyway, so that the exact form of Z is unimportant . Thus 

(9.17) 

is the final desired result (20.9) of Sec. 20. 
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APPENDIX X 

Calculation of Attenuation by Air Bubbles in Water 

a . Reduction of ()( 
TJ 

From (19.6) we have the general expression for o<. : 
TJ 

(10.1) 

For rS > ~ 1, €. > > 1 the bracket reduces to 

-L 
d [-bh.,(b) + 9h,(b)] [-€ b)"l.(b')J + (-i~b~) 6bj"L(~)h ,(b) 

(10.2) 

where we have used o b•
2 

., f b2
• Canceling common factors and replacing 

(1 - 6 ) by - ~ in (10.1) we obtain 

(10.3) 

or 

41T"n 3 KJ [ • r:X. : -a.,U'\. -l 
~ k l. 

I 

(10.4) 

We now change to the variable y defined by (9.3) in Appendix IX and obtain 

(lj"" +"j'+"J'-1) + i.('13· 3 ~-3) _l 

( ~~ + 3j1.+ 9'j) + i.(-{~-9':1+ 9)j 
(10.5) 
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After taking the real part we finally have 

] (10.6) 

or 

(10.7) 

the desired result (22.3) of Sec. 22 for the viscous attenuation by air 

bubb~es in water. 
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Table I - Physical Constants 

Air Water 
· . 

.f. sec -1 103 104 105 106 
103 104 105 106 

LV sec -1 6.28 X 103 6.28 X 104 6.28 X 10 5 6 6.28 X 10 6.28 X 103 6.28 X 104 6.28 X 105 6.28 X 10 6 

c em/sec '3.'30 X 104 1.4S X 105 
g/cm3 

_'l 
I> Po 1.29 X 10 .,., 1.00 
> 
"' 2 2 6 

2.10 X 1010 ;3: p c g/cm sec 1.41 X 10 
() 0 .,... 

(,o,) -1 ..., 
0.19 1.90 19.0 190 0.043 0.43 4.3 43. en k ~-em 

::l c 
0 
() 

>..1 em 33.0 3.30 0.33 0.033 145 14.5 1.45 0.145 < 

11 em 7 X 106 7 X 104 7 X 10
2 

7 1010 10
8 107) 104 

g/cm sec 1.82 X 10-4 -2 
T} 1.10 X 10 

-,) a? /sec 0.141 O.Oll 

wv jc2 8.1 X 10-7 8.1 X 10-6 8.1 X 10-5 8.1 X 10-4 3.3 X 10-9 3.3 X 10-8 3.3 X 10-7 -6 
3.3 X 10 

Q) 

-1 2 2 2.1 X 1o3 6.6 X 103 2 
2.4 X 103 7.5 X 103 4 ~ IKI em 2.1 X 10 6.6 X 10 7.5 X 10 2.4 X 10 

en -2 
g~.l. em 4.2 X 10 -2 1.3 X 10 4.2 X 10-3 1.3 X 10 -3 -2 1.2 X 10 3.7 X 10-3 1.2 X 10-3 -4 3.7 X 10 
() 

6.7 X 10-3 -3 -4 -4 -3 -4 -4 5.9 X 10-5 Cl) 

J.J. •.-i em 2.1 X 10 6.7 X 10 2.1 X 10 1.9 X 10 5.9 X 10 1.9 X 10 > 

c em/sec 42 133 420 1330 11.7 37 ll7 370 
1--

(J ca1/cm sec0 c 5.8 X 10-S 1.43 X 10-3 

't 1.4 1.00336 (15°C) (Ref. 10) 

en cal/g°C 0.24 1.0 

<Xv (oc)-1 3.66 X 10-3 1.4 x 10-4 (15°C) (Ref. 10) 

- 2; ~ em sec 0.187 1.43 X 10-3 

- 2 ~llJ"tt/c 1.1 X 10-6 1.1 X 10-5 -4 1.1 X 10 -3 1.1 X 10 4.3 X 10-10 4.3 X 10-9 4.3 X 10::s 4.3 X 10-7 

"' 3 -1 2 2 1.8 X 103 5.8 X 103 2.1 X 103 6.6 X 103 2.1 X 104 6.6 X 104 
r-4 k? em 1.8 X 10 5.8 X 10 

CIS 

E >..2 
-2 -2 4.8 X 10-3 1.5 X 10-3 4.2 X 10-3 1.3 X 10-3 4.2 X 10-4 1.3 X 10-4 

Q) em 4.8 X 10 1.5 X 10 
~ 
E-4 

7.6 x 1o-3 12 em 2.4 x 1o-3 7.6 x 1o-4 2.4 x 1o-4 6.7 X 10-4 2.1 X 10-4 6.7 X 10-5 2.1 X 10.-5 

c2 em/sec 48.5 150 48.5 1500 4.2 13 42 133 
'--



---
---

---·----
·-r·-

---
--_

____
___

 l ___ _
 

., 
2: 

SE
W

E
L

L
 

2: 

-
I 
I 

I 

~
--
-
~

--J
 

~ 
10

 
-· 
-
-

·
-
-
~
 

-
-

! 
-
.
.
 

--
-

. 
. -

---
-

-
-
-

-
. 

2:0
"" 

I 
! 

I 
I 

I 

u
• 

, 
~
 

I 
I 

I 
w

 

~
 

"' ~
 

v 
I 

I 
I 

I 
~
 

I 
' 

u 
I 

I 
I 

----
-

I 
0

\ 
' 

H
 

I 
I 

I 
I 

-1
--.

. -
---

--
-

-(
 

--
-

' 
-. 

__
 _j

 
--

----
----

,--
---

-
--

-
--

-
. 

-

' i 

I 
I 

I 
I 

ac
 

I 
2: 

=
 

4
7

rn
R

 

I I 

-3
 

I 
I 0

 
_ 

4 
-3

 
2 

10
-

10
-

5 
10

 
IO

 
w

R
2 

(c
M

2 /
s
E

c
) 

IO
 

F
ig

. 
l

. 
T

h
eo

re
ti

c
a
l 

a
tt

e
n

u
a
ti

o
n

 f
U

n
ct

io
n

 f
o

r 
w

at
er

 d
ro

p
s 

in
 a

ir
 

(S
ec

. 
20

).
 



--­\() 0 >
( 

4 

..._
._.

 3
 

~
 

l
)
 

.....
... 

CD
 

0 I z ~
 2

 
I­ <

{
 

:::>
 

z w
 

I­ I­ <
{

 

,.."
""" 

/ 

j..,....,_..... 
_.

....
-­

_...
.. 

E
X

 P
E

R
l M

E
N

T
A

L
 

T
H

E
O

R
E

T
IC

A
L

 

O
L
-
-
-
-
-
-
-
-
-
.
_
-
-
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
~
~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
~
-
-
~
 

0 
10

0
0

 
2

0
0

0
 

3
0

0
0

 
4

0
0

0
 

5
0

0
0

 
6

0
0

0
 

7
0

0
0 

8
0

0
0

 
F

R
E

Q
U

E
N

C
Y

-
C

Y
C

L
E

S
/S

E
C

 

F
ig

. 
2 

Co
m

pa
ri

so
n 

o
f 

th
e
o

re
ti

c
a
l 

a
tt

e
nu

a
ti

o
n

 w
it

h
 K

n
u

d
se

n
's

 e
x

p
er

im
en

ta
l 

v
al

u
es

 f
o

r 
w

at
er

 d
ro

p
s 

in
 

a
ir

 
(S

ec
. 

2
1

).
 

.....
.. !::i
 



..--
u 
w 
(f) ;:;-.. 
~ 
(_) 

'--"' 

u ~~ bl:: 
0.,. 

II 

b 
1/\1 

- 118 -
3 r--------------------.--------------------.-------------------, 

----- - ----- --1-

10
4 

10
3 - ----- - -- --

I 0 2 ~<------------------t------------- -- - --- ··-- ---- - -----·-·----! 

3 ------------------------------------------------------------~ 0 .1 10 100 

Fig. 3 Theoretical attenuation funct i on for a i r bubbles in water 
{Sec. 22) . 


