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ABSTRACT

In Part 1, four stages in the accretion of planetesimals are described.
The initial stage is the condensation of dust particles from the gaseous solar
nebula as it cools. These dust particles settle into a thin disk which is
gravitationally unstable. A first generation of planetesimals, whose radii
range up to ~10"1 kilometer, form from the dust disk by direct gravitational
collapse to solid densities on a fime scale of order one year. The resulting
disk, composed of firsi generation planetesimals, is still gravitationally
unstable and the planetesimals are grouped into clusters containing approxi-
mately 10% members. The contraction of these clusters is controlled by the
rate at which gas drag damps their internal rotational and random kinetic
energies. On a time scale of o few thousand years, the clusters contract to
form a second generation of planetesimals having radii of the order of
a few kilometers. Further coalescence of planetesimals proceeds by
collisions which seem capable of producing objects with a growth
rate of ~15 cm. yr™* at one A.U. The final stage of accretion
during which planet-sized objects form is not considered here.

In Part 2 of this fhesés, an invésfigaﬁon of a dynam‘i-c;ul‘ pro‘blem which
has considerable application to the solar system is undertaken. The evolution
of the obliquity of an object is determined when under the influence of
three phenomena: (1) the precession of the objecis orbit plane, (2) the
precession of the object's spin axis, and (3) tidal friction. In the absence
of tidal friction, it is concluded that if the period for precession of the spin
axis is much shorter than the orbit precession period, the obliquity of the
object will remain very nearly constant in spite of the movement of the orbit

normal, It is further concluded, that since the obliquity is not changed by



the motion of the orbit plane, the decay of the obliquify towards zero by
tidal friction is not significantly altered by this motion. These results are
applied to Mercury, Venus, lapetus, Triton, as well as the equatorial satel-
lites of Mars, Jupiter, Saturn, and Uranus. The final spin states of these

objects satisfy a generalization of Cassini's laws for the moon.
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PART 1. THE FORMATION OF PLANETESIMALS



I. INTRODUCTION

This paper reports on an investigation of the significance of gravitational
instabilities in the primordial solar nebula to the planetary formation process.
Of course, this subject is by no means a new one. Kuiper (I95l) suggested
that fragmentation of the nebula into protoplanets occurred when compression
of the disk in the vertical direction due to cooling drove the density above
the local Roche limit. However, he did not determine the scale of the
instabilities but merely assumed that it was comparable to the planetary
separations. An attempt to establish this scale was made by Urey (1966,
|972)._ Urey applied the dispersion relation for an infinite uniformly rotating
gas to the solar nebula. This dispersion relation reads (Chandrasekhar 1955)

w? = k22 + 4% - 4mGp, ()

where p is the unperturbed gas density, c is the sound speed, Q is the angular
velocity, G is the gravifational constant, @ is the frequenéy of the disturbance
and k = 27/\ is its wave number. From the above dispersion relation, we
see that a range of unstable wavelengths exists if 7wGp > Qz. The minimum

unstable wavelength is

/2
X . =ac/@Cp - 02)/ . (2)

min

Urey assumed that wGp was slightly greater than 92. He then deduced that

lunar sized objects formed as the products of the collapse of regions of initial

sizes A_. . One puzzling feature of Urey's work is his choice of A . as
min min

the dominant instability scale since Chandrasekhar's dispersion relation shows

that longer wavelength perturbations grow faster.



These attempts to atiribute the planetary formation process to gravita-
tional instabilities of the entire gaseous nebula encounter an insurmountable
obstacle. The density required for instability is so great that either the
temperature of the nebula must have been unacceptably low or else its mass
must have greatly exceeded the value needed to account for the present
combined masses of the planets. A brief discussion of this point is given in

§ Hia.

Our contribution is to outline the process by which dust particles
accreted to form gravitationally active objects. We shall present a compel-
ling argument that, indeed, gravitational instabilities accounted for the
growth of objecis up to several kilometers in radius. The crucial difference
between our investigation and earlier analyses is that these instabilities are
found to develop, not in the gaseous solar nebula, but in the thin disk of
particulate matter that forms in the central plane during the condensation
phase. While our work was in progress, two papers dealing with this problem
have appeared. Lyttleton (1972) pointed out that a thinning dust disk would
eventually become more dense than the Roche limit. But he made no attempt
to ascertain the masses of the unstable regions. Polyachenko and Fridman
(1972) presented an analysis of the fragmentation of a dust disk similar to
that contained in §llla of this paper. They solved for the density of a dust
disk which would have been unstable on the scale of the present planetary
separations. Not surprising, they found that the required mass of solid
material was orders of magnitude greater than that present in the plcme'ré.

On the other hand, we use the known masses of the planefs to estimate the



surface density of the preplanetary dust disk and then solve for the scale of
the initial instabilities.

In section §1l, formation of the thin disk of condensed particles and
its further evolution through gas drag will be described. The fragmentation of
the disk is treated in § 1l and the formation time and masses of the resulting
planetesimals are calculated. It should be emphasized at the outset that at
several stages of this investigation assumptions are introduced for which
alternate possibilities are also quite plausible. In order to keep our exposi-
tion as lucid as possible, we shall follow one particular line of reasening
through to the end. Then in the concluding section, we shall explore the
modifications which the competing assumptions would have introduced.

In order to avoid repetitious references to the numerical values of the
physical parameters appropriate to the primordial solar nebula, we list here
our adopted values for the vicinity of the Earth's orbif.‘ These values will
be applied in the text to all numerical calculations without further reference.
The distance from the sun is a = .5 x lO|3 cm and the Keplerian mean
motion is 0 = 2 x 10~/ s--l° The surface density of condensed matter implied
by the masses of the terrestrial planets is 0p~ 7.5 gm cm—2, which represents
a mass fraction & ~ 5 x IO~3 of the entire gaseous preplanetary disk whose
surface density 0~ .5 x |O3 gm cm-2. We shall use a value of ¢ =
7.6 x |03 T]/2 cm s-l for the speed of sound at temperature T. This
expression is applicable to a gas composed of hydrogen molecules. Where
a specific value for T is required, we shall use T = 700°K. The half-thickness
of the gas disk is D ~ ¢/ ~ IO|2 cm, which implies a mean gas density of pg~7,5 x

-10

10 gm cm—3. The mean free path in the gas is lg ~ 10 cm, which together



with the value for ¢, yields v ~ 2 x 10° cm2 snI for the kinematic viscosity.

In the discussion of the chemical condensation of dust particles we shall use

3

numerical values appropriate for iron. These are a(Fe) = .5 x 10 ° and

p (Fe) = 7.9 gm cm'-3. Elsewhere, we shall assume pp~ 3 gm cm-—3 as

p

appropriate for the mean uncompressed density of the terrestrial planets.



It. THE PARTICULATE DISK

a) Formation

An aftractive hypothesis for the initial stage of planetary accretion
has emerged from recent studies of the chemical condensation sequence of
the cooling preplanetary gas. As the primordial solar nebula cools, the
vapor pressure of a constituent rapidly decreases and eventually falls below
its partial pressure. Presumably, at this stage the condensation of small par-
ticles ensues. The importance of this process has long been recognized
but has only recently begun to be investigated in detail (Lord 1965;
Larimer 1967; Larimer and Anders 1970; Lewis 1972). From the present
composition of the terrestrial planets, it appears that the principal condensates
in the inner solar system are iron, nickel, and iron and magnesium silicates
(Larimer [967). In the outer nebula the temperatures are lower and the
bulk of the condensate is made up of water and water-ammonia ices (Lewis
1972).

Once nucleation occurs, a particle continues to grow by collecting

material still in vapor phase. Its growth rate is given by (Hoyle 1946)

p
F=avi 2, 3)
P

where r is the particle's radius and vy is the thermal velocity of the constituent
molecules which are still in the vapor phase. Numerically, the growth rate is
on the order of centimeters per year for the more abundant minerals.

Once nucleated, a particle begins to settle through the gas toward the

equatorial plane where it can no longer collect material from the vapor phase.



This sets a definite upper limit on the size a particle can obtain. In order

to calculate this limiting size, we must estimate the rate at which a particle
descends to the central plane. The differential velocity between a descending
particle and the local gas is set by the balance between the vertical component
of solar gravity and the gas drag force. For the small particles with which we
are concerned, the mean free path in the gos is long compared to the particle

radius and the drag force is given by

2
FD~ Tr pg cv, 4)

where v, s the vertical velocity of the particle. Setting this expression

equal to the vertical force of solar gravity, we find
‘ 2"p ,
v ~ Q r . (5)

Since the half-thickness of the gas disk is approximately ¢/, the characteristic
descent time may be expressed in terms of the surface density of the gas disk
as
1 9 |
2V RE T ©)
p
From equations (3) and (6), it follows that the maximum radius, R, to which
a particle can grow before reaching ‘the central plane is
o2 %
R~ 7)
ul/A Po

where U is the molecular weight of the condensing molecules. When applied

to the condensation of iron in the terrestrial region, equations (6) and (7) yield

T~ [0 yr and R~3 cm.



It is obvious that the unknown number of nucleation sites is the prin-
cipal uncertainty bearing on the size of the pc:rﬁclves which settle into the
central dust disk. [If the number of these sites is so large that the vapor
phase is significantly depleted on time scales short compared to the particle
descent time, the final particle sizes will be much smaller than R given by
equation (7). Because we have no handle on the actual number of nuclea~
tion sites, we shall express all future results in terms of the unknown particle

radius r £ R.

b) Gas Drag and Orbital Decay

In addition to a vertical pressure gradient, there undoubtedly exists a
radial pressure gradient in the gaseous solar nebula. This affects the orbital
velocity of the gas since the centripetal acceleration is produced by the
difference between the inward gravitational attraction of the sun and the

outward force of the pressure gradient. Thus,

GM 1 dp
g :2 4
a pg da

where Qg is the orbital angular velocity of the gas, M@ is the mass of the
sun and pg is the gas pressure. If we maoke the approximation dpg/da ~

-cng/a, then we obtain

-~ Q- < 9)

to lowest order in (c/Qq)2 << 1. Here Q is the local Keplerian velocity.



The pressure gradient has little effect on the condensed particles
since their densities are many orders of magnitude higher than the gas
density. However, the particles do interact with the gas through gas drag.
A straight-forward calculation for the rate at which a particle spirals toward

the sun yields

2

éN"—-——————-—-——- Q"Q 9 lo
. '(4x2+Q2)( o (10)
where
3 P
X =3 ﬁi = . (11)
P

From equations (9), (10) and (11) it follows that the characteristic orbital

decay time, T = a/a, is given by

3pg 02
- T [ . - S—
o~ e (12)
where we have used the fact that
g o 1/4
x-39 3 g 3K >> 1, (13)
G 4pr 4 oR 4 172 |

The fractional decay that a particle's orbital radius suffers during the

particle's descent to the central plane is

Aa T

2
e ()~ 4
a

The characteristic orbital decay time given by equation (12) is
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4
T~2x|0 yr

d r

(15)

in the ferrestrial region (@ ~ 1 AU), where r is to be expressed in cenfimeters.
The estimate given above for T, is not applicable to particles in the dust
disk unless gas molecules are able to pass freely through the disk. The ratio

of the mean free path, lp’ to the thickness of the disk, d, is approximately

4p r
b 0.53r . (16)
d 3o

'p

From equation (16), we see that if a substantial fraction of the particles in
the disk have radii in the sub-centimeter range, then lp/d < 1. In this
case, the gas drag is exerted on the surface of the dust disk. A short
calculation of this boundary layer drag is outlined below.

The drag force per unit area on the surface of the disk is given by

dv
s=pv—=2 , (17)
9 4z
where v is the kinematic viscosity in the gas. If the boundary layer flow

were laminar, the velocity gradient would be confined to an Ekman boundary

layer of thickness

8 ~V/V/0 . (18)

6 .
From the standard parameters we have adopted, it follows that 6 ~ 3 X 107cm, is

much smaller fhan’fhe half-thickness of the gaseous disk, D ~ IO]2 cm. The

tangential stress on the dust disk would be



1

p vall_ - Q) 1 v 1/2 2
S~-2 .9 ~ o | — p . (19)
5 2 \ a2 9

However, it seems quite likely that the boundary layer flow is turbulent.
The Reynolds number in the Ekman layer, if the flow is assumed to be

laminar, is

2
al@ - 09)5 c 4

Re ~ —— ——2— ~ ~ 10
v 2\)[/-20320

(20)

Furthermore, gravitational stratification appears to be too weak to stabilize
the boundary layer flow since the Richardson number (e.g., Chandrasekhar

1961) is

| g, do/dz 81Go v [Qa\ 2 12

Ri ~ - ~ P l—] ~ 10 , (2h)
p(dvg/dz)2 3 :

Cc

much smaller than the critical value of 1/4.
The tangential stress due to a turbulent boundary layer is given by
equation (17) but with v replaced by the turbulent viscosity
v o'
A g

Re*

V'~ (22)

Here Avg ~ @ - Qg)a is the velocity jump across the boundary layer, &'
is the boundary layer thickness, and Re* is the critical value of the Reynolds
number above which the flow becomes fully turbulent. Since dvg/dz ~

Avg/é', the turbulent stress on the disk is simply

2
p_Av
S~-29 9 (23)

Re*
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From experimental data it is known that Re*~ 5 x IO2 (Jeffreys 1959).

The thickness of the turbulent boundary layer is

2

Av 1/c a
8w 2 ._(___) ~ 7 X 107 cm. (24)
QRe* 2 \Qa Re*

The lifetime of the dust disk against orbital decay turns out to be

[

(%)2 c 1 5
T ~ 2000 — —_—— -~ 1x 10 yr ; 25)
° o)/Z Q ’ (

if the boundary layer flow is laminar and

3
T~ 4Re*q, <Q§_) %N 5 x ]03 yr , (26)

in the more likely case that it is turbulent. From equations (15) and (26),
it appears that the time available to initiate the next stage of the accretion
process (following the condensation of small particles from the vapor phase)

is about 10° years.
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I,  FRAGMENTATION AND COLLAPSE

o Stability
Extensive calculations of the gravitational stability of rotating disks
have been carried out in an effort to explain the spiral structure of galaxies
{Toomre 1964; Goldreich and Lynden-Bell 1965 a, b). We shall make use
of the dispersion relation for local axisymmetric perturbations (i.e., for

wavelengths A << a) which reads

w? = 122 + k2 - mGok (27)
where Kz = [0 + d(rQ)/dr] and ¢ is the sound speed. The important
features to note are that pressure stabilizes short disturbances and rotation
stabilizes long ones. If the surface density 0 is high enough, there is a
range of intermediate wavelengths which are unstable. For a given ¢ and
K, the critical value of 0 above which the disk is unstable is given by

ox = K2 . (28)

This criterion is not rigoriously applicable to the gaseous solar nebula since
it is derived for a thin ciisk. Nevertheless, it does provide a good estimate
of the surface density required for instability. If we substitute in equation
(28) K = Q, which is the appropriate expression for Keplerian motion, the

critical gas surface density is

og* =7.6 x |03 T]/2 gm cm—z. (29)
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Since the value of Gg we obtain by augmenting the terrestrial planets up

to solar composition is only 1.5 x 103 gm cm-2, equation (29) implies that
the gaseous solar nebula is stable unless T < 0.04°K . Actually, equation
(29) gives an underestimate of the critical surface density for a gas disk of
finite thickness by a factor of order 3. This is @ consequence of basing the
derivation of 0* on a thin disk model which overemphasizes the effects of
the disk's self-grcxvii'afionv for disturbances which are not much longer than
its thickness. The low temperature required by equation (29) is the primary
reason for rejecting planetary formation theories which are based on the
gravitational instability of the gaseous solar nebula.

We now proceed to apply the dispersion relation given by equation
(27) to the stobility of the dust disk which forms in the equatorial plane of
the solar nebula.

The interpretation of c in this context requires some discussion. The
use of a sound speed, c, to model the effect of the random kinetic energy
of dust particles is not entirely justified because collisions between particles
are inelastic. The time interval between collision, T, is given by T~ lp/c,
where lp is the particle mean free path. The mean free path is [p~ 4rppd/3op,
where d is the thickness of the dust layer. The thickness is in turn a
function of the dispersion velocity since it is just twice the height to which

a typical particle can rise above the central plane. Thus,

d~c2/m G o, - (30)

Notfe that the disk's self-gravity has been used in deriving equation (30) and

not the vertical component of the sun's gravity. This is because inside the
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disk, the gravitational acceleration due to the disk, 2m chz/d, exceeds the
vertical component of the solar gravitational acceleration, GM@ z/a3 =
sz, for disks which are cold enough to be unstable. If at each collision

a fraction B of the impacting particles' kinetic energy is dissipated as heat,

the velocity dispersion will damp on a time scale of order

Y iBer s (31)
damping 3n G 02 B - !
P

where ¢ and r are fo be expressed in cgs units. From equation (28), it
follows that ¢ < T\'GOP/K in unstable disks. With our standard parameters,
this implies ¢ < 8 cms ol . and hence, Ty . <l.,6x ]Oér/B seconds. Thus
amping
for most applications we can safely set ¢ = 0. The principal exceptions
arise in cases of collapse on time scales shorter than T .
damping
In the absence of random motions (c = 0), the dust disk is unstable

to all axisymmetric perturbations of wavelength shorter than the critical

wavelength

.2 2
A, = 4m GOP/Q . (32)

For uniformly rotating disks, the stability criterion for non-axisymmefric
perturbations is the same as that for the axisymmetric ones. The situation
is more complicated for differentially rotating disks. The shear associated
with the differential rotation converis an arbitrary non=axisymmetric
disturbance into an approximately axisymmetric one in a time of order

a few rotation periods. Fortunately, as equation (27) shows, the growth
time for perturbations having wavelengths shorter than A _ is less than an

orbital period. (Actually, equation (27) only shows this for axisymmetric
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disturbances, but the same result also holds for more general perturbations.)
Thus, for perturbations which are somewhat smaller than )\c’ we can forget
the distinction between axisymmetric and more general perturbations and just
use equation (27) to get an estimate of the exponential growth rate. The
exact value of A <A, below which equation (27) may be used for non-
axisymmeiric perturbations, is not well-defined. It depends upon the
magnitude of the initial perturbation which determines how fast growth into
the non-linear regime is achieved. We shall express all future results in

terms of EXC, where € is on the order of, but less than, unity.

b) Fragmentation

The largest fragments that form when the unstable disk breaks up have
masses of order m ~ opgzxz. Numerically, kc~ 5 x 108cm and m ~
2 x |0|‘8:§2 gm. Note that XC << a, so that our application of the disper-
sion relation given in equation (27) is justified.

Regions containing total masses as large as m cannot collapse unimpeded.
As a fragment contracts, its gravitational binding energy,‘ U', increases as
U'~UX/N. However, as a consequence of the conservation of internal
angular momentum, ifs rotational energy, ER', increases as ER' ~ ER(X/X')Z.
Furthermore, if the contraction time scale is shorter than the damping time
for random motions, the random kinetic energy of the particles, T', increases
as T'~ T/ )2. If the release of gravitational binding energy exceeds the
demands of the rising rotational and internal kinetic energies, the excess
energy will appear in the form of a bulk contraction velocity. On the other

hand, if during the collapse, the required rate of increase of rotational and
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random kinetic energies cannot be met by the release of gravitational
potential energy, the coniraction velocity will decay and re~expansion will
ensue. In this latter case, the dimension of the fragment will eventually

begin to oscillate about an equilibrium size which is determined by

d | : N =
S T -U)=0, (33)

or, in differentiated form, .by

26 + 2T - U =0 . (34)

The condition for marginal stability (UJ2 = 0) given by the dispersion relation

(eq. [27]) is of this form. In terms of the wavelength X, it yields

202 + ane? - 4P Go L =0 | (35)

for the marginally stable mode. We may identify each of the three terms in
equation (34) with the corresponding term in equation (35). Consider next
an unstable linear perturbation of the dust disk (i.e. one for which w? < 0)
of wavelength L. In the absence of interactions with other contracting
fragments, this perturbed region would initially collapse and then oscillate

about an equilibrium size A' given by

: 2
()Lz a? + 4ﬂ2c2) <_>.‘_) - 4TT2 Go_ A (_X> =0 (36)
A P A
or
2-2 22
ATQT + 4
Al = ne . (37)
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As written, equations (36) and (37) do not include the effects of damping on
the random motions of the particles. However, it seems likely that damping

is always fast enough to make the random motions unimportant to the collapse
dynamics. To appreciate this, note that the damping time as given in equa-

tion (31) depends inversely on 0p2 and thus decreases as ()\'/)\)4 as the col-
lapse proceeds. The characteristic time scale for collapse is never shorter

3/2. From the

than ~(}'/G Op)]/2 and thus, decreases more slowly as (A'/)\)
ﬁumerical estimate of the damping time given by equation (31), it appears
that the damping of the random kinetic energy is sufficiently rapid to render
pressure unimportant in the initial stages of the contraction. The preceeding
argument then implies that the effects of pressure remain small for all later
stages of collapse.
Fragments collapse directly to form solid bodies. provided that their

equilibrium contraction corresponds to spatial densities at least as great as

that of the solid material. The condition on the equilibrium contraction is

approximately

A ™ A /3
_2 (._P._> . (38)
Al 6 op

If equation (37) is substituted into the above inequality (and the initial

random kinetic energy is set to zero) we obtain

5.3 4 2 4
384n” G o Q Ga
Ve~ b =384n5( )( 2P> , (39)
Qépp Go/\ a

or numerically,
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»<5x10° cm . (40)
The mass and diameter of the solid bodies which form from fragments of
initial size \ are m € 2 x 10]4 gm and A’ < 0.5 km.

c) Further Growth

We have shown how dust particles coalesce into planetesimals with
radii of a few tenths of kilometers. Because A /A ~ 102, these first genera~
tion planetesimals will be grouped into rotating disk~-like associations con-
taining ~104§2 members. Although each cluster is stable against collapse
on the gravitational free-fall time scale, it does contract slowly as gas drag
reduces its internal rotational and random kinetic energy. Since the
Reynolds number for the gas flow about bodies the size of the planetesimals
is large, the drag force arises from the formation of a turbulent wake and is

Ep = CpmPoglyy = vty -x,) (41)
where Cpis the dimensionless drag coefficient typically on the order of
a few tenths. The contraction time for the associations is then given by

T ~£_(§§> <9c9> Er'N 1.3 % 102r4,/CD yr , (42)

D

where ry is the radius in units of tenths of kilometers. It is easily shown
that the cluster contraction time is comparable to the relaxation time due
to binary encounters beiween planetesimals. Thus, the contraction -of a -
cluster should proceed without a significant loss of membefs by evaporation.

The masses and radii of the second generation of planetesimals range up to

2,2 18,2
m~ A "85, ~ 2 x 10787 gm (43)
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and

r 583 (44)

Beyond this stage it appears unlikely that further growth proceeds by
means of collective gravitational instabilities such as we have been describing.
The frictional effect of gas drag does destabilize axisymmetric perturbations
for wavelengths larger than XC. We cannot be certain that the axisymmetric
perturbations by themselves are not a significant feature in producing a limited
further growth of planetesimals. However, it is possible fo prove that they
are too slow to be responsible for the accumulation of material over inter-
planetary distances.

Direct particle~particle collisions are probably the dominant accretion
process following the formation of the second generation planetesimals. It
seems plausible to expect near encounters between planetesimals to build up
a dispersion velocity on the order of the escape velocity from the surface of
a typical object Vg = (2GM/r)]/2. The corresponding disk thickness is

d~ ve/Q. The growth rate produced by direct impacts is simply

dr

Qo -1
I~ _—Ep ~ |5 cm yr . (45)

P

d) Survival Time

As long as the gaseous solar nebula is present, gas drag will produce
a slow inward drift of the planetesimals toward the sun. It is essential that
at each stage of accretion, the particle growth time be short compared to

the orbital lifetime set by gas drag. We have already verified that this



21

condition is well-satisfied through the formation of the second generation
of planetesimals. Past this stage, the orbital lifetime, as determined from

equations (9) and (41), becomes

P 3

T~ B £ 9-9‘>i~6x 10° s /C (47)

e c/c D
3CD g

where the particle radius rg is expressed in units of kilometers. Comparison
of equations (45) and (47) reveals that at each stage of accretion the survival

time exceeds the growth time by at least two orders of magnitude.
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IV. DISCUSSION

There are two related uncertainties which plague any attempt to present
a detailed account of the early stages of planetary accretion. The first of
these, to which we have previously referred, is the question of the number
of nucleation sites that form during the condensation of minerals from the
gaseous phase. If the number of independent nucleation sites is so small
that the vapor phase is not seriously depleted in the time it takes the
particles to gravitationally settle into the equatorial plane, the resulting
particles have radii several centimeters in size and the settling time is
about ten years. On the other hand, if the number of nucleation sites is
so large that the vapor phase is exhausted before appreciable settling takes
place, the resulting dust particles may be very much smaller and the cor-
responding settling time much longer. A related question is the relative
rate of cooling of the preplanetary nebula to the settling time of the dust
particles. If the cooling time is short compared to the settling time, the
chemical composition of the dust disk reflects typical cosm;c abundances.
However, if the cooling time is longer than the settling time, chemical
fractionation occurs at the earliest stage of planetary accretion.

Of the two problems discussed above, the question of ‘the number of
nucleation sites is the more fundamental. Because it directly bears on the
size and hence the settling time of the dust particles, it sets the time scale
to which the cooling time must be compared. It also indirectly affects the
cooling time ifself, since the opacity of the nebula depends upon the number

and size distribution of the dust grains.
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Another problem worth mentioning is that gravitational instabilities
will begin to grow in the dust disk as soon as ifs vertical thickness is less
than M.+ Thus, our discussion, in terms of the dispersion relation for a thin
disk, is an oversimplification of the true sifuation. Fortunately, the ftime
scale for growth of these instabilities is identical to that for the thinning
of the disk. The major new feature introduced by the finite thickness of
the disk is just a decrease of the growth rate of the first generation plane-
tesimals from 2m(G OP/)\)]/Z to ZT(G OP/KC)]/Z. The calculated masses of
the objectsarenot affected by the finite thickness of the disk.

The main contribution of this investigation is the demonstration that
sizable planetesimals can accrete directly from dust grains by means of
gravitational instabilities. Thus, the fate of planetary accretion no longer
appears to hinge on the stickiness of the surfaces of dust particles.
Although we have dismissed the sticking of dust grains as unnecessary to the
planetary accretion process, there is a more fundamental reason for dis-
regarding it altogether. That is, even if the dust Qrcins tended to stick
together upon impact, the growth of solid bodies by this process would be

much slower than by the gravitational instabilities we have described.

This research was supported in part by NASA NGL 05-002-003.
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PART 2, TIDAL FRICTION AND GENERALIZED CASSINI'S LAWS
IN THE SOLAR SYSTEM
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I. INTRODUCTION

There exisfs in the solar system an abundance of rotating objects
located in orbits that undergo precession. Virtually every planet and
satellite fits this description to some degree. For instance, the current rate
of change of the longitude of the earth's node on the fixed ecliptic implies
an orbit precession period on the order of 70,000 years (Brouwer and
Clemence, 1961). This motion is produced by the perturbations of other
planets with orbit planes slightly inclined to the ecliptic. A much more rapid
precession is realized by the lunar orbit normal which is induced by solar
perturbations to revolve about the normal to the ecliptic in only 18.6 years.

With the motion of the orbit plane, the obliquity, €, of the spinning
object (the angular separation of ifs spin c;xis and the oﬂoif normal) becomes
a function of time. Indeed, if a spin axis is nearly fixed in space and
separated by an angle & from the normal, /l\<, of an invariable plane about
which the orbit normal A describes a circular motion with a constant incli-
nation i; then the amplitude of the variation of the obliquity, A€ will be
equal to 2i if 6 > or 26 if 6 <i. |In fact, it is well known that the

obliquity of the earth has a small time dependent contribution,i.e., g =
23°27'8" .26 - 46" .84T to first order in T measured in centuries (Allen, 1963).
For most of the planets, this effect is nearly negligible compared to the
obliquity itself because planetary orbital inclinations are small (Table 1).
However, Mercury, Pluto, and to some extent Venus, are exceptions. Their
orbits, as well as the orbits of all the satellites in the solar system, vary
their orienfation in space by o sufficient amount to make this potential

change in the obliquities of these objects significant. The most catastrophic
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TABLE 1
INCLINATION OF PLANETARY ORBITS

Planet Inclination fo Ecliptic
Mercury 7° 0 10.6"
Venus 3° 23 7.1
Mars 1° 51 1.1¢
Jupiter 1° 18" 31.4"
Saturn ' 2° 29" 33.1"
Uranus 0° 46' 20.9"
Neptune 1° 46' 45,3"
Pluto 17° 8 44 o

example of this is afforded by the satellite system of Uranus. The oblig-
uity of Uranus is about 98°, and it has a contingent of five satellites all
with orbit planes nearly coincident with the planet's equator plane. Solar
torque exerted on this system causes a precession of the planet's spin axis
with a time scale on the order of 10° years (see Section IlI). i is
apparent that the satellite orbits could remain equatorial only if they partake
of the motion of the equator plane of their primary (Goldreich, 1965). This
forces one to conclude that if at one instant in time a satellite's obliquity
was zero and its spin axis remained fixed in space, then half a period

later the obliquity would be ~ 164° and the satellite would be

refrograde! (Note: sincevUranus rotates retrograde, A€ ~ 2(m-0) where 8 is
~98°.) One might argue that the strong tidal friction effects accompanying
the distortion of the figure of the satellite by the gravitational field of
Uranus could, in addition to slowing the satellite's angular velocity to a
sychronous value, decay any nonzero obliquity in a time short compared fo
10° years. However, we shall find that once the spin axis of such a satel-

lite has been driven in the direction of its orbit normal by tidal friction,
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this mechanism is no longer required to maintain this condition in spite of the
continued movement of the orbit normal. Instead, purely conservative grav-
itational forces can constrain the spin axis to follow the orbit normal in
space.

A planet's (or satellite's) spin vector would remain fixed in inertial
space_in the presence of an external central gravitational field only if the
planet were perfectly spherical and hence felt'no gravitational torques. In
reality, objects in the solar system are asymmetrical. This is offen due to
hydrostatic flattening as in the case of the earth, (C-A)/C=3.27x1072,

Munk and MacDonald, 1960); but it can also be due to an intrinsic asym-
metry as in the case of the moon, (C-A)/C = 6.2x10™* (Allen 1963). Even
if the earth's rotation ceased, there would still be a nonhydrostatic compo-
nent on the order of (C;A)/C~ 107® (Goldreich and Toomre, 1969). The
attraction of the sun (planet) for the figure of a planet (satellite) exerts a
couple on it. Under ifs influence, the spin vector attempts fo revolve about
the instantaneous orbit n&fmal. Thus, for example, the combined influence

of the lunar and solar attraction for the earth's equatorial bulge causes the
well known precession of the equinoxes with a period of 27,000 years. It

is this phenomenon which in some cases enables a spin axis to follow an orbit
normal. In Sections Il and Il of this paper, we shall demonstrate that the spin
axis maintains a nearly constant angular separation from an axis /§\ which remains
coplanar with % and during the m§ﬁon of the latter. The location of{é\
depends critically on the ratio of the spin and orbit precession periods.
Provided the spin axis precession period is much shorter than the period of

orbit precession, /é remains close to N and the obliquity is virtually a
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constant. This is certainly the case for the satellites of Uranus, as well as
for the other equatorial satellites in the solar system. (For the earth, how-
ever, the spin precession period is not short enough to suppress the small
variation in the obliquity mentioned above.)

In this paper, we freat the motions of Mercury, Venus, and all solar
system satellites with the exceptions of the small outer objects orbiting
Jupiter, Saturn, and Neptune. It is quite likely that all of the objects
treated in this paper have been strongly de-spun by tidal friction since the
origin of the solar system. Although the conservative forces described above
produce a precession of the spin axis, s, about the vector /5\, these forces
supply no constraints to the radfus of the precessional cone 8 = cos™ (/Ei\ /s\)
We shall find in Section IV fhafhf‘i\aol friction most likely determines this
value by driving the spin axis coincident with /5\(6-*0) in a time comparable
to that required to decay the spin to a sychronous value. The location of this axis
is determined for several solar system objects in Section Ill under the assump=
tions of hydrostatic flattening and for (C-A)/C on the order of the lunar
value. These objects thus exhibit a generalization of Cassini's laws for the
moon (Cassini, 1693) with the spin axis, the orbit normal, and the normal
to the invariable plane remaining always coplanar. This motion has pre-
viously been suggested for Mercury by Colombo (1966) and later by Peale
(1969), and we offer additional support for their proposal here.

We devote Section V to the influence of the 3/2 resonance state of
Mercury on the tidal decay of its obliquity. Section VI deals with the
rotation of Venus, the only object in this paper with a final rotation state

that cannot be explained by tidal friction. If, as advanced by Goldreich
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and Peale (1970), friction at the boundary between a solid mantle and a

liquid core similar to that of the earth stabilizes the retrograde motion of
this planet, then we believe the spin vector should lie one or two degrees
short of 180°, because the oblateness of the planet is insufficient for /f';\ to
be parallel to the orbit normal. Finally, Section VIl concludes the paper

with a summary of the results obtained.
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. EQUATIONS

Consider a spinning object orbiting a primary with an orbit plane
undergoing precession. Qur purpose is to derive the dynamical equations
governing the time evolution of this object's obliquity, i.e., the angular
separation between its spin and orbit axes. We begin by reviewing the
nature of the orbit precession for various processes operating in the solar
system. Following this, the precession of the secondary's spin axis is
introduced into the problem. Finally, in a coordinate system rotating with
the orbit plane, the Hamiltonian for the spin motion is derived.

a) Orbit Precession

We shall separately examine three modes of orbit precession. The
causal agents of these modes are (1) a second orbiting body, (2) an oblate
primary, and (3) locking of the orbit plane to the equator plane of a
primary experiencing precession. (See Figure 1),

Let m and a; be the mass and semimajor .axis of the object under
investigation. Let a second object of mass M, >>m be located in an orbit
with a semimajor axis @z >> oy and inclined to the first by an angle, is'
For simplicity, we take the orbits to be circular. The disturbing function
felt by m due to M, is given by

R = GM; {1/A = (01 /a3) cosS}

A2 =of + -~ 20, 03 cosS
(Brouwer and Clemence, 1961a). The angle S is the angular separation of
the planets,

cosS = cos® is/2 cos(ug = uy) + sifi /2 cos(us + u1)

where u; and uz are the angular positions of the bodies measured along
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Figo . A composite schematic illustration depicting the precession of
the orbit plane of a secondary, m, by (l) another orbiting body, M,
and (2) an oblate primafy, MPo In the text, these modes are considered

separately. Also shown is the precession of the secondary's spin axis, 2,
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line of nodes
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their respective orbit planes relative to the ascending node of m on the
orbit of M. Averaging over the orbital periods of both planets yields the

secular disturbing function which to second order in i s,

. GMS 10 1 o ) . o .
R"" o -2—b1/2 - -E 'a;—bs/g Slf'|a '5/2} R (])

(i)

The quantities bs

are Laplace coefficients given by

1,0 2 -(-s-)'— (91—>j Fls,s+j, j+1; (a1 /0xF]

P i! az

where (s)j is the Pochhammer symbol and F is the hypergeometric function.
Differentiation of this quanitity with respect to iy and subsequent multiplica-
tion by m yields a torque which can then be equated to the time rate of

change of the orbital angular momentum, T,

GMSm )

dlo /dt = L bye hx k) - (2)

Oz

A

The unit vectors ft and /1}5 are the orbit normals of m and M, respectively.
Taking the dot product of A with this equation reveals that the magnitude of
the angular momentum is a constant, L, = m(GMpal)%. The mass of the
primary has been denoted by Mp' Dividing equation (2) by L, yields the
time rate of change of the orbit normal,

dvdt = a_fk_ x ). 3)

Since Ms >>m, l<s is assumed fixed in space and the solution is uniform
. A e A . . . " . .
precession of h, i.e., h describes a circular motion about ks while main-

taining a constant inclination, i The precession frequency is given by

M (1)
Q= - T —r\;\i (S.l.) bs/a (4)
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where P is the orbital period of m.
Let ip be the inclination of the orbit of m to the equator plane of
the primary. If the primary is oblate, the disturbing function due to the

attraction of m for the primary's figure is

U= ~(G/al) (C, = A) Pa(sinE)

(Brouwer and Clemence, 196%a). It has been assumed that the primary is
axisymmetric with Cp and Ap representing the maximum and minimum
moments of inertia. The symbol P, denotes a Legendre polynomial of the
second order. Terms of higher order have been neglected. The angle B is
the latitude of m as seen in a coordinate system centered on Mp with its
z-axis coincident with its spin axis, /lzp, and its x-axis pointing toward

the node of m on the equatorial plane of the primary. [f ® measures the
angular separation of m from the x-axis, then sinB = sini sin@® Upon

averaging over an orbit the surviving secular contribution becomes,

UY=(G/ad) (C - a)i3aiy-11. (5)
PP 4 P4
This leads to an equation analogous to (3)
df/dt = QP@P.X A). 6)

L3 e ° A .- - ° - °
Again considering kp fixed, we obtain uniform precession with a constant

inclination ip and a frequency

- C - A R_\?
q =31 (p P <_.e) @k ) 7)
P MRZ /\% P
PP

where Rp is the radius of Mp'
Examples of both types of precession thus far considered are present in

the solar system. Of the objects treated in this paper, orbit precession
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by a second orbiting body occurs for the moon, Mercury, and Venus. For
the lunar orbit, it is the sun which plays the role of M, while the orbits of
Mercury and Venus experience precession as a result of the gravitational
perturbations of the other planets. For Triton, on the other hand, it is
the torque arising from the hydrostatic flaftening of Neptune which is
important. lapetus is an interesting intermediate case, because the torques
due to the sun and to the equatorial bulge of Saturn (together with the
pull of the large satellite Titan) are comparable. The orbit normal for
lapetus can revolve about neither Qs nor /lzp. Instead, nearly uniform
precession is executed about a third vector, ’|\<', which is coplanar with
the other two and located about midway between (Tisserand, 1896).

Most satellites in the solar system have orbit planes lying in, or
nearly in, the equator plane of their primary. These include J5 and the
Galilean satellites of Jupiter, the inner satellites of Saturn, as well as the
systems of Mars and Uranus. For all of these objects, it is the torque from
the figure of the primary which is the most imporfanf. However, due to
the low inclination, the amplitude for the variation of A is small, ~2i.

On the other hand, it is clear that if these orbits are to remain equatorial
for the duration of the solar system, they must possess the ability to follow .
any change in the position of the primary's equator (Goldreich, 1965).
Above we considered /|\<p to be fixed, an assumption quite adequate over
short time scales on the order of the orbit precession period, P = 21T/|Q,p|,
On a longer time scale, there is an additional precession of the primary's
spin axis about ifs own orbit normal exemplified by the 27,000 year

‘advance of the equinoxes on earth. . Thus, this furnishes a third mode of orbit
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precession experienced among solar system objects. Though of low frequency,
the amplitude (which is equal to twice the obliquity of the primary) can be
quite large.
Depending on which of the three types of precessic;n is produced,
we sltlall take the following expression for fi(t),
= c;osi/l\< + sini [ cos (Q’r);<\+ 5in(Qf)§/\] (8)
i.e., uniform precession where @, i, and Q are chosen appropriately for each
object. Unit vectors % and /)>C|re chosen so as to make an orthogonal set.
b) Spin Precession
If the spin axis, 8, of m remained fixed in inertial space, the
obliquity of the body, ¢ = cos™ ¢ +f), would be determined as a function
of time once the precession of f was described. This, of éourse, is not
the situation. The spin axis of an object in an external gravitational field
will not remain fixed if the object is oblate. A certain amount of oblate-
ness always accompanies a spinning object due to hydrostatic flattening and
manyvobiecfs (such as the moon) probably sustain an intrinsic oblateness
considerably larger than the hydrostatic value. The formalism for the
precession of the spin axis has already been developed in equation (5).

If we interchange the roles of m and M_ by establishing a coordinate

P
system on m with the z-axis coincident with § and the x-axis pointing
toward the ascending node of Mp on the equatorial plane of m, we can

write the disturbing function felt by MP as

V=12 (c - A) R(siny)
X ,

where we have again assumed axial symmetry. The principal moments of

inertia are those of m, while vy is the latitude of Mp given by siny =
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sine sin® where @ is the angular separation of Mp from the x-axis.

Averaging over an orbit produces the secular part,

<V =93-(CS-AS){§-(’5\"’n‘)2'% : 9

Qi

Multiplying this by Mp produces an expression which, when differentiated,

yields a torque analogous to that obtained from (5). However, this torque

causes the precession of the spin axis of m instead of its orbit plane.

(In both cases, the bulk of the angular momentum resides in the motion of

Mp which is little affected by the mutual torques between it and m.)
Although (U) and (V) are of the same form, there is an ifnporiunf dif-

. N o o . o
ference. Whereas, in the former, kp was considered fixed in space; in

Q

the latter, A has an explicit time dependence given by equation (8). As

consequence, although the Hamiltonian for the spin vector can be identified
as the energy by virtue of the lack of time dependence of the generalized
coordinates,

H=3%35. L + My (V>
this energy is not a constant of motion, i.ei., dH/dt = 3H/5t # 0
(Goldstein, 1950). Here Is represenis the spin angular momentum of m
and 5 = 0%, where w is the spin frequency. We can simplify this problem
by performing a canonical transformation fo a new system rotating with the
orbit plane. Let Q’,Q’, and 2’ denote the principal axes fixed in the
planet and located by Euler angles 6, ¥, and ¥ with respect to inertial
space vectors X, ¥, 2 (Figure 2). The orbit normal f revolves clockwise
qbouf/|\< maintaining a constant inclination i. We can eliminate the time
dependence of A by transforming to a coordinate system q; = fi(q‘.)

in which A is constant, i.e., rotating about 2 with angular
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Fig. 2. The orientation of the principal axes of the secondary, (x',y',z'),
with respect to the inertial space vector (x,y,z). Angles 6, ¢, and | are
A

Euler angles. Unit vectors ' and R locate the spin axis and the orbit

A
normal of the secondary respectively. The vector k is normal to the in-

variable plane,
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velocity
o =po-Qr , 8/ =6 , ¥ =Y
This is a simple point fransformation and is, therefore, canonical. We wish
to obtain the new Hamilionian K in the rotating system. This is given in
terms of the old Hamiltonian By
K=H+ 3F/ot
where F is the generating function of the transformation (Goldstein, 1950).

The generating function we require is of the type Fs(q,p’)
= 14 = 7+ 7 - r
Fa ZP; fi@p) = 8y ¥ ¥ + -0 py

o,

dp:
transform identically '

This gives us g% = = f. as required, and we also find that the momenta
a3 i

P; = an/aqi = Pi'
Substituting F; into K, we obtain
K=H-Qp' . 10
Py (10)

Now since pr is simply the component of the planet's spin angular momen-

tum, Ls, in the direction of/l\<, we can write

:1"'. . - =2
K = 3s S (CS As)n

3 (hoay2 -%s - oL By,
4 3

where n is the mean motion. We make the further simplifying assumption
that Es = Cs's—, that is, we neglécf any nonprincipal axis rotation. Such
rotation would induce internal energy dissipation as a result of the wandering
spin axis which would damp out this motion and quickly drive the spin axis

coincident with the principal moment of inertia. We have for K;

K=3Cw - (C-A) @ |2 42 -1 - cwas-k) . a1
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We note that dK/dt = 3K/t = 0 so that K is a constani of mofion. On
the other hand, because the transformation contains fime, K cannot be

identified as the total energy. Nevertheless, the effective torque exerted
on the planet in the rotating reference frame can be found from differen-

tiating the pseudo-potential,
7=-3 (CS-AS) n? (A «B) (R xA) - CSwQ(IEx@) = d-[s/df . (12)
2

This is a first order vector differential equation for the momentum ES . We
first observe that from the dot product of 4 with equation (12), Ls = Csw
is also a constant of motion. Equation (12) then becomes

di/dt = -a(R-A)(A x3) -k x?) (13)

‘where we have designated,

(C,-A)
on=% Sc s’ | (14)
w

s

We could have written this equation down directly by equating d—l:s/df to
the torque resulting from equation (9), and then transforming to the rotating
coordinate system by replacing the fime derivative by the operator

{d/dt + o x}. The more circuitous route of first establishing the
Hamiltonian was chosen because extensive use shall be made of this quantity
in the next section. We finish this section by finding an approximate time
dependent solution for the obliquity in the case where the spin precession
period P = 2ri/a| cos €| is much shorter than the orbit precession period

Py = 2n/l0l  To solve equation (13), it is convenient to reorient our rotating
coordinate system so that fi is in the 2 direction and &k lies in the 0,2

plane. The obliquity ¢ is now the colatitude. Resolving/l} and 5 into
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component Qecfors results in
k= sinf/)>+ cosi 2
s = sine coscp' R + sine sing § + cose 2
where @ is the azimuthal angle measured from the x-axis. Substitution of
these into equation (13) leads, after manipulation, to the following
equations:
de/dt = -Q sini cosop (15)
dep/dt = =Q cosi = a cose + Q sini sing cote . (16)
We can use these two equations to demonstrate our contention that € is

nearly constant when P <Ph. If |0/a)] <1, we can infegrate the second

equation to find

R

© =Py ~- (o cose)t . (17)

Using this expression in de/dt gives
€~ €, + (Vo) sini secey [sin(po =at cosep )~ simpg ] . (18)

Since Ps/Po < 1, ¢ remains nearly equal to g5 in spite of the precession

of f.
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Itl., GEOMETRY
In this section the geometry of the motion will be considered. A
lucid descr/ipﬁon can be given if time is eliminated from the equations.
This can be done from equations (15) and (16) followed by integration or,

alternatively, we can simply use the Hamiltonian K. Since L is constant

it follows that Cw? = I?/C must be constant. Rearranging K, we find,

E={K - ’;f Cw? - %(C-A)n2}/Cu
(19)

. Ay . .
where E is also a constant. When f, k, and & are again resolved into

the unit vectors as above, E takes the form

E=-2cos®e - Q {sini sine sinp + cosi cose} . (20)

2
This expression contains a term first order in i that vurieg with the angle o.
However, this is not the best coordinate system to illustrate the nature of
’rl'le solution. Suppose, instead, that the z-axis is located in the plane
of the vecf/ors A and /I\<, but inclined to A by an angle £&. We shall refer

to this axis as the E-axis (Figure 3). In this case,

E/0.= =% {cos® € cos® 8 - 2cos & sin€ cos@ sinb sine

(21)
+ sin® € sirf 8 sin® o} -g {cos(i-E&) cos® + sin(i-E) sing sin8} .
We now define the value of § by the following equation,
a sin28 cos® = 2Q sin(i-§) . (22)

(Note that & is not a constant, but is a function of 8.) Using this

definition,
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Figo 3. The coordinate system rotating with the orbit plane with the
A N
z-axis in the direction of the auxiliary vector £, Vectors f and k are

fixed and located in the (y,z) plane.
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E/a = -3 cos® & cos® § - g— cos(i-8) cos® = 5sin® € sin® 6 sinp.  (23)

a) Prograde Rotation

For the prograde éolufion, we begin by defining E(0) by
E (0)/a = =3cos? € - -g- cos(i=€) . (24)

Subtracting équaﬁon (24) from (23) and using the half-angle formulae for
sin8/2 yields,

sin* 6/2 - (1+B) sinf /2 + A =0 (25)
where A
g = /) cos(i-§) A= _IE - E0)]/2 _ (26)
1 = sinf E(1+sin? o) 1 = sirf E(1+sin® )

The solution is

sir? §/2 = 3(1+B){1 - [1 - 4A/(1+B)2]%} 2
where we have picked that root which vanishes as E =E(0). This can be
simplified if we resirict the discussion to values of 6 for which sin8/2 ~
£sin0 is a good approximation. In this case, sir 8/2 can be neglected

in equation (25) to give sir® 8/2 = A/(1+B). Substituting for A and B,

taking the square root, and retaining terms to second order,

sin§/2 ~ [E - EO}/2a |®

Q .
l+a cos(i - &)

I+ sin® € (1+sinf o) (28)

2[1 +g cos(i-§)]

(This expression diverges for ((/a) cos(i-E) = =1 in which case the approxi-
mation is no longer valid. Actually, equation (24) is not obtained by
evaluating equation (23) at 8 = 0. Such an evaluation would contain

€o = &(6=0) instead of §&. However, the difference between E(0) as
defined and equation (23) with 8 = 0 is of higher order than we are con-

sidering and can be neglected.) The important observation fo make is that the

————
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motion is one in which 6 remains constant except for a small fractional
change that is second order in sin§. This means that the spin vector revolves

A
with a nearly constant angular separation about an axis, &, inclined by the

. A
angle € to the orbit normal A. The vectors A, X, and £ are coplanar.

The location of the E-axis is given by equation (22). It follows that € is
very nearly constant if 9 is.
If € is a small angle,
sin & ~ sin i/{cos i + (0/0) cos 8} . (29)
For objects in prograde orbits, Q is negative. As |(/a| -0, sing =~
Q sini/a cos @, so that & approaches zero through negative values. The
proper interpretation of negative angles is that é\ is inclined fo ' in the
direction away from K. 1t is now apparent that the obliquity, € = cos™* (R+5),
is nearly constant for Ps/Po << 1 simply as a result of the close proximity of
/§\ to . (Triton and the satellites of Uranus are located in retrograde orbits
so that Q > 0. However, since the spins of these objects are undoubtedly
retrograde also, the situation is simply inverted from that above, so that
the discussion of this section applies. The positive value of sin€ for these
objects when Q/a << 1 means that /§\ is inclined to f in the direction away
fromv -/|\<) b
At the other extreme, if |Q/a|>> 1, it is clear from equation (22) that
(E = i) becomes small and we can write,
sin (§-i) = -% sin2i/{cos2i + (Q/a) sec 0} - (30)
As |/a) ==, sin (E-i) ~ -a cosB sin2i/20. For prograde orbits, /§\ is
inclined to K by (E-1i) in the direction away from f. (For retrograde orbits
/f§\ is inclined to K in the same manner, )
The precession of the spin vector ~ when viewed down the E-axis -

. C, D, . e D, IA
is clockwise when € is close to @ and counterclockwise if € is close to k.

Remember that we are in a rofating coordinate system. The counterclockwise
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motion when {é\ is near K reflects that fact. Actually, in inertial space the
spin axis moves litfle during the preces;&;ion of the orbit for this case. The
region beiween X and f is forbidden to € for prograde motion. Whenever
the spin vector is in this position the clockwise and counterclockwise
precessions add, both fending to advance % in the x direction (Figure 3).
It is clear that 4 could not execute a circular motion about an axis in this
region, for refurn motion in the -x direction would be impossible.
(i) Mercury

Radar measurements indicate that Mercury rotates in a direct sense
with a period equal to 2/3 its orbit period, or about 59 days (Pettengill
and Dyce, 1965; Goldreich and Peale, 1966, 1968). We now inquire as fo
the actual location of the §-axis. A near constant obliquity imposes the

following condition on the oblateness,

(C-A)/C > 2 <_f.3.>| secd| (31)
3 \DR,

where P is the orbit period and D the length of day. The appropriate

values for Mercury are D/P = 2/3 (resonance), P = 88 ddys,

P, =2.5:10° years (Brouwer and Clemence, 1961b) from which is obtained

| (C=-A)/C > 9,2:107 sech

A lower limit for (C~A)/C can be established by calculating this value

due to hydrostatic flattening. The principal moments of inertia are given by
C =11 + (2kR®/9GI)uP] (32a)

I - (kR®/9GI)u?] (32b)

It

A

where k is the fluid Love number, R the planet's radius, w the spin angular

velocity, and I the moment of inertia of the equivalent sphere (Munk and

MacDonald, 1960). This gives us

(€ = AVC i~ (6/3K)(w/ln )2 (33)
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where K is the square of the ratio of the radius of gyration to the planet's
radius and uf': = GM/R®, M being the planet's mass. For Mercury,
(C-A)/Cmin ~ (k/3K)x10™® ., (For the earth k = .95, K = .335, and k/3K
.95.) However, it is quite likely that the planet can support a nonhydro=
static oblateness much larger than this. For instance, the moon with about
a quarter of the mass of Mercury has an oblateness of 6.2 x10™*, while
even the earth with 185 times the mass of Mercury has a nonhydrostatic
contribution on the order of 10, Recently a similar nonhydrosfofib com-
ponent has been found for Mars (Lorell, et al., 1972). We conclude,
therefore, that it is quite likely that the obliqﬁify of Mercury remains
very nearly constant during the planet's orbit precession. For (C - A)/C ~
107, the E-axis is inclined by an amount £ = =5.6 sec8 minutes of arc
to the orbit normal (Colombo, 1966).
(ii) Moon

The lunar orbit undergoes precession due to solar gravity with a period
of 18.6 years while mainfainéng an inclination of 5°8' to the ecliptic.
The oblateness, (C-A)/C has the value 6.2 x10%. This is considerably in
excess of the hydrostatic value of 5.6 x10™%k given by equation (33) with
K~ 2/5. As a result, the earth exerts a sufficient torque on the lunar
figure to revolve ifs spin axis with a period of 78.5 years, From equation«{30)
it can be shown that the E-axis is inclined to the normal to the ecliptic,

A
ky, by 1°35' in the direction away from the lunar orbit normal, A

>
(iii) Triton
Triton affords us with a very interesting application. First, unlike

Mercury and the moon, the orbit of Triton experiences precession almost

exclusively due to the torque arising from the equatorial bulge of its
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primary, Neptune. Secondly, the orbit itself is retrograde and very highly
inclined = by some 20.1° to the equator plane. If tidal friction has driven
the satellite to synchronous rotation, the spin should be retrograde also.
Because the rotation and revolufion are in the same sense, Triton is correctly
treated in this section rather than the following one on refrograde rotation.
Observational evidence indicates that Triton has an orbit precession
period on the order of 600 years (Brouwer and Clemence, 1961b). The
value for the oblateness of Triton due to hydrostatic flattening with the length
of the day set equal to the length of the month is (C=A)/C = 5.5x107* ¢
(k/3K) where p is the density of the satellite. Lewis (1971) has suggested
that large outer satellites such as Triton may have liquid water-ammonia
mantles as; a consequence of radicactive heating. If so, then the hydrostatic
value would be appropriate. For 8 = 0, k ~1.5, K ~ 0.4, p ~ 2 gm/cm®,
equation (29) would yield § ~ - 1.1°. Hence the spin axis would be able to
"follow" the orbit normal rather well. On the other hand, if Triton is solid
throughout, the oblateness may be more lunar-like, implying that the &-axis

would be even closer to the orbit normal, i.e., & ~ -0.6° sec®.

(iv) lapetus
The location of the spin axis of lapetus (Saturn 8) was first considered
by Colombo (1966). As mentioned earlier, the near equality of the solar
torque to the combined torques of Saturn and Titan make it impossible for
the orbit of lapetus to maintain a constant inclination to either the orbital
or equator plane of Saturn. These planes are tilted with respect to each

other by 26°44'. As a compromise, the orbit describes a circular path about
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a mean pole which has an angular separation of ~14,7° from the spin axis
of Saturn, but which is coplanar with this axis and Saturn's orbit normal
(Tisserand 1896). The orbit normal of lapetus remains inclined to the mean
pole by 8 during its ~3000 year precession period. lapetus is known fo
have achieved synchronous rotation from its photometric phase curve. A regular
sinusoidal light variation of about two magnitudes has been observed
(Widorn, 1950) with a period equal to its orbit period. The hydrostatic
value of (C-A)/C from such a spin rate is too small to be of dynamical
significance, ~3x107® p™* (k/3K). (This is the same order of magnitude
as the hydrostatic value obtained for Mercury, except here we are dealing
with an orbit that takes about one tenth as long to trace its circular path.)
If this value is appropriate for lapetus, then the E-axis lies close to the mean
pole, i.e., &~ 8°. On the other hand, if a lunar value is more appropriate,
PS ~ 230 years and € ~ =0,65%sec 6.
| (v) Equatorial Satellites

The orbit planes of equatorial satellites must experience precession with
the ‘equator plane of the primary if they are to remain in the equator plane.
To determine the ability of a satellite’s spin axis to "follow" the orbit
normal, we must first ascertain the primary's precession period. It is not
sufficient to merely compute the solar torque on the primary. In general,
an accompanying entourage of satellites can affect this period in two ways.
Those satellites which tend to partake of the precession add their contribution
of angular momentum to that of the system. In addition, the solar torque on
their orbits is fransmitted to the primary and must be added to the solar torque
acting on the equatorial bulge. In this situation, the precession period

is to be obtained from the expression,
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K+ (o /)Y, (m/M)(a/R B
T=p <_E . L — | sece
D 35 2
J+ " % (mi/Mp)<ai/Rp)

where (C-A)/C = 2J/3K, Mp’ Rp’ ep, P, and D are the oblateness, mass,
radius, obliquity, orbit period and spin period of the primary respectively;
while m. and a. are the mass and semimajor axis of the ifh satellite. 'On
the other hand, if a satellite is not locked to the planet (such as the moon),

it assists the sun in exerting a torque on the equatorial bulge. In this case

the period is given by,

T= P(D) ; {1 +Z (me/Mg)(i/a. }-]_ sece,

where Mg is the solar mass and r the sun-planet distance. Table 2 lists the

derived precession periods for the planets

TABLE 2
SPIN PRECESSION PERIODS OF THE PLANETS
Precession Period
PIQne’r Obliquity? K? J3 Without Satellites With Satellites
Mercury? - - 2,4-10° -
Venus - ~.34  <7.50 10'a >2.5- 10* -
Earth 23° 27 335 1.64.107 7.4 10° 2.7+ 10
Mars 23° 59 359 2,95.107° 1,8 1P 1.8 1CP
Jupiter 305 .25 .0296 1.0 10° 4,3-10°
Saturn 26° 44 .22 027 6.8+ 10° 1.8 10°
Uranus 97° 55 .23 .023° 2,1-10° 9.7« 1¢7
Neptune 28° 48 .29 . 0078 7.5 10° 2,310

* Computed for (C A)/C ~ 10™,

2 Allen, 1963.

BJPL Reporf 32-1306 except where otherwise specified.
% Anderson and Efron, 1969,

5 Optical J .

® Brouwer and Clemence, ]%lb



We now compare these periods with those for spin precession of the
satellites assuming hydrostatic flattening and sychronous rotation. The expres-

sion for the spin precession period can be written

9/2

1 K\ /e .1 fa

P =23mE | Z}[2 (Gp)% = sece
s k pp P R
s P

where/ the subscripts s and p denote satellite and primary values respectively.
As an estimate, we fake K, = 2/5, ky ~ 1.5, and € ~ 0, obtaining

P, = 2x 107 pspp'a‘/2 (cls/Rp)é/2 years. This period is a strongly, monotonically
increasing function of the satellite's orbital semimajor axis (measured in

units of the primary's radius, GS/RP). Hence, the larger the orbit, the

more difficult it is for the spin oxis to follow the moving orbit normal.

TABLE 3
SPIN PRECESSION PERIODS FOR HYDROSTATICALLY
FLATTENED SATELLITES

e ————
——

Quter
Equatorial a /R 0 P_(years)
Sc}f"ellife 5/ p p s
Mars, 6.92 3.97 0.45
. Deimos
Jupiter, 126.36 1.33 0.93 x 10°
Callisto
Saturn,
Hyperion 24.83 0.68 2.1 x 10°
granus, 24.69 1,60 5.6 x 10?

Oberon
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In Table 3, we have calculated P_ for the outer most equatorial satellite

of each system. To be careful not to underestimate the time, Py has been
set equal to 3 gm/cm®. Comparison of the values with Table 2 reveals that
for each, %\z f and the satellite's obliquity will remdin nearly constant. It

follows that this will also be the situation for the inner satellites.

b) Retrograde Rotation

The rotation of Venus is known fo be retrograde. The obliquity is

close to 180° (Shapiro, 1967; Carpenter, 1964, [970). We conclude,
therefore, that the approximation sin8/2 ~ %sin8 is not valid. Instead, we

proceed as follows: Let
~ E(m)/o = Scos® § + g- cos(i-€) . (34)
Subfracting from equation (23) and using the half-angle formulae for cosine,
cos* /2 = (1-B) cos®>6/2 + A’ = 0 (35)

where instead of A, we have used

Al = [E- Em)]/2a ] (36)
1~sin® §(1+sinw)

We now make the approximation cos6/2 ~ &sinf which for angles near m is
quite good. This enables us to neglect the cos* 8/2 term in equation (35)
yielding the solution cos® 6/2 ~ A’/(1-B). Substituting for A’ and B,

taking the square root, and rekaining ferms up to second order in &,

cos /2 | LEZEM]/20 g | 4 SIRE (14si @)

. @)
1 -g cos(i -§) 2[] "g cos(i-g)]

We see that 8 is again very nearly constant and the mofion is precession

about the E-axis inclined to fi by € given by equation (22). Since the



‘motion is refrograde, cosQ <0and § > 0. As IQ/OLI ~0,€ =0 from above,
as | Q/a| »®, € =i from below. At intermediate values the E-axis is always
located between # and /l\<, the three vectors being coplanar. This is just
the region forbidden fo é in the case of prograde motion. Figure 3 illus-
trates this situation. The precession always appears counterclockwise
looking down the E-axis.

Equation (3l) is the criterion that must be satisfied if the obliquity
is to remain nearly constant. For Venus, P = 225 days, D = 243 days,
P~ 8.10* years. (This orbital precession period has been calculated
using the secular disturbing functions for the earth and Jupiter. The period
for each was calculated separately and the total period obtained by adding
their contributions, i.e., ]/Po = I/P@ + l/Pu, This should afford o
rough upper bound on the frequency of precession due to these planets.)
Inserfing these values the condition becomes

(C-A)/C >> 5x1078| sece| . (38)

Using the equation for hydrostatic flattening, we obtain the lower limit

(C- A)/Cm.

in

~ (k/3K) x 6 x 100%. An Estimate of the J; term has been
made by Anderson and Efron (1969) from the analysis of Mariner V tracking
data. This implies an oblateness of (C~A)/C = Jo/K = (1/K)(-5%10) x 1078
It appears that the ability of Venus to maintain a constant obliquity during

precession of its orbit is marginal at best.
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V. TIDAL FRICTION AND GENERALIZED CASSINI'S LAWS

Up until now, we have dealt only with conservative forces. The
study of these forces has enabled us to locate an axis, /5\, for each object
about which the spin axis describes a circular motion. There has not,
however, been any light shed on the angular radius, 8, of this motion.
The conservative forces, so far considered, furnish no constraints on this
value. In this section, it shall be shown that it is the nonconservative
tidal friction force which provides us with this information.

In 1693 Cassini stated his three famous laws governing the rotation of
the moon (e.g., Danby, 1962).

(1) The moon rotfates uniformly about its polar axis with a period
equal to the mean sidereal period of its orbit about the earth.

(2) The inclination of the moon's equator to the ecliptic is a constant
angle. (This angle is about 1°35',)

(38) The ascending node of the lunar orbit on the ecliptic coincides
with the descending node of the lunar equator on the ecliptic.

A little reflection reveals that laws (2) and (3) imply that the spin
axis is coincident with /«5\, i.e., that the lunar spin axis executes circular
motion about the E~axis with a vanishingly small radius, 6. In 1966
Colombo‘ suggested that Mercury may be in a similar state. If the oblateness
is large, £ differs very little from f and the obliquity would be essentially
zero. Colombo proposed that this configuration would be favored because
it minimized internal friction. However, the time scale for energy dissipa-
tion by this process was unspecified and was admittedly questionable for

objects with much longer precession periods than the moon. Peale (1969)
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reopened the issue by iniroducing tidal interactions into the picture. It was
first pointed out that the conditions 8 = 0, m represenfs exiremes in the
body's pseudo-potential energy, E. This can be easily seen from equations
(28) and (37). When Ps << Po’ E(0) is a minimum; when P >> Po’ it is
a maximum. For retrograde motion, E(m) is always a minimum. Peale
further contended that: "As E involves the energy of spin and orientation
and angular momentum, any process which interchanges energy and angular
momentum between the spin and orbital motions will drive E to an exireme
value. Tidal interaction provides a mechanism of energy transfer which
can either add or subtract energy associated with the spin and orientation."
In this section, we shall put this contention on a firm computational footing
utilizing a simple model of tidal torque orginally due to MacDonald (1964).
As a first step, the rate of energy change as a function of the tidal

torque will be derived. Differentiating equation- (19) with respect to time,*

dE/dt = —af®+ AR« dYdt) -k « dB/dt). (39)
Let X represent the time rate of change of 4 induced by the tidal torque,
X = (dé\/df),r. Adding this term to the left side of equation (13) furnishes
the new equation of motion for %,

d/dt = ~a(R-DE xS -akxd + % . (40)
Substituting equation (40) into (39) and employing well-known vector triple
products yields the relation sought,

dE/dt = ~a(R-DR -3 -afk -0 . (41)

a) Frequency Dependent Q

The form of X must be obtained from the tidal torque. MacDonald

calculates the torque by supposing that the equilibrium tidal bulge of the

*For simplicity, we assume do/dt=~0, which is nearly so during the terminal
stage of despinning.
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secondary is displaced from the subprimary point in the direction of the
rotation by an angle, 8, given by the relation sin25 = 1/Q, Let £* be
a unit vector from the center of the secondary locating a point on the
surface instantaneously at the subprimary point. Then this point, when
viewed in a coordinate system rofating with the orbital angular velocity

of the secondary, v, moves according to the equation,
dt*/dt = (5-vh) x P

where v is the true anomaly. If the orbit is circular, Vv is equal to the
mean motion n. The direction of d7*/dt gives the direction of the tidal
bulge from the subprimary point. The torque exerted by the gravitational
attraction of the primary for this bulge has the form -(C/T)(Ir\ xdir\*/df),
where C is the moment of inertia, T, a characteristic time constant and
?, a fixed unit vector-foward the primary. In the rotating system, the

equation of motion fors is

4= Ik iR - (RxE)

dt

rof
Transforming this equation fo inerfial space and using standard vector

identities allows us to write,

ds _ _1f=_ = -
.&fs__-?[<s-n>f¢(¢.s>] . (42)

If Qe (frequency)™, the characteristic time constant T has the form
3ky GM 2R
p s

1/7 ~ T.
2Qn Cnr®

(43)

where kT, Rs’ and C are the tidal Love number, radius and moment of

inertia of the secondary. Qis the value of Q for a frequency equal to n.
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The orbital radius is denoted by r and Mp is the mass of the primary.
Since we are interested in time scales much longer than an orbit
period, we can neglect these short-term variations by averaging equation

(42) over an orbit,

ds .1 {'g-z- (54 ﬁ-z‘ﬁ} . (44)
df 27

We are interested in obtaining (d’s\/df)T =X ,

A P
w(i‘i) =45 _pde (45)
dt T dt dt
Dotting & into equation (44)
dw - -..1_'{ o+ Wb AP - 2(’5\-6\)n} . (46)
dt 27 :

Substituting equations (44) and (46) into (45)

GRS

This expression is to be used in equation (41) to evaluate dE/dt. Since

- = (5-9)

] [’r}- (% ﬁ)f.«,\] . (47)

=18

1
2

the time scale for tidal decay is much longer than a precession period, we

can average dE/dt over_the latter. To obtain an answer accurate to second
° A » o

order in € and 8, we resolve s with respect fo the coordinate system

of figure 3,

2= cosd £ + sing [cosp % + singp §]

and average over @. A straight forward calculation yields,
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((12.5{)) ~ %(-(% - % cos€ cos 6) (cosi - cos€ cos(i~E) cos®@)

and

((3 2)((1\ o) E’% cos€ cos B (% -4 cosg cose) (1 -cos?E cos®8)

Combining these to form (dE/db

(dE/dt) = --]T- (-(% - %) ‘(OL+Q cosi) sin® @

+ (@ cos€ siP € cosB - Q sing sin(i-§)) }

However, the last two terms inside the second bracket cancel by

virtue of equation (22), leaving

1 ) -
(dE/dt) = —= (—3—)\4 :%) (@ + Q cosi) sinf8 (48)
In the terminal stage of tidal de-spinning as the secondary approaches
We note the

synchronous rofation, the sign of the first bracket is positive.

following properties of <dE/df>: If Ps << Po’ o dominates and <dE/d> <0,

The quantity, E, approaches E (0) which is a minimum.

<dE/df> vanishes. If P, >> Po' Q (which is negative) dominates and

When E = E(0),

<dE/dt>> 0. Again, we find E approaching E (0) which is now a maximum.
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This demonstrates that for prograde mofion, tidal friction drives the spin

vector fo coincidence with the &g -axis, where §o = §(0). For retrograde

motion, however, the spin axis does not approach the & (m)-axis.

One can easily show that in that case, (dE/dP is always positive.
The pseudo-potential energy must consequently increase away from E(m)
which is a minimum. The retrograde spin of Venus is thus not stable
in the presence of the solar tidal torque and other means must be
found\ for maintaining the. near 180° obliquity of this osiecf (Goldreich

and Peale, 1970).

b) Constant Q-
If Q is assumed constant as has been suggested by MacDonald, then

T of equation (42) has the form,

3k GMZ2R?

2
rm—L o PS5 o feydPsa] T 9 (49)
2@ Cr® ™ xdf/dt|
where from dt*/dt, we find
I/r\" Xd’?‘*/di'la = o - 20(R5) + n® - o sinv[l-(R-%R]. (50)

Note that this expression contfains the true anomaly, v, which must be
taken into account during orbital averaging of equation (42). If we define

the following quantities,

, 2m
c(8,w) = ) cov dv
o) o @
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2
S(0,w) = & sinfv dv , 52
e o g[ [ x d/ar| >

we. can write this average as,

£ = ~(o/w)|C(6,w)T + SEW(FT-M A - [CEw) + SGuWI R . (59
dt
Repeating the operations performed in (44) ~ (46),

du/dt = = (o/w){C(8,0) w + wS(8,w)(§+ R ~ [C(8,w) + S(8,w)]E-R)n}, (54)

(?’) =X = ~(o/w) {S(8,w)(8-H) - T [C(8,w) + S(8,w)IHR - &) 4] . (55)
t
A

When this expression is substituted into equation (41) and averaged over an
orbit one finds, as with the frequency dependent Q, that both <')'(~/|2> and

<(8+R)(X* N> each have only one term that does not have siff8, as a

factor and these cancel when the expressions are combined to give <dE/dt>,

<ﬂ§> ~ =(o/w=n) sirfd @+Q cosi) {n/u) - %} (36)
dt

The remarks following (48) apply equally well to the above expression.

c) Physical Interpretation

The direction of ¥ is given by A - SR +%) which is the component of A
perpendicular to 5. It is clear that at any given insfcmf,b this forque is
trying to rotate 5 into .  We wish to inquire then, how such a torque could
drive the spin vector coincident to the E-axis instead. The process is depicted
schematically in Figure 4. This is a polar projection of the motion looking

down the £-axis. In this example, é\ lies close to R, Ps << Po’ and the
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motion of the spin vector is nearly clockwise circular motion about ’g\
At a fypical\poinf suchas O, the torque X is directed toward the tip of the
orbit normal f. The torque can be resolved into a component fangential fo
the path of 6 and a component directed toward the tip of ’g\ It is this
latter, labeled ')'Z’;, that is responsible for the decay of 8, the radius of the
circular frajectory. The components of X* to lowest order in & and 6 are

X* = x*(w)(cos€ sinG = sinf cos & sing)(sin® é - cos & é\p) ,
where § is a unit vector locating the angular position of O in the x,y plane.
This expression vanishes at sing = tan 8o cot§& where ¥ is completely tangen-
tial to the circle (points B and D). During the passage of %' from B to D,
the forque %* tends to increase 8 by pulling % toward fi. lts maximum effec-
tiveness occurs at point C where )'ZC* = sin(§ - 8)[~sin o /§\ + cos 8o 1.
However, from D back to B, the continued rotation % in the direction of f
causes a corresponding decrease in 8. During this portion of the path, the
torque achieves its greatest strength at point A, ?A* < sin(§+ 8o )[sin 8 /E\
+ cos§ §]. Because the length of arc from D to B is longer and the torque is
larger than from B to D, there is a small net decrease in the angle @ for each
cycle of the precessional motion. We should also add, that had the
assumption da/dt ~ 0 not been made, it would have been necessary
to compute dE(0)/dt also. We then would have been interested in
the rate of change of E - E(0). However, the conclusions are not

altered by this modification.
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N ,
Fig. 4. Decay of spin vector to §. Circular path is spin vector trajectory .
The time rate of change of the spin vector, X, produced by tidal forque is

always directed toward the orbit normal, f. Over one cycle of the motion,

the net effect of X is to decrease the radius, 6, of the cone of precession.
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All of the objects considered in this paper have undergone severe tidal
de=spinning and are presumably in their final rotation states. With the
exceptions of Mercury and Venus, we can immediately conclude that the
go-axié locations determined in Section Ill are quite likely also the positions
of the spin axes of these bodies. Venus is excepted for the reason mentioned
above. Mercury, on the otherhand, has had ifs "normal process of tidal
evolution interrupted. A detailed consideration of this planet will be the

subject of the next section,
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V. OBLIQUITY OF MERCURY

Radar measurements have determined the length of the Mercury day to
be 58.7 days or 2/3 of the orbital period (Pettengill and Dyce, 1965; Dyce,
Pettengill and Shapiro, 1967). The stability of this value in the presence
of the solar tidal forque is presumed to be due to the influence of an addi-
tional torque arising from the attraction of the sun's mass for a permanent
axial asymmetry of the planet (Colombo, 1965; Colombo and Shapiro, 1966:
Goldreich and Peale, 1966). A net torque persists after averaging over
an orbit because of the large eccentricity. As a consequence of the 2/3
commensurability, at successive perihelion passages the planet presents first
one face and then the opposite fo the sun. Because of this, the torque
remains constant instead of averaging to zero over many orbits, as would
be expected for a non-commensurable spih. The action of this torque is
to spin up the planet by an amount that exactly compensates for the loss
of angular momentum due to the solar tidal torque. Of course, this addi-
tional torque must also be included in the time evolution of the obliquity.
The asymptotic spin rate predicted by tidal friction alone depends sensitively
on the tidal model employed (Peale and Gold, 1965; Goldreich and Peale,
1966). However, there is reasonable accord between models as to the
evolution of the spin vector up to the 3/2 resonance point. As an example,
we shall first show that the frequency dependent model of tidal friction
-freated in this paper predicts a substantial obliquity for Mercury at the time
it entered resonance. We shall then inquire as fo whether the torque on
the planet's intrinsic asymmetry could have a stabilizing influence on this

obliquity analogous to its effect on the spin rate.
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Because of the strong dependence of T on r, the eccentricity must

be faken info account when averaging the tidal torque (42) over an orbit,

Writing T = To(q/r)s, r=a(l-e®)/(1+e cosv) and v = n(1+e cosv)¥(1~&)*

the average of

a function f/T takes the form

<f/'r>=-—-—fd (I-e cosv)

(] - 2)3/2

2
1

A e [ dv f;(]+2e2)+4e cosv + 6e® cos‘?vs
2

2nT
o

where we have

.0

retained terms to second order in e. The components of

equation (42) for the tidal torque can be written,

S

X

s =
Y

®

S =
z

When averaged

<§ > =
X

<S> =
4

<§>=
z

We have

-(1/7) {stinav - Sy sinv cosv} ,
~-(1/7) {Sycosgv - Sx sinv cosv} ,
-(1/m(s, =n)

over an orbit,

~(S, /T )E+3¢) ~ (58a)
(S, /T )E+9/2) (58b)
~(S,/7,) {(1413e2/2) - (n/5 )(1+27¢2/2)} . (58¢)

seen that the spin axis undergoes precession on a fime scale

of ~2,4+10° years [(C~A)/C ~ 10™]. Since this is short compared to the

tidal time scale, we can average the above equations over this motion also.

Multiplying equation (58a) by Sy and equation (58b) by Sx’ adding these

and averaging over a precession period yields,

e
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5 (w sin8) = --,-r-]-— ® sinB(3+15¢2/4) ,
dt o

where we have used Sx = g sin8 cosyp and Sy = ® sin® singp. The angle,
¢, measures the precession of the spin axis relative to the position of

perihelion. The equation for <Sz> remains unchanged and can easily be

combined with the above to give

~d£)- = -%”— % + cosB (‘E cosf - %)
dt

+e2[(-u- cos © "-2-7—D->cose+-]-§-]§ .
4 2 Y 4

4 cose—-Si:aez(% cos@-a—>+ e° (—]—l cose-27 %): . (60)

I

dt o 4 2
Note that as t—==, 8-o0; W= W where

we = n(1+2762/2)/(1+ 1362 /2)

Substitution of e = 0,207 produces 1.23n or a 71.5 day asympiotic rofation
period for this model of tidal torque.

In Figure 5, we have integrated equations (59) and (60) with e = 0,207
for various values of the initial obliquity, 6,- In all cases, the initial
spin angular frequency was taken as 111n. This value was deduced from
MacDonald's (1964) relationship between spin angular momentum density and
mass. We note that - although all curves converge on (0, wf) - at
rotational rates slightly greater than the asymptotic value the obliquity is
still rather large. In particular, at the 3/2 resonance most starting values
for Go produce an obliquity near ~34°. In all cases (except 90°) the
obliquity at first rises steeply reaching a maximum where equation (60)

equals zero, i.e.,
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Fig. 5. Obliquity as a function of spin frequency for an object being de-
spun by tidal friction. The asymptotic spin rate of 1.23n is a consequence of
the MacDonald model employed. The 3/2 resonance position is marked.

All evolutionary tracts considered have a sizable obliquity at this point.
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w cos® = 2n(1+27¢2/2)/(1+11e2/2)

Actually, computations performed by Brouwer and Von Woerkom (1950) indi-
cate that the eccenfrfcify of Mercury varies between 0.11 and 0.24 with
a period of about 2.2x 10° years (Brouwer and Clemence, 1961b) so that e
was not constant during the decay. Some idea of the sensitivity of the
results on e can be found in Figure 6 where the equations were integrated
for different values of e with 6, = 20°. This produced a rather regular
variation of the resonance obliquity from 19° for e = 0.30 to 44° for e = 0.0.

If these results reasonably represent the de-spinning of a planet by tidal
friction, then it appears likely that when Mercury achieved resonance it
refained a sizable obliquity - perhaps larger than most observed in the
solar system today. Further decay of the rofational frequency stopped. We
now address ourselves to the evolution of the obliquity in this resonance
state.

The gravitational torque exerted by a primary on a secondary with three

unequal momenfs of inertia can be written;

T = %;i C-B)- ) T

r A=@K T+ B-A@DEh R (61)
where p is the product of the primary's mass and the gravitational constant,
A <B < C are the three principal moments of inertia of the secondary, /I\, ./J\,
and K are unit vectors along the principal axes of its inertial ellipsoid, P is
a unit vector locating the primary from the center of the secondary, and r,
the separation of the bodies. Suppose a planet is spinning in the 3/2

resonance state with zero obliquity. The planet alternately presents one face

and then the opposite to the sun at perihelion. If at a given passage the
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Fig. 6. Obliquity as function of spin frequency during tidal friction de-
spinning for different values of the orbital eccentricity. For the MacDonald
model of tidal friction used, the asympfotic spin rate is a function of the

eccentricity.
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axis of the minimum moment of inertia, A, makes an angle a with the
solar direction ¥, then the angle remains constant at each subsequent passage
as long as the resonance is maintained. Let us now define an inertial
coordinate system with unit vectors 2, 9, 2 which coincide with the prin-
cipal axes at perihelion of the hypothetical planet just described. This
system is pictured in Figure 7. Now consider a planet with a spin axis
which instead of being in the 2 direction is located by the angles (8, «)
in the inertial system. The azimuthal angle, @, changes as the planet
undergoes precession. When the planet is at perihelion, its principal axes
can be located by tipping 2 info % in such a way that the coordinate system
suffers no rotation about its z axis, i.e., the coordinate system is fransformed
by rotating it about an axis 8= @x2)/|4x2|. The principal axes at peri-
helion, denoted by primes, are related to the original set of unit vectors by,
T = (cos§ cos®® + sinp) X - (1-cos6) cosgp sing $ - cose sin® 2,
?’ = =(1-cos8) sing cos¥ R + (cos® sinfep.+ cosacp).Q'—- sing sin 6 2,
Q’=’s\=sin6 cosch+sin9 sincp/)>+coselz\ .
Since the planet is spinning with an angular velocity w =(3/2)n, the prin-
cipal axes as a function of time measured from the moment of perihelion

passage are

AN_A A

=1 coswt + J’ sinwt ,
AN A

J =~ sinwt + J’ coswt,
A A

K=K’

In addition, P and r are functions of the orbital position of the planet,

= cos (@ + v) &+ sin (on+v)9 .

r=a(l - &)/(1 + e cosv)
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Fig. 7. Principal axes af perihelion for an object in the 3/2 resonance

state and with an obliquity, 6>0.
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Internal dissipation constrains the planet to rotate about ifs maximum
principal moment of inertia C. In the absence of other torques, the equa-
tion of motion for the rotational angular velocity is Cd3/dt = T. Toking the

A
dot product of this equation with K’ gives the time rate of change of w,
cd- T
dt
while the dot product with 2 gives the time rate of change of S, = w cosb,
dsS -
C—2=2:1
dt

Both of these equations are fo be averaged over orbital and precessional

periods,
2m

dv #f(v,o)
b / '

<f>—-—-- f dcp°__..__._..._....
2ira® ( :

-€

It is advanfageous at this point to interchange the order of integration,

2 217
dvir® f dep fv,o)
o

Averaging over the precession angle is straightforward but lengthy. The

<>= .__.._‘___._}_
4R (1 -

results are as follows, (Appendix),

<Q T> = 3u (B=A)(1+cos B sin2(v+a-wt) , (62)
8

</Z\'T>cp = _—35 (C-B) sin®8 (1+cos8) sin2(v+a-wt)
8r

- -3-% (A=C) sin®8 (1+cos8) sin2(v+a-wt)
8

+ -?—I-i (B=A) cos8 (1+cos8) sin2(v+a-uwt)
8
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= -:-%3 (B=A)(1+cos 8 sin2(vtoa-wt) . (63)

—

Note fhaf( >Cp <2 T>cp' We now must average these values over

an orbit,
o
(B A)(1+cos 8 _.f dv LEe cosv) oo ta-ut) . (64)
b (1-¢&° )f-s/z '

We shall obtain a solution to first order in e. We can express wt in terms

of v from the conservation of angular momentum. To first order,

nt ~ v - 2e sinv. Since w = (3/2)n, the integrand of equation (64) becomes
sin(2a=v) + e cosv sin(20~-v) + be sinv cos(2u-v)

Integrating over a cycle while holding o constant yields 7me sin2x. The

twice averaged expressions for the time rates of change of w and w cos 8 are

< > < w COSG> E nz(BCA>(]+cose)2 sin2q . ‘ <65)

Since these rates are equal, it is apparent that they cannot both act to
cancel out their (unequal) tidal counterparts. Clearly, if the resonance state

is to survive, then we must have,

IR RLE s

where. the subscripts T and P denote tidal and permanent asymmetry torques.

The total rate of change of the obliquity can now be obtained from

d cosf = — ——-—> < > . (67)

Using equations (65) and (66) to eliminate the second term leads to the

expression
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Fig. 8. Decay of the obliquity of an object locked into the 3/2 resonance

spin state as a function of the characteristic tidal decay time, Toe
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d N T 1 e®
— cose-—,-r-(] cosB) {— (7-3 cosB) + =— (51~-11 cosB)( . (68)
di o 6 4

This expression is positive for all values of 8 so that the obliquity always
decays. Integrating (68) with a = 7/6 + 51e®/4 and b =3 + 112 /4,
cos® = (1 = ac)/(1 - be)

¢ =(l__:_c_o_s_§_’_) exp{-(a-b) f/‘To} . (69)

“\e-b cos8’
This expression is plotted in Figure 8 for several values of 87, the obliquity
at the beginning of resonance. The decay rate is essentially the same as
that for non-resonance. This is because there are two largely compensating
changes resulting from res;)nance. First, since the decay of w stops,

cosf = Sz/w no longer receives a corresponding positive increment. On the

other hand, dSZ/df switches from a negative value for non-resonance to a
positive one for resonance reestablishing the decay rate. Estimating kT~ 0.1
and K~0.4, yields a vélue of 2 x10° Q,, years for the characteristic tidal
decay time.

We conclude from the inability of the asymmetry forque to stakilize the
obliquity, that - as withl most other tidally de=spun objects in the solar
system - the rotation axis of Mercury has been driven parallel to ifs g moxis
which, for likely values of (C=-A)/C, implies an essentially zero obliquity
for this planet. At this time, the best determination of the orientation of
the spin axis appears to be by optical observations. According to Peale

(1972), B.A. Smith has put an upper limit at ~3°.
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Vi. OBLIQUITY OF VENUS

It has been pointed out (Goldreich and Peale, 1970) that the
present action of the solar tidal torque on Venus is to decrease the obliquity,
i.e., turn the planet upright. It was suggested by these authors that the
present near 180° obliquity of Venus is maintained by a dominant opposing
torque. Assuming that Venus has a core similar fo the earth's, the requi-
sife forque owes its existence to differential motion at the core-mantle
boundary. The precession of the mantle due to the attraction of the sun for
the planet's figure is communicated to the core via viscous coupling with
an attendant energy dissipation which damps the component of the spin
vector lying in the jorbit plane. Because the core lags behind the mantle,
the spin axes of these two units are not coincident. The external torque
producing the precession is perpendicular to the spin axis of the mantle but
has a component antiparallel to the total angular momentum. It is this
component which counteracts the ‘solar tidal torque. The spin vector is
driven perpendicular to the orbit plane thus suppressing the precession.
However, from the results of the present paper, it is clear that the obliquity
cannot be 180° unless the position of the orbit normal changes in inertial
space on a time scale long compared to the energy dissipation time, i.e.,
a few fimes a spin precession period.

The equations of motion for the core and mantle taken by Goldreich

and Peale were the following:

coom =2 o p e ) - a6, %) 70)
m_;.;_ E = (m nr‘(n sm(nXSm A =S s

ds’

-S =5 _-5) . (71)
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The angular velocities and moments of inertia for the mantle and core are
designated by the appropriate subscripts. The torque on the figure of the
planet is assumed to act only on the mantle. The torque on the core due
to viscous coupling is set proportional to the vecfor. difference of the core
and mantle spins. The coupling constant A is to be related to the physical
properties of the core.

These equations yield an exponential decay of the obliquity with a

time constant given by

C 2
SR B R + 1 , 72)
A C

Ol=

&
A
where @ is the precession frequency of the mantle. For Cc/cm = 0.1, the
minimum value of T is 3.5 precession periods when (A/cb)(]/Cm + ]/Cc) = II.
If the motion is retrograde, this decay will oppose and dominate the effect
of the solar tidal torque qu obliquities greater than some critical value
(see Goldreich and Peale, 1970).

To equations (70) and (71), we add another for the precession of the
orbit plane,

dn _

= - hxR)
dt

with the solution given by expression (8). For simplicity let us assume f
N .
revolves about k quickly compared to the precession of /s\m and /s\c. Sub-

stituting for i in equation (70) and averaging over the short time scale yields

e 3 © N A - - 73
C - :n 2 a3 (C -A )(AOk)(Q '/S\ )(QXS ) )\(5 S ) - ( )

With this equation in place of (70) the solution preceeds exactly as before
!
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with one important difference: Instead of driving the spin axis antiparallel
to the orbit normal, A, it decays antiparallel to the normal of the invari-
able plane, k.

In general, the spin vector approaches -@. For more comparable
values of Ps and Po as suggested by Anderson's determination of the J; term,
this axis lies somewhere between f and K. Our best guess at present, is
that core-mantle coupling of the type proposed by Goldreich and Peale will
produce a final obliquity between one and two degrees short of 180°,

Radar determinations of the spin vector orientation are tenuous at best.
However the results to date tend to support a few degrees deviation from

- 180°.  Shapiro (1967) reports a value of ~178.5° while Carpenter (1970) finds
an obliquity of ~174°,
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Vit CONCLUSION

We considered three processes in the solar system By which the orbit
plane of a secondary can be induced to execute precession: (I) gravittional
perturbations by o second orbiting object, (2) the torque exerted by an
oblate primary, and (3) the locking of the orbit plAcme to the equator plane
of a precessing primary. In addition, the spin axis of an oblate secondary
precesses as a result of the forque arising from the gravitational attraction
of the primary. When examined in conjunction with the orbit precession,
the spin axis is found to undergo nearly uniform precession about an auxiliary
vector, é\, which remains always coplanar with the orbit normal, {1\, and the
normal fo the invariable plane, ﬁ, about which A rofai'es; The angular
separation between /é and the orbit normal is determined by the ratio of the
spin precession period to the period for orbit precession; Ps/Po' If Ps/Po <1,
/§\ IS nearly coincident with the orbit normal and the obliquity of the secondary
remains very nearly constant throughout the motion. This is the situation for the
eciuai'orial satellites of Mars, Jupiter, Saturn, and Uranus (case (3)). This is also
very nearly frue for Mercury (case (1)) provided (C = A)/C is on the order of 107
as might be anticipated from our knowledge of the lunar oblateness. Even if
Triton has an oblateness determined only by hydrostatic flattening, the spin axis
of this object (case (2)) can follow ifs orbit normal rather well.  On the other
hand, the small J2 term measured by Mariner V indicates that the spin axis of Venus
(case (1)) is relatively unable to follow its orbit normalg and that the E~axis is
inclined to the orbit normal by one or iwo degrees.

All of the objects treated in this paper have been strongly de=spun by tidal

friction. We have shown that tidal friction also drives the spin axis in the direction



88

of é . The time scale for this process is comparable to that necessary to achieve
sychronous rotation. Even in the case of Mercury where a sychronous rotation

has not been established, it was found that the 3/2 resonance state did not signif-
icantly alter this process. Hence, we believe that these objects exhibit a
generalization of Cassini's laws where the spin axis, orbit normal, and normal to
the invariable plane, remain always coplanar. Venus is an exception since ifs
retrograde spin axis is surely not in the direction of é\ . However, if the retrograde
rotation is maintained by friction at a core~mantle boundary, the spin axis should
be driven antiparallel to ¢ and a Cassini type motion should still prevail. Hence,

we expect the obliquity of Venus to be one or two degrees short of 180°.
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APPENDIX

Average of Permanent Asymmetry Torque Over

a Cycle of Spin Axis Precession

The equation for the time rate of change of the spin frequency is

/\ —
Cdw/dt = K+ T. From equation (61),

. (Al)

This expression is to be averaged over a cycle in @. Using the expression
relating /I\, ./J\, and © to the inertial space unit vectors &, /)>, 2 one finds,
(/r\'./J\)(/r\'/I\) = {-(/i\’ 'Q) sinwt cos(@+v) - (/I\’ ) sinwt sin(@tv)

+ (./J\' °Q) cos wt cos(atv) + (j\’ /)>) cos wt sin(o+v)}

{((I\’ Q) * coswt cos(atv) + (/I\’ /)>) coswi sin(a+v)

+ (j\'gQ) sinwt cos(a+v) + (./J\’ °/)>) sinwt sin(a+v)} . (A2)

where
/I\’ %) = cos 8 cosep + sinfop
/I\’ ) = (J’ +2) = =(1-cos 8) sinyp coseg (A3)
(./l\’ *9) = cos @ sinfep + cos®ep

Multiplying out (B2) leads to various combinations of (B3) which are then to be

averaged over . Upon doing so we find,

<17 - Rp> =< '/9)‘°‘> -3 co?8 + L cos§ + 3 ,
8 4 8

<(/I\’ (3" ) >= —l-{cosze + b6cosB + 1} ,
8
<G RP> = <1 9> =< -l H)>= é(l —cosO , (A

<@ -G R>= < PG -9>=<d DA D>
= <" ) B B)>=0
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The surviving part of (B2) can be written,

—-(1-0056)2 -3 cos® g - 1 cosf -

cos®(atv) sinwt coswt
8 4

l(]-cose)z -3 co? 9 - & cos§ -

- sin® (@+v) sinwt coswt
8 8 4

- cos(a+v) sin(a+v) sinfwt

+ cos(atv)sin(a+v) cos®wt l(cosae+6cose+l) + -]-(] - cos B)° (A5)
8 8
= -1 cos 2(a+v) sin2wt (1+cos )
8
+ 1 sin2(a+v) cos 2wt (1+cos 62
8
= l(]+cos 8F sin2(a+v-wt)
8
Hence,
/\ —
<K - T?p 8r3 ZE (B-A)(1+cos ) sin2(a+v-wt) . (A6)
The equation for the time rate of change of SZ = W cos B is CdSZ/di' =
2+T. From equation (61),
— A
T = 3; -B)A- DR R)E-T) + (A-f- -T2+ D)
(A7)

+ B-A)F-DE-1)E-K)
The last ferm is simply cos 8 (/K\ 'IT) so that its contribution can be obtained
from (B6). In addition to the expressions, (B3), we require,

¢-11)

(Q°Q) = sin® cosey , (Q '9) = sin@sino

il

-cos¥ sin @ , ('2\:"./]\’) = =sin¥ sin® , (A8)

Next we write out the product (’\'j\)(/\" Q)(/z\ -/l\),
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®NE-R)2 1) = {—(T' +3) sinwt cos(atv) = (17 +%) sinut sin(atv)
+ (./J\I' ),2) cos Wi COS(G,"‘V) + (j\" /y\> cos Wt sin (c,+v) }

. {(/K\’ oR) cos(a+v) + (/l%’ 9) sin(a+v)}

. {(’i\°/l\’) coswt + (/z\j\’) sinwf} . (A9)
The various combinations of the three dot products when averaged produce

the following results;

<R RETHA Y>= <R DE- M) P>

= -sinQS;E cos 8 + l( ,
8 8
<R QAT D >=<R P& TP %>

1 sin®8 (1~cos ) .
8

All other combinations yield zero upon averaging over @. The surviving

part of (?\fl\)(/r\'/l%)(/z\-/]\) is,

1 cos® (a+v) sin2wt
2

1 sinf8(1 ~cos B) + sinze(-B- cos§ + -]#->€
8 8 8

+ 1 sin® (a+v) sin2wt
2

I sirf8(1 =cos 8) ~ sin? e(?i cos 8 + 1)5
8 8 8

+ 1 cosPwt sin2(atv)
2

-sin® 8 (l cos 6+§-) s 1 sin®8 (1-cos )
8 8 8

+ 1 sinfwt sin2(a+v) {sin®8 (-]- cose+§->- 1 sin®8 (1-cos G)f
2 8 8

8
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il

1 cos 2(at+v) sin2wt 1 sin®8 (1 ~cosB) + sin® 9(~3- cos O + l)
2 8 8 8

1 sin2(a+v) cos2wt ¢ sin®6 (-]- cos 9+§~>- 1 sin®8 (1= cos 8)
2 8 8 8

-1 sin2(atv-wt) sin?@ (1+cosd) .

I

Hence, we find the first term of equation (B7) contributes,

—E}% (C-B) sin?6 (1+cos8) sin2(a+v-wf)
8

By a similar procedure, one can show that the second term contributes,

-3 ;—i— (A=C) sirf 8 (1+cos8) sin2(a+v-wt)
8
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