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Michael Ortiz, Pablo Ampuero, and Ravi Ravichandran — for their guidance, feedback, and

advice during my time at Caltech. I am indebted to my advisor, Dr. José Andrade, for his
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Abstract

One of the most critical drawbacks of current discrete element method (DEM) technology

is its inability to account for complex particle morphological features, namely sphericity

and roundness, due to the underlying primitive geometry bases (e.g., disks or spheres and

simplexes), as well as the complexity of the associated contact algorithms. While the

influence of particle morphology on properties such as strength and permeability is well

established, DEM has not yet been able to incorporate particle morphological features to

the extent that they become a truly predictive and useful tool for general granular materials.

To overcome the aforementioned difficulties, we have developed a new DEM based on

Non-Uniform Rational Basis Splines (NURBS). The NURBS-based DEM aims to improve

the representation of particle morphology in computations and ease the transition from

binary images, in particular those obtained from X-Ray computed tomography, to discrete

models.

With NURBS, the new DEM allows for the representation of particle morphological fea-

tures to their fullest extent, with local contact rolling resistance and interlocking emanating

directly from grain geometry. In addition, modeling flexibility is significantly enhanced to

a level that is comparable with isogeometric methods. As such, the transition from image

data to particle shapes is greatly streamlined. More importantly, increased macroscopic

strength in granular packings composed of angular particles is fully captured.

The NURBS-based DEM is a first step towards constructing a new discrete element

strategy that eliminates all the major deficiencies that have plagued classical DEM for a

long time while at the same time maintaining a level of implementation simplicity that

is comparable to classical DEM. These developments provide a long-awaited path forward

towards a simple and predictive discrete analysis tool.
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Chapter 1

Introduction

1.1 General Overview

1.1.1 Characterization and modeling approaches

Most geomaterials used in field-scale applications are modeled using continuum mechanics

[5; 6]. Continuum methods rely on constitutive models that are, by and large, developed

phenomenologically [7–12]. These models have been shown to be predictive in many areas

of science and engineering, but are unable to quantitatively answer more fundamental ques-

tions related to instability, shear banding, and failure in granular materials (e.g., avalanches

and liquefaction), in which the changing micromechanical structure plays an important role.

On the experimental side, new technologies are enabling unprecedented access to infor-

mation at lower scales that have not been considered possible several years ago. Progress

has been made in unraveling much of the kinematic processes in granular matter mostly

owing to X-ray computed tomography (CT) [13–16]. For example, it is now possible to

obtain full field kinematics in sand particles as they are loaded macroscopically [17]. Using

X-ray CT, it is thus possible to obtain all translational and rotational degrees of freedom

in each particle for thousands of particles constituting a macroscopic assembly. In the area

of interparticle forces, new developments using 3D X-ray diffraction [18] have shown that

it is possible to measure average elastic strains in sand particles under macroscopic loading

[19]. These experiments, however, do not furnish a means to measure interparticle forces.

Photoelasticity was a tremendous contribution to the ability to infer interparticle contact

forces, but it is limited to birefringent materials [20; 21] and hence cannot be applied to

natural granular materials such as sands. The ability to measure interparticle forces in
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natural granular materials is the missing link to constructing better constitutive models for

granular materials, especially with the advent of multiscale models capable of using these

incredibly rich kinematics [22].

Given that the relationship between interparticle forces and macroscopic stresses has

been known for decades [23], one natural proposal would be to use a discrete model in

conjunction with grain shape measurements to reproduce the macroscopic response of an

experiment and at the same time infer the interparticle forces. The discrete model would

operate at the fundamental level, i.e., Newtonian mechanics for particles. One such discrete

approach is offered by the Discrete Element Method [24] (DEM). DEM, introduced more

than three decades ago, was predicated on the possibility of revealing micromechanical

features that were simply not accessible to continuum models. This modeling paradigm has

allowed tremendous access to quantities such as contact forces, enabling the understanding

of most features of the micromechanical behavior of granular materials and link them to

macroscopic response [23]. This link, however, remains qualitative and this is mostly due

to the inability to capture grain morphology accurately.

1.1.2 The role of particle morphology

Particle morphology can be characterized, in general, by three properties: sphericity, round-

ness, and roughness [1] (see Figure 1.1). These properties are sometimes referred to by other

rmax-in

rmin-circ

r1

ri

r2

Sphericity S =
rmax-in

rmin-circ

Roundness R =

P
i ri/N

rmax-in

Surface Roughness (below R)

Figure 1.1: A definition of particle morphological features [1].

names, such as shape, angularity, and surface roughness, respectively [25]. These proper-

ties are scale dependent, as they measure morphological characteristics at different length

scales, with increased spatial resolution needed to measure roughness, for example. Particle
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morphology has been shown to be crucially important for macroscopic properties in granu-

lar materials. Some of the most critical macroscopic properties used in granular materials

are strength and permeability, and both of these are intimately affected by particle mor-

phology (e.g. [1; 26]). In the case of macroscopic strength, it has been determined that lack

of sphericity, sharper angularity, and increased roughness all lead to increased mobilized

strength in granular materials [1]. This macroscopic effect is due to micromechanical effects

such as an increased number of contact points. Therefore, the ability of discrete models for

granular materials to accurately capture particle morphology is of paramount importance

if they are to correctly predict the macroscopic strength in real granular materials such as

sands.

1.1.3 Current shape representation techniques in discrete models

In the past, researchers have attempted to incorporate the effects of particle shape or non-

sphericity through rolling resistance. The prototypical rolling resistance model appears to

originate from the work of Iwashita and Oda [27], who recognized that rotational resistance

arises not only from contact behavior, but also from particle shape. In particular, they

observed large voids and rotational gradients in shear band experiments, which were never

reproduced by conventional DEM (at the time disks and spheres) since rolling would occur

without any resistance at the contacts. To minimize the discrepancy between DEM sim-

ulations and experiments, they modified the classic DEM to include rolling resistance at

the contacts. Their model treated the rolling resistance with a combination of an elastic

rotational spring, a dashpot, a non-tension joint and a slider. The rolling resistance was

provided through a pair of torque couples calculated as the product of the relative particle

rotation and rotational spring stiffness, with the dashpot providing viscous damping for

numerical stability. Using this model, they were able to predict shear band behavior that

was similar to that seen in natural granular soils.

The work of Iwashita and Oda attracted wide interest and their rolling resistance model

was subsequently adopted and extended in other studies (e.g., [28–33]). There can be,

however, marked differences between the various proposed rolling resistance models, which

may be attributed to the different assumptions on the physical sources contributing to

rolling resistance [34]. As a result, the effectiveness of rolling resistance models can be

problem dependent. In addition, these models contain artificial parameters, which are
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usually chosen independently by trial and error. Despite these limitations, the introduction

of rolling resistance models marked a defining moment in discrete modeling, when particle

shape was recognized as an importance source of rolling resistance affecting the macroscopic

strength of granular media.

More recent discrete simulation approaches include techniques to represent complex

particle morphology or shape, beyond disks/spheres and ellipses/ellipsoids, which are based

mostly on the clustering or clumping technique [35; 36] and polyhedra approach [37–41].

Through these techniques, rolling resistance would directly emanate from the geometry

representation without relying on artificial rolling resistance models.

In the clustering technique, a group of spheres or circles are arranged and overlapped so

that the outer curves or surfaces combine to approximate the shape of the grain. Then, the

same disk-disk or sphere-sphere contact algorithm is reused over all potentially contacting

pairs. The use of spheres in clustering techniques, while computationally inexpensive and

easily implemented, is unappealing because of the lack of continuity in the curvatures and

tangents. For example, the grains appear ‘clumpy’ at locations where spheres overlap

or clump, and the curvature at any point in spherical-based discrete element is always

positive. These anomalies prevent spherical-based discrete elements from higher fidelity

contact mechanics calculations without further numerical treatment.

The polyhedra is essentially a rigid finite element. In 2D, the boundaries are represented

as line segments while in 3D, the surfaces are represented using triangles or quads, similar

to finite elements. In principle, polyhedra-based discrete elements can be refined as much as

needed for an arbitrarily accurate grain shape representation. In practice, however, this res-

olution increase makes computational cost associated with narrow-phase contact detection

and force calculations prohibitively expensive. As such, polyhedra-based discrete elements

tend to appear ‘blocky’ and their shape representation capabilities not fully realized. In ad-

dition, the contact algorithms available for these geometrical entities are rather complex as

they introduce the need to deal with face-to-node, node-to-node, and face-to-face contact.

All development work on polyhedra techniques to date have focused almost exclusively on

the treatment of convex particles (e.g., [42]).

Alternatives, which are essentially combinations of the aforementioned techniques, in-

clude spheropolyhedra [43; 44] and potential particles [45; 46]. Spheropolyhedra are defined

by the Minkowski sum of a simplex (either a point, a line segment, a triangle, or a tetrahe-
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dron) with a sphere with radius r centered at the origin. The simplex serves as a skeleton

for the particle and the radius r defines the distance of the particle surface from the skele-

ton. Potential particles are based on polyhedra with slightly rounded corners, edges, and

faces. They are described by a smooth function that provides an analytical inside-outside

check determined by the sign of the potential function, and the level sets of the function

are strictly convex. In [46], a different potential function that enables the representation

of spheres truncated with flats is proposed. These alternatives are still limited in terms of

shape representation because their underlying formulations are based primarily on primitive

geometries such as spheres, planes, and simple analytical functions.

In the several decades following the inception of DEM [24], there were tremendous efforts

in the development of shape representation capabilities and associated contact algorithms

(e.g., [35–37; 40]). Currently, however, it appears that progress has hit a plateau with shape

representations, largely belonging to either the polyhedra or clustering approach, still too

crude for real grain-scale calculations.

1.1.4 Connection between experiments and discrete modeling

While the influence of particle morphology on properties such as strength, permeability,

etc. is well established [1; 26], it appears that grain-scale modeling and characterization

efforts have remained compartmentalized, as exemplified by a relative lack of connection

between real experiments and discrete modeling. In cases where discrete modeling of real

granular materials with non-trivial geometries were attempted, crude discrete models with

large geometrical biases and significantly calibrated parameters have been widely employed.

Interestingly, the effects of geometrical bias on grain-scale response from use of simplified

geometries are largely not discussed or quantified in the literature. It appears that the

current gap between grain-scale modeling and characterization technologies is quite large.

While imaging techniques are becoming increasingly sophisticated [13–17], there continues

to be a lack of effort to bring discrete granular simulation technology closer to the engineer-

ing application level. To our knowledge, there is currently no work on discrete modeling of

real granular materials at the grain scale.
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1.2 Motivation

A discrete model that can directly incorporate particle morphological features (to within

imaging resolution), and that can predict the response of real granular assemblies would

eliminate the current bottleneck preventing the application of discrete models on real gran-

ular materials. More generally, a morphologically representative discrete model would allow

computational discrete mechanics to catch up with and probe into the wealth of information

offered by experimental techniques such as X-ray CT and X-ray diffraction, and probe the

micromechanical response of a wide array of granular materials available in nature. At the

same time, these advances would enable the development of new and more physics-based

continuum constitutive models, relying less on phenomenology, as well as improve the pre-

dictive capabilities of multiscale methods that incorporate an underlying granular discrete

model.

1.3 Research Objective

We look at the research objective in relation to the recent development of a tomography-

to-simulation framework for studying granular materials [4], as illustrated in Figure 1.2. In

support of this framework, computational techniques have been developed to extract and

transition from binary image data of grains to the grain-scale quantities such as particle

morphological features, kinematics, and contact spatial topologies. In particular, the very

challenging region of grain-to-grain contact and particle morphology can now be accurately

resolved (to within imaging resolution) using the level set method [47]. The transition from

this information to discrete models and computations is the next logical step.

The research objective is therefore to devise a new DEM that can account for particle

morphological features that have already been captured in the image data and that are

necessary to make discrete computations predictive. Below, we list the components required

to meet this research objective.

1. Geometry basis. The development of a new DEM requires the choice of a basis

for representing particle geometries. Based on promising results from the realm of

isogeometric analysis [48], Non-Uniform Rational Basis-Splines (NURBS) was exper-

imented with. In the context of granular simulations, NURBS provides great flexi-
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Figure 1.2: Schematic showing unified tomography-to-simulation framework across scales
(left to right) and integration of characterization and simulation (top to bottom). Areas
of relatively established understanding (shown in solid puzzle pieces), such as grain-scale
tomography and simulation, are contrasted with focus areas that are in active development.
Level sets, GEM [2; 3], and NURBS are key computational ingredients to enabling grain-
scale characterization and simulations, which yield particle kinematics and forces. Using
such quantities, multiscale methods provide the link between experiments and continuum
plasticity models to complete the proposed framework (after [4]).

bility in representing arbitrary and complex geometries with much less information

than conventional faceted or polygonal counterparts. The idea of using NURBS for

representing grain geometry is shown in Figure 1.3, which shows an example of a sand

particle imaged with 3D X-ray CT, with thousands of voxels used to render mor-

phology (roundness and angularity) accurately, as well as the concept of seamlessly

transitioning from binary image data in (a) to a smooth functional representation

using NURBS in (c). The intermediate figure in (b) shows the control mesh furnished

by the so-called NURBS control points.

2. Contact algorithm. The contact algorithm is one of the major components of DEM.

Here, the quantity that needs to be determined is the signed gap or penetration,

which is subsequently used in the calculation of the normal contact force. The major

difficulty in using NURBS is that there is a separation between the control points

and actual curve or surface. Therefore, there are no vertices or facets to simplify

the determination of the signed gap. In addition, the process is necessarily iterative
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(a) (b) (c)

Figure 1.3: Using NURBS as a representation for grain morphology.

because of the generally nonlinear nature of parametric curves and surfaces. The

challenge here is to devise a methodology that can take advantage of the parametric

nature of NURBS to compute the signed gap or penetration between two non-convex

NURBS surfaces.

3. Time integration. While this component is not related to particle morphology, it

needs to be improved for practical reasons. It is well known that explicit algorithms

used in classic DEM lead to very small time steps when nearly rigid particles (e.g.,

sand) are modeled. Here, a contact dynamics (CD) approach is desirable since the

equations of motions and constraints are considered implicitly, allowing the use of

larger time steps. Current CD approaches, however, are fairly difficult to implement

and here, we seek a simpler CD formulation that would remedy this difficulty.

4. Application with real particle geometries. As a new DEM that aims to bring

grain-scale characterization and modeling to a real application level, it needs to be

assessed experimentally. In the past, we have characterized internal variables such as

dilatancy and residual strength in shear bands using experimental data. As a first

grain-scale application of our new DEM, we will attempt to numerically reproduce

these experimentally-inferred internal variables. For this work, X-ray CT experimental

data can be obtained from our collaborators at the University of Grenoble, France.
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1.4 Contribution

The contribution of the work described in this thesis is the development of a new DEM that

has enabled the seamless transition from X-ray CT image data to discrete computations, and

in this process has allowed for the capturing sphericity and roundness, the two morphological

measures that are used in characterizing real particle geometries. We have applied the new

DEM to characterize and model the shear band response in a real triaxial specimen in which

we have obtained a consistent set of internal variables — dilatancy and residual strength

— between experiment and discrete simulation, providing the first complete link between

grain-scale experiment and modeling in the tomography-to-simulation framework.

1.5 Overview of Thesis

This thesis is organized as follows: Chapter 2 covers some fundamental background con-

cerning discrete methods, namely, their governing equations, time integration approaches,

shape representation techniques and the current state of affairs of these methods in terms

of granular materials modeling.

In Chapter 3, the details of our NURBS-based DEM is presented. In particular, the

basics of NURBS are explained and the solution of the closest-point projection of a point on a

NURBS surface through the Lipschitzian dividing rectangle (DIRECT) global optimization

algorithm is described. The latter development is crucial to enabling the contact treatment

of arbitrary-shaped non-convex particles, as well as making the implementation of the new

DEM simple and robust.

In Chapter 4, a CD approach to our NURBS-based discrete method is presented. By

combining particle shape flexibility, properties of implicit time integration (e.g., larger time

steps) and non-penetrating constraints, as well as a reduction to a static formulation in

the limit of an infinite time step), we target applications in which the classical DEM either

performs poorly or simply fails, i.e., in granular systems comprising rigid or highly stiff

angular particles and subjected to quasi-static or dynamic flow conditions.

Chapter 5 presents an application of the new DEM within a computational mechanics

avatar framework in which a quantitative comparison of microscopic quantities from discrete

simulation and experiment is made. This is the first attempt at using a discrete model

inferred from real grain-level XRCT data to study the response of a real macroscopic triaxial
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specimen.

Finally, Chapter 6 summarizes some key developments of this dissertation. Limitations

of the current work are also discussed and future directions of research are outlined.

This thesis is based on a number of papers [4; 49–52]. To make this thesis flow better,

content repetition is minimized as much as possible. In certain chapters (e.g., Chapter 5),

however, there will be some repetition of concepts, equations, and ideas, as these chapters

are in the process of being published as individual journal articles.
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Chapter 2

Discrete Methods

In this chapter, we review the procedures used in the classic discrete element method and

contact dynamics to determine the contact forces and particle kinematics.

2.1 Discrete Element Method

The two defining features of the classic DEM [24] are particle deformability and the use of an

explicit time integration algorithm to resolve particle collisions. Here, particle deformability

refers to use of springs to model the contact forces, which act only when there is particle

overlap. These two features imply that the time step must be smaller than the elastic

response time for numerical stability. In this section, we discuss these two features in

detail.

2.1.1 Normal force and associated moments

To show how the contact forces are calculated, we can focus on the case of single cohesionless

contact between two particles. Consider a grain Ωi with a potentially contacting neighbor

grain Ωj , as shown in Figure 2.1. The effective normal contact force on grain Ωi at the

contact point is calculated using a linear elastic stiffness model such that

f in =




kNgn, if g < 0

0, otherwise

(2.1)

where kN is the normal elastic stiffness and gnmeasures the penetration or overlap in vector

form, determined by some contact algorithm (e.g., the closest point projection operation
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Ωi

Ωj

x y

z

Ri

Rj

g > 0
n
t

Figure 2.1: Illustration of two particles (Ωi and Ωj) that are potentially contacting. The gap
g between the particles is positive if the particles are separated, and negative if the particles
overlap. The moment arms emanating from each particle’s centroid to its corresponding
contact point are denoted by Ri and Rj for Ωi and Ωj , respectively.

described in Chapter 3). The sign convention used is that the normal vector n points away

from the grain of interest, which means that gn with g < 0 has a direction pointing toward

grain Ωi. By action and reaction, the effective normal contact force on grain Ωj contacting

with grain Ωi is then

f jn = −f in (2.2)

Denoting the moment arm extending from the centroid of grain Ωi to the contact point

by Ri, the moment due to normal force is calculated as

mi
n = Ri × f in (2.3)

Similarly, the moment due to normal force on the contacting grain Ωj is

mj
n = Rj × f jn (2.4)

where Rj is the moment arm extending from the centroid of grain Ωj to the contact point.
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Remark 2.1.1 In the case of disks or spheres, the signed gap g is calculated as

g = Ri +Rj − ‖xi − xj‖ (2.5)

where Ri and Rj are the radii of particles i and j, respectively. The corresponding particle

centroids are xi and xj.

2.1.2 Tangential force and associated moments

For simplicity, the incremental tangential forces are calculated here using the simple Coulomb

friction model proposed in [24; 53]. In this model, the tangential stiffness is initialized at

time of first contact and exists until the grains separate. The velocity of grain Ωi relative

to grain Ωj at the contact point is calculated as

vrel = vi + ωi ×Ri − vj − ωj ×Rj (2.6)

where vi and vj are the translational velocities, and ωi and ωj are the angular velocities in

global coordinate frame of grains Ωi and Ωj , respectively. We then calculate the incremental

displacement as

∆u = vrel∆t (2.7)

The increment in shear force on grain Ωi is calculated as

∆f is = −kT∆s (2.8)

where kT is the shear spring stiffness and

∆s = ∆u− (∆u · n)n (2.9)

is the tangential incremental displacement obtained by projecting the incremental displace-

ment in the tangential direction. By action and reaction, the increment in shear force on

grain Ωj is

∆f jt = −∆f it (2.10)
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Before the previous shear force can be updated, it needs to be corrected to account for the

incremental rotation of the contact plane. The previous shear force vector at the contact

point on grain Ωp is first corrected as

f it := Z f it (2.11)

where Z is the rotation matrix that rotates the previous normal vector nprev to the current

normal vector n. The shear force on grain Ωi is updated as

f it := f it + ∆f it (2.12)

and then capped as

f it := f it

(
fmax

‖f it‖

)
(2.13)

where

fmax = ‖f in‖ tanφ (2.14)

with φ being the interparticle friction angle. Again, by action and reaction, the shear force

on grain Ωj contacting with grain Ωj is

f jt = −f it (2.15)

Finally, the corresponding moments associated with the tangential forces are

mi
t = Ri × f it (2.16)

mj
t = Rj × f jt (2.17)

for grains Ωi and Ωj , respectively.

2.1.3 Discrete equations of motion

In DEM, the equations of motion are integrated explicitly, particle-by-particle, using infor-

mation from the previous time step. As such, in discussing the discrete equations of motion,

we can focus on an individual particle. We assume that the resultant force and moment,

obtained from summing all the forces and moments induced by contact interactions between
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the particle and its contacting neighbors, are given. We first consider the translational com-

ponents. The equation governing translational motion of the grain’s center of mass is given

by Newton’s law:

M ai + C vi = Fi (2.18)

where i = 1, 2, 3 in three dimensions, M is the mass of the grain, and C = ξM is the

damping, which proportionally scales the linear velocity vi, with ξ being the global damping

parameter. The linear acceleration is given by ai and is related to the resultant force Fi. To

integrate the translational components of motion, we employ the centered finite-difference

integration scheme proposed in [24]:

v
n+1/2
i =

1

1 + ξ∆t/2

[
(1− ξ∆t/2) v

n−1/2
i +

∆t

M
Fi

]
(2.19)

xn+1
i = xni + ∆t v

n+1/2
i (2.20)

The control points of the NURBS patches in the grain are then translated by displacements

according to ∆t v
n+1/2
i .

For the 2D case, the discrete equations for integrating the rotational degree of freedom

are analogous to those for the translations. For 3D, however, this is not the case. For the

rotational components of motion in 3D, it is convenient to work in principal body-fixed

frame. For the rest of this section, unless noted otherwise, we work with quantities that are

defined with respect to the principal body-fixed frame. Consider the angular accelerations

αi given through the Euler’s equations of motion as

α1 = [m1 + ω2 ω3(J2 − J3)− ξJ1 ω1] /J1 (2.21)

α2 = [m2 + ω3 ω1(J3 − J1)− ξJ2 ω2] /J2 (2.22)

α3 = [m3 + ω1 ω2(J1 − J2)− ξJ3 ω3] /J3 (2.23)

where ωi for i = 1, 2, 3 are the angular velocities, mi are the moments, and Ji are the

principal moments of inertia. Here, inertia-proportional damping is included via the global

damping parameter ξ. The Euler equations are nonlinear due to the presence of the products

of angular velocities on the right hand side. Therefore, to appropriately integrate the
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rotational components of motion, we use a predictor-corrector algorithm proposed in [54],

which can be described in the following steps:

1. Estimate the angular velocities at the current time step by assuming constant angular

acceleration for an additional half step:

ω
′ n
i = ω

n− 1
2

i +
1

2
∆ωn−1

i (2.24)

where ∆ωn−1
i = αn−1

i ∆t.

2. Calculate angular velocity predictors using the above estimates:

∆ω
′ n
1 = ∆t

[
mn

1 + ω
′ n
2 ω

′ n
3 (J2 − J3)− ξJ1 ω

′ n
1

]
/J1 (2.25)

∆ω
′ n
2 = ∆t

[
mn

2 + ω
′ n
3 ω

′ n
1 (J3 − J1)− ξJ2 ω

′ n
2

]
/J2 (2.26)

∆ω
′ n
3 = ∆t

[
mn

3 + ω
′ n
1 ω

′ n
2 (J1 − J2)− ξJ3 ω

′ n
3

]
/J3 (2.27)

3. Predict angular velocities at the current time step:

ωni = ω
n− 1

2
i +

1

2
∆ω

′ n
i (2.28)

4. Calculate angular velocity correctors:

∆ωn1 = ∆t [mn
1 + ωn2 ω

n
3 (J2 − J3)− ξJ1 ω

n
1 ] /J1 (2.29)

∆ωn2 = ∆t [mn
2 + ωn3 ω

n
1 (J3 − J1)− ξJ2 ω

n
2 ] /J2 (2.30)

∆ωn3 = ∆t [mn
3 + ωn1 ω

n
2 (J1 − J2)− ξJ3 ω

n
3 ] /J3 (2.31)

Additional iterations are performed by repeating steps 1 through 4 until the correctors

converge to some desired tolerance.

5. Update angular velocities using the correctors:

ω
n+ 1

2
i = ω

n− 1
2

i + ∆ωni (2.32)

For small time steps used to resolve the interparticle contacts and for quasi-static conditions
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in which the angular velocities are small, the number of iterations is typically small. Usually,

between 3 and 5 iterations are required to achieve machine precision tolerance.

After obtaining the angular velocities, the orientation of the principal body-fixed frame

is updated using the singularity-free quaternion approach in [55], which is described as

follows. The rotation matrix that transforms vectors in global space to vectors in body

frame is given by

A =




−q2
1 + q2

2 − q2
3 + q2

4 −2 (q1 q2 − q3 q4) 2 (q2 q3 + q1 q4)

−2 (q1 q2 + q3 q4) q2
1 − q2

2 − q2
3 + q2

4 −2 (q1 q3 − q2 q4)

2 (q2 q3 − q1 q4) −2 (q1 q3 + q2 q4) −q2
1 − q2

2 + q2
3 + q2

4


 (2.33)

where the qi’s are the quaternions defined by

q1 = sin

(
θ

2

)
sin

(
ψ − φ

2

)
(2.34)

q2 = sin

(
θ

2

)
cos

(
ψ − φ

2

)
(2.35)

q3 = cos

(
θ

2

)
sin

(
ψ + φ

2

)
(2.36)

q4 = cos

(
θ

2

)
cos

(
ψ + φ

2

)
(2.37)

and φ, θ, and ψ are the Euler angles in the z x′z′ notational convention [56]. The initial

values of the quaternions are calculated using the initial configurations of the grains before

the start of the simulation.

The time derivatives of the quaternions can be expressed in terms of products of the

quaternions with the angular velocities as a singularity-free set of equations:




q̇1

q̇2

q̇3

q̇4




=
1

2




−q3 −q4 q2

q4 −q3 −q1

q1 q2 q4

−q2 q1 −q3







ω1

ω2

ω3


 (2.38)

with closure of the above system given by the normalization relation

4∑

i=1

qi = 1 (2.39)
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The above system of equations can be solved using an explicit finite difference scheme [54],

which results in the following update equation:

qn+1 = B−1BTqn (2.40)

where

qn =




qn1

qn2

qn3

qn4



, B =




1 −β3 β1 β2

β3 1 β2 −β1

−β1 −β2 1 −β3

−β2 β1 β3 1




(2.41)

and

βi =
∆t

4
ω
n+ 1

2
i (2.42)

and where �T is the transpose operator. We note that equation (2.40) can be solved in

closed form as described in [54]. It has been shown in [55] that equation (2.38) maintains

the orthogonality relation of equation (2.39). Normalization of the quarternions, however,

is performed after each integration step to prevent normalization failure resulting from

round-off error.

The matrix An+1 of equation (2.33) at tn+1 can be evaluated using the quaternions in

qn+1. The updated orientation (triads) of the principal body-fixed frame is then given by

the rows An+1. The required rotation matrix for rotating the particle about its center of

mass is obtained as

Πn+1 = An+1TAn (2.43)

In the next calculation cycle, the moments on each grain due to interparticle contact,

calculated in the global frame, are transformed into the principal body-fixed frame using

An+1.

Damping is used to achieve quasi-static conditions by utilizing the so-called dynamic

relaxation, which allows the dissipation of accelerations, hence making all resulting forces
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vanish, achieving in this way static equilibrium [57].

Verification tests on the classic DEM are shown in Appendix A.1.

2.2 Contact Dynamics

In contrast with DEM, CD considers the deformation of the granular medium as a whole,

determined exclusively by geometric rearrangements of rigid particles [58]. The CD formula-

tion appears to originate from the works of Lötstedt [59; 60], which provide the formulation

of the contact problem between rigid bodies as a linear complementarity problem (LCP).

Further analysis and development of solution procedures by Moreau [61] and Jean [62] led

to the introduction of CD to the granular materials research community.

In this section, we provide the basics of CD and highlight the major differences be-

tween CD and DEM. For simplicity, we will work under the assumption of near quasi-static

conditions in which the angular velocities are small. In this case, the terms containing

products of angular velocities in equation (2.23) are neglected. In addition, for the purpose

of illustrating the time integration scheme, we will assume that the coefficient of restitution

between two particles is zero. This assumption can be shown to correspond to the fully

implicit or backward Euler scheme (see Chapter 4).

The rigidity of the particles requires that the non-penetration constraint is enforced

between particles. This constraint is embodied in the non-smooth graph of normal reaction

force versus the gap or separation between two particles, as shown in Figure 2.2(a). The non-

(a) (b)

g

µp

−µp

slip

�q�p

Figure 2.2: Graph of non-smooth contact laws: (a) normal reaction force p against separa-
tion or gap g and (b) friction force ‖q‖ against slip; µ is the friction coefficient.
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penetration constraint is sometimes described as unilateral, which means that the normal

reaction is active when the gap is zero and is zero otherwise. In addition, a non-sliding

constraint of frictional contacts is required. The most basic of such constraint is given by

the Coulomb threshold, as shown in Figure 2.2(b).

To explain the single-contact update procedure, consider the following generalized ve-

locity and force vectors:

V =




vi

ωi

vj

ωj




(2.44)

Λ =




λ

Ri × λ
−λ

−Rj × λ




(2.45)

where λ is the yet to be determined constraint force, and Ri,Rj are again the moment

arms, as shown in Figure 2.1. We can reexpress equations (2.45) in linear form as

Λ =




I

−Ri

−I

Rj



λ = Hλ (2.46)

where Ri is the matrix containing the components of the radius vector Ri arranged in the

form

Ri =




0 −Ri,3 Ri,2

Ri,3 0 −Ri,1
−Ri,2 Ri,1 0


 (2.47)
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The relative velocity (2.6) can then be written as

vrel = HTV (2.48)

The equations of motion for the two interacting particles are given by

dV

dt
= M−1

eff (Λ + F ext) (2.49)

where M eff is the effective mass matrix given by

M eff =




mi1 0 0 0

0 J i1 0 0

0 0 mj1 0

0 0 0 J j1




(2.50)

and F ext is the generalized external load vector containing the external translational forces

and moments acting on the particles. Using equations (2.46) and (2.48), we can rewrite

(2.49) as

dvrel

dt
= HTM−1

effHλ+
dvfree

dt
(2.51)

where

dvfree

dt
= HTM−1F ext (2.52)

is the acceleration without any interaction between the particles.

Discretizing equation (2.51) using a backward Euler scheme gives the discrete equation

corresponding to equation (2.51) as

vrel − vfree

∆t
= HTM−1

effHλ (2.53)

with the new velocity without any interaction between the particles calculated as

vfree = v0
rel +HTM−1F ext∆t (2.54)
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where the quantities λ and vrel are unknowns and v0
rel is the known relative velocity from

the previous time step. To determine the unknowns, the steps in Algorithm 1 are applied.

1: Check if gap is open after one time step: g + ∆tvfree · n > 0 ? Yes, set λ = 0 and
vrel = vfree and exit. No, go to next step.

2: Compute new relative velocity assuming gap is closed: g + ∆tvrel · n = 0. Assume
non-sliding contact, i.e., zero tangential velocity vt rel = 0. Let vrel = −(g/∆t)n.
Compute:

• Constraint force λ from equation (2.53)

• Contact normal force p = λ · n
• Contact shear force q = λ− pn

Check Coulomb threshold: ‖q‖ ≤ µp ? Yes, accept vrel, λ and exit. No, go to next
step.

3: Gap is still closed f = 0 but vt rel 6= 0. Let vrel = −(g/∆t)n+ vt rel. Solve equation
(2.53) for λ and vt rel subject to:

q = −µ p vt rel

‖vt rel‖

Algorithm 1: Single-Contact Update Algorithm

Remark 2.2.1 Algorithm 1 is reminiscent of the return mapping algorithm used for elasto-

plasticity constitutive updates [63].

We note that Algorithm 1 applies only to the single-contact case. In general, the multi-

contact case applies, in which case the generalized load vector includes constraint forces

and moments from neighboring contacts. It can then be shown that the resulting global

equilibrium equation resembles a Laplace-type equation that couples all the constraint forces

and moments, and hence these cannot be computed locally. Moreover, these constraint

forces need to satisfy the non-penetration and non-sliding constraints at every contact. An

iterative scheme is applied within each time step to obtain a globally consistent set of forces

satisfying all the required constraints. In each iteration, a contact is selected and updated

based on the contact law for the single-contact case, independent of the other contacts. The

selection of contact for update is performed randomly through either a sweep or sequentially

over the contact set. In the case of a random sweep, each contact is selected exactly once

within the iteration while for the random sequential update, the same contact could be

selected more than once. The iterative procedure causes a relaxation of forces to a globally

consistent solution analogous to the behavior of information spreading in a diffusive (heat)
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system. For a system with rigid particles, the number of unknowns in general exceeds the

number of equilibrium equations. As such, there could be more than one globally consistent

solution to the system. Therefore, it is crucial that the selection of contacts avoids any bias

in information spreading in the system during the relaxation process.

Alternatively, the coupling of all the constraint forces and moments can be dealt with by

directly solving the mixed LCP associated with the discrete update equations and contact

constraints [64–68]. While small instances of LCPs often can be solved efficiently by means

of pivot based algorithms such as that of Lemke [69], methods for larger problems still lag

far behind current convex program solvers [70], e.g., second-order cone programs (SOCPs),

as far as efficiency and robustness are concerned. Newton-based algorithms for LCP have

also been developed [71] and although these methods in principle offer the same advantages

as their convex programming counterparts, their performance has been shown to be highly

problem dependent and convergence is generally not guaranteed. Moreover, while convex

programs admit a straightforward analysis of existence and uniqueness properties (and most

implementations automatically detect infeasibility, i.e., non-existence), LCPs are in general

much harder to gauge with respect to these properties. This leads to a situation where one

is unable to distinguish between algorithmic failure and non-existence of solutions [72].

In general, the implementation of solution procedures for CD is quite complicated and

this remains the primary reason why CD has not been widely adopted by the granular

research community despite favorable performance that has been shown through a number

of studies [73–83]. In Chapter 4, we present a new formulation of CD that is numerically

more palatable and significantly easier to implement.
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Chapter 3

NURBS-based Discrete Element
Method

The two major components of the proposed NURBS-based DEM are the use of NURBS for

representing particle geometries, and the contact algorithm for determining the signed gap

or penetration between two non-convex NURBS surfaces. We discuss these two components

in detail in this chapter.

3.1 Non-Uniform Rational Basis-Splines (NURBS)

Non-Uniform Rational Basis-Splines (NURBS) are ubiquitous in the world of computer

graphics, computer-aided design (CAD), computer-aided engineering (CAE), and computer-

aided manufacturing (CAM) systems, as well as in computer animations. These functions

provide great flexibility in representing arbitrary and complex geometries with much less

information than conventional faceted or polynomial counterparts. Perhaps more impor-

tantly, in the context of this work and as shown in this section, the mathematical properties

of NURBS make them ideal candidates for the description of grain morphology, the inte-

gration of discrete equations of motion, and the detection of contact.

In what follows we briefly describe the essential components of NURBS in the context

of the current application. The literature on NURBS is extensive and relatively mature,

and our purpose here is not to present all of its elements but rather those that are needed

for completeness of presentation. For an exhaustive description of NURBS the reader is

referred to [48; 84–86], whose presentation and notational convention we follow closely.

We adhere to the convention in the computational geometry literature where the degree
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p = 1, 2, 3, etc. refers to constant, linear, quadratic, cubic, etc., piecewise polynomials,

respectively. In the following incomplete description of NURBS, we split the acronym into

three parts: Non-Uniform (NU), Rational (R), and Basis-Splines (BS). We describe these

parts in reverse order and incrementally for clarity of presentation.

3.1.1 Basis-Splines (BS)

Within the description of Basis-Splines (B-Splines), there are three main elements necessi-

tated [86]:

1. A set of n+ 1 control points P i (0 ≤ i ≤ n),

2. A knot vector U of m+ 1 knots (0 = u0 ≤ u1 ≤ · · · ≤ um−1 ≤ um = 1), and

3. A degree p satisfying m = n+ o where o = p+ 1 is the order of the curve.

Note that the last requirement means that the number of knots m + 1 must be equal to

the number of control points n+ 1 plus the curve order p+ 1. The control points need not

lie on the curve itself. Rather, control points act as a scaffold that controls the geometry

[48]. At the most rudimentary level, one manipulates the geometry by adjusting the control

points until the desired shape is met. Piecewise linear interpolation of the control points

effectively furnishes a control polygon bounding the geometry.

Given the aforementioned parameters, a (non-rational, polynomial) B-Spline curve is

defined parametrically as

C(u) =
n∑

i=0

Ni, p(u)P i (3.1)

where u is the curve parameter, and Ni,p is the i-th B-Spline basis function of degree p

defined recursively as follows:

Ni, 0(u) =





1 if u ∈ [ui, ui+1)

0 otherwise

Ni, p(u) =
u− ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u
ui+p+1 − ui+p

Ni+1,p−1(u) (3.2)

The above is also known as the Cox-de Boor recursion formula [87; 88].
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3.1.2 Rational B-Splines (RBS)

A known limitation of (non-rational) B-Splines, as defined in equation (3.1), is their inability

to capture conic sections (e.g., circles and ellipses). This limitation stems from the simple

polynomial form of B-Splines. To be able to represent conic sections, the parametric form

would need to be rational, i.e., the quotient of two polynomials. A rational B-Spline (RBS)

is furnished by adding a weight wi ≥ 0, which provides an additional degree of freedom for

geometry manipulation. Hence, the curve equation becomes

C(u) =

∑n
i=0Ni, p(u)wiP i∑n
i=0Ni, p(u)wi

(3.3)

=
n∑

i=0

Ri, p(u)P i (3.4)

where Ri, p (u) = Ni, p (u)wi/ (
∑n

i=0Ni, p (u)wi), 0 ≤ i ≥ n, are the rational basis functions.

Since Ri, p (u) is rational, the exact description of conic sections becomes possible. Naturally,

when all weights are equal to unity, equation (3.4) reduces to equation (3.1).

It is interesting to note the geometric contribution of the weights. The weight wk

affects the effective contribution of control point P k on the overall shape of the curve C(u).

Making wk smaller corresponds to ‘pushing’ the curve away from the control point P k. In

the extreme, when wk = 0, the term wkP k is annihilated from the equation of the curve

and the contribution of the control point is obviously nullified. Another interesting extreme

is obtained by making wk very large relative to other weights. Dividing equation (3.4) by

wk gives

C(u) =

∑n
i 6=kNi, p(u)wi/wkP i +Nk, p(u)P k∑n

i 6=kNi, p(u)wi/wk +Nk, p(u)
(3.5)

where one can see that as wk is increased, the curve C(u) is ‘pulled’ towards the control

point P k.

Remark 3.1.1 In the context of grain modeling, the inability of non-rational B-Splines to

represent conic sections should not be viewed as a disadvantage, since real grains are rarely

spherical or circular in section. NURBS can be used in their simpler polynomial B-spline

version when their full power is not necessary.
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C(u) =

�n
i=0 Ni, p(u)wi Pi�n

j=0 Nj, p(u)wj
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Weights

Kink

w = {1, 1, 0.95, 1.1, 0.95, 1, 1.05, 1, 1}

U = {0, 0, 0, 0, 0.25, 0.5, 0.75, 0.75, 0.75, 1, 1, 1, 1}

Figure 3.1: Schematic illustration of a NURBS curve. The curve degree p is 3 (cubic). The
knots ui and weights wj are listed in the vectors U and w, respectively. The kink in the
curve is due to full multiplicity k = p = 3, in which the knot/parameter value u = 0.75 is
repeated p = 3 times.

3.1.3 Non-Uniform (NU) Rational B-Splines (NURBS)

The NU portion in NURBS is furnished by the knots in the knot vector U of the B-Splines.

The non-decreasing knots ui, i = 0, 1, ...,m partitions the parameter space into segments

of half-open intervals [ui, ui+1), which are also called knot spans. The knot span can be of

zero length since the knots need not be distinct, i.e., they can be repeated. The number of

times a knot value repeats itself is called multiplicity k. Based on the way the knots are

spaced, we can divide B-Splines into the following types:

1. Uniform B-Splines, which can be subdivided into non-periodic and periodic

2. Non-uniform B-Splines

In non-periodic uniform B-Splines, the knots are uniformly spaced except at the ends

where the knot values are repeated p+ 1 times, so that

U = {0, 0, . . . , 0︸ ︷︷ ︸
p+1

, up+1, . . . , um−p−1, α, α, . . . , α︸ ︷︷ ︸
p+1

} (3.6)

The above knots are also referred to as non-periodic or open knots. Non-periodic B-Splines

are infinitely continuously differentiable in the interior of a knot span, and (p − k)-times

continuously differentiable at a knot. If k = p, we say that the knot has full multiplicity;

the multiplicity cannot be greater than the degree. Multiplicity of knots provides a way to

specify the continuity order between segments. For example, a full multiplicity knot in the
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knot vector (away from the ends) means that a kink or cusp is present in the curve. On

the other hand, in periodic B-Splines, the knots are uniformly spaced but the first and last

knots are not duplicated, so that the knot vector looks like

U = {0, 1, . . . , n} (3.7)

Periodic B-Splines are everywhere (p− 1)-times continuously differentiable.

If the knots are unequally spaced, the knot vector is non-uniform, we get non-uniform

B-Splines (the NU part in NURBS). The non-uniformity in knots can cause the degree

p of the curve to be different between knot spans. As a matter of terminology and in

describing grain geometries, knot vectors can be defined in either [0, 1] or [0, n]. The choice

of normalization does not have any effect on the shape of the curve, and it is therefore

inconsequential. A schematic of a NURBS curve is shown in Figure 3.1.

Remark 3.1.2 Equation (3.3) is usually taken as the definition of NURBS, although the

non-uniformity of the knots is not obvious from this expression.

Remark 3.1.3 Several NURBS CAD technologies, such as Rhino [89], which are already

available for geometric design of engineering components could be directly integrated into

the modeling pipeline, facilitating the transition from binary data to models of granular

assemblies.

Remark 3.1.4 It is rare that one would work with NURBS models directly in paramet-

ric space. In practice, grain shapes are typically generated interactively or through some

optimization procedure such as least squares.

3.1.4 Closing a NURBS curve

To reproduce grain geometries accurately, it is necessary to close the NURBS curves used

to describe the grain boundary. There are at least two procedures to close a NURBS curve.

In the first procedure, closed NURBS curves are defined by ‘wrapping’ control points. In

this process, a uniform knot sequence of m+ 1 knots is constructed such that: u0 = 0, u1 =

1/m, u2 = 2/m, . . . , um = 1. Note that the domain of the curve is [up, un−p]. Then, the first

and last p control points are wrapped so that P 0 = P n−p+1 = P n−p+2, . . . ,P p−2 = P n−1
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and P p−1 = P n. By wrapping the control points, Cp−1 continuity is ensured at the joining

point C(up) = C(un−p).

In the second approach, the first and last control points are made coincident, i.e., P 0 =

P n and the first and last p+1 knots are clamped, i.e., repeated. The curve may or may not

have Ck continuity depending on how the first and last k internal knot spans are chosen,

and the first and last k + 1 weights and control points are chosen. Perhaps the simplest

example is that of a unit circle in which the control points and weights shown in Table 3.1

are used together with the following knot vector:

U = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4} (3.8)

We notice that P 0 = P 8 and the first and last three knot values are clamped. Also,

there are three pairs of internal knots with multiplicity two. In general, this would lead

to a loss of continuity in the first derivative. However, in this case, continuity in the

first derivative is maintained by three collinear control points in each of the following sets:

{P 7,P 0 = P 8,P 1}, {P 1,P 2,P 3}, {P 3,P 4,P 5}, and {P 5,P 6,P 7}. In this work, we will

use knot vectors that are clamped.

i xi yi wi
0 1 0 1

1 1 1
√

2/2
2 0 1 1

3 -1 1
√

2/2
4 -1 0 1

5 -1 -1
√

2/2
6 0 -1 1

7 1 -1
√

2/2
8 1 0 1

Table 3.1: Control points (xi, yi) and weights wi for a unit circle.
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3.1.5 NURBS surfaces

In 3D, we describe the grain geometry as a tensor product surface, with the coordinates of

the NURBS surface in real space given by components of the vector:

Y (u, v) =
m∑

i=0

n∑

j=0

(
wijNi,p(u)Nj,p(v)∑m

g=0

∑n
h=0wghNg,p(u)Nh,p(v)

)
P ij (3.9)

where P ij are the control points, wij are the weights, and Ni,p(u) and Nj,p(v) are the B-

Splines univariate basis functions of degree p. We must therefore specify a knot vector for

the u basis functions, and a second knot vector for the v basis functions. Although there

is no restriction on the choice of degree, we have restricted to NURBS surfaces of (cubic)

degree p = 3 in our applications.

3.1.6 Relevance of NURBS to DEM calculations

To conclude this section, some of the advantages of using NURBS in the context of DEM

calculations are listed. Some of the most salient mathematical properties of NURBS that

make them ideal candidates for DEM calculations are [48; 84]:

1. Local support property

2. Invariance under affine transformations

3. Strong convex hull property

4. Local curvature equation

5. Integration with isogeometric analysis

The local support property affords the method tremendous flexibility in the description

of grain geometries. For example, in the case of NURBS curves, local support implies that

the basis function Ni,p(u) is non-zero on [ui, ui+p+1). Since the basis function Ni,p(u) is the

coefficient of control point P i, the product Ni,p(u)P i changes if P i changes, but the change

in Ni,p(u)P i only affects the segment on [ui, ui+p+1), leaving the rest of the curve C(u)

unchanged. Therefore, because of local support, a change in the position of a control point

only affects the local portion of the NURBS curve, and this allows great flexibility when

trying to approximate grain boundaries accurately. Also, by the local support property,
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any modifications to the weights wi, too, will only affect the section of the NURBS curve

on the [ui, ui+p+1) interval.

The invariance property of NURBS under affine transformations is useful when updating

the grains described using NURBS within the time integration scheme. Exploiting this

property, a grain’s position is updated by simply translating and/or rotating the control

points relative to the grain’s centroid.

The strong convex hull property ensures that, for a closed NURBS curve, the entire

grain is located within the convex hull defined by the corresponding control points. Us-

ing the control points to define a convex hull bounding each grain, the granular entities

described using NURBS can be easily incorporated into existing DEM global collision de-

tection algorithms. We note that the control polygon defined by the control points could

be non-convex. Also, the convex hull property fails for negative weights in which a portion

of the affected curve segment will be outside of the convex hull defined by the correspond-

ing control points. However, negative weights are not typically used when describing grain

shapes, and therefore convex hull failure is typically not a concern.

NURBS provides a simple procedure for evaluating local curvatures. It is well known

that contact stresses (e.g., Hertzian contact) depend on the radii of curvature of two con-

tacting bodies. Evaluation of curvature for simple shapes such as circles and ellipses is

straightforward but becomes complicated for arbitrary-shaped grains. In addition to pro-

viding the tangent and normal boundary vectors needed for contact force calculations,

NURBS also provide local curvature evaluations that can be used directly in calculating

local contact forces. After obtaining the first and second local derivatives C(1) and C(2),

respectively, the curvature vector can be evaluated such that

κ =

(
C(1) ·C(1)

)
C(2) −

(
C(1) ·C(2)

)
C(1)

(
C(1) ·C(1)

)2 (3.10)

and consequently, the local radius of curvature is calculated such that R = 1/‖κ‖.
Finally, the use of NURBS provides a foundation for high-fidelity physics at the granular

level. Since NURBS have recently been shown to furnish a basis for isogeometric analysis

[48], within each particle more complex analysis, such as plasticity, damage, or possibly

breakage, can be performed. Evidently, NURBS can offer tremendous flexibility in repre-
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senting and optimizing grain morphology, as well as provide important geometric properties

that would enable higher-fidelity discrete calculations.

Remark 3.1.5 Isogeometric analysis is a computational mechanics technology that uses ba-

sis functions emanating from computer aided geometric design (CAGD), such as B-splines,

NURBS, and T-splines. It has been shown that isogeometric analysis provides more precise

and efficient geometric representations [48].

Remark 3.1.6 The last two of the above features of NURBS have not been considered in

this thesis. These can potentially be explored in the future.

3.2 Contact Problem and Implementation

Our earlier work described in [49; 50] has focused on particles geometries that are angular

but strictly convex, and the contact algorithms were generalizations of the intersection-based

approach used for disks and spheres. While the work has led to improvements in particle

morphology representation beyond disks and spheres, it was still limited in two ways. First,

the increase in rolling resistance of angular but convex geometries relative to disks is limited.

For instance, rolling resistance provided by distributed contact reaction over flat boundaries

cannot be represented using strictly convex shapes. Moreover, interlocking behavior between

non-convex particles, which contributes significantly to mobilized strength and stability

[90; 91], is not accounted for. Second, the generation of strictly convex NURBS shapes is

very difficult and restrictive from a modeling perspective. This is even more so when dealing

with image data of real particle shapes and obtaining strictly convex boundaries through a

fitting procedure is not possible in most cases.

A contact algorithm capable of dealing with general non-convex NURBS particles, to

be described in this chapter, would eliminate the above two limitations. As a result, a

more faithful representation on the contact force distributions over particle boundaries is

obtained and the image data-to-analysis pipeline is significantly streamlined. Without loss

of generality, we will work with 3D NURBS surfaces throughout the remaining of this

chapter. We also assume that the underlying parametric domain has been normalized, i.e.,

0 ≤ u ≤ 1 and 0 ≤ v ≤ 1 (a unit square).
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3.2.1 General definition

Potential contact I

Slave

Master

n

X

Ȳ

x y

z

∂Ωi

∂Ωj

Ωj

Ωi

Figure 3.2: Contact problem between two particles Ωi and Ωj . Refer to text for description.

We consider a general two-particle contact problem in three dimensions, with the parti-

cles in question to be potentially contacting at some time instant t. Referring to Figure 3.2,

let Wi be the set of potential contacts associated with particle i, and denote using I ∈ Wi

a particular contact point in the set.

Following a master-slave approach to describe the contact problem [92], a contact point

on the slave particle Ωj is denoted by X while the contact point on the master particle

Ωi is defined to be the closest point projection (CPP) of X onto the surface of the master

particle:

Ȳ ≡ Ȳ (X) = min
Y ∈ ∂Ωi

‖X − Y ‖ (3.11)

where ‖‖̇ is the standard Euclidean norm. As shown in Figure 3.2, the contact plane at a

potential contact point I is described on the master surface ∂Ωi by the outward unit normal

n at point Ȳ . The gap or penetration at time t is then defined as

g(X) =
[
X − Ȳ (X)

]T
n (3.12)

By this definition, contact penetration occurs if g(X) < 0. This convention is similar to
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that used in the definition of contact problems in the finite element method (FEM) [92]. In

the context of classic DEM [24] with a linear contact law, once the gap is determined, the

normal contact force on the master particle is then calculated as (refer to (2.1)):

f =




kNg(X)n, if g(X) < 0

0, otherwise

(3.13)

where kN is the normal contact stiffness. An equal and opposite force acts on the slave

particle. Essentially, the contact problem boils down to the problem of solving the CPP

problem (3.11) and in the remaining sections, we describe how this is done in the context

of NURBS.

3.2.2 Knot positioning

We generalize the node-to-surface approach typically used in the contact treatment of finite

element models [92] to a ‘knot-to-surface’ (KTS) approach to enable the contact treatment

of non-convex particles described using NURBS surfaces. More recently, the KTS approach

has been employed in isogeometric finite elements [93] and a similar approach is taken

here. The contact points X associated with the slave particle are represented through

knots and these points are to be projected onto the master surface to determine if there

is contact penetration. The representation of contact points through knots is necessary for

computational tractability, as well as for tracking the incremental slip and contact gain or

loss around non-convex surfaces of potentially contacting particles. While similar to nodal

discretization in FEM, we emphasize that the key difference here is that the positioning of

contact points by knots does not change the particle geometry, i.e., isogeometric; the knots

vary continuously in the underlying parametric space. In this work, we have adopted to

position the knots a priori as a preprocessing step.

In real applications where a large number of arbitrary-shaped grains are represented by

3D NURBS surfaces, the manual positioning of knots proved to be extremely difficult, if

not impossible. As such, an automatic and adaptive knot positioning strategy is required.

To this end, we have devised an automatic knot positioning algorithm based on a NURBS

recursive subdivision scheme (see Algorithm 2). The NURBS surface is subdivided until

the following termination criteria (see Figure 3.3) are met:
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1. Real space arc distance corresponding to each parametric direction of less than εd

2. Acute angle between normal vectors at adjacent knot positions of less than εθ

and a knot or node is positioned at the center of the subdivided surface at the terminated

level.

✏✓

✏d

uv

A

B
nA

nB

NURBS 
Surface

Figure 3.3: Measures used for terminating the NURBS subdivision in the knot or node
generation procedure. The two normal vectors emanating from nodes A and B are denoted
by nA and nB, respectively. NURBS parametric directions are u and v.
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Input: NURBS surface S = Y (u, v), real arc distance tolerance εd, angle tolerance εθ
Output: List of knot positions in real space

procedure AKP(S)
Calculate the real-space points corresponding to the corners in parametric space:
x1 = x(umin, vmin), x2 = x(umax, vmin), x3 = x(umax, vmax), x4 = x(umin, vmax)

Calculate real arc distance corresponding to each parametric direction:
Du = max(‖x3 − x4‖, ‖x1 − x2‖), Dv = max(‖x1 − x4‖, ‖x2 − x3‖)

Let ∆u = umax − umin, ∆v = vmax − vmin, uave = (umax + umin)/2,
vave = (vmax + vmin)/2.

Define acute angle between unit normal vectors θ(n1,n2) = cos−1 (n1 · n2)

if ( Du > Dv )∗ then

Compute unit normal vectors: nu1 = n(umin + ∆u/3, vave),
nu2 = n(umin + 2∆u/3, vave) and θu = θ(nu1,nu2).

if ( Du > εd ) and ( θu > εθ ) then
Split surface into 2 child surfaces S1, S2 at uave

else
Surface is a LEAF

end if

else ( Du ≤ Dv )∗

Compute unit normal vectors: nv1 = n(uave, vmin + ∆v/3),
nv2 = n(uave, vmin + 2∆v/3) and θv = θ(nv1,nv2).

if ( Dv > εd ) and ( θv > εθ ) then
Split surface in into 2 child surfaces S1, S2 at vave

else
Surface is a LEAF

end if

end if

if ( Surface is a LEAF ) then
Store midpoint x(uave, vave) as a knot position

else
Recurse, i.e., apply AKP, on the two child surfaces S1, S2

end if
end procedure

∗For a closed single patch NURBS surface, a seam joins either the edges at (a) u = 0, 1
or (b) v = 0, 1. At first entry into this procedure, the if (Du > Dv) block is executed for
case (a) while the if (Du ≤ Dv) block is executed for case (b).

Algorithm 2: Automatic Knot Positioning (AKP) Algorithm.
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3.2.3 Distance function

The distance function of a fixed slave point X on a slave surface to a master surface Y (u, v)

is given by

d(u, v) = ‖X − Y (u, v)‖ (3.14)

or, squaring both sides, we obtain the distance squared function

f(u, v) = [X − Y (u, v)]T [X − Y (u, v)] (3.15)

where f(u, v) = [d(u, v)]2 and the coordinates of the NURBS surface Y (u, v) is given by

(3.9).

The CPP problem can then be formulated as (cf. (3.11))

Ȳ = min
(u,v)∈Γ

f(u, v) (3.16)

where Γ is the bounded normalized parametric space of the NURBS master surface. In real

applications, where surfaces are always well-defined, the underlying NURBS basis functions

are products or quotients (with denominators that are bounded away from zero) of uni-

variate B-Splines basis functions, which in turn are polynomials. This implies the distance

squared function f(u, v) is Lipschitz continuous. This means that there exists a finite bound

on the rate of change of the squared distance function. This key observation allows one to

employ the Lipschitzian dividing rectangle (DIRECT) global optimization procedure as a

solution to the CPP problem.

3.2.4 The DIRECT optimization algorithm

Here, we describe how the DIRECT algorithm can be adapted to the CPP problem (3.16).

We describe the following two components of the DIRECT algorithm,

1. Sample and subdivide

2. Identification of potentially optimal parametric rectangles

followed by a simple example to illustrate how the overall DIRECT algorithm works. We

emphasize that, in the application of this algorithm, the NURBS surface or underlying
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parametric domain is not physically subdivided. The key feature of the DIRECT algorithm

is that the subdivisions are performed implicitly through sampling (i.e., function evaluation)

and selection of optimal rectangles.

3.2.4.1 Sample and subdivide

The basic idea of this step is as follows: the sampling part determines the goodness of

the current solution of f in (3.16), while the subdivision part ensures efficiency as well

as convergence of the DIRECT algorithm. After subdivision, the parametric domain will

consist of subregions that are either squares or rectangles. We first describe the sample and

subdivide step for squares followed by an extension to rectangles.

The basic idea behind the DIRECT algorithm is the sampling of the values of the

function f at the points c ± δei, i = 1, 2, where c is the center of the parametric square,

δ is one-third side length of the parametric square, and ei is the unit vector in either the

u (i = 1) or v (i = 2) direction. Since the underlying parametric domain of the NURBS

surface is 2D, the sampling points would be located above, below, to the left, and to the

right of the center point (see Figure 3.4(a) or (b)).

The square domain is subdivided such that each subregion (rectangle or square) would

contain a sample point at its center. The following strategy for subdividing the square is

adopted in [94]. Let

wi = min {f(c− δei), f(c+ δei)} , i ∈ 1, 2 (3.17)

be the best of the function values sampled along the u and v directions. First, split the

square into thirds along the dimension with the smallest w value. Then, split the rectangle

that contains c into thirds along the remaining direction. This strategy ensures that the

largest subrectangle contains the sample point with the best function value, i.e., lowest f

value. The reason for this strategy is to bias the search near points with good function

values, since larger rectangles are preferred for sampling (as a result of convex hull; see be-

low). For rectangular domains, the subdivision is performed only along the long dimension.

This ensures that the rectangles shrink in both parametric directions, ensuring convergence

[94]. Examples illustrating this subdivision strategy are shown in Figure 3.4. Algorithm 3

formally describes the above steps and covers both square and rectangular domains.
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Input: A parametric subregion (rectangle or square)
Output: A subdivided subregion

1: Identify the set I ⊆ {1, 2} with maximum parametric side length in parametric space,
where 1 and 2 are in the u and v directions, respectively. Let δ equal to one-third of
this maximum length (if square, pick both sides, otherwise pick longer dimension - see
explanation in the text).

2: Sample the function at the points c± δei for all i ∈ I, where c is the center of the
parametric rectangle and ei is the i-th unit vector.

3: Divide the rectangle containing c into thirds along the dimensions in I, starting with
the dimension lowest value of

wi = min {f(c− δei), f(c+ δei)}
and continue to the next dimension.

Algorithm 3: Sample and Subdivide Algorithm
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Sample

10 9.58

9

7

Subdivide

6.9 6.53

3.6

4.7

4.5 2.73.3

(a)

(b)

(c)

(d) 5.2

6.1

5.8

Best 
value

Best 
value

Figure 3.4: Example cases of sample and subdivide. For cases (a) and (b), the domain is
square, and the subdivision is such that the largest subrectangles contain the sample points
with the best function values, i.e., lower f values. For cases (c) and (d), the domain is
rectangular, and the subdivision is performed only along the long dimension.
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3.2.4.2 Identification of potentially optimal rectangles

Assume that we have partitioned the unit square parametric domain underlying the NURBS

surface into a total of m rectangles (or squares if the sides are equal). To select optimal

rectangles for subdivision, we first compute the following for each rectangle j:

• Distance from its center to its vertex dj

• Function value evaluated at the center fj = f(cj) = f(uj , vj)

 

 

Non−optimal
Potentially optimal

f(c)

d

fmin

fmin − �|fmin| �|fmin| (dj , fj)

Slope  K

fj − Kdj

Figure 3.5: A schematic of the graph of f(c) versus d for all rectangles in the parametric
domain. Refer to the text for the meaning of the labeled quantities.

Then, we plot the points (dj , fj) on a graph with fj on the abscissa for all j = 1, . . . ,m,

as shown schematically in Figure 3.5. Each point on the graph represents a rectangle in the

parametric domain. The set of potentially optimal rectangle is defined as follows.

Definition 1 Let ε > 0 be a positive constant and fmin be the best current solution, i.e.,

the lowest value of f over all m rectangles. A rectangle j is said to be potentially optimal if

there exists some K > 0 such that

fj −Kdj ≤ fi −Kdi, ∀i = 1, . . . ,m (3.18)

fj −Kdj ≤ fmin − ε|fmin| (3.19)
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We note that K is simply a rate-of-change constant but we can loosely interpret it as a

Lipschitz constant. From Figure 3.5, fj −Kdj can be seen as an abscissa intercept, which

provides the lower bound for fj . The lower bound contains two terms fj and −Kdj . The

first term is lower when the function values are lower. Thus, this term favors locations

where previous function values are lower, i.e., emphasis on local search. The second term

is lower the larger dj becomes. Therefore, this term puts the search emphasis on larger

rectangles, i.e., emphasis on global search. As such, K can also be interpreted as a relative

weight on global versus local search. Instead of relying on a single constant K, which

is usually high (too much emphasis on global search) and resulting in slow convergence,

the DIRECT algorithm considers all possible weights, and at the same time determines

and reduces the weights as the search proceeds. Moreover, the algorithm does not require

the a priori specification of the weights, which are usually very hard to estimate or are

completely unknown. To see how these are achieved, we observe that geometrically the first

condition (3.18) means that the optimal rectangles can be found as the lower right of the

convex hull of the set of points in the graph of f (see dashed red line in Figure 3.5). This

means that there is no need to determine K. The second condition (3.19) prevents the

algorithm from becoming too local, at which point too many iterations are performed for

marginal improvements. This means that some of the smaller rectangles near the bottom

right of the aforementioned convex hull may not be selected. A range of 10−3 to 10−7 has

been suggested but DIRECT is rather insensitive to the choice of ε [94], due to the convex

hull procedure to select potentially optimal rectangles. The convex hull of points can be

performed efficiently using the Graham’s scan algorithm [95]. If the rectangles are sorted

by function value within groups of rectangles with the same center-vertex distance, the

resulting computational complexity is O(m′), wherem′ < m is the number of distinct center-

vertex distances [94]. For further details on data structures, implementation strategies, and

theoretical analysis of the DIRECT algorithm, we refer the reader to [94; 96; 97].

To prevent proliferation of function evaluations as the global minimum is approached,

we terminate the DIRECT global search when the relative change in the parameter values

is less than some tolerance (e.g., ∆u/u,∆v/v < 0.1) and switch to a local minimization

step to finalize the contact point on the master surface. We use the parametric values at

termination of the DIRECT global search as an initial guess and a small neighborhood

around this initial guess as the search domain. The local minimization problem can be
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solved using either gradient-based or derivative-free constrained optimization algorithms

[98]. Here, we choose the derivative-free procedure since it is simpler and does not require

the evaluation of the Hessian of the function f .

3.2.5 Implementation of contact algorithm

The implementation of the CPP operation can be simply achieved by programming a func-

tion handle that returns the squared distance value f between a given slave contact point X

and a point Y (u, v) on the master surface, and using this function handle in the DIRECT

algorithm. The CPP algorithm proceeds as described in Algorithm 4. The one-to-one

mapping of the DIRECT algorithm to the CPP problem is particularly noteworthy; except

for a few quantities that are relevant to NURBS and the CPP problem, the steps proceed

identically with those laid out in [94]. An illustration of the DIRECT algorithm for a few

iterations is shown in Figure 3.6. The proposed contact algorithm is then implemented by

applying the CPP algorithm on candidate contact pointsX of the slave surface to determine

their closest projected points Ȳ (X). The penetration is calculated using (3.12), from which

the corresponding normal contact force vector on the master particle is then determined by

(3.13).

The identification of candidate slave contact points for the CPP operation can be per-

formed through a number of standard collision detection algorithms (e.g., [42]). For ex-

ample, only those points that are inside the bounding box of the master surface will be

considered.
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Input: Slave point X and master surface Y (u, v)
Output: Closest projected point Ȳ (X)

1: Let c1 = (u1, v1) be the center point of normalized parameter space (unit square) and
evaluate f(c1). Set current best value fmin = f(c1), number of sample points m = 1,
and iteration counter k = 0.

2: Identify the set S of potentially optimal parametric rectangles.

3: Select any rectangle j ∈ S.

4: Sample and subdivide (see Algorithm 2). Update fmin and m = m+ ∆m where ∆m is
the number of new points sampled.

5: Remove rectangle j from set S. If S is not empty, go to Step 3.

6: Increment iteration counter k = k + 1. If relative in parametric direction is less than
specified tolerance, go to Step 7. Otherwise, go to Step 2.

7: Start constrained optimization procedure using current best (u, v) and corresponding
parametric rectangle to finalize the closest projected point on the master surface Ȳ (X).
Exit.

Algorithm 4: DIRECT Closest Point Projection Algorithm
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Figure 3.6: Illustration of DIRECT algorithm. For simplicity, we have set ε in (3.19) to
zero. The lines are only to guide the eye — there is no physical subdivision of the NURBS
surface or underlying parametric surface; instead the subdivision is performed implicitly
through sampling and selection of optimal rectangles.
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3.3 Closure

We have presented a new algorithm for determining the signed gap value for non-convex

NURBS surfaces. The functionality of the algorithm will be demonstrated through discrete

simulations described in the next two chapters.



47

Chapter 4

A Contact Dynamics Formulation

4.1 Introduction

In this chapter, we describe a contact dynamics (CD) approach to our NURBS-based dis-

crete method. By combining particle shape flexibility through NURBS, properties of im-

plicit time integration (e.g., larger time steps) and non-penetrating constraints, as well as a

reduction to a static formulation in the limit of an infinite time step, we target applications

in which the classical discrete element method either performs poorly or simply fails, i.e., in

granular systems composed of rigid or highly stiff angular particles and subjected to quasi-

static or dynamic flow conditions. The integration of CD and our NURBS-based discrete

method is made possible while significantly simplifying implementation and maintaining

comparable performance with existing CD approaches.

To motivate the development of our approach, we first refer the reader to Table 4.1

for a brief summary of the key features of and differences between CD and the classical

DEM by Cundall and Strack [24]. In the following, we highlight the difficulties associated

with classic CD and DEM followed by a description on how we eliminate them through the

combined approach.

The so-called Non-Smooth CD, originally developed by Moreau [61; 62; 102; 103], is an

alternative discrete approach to the DEM. The most prominent feature of CD, in contrast

to that of classical DEM, is that the particles are considered perfectly rigid and the con-

tact forces are determined as those that prevent interparticle penetration and at the same

time satisfy the frictional stick-slip constraints. In their simplest forms, these contact laws

are embodied in the so-called Signorini unilateral contact condition and classical Coulomb

law, as shown in Figures 2.2a and 2.2b, respectively. Commensurate with these physical
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Table 4.1: Comparison of Non-Smooth Contact Dynamics and classical DEM

Feature Non-Smooth Contact Dynamics Classic DEM

Normal contact Rigid; unilateral contact1,2 or
non-penetration constraint directly
included

Modeled using normal spring;
particles overlap

Friction contact Stick-slip frictional constraint1,2

directly included
Imposes shear force incrementally
using relative velocity from previous
step

Time
integration

Implicit, usually stable, and with
larger time step3

Explicit, with stability criterion;
critical time step scales with inverse
of spring frequency. Inefficient for
highly stiff particles and cannot be
applied to rigid particles

Collision
response

Considers collisions and stick-slip
frictional transitions simultane-
ously; velocities may be non-smooth

No real collisions and velocity jumps
cannot occur due to continuous na-
ture of contact spring

Damping Numerical damping4 Through global and/or local damp-
ing devices, i.e., dashpots

Quasistatic
limit

Can be directly included in formula-
tion

Dynamic in nature; oscillations in
solutions are typical; quasistatic
limit is approached using global
and/or local damping

Particle
morphology
representation5,6

Disk- or sphere-clustering and polyhedra

Implementation
difficulty

Intermediate to difficult7 Easy

Computational
efficiency

Contact and constraint forces solved
implicitly. Geometrical information
(e.g., gap values and contact ori-
entations) are stored in matrices
as part of the solution procedure;
higher memory requirement8

Contact forces are solved explicitly
using particle overlap and previous
velocities; time integration easily
parallelized. Minimal storage of geo-
metrical information; lower memory
requirement

(1) Regularization to account for particle elasticity possible (e.g., [99])
(2) See Figure 2.2
(3) Although the time step can be larger, it has to be reasonable so that collisions are properly resolved
(4) Does not apply in the quasistatic limit
(5) We list only those approaches, beyond ellipses/ellipsoids, that appear to be currently most widely applied
(6) Improved using NURBS in this work
(7) Made easier in this work
(8) In this work, managed using efficient large-scale mathematical programming solvers (e.g., [100; 101])
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enhancements, however, is the need for both contact and constraint forces to be solved si-

multaneously or implicitly since the problem is nonlinear. The need for an implicit solution

procedure till today remains the primary reason why CD is deemed much more complicated

to implement than DEM. This has thwarted the wide adoption of CD despite the favorable

performance that has been shown through a number of studies [73–83].

While there is wide applicability of DEM, its application has gone beyond its restriction

as a tool that is strictly applicable only to materials with finite elasticity. For example, DEM

is widely used as a tool to study real granular materials that are almost rigid or highly stiff

in nature. Here, finite elasticity means that the contact interaction is essentially modeled

using springs. Under explicit time integration algorithms that are typically used in DEM,

the stable time step is restricted by the critical time step, which scales with the inverse

of the contact spring-particle mass frequency. This results in infinitesimally small time

steps if material parameters corresponding to highly stiff particles (e.g., rocks, sand, steel)

are used. Although explicit integration algorithms can be easily parallelized, the runtime

for stiff systems remains computationally prohibitive. One modeling technique commonly

employed in practice to overcome this restriction is to simply reduce the contact stiffness,

usually by two to four orders of magnitude, to the extent that particle kinematics obtained

from simulations are still somewhat representative of the overall response of the actual

system of interest. If quasi-static behavior is assumed to hold, usually used in combination

with stiffness tuning is mass scaling, in which the particle masses are adjusted (usually

increased) such that the combined spring-particle system frequency is lowered, increasing

the time step size. In practice, model calibration by means of mass scaling and/or stiffness

tuning is a delicate and cumbersome process. Another problem that is associated with the

presence of contact springs and the dynamic nature of DEM is the introduction of unwanted

oscillations or noise, with frequencies that increase with spring stiffness. This requires

additional calibration of the global and/or local damping parameters. Moreover, under

certain loading conditions (e.g., strain-controlled and dynamic), either particle kinematics

or contact forces obtained under such calibration procedures can be highly inaccurate [57].

Recent CD approaches include techniques to represent complex particle morphology or

shape, and these have been described in Chapter 2. In this aspect, recent trends show a

clear dichotomy between the choice of shape representation technique. A key component

in the CD formulation is the signed separation or gap, which is used in the determination
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of constraint forces to prevent particle interpenetration. While the polyhedra approach is

considered a more accurate shape representation technique than the clustering approach,

the associated algorithms for the determination of the signed penetration are complicated

due to the need to enumerate all the various combinations of contact entities (node, edge,

surface). As such, the simpler disk/sphere-clustering is favored over the more accurate

polyhedra-based approach.

We combine and refine two important developments that allow us to eliminate all the

above difficulties:

• We simplify the formulation and implementation of CD significantly by generalizing

a variational CD formulation recently developed for disks and spheres [72; 99; 104].

This particular formulation, which is employed here, is appealing because it provides

a way for CD to be easily implemented and solved using off-the-shelf mathematical

programming solvers. The most prominent advantage of this formulation is its auto-

matic inclusion of the quasi-static limit, enabling quasi-static modeling without the

need for adjusting damping parameters or time step.

• We remove the complexities associated with polyhedra-based contact detection algo-

rithms by adopting NURBS to describe arbitrary particle geometries. Following the

approach as described in Chapter 3 to determine the signed gap, the integration of

our NURBS-based discrete method into the CD formulation is shown to be simple and

straightforward. The ‘knot-to-surface’ approach to contact described in Chapter 3 is

similar to that employed in the contact treatment of frictionless bodies in isogeometric

analysis [93]. The key difference and novelty here is on the simultaneous treatment of

contact elasticity and frictional contact within the aforementioned CD formulation, as

well as the ability to perform contact calculations for granular systems, which contain

a large number of particles. Both particle elasticity and friction at the contact level

are treated implicitly and simultaneously, and the contact algorithm is cast into a

mathematical programming-based contact dynamics framework.

This chapter describes the details of how each of the above items is implemented and

is structured as follows: we describe the contact problem and summarize the variational

formulation of the general contact problem for frictional particles in Section 4.2; then, we

present two numerical examples in Section 4.4 to demonstrate the capabilities of the com-
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bined approach before closing in Section 4.5. For clarity of presentation and implementation

details, we limit our discussion to the two-dimensional case. An extension of the method to

the three-dimensional setting is outlined in Appendix B.

4.2 Governing Equations for Frictional and Arbitrary-Shaped

Particles

The formulations from [51; 72; 99; 104] carry forward completely to the general case of

frictional and arbitrary-shaped particles without any change. As such, simplicity of imple-

mentation is retained. Here, we present a summary containing only those key equations

required for the completeness of presentation. Where necessary, we point the reader to the

appropriate references for further details.

4.2.1 General contact problem definition

Master

Slave

Ωi

Ωj

n0

t0

x Potential contact I

RiI

RjI

ȳ

∂Ωj

∂Ωi

Figure 4.1: Illustration of the problem of contact between two particles (Ωi and Ωj) at time
t0. See text for a description of the associated quantities.

For convenience, we repeat here the contact problem described in Chapter 3, specialized

to the 2D case as shown in Figure 4.1. The two-particle contact problem is defined at some

initial time initial time t0. Let Wi be the set of potential contacts associated with particle

i and denote by I ∈ Wi a particular contact point in the set. A contact point on the slave
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particle Ωj is denoted by x, while the contact point on the master particle is defined as the

closest point projection of x onto the boundary of the master particle:

ȳ ≡ ȳ(x) = min
y∈∂Ωi

‖x− y‖ (4.1)

As shown in Figure 4.1, the contact plane at a potential contact point I is described on the

master boundary ∂Ωi by the normal n0 and tangent t0 at point ȳ. The gap at time t0 is

then defined as

g0(x) = (x− ȳ(x))T n0 (4.2)

with the non-penetration constraint requiring that g ≥ 0.

4.2.2 Notation for general multi-particle system

To facilitate the variational formulation of the governing equations, we first set the notation

for the general multi-particle system that will be used throughout this chapter. A particle

i has mass mi and mass moment of inertia J i. The position and rotation of the particle are

denoted by xi = (xi, yi)T and αi, respectively, and their corresponding translational and

rotational velocities by vi = (vix, v
i
y)
T and ωi. We introduce the following matrix or vector

quantities that cover general n-particle systems:

M = diag(m1,m1, . . . ,mn,mn)

J = diag(J1, . . . , Jn)

x = (x1, . . . ,xn),v = (v1, . . . ,vn)

α = (α1, . . . , αn),ω = (ω1, . . . , ωn)

g = (g1, . . . , gN ),p = (p1, . . . , pN ), q = (q1, . . . , qN )

(4.3)

where M is the diagonal matrix containing the particle masses and J is the diagonal matrix

containing the particle mass moments of inertia. The kinematical quantities are the vectors

of particle translations x and rotations α, and their corresponding velocities v and ω. The

contact quantities are given by the vectors p, q, and g, which are the contact normal forces,

shear forces, and gap values, respectively, each at N number of contacts.

A quantity, which at the initial time is denoted by �0, would then be denoted at time
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t0 + ∆t by �. For example, x0 and v0 are the known positions and velocities at time t0,

while x and v are the corresponding quantities at time t0 + ∆t. With this notation, an

increment of a quantity will be denoted by ∆� = �−�0.

4.2.3 Discrete update equations

Under the discretization of the equations of motion using the θ-method [105], the resulting

discrete update equations for translation and rotations are given by:

M̄∆x = f̄0 = f ext + M̄v0∆t

J̄∆α = m̄0 = mext + J̄ω0∆t
(4.4)

In the above, the matrices M̄ and J̄ contain the scaled particle masses and mass moments

of inertia, respectively:

M̄ =
1

θ∆t2
M

J̄ =
1

θ∆t2
J

(4.5)

The effective translational force vector f̄0 contains the external load vector f ext, which we

have assumed to be constant (e.g., due to gravity). The effective rotational moment vector

m̄0 contains the external rotational moments mext, which may be applied on the particles.

The translational and angular velocities are calculated, respectively, as

v =
1

θ

[
∆x

∆t
− (1− θ)v0

]

ω =
1

θ

[
∆α

∆t
− (1− θ)ω0

] (4.6)

where 0 ≤ θ ≤ 1. The stability properties of the θ-method are well known: for θ = 1
2 an

unconditionally stable and energy preserving scheme is recovered, for θ > 1
2 the scheme is

unconditionally stable and dissipative, and for θ < 1
2 stability depends on the time step.

In the context of binary collisions, the algorithmic energy dissipation that occurs for θ > 1
2

can be related to the physical dissipation associated with impact and thus to the restitution
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coefficient e through the relation

e =
1− θ
θ

(4.7)

Indeed, as shown in [72], a value of θ = 1
2 corresponds to an elastic collision while θ = 1

reproduces a perfectly inelastic collision. Binary elastic and plastic collision tests are shown

in Appendix A.2.

4.2.4 Variational formulation of contact problem

Following the formulation procedure as described in [51; 72; 99; 104], the resulting discrete

mixed force-displacement problem, including contact constraints, takes the form:

min
∆x,∆α

max
p, q

{
1
2∆xTM̄∆x−∆xT f̄0

}

+
{

1
2∆αT J̄∆α−∆αTm̄0

}

+
{

∆xT (N0 p+ N̂0 q)− gT0 p−∆αT (Rq
0 q +Rp

0 p)
}

−
{

1

2
pTCNp+

1

2
∆qTCT∆q

}

subject to ‖q‖ − µp ≤ 0, p ≥ 0

(4.8)

With a slight abuse of notation, we have denoted the vector containing the absolute val-

ues of the shear forces by ‖q‖. The matrix N contains all the normals associated with

potential contacts n = (nx, ny)
T while the matrix N̂ has the same form contains entries

t = (−ny, nx)T , i.e., the tangent vector defined as the 90◦ counterclockwise rotation of n.

We note the presence of the term with incremental shear ∆q = q − q0, which requires the

tracking of shear forces at contact points and makes the problem history-dependent.

In equation (4.8), the matrix Rq
0 contains the contribution of the total angular momen-

tum balance from the tangential forces and contains entries RT
iIn0 where RiI is the moment

arm vector extending from the centroid of particle i to the contact point ȳ. The matrix Rp
0

contains the contribution of the total angular momentum balance from the normal contact

forces and contains entries −RT
iIt0. Both RT

iIn0 and −RT
iIt0 are signed moment arms and

their signs depend on whether the associated contact force induces a positive (clockwise) or

negative moment on the particle. A similar description applies to the slave particle using its

contact normal −n0 and tangent −t0. The matrices CN and CT contain the compliances
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1/kN and 1/kT on the diagonal, where kN and kT are the normal and tangential contact

stiffnesses, respectively. Finally, the Coulomb criterion is imposed with µ = tanφ being

the effective interparticle friction coefficient and φ is the effective friction angle at the scale

below the particle angularity level.

4.2.5 Optimality conditions

Following the approach in [72], the first-order KKT conditions associated with equation

(4.8) give the linear moment balance:

M̄∆x+N0p+ N̂0q = f̄0 (4.9)

balance of angular momentum:

J̄∆α−Rq
0 q −Rp

0 p = m̄0 (4.10)

sliding friction conditions:

‖q‖ − µp+ s = 0, s ≥ 0 (4.11)

diag(s)λ = 0,λ ≥ 0 (4.12)

where s is the slack vector, introduced to enforce equality, and kinematics:

NT
0 ∆x+ µλ = g0 +CNp (4.13)

N̂
T

0 ∆x− (RqT
0 +RpT

0 )∆α = sgn(q)λ+CT∆q (4.14)

where sgn is the signum function. The kinematics in equations (4.13) and (4.14) pertain to

the associated sliding rule, which leads to an apparent dilation proportional to the friction

coefficient µ. However, as described in [72], this dilation can be viewed as an artifact of

the time discretization which, with the exception of a few pathological cases, is gradually

reduced as the time step is reduced. Moreover, it was shown in [72] that the dilation, even

for rather large time steps, is negligible over a range of common conditions, including both

instances of highly dynamic and relatively unconfined flows as well as confined quasi-static

deformation processes. The consequences of the associated sliding rule are discussed in
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Appendix A.3.

4.2.6 Force-based problem

Finally, it is possible to cast equation (4.8) in terms of the following force based problem:

minimize
1

2
rTM̄

−1
r +

1

2
tT J̄

−1
t+ gT0 p

+
1

2
pTCNp+

1

2
∆qTCT∆q

subject to r +N0p+ N̂0q = f̄0

t−Rq
0 q −Rp

0 p = m̄0

‖q‖ − µp ≤ 0, p ≥ 0

(4.15)

where t is the dynamic vector associated with the rotations, i.e., torque vector.

4.2.7 Static limit

Omitting the dynamic forces r and t from equation (4.15) gives rise to the following static

problem which is valid in the limit of ∆t tending to infinity:

minimize gT0 p+
1

2
pTCNp+

1

2
∆qTCT∆q

subject to N0p+ N̂0q = f̄ ext

Rq
0 q +Rp

0 p = 0

‖q‖ − µp ≤ 0, p ≥ 0

(4.16)

The above principle is useful for quasi-static problems governed by an internal pseudo-time

rather than physical time. Examples include common soil mechanics laboratory tests such

as triaxial tests, quasi-static soil-structure interaction problems such as cone penetration,

and various applications in the earth sciences where the time scales are such that the

deformations are of a quasi-static nature (e.g., [106; 107]). We note that in the quasi-static

formulation, the accuracy of the scheme would then depend on the increment size of the

applied boundary conditions (e.g., wall displacements or stresses).
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4.2.8 Solution procedure and computational complexity

We observe that equations (4.15) and (4.16) are essentially standard quadratic programming

problems. In this work, the primal-dual interior-point solver in MOSEK [101] is used

for the solution of both problems. The solution and storage costs associated with these

problems are usually justified by the larger analysis steps that can be taken when using

implicit algorithms. This is more so for systems comprised of rigid or highly stiff particles

in which explicit solution procedures perform poorly or simply fail. Moreover, large-scale

mathematical programming solvers with sparse storage (e.g., [100; 101]) are becoming widely

available and increasingly efficient and robust. More recent solvers such as MOSEK [101]

also include multi-core or multi-threaded capabilities.

The performance of the primal-dual interior-point method in the context of our pro-

posed contact dynamics formulation has been described in detail in [72], and the following

properties are summarized: 1) insensitivity of iteration count to problem size, 2) arith-

metic complexity that is equivalent to standard Newton-Raphson schemes, and 3) highly

robust (almost never fails or stalls). The overall cost is therefore comparable to implicit

Newton-Raphson-type schemes used in nonlinear finite element analysis. For details on the

fundamental theory and implementation of interior-point methods, we refer the reader to

[108].
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4.3 Contact Implementation

The CD formulation of either equation (4.15) or (4.16) described in the previous section

offers great simplicity and significant effort reduction in contact implementation in that the

only required information is the signed gap values at the initial time g0. The implementation

of the contact algorithm proceeds as described in Chapter 3, specialized to the 2D case.

(a) (b)

g
kT

kN slip

p �q�

−µp

µp

Figure 4.2: Linear elastic contact law: (a) normal reaction force p against separation or gap
g and (b) friction force ‖q‖ against slip; µ is the friction coefficient.

Here, we have only considered the case of linear contact elasticity, as shown in Figure

4.2, but extension to nonlinear elasticity is entirely possible as is the consideration of more

complex contact models incorporating hardening, viscous effects, etc. The resulting scheme

bears some similarity to standard DEM schemes in that the consideration of a finite contact

stiffness implies the possibility for an elastically reversible interparticle penetration. The

inclusion of contact elasticity reproduces the more basic case of rigid particles in the limit of

the contact stiffness tending to infinity. Moreover, in contrast to standard DEM, there are

no algorithmic repercussions from operating with a large or, in the extreme case, infinite

stiffness, reproducing the contact law shown in Figure 2.2. Indeed, the same algorithm

is used regardless of the contact stiffness, with perfect rigidity being a limiting case that

allows for certain simplifications. For example, in the limiting case, both CN and CT in

either equation (4.15) or (4.16) are zero, and the associated quadratic terms drop out from

the formulation. In particular, this means that no information of the shear forces needs to

be carried over from one time step to the next. As a result, contact stiffness values that are

representative of real materials (e.g., steel or rock) can be used without causing numerical
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difficulties.

The static problem described by equation (4.16) reveals a number of interesting proper-

ties related to the indeterminacy of force networks in granular media. It is well known that

rigid particles lead to a situation where the force network solution is non-unique [109–112].

Setting CN = CT = 0 in equation (4.16) leads to a linear program where global optimality

may be achieved by more than one set of forces. Conversely, for finite values of CN and

CT , the solution is unique, i.e., there is a unique set of contact forces leading to the optimal

value of the objective function.

4.4 Numerical Examples

In this section, we present two examples that highlight the effects of particle morphology on

the macroscopic response of granular assemblies, as well as the robustness of our proposed

method. In particular, we compare responses of assemblies with three levels of particle

angularity: disk, angular but (strictly) convex, and non-convex particles.

4.4.1 Biaxial compresion

Biaxial compression simulations using the static limit formulation in equation (4.16) are

carried out on a rectangular assembly of initial width W0 and initial height H0 containing

1520 particles. First, an assembly with non-convex particles is prepared using 16 different

shapes. Then, two additional assemblies — one with angular convex particles and another

with disks — are also prepared. The particles in these assemblies are obtained by match-

ing average particle diameters of the 16 non-convex shapes. Effectively, sphericity is kept

constant and a comparison of effects of angularity is made. The three assemblies with their

corresponding particle shapes are shown in Figure 4.3.

The non-convex and angular assemblies have an initial porosity of approximately 0.152,

while the disk assembly has an initial porosity of approximately 0.176. The higher poros-

ity of the disk assembly points to the inability of disks to match porosity by just simply

matching average particle diameters. Indeed, a wider distribution of disk sizes would be

required in this case to match the initial porosity of 0.152, which in turn would substan-

tially increase the number of particles. In this regard, the use of disks to represent particle

geometry introduces an unavoidable geometrical bias, which leads to packings with higher
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porosities [91]. Nevertheless, in this example, we retain the disk assembly for comparison

with the other two assemblies. Two interparticle friction coefficients µ = 0.3 and 0.5 are

used to gauge the effect of interparticle friction. The upper wall is moved downwards while

the applied stress on the right wall σ3 is maintained at 125 units. A total of about 150 steps

are used to impose a total axial strain of approximately 0.21. The left and bottom walls

are stationary. All walls are frictionless.

To show the effects of particle elasticity, we perform the tests with several values of

particle elasticity: kN = ∞, 108, 106, 105. The tangential stiffness is set at kT = 2kN/3,

which is within the range for a physically consistent volumetric response in granular ma-

terials [99; 113]. At every time step, the current width W and current height H of the

assembly box are tracked, and the stresses σ1 and σ3 computed using the contact forces

of the particles impinging on the top and right walls, respectively. The results in terms

of deviatoric stress σ1 − σ3 versus axial strain, εa = 1 − H/H0, and volumetric strain,

εv = 1 −WH/(W0H0), versus axial strain are shown in Figures 4.4 through 4.7. We see

that the macroscopic response at kN = 108 is close to rigid. As kN is lowered, a more elastic

initial response is observed in which the sharp initial peak is progressively suppressed and

the peak response lowers slightly. At kN = 105, an initial slope in the deviatoric stress be-

comes visible and the corresponding volumetric strain response shows an initial compaction

followed by volume expansion. The deformed configurations of the three assemblies for the

case of kN = 108 are shown in Figure 4.3.

In all cases, we note the following observations. For a particular assembly, the macro-

scopic deviatoric stress reaches a constant value that is independent of the elastic properties

while the rate of volumetric strain tends to zero, in agreement with standard continuum

plasticity theories. Comparing across the three assemblies with different particle angular-

ity levels, however, we observe that both the peak strength and dilatancy increase with

increasing angularity, i.e., from disks to non-convex. This latter observation is consistent

with experimental evidence of increased strength with increasing angularity of the particles

[1].
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NON-CONVEX

ANGULAR, CONVEX

DISK

INITIAL FINAL

Figure 4.3: Biaxial compression: initial and final (εa = 0.21) configurations with kN = 108.
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Figure 4.4: Biaxial compression: response with kN =∞.
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Figure 4.5: Biaxial compression: response kN = 108.
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Figure 4.6: Biaxial compression: response kN = 106.
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Figure 4.7: Biaxial compression: response kN = 105.
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4.4.2 Column drop test

We consider a column with an initial height to width ratioH0/L0 of approximately 1.68. The

base supporting the column has a friction coefficient of µbase = 0.5, while a smooth vertical

wall representing a symmetry boundary is placed on one side of the column. Three columns

with 1520 particles of increasing angularity — disk, angular but convex, and non-convex, as

shown at Step 0 in Figures 4.8 and 4.9 — are constructed using particles from the sixteen

different shapes described in the biaxial test example. These particles are dropped into the

rectangular box that forms the column and settled under gravity. Drop test simulations are

then conducted by removing one of the side walls of the box and letting the column spread

under gravity. The simulations are carried out using the dynamic formulation in equation

(4.15) with θ = 0.7 and a time step of ∆t = 0.05 for two interparticle friction coefficients

µ = 0.5 and µ = 0. We set the contact elasticity to be kN = 108 and kT = 2kN/3 for all

columns.

We compare the response evolutions of the angular and disk columns against the non-

convex column, as shown in Figures 4.8 and 4.9. The final configurations of the three

columns for µ = 0.5 are shown in Figure 4.10. The slopes of the final spreads of the angular

and disk columns are approximately 12◦ and 9◦, respectively. More prominently, the slope

in the non-convex column is 17◦. This is a 5◦ and 8◦ increase from the angular and disk

columns, respectively, which is quite significant. Relative to the non-convex column, the

final spreads of the angular and disk columns are approximately 14 and 45 percent wider.

These observations are consistent with the increase of rolling resistance with increasing

angularity.

For the case of µ = 0, the response evolutions of the angular and disk columns as

compared with the non-convex column are shown in Figures 4.11 and 4.12, with the final

configurations of all columns shown in Figure 4.13. At Step 3200, the angular and non-

convex columns have stopped flowing, while the disk column continues to flow and, as the

simulation is progressed, a final layer thickness of 1 particle is reached. Essentially, without

rolling resistance, the disk column simply ‘melts’ away. On the other hand, the angular

and non-convex columns maintain a well-defined spread, even at zero interparticle friction,

due to the rolling resistance provided by angular and non-convex particles. As expected,

the non-convex column has a smaller spread due to increased angularity in the non-convex
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particles.

4.5 Closure

We have presented a contact dynamics (CD) approach to our NURBS-based discrete method.

By combining particle shape flexibility, properties of implicit time integration (e.g., larger

time steps) and non-penetrating constraints, as well as a reduction to a static formulation

in the limit of an infinite time step, we target system properties and deformation regimes

in which the classical discrete element method either performs poorly or simply fail, i.e., in

granular systems composed of rigid or highly stiff angular particles and subjected to quasi-

static or dynamic flow conditions. The implementation the combined approach is made

simple by adopting a variational framework, which enables the resulting discrete model to

be readily solved using off-the-shelf mathematical programming solvers.

Numerical simulations of the biaxial compression and column drop tests for varying

contact elasticities, including the rigid case, were performed, and the ability of the combined

approach to capture the effects of increased rolling resistance, associated with increased

angularity in and interlocking between non-convex particles, on the macroscopic response

were clearly demonstrated. These effects are manifested macroscopically through an increase

in the mobilized shear strength and dilatancy under biaxial compression, and a smaller

spread and higher angle of response under a column drop test. These observations are

consistent with reported experimental observations. The effect of geometrical bias from the

use of disks to match average particle diameter on packing porosity, which in turn affects

mobilized strength, is also noted.
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STEP 0

STEP 200

STEP 400

STEP 800

STEP 1600

NON-CONVEXANGULAR, CONVEX

Figure 4.8: Column drop test with interparticle friction coefficient of µ = 0.5: comparison
between non-convex and angular particles.
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Figure 4.9: Column drop test with interparticle friction coefficient of µ = 0.5: comparison
between non-convex and disk particles.
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Figure 4.10: Configurations of columns with interparticle friction coefficient of µ = 0.5 at
step 1600: approximate dimensions relative to column with non-convex particles.
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STEP 3200

NON-CONVEXANGULAR, CONVEX

Figure 4.11: Column drop test with interparticle friction coefficient of µ = 0: comparison
between non-convex and angular particles.
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STEP 400

STEP 800
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STEP 3200

NON-CONVEXDISK

Figure 4.12: Column drop test with interparticle friction coefficient of µ = 0: comparison
between non-convex and disk particles. We note that at step 3200, the column with disk
particles continues to flow; a final layer thickness of 1 particle is reached as the simulation
is progressed.
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Figure 4.13: Configurations of columns with interparticle friction coefficient of µ = 0 at
step 3200: approximate dimensions relative to column with non-convex particles. We note
that at this point in time the column with disk particles continues to flow; a final layer
thickness of 1 particle is reached as the simulation is progressed.
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Chapter 5

Multiscale Characterization and
Modeling of Granular Materials
through a Computational
Mechanics Avatar: A Case Study
with Experiment

5.1 Introduction

In recent times, much of solid mechanics research has focused around the ‘microstructures’

theme, which is predicated on the importance of lower-scale geometry, defects, and inter-

action to inform macroscopic behavior [114]. Crystalline solids have received significant

attention, and progress in theory, experiment, and computation has been made to the ex-

tent that much of the research results can now be routinely applied in the design of such

materials for real engineering applications. Granular materials also possess microstructures,

which have far-reaching implications on macroscopic properties such as strength, permeabil-

ity, and energy dissipation. Unlike crystalline solids, however, microstructures in granular

materials lack order and cannot be elegantly quantified as in crystalline solids. Moreover,

these microstructures operate at the grain scale, which neither atomistic nor continuum

models can help in providing quantitatively meaningful results for real applications. To un-

derstand and predict the behavior of granular materials at the continuum scale, one must

recognize that their mechanical behavior is encoded at the grain scale. We often point to

this fact, despite the common knowledge that more than three decades of research has not

led to significant advances in terms of performing grain-scale analysis and characterization
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of real granular materials.

There are broadly two camps in the study of granular materials at the grain scale: that

which seeks to characterize granular assemblies, often through imaging techniques such as

X-ray computed tomography (XRCT), and that which seeks to simulate granular behav-

ior, typically through the discrete element method (DEM). Characterization of granular

materials has come a long way since the days of so-called ‘destructive’ methods, which in-

volved dismantling experimental specimens to measure grain-scale quantities [115]. XRCT

and other methods of digital imaging of experiments are now the norm in experimental

grain-scale mechanics [17; 116], able to measure quantities such as the void ratio in a shear

band [117] and track the motion of grains [118]. Increases in image fidelity and resolution

have led to a number of characterization approaches such as level sets [47], spherical har-

monics [119; 120] and Fourier analyses [121; 122] that can process image data to quantify

grain kinematics and morphological measures (e.g., sphericity and roundness) [1]. Although

characterization techniques have seen tremendous progress, they lack the ability to probe

one crucial aspect of granular materials from which strength-related quantities are derived:

interparticle contact forces. As such, a discrete model such as DEM remains a necessary

component for the inference of contact forces. In the several decades following the incep-

tion of DEM [24], there were tremendous efforts in the development of shape representation

capabilities and associated contact algorithms (e.g., [35–37; 40]). Currently, however, it

appears that progress has hit a plateau with shape representations, largely belonging to

either the polyhedra or clustering approach, still too crude for real grain-scale calculations.

Incidentally, grain morphological measures from characterization rarely make their way into

DEM because of incompatibilities between the geometry bases used in characterization and

discrete models, and significant degradation of fidelity during the image-to-model process.

Despite great research efforts in each of the two microscopic camps, there is a surprising

lack of interaction, and hence integration and validation, between them. In theory, both

grain-scale characterization and discrete simulations should work in an integrated manner

to provide a consistent set of microscopic information. In practice, however, this consistency

is virtually nonexistent and surprisingly, not discussed in the literature. The reason for this

void is that much of the problems making integration and validation difficult stem from

the complexity of real grain geometries. For example, we described in an earlier work [22]

two possible routes to using grain-scale information at the continuum level by means of a
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hierarchical multiscale scheme: one using XRCT data and the other using discrete analysis.

The consistency between the two routes, however, could not be established at the time since

there was no DEM technology to account for the level of complexity of grain geometries

found in experiment.

At the other end of the spectrum, multiscale methods are emerging to enable the use

of grain-scale information at the continuum level. At this point, techniques linking the

grain and continuum scales are based on homogenization theory [23]. It is important to

point out that multiscale modeling is not just about developing algorithms but also about

developing better physical models [123]. In the context of real granular materials, the effects

of grain morphology on strength of granular materials have already been well established

[1]. Although there have been significant efforts in constructing multiscale procedures (e.g.,

[124–131]), the predictive capabilities of these procedures on real granular materials have not

been assessed due to the absence of any discrete model that is morphologically representative

of real granular materials. Currently, the fidelity of the discrete model appears to be

the missing ingredient to achieving a breakthrough in the predictive power of multiscale

methods.

Here, we tackle the above challenges head-on by developing an overarching computa-

tional mechanics avatar that has enabled us to make the first steps in bridging the gap

between characterization and discrete analysis, and potentially improving the predictive

capabilities of multiscale methods. We integrate two major components of the proposed

avatar, namely the level-set characterization technique and our NURBS-based DEM, and

significantly enhance their capabilities to handle real grain morphologies. We then apply

the avatar to characterize and model the grain-scale response inside the shear band of a real

triaxial specimen. The avatar has enabled, for the first time, the transition from faithful

representation of grain morphologies in X-ray tomograms of granular media to a morpho-

logically accurate discrete computational model. Grain-scale information is extracted and

upscaled into a continuum finite element model through a hierarchical multiscale scheme,

and the onset and evolution of a persistent shear band is modeled, showing excellent quan-

titative agreement with experiment in terms of both grain-scale and continuum responses

in the post-bifurcation regime. More importantly, consistency in results across character-

ization, discrete analysis, and continuum response from multiscale calculations is found,

achieving the first and long sought-after quantitative breakthrough in grain-scale analysis
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of real granular materials.

This chapter is organized as follows. First, we describe the characterization and com-

putational components of the avatar, and the associated algorithmic improvements that

enable faithful representation of grain morphologies directly from X-ray tomograms. Next,

we present a case study where we describe the experiment of interest, followed by the char-

acterization and modeling steps taken to arrive at the relevant grain-scale information and

predicted continuum response. Finally, we close by providing an assessment of the strengths

and validity of the components of the avatar, as well as limitations that are to be addressed

in the future.

5.2 The Avatar Framework

A computational avatar aims to be the virtual twin of a granular assembly (e.g., sand), a

digital mirror of grains as they are found in-situ. The avatar should also possess realistic

mechanical properties (e.g., elasticity) and in a mechanistic context, behave similarly to the

real grain assembly, so that grain morphologies, kinematics, arrangement, and elastostatics

are all comparable to those of the physical assembly. The avatar opens the door for the use

of the experimentally-derived grain-scale quantities in either forward simulation techniques

(e.g., DEM) or inverse elastostatics analyses [2; 3]. These analyses would yield the quan-

titative measurements of contact forces throughout a granular assembly, allowing access to

force chains or fabric evolution in real time in real granular assemblies.

In this section, we summarize the two major components of the proposed computational

mechanics avatar that has made the image-to-model transition possible, namely the char-

acterization toolbox used to capture grain morphologies and our NURBS-based DEM for

discrete analysis. In particular, we focus on the relevant algorithmic improvements. Earlier,

these components have been briefly discussed in [4] and developed independently [47; 49].

Here, we integrate these two components for the first time to enable the application of the

avatar to a real problem.

5.2.1 Characterization toolbox

Successful inference of kinematics and contacts provides several important applications con-

cerning the evolution of strength in granular systems, namely:
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1. Determination of grain kinematics and grain fabric, including contact evolution during

loading.

2. Inference of contacts locations. Together with strains or stresses from X-ray diffrac-

tion [19], contact locations provide necessary input for a technique for quantitative

inference of contact forces in opaque granular systems [2; 3].

3. Inference of grain morphologies that are representative of true grains (to within imag-

ing resolution). These serve as geometry input to discrete methods that can account

for arbitrary grain shapes (see Section 5.2.2).

The use of XRCT in an experiment (e.g., triaxial test) provides, in addition to macro-

scopic stress and strain data, a sequence of three-dimensional (3D) of voxelated images (see

Figure 5.1), each containing tens of thousands of grains, collected over the course of the

specified loading regime. The challenge in applying XRCT is in translating the 3D images

into quantities that can be used for mechanical analysis, i.e., to translate image voxels into

grain fabric and morphology. The key difficulty underlying this translation process lies in

the irregularity of individual grains and that they are in contact with each other.

(a) (b)

Figure 5.1: Grain-scale imaging using XRCT: (a) slice of triaxial specimen and (b) 3D
reconstruction by stacking slices.

The watershed technique [132] has been a trusted workhorse for segmenting grains from

the voids, and from each other. Watershed, however, has the drawback of generally oper-
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ating on and outputting binary images. This is problematic for two reasons. The first is

that binary images introduce artificial roughness to grain surfaces, complicating a direct

tomography-to-simulation paradigm [4]. The second, and more critical, drawback is the re-

moval of details about the location and orientation of interparticle contact, which impedes

our understanding of the physical sources of mechanical strength.

Raw Image Denoised Image

Gradient Edge Markers

Binary Initial Guess

Level Set of Grain

Filtering

Image 
Gradient

Watershed

Level Set 
Evolution

Figure 5.2: Summary of characterization steps: (left) slice of 3D XRCT volume of vox-
els, (middle two) application of proposed characterization technique, and (right) generated
grain.

We overcome the above difficulties by applying the characterization methodology pro-

posed in [47] to operate on the following key areas to delineate grain surfaces and contact

locations. Briefly, the steps in the proposed methodology are:

1. Use of full-fidelity 3D XRCT image instead of binary images. The image is filtered to

furnish precise edge markers via the first and second gradients of X-ray attenuation.

2. Noise removal. The use of image gradients necessitates the removal of noise. Non-local

de-noising is utilized and guided by input parameters across different materials and

X-ray attenuation spectra.

3. The search for grain edges via level sets. Speed up in convergence is obtained using

the edge markers and current segmentation techniques (e.g., watershed) as initial

conditions. The level sets are allowed to evolve until the boundary of grain is identified

and, consequently, mathematically characterized.
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The above steps produce grain boundaries that are smooth and representative of true grain

shapes to sub-voxel accuracy, and without ‘melt’ near contact, as shown in Figure 5.2. In

essence, the proposed methodology converts digital computed tomographic images into a

collection of grain avatars, i.e., digitized versions of natural grains, which are transferred

into a discrete computational model, as described next.

5.2.2 NURBS-based discrete element method

We employ a discrete element method that uses Non-Uniform Rational Basis-Splines (NURBS)

as the mathematical basis for representing grain geometries [49]. The initial developments

of this approach focused on strictly convex grains [49–51]. The generation of strictly convex

NURBS shapes, however, is very difficult and restrictive from a modeling perspective. This

is even more so when dealing with image data of real grain shapes and obtaining strictly

convex shapes is not possible in most cases. This difficulty is not due to some limitation of

NURBS but to the state of the contact algorithm for NURBS, which were undeveloped at

the time.

A contact algorithm capable of dealing with general non-convex NURBS surfaces would

eliminate the above modeling difficulty. We achieve this by generalizing the node-to-surface

approach typically used in the contact treatment of finite element models [92] to a knot-

to-surface approach. Following a master-slave approach, a fixed contact point on the slave

particle Ωj is denoted by x while the contact point on the master particle Ωi is defined to

be the closest point projection of x onto the boundary of the master particle:

ȳ ≡ ȳ(x) = min
y∈Γi
‖x− y‖ (5.1)

where Γi is the boundary of the master particle. Here, y is a function of the two variables

parametrizing the NURBS surface. Knowing the normal n at ȳ, the gap is then calculated

as:

g(x) = (x− ȳ(x))T n (5.2)

from which the effective normal contact force on grain Ωi at ȳ, assuming a linear elastic
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stiffness model, is calculated:

f in =




kNgn, if g < 0

0, otherwise

(5.3)

where kN is the normal elastic stiffness and gn measures the penetration or overlap in

vector form.

The above approach is described in [52] for the two-dimensional (2D) case and here, we

generalize this to 3D as follows. As a pre-processing step, we first perform a least-squares

NURBS fitting procedure on the level set surfaces generated from the characterization

step. Then, we apply a NURBS recursive subdivision procedure [50] to generate a set of

fixed knots or nodes on each grain. The NURBS surface is subdivided until the following

termination criteria (see Figure 3.3) are met:

1. Real space arc distance corresponding to each parametric direction of less than εd

2. Acute angle between normal vectors at adjacent knot positions of less than εθ

and a knot or node is positioned at the center of the subdivided surface at the terminated

level (see Figure 3.3).

During simulation, we take advantage of the parametric nature of NURBS and solve

the 3D closest point projection problem (5.1) using a two-stage optimization strategy: the

proximity of the location of the closest projected point is established, followed by a local

constrained optimization step to finalize the closest point location. The first optimization

stage is handled using the DIviding RECTangles (DIRECT) global optimization algorithm

[94], which effectively deals with non-convex objective functions and hence, non-convex

grain shapes, while the second stage is handled using standard derivative-free optimization

techniques [98]. This two-stage strategy eliminates all the major problems associated with

intersection-based approaches to computing the interparticle gap or overlap (high com-

putational cost, data proliferation, and convexity restriction) in the early version of our

NURBS-based DEM [50]. Moreover, this procedure can be formulated and implemented

with equal ease as in the 2D case.
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5.3 Case Study

The purpose of the case study is to apply and assess the predictive capabilities of the

avatar in a real experiment. This is achieved as follows. First, the localized incremental

displacement fields and global stress-strain curve are extracted from experiment and used

in a hierarchical multiscale computation to reproduce the continuum response. In this

process, we obtain two quantities of interest in the shear band, namely the average dilatancy

evolution and residual shear strength. Then, unit cells in the shear band are modeled using

NURBS, and the same two quantities above are extracted and compared with those inferred

from experiment. Below, we describe the experiment setup followed by the characterization

and modeling steps leading to the final assessment.

5.3.1 Experiment setup

A cylindrical specimen (11 mm diameter by 24 mm height) of Caicos ooids (a natural

granular material with well-rounded grains) was sheared at a constant axial strain rate of

0.1%/min under a constant cell pressure of 100 kPa in a specially designed triaxial cell

in Laboratoire 3SR [133]. Tomographic images were captured at 18 stations during the

test with a voxel size of 15.563µm3, to be compared to a mean grain diameter 420 µm.

The global deviator stress as a function of the axial strain is shown in Figure 5.3. The

behavior is typical of a dense sand, with a peak in the deviator stress followed by softening

and subsequent residual or critical state and dilatant behavior throughout. The progressive

formation of a shear band was observed during the test, with a final shear band inclination

of approximately 52◦ with respect to the horizontal, and a thickness of approximately 8

grains.

5.3.2 Dilatancy inference

The dilatancy evolution in the shear band is inferred from grain-scale kinematics. Digital

image correlation (DIC) is used in concert with tomographic images to compute incremen-

tal displacement vectors in elements containing 33 grains on average. The result is a 3D

incremental displacement field for the entire triaxial specimen at all tomographic measure-

ment stations. For example, Figure 5.4 shows the incremental displacement field between

tomographic stages 6 and 7 (post-peak in the load-displacement curve). Some large incre-
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Figure 5.3: Macroscopic load-displacement response. Inserts: triaxial specimen at (a) initial
state and (b) 9.11 % axial strain, with shear band highlighted. Station numbers are labeled
in red.

mental displacements are observed in the elements at the specimen boundary, a product of

the boundary effects stemming from the DIC technique itself and the specimen membrane;

these edge elements are excluded from subsequent dilatancy calculations.

Following a finite element interpolation approach, we calculate the incremental strain

over an element e as:

∆εe = Be∆de (5.4)

where ∆de is the incremental displacement vector containing the nodal incremental dis-

placements (from experiment as described above) and Be is the strain-displacement matrix

in Voigt notation. Incremental strains are calculated over each Gauss point (eight integra-

tion points per trilinear brick element) and then used to compute the average incremental

strain over the element as:

∆εev = tr∆εe (5.5)

∆εes =

√
2

3
‖dev∆εe‖ (5.6)
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Figure 5.4: Incremental displacement field between tomographic stages 6 and 7 obtained
from DIC: (a) contour of magnitude of incremental displacement vector with shear band
within the region indicated by dashed lines and (b) incremental displacement arrows.

Based on the displacement field obtained from DIC, we identify the shear band region and

all the elements within it. We note that the data shows that the deformations are fairly

homogeneous throughout the shear band. With this, the average dilatancy in the shear

band is calculated as:

β =
∆εv
∆εs

(5.7)

and shown in Figure 5.5. Here, we have assumed that the elastic strain increments are neg-

ligible and their plastic counterparts dominate, allowing us to use the measured increments

directly to quantify dilatancy.

5.3.3 Multiscale computation

To check that the average dilatancy evolution inferred from experiment is correct, an

experimentally-driven multiscale computation was performed. Applying the hierarchical

multiscale scheme proposed in [22], we upscaled the experimental average dilatancy evolu-

tion into a continuum finite element model of the triaxial specimen and the global structural

responses of the model and experiment were compared.
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Figure 5.5: Dilatancy inferred from DIC data with fit for multiscale calculation (see Section
5.3.3).

Underlying the multiscale scheme, we use a Drucker-Prager constitutive model with the

yield surface and plastic potential being:

F (p, q, µ) = q + µp = 0 (5.8)

Q(p, q, β) = q + βp− c̄ = 0 (5.9)

respectively, where p, q are the pressure and shear invariants of the stress tensor, µ is the

generalized friction coefficient, β is the (plastic) dilatancy, and c̄ is a free parameter such

that the plastic potential crosses the yield surface at the same stress state (p, q). Generally,

the microscopic variables µ and β are obtained either through an experiment or a discrete

model. For simplicity and convenience, however, we can invoke the stress-dilatancy relation

µ = β + µcv and express β as a function of µ. The resulting multiscale scheme would then

require three calibrated material parameters — the elastic modulus E, Poisson’s ratio ν, and

residual shear strength µcv — plus a dilatancy evolution β inferred from experiment. For

the experiment considered here, the calibrated parameters are E = 125 MPa and ν = 0.3,

µcv = 0.81. When these parameters and the shear band dilatancy evolution β in Figure

5.5 are upscaled into the finite element model, the global response of the experiment is

reproduced as shown in Figure 5.6.
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Figure 5.6: Global response from multiscale computation using dilatancy evolution infor-
mation inferred from DIC (refer to Figure 5.5).

Remark 5.3.1 The elastic parameters E and ν are determined based on the assumption

that the material is linear-elastic and homogeneous up to about 0.09% global axial strain, as

is apparent from the initial steep linear portion of the global stress-strain curve. We further

assume that the dilatancy in the shear band is zero during the elastic stage and evolves as

shown in Figure 5.5. The elements outside the shear band are assumed to evolve identically

except that the dilatancy value is maintained once the peak is attained. This produces a

state of inhomogeneous deformation after stage 6 (around 4% axial deformation), where the

bulk of the deformation and global response of the specimen starts to be governed by the

evolution of the shear band.

Remark 5.3.2 We note that the above experiment cannot be used to probe the stresses

locally and only local deformation fields can be reconstructed from the experimental data.

Hence, only dilatancy β can be inferred from the experimental data. As such, a comparison

of the evolution of frictional resistance µ inside the shear band between experiment and a

discrete model cannot be directly made. One can, however, determine the adequacy of a

discrete model by checking if the model residual strength is close to this calibrated value of

µcv (see Section 5.3.4).
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5.3.4 Discrete modeling

In the shear band identified in Section 5.3.2, two locations are arbitrarily selected for unit cell

extraction. Starting from a 3D XRCT image at these locations, we apply the characteriza-

tion step described in Section 5.2.1 to capture the morphologies of the grains. Subsequently,

NURBS surfaces are fitted over the characterized grains for use in our NURBS-based DEM.

Two discrete models are constructed (see Figure 5.7), each comprising of about 103 grains

and with model thickness (∼ 10 grains) that extends the full shear band thickness. We

then apply the node generation procedure described in Section 5.2.2 with εd = 5 voxels

and εθ = 10◦, resulting in between 400 and 500 nodes per grain. For simplicity, we have

constructed our model in voxel space. In this exercise, we have considered two unit cells

due to limited computational resources.

X

Z

Unit Cell 1 Unit Cell 2

✓ ⇡ 52�
Shear band 
angle 1

3
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1
2

Figure 5.7: Unit cells 1 and 2, generated through the characterization step using 3D XRCT
data. The shaded grey region shows cell orientation in local coordinate system with respect
to the global coordinate system.

The DIC data indicate that the homogeneous deformation of the shear band region is

accompanied by dilation normal to the shear band plane. Therefore, we idealize the loading

protocol for the discrete models (in the rotated coordinate system shown in Figure 5.8)

as a plane strain shear with a vertical (along the 3-axis) confinement stress. It is known

that dilatancy is affected by the confinement stress. For simplicity, however, the vertical

stress was calibrated to be a constant. The assumption of a constant vertical stress does

not affect the residual strength µcv since it is determined by particle morphology, and this

has already been captured through the characterization process. Movement of grains on the

model boundary in the shearing process is prescribed using two rotating smooth side walls,

and a feedback loop is used to maintain a constant vertical stress on the top wall. Dynamic

relaxation [57] is used where sufficient damping is introduced and the wall movements are
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sufficiently slow to remain close to the quasi-static condition. Calibration of the discrete

model parameters is performed on one of the cells (Unit Cell 1) while the second cell (Unit

Cell 2) serves as a reproducibility check using the same calibrated parameters. The cali-

brated parameters are normal stiffness kn = 3×106, shear stiffness ks = 2kn/3, interparticle

friction coefficient µp = tanφp = 0.18, and vertical stress of 2 units (corresponding to 130

kPa). Due to the explicit time integration used in our NURBS-based DEM, we have made a

trade-off between a high normal stiffness (which results in smaller time steps) and a shorter

simulation turnaround time.
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angle 1
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Figure 5.8: Deformed configurations for unit cells 1 and 2. Shaded grey region shows cell
orientation in local coordinate system with respect to the global coordinate system: final
applied shear angle is 40◦ from the 3-axis.

From the DIC data, a one-to-one correspondence between the axial global strain and ap-

plied shear angle can be established. The shear angle is approximately 40◦ (from the vertical

3-axis) corresponding to a global axial strain of about 12%. The average dilatancy evolu-

tions calculated from the discrete models are compared with those inferred from DIC and

as shown in Figure 5.9, the evolutions from both models match well with experiment. Also

plotted in Figure 5.9 are the evolutions of stress ratio q/p, which reach approximately 0.8 at

critical state and are close to the calibrated µcv value of 0.81 in the experimentally-driven

multiscale calculation. Assuming that the two unit cells provide an adequate representation

of the average dilatancy evolution and residual strength in the shear band, we can use this

information and proceed with the same multiscale calculation described in Section 5.3.3.

The calculation result (see Figure 5.10) shows that the predicted global structural response

that uses discrete information is in excellent agreement with that which uses experimen-

tal data (refer to Figure 5.6). The above results point to the importance of and need for

accurately capturing grain morphologies in order to improve the predictive capabilities of
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Figure 5.9: Results from discrete computations: evolution of (a) dilatancy and (b) stress
ratio.

discrete simulation and multiscale techniques.

5.4 Closure

We have presented a computational mechanics avatar to probe the grain-scale behavior of

granular materials. We have discussed the improvements in the characterization and discrete

simulation components that have enabled us to transition from faithful representation of

grain morphologies in X-ray tomograms of granular media to a morphologically accurate

discrete computational model. We then applied and assessed the predictive capabilities of

the avatar through a case study on a real experiment. We found good agreement between

the microscopic quantities, namely the dilatancy evolution and residual strength, obtained

from discrete simulations and those inferred from experiment. To our knowledge, this is

the first quantitative comparison of microscopic quantities from discrete simulation and

experiment in real sands. In addition, we found excellent agreement between the global

continuum response calculated from multiscale computation using the extracted microscopic

quantities and that measured in experiment. Overall, we found consistency in results across

characterization, discrete analysis, and continuum response from multiscale calculations,

providing the first and long sought-after quantitative breakthrough in grain-scale analysis

of real granular materials.
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Figure 5.10: Global response from multiscale computation using dilatancy evolution infor-
mation from discrete models (insert).
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis presented the development of a new discrete element method (DEM) based

on Non-Uniform Rational Basis Splines (NURBS). Through NURBS, the new DEM is

able to capture sphericity and angularity, the two particle morphological measures used in

characterizing real grain geometries.

By taking advantage of the parametric nature of NURBS, the Lipschitzian dividing

rectangle (DIRECT) global optimization procedure is employed as a solution procedure to

the closest-point projection problem, which enables the contact treatment of non-convex

particles. Indeed, the implementation ease of the new DEM is largely attributed to the

DIRECT algorithm.

A contact dynamics (CD) approach to our NURBS-based discrete method is also formu-

lated. By combining particle shape flexibility, properties of implicit time integration (e.g.,

larger time steps), and non-penetrating constraints, as well as a reduction to a static formu-

lation in the limit of an infinite time step, we target applications in which the classical DEM

either performs poorly or simply fails, i.e., in granular systems composed of rigid or highly

stiff angular particles and subjected to quasistatic or dynamic flow conditions. The CD

implementation is made simple by adopting a variational framework, which enables the re-

sulting discrete problem to be readily solved using off-the-shelf mathematical programming

solvers.

We demonstrated the capabilities of our NURBS-based DEM through 2D numerical

examples that highlight the effects of particle morphology on the macroscopic response of

granular assemblies under quasistatic and dynamic flow conditions, and a 3D characteriza-
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tion of material response in the shear band of a real triaxial specimen. In the latter case,

we performed the first quantitative comparison of microscopic quantities from discrete sim-

ulation and experiment, and we found excellent agreement between the global continuum

response calculated from multiscale computation using the extracted microscopic quantities

and that measured from experiment.

6.2 Future Work

Many possible directions can be taken in the future to further the scope of application of

our NURBS-based DEM. An immediate step would be the 3D CD implementation, which

will enable a robust treatment of quasistatic loading conditions typically encountered in real

triaxial experiments. The computational expense in our current implementation prohibits

large calculations. Further algorithmic improvements, as well as a parallel computational

scheme, are necessary to move forward with larger calculations and obtain more realizations

for homogenization. We note that the unit cells considered in the 3D application are only

an idealization of the actual system in terms of the boundary conditions, and we have

made simplifying modeling assumptions to make the simulations tractable. The ability to

perform a full specimen-level calculation would remedy this and provide us with quantities

such as the complete stress state inside the shear band, which is currently inaccessible by

experiment. A full specimen-level calculation will also allow one to look into the effects

of specimen heterogeneity on the conditions for the development and propagation of shear

bands, a study that is incomplete with only unit cell calculations. Finally, an improved

computational scheme would allow us to study specimens composed of more angular grain

geometries (e.g., Hostun sand).

From the 3D application described in the previous chapter, it is clear that our NURBS-

based DEM has a great potential for complementing experimental problems related to the

characterization of granular micromechanical properties. Currently, we have used data from

only one triaxial experiment, which is severely limited. To make the characterization process

more comprehensive, more experiments should be performed to probe how specific micro-

scopic quantities or plastic internal variables may respond under different conditions (e.g.,

confinement pressure), and these would provide further validation cases for our method.

Physical grain-scale experiments such as compression tests for contact response and scratch
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tests for interparticle friction can also be carried out. In general, both macro- and grain-

scale experiments would serve to provide tighter bounds or constraints on the discrete model

parameters.

We close this thesis by asking the following (hard) questions concerning the representa-

tion of particle geometry for grain-scale analysis, in which the answers are currently unclear

and may become important when more angular geometries are considered:

1. How much geometric resolution does one need for grain-scale DEM to be accurate?

2. How sensitive is the macroscopic response to the level of geometric resolution?

3. Is there a scale separation between roundness and surface roughness? If not, how does

one decide the spatial resolution cutoff below which the asperities are accounted for

by interparticle friction.

Here, ideas from signal processing and statistical methods may provide quantitative means

to start addressing these questions.
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Appendix A

Verification Tests

A.1 Classic DEM Tests

The example described here is the classic nine-disk test performed in [24], which serves as

a verification of the explicit time integration algorithm for the 2D case described in Section

2.1. A simple NURBS intersection-based contact approach is utilized so that the particle

overlap is identical with that calculated using equation (2.5). An assembly of nine (9) disks

is packed in simple cubic configuration within rigid walls, as shown in Figure A.1. All nine

disks are identical, with radius of 50 units and density of 1000 units. Two different contact

stiffnesses are used in these calculations: kn = 1.35e9 and kn = 1.5e8, with the shear contact

stiffness taken as ks = kn, unless otherwise noted. Also, the interparticle friction coefficient

µ = tanφ, where φ is the internal friction angle. In this test, φ = 15◦, unless otherwise

noted. The nine-disk test is subdivided into two loading scenarios: uniform compression

and pure distortion.
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Figure A.1: Initial configuration for nine-disk test.

A.1.1 Uniform compression test

In this test, all four walls are moved inwards with speed vwall for a total duration Twall. Wall

motion is then stopped at that point Twall and the test is allowed to continue until a total

of 200 cycles is reached. The loading sequences in this test are summarized in Table A.1.

Table A.1: Loading cases for uniform compression test

Case No. Disk Stiffness kn = ks ∆t Twall (cycles) vwall

(a)
1

1.35e9 0.01525
40 0.12

2 120 0.04

(b)
1

1.5e8 0.04576
40 0.36

2 120 0.12

In this test, the effect of global numerical damping ξ, as it appears on the global equa-

tions of motion (see Section 2.1.3), is investigated. Figure A.2 shows the evolution of normal

force at point C for case (a) number 1 (see Table A.1). Normal force evolution is reported

for the case when there is global numerical damping (ξ = 3) and for the case when there is

no global damping (ξ = 0). No contact damping β is used on any of the results reported

herein. The results shown in Figure A.2 exactly match those reported in [24] and clearly

show the effect of damping in reducing the amplitude of oscillations, allowing kinematics

and corresponding forces to reach steady-state equilibrium. Finally, the evolution of the

normal force Fn at point C is shown in Figure A.3. It can be seen from this figure that
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all loading cases converge to roughly the same value of force after a number of cycles when

steady equilibrium is achieved.
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Figure A.2: Normal force Fn evolution at C for loading case (a) No. 1 at different values of
global numerical damping.

A.1.2 Distortion test

Here, we reproduce the distortion test for the nine-disk configuration reported in [24]. This

constitutes the second half of the verification process and it is performed following the

loading sequence reported in [134], which thoroughly describes the distortion test shown

in the original work of Cundall and Strack [24]. Similar characteristics, as in Case (a) No.

1 shown in Table A.1, are used here, with kn = 1.35e9 and ∆t = 0.01525. The sample

is initially uniformly compressed, as in the uniform compression test, for 4000 cycles with

wall speed vwall = 0.12, as before. Wall motion is then stopped, followed by 1000 cycles

were oscillations are allowed to settle via global numerical damping ξ = 3.0. As before, no

contact damping was used (i.e., β = 0). After this uniform and settlement stage (total of

5000 cycles), constant volume distortion is prescribed by rotating the side walls at a constant

angular velocity of 0.0175 for 500 cycles. The deformed configuration of the assembly after

the first 5000 cycles of uniform compression and settlement, and the subsequent 500 cycles

of constant-volume distortion are shown in Figure A.4.

The evolution of the normal force Fn and shear force Fs is shown in Figure A.5. Curves
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Figure A.3: Evolution of normal force Fn for all loading cases reported in Table A.1 with
global numerical damping ξ = 3.

are shown for different values of interparticle friction coefficient µ = tanφ at various ratios

of normal to shear contact stiffness ks/kn. The ratio ks/kn was shown by Mindlin [113]

to vary from 2/3 to 1 for the case of linear elastic bodies in contact with elliptical contact

areas. The extreme values of this range were investigated in [24] and are also reported here

in Figure A.5. The evolutions shown in Figure A.5 agree quantitatively with the results

obtained in [24; 134] and show the importance of interparticle friction (particle roughness)

and the role of contact stiffness as modeled by the ratio ks/kn.
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A.2 Contact Dynamics Binary Collision Tests

We check the conservation of energy and momentum under elastic and plastic binary colli-

sions. The left disk (Disk 1) is given an initial velocity of vx = 1 moving towards the right

disk (Disk 2), which is stationary. The properties for this problem are mass m = π, time

step ∆t = 0.01, and time stepping parameter θ = 0.5 for elastic collision and θ = 1 for

plastic collision.

For elastic collision, the results are shown in Figures A.6 through A.9. We see that both

energy and momentum are conserved. After collision, Disk 1 becomes stationary and Disk

2 takes on the velocity vx = 1. For plastic collision, the results are shown in Figures A.10

through A.13. In this case, momentum is conserved, but energy is not. After collision, the

Disk 1 and Disk 2 move together at vx = 0.5. These results show that both momentum and

energy behave correctly under binary collision.
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Figure A.6: Elastic collision: energy history.
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Figure A.7: Elastic collision: momentum history.
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Figure A.9: Elastic collision: velocity vy history.
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Figure A.10: Plastic collision: energy history.
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Figure A.11: Plastic collision: momentum history.
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Figure A.12: Plastic collision: velocity vx history.
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A.3 Kinematics with Associated Sliding Rule

In Chapter 4, we presented a CD formulation with an associated sliding rule that introduces

a ‘dilation layer’ between two sliding bodies. Here, we discuss the applicability of this

sliding rule. We first discuss the resulting kinematics followed by numerical tests to show

that the effects of this rule are very minor, and the slight error made is deemed to be a

small price to pay for maintaining a standard convex variational problem. In following the

discussion below, the reader should bear in mind the applications in which the associated

sliding rule is used, i.e., dense granular media composed of many particles that are being

constantly rearranged either with confinement under quasistatic conditons or under dynamic

flow conditions. We note that a similar sliding rule, which also introduces a dilation effect,

was used by Tasora and Anitescu in their CD formulation [135–139].

A.3.1 Quasistatic case

The presentation here is based on [99]. For clarity, we have excluded rotations and contact

elasticity. With this, equation (4.8) reduces to:

min
∆x,∆α

max
p, q

{
1
2∆xTM̄∆x−∆xT f̄0

}

+
{

∆xT (N0 p+ N̂0 q)− gT0 p
}

subject to ‖q‖ − µp ≤ 0, p ≥ 0

(A.1)

The kinematics associated with equation (A.1) are recovered by solving the max part

of the problem which leads to the following set of optimality conditions:

∆uN = NT
0 ∆x = −µλ+ g0

∆uT = N̂0∆x = sgn(q)λ
(A.2)

where subscripts N and T denote the normal and tangential directions, respectively, and

λ are Lagrange multipliers such that λI(|qI | − µpI) = 0, I ∈ C, where C is the set of

potential contacts. The important point regarding the above kinematic equations is that

the gap g0 in time discrete processes tends to cancel the dilation and in such a way that

is entirely eliminated in the limit of the time step tending to zero. This can be illustrated

by the simple example shown in Figure A.14. We here consider a single particle on a rigid
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Figure A.14: Quasistatic sliding along a rigid frictional surface.

frictional surface. The particle is initially at rest on the surface at (x0, y0) = (x0, 0) As such,

the gap between the particle and the surface is g0 = 0. A series of tangential displacements

∆uT = ∆ux of equal size are then imposed in a quasistatic manner. With the application

of the first increment, the normal displacement is −∆uN,1 = ∆uy,1 = µ∆ux,T which brings

the particle to position (x1, y1) = (x0 + ∆uT , µ∆uT ). To continue the time stepping, the

new gap is calculated as g1 = µ∆uT . From equation (A.2), the new normal displacement

then follows as ∆uN,2 = g1 − µ∆uT = 0. In other words, no further dilation occurs and

the particle slides parallel to the surface at a distance µ∆uT above it such that an artificial

dilation layer — which can be made arbitrarily thin — separates the particle from the

surface. Despite this physical separation, contact forces still exist and the behavior of the

particle is in every way equal to what it would be with a gap identically equal to zero.

A.3.2 Dynamic case

To study the more general dynamic case, we consider a particle as shown in Figure A.15.

The particle is initially at a distance g0 from the rigid frictional surface located at y = 0

x

y

p

q

vT

x

x0

g0

�uy

Figure A.15: Dynamic sliding along a rigid frictional surface.
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and has an initial horizontal velocity vT . It is assumed that the particle is within the zone

of contact, i.e., within the dilation layer introduced above. This will possibly bring about

a further dilation such that the gap increases or the particle may slide along the initial

dilation layer as in the quasistatic case. The time discrete governing equations (for θ = 1)

are given by (see Section 4.2.3)

m∆ux = −q∆t2 +mvT∆t

m∆uy = p∆t2

q = µp

∆ux = λ

∆uy = µλ− g0

(A.3)

From these equations, the vertical displacement is found to be

∆uy =
µvT∆t− g0

1 + µ2
(A.4)

Equating the numerator to zero leads us to define a critical time step:

∆tcr =
g0

µvT
(A.5)

such that the initial gap will not grow any further for ∆t ≤ ∆tcr while it will increase for

∆t > ∆tcr. In other words, for a finite initial gap, a time step can always be chosen to

produce a non-dilative response. This property breaks down for an initial gap identically

equal to zero. In this case, the response will be dilative, regardless of the time step. In

practice, however, the effects of this possible dilation are in most cases very limited as will

be shown in Section A.3.4.

A.3.3 The case with rotations included

From equation (4.14), the kinematic relations with rotations included (but without contact

elasticity) are:

∆uN = NT
0 ∆x = g0 − µλ

∆uT = N̂
T

0 ∆x = sgn(q)λ+ (RqT
0 +RpT

0 )∆α
(A.6)
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In this case, the inclusion of rotations further limits dilation in the sense that tangential

motion can be accommodated not only by sliding (λ > 0), but also by rolling (|∆α| > 0).

This lends further credence to the approach of using an associated sliding rule. Indeed, in

the quasistatic deformation of granular materials, such as in triaxial tests, it has long been

recognized that sliding occurs only at a small fraction of the contacts [82].

A.3.4 A numerical test

To see the consequence of the associated sliding rule, and show that its effects are very

minor for the types of granular media applications mentioned above, consider the problem

of a block on an incline as shown in Figure A.16. We solve this problem using the CD

formulation described in Chapter 4, without contact elasticity in which the effects of the

associated sliding rule are most prominent. The properties for this problem are incline angle

θs = 20◦, block mass m = 7.854, and acceleration of gravity g = 10. The critical friction

coefficient is µcrit = tan θs = 0.364. The friction coefficient between the block and incline is

mg

mg cos ✓s

mg sin ✓s

✓s

Friction µ

x

y

Figure A.16: Block on an incline.

denoted by µ. We consider two cases:

1. µ = 0.36 < µcrit, which means that the block should slide down

2. µ = 0.4 > µcrit, which means that the block should remain stationary
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For the block starting from rest, the exact solution is:

x(t) =





0 : µ > µcrit

0.5(sin θs − µ cos θs)gt
2 : µ < µcrit

ẋ(t) =





0 : µ > µcrit

(sin θs − µ cos θs)gt : µ < µcrit

(A.7)

The time stepping parameter is set at θ = 1 and we consider three time steps ∆t =

0.01, 0.005 and 0.0025. We observe that for Case 1 (see Figures A.17 through A.21), the

sliding block is accompanied by a negligible dilation that grows at a very small rate as

shown in Figure A.19, and this dilation decreases as the time step gets smaller. These

observations are consistent with the kinematic analysis for the dynamic case with zero initial

gap described in the previous section. The dilatation did not affect the calculated contact

normal and shear forces, which match mg and µmg, respectively. Again, we emphasize that

in the aforementioned granular applications, a sliding particle would typically move for a

very short distance before kinematically affected by its neighboring particles in the next

time step, and the associated dilation within a time step would be a negligible fraction of

the particle size. For Case 2 (see Figures A.22 through A.26), the block remained stationary

as expected.
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Figure A.17: Displacement along x (µ = 0.36).
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Figure A.18: Velocity along x (µ = 0.36).
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Figure A.19: Displacement normal to plane or gap (µ = 0.36).
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Figure A.20: Shear force (µ = 0.36).
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Figure A.21: Normal contact force (µ = 0.36).
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Figure A.22: Displacement along x (µ = 0.4).
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Figure A.23: Velocity along x (µ = 0.4).
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Figure A.24: Displacement normal to plane or gap (µ = 0.4).
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Figure A.25: Shear force (µ = 0.4).

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

Time

N
o
r
m
a
l
c
o
n
t
a
c
t
fo
r
c
e
p

 

 

∆t = 0.01
∆t = 0.005
∆t = 0.0025

Figure A.26: Normal contact force (µ = 0.4).
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Appendix B

Three-Dimensional Contact
Dynamics Formulation

The two-dimensional formulation discussed in Chapter 4 may be extended to three dimen-

sions in a number of ways. All appropriate physical constraints of the three-dimensional

contact problem can be found in [99] and hence, will not be repeated here. The exception

is that the integration of rotational degrees of freedom needs special attention.

Kinematically, the non-trivial difference between the two- and three-dimensional case is

a result of rotations of arbitrary-shaped particles. In the following, we outline one possible

approach to integrate the rotational degrees of freedom in three dimensions. Without loss

of generality, we consider the dynamic problem without contact elasticity. Unless otherwise

noted, all quantities pertain to a single particle in the principal body frame.

The discretization of rotational equilibrium equations using the θ-method gives

I
ω − ω0

∆t
+ skew [ω] Iω = m0 (B.1)

with the update equation for the (body frame) rotational degrees of freedom as (analogous

to equation (4.6)b):

ω =
1

θ

[
α−α0

∆t
− (1− θ)ω0

]
(B.2)

and where I is the time-independent tensor of (principal) inertia in the body frame, m0 are

the external moments in the body frame, and skew [ω] is the skew-symmetric matrix defined

by skew [ω]ω = 0. We observe that the rotational equilibrium equations are nonlinear due

to the presence of the products of angular velocities. This nonlinearity can be accounted
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for within the mathematical programming framework proposed in this paper as follows. We

first define the (nonlinear) residual equations as

r(ω) = m0 − I
ω − ω0

∆t
− skew [ω] Iω (B.3)

A truncated Taylor expansion about the k-th iterate ωk then gives the following iterative

procedure for the (unconstrained) solution of ω

J |ωk
δω = r(ωk)

ωk+1 = ωk + δω, ωk=0 = ω0

(B.4)

where J = − ∂r
∂ω . To cast this iterative procedure along with all the physical constraints of

the problem as a quadratic programming problem, we note from equation (B.2) that the

variation of ω is simply (since ω0 and α0 are fixed)

δω =
δα

θ∆t
(B.5)

which allows us to rewrite the iterative procedure in equation (B.4) as

J̄
∣∣
ωk
δα = r(ωk)

αk+1 = αk + δα, αk=0 = α0

(B.6)

where J̄ is the effective tensor of inertia, calculated to be

J̄ =
1

θ∆t
J =




I1

θ∆t2
−ω3(I2 − I3)

θ∆t

−ω2(I2 − I3)

θ∆t

−ω3(I3 − I1)

θ∆t

I2

θ∆t2
−ω1(I3 − I1)

θ∆t

−ω2(I1 − I2)

θ∆t

−ω1(I1 − I2)

θ∆t

I3

θ∆t2




(B.7)

We see that equation (B.6)a has an identical structure to equation (4.10) except now the

problem needs to be solved incrementally within each time step. The necessary modification

to the formulation then entails defining an incremental problem within each time step and

replacing the rotational equilibrium equations of the form given by equation (4.10) with

equation (B.6)a.
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We note several properties of the effective tensor of inertia given by equation (B.7)

in relation to the proposed mathematical programming framework. First, the terms are

functions of the body frame angular velocities. Second, the effective tensor of inertia is no

longer diagonal. In the force-based problem described by equation (4.15), the inverse of the

global moment of inertia matrix is required. However, recognizing that the global moment

of inertia is now block diagonal, the inverse of the global moment of inertia is another block

diagonal matrix, which is composed of the inverse of 3×3 blocks and these can be calculated

efficiently. Finally, the non-symmetry of J̄ poses no problem since the associated quadratic

term for a non-symmetric matrix Q can be written as

δαTQ δα =
1

2
δαT (Q+QT ) δα (B.8)

which implies that a non-symmetric matrix Q can be replaced by 1
2(Q+QT ).

Computationally, a sequence of quadratic programming problems is solved within a time

step for the incremental unknowns (δx, δα) until a prescribed tolerance is reached. We note

that we can formulate the translational problem incrementally by simply replacing ∆x with

δx; this is possible because the translational equilibrium equations already have a linear

structure. Finally, we need to update the orientation of each particle. Here, a singularity-

free quaternion approach [55] may be taken. We denote the quaternion vector representing

the orientation of the particle as z = (zi), i = 1, . . . , 4. The required orientation matrix of

each particle can be calculated as a function of quaternion values as

A(z) =




−z2
1 + z2

2 − z2
3 + z2

4 −2 (z1 z2 − z3 z4) 2 (z2 z3 + z1 z4)

−2 (z1 z2 + z3 z4) z2
1 − z2

2 − z2
3 + z2

4 −2 (z1 z3 − z2 z4)

2 (z2 z3 − z1 z4) −2 (z1 z3 + z2 z4) −z2
1 − z2

2 + z2
3 + z2

4


 (B.9)

In turn, the evolution of the quaternions can be expressed as a singularity-free set of equa-

tions as

ż = Ψz, zTz = 1 (B.10)
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where

Ψ =
1

2




0 ω3 −ω1 −ω2

−ω3 0 −ω2 ω1

ω1 ω2 0 ω3

ω2 −ω1 −ω3 0




(B.11)

The general solution is given by

z = exp

(∫ t

t0

Ψ[ω(s)] ds

)
z0 (B.12)

Here, several choices of updating z exist. One possible choice is the generalized trapezoidal

rule of the form

∫ t

t0

Ψ[ω(s)] ds ≈ ∆t [θΨ + (1− θ)Ψ0] =: ∆tΨθ (B.13)

where we have used the same θ parameter as in equation (B.2). In this case, one can update

z as

z = exp (∆tΨθ) z0 (B.14)

Efficient algorithms for the computation of matrix exponentials can be found in [140].
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sands. Géotechnique, 43:255–272, 1997.

[11] Y. F. Dafalias and E. P. Popov. A model of nonlinearly hardening materials for

complex loadings. Acta Mechanica, 21:173–192, 1975.

[12] F. L. DiMaggio and I. S. Sandler. Material model for granular soils. Journal of the

Engineering Mechanics Division-ASCE, 97:935–950, 1971.

[13] M. Oda, T. Takemura, and M. Takahashi. Microstructure in shear band observed by

microfocus X-ray computed tomography. Géotechnique, 54:539–542, 2004.
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[47] I. Vlahinić, E. Andò, G. Viggiani, and J. E. Andrade. Towards a more accurate char-

acterization of granular media: extracting quantitative descriptors from tomographic

images. Granular Matter, pages 1–13, 2013. doi:10.1007/s10035-013-0460-6.

[48] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, fi-

nite elements, NURBS, exact geometry and mesh refinement. Computer Methods in

Applied Mechanics and Engineering, 194:4135–4195, 2005.

[49] J. E. Andrade, K.-W. Lim, C. F. Avila, and I. Vlahinić. Granular element method
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