
112

Appendix B

Three-Dimensional Contact
Dynamics Formulation

The two-dimensional formulation discussed in Chapter 4 may be extended to three dimen-

sions in a number of ways. All appropriate physical constraints of the three-dimensional

contact problem can be found in [99] and hence, will not be repeated here. The exception

is that the integration of rotational degrees of freedom needs special attention.

Kinematically, the non-trivial difference between the two- and three-dimensional case is

a result of rotations of arbitrary-shaped particles. In the following, we outline one possible

approach to integrate the rotational degrees of freedom in three dimensions. Without loss

of generality, we consider the dynamic problem without contact elasticity. Unless otherwise

noted, all quantities pertain to a single particle in the principal body frame.

The discretization of rotational equilibrium equations using the θ-method gives

I
ω − ω0

∆t
+ skew [ω] Iω = m0 (B.1)

with the update equation for the (body frame) rotational degrees of freedom as (analogous

to equation (4.6)b):

ω =
1

θ

[
α−α0

∆t
− (1− θ)ω0

]
(B.2)

and where I is the time-independent tensor of (principal) inertia in the body frame, m0 are

the external moments in the body frame, and skew [ω] is the skew-symmetric matrix defined

by skew [ω]ω = 0. We observe that the rotational equilibrium equations are nonlinear due

to the presence of the products of angular velocities. This nonlinearity can be accounted



113

for within the mathematical programming framework proposed in this paper as follows. We

first define the (nonlinear) residual equations as

r(ω) = m0 − I
ω − ω0

∆t
− skew [ω] Iω (B.3)

A truncated Taylor expansion about the k-th iterate ωk then gives the following iterative

procedure for the (unconstrained) solution of ω

J |ωk
δω = r(ωk)

ωk+1 = ωk + δω, ωk=0 = ω0

(B.4)

where J = − ∂r
∂ω . To cast this iterative procedure along with all the physical constraints of

the problem as a quadratic programming problem, we note from equation (B.2) that the

variation of ω is simply (since ω0 and α0 are fixed)

δω =
δα

θ∆t
(B.5)

which allows us to rewrite the iterative procedure in equation (B.4) as

J̄
∣∣
ωk
δα = r(ωk)

αk+1 = αk + δα, αk=0 = α0

(B.6)

where J̄ is the effective tensor of inertia, calculated to be

J̄ =
1

θ∆t
J =




I1

θ∆t2
−ω3(I2 − I3)

θ∆t

−ω2(I2 − I3)

θ∆t

−ω3(I3 − I1)

θ∆t

I2

θ∆t2
−ω1(I3 − I1)

θ∆t

−ω2(I1 − I2)

θ∆t

−ω1(I1 − I2)

θ∆t

I3

θ∆t2




(B.7)

We see that equation (B.6)a has an identical structure to equation (4.10) except now the

problem needs to be solved incrementally within each time step. The necessary modification

to the formulation then entails defining an incremental problem within each time step and

replacing the rotational equilibrium equations of the form given by equation (4.10) with

equation (B.6)a.



114

We note several properties of the effective tensor of inertia given by equation (B.7)

in relation to the proposed mathematical programming framework. First, the terms are

functions of the body frame angular velocities. Second, the effective tensor of inertia is no

longer diagonal. In the force-based problem described by equation (4.15), the inverse of the

global moment of inertia matrix is required. However, recognizing that the global moment

of inertia is now block diagonal, the inverse of the global moment of inertia is another block

diagonal matrix, which is composed of the inverse of 3×3 blocks and these can be calculated

efficiently. Finally, the non-symmetry of J̄ poses no problem since the associated quadratic

term for a non-symmetric matrix Q can be written as

δαTQ δα =
1

2
δαT (Q+QT ) δα (B.8)

which implies that a non-symmetric matrix Q can be replaced by 1
2(Q+QT ).

Computationally, a sequence of quadratic programming problems is solved within a time

step for the incremental unknowns (δx, δα) until a prescribed tolerance is reached. We note

that we can formulate the translational problem incrementally by simply replacing ∆x with

δx; this is possible because the translational equilibrium equations already have a linear

structure. Finally, we need to update the orientation of each particle. Here, a singularity-

free quaternion approach [55] may be taken. We denote the quaternion vector representing

the orientation of the particle as z = (zi), i = 1, . . . , 4. The required orientation matrix of

each particle can be calculated as a function of quaternion values as

A(z) =




−z2
1 + z2

2 − z2
3 + z2

4 −2 (z1 z2 − z3 z4) 2 (z2 z3 + z1 z4)

−2 (z1 z2 + z3 z4) z2
1 − z2

2 − z2
3 + z2

4 −2 (z1 z3 − z2 z4)

2 (z2 z3 − z1 z4) −2 (z1 z3 + z2 z4) −z2
1 − z2

2 + z2
3 + z2

4


 (B.9)

In turn, the evolution of the quaternions can be expressed as a singularity-free set of equa-

tions as

ż = Ψz, zTz = 1 (B.10)



115

where

Ψ =
1

2




0 ω3 −ω1 −ω2

−ω3 0 −ω2 ω1

ω1 ω2 0 ω3

ω2 −ω1 −ω3 0




(B.11)

The general solution is given by

z = exp

(∫ t

t0

Ψ[ω(s)] ds

)
z0 (B.12)

Here, several choices of updating z exist. One possible choice is the generalized trapezoidal

rule of the form

∫ t

t0

Ψ[ω(s)] ds ≈ ∆t [θΨ + (1− θ)Ψ0] =: ∆tΨθ (B.13)

where we have used the same θ parameter as in equation (B.2). In this case, one can update

z as

z = exp (∆tΨθ) z0 (B.14)

Efficient algorithms for the computation of matrix exponentials can be found in [140].


