
92

Appendix A

Verification Tests

A.1 Classic DEM Tests

The example described here is the classic nine-disk test performed in [24], which serves as

a verification of the explicit time integration algorithm for the 2D case described in Section

2.1. A simple NURBS intersection-based contact approach is utilized so that the particle

overlap is identical with that calculated using equation (2.5). An assembly of nine (9) disks

is packed in simple cubic configuration within rigid walls, as shown in Figure A.1. All nine

disks are identical, with radius of 50 units and density of 1000 units. Two different contact

stiffnesses are used in these calculations: kn = 1.35e9 and kn = 1.5e8, with the shear contact

stiffness taken as ks = kn, unless otherwise noted. Also, the interparticle friction coefficient

µ = tanφ, where φ is the internal friction angle. In this test, φ = 15◦, unless otherwise

noted. The nine-disk test is subdivided into two loading scenarios: uniform compression

and pure distortion.
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Figure A.1: Initial configuration for nine-disk test.

A.1.1 Uniform compression test

In this test, all four walls are moved inwards with speed vwall for a total duration Twall. Wall

motion is then stopped at that point Twall and the test is allowed to continue until a total

of 200 cycles is reached. The loading sequences in this test are summarized in Table A.1.

Table A.1: Loading cases for uniform compression test

Case No. Disk Stiffness kn = ks ∆t Twall (cycles) vwall

(a)
1

1.35e9 0.01525
40 0.12

2 120 0.04

(b)
1

1.5e8 0.04576
40 0.36

2 120 0.12

In this test, the effect of global numerical damping ξ, as it appears on the global equa-

tions of motion (see Section 2.1.3), is investigated. Figure A.2 shows the evolution of normal

force at point C for case (a) number 1 (see Table A.1). Normal force evolution is reported

for the case when there is global numerical damping (ξ = 3) and for the case when there is

no global damping (ξ = 0). No contact damping β is used on any of the results reported

herein. The results shown in Figure A.2 exactly match those reported in [24] and clearly

show the effect of damping in reducing the amplitude of oscillations, allowing kinematics

and corresponding forces to reach steady-state equilibrium. Finally, the evolution of the

normal force Fn at point C is shown in Figure A.3. It can be seen from this figure that
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all loading cases converge to roughly the same value of force after a number of cycles when

steady equilibrium is achieved.
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Figure A.2: Normal force Fn evolution at C for loading case (a) No. 1 at different values of
global numerical damping.

A.1.2 Distortion test

Here, we reproduce the distortion test for the nine-disk configuration reported in [24]. This

constitutes the second half of the verification process and it is performed following the

loading sequence reported in [134], which thoroughly describes the distortion test shown

in the original work of Cundall and Strack [24]. Similar characteristics, as in Case (a) No.

1 shown in Table A.1, are used here, with kn = 1.35e9 and ∆t = 0.01525. The sample

is initially uniformly compressed, as in the uniform compression test, for 4000 cycles with

wall speed vwall = 0.12, as before. Wall motion is then stopped, followed by 1000 cycles

were oscillations are allowed to settle via global numerical damping ξ = 3.0. As before, no

contact damping was used (i.e., β = 0). After this uniform and settlement stage (total of

5000 cycles), constant volume distortion is prescribed by rotating the side walls at a constant

angular velocity of 0.0175 for 500 cycles. The deformed configuration of the assembly after

the first 5000 cycles of uniform compression and settlement, and the subsequent 500 cycles

of constant-volume distortion are shown in Figure A.4.

The evolution of the normal force Fn and shear force Fs is shown in Figure A.5. Curves



95

50 100 150 200

Cycles

0.5

1.0

1.5

2.0

2.5

3.0
x 107

(1)

(2)

F
o

rc
e

, 
F

n

50 100 150 200

Cycles

x 107

F
o

rc
e

, 
F

n

(1)

(2)

0.5

1.0

1.5

2.0

2.5

3.0

(a) (b)

Figure A.3: Evolution of normal force Fn for all loading cases reported in Table A.1 with
global numerical damping ξ = 3.

are shown for different values of interparticle friction coefficient µ = tanφ at various ratios

of normal to shear contact stiffness ks/kn. The ratio ks/kn was shown by Mindlin [113]

to vary from 2/3 to 1 for the case of linear elastic bodies in contact with elliptical contact

areas. The extreme values of this range were investigated in [24] and are also reported here

in Figure A.5. The evolutions shown in Figure A.5 agree quantitatively with the results

obtained in [24; 134] and show the importance of interparticle friction (particle roughness)

and the role of contact stiffness as modeled by the ratio ks/kn.
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Figure A.4: Distorted configurations for nine-disk assembly after 5000 cycles of uniform
compression and settlement, and after a subsequent 500 cycles of constant volume (shear)
distortion. Results shown correspond to case when kn = ks and interparticle friction angle
φ = 30◦.
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Figure A.5: Normal and shear force evolution at point C in nine-disk assembly during 500
cycle shear distortion at various ks/kn ratios. (a) Interparticle friction angle φ = 15◦. (b)
Interparticle friction angle φ = 30◦.
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A.2 Contact Dynamics Binary Collision Tests

We check the conservation of energy and momentum under elastic and plastic binary colli-

sions. The left disk (Disk 1) is given an initial velocity of vx = 1 moving towards the right

disk (Disk 2), which is stationary. The properties for this problem are mass m = π, time

step ∆t = 0.01, and time stepping parameter θ = 0.5 for elastic collision and θ = 1 for

plastic collision.

For elastic collision, the results are shown in Figures A.6 through A.9. We see that both

energy and momentum are conserved. After collision, Disk 1 becomes stationary and Disk

2 takes on the velocity vx = 1. For plastic collision, the results are shown in Figures A.10

through A.13. In this case, momentum is conserved, but energy is not. After collision, the

Disk 1 and Disk 2 move together at vx = 0.5. These results show that both momentum and

energy behave correctly under binary collision.
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Figure A.6: Elastic collision: energy history.
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Figure A.7: Elastic collision: momentum history.
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Figure A.8: Elastic collision: velocity vx history.
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Figure A.9: Elastic collision: velocity vy history.
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Figure A.10: Plastic collision: energy history.
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Figure A.11: Plastic collision: momentum history.
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Figure A.12: Plastic collision: velocity vx history.
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Figure A.13: Plastic collision: velocity vy history.
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A.3 Kinematics with Associated Sliding Rule

In Chapter 4, we presented a CD formulation with an associated sliding rule that introduces

a ‘dilation layer’ between two sliding bodies. Here, we discuss the applicability of this

sliding rule. We first discuss the resulting kinematics followed by numerical tests to show

that the effects of this rule are very minor, and the slight error made is deemed to be a

small price to pay for maintaining a standard convex variational problem. In following the

discussion below, the reader should bear in mind the applications in which the associated

sliding rule is used, i.e., dense granular media composed of many particles that are being

constantly rearranged either with confinement under quasistatic conditons or under dynamic

flow conditions. We note that a similar sliding rule, which also introduces a dilation effect,

was used by Tasora and Anitescu in their CD formulation [135–139].

A.3.1 Quasistatic case

The presentation here is based on [99]. For clarity, we have excluded rotations and contact

elasticity. With this, equation (4.8) reduces to:

min
∆x,∆α

max
p, q

{
1
2∆xTM̄∆x−∆xT f̄0

}

+
{

∆xT (N0 p+ N̂0 q)− gT0 p
}

subject to ‖q‖ − µp ≤ 0, p ≥ 0

(A.1)

The kinematics associated with equation (A.1) are recovered by solving the max part

of the problem which leads to the following set of optimality conditions:

∆uN = NT
0 ∆x = −µλ+ g0

∆uT = N̂0∆x = sgn(q)λ
(A.2)

where subscripts N and T denote the normal and tangential directions, respectively, and

λ are Lagrange multipliers such that λI(|qI | − µpI) = 0, I ∈ C, where C is the set of

potential contacts. The important point regarding the above kinematic equations is that

the gap g0 in time discrete processes tends to cancel the dilation and in such a way that

is entirely eliminated in the limit of the time step tending to zero. This can be illustrated

by the simple example shown in Figure A.14. We here consider a single particle on a rigid
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Figure A.14: Quasistatic sliding along a rigid frictional surface.

frictional surface. The particle is initially at rest on the surface at (x0, y0) = (x0, 0) As such,

the gap between the particle and the surface is g0 = 0. A series of tangential displacements

∆uT = ∆ux of equal size are then imposed in a quasistatic manner. With the application

of the first increment, the normal displacement is −∆uN,1 = ∆uy,1 = µ∆ux,T which brings

the particle to position (x1, y1) = (x0 + ∆uT , µ∆uT ). To continue the time stepping, the

new gap is calculated as g1 = µ∆uT . From equation (A.2), the new normal displacement

then follows as ∆uN,2 = g1 − µ∆uT = 0. In other words, no further dilation occurs and

the particle slides parallel to the surface at a distance µ∆uT above it such that an artificial

dilation layer — which can be made arbitrarily thin — separates the particle from the

surface. Despite this physical separation, contact forces still exist and the behavior of the

particle is in every way equal to what it would be with a gap identically equal to zero.

A.3.2 Dynamic case

To study the more general dynamic case, we consider a particle as shown in Figure A.15.

The particle is initially at a distance g0 from the rigid frictional surface located at y = 0

x

y

p

q

vT

x

x0

g0

�uy

Figure A.15: Dynamic sliding along a rigid frictional surface.
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and has an initial horizontal velocity vT . It is assumed that the particle is within the zone

of contact, i.e., within the dilation layer introduced above. This will possibly bring about

a further dilation such that the gap increases or the particle may slide along the initial

dilation layer as in the quasistatic case. The time discrete governing equations (for θ = 1)

are given by (see Section 4.2.3)

m∆ux = −q∆t2 +mvT∆t

m∆uy = p∆t2

q = µp

∆ux = λ

∆uy = µλ− g0

(A.3)

From these equations, the vertical displacement is found to be

∆uy =
µvT∆t− g0

1 + µ2
(A.4)

Equating the numerator to zero leads us to define a critical time step:

∆tcr =
g0

µvT
(A.5)

such that the initial gap will not grow any further for ∆t ≤ ∆tcr while it will increase for

∆t > ∆tcr. In other words, for a finite initial gap, a time step can always be chosen to

produce a non-dilative response. This property breaks down for an initial gap identically

equal to zero. In this case, the response will be dilative, regardless of the time step. In

practice, however, the effects of this possible dilation are in most cases very limited as will

be shown in Section A.3.4.

A.3.3 The case with rotations included

From equation (4.14), the kinematic relations with rotations included (but without contact

elasticity) are:

∆uN = NT
0 ∆x = g0 − µλ

∆uT = N̂
T

0 ∆x = sgn(q)λ+ (RqT
0 +RpT

0 )∆α
(A.6)
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In this case, the inclusion of rotations further limits dilation in the sense that tangential

motion can be accommodated not only by sliding (λ > 0), but also by rolling (|∆α| > 0).

This lends further credence to the approach of using an associated sliding rule. Indeed, in

the quasistatic deformation of granular materials, such as in triaxial tests, it has long been

recognized that sliding occurs only at a small fraction of the contacts [82].

A.3.4 A numerical test

To see the consequence of the associated sliding rule, and show that its effects are very

minor for the types of granular media applications mentioned above, consider the problem

of a block on an incline as shown in Figure A.16. We solve this problem using the CD

formulation described in Chapter 4, without contact elasticity in which the effects of the

associated sliding rule are most prominent. The properties for this problem are incline angle

θs = 20◦, block mass m = 7.854, and acceleration of gravity g = 10. The critical friction

coefficient is µcrit = tan θs = 0.364. The friction coefficient between the block and incline is

mg

mg cos ✓s

mg sin ✓s

✓s

Friction µ

x

y

Figure A.16: Block on an incline.

denoted by µ. We consider two cases:

1. µ = 0.36 < µcrit, which means that the block should slide down

2. µ = 0.4 > µcrit, which means that the block should remain stationary
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For the block starting from rest, the exact solution is:

x(t) =





0 : µ > µcrit

0.5(sin θs − µ cos θs)gt
2 : µ < µcrit

ẋ(t) =





0 : µ > µcrit

(sin θs − µ cos θs)gt : µ < µcrit

(A.7)

The time stepping parameter is set at θ = 1 and we consider three time steps ∆t =

0.01, 0.005 and 0.0025. We observe that for Case 1 (see Figures A.17 through A.21), the

sliding block is accompanied by a negligible dilation that grows at a very small rate as

shown in Figure A.19, and this dilation decreases as the time step gets smaller. These

observations are consistent with the kinematic analysis for the dynamic case with zero initial

gap described in the previous section. The dilatation did not affect the calculated contact

normal and shear forces, which match mg and µmg, respectively. Again, we emphasize that

in the aforementioned granular applications, a sliding particle would typically move for a

very short distance before kinematically affected by its neighboring particles in the next

time step, and the associated dilation within a time step would be a negligible fraction of

the particle size. For Case 2 (see Figures A.22 through A.26), the block remained stationary

as expected.
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Figure A.17: Displacement along x (µ = 0.36).
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Figure A.18: Velocity along x (µ = 0.36).
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Figure A.19: Displacement normal to plane or gap (µ = 0.36).
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Figure A.20: Shear force (µ = 0.36).
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Figure A.21: Normal contact force (µ = 0.36).

0 0.5 1 1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 x 10−6

Time t

D
is
p
la
c
e
m
e
n
t
x

 

 
∆t = 0.01
∆t = 0.005
∆t = 0.0025
Exact

Figure A.22: Displacement along x (µ = 0.4).
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Figure A.23: Velocity along x (µ = 0.4).
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Figure A.24: Displacement normal to plane or gap (µ = 0.4).
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Figure A.25: Shear force (µ = 0.4).
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Figure A.26: Normal contact force (µ = 0.4).


