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Chapter 5

Multiscale Characterization and
Modeling of Granular Materials
through a Computational
Mechanics Avatar: A Case Study
with Experiment

5.1 Introduction

In recent times, much of solid mechanics research has focused around the ‘microstructures’

theme, which is predicated on the importance of lower-scale geometry, defects, and inter-

action to inform macroscopic behavior [114]. Crystalline solids have received significant

attention, and progress in theory, experiment, and computation has been made to the ex-

tent that much of the research results can now be routinely applied in the design of such

materials for real engineering applications. Granular materials also possess microstructures,

which have far-reaching implications on macroscopic properties such as strength, permeabil-

ity, and energy dissipation. Unlike crystalline solids, however, microstructures in granular

materials lack order and cannot be elegantly quantified as in crystalline solids. Moreover,

these microstructures operate at the grain scale, which neither atomistic nor continuum

models can help in providing quantitatively meaningful results for real applications. To un-

derstand and predict the behavior of granular materials at the continuum scale, one must

recognize that their mechanical behavior is encoded at the grain scale. We often point to

this fact, despite the common knowledge that more than three decades of research has not

led to significant advances in terms of performing grain-scale analysis and characterization
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of real granular materials.

There are broadly two camps in the study of granular materials at the grain scale: that

which seeks to characterize granular assemblies, often through imaging techniques such as

X-ray computed tomography (XRCT), and that which seeks to simulate granular behav-

ior, typically through the discrete element method (DEM). Characterization of granular

materials has come a long way since the days of so-called ‘destructive’ methods, which in-

volved dismantling experimental specimens to measure grain-scale quantities [115]. XRCT

and other methods of digital imaging of experiments are now the norm in experimental

grain-scale mechanics [17; 116], able to measure quantities such as the void ratio in a shear

band [117] and track the motion of grains [118]. Increases in image fidelity and resolution

have led to a number of characterization approaches such as level sets [47], spherical har-

monics [119; 120] and Fourier analyses [121; 122] that can process image data to quantify

grain kinematics and morphological measures (e.g., sphericity and roundness) [1]. Although

characterization techniques have seen tremendous progress, they lack the ability to probe

one crucial aspect of granular materials from which strength-related quantities are derived:

interparticle contact forces. As such, a discrete model such as DEM remains a necessary

component for the inference of contact forces. In the several decades following the incep-

tion of DEM [24], there were tremendous efforts in the development of shape representation

capabilities and associated contact algorithms (e.g., [35–37; 40]). Currently, however, it

appears that progress has hit a plateau with shape representations, largely belonging to

either the polyhedra or clustering approach, still too crude for real grain-scale calculations.

Incidentally, grain morphological measures from characterization rarely make their way into

DEM because of incompatibilities between the geometry bases used in characterization and

discrete models, and significant degradation of fidelity during the image-to-model process.

Despite great research efforts in each of the two microscopic camps, there is a surprising

lack of interaction, and hence integration and validation, between them. In theory, both

grain-scale characterization and discrete simulations should work in an integrated manner

to provide a consistent set of microscopic information. In practice, however, this consistency

is virtually nonexistent and surprisingly, not discussed in the literature. The reason for this

void is that much of the problems making integration and validation difficult stem from

the complexity of real grain geometries. For example, we described in an earlier work [22]

two possible routes to using grain-scale information at the continuum level by means of a
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hierarchical multiscale scheme: one using XRCT data and the other using discrete analysis.

The consistency between the two routes, however, could not be established at the time since

there was no DEM technology to account for the level of complexity of grain geometries

found in experiment.

At the other end of the spectrum, multiscale methods are emerging to enable the use

of grain-scale information at the continuum level. At this point, techniques linking the

grain and continuum scales are based on homogenization theory [23]. It is important to

point out that multiscale modeling is not just about developing algorithms but also about

developing better physical models [123]. In the context of real granular materials, the effects

of grain morphology on strength of granular materials have already been well established

[1]. Although there have been significant efforts in constructing multiscale procedures (e.g.,

[124–131]), the predictive capabilities of these procedures on real granular materials have not

been assessed due to the absence of any discrete model that is morphologically representative

of real granular materials. Currently, the fidelity of the discrete model appears to be

the missing ingredient to achieving a breakthrough in the predictive power of multiscale

methods.

Here, we tackle the above challenges head-on by developing an overarching computa-

tional mechanics avatar that has enabled us to make the first steps in bridging the gap

between characterization and discrete analysis, and potentially improving the predictive

capabilities of multiscale methods. We integrate two major components of the proposed

avatar, namely the level-set characterization technique and our NURBS-based DEM, and

significantly enhance their capabilities to handle real grain morphologies. We then apply

the avatar to characterize and model the grain-scale response inside the shear band of a real

triaxial specimen. The avatar has enabled, for the first time, the transition from faithful

representation of grain morphologies in X-ray tomograms of granular media to a morpho-

logically accurate discrete computational model. Grain-scale information is extracted and

upscaled into a continuum finite element model through a hierarchical multiscale scheme,

and the onset and evolution of a persistent shear band is modeled, showing excellent quan-

titative agreement with experiment in terms of both grain-scale and continuum responses

in the post-bifurcation regime. More importantly, consistency in results across character-

ization, discrete analysis, and continuum response from multiscale calculations is found,

achieving the first and long sought-after quantitative breakthrough in grain-scale analysis
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of real granular materials.

This chapter is organized as follows. First, we describe the characterization and com-

putational components of the avatar, and the associated algorithmic improvements that

enable faithful representation of grain morphologies directly from X-ray tomograms. Next,

we present a case study where we describe the experiment of interest, followed by the char-

acterization and modeling steps taken to arrive at the relevant grain-scale information and

predicted continuum response. Finally, we close by providing an assessment of the strengths

and validity of the components of the avatar, as well as limitations that are to be addressed

in the future.

5.2 The Avatar Framework

A computational avatar aims to be the virtual twin of a granular assembly (e.g., sand), a

digital mirror of grains as they are found in-situ. The avatar should also possess realistic

mechanical properties (e.g., elasticity) and in a mechanistic context, behave similarly to the

real grain assembly, so that grain morphologies, kinematics, arrangement, and elastostatics

are all comparable to those of the physical assembly. The avatar opens the door for the use

of the experimentally-derived grain-scale quantities in either forward simulation techniques

(e.g., DEM) or inverse elastostatics analyses [2; 3]. These analyses would yield the quan-

titative measurements of contact forces throughout a granular assembly, allowing access to

force chains or fabric evolution in real time in real granular assemblies.

In this section, we summarize the two major components of the proposed computational

mechanics avatar that has made the image-to-model transition possible, namely the char-

acterization toolbox used to capture grain morphologies and our NURBS-based DEM for

discrete analysis. In particular, we focus on the relevant algorithmic improvements. Earlier,

these components have been briefly discussed in [4] and developed independently [47; 49].

Here, we integrate these two components for the first time to enable the application of the

avatar to a real problem.

5.2.1 Characterization toolbox

Successful inference of kinematics and contacts provides several important applications con-

cerning the evolution of strength in granular systems, namely:
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1. Determination of grain kinematics and grain fabric, including contact evolution during

loading.

2. Inference of contacts locations. Together with strains or stresses from X-ray diffrac-

tion [19], contact locations provide necessary input for a technique for quantitative

inference of contact forces in opaque granular systems [2; 3].

3. Inference of grain morphologies that are representative of true grains (to within imag-

ing resolution). These serve as geometry input to discrete methods that can account

for arbitrary grain shapes (see Section 5.2.2).

The use of XRCT in an experiment (e.g., triaxial test) provides, in addition to macro-

scopic stress and strain data, a sequence of three-dimensional (3D) of voxelated images (see

Figure 5.1), each containing tens of thousands of grains, collected over the course of the

specified loading regime. The challenge in applying XRCT is in translating the 3D images

into quantities that can be used for mechanical analysis, i.e., to translate image voxels into

grain fabric and morphology. The key difficulty underlying this translation process lies in

the irregularity of individual grains and that they are in contact with each other.

(a) (b)

Figure 5.1: Grain-scale imaging using XRCT: (a) slice of triaxial specimen and (b) 3D
reconstruction by stacking slices.

The watershed technique [132] has been a trusted workhorse for segmenting grains from

the voids, and from each other. Watershed, however, has the drawback of generally oper-
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ating on and outputting binary images. This is problematic for two reasons. The first is

that binary images introduce artificial roughness to grain surfaces, complicating a direct

tomography-to-simulation paradigm [4]. The second, and more critical, drawback is the re-

moval of details about the location and orientation of interparticle contact, which impedes

our understanding of the physical sources of mechanical strength.

Raw Image Denoised Image

Gradient Edge Markers

Binary Initial Guess

Level Set of Grain

Filtering

Image 
Gradient
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Evolution

Figure 5.2: Summary of characterization steps: (left) slice of 3D XRCT volume of vox-
els, (middle two) application of proposed characterization technique, and (right) generated
grain.

We overcome the above difficulties by applying the characterization methodology pro-

posed in [47] to operate on the following key areas to delineate grain surfaces and contact

locations. Briefly, the steps in the proposed methodology are:

1. Use of full-fidelity 3D XRCT image instead of binary images. The image is filtered to

furnish precise edge markers via the first and second gradients of X-ray attenuation.

2. Noise removal. The use of image gradients necessitates the removal of noise. Non-local

de-noising is utilized and guided by input parameters across different materials and

X-ray attenuation spectra.

3. The search for grain edges via level sets. Speed up in convergence is obtained using

the edge markers and current segmentation techniques (e.g., watershed) as initial

conditions. The level sets are allowed to evolve until the boundary of grain is identified

and, consequently, mathematically characterized.
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The above steps produce grain boundaries that are smooth and representative of true grain

shapes to sub-voxel accuracy, and without ‘melt’ near contact, as shown in Figure 5.2. In

essence, the proposed methodology converts digital computed tomographic images into a

collection of grain avatars, i.e., digitized versions of natural grains, which are transferred

into a discrete computational model, as described next.

5.2.2 NURBS-based discrete element method

We employ a discrete element method that uses Non-Uniform Rational Basis-Splines (NURBS)

as the mathematical basis for representing grain geometries [49]. The initial developments

of this approach focused on strictly convex grains [49–51]. The generation of strictly convex

NURBS shapes, however, is very difficult and restrictive from a modeling perspective. This

is even more so when dealing with image data of real grain shapes and obtaining strictly

convex shapes is not possible in most cases. This difficulty is not due to some limitation of

NURBS but to the state of the contact algorithm for NURBS, which were undeveloped at

the time.

A contact algorithm capable of dealing with general non-convex NURBS surfaces would

eliminate the above modeling difficulty. We achieve this by generalizing the node-to-surface

approach typically used in the contact treatment of finite element models [92] to a knot-

to-surface approach. Following a master-slave approach, a fixed contact point on the slave

particle Ωj is denoted by x while the contact point on the master particle Ωi is defined to

be the closest point projection of x onto the boundary of the master particle:

ȳ ≡ ȳ(x) = min
y∈Γi
‖x− y‖ (5.1)

where Γi is the boundary of the master particle. Here, y is a function of the two variables

parametrizing the NURBS surface. Knowing the normal n at ȳ, the gap is then calculated

as:

g(x) = (x− ȳ(x))T n (5.2)

from which the effective normal contact force on grain Ωi at ȳ, assuming a linear elastic
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stiffness model, is calculated:

f in =




kNgn, if g < 0

0, otherwise

(5.3)

where kN is the normal elastic stiffness and gn measures the penetration or overlap in

vector form.

The above approach is described in [52] for the two-dimensional (2D) case and here, we

generalize this to 3D as follows. As a pre-processing step, we first perform a least-squares

NURBS fitting procedure on the level set surfaces generated from the characterization

step. Then, we apply a NURBS recursive subdivision procedure [50] to generate a set of

fixed knots or nodes on each grain. The NURBS surface is subdivided until the following

termination criteria (see Figure 3.3) are met:

1. Real space arc distance corresponding to each parametric direction of less than εd

2. Acute angle between normal vectors at adjacent knot positions of less than εθ

and a knot or node is positioned at the center of the subdivided surface at the terminated

level (see Figure 3.3).

During simulation, we take advantage of the parametric nature of NURBS and solve

the 3D closest point projection problem (5.1) using a two-stage optimization strategy: the

proximity of the location of the closest projected point is established, followed by a local

constrained optimization step to finalize the closest point location. The first optimization

stage is handled using the DIviding RECTangles (DIRECT) global optimization algorithm

[94], which effectively deals with non-convex objective functions and hence, non-convex

grain shapes, while the second stage is handled using standard derivative-free optimization

techniques [98]. This two-stage strategy eliminates all the major problems associated with

intersection-based approaches to computing the interparticle gap or overlap (high com-

putational cost, data proliferation, and convexity restriction) in the early version of our

NURBS-based DEM [50]. Moreover, this procedure can be formulated and implemented

with equal ease as in the 2D case.
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5.3 Case Study

The purpose of the case study is to apply and assess the predictive capabilities of the

avatar in a real experiment. This is achieved as follows. First, the localized incremental

displacement fields and global stress-strain curve are extracted from experiment and used

in a hierarchical multiscale computation to reproduce the continuum response. In this

process, we obtain two quantities of interest in the shear band, namely the average dilatancy

evolution and residual shear strength. Then, unit cells in the shear band are modeled using

NURBS, and the same two quantities above are extracted and compared with those inferred

from experiment. Below, we describe the experiment setup followed by the characterization

and modeling steps leading to the final assessment.

5.3.1 Experiment setup

A cylindrical specimen (11 mm diameter by 24 mm height) of Caicos ooids (a natural

granular material with well-rounded grains) was sheared at a constant axial strain rate of

0.1%/min under a constant cell pressure of 100 kPa in a specially designed triaxial cell

in Laboratoire 3SR [133]. Tomographic images were captured at 18 stations during the

test with a voxel size of 15.563µm3, to be compared to a mean grain diameter 420 µm.

The global deviator stress as a function of the axial strain is shown in Figure 5.3. The

behavior is typical of a dense sand, with a peak in the deviator stress followed by softening

and subsequent residual or critical state and dilatant behavior throughout. The progressive

formation of a shear band was observed during the test, with a final shear band inclination

of approximately 52◦ with respect to the horizontal, and a thickness of approximately 8

grains.

5.3.2 Dilatancy inference

The dilatancy evolution in the shear band is inferred from grain-scale kinematics. Digital

image correlation (DIC) is used in concert with tomographic images to compute incremen-

tal displacement vectors in elements containing 33 grains on average. The result is a 3D

incremental displacement field for the entire triaxial specimen at all tomographic measure-

ment stations. For example, Figure 5.4 shows the incremental displacement field between

tomographic stages 6 and 7 (post-peak in the load-displacement curve). Some large incre-
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Figure 5.3: Macroscopic load-displacement response. Inserts: triaxial specimen at (a) initial
state and (b) 9.11 % axial strain, with shear band highlighted. Station numbers are labeled
in red.

mental displacements are observed in the elements at the specimen boundary, a product of

the boundary effects stemming from the DIC technique itself and the specimen membrane;

these edge elements are excluded from subsequent dilatancy calculations.

Following a finite element interpolation approach, we calculate the incremental strain

over an element e as:

∆εe = Be∆de (5.4)

where ∆de is the incremental displacement vector containing the nodal incremental dis-

placements (from experiment as described above) and Be is the strain-displacement matrix

in Voigt notation. Incremental strains are calculated over each Gauss point (eight integra-

tion points per trilinear brick element) and then used to compute the average incremental

strain over the element as:

∆εev = tr∆εe (5.5)

∆εes =

√
2

3
‖dev∆εe‖ (5.6)
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Figure 5.4: Incremental displacement field between tomographic stages 6 and 7 obtained
from DIC: (a) contour of magnitude of incremental displacement vector with shear band
within the region indicated by dashed lines and (b) incremental displacement arrows.

Based on the displacement field obtained from DIC, we identify the shear band region and

all the elements within it. We note that the data shows that the deformations are fairly

homogeneous throughout the shear band. With this, the average dilatancy in the shear

band is calculated as:

β =
∆εv
∆εs

(5.7)

and shown in Figure 5.5. Here, we have assumed that the elastic strain increments are neg-

ligible and their plastic counterparts dominate, allowing us to use the measured increments

directly to quantify dilatancy.

5.3.3 Multiscale computation

To check that the average dilatancy evolution inferred from experiment is correct, an

experimentally-driven multiscale computation was performed. Applying the hierarchical

multiscale scheme proposed in [22], we upscaled the experimental average dilatancy evolu-

tion into a continuum finite element model of the triaxial specimen and the global structural

responses of the model and experiment were compared.
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Figure 5.5: Dilatancy inferred from DIC data with fit for multiscale calculation (see Section
5.3.3).

Underlying the multiscale scheme, we use a Drucker-Prager constitutive model with the

yield surface and plastic potential being:

F (p, q, µ) = q + µp = 0 (5.8)

Q(p, q, β) = q + βp− c̄ = 0 (5.9)

respectively, where p, q are the pressure and shear invariants of the stress tensor, µ is the

generalized friction coefficient, β is the (plastic) dilatancy, and c̄ is a free parameter such

that the plastic potential crosses the yield surface at the same stress state (p, q). Generally,

the microscopic variables µ and β are obtained either through an experiment or a discrete

model. For simplicity and convenience, however, we can invoke the stress-dilatancy relation

µ = β + µcv and express β as a function of µ. The resulting multiscale scheme would then

require three calibrated material parameters — the elastic modulus E, Poisson’s ratio ν, and

residual shear strength µcv — plus a dilatancy evolution β inferred from experiment. For

the experiment considered here, the calibrated parameters are E = 125 MPa and ν = 0.3,

µcv = 0.81. When these parameters and the shear band dilatancy evolution β in Figure

5.5 are upscaled into the finite element model, the global response of the experiment is

reproduced as shown in Figure 5.6.
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Figure 5.6: Global response from multiscale computation using dilatancy evolution infor-
mation inferred from DIC (refer to Figure 5.5).

Remark 5.3.1 The elastic parameters E and ν are determined based on the assumption

that the material is linear-elastic and homogeneous up to about 0.09% global axial strain, as

is apparent from the initial steep linear portion of the global stress-strain curve. We further

assume that the dilatancy in the shear band is zero during the elastic stage and evolves as

shown in Figure 5.5. The elements outside the shear band are assumed to evolve identically

except that the dilatancy value is maintained once the peak is attained. This produces a

state of inhomogeneous deformation after stage 6 (around 4% axial deformation), where the

bulk of the deformation and global response of the specimen starts to be governed by the

evolution of the shear band.

Remark 5.3.2 We note that the above experiment cannot be used to probe the stresses

locally and only local deformation fields can be reconstructed from the experimental data.

Hence, only dilatancy β can be inferred from the experimental data. As such, a comparison

of the evolution of frictional resistance µ inside the shear band between experiment and a

discrete model cannot be directly made. One can, however, determine the adequacy of a

discrete model by checking if the model residual strength is close to this calibrated value of

µcv (see Section 5.3.4).
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5.3.4 Discrete modeling

In the shear band identified in Section 5.3.2, two locations are arbitrarily selected for unit cell

extraction. Starting from a 3D XRCT image at these locations, we apply the characteriza-

tion step described in Section 5.2.1 to capture the morphologies of the grains. Subsequently,

NURBS surfaces are fitted over the characterized grains for use in our NURBS-based DEM.

Two discrete models are constructed (see Figure 5.7), each comprising of about 103 grains

and with model thickness (∼ 10 grains) that extends the full shear band thickness. We

then apply the node generation procedure described in Section 5.2.2 with εd = 5 voxels

and εθ = 10◦, resulting in between 400 and 500 nodes per grain. For simplicity, we have

constructed our model in voxel space. In this exercise, we have considered two unit cells

due to limited computational resources.

X

Z

Unit Cell 1 Unit Cell 2
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Shear band 
angle 1

3
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Figure 5.7: Unit cells 1 and 2, generated through the characterization step using 3D XRCT
data. The shaded grey region shows cell orientation in local coordinate system with respect
to the global coordinate system.

The DIC data indicate that the homogeneous deformation of the shear band region is

accompanied by dilation normal to the shear band plane. Therefore, we idealize the loading

protocol for the discrete models (in the rotated coordinate system shown in Figure 5.8)

as a plane strain shear with a vertical (along the 3-axis) confinement stress. It is known

that dilatancy is affected by the confinement stress. For simplicity, however, the vertical

stress was calibrated to be a constant. The assumption of a constant vertical stress does

not affect the residual strength µcv since it is determined by particle morphology, and this

has already been captured through the characterization process. Movement of grains on the

model boundary in the shearing process is prescribed using two rotating smooth side walls,

and a feedback loop is used to maintain a constant vertical stress on the top wall. Dynamic

relaxation [57] is used where sufficient damping is introduced and the wall movements are
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sufficiently slow to remain close to the quasi-static condition. Calibration of the discrete

model parameters is performed on one of the cells (Unit Cell 1) while the second cell (Unit

Cell 2) serves as a reproducibility check using the same calibrated parameters. The cali-

brated parameters are normal stiffness kn = 3×106, shear stiffness ks = 2kn/3, interparticle

friction coefficient µp = tanφp = 0.18, and vertical stress of 2 units (corresponding to 130

kPa). Due to the explicit time integration used in our NURBS-based DEM, we have made a

trade-off between a high normal stiffness (which results in smaller time steps) and a shorter

simulation turnaround time.
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Figure 5.8: Deformed configurations for unit cells 1 and 2. Shaded grey region shows cell
orientation in local coordinate system with respect to the global coordinate system: final
applied shear angle is 40◦ from the 3-axis.

From the DIC data, a one-to-one correspondence between the axial global strain and ap-

plied shear angle can be established. The shear angle is approximately 40◦ (from the vertical

3-axis) corresponding to a global axial strain of about 12%. The average dilatancy evolu-

tions calculated from the discrete models are compared with those inferred from DIC and

as shown in Figure 5.9, the evolutions from both models match well with experiment. Also

plotted in Figure 5.9 are the evolutions of stress ratio q/p, which reach approximately 0.8 at

critical state and are close to the calibrated µcv value of 0.81 in the experimentally-driven

multiscale calculation. Assuming that the two unit cells provide an adequate representation

of the average dilatancy evolution and residual strength in the shear band, we can use this

information and proceed with the same multiscale calculation described in Section 5.3.3.

The calculation result (see Figure 5.10) shows that the predicted global structural response

that uses discrete information is in excellent agreement with that which uses experimen-

tal data (refer to Figure 5.6). The above results point to the importance of and need for

accurately capturing grain morphologies in order to improve the predictive capabilities of
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Figure 5.9: Results from discrete computations: evolution of (a) dilatancy and (b) stress
ratio.

discrete simulation and multiscale techniques.

5.4 Closure

We have presented a computational mechanics avatar to probe the grain-scale behavior of

granular materials. We have discussed the improvements in the characterization and discrete

simulation components that have enabled us to transition from faithful representation of

grain morphologies in X-ray tomograms of granular media to a morphologically accurate

discrete computational model. We then applied and assessed the predictive capabilities of

the avatar through a case study on a real experiment. We found good agreement between

the microscopic quantities, namely the dilatancy evolution and residual strength, obtained

from discrete simulations and those inferred from experiment. To our knowledge, this is

the first quantitative comparison of microscopic quantities from discrete simulation and

experiment in real sands. In addition, we found excellent agreement between the global

continuum response calculated from multiscale computation using the extracted microscopic

quantities and that measured in experiment. Overall, we found consistency in results across

characterization, discrete analysis, and continuum response from multiscale calculations,

providing the first and long sought-after quantitative breakthrough in grain-scale analysis

of real granular materials.
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Figure 5.10: Global response from multiscale computation using dilatancy evolution infor-
mation from discrete models (insert).


