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Chapter 4

A Contact Dynamics Formulation

4.1 Introduction

In this chapter, we describe a contact dynamics (CD) approach to our NURBS-based dis-

crete method. By combining particle shape flexibility through NURBS, properties of im-

plicit time integration (e.g., larger time steps) and non-penetrating constraints, as well as a

reduction to a static formulation in the limit of an infinite time step, we target applications

in which the classical discrete element method either performs poorly or simply fails, i.e., in

granular systems composed of rigid or highly stiff angular particles and subjected to quasi-

static or dynamic flow conditions. The integration of CD and our NURBS-based discrete

method is made possible while significantly simplifying implementation and maintaining

comparable performance with existing CD approaches.

To motivate the development of our approach, we first refer the reader to Table 4.1

for a brief summary of the key features of and differences between CD and the classical

DEM by Cundall and Strack [24]. In the following, we highlight the difficulties associated

with classic CD and DEM followed by a description on how we eliminate them through the

combined approach.

The so-called Non-Smooth CD, originally developed by Moreau [61; 62; 102; 103], is an

alternative discrete approach to the DEM. The most prominent feature of CD, in contrast

to that of classical DEM, is that the particles are considered perfectly rigid and the con-

tact forces are determined as those that prevent interparticle penetration and at the same

time satisfy the frictional stick-slip constraints. In their simplest forms, these contact laws

are embodied in the so-called Signorini unilateral contact condition and classical Coulomb

law, as shown in Figures 2.2a and 2.2b, respectively. Commensurate with these physical
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Table 4.1: Comparison of Non-Smooth Contact Dynamics and classical DEM

Feature Non-Smooth Contact Dynamics Classic DEM

Normal contact Rigid; unilateral contact1,2 or
non-penetration constraint directly
included

Modeled using normal spring;
particles overlap

Friction contact Stick-slip frictional constraint1,2

directly included
Imposes shear force incrementally
using relative velocity from previous
step

Time
integration

Implicit, usually stable, and with
larger time step3

Explicit, with stability criterion;
critical time step scales with inverse
of spring frequency. Inefficient for
highly stiff particles and cannot be
applied to rigid particles

Collision
response

Considers collisions and stick-slip
frictional transitions simultane-
ously; velocities may be non-smooth

No real collisions and velocity jumps
cannot occur due to continuous na-
ture of contact spring

Damping Numerical damping4 Through global and/or local damp-
ing devices, i.e., dashpots

Quasistatic
limit

Can be directly included in formula-
tion

Dynamic in nature; oscillations in
solutions are typical; quasistatic
limit is approached using global
and/or local damping

Particle
morphology
representation5,6

Disk- or sphere-clustering and polyhedra

Implementation
difficulty

Intermediate to difficult7 Easy

Computational
efficiency

Contact and constraint forces solved
implicitly. Geometrical information
(e.g., gap values and contact ori-
entations) are stored in matrices
as part of the solution procedure;
higher memory requirement8

Contact forces are solved explicitly
using particle overlap and previous
velocities; time integration easily
parallelized. Minimal storage of geo-
metrical information; lower memory
requirement

(1) Regularization to account for particle elasticity possible (e.g., [99])
(2) See Figure 2.2
(3) Although the time step can be larger, it has to be reasonable so that collisions are properly resolved
(4) Does not apply in the quasistatic limit
(5) We list only those approaches, beyond ellipses/ellipsoids, that appear to be currently most widely applied
(6) Improved using NURBS in this work
(7) Made easier in this work
(8) In this work, managed using efficient large-scale mathematical programming solvers (e.g., [100; 101])
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enhancements, however, is the need for both contact and constraint forces to be solved si-

multaneously or implicitly since the problem is nonlinear. The need for an implicit solution

procedure till today remains the primary reason why CD is deemed much more complicated

to implement than DEM. This has thwarted the wide adoption of CD despite the favorable

performance that has been shown through a number of studies [73–83].

While there is wide applicability of DEM, its application has gone beyond its restriction

as a tool that is strictly applicable only to materials with finite elasticity. For example, DEM

is widely used as a tool to study real granular materials that are almost rigid or highly stiff

in nature. Here, finite elasticity means that the contact interaction is essentially modeled

using springs. Under explicit time integration algorithms that are typically used in DEM,

the stable time step is restricted by the critical time step, which scales with the inverse

of the contact spring-particle mass frequency. This results in infinitesimally small time

steps if material parameters corresponding to highly stiff particles (e.g., rocks, sand, steel)

are used. Although explicit integration algorithms can be easily parallelized, the runtime

for stiff systems remains computationally prohibitive. One modeling technique commonly

employed in practice to overcome this restriction is to simply reduce the contact stiffness,

usually by two to four orders of magnitude, to the extent that particle kinematics obtained

from simulations are still somewhat representative of the overall response of the actual

system of interest. If quasi-static behavior is assumed to hold, usually used in combination

with stiffness tuning is mass scaling, in which the particle masses are adjusted (usually

increased) such that the combined spring-particle system frequency is lowered, increasing

the time step size. In practice, model calibration by means of mass scaling and/or stiffness

tuning is a delicate and cumbersome process. Another problem that is associated with the

presence of contact springs and the dynamic nature of DEM is the introduction of unwanted

oscillations or noise, with frequencies that increase with spring stiffness. This requires

additional calibration of the global and/or local damping parameters. Moreover, under

certain loading conditions (e.g., strain-controlled and dynamic), either particle kinematics

or contact forces obtained under such calibration procedures can be highly inaccurate [57].

Recent CD approaches include techniques to represent complex particle morphology or

shape, and these have been described in Chapter 2. In this aspect, recent trends show a

clear dichotomy between the choice of shape representation technique. A key component

in the CD formulation is the signed separation or gap, which is used in the determination



50

of constraint forces to prevent particle interpenetration. While the polyhedra approach is

considered a more accurate shape representation technique than the clustering approach,

the associated algorithms for the determination of the signed penetration are complicated

due to the need to enumerate all the various combinations of contact entities (node, edge,

surface). As such, the simpler disk/sphere-clustering is favored over the more accurate

polyhedra-based approach.

We combine and refine two important developments that allow us to eliminate all the

above difficulties:

• We simplify the formulation and implementation of CD significantly by generalizing

a variational CD formulation recently developed for disks and spheres [72; 99; 104].

This particular formulation, which is employed here, is appealing because it provides

a way for CD to be easily implemented and solved using off-the-shelf mathematical

programming solvers. The most prominent advantage of this formulation is its auto-

matic inclusion of the quasi-static limit, enabling quasi-static modeling without the

need for adjusting damping parameters or time step.

• We remove the complexities associated with polyhedra-based contact detection algo-

rithms by adopting NURBS to describe arbitrary particle geometries. Following the

approach as described in Chapter 3 to determine the signed gap, the integration of

our NURBS-based discrete method into the CD formulation is shown to be simple and

straightforward. The ‘knot-to-surface’ approach to contact described in Chapter 3 is

similar to that employed in the contact treatment of frictionless bodies in isogeometric

analysis [93]. The key difference and novelty here is on the simultaneous treatment of

contact elasticity and frictional contact within the aforementioned CD formulation, as

well as the ability to perform contact calculations for granular systems, which contain

a large number of particles. Both particle elasticity and friction at the contact level

are treated implicitly and simultaneously, and the contact algorithm is cast into a

mathematical programming-based contact dynamics framework.

This chapter describes the details of how each of the above items is implemented and

is structured as follows: we describe the contact problem and summarize the variational

formulation of the general contact problem for frictional particles in Section 4.2; then, we

present two numerical examples in Section 4.4 to demonstrate the capabilities of the com-
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bined approach before closing in Section 4.5. For clarity of presentation and implementation

details, we limit our discussion to the two-dimensional case. An extension of the method to

the three-dimensional setting is outlined in Appendix B.

4.2 Governing Equations for Frictional and Arbitrary-Shaped

Particles

The formulations from [51; 72; 99; 104] carry forward completely to the general case of

frictional and arbitrary-shaped particles without any change. As such, simplicity of imple-

mentation is retained. Here, we present a summary containing only those key equations

required for the completeness of presentation. Where necessary, we point the reader to the

appropriate references for further details.

4.2.1 General contact problem definition

Master

Slave

Ωi

Ωj

n0

t0

x Potential contact I

RiI

RjI

ȳ

∂Ωj

∂Ωi

Figure 4.1: Illustration of the problem of contact between two particles (Ωi and Ωj) at time
t0. See text for a description of the associated quantities.

For convenience, we repeat here the contact problem described in Chapter 3, specialized

to the 2D case as shown in Figure 4.1. The two-particle contact problem is defined at some

initial time initial time t0. Let Wi be the set of potential contacts associated with particle

i and denote by I ∈ Wi a particular contact point in the set. A contact point on the slave
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particle Ωj is denoted by x, while the contact point on the master particle is defined as the

closest point projection of x onto the boundary of the master particle:

ȳ ≡ ȳ(x) = min
y∈∂Ωi

‖x− y‖ (4.1)

As shown in Figure 4.1, the contact plane at a potential contact point I is described on the

master boundary ∂Ωi by the normal n0 and tangent t0 at point ȳ. The gap at time t0 is

then defined as

g0(x) = (x− ȳ(x))T n0 (4.2)

with the non-penetration constraint requiring that g ≥ 0.

4.2.2 Notation for general multi-particle system

To facilitate the variational formulation of the governing equations, we first set the notation

for the general multi-particle system that will be used throughout this chapter. A particle

i has mass mi and mass moment of inertia J i. The position and rotation of the particle are

denoted by xi = (xi, yi)T and αi, respectively, and their corresponding translational and

rotational velocities by vi = (vix, v
i
y)
T and ωi. We introduce the following matrix or vector

quantities that cover general n-particle systems:

M = diag(m1,m1, . . . ,mn,mn)

J = diag(J1, . . . , Jn)

x = (x1, . . . ,xn),v = (v1, . . . ,vn)

α = (α1, . . . , αn),ω = (ω1, . . . , ωn)

g = (g1, . . . , gN ),p = (p1, . . . , pN ), q = (q1, . . . , qN )

(4.3)

where M is the diagonal matrix containing the particle masses and J is the diagonal matrix

containing the particle mass moments of inertia. The kinematical quantities are the vectors

of particle translations x and rotations α, and their corresponding velocities v and ω. The

contact quantities are given by the vectors p, q, and g, which are the contact normal forces,

shear forces, and gap values, respectively, each at N number of contacts.

A quantity, which at the initial time is denoted by �0, would then be denoted at time
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t0 + ∆t by �. For example, x0 and v0 are the known positions and velocities at time t0,

while x and v are the corresponding quantities at time t0 + ∆t. With this notation, an

increment of a quantity will be denoted by ∆� = �−�0.

4.2.3 Discrete update equations

Under the discretization of the equations of motion using the θ-method [105], the resulting

discrete update equations for translation and rotations are given by:

M̄∆x = f̄0 = f ext + M̄v0∆t

J̄∆α = m̄0 = mext + J̄ω0∆t
(4.4)

In the above, the matrices M̄ and J̄ contain the scaled particle masses and mass moments

of inertia, respectively:

M̄ =
1

θ∆t2
M

J̄ =
1

θ∆t2
J

(4.5)

The effective translational force vector f̄0 contains the external load vector f ext, which we

have assumed to be constant (e.g., due to gravity). The effective rotational moment vector

m̄0 contains the external rotational moments mext, which may be applied on the particles.

The translational and angular velocities are calculated, respectively, as

v =
1

θ

[
∆x

∆t
− (1− θ)v0

]

ω =
1

θ

[
∆α

∆t
− (1− θ)ω0

] (4.6)

where 0 ≤ θ ≤ 1. The stability properties of the θ-method are well known: for θ = 1
2 an

unconditionally stable and energy preserving scheme is recovered, for θ > 1
2 the scheme is

unconditionally stable and dissipative, and for θ < 1
2 stability depends on the time step.

In the context of binary collisions, the algorithmic energy dissipation that occurs for θ > 1
2

can be related to the physical dissipation associated with impact and thus to the restitution
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coefficient e through the relation

e =
1− θ
θ

(4.7)

Indeed, as shown in [72], a value of θ = 1
2 corresponds to an elastic collision while θ = 1

reproduces a perfectly inelastic collision. Binary elastic and plastic collision tests are shown

in Appendix A.2.

4.2.4 Variational formulation of contact problem

Following the formulation procedure as described in [51; 72; 99; 104], the resulting discrete

mixed force-displacement problem, including contact constraints, takes the form:

min
∆x,∆α

max
p, q

{
1
2∆xTM̄∆x−∆xT f̄0

}

+
{

1
2∆αT J̄∆α−∆αTm̄0

}

+
{

∆xT (N0 p+ N̂0 q)− gT0 p−∆αT (Rq
0 q +Rp

0 p)
}

−
{

1

2
pTCNp+

1

2
∆qTCT∆q

}

subject to ‖q‖ − µp ≤ 0, p ≥ 0

(4.8)

With a slight abuse of notation, we have denoted the vector containing the absolute val-

ues of the shear forces by ‖q‖. The matrix N contains all the normals associated with

potential contacts n = (nx, ny)
T while the matrix N̂ has the same form contains entries

t = (−ny, nx)T , i.e., the tangent vector defined as the 90◦ counterclockwise rotation of n.

We note the presence of the term with incremental shear ∆q = q − q0, which requires the

tracking of shear forces at contact points and makes the problem history-dependent.

In equation (4.8), the matrix Rq
0 contains the contribution of the total angular momen-

tum balance from the tangential forces and contains entries RT
iIn0 where RiI is the moment

arm vector extending from the centroid of particle i to the contact point ȳ. The matrix Rp
0

contains the contribution of the total angular momentum balance from the normal contact

forces and contains entries −RT
iIt0. Both RT

iIn0 and −RT
iIt0 are signed moment arms and

their signs depend on whether the associated contact force induces a positive (clockwise) or

negative moment on the particle. A similar description applies to the slave particle using its

contact normal −n0 and tangent −t0. The matrices CN and CT contain the compliances
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1/kN and 1/kT on the diagonal, where kN and kT are the normal and tangential contact

stiffnesses, respectively. Finally, the Coulomb criterion is imposed with µ = tanφ being

the effective interparticle friction coefficient and φ is the effective friction angle at the scale

below the particle angularity level.

4.2.5 Optimality conditions

Following the approach in [72], the first-order KKT conditions associated with equation

(4.8) give the linear moment balance:

M̄∆x+N0p+ N̂0q = f̄0 (4.9)

balance of angular momentum:

J̄∆α−Rq
0 q −Rp

0 p = m̄0 (4.10)

sliding friction conditions:

‖q‖ − µp+ s = 0, s ≥ 0 (4.11)

diag(s)λ = 0,λ ≥ 0 (4.12)

where s is the slack vector, introduced to enforce equality, and kinematics:

NT
0 ∆x+ µλ = g0 +CNp (4.13)

N̂
T

0 ∆x− (RqT
0 +RpT

0 )∆α = sgn(q)λ+CT∆q (4.14)

where sgn is the signum function. The kinematics in equations (4.13) and (4.14) pertain to

the associated sliding rule, which leads to an apparent dilation proportional to the friction

coefficient µ. However, as described in [72], this dilation can be viewed as an artifact of

the time discretization which, with the exception of a few pathological cases, is gradually

reduced as the time step is reduced. Moreover, it was shown in [72] that the dilation, even

for rather large time steps, is negligible over a range of common conditions, including both

instances of highly dynamic and relatively unconfined flows as well as confined quasi-static

deformation processes. The consequences of the associated sliding rule are discussed in
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Appendix A.3.

4.2.6 Force-based problem

Finally, it is possible to cast equation (4.8) in terms of the following force based problem:

minimize
1

2
rTM̄

−1
r +

1

2
tT J̄

−1
t+ gT0 p

+
1

2
pTCNp+

1

2
∆qTCT∆q

subject to r +N0p+ N̂0q = f̄0

t−Rq
0 q −Rp

0 p = m̄0

‖q‖ − µp ≤ 0, p ≥ 0

(4.15)

where t is the dynamic vector associated with the rotations, i.e., torque vector.

4.2.7 Static limit

Omitting the dynamic forces r and t from equation (4.15) gives rise to the following static

problem which is valid in the limit of ∆t tending to infinity:

minimize gT0 p+
1

2
pTCNp+

1

2
∆qTCT∆q

subject to N0p+ N̂0q = f̄ ext

Rq
0 q +Rp

0 p = 0

‖q‖ − µp ≤ 0, p ≥ 0

(4.16)

The above principle is useful for quasi-static problems governed by an internal pseudo-time

rather than physical time. Examples include common soil mechanics laboratory tests such

as triaxial tests, quasi-static soil-structure interaction problems such as cone penetration,

and various applications in the earth sciences where the time scales are such that the

deformations are of a quasi-static nature (e.g., [106; 107]). We note that in the quasi-static

formulation, the accuracy of the scheme would then depend on the increment size of the

applied boundary conditions (e.g., wall displacements or stresses).



57

4.2.8 Solution procedure and computational complexity

We observe that equations (4.15) and (4.16) are essentially standard quadratic programming

problems. In this work, the primal-dual interior-point solver in MOSEK [101] is used

for the solution of both problems. The solution and storage costs associated with these

problems are usually justified by the larger analysis steps that can be taken when using

implicit algorithms. This is more so for systems comprised of rigid or highly stiff particles

in which explicit solution procedures perform poorly or simply fail. Moreover, large-scale

mathematical programming solvers with sparse storage (e.g., [100; 101]) are becoming widely

available and increasingly efficient and robust. More recent solvers such as MOSEK [101]

also include multi-core or multi-threaded capabilities.

The performance of the primal-dual interior-point method in the context of our pro-

posed contact dynamics formulation has been described in detail in [72], and the following

properties are summarized: 1) insensitivity of iteration count to problem size, 2) arith-

metic complexity that is equivalent to standard Newton-Raphson schemes, and 3) highly

robust (almost never fails or stalls). The overall cost is therefore comparable to implicit

Newton-Raphson-type schemes used in nonlinear finite element analysis. For details on the

fundamental theory and implementation of interior-point methods, we refer the reader to

[108].



58

4.3 Contact Implementation

The CD formulation of either equation (4.15) or (4.16) described in the previous section

offers great simplicity and significant effort reduction in contact implementation in that the

only required information is the signed gap values at the initial time g0. The implementation

of the contact algorithm proceeds as described in Chapter 3, specialized to the 2D case.

(a) (b)

g
kT

kN slip

p �q�

−µp

µp

Figure 4.2: Linear elastic contact law: (a) normal reaction force p against separation or gap
g and (b) friction force ‖q‖ against slip; µ is the friction coefficient.

Here, we have only considered the case of linear contact elasticity, as shown in Figure

4.2, but extension to nonlinear elasticity is entirely possible as is the consideration of more

complex contact models incorporating hardening, viscous effects, etc. The resulting scheme

bears some similarity to standard DEM schemes in that the consideration of a finite contact

stiffness implies the possibility for an elastically reversible interparticle penetration. The

inclusion of contact elasticity reproduces the more basic case of rigid particles in the limit of

the contact stiffness tending to infinity. Moreover, in contrast to standard DEM, there are

no algorithmic repercussions from operating with a large or, in the extreme case, infinite

stiffness, reproducing the contact law shown in Figure 2.2. Indeed, the same algorithm

is used regardless of the contact stiffness, with perfect rigidity being a limiting case that

allows for certain simplifications. For example, in the limiting case, both CN and CT in

either equation (4.15) or (4.16) are zero, and the associated quadratic terms drop out from

the formulation. In particular, this means that no information of the shear forces needs to

be carried over from one time step to the next. As a result, contact stiffness values that are

representative of real materials (e.g., steel or rock) can be used without causing numerical
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difficulties.

The static problem described by equation (4.16) reveals a number of interesting proper-

ties related to the indeterminacy of force networks in granular media. It is well known that

rigid particles lead to a situation where the force network solution is non-unique [109–112].

Setting CN = CT = 0 in equation (4.16) leads to a linear program where global optimality

may be achieved by more than one set of forces. Conversely, for finite values of CN and

CT , the solution is unique, i.e., there is a unique set of contact forces leading to the optimal

value of the objective function.

4.4 Numerical Examples

In this section, we present two examples that highlight the effects of particle morphology on

the macroscopic response of granular assemblies, as well as the robustness of our proposed

method. In particular, we compare responses of assemblies with three levels of particle

angularity: disk, angular but (strictly) convex, and non-convex particles.

4.4.1 Biaxial compresion

Biaxial compression simulations using the static limit formulation in equation (4.16) are

carried out on a rectangular assembly of initial width W0 and initial height H0 containing

1520 particles. First, an assembly with non-convex particles is prepared using 16 different

shapes. Then, two additional assemblies — one with angular convex particles and another

with disks — are also prepared. The particles in these assemblies are obtained by match-

ing average particle diameters of the 16 non-convex shapes. Effectively, sphericity is kept

constant and a comparison of effects of angularity is made. The three assemblies with their

corresponding particle shapes are shown in Figure 4.3.

The non-convex and angular assemblies have an initial porosity of approximately 0.152,

while the disk assembly has an initial porosity of approximately 0.176. The higher poros-

ity of the disk assembly points to the inability of disks to match porosity by just simply

matching average particle diameters. Indeed, a wider distribution of disk sizes would be

required in this case to match the initial porosity of 0.152, which in turn would substan-

tially increase the number of particles. In this regard, the use of disks to represent particle

geometry introduces an unavoidable geometrical bias, which leads to packings with higher
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porosities [91]. Nevertheless, in this example, we retain the disk assembly for comparison

with the other two assemblies. Two interparticle friction coefficients µ = 0.3 and 0.5 are

used to gauge the effect of interparticle friction. The upper wall is moved downwards while

the applied stress on the right wall σ3 is maintained at 125 units. A total of about 150 steps

are used to impose a total axial strain of approximately 0.21. The left and bottom walls

are stationary. All walls are frictionless.

To show the effects of particle elasticity, we perform the tests with several values of

particle elasticity: kN = ∞, 108, 106, 105. The tangential stiffness is set at kT = 2kN/3,

which is within the range for a physically consistent volumetric response in granular ma-

terials [99; 113]. At every time step, the current width W and current height H of the

assembly box are tracked, and the stresses σ1 and σ3 computed using the contact forces

of the particles impinging on the top and right walls, respectively. The results in terms

of deviatoric stress σ1 − σ3 versus axial strain, εa = 1 − H/H0, and volumetric strain,

εv = 1 −WH/(W0H0), versus axial strain are shown in Figures 4.4 through 4.7. We see

that the macroscopic response at kN = 108 is close to rigid. As kN is lowered, a more elastic

initial response is observed in which the sharp initial peak is progressively suppressed and

the peak response lowers slightly. At kN = 105, an initial slope in the deviatoric stress be-

comes visible and the corresponding volumetric strain response shows an initial compaction

followed by volume expansion. The deformed configurations of the three assemblies for the

case of kN = 108 are shown in Figure 4.3.

In all cases, we note the following observations. For a particular assembly, the macro-

scopic deviatoric stress reaches a constant value that is independent of the elastic properties

while the rate of volumetric strain tends to zero, in agreement with standard continuum

plasticity theories. Comparing across the three assemblies with different particle angular-

ity levels, however, we observe that both the peak strength and dilatancy increase with

increasing angularity, i.e., from disks to non-convex. This latter observation is consistent

with experimental evidence of increased strength with increasing angularity of the particles

[1].
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NON-CONVEX

ANGULAR, CONVEX

DISK

INITIAL FINAL

Figure 4.3: Biaxial compression: initial and final (εa = 0.21) configurations with kN = 108.
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Figure 4.4: Biaxial compression: response with kN =∞.
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Figure 4.5: Biaxial compression: response kN = 108.
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Figure 4.6: Biaxial compression: response kN = 106.

0 0.05 0.1 0.15 0.2
0

100

200

300

400

500

600

 

 
Nonconvex
Convex
Disk

0 0.05 0.1 0.15 0.2

0

0.02

0.04

0.06

0.08

0.1

 

 
Nonconvex
Convex
Disk

0 0.05 0.1 0.15 0.2

0

0.02

0.04

0.06

0.08

0.1

 

 
Nonconvex
Convex
Disk

0 0.05 0.1 0.15 0.2
0

100

200

300

400

500

600

 

 
Nonconvex
Convex
Disk

   
  V

O
LU

M
ET

R
IC

 S
TR

A
IN

DE
VI

AT
O

RI
C 

ST
RE

SS

                    AXIAL STRAIN

σ
1
−
σ

3
� v

�a

   
  V

O
LU

M
ET

R
IC

 S
TR

A
IN

DE
VI

AT
O

RI
C 

ST
RE

SS
σ

1
−
σ

3
� v

µ = 0.3 µ = 0.5

                    AXIAL STRAIN �a

Figure 4.7: Biaxial compression: response kN = 105.
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4.4.2 Column drop test

We consider a column with an initial height to width ratioH0/L0 of approximately 1.68. The

base supporting the column has a friction coefficient of µbase = 0.5, while a smooth vertical

wall representing a symmetry boundary is placed on one side of the column. Three columns

with 1520 particles of increasing angularity — disk, angular but convex, and non-convex, as

shown at Step 0 in Figures 4.8 and 4.9 — are constructed using particles from the sixteen

different shapes described in the biaxial test example. These particles are dropped into the

rectangular box that forms the column and settled under gravity. Drop test simulations are

then conducted by removing one of the side walls of the box and letting the column spread

under gravity. The simulations are carried out using the dynamic formulation in equation

(4.15) with θ = 0.7 and a time step of ∆t = 0.05 for two interparticle friction coefficients

µ = 0.5 and µ = 0. We set the contact elasticity to be kN = 108 and kT = 2kN/3 for all

columns.

We compare the response evolutions of the angular and disk columns against the non-

convex column, as shown in Figures 4.8 and 4.9. The final configurations of the three

columns for µ = 0.5 are shown in Figure 4.10. The slopes of the final spreads of the angular

and disk columns are approximately 12◦ and 9◦, respectively. More prominently, the slope

in the non-convex column is 17◦. This is a 5◦ and 8◦ increase from the angular and disk

columns, respectively, which is quite significant. Relative to the non-convex column, the

final spreads of the angular and disk columns are approximately 14 and 45 percent wider.

These observations are consistent with the increase of rolling resistance with increasing

angularity.

For the case of µ = 0, the response evolutions of the angular and disk columns as

compared with the non-convex column are shown in Figures 4.11 and 4.12, with the final

configurations of all columns shown in Figure 4.13. At Step 3200, the angular and non-

convex columns have stopped flowing, while the disk column continues to flow and, as the

simulation is progressed, a final layer thickness of 1 particle is reached. Essentially, without

rolling resistance, the disk column simply ‘melts’ away. On the other hand, the angular

and non-convex columns maintain a well-defined spread, even at zero interparticle friction,

due to the rolling resistance provided by angular and non-convex particles. As expected,

the non-convex column has a smaller spread due to increased angularity in the non-convex
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particles.

4.5 Closure

We have presented a contact dynamics (CD) approach to our NURBS-based discrete method.

By combining particle shape flexibility, properties of implicit time integration (e.g., larger

time steps) and non-penetrating constraints, as well as a reduction to a static formulation

in the limit of an infinite time step, we target system properties and deformation regimes

in which the classical discrete element method either performs poorly or simply fail, i.e., in

granular systems composed of rigid or highly stiff angular particles and subjected to quasi-

static or dynamic flow conditions. The implementation the combined approach is made

simple by adopting a variational framework, which enables the resulting discrete model to

be readily solved using off-the-shelf mathematical programming solvers.

Numerical simulations of the biaxial compression and column drop tests for varying

contact elasticities, including the rigid case, were performed, and the ability of the combined

approach to capture the effects of increased rolling resistance, associated with increased

angularity in and interlocking between non-convex particles, on the macroscopic response

were clearly demonstrated. These effects are manifested macroscopically through an increase

in the mobilized shear strength and dilatancy under biaxial compression, and a smaller

spread and higher angle of response under a column drop test. These observations are

consistent with reported experimental observations. The effect of geometrical bias from the

use of disks to match average particle diameter on packing porosity, which in turn affects

mobilized strength, is also noted.
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STEP 0
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NON-CONVEXANGULAR, CONVEX

Figure 4.8: Column drop test with interparticle friction coefficient of µ = 0.5: comparison
between non-convex and angular particles.
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Figure 4.9: Column drop test with interparticle friction coefficient of µ = 0.5: comparison
between non-convex and disk particles.
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Figure 4.10: Configurations of columns with interparticle friction coefficient of µ = 0.5 at
step 1600: approximate dimensions relative to column with non-convex particles.
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Figure 4.11: Column drop test with interparticle friction coefficient of µ = 0: comparison
between non-convex and angular particles.
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Figure 4.12: Column drop test with interparticle friction coefficient of µ = 0: comparison
between non-convex and disk particles. We note that at step 3200, the column with disk
particles continues to flow; a final layer thickness of 1 particle is reached as the simulation
is progressed.
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Figure 4.13: Configurations of columns with interparticle friction coefficient of µ = 0 at
step 3200: approximate dimensions relative to column with non-convex particles. We note
that at this point in time the column with disk particles continues to flow; a final layer
thickness of 1 particle is reached as the simulation is progressed.


