
24

Chapter 3

NURBS-based Discrete Element
Method

The two major components of the proposed NURBS-based DEM are the use of NURBS for

representing particle geometries, and the contact algorithm for determining the signed gap

or penetration between two non-convex NURBS surfaces. We discuss these two components

in detail in this chapter.

3.1 Non-Uniform Rational Basis-Splines (NURBS)

Non-Uniform Rational Basis-Splines (NURBS) are ubiquitous in the world of computer

graphics, computer-aided design (CAD), computer-aided engineering (CAE), and computer-

aided manufacturing (CAM) systems, as well as in computer animations. These functions

provide great flexibility in representing arbitrary and complex geometries with much less

information than conventional faceted or polynomial counterparts. Perhaps more impor-

tantly, in the context of this work and as shown in this section, the mathematical properties

of NURBS make them ideal candidates for the description of grain morphology, the inte-

gration of discrete equations of motion, and the detection of contact.

In what follows we briefly describe the essential components of NURBS in the context

of the current application. The literature on NURBS is extensive and relatively mature,

and our purpose here is not to present all of its elements but rather those that are needed

for completeness of presentation. For an exhaustive description of NURBS the reader is

referred to [48; 84–86], whose presentation and notational convention we follow closely.

We adhere to the convention in the computational geometry literature where the degree

25

p = 1, 2, 3, etc. refers to constant, linear, quadratic, cubic, etc., piecewise polynomials,

respectively. In the following incomplete description of NURBS, we split the acronym into

three parts: Non-Uniform (NU), Rational (R), and Basis-Splines (BS). We describe these

parts in reverse order and incrementally for clarity of presentation.

3.1.1 Basis-Splines (BS)

Within the description of Basis-Splines (B-Splines), there are three main elements necessi-

tated [86]:

1. A set of n+ 1 control points P i (0 ≤ i ≤ n),

2. A knot vector U of m+ 1 knots (0 = u0 ≤ u1 ≤ · · · ≤ um−1 ≤ um = 1), and

3. A degree p satisfying m = n+ o where o = p+ 1 is the order of the curve.

Note that the last requirement means that the number of knots m + 1 must be equal to

the number of control points n+ 1 plus the curve order p+ 1. The control points need not

lie on the curve itself. Rather, control points act as a scaffold that controls the geometry

[48]. At the most rudimentary level, one manipulates the geometry by adjusting the control

points until the desired shape is met. Piecewise linear interpolation of the control points

effectively furnishes a control polygon bounding the geometry.

Given the aforementioned parameters, a (non-rational, polynomial) B-Spline curve is

defined parametrically as

C(u) =
n∑

i=0

Ni, p(u)P i (3.1)

where u is the curve parameter, and Ni,p is the i-th B-Spline basis function of degree p

defined recursively as follows:

Ni, 0(u) =





1 if u ∈ [ui, ui+1)

0 otherwise

Ni, p(u) =
u− ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u
ui+p+1 − ui+p

Ni+1,p−1(u) (3.2)

The above is also known as the Cox-de Boor recursion formula [87; 88].

26

3.1.2 Rational B-Splines (RBS)

A known limitation of (non-rational) B-Splines, as defined in equation (3.1), is their inability

to capture conic sections (e.g., circles and ellipses). This limitation stems from the simple

polynomial form of B-Splines. To be able to represent conic sections, the parametric form

would need to be rational, i.e., the quotient of two polynomials. A rational B-Spline (RBS)

is furnished by adding a weight wi ≥ 0, which provides an additional degree of freedom for

geometry manipulation. Hence, the curve equation becomes

C(u) =

∑n
i=0Ni, p(u)wiP i∑n
i=0Ni, p(u)wi

(3.3)

=
n∑

i=0

Ri, p(u)P i (3.4)

where Ri, p (u) = Ni, p (u)wi/ (
∑n

i=0Ni, p (u)wi), 0 ≤ i ≥ n, are the rational basis functions.

Since Ri, p (u) is rational, the exact description of conic sections becomes possible. Naturally,

when all weights are equal to unity, equation (3.4) reduces to equation (3.1).

It is interesting to note the geometric contribution of the weights. The weight wk

affects the effective contribution of control point P k on the overall shape of the curve C(u).

Making wk smaller corresponds to ‘pushing’ the curve away from the control point P k. In

the extreme, when wk = 0, the term wkP k is annihilated from the equation of the curve

and the contribution of the control point is obviously nullified. Another interesting extreme

is obtained by making wk very large relative to other weights. Dividing equation (3.4) by

wk gives

C(u) =

∑n
i 6=kNi, p(u)wi/wkP i +Nk, p(u)P k∑n

i 6=kNi, p(u)wi/wk +Nk, p(u)
(3.5)

where one can see that as wk is increased, the curve C(u) is ‘pulled’ towards the control

point P k.

Remark 3.1.1 In the context of grain modeling, the inability of non-rational B-Splines to

represent conic sections should not be viewed as a disadvantage, since real grains are rarely

spherical or circular in section. NURBS can be used in their simpler polynomial B-spline

version when their full power is not necessary.

27

x

y

Real Space Control Point

Control
Polygon

NURBS
Curve

PiParametric Space

C(u) =

�n
i=0 Ni, p(u)wi Pi�n

j=0 Nj, p(u)wj

Knot vector

Weights

Kink

w = {1, 1, 0.95, 1.1, 0.95, 1, 1.05, 1, 1}

U = {0, 0, 0, 0, 0.25, 0.5, 0.75, 0.75, 0.75, 1, 1, 1, 1}

Figure 3.1: Schematic illustration of a NURBS curve. The curve degree p is 3 (cubic). The
knots ui and weights wj are listed in the vectors U and w, respectively. The kink in the
curve is due to full multiplicity k = p = 3, in which the knot/parameter value u = 0.75 is
repeated p = 3 times.

3.1.3 Non-Uniform (NU) Rational B-Splines (NURBS)

The NU portion in NURBS is furnished by the knots in the knot vector U of the B-Splines.

The non-decreasing knots ui, i = 0, 1, ...,m partitions the parameter space into segments

of half-open intervals [ui, ui+1), which are also called knot spans. The knot span can be of

zero length since the knots need not be distinct, i.e., they can be repeated. The number of

times a knot value repeats itself is called multiplicity k. Based on the way the knots are

spaced, we can divide B-Splines into the following types:

1. Uniform B-Splines, which can be subdivided into non-periodic and periodic

2. Non-uniform B-Splines

In non-periodic uniform B-Splines, the knots are uniformly spaced except at the ends

where the knot values are repeated p+ 1 times, so that

U = {0, 0, . . . , 0︸ ︷︷ ︸
p+1

, up+1, . . . , um−p−1, α, α, . . . , α︸ ︷︷ ︸
p+1

} (3.6)

The above knots are also referred to as non-periodic or open knots. Non-periodic B-Splines

are infinitely continuously differentiable in the interior of a knot span, and (p − k)-times

continuously differentiable at a knot. If k = p, we say that the knot has full multiplicity;

the multiplicity cannot be greater than the degree. Multiplicity of knots provides a way to

specify the continuity order between segments. For example, a full multiplicity knot in the

28

knot vector (away from the ends) means that a kink or cusp is present in the curve. On

the other hand, in periodic B-Splines, the knots are uniformly spaced but the first and last

knots are not duplicated, so that the knot vector looks like

U = {0, 1, . . . , n} (3.7)

Periodic B-Splines are everywhere (p− 1)-times continuously differentiable.

If the knots are unequally spaced, the knot vector is non-uniform, we get non-uniform

B-Splines (the NU part in NURBS). The non-uniformity in knots can cause the degree

p of the curve to be different between knot spans. As a matter of terminology and in

describing grain geometries, knot vectors can be defined in either [0, 1] or [0, n]. The choice

of normalization does not have any effect on the shape of the curve, and it is therefore

inconsequential. A schematic of a NURBS curve is shown in Figure 3.1.

Remark 3.1.2 Equation (3.3) is usually taken as the definition of NURBS, although the

non-uniformity of the knots is not obvious from this expression.

Remark 3.1.3 Several NURBS CAD technologies, such as Rhino [89], which are already

available for geometric design of engineering components could be directly integrated into

the modeling pipeline, facilitating the transition from binary data to models of granular

assemblies.

Remark 3.1.4 It is rare that one would work with NURBS models directly in paramet-

ric space. In practice, grain shapes are typically generated interactively or through some

optimization procedure such as least squares.

3.1.4 Closing a NURBS curve

To reproduce grain geometries accurately, it is necessary to close the NURBS curves used

to describe the grain boundary. There are at least two procedures to close a NURBS curve.

In the first procedure, closed NURBS curves are defined by ‘wrapping’ control points. In

this process, a uniform knot sequence of m+ 1 knots is constructed such that: u0 = 0, u1 =

1/m, u2 = 2/m, . . . , um = 1. Note that the domain of the curve is [up, un−p]. Then, the first

and last p control points are wrapped so that P 0 = P n−p+1 = P n−p+2, . . . ,P p−2 = P n−1

29

and P p−1 = P n. By wrapping the control points, Cp−1 continuity is ensured at the joining

point C(up) = C(un−p).

In the second approach, the first and last control points are made coincident, i.e., P 0 =

P n and the first and last p+1 knots are clamped, i.e., repeated. The curve may or may not

have Ck continuity depending on how the first and last k internal knot spans are chosen,

and the first and last k + 1 weights and control points are chosen. Perhaps the simplest

example is that of a unit circle in which the control points and weights shown in Table 3.1

are used together with the following knot vector:

U = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4} (3.8)

We notice that P 0 = P 8 and the first and last three knot values are clamped. Also,

there are three pairs of internal knots with multiplicity two. In general, this would lead

to a loss of continuity in the first derivative. However, in this case, continuity in the

first derivative is maintained by three collinear control points in each of the following sets:

{P 7,P 0 = P 8,P 1}, {P 1,P 2,P 3}, {P 3,P 4,P 5}, and {P 5,P 6,P 7}. In this work, we will

use knot vectors that are clamped.

i xi yi wi
0 1 0 1

1 1 1
√

2/2
2 0 1 1

3 -1 1
√

2/2
4 -1 0 1

5 -1 -1
√

2/2
6 0 -1 1

7 1 -1
√

2/2
8 1 0 1

Table 3.1: Control points (xi, yi) and weights wi for a unit circle.

30

3.1.5 NURBS surfaces

In 3D, we describe the grain geometry as a tensor product surface, with the coordinates of

the NURBS surface in real space given by components of the vector:

Y (u, v) =
m∑

i=0

n∑

j=0

(
wijNi,p(u)Nj,p(v)∑m

g=0

∑n
h=0wghNg,p(u)Nh,p(v)

)
P ij (3.9)

where P ij are the control points, wij are the weights, and Ni,p(u) and Nj,p(v) are the B-

Splines univariate basis functions of degree p. We must therefore specify a knot vector for

the u basis functions, and a second knot vector for the v basis functions. Although there

is no restriction on the choice of degree, we have restricted to NURBS surfaces of (cubic)

degree p = 3 in our applications.

3.1.6 Relevance of NURBS to DEM calculations

To conclude this section, some of the advantages of using NURBS in the context of DEM

calculations are listed. Some of the most salient mathematical properties of NURBS that

make them ideal candidates for DEM calculations are [48; 84]:

1. Local support property

2. Invariance under affine transformations

3. Strong convex hull property

4. Local curvature equation

5. Integration with isogeometric analysis

The local support property affords the method tremendous flexibility in the description

of grain geometries. For example, in the case of NURBS curves, local support implies that

the basis function Ni,p(u) is non-zero on [ui, ui+p+1). Since the basis function Ni,p(u) is the

coefficient of control point P i, the product Ni,p(u)P i changes if P i changes, but the change

in Ni,p(u)P i only affects the segment on [ui, ui+p+1), leaving the rest of the curve C(u)

unchanged. Therefore, because of local support, a change in the position of a control point

only affects the local portion of the NURBS curve, and this allows great flexibility when

trying to approximate grain boundaries accurately. Also, by the local support property,

31

any modifications to the weights wi, too, will only affect the section of the NURBS curve

on the [ui, ui+p+1) interval.

The invariance property of NURBS under affine transformations is useful when updating

the grains described using NURBS within the time integration scheme. Exploiting this

property, a grain’s position is updated by simply translating and/or rotating the control

points relative to the grain’s centroid.

The strong convex hull property ensures that, for a closed NURBS curve, the entire

grain is located within the convex hull defined by the corresponding control points. Us-

ing the control points to define a convex hull bounding each grain, the granular entities

described using NURBS can be easily incorporated into existing DEM global collision de-

tection algorithms. We note that the control polygon defined by the control points could

be non-convex. Also, the convex hull property fails for negative weights in which a portion

of the affected curve segment will be outside of the convex hull defined by the correspond-

ing control points. However, negative weights are not typically used when describing grain

shapes, and therefore convex hull failure is typically not a concern.

NURBS provides a simple procedure for evaluating local curvatures. It is well known

that contact stresses (e.g., Hertzian contact) depend on the radii of curvature of two con-

tacting bodies. Evaluation of curvature for simple shapes such as circles and ellipses is

straightforward but becomes complicated for arbitrary-shaped grains. In addition to pro-

viding the tangent and normal boundary vectors needed for contact force calculations,

NURBS also provide local curvature evaluations that can be used directly in calculating

local contact forces. After obtaining the first and second local derivatives C(1) and C(2),

respectively, the curvature vector can be evaluated such that

κ =

(
C(1) ·C(1)

)
C(2) −

(
C(1) ·C(2)

)
C(1)

(
C(1) ·C(1)

)2 (3.10)

and consequently, the local radius of curvature is calculated such that R = 1/‖κ‖.
Finally, the use of NURBS provides a foundation for high-fidelity physics at the granular

level. Since NURBS have recently been shown to furnish a basis for isogeometric analysis

[48], within each particle more complex analysis, such as plasticity, damage, or possibly

breakage, can be performed. Evidently, NURBS can offer tremendous flexibility in repre-

32

senting and optimizing grain morphology, as well as provide important geometric properties

that would enable higher-fidelity discrete calculations.

Remark 3.1.5 Isogeometric analysis is a computational mechanics technology that uses ba-

sis functions emanating from computer aided geometric design (CAGD), such as B-splines,

NURBS, and T-splines. It has been shown that isogeometric analysis provides more precise

and efficient geometric representations [48].

Remark 3.1.6 The last two of the above features of NURBS have not been considered in

this thesis. These can potentially be explored in the future.

3.2 Contact Problem and Implementation

Our earlier work described in [49; 50] has focused on particles geometries that are angular

but strictly convex, and the contact algorithms were generalizations of the intersection-based

approach used for disks and spheres. While the work has led to improvements in particle

morphology representation beyond disks and spheres, it was still limited in two ways. First,

the increase in rolling resistance of angular but convex geometries relative to disks is limited.

For instance, rolling resistance provided by distributed contact reaction over flat boundaries

cannot be represented using strictly convex shapes. Moreover, interlocking behavior between

non-convex particles, which contributes significantly to mobilized strength and stability

[90; 91], is not accounted for. Second, the generation of strictly convex NURBS shapes is

very difficult and restrictive from a modeling perspective. This is even more so when dealing

with image data of real particle shapes and obtaining strictly convex boundaries through a

fitting procedure is not possible in most cases.

A contact algorithm capable of dealing with general non-convex NURBS particles, to

be described in this chapter, would eliminate the above two limitations. As a result, a

more faithful representation on the contact force distributions over particle boundaries is

obtained and the image data-to-analysis pipeline is significantly streamlined. Without loss

of generality, we will work with 3D NURBS surfaces throughout the remaining of this

chapter. We also assume that the underlying parametric domain has been normalized, i.e.,

0 ≤ u ≤ 1 and 0 ≤ v ≤ 1 (a unit square).

33

3.2.1 General definition

Potential contact I

Slave

Master

n

X

Ȳ

x y

z

∂Ωi

∂Ωj

Ωj

Ωi

Figure 3.2: Contact problem between two particles Ωi and Ωj . Refer to text for description.

We consider a general two-particle contact problem in three dimensions, with the parti-

cles in question to be potentially contacting at some time instant t. Referring to Figure 3.2,

let Wi be the set of potential contacts associated with particle i, and denote using I ∈ Wi

a particular contact point in the set.

Following a master-slave approach to describe the contact problem [92], a contact point

on the slave particle Ωj is denoted by X while the contact point on the master particle

Ωi is defined to be the closest point projection (CPP) of X onto the surface of the master

particle:

Ȳ ≡ Ȳ (X) = min
Y ∈ ∂Ωi

‖X − Y ‖ (3.11)

where ‖‖̇ is the standard Euclidean norm. As shown in Figure 3.2, the contact plane at a

potential contact point I is described on the master surface ∂Ωi by the outward unit normal

n at point Ȳ . The gap or penetration at time t is then defined as

g(X) =
[
X − Ȳ (X)

]T
n (3.12)

By this definition, contact penetration occurs if g(X) < 0. This convention is similar to

34

that used in the definition of contact problems in the finite element method (FEM) [92]. In

the context of classic DEM [24] with a linear contact law, once the gap is determined, the

normal contact force on the master particle is then calculated as (refer to (2.1)):

f =




kNg(X)n, if g(X) < 0

0, otherwise

(3.13)

where kN is the normal contact stiffness. An equal and opposite force acts on the slave

particle. Essentially, the contact problem boils down to the problem of solving the CPP

problem (3.11) and in the remaining sections, we describe how this is done in the context

of NURBS.

3.2.2 Knot positioning

We generalize the node-to-surface approach typically used in the contact treatment of finite

element models [92] to a ‘knot-to-surface’ (KTS) approach to enable the contact treatment

of non-convex particles described using NURBS surfaces. More recently, the KTS approach

has been employed in isogeometric finite elements [93] and a similar approach is taken

here. The contact points X associated with the slave particle are represented through

knots and these points are to be projected onto the master surface to determine if there

is contact penetration. The representation of contact points through knots is necessary for

computational tractability, as well as for tracking the incremental slip and contact gain or

loss around non-convex surfaces of potentially contacting particles. While similar to nodal

discretization in FEM, we emphasize that the key difference here is that the positioning of

contact points by knots does not change the particle geometry, i.e., isogeometric; the knots

vary continuously in the underlying parametric space. In this work, we have adopted to

position the knots a priori as a preprocessing step.

In real applications where a large number of arbitrary-shaped grains are represented by

3D NURBS surfaces, the manual positioning of knots proved to be extremely difficult, if

not impossible. As such, an automatic and adaptive knot positioning strategy is required.

To this end, we have devised an automatic knot positioning algorithm based on a NURBS

recursive subdivision scheme (see Algorithm 2). The NURBS surface is subdivided until

the following termination criteria (see Figure 3.3) are met:

35

1. Real space arc distance corresponding to each parametric direction of less than εd

2. Acute angle between normal vectors at adjacent knot positions of less than εθ

and a knot or node is positioned at the center of the subdivided surface at the terminated

level.

✏✓

✏d

uv

A

B
nA

nB

NURBS
Surface

Figure 3.3: Measures used for terminating the NURBS subdivision in the knot or node
generation procedure. The two normal vectors emanating from nodes A and B are denoted
by nA and nB, respectively. NURBS parametric directions are u and v.

36

Input: NURBS surface S = Y (u, v), real arc distance tolerance εd, angle tolerance εθ
Output: List of knot positions in real space

procedure AKP(S)
Calculate the real-space points corresponding to the corners in parametric space:
x1 = x(umin, vmin), x2 = x(umax, vmin), x3 = x(umax, vmax), x4 = x(umin, vmax)

Calculate real arc distance corresponding to each parametric direction:
Du = max(‖x3 − x4‖, ‖x1 − x2‖), Dv = max(‖x1 − x4‖, ‖x2 − x3‖)

Let ∆u = umax − umin, ∆v = vmax − vmin, uave = (umax + umin)/2,
vave = (vmax + vmin)/2.

Define acute angle between unit normal vectors θ(n1,n2) = cos−1 (n1 · n2)

if (Du > Dv)∗ then

Compute unit normal vectors: nu1 = n(umin + ∆u/3, vave),
nu2 = n(umin + 2∆u/3, vave) and θu = θ(nu1,nu2).

if (Du > εd) and (θu > εθ) then
Split surface into 2 child surfaces S1, S2 at uave

else
Surface is a LEAF

end if

else (Du ≤ Dv)∗

Compute unit normal vectors: nv1 = n(uave, vmin + ∆v/3),
nv2 = n(uave, vmin + 2∆v/3) and θv = θ(nv1,nv2).

if (Dv > εd) and (θv > εθ) then
Split surface in into 2 child surfaces S1, S2 at vave

else
Surface is a LEAF

end if

end if

if (Surface is a LEAF) then
Store midpoint x(uave, vave) as a knot position

else
Recurse, i.e., apply AKP, on the two child surfaces S1, S2

end if
end procedure

∗For a closed single patch NURBS surface, a seam joins either the edges at (a) u = 0, 1
or (b) v = 0, 1. At first entry into this procedure, the if (Du > Dv) block is executed for
case (a) while the if (Du ≤ Dv) block is executed for case (b).

Algorithm 2: Automatic Knot Positioning (AKP) Algorithm.

37

3.2.3 Distance function

The distance function of a fixed slave point X on a slave surface to a master surface Y (u, v)

is given by

d(u, v) = ‖X − Y (u, v)‖ (3.14)

or, squaring both sides, we obtain the distance squared function

f(u, v) = [X − Y (u, v)]T [X − Y (u, v)] (3.15)

where f(u, v) = [d(u, v)]2 and the coordinates of the NURBS surface Y (u, v) is given by

(3.9).

The CPP problem can then be formulated as (cf. (3.11))

Ȳ = min
(u,v)∈Γ

f(u, v) (3.16)

where Γ is the bounded normalized parametric space of the NURBS master surface. In real

applications, where surfaces are always well-defined, the underlying NURBS basis functions

are products or quotients (with denominators that are bounded away from zero) of uni-

variate B-Splines basis functions, which in turn are polynomials. This implies the distance

squared function f(u, v) is Lipschitz continuous. This means that there exists a finite bound

on the rate of change of the squared distance function. This key observation allows one to

employ the Lipschitzian dividing rectangle (DIRECT) global optimization procedure as a

solution to the CPP problem.

3.2.4 The DIRECT optimization algorithm

Here, we describe how the DIRECT algorithm can be adapted to the CPP problem (3.16).

We describe the following two components of the DIRECT algorithm,

1. Sample and subdivide

2. Identification of potentially optimal parametric rectangles

followed by a simple example to illustrate how the overall DIRECT algorithm works. We

emphasize that, in the application of this algorithm, the NURBS surface or underlying

38

parametric domain is not physically subdivided. The key feature of the DIRECT algorithm

is that the subdivisions are performed implicitly through sampling (i.e., function evaluation)

and selection of optimal rectangles.

3.2.4.1 Sample and subdivide

The basic idea of this step is as follows: the sampling part determines the goodness of

the current solution of f in (3.16), while the subdivision part ensures efficiency as well

as convergence of the DIRECT algorithm. After subdivision, the parametric domain will

consist of subregions that are either squares or rectangles. We first describe the sample and

subdivide step for squares followed by an extension to rectangles.

The basic idea behind the DIRECT algorithm is the sampling of the values of the

function f at the points c ± δei, i = 1, 2, where c is the center of the parametric square,

δ is one-third side length of the parametric square, and ei is the unit vector in either the

u (i = 1) or v (i = 2) direction. Since the underlying parametric domain of the NURBS

surface is 2D, the sampling points would be located above, below, to the left, and to the

right of the center point (see Figure 3.4(a) or (b)).

The square domain is subdivided such that each subregion (rectangle or square) would

contain a sample point at its center. The following strategy for subdividing the square is

adopted in [94]. Let

wi = min {f(c− δei), f(c+ δei)} , i ∈ 1, 2 (3.17)

be the best of the function values sampled along the u and v directions. First, split the

square into thirds along the dimension with the smallest w value. Then, split the rectangle

that contains c into thirds along the remaining direction. This strategy ensures that the

largest subrectangle contains the sample point with the best function value, i.e., lowest f

value. The reason for this strategy is to bias the search near points with good function

values, since larger rectangles are preferred for sampling (as a result of convex hull; see be-

low). For rectangular domains, the subdivision is performed only along the long dimension.

This ensures that the rectangles shrink in both parametric directions, ensuring convergence

[94]. Examples illustrating this subdivision strategy are shown in Figure 3.4. Algorithm 3

formally describes the above steps and covers both square and rectangular domains.

39

Input: A parametric subregion (rectangle or square)
Output: A subdivided subregion

1: Identify the set I ⊆ {1, 2} with maximum parametric side length in parametric space,
where 1 and 2 are in the u and v directions, respectively. Let δ equal to one-third of
this maximum length (if square, pick both sides, otherwise pick longer dimension - see
explanation in the text).

2: Sample the function at the points c± δei for all i ∈ I, where c is the center of the
parametric rectangle and ei is the i-th unit vector.

3: Divide the rectangle containing c into thirds along the dimensions in I, starting with
the dimension lowest value of

wi = min {f(c− δei), f(c+ δei)}
and continue to the next dimension.

Algorithm 3: Sample and Subdivide Algorithm

40

Sample

10 9.58

9

7

Subdivide

6.9 6.53

3.6

4.7

4.5 2.73.3

(a)

(b)

(c)

(d) 5.2

6.1

5.8

Best
value

Best
value

Figure 3.4: Example cases of sample and subdivide. For cases (a) and (b), the domain is
square, and the subdivision is such that the largest subrectangles contain the sample points
with the best function values, i.e., lower f values. For cases (c) and (d), the domain is
rectangular, and the subdivision is performed only along the long dimension.

41

3.2.4.2 Identification of potentially optimal rectangles

Assume that we have partitioned the unit square parametric domain underlying the NURBS

surface into a total of m rectangles (or squares if the sides are equal). To select optimal

rectangles for subdivision, we first compute the following for each rectangle j:

• Distance from its center to its vertex dj

• Function value evaluated at the center fj = f(cj) = f(uj , vj)

Non−optimal
Potentially optimal

f(c)

d

fmin

fmin − �|fmin| �|fmin| (dj , fj)

Slope K

fj − Kdj

Figure 3.5: A schematic of the graph of f(c) versus d for all rectangles in the parametric
domain. Refer to the text for the meaning of the labeled quantities.

Then, we plot the points (dj , fj) on a graph with fj on the abscissa for all j = 1, . . . ,m,

as shown schematically in Figure 3.5. Each point on the graph represents a rectangle in the

parametric domain. The set of potentially optimal rectangle is defined as follows.

Definition 1 Let ε > 0 be a positive constant and fmin be the best current solution, i.e.,

the lowest value of f over all m rectangles. A rectangle j is said to be potentially optimal if

there exists some K > 0 such that

fj −Kdj ≤ fi −Kdi, ∀i = 1, . . . ,m (3.18)

fj −Kdj ≤ fmin − ε|fmin| (3.19)

42

We note that K is simply a rate-of-change constant but we can loosely interpret it as a

Lipschitz constant. From Figure 3.5, fj −Kdj can be seen as an abscissa intercept, which

provides the lower bound for fj . The lower bound contains two terms fj and −Kdj . The

first term is lower when the function values are lower. Thus, this term favors locations

where previous function values are lower, i.e., emphasis on local search. The second term

is lower the larger dj becomes. Therefore, this term puts the search emphasis on larger

rectangles, i.e., emphasis on global search. As such, K can also be interpreted as a relative

weight on global versus local search. Instead of relying on a single constant K, which

is usually high (too much emphasis on global search) and resulting in slow convergence,

the DIRECT algorithm considers all possible weights, and at the same time determines

and reduces the weights as the search proceeds. Moreover, the algorithm does not require

the a priori specification of the weights, which are usually very hard to estimate or are

completely unknown. To see how these are achieved, we observe that geometrically the first

condition (3.18) means that the optimal rectangles can be found as the lower right of the

convex hull of the set of points in the graph of f (see dashed red line in Figure 3.5). This

means that there is no need to determine K. The second condition (3.19) prevents the

algorithm from becoming too local, at which point too many iterations are performed for

marginal improvements. This means that some of the smaller rectangles near the bottom

right of the aforementioned convex hull may not be selected. A range of 10−3 to 10−7 has

been suggested but DIRECT is rather insensitive to the choice of ε [94], due to the convex

hull procedure to select potentially optimal rectangles. The convex hull of points can be

performed efficiently using the Graham’s scan algorithm [95]. If the rectangles are sorted

by function value within groups of rectangles with the same center-vertex distance, the

resulting computational complexity is O(m′), wherem′ < m is the number of distinct center-

vertex distances [94]. For further details on data structures, implementation strategies, and

theoretical analysis of the DIRECT algorithm, we refer the reader to [94; 96; 97].

To prevent proliferation of function evaluations as the global minimum is approached,

we terminate the DIRECT global search when the relative change in the parameter values

is less than some tolerance (e.g., ∆u/u,∆v/v < 0.1) and switch to a local minimization

step to finalize the contact point on the master surface. We use the parametric values at

termination of the DIRECT global search as an initial guess and a small neighborhood

around this initial guess as the search domain. The local minimization problem can be

43

solved using either gradient-based or derivative-free constrained optimization algorithms

[98]. Here, we choose the derivative-free procedure since it is simpler and does not require

the evaluation of the Hessian of the function f .

3.2.5 Implementation of contact algorithm

The implementation of the CPP operation can be simply achieved by programming a func-

tion handle that returns the squared distance value f between a given slave contact point X

and a point Y (u, v) on the master surface, and using this function handle in the DIRECT

algorithm. The CPP algorithm proceeds as described in Algorithm 4. The one-to-one

mapping of the DIRECT algorithm to the CPP problem is particularly noteworthy; except

for a few quantities that are relevant to NURBS and the CPP problem, the steps proceed

identically with those laid out in [94]. An illustration of the DIRECT algorithm for a few

iterations is shown in Figure 3.6. The proposed contact algorithm is then implemented by

applying the CPP algorithm on candidate contact pointsX of the slave surface to determine

their closest projected points Ȳ (X). The penetration is calculated using (3.12), from which

the corresponding normal contact force vector on the master particle is then determined by

(3.13).

The identification of candidate slave contact points for the CPP operation can be per-

formed through a number of standard collision detection algorithms (e.g., [42]). For ex-

ample, only those points that are inside the bounding box of the master surface will be

considered.

44

Input: Slave point X and master surface Y (u, v)
Output: Closest projected point Ȳ (X)

1: Let c1 = (u1, v1) be the center point of normalized parameter space (unit square) and
evaluate f(c1). Set current best value fmin = f(c1), number of sample points m = 1,
and iteration counter k = 0.

2: Identify the set S of potentially optimal parametric rectangles.

3: Select any rectangle j ∈ S.

4: Sample and subdivide (see Algorithm 2). Update fmin and m = m+ ∆m where ∆m is
the number of new points sampled.

5: Remove rectangle j from set S. If S is not empty, go to Step 3.

6: Increment iteration counter k = k + 1. If relative in parametric direction is less than
specified tolerance, go to Step 7. Otherwise, go to Step 2.

7: Start constrained optimization procedure using current best (u, v) and corresponding
parametric rectangle to finalize the closest projected point on the master surface Ȳ (X).
Exit.

Algorithm 4: DIRECT Closest Point Projection Algorithm

45

PR
O
D
U
C
ED
 B
Y
A
N
 A
U
TO
D
ES
K
 E
D
U
C
A
TI
O
N
A
L
PR
O
D
U
C
T

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PR
O
D
U
C
ED
 B
Y A

N
 A
U
TO
D
ESK

 ED
U
C
A
TIO

N
A
L PR

O
D
U
C
T

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

ITERATION 2
Start Identify Potentially Optimal Rectangles Sample &

Subdivide

ITERATION 1
Start Identify Potentially Optimal Rectangles Sample &

Subdivide

ITERATION 3
Start Identify Potentially Optimal Rectangles Sample &

Subdivide

d

d

d

Potentially
Optimal

10

10 9.59

8

7

10 9.59

8

7 7.87.5

f(c)

f(c)

f(c)

Potentially
Optimal

Potentially
Optimal

0 0.2 0.4 0.6 0.86.0

7.0

8.0

9.0

10.0

0 0.2 0.4 0.6 0.86.0

7.0

8.0

9.0

10.0

0 0.2 0.4 0.6 0.86.0

7.0

8.0

9.0

10.0

Figure 3.6: Illustration of DIRECT algorithm. For simplicity, we have set ε in (3.19) to
zero. The lines are only to guide the eye — there is no physical subdivision of the NURBS
surface or underlying parametric surface; instead the subdivision is performed implicitly
through sampling and selection of optimal rectangles.

46

3.3 Closure

We have presented a new algorithm for determining the signed gap value for non-convex

NURBS surfaces. The functionality of the algorithm will be demonstrated through discrete

simulations described in the next two chapters.

